id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
4906044
<reponame>sMedX/facenet """Train facenet classifier. """ # MIT License # # Copyright (c) 2020 SMedX import click from tqdm import tqdm from pathlib import Path import tensorflow as tf import numpy as np from facenet import config, facenet, faceclass, ioutils class ConfusionMatrix: def __init__(self, embeddings, classifier): nrof_classes = len(embeddings) nrof_positive_class_pairs = nrof_classes nrof_negative_class_pairs = nrof_classes * (nrof_classes - 1) / 2 tp = tn = fp = fn = 0 for i in range(nrof_classes): for k in range(i): outs = classifier.predict(embeddings[i], embeddings[k]) mean = np.mean(outs) fp += mean tn += 1 - mean outs = classifier.predict(embeddings[i]) mean = np.mean(outs) tp += mean fn += 1 - mean tp /= nrof_positive_class_pairs fn /= nrof_positive_class_pairs fp /= nrof_negative_class_pairs tn /= nrof_negative_class_pairs self.classifier = classifier self.accuracy = (tp + tn) / (tp + fp + tn + fn) self.precision = tp / (tp + fp) self.tp_rate = tp / (tp + fn) self.tn_rate = tn / (tn + fp) def __repr__(self): return (f'{self.__class__.__name__}\n' + f'{str(self.classifier)}\n' + f'accuracy {self.accuracy}\n' + f'precision {self.precision}\n' + f'tp rate {self.tp_rate}\n' + f'tn rate {self.tn_rate}\n') def binary_cross_entropy_loss(logits, options): # define upper-triangle indices batch_size = options.nrof_classes_per_batch * options.nrof_examples_per_class triu_indices = [(i, k) for i, k in zip(*np.triu_indices(batch_size, k=1))] # compute labels for embeddings labels = [] for i, k in triu_indices: if (i // options.nrof_examples_per_class) == (k // options.nrof_examples_per_class): # label 1 means inner class distance labels.append(1) else: # label 0 means across class distance labels.append(0) pos_weight = len(labels) / sum(labels) - 1 logits = tf.gather_nd(logits, triu_indices) labels = tf.constant(labels, dtype=logits.dtype) # initialize cross entropy loss cross_entropy = tf.nn.weighted_cross_entropy_with_logits(labels, logits, pos_weight) loss = tf.reduce_mean(cross_entropy) return loss @click.command() @click.option('--config', default=None, type=Path, help='Path to yaml config file with used options for the application.') def main(**options): options = config.train_classifier(__file__, options) embeddings = facenet.Embeddings(options.embeddings) ioutils.write_text_log(options.logfile, embeddings) print(embeddings) embarray = embeddings.data(normalize=options.embeddings.normalize) next_elem = facenet.equal_batches_input_pipeline(embarray, options) embeddings_batch = tf.placeholder(tf.float32, shape=[None, embeddings.length], name='embeddings_batch') # define classifier if options.embeddings.normalize: model = faceclass.FaceToFaceNormalizedEmbeddingsClassifier() else: model = faceclass.FaceToFaceDistanceClassifier() logits = model(embeddings_batch) cross_entropy = binary_cross_entropy_loss(logits, options) # define train operations global_step = tf.Variable(0, trainable=False, name='global_step') dtype = tf.float64 initial_learning_rate = tf.constant(options.train.learning_rate_schedule.initial_value, dtype=dtype) decay_rate = tf.constant(options.train.learning_rate_schedule.decay_rate, dtype=dtype) if not options.train.learning_rate_schedule.decay_steps: decay_steps = tf.constant(options.train.epoch.size, dtype=dtype) else: decay_steps = tf.constant(options.train.learning_rate_schedule.decay_steps, dtype=dtype) lr_decay_factor = tf.math.pow(decay_rate, tf.math.floor(tf.cast(global_step, dtype=dtype) / decay_steps)) learning_rate = initial_learning_rate * lr_decay_factor train_ops = facenet.train_op(options.train, cross_entropy, global_step, learning_rate, tf.global_variables()) tensor_ops = { 'global_step': global_step, 'loss': cross_entropy, 'vars': tf.trainable_variables(), 'learning_rate': learning_rate } print('start training') with tf.Session() as session: session.run([tf.global_variables_initializer(), tf.local_variables_initializer()]) for epoch in range(options.train.epoch.max_nrof_epochs): with tqdm(total=options.train.epoch.size) as bar: for _ in range(options.train.epoch.size): embeddings_batch_np = session.run(next_elem) feed_dict = {embeddings_batch: embeddings_batch_np} _, outs = session.run([train_ops, tensor_ops], feed_dict=feed_dict) postfix = f"variables {outs['vars']}, loss {outs['loss']}" bar.set_postfix_str(postfix) bar.update() info = f"epoch [{epoch + 1}/{options.train.epoch.max_nrof_epochs}], learning rate {outs['learning_rate']}" print(info) conf_mat = ConfusionMatrix(embarray, model) print(conf_mat) ioutils.write_text_log(options.logfile, info) ioutils.write_text_log(options.logfile, conf_mat) print(f'Model has been saved to the directory: {options.classifier.path}') if __name__ == '__main__': main()
StarcoderdataPython
3352415
<reponame>T-Cube-AI/Time-dependent-SEIRD-Model-API #!/usr/bin/python3 import json import re from computeInsightsFunction import computeInsights PREDICTIONS_DIR = './Predictions/US' DATASETS_DIR = './Datasets/US' INSIGHTS_DIR = './Insights/US' usStatesPopulationFile = "./US-population.json" usStatesPopulation = json.load(open(usStatesPopulationFile)) stateToHeatFactorsMap = dict() totalUSObject = {'State': 'Total'} usStatesPopulation.append(totalUSObject) def replaceSpecialCharacters(filename): filename = re.sub(r'\s+', ' ', filename) filename = filename.replace(' ', '-') filename = filename.replace('(', '') filename = filename.replace('.', '') filename = filename.replace(')', '') return filename def currentValues(filename): fhandle = open(filename) data = fhandle.readlines() lastLine = data[-1] lastData = lastLine.split(',') confirmed = int(lastData[2]) recovered = int(lastData[3]) deaths = int(lastData[4]) return confirmed, recovered, deaths def projectionValues(filename): fhandle = open(filename) data = json.load(fhandle) predictions = data['overallPredictions'] lastWeek = predictions[2]['Week-3']["predictions"] lastData = lastWeek[-1] confirmed = lastData["confirmed"] deaths = lastData["deaths"] return confirmed, deaths for stateObject in usStatesPopulation: stateName = stateObject["State"] filename = replaceSpecialCharacters(stateName) infile = DATASETS_DIR + '/' + filename + '.csv' outfile = PREDICTIONS_DIR + '/' + filename + '_projections.json' insightsFile = INSIGHTS_DIR + '/' + filename + '.json' try: currentConfirmed, currentRecovered, currentDeaths = currentValues( infile) projectedConfirmed, projectedDeaths = projectionValues(outfile) currentInsights = computeInsights(currentConfirmed, currentDeaths) projectedInsights = computeInsights( projectedConfirmed, projectedDeaths) insightsObject = { "Current": currentInsights, "Projected": projectedInsights, } insightsFileHandle = open(insightsFile, 'w') json.dump(insightsObject, insightsFileHandle) insightsFileHandle.close() except Exception as e: print(stateName, e)
StarcoderdataPython
11255196
<reponame>harry-consulting/SAEF1<gh_stars>0 from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.urls import path from . import views app_name = "saef" urlpatterns = [ path('ajax/update_notifications/', views.update_notifications, name='update_notifications') ] urlpatterns += staticfiles_urlpatterns()
StarcoderdataPython
5187276
from antarest.core.jwt import JWTUser, JWTGroup from antarest.core.roles import RoleType from antarest.login.model import Group, User def test_is_site_admin(): jwt = JWTUser( id=0, impersonator=0, type="users", groups=[JWTGroup(id="admin", name="admin", role=RoleType.ADMIN)], ) assert jwt.is_site_admin() assert not JWTUser( id=0, impersonator=0, type="users", ).is_site_admin() def test_is_group_admin(): jwt = JWTUser( id=0, impersonator=0, type="users", groups=[JWTGroup(id="group", name="group", role=RoleType.ADMIN)], ) assert jwt.is_group_admin(Group(id="group")) assert not JWTUser( id=0, impersonator=0, type="users", ).is_group_admin(Group(id="group")) def test_is_himself(): jwt = JWTUser( id=1, impersonator=0, type="users", ) assert jwt.is_himself(User(id=1)) assert not JWTUser( id=0, impersonator=0, type="users", ).is_himself(User(id=1))
StarcoderdataPython
8141012
# -*- coding:utf-8 -*- """File I/O related operations, such as list files, import/export or remove files/folder.""" __author__ = "<NAME>" import os import shutil import json import pickle import zipfile import urllib import wget DependencyFlag = False #Check if dependencies are satisfied. If not, some advanced functions will not be defined. try: import networkx as nx from networkx.readwrite import json_graph import numpy as np import scipy.io DependencyFlag = True except Exception: DependencyFlag = False def ListApkFiles(ApkDirectory): ''' Get the Apk file names for an ApkDirectory in a sorted order. Rerurn an empty list if ApkDirectory=="". :param String ApkDirectory: Path of a apk file directory :return: ListOfApkFiles: The list of Paths of Apks under ApkDirectory :rtype: List[String] ''' ListOfApkFiles=[] if(ApkDirectory==""): raise ValueError('Directory is empty!') filenames = os.listdir(ApkDirectory) for filename in filenames: #list filenames #get the Path for the files Path=os.path.abspath(os.path.join(ApkDirectory, filename)) #get the Path for the files if os.path.splitext(filename)[1]==".apk": if os.path.isfile(Path): ListOfApkFiles.append(Path) return sorted(ListOfApkFiles) def ListFiles(Directory, Extension, All = False): ''' Given an extension, get the file names for a Directory in a sorted order. Rerurn an empty list if Directory == "". :param String/List Directory: Path/Paths of a file directory :param String Extension: Extension of the files you want. Better include "." in the Extension. Use "." to list all files. Use ""(empty string) to list all folders. :param Boolean All: Whether to include all files in sub-directories :return: ListOfFiles: The list of Paths of the files you want under Directory :rtype: List[String] ''' ListOfFiles=[] if(Directory == "" or Directory == []): return [] if(type(Directory) != list and os.path.isdir(Directory) == False): raise ValueError(Directory, 'Directory is not a directory!') if(type(Extension)!=str): raise ValueError(Extension, 'Extension is not a string!') if(Extension): if(Extension[0] != "."): Extension = "." + Extension if type(Directory) == list: Directories = Directory if All: for Directory in Directories: ListOfFiles.extend(_ListAllFiles(Directory, Extension)) else: for Directory in Directories: filenames = os.listdir(Directory) for filename in filenames: #list filenames #get the Path for the files Path=os.path.abspath(os.path.join(Directory, filename)) #get the Path for the files if Extension == "": #Need to get all folders instead of files if os.path.isdir(Path): ListOfFiles.append(Path) else: if os.path.splitext(filename)[1]==Extension or Extension == ".": if os.path.isfile(Path): ListOfFiles.append(Path) else: if All: ListOfFiles = _ListAllFiles(Directory, Extension) else: filenames = os.listdir(Directory) for filename in filenames: #list filenames #get the Path for the files Path=os.path.abspath(os.path.join(Directory, filename)) #get the Path for the files if Extension == "": #Need to get all folders instead of files if os.path.isdir(Path): ListOfFiles.append(Path) else: if os.path.splitext(filename)[1]==Extension or Extension == ".": if os.path.isfile(Path): ListOfFiles.append(Path) return sorted(ListOfFiles) def _ListAllFiles(Directory, Extension): ''' Given an extension, get the file names for a Directory and all its sub-directories in a sorted order. Rerurn an empty list if Directory == "". :param String Directory: Path of a file directory :param String Extension: Extension of the files you want. Better include "." in the Extension. Use "." to list all files. Use ""(empty string) to list all folders. :return: ListOfFiles: The list of Paths of the files you want under Directory :rtype: List[String] ''' ListOfFiles=[] if(Directory == ""): raise ValueError(Directory, 'Directory is empty!') if(os.path.isdir(Directory) == False): raise ValueError(Directory, 'Directory is not a directory!') if(type(Extension)!=str): raise ValueError(Extension, 'Extension is not a string!') if(Extension): if(Extension[0] != "."): Extension = "." + Extension for root, dirs, files in os.walk(Directory): if Extension == "":#Need to get all folders instead of files ListOfFiles.append(os.path.abspath(root)) else: for filename in files: #list filenames #get the Path for the files Path = os.path.abspath(os.path.join(root, filename)) #get the Path for the files if os.path.splitext(filename)[1] == Extension or Extension == ".": if os.path.isfile(Path): ListOfFiles.append(Path) if Extension == "": ListOfFiles = ListOfFiles[1:] #Remove Directory in the list since the list contains the path of Directory itself return sorted(ListOfFiles) def CopyFolderStructure(SourceFolder, DestinationFolder, Root = False): ''' Copy a folder structure without copying any of the files inside of it. :param String Directory: Path of the source folder :param String Directory: Path of the destination folder that the source folder structure will be copied :param Boolean Root: DestinationAsRoot. If this is True, the DestinationFolder will be ragarded as a folder of the same level of SourceFolder, otherwise SourceFolder will be copied into the DestinationFolder ''' ListOfFolders = ListFiles(SourceFolder, "", All = True) os.makedirs(DestinationFolder, exist_ok = True) if Root is False: for Folder in ListOfFolders: os.makedirs(os.path.join(DestinationFolder, os.path.split(SourceFolder)[-1], os.path.relpath(Folder, SourceFolder)), exist_ok = True) else: for Folder in ListOfFolders: os.makedirs(os.path.join(DestinationFolder, os.path.relpath(Folder, SourceFolder)), exist_ok = True) def FileExist(FilePath): ''' Given file path, determine a file exist or not. :param String FilePath: Path of a file or directory :rtype: Boolean ''' if os.path.exists(FilePath)==True: return True else: #if os.path.isdir(ApkFilePath)==False: # if(os.path.basename(ApkFilePath)) in os.listdir(os.getcwd()): # return True return False def RemoveDirectory(Folder): ''' Given Folder path, remove this folder(include all content inside). :param String Folder: Path of a directory :rtype: Boolean ''' if(FileExist(Folder) == False): raise IOError("Directory not found!") else: shutil.rmtree(Folder) def ExportToJson(Path, Content): ''' Export something to json file. Will automatic convert Set content into List. :param String Path: Path to store the json file :param Variant Content: something you want to export ''' if(isinstance(Content,set)): Content = list(Content) #if(isinstance(Content, collections.defaultdict)): # Content = dict(Content) with open(Path, "w", encoding = "utf8") as f: json.dump(Content, f, indent=4) def ExportToPkl(Path,Content): ''' Export something to pickle file. Will automatic convert Set content into List. :param String Path: Path to store the json file :param Variant Content: something you want to export ''' if(isinstance(Content, set)): Content = list(Content) #if(isinstance(Content, collections.defaultdict)): # Content = dict(Content) with open(Path, "wb") as fd: pickle.dump(Content, fd) def ImportFromPkl(Path): ''' Import something from pickle file. :param String Path: Path of the pickle file :return: Content: Content in the pickle file :rtype: Variant ''' with open(Path,"rb") as fd: Content = pickle.load(fd) return Content def ImportFromJson(Path): ''' Import something from json file. :param String Path: Path of the json file :return: Content: Content in the json file :rtype: Variant ''' with open(Path,"r") as File: Content=json.load(File, encoding = "utf-8") return Content def CompressFiles(Paths, CompressedFilePath, Format = "zip"): ''' Compress files into a (zip) file. :param List Paths: Paths of the files you want to compress. These paths will be under the root of the compressed file.(You may want to use ListFiles to pass in all paths) :param String CompressedFilePath: Path of the compressed file you want to store. :param String Format: The format of the compressed file. ''' if Format == "zip": CompressedFile = zipfile.ZipFile(CompressedFilePath, "w", compression = zipfile.ZIP_DEFLATED) for Path in Paths: parent_folder = os.path.dirname(Path) if os.path.isdir(Path): for root, folders, files in os.walk(Path): # Include all subfolders, including empty ones. for folder_name in folders: absolute_path = os.path.join(root, folder_name) relative_path = absolute_path.replace(parent_folder, '') CompressedFile.write(absolute_path, relative_path) for file_name in files: absolute_path = os.path.join(root, file_name) relative_path = absolute_path.replace(parent_folder, '') CompressedFile.write(absolute_path, relative_path) else: relative_path = os.path.split(Path)[-1] CompressedFile.write(Path, relative_path) CompressedFile.close() else: raise NotImplementedError def DecompressFiles(Paths, TargetFolder, Format = "zip"): ''' Decompress files from a (zip) file/files. :param List Paths: Paths of the files you want to decompress. :param String TargetFolder: Path of the decompressed files you want to store. :param String Format: The format of the compressed file. ''' if Format == "zip": for Path in Paths: CompressedFile = zipfile.ZipFile(Path, "r") CompressedFile.extractall(TargetFolder) CompressedFile.close() else: raise NotImplementedError def DownloadFile(URL, Destination = "./download", ExpectedBytes = None, IsDestinationFolder = None): """ Download a file if not present, and make sure it's the right size. :param String URL: URL of the file you want to download. :param String Destination: Path of the file you want to store, it can be a. :param String Format: The format of the compressed file. """ if IsDestinationFolder is None: #Try to indicate from Destination if os.path.basename(Destination).find(".") >= 0: IsDestinationFolder = False else: IsDestinationFolder = True if IsDestinationFolder is True: if os.path.isdir(Destination): pass else: os.makedirs(Destination) Request = urllib.request.Request(URL, method = "HEAD") Headers = dict(urllib.request.urlopen(Request).info().items()) if IsDestinationFolder: FilePath = os.path.join(Destination, wget.detect_filename(URL, '', Headers)) else: FilePath = wget.detect_filename(URL, Destination, Headers) if not os.path.exists(FilePath): FileName = wget.download(URL, Destination) else: FileName = FilePath StatInfo = os.stat(FileName) if ExpectedBytes is None or StatInfo.st_size == ExpectedBytes: print('Found and verified', FileName) else: print(StatInfo.st_size) raise FileExistsError( 'Failed to verify ' + FileName + '. File exists or corrupted. Can you get to it with a browser?') return FileName if DependencyFlag: def ExportToJsonNodeLinkData(Path,GraphContent): ''' Export graph node link date to json file. :param String Path: Path to store the json file :param nxGraph GraphContent: some graph you want to export ''' with open(Path,"wb") as f: Content=json_graph.node_link_data(GraphContent) json.dump(Content, f, indent=4) def ExportToGML(Path, GraphContent): ''' Export graph node link date to json file. :param String Path: Path to store the json file :param nxGraph GraphContent: some graph you want to export ''' nx.write_gml(GraphContent, Path) def ImportFromJsonNodeLinkData(Path): ''' Import graph node link date from json file. :param String Path: Path of the json file :return: GraphContent: Graph content in the json file :rtype: nxGraph ''' with open(Path,"rb") as f: Content=json.load(f) GraphContent=json_graph.node_link_graph(Content) return GraphContent def ExportNpArray(Path, NpArray, Format = "%f"): ''' Export a Numpy array to a file. :param String Path: The stored file location. :param numpy.array NpArray: The Numpy array you want to store. :param String Format: How to print each element, e.g. %i, %10.5f ''' np.savetxt(Path, NpArray, fmt = Format) def ImportNpArray(Path, DataType, ndmin = 0): ''' Import a Numpy array from a file. :param String Path: The stored file location. :param data-type DataType: How to match each element, e.g. int, float :param int ndmin: How many dimensions of array at least you will have. :return: NpArray: NpArray in the file :rtype: NpArray ''' NpArray = np.loadtxt(Path, dtype = DataType, ndmin = ndmin) return NpArray def ExportSparseMatrix(Path, SparseMatrix): ''' Export a scipy sparse matrix to a file using matrix market format. Please refer to http://math.nist.gov/MatrixMarket/formats.html for more information about this format. :param String Path: The stored file location. :param scipy sparse matrix SparseMatrix: The scipy sparse matrix you want to store. ''' with open(Path, "wb+") as File: scipy.io.mmwrite(File, SparseMatrix) def ImportSparseMatrix(Path): ''' Import a scipy sparse matrix from a file using matrix market format. :param String Path: The stored file location. :return: SparseMatrix: (converted) scipy csr_matrix in the file :rtype: Scipy Sparse Matrix ''' SparseMatrix = scipy.io.mmread(Path) SparseMatrix = SparseMatrix.tocsr() return SparseMatrix
StarcoderdataPython
88838
<reponame>alsbi/docker_rest_service # -*- coding: utf-8 -*- __author__ = 'alsbi' import json class ApiError(Exception): def __str__(self): return json.dumps({'error': self.error, 'message': self.message}, indent = 4) class ExecutionError(ApiError): def __init__(self, error=None, message=None): super(ExecutionError, self).__init__(message) self.message = message self.error = error class BadParameter(ApiError): def __init__(self, error=None, message=None): super(BadParameter, self).__init__(message) self.message = message self.error = error class Conflict(ApiError): def __init__(self, error=None, message=None): super(Conflict, self).__init__(message) self.message = message self.error = error class NotFound(ApiError): def __init__(self, error=None, message=None): super(NotFound, self).__init__(message) self.message = message self.error = error class NotRunning(ApiError): def __init__(self, error=None, message=None): super(NotRunning, self).__init__(message) self.message = message self.error = error def check_error(error): if error == 500: return ExecutionError elif error == 404: return NotFound elif error == 400: return BadParameter elif error == 409: return Conflict elif error == 304: return NotRunning
StarcoderdataPython
171242
N = int(input()) a = list(map(int, input().split())) a.sort(reverse=True) print(sum(a[1::2][:N]))
StarcoderdataPython
3566503
#librarys for video import os import shutil import time import sys if not os.path.exists(str(sys.argv[1])): os.makedirs(str(sys.argv[1])) #start recording src = "../live" dest = "./"+str(sys.argv[1]) src_files = os.listdir(src) for file_name in src_files: full_file_name = os.path.join(src, file_name) if os.path.isfile(full_file_name) and full_file_name[-2:]=='ts' and os.path.getsize(full_file_name)>10: shutil.copy(full_file_name, dest) time.sleep(6) src_files = os.listdir(src) for file_name in src_files: full_file_name = os.path.join(src, file_name) if os.path.isfile(full_file_name) and full_file_name[-2:]=='ts' and os.path.getsize(full_file_name)>10: shutil.copy(full_file_name, dest) os.chdir(dest) names = list() for file_ in os.listdir("."): if file_[-2:]=="ts": os.rename(file_, file_[8:]) names.append(int(file_[8:-3])) names.sort() print(names) with open("mylist.txt", 'w') as names_files: for name in names: names_files.write("file "+str(name)+".ts\n") #os.system("(for %i in (*.ts) do @echo file '%i') > mylist.txt") name=sys.argv[1] os.system('ffmpeg -f concat -safe 0 -i mylist.txt -c copy '+name+'.mp4') for file_ in os.listdir("."): if file_[-2:]=="ts": os.remove(file_) #end recording #update html readFile = open("../../../templates/menu/registros.html") mensaje = """<h3> Video """+str(name)+" ; Fecha: "+sys.argv[2]+" ; Nivel: "+sys.argv[3]+"""</h3> <video controls width="320" height="208"> <source src="{% static 'registros/"""+str(dest)[2:]+"/"+str(name)+""".mp4' %}" type="video/mp4"> Tu navegador no implementa el elemento <code>video</code>. </video> {% endblock %}""" lines = readFile.readlines() lines[-1] = mensaje readFile.close() f = open("../../../templates/menu/registros.html",'w') f.writelines([item for item in lines]) #f.write(mensaje) f.close()
StarcoderdataPython
9724148
<reponame>AlexanderHurst/AlgoFinalProject<gh_stars>1-10 from collections import deque # returns the longest substring in n*n time # algorithm idea credit to <NAME> # from stack overflow modified to include substring locations # this was rendered obsolete for determining key length by # coincidence index and is no longer used in this project def find_longest_substring_location(string): # create a list from the string for fast + # easy access to elements string_list = [i for i in string] # create a queue for fast access and removal of # the head of a list O(1) rather than O(n) compare_queue = deque(string[1:]) # create a list to keep track of the longest # substring that has been found so far longest_substring = [] # create a list to keep track of the longest # substring location longest_substring_location = [] # create a list to keep track of the current # substring substring = [] # runs while compare queue has elements # pops the left element of compare queue # then looks for the matches in the string # indexes, as if the string were shifted left while compare_queue: # for each letter in the compare queue # check with the unshifted list to see which # letters line up for i, letter in enumerate(compare_queue): # if a letter lines up add it to the substring list # and keep checking subsequent indexes until they dont line up if string_list[i] == letter: # if the list is empty keep track of the indexes where the # first character lined up if substring == []: # the first index occurs at i x = i # the second index occurs at the number of letters shifted # which can be found by the difference in string lengths plus i y = (len(string_list) - len(compare_queue)) + i # add the letter to the current substring substring.append(letter) # once the lined up letters no longer match check if the new substring # is longer than the previous longest one, if so replace it and its location else: if len(longest_substring) < len(substring): longest_substring = substring longest_substring_location = [x, y] # empty the substring to begin searching again substring = [] substring = [] # shift the string compare_queue.popleft() # append the length of the substring to the location for ease of access and return it longest_substring_location.append(len(longest_substring)) return longest_substring_location # tester function if the program is run as main if __name__ == "__main__": string = "ZICVTWQNGRZGVTWAVZHCQYGLMGJ" substring_loc = find_longest_substring_location(string) first_substring = string[substring_loc[0] : substring_loc[0] + substring_loc[2]] second_substring = string[substring_loc[1] : substring_loc[1] + substring_loc[2]] print("String:\t\t\t", string) print("Substring length:\t", substring_loc[2]) print("First Occurence:\t", substring_loc[0]) print("Second Occurence:\t", substring_loc[1]) print("First Substring:\t", first_substring) print("Second Substring:\t", second_substring)
StarcoderdataPython
4964844
import rhinoscriptsyntax as rs import math import System # created on 9th Jan 2015 # this class defines a single floorPanel or Tile as an Object with neccessary functions to control it class floorPanel: h1 = 0 h2 = 0 h3 = 0 p1 = None p2 = None slv = None panelID = None def __init__(self,panel1, panel2, sleeve): self.p1 = panel1 self.p2 = panel2 self.slv = sleeve self.panelID = rs.AddGroup() rs.AddObjectsToGroup([panel1, panel2, sleeve], self.panelID) def setPanelState(self, newH1, newH2, newH3): dh1 = newH1 - self.h1 dh2 = newH2 - self.h2 dh3 = newH3 - self.h3 rs.MoveObject(self.p1, [0,0,dh1]) rs.MoveObject(self.p2, [0,0,dh2]) rs.MoveObject(self.slv, [0,0,dh3]) self.h1 = newH1 self.h2 = newH2 self.h3 = newH3 def reset(self): self.setPanelState(0,0,0) def delete(self): rs.DeleteObjects([self.p1, self.p2, self.slv]) self.p1 = None self.p2 = None self.slv = None # asks the user to load a bitmap preset and uses it on the 'panels' 2d array def loadPreset(panels): rs.EnableRedraw(False) file = rs.OpenFileName() bitmap = System.Drawing.Bitmap.FromFile(file) useBitmap(file, panels) rs.EnableRedraw(True) # resets the floor corresponding to the passed 2d array def resetFloor(panels): rs.EnableRedraw(False) x = 0 while x < len(panels): y = 0 while y < len(panels[x]): panels[x][y].reset() y += 1 x += 1 rs.EnableRedraw(True) # deletes the entire floor defined by the 2d list - panels and all its components def deleteFloor(panels): rs.EnableRedraw(False) for col in panels: for tile in col: tile.delete() rs.EnableRedraw(True) # uses the bitmap located in the filePath on the floor defined by the 2d array 'panels' def useBitmap(filePath, panels): bitmap = System.Drawing.Bitmap.FromFile(filePath) xN = 0 while (xN < xNum): yN = 0 while (yN < yNum): color = System.Drawing.Bitmap.GetPixel(bitmap, xN, bitmap.Height-1-yN) #accounting for the inversion of y-axis from bitmap to 3d space in the above line h1 = maxHeight*(color.R+1)/255 h2 = maxHeight*(color.G+1)/255 h3 = maxHeight*(color.B+1)/255 panels[xN][yN].setPanelState(h1,h2,h3) yN += 1 xN += 1 panel1 = '3b0c40dc-f66f-4b69-85c9-b530e0bdf7ed' panel2 = 'f9291d72-ec21-47e5-b251-1df1355097ae' slv = '0b304346-4e53-4290-afab-b2485c846203' # defining the size of the tile (square shape) and the max Height achivable by it maxHeight = 3000 moduleSize = 500 # now scaling the imported module to the correct module size boundingBox = rs.BoundingBox([panel1,panel2,slv]) trueSize = rs.Distance(boundingBox[0], boundingBox[1]) trueHeight = rs.Distance(boundingBox[0], boundingBox[4]) scFxy = moduleSize/trueSize # scaling factor in x and y directions scFz = maxHeight/trueHeight # scaling factor in z direction rs.ScaleObjects([panel1, panel2, slv], boundingBox[4], [scFxy, scFxy, scFz]) # defining the number of tiles in the x and y directions - defined by the user xNum = rs.GetInteger('Enter the number of tiles in the x-direction',10) yNum = rs.GetInteger('Enter the number of tiles in the y-direction',10) # these arrays will contain the identifiers of all the different objects # these are 2d arrays corresponding to positions primaryPanel = [] # the top panel secondaryPanel = [] # the secondary panel underneath the top panel sleeve = [] # the square cross section sleeve panelUnit = [] # and integrated panelUnit with one each of the above three objects # creating copeis of these panels and making a floor rs.EnableRedraw(False) xN = 0 while (xN < xNum): #adding a new empty column to all the 2d arrays primaryPanel.append([]) secondaryPanel.append([]) sleeve.append([]) panelUnit.append([]) yN = 0 while (yN < yNum): #appending the newly created objects into those arrays primaryPanel[xN].append(rs.CopyObject(panel1,[moduleSize*xN, moduleSize*yN,0])) secondaryPanel[xN].append(rs.CopyObject(panel2,[moduleSize*xN, moduleSize*yN,0])) sleeve[xN].append(rs.CopyObject(slv,[moduleSize*xN, moduleSize*yN,0])) panelUnit[xN].append(floorPanel(primaryPanel[xN][yN], secondaryPanel[xN][yN], sleeve[xN][yN])) yN += 1 xN += 1 #now hiding the original prototype panel from which we generated all the copies in the 2d array rs.HideObjects([panel1, panel2, slv]) rs.EnableRedraw(True) #user will now load a preset by selecting an iage file loadPreset(panelUnit) # this loop allows the user to go through more presets while True: response = rs.GetString('Do you want to load another preset? (y/n)','y') print(response) if response == 'y' or response == 'Y': resetFloor(panelUnit) loadPreset(panelUnit) elif response == 'n' or response == 'N': break else: print('Invalid response') continue #this loop forces the user to choose between exporting the results to a new file or discard the changes #this loop resets the file in the end while True: response = rs.GetString('Do you want to save this model? (y/n)','y') if response == 'y': rs.Command('_SelAll _Export') deleteFloor(panelUnit) rs.ShowObjects([panel1, panel2, slv]) break elif response == 'n': exitPrompt = 'Are you sure? You will lose the loaded preset (press y if you want to discard the changes and exit)' response = rs.GetString(exitPrompt,'y') if response == 'y': deleteFloor(panelUnit) rs.ShowObjects([panel1, panel2, slv]) break else: continue
StarcoderdataPython
1741743
import pymongo from pymongo import MongoClient from config import DATABASE_CONNECTION_STRING cluster = MongoClient(DATABASE_CONNECTION_STRING) db = cluster['telegram_db'] collection = db['telegram_db'] def test(): print(cluster.list_database_names()) if __name__ == '__main__': test()
StarcoderdataPython
8085990
# this file is needed for at least setup.py __author__ = "<NAME>"
StarcoderdataPython
1970999
import torch from lanenet.model import HNetLoss def test_hnet(): gt_labels = torch.tensor([[[1.0, 1.0, 1.0], [2.0, 2.0, 1.0], [3.0, 3.0, 1.0]], [[1.0, 1.0, 1.0], [2.0, 2.0, 1.0], [3.0, 3.0, 1.0]]], dtype=torch.float32).view(6,3) transformation_coffecient = torch.tensor([0.58348501, -0.79861236, 2.30343866, -0.09976104, -1.22268307, 2.43086767], dtype=torch.float32) # import numpy as np # c_val = [0.58348501, -0.79861236, 2.30343866, # -0.09976104, -1.22268307, 2.43086767] # R = np.zeros([3, 3], np.float32) # R[0, 0] = c_val[0] # R[0, 1] = c_val[1] # R[0, 2] = c_val[2] # R[1, 1] = c_val[3] # R[1, 2] = c_val[4] # R[2, 1] = c_val[5] # R[2, 2] = 1 # # print(np.mat(R).I) hnet_loss = HNetLoss(gt_labels, transformation_coffecient, 'loss') hnet_inference = HNetLoss(gt_labels, transformation_coffecient, 'inference') _loss = hnet_loss._hnet_loss() _pred = hnet_inference._hnet_transformation() print("loss: ", _loss) print("pred: ", _pred)
StarcoderdataPython
11299451
from datetime import datetime, timedelta from django.db import models from domain.models.base_model import BaseModel def get_default_expiration_date(): return datetime.now() + timedelta(days=365) class UrlBank(BaseModel): actual_url = models.CharField(max_length=3000) expiration_date = models.DateTimeField(default=get_default_expiration_date) md_five_hash = models.CharField(max_length=32, db_index=True) actual_url_shortened = models.CharField(max_length=10, db_index=True) class Meta: db_table = 'url_bank' app_label = 'domain'
StarcoderdataPython
3299250
class Event: def __init__(self, msg, task, time): self.msg = msg self.task = task self.time = time def get_message(self): return self.msg def get_task(self): return self.task def get_time(self): return self.time def update_time(self, _time): self.time = _time
StarcoderdataPython
1970321
<filename>playground/addressbook.py """ Class to represent an address book with multiple contacts. """ class AddressBook: """This will provide you with contact information about your friends.""" def __init__(self,contacts=[]): self.contact_list = contacts #... def addentry(self,name,phone_number,address,email): newcontact = Contact(name,phone_number,address,email) self.contact_list.append(newcontact) #... def print_contacts(self,sorted_order=False): """ Print each of the contacts stored in this address book. If sorted is True, print them in sorted order by name. """ def returnSortKey(contact): if contact.name != "": return contact.name elif contact.email != "": return contact.email elif contact.phone_number != "": return contact.phone_number elif contact.address != "": return contact.address else: return "" if sorted_order == True: y = sorted(self.contact_list,key=lambda z: returnSortKey(z)) for x in y: print "_____________" x.print_entry() else: for x in self.contact_list: print "_____________" x.print_entry() #... #... class Contact: """ Class to store contact information for a single person. """ def __init__(self,name="",phone_number="",address="",email=""): self.name = name self.phone_number = phone_number self.address = address self.email = email #... def print_entry(self): """ Pretty-print the entries in this contact. Empty values are not printed. """ if self.name != "": print "Name:", self.name if self.phone_number != "": print "Phone Number:", self.phone_number if self.address != "": print "Address:", self.address if self.email != "": print "Email:", self.email # if self.name == "" and self.phone_number == "" and self.address == "" and self.email == "": # print "" # elif self.name == "" and self.phone_number == "" and self.address == "": # print "Email:", self.email # elif self.phone_number == "" and self.address == "": # print "Name:", self.name # print "Email:", self.email # elif self.address == "": # print "Name:", self.name # print "Phone Number:", self.phone_number # print "Email:", self.email # elif self.email == "": # print "Name:", self.name # print "Phone Number:", self.phone_number # print "Address:", self.address # else: # print "Name:", self.name # print "Phone Number:", self.phone_number # print "Address:", self.address # print "Email:", self.email #... #... newcontact2 = Contact(name="Sagar", email="<EMAIL>") newcontact = Contact("John","123-4567","somehwere, USA","<EMAIL>") newcontact3 = Contact(email="<EMAIL>") newcontact4 = Contact(address="Over there, USA") newcontact5 = Contact("Anthony","324-9842","New Haven, CT","<EMAIL>") newcontact6 = Contact("Bob","458-0983","New York, NY","<EMAIL>") newbook = AddressBook([newcontact,newcontact2,newcontact6,newcontact3,newcontact4,newcontact5]) newbook.print_contacts(sorted_order=True)
StarcoderdataPython
1887327
from django.apps import AppConfig class CollaborationConfig(AppConfig): name = "api.collaboration"
StarcoderdataPython
9791760
<reponame>Jin-Tao-208/web_science_coursework<gh_stars>0 from collections import OrderedDict import json from math import exp import os from BurstySegmentExtractor import BurstySegmentExtractor from Segment import Segment from TimeWindow import SubWindow from TweetSegmenter import SEDTWikSegmenter from utils.pyTweetCleaner import TweetCleaner class TwitterEventDetector(): def __init__(self, wiki_titles_file, seg_prob_file, wiki_Qs_file, remove_retweets=False, max_segment_length=4, hashtag_wt=3, use_retweet_count=True, use_followers_count=True, default_seg_prob=0.000001, entities_only=False): self.segmenter = SEDTWikSegmenter(wiki_titles_file, max_segment_length, hashtag_wt, entities_only) self.remove_retweets = remove_retweets self.bse = BurstySegmentExtractor(seg_prob_file, use_retweet_count, use_followers_count, default_seg_prob) # prob that a segment is anchor text in all pages containing that segment with open(wiki_Qs_file, 'r') as f: self.wiki_prob = json.load(f) def clean_tweets_in_directory(self, root_dir, target_dir): """ clean tweets in root_dir using pyTweetCleaner and save cleaned files in target_dir This need to be done just once and then the cleaned tweets can be used afterward """ print('Cleaning all tweets in given directory') tc = TweetCleaner(True, self.remove_retweets) if not os.path.isdir(target_dir): os.mkdir(target_dir) for dir_path, _, file_list in os.walk(root_dir): dir_path = dir_path.replace('\\', '/') # make windows-like path to unix-like path which can be used for both dir_name = dir_path.replace(root_dir, '') print('Found directory: %s' % dir_name) target_file_path = target_dir + '/' + dir_name if not os.path.isdir(target_file_path): os.mkdir(target_file_path) for fname in file_list: print(fname) tc.clean_tweets(input_file=dir_path + '/' + fname, output_file=target_file_path + '/' + fname) print('Cleaned all tweets and saved to', target_dir) def read_subwindow(self, file_path): """ read a SubWindow from a file all tweets in given file belong to the subwindow """ segments = {} tweet_count = 0 f = open(file_path, 'rb') for line in f: line = line.decode().replace('\n', '') if line == '': continue json_tweet = json.loads(line) # json_tweet = line tweet_count += 1 user_id = json_tweet['user']['id'] retweet_count = json_tweet['retweet_count'] followers_count = json_tweet['user']['followers_count'] segmentation = self.segmenter.tweet_segmentation(json_tweet) tweet_text = ' '.join(list(OrderedDict.fromkeys( segmentation))) # because of hashtag_wt, some segments might be multiple in tweet text after joining so remove them tweet_text = ''.join([c for c in tweet_text if ord( c) < 256]) # dont know why but some non ascii chars like \u0441='c'still survived segmentation!!! for seg in segmentation: if not seg in segments: new_seg = Segment(seg) new_seg.newsworthiness = self.get_segment_newsworthiness(seg) segments[seg] = new_seg segments[seg].add_tweet(user_id, tweet_text, retweet_count, followers_count) f.close() sw = SubWindow(segments, tweet_count) return sw def get_segment_newsworthiness(self, seg): """ return max exp(Q(l))-1 from all sub phrases 'l' in seg(string) """ seg = seg.split(' ') n = len(seg) # max_sub_phrase_prob = max([self.get_wiki_Qs_prob(seg[i:i+j+1]) for i in range(n) for j in range(n-i)]) # return exp(max_sub_phrase_prob)-1 if n == 1: return exp(self.get_wiki_Qs_prob(seg)) else: max_sub_phrase_prob = max([self.get_wiki_Qs_prob(seg[i:i + j + 1]) for i in range(n) for j in range(n - i)]) return exp(max_sub_phrase_prob) - 1 def get_wiki_Qs_prob(self, seg): """ return prob that seg(list of words) is an anchor text from all pages containing seg """ return self.wiki_prob.get(' '.join(seg), 0)
StarcoderdataPython
1629596
import os from selene import config from selene.browser import set_driver, driver from tests.acceptance.helpers.helper import get_test_driver from tests.examples.order.app_model.order_widgets import Order def setup_function(m): config.timeout = 4 set_driver(get_test_driver()) config.app_host = 'file://' + os.path.abspath(os.path.dirname(__file__)) + '/../../resources/orderapp/' def teardown_function(m): driver().quit() config.app_host = '' def test_it_fills_order(): order = Order() order.open() order.details.fill_with(first_name='Johanna', last_name='Smith', salutation='Mrs') item = order.add_item_with(name='New Test Item', other_data='Some other specific data') item.show_advanced_options_selector.click() item.add_advanced_options( [{'option_type': 'type1'}, {'scope': 'optionscope2fortype1'}], [{'option_type': 'type2'}, {'scope': 'optionscope3fortype2'}] ) item.show_advanced_options.click() item.advanced_options.should_be('optionscope2fortype1', 'optionscope3fortype2') item.clear_options.click() item.advanced_options.should_be_empty() item.show_advanced_options_selector.click() item.advanced_options_selector.should_be_hidden()
StarcoderdataPython
1693920
""" CSeq C Sequentialization Framework scope-based variable renaming module written by <NAME>, University of Southampton. """ VERSION = 'varnames-0.0-2015.07.08' #VERSION = 'varnames-0.0-2014.12.24' # CSeq-1.0beta #VERSION = 'varnames-0.0-2014.10.26' # CSeq-Lazy-0.6: newseq-0.6a, newseq-0.6c, SVCOMP15 #VERSION = 'varnames-0.0-2014.10.26' #VERSION = 'varnames-0.0-2014.10.15' #VERSION = 'varnames-0.0-2014.03.14' #VERSION = 'varnames-0.0-2014.03.08' first version (Cseq-Lazy-0.2) """ This module performs variable renaming based on variable scope, so that no two functions share a variable id after it. to make function inlining easier: (doing so avoids future problems with the inliner module, see regression/102,103 ) At the end of the renaming, the map of variable name changes is available in newIDs (useful for counterexamples, to translate back variable names to the corrisponding original name). Transformation: int f(int P) { int L; } into: int f(int __cs_f_P) { int __cs_f_L; } TODO: the new variables introduced should be guaranteed not to reuse existing symbols Changelog: 2015.07.08 map with variable renames returned as an output parameter 2014.12.09 further code refactory to match the new organisation of the CSeq framework 2014.10.27 different prefixes for local variables and function parameters 2014.10.26 changed __stack to stack (to inherit stack handling from module.py) 2014.10.15 removed visit() and moved visit call-stack handling to module class (module.py) 2014.03.14 further code refactory to match module.Module class interface """ import inspect, os, sys, getopt, time import pycparser.c_parser, pycparser.c_ast, pycparser.c_generator import core.common, core.module, core.parser, core.utils class varnames(core.module.Translator): __debug = False __visitingStructRef = False # to avoid considering struct fields as local variables prefix = '__cs_local_' # prefix for local variables paramprefix = '__cs_param_' # prefix for function params newIDs = {} # mapping of old variable names to new variable names varmap = {} __currentFunction = '' __visitingParam = 0 # depth of params in a function prototype __visitingDecl = 0 __visitFuncDef = 0 __visitStructUnionEnum = 0 def init(self): self.addOutputParam('varnamesmap') def loadfromstring(self, string, env): super(self.__class__, self).loadfromstring(string, env) self.setOutputParam('varnamesmap', self.varmap) #print str(self.newIDs).replace(', ','\n') def visit_Decl(self, n, no_type=False): # no_type is used when a Decl is part of a DeclList, where the type is # explicitly only for the first delaration in a list. # self.__visitingDecl += 1 s = n.name if no_type else self._generate_decl(n) if n.bitsize: s += ' : ' + self.visit(n.bitsize) if n.init: if isinstance(n.init, pycparser.c_ast.InitList): s += ' = {' + self.visit(n.init) + '}' elif isinstance(n.init, pycparser.c_ast.ExprList): s += ' = (' + self.visit(n.init) + ')' else: s += ' = ' + self.visit(n.init) self.__visitingDecl -= 1 return s def visit_FuncDef(self, n): self.__visitFuncDef += 1 s = super(self.__class__, self).visit_FuncDef(n) self.__visitFuncDef -= 1 return s def visit_ParamList(self, n): out = '' for i, p in enumerate(n.params): spacer = '' if i==0 else ', ' self.__visitingParam += 1 out += spacer + self.visit(p) self.__visitingParam -= 1 #return ', '.join(self.visit(param) for param in n.params) return out def visit_Struct(self, n): self.__visitStructUnionEnum += 1 s = super(self.__class__, self).visit_Struct(n) self.__visitStructUnionEnum -= 1 return s def visit_Union(self, n): self.__visitStructUnionEnum += 1 s = super(self.__class__, self).visit_Union(n) self.__visitStructUnionEnum -= 1 return s def visit_Enum(self, n): self.__visitStructUnionEnum += 1 s = super(self.__class__, self).visit_Enum(n) self.__visitStructUnionEnum -= 1 return s def visit_Typedef(self, n): self.__visitStructUnionEnum += 1 s = super(self.__class__, self).visit_Typedef(n) self.__visitStructUnionEnum -= 1 return s def visit_FuncDef(self, n): self.__currentFunction = n.decl.name f = super(self.__class__, self).visit_FuncDef(n) self.__currentFunction = '' return f def visit_StructRef(self, n): sref = self._parenthesize_unless_simple(n.name) oldvisitingStructRef = False self.__visitingStructRef = True if self.__debug: print "------- ------- ------- ------- ------- ------- VISITING STRUCT REF START (%s)" % sref retval = sref + n.type + self.visit(n.field) if self.__debug: print "------- ------- ------- ------- ------- ------- VIITING STRUCT REF END" self.__visitingStructRef = oldvisitingStructRef return retval def visit_ID(self, n): prefix = '' #if n.name in self.Parser.varNames[self.__currentFunction] and self.Parser.varKind[self.__currentFunction,n.name] == 'p': if n.name in self.Parser.varNames[self.__currentFunction]: if self.__debug: print "visiting ID: [%s,%s]" % (self.__currentFunction,n.name) if (n.name in self.Parser.varNames[self.__currentFunction] and self.__currentFunction != '' and not self.__visitingStructRef ): #str(self.stack[len(self.stack)-2]) != 'StructRef' ): # e.g. visiting ID: x->ID or x.ID (this is not a local var, but a field) if self.__debug: print " local PARAMETER" if self.__debug: print " stack: "+ str(self.stack) + ' prev:' + str(self.stack[len(self.stack)-2]) prefix = self.newIDs[self.__currentFunction, super(self.__class__, self).visit_ID(n)] self.varmap[prefix+super(self.__class__, self).visit_ID(n)] = super(self.__class__, self).visit_ID(n) #self.warn('%s -> %s' % (prefix+super(self.__class__, self).visit_ID(n), super(self.__class__, self).visit_ID(n))) return prefix + super(self.__class__, self).visit_ID(n) def _generate_type(self, n, modifiers=[]): """ Recursive generation from a type node. n is the type node. modifiers collects the PtrDecl, ArrayDecl and FuncDecl modifiers encountered on the way down to a TypeDecl, to allow proper generation from it. """ typ = type(n) #~ print(n, modifiers) if typ == pycparser.c_ast.TypeDecl: s = '' if n.quals: s += ' '.join(n.quals) + ' ' s += self.visit(n.type) # Local variables & parameter renaming. # # Variable name substitution only applies to local variables or parameters names within function prototypes # (thus, global variables and function names need to be excluded) # # case 1: level-0 function parameters (no remanimg for nested parameters) # case 2: local variable declaration (thus excluding functions, global vars, struct-enum-union fields, nested parameters) # if self.__visitingParam == 1: # case 1 if self.__debug: print "SETTING NEWID for [%s,%s] (case I)" % (self.__currentFunction,n.declname) self.newIDs[self.__currentFunction,n.declname] = self.paramprefix + self.__currentFunction + '_' n.declname = (self.paramprefix + self.__currentFunction + '_' + n.declname) if n.declname else '' elif (self.__visitingParam == 0 and # case 2 self.__visitFuncDef == 0 and n.declname not in self.Parser.funcName and #n.declname not in self.Parser.varNames[''] and self.__currentFunction != '' and self.__visitStructUnionEnum == 0): if self.__debug: print "SETTING NEWID for [%s,%s] (case II)" % (self.__currentFunction,n.declname) self.newIDs[self.__currentFunction,n.declname] = self.prefix + self.__currentFunction + '_' n.declname = self.prefix + self.__currentFunction + '_' + n.declname if n.declname else '' nstr = n.declname if n.declname else '' # Resolve modifiers. # Wrap in parens to distinguish pointer to array and pointer to # function syntax. # for i, modifier in enumerate(modifiers): if isinstance(modifier, pycparser.c_ast.ArrayDecl): if (i != 0 and isinstance(modifiers[i - 1], pycparser.c_ast.PtrDecl)): nstr = '(' + nstr + ')' nstr += '[' + self.visit(modifier.dim) + ']' elif isinstance(modifier, pycparser.c_ast.FuncDecl): if (i != 0 and isinstance(modifiers[i - 1], pycparser.c_ast.PtrDecl)): nstr = '(' + nstr + ')' nstr += '(' + self.visit(modifier.args) + ')' elif isinstance(modifier, pycparser.c_ast.PtrDecl): if modifier.quals: nstr = '* %s %s' % (' '.join(modifier.quals), nstr) else: nstr = '*' + nstr if nstr: s += ' ' + nstr return s elif typ == pycparser.c_ast.Decl: return self._generate_decl(n.type) elif typ == pycparser.c_ast.Typename: return self._generate_type(n.type) elif typ == pycparser.c_ast.IdentifierType: return ' '.join(n.names) + ' ' elif typ in (pycparser.c_ast.ArrayDecl, pycparser.c_ast.PtrDecl, pycparser.c_ast.FuncDecl): return self._generate_type(n.type, modifiers + [n]) else: return self.visit(n)
StarcoderdataPython
4961953
<reponame>sisoe24/Nuke-Python-Stubs from numbers import Number from typing import * import nuke from . import * class String_Knob(Knob): """ A knob which holds a string value. Appears as a text entry field in a Node panel. """ def __hash__(self, ): """ Return hash(self). """ return None def __init__(self, *args, **kwargs): """ Initialize self. See help(type(self)) for accurate signature. """ return None def __new__(self,*args, **kwargs): """ Create and return a new object. See help(type) for accurate signature. """ return None def getText(self, oc=None): """ self.getText(oc) -> string Get the non-evaluated value of this knob - also see `value()` @param oc: Optional parameter specifying the output context. Return text associated with knob. """ return str() def setValue(self, val:Any, view='default'): """ self.setValue(val, view='default') -> None Set value of knob. @param val: The new value. @param view: Optional parameter specifying which view to set the value for. If omitted, the value will be set for the default view. @return: None """ return None def value(self, oc=None): """ self.value(oc) -> str Get the evaluated value of this knob as a string - also see `getText()`. @param oc: Optional parameter specifying the output context. @return: String value. """ return str() def value(self, oc=None): """ self.value(oc) -> str Get the evaluated value of this knob as a string - also see `getText()`. @param oc: Optional parameter specifying the output context. @return: String value. """ return str() def setValue(self, val:Any, view='default'): """ self.setValue(val, view='default') -> None Set value of knob. @param val: The new value. @param view: Optional parameter specifying which view to set the value for. If omitted, the value will be set for the default view. @return: None """ return None def splitView(self, view=None): """ self.splitView(view) -> None. Split the view away from the current knob value. @param view: Optional view. Default is current view. @return: None. """ return None def unsplitView(self, view=None): """ self.unsplitView(view) -> None. Unsplit the view so that it shares a value with other views. @param view: Optional view. Default is current view. @return: None. """ return None
StarcoderdataPython
11278377
<reponame>GitHK/CarND-Advanced-Lane-Lines import logging from collections import deque import cv2 import numpy as np logger = logging.getLogger(__name__) Y_ARRAY_INDEX_OF_BOTTOM_ELEMENT = 0 class LaneInfo: def __init__(self): self.left_fit = None self.right_fit = None self.left_fitx = None self.right_fitx = None self.ploty = None # curve radius of the left and right curves self.left_curverad_m = None self.right_curverad_m = None # position from the center of the lane in meters < 0 left >0 right self.lane_position = None # width of the lane in meters self.lane_width = None # keep track of minimum and maximum coordinate of y axis self.min_left_y = None self.max_left_y = None self.min_right_y = None self.max_right_y = None def full_line_search(wraped_binarized, ym_per_pix=30 / 720, xm_per_pix=3.7 / 700, with_debug_image=True): TOTAL_VERTICAL_STRIDES = 9 # Set minimum number of pixels found to recenter window MIN_PIXELS_TO_RECENTER = 10 DRAWN_CURVE_LINE_WIDTH = 4 # width of final curve in pixels scan_window_width = int(wraped_binarized.shape[1] * 0.13) half_scam_window_width = int(scan_window_width / 2) scan_window_height = int(wraped_binarized.shape[0] / TOTAL_VERTICAL_STRIDES) debug_output = np.dstack((wraped_binarized, wraped_binarized, wraped_binarized)) * 255 if with_debug_image: logger.info("Search params (strides, window width, window height): (%s, %s, %s)" % ( TOTAL_VERTICAL_STRIDES, scan_window_width, scan_window_height)) histogram = np.sum(wraped_binarized[wraped_binarized.shape[0] // 2 + 100:, :], axis=0) # Used only for debug # from matplotlib import pyplot as plt # plt.plot(histogram) # plt.show() midpoint = np.int(histogram.shape[0] // 2) left_search_base = np.argmax(histogram[:midpoint]) right_search_base = np.argmax(histogram[midpoint:]) + midpoint nonzero = wraped_binarized.nonzero() nonzero_y = np.array(nonzero[0]) nonzero_x = np.array(nonzero[1]) total_height = wraped_binarized.shape[0] r_bottom_center = [right_search_base, total_height] l_bottom_center = [left_search_base, total_height] left_lane_indexes = deque() right_lane_indexes = deque() for stride in range(TOTAL_VERTICAL_STRIDES): # upper and lower margin of the scanning window y_bottom = total_height - (stride + 1) * scan_window_height y_top = total_height - stride * scan_window_height # left search window right & left boundaries l_search_window_left_x = l_bottom_center[0] - half_scam_window_width l_search_window_right_x = l_bottom_center[0] + half_scam_window_width # right search window right & left boundaries r_search_window_left_x = r_bottom_center[0] - half_scam_window_width r_search_window_right_x = r_bottom_center[0] + half_scam_window_width # Draw the windows on the visualization image if with_debug_image: cv2.rectangle(debug_output, (l_search_window_left_x, y_bottom), (l_search_window_right_x, y_top), (0, 255, 0), 2) cv2.rectangle(debug_output, (r_search_window_left_x, y_bottom), (r_search_window_right_x, y_top), (0, 255, 0), 2) left_indexes = ((nonzero_y >= y_bottom) & (nonzero_y < y_top) & (nonzero_x >= l_search_window_left_x) & (nonzero_x < l_search_window_right_x)).nonzero()[0] right_indexes = ((nonzero_y >= y_bottom) & (nonzero_y < y_top) & (nonzero_x >= r_search_window_left_x) & (nonzero_x < r_search_window_right_x)).nonzero()[0] # Append these indices to the lists left_lane_indexes.append(left_indexes) right_lane_indexes.append(right_indexes) # If you found > MIN_PIXELS_TO_RECENTER, recenter next window on their mean position if len(left_indexes) > MIN_PIXELS_TO_RECENTER: l_bottom_center[0] = np.int(np.mean(nonzero_x[left_indexes])) if len(right_indexes) > MIN_PIXELS_TO_RECENTER: r_bottom_center[0] = np.int(np.mean(nonzero_x[right_indexes])) left_lane_indexes = np.concatenate(left_lane_indexes) right_lane_indexes = np.concatenate(right_lane_indexes) # Extract left and right line pixel positions left_x = nonzero_x[left_lane_indexes] left_y = nonzero_y[left_lane_indexes] right_x = nonzero_x[right_lane_indexes] right_y = nonzero_y[right_lane_indexes] # Fit a second order polynomial to each left_fit = np.polyfit(left_y, left_x, 2) right_fit = np.polyfit(right_y, right_x, 2) ploty = np.linspace(0, wraped_binarized.shape[0] - 1, wraped_binarized.shape[0]).astype(np.int) # Generate x and y values for plotting left_fitx = (left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]).astype(np.int) right_fitx = (right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]).astype(np.int) lane_position = get_lane_position(wraped_binarized, left_fitx, right_fitx, xm_per_pix) lane_width = get_lane_width(left_fitx, right_fitx, xm_per_pix) if with_debug_image: logger.info('lane_position %s m' % lane_position) logger.info('lane_width %s m' % lane_width) debug_output[nonzero_y[left_lane_indexes], nonzero_x[left_lane_indexes]] = [255, 0, 0] debug_output[nonzero_y[right_lane_indexes], nonzero_x[right_lane_indexes]] = [0, 0, 255] # Print detected line on top of image draw_fit_curves_on_image(debug_output, left_fitx, right_fitx, ploty, DRAWN_CURVE_LINE_WIDTH) # curvature in meters left_curverad_m, right_curverad_m = curvatures_in_meters( left_x, left_y, ploty, right_x, right_y, xm_per_pix, ym_per_pix) if with_debug_image: logger.info("Curvature right: %s m, left: %s m" % (left_curverad_m, right_curverad_m)) lane_info = LaneInfo() lane_info.left_fit = left_fit lane_info.right_fit = right_fit lane_info.left_fitx = left_fitx lane_info.right_fitx = right_fitx lane_info.ploty = ploty lane_info.left_curverad_m = left_curverad_m lane_info.right_curverad_m = right_curverad_m lane_info.lane_position = lane_position lane_info.lane_width = lane_width lane_info.min_left_y = 0 lane_info.max_left_y = wraped_binarized.shape[0] lane_info.min_right_y = 0 lane_info.max_right_y = wraped_binarized.shape[0] return debug_output, lane_info def local_line_search(wraped_binarized, left_fit, right_fit, ym_per_pix=30 / 720, xm_per_pix=3.7 / 700, margin=100, with_debug_image=True): DRAWN_CURVE_LINE_WIDTH = 4 # width of final curve in pixels nonzero = wraped_binarized.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) left_lane_indx = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] + margin))) right_lane_indx = ((nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] + margin))) # Again, extract left and right line pixel positions left_x = nonzerox[left_lane_indx] left_y = nonzeroy[left_lane_indx] right_x = nonzerox[right_lane_indx] right_y = nonzeroy[right_lane_indx] if len(left_y) == 0 or len(right_y) == 0 or len(left_x) != len(left_y) or len(right_y) != len(right_x): return None, None # Fit a second order polynomial to each left_fit = np.polyfit(left_y, left_x, 2) right_fit = np.polyfit(right_y, right_x, 2) # Generate x and y values for plotting ploty = (np.linspace(0, wraped_binarized.shape[0] - 1, wraped_binarized.shape[0])).astype(np.int) left_fitx = (left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]).astype(np.int) right_fitx = (right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]).astype(np.int) lane_position = get_lane_position(wraped_binarized, left_fitx, right_fitx, xm_per_pix) lane_width = get_lane_width(left_fitx, right_fitx, xm_per_pix) result = np.dstack((wraped_binarized, wraped_binarized, wraped_binarized)) * 255 if with_debug_image: logger.info('lane_position %s m' % lane_position) logger.info('lane_width %s m' % lane_width) # Create an image to draw on and an image to show the selection window out_img = np.dstack((wraped_binarized, wraped_binarized, wraped_binarized)) * 255 window_img = np.zeros_like(out_img) # Color in left and right line pixels out_img[nonzeroy[left_lane_indx], nonzerox[left_lane_indx]] = [255, 0, 0] out_img[nonzeroy[right_lane_indx], nonzerox[right_lane_indx]] = [0, 0, 255] # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() left_line_window1 = np.array([np.transpose(np.vstack([left_fitx - margin, ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx + margin, ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([right_fitx - margin, ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx + margin, ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) # Draw the lane onto the warped blank image cv2.fillPoly(window_img, np.int_([left_line_pts]), (0, 255, 0)) cv2.fillPoly(window_img, np.int_([right_line_pts]), (0, 255, 0)) result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) draw_fit_curves_on_image(result, left_fitx, right_fitx, ploty, DRAWN_CURVE_LINE_WIDTH) # curvature in meters left_curverad_m, right_curverad_m = curvatures_in_meters( left_x, left_y, ploty, right_x, right_y, xm_per_pix, ym_per_pix) if with_debug_image: logger.info("Curvature right: %s m, left: %s m" % (left_curverad_m, right_curverad_m)) lane_info = LaneInfo() lane_info.left_fit = left_fit lane_info.right_fit = right_fit lane_info.left_fitx = left_fitx lane_info.right_fitx = right_fitx lane_info.ploty = ploty lane_info.left_curverad_m = left_curverad_m lane_info.right_curverad_m = right_curverad_m lane_info.lane_position = lane_position lane_info.lane_width = lane_width lane_info.min_left_y = 0 lane_info.max_left_y = wraped_binarized.shape[0] lane_info.min_right_y = 0 lane_info.max_right_y = wraped_binarized.shape[0] return result, lane_info def get_lane_position(wraped_binarized, left_fitx, right_fitx, xm_per_pix): """ Retruns the position from the center of the lane. Positive number means that the car is on the right side of the lane, negative left side of the lane """ lane_center = compute_midpoint(left_fitx, right_fitx) image_center = wraped_binarized.shape[1] / 2 lane_position = (lane_center - image_center) * xm_per_pix return lane_position def get_lane_width(left_fitx, right_fitx, xm_per_pix): """ Returns the lane width expressed in meters """ a = left_fitx[Y_ARRAY_INDEX_OF_BOTTOM_ELEMENT] b = right_fitx[Y_ARRAY_INDEX_OF_BOTTOM_ELEMENT] return (b - a) * xm_per_pix def draw_fit_curves_on_image(image, left_fitx, right_fitx, ploty, line_width): """ Prints detected line on top fo the image """ for l_x, r_x, y in zip(left_fitx, right_fitx, ploty): half_line_width = int(line_width / 2) # this implementation could be better, but a try catch is needed when drawing near the edges of the matrix for x in range(l_x - half_line_width, l_x + half_line_width): try: image[y, x] = [0, 255, 255] except IndexError: pass for x in range(r_x - half_line_width, r_x + half_line_width): try: image[y, x] = [0, 255, 255] except IndexError: pass def curvatures_in_meters(left_x, left_y, ploty, right_x, right_y, xm_per_pix, ym_per_pix): """ Returns the curvature in meters for the left and right lanes """ left_fit_cr = np.polyfit(left_y * ym_per_pix, left_x * xm_per_pix, 2) right_fit_cr = np.polyfit(right_y * ym_per_pix, right_x * xm_per_pix, 2) left_curverad_m = compute_curvature(ploty, left_fit_cr, ym_per_pix) right_curverad_m = compute_curvature(ploty, right_fit_cr, ym_per_pix) return left_curverad_m, right_curverad_m def compute_curvature(ploty, fit, ym_per_pix): """ Conputes the curvature of a line """ y_eval_m = np.max(ploty) * ym_per_pix # in meters return ((1 + (2 * fit[0] * y_eval_m + fit[1]) ** 2) ** 1.5) / np.absolute(2 * fit[0]) def compute_midpoint(left_fitx, right_fitx): """ Returns the midpoint of the lane """ a = left_fitx[Y_ARRAY_INDEX_OF_BOTTOM_ELEMENT] b = right_fitx[Y_ARRAY_INDEX_OF_BOTTOM_ELEMENT] return a + (b - a) / 2 def lane_lines_directixes(lane_info): """ Computes the parabola directrix for both curves. """ def directrix(coefficients): a, b, c = coefficients return (b ** 2 - 4 * a * c + 1) / 4 * a return directrix(lane_info.left_fit), directrix(lane_info.right_fit) def can_use_this_frame(current_lane, previous_lane): """ Sanity checking, if this frame can be used. Checking that they have similar curvature Checking that the current lane is not too small Checking that they are separated by approximately the right distance horizontally Checking that they are roughly parallel """ SIMILAR_CURVATURE_THRESHOLD = 1000 # in meters almost 2 km in average MIN_LANE_LENGTH = 2 # in meters, while it may not be the min length it ensures lanes not collapsing on top of each other SIMILAR_LANE_DISTANCE_THRESHOLD = 0.3 # in meters ROUGHLY_PARALLEL_THRESHOLD = 0.0001 # Checking that they have similar curvature left_curv_diff = np.abs(current_lane.left_curverad_m - previous_lane.left_curverad_m) right_curv_diff = np.abs(current_lane.right_curverad_m - previous_lane.right_curverad_m) curvature_ok = left_curv_diff <= SIMILAR_CURVATURE_THRESHOLD and right_curv_diff <= SIMILAR_CURVATURE_THRESHOLD # Checking that the current lane is not too small length_ok = current_lane.lane_width > MIN_LANE_LENGTH # Checking that they are separated by approximately the right distance horizontally lane_width_diff = np.abs(current_lane.lane_width - previous_lane.lane_width) distance_ok = lane_width_diff <= SIMILAR_LANE_DISTANCE_THRESHOLD # Checking that they are roughly parallel current_left_directrix, current_right_directrix = lane_lines_directixes(current_lane) current_directrix_diff = np.abs(current_left_directrix - current_right_directrix) current_directrix_ok = current_directrix_diff <= ROUGHLY_PARALLEL_THRESHOLD return curvature_ok and distance_ok and current_directrix_ok and length_ok MAX_FRAMES_TO_SKIP_BEFORE_RESET = 20 skipped_frames_counter = 0 def detect_on_video_frame(wraped_binarized, with_debug_image): """ Will take a video frame and will apply a metod to extract lane lines """ global last_valid_lanes is_first_frame = len(last_valid_lanes) == 0 if is_first_frame: # the first time trying to find a lane from scratch detected_debug, current_lane = full_line_search(wraped_binarized, with_debug_image=with_debug_image) # this video frame can always be used last_valid_lanes.append(current_lane) else: previous_lane = last_valid_lanes[-1] detected_debug, current_lane = local_line_search(wraped_binarized, previous_lane.left_fit, previous_lane.right_fit, with_debug_image=with_debug_image, margin=100) # IF fast search fails, use slow search to check for imaages if not current_lane: print('slow search, last one failed') detected_debug, current_lane = full_line_search(wraped_binarized, with_debug_image=with_debug_image) use_this_frame = can_use_this_frame(current_lane, previous_lane) # check to see if this frame can be used global skipped_frames_counter if use_this_frame: skipped_frames_counter = 0 last_valid_lanes.append(current_lane) else: # this frame was skipped skipped_frames_counter += 1 if skipped_frames_counter >= MAX_FRAMES_TO_SKIP_BEFORE_RESET: # Reset pipeline, starting with a new full search detected_debug, current_lane = full_line_search(wraped_binarized, with_debug_image=with_debug_image) last_valid_lanes = deque(maxlen=TOTAL_LAST_ENTRIES_TO_KEEP) last_valid_lanes.append(current_lane) if current_lane is None: print('Something bad happened, but why!?') print(detected_debug) print(current_lane) return detected_debug, current_lane def get_averaged_left_right_lane_fits(): left = deque() right = deque() for lane in last_valid_lanes: left.append(lane.left_fit) right.append(lane.right_fit) left_averaged_fit = np.array(left).mean(axis=0) right_averaged_fit = np.array(right).mean(axis=0) return left_averaged_fit, right_averaged_fit def average_curves_and_get_lane(wraped_binarized, left_fit, right_fit, min_left_y, max_left_y, min_right_y, max_right_y, ym_per_pix=30 / 720, xm_per_pix=3.7 / 700): """ Creates a new lane from the last prediticions """ ploty = np.linspace(0, wraped_binarized.shape[0] - 1, wraped_binarized.shape[0]).astype(np.int) # Generate x and y values for plotting left_fitx = (left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]).astype(np.int) right_fitx = (right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]).astype(np.int) lane_position = get_lane_position(wraped_binarized, left_fitx, right_fitx, xm_per_pix) lane_width = get_lane_width(left_fitx, right_fitx, xm_per_pix) # Interpolate and rebuild data def eval_poly_2(fitted, x): a, b, c = fitted return a * x ** 2 + b * x + c left_y = np.array([x for x in range(min_left_y, max_left_y)], dtype=np.int) left_x = np.array([eval_poly_2(left_fit, y) for y in left_y], dtype=np.int) right_y = np.array([x for x in range(min_right_y, max_right_y)], dtype=np.int) right_x = np.array([eval_poly_2(right_fit, y) for y in right_y], dtype=np.int) if len(left_x) == 0 or len(left_y) == 0: print('What happend?') print(min_left_y, max_left_y, left_fit) print(min_right_y, max_right_y, right_fit) print(left_y) print(left_x) # curvature in meters left_curverad_m, right_curverad_m = curvatures_in_meters(left_x, left_y, ploty, right_x, right_y, xm_per_pix, ym_per_pix) lane_info = LaneInfo() lane_info.left_fit = left_fit lane_info.right_fit = right_fit lane_info.left_fitx = left_fitx lane_info.right_fitx = right_fitx lane_info.ploty = ploty lane_info.left_curverad_m = left_curverad_m lane_info.right_curverad_m = right_curverad_m lane_info.lane_position = lane_position lane_info.lane_width = lane_width lane_info.min_left_y = min_left_y lane_info.max_left_y = max_left_y lane_info.min_right_y = min_right_y lane_info.max_right_y = max_right_y return lane_info TOTAL_LAST_ENTRIES_TO_KEEP = 20 last_valid_lanes = deque(maxlen=TOTAL_LAST_ENTRIES_TO_KEEP) def combined_line_detector(wraped_binarized, with_debug_image, is_video_frame, detection_history): """ Used to detect lanes. There are two main approaches: - one for images (a full search is applied on each image) - one for videos (a mix between full search and local search is applied to successive frames) """ if not is_video_frame: detected_debug, current_lane = full_line_search(wraped_binarized, with_debug_image=with_debug_image) return detected_debug, current_lane detected_debug, current_lane = detect_on_video_frame(wraped_binarized, with_debug_image) left_averaged_fit, right_averaged_fit = get_averaged_left_right_lane_fits() average_lane_info = average_curves_and_get_lane(wraped_binarized, left_averaged_fit, right_averaged_fit, current_lane.min_left_y, current_lane.max_left_y, current_lane.min_right_y, current_lane.max_right_y, ym_per_pix=30 / 720, xm_per_pix=3.7 / 700) # no debug result is provided for videos return None, average_lane_info
StarcoderdataPython
1690175
import sublime import json import codecs import os is_sublime_text_3 = int(sublime.version()) >= 3000 if is_sublime_text_3: from .settings import Settings else: from settings import Settings class ProcessCache(): _procs = [] last_task_name = None @classmethod def get_from_storage(cls): return cls.storage().read() or [] @classmethod def get(cls): return cls._procs[:] @classmethod def refresh(cls): def remove_dead(process): if not process.is_alive(): cls.remove(process) cls.each(remove_dead) @classmethod def add(cls, process): cls.last_task_name = process.get_task_name() if process not in cls._procs: cls._procs.append(process) process = process.to_json() cls.storage().update(lambda procs: procs + [process] if process not in procs else procs) @classmethod def remove(cls, process): if process in cls._procs: cls._procs.remove(process) cls.storage().update(lambda procs: [proc for proc in procs if proc['pid'] != process.pid]) @classmethod def kill_all(cls): cls.each(lambda process: process.kill()) cls.clear() @classmethod def each(cls, fn): for process in cls.get(): fn(process) @classmethod def empty(cls): return len(cls._procs) == 0 @classmethod def clear(cls): del cls._procs[:] cls.storage().write([]) @classmethod def storage(cls): if Settings.get_from_shared_data("track_processes", True): return CacheFile(Settings.package_path()) else: return Cache() class Cache(): def exists(self): pass def remove(self): pass def open(self, mode="r"): pass def read(self): pass def write(self, data): pass def update(self, fn): pass class CacheFile(Cache): def __init__(self, working_dir): self.working_dir = working_dir self.cache_path = os.path.join(self.working_dir, Settings.CACHE_FILE_NAME) def exists(self): return os.path.exists(self.cache_path) def remove(self): return os.remove(self.cache_path) def open(self, mode="r"): return codecs.open(self.cache_path, mode, "utf-8", errors='replace') def read(self): data = None cache_file = self.open() try: data = json.load(cache_file) except ValueError: data = [] finally: cache_file.close() return data def write(self, data): cache_file = self.open("w") try: json_data = json.dumps(data, ensure_ascii=False) if not json_data: json_data = '[]' cache_file.write(json_data) finally: cache_file.close() def update(self, fn): cache_file = codecs.open(self.cache_path, "r+", "utf-8", errors='replace') current_data = None try: current_data = json.load(cache_file) except ValueError: current_data = [] try: cache_file.seek(0) new_data = fn(current_data) cache_file.write(json.dumps(new_data)) cache_file.truncate() finally: cache_file.close()
StarcoderdataPython
11399533
#!/usr/bin/python # Copyright (c) 2020, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_waas_address_rate_limiting_facts short_description: Fetches details about a AddressRateLimiting resource in Oracle Cloud Infrastructure description: - Fetches details about a AddressRateLimiting resource in Oracle Cloud Infrastructure - Gets the address rate limiting settings of the Web Application Firewall configuration for a WAAS policy. version_added: "2.9.0" author: Oracle (@oracle) options: waas_policy_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the WAAS policy. type: str aliases: ["id"] required: true extends_documentation_fragment: [ oracle.oci.oracle ] """ EXAMPLES = """ - name: Get a specific address_rate_limiting oci_waas_address_rate_limiting_facts: # required waas_policy_id: "ocid1.waaspolicy.oc1..xxxxxxEXAMPLExxxxxx" """ RETURN = """ address_rate_limiting: description: - AddressRateLimiting resource returned: on success type: complex contains: is_enabled: description: - Enables or disables the address rate limiting Web Application Firewall feature. returned: on success type: bool sample: true allowed_rate_per_address: description: - The number of allowed requests per second from one IP address. If unspecified, defaults to `1`. returned: on success type: int sample: 56 max_delayed_count_per_address: description: - The maximum number of requests allowed to be queued before subsequent requests are dropped. If unspecified, defaults to `10`. returned: on success type: int sample: 56 block_response_code: description: - "The response status code returned when a request is blocked. If unspecified, defaults to `503`. The list of available response codes: `400`, `401`, `403`, `404`, `405`, `408`, `409`, `411`, `412`, `413`, `414`, `415`, `416`, `422`, `494`, `495`, `496`, `497`, `499`, `500`, `501`, `502`, `503`, `504`, `507`." returned: on success type: int sample: 56 sample: { "is_enabled": true, "allowed_rate_per_address": 56, "max_delayed_count_per_address": 56, "block_response_code": 56 } """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceFactsHelperBase, get_custom_class, ) try: from oci.waas import WaasClient HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class AddressRateLimitingFactsHelperGen(OCIResourceFactsHelperBase): """Supported operations: get""" def get_required_params_for_get(self): return [ "waas_policy_id", ] def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_waf_address_rate_limiting, waas_policy_id=self.module.params.get("waas_policy_id"), ) AddressRateLimitingFactsHelperCustom = get_custom_class( "AddressRateLimitingFactsHelperCustom" ) class ResourceFactsHelper( AddressRateLimitingFactsHelperCustom, AddressRateLimitingFactsHelperGen ): pass def main(): module_args = oci_common_utils.get_common_arg_spec() module_args.update( dict(waas_policy_id=dict(aliases=["id"], type="str", required=True),) ) module = AnsibleModule(argument_spec=module_args) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_facts_helper = ResourceFactsHelper( module=module, resource_type="address_rate_limiting", service_client_class=WaasClient, namespace="waas", ) result = [] if resource_facts_helper.is_get(): result = resource_facts_helper.get() else: resource_facts_helper.fail() module.exit_json(address_rate_limiting=result) if __name__ == "__main__": main()
StarcoderdataPython
8124340
""" Runs AuTuMN apps You can access this script from your CLI by running: python -m autumn db --help """ import click @click.group() def db(): """Database utilities""" @db.command("fetch") def download_input_data(): """ Fetch input data from external sources for input database. """ from autumn.core.inputs import fetch_input_data fetch_input_data() @db.command("build") def build_input_db(): """ Build a new input database from input data files. """ from autumn.core.inputs import build_input_database build_input_database(rebuild=True) @db.command("feather2sql") @click.argument("src_db_path", type=str) @click.argument("dest_db_path", type=str) def feather2sql(src_db_path, dest_db_path): """ Convert a Feather DB to a SQLite DB """ from autumn.core import db as autumn_db assert autumn_db.FeatherDatabase.is_compatible( src_db_path ), "Source DB must be FeatherDatabase compatible" src_db = autumn_db.FeatherDatabase(src_db_path) autumn_db.database.convert_database(src_db, autumn_db.database.Database, dest_db_path) @db.command("parquet2sql") @click.argument("src_db_path", type=str) @click.argument("dest_db_path", type=str) def parquet2sql(src_db_path, dest_db_path): """ Convert a Feather DB to a SQLite DB """ from autumn.core import db as autumn_db assert autumn_db.ParquetDatabase.is_compatible( src_db_path ), "Source DB must be ParquetDatabase compatible" src_db = autumn_db.ParquetDatabase(src_db_path) autumn_db.database.convert_database(src_db, autumn_db.database.Database, dest_db_path)
StarcoderdataPython
3500499
from typing import Any, List, Tuple, Union from pathlib import Path import os import unittest from pandas import DataFrame from schematics.types import ListType, IntType, StringType import numpy as np import skimage.io from hidebound.core.specification_base import SpecificationBase import hidebound.core.traits as tr import hidebound.core.validators as vd # ------------------------------------------------------------------------------ class DatabaseTestBase(unittest.TestCase): columns = [ 'specification', 'extension', 'filename', 'filepath', 'file_error', 'file_traits', 'asset_name', 'asset_path', 'asset_type', 'asset_traits', 'asset_error', 'asset_valid', ] # type: List[str] def get_data(self, root, nans=False): # type: (str, bool) -> DataFrame data = [ [0, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v001', 'p-proj001_s-spec001_d-pizza_v001_c0000-0001_f0001.png', None ], # noqa E501 E241 [0, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v001', 'p-proj001_s-spec001_d-pizza_v001_c0000-0001_f0002.png', None ], # noqa E501 E241 [0, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v001', 'p-proj001_s-spec001_d-pizza_v001_c0000-0001_f0003.png', None ], # noqa E501 E241 [1, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v002', 'p-proj001_s-spec001_d-pizza_v002_c0000-0000_f0001.png', None ], # noqa E501 E241 [1, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v002', 'p-proj001_s-spec001_d-pizza_v002_c0000-0000_f0002.png', None ], # noqa E501 E241 [1, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v002', 'p-proj001_s-spec001_d-pizza_v002_c0000-0000_f0003.png', None ], # noqa E501 E241 [1, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v002', 'p-proj001_s-spec001_d-pizza_v002_c0000-0000_f0004.png', None ], # noqa E501 E241 [2, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v002', 'p-proj001_s-spec001_d-pizza_v002_c0000-0001_f0001.png', None ], # noqa E501 E241 [2, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v002', 'p-proj001_s-spec001_d-pizza_v002_c0000-0001_f0002.png', None ], # noqa E501 E241 [2, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v002', 'p-proj001_s-spec001_d-pizza_v002_c0000-0001_f0003.png', None ], # noqa E501 E241 [2, True, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v002', 'p-proj001_s-spec001_d-pizza_v002_c0000-0001_f0004.png', None ], # noqa E501 E241 [3, False, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v003', 'p-proj001_s-spec001_d-kiwi_v003_c0000-0001_f0001.png', ' Inconsistent descriptor field token'], # noqa E501 E241 [3, False, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v003', 'p-proj001_s-spec001_d-pizza_v003_c0000-0001_f0002.png', None ], # noqa E501 E241 [3, False, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v003', 'p-proj001_s-spec001_d-PIZZA_v003_c0000-0001_f0003.png', 'Illegal descriptor field token' ], # noqa E501 E241 [3, False, 'sequence', 'spec001', 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v003', 'p-proj001_s-spec001_d-pizza_v003_c0000-0001_f0004.png', None ], # noqa E501 E241 [3, False, np.nan, None, 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v003', 'p-proj001_s-spec0001_d-pizza_v003_c0000-0001_f0005.png', 'Illegal specification field token' ], # noqa E501 E241 [3, False, np.nan, None, 'proj001/spec001/pizza/p-proj001_s-spec001_d-pizza_v003', 'misc.txt', 'SpecificationBase not found' ], # noqa E501 E241 [4, True, 'sequence', 'spec002', 'proj001/spec002/taco/p-proj001_s-spec002_d-taco_v001', 'p-proj001_s-spec002_d-taco_v001_f0000.jpg', None ], # noqa E501 E241 [4, True, 'sequence', 'spec002', 'proj001/spec002/taco/p-proj001_s-spec002_d-taco_v001', 'p-proj001_s-spec002_d-taco_v001_f0001.jpg', None ], # noqa E501 E241 [4, True, 'sequence', 'spec002', 'proj001/spec002/taco/p-proj001_s-spec002_d-taco_v001', 'p-proj001_s-spec002_d-taco_v001_f0002.jpg', None ], # noqa E501 E241 [5, False, 'sequence', 'spec002', 'proj001/spec002/taco/p-proj001_s-spec002_d-taco_v002', 'p-proj001_s-spec002_d-taco_v001_f0000.jpg', 'Invalid asset directory name' ], # noqa E501 E241 [5, False, 'sequence', 'spec002', 'proj001/spec002/taco/p-proj001_s-spec002_d-taco_v002', 'p-proj001_s-spec002_d-taco_v002_f0001.jpg', None ], # noqa E501 E241 [5, False, 'sequence', 'spec002', 'proj001/spec002/taco/p-proj001_s-spec002_d-taco_v002', 'p-proj001_s-spec002_d-taco_v002', 'Expected "_"' ], # noqa E501 E241 [5, False, 'sequence', 'spec002', 'proj001/spec002/taco/p-proj001_s-spec002_d-taco_v002', 'p-proj001_s-spec002_d-taco_v02_f0003.jpg', 'Illegal version field token' ], # noqa E501 E241 [6, False, 'sequence', 'vdb001', 'proj002/vdb001', 'p-proj002_s-vdb001_d-bagel_v001.vdb', 'Specification not found' ], # noqa E501 E241 [6, False, 'sequence', 'vdb001', 'proj002/vdb001', 'p-proj002_s-vdb001_d-bagel_v002.vdb', 'Specification not found' ], # noqa E501 E241 [6, False, 'sequence', 'vdb001', 'proj002/vdb001', 'p-proj002_s-vdb001_d-bagel_v003.vdb', 'Specification not found' ], # noqa E501 E241 ] # type: Any data = DataFrame(data) data.columns = [ 'asset_id', 'asset_valid', 'asset_type', 'specification', 'asset_path', 'filename', 'file_error' ] data.asset_path = data.asset_path.apply(lambda x: root + '/' + x) data['asset_name'] = data.asset_path.apply(lambda x: x.split('/')[-1]) data['filepath'] = data\ .apply(lambda x: Path(root, x.asset_path, x.filename), axis=1) Spec001, Spec002, BadSpec = self.get_specifications() specs = { Spec001.name: Spec001, Spec002.name: Spec002, None: np.nan, 'vdb001': np.nan, } data['specification_class'] = data.specification\ .apply(lambda x: specs[x]) if nans: data = data.applymap(lambda x: np.nan if x is None else x) return data def create_files(self, root): # type: (Union[str, Path]) -> "DataFrame" root = Path(root).as_posix() data = self.get_data(root) for filepath in data.filepath.tolist(): os.makedirs(filepath.parent, exist_ok=True) ext = os.path.splitext(filepath)[-1][1:] if ext in ['png', 'jpg']: img = np.zeros((5, 4, 3), dtype=np.uint8) img[:, :, 2] = 128 skimage.io.imsave(filepath.as_posix(), img) else: with open(filepath, 'w') as f: f.write('') return data def get_directory_to_dataframe_data(self, root): # type: (str) -> "DataFrame" files = self.get_data(root) data = DataFrame() data['filename'] = files.filename data['filepath'] = files.asset_path data.filepath = data\ .apply(lambda x: Path(x.filepath, x.filename), axis=1) data['extension'] = files\ .filename.apply(lambda x: os.path.splitext(x)[1:]) return data def get_specifications(self): # type: () -> Tuple[Any, Any, Any] class Spec001(SpecificationBase): name = 'spec001' filename_fields = [ 'project', 'specification', 'descriptor', 'version', 'coordinate', 'frame', 'extension', ] coordinate = ListType(ListType(IntType()), required=True) frame = ListType(IntType(), required=True) extension = ListType( StringType(), required=True, validators=[lambda x: vd.is_eq(x, 'png')] ) height = ListType( IntType(), required=True, validators=[lambda x: vd.is_eq(x, 5)] ) width = ListType( IntType(), required=True, validators=[lambda x: vd.is_eq(x, 4)] ) channels = ListType( IntType(), required=True, validators=[lambda x: vd.is_eq(x, 3)] ) file_traits = dict( width=tr.get_image_width, height=tr.get_image_height, channels=tr.get_num_image_channels, ) def get_asset_path(self, filepath): return Path(filepath).parents[0] class Spec002(SpecificationBase): name = 'spec002' filename_fields = [ 'project', 'specification', 'descriptor', 'version', 'frame', 'extension', ] frame = ListType(IntType(), required=True) extension = ListType( StringType(), required=True, validators=[lambda x: vd.is_eq(x, 'jpg')] ) height = ListType( IntType(), required=True, validators=[lambda x: vd.is_eq(x, 5)] ) width = ListType( IntType(), required=True, validators=[lambda x: vd.is_eq(x, 4)] ) channels = ListType( IntType(), required=True, validators=[lambda x: vd.is_eq(x, 3)] ) file_traits = dict( width=tr.get_image_width, height=tr.get_image_height, channels=tr.get_num_image_channels, ) def get_asset_path(self, filepath): return Path(filepath).parents[0] class BadSpec: pass return Spec001, Spec002, BadSpec
StarcoderdataPython
9730653
<filename>K_Mathematical_Modeling/Section 2/solutionODEsExercise10.py from IPython.display import display, Latex, Math print("Yes it is a linear system. In matrix form it can be written:") display(Latex('$ dY/dt = A*Y+Y_0$')) print("Where Y is the vector formed by the two unknown, time-dependent concentrations A(t) and B(t):") display(Latex(' Y = \\begin{bmatrix} A(t) \\end{bmatrix} \n \\begin{bmatrix} B(t) \\end{bmatrix} ')) print("Where Y_0 is the vector formed by the constants in the right hand side:") display(Latex(' Y_0 = \\begin{bmatrix} 1 \\end{bmatrix} \n \\begin{bmatrix} 0 \\end{bmatrix} ')) print("and the matrix A contains, on the first line, the coefficients of A(t) and B(t) in the right hand side of the first equation (in this order), and on the second line, the coefficients of A(t) and B(t) in the right hand side of the second equation:") display(Latex(' A = \\begin{bmatrix} 0 & -k_{B->A} \\end{bmatrix} \n \\begin{bmatrix} k_{A->B} & 0 \\end{bmatrix} ')) print("if the two rates are equal to k, the matrix simplifies to:") display(Latex(' A = -k* \\begin{bmatrix} 0 & 1 \\end{bmatrix} \n \\begin{bmatrix} -1 & 0 \\end{bmatrix} ')) print("we can recognize the form of the matrix whose exponential has sin(t) and cos(t) terms (see formulas above), up to a multiplicative constant -k:") display(Latex('´ A = -k* \\begin{bmatrix} 0 & 1 \\end{bmatrix} \n \\begin{bmatrix} -1 & 0 \\end{bmatrix} ')) print("So we know, because it is a linear system, that we can formally write the solution Y(t) as:") display(Latex('$ Y(t)= e^{A*t} * (Y(t=0)+ A^{-1}*Y_0) - A^{-1}*Y_0 $')) print("but thanks to the particular form of the matrix A, we know how to compute the exponential") display(Latex(' e^{A*t} = \\begin{bmatrix} \cos(k*t) & -\sin(k*t) \\end{bmatrix} \n \\begin{bmatrix} \sin(k*t) & \cos(k*t) \\end{bmatrix} ')) print("and we can also remark that (or compute)") display(Latex(' A^{-1} =1/k * \\begin{bmatrix} 0 & 1 \\end{bmatrix} \n \\begin{bmatrix} -1 & 0 \\end{bmatrix} ')) print("So that we can compute all terms in the solution. For instance,") display(Latex(' A^{-1} * Y_0 = \\begin{bmatrix} 0 \\end{bmatrix} \n \\begin{bmatrix} -1/k \\end{bmatrix} ')) print("The rest of the calculations will depend on the particular initial conditions, the vector Y(t=0). Let's assume that there is no A and no B at t=0, as in the simulations exercise 8, thus Y(t=0)=0. We can finish the matrix operations and we get the general solution (the 2 components of Y(t), in this order):") display(Latex('$A(t)= \sin(k*t)/k $')) display(Latex('$B(t)= -\cos(k*t)/k+1/k $')) print("We obtain oscillatory functions of time. If kA->B was different from kB->A, the matrix A wouldn't have one of the particular forms with which the calculation of the exponential is straightforward. So we would have needed to diagonalize the matrix using a transformation P such that D=P^-1*A*P is diagonal, compute the exponential of the diagonal matrix, and invert the transformation to get exp(A). This procedure would have mixed the oscillatory functions, generating damped or amplified oscillations depending on the choice of parameters. A good exercise to do!")
StarcoderdataPython
9739856
# -*- coding: utf-8 -*- # putcall # ------- # Collection of classical option pricing formulas. # # Author: sonntagsgesicht, based on a fork of Deutsche Postbank [pbrisk] # Version: 0.2, copyright Wednesday, 18 September 2019 # Website: https://github.com/sonntagsgesicht/putcall # License: Apache License 2.0 (see LICENSE file) import math from mathtoolspy.distribution.normal_distribution import cdf_abramowitz_stegun as normal_cdf def hw_discount_bond_option(forward_value, strike_value, implied_vol_value, time_value, is_call_bool, time_to_bond_value, mean_reversion_value, maturity_discount_value): """ discount bond option pricing formula in the Hull White framework :param float forward_value: forward price of underlying (discount bond) at bond maturity (D(t,Tau,r)) :param float strike_value: strike price :param float implied_vol_value: volatility of the spot rate :param float time_value: year fraction until exercise date (option maturity date) :param float bool is_call_bool: call -> True, put -> False :param float time_to_bond_value: year fraction between option's maturity and bond's maturity :param float maturity_discount_value: forward price of underlying (discount bond) at option maturity date (D(t,T,r)) :param float mean_reversion_value: mean reversion / alpha :return: float discount bond option pricing formula in the Hull White framework as described in <NAME>, *Efficient Methods for Valuing Interest Rate Derivatives*, 2000, pp. 50 """ if time_value == 0: return 0.0 else: strike = maturity_discount_value * strike_value A = forward_value / strike B = (1 - math.exp(-mean_reversion_value * (time_to_bond_value))) / mean_reversion_value var = ((implied_vol_value ** 2) / (2 * mean_reversion_value)) * \ (1 - math.exp(-2 * mean_reversion_value * time_value)) sigma = B * math.sqrt(var) h = (math.log(A) / sigma) + 0.5 * sigma if is_call_bool: # call option_bond_price = forward_value * normal_cdf(h) - strike * normal_cdf(h - sigma) else: # put option_bond_price = strike * normal_cdf(-h + sigma) - forward_value * normal_cdf(-h) return option_bond_price def hw_cap_floor_let(forward_rate_value, strike_value, implied_vol_value, time_value, is_call_bool, year_fraction_value, mean_reversion_value, discount_value): """ pricing formula of a caplet/floorlet under the Hull White framework :param float forward_rate_value: forward rate (LIBOR,EURIBOR...) :param float discount_value: zero bond price between pricing time and start of the caplet (D(t,T,r)) :param float mean_reversion_value: mean reversion in the Hull White model :param float strike_value: strike of the option :param float implied_vol_value: volatility of the spot rate :param float year_fraction_value: year fraction between start and maturity = tenor of the rate :param float time_value: year_fraction between pricing date (e.g. start of the Cap) and start of the caplet Y(t,T) :param bool is_call_bool: call(caplet) -> True, put(floorlet) -> False :return: float pricing formula of a caplet/floorlet under the Hull White framework as described in <NAME>, *Efficient Methods for Valuing Interest Rate Derivatives*, 2000, pp. 57 """ discount_forward_value = 1 / (1 + year_fraction_value * forward_rate_value) # same as D(T,Tau,r) forward = discount_value * discount_forward_value strike = 1 / (1 + year_fraction_value * strike_value) vol = implied_vol_value t = time_value yf = year_fraction_value df = discount_value mr = mean_reversion_value hw_bond_opt = hw_discount_bond_option(forward, strike, vol, t, not is_call_bool, yf, mr, df) return (1 + year_fraction_value * strike_value) * hw_bond_opt
StarcoderdataPython
8192631
from aioconsole.stream import aprint import discord from discord import AutoShardedClient from discord.ext import commands from .channel import CLIChannel from aioconsole import ainput from .utils import fancy_print, Response import sys, asyncio, time class CLI(commands.Bot): def __init__(self, command_prefix, description=None, **options): super().__init__(command_prefix, description=description, **options) channel_id = options.pop("channel_id") receive_author = options.pop("receive_author", None) self.channel_id = channel_id self.receive_author = receive_author self.channel = CLIChannel(channel_id, bot=self) self._message_printing = False self._timeout = False self.started = False async def wait_until(self, delegate, timeout: int): end = time.time() + timeout while time.time() < end: if delegate(): return True else: while True: await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) if delegate(): return True await asyncio.sleep(5) return False def check(self): self._message_printing != True async def on_message(self, message : discord.Message): if message.channel.id == self.channel_id: if self._message_printing: await self.wait_until(self.check, 60) self._message_printing = True if message.author.bot: return await self.process_commands(message) if self.receive_author: if message.author.id == self.receive_author: await fancy_print(f"[{message.author.name+'#'+message.author.discriminator}]: {message.content}\n", 0.2) await self.send_message_prompt(message) self._message_printing = False else: await fancy_print(f"[{message.author.name+'#'+message.author.discriminator}]: {message.content}\n", 0.2) await self.send_message_prompt(message) self._message_printing = False return await self.process_commands(message) async def send_prompt(self): await fancy_print("Would you like to start the cli? [y/n] ", 0.10) data = await ainput() data = data.lower() if data == "y": return Response("YES") else: return Response("NO") async def send_message_prompt(self, message : discord.Message): data = await ainput("[SERVER] Send a message: ") if data == "reply": id = await ainput("Send the message id to wich you want to reply to. ") id = int(id) content = await ainput("[SERVER] Send the content you want to reply with. ") msg = await message.channel.fetch_message(id) return await msg.reply(content) await self.channel.send(data) async def _start(self, token : str, **options): responses = ["YES", "NO"] data = await self.send_prompt() if data.response == responses[0]: await self.start(token, **options) await self.send_message_prompt() elif data.response == responses[1]: sys.exit(1) def run(self, token, **options): import asyncio loop = asyncio.get_event_loop() loop.run_until_complete(self._start(token, **options)) class ShardedCLI(CLI, AutoShardedClient): pass
StarcoderdataPython
3567906
#!/usr/bin/python3 # This 'recreates' the prior version from the Wikipedia pages incase file lost import csv import os import re import sys import traceback from mwclient import Site # # Configuration # if 'WIKI_WORKING_DIR' not in os.environ: sys.stderr.write('ERROR: WIKI_WORKING_DIR environment variable not set\n') sys.exit(1) if 'WIKI_CONFIG_DIR' not in os.environ: sys.stderr.write('ERROR: WIKI_CONFIG_DIR environment variable not set\n') sys.exit(1) STORAGE = os.environ['WIKI_WORKING_DIR'] + '/Dois/doi-registrants-prior' BOTINFO = os.environ['WIKI_CONFIG_DIR'] + '/bot-info.txt' # # Functions # def extractRecords(contents): # extract the doi information from the page contents # prefix, crossref registrant, wikipedia registrant, crossref target, wikipedia target records = [] for line in contents.splitlines(): prefix = '' crossrefRegistrant = '' wikipediaRegistrant = '' crossrefTarget = '' wikipediaTarget = '' # two possible patterns match = re.search(r'^{{JCW-DOI-prefix\|(.+?)\|(.+?)\|(.+?)\|4=Crossref = \[\[(.+?)\]\]<br/>Wikipedia = \[\[(.+?)\]\]', line) if match: prefix = match.group(1) crossrefRegistrant = match.group(2) wikipediaRegistrant = match.group(3) crossrefTarget = match.group(4) wikipediaTarget = match.group(5) else: match = re.search(r'^{{JCW-DOI-prefix\|(.+?)\|(.+?)\|(.+?)\|(.+?)}}', line) if match: prefix = match.group(1) crossrefRegistrant = match.group(2) wikipediaRegistrant = match.group(3) crossrefTarget = 'NONE' wikipediaTarget = match.group(4) # if either pattern found if (prefix): if crossrefRegistrant == '-': crossrefRegistrant = 'NONE' if wikipediaRegistrant == '-': wikipediaRegistrant = 'NONE' if crossrefTarget == '-': crossrefTarget = 'NONE' if wikipediaTarget == '-': wikipediaTarget = 'NONE' if crossrefTarget.startswith(':'): crossrefTarget = crossrefTarget[1:] if wikipediaTarget.startswith(':'): wikipediaTarget = wikipediaTarget[1:] records.append((prefix, crossrefRegistrant, wikipediaRegistrant, crossrefTarget, wikipediaTarget)) return records def getPages(site): # find pages from summary page title = 'User:JL-Bot/DOI' page = site.pages[title] pages = [] for line in page.text().splitlines(): match = re.search(r'^\* \[\[User:JL-Bot/DOI/\d+.\d+\|(\d+.\d+)\]\]$', line) if match: pages.append(match.group(1)) return pages def getUserInfo(filename): # read in bot userinfo userinfo = {} try: with open(filename, 'r') as file: for line in file: match = re.search(r'^USERNAME = (.+?)\s*$', line) if match: userinfo['username'] = match.group(1) match = re.search(r'^PASSWORD = (.+?)\s*$', line) if match: userinfo['password'] = match.group(1) if 'username' not in userinfo: sys.stderr.write('ERROR: username not found\n') sys.exit(1) if 'password' not in userinfo: sys.stderr.write('ERROR: password not found\n') sys.exit(1) except Exception: traceback.print_exc() sys.exit(1) return userinfo def retrievePage(doi): # retrieve contents of Wikipedia page title = 'User:JL-Bot/DOI/' + doi page = site.pages[title] return page.text() def writeRecords(file, records): # write the records to output file for record in records: file.write('\t'.join(record) + '\n') return # # Main # # initiate bot userinfo = getUserInfo(BOTINFO) try: site = Site('en.wikipedia.org') site.login(userinfo['username'], userinfo['password']) except Exception: traceback.print_exc() sys.exit(1) # find pages and iterate through them pages = getPages(site) try: file = open(STORAGE, 'w') for page in pages: print('Precessing', page, '...') contents = retrievePage(page) records = extractRecords(contents) writeRecords(file, records) except Exception: traceback.print_exc() sys.exit(1)
StarcoderdataPython
1661230
<reponame>reinforcementdriving/cvat import json import base64 from PIL import Image import io from model_loader import ModelLoader import numpy as np import yaml def init_context(context): context.logger.info("Init context... 0%") functionconfig = yaml.safe_load(open("/opt/nuclio/function.yaml")) labels_spec = functionconfig['metadata']['annotations']['spec'] labels = {item['id']: item['name'] for item in json.loads(labels_spec)} model_handler = ModelLoader(labels) setattr(context.user_data, 'model_handler', model_handler) context.logger.info("Init context...100%") def handler(context, event): context.logger.info("Run tf.matterport.mask_rcnn model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"].encode('utf-8'))) threshold = float(data.get("threshold", 0.2)) image = Image.open(buf) results = context.user_data.model_handler.infer(np.array(image), threshold) return context.Response(body=json.dumps(results), headers={}, content_type='application/json', status_code=200)
StarcoderdataPython
1761812
<gh_stars>0 from django.contrib import admin from app.models import TopSecret # Register your models here. admin.site.register(TopSecret)
StarcoderdataPython
132679
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import random import numpy as np import pandas as pd from pandas.compat import lrange from pandas.api.types import CategoricalDtype from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range, NaT, IntervalIndex, Categorical) from pandas.util.testing import assert_series_equal, assert_frame_equal import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameSorting(TestData): def test_sort_values(self): frame = DataFrame([[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list('ABC')) # by column (axis=0) sorted_df = frame.sort_values(by='A') indexer = frame['A'].argsort().values expected = frame.loc[frame.index[indexer]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by='A', ascending=False) indexer = indexer[::-1] expected = frame.loc[frame.index[indexer]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by='A', ascending=False) assert_frame_equal(sorted_df, expected) # GH4839 sorted_df = frame.sort_values(by=['A'], ascending=[False]) assert_frame_equal(sorted_df, expected) # multiple bys sorted_df = frame.sort_values(by=['B', 'C']) expected = frame.loc[[2, 1, 3]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=['B', 'C'], ascending=False) assert_frame_equal(sorted_df, expected[::-1]) sorted_df = frame.sort_values(by=['B', 'A'], ascending=[True, False]) assert_frame_equal(sorted_df, expected) pytest.raises(ValueError, lambda: frame.sort_values( by=['A', 'B'], axis=2, inplace=True)) # by row (axis=1): GH 10806 sorted_df = frame.sort_values(by=3, axis=1) expected = frame assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=3, axis=1, ascending=False) expected = frame.reindex(columns=['C', 'B', 'A']) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 2], axis='columns') expected = frame.reindex(columns=['B', 'A', 'C']) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False]) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False) expected = frame.reindex(columns=['C', 'B', 'A']) assert_frame_equal(sorted_df, expected) msg = r'Length of ascending \(5\) != length of by \(2\)' with tm.assert_raises_regex(ValueError, msg): frame.sort_values(by=['A', 'B'], axis=0, ascending=[True] * 5) def test_sort_values_inplace(self): frame = DataFrame(np.random.randn(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) sorted_df = frame.copy() sorted_df.sort_values(by='A', inplace=True) expected = frame.sort_values(by='A') assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by=1, axis=1, inplace=True) expected = frame.sort_values(by=1, axis=1) assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by='A', ascending=False, inplace=True) expected = frame.sort_values(by='A', ascending=False) assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by=['A', 'B'], ascending=False, inplace=True) expected = frame.sort_values(by=['A', 'B'], ascending=False) assert_frame_equal(sorted_df, expected) def test_sort_nan(self): # GH3917 nan = np.nan df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}) # sort one column only expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 9, 2, nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5]) sorted_df = df.sort_values(['A'], na_position='first') assert_frame_equal(sorted_df, expected) expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3]) sorted_df = df.sort_values(['A'], na_position='first', ascending=False) assert_frame_equal(sorted_df, expected) expected = df.reindex(columns=['B', 'A']) sorted_df = df.sort_values(by=1, axis=1, na_position='first') assert_frame_equal(sorted_df, expected) # na_position='last', order expected = DataFrame( {'A': [1, 1, 2, 4, 6, 8, nan], 'B': [2, 9, nan, 5, 5, 4, 5]}, index=[3, 0, 1, 6, 4, 5, 2]) sorted_df = df.sort_values(['A', 'B']) assert_frame_equal(sorted_df, expected) # na_position='first', order expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 2, 9, nan, 5, 5, 4]}, index=[2, 3, 0, 1, 6, 4, 5]) sorted_df = df.sort_values(['A', 'B'], na_position='first') assert_frame_equal(sorted_df, expected) # na_position='first', not order expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 9, 2, nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5]) sorted_df = df.sort_values(['A', 'B'], ascending=[ 1, 0], na_position='first') assert_frame_equal(sorted_df, expected) # na_position='last', not order expected = DataFrame( {'A': [8, 6, 4, 2, 1, 1, nan], 'B': [4, 5, 5, nan, 2, 9, 5]}, index=[5, 4, 6, 1, 3, 0, 2]) sorted_df = df.sort_values(['A', 'B'], ascending=[ 0, 1], na_position='last') assert_frame_equal(sorted_df, expected) # Test DataFrame with nan label df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, nan]) # NaN label, ascending=True, na_position='last' sorted_df = df.sort_index( kind='quicksort', ascending=True, na_position='last') expected = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, nan]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=True, na_position='first' sorted_df = df.sort_index(na_position='first') expected = DataFrame({'A': [4, 1, 2, nan, 1, 6, 8], 'B': [5, 9, nan, 5, 2, 5, 4]}, index=[nan, 1, 2, 3, 4, 5, 6]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='last' sorted_df = df.sort_index(kind='quicksort', ascending=False) expected = DataFrame({'A': [8, 6, 1, nan, 2, 1, 4], 'B': [4, 5, 2, 5, nan, 9, 5]}, index=[6, 5, 4, 3, 2, 1, nan]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='first' sorted_df = df.sort_index( kind='quicksort', ascending=False, na_position='first') expected = DataFrame({'A': [4, 8, 6, 1, nan, 2, 1], 'B': [5, 4, 5, 2, 5, nan, 9]}, index=[nan, 6, 5, 4, 3, 2, 1]) assert_frame_equal(sorted_df, expected) def test_stable_descending_sort(self): # GH #6399 df = DataFrame([[2, 'first'], [2, 'second'], [1, 'a'], [1, 'b']], columns=['sort_col', 'order']) sorted_df = df.sort_values(by='sort_col', kind='mergesort', ascending=False) assert_frame_equal(df, sorted_df) def test_stable_descending_multicolumn_sort(self): nan = np.nan df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}) # test stable mergesort expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 2, 9]}, index=[2, 5, 4, 6, 1, 3, 0]) sorted_df = df.sort_values(['A', 'B'], ascending=[0, 1], na_position='first', kind='mergesort') assert_frame_equal(sorted_df, expected) expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3]) sorted_df = df.sort_values(['A', 'B'], ascending=[0, 0], na_position='first', kind='mergesort') assert_frame_equal(sorted_df, expected) def test_stable_categorial(self): # GH 16793 df = DataFrame({ 'x': pd.Categorical(np.repeat([1, 2, 3, 4], 5), ordered=True) }) expected = df.copy() sorted_df = df.sort_values('x', kind='mergesort') assert_frame_equal(sorted_df, expected) def test_sort_datetimes(self): # GH 3461, argsort / lexsort differences for a datetime column df = DataFrame(['a', 'a', 'a', 'b', 'c', 'd', 'e', 'f', 'g'], columns=['A'], index=date_range('20130101', periods=9)) dts = [Timestamp(x) for x in ['2004-02-11', '2004-01-21', '2004-01-26', '2005-09-20', '2010-10-04', '2009-05-12', '2008-11-12', '2010-09-28', '2010-09-28']] df['B'] = dts[::2] + dts[1::2] df['C'] = 2. df['A1'] = 3. df1 = df.sort_values(by='A') df2 = df.sort_values(by=['A']) assert_frame_equal(df1, df2) df1 = df.sort_values(by='B') df2 = df.sort_values(by=['B']) assert_frame_equal(df1, df2) df1 = df.sort_values(by='B') df2 = df.sort_values(by=['C', 'B']) assert_frame_equal(df1, df2) def test_frame_column_inplace_sort_exception(self): s = self.frame['A'] with tm.assert_raises_regex(ValueError, "This Series is a view"): s.sort_values(inplace=True) cp = s.copy() cp.sort_values() # it works! def test_sort_nat_values_in_int_column(self): # GH 14922: "sorting with large float and multiple columns incorrect" # cause was that the int64 value NaT was considered as "na". Which is # only correct for datetime64 columns. int_values = (2, int(NaT)) float_values = (2.0, -1.797693e308) df = DataFrame(dict(int=int_values, float=float_values), columns=["int", "float"]) df_reversed = DataFrame(dict(int=int_values[::-1], float=float_values[::-1]), columns=["int", "float"], index=[1, 0]) # NaT is not a "na" for int64 columns, so na_position must not # influence the result: df_sorted = df.sort_values(["int", "float"], na_position="last") assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["int", "float"], na_position="first") assert_frame_equal(df_sorted, df_reversed) # reverse sorting order df_sorted = df.sort_values(["int", "float"], ascending=False) assert_frame_equal(df_sorted, df) # and now check if NaT is still considered as "na" for datetime64 # columns: df = DataFrame(dict(datetime=[Timestamp("2016-01-01"), NaT], float=float_values), columns=["datetime", "float"]) df_reversed = DataFrame(dict(datetime=[NaT, Timestamp("2016-01-01")], float=float_values[::-1]), columns=["datetime", "float"], index=[1, 0]) df_sorted = df.sort_values(["datetime", "float"], na_position="first") assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["datetime", "float"], na_position="last") assert_frame_equal(df_sorted, df) # Ascending should not affect the results. df_sorted = df.sort_values(["datetime", "float"], ascending=False) assert_frame_equal(df_sorted, df) def test_sort_nat(self): # GH 16836 d1 = [Timestamp(x) for x in ['2016-01-01', '2015-01-01', np.nan, '2016-01-01']] d2 = [Timestamp(x) for x in ['2017-01-01', '2014-01-01', '2016-01-01', '2015-01-01']] df = pd.DataFrame({'a': d1, 'b': d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ['2015-01-01', '2016-01-01', '2016-01-01', np.nan]] d4 = [Timestamp(x) for x in ['2014-01-01', '2015-01-01', '2017-01-01', '2016-01-01']] expected = pd.DataFrame({'a': d3, 'b': d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=['a', 'b'], ) tm.assert_frame_equal(sorted_df, expected) class TestDataFrameSortIndexKinds(TestData): def test_sort_index_multicolumn(self): A = np.arange(5).repeat(20) B = np.tile(np.arange(5), 20) random.shuffle(A) random.shuffle(B) frame = DataFrame({'A': A, 'B': B, 'C': np.random.randn(100)}) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['A', 'B']) result = frame.sort_values(by=['A', 'B']) indexer = np.lexsort((frame['B'], frame['A'])) expected = frame.take(indexer) assert_frame_equal(result, expected) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['A', 'B'], ascending=False) result = frame.sort_values(by=['A', 'B'], ascending=False) indexer = np.lexsort((frame['B'].rank(ascending=False), frame['A'].rank(ascending=False))) expected = frame.take(indexer) assert_frame_equal(result, expected) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['B', 'A']) result = frame.sort_values(by=['B', 'A']) indexer = np.lexsort((frame['A'], frame['B'])) expected = frame.take(indexer) assert_frame_equal(result, expected) def test_sort_index_inplace(self): frame = DataFrame(np.random.randn(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # axis=0 unordered = frame.loc[[3, 2, 4, 1]] a_id = id(unordered['A']) df = unordered.copy() df.sort_index(inplace=True) expected = frame assert_frame_equal(df, expected) assert a_id != id(df['A']) df = unordered.copy() df.sort_index(ascending=False, inplace=True) expected = frame[::-1] assert_frame_equal(df, expected) # axis=1 unordered = frame.loc[:, ['D', 'B', 'C', 'A']] df = unordered.copy() df.sort_index(axis=1, inplace=True) expected = frame assert_frame_equal(df, expected) df = unordered.copy() df.sort_index(axis=1, ascending=False, inplace=True) expected = frame.iloc[:, ::-1] assert_frame_equal(df, expected) def test_sort_index_different_sortorder(self): A = np.arange(20).repeat(5) B = np.tile(np.arange(5), 20) indexer = np.random.permutation(100) A = A.take(indexer) B = B.take(indexer) df = DataFrame({'A': A, 'B': B, 'C': np.random.randn(100)}) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=['A', 'B'], ascending=[1, 0]) result = df.sort_values(by=['A', 'B'], ascending=[1, 0]) ex_indexer = np.lexsort((df.B.max() - df.B, df.A)) expected = df.take(ex_indexer) assert_frame_equal(result, expected) # test with multiindex, too idf = df.set_index(['A', 'B']) result = idf.sort_index(ascending=[1, 0]) expected = idf.take(ex_indexer) assert_frame_equal(result, expected) # also, Series! result = idf['C'].sort_index(ascending=[1, 0]) assert_series_equal(result, expected['C']) def test_sort_index_duplicates(self): # with 9816, these are all translated to .sort_values df = DataFrame([lrange(5, 9), lrange(4)], columns=['a', 'a', 'b', 'b']) with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by='a') with tm.assert_raises_regex(ValueError, 'not unique'): df.sort_values(by='a') with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=['a']) with tm.assert_raises_regex(ValueError, 'not unique'): df.sort_values(by=['a']) with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): # multi-column 'by' is separate codepath df.sort_index(by=['a', 'b']) with tm.assert_raises_regex(ValueError, 'not unique'): # multi-column 'by' is separate codepath df.sort_values(by=['a', 'b']) # with multi-index # GH4370 df = DataFrame(np.random.randn(4, 2), columns=MultiIndex.from_tuples([('a', 0), ('a', 1)])) with tm.assert_raises_regex(ValueError, 'level'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by='a') with tm.assert_raises_regex(ValueError, 'level'): df.sort_values(by='a') # convert tuples to a list of tuples # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=[('a', 1)]) expected = df.sort_values(by=[('a', 1)]) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=('a', 1)) result = df.sort_values(by=('a', 1)) assert_frame_equal(result, expected) def test_sort_index_level(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4]], mi) res = df.sort_index(level='A', sort_remaining=False) assert_frame_equal(df, res) res = df.sort_index(level=['A', 'B'], sort_remaining=False) assert_frame_equal(df, res) def test_sort_index_categorical_index(self): df = (DataFrame({'A': np.arange(6, dtype='int64'), 'B': Series(list('aabbca')) .astype(CategoricalDtype(list('cab')))}) .set_index('B')) result = df.sort_index() expected = df.iloc[[4, 0, 1, 5, 2, 3]] assert_frame_equal(result, expected) result = df.sort_index(ascending=False) expected = df.iloc[[3, 2, 5, 1, 0, 4]] assert_frame_equal(result, expected) def test_sort_index(self): # GH13496 frame = DataFrame(np.arange(16).reshape(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # axis=0 : sort rows by index labels unordered = frame.loc[[3, 2, 4, 1]] result = unordered.sort_index(axis=0) expected = frame assert_frame_equal(result, expected) result = unordered.sort_index(ascending=False) expected = frame[::-1] assert_frame_equal(result, expected) # axis=1 : sort columns by column names unordered = frame.iloc[:, [2, 1, 3, 0]] result = unordered.sort_index(axis=1) assert_frame_equal(result, frame) result = unordered.sort_index(axis=1, ascending=False) expected = frame.iloc[:, ::-1] assert_frame_equal(result, expected) @pytest.mark.parametrize("level", ['A', 0]) # GH 21052 def test_sort_index_multiindex(self, level): # GH13496 # sort rows by specified level of multi-index mi = MultiIndex.from_tuples([ [2, 1, 3], [2, 1, 2], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mi) expected_mi = MultiIndex.from_tuples([ [1, 1, 1], [2, 1, 2], [2, 1, 3]], names=list('ABC')) expected = pd.DataFrame([ [5, 6], [3, 4], [1, 2]], index=expected_mi) result = df.sort_index(level=level) assert_frame_equal(result, expected) # sort_remaining=False expected_mi = MultiIndex.from_tuples([ [1, 1, 1], [2, 1, 3], [2, 1, 2]], names=list('ABC')) expected = pd.DataFrame([ [5, 6], [1, 2], [3, 4]], index=expected_mi) result = df.sort_index(level=level, sort_remaining=False) assert_frame_equal(result, expected) def test_sort_index_intervalindex(self): # this is a de-facto sort via unstack # confirming that we sort in the order of the bins y = Series(np.random.randn(100)) x1 = Series(np.sign(np.random.randn(100))) x2 = pd.cut(Series(np.random.randn(100)), bins=[-3, -0.5, 0, 0.5, 3]) model = pd.concat([y, x1, x2], axis=1, keys=['Y', 'X1', 'X2']) result = model.groupby(['X1', 'X2'], observed=True).mean().unstack() expected = IntervalIndex.from_tuples( [(-3.0, -0.5), (-0.5, 0.0), (0.0, 0.5), (0.5, 3.0)], closed='right') result = result.columns.levels[1].categories tm.assert_index_equal(result, expected) def test_sort_index_na_position_with_categories(self): # GH 22556 # Positioning missing value properly when column is Categorical. categories = ['A', 'B', 'C'] category_indices = [0, 2, 4] list_of_nans = [np.nan, np.nan] na_indices = [1, 3] na_position_first = 'first' na_position_last = 'last' column_name = 'c' reversed_categories = sorted(categories, reverse=True) reversed_category_indices = sorted(category_indices, reverse=True) reversed_na_indices = sorted(na_indices, reverse=True) df = pd.DataFrame({ column_name: pd.Categorical(['A', np.nan, 'B', np.nan, 'C'], categories=categories, ordered=True)}) # sort ascending with na first result = df.sort_values(by=column_name, ascending=True, na_position=na_position_first) expected = DataFrame({ column_name: Categorical(list_of_nans + categories, categories=categories, ordered=True) }, index=na_indices + category_indices) assert_frame_equal(result, expected) # sort ascending with na last result = df.sort_values(by=column_name, ascending=True, na_position=na_position_last) expected = DataFrame({ column_name: Categorical(categories + list_of_nans, categories=categories, ordered=True) }, index=category_indices + na_indices) assert_frame_equal(result, expected) # sort descending with na first result = df.sort_values(by=column_name, ascending=False, na_position=na_position_first) expected = DataFrame({ column_name: Categorical(list_of_nans + reversed_categories, categories=categories, ordered=True) }, index=reversed_na_indices + reversed_category_indices) assert_frame_equal(result, expected) # sort descending with na last result = df.sort_values(by=column_name, ascending=False, na_position=na_position_last) expected = DataFrame({ column_name: Categorical(reversed_categories + list_of_nans, categories=categories, ordered=True) }, index=reversed_category_indices + reversed_na_indices) assert_frame_equal(result, expected) def test_sort_index_na_position_with_categories_raises(self): df = pd.DataFrame({ 'c': pd.Categorical(['A', np.nan, 'B', np.nan, 'C'], categories=['A', 'B', 'C'], ordered=True)}) with pytest.raises(ValueError): df.sort_values(by='c', ascending=False, na_position='bad_position')
StarcoderdataPython
155193
<reponame>a-harrison/repinger #!/usr/bin/env python import sys import logging import getpass from optparse import OptionParser import json import os import ConfigParser # Dependencies import sleekxmpp from slack_message_client import SlackMessageClient if sys.version_info < (3, 0): reload(sys) sys.setdefaultencoding('utf8') config = ConfigParser.ConfigParser(); config.read('./app.config'); slack_url= "https://slack.com/api/chat.postMessage" SLACK_TOKEN = os.environ.get('SLACK_TOKEN') SLACK_CHANNEL = os.environ.get('SLACK_CHANNEL') XMPP_JID = os.environ.get('XMPP_JID') XMPP_PASSWORD = os.environ.get('XMPP_PASSWORD') if SLACK_TOKEN is None: SLACK_TOKEN = config.get('Configuration', 'SLACK_TOKEN') if SLACK_CHANNEL is None: SLACK_CHANNEL = config.get('Configuration', 'SLACK_CHANNEL') if XMPP_JID is None: XMPP_JID = config.get('Configuration', 'XMPP_JID') if XMPP_PASSWORD is None: XMPP_PASSWORD = config.get('Configuration', 'XMPP_PASSWORD') class EchoBot(sleekxmpp.ClientXMPP): def __init__(self, jid, password): super(EchoBot, self).__init__(jid, password) self.add_event_handler('session_start', self.start) self.add_event_handler('message', self.message) self.slack_client = SlackMessageClient( slack_url, SLACK_TOKEN, SLACK_CHANNEL ) def start(self, start): startup_payload = self.slack_client.build_payload("Listener started.", None) self.slack_client.send_message(startup_payload) self.send_presence() self.get_roster() def message(self, msg): print "Type: %s" % msg['type'] print "From: %s" % msg['from'] print "To: %s" % msg['to'] print "Body: %s" % msg['body'] attachment = self.slack_client.build_attachment( "pleaseignore.com", "#D00000", "", msg['body'] ) payload = self.slack_client.build_payload("", attachment) # Post Slack Message self.slack_client.send_message(payload) if __name__ == '__main__': # Here we will configure and read command line options optp = OptionParser() optp.add_option('-d', '--debug', help='set logging to DEBUG', action='store_const', dest='loglevel', const=logging.DEBUG, default=logging.INFO) optp.add_option("-j", "--jid", dest="jid", help="JID to use") optp.add_option("-p", "--password", dest="password", help="password to use") opts, args = optp.parse_args() # if opts.jid is None: # opts.jid = raw_input("Username: ") # if opts.password is None: # opts.password = <PASSWORD>("Password: ") if opts.jid is not None: XMPP_JID = opts.jid if opts.password is not None: XMPP_PASSWORD = opts.password logging.basicConfig(level=opts.loglevel, format='%(levelname)-8s %(message)s') # Here we will instantiate our echo bot if (XMPP_JID is None or XMPP_PASSWORD is None): print "Connection values not defined." else: xmpp = EchoBot(XMPP_JID, XMPP_PASSWORD) xmpp.register_plugin('xep_0030') # Service Discovery xmpp.register_plugin('xep_0199') # Pings # Finally, we connect the bott and start listening for messages print "Connecting." if xmpp.connect(): print "Connected!" xmpp.process(block=True) else: print('Unable to connect')
StarcoderdataPython
1654822
<gh_stars>0 #!/usr/bin/env python # -*- coding:utf-8 -*- # @Author: <NAME> # @Date: Monday, February 18th 2019, 1:46:37 pm import logging import struct import sys import serial import iblrig.params as params log = logging.getLogger('iblrig') def main(comport: str, command: int): if not comport: comport = params.get_board_comport() ser = serial.Serial(port=comport, baudrate=115200, timeout=1) ser.write(struct.pack('cB', b':', command)) ser.close() log.debug(f"Sent <:{command}> to {comport}") return if __name__ == "__main__": if len(sys.argv) == 2: comport = params.get_board_comport() command = sys.argv[1] else: comport = sys.argv[1] command = sys.argv[2] main(comport, int(command))
StarcoderdataPython
6622374
import random import sys from os import path import tensorflow as tf import numpy as np import pandas as pd from Bio.Seq import Seq import threading import pybedtools import os import glob from maxatac.architectures.dcnn import get_dilated_cnn from maxatac.utilities.constants import BP_RESOLUTION, BATCH_SIZE, CHR_POOL_SIZE, INPUT_LENGTH, INPUT_CHANNELS, \ BP_ORDER, TRAIN_SCALE_SIGNAL, BLACKLISTED_REGIONS, DEFAULT_CHROM_SIZES from maxatac.utilities.genome_tools import load_bigwig, load_2bit, get_one_hot_encoded, build_chrom_sizes_dict from maxatac.utilities.system_tools import get_dir, remove_tags, replace_extension class MaxATACModel(object): """ This object will organize the input model parameters and initialize the maxATAC model The methods are: __get_interpretation_attributes: This will import the interpretation inputs if interpretation module is being used. __get_model: This will get the correct architecture and parameters based on the user input """ def __init__(self, arch, seed, output_directory, prefix, threads, meta_path, weights, dense=False, target_scale_factor=TRAIN_SCALE_SIGNAL, output_activation="sigmoid", interpret=False, interpret_cell_type="" ): """ Initialize the maxATAC model with the input parameters and architecture :param arch: Neural network architecture to use: DCNN, resNet, UNet, multi-modal :param seed: Random seed to use :param output_directory: Path to output directory :param prefix: Prefix to use for filename :param threads: Number of threads to use :param meta_path: Path to the meta file associated with the run :param output_activation: The activation function to use in the output layer :param dense: Whether to use a dense layer on output :param weights: Input weights to use for model :param interpret: Boolean for whether this is training or interpretation """ self.arch = arch self.seed = seed self.output_directory = get_dir(output_directory) self.model_filename = prefix + "_{epoch}" + ".h5" self.results_location = path.join(self.output_directory, self.model_filename) self.log_location = replace_extension(remove_tags(self.results_location, "_{epoch}"), ".csv") self.tensor_board_log_dir = get_dir(path.join(self.output_directory, "tensorboard")) self.threads = threads self.training_history = "" self.meta_path = meta_path self.output_activation = output_activation self.dense = dense self.weights = weights self.target_scale_factor = target_scale_factor # Set the random seed for the model random.seed(seed) # Import meta txt as dataframe self.meta_dataframe = pd.read_csv(self.meta_path, sep='\t', header=0, index_col=None) # Find the unique number of cell types in the meta file self.cell_types = self.meta_dataframe["Cell_Line"].unique().tolist() self.train_tf = self.meta_dataframe["TF"].unique()[0] self.nn_model = self.__get_model() if interpret: assert (interpret_cell_type is not None, "Set the interpretation cell type argument") self.interpret_cell_type = interpret_cell_type self.__get_interpretation_attributes() def __get_interpretation_attributes(self): self.interpret_location = get_dir(path.join(self.output_directory, 'interpret')) self.metacluster_patterns_location = get_dir(path.join(self.interpret_location, 'metacluster_patterns')) self.meme_query_pattern_location = get_dir(path.join(self.interpret_location, 'meme_query')) self.interpret_model_file = path.join(self.interpret_location, 'tmp.model') def __get_model(self): # Get the neural network model based on the specified model architecture if self.arch == "DCNN_V2": return get_dilated_cnn(output_activation=self.output_activation, target_scale_factor=self.target_scale_factor, dense_b=self.dense, weights=self.weights ) else: sys.exit("Model Architecture not specified correctly. Please check") def DataGenerator( sequence, meta_table, roi_pool, cell_type_list, rand_ratio, chroms, bp_resolution=BP_RESOLUTION, target_scale_factor=1, batch_size=BATCH_SIZE, shuffle_cell_type=False, rev_comp_train=False ): """ Initiate a data generator that will yield a batch of examples for training. This generator will mix samples from a pool of random regions and a pool of regions of interest based on the user defined ratio. The examples will be returned as a list of numpy arrays. _________________ Workflow Overview 1) Create the random regions pool 2) Create the roi generator 3) Create the random regions generator 4) Combine the roi and random regions batches according to the rand_ratio value :param sequence: The input 2bit DNA sequence :param meta_table: The run meta table with locations to ATAC and ChIP-seq data :param roi_pool: The pool of regions to use centered on peaks :param cell_type_list: The training cell lines to use :param rand_ratio: The number of random examples to use per batch :param chroms: The training chromosomes :param bp_resolution: The resolution of the predictions to use :param batch_size: The number of examples to use per batch of training :param shuffle_cell_type: Shuffle the ROI cell type labels if True :param rev_comp_train: use the reverse complement to train :return A generator that will yield a batch with number of examples equal to batch size """ # Calculate the number of ROIs to use based on the total batch size and proportion of random regions to use n_roi = round(batch_size * (1. - rand_ratio)) # Calculate number of random regions to use each batch n_rand = round(batch_size - n_roi) if n_rand > 0: # Generate the training random regions pool train_random_regions_pool = RandomRegionsPool(chroms=build_chrom_sizes_dict(chroms, DEFAULT_CHROM_SIZES), chrom_pool_size=CHR_POOL_SIZE, region_length=INPUT_LENGTH, preferences=False # can be None ) # Initialize the random regions generator rand_gen = create_random_batch(sequence=sequence, meta_table=meta_table, cell_type_list=cell_type_list, n_rand=n_rand, regions_pool=train_random_regions_pool, bp_resolution=bp_resolution, target_scale_factor=target_scale_factor, rev_comp_train=rev_comp_train ) # Initialize the ROI generator roi_gen = create_roi_batch(sequence=sequence, meta_table=meta_table, roi_pool=roi_pool, n_roi=n_roi, cell_type_list=cell_type_list, bp_resolution=bp_resolution, target_scale_factor=target_scale_factor, shuffle_cell_type=shuffle_cell_type, rev_comp_train=rev_comp_train ) while True: # roi_batch.shape = (n_samples, 1024, 6) if 0. < rand_ratio < 1.: roi_input_batch, roi_target_batch = next(roi_gen) rand_input_batch, rand_target_batch = next(rand_gen) inputs_batch = np.concatenate((roi_input_batch, rand_input_batch), axis=0) targets_batch = np.concatenate((roi_target_batch, rand_target_batch), axis=0) elif rand_ratio == 1.: rand_input_batch, rand_target_batch = next(rand_gen) inputs_batch = rand_input_batch targets_batch = rand_target_batch else: roi_input_batch, roi_target_batch = next(roi_gen) inputs_batch = roi_input_batch targets_batch = roi_target_batch yield inputs_batch, targets_batch # change to yield def get_input_matrix(signal_stream, sequence_stream, chromosome, start, # end - start = cols end, rows=INPUT_CHANNELS, cols=INPUT_LENGTH, bp_order=BP_ORDER, use_complement=False, reverse_matrix=False ): """ Get a matrix of values from the corresponding genomic position. You can supply whether you want to use the complement sequence. You can also choose whether you want to reverse the whole matrix. :param rows: Number of rows == channels :param cols: Number of cols == region length :param signal_stream: Signal bigwig stream :param sequence_stream: 2bit DNA sequence stream :param bp_order: BP order :param chromosome: chromosome :param start: start :param end: end :param use_complement: use complement strand for training :param reverse_matrix: reverse the input matrix :return: a matrix (rows x cols) of values from the input bigwig files """ input_matrix = np.zeros((rows, cols)) for n, bp in enumerate(bp_order): # Get the sequence from the interval of interest target_sequence = Seq(sequence_stream.sequence(chromosome, start, end)) if use_complement: # Get the complement of the sequence target_sequence = target_sequence.complement() # Get the one hot encoded sequence input_matrix[n, :] = get_one_hot_encoded(target_sequence, bp) signal_array = np.array(signal_stream.values(chromosome, start, end)) input_matrix[4, :] = signal_array # If reverse_matrix then reverse the matrix. This changes the left to right orientation. if reverse_matrix: input_matrix = input_matrix[::-1] return input_matrix.T def create_roi_batch(sequence, meta_table, roi_pool, n_roi, cell_type_list, bp_resolution=1, target_scale_factor=1, shuffle_cell_type=False, rev_comp_train=False ): """ Create a batch of examples from regions of interest. The batch size is defined by n_roi. This code will randomly generate a batch of examples based on an input meta file that defines the paths to training data. The cell_type_list is used to randomly select the cell type that the training signal is drawn from. :param sequence: The input 2bit DNA sequence :param meta_table: The meta file that contains the paths to signal and peak files :param roi_pool: The pool of regions that we want to sample from :param n_roi: The number of regions that go into each batch :param cell_type_list: A list of unique training cell types :param bp_resolution: The resolution of the output bins. i.e. 32 bp :param shuffle_cell_type: Whether to shuffle cell types during training :param rev_comp_train: use reverse complement for training :return: np.array(inputs_batch), np.array(targets_batch) """ while True: # Create empty lists that will hold the signal tracks inputs_batch, targets_batch = [], [] # Get the shape of the ROI pool roi_size = roi_pool.shape[0] # Randomly select n regions from the pool curr_batch_idxs = random.sample(range(roi_size), n_roi) # Extract the signal for every sample for row_idx in curr_batch_idxs: roi_row = roi_pool.iloc[row_idx, :] # If shuffle_cell_type the cell type will be randomly chosen if shuffle_cell_type: cell_line = random.choice(cell_type_list) else: cell_line = roi_row['Cell_Line'] # Get the paths for the cell type of interest. meta_row = meta_table[(meta_table['Cell_Line'] == cell_line)] meta_row = meta_row.reset_index(drop=True) # Rename some variables. This just helps clean up code downstream chrom_name = roi_row['Chr'] start = int(roi_row['Start']) end = int(roi_row['Stop']) signal = meta_row.loc[0, 'ATAC_Signal_File'] binding = meta_row.loc[0, 'Binding_File'] # Choose whether to use the reverse complement of the region if rev_comp_train: rev_comp = random.choice([True, False]) else: rev_comp = False with \ load_2bit(sequence) as sequence_stream, \ load_bigwig(signal) as signal_stream, \ load_bigwig(binding) as binding_stream: # Get the input matrix of values and one-hot encoded sequence input_matrix = get_input_matrix(signal_stream=signal_stream, sequence_stream=sequence_stream, chromosome=chrom_name, start=start, end=end, use_complement=rev_comp, reverse_matrix=rev_comp ) # Append the sample to the inputs batch. inputs_batch.append(input_matrix) # Some bigwig files do not have signal for some chromosomes because they do not have peaks # in those regions # Our workaround for issue#42 is to provide a zero matrix for that position try: # Get the target matrix target_vector = np.array(binding_stream.values(chrom_name, start, end)).T except: # TODO change length of array target_vector = np.zeros(1024) # change nan to numbers target_vector = np.nan_to_num(target_vector, 0.0) # If reverse compliment, reverse the matrix if rev_comp: target_vector = target_vector[::-1] # get the number of 32 bp bins across the input sequence n_bins = int(target_vector.shape[0] / bp_resolution) # Split the data up into 32 x 32 bp bins. split_targets = np.array(np.split(target_vector, n_bins, axis=0)) # TODO we might want to test what happens if we change the bin_sums = np.sum(split_targets, axis=1) bin_vector = np.where(bin_sums > 0.5 * bp_resolution, 1.0, 0.0) # Append the sample to the target batch targets_batch.append(bin_vector) yield np.array(inputs_batch), np.array(targets_batch) # change to yield def create_random_batch( sequence, meta_table, cell_type_list, n_rand, regions_pool, bp_resolution=1, target_scale_factor=1, rev_comp_train=False ): """ This function will create a batch of examples that are randomly generated. This batch of data is created the same as the roi batches. """ while True: inputs_batch, targets_batch = [], [] for idx in range(n_rand): cell_line = random.choice(cell_type_list) # Randomly select a cell line chrom_name, seq_start, seq_end = regions_pool.get_region() # returns random region (chrom_name, start, end) meta_row = meta_table[(meta_table['Cell_Line'] == cell_line)] # get meta row for selected cell line meta_row = meta_row.reset_index(drop=True) signal = meta_row.loc[0, 'ATAC_Signal_File'] binding = meta_row.loc[0, 'Binding_File'] with \ load_2bit(sequence) as sequence_stream, \ load_bigwig(signal) as signal_stream, \ load_bigwig(binding) as binding_stream: if rev_comp_train: rev_comp = random.choice([True, False]) else: rev_comp = False input_matrix = get_input_matrix(signal_stream=signal_stream, sequence_stream=sequence_stream, chromosome=chrom_name, start=seq_start, end=seq_end, use_complement=rev_comp, reverse_matrix=rev_comp ) inputs_batch.append(input_matrix) try: # Get the target matrix target_vector = np.array(binding_stream.values(chrom_name, start, end)).T except: # TODO change length of array target_vector = np.zeros(1024) target_vector = np.nan_to_num(target_vector, 0.0) if rev_comp: target_vector = target_vector[::-1] n_bins = int(target_vector.shape[0] / bp_resolution) split_targets = np.array(np.split(target_vector, n_bins, axis=0)) bin_sums = np.sum(split_targets, axis=1) bin_vector = np.where(bin_sums > 0.5 * bp_resolution, 1.0, 0.0) targets_batch.append(bin_vector) yield np.array(inputs_batch), np.array(targets_batch) # change to yield class RandomRegionsPool: """ Generate a pool of random genomic regions """ def __init__( self, chroms, # in a form of {"chr1": {"length": 249250621, "region": [0, 249250621]}}, "region" is ignored chrom_pool_size, region_length, preferences=None # bigBed file with ranges to limit random regions selection ): self.chroms = chroms self.chrom_pool_size = chrom_pool_size self.region_length = region_length self.preferences = preferences # self.preference_pool = self.__get_preference_pool() # should be run before self.__get_chrom_pool() self.preference_pool = False self.chrom_pool = self.__get_chrom_pool() # self.chrom_pool_size is updated to ensure compatibility between HG19 and HG38 self.chrom_pool_size = min(chrom_pool_size, len(self.chrom_pool)) self.__idx = 0 def get_region(self): if self.__idx == self.chrom_pool_size: random.shuffle(self.chrom_pool) self.__idx = 0 chrom_name, chrom_length = self.chrom_pool[self.__idx] self.__idx += 1 if self.preference_pool: preference = random.sample(self.preference_pool[chrom_name], 1)[0] start = round(random.randint(preference[0], preference[1] - self.region_length)) else: start = round(random.randint(0, chrom_length - self.region_length)) end = start + self.region_length return chrom_name, start, end def __get_preference_pool(self): preference_pool = {} if self.preferences is not None: with load_bigwig(self.preferences) as input_stream: for chrom_name, chrom_data in self.chroms.items(): for entry in input_stream.entries(chrom_name, 0, chrom_data["length"], withString=False): if entry[1] - entry[0] < self.region_length: continue preference_pool.setdefault(chrom_name, []).append(list(entry[0:2])) return preference_pool def __get_chrom_pool(self): """ TODO: rewrite to produce exactly the same number of items as chrom_pool_size regardless of length(chroms) and chrom_pool_size """ sum_lengths = sum(self.chroms.values()) frequencies = { chrom_name: round(chrom_length / sum_lengths * self.chrom_pool_size) for chrom_name, chrom_length in self.chroms.items() } labels = [] for k, v in frequencies.items(): labels += [(k, self.chroms[k])] * v random.shuffle(labels) return labels class ROIPool(object): """ Import genomic regions of interest for training """ def __init__(self, chroms, roi_file_path, meta_file, prefix, output_directory, shuffle, tag ): """ :param chroms: Chromosomes to limit the analysis to :param roi_file_path: User provided ROI file path :param meta_file: path to meta file :param prefix: Prefix for saving output file :param output_directory: Output directory to save files to :param shuffle: Whether to shuffle the input ROI file :param tag: Tag to use for writing the file. """ self.chroms = chroms self.roi_file_path = roi_file_path self.meta_file = meta_file self.prefix = prefix self.output_directory = output_directory self.tag = tag # If an ROI path is provided import it as the ROI pool if self.roi_file_path: self.ROI_pool = self.__import_roi_pool__(shuffle=shuffle) # Import the data from the meta file. else: regions = GenomicRegions(meta_path=self.meta_file, region_length=1024, chromosomes=self.chroms, chromosome_sizes_dictionary=build_chrom_sizes_dict(self.chroms, DEFAULT_CHROM_SIZES), blacklist=BLACKLISTED_REGIONS) regions.write_data(self.prefix, output_dir=self.output_directory, set_tag=tag) self.ROI_pool = regions.combined_pool def __import_roi_pool__(self, shuffle=False): """ Import the ROI file containing the regions of interest. This file is similar to a bed file, but with a header The roi DF is read in from a TSV file that is formatted similarly as a BED file with a header. The following columns are required: Chr | Start | Stop | ROI_Type | Cell_Line The chroms list is used to filter the ROI df to make sure that only training chromosomes are included. :param shuffle: Whether to shuffle the dataframe upon import :return: A pool of regions to use for training or validation """ roi_df = pd.read_csv(self.roi_file_path, sep="\t", header=0, index_col=None) roi_df = roi_df[roi_df['Chr'].isin(self.chroms)] if shuffle: roi_df = roi_df.sample(frac=1) return roi_df class SeqDataGenerator(tf.keras.utils.Sequence): # ‘Generates data for Keras’ def __init__(self, batches, generator): # ‘Initialization’ self.batches = batches self.generator = generator def __len__(self): # ‘Denotes the number of batches per epoch’ return self.batches def __getitem__(self, index): # ‘Generate one batch of data’ # Generate indexes of the batch # Generate data return next(self.generator) def model_selection(training_history, output_dir): """ This function will take the training history and output the best model based on the dice coefficient value. """ # Create a dataframe from the history object df = pd.DataFrame(training_history.history) epoch = df['val_dice_coef'].idxmax() + 1 # Get the realpath to the best model out = pd.DataFrame([glob.glob(output_dir + "/*" + str(epoch) + ".h5")], columns=['Best_Model_Path']) # Write the location of the best model to a file out.to_csv(output_dir + "/" + "best_epoch.txt", sep='\t', index=None, header=None) return epoch class GenomicRegions(object): """ This class will generate a pool of examples based on regions of interest defined by ATAC-seq and ChIP-seq peaks. """ def __init__(self, meta_path, chromosomes, chromosome_sizes_dictionary, blacklist, region_length ): """ When the object is initialized it will import all of the peaks in the meta files and parse them into training and validation regions of interest. These will be output in the form of TSV formatted file similar to a BED file. :param meta_path: Path to the meta file :param chromosomes: List of chromosomes to use :param chromosome_sizes_dictionary: A dictionary of chromosome sizes :param blacklist: The blacklist file of BED regions to exclude :param region_length: Length of the input regions """ self.meta_path = meta_path self.chromosome_sizes_dictionary = chromosome_sizes_dictionary self.chromosomes = chromosomes self.blacklist = blacklist self.region_length = region_length # Import meta txt as dataframe self.meta_dataframe = pd.read_csv(self.meta_path, sep='\t', header=0, index_col=None) # Select Training Cell lines self.meta_dataframe = self.meta_dataframe[self.meta_dataframe["Train_Test_Label"] == 'Train'] # Get a dictionary of {Cell Types: Peak Paths} self.atac_dictionary = pd.Series(self.meta_dataframe.ATAC_Peaks.values, index=self.meta_dataframe.Cell_Line).to_dict() self.chip_dictionary = pd.Series(self.meta_dataframe.CHIP_Peaks.values, index=self.meta_dataframe.Cell_Line).to_dict() # You must generate the ROI pool before you can get the final shape self.atac_roi_pool = self.__get_roi_pool(self.atac_dictionary, "ATAC", ) self.chip_roi_pool = self.__get_roi_pool(self.chip_dictionary, "CHIP") self.combined_pool = pd.concat([self.atac_roi_pool, self.chip_roi_pool]) self.atac_roi_size = self.atac_roi_pool.shape[0] self.chip_roi_size = self.chip_roi_pool.shape[0] def __get_roi_pool(self, dictionary, roi_type_tag): """ Build a pool of regions of interest from BED files. :param dictionary: A dictionary of Cell Types and their associated BED files :param roi_type_tag: Tag used to name the type of ROI being generated. IE Chip or ATAC :return: A dataframe of BED regions that are formatted for maxATAC training. """ bed_list = [] for roi_cell_tag, bed_file in dictionary.items(): bed_list.append(self.__import_bed(bed_file, ROI_type_tag=roi_type_tag, ROI_cell_tag=roi_cell_tag)) return pd.concat(bed_list) def write_data(self, prefix="ROI_pool", output_dir="./ROI", set_tag="training"): """ Write the ROI dataframe to a tsv and a bed for for ATAC, CHIP, and combined ROIs :param set_tag: Tag for training or validation :param prefix: Prefix for filenames to use :param output_dir: Directory to output the bed and tsv files :return: Write BED and TSV versions of the ROI data """ output_directory = get_dir(output_dir) combined_BED_filename = os.path.join(output_directory, prefix + "_" + set_tag + "_ROI.bed.gz") stats_filename = os.path.join(output_directory, prefix + "_" + set_tag + "_ROI_stats") total_regions_stats_filename = os.path.join(output_directory, prefix + "_" + set_tag + "_ROI_totalregions_stats") self.combined_pool.to_csv(combined_BED_filename, sep="\t", index=False, header=False) group_ms = self.combined_pool.groupby(["Chr", "Cell_Line", "ROI_Type"], as_index=False).size() len_ms = self.combined_pool.shape[0] group_ms.to_csv(stats_filename, sep="\t", index=False) file = open(total_regions_stats_filename, "a") file.write('Total number of regions found for ' + set_tag + ' are: {0}\n'.format(len_ms)) file.close() def get_regions_list(self, n_roi): """ Generate a batch of regions of interest from the input ChIP-seq and ATAC-seq peaks :param n_roi: Number of regions to generate per batch :return: A batch of training examples centered on regions of interest """ random_roi_pool = self.combined_pool.sample(n=n_roi, replace=True, random_state=1) return random_roi_pool.to_numpy().tolist() def __import_bed(self, bed_file, ROI_type_tag, ROI_cell_tag): """ Import a BED file and format the regions to be compatible with our maxATAC models :param bed_file: Input BED file to format :param ROI_type_tag: Tag to use in the description column :param ROI_cell_tag: Tag to use in the description column :return: A dataframe of BED regions compatible with our model """ # Import dataframe df = pd.read_csv(bed_file, sep="\t", usecols=[0, 1, 2], header=None, names=["Chr", "Start", "Stop"], low_memory=False) # Make sure the chromosomes in the ROI file frame are in the target chromosome list df = df[df["Chr"].isin(self.chromosomes)] # Find the length of the regions df["length"] = df["Stop"] - df["Start"] # Find the center of each peak. # We might want to use bedtools to window the regions of interest around the peak. df["center"] = np.floor(df["Start"] + (df["length"] / 2)).apply(int) # The start of the interval will be the center minus 1/2 the desired region length. df["Start"] = np.floor(df["center"] - (self.region_length / 2)).apply(int) # the end of the interval will be the center plus 1/2 the desired region length df["Stop"] = np.floor(df["center"] + (self.region_length / 2)).apply(int) # The chromosome end is defined as the chromosome length df["END"] = df["Chr"].map(self.chromosome_sizes_dictionary) # Make sure the stop is less than the end df = df[df["Stop"].apply(int) < df["END"].apply(int)] # Make sure the start is greater than the chromosome start of 0 df = df[df["Start"].apply(int) > 0] # Select for the first three columns to clean up df = df[["Chr", "Start", "Stop"]] # Import the dataframe as a pybedtools object so we can remove the blacklist BED_df_bedtool = pybedtools.BedTool.from_dataframe(df) # Import the blacklist as a pybedtools object blacklist_bedtool = pybedtools.BedTool(self.blacklist) # Find the intervals that do not intersect blacklisted regions. blacklisted_df = BED_df_bedtool.intersect(blacklist_bedtool, v=True) # Convert the pybedtools object to a pandas dataframe. df = blacklisted_df.to_dataframe() # Rename the columns df.columns = ["Chr", "Start", "Stop"] df["ROI_Type"] = ROI_type_tag df["Cell_Line"] = ROI_cell_tag return df
StarcoderdataPython
4983917
<filename>src/auth.py """ Copyright (c) 2020 Cisco and/or its affiliates. This software is licensed to you under the terms of the Cisco Sample Code License, Version 1.1 (the "License"). You may obtain a copy of the License at https://developer.cisco.com/docs/licenses All use of the material herein must be in accordance with the terms of the License. All rights not expressly granted by the License are reserved. Unless required by applicable law or agreed to separately in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ import functools from flask import Blueprint, flash, g, redirect, render_template, request, session, url_for from werkzeug.security import check_password_hash, generate_password_hash from src.db import get_db bp = Blueprint('auth', __name__, url_prefix='/auth') @bp.route('/register', methods=('GET', 'POST')) def register(): """ :return: """ g.user = None if request.method == 'POST': username = request.form['username'] password = request.form['password'] db = get_db() error = None if not username: error = 'Username is required.' elif not password: error = 'Password is required.' elif db.execute( 'SELECT id FROM user WHERE username = ?', (username,) ).fetchone() is not None: error = 'User {} is already registered.'.format(username) if error is None: db.execute( 'INSERT INTO user (username, password) VALUES (?, ?)', (username, generate_password_hash(password)) ) db.commit() return redirect(url_for('auth.login')) flash(error) return render_template('auth/register.html') @bp.route('/login', methods=('GET', 'POST')) def login(): """ :return: """ g.user = None if request.method == 'POST': username = request.form['username'] password = request.form['password'] db = get_db() error = None user = db.execute( 'SELECT * FROM user WHERE username = ?', (username,) ).fetchone() if user is None: error = 'Incorrect username.' elif not check_password_hash(user['password'], password): error = 'Incorrect password.' if error is None: session.clear() session['user_id'] = user['id'] session['username'] = user['username'] session['password'] = user['password'] return redirect(url_for('portal.home')) flash(error) return render_template('auth/login.html') @bp.before_app_request def load_logged_in_user(): """ :return: """ user_id = session.get('user_id') if user_id is None: g.user = None else: g.user = get_db().execute( 'SELECT * FROM user WHERE id = ?', (user_id,) ).fetchone() @bp.route('/logout') def logout(): """ :return: """ session.clear() return redirect(url_for('auth.login')) def login_required(view): """ :param view: :return: """ @functools.wraps(view) def wrapped_view(**kwargs): if g.user is None: return redirect(url_for('auth.login')) return view(**kwargs) return wrapped_view
StarcoderdataPython
6691793
# Download data from tidepool # See http://support.tidepool.org/article/37-export-your-account-data import requests from requests.auth import HTTPBasicAuth import json, flatten_json, sys, csv TIDEPOOL_LOGIN_URL="https://api.tidepool.org/auth/login" TIDEPOOL_API_URL="https://api.tidepool.org/data/{userid}" TIDEPOOL_TOKEN_HEADER="x-tidepool-session-token" TIDEPOOL_CONTENT_ENCODING="utf-8" # assumed def download_tidepool(email, password, fp=sys.stdout, login_url=TIDEPOOL_LOGIN_URL, format='json'): login_response = requests.post(login_url, auth=HTTPBasicAuth(email, password)) token = login_response.headers[TIDEPOOL_TOKEN_HEADER] login_content = json.loads(login_response.content) userid = login_content["userid"] api_url = TIDEPOOL_API_URL.format(userid=userid) content_type="application/json" api_response = requests.get(api_url, headers={ TIDEPOOL_TOKEN_HEADER: token, "Content-Type": content_type}) global ar ar = api_response if format == 'json': # Write JSON content as is fp.write(api_response.content.decode(TIDEPOOL_CONTENT_ENCODING)) else: data = json.loads(api_response.content) if format == 'json_lines': for line in data: fp.write(json.dumps(line)+"\n") elif format in ['csv', 'flat_json', 'flat_json_lines']: # Flatten JSON objects flat_data = [flatten_json.flatten(i, separator=".") for i in data] if format == 'flat_json': json.dump(flat_data, fp) elif format == 'flat_json_lines': for line in flat_data: fp.write(json.dumps(line)+"\n") else: # csv # get all possible keys allkeys = set([]) for d in flat_data: allkeys = allkeys.union(set(d.keys())) allkeys=sorted(allkeys) csvwriter = csv.writer(fp) csvwriter.writerow(allkeys) for f in flat_data: to_write = [f.get(key) for key in allkeys] csvwriter.writerow(to_write) else: raise Exception("Format not supported: {0}".format(format)) def main(): import argparse, os, getpass parser = argparse.ArgumentParser(description="Download type 1 diabetes data from Tidepool.org") parser.add_argument("email") parser.add_argument("--format", default="csv") args = parser.parse_args() password = os.environ.get("TIDEPOOL_PASS") if not password: password = getpass.getpass(prompt="Enter your Tidepool.org password: ") print("Hint: you can also set the TIDEPOOL_PASS environment variable",file=sys.stderr) download_tidepool(args.email, password, sys.stdout, format=args.format) if __name__=="__main__": main()
StarcoderdataPython
1767377
"""Post-process the HTML produced by Sphinx. Some modifications can be done more easily on the finished HTML. This module defines a simple pipeline: 1. Read all HTML files 2. Parse them with `BeautifulSoup` 3. Perform a chain of actions on the tree in place See the `_modify_html()` function for the list of transformations. Note: This file is not processed by Webpack; don't use Tailwind utility classes. They might not show up in the final CSS. :copyright: Copyright <NAME>. :license: MIT, see LICENSE. """ import os from typing import Any, Dict, List, Optional from bs4 import BeautifulSoup, Comment from sphinx.application import Sphinx from sphinx.util import logging from . import __version__ from .icons import ICONS logger = logging.getLogger(__name__) def _get_html_files(outdir: str) -> List[str]: """Get a list of HTML files.""" html_list = [] for root, _, files in os.walk(outdir): html_list.extend( [os.path.join(root, file) for file in files if file.endswith(".html")] ) return html_list def _collapsible_nav(tree: BeautifulSoup) -> None: """Restructure the navigation links to make them collapsible. First, all links in the navigation sidebar are wrapped in a ``div``. This allows them to be 'block' and 'position relative' for the 'expand' icon to be positioned against. Second, an icon is inserted right before the link. Adding the icon as separate DOM element allows click events to be captured separately between the icon and the link. """ for link in tree.select(".nav-toc a"): link["data-action"] = "click->sidebar#close" # Don't add the nav-link class twice (#166) if "nav-link" not in link.parent.get("class", []): # First, all links should be wrapped in a div.nav-link link.wrap(tree.new_tag("div", attrs={"class": "nav-link"})) # Next, insert a span.expand before the link, if the #nav-link # has any sibling elements (a ``ul`` in the navigation menu) if link.parent.next_sibling: # create the icon svg = BeautifulSoup(ICONS["chevron_right"], "html.parser").svg svg["tabindex"] = "0" svg["class"] = ["expand"] svg[ "data-action" ] = "click->sidebar#expand keydown->sidebar#expandKeyPressed" link.insert_before(svg) def _expand_current(tree: BeautifulSoup) -> None: """Add the ``.expanded`` class to li.current elements.""" for li in tree("li", class_="current"): if "expanded" not in li.get("class", []): li["class"] += ["expanded"] def _remove_span_pre(tree: BeautifulSoup) -> None: """Unwrap unnecessary spans. This gets added by visit_Text(). If I overwrite it there, it's 20 lines of code for only 1 line of change. """ for span in tree("span", class_="pre"): span.unwrap() def _remove_empty_toctree(tree: BeautifulSoup) -> None: """Remove empty toctree divs. If you include a `toctree` with the `hidden` option, an empty `div` is inserted. Remove them. The empty `div` contains a single `end-of-line` character. """ for div in tree("div", class_="toctree-wrapper"): children = list(div.children) if len(children) == 1 and not children[0].strip(): div.extract() def _headerlinks(tree: BeautifulSoup) -> None: """Enhance the headerlink experience.""" for link in tree("a", class_="headerlink"): link["data-controller"] = "clipboard" link["data-action"] = "click->clipboard#copyHeaderLink" link["aria-label"] = "Click to copy this link" del link["title"] link["class"].extend(["tooltipped", "tooltipped-ne"]) def _external_links(tree: BeautifulSoup) -> None: """Add `rel="nofollow noopener"` to external links.""" for link in tree("a", class_="reference external"): link["rel"] = "nofollow noopener" def _strip_comments(tree: BeautifulSoup) -> None: """Remove HTML comments from documents.""" comments = tree.find_all(string=lambda text: isinstance(text, Comment)) for c in comments: c.extract() def _modify_html(html_filename: str, app: Sphinx) -> None: """Modify a single HTML document. 1. The HTML document is parsed into a BeautifulSoup tree. 2. The modifications are performed in order and in place. 3. After these modifications, the HTML is written into a file, overwriting the original file. """ with open(html_filename, encoding="utf-8") as html: tree = BeautifulSoup(html, "html.parser") _expand_current(tree) _collapsible_nav(tree) _remove_span_pre(tree) _remove_empty_toctree(tree) _external_links(tree) if app.config.html_awesome_headerlinks: _headerlinks(tree) _strip_comments(tree) with open(html_filename, "w") as out_file: out_file.write(str(tree)) def post_process_html(app: Sphinx, exc: Optional[Exception]) -> None: """Perform modifications on the HTML after building. This is an extra function, that gets a list from all HTML files in the output directory, then runs the ``_modify_html`` function on each of them. """ if app.builder is not None and app.builder.name not in ["html", "dirhtml"]: return if exc is None: html_files = _get_html_files(app.outdir) for doc in html_files: _modify_html(doc, app) def setup(app: "Sphinx") -> Dict[str, Any]: """Set this up as internal extension.""" app.connect("build-finished", post_process_html) return { "version": __version__, "parallel_read_safe": True, "parallel_write_safe": True, }
StarcoderdataPython
6462839
<gh_stars>0 import foreverbull.data.stock_data # noqa: F401 from foreverbull.data.data import Database __all__ = [Database]
StarcoderdataPython
6629057
<reponame>jczaja/Paddle # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.v2.fluid.core as core import numpy as np import paddle.v2.fluid.layers as layers from paddle.v2.fluid.framework import Program, program_guard from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.backward import append_backward class TestCPULoDTensorArrayOps(unittest.TestCase): def place(self): return core.CPUPlace() def test_split_and_merge_lod_tensor_no_lod(self): tensor = core.LoDTensor() tensor.set(np.arange(10).reshape(10, 1).astype('int32'), self.place()) mask_np = np.array([0, 0, 1, 1, 1, 1, 0, 0, 0, 0]).astype('bool') mask_np = np.expand_dims(mask_np, axis=1) mask = core.LoDTensor() mask.set(mask_np, self.place()) expect_true_tensor = np.array([2, 3, 4, 5]).astype('int32') expect_true_tensor = np.expand_dims(expect_true_tensor, axis=1) expect_true = core.LoDTensor() expect_true.set(expect_true_tensor, self.place()) expect_false_tensor = np.array([0, 1, 6, 7, 8, 9]).astype('int32') expect_false_tensor = np.expand_dims(expect_false_tensor, axis=1) expect_false = core.LoDTensor() expect_false.set(expect_false_tensor, self.place()) self.main( tensor=tensor, mask=mask, expect_true=expect_true, expect_false=expect_false, expect_out=tensor) def test_split_and_merge_lod_tensor_level_0(self): tensor = core.LoDTensor() tensor.set(np.arange(10).reshape(10, 1).astype('int32'), self.place()) tensor.set_lod([[0, 3, 9, 10]]) mask_np = np.array([0, 1, 0]).astype('bool') mask_np = np.expand_dims(mask_np, axis=1) mask = core.LoDTensor() mask.set(mask_np, self.place()) expect_true_tensor = np.array([3, 4, 5, 6, 7, 8]).astype('int32') expect_true_tensor = np.expand_dims(expect_true_tensor, axis=1) expect_true = core.LoDTensor() expect_true.set(expect_true_tensor, self.place()) expect_true.set_lod([[0, 6]]) expect_false_tensor = np.array([0, 1, 2, 9]).astype('int32') expect_false_tensor = np.expand_dims(expect_false_tensor, axis=1) expect_false_lod = [[0, 3, 4]] expect_false = core.LoDTensor() expect_false.set(expect_false_tensor, self.place()) expect_false.set_lod(expect_false_lod) self.main( tensor=tensor, mask=mask, expect_true=expect_true, expect_false=expect_false, expect_out=tensor) def main(self, tensor, mask, expect_true, expect_false, expect_out, level=0): place = self.place() program = Program() with program_guard(program): x = layers.data(name='x', shape=[1]) x.persistable = True y = layers.data(name='y', shape=[1]) y.persistable = True out_true, out_false = layers.split_lod_tensor( input=x, mask=y, level=level) out_true.persistable = True out_false.persistable = True out = layers.merge_lod_tensor( in_true=out_true, in_false=out_false, mask=y, x=x, level=level) out.persistable = True exe = Executor(place) scope = core.Scope() exe.run(program, feed={'x': tensor, 'y': mask}, scope=scope, return_numpy=False) var_true = scope.find_var(out_true.name).get_tensor() var_false = scope.find_var(out_false.name).get_tensor() var_out = scope.find_var(out.name).get_tensor() self.check_tensor_same(var_true, expect_true) self.check_tensor_same(var_false, expect_false) self.check_tensor_same(var_out, expect_out) def check_tensor_same(self, actual, expect): self.assertTrue(np.allclose(np.array(actual), np.array(expect))) self.assertEqual(actual.lod(), expect.lod()) class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase): def test_grad(self): place = core.CPUPlace() program = Program() with program_guard(program): x = layers.data( name='x', shape=[1], dtype='float32', stop_gradient=False) y = layers.data( name='y', shape=[1], dtype='bool', stop_gradient=False) level = 0 out_true, out_false = layers.split_lod_tensor( input=x, mask=y, level=level) out = layers.merge_lod_tensor( in_true=out_true, in_false=out_false, mask=y, x=x, level=level) mean = layers.mean(x=out) append_backward(mean) tensor = core.LoDTensor() tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place) tensor.set_lod([[0, 3, 9, 10]]) mask_np = np.array([0, 1, 0]).astype('bool') mask_np = np.expand_dims(mask_np, axis=1) mask = core.LoDTensor() mask.set(mask_np, place) exe = Executor(place) scope = core.Scope() g_vars = program.global_block().var(x.name + "@GRAD") g_out = [ item.sum() for item in map(np.array, exe.run(program, feed={'x': tensor, 'y': mask}, fetch_list=[g_vars], scope=scope, return_numpy=False)) ] g_out_sum = np.array(g_out).sum() self.assertAlmostEqual(1.0, g_out_sum, delta=0.1) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1653228
<reponame>YZNIU/Cirq # Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import cirq def test_gate_calls_validate(): class ValiGate(cirq.Gate): def validate_args(self, qubits): if len(qubits) == 3: raise ValueError() g = ValiGate() q00 = cirq.QubitId() q01 = cirq.QubitId() q10 = cirq.QubitId() _ = g.on(q00) _ = g.on(q01) _ = g.on(q00, q10) with pytest.raises(ValueError): _ = g.on(q00, q10, q01) _ = g(q00) _ = g(q00, q10) with pytest.raises(ValueError): _ = g(q10, q01, q00) def test_named_qubit_str(): q = cirq.NamedQubit('a') assert q.name == 'a' assert str(q) == 'a' # Python 2 gives a different repr due to unicode strings being prefixed with u. @cirq.testing.only_test_in_python3 def test_named_qubit_repr(): q = cirq.NamedQubit('a') assert repr(q) == "NamedQubit('a')" def test_operation_init(): q = cirq.QubitId() g = cirq.Gate() v = cirq.Operation(g, (q,)) assert v.gate == g assert v.qubits == (q,) def test_operation_eq(): g1 = cirq.Gate() g2 = cirq.Gate() r1 = [cirq.QubitId()] r2 = [cirq.QubitId()] r12 = r1 + r2 r21 = r2 + r1 eq = cirq.testing.EqualsTester() eq.make_equality_pair(lambda: cirq.Operation(g1, r1)) eq.make_equality_pair(lambda: cirq.Operation(g2, r1)) eq.make_equality_pair(lambda: cirq.Operation(g1, r2)) eq.make_equality_pair(lambda: cirq.Operation(g1, r12)) eq.make_equality_pair(lambda: cirq.Operation(g1, r21)) eq.add_equality_group(cirq.Operation(cirq.CZ, r21), cirq.Operation(cirq.CZ, r12)) # Interchangeable subsets. class PairGate(cirq.Gate, cirq.InterchangeableQubitsGate): def qubit_index_to_equivalence_group_key(self, index: int): return index // 2 p = PairGate() a0, a1, b0, b1, c0 = cirq.LineQubit.range(5) eq.add_equality_group(p(a0, a1, b0, b1), p(a1, a0, b1, b0)) eq.add_equality_group(p(b0, b1, a0, a1)) eq.add_equality_group(p(a0, a1, b0, b1, c0), p(a1, a0, b1, b0, c0)) eq.add_equality_group(p(a0, b0, a1, b1, c0)) eq.add_equality_group(p(a0, c0, b0, b1, a1)) eq.add_equality_group(p(b0, a1, a0, b1, c0)) def test_operation_pow(): Y = cirq.Y qubit = cirq.QubitId() assert (Y ** 0.5)(qubit) == Y(qubit) ** 0.5
StarcoderdataPython
1949287
<reponame>csaid/bokeh from os.path import abspath import webbrowser from . import settings def get_browser_controller(browser=None): browser = settings.browser(browser) if browser is not None: if browser == 'none': class DummyWebBrowser(object): def open(self, url, new=0, autoraise=True): pass controller = DummyWebBrowser() else: controller = webbrowser.get(browser) else: controller = webbrowser return controller def view(filename, browser=None, new=False, autoraise=True): """ Opens a browser to view the file pointed to by this sessions. **new** can be None, "tab", or "window" to view the file in the existing page, a new tab, or a new windows. **autoraise** causes the browser to be brought to the foreground; this may happen automatically on some platforms regardless of the setting of this variable. """ new_map = { False: 0, "window": 1, "tab": 2 } file_url = "file://" + abspath(filename) try: controller = get_browser_controller(browser) controller.open(file_url, new=new_map[new], autoraise=autoraise) except (SystemExit, KeyboardInterrupt): raise except: pass
StarcoderdataPython
6559142
import asyncio class It: def __iter__(self): print("It.__iter__") yield self # !!! this __iter__ itself is a generator return None def f(): it = It() print("before yield from iterator obj") yield from it fut = asyncio.Future() print("before") res = yield from fut print("after") g = f() res = g.send(None) print(f"{res = }") print("---") res = g.send(None) print(f"{res = }")
StarcoderdataPython
6566190
from math import gcd def gcdi(a, b): return gcd(a, b) def lcmu(a, b): return abs(a*b//gcd(a, b)) def som(a, b): return a+b def maxi(a, b): return max(a, b) def mini(a, b): return min(a, b) def oper_array(fct, arr, init): res=[fct(arr[0], init)] for i in range(1, len(arr)): res.append(fct(arr[i], res[-1])) return res
StarcoderdataPython
3466520
<reponame>EladGabay/pulumi-oci # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['IdpGroupMappingArgs', 'IdpGroupMapping'] @pulumi.input_type class IdpGroupMappingArgs: def __init__(__self__, *, group_id: pulumi.Input[str], identity_provider_id: pulumi.Input[str], idp_group_name: pulumi.Input[str]): """ The set of arguments for constructing a IdpGroupMapping resource. :param pulumi.Input[str] group_id: (Updatable) The OCID of the IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/) you want to map to the IdP group. :param pulumi.Input[str] identity_provider_id: The OCID of the identity provider. :param pulumi.Input[str] idp_group_name: (Updatable) The name of the IdP group you want to map. """ pulumi.set(__self__, "group_id", group_id) pulumi.set(__self__, "identity_provider_id", identity_provider_id) pulumi.set(__self__, "idp_group_name", idp_group_name) @property @pulumi.getter(name="groupId") def group_id(self) -> pulumi.Input[str]: """ (Updatable) The OCID of the IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/) you want to map to the IdP group. """ return pulumi.get(self, "group_id") @group_id.setter def group_id(self, value: pulumi.Input[str]): pulumi.set(self, "group_id", value) @property @pulumi.getter(name="identityProviderId") def identity_provider_id(self) -> pulumi.Input[str]: """ The OCID of the identity provider. """ return pulumi.get(self, "identity_provider_id") @identity_provider_id.setter def identity_provider_id(self, value: pulumi.Input[str]): pulumi.set(self, "identity_provider_id", value) @property @pulumi.getter(name="idpGroupName") def idp_group_name(self) -> pulumi.Input[str]: """ (Updatable) The name of the IdP group you want to map. """ return pulumi.get(self, "idp_group_name") @idp_group_name.setter def idp_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "idp_group_name", value) @pulumi.input_type class _IdpGroupMappingState: def __init__(__self__, *, compartment_id: Optional[pulumi.Input[str]] = None, group_id: Optional[pulumi.Input[str]] = None, identity_provider_id: Optional[pulumi.Input[str]] = None, idp_group_name: Optional[pulumi.Input[str]] = None, inactive_state: Optional[pulumi.Input[str]] = None, state: Optional[pulumi.Input[str]] = None, time_created: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering IdpGroupMapping resources. :param pulumi.Input[str] compartment_id: The OCID of the tenancy containing the `IdentityProvider`. :param pulumi.Input[str] group_id: (Updatable) The OCID of the IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/) you want to map to the IdP group. :param pulumi.Input[str] identity_provider_id: The OCID of the identity provider. :param pulumi.Input[str] idp_group_name: (Updatable) The name of the IdP group you want to map. :param pulumi.Input[str] inactive_state: The detailed status of INACTIVE lifecycleState. :param pulumi.Input[str] state: The mapping's current state. :param pulumi.Input[str] time_created: Date and time the mapping was created, in the format defined by RFC3339. Example: `2016-08-25T21:10:29.600Z` """ if compartment_id is not None: pulumi.set(__self__, "compartment_id", compartment_id) if group_id is not None: pulumi.set(__self__, "group_id", group_id) if identity_provider_id is not None: pulumi.set(__self__, "identity_provider_id", identity_provider_id) if idp_group_name is not None: pulumi.set(__self__, "idp_group_name", idp_group_name) if inactive_state is not None: pulumi.set(__self__, "inactive_state", inactive_state) if state is not None: pulumi.set(__self__, "state", state) if time_created is not None: pulumi.set(__self__, "time_created", time_created) @property @pulumi.getter(name="compartmentId") def compartment_id(self) -> Optional[pulumi.Input[str]]: """ The OCID of the tenancy containing the `IdentityProvider`. """ return pulumi.get(self, "compartment_id") @compartment_id.setter def compartment_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "compartment_id", value) @property @pulumi.getter(name="groupId") def group_id(self) -> Optional[pulumi.Input[str]]: """ (Updatable) The OCID of the IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/) you want to map to the IdP group. """ return pulumi.get(self, "group_id") @group_id.setter def group_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_id", value) @property @pulumi.getter(name="identityProviderId") def identity_provider_id(self) -> Optional[pulumi.Input[str]]: """ The OCID of the identity provider. """ return pulumi.get(self, "identity_provider_id") @identity_provider_id.setter def identity_provider_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "identity_provider_id", value) @property @pulumi.getter(name="idpGroupName") def idp_group_name(self) -> Optional[pulumi.Input[str]]: """ (Updatable) The name of the IdP group you want to map. """ return pulumi.get(self, "idp_group_name") @idp_group_name.setter def idp_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "idp_group_name", value) @property @pulumi.getter(name="inactiveState") def inactive_state(self) -> Optional[pulumi.Input[str]]: """ The detailed status of INACTIVE lifecycleState. """ return pulumi.get(self, "inactive_state") @inactive_state.setter def inactive_state(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "inactive_state", value) @property @pulumi.getter def state(self) -> Optional[pulumi.Input[str]]: """ The mapping's current state. """ return pulumi.get(self, "state") @state.setter def state(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "state", value) @property @pulumi.getter(name="timeCreated") def time_created(self) -> Optional[pulumi.Input[str]]: """ Date and time the mapping was created, in the format defined by RFC3339. Example: `2016-08-25T21:10:29.600Z` """ return pulumi.get(self, "time_created") @time_created.setter def time_created(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "time_created", value) class IdpGroupMapping(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, group_id: Optional[pulumi.Input[str]] = None, identity_provider_id: Optional[pulumi.Input[str]] = None, idp_group_name: Optional[pulumi.Input[str]] = None, __props__=None): """ This resource provides the Idp Group Mapping resource in Oracle Cloud Infrastructure Identity service. Creates a single mapping between an IdP group and an IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/). ## Example Usage ```python import pulumi import pulumi_oci as oci test_idp_group_mapping = oci.identity.IdpGroupMapping("testIdpGroupMapping", group_id=oci_identity_group["test_group"]["id"], identity_provider_id=oci_identity_identity_provider["test_identity_provider"]["id"], idp_group_name=var["idp_group_mapping_idp_group_name"]) ``` ## Import IdpGroupMappings can be imported using the `id`, e.g. ```sh $ pulumi import oci:identity/idpGroupMapping:IdpGroupMapping test_idp_group_mapping "identityProviders/{identityProviderId}/groupMappings/{mappingId}" ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] group_id: (Updatable) The OCID of the IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/) you want to map to the IdP group. :param pulumi.Input[str] identity_provider_id: The OCID of the identity provider. :param pulumi.Input[str] idp_group_name: (Updatable) The name of the IdP group you want to map. """ ... @overload def __init__(__self__, resource_name: str, args: IdpGroupMappingArgs, opts: Optional[pulumi.ResourceOptions] = None): """ This resource provides the Idp Group Mapping resource in Oracle Cloud Infrastructure Identity service. Creates a single mapping between an IdP group and an IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/). ## Example Usage ```python import pulumi import pulumi_oci as oci test_idp_group_mapping = oci.identity.IdpGroupMapping("testIdpGroupMapping", group_id=oci_identity_group["test_group"]["id"], identity_provider_id=oci_identity_identity_provider["test_identity_provider"]["id"], idp_group_name=var["idp_group_mapping_idp_group_name"]) ``` ## Import IdpGroupMappings can be imported using the `id`, e.g. ```sh $ pulumi import oci:identity/idpGroupMapping:IdpGroupMapping test_idp_group_mapping "identityProviders/{identityProviderId}/groupMappings/{mappingId}" ``` :param str resource_name: The name of the resource. :param IdpGroupMappingArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(IdpGroupMappingArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, group_id: Optional[pulumi.Input[str]] = None, identity_provider_id: Optional[pulumi.Input[str]] = None, idp_group_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = IdpGroupMappingArgs.__new__(IdpGroupMappingArgs) if group_id is None and not opts.urn: raise TypeError("Missing required property 'group_id'") __props__.__dict__["group_id"] = group_id if identity_provider_id is None and not opts.urn: raise TypeError("Missing required property 'identity_provider_id'") __props__.__dict__["identity_provider_id"] = identity_provider_id if idp_group_name is None and not opts.urn: raise TypeError("Missing required property 'idp_group_name'") __props__.__dict__["idp_group_name"] = idp_group_name __props__.__dict__["compartment_id"] = None __props__.__dict__["inactive_state"] = None __props__.__dict__["state"] = None __props__.__dict__["time_created"] = None super(IdpGroupMapping, __self__).__init__( 'oci:identity/idpGroupMapping:IdpGroupMapping', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, compartment_id: Optional[pulumi.Input[str]] = None, group_id: Optional[pulumi.Input[str]] = None, identity_provider_id: Optional[pulumi.Input[str]] = None, idp_group_name: Optional[pulumi.Input[str]] = None, inactive_state: Optional[pulumi.Input[str]] = None, state: Optional[pulumi.Input[str]] = None, time_created: Optional[pulumi.Input[str]] = None) -> 'IdpGroupMapping': """ Get an existing IdpGroupMapping resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] compartment_id: The OCID of the tenancy containing the `IdentityProvider`. :param pulumi.Input[str] group_id: (Updatable) The OCID of the IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/) you want to map to the IdP group. :param pulumi.Input[str] identity_provider_id: The OCID of the identity provider. :param pulumi.Input[str] idp_group_name: (Updatable) The name of the IdP group you want to map. :param pulumi.Input[str] inactive_state: The detailed status of INACTIVE lifecycleState. :param pulumi.Input[str] state: The mapping's current state. :param pulumi.Input[str] time_created: Date and time the mapping was created, in the format defined by RFC3339. Example: `2016-08-25T21:10:29.600Z` """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _IdpGroupMappingState.__new__(_IdpGroupMappingState) __props__.__dict__["compartment_id"] = compartment_id __props__.__dict__["group_id"] = group_id __props__.__dict__["identity_provider_id"] = identity_provider_id __props__.__dict__["idp_group_name"] = idp_group_name __props__.__dict__["inactive_state"] = inactive_state __props__.__dict__["state"] = state __props__.__dict__["time_created"] = time_created return IdpGroupMapping(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="compartmentId") def compartment_id(self) -> pulumi.Output[str]: """ The OCID of the tenancy containing the `IdentityProvider`. """ return pulumi.get(self, "compartment_id") @property @pulumi.getter(name="groupId") def group_id(self) -> pulumi.Output[str]: """ (Updatable) The OCID of the IAM Service [group](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/Group/) you want to map to the IdP group. """ return pulumi.get(self, "group_id") @property @pulumi.getter(name="identityProviderId") def identity_provider_id(self) -> pulumi.Output[str]: """ The OCID of the identity provider. """ return pulumi.get(self, "identity_provider_id") @property @pulumi.getter(name="idpGroupName") def idp_group_name(self) -> pulumi.Output[str]: """ (Updatable) The name of the IdP group you want to map. """ return pulumi.get(self, "idp_group_name") @property @pulumi.getter(name="inactiveState") def inactive_state(self) -> pulumi.Output[str]: """ The detailed status of INACTIVE lifecycleState. """ return pulumi.get(self, "inactive_state") @property @pulumi.getter def state(self) -> pulumi.Output[str]: """ The mapping's current state. """ return pulumi.get(self, "state") @property @pulumi.getter(name="timeCreated") def time_created(self) -> pulumi.Output[str]: """ Date and time the mapping was created, in the format defined by RFC3339. Example: `2016-08-25T21:10:29.600Z` """ return pulumi.get(self, "time_created")
StarcoderdataPython
4968823
<gh_stars>10-100 from typing import Tuple, List from nltk import wordpunct_tokenize def tokenize_and_clean_text(text: str) -> str: return ' '.join([token.lower() for token in wordpunct_tokenize(text) if token.isalpha() and token.lower()]) def clean_formatting(text: List[str]) -> str: return tokenize_and_clean_text(' '.join(text)) def preprocess_data(extracted_data: List[Tuple[str, str]]) -> List[str]: """ Transform data to get compliant with fasttext expected format: __label__[label] [text] """ return [f'__label__{data[0]} {clean_formatting(data[1])}' for data in extracted_data]
StarcoderdataPython
4852091
#from flask import Flask, request from flask.ext.restful import Api from penguicontrax import app #api modules import submissions import tags import tracks import users import presenters #import json for date encoder import json #override for json encoder to handle datetime objects class DateEncoder(json.JSONEncoder): def default(self, obj): if hasattr(obj, 'isoformat'): return obj.isoformat() else: return json.JSONEncoder.default(self, obj) api = Api(app) #define routes @api.representation('application/json') def json_date(data, code, headers=None): #If it's a string, just return it as-is resp = app.make_response(data if type(data) is str else json.dumps(data, cls=DateEncoder)) resp.headers.extend(headers or {}) resp.status_code = code return resp #submissions ##api.add_resource(submissions.SubmissionAPI, ## '/api/submission/<string:submission_id>/rsvp') api.add_resource(submissions.SubmissionAPI, '/api/submission/<string:submission_id>', '/api/submission/<string:submission_id>/<string:noun>') api.add_resource(submissions.SubmissionsAPI, '/api/submissions') #tags api.add_resource(tags.TagsAPI, '/api/tags') api.add_resource(tags.UserTagsAPI, '/api/user-tags') api.add_resource(tags.UserTagAPI, '/api/user-tag/<string:name>') #tracks api.add_resource(tracks.TracksAPI, '/api/tracks') #users api.add_resource(users.UsersAPI, '/api/users') api.add_resource(users.UserAPI, '/api/user/<int:id>') api.add_resource(users.UserSubmissionsAPI, '/api/user/<int:id>/submissions') api.add_resource(users.UserPresentationsAPI, '/api/user/<int:id>/presentations') #persons api.add_resource(presenters.PresentersAPI, '/api/presenters')
StarcoderdataPython
8172794
# -*- coding: utf-8 -*- """ flaskext.session ~~~~~~~~~~~~~~~~ Adds server session support to your application. :copyright: (c) 2014 by <NAME>. :license: BSD, see LICENSE for more details. """ __version__ = '0.3.0' import os from .sessions import NullSessionInterface, RedisSessionInterface, \ MemcachedSessionInterface, FileSystemSessionInterface, \ MongoDBSessionInterface, SqlAlchemySessionInterface, \ PeeweeSessionInterface class Session(object): """This class is used to add Server-side Session to one or more Flask applications. There are two usage modes. One is initialize the instance with a very specific Flask application:: app = Flask(__name__) Session(app) The second possibility is to create the object once and configure the application later:: sess = Session() def create_app(): app = Flask(__name__) sess.init_app(app) return app By default Flask-Session will use :class:`NullSessionInterface`, you really should configurate your app to use a different SessionInterface. .. note:: You can not use ``Session`` instance directly, what ``Session`` does is just change the :attr:`~flask.Flask.session_interface` attribute on your Flask applications. """ def __init__(self, app=None): self.app = app if app is not None: self.init_app(app) def init_app(self, app): """This is used to set up session for your app object. :param app: the Flask app object with proper configuration. """ app.session_interface = self._get_interface(app) def _get_interface(self, app): config = app.config.copy() config.setdefault('SESSION_TYPE', 'null') config.setdefault('SESSION_PERMANENT', True) config.setdefault('SESSION_USE_SIGNER', False) config.setdefault('SESSION_KEY_PREFIX', 'session:') config.setdefault('SESSION_REDIS', None) config.setdefault('SESSION_MEMCACHED', None) config.setdefault('SESSION_FILE_DIR', os.path.join(os.getcwd(), 'flask_session')) config.setdefault('SESSION_FILE_THRESHOLD', 500) config.setdefault('SESSION_FILE_MODE', 384) config.setdefault('SESSION_MONGODB', None) config.setdefault('SESSION_MONGODB_DB', 'flask_session') config.setdefault('SESSION_MONGODB_COLLECT', 'sessions') config.setdefault('SESSION_SQLALCHEMY', None) config.setdefault('SESSION_SQLALCHEMY_TABLE', 'sessions') config.setdefault('SESSION_PEEWEE_TABLE', 'sessions') if config['SESSION_TYPE'] == 'redis': session_interface = RedisSessionInterface( config['SESSION_REDIS'], config['SESSION_KEY_PREFIX'], config['SESSION_USE_SIGNER'], config['SESSION_PERMANENT']) elif config['SESSION_TYPE'] == 'memcached': session_interface = MemcachedSessionInterface( config['SESSION_MEMCACHED'], config['SESSION_KEY_PREFIX'], config['SESSION_USE_SIGNER'], config['SESSION_PERMANENT']) elif config['SESSION_TYPE'] == 'filesystem': session_interface = FileSystemSessionInterface( config['SESSION_FILE_DIR'], config['SESSION_FILE_THRESHOLD'], config['SESSION_FILE_MODE'], config['SESSION_KEY_PREFIX'], config['SESSION_USE_SIGNER'], config['SESSION_PERMANENT']) elif config['SESSION_TYPE'] == 'mongodb': session_interface = MongoDBSessionInterface( config['SESSION_MONGODB'], config['SESSION_MONGODB_DB'], config['SESSION_MONGODB_COLLECT'], config['SESSION_KEY_PREFIX'], config['SESSION_USE_SIGNER'], config['SESSION_PERMANENT']) elif config['SESSION_TYPE'] == 'sqlalchemy': session_interface = SqlAlchemySessionInterface( app, config['SESSION_SQLALCHEMY'], config['SESSION_SQLALCHEMY_TABLE'], config['SESSION_KEY_PREFIX'], config['SESSION_USE_SIGNER'], config['SESSION_PERMANENT']) elif config['SESSION_TYPE'] == 'peewee': session_interface = PeeweeSessionInterface( config.get('SESSION_DB'), config['SESSION_PEEWEE_CONFIG'], config['SESSION_DB_CLASS'], config['SESSION_PEEWEE_TABLE'], config['SESSION_KEY_PREFIX'], config['SESSION_USE_SIGNER'], config['SESSION_PERMANENT']) else: session_interface = NullSessionInterface() return session_interface
StarcoderdataPython
4880876
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import sys import types from contextlib import contextmanager import six try: import numpy except ImportError: numpy = None ignore_vars = [ "__ipy_scope__", # Added by nbtutor to the calling frame globals "__name__", "__builtin__", "__builtins__", "__module__", "__qualname__", "__doc__", "__dict__", "__package__", "__weakref__", ] float_types = [ float, ] primitive_types = [ int, float, bool, type(None), complex, ] sequence_types = [ set, tuple, list, ] array_types = [ ] key_value_types = [ dict, ] primitive_types.extend(list(six.string_types)) if numpy is not None: new_types = [] np_types = list(set(numpy.typeDict.values())) np_type_names = [t.__name__ for t in np_types] for _type in primitive_types: for i, name in enumerate(np_type_names): if _type.__name__ in name or isinstance(np_types[i], (_type, )): new_types.append(np_types[i]) for i, name in enumerate(np_type_names): if 'float' in name or isinstance(np_types[i], (float, )): float_types.append(np_types[i]) primitive_types.extend(new_types) array_types.append(numpy.ndarray) float_types = tuple(float_types) primitive_types = tuple(primitive_types) sequence_types = tuple(sequence_types) array_types = tuple(array_types) key_value_types = tuple(key_value_types) def filter_dict(d, exclude): """Return a new dict with specified keys excluded from the origional dict Args: d (dict): origional dict exclude (list): The keys that are excluded """ ret = {} for key, value in d.items(): if key not in exclude: ret.update({key: value}) return ret @contextmanager def redirect_stdout(new_stdout): """Redirect the stdout Args: new_stdout (io.StringIO): New stdout to use instead """ old_stdout, sys.stdout = sys.stdout, new_stdout try: yield None finally: sys.stdout = old_stdout def format(obj, options): """Return a string representation of the Python object Args: obj: The Python object options: Format options """ formatters = { float_types: lambda x: '{:.{}g}'.format(x, options.digits), } for _types, fmtr in formatters.items(): if isinstance(obj, _types): return fmtr(obj) try: if six.PY2 and isinstance(obj, six.string_types): return str(obj.encode('utf-8')) return str(obj) except: return 'OBJECT' def get_type_info(obj): """Get type information for a Python object Args: obj: The Python object Returns: tuple: (object type "catagory", object type name) """ if isinstance(obj, primitive_types): return ('primitive', type(obj).__name__) if isinstance(obj, sequence_types): return ('sequence', type(obj).__name__) if isinstance(obj, array_types): return ('array', type(obj).__name__) if isinstance(obj, key_value_types): return ('key-value', type(obj).__name__) if isinstance(obj, types.ModuleType): return ('module', type(obj).__name__) if isinstance(obj, (types.FunctionType, types.MethodType)): return ('function', type(obj).__name__) if isinstance(obj, type): if hasattr(obj, '__dict__'): return ('class', obj.__name__) if isinstance(type(obj), type): if hasattr(obj, '__dict__'): cls_name = type(obj).__name__ if cls_name == 'classobj': cls_name = obj.__name__ return ('class', '{}'.format(cls_name)) if cls_name == 'instance': cls_name = obj.__class__.__name__ return ('instance', '{} instance'.format(cls_name)) return ('unknown', type(obj).__name__)
StarcoderdataPython
11358684
<gh_stars>0 import json from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt @csrf_exempt def process_text(request): print("Received request") text = json.loads(request.body)["text"] return JsonResponse({"response": "You said: %s" % text})
StarcoderdataPython
8152498
# Author: <NAME> # E-mail: <EMAIL> # Author: <NAME> # E-mail: <EMAIL> # Author: <NAME> # E-mail: <EMAIL> # imports try: from .packages.preprocessing import pad_batches, process_raw_data from .packages.preprocessing import load_embedding, TSVDataset from .packages.preprocessing import RNNDataset, collate_fn from .packages.ann_models import MLPModel, RNNModel except: from packages.preprocessing import pad_batches, process_raw_data from packages.preprocessing import load_embedding, TSVDataset from packages.preprocessing import RNNDataset, collate_fn from packages.ann_models import MLPModel, RNNModel from sklearn.metrics import accuracy_score, f1_score from torch._C import device from torch.utils.data import DataLoader import pandas as pd import numpy as np import torch import time import pickle # configure optimal parameters ## data specific batch_size = 20 # TODO check if this is desired batch size with fab and eiv device_ = 'cpu' pos_tagged = False random_state = 21 # TODO change 3 times store = True train_data_url = 'data/stanford_sentiment_binary.tsv.gz' train_prop = 0.75 # use full train set on optimal model verbose = False vocab_path = '/cluster/shared/nlpl/data/vectors/latest/22.zip' # other good ones were 40, 82, ... # vocab_path = 'data/22.zip' # other good ones were 40, 82, ... ## model specific model_params = { 'n_hl': 3, # rnn param 'dropout': 0.2, # not needed, bc singular output. left here for ref 'epochs': 50, # anywhere between 30 and 60 seemed reasonable 'units': 50, # between 25 and 50, w/ 50 giving optimal score 'lr': 0.01, # dependent on momentum 'momentum': 0.9, # dependent on learning rate 'device': "cpu", # take as str not torch.device -> easier json print 'loss_funct': "cross-entropy", # most stable throughout experiments 'random_state': 1, # to test different splits 'verbose': verbose, 'rnn_type': 'gru', # rnn, lstm, gru 'bidirectional': True, # checks in first study 'freeze': True, # only difference in training time, True -> faster 'lr_scheduler': True, # major help for score improvement 'factor': 0.01, # not too much affect, but still optimal 'patience': 2, # same as above 'pool_type': 'first', # first assuming bidirectional, last otherwise } def run(random_state=random_state): # load embeding embedder = load_embedding(vocab_path) embedder.add('<unk>', weights=torch.rand(embedder.vector_size)) embedder.add('<pad>', weights=torch.zeros(embedder.vector_size)) pad_token = embedder.vocab['<pad>'].index # load data set/loaders df_train, df_test = process_raw_data( data_url=train_data_url, train_prop=train_prop, verbose=verbose, pos_tagged=pos_tagged, random_state=random_state ) train_data = RNNDataset( embedder=embedder, df=df_train, device=device_, random_state=random_state, label_vocab=None, verbose=verbose ) test_data = RNNDataset( embedder=embedder, df=df_test, device=device_, random_state=random_state, label_vocab=train_data.label_vocab, verbose=verbose ) del df_test, df_train train_loader = DataLoader( train_data, batch_size=batch_size, shuffle=True, collate_fn=lambda x: collate_fn(x, pad_token, device=device_) ) test_loader = DataLoader( test_data, batch_size=len(test_data), collate_fn=lambda x: collate_fn(x, pad_token, device=device_) ) # build/fit the model model = RNNModel( emb=embedder, num_features=embedder.vector_size, **model_params ) model.fit( loader=train_loader, verbose=verbose, test=None # no need to evaluate along the way ) # test the model y_test, y_pred = model.predict_classes(test_loader) print(f'Random state: {random_state}') print(f'F1 Score: {f1_score(y_test, y_pred)}') print(f'Accuracy: {accuracy_score(y_test, y_pred)}') return model, train_data if __name__=='__main__': # model_1337 = run(1337) # model_42 = run(42) # model_13032021 = run(13032021) # # will need to store the model # if store: # with open('model_1337.pkl', 'wb+') as f: # pickle.dump(model_1337, f) # with open('model_42.pkl', 'wb+') as f: # pickle.dump(model_42, f) # with open('model_13032021.pkl', 'wb+') as f: # pickle.dump(model_13032021, f) train_prop = 0.999 # use all the data as training data for optimal model model, data = run() torch.save(model.state_dict(), "model.pt") with open('train_data.pkl', 'wb+') as f: pickle.dump(data, f)
StarcoderdataPython
3370847
<filename>problemas-resolvidos/neps-academy/programacao-basica-competicoes-c++/python/Exercicio-28-Titulo.py<gh_stars>0 frase = input().split() def maiuscula(s): saida = '' for i in s: temp = i.lower() saida = saida + temp.capitalize() + " " return (saida) print(maiuscula(frase))
StarcoderdataPython
4893382
#!/usr/bin/env python """ Base class / functionality for an (illumination) amplitude control device. Hazen 04/17 """ from PyQt5 import QtCore import storm_control.hal4000.halLib.halMessage as halMessage import storm_control.sc_hardware.baseClasses.hardwareModule as hardwareModule class AmplitudeWorker(hardwareModule.HardwareWorker): pass class AmplitudeMixin(object): """ These are the methods that illumination.illumination will expect an amplitude functionality to have. Note that illumination uses sliders to control the amplitude minimum and maximum must be integers. """ def __init__(self, display_normalized = True, minimum = 0, maximum = 10, used_during_filming = True, **kwds): super().__init__(**kwds) assert isinstance(display_normalized, bool) assert isinstance(minimum, int) assert isinstance(maximum, int) assert isinstance(used_during_filming, bool) self.display_normalized = display_normalized self.maximum = maximum self.minimum = minimum self.used_during_filming = used_during_filming def getDisplayNormalized(self): return self.display_normalized def getMaximum(self): return self.maximum def getMinimum(self): return self.minimum def getUsedDuringFilming(self): return self.used_during_filming def onOff(self, power, state): """ This is usually called when the illumination channel check box is toggled. Devices like lasers and AOTFs are expected to go to 'power' and then not respond to further power changes if state is False. Others devices like filter wheels will likely just ignore this as they are usually not used to also turn the channel on/off. """ assert False def output(self, power): """ This is usually called when the illumination channel slider is moved. Some channels will ignore this when they are turned off, others like filter wheels might still move. """ assert False class AmplitudeFunctionality(hardwareModule.HardwareFunctionality, AmplitudeMixin): """ Base class for an amplitude functionality. """ def __init__(self, **kwds): super().__init__(**kwds) class AmplitudeFunctionalityBuffered(hardwareModule.BufferedFunctionality, AmplitudeMixin): """ Base class for a buffered amplitude functionality. """ def __init__(self, **kwds): super().__init__(**kwds) class AmplitudeModule(hardwareModule.HardwareModule): """ These modules will always provide a single functionality with the name 'module_name.amplitude_modulation'. This functionality is primarily used by illumination.illumination. """ def __init__(self, **kwds): super().__init__(**kwds) self.device_mutex = QtCore.QMutex() def getFunctionality(self, message): pass def processMessage(self, message): if message.isType("get functionality"): self.getFunctionality(message) elif message.isType("start film"): self.startFilm(message) elif message.isType("stop film"): self.stopFilm(message) def startFilm(self, message): pass def stopFilm(self, message): pass
StarcoderdataPython
1882383
import subprocess def get_git_repo_head_branch(repo): """ A helper method to get the reference of the HEAD branch of a git remote repo. https://stackoverflow.com/a/41925348 """ out = subprocess.check_output( ["git", "ls-remote", "--symref", repo, "HEAD"] ).decode() head_branch = out.split()[1] return head_branch
StarcoderdataPython
1836383
<gh_stars>10-100 from sacrerouge.datasets.nytimes.subcommand import NYTimesSubcommand
StarcoderdataPython
3329400
<filename>src/run_locally.py<gh_stars>1-10 """ Start a simulation """ import compile_erl import clean_state from lib_run import * def main(): compile_erl.compile_all() clean_state.clear() ip_addr = get_ip_addr() args = sys.argv n_cars = string_to_int(args[1]) if len(args) == 2 else 1 # Run our system cloud_name = run_cloud(ip_addr) run_user(cloud_name, ip_addr) run_cars(n_cars,cloud_name, ip_addr) if __name__ == '__main__': main()
StarcoderdataPython
8047392
<reponame>tantalum7/manf class Index(object): def __init__(self, app): # Store ref to top level app and database self._app = app self._db = app.database def fetch(self, id=None, EPN=None): pass def search(self, query): pass def list_all(self, filter=None, projection=None): pass
StarcoderdataPython
1909445
<reponame>jshulkinVSA/VSA-Challenges<gh_stars>0 # Name: # Date: # proj07: Word Game import random import string VOWELS = 'aeiou' CONSONANTS = 'bcdfghjklmnpqrstvwxyz' HAND_SIZE = 7 SCRABBLE_LETTER_VALUES = { 'a': 1, 'b': 3, 'c': 3, 'd': 2, 'e': 1, 'f': 4, 'g': 2, 'h': 4, 'i': 1, 'j': 8, 'k': 5, 'l': 1, 'm': 3, 'n': 1, 'o': 1, 'p': 3, 'q': 10, 'r': 1, 's': 1, 't': 1, 'u': 1, 'v': 4, 'w': 4, 'x': 8, 'y': 4, 'z': 10 } WORDLIST_FILENAME = "words.txt" def load_words(): print "Loading word list from file..." inFile = open(WORDLIST_FILENAME, 'r', 0) wordlist = [] for line in inFile: wordlist.append(line.strip().lower()) print " ", len(wordlist), "words loaded." return wordlist def get_frequency_dict(sequence): freq = {} for x in sequence: freq[x] = freq.get(x,0) + 1 return freq def get_word_score(word, n): word_score = 0 for letter in word: word_score = word_score+SCRABBLE_LETTER_VALUES[letter] word_score = word_score*len(word) if n == len(word): word_score = word_score+50 return word_score def display_hand(hand): for letter in hand.keys(): for j in range(hand[letter]): print letter, print def deal_hand(n): hand={} num_vowels = n / 3 for i in range(num_vowels): x = VOWELS[random.randrange(0,len(VOWELS))] hand[x] = hand.get(x, 0) + 1 for i in range(num_vowels, n): x = CONSONANTS[random.randrange(0,len(CONSONANTS))] hand[x] = hand.get(x, 0) + 1 return hand def update_hand(hand, word): updated_hand = hand.copy() for letter in word: if letter in hand: updated_hand[letter]=updated_hand[letter]-1 return updated_hand def is_valid_word(word, hand, word_list): copy_hand = hand.copy() word_copy = word answer = True if word not in word_list: answer = False for letter in word_copy: if letter in copy_hand: if copy_hand[letter] != 0: copy_hand[letter] = copy_hand[letter]-1 else: answer=False elif letter not in copy_hand: answer = False return answer def calculate_handlen(hand): handlen = 0 for v in hand.values(): handlen += v return handlen def play_hand(hand, word_list): word = "" score = 0 while HAND_SIZE != 0 and word != ".": print "Current Hand", display_hand(hand) word = raw_input("Enter word, or a '.' to indicate that you are finished: ") word = word.lower() validity = is_valid_word(word,hand, word_list) if validity is False and word != ".": print "That is not a valid word, try again" elif word != ".": score = score+get_word_score(word, HAND_SIZE) print word, "earned", get_word_score(word,HAND_SIZE), "points. Total:", score, "points" hand = update_hand(hand, word) print "Thanks for playing. You earned", score, "points." return score def play_game(word_list): hand = deal_hand(HAND_SIZE) play_hand(hand, word_list) player_input = "" while player_input != "e": player_input = raw_input("Type 'n' to to play a new hand, type 'r' to replay hand, or type 'e' to exit the game: ") if player_input == "e": print "Thanks for playing." quit() elif player_input == "r": play_hand(hand, word_list) elif player_input == "n": hand= deal_hand(HAND_SIZE) play_hand(hand, word_list) if __name__ == '__main__': word_list = load_words() play_game(word_list)
StarcoderdataPython
63416
from Xlib import X, display def lock_screen(display: display.Display, screen_nb: int): screen = display.screen(screen_nb) root = screen.root display_width = screen.width_in_pixels display_height = screen.height_in_pixels window = root.create_window(0, 0, display_width, display_height, 0, screen.root_depth, window_class=X.CopyFromParent, visual=screen.root_visual, override_redirect=1, background_pixel=screen.black_pixel) pixmap = window.create_pixmap(8, 8, 1) invisible_cursor = pixmap.create_cursor(pixmap, (0, 0, 0), (0, 0, 0), 0, 0) window.change_attributes(cursor=invisible_cursor) # what XDefineCursor does under the hood pointer_mask = X.ButtonPressMask | X.ButtonReleaseMask | X.PointerMotionMask window.grab_pointer(False, event_mask=pointer_mask, pointer_mode=X.GrabModeAsync, keyboard_mode=X.GrabModeAsync, confine_to=X.NONE, cursor=invisible_cursor, time=X.CurrentTime) window.grab_keyboard(True, pointer_mode=X.GrabModeAsync, keyboard_mode=X.GrabModeAsync, time=X.CurrentTime) window.map() def lock(display: display.Display): for screen in range(display.screen_count()): lock_screen(display, screen) display.sync()
StarcoderdataPython
1682372
# Copyright 2020 Adap GmbH. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides class GRPCBridge.""" from enum import Enum from threading import Condition from typing import Iterator, Optional from flwr.proto.transport_pb2 import ClientMessage, ServerMessage class GRPCBridgeClosed(Exception): """Error signaling that GRPCBridge is closed.""" class Status(Enum): """Status through which the bridge can transition.""" AWAITING_SERVER_MESSAGE = 1 SERVER_MESSAGE_AVAILABLE = 2 AWAITING_CLIENT_MESSAGE = 3 CLIENT_MESSAGE_AVAILABLE = 4 CLOSED = 5 class GRPCBridge: """GRPCBridge holding client_message and server_message. For understanding this class it is recommended to understand how the threading.Condition class works. See here: - https://docs.python.org/3/library/threading.html#condition-objects """ def __init__(self) -> None: """Init bridge.""" # Disable all unsubscriptable-object violations in __init__ method # pylint: disable=unsubscriptable-object self._cv = Condition() # cv stands for condition variable self._status = Status.AWAITING_SERVER_MESSAGE self._server_message: Optional[ServerMessage] = None self._client_message: Optional[ClientMessage] = None def _is_closed(self) -> bool: """Return True if closed and False otherwise.""" return self._status == Status.CLOSED def _raise_if_closed(self) -> None: if self._status == Status.CLOSED: raise GRPCBridgeClosed() def _transition(self, next_status: Status) -> None: """Validate status transition and set next status. The caller of the transition method will have to aquire conditional variable. """ if next_status == Status.CLOSED: self._status = next_status elif ( self._status == Status.AWAITING_SERVER_MESSAGE and next_status == Status.SERVER_MESSAGE_AVAILABLE and self._server_message is not None and self._client_message is None ): self._status = next_status elif ( self._status == Status.SERVER_MESSAGE_AVAILABLE and next_status == Status.AWAITING_CLIENT_MESSAGE and self._server_message is None and self._client_message is None ): self._status = next_status elif ( self._status == Status.AWAITING_CLIENT_MESSAGE and next_status == Status.CLIENT_MESSAGE_AVAILABLE and self._server_message is None and self._client_message is not None ): self._status = next_status elif ( self._status == Status.CLIENT_MESSAGE_AVAILABLE and next_status == Status.AWAITING_SERVER_MESSAGE and self._server_message is None and self._client_message is None ): self._status = next_status else: raise Exception(f"Invalid transition: {self._status} to {next_status}") self._cv.notify_all() def close(self) -> None: """Set bridge status to closed.""" with self._cv: self._transition(Status.CLOSED) def request(self, server_message: ServerMessage) -> ClientMessage: """Set server massage and wait for client message.""" # Set server message and transition to SERVER_MESSAGE_AVAILABLE with self._cv: self._raise_if_closed() if self._status != Status.AWAITING_SERVER_MESSAGE: raise Exception("This should not happen") self._server_message = server_message # Write self._transition(Status.SERVER_MESSAGE_AVAILABLE) # Read client message and transition to AWAITING_SERVER_MESSAGE with self._cv: self._cv.wait_for( lambda: self._status in [Status.CLOSED, Status.CLIENT_MESSAGE_AVAILABLE] ) self._raise_if_closed() client_message = self._client_message # Read self._client_message = None # Reset self._transition(Status.AWAITING_SERVER_MESSAGE) if client_message is None: raise Exception("Client message can not be None") return client_message def server_message_iterator(self) -> Iterator[ServerMessage]: """Return iterator over server messages.""" while not self._is_closed(): with self._cv: self._cv.wait_for( lambda: self._status in [Status.CLOSED, Status.SERVER_MESSAGE_AVAILABLE] ) self._raise_if_closed() server_message = self._server_message # Read self._server_message = None # Reset # Transition before yielding as after the yield the execution of this # function is paused and will resume when next is called again. # Also release condition variable by exiting the context self._transition(Status.AWAITING_CLIENT_MESSAGE) if server_message is None: raise Exception("Server message can not be None") yield server_message def set_client_message(self, client_message: ClientMessage) -> None: """Set client message for consumption.""" with self._cv: self._raise_if_closed() if self._status != Status.AWAITING_CLIENT_MESSAGE: raise Exception("This should not happen") self._client_message = client_message # Write self._transition(Status.CLIENT_MESSAGE_AVAILABLE)
StarcoderdataPython
6496346
<reponame>h77h7/tvm-04.26<gh_stars>10-100 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test legalize pass""" import numpy as np import tvm from tvm import te from tvm import relay from tvm.contrib import graph_executor from tvm.relay import transform, analysis from tvm.relay.testing.temp_op_attr import TempOpAttr def run_opt_pass(expr, passes): passes = passes if isinstance(passes, list) else [passes] mod = tvm.IRModule.from_expr(expr) seq = tvm.transform.Sequential(passes) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_legalize(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def legalize_conv2d(attrs, inputs, types): data, weight = inputs weight = relay.multiply(weight, relay.const(2.0, "float32")) return relay.nn.conv2d(data, weight, **attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, relay.multiply(weight, relay.const(2.0, "float32")), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y with TempOpAttr("nn.conv2d", "FTVMLegalize", legalize_conv2d): a = before() a = run_opt_pass(a, transform.Legalize()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_legalize_none(): """Test doing nothing by returning 'None' """ def before(): x = relay.var("x", shape=(1, 64, 56, 56)) y = relay.nn.global_max_pool2d(x) y = relay.Function([x], y) return y called = [False] def legalize_conv2d(attrs, inputs, types): called[0] = True return None with TempOpAttr("nn.global_max_pool2d", "FTVMLegalize", legalize_conv2d): a = before() a = run_opt_pass(a, transform.Legalize()) b = run_opt_pass(before(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) assert called[0] def test_legalize_multiple_ops(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def legalize_conv2d(attrs, inputs, types): data, weight = inputs weight = relay.multiply(weight, relay.const(2.0, "float32")) return relay.nn.conv2d(data, weight, **attrs) def legalize_relu(attrs, inputs, types): data = inputs[0] add = relay.add(tvm.relay.const(0, "float32"), data) return relay.nn.relu(add) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, relay.multiply(weight, relay.const(2.0, "float32")), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y = relay.add(tvm.relay.const(0, "float32"), y) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y with TempOpAttr("nn.conv2d", "FTVMLegalize", legalize_conv2d): with TempOpAttr("nn.relu", "FTVMLegalize", legalize_relu): a = before() a = run_opt_pass(a, transform.Legalize()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_legalize_multi_input(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) y = relay.var("y", shape=(1, 64, 56, 20)) z = relay.var("z", shape=(1, 64, 56, 10)) func = relay.concatenate([x, y, z], axis=3) func = relay.Function([x, y, z], func) return func def legalize_concatenate(attrs, inputs, types): # Check that the correct multi-input case is handled. assert len(inputs) == 1 assert isinstance(inputs[0], tvm.relay.expr.Tuple) assert len(types) == 2 assert isinstance(types[0], tvm.relay.ty.TupleType) assert isinstance(types[1], tvm.relay.ty.TensorType) return None def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) y = relay.var("y", shape=(1, 64, 56, 20)) z = relay.var("z", shape=(1, 64, 56, 10)) func = relay.concatenate([x, y, z], axis=3) func = relay.Function([x, y, z], func) return func with TempOpAttr("concatenate", "FTVMLegalize", legalize_concatenate): a = before() a = run_opt_pass(a, transform.Legalize()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) if __name__ == "__main__": test_legalize() test_legalize_none() test_legalize_multiple_ops() test_legalize_multi_input()
StarcoderdataPython
8122778
''' 测试文件以test_开头(以_test结尾也可以) 测试类以Test开头,并且不能带有 init 方法 测试函数以test_开头 断言使用基本的assert即可 ''' #! /usr/bin/env python #coding=utf-8 import random import pytest def bubble_sort(nums): for i in range(len(nums)-1): for j in range(len(nums)-i-1): if nums[j] > nums[j+1]: nums[j], nums[j+1] = nums[j+1], nums[j] return random.choice([nums,None,10]) #失败重跑应用 @pytest.mark.flaky(reruns=5) def test_sort(): assert bubble_sort([9,5,8,6]) == [5,6,8,9]
StarcoderdataPython
3510341
import torch as t class Config: model_path = None# 预训练模型,None表示重新训练 model = 'SqueezeNet1_0'#加载的模型,模型名必须与models/__init__.py中的名字一致 ''' ShuffleNetV2,MobileNetV2,SqueezeNet1_0,SqueezeNet1_1 VGG11,VGG13,VGG16,VGG19 ResNet18,ResNet34,ResNet50 ''' lr = 0.0005 #学习率 use_gpu = True #是否使用gpu MEAN=(0.485, 0.456, 0.406) STD=(0.229, 0.224, 0.225)#均值和方差 train_epoch = 1 # 将数据集训练多少次 save_every = 1 # 每训练多少轮保存一次模型 # imagenet得出的较好的值,具体过程参考 # https://cloud.tencent.com/developer/ask/153881 test_num = 16 # 选择攻击和测试的样本数量 batch_size = 128 # 每次喂入多少数据 print_freq = 500 # 每训练多少批次就打印一次 num_workers = 8 #加载数据集的线程数 def _parese(self): self.device = t.device('cuda') if self.use_gpu else t.device('cpu') print('Caculate on {}'.format(self.device)) print('user config:') for k, v in self.__class__.__dict__.items(): if not k.startswith('_'): print(k, getattr(self, k))
StarcoderdataPython
8193711
<filename>zaza/openstack/charm_tests/charm_upgrade/tests.py #!/usr/bin/env python3 # Copyright 2020 Canonical Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define class for Charm Upgrade.""" import logging import unittest import zaza.model from zaza.openstack.utilities import ( cli as cli_utils, upgrade_utils as upgrade_utils, ) from zaza.openstack.charm_tests.nova.tests import LTSGuestCreateTest class FullCloudCharmUpgradeTest(unittest.TestCase): """Class to encapsulate Charm Upgrade Tests.""" @classmethod def setUpClass(cls): """Run setup for Charm Upgrades.""" cli_utils.setup_logging() cls.lts = LTSGuestCreateTest() cls.target_charm_namespace = '~openstack-charmers-next' def get_upgrade_url(self, charm_url): """Return the charm_url to upgrade to. :param charm_url: Current charm url. :type charm_url: str """ charm_name = upgrade_utils.extract_charm_name_from_url( charm_url) next_charm_url = zaza.model.get_latest_charm_url( "cs:{}/{}".format(self.target_charm_namespace, charm_name)) return next_charm_url def test_200_run_charm_upgrade(self): """Run charm upgrade.""" self.lts.test_launch_small_instance() applications = zaza.model.get_status().applications groups = upgrade_utils.get_charm_upgrade_groups() for group_name, group in groups.items(): logging.info("About to upgrade {} ({})".format(group_name, group)) for application, app_details in applications.items(): if application not in group: continue target_url = self.get_upgrade_url(app_details['charm']) if target_url == app_details['charm']: logging.warn( "Skipping upgrade of {}, already using {}".format( application, target_url)) else: logging.info("Upgrading {} to {}".format( application, target_url)) zaza.model.upgrade_charm( application, switch=target_url) logging.info("Waiting for charm url to update") zaza.model.block_until_charm_url(application, target_url) zaza.model.block_until_all_units_idle() self.lts.test_launch_small_instance()
StarcoderdataPython
6630111
""" (Testing FPS) Pixel Difference Networks for Efficient Edge Detection (accepted as an ICCV 2021 oral) See paper in https://arxiv.org/abs/2108.07009 Author: <NAME>, <NAME> Date: Aug 22, 2020 """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division import argparse import os import time import models from utils import * from edge_dataloader import BSDS_VOCLoader, BSDS_Loader, Multicue_Loader, NYUD_Loader from torch.utils.data import DataLoader import torch import torchvision import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn parser = argparse.ArgumentParser(description='PyTorch Diff Convolutional Networks (Train)') parser.add_argument('--datadir', type=str, default='../data', help='dir to the dataset') parser.add_argument('--dataset', type=str, default='BSDS', help='data settings for BSDS, Multicue and NYUD datasets') parser.add_argument('--model', type=str, default='baseline', help='model to train the dataset') parser.add_argument('--sa', action='store_true', help='use attention in diffnet') parser.add_argument('--dil', action='store_true', help='use dilation in diffnet') parser.add_argument('--config', type=str, default='nas-all', help='model configurations, please refer to models/config.py for possible configurations') parser.add_argument('--seed', type=int, default=None, help='random seed (default: None)') parser.add_argument('--gpu', type=str, default='', help='gpus available') parser.add_argument('--epochs', type=int, default=150, help='number of total epochs to run') parser.add_argument('-j', '--workers', type=int, default=4, help='number of data loading workers') parser.add_argument('--eta', type=float, default=0.3, help='threshold to determine the ground truth') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu def main(): global args ### Refine args if args.seed is None: args.seed = int(time.time()) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) args.use_cuda = torch.cuda.is_available() dataset_setting_choices = ['BSDS', 'NYUD-image', 'NYUD-hha', 'Multicue-boundary-1', 'Multicue-boundary-2', 'Multicue-boundary-3', 'Multicue-edge-1', 'Multicue-edge-2', 'Multicue-edge-3'] if not isinstance(args.dataset, list): assert args.dataset in dataset_setting_choices, 'unrecognized data setting %s, please choose from %s' % (str(args.dataset), str(dataset_setting_choices)) args.dataset = list(args.dataset.strip().split('-')) print(args) ### Create model model = getattr(models, args.model)(args) ### Transfer to cuda devices if args.use_cuda: model = torch.nn.DataParallel(model).cuda() print('cuda is used, with %d gpu devices' % torch.cuda.device_count()) else: print('cuda is not used, the running might be slow') ### Load Data if 'BSDS' == args.dataset[0]: test_dataset = BSDS_VOCLoader(root=args.datadir, split="test", threshold=args.eta) elif 'Multicue' == args.dataset[0]: test_dataset = Multicue_Loader(root=args.datadir, split="test", threshold=args.eta, setting=args.dataset[1:]) elif 'NYUD' == args.dataset[0]: test_dataset = NYUD_Loader(root=args.datadir, split="test", setting=args.dataset[1:]) else: raise ValueError("unrecognized dataset setting") test_loader = DataLoader( test_dataset, batch_size=1, num_workers=args.workers, shuffle=False) test(test_loader, model, args) return def test(test_loader, model, args): model.eval() end = time.perf_counter() torch.cuda.synchronize() for idx, (image, img_name) in enumerate(test_loader): with torch.no_grad(): image = image.cuda() if args.use_cuda else image _, _, H, W = image.shape results = model(image) torch.cuda.synchronize() end = time.perf_counter() - end print('fps: %f' % (len(test_loader) / end)) if __name__ == '__main__': main() print('done')
StarcoderdataPython
3340422
from typing import List from nameko.standalone.rpc import ClusterRpcProxy import logging import time from isharp.evalengine.core import Evaluator,EvalMethod from isharp.datahub.core import DatahubTarget logger = logging.getLogger(__name__) def remote_config(net_location: str): return { 'serializer': 'pickle', 'AMQP_URI': 'pyamqp://guest:guest@{}'.format(net_location), 'rpc_exchange': 'nameko-rpc', 'max_workers': 10, 'parent_calls_tracked': 10 } class AsyncEvalServiceInvoker: def __init__(self, conf): self.rpc_proxy = ClusterRpcProxy(conf) self.proxy = self.rpc_proxy.start() def eval(self, method: EvalMethod, inputs: List[DatahubTarget]) -> List[DatahubTarget]: result = self.proxy.evaluation_service.eval(method, inputs) print (result) def stop(self): self.rpc_proxy.stop() invoker = AsyncEvalServiceInvoker(remote_config("localhost")) invoker.eval(None,[])
StarcoderdataPython
1816037
from gevent import monkey monkey.patch_all() from flask import Flask, render_template, session, request from flask.ext.socketio import SocketIO, emit, join_room, leave_room, \ close_room, disconnect from crontab import CronTab from datetime import datetime # cron = CronTab(user=True) # # get already created crontab # for job in cron.find_comment("clock"): # if job.hour == hour and job.minute == minute: # pass # else : # #remove old cron # cron.remove_all(comment="clock") # job = cron.new(command="python /home/pi/sunlight_alarm_clock/light/python/transition.py", comment='clock weekday') # job.hour.on(hour) # job.minute.on(minute) # schedule = job.schedule(date_from=datetime.now()) # cron.write() app = Flask(__name__) app.debug = True app.config['SECRET_KEY'] = 'secret!' socketio = SocketIO(app) @app.route('/') def index(): return render_template('index.html') @socketio.on('onConnect', namespace='/test') def test_connect(): print("Connected") @socketio.on('onDisconnect', namespace='/test') def test_disconnect(): print('Client disconnected') @socketio.on('onChangeTime', namespace='/test') def time_change(message): hour, minute = message["data"].split(":") print("New wake up time: {}-{}".format(hour, minute)) TEST = True if TEST: cron = CronTab(tabfile="test.CronTab") else: cron = CronTab(user=True) # get already created crontab for job in cron.find_comment("clock weekday"): print(job) if job.hour == hour and job.minute == minute: pass else : #remove old cron cron.remove_all(comment="clock weekday") job = cron.new(command="python /home/pi/sunlight_alarm_clock/light/python/transition.py", comment='clock weekday') job.hour.on(hour) job.minute.on(minute) schedule = job.schedule(date_from=datetime.now()) if TEST: cron.write("test.CronTab") else: cron.write() @socketio.on('disconnect request', namespace='/test') def disconnect_request(): session['receive_count'] = session.get('receive_count', 0) + 1 emit('my response', {'data': 'Disconnected!', 'count': session['receive_count']}) disconnect() if __name__ == '__main__': socketio.run(app, host="0.0.0.0")
StarcoderdataPython
11209519
import numpy as np import pickle import os SEA_MONSTER = np.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1], [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], ], dtype=np.bool, ) def parse_tile(raw_tile): header, rows = raw_tile.split("\n", 1) tile_id = int(header[5:-1]) tile_data = [[c == "#" for c in row] for row in rows.split("\n")] tile_data = np.array(tile_data, np.bool) return tile_id, tile_data def transformations(tile): rot90 = np.rot90(tile, 1) rot180 = np.rot90(tile, 2) rot270 = np.rot90(tile, 3) return [ tile, rot90, rot180, rot270, np.flip(tile, axis=0), np.flip(rot90, axis=0), np.flip(rot180, axis=0), np.flip(rot270, axis=0), ] def can_place(image, tile, r, c): if r > 0: tile_above = image[r - 1, c][1] if not np.array_equal(tile_above[-1], tile[0]): return False if c > 0: tile_left = image[r, c - 1][1] if not np.array_equal(tile_left[:, -1], tile[:, 0]): return False return True def build_image(tiles): if os.path.exists("arranged-tiles.pkl"): with open("arranged-tiles.pkl", "rb") as fp: return pickle.load(fp) print("Arranging tiles...") unplaced_tiles = set(tiles.keys()) image = dict() n = int(np.sqrt(len(tiles))) def _build_image(pos): if pos == n ** 2: return True r = pos // n c = pos % n for tile_id in tiles.keys(): if tile_id not in unplaced_tiles: continue for tile in transformations(tiles[tile_id]): if can_place(image, tile, r, c): image[r, c] = (tile_id, tile) unplaced_tiles.remove(tile_id) if _build_image(pos + 1): return True del image[r, c] unplaced_tiles.add(tile_id) return False _build_image(0) with open("arranged-tiles.pkl", "wb") as fp: pickle.dump(image, fp) return image def glue_image(image): n = int(np.sqrt(len(image))) glued_rows = [] for r in range(n): glued_rows.append(np.hstack([image[r, c][1][1:-1, 1:-1] for c in range(n)])) return np.vstack(glued_rows) def get_monster_locations(image): h, w = SEA_MONSTER.shape n = image.shape[0] monster_locations = np.zeros_like(image) for image_view, monster_view in zip( transformations(image), transformations(monster_locations) ): for r in range(n - h): for c in range(n - w): if np.array_equal( SEA_MONSTER, image_view[r : r + h, c : c + w] & SEA_MONSTER ): monster_view[r : r + h, c : c + w] |= SEA_MONSTER return monster_locations def main(): with open("input.txt", "r") as fp: tiles = fp.read().strip().split("\n\n") tiles = dict(map(parse_tile, tiles)) image = build_image(tiles) n = int(np.sqrt(len(tiles))) corner_product = np.prod( [ image[0, 0][0], image[0, n - 1][0], image[n - 1, 0][0], image[n - 1, n - 1][0], ] ) print("Part I:", corner_product) image = glue_image(image) monster_locations = get_monster_locations(image) water_roughness = np.count_nonzero(image) - np.count_nonzero(monster_locations) print("Part II:", water_roughness) if __name__ == "__main__": main()
StarcoderdataPython
8103024
# Copyright 2016 Semaphore Solutions, Inc. # --------------------------------------------------------------------------- from ._internal import WrappedXml, FieldsMixin, ClarityElement from ._internal.props import subnode_property, subnode_element_list, attribute_property, subnode_link from s4.clarity.file import File from s4.clarity.configuration.stage import Stage from s4.clarity.process import Process QC_PASSED = "PASSED" QC_FAILED = "FAILED" QC_UNKNOWN = "UNKNOWN" STAGE_STATUS_QUEUED = "QUEUED" STAGE_STATUS_REMOVED = "REMOVED" STAGE_STATUS_IN_PROGRESS = "IN_PROGRESS" class WorkflowStageHistory(WrappedXml): uri = attribute_property("uri") status = attribute_property("status") name = attribute_property("name") stage = subnode_link(Stage, ".") class ReagentLabel(WrappedXml): name = attribute_property("name", readonly=True) class Artifact(FieldsMixin, ClarityElement): """ Reference: https://www.genologics.com/files/permanent/API/latest/data_art.html#artifact """ UNIVERSAL_TAG = "{http://genologics.com/ri/artifact}artifact" type = subnode_property("type") output_type = subnode_property("output-type") location_value = subnode_property("location/value") workflow_stages = subnode_element_list(WorkflowStageHistory, "workflow-stages", "workflow-stage", readonly=True) reagent_labels = subnode_element_list(ReagentLabel, ".", "reagent-label", readonly=True) parent_process = subnode_link(Process, 'parent-process') def __init__(self, lims, uri=None, xml_root=None, name=None, limsid=None): super(Artifact, self).__init__(lims, uri, xml_root, name, limsid) @property def parent_step(self): """:type: Step""" return self.lims.steps.from_link_node(self.xml_find("./parent-process")) @property def sample(self): """:type: Sample""" return self.lims.samples.from_link_node(self.xml_find("./sample")) @property def samples(self): """:type: list[Sample]""" return self.lims.samples.from_link_nodes(self.xml_findall("./sample")) @property def file(self): """:type: File""" f = self.lims.files.from_link_node(self.xml_find('./{http://genologics.com/ri/file}file')) if f is None: f = File.new_empty(self) f.name = self.name return f @property def is_control(self): """:type: bool""" return self.xml_find('./control-type') is not None @property def control_type(self): """:type: ControlType""" return self.lims.control_types.from_link_node(self.xml_find("./control-type")) @property def queued_stages(self): """:type: set[Stage]""" queued_stages = set() for stage_history in self.workflow_stages: if stage_history.status == STAGE_STATUS_QUEUED: queued_stages.add(stage_history.stage) elif stage_history.status == STAGE_STATUS_REMOVED or stage_history.status == STAGE_STATUS_IN_PROGRESS: # It is possible a QUEUED stage history was left in the list. Remove if present queued_stages.discard(stage_history.stage) return queued_stages @property def qc(self): """ Whether QC is marked as PASSED or FAILED on the artifact ============= ========== Clarity Value Bool Value ============= ========== PASSED True FAILED False UNKNOWN None ============= ========== :type: bool """ qctext = self.get_node_text('qc-flag') if qctext == QC_PASSED: return True elif qctext == QC_FAILED: return False else: return None @qc.setter def qc(self, value): """ :type value: bool """ self.set_qc_flag(value) def qc_passed(self): """:rtype: bool""" return self.get_node_text('qc-flag') == QC_PASSED def qc_failed(self): """:rtype: bool""" return self.get_node_text('qc-flag') == QC_FAILED def set_qc_flag(self, value): """ The `qc` property should be used in favor of this method. :type value: bool :param value: `True` if PASSED, `False` if FAILED, `None` to unset. """ if value is None: qc = QC_UNKNOWN elif value: qc = QC_PASSED else: qc = QC_FAILED self.set_subnode_text('qc-flag', qc) # TODO: move this to another file/class, or something. def open_file(self, mode, only_write_locally=False, name=None): """ :type mode: str :param mode: 'r', 'r+', 'w', 'a', 'rb', 'r+b', 'wb', 'ab'. NOTE: 'r+' sets initial file position to the beginning, 'a' sets it to the end. :type only_write_locally: bool :param only_write_locally: if true, don't upload this file to Clarity. :type name: str :param name: The name that will be used if you are creating a new file. :rtype: File """ f = self.file if name is not None: f.name = name f.only_write_locally = only_write_locally f.mode = mode if "w" in mode: f.truncate() elif "r" in mode: f.writeable = False elif "a" in mode: f.seek_to_end() return f @property def container(self): """ From "location.container". For XML value "location.value", use Python property ``.location_value``. :type: Container """ return self.lims.containers.from_link_node(self.xml_find("./location/container")) @property def reagent_label_names(self): # type: () -> list[str] """:type: list[str]""" return [l.name for l in self.reagent_labels] @property def reagent_label_name(self): # type: () -> str """:type: str""" label_names = self.reagent_label_names num_labels = len(label_names) if num_labels > 1: raise Exception("Artifact has multiple reagent labels.") if num_labels == 0: return None return label_names[0] @reagent_label_name.setter def reagent_label_name(self, reagent_label_name): # type: (str) -> None """ :type reagent_label_name: str """ reagent_label = self.make_subelement_with_parents("./reagent-label") reagent_label.set("name", reagent_label_name) def _get_attach_to_key(self): return self.type, ""
StarcoderdataPython
6677571
<reponame>qmeeus/Object-detection import os, os.path as p import sys from time import sleep, time import numpy as np import ffmpeg import subprocess from queue import PriorityQueue from multiprocessing import Pool, log_to_stderr from realtime_object_detection.detection import ObjectDetection from realtime_object_detection.io import InputStream, OutputFile, OutputStream from realtime_object_detection.utils.logger import logger BATCH_SIZE = 1 QUEUE_SIZE = 10000 FPS = 30 def abspath(relpath): return p.abspath(p.join(p.dirname(__file__), '..', relpath)) logger.info(' REALTIME OBJECT DETECTION ') input_stream = InputStream(os.environ['INPUT_STREAM_URL'], QUEUE_SIZE, FPS) input_stream.start() # fps = input_stream.getFPS() output_file = OutputFile(abspath(os.environ['OUTPUT_FILE']), 'XVID', { 'fps': FPS, 'frameSize': input_stream.video_size }) output_stream = OutputStream( os.environ['OUTPUT_STREAM_URL'], input_cfg={"format": "rawvideo", "s": "{}x{}".format(*input_stream.video_size)}, filter_cfg={"fps": FPS, "round": "up"}, output_cfg={ "format": "flv", "pix_fmt": "yuv420p", 'preset': 'slower', "movflags": "faststart", "qscale:v": 3 } ) outputs = [ output_file, output_stream ] try: logger.info('+++ Processing starts +++') detector = ObjectDetection() while not input_stream.is_empty: logger.debug(f'{input_stream.size} remaining frames in queue') batch_size = min(BATCH_SIZE, input_stream.size) frame_ids, frames = map(list, zip(*((input_stream.read() for _ in range(batch_size))))) assert type(frame_ids) is list assert type(frames) is list frames_out = detector.detect_objects(frames) for frame_out in frames_out: for output in outputs: output.write_frame(frame_out) except KeyboardInterrupt: logger.info('Cleaning outputs') for output in outputs: output.clean() detector.clean()
StarcoderdataPython
5002002
# Modified from https://github.com/yenchanghsu/out-of-distribution-detection/blob/master/methods/ood_detection.py import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical import numpy as np from sklearn import metrics import copy import os from metrics.ood import tnr_at_tpr95, detection, AverageMeter from utils.misc import cov class Baseline(object): def __init__(self, args, cnn, train_loader, val_loader, num_classes): self.config = args self.num_classes = num_classes self.cnn = cnn self.cnn.cuda() self.cnn.zero_grad() self.prepare(train_loader, val_loader) # self.in_domain_scores = self.get_scores(val_loader) self.perturb_magnitude = 0.0 def prepare(self, train_loader, val_loader): return def scoring(self, x): # max softmax if isinstance(x, dict): logits = x['logits'] else: logits = x prob = F.softmax(logits, dim=1) score, score_idx = prob.max(dim=1) return score, score_idx def get_scores(self, dataloader): self.cnn.eval() scores, scores_idx = [], [] for input, target in dataloader: input = input.cuda() # target = target.cuda() if 'cosine' in self.config.model_type: # get features before last layer for Mahalanobis methods _, _, output = self.cnn.forward(input) else: output = self.cnn.forward(input) score, score_idx = self.scoring(output) scores.extend(score.cpu().detach().numpy()) scores_idx.extend(score_idx.cpu().detach().numpy()) return scores, scores_idx def ood_eval(self, val_loader, ood_loader): score_in, _ = self.get_scores(val_loader) score_out, _ = self.get_scores(ood_loader) score_all = np.concatenate([score_in, score_out]) domain_labels = np.zeros(len(score_all)) domain_labels[:len(score_in)] = 1 score_in = np.array(score_in) score_out = np.array(score_out) score_all = np.array(score_all) tnr = tnr_at_tpr95(score_in, score_out) detection_error, _ = detection(score_in, score_out) auroc = metrics.roc_auc_score(domain_labels, score_all) aupr_in = metrics.average_precision_score(domain_labels, score_all) aupr_out = metrics.average_precision_score(-1 * domain_labels + 1, 1 - score_all) return {'tnr(\u2191)': tnr, 'det_err(\u2193)': detection_error, 'auroc(\u2191)': auroc, 'aupr_in(\u2191)': aupr_in, 'aupr_out(\u2191)': aupr_out, 'score_avg(\u2191)': '{:.2e}'.format(score_out.mean()), 'score_std(\u2193)': '{:.2e}'.format(score_out.std()) } def get_ood_model(self, ood_model_file=None): self.ood_cnn = copy.deepcopy(self.cnn) def prepare_ood(self, ood_model_file=None): self.get_ood_model(ood_model_file) return self.ood_cnn, self.perturb_magnitude class InputPreProcess(Baseline): def prepare(self, train_loader, val_loader): self.perturb_magnitude = self.search_perturb_magnitude(val_loader) print('Inputs are perturbed with magnitude', self.perturb_magnitude) def search_perturb_magnitude(self, dataloader): if len(self.config.data_perturb_magnitude) == 1: return self.config.data_perturb_magnitude[0] else: magnitude_list = self.config.data_perturb_magnitude print('Searching the best perturbation magnitude on in-domain data. Magnitude:', magnitude_list) self.cnn.eval() loss_list = {} for m in magnitude_list: loss_meter = AverageMeter() for input, _ in dataloader: # Here we don't need labels input = input.cuda().requires_grad_(True) output = self.cnn.forward(input) loss_score, _ = self.scoring(output) loss = -loss_score.mean() loss.backward() gradient = torch.ge(input.grad.data, 0) gradient = (gradient.float() - 0.5) * 2 modified_input = torch.add(input.detach(), -m, gradient) output = self.cnn.forward(modified_input) loss, _ = self.scoring(output) loss = -loss loss_meter.update(loss.mean(), len(loss)) loss_list[m] = loss_meter.avg print('Magnitude:', m, 'loss:', loss_list[m]) best_m = min(loss_list, key=(lambda key: loss_list[key])) return best_m def get_scores(self, dataloader): self.cnn.eval() scores, scores_idx = [], [] for input, _ in dataloader: input = input.cuda().requires_grad_(True) if 'cosine' in self.config.model_type: _, _, output = self.cnn.forward(input) else: output = self.cnn.forward(input) loss_score, _ = self.scoring(output) loss = -loss_score.mean() loss.backward() gradient = torch.ge(input.grad.data, 0) gradient = (gradient.float() - 0.5) * 2 modified_input = torch.add(input.detach(), -self.perturb_magnitude, gradient) if 'cosine' in self.config.model_type: _, _, output = self.cnn.forward(modified_input) else: output = self.cnn.forward(modified_input) score, score_idx = self.scoring(output) scores.extend(score.cpu().detach().numpy()) scores_idx.extend(score_idx.cpu().detach().numpy()) return scores, scores_idx class ODIN(InputPreProcess): # def get_scores(self, dataloader): # self.cnn.eval() # scores = [] # for input, target in dataloader: # # input = input.cuda() # target = target.cuda() # # if 'cosine' in self.config.model_type: # output, _, _ = self.cnn.forward(input) # else: # output = self.cnn.forward(input) # # score = self.scoring(output) # # scores.extend(score.cpu().detach().numpy()) # # return scores # Temperature scaling + Input preprocess def scoring(self, x): # max softmax if isinstance(x, dict): logits = x['logits'] else: logits = x logits /= 1000 # Temperature=1000 as suggested in ODIN paper prob = F.softmax(logits, dim=1) score, score_idx = prob.max(dim=1) return score, score_idx class Mahalanobis(Baseline): def prepare(self, train_loader, val_loader): self.ood_cnn = copy.deepcopy(self.cnn) # self.init_mahalanobis(train_loader) self.init_mahalanobis(val_loader) def init_mahalanobis(self, dataloader): if 'cosine' not in self.config.model_type: self.cnn.module.fc = torch.nn.Identity() # So we extract the features print('Init: Calculating Mahalanobis ...', len(dataloader)) all_feat = [] all_label = [] for input, target in dataloader: input = input.cuda() target = target.cuda() if 'cosine' in self.config.model_type: _, _, feat = self.cnn.forward(input) else: feat = self.cnn.forward(input) all_feat.extend(feat.cpu().detach().numpy()) all_label.extend(target.cpu().detach().numpy()) all_feat = torch.from_numpy(np.array(all_feat)) all_label = torch.from_numpy(np.array(all_label)) assert all_feat.ndimension() == 2 all_feat = all_feat.cuda() all_label = all_label.cuda() self.centers = torch.zeros(self.num_classes, all_feat.size(1), device=all_feat.device) for i in range(self.num_classes): self.centers[i] = all_feat[all_label == i].mean(dim=0) X = all_feat - torch.index_select(self.centers, dim=0, index=all_label) # self.precision = X.var(dim=0).pow(-1).diagflat() # This simplification will cause a significant performance drop self.precision = cov(X).pinverse() def scoring(self, x): diff = x.unsqueeze(dim=1) - self.centers.unsqueeze(dim=0) # Broadcasting operation for i in range(self.num_classes): zero_f = diff[:, i] term_gau = -0.5 * torch.mm(torch.mm(zero_f, self.precision), zero_f.t()).diag() if i == 0: gaussian_score = term_gau.view(-1, 1) else: gaussian_score = torch.cat((gaussian_score, term_gau.view(-1, 1)), 1) score, score_idx = gaussian_score.max(dim=1) return score, score_idx def get_ood_model(self, ood_model_file=None): print('Preparing Mahalanobis OOD Model...') if (ood_model_file is not None) and (os.path.isfile(ood_model_file)): self.ood_cnn.load_state_dict(torch.load(ood_model_file)) else: with torch.no_grad(): # set weight, bias in fc layer new_weight = self.ood_cnn.module.fc.weight new_bias = self.ood_cnn.module.fc.bias for i in range(self.num_classes): center = self.centers[i].unsqueeze(dim=1) new_weight[i] = torch.mm(center.t(), self.precision) new_bias[i] = -0.5 * torch.mm(torch.mm(center.t(), self.precision), center).diag() self.ood_cnn.module.fc.weight = torch.nn.Parameter(new_weight) self.ood_cnn.module.fc.bias = torch.nn.Parameter(new_bias) class Mahalanobis_IPP(Mahalanobis, InputPreProcess): def prepare(self, train_loader, val_loader): self.ood_cnn = copy.deepcopy(self.cnn) # self.init_mahalanobis(train_loader) self.init_mahalanobis(val_loader) self.perturb_magnitude = self.search_perturb_magnitude(val_loader) print('Inputs are perturbed with magnitude', self.perturb_magnitude) class DeepMahalanobis(Baseline): def prepare(self, train_loader, val_loader): self.init_mahalanobis(train_loader) def init_mahalanobis(self, dataloader): def new_forward(self, x): return self.features(x) # return (self.layer1(x), self.layer2(x), self.layer3(x), self.layer4(x)) self.cnn.module.__class__.forward = new_forward print('Init: Calculating DeepMahalanobis ...', len(dataloader)) input, _ = dataloader.dataset[0] input = input.unsqueeze(0).cuda() # get all features (e.g. 4 layer features for resnet) feats = self.cnn.forward(input) self.num_out = len(feats) all_feat = {i: [] for i in range(self.num_out)} self.centers = {i: [] for i in range(self.num_out)} self.precision = {i: [] for i in range(self.num_out)} all_label = [] for input, target in dataloader: input = input.cuda() target = target.cuda() feats = self.cnn.forward(input) for i in range(self.num_out): all_feat[i].extend(feats[i].mean(-1).mean(-1).cpu().detach().numpy()) all_label.extend(target.cpu().detach().numpy()) for i in range(self.num_out): all_feat[i] = torch.from_numpy(np.array(all_feat[i])) all_feat[i] = all_feat[i].cuda() all_label = torch.from_numpy(np.array(all_label)) all_label = all_label.cuda() for i in range(self.num_out): # feats = torch.cat(all_feat[i]) feats = all_feat[i] assert feats.ndimension() == 2 self.centers[i] = torch.zeros(self.num_classes, feats.size(1), device=feats.device) for c in range(self.num_classes): self.centers[i][c] = feats[all_label == c].mean(dim=0) X = feats - torch.index_select(self.centers[i], dim=0, index=all_label) self.precision[i] = cov(X).pinverse() # def get_scores(self, dataloader): # self.cnn.eval() # scores = [] # for input, target in dataloader: # # input = input.cuda() # target = target.cuda() # # output = self.cnn.forward(input) # # score = self.scoring(output) # # scores.extend(score.cpu().detach().numpy()) # # return scores def scoring(self, x): deep_scores = torch.zeros(x[0].size(0), self.num_out, device=x[0].device) for i in range(self.num_out): feat = x[i].mean(-1).mean(-1) diff = feat.unsqueeze(dim=1) - self.centers[i].unsqueeze(dim=0) # Broadcasting operation for c in range(self.num_classes): zero_f = diff[:, c] term_gau = -0.5 * torch.mm(torch.mm(zero_f, self.precision[i]), zero_f.t()).diag() if c == 0: gaussian_score = term_gau.view(-1, 1) else: gaussian_score = torch.cat((gaussian_score, term_gau.view(-1, 1)), 1) deep_scores[:, i], score_idx = gaussian_score.max(dim=1) return deep_scores.sum(dim=1), score_idx class DeepMahalanobis_IPP(DeepMahalanobis, InputPreProcess): def prepare(self, train_loader, val_loader): self.init_mahalanobis(train_loader) self.perturb_magnitude = self.search_perturb_magnitude(val_loader) print('Inputs are perturbed with magnitude', self.perturb_magnitude) # class Disentangle_SYD(Baseline): # def scoring(self, x): # assert isinstance(x, dict), 'The model doesnt provide disentangled results' # return x['S_YD'] # # # class Disentangle_SYD_IPP(InputPreProcess): # def scoring(self, x): # assert isinstance(x, dict), 'The model doesnt provide disentangled results' # return x['S_YD'] # # # class Disentangle_SD(Baseline): # def scoring(self, x): # assert isinstance(x, dict), 'The model doesnt provide disentangled results' # return x['S_D'] # # # class Disentangle_SD_IPP(InputPreProcess): # def scoring(self, x): # assert isinstance(x, dict), 'The model doesnt provide disentangled results' # return x['S_D'] # # # class OfflineDisentangle_SYD(Baseline): # def __init__(self, baseObject): # super(OfflineDisentangle_SYD, self).__init__(baseObject) # # def ood_prepare(self, dataloader): # # self.log('Offline disentangle ...') # all_out = [] # all_label = [] # for input, target, _ in dataloader: # # The task id is ignored here # # input = input.cuda() # target = target.cuda() # # out = self.forward(input) # all_out.append(out) # all_label.append(target) # all_out = torch.cat(all_out) # all_label = torch.cat(all_label) # self.num_classes = len(torch.unique(all_label)) # self.std = torch.zeros(self.num_classes, device=input.device) # for c in range(self.num_classes): # self.std[c] = all_out[all_label == c].std() # print('Distance std:', self.std.mean()) # # def score(self, x): # S_YD = x / self.std.view(1, -1) # return super(Disentangle, self).score(S_YD)
StarcoderdataPython
1763878
from enum import Enum import matplotlib.pyplot as plt from simalia.data import index class PlotTypes(Enum): LINE = 1 BAR = 2 PIE = 3 DONUT = 4 class Plot: def __init__(self, title="", legend=False): self.title = title self.legend = legend self.type = None self._legend_data = [] self._keys = [] self._values = [] def dict(self, dictionary): self._keys = dictionary.keys() self._values.append(dictionary.values()) return self def keys(self, keys): self._keys = keys return self def values(self, *values): self._values += values return self def mean(self, val): plt.plot(list(self._keys), [val] * len(self._keys), label="mean", linestyle='--') return self def line(self, markers=True): self.type = PlotTypes.LINE keys = list(self._keys) for val in self._values: plt.plot(keys, list(val), marker='o' if markers else None, linestyle='solid') return self def bar(self, horizontal=False): self.type = PlotTypes.BAR fig, ax = plt.subplots() width = 0.3 for i, val in enumerate(self._values): positions = [x + (float(i) * width) for x in index(val)] if horizontal: ax.barh(positions, val, height=width) else: ax.bar(positions, val, width=width) label_pos = [x + (len(self._values) - 1) / 2 * width for x in index(self._keys)] if horizontal: ax.set_yticks(label_pos) ax.set_yticklabels(self._keys) ax.invert_yaxis() else: ax.set_xticks(label_pos) ax.set_xticklabels(self._keys) return self def pie(self, highlight_first=True): self.type = PlotTypes.PIE self._legend_data = self._keys explode = None if highlight_first: explode = [0.] * len(self._keys) explode[0] = 0.05 plt.pie(self._values[0], labels=self._labels(), explode=explode) return self def donut(self): self.type = PlotTypes.DONUT self._legend_data = self._keys plt.pie(self._values[0], labels=self._labels(), wedgeprops=dict(width=0.4)) return self def _labels(self): if self.legend: return None return self._keys def draw(self): if self.legend: loc = self.legend if self.legend is not True else "best" plt.legend(self._legend_data, loc=loc) plt.title(self.title) plt.draw() plt.style.use("seaborn")
StarcoderdataPython
4930099
print('='*10, 'Desafio 62', '='*10) primeiro = int(input('Digite o primeiro termo da PA: ')) razão = int(input('Digite a razão da PA: ')) cont = 1 termo = primeiro total = 0 mais = 10 while mais != 0: total = total + mais while cont <= total: print('{} → '.format(termo), end=' ') termo += razão cont += 1 mais = int(input('Quantos termos você quer mostrar a mais? ')) print('Fim!') print('='*10, 'Desafio 62', '='*10)
StarcoderdataPython
9725374
<gh_stars>0 from flask_wtf import FlaskForm from wtforms import BooleanField from wtforms import PasswordField from wtforms import StringField from wtforms import SubmitField from wtforms.validators import DataRequired class LoginForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) submit = SubmitField('Login') remember_me = BooleanField('Remember Me')
StarcoderdataPython
1782852
<gh_stars>1-10 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Import numpy, you'll need this import numpy as np # Create medium: observations with cars_per_cap between 100 and 500 cpc = cars['cars_per_cap'] between = np.logical_and(cpc > 10, cpc < 80) medium = cars[between] # Print medium print(medium) #another filter print("cars_per_capita between 100 and 500") cpc = cars['cars_per_cap'] between = np.logical_and(cpc > 100, cpc < 500) medium = cars[between] print(medium)
StarcoderdataPython
12824952
import json from mysystem import * from utils import trans2json import pull_global_vars as gv from pull_util import * from hash import Hash #from redis_oper import write2redis import base64 import time MEDIA_REQ_TIMEOUT = 3 def query_hash(data): result_hash_list = [] start_time=time.time() if data['params'].has_key('url'): if data['params']['url']['hash'] != None and data['params']['url']['hash'] != '': ret_code, result = query_vddb_async( data['params']['url']['hash'], data) if ret_code == 1: end_time = time.time() #gv.statsd_conn.timing("thunder.querybroker_qbpull", (end_time-start_time)*1000) return ret_code, result result_hash_list.append((ret_code, result)) if data['params']['thunder_hash'] != None and data['params']['thunder_hash'] != '': ret_code, result = query_vddb_async( data['params']['thunder_hash'], data) if ret_code == 1: end_time = time.time() #gv.statsd_conn.timing("thunder.querybroker_qbpull", (end_time-start_time)*1000) return ret_code, result result_hash_list.append((ret_code, result)) if data['params'].has_key('seed_file'): seed_file_hash = '' if data['params']['seed_file']['hash'] != '': seed_file_hash = data['params']['seed_file']['hash'] else: ret_code, bt_file_name = download_file( data['params']['seed_file']['path'], gv.file_tmpdir) if ret_code: client_id = data['params']['additional_info']['client_id'] with open(bt_file_name, 'rb') as fp: seed_file_content = fp.read() seed_file_hash = Hash( filename=bt_file_name, content=seed_file_content).value data['params']['seed_file']['hash'] = seed_file_hash try: os.remove(bt_file_name) except OSError: g_logger.error(trans2json( "delete bt file %s error %s" % (bt_file_name, traceback.format_exc()))) ret_code, result = query_vddb_async(seed_file_hash, data) if ret_code == 1: end_time = time.time() #gv.statsd_conn.timing("thunder.querybroker_qbpull", (end_time-start_time)*1000) return ret_code, result result_hash_list.append((ret_code, result)) if data['params'].has_key('files'): hash_list = [] data_list = [] for i in data['params']['files']: dna_hash = i['hash'] hash_list.append(dna_hash) data_list.append(data) result_list = map(query_vddb_async, hash_list, data_list) for i in range(len(result_list)): if result_list[i][0] == 1: end_time = time.time() #gv.statsd_conn.timing("thunder.querybroker_qbpull", (end_time-start_time)*1000) return result_list[i][0], result_list[i][1] end_time = time.time() #gv.statsd_conn.timing("thunder.querybroker_qbpull", (end_time-start_time)*1000) return 3, None def url_scheme(url): scheme = None parts = url.split('://', 1) if len(parts) >= 2: scheme = parts[0] return scheme def query_vddb_async(req_hash, data): g_logger.debug(trans2json("query vddb async by hash %s" % str(req_hash))) mysystem = mysystem(gv.mysystem_user, gv.mysystem_passwd, gv.mysystem_url, False, MEDIA_REQ_TIMEOUT, g_logger) uuid = data['params']['external_id'] ret, status_listing = mysystem.query(req_hash, uuid) working_cnt = 0 copyrighted_cnt = 0 uncopyrighted_cnt = 0 status_cnt = len(status_listing) for status in status_listing: if status['status'] == STATUS_COPYRIGHTED: copyrighted_cnt += 1 if status['status'] == STATUS_UNCOPYRIGHTED: uncopyrighted_cnt += 1 if status['status'] == STATUS_WORKING: working_cnt += 1 # all can not check if ret == STATUS_UNDETECTED: ret_code = 2 return ret_code, status_listing if status_cnt > 0: if copyrighted_cnt == status_cnt or working_cnt == status_cnt or uncopyrighted_cnt == status_cnt: ret_code = 1 return ret_code, status_listing return 4, None
StarcoderdataPython
5171507
# -*- coding: utf-8 -*- """ Progress component """ from bowtie._component import Component class Progress(Component): """This component is used by all visual components and is not meant to be used alone. By default, it is not visible. It is an opt-in feature and you can happily use Bowtie without using the progress indicators at all. It is useful for indicating progress to the user for long-running processes. It can be accessed through the ``.progress`` accessor. Examples -------- >>> plotly = Plotly() >>> def callback(x): >>> plotly.progress.do_visible(True) >>> plotly.progress.do_percent(0) >>> compute1() >>> plotly.progress.do_inc(50) >>> compute2() >>> plotly.progress.do_visible(False) """ _TEMPLATE = 'progress.jsx' _COMPONENT = 'CProgress' _PACKAGE = None _TAG = ('<CProgress ' 'socket={{socket}} ' 'uuid={{{uuid}}} ' '>') def _instantiate(self): return self._TAG.format( uuid="'{}'".format(self._uuid) ) # pylint: disable=no-self-use def do_percent(self, percent): """Set the percentage of the progress. Parameters ---------- percent : number Sets the progress to this percentage. Returns ------- None """ return percent def do_inc(self, inc): """Increments the progress indicator. Parameters ---------- inc : number Value to increment the progress. Returns ------- None """ return inc def do_visible(self, visible): """Hides and shows the progress indicator. Parameters ---------- visible : bool If ``True`` shows the progress indicator otherwise it is hidden. Returns ------- None """ return visible def do_active(self): """Hides and shows the progress indicator. Returns ------- None """ pass def do_success(self): """Hides and shows the progress indicator. Returns ------- None """ pass def do_error(self): """Hides and shows the progress indicator. Returns ------- None """ pass
StarcoderdataPython
6547037
<gh_stars>1-10 import tensorflow as tf import tensorflow.contrib.slim as tfslim mobilenetv3_large = { 'kernel': [3, 3, 3, 5, 5, 5, 3, 3, 3, 3, 3, 3, 5, 5, 5], 'expand': [16, 64, 72, 72, 120, 120, 240, 200, 184, 184, 480, 672, 672, 672, 960], 'output': [16, 24, 24, 40, 40, 40, 80, 80, 80, 80, 112, 112, 160, 160, 160, 960], 'SE': [0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1], 'activation': [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'stride': [1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1] } mobilenetv3_samll = { 'kernel': [3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5], 'expand': [16, 72, 88, 96, 240, 240, 120, 144, 288, 576, 576], 'output': [16, 24, 24, 40, 40, 40, 48, 48, 96, 96, 96, 576], 'SE': [1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'activation': [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], 'stride': [2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1] } CONFIGURATIONS = {'0.5': mobilenetv3_samll, '1.0': mobilenetv3_large} BATCH_NORM_MOMENTUM = 0.997 BATCH_NORM_EPSILON = 1e-36 expand_multiplier = 3 # scaled to 1/3 def MobileNetV3(x, is_training, num_classes=200, depth_multiplier='0.5'): configs = CONFIGURATIONS[depth_multiplier] num_bnecks = len(configs['kernel']) def batch_norm(x): x = tf.layers.batch_normalization(x, axis=3, center=True, scale=True, training=is_training, momentum=BATCH_NORM_MOMENTUM, epsilon=BATCH_NORM_EPSILON, fused=True, name='batch_norm') return x params = {'normalizer_fn': batch_norm} with tf.variable_scope('MobileNetV3'): with tfslim.arg_scope([tfslim.conv2d, depthwise_conv], **params): x = tfslim.conv2d(x, num_outputs=16, kernel_size=3, stride=2, activation_fn=Hswish, scope='conv1') for unit in range(num_bnecks): with tf.variable_scope('bneck' + str(unit + 1)): ratio = expand_multiplier if unit == 0: ratio = 1 if configs['stride'][unit] == 1: x = basic_block(x, num_outputs=configs['output'][unit], expand=configs['expand'][unit] // ratio, kernel_size=configs['kernel'][unit], is_SE=configs['SE'][unit], is_Hswish=configs['activation'][unit]) else: x = downsample(x, num_outputs=configs['output'][unit], expand=configs['expand'][unit] // ratio, kernel_size=configs['kernel'][unit], is_SE=configs['SE'][unit], is_Hswish=configs['activation'][unit]) x = tfslim.conv2d(x, num_outputs=configs['output'][num_bnecks], kernel_size=1, activation_fn=Hswish, scope='conv' + str(2 + num_bnecks)) with tf.variable_scope('global_pool'): x = tf.reduce_mean(x, axis=[1, 2]) x = Hswish(x) x = tfslim.fully_connected(x, num_outputs=1280, activation_fn=Hswish, scope='fc') x = tfslim.fully_connected(x, num_outputs=num_classes, activation_fn=None, scope='classifier') return x def basic_block(x, num_outputs, expand, kernel_size=3, stride=1, is_SE=0, is_Hswish=0): in_channels = x.shape[3].value activation = tf.nn.relu6 if not is_Hswish else Hswish with tf.variable_scope('residual'): y = tfslim.conv2d(x, num_outputs=expand, kernel_size=1, activation_fn=activation, scope='conv1x1_before') y = depthwise_conv(y, kernel=kernel_size, activation_fn=activation) y = tfslim.conv2d(y, num_outputs=num_outputs, kernel_size=1, activation_fn=None, scope='conv1x1_after') if is_SE: y = SE_block(y) if in_channels != num_outputs: x = tfslim.conv2d(x, num_outputs=num_outputs, kernel_size=1, activation_fn=tf.nn.relu6, scope='shortcut') y = y + x return y def downsample(x, num_outputs, expand, kernel_size=3, stride=2, is_SE=0, is_Hswish=0): activation = tf.nn.relu6 if not is_Hswish else Hswish x = tfslim.conv2d(x, num_outputs=expand, kernel_size=1, activation_fn=activation, scope='conv1x1_before') x = depthwise_conv(x, kernel=kernel_size, stride=stride, activation_fn=activation) x = tfslim.conv2d(x, num_outputs=num_outputs, kernel_size=1, activation_fn=None, scope='conv1x1_after') if is_SE: x = SE_block(x) return x def Hswish(x): return x * (tf.nn.relu6(x + 3.0) / 6.0) @tf.contrib.framework.add_arg_scope def depthwise_conv(x, kernel=3, stride=1, padding='SAME', activation_fn=tf.nn.relu6, normalizer_fn=None, weights_initializer=tf.contrib.layers.xavier_initializer(), data_format='NHWC', scope='depthwise_conv'): with tf.variable_scope(scope): assert data_format == 'NHWC' in_channels = x.shape[3].value W = tf.get_variable('depthwise_weights', [kernel, kernel, in_channels, 1], dtype=tf.float32, initializer=weights_initializer) x = tf.nn.depthwise_conv2d(x, W, [1, stride, stride, 1], padding, data_format='NHWC') x = normalizer_fn( x) if normalizer_fn is not None else x # batch normalization x = activation_fn( x) if activation_fn is not None else x # nonlinearity return x def SE_block(x): in_channels = x.shape[3].value with tf.variable_scope('SE'): y = tf.reduce_mean(x, axis=[1, 2], name='global_pool') y = tfslim.fully_connected(y, num_outputs=in_channels // 16, activation_fn=tf.nn.relu6, scope='fc1') y = tfslim.fully_connected(y, num_outputs=in_channels, activation_fn=tf.nn.sigmoid, scope='fc2') y = tf.reshape(y, [-1, 1, 1, in_channels]) x = x * y return x
StarcoderdataPython
297048
""" Shows how to receive a file over OBEX. """ import lightblue # bind the socket, and advertise an OBEX service sock = lightblue.socket() try: sock.bind(("", 0)) # bind to 0 to bind to a dynamically assigned channel lightblue.advertise("LightBlue example OBEX service", sock, lightblue.OBEX) # Receive a file and save it as MyFile.txt. # This will wait and block until a file is received. print "Waiting to receive file on channel %d..." % sock.getsockname()[1] lightblue.obex.recvfile(sock, "MyFile.txt") finally: sock.close() print "Saved received file to MyFile.txt!" # Please note: # # To use a file through this example, the other device must send the file to # the correct channel. E.g. if this example prints "Waiting to receive file on # channel 5..." the remote device must send the file specifically to channel 5. # # * But what if you can't specify a channel or service? # # If you can send a file to a specific channel - e.g. by using # lightblue.obex.sendfile(), as the send_file.py example does - then you # should be fine. # # But, if you're just using the system's default OBEX file-sending tool on # the other device (e.g. "Send file..." from the Bluetooth drop-down menu on # Mac OS X, or "Send ... Via Bluetooth" on Series 60 phones), it may only # allow you to choose a device to send the file to, without choosing a # specific channel or service on the device. In this case, the tool is # probably just choosing the first available OBEX service on the device. # # So if you switch off all other related services, this example's service # should automatically receive all OBEX files. E.g. if you're running this # example on Mac OS X, go to the System Preferences' Bluetooth panel: on # Mac OS X 10.4, go to the "Sharing" tab, and uncheck the "On" checkboxes for # the "Bluetooth File Transfer" and "Bluetooth File Exchange" services. # On Mac OS X 10.3, go to the "File Exchange" tab, and for "When receiving # items", select "Refuse all", and uncheck "Allow other devices to browse # files on this computer".
StarcoderdataPython
9769821
''' Author : <NAME> Mail : <EMAIL> @ g<EMAIL>.com ''' num = float(input("Enter your number :")) if num >= 80.00: print("Your grade is A+.") elif num >= 70.00: print("Your grade is A.") elif num >= 60.00: print("Your grade is A-.") elif num >= 50.00: print("Your grade is B.") elif num >= 40.00: print("Your grade is C.") elif num >= 33.00: print("Your grade is D.") else: print("You are fail")
StarcoderdataPython
12851004
"""empty message Revision ID: 783682226c9b Revises: <KEY> Create Date: 2019-10-19 10:07:14.923441 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "<KEY>" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column( "prices", "internal_product_id", existing_type=sa.INTEGER(), type_=sa.String(), existing_nullable=True ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column( "prices", "internal_product_id", existing_type=sa.String(), type_=sa.INTEGER(), existing_nullable=True ) # ### end Alembic commands ###
StarcoderdataPython
3408945
<reponame>Aquarium1222/Electricity-Forecasting import pandas as pd import numpy as np import torch.utils.data as data from sklearn.preprocessing import MinMaxScaler import config class ElectricDataset(data.Dataset): def __init__(self, preprocessor): const = config.Constant hp = config.Hyperparameter df = pd.read_csv(const.RESERVE_MARGIN).drop(columns=['日期', '備轉容量率(%)']) y = preprocessor.preprocessing(np.expand_dims(df['備轉容量(萬瓩)'].to_numpy(), axis=1) * 10, 'y') x = preprocessor.preprocessing(np.expand_dims(df['備轉容量(萬瓩)'].to_numpy(), axis=1) * 10, 'x') # x = preprocessor.preprocessing(df.to_numpy(), 'x') self.__data = [] self.__result = [] for i in range(hp.INPUT_SEQ_LEN, len(x) - (hp.OUTPUT_SEQ_LEN - 1)): self.__data.append(x[i-hp.INPUT_SEQ_LEN:i]) self.__result.append(y[i:i+hp.OUTPUT_SEQ_LEN]) self.__data = np.array(self.__data) self.__result = np.array(self.__result) def __getitem__(self, item): return self.__data[item], self.__result[item] def __len__(self): return len(self.__data)
StarcoderdataPython
302470
<gh_stars>0 from datetime import datetime from typing import NewType, TypeVar PythonType = TypeVar('PythonType') UUID = NewType('UUID', str) String = NewType('String', str) Boolean = NewType('Boolean', bool) Integer = NewType('Integer', int) Float = NewType('Float', float) Text = NewType('Text', str) LongText = NewType('LongText', str) DateTime = NewType('DateTime', datetime) DatastoreType = TypeVar('DatastoreType', UUID, String, Boolean, Integer, Float, Text, LongText) known_definitions = (UUID, Boolean, DateTime, Integer, Float, String, Text,LongText)
StarcoderdataPython
3236305
""" https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sqs.html#SQS.Client.send_message """ from pprint import pprint import boto3 import time def send_message(queueu_url: str, region_name: str, message: str): sqs_client = boto3.client("sqs", region_name=region_name) response = sqs_client.send_message(QueueUrl=queueu_url, MessageBody=message) return response def receive_message(queueu_url: str, region_name: str, nr_of_messages: int = 1): sqs_client = boto3.client("sqs", region_name=region_name) response = sqs_client.receive_message( QueueUrl=queueu_url, MaxNumberOfMessages=nr_of_messages, # max 10, default 1 WaitTimeSeconds=0, ) return response def delete_message(queueu_url: str, region_name: str, receipt_handle: str): sqs_client = boto3.client("sqs", region_name=region_name) response = sqs_client.delete_message( QueueUrl=queueu_url, ReceiptHandle=receipt_handle, ) return response if __name__ == "__main__": queueu_url = "https://eu-central-1.queue.amazonaws.com/717687450252/example-queue" region_name = "eu-central-1" print("sending message:") send_response = send_message( queueu_url=queueu_url, region_name=region_name, message='{"important-key":"important-value-1"}', ) pprint(send_response) time.sleep(2) receive_response = receive_message( queueu_url=queueu_url, region_name=region_name, nr_of_messages=10 ) send_message_id = send_response["MessageId"] send_message_md5 = send_response["MD5OfMessageBody"] print( f"\n\n\nMessage that was send to the queue has id {send_message_id} and md5 {send_message_md5}.\n\n" ) to_delete = [] print("Messages in the queue:") for msg in receive_response["Messages"]: pprint(msg) to_delete.append(msg["ReceiptHandle"]) print(f"Deleting messages with the following receipt handles:") for item in to_delete: print(item) for receipt_handle in to_delete: delete_response = delete_message( queueu_url=queueu_url, region_name=region_name, receipt_handle=receipt_handle, ) pprint(delete_response)
StarcoderdataPython
215968
<reponame>guillp/binapy from binapy import binapy_checker, binapy_decoder, binapy_encoder @binapy_decoder("hex") def decode_hex(bp: bytes) -> bytes: return bytes.fromhex(bp.decode()) @binapy_encoder("hex") def encode_hex(bp: bytes) -> bytes: return bp.hex().encode() @binapy_checker("hex") def is_hex(bp: bytes) -> bool: return ( len(bp) % 2 == 0 and bp.isalnum() and set(bp.lower()).issubset(b"abcdef0123456789") )
StarcoderdataPython
1928462
# -*- coding: utf-8 -*- # Copyright 2021, CS GROUP - France, http://www.c-s.fr # # This file is part of EODAG project # https://www.github.com/CS-SI/EODAG # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from operator import attrgetter from pathlib import Path import pkg_resources from eodag.config import load_config from eodag.plugins.apis.base import Api from eodag.plugins.authentication.base import Authentication from eodag.plugins.base import EODAGPluginMount from eodag.plugins.crunch.base import Crunch from eodag.plugins.download.base import Download from eodag.plugins.search.base import Search from eodag.utils import GENERIC_PRODUCT_TYPE from eodag.utils.exceptions import UnsupportedProvider logger = logging.getLogger("eodag.plugins.manager") class PluginManager(object): """A manager for the plugins. The role of instances of this class (normally only one instance exists, created during instantiation of :class:`~eodag.api.core.EODataAccessGateway`. But nothing is done to enforce this) is to instantiate the plugins according to the providers configuration, keep track of them in memory, and manage a cache of plugins already constructed. The providers configuration contains information such as the name of the provider, the internet endpoint for accessing it, and the plugins to use to perform defined actions (search, download, authenticate, crunch). :param providers_config: The configuration with all information about the providers supported by the `eodag` :type providers_config: dict """ supported_topics = {"search", "download", "crunch", "auth", "api"} def __init__(self, providers_config): self.providers_config = providers_config # Load all the plugins. This will make all plugin classes of a particular # type to be available in the base plugin class's 'plugins' attribute. # For example, by importing module 'eodag.plugins.search.resto', the plugin # 'RestoSearch' will be available in self.supported_topics['search'].plugins for topic in self.supported_topics: # This way of discovering plugins means that anyone can create eodag # plugins as a separate python package (though it must require eodag), and # have it discovered as long as they declare an entry point of the type # 'eodag.plugins.search' for example in its setup script. See the setup # script of eodag for an example of how to do this. for entry_point in pkg_resources.iter_entry_points( "eodag.plugins.{}".format(topic) ): try: entry_point.load() except ImportError: import traceback as tb logger.warning("Unable to load plugin: %s.", entry_point.name) logger.warning("Reason:\n%s", tb.format_exc()) logger.warning( "Check that the plugin module (%s) is importable", entry_point.module_name, ) if entry_point.dist.project_name != "eodag": # use plugin providers if any plugin_providers_config_path = [ x for x in Path(entry_point.dist.location).rglob("providers.yml") if all(i not in str(x) for i in ["build", ".tox"]) ] if plugin_providers_config_path: self.providers_config.update( load_config(plugin_providers_config_path[0]) ) self.product_type_to_provider_config_map = {} for provider_config in self.providers_config.values(): for product_type in provider_config.products: product_type_providers = ( self.product_type_to_provider_config_map.setdefault( # noqa product_type, [] ) ) product_type_providers.append(provider_config) product_type_providers.sort(key=attrgetter("priority"), reverse=True) self._built_plugins_cache = {} def get_search_plugins(self, product_type=None, provider=None): """Build and return all the search plugins supporting the given product type, ordered by highest priority, or the search plugin of the given provider :param product_type: (Optional) The product type that the constructed plugins must support :type product_type: str :param provider: (Optional) The provider on which to get the search plugin :type provider: str :returns: All the plugins supporting the product type, one by one (a generator object) :rtype: types.GeneratorType(:class:`~eodag.plugins.search.Search`) :raises: :class:`~eodag.utils.exceptions.UnsupportedProvider` :raises: :class:`~eodag.utils.exceptions.UnsupportedProductType` :raises: StopIteration .. versionchanged:: 1.0 * ``product_type`` is now optional. If no product type is provided, return all search plugins, ordered by priority * A new optional parameter ``provider`` which defaults to ``None``, if we want to build the search plugin of that provider """ def get_plugin(): try: config.search.products = config.products config.search.priority = config.priority plugin = self._build_plugin(config.name, config.search, Search) except AttributeError: config.api.products = config.products config.api.priority = config.priority plugin = self._build_plugin(config.name, config.api, Api) return plugin if provider is not None: try: config = self.providers_config[provider] except KeyError: raise UnsupportedProvider yield get_plugin() # Signal the end of iteration as we already have what we wanted # In a for-loop, this exception is automatically catched raise StopIteration if product_type is None: for config in sorted( self.providers_config.values(), key=attrgetter("priority"), reverse=True ): yield get_plugin() # Signal the end of iteration as we already have what we wanted # In a for-loop, this exception is automatically catched raise StopIteration try: for config in self.product_type_to_provider_config_map[product_type]: yield get_plugin() except KeyError: logger.info( "UnsupportedProductType: %s, using generic settings", product_type ) for config in self.product_type_to_provider_config_map[ GENERIC_PRODUCT_TYPE ]: yield get_plugin() def get_download_plugin(self, product): """Build and return the download plugin capable of downloading the given product. :param product: The product to get a download plugin for :type product: :class:`~eodag.api.product._product.EOProduct` :returns: The download plugin capable of downloading the product :rtype: :class:`~eodag.plugins.download.Download` """ plugin_conf = self.providers_config[product.provider] try: plugin_conf.download.priority = plugin_conf.priority plugin = self._build_plugin( product.provider, plugin_conf.download, Download ) return plugin except AttributeError: plugin_conf.api.priority = plugin_conf.priority plugin = self._build_plugin(product.provider, plugin_conf.api, Api) return plugin def get_auth_plugin(self, provider): """Build and return the authentication plugin for the given product_type and provider :param provider: The provider for which to get the authentication plugin :type provider: str :returns: The Authentication plugin for the provider :rtype: :class:`~eodag.plugins.authentication.Authentication` .. versionchanged:: 1.0 * ``product_type`` is no longer needed to find the auth plugin """ plugin_conf = self.providers_config[provider] try: plugin_conf.auth.priority = plugin_conf.priority plugin = self._build_plugin(provider, plugin_conf.auth, Authentication) return plugin except AttributeError: # We guess the plugin being built is of type Api, therefore no need # for an Auth plugin. return None @staticmethod def get_crunch_plugin(name, **options): """Instantiate a eodag Crunch plugin whom class name is `name`, and configure it with the `options` :param name: The name of the Crunch plugin to instantiate :type name: str :param options: The configuration parameters of the cruncher :type options: dict :return: The cruncher named `name` :rtype: :class:`~eodag.plugins.crunch.Crunch` """ Klass = Crunch.get_plugin_by_class_name(name) return Klass(options) def set_priority(self, provider, priority): """Set the priority of the given provider :param provider: The provider which is assigned the priority :type provider: str :param priority: The priority to assign to the provider :type priority: int """ # Update the priority in the configurations so that it is taken into account # when a plugin of this provider is latterly built for ( product_type, provider_configs, ) in self.product_type_to_provider_config_map.items(): for config in provider_configs: if config.name == provider: config.priority = priority # Sort the provider configs, taking into account the new priority order provider_configs.sort(key=attrgetter("priority"), reverse=True) # Update the priority of already built plugins of the given provider for provider_name, topic_class in self._built_plugins_cache: if provider_name == provider: self._built_plugins_cache[(provider, topic_class)].priority = priority def _build_plugin(self, provider, plugin_conf, topic_class): """Build the plugin of the given topic with the given plugin configuration and registered as the given provider :param provider: The provider for which to build the plugin :type provider: str :param plugin_conf: The configuration of the plugin to be built :type plugin_conf: :class:`~eodag.config.PluginConfig` :param topic_class: The type of plugin to build :type topic_class: :class:`~eodag.plugin.base.PluginTopic` :returns: The built plugin :rtype: :class:`~eodag.plugin.search.Search` or :class:`~eodag.plugin.download.Download` or :class:`~eodag.plugin.authentication.Authentication` or :class:`~eodag.plugin.crunch.Crunch` """ cached_instance = self._built_plugins_cache.setdefault( (provider, topic_class.__name__), None ) if cached_instance is not None: return cached_instance plugin_class = EODAGPluginMount.get_plugin_by_class_name( topic_class, getattr(plugin_conf, "type") ) plugin = plugin_class(provider, plugin_conf) self._built_plugins_cache[(provider, topic_class.__name__)] = plugin return plugin
StarcoderdataPython
3317813
import os import sys from os.path import join, isdir, realpath, exists from shutil import rmtree NODE_MODULES = "node_modules" test = False repoRoot = sys.argv[1] rootPath = realpath(repoRoot) if not exists(rootPath): print("'{0}' does not exist. Exiting.").format(rootPath) sys.exit(1) if len(sys.argv) >= 3 and sys.argv[2] == "-t": test = True print("Deleting '{0}' dirs in '{1}'").format(NODE_MODULES, rootPath) for projectDir in os.listdir(rootPath): pdPath = realpath(join(rootPath, projectDir)) if isdir(pdPath): for subDir in os.listdir(pdPath): sdPath = realpath(join(pdPath, subDir)) if subDir == NODE_MODULES and isdir(sdPath): if test: print("[TEST] Deleting {0}").format(sdPath) else: print("Deleting {0}").format(sdPath) rmtree(sdPath,ignore_errors=False)
StarcoderdataPython
12840566
<filename>058.py from random import randint, choice from time import sleep print('_' * 40) print('Vou pensar em um número entre 0 e 10.\n') print('PROCESSANDO...') sleep(3) print('pronto!') sleep(0.5) n = int(input('Em que número eu pensei? ')) print('-' * 80) sleep(2) x = randint(0, 10) cont = 0 while n != x: if n < x: n = int(input('EROOOOOOOOOOUUUUUUUUUUU! É um valor maior. Tente novamente: ')) cont += 1 else: n = int(input('EROOOOOOOOOOUUUUUUUUUUU! É um valor menor. Tente novamente: ')) cont += 1 print(f'Parabéns, você acertou com {cont} jogadas! ')
StarcoderdataPython
11397487
<filename>test_app/forms.py<gh_stars>0 # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from thecut.ordering.forms import OrderMixin from django.forms import ModelForm from .models import OrderingTestModel class OrderingTestNoOrderFieldForm(OrderMixin, ModelForm): # A class to provide useful testing of the ordermixin class Meta: model = OrderingTestModel fields = ['id'] class OrderingTestHasOrderFieldForm(OrderMixin, ModelForm): # A class to provide useful testing of the ordermixin class Meta: model = OrderingTestModel fields = ['id', 'order']
StarcoderdataPython
3343974
import argparse from utils import process_config def get_eval_config(): parser = argparse.ArgumentParser("Visual Transformer Evaluation") # basic config parser.add_argument("--n-gpu", type=int, default=1, help="number of gpus to use") parser.add_argument("--model-arch", type=str, default="b16", help='model setting to use', choices=['b16', 'b32', 'l16', 'l32', 'h14']) parser.add_argument("--checkpoint-path", type=str, default=None, help="model checkpoint to load weights") parser.add_argument("--image-size", type=int, default=384, help="input image size", choices=[224, 384]) parser.add_argument("--batch-size", type=int, default=32, help="batch size") parser.add_argument("--num-workers", type=int, default=8, help="number of workers") parser.add_argument("--data-dir", type=str, default='../data', help='data folder') parser.add_argument("--dataset", type=str, default='ImageNet', help="dataset for fine-tunning/evaluation") parser.add_argument("--num-classes", type=int, default=1000, help="number of classes in dataset") config = parser.parse_args() # model config config = eval("get_{}_config".format(config.model_arch))(config) print_config(config) return config def get_train_config(): parser = argparse.ArgumentParser("Visual Transformer Train/Fine-tune") # basic config parser.add_argument("--exp-name", type=str, default="ft", help="experiment name") parser.add_argument("--n-gpu", type=int, default=1, help="number of gpus to use") parser.add_argument("--tensorboard", default=False, action='store_true', help='flag of turnning on tensorboard') parser.add_argument("--model-arch", type=str, default="b16", help='model setting to use', choices=['b16', 'b32', 'l16', 'l32', 'h14']) parser.add_argument("--checkpoint-path", type=str, default=None, help="model checkpoint to load weights") parser.add_argument("--image-size", type=int, default=384, help="input image size", choices=[224, 384]) parser.add_argument("--vit-image-size", type=int, default=384, help="input image size for ViT", choices=[224, 384]) parser.add_argument("--batch-size", type=int, default=32, help="batch size") parser.add_argument("--num-workers", type=int, default=8, help="number of workers") parser.add_argument("--train-steps", type=int, default=10000, help="number of training/fine-tunning steps") parser.add_argument("--train-epochs", type=int, default=10, help="number of training/fine-tunning steps") parser.add_argument("--lr", type=float, default=1e-3, help="learning rate") parser.add_argument("--wd", type=float, default=1e-4, help='weight decay') parser.add_argument("--warmup-steps", type=int, default=100, help='learning rate warm up steps') parser.add_argument("--data-dir", type=str, default='../data', help='data folder') parser.add_argument("--dataset", type=str, default='ImageNet', help="dataset for fine-tunning/evaluation") parser.add_argument("--num-classes", type=int, default=1000, help="number of classes in dataset") parser.add_argument("--momentum", type=float, default=0.9, help='momentum') ## hyperparameters below are for oracle training parser.add_argument("--random-seed", type=int, default=-1, help='Learning rate warm up steps') parser.add_argument("--classifier", type=str, default="transformer", help='Model setting to use, transformer|resnet|efficientnet') parser.add_argument("--oracle-loss", type=str, default='ce', help="Oracle loss, options: ce|focal|tcp|steep") parser.add_argument("--oracle-type", type=str, default='transformer', help="transformer|resnet") parser.add_argument("--oracle-feat-dim", type=int, default=768, help="Dimension of output feature of oracle backbone, options: 768|2048") parser.add_argument("--oracle-model-arch", type=str, default="b16", help='Model setting to use', choices=['b16', 'b32', 'l16', 'l32', 'h14']) parser.add_argument("--oracle-checkpoint-path", type=str, default=None, help="Oracle checkpoint to load weights for initialization") parser.add_argument("--oracle-pretrained", type=str, default=None, help="Oracle checkpoint to load weights for fine-tunning") parser.add_argument("--oracle-outdim", type=int, default=1, help="Oracle output dimension") parser.add_argument('--oracle-class-weight', nargs='*', type=float, help='Class weight') parser.add_argument('--oracle-loss-hyperparam', nargs='*', type=float, help='Loss hyperparameters') config = parser.parse_args() # model config config = eval("get_{}_config".format(config.model_arch))(config) process_config(config) print_config(config) return config def get_b16_config(config): """ ViT-B/16 configuration """ config.patch_size = 16 config.emb_dim = 768 config.mlp_dim = 3072 config.num_heads = 12 config.num_layers = 12 config.attn_dropout_rate = 0.0 config.dropout_rate = 0.1 return config def get_b32_config(config): """ ViT-B/32 configuration """ config = get_b16_config(config) config.patch_size = 32 return config def get_l16_config(config): """ ViT-L/16 configuration """ config.patch_size = 16 config.emb_dim = 1024 config.mlp_dim = 4096 config.num_heads = 16 config.num_layers = 24 config.attn_dropout_rate = 0.0 config.dropout_rate = 0.1 return config def get_l32_config(config): """ Vit-L/32 configuration """ config = get_l16_config(config) config.patch_size = 32 return config def get_h14_config(config): """ ViT-H/14 configuration """ config.patch_size = 14 config.emb_dim = 1280 config.mlp_dim = 5120 config.num_heads = 16 config.num_layers = 32 config.attn_dropout_rate = 0.0 config.dropout_rate = 0.1 return config def print_config(config): message = '' message += '----------------- Config ---------------\n' for k, v in sorted(vars(config).items()): comment = '' message += '{:>35}: {:<30}{}\n'.format(str(k), str(v), comment) message += '----------------- End -------------------' print(message)
StarcoderdataPython
288886
import abc from pydnameth.config.experiment.types import Task from pydnameth.infrastucture.load.cpg import load_cpg from pydnameth.infrastucture.load.table import load_table_dict class LoadStrategy(metaclass=abc.ABCMeta): @abc.abstractmethod def load(self, config, configs_child): pass class CPGLoadStrategy(LoadStrategy): def load(self, config, configs_child): load_cpg(config) config.base_list = config.cpg_list config.base_dict = config.cpg_dict config.base_data = config.cpg_data for config_child in configs_child: config_child.base_list = config.base_list config_child.base_dict = config.base_dict config_child.base_data = config.base_data if config.experiment.task == Task.table or config.experiment.task == Task.clock: for config_child in configs_child: if config_child.experiment.task == Task.table: config_child.advanced_data = load_table_dict(config_child) config_child.advanced_list = config_child.base_list config_child.advanced_dict = {} row_id = 0 for item in config_child.advanced_data['item']: config_child.advanced_dict[item] = row_id row_id += 1 class AttributesLoadStrategy(LoadStrategy): def load(self, config, configs_child): pass
StarcoderdataPython
107954
# # Copyright (C) 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # model model = Model() i1 = Input("input", "TENSOR_FLOAT32", "{2, 2}") perms = Input("perms", "TENSOR_INT32", "{0}") output = Output("output", "TENSOR_FLOAT32", "{2, 2}") model = model.Operation("TRANSPOSE", i1, perms).To(output) # Additional data type quant8 = DataTypeConverter().Identify({ i1: ("TENSOR_QUANT8_ASYMM", 0.5, 0), output: ("TENSOR_QUANT8_ASYMM", 0.5, 0) }) # Instantiate an example Example({ i1: [1.0, 2.0, 3.0, 4.0], perms: [], output: [1.0, 3.0, 2.0, 4.0] }).AddVariations("relaxed", quant8) # TRANSPOSE of data type TENSOR_FLOAT32 and TENSOR_QUANT8_ASYMM is introduced in V1_1. Example.SetVersion("V1_1", "transpose_v1_2", "transpose_v1_2_all_inputs_as_internal", "transpose_v1_2_quant8", "transpose_v1_2_quant8_all_inputs_as_internal") # zero-sized input # Use BOX_WITH_NMS_LIMIT op to generate a zero-sized internal tensor for box cooridnates. p1 = Parameter("scores", "TENSOR_FLOAT32", "{1, 2}", [0.90, 0.10]) # scores p2 = Parameter("roi", "TENSOR_FLOAT32", "{1, 8}", [1, 1, 10, 10, 0, 0, 10, 10]) # roi o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out tmp1 = Internal("roiOut", "TENSOR_FLOAT32", "{0, 4}") # roi out tmp2 = Internal("batchSplitOut", "TENSOR_INT32", "{0}") # batch split out model = Model("zero_sized").Operation("BOX_WITH_NMS_LIMIT", p1, p2, [0], 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, tmp1, o2, tmp2) # Use ROI_ALIGN op to convert into zero-sized feature map. layout = BoolScalar("layout", False) # NHWC i1 = Input("in", "TENSOR_FLOAT32", "{1, 1, 1, 1}") zero_sized = Internal("featureMap", "TENSOR_FLOAT32", "{0, 2, 2, 1}") model = model.Operation("ROI_ALIGN", i1, tmp1, tmp2, 2, 2, 2.0, 2.0, 4, 4, layout).To(zero_sized) # TRANSPOSE op with numBatches = 0. o3 = Output("out", "TENSOR_FLOAT32", "{0, 1, 2, 2}") # out model = model.Operation("TRANSPOSE", zero_sized, [0, 3, 1, 2]).To(o3) quant8 = DataTypeConverter().Identify({ p1: ("TENSOR_QUANT8_ASYMM", 0.1, 128), p2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), o1: ("TENSOR_QUANT8_ASYMM", 0.1, 128), tmp1: ("TENSOR_QUANT16_ASYMM", 0.125, 0), i1: ("TENSOR_QUANT8_ASYMM", 0.1, 128), zero_sized: ("TENSOR_QUANT8_ASYMM", 0.1, 128), o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) }) Example({ i1: [1], o1: [], o2: [], o3: [], }).AddVariations("relaxed", quant8, "float16")
StarcoderdataPython
3583362
import requests #api_key='<KEY>' api_key='<KEY>' #url = 'http://172.17.0.3:9002//api/external/all-mooring/'+api_key+'/?mooring_specification=private' url = 'https://mooring-api-dev-oim01.dbca.wa.gov.au/api/external/vessel-create-update/'+api_key+'/' myobj = {'rego_no': 'D8888','vessel_size': 1.1, 'vessel_draft': 1.2, 'vessel_beam': 1.3, 'vessel_weight' : '1.4',} x = requests.post(url, data = myobj) print (x.text)
StarcoderdataPython
1884658
def display_board(board): """显示棋盘""" print("\t{0} | {1} | {2}".format(board[0], board[1], board[2])) print("\t—-+-—-+-—") print("\t{0} | {1} | {2}".format(board[3], board[4], board[5])) print("\t—-+-—-+-—") print("\t{0} | {1} | {2}".format(board[6], board[7], board[8])) def legal_moves(board): """返回可落子的位置列表""" moves = [] # 存放的是int类型 for i in range(0, 9): if board[i] in list("012345678"): moves.append(i) return moves def getPlayerMove(board): """询问并确定玩家的选择落子位置,无效位置时重复询问""" move = 9 while move not in legal_moves(board): move = int(input("请选择落子位置(0-8):")) return move def getComputerMove(board, computerLetter, playerLetter): """核心算法:计算人工智能AI的落子位置""" boardcopy = board.copy() # 规则一:判断如果某位置落子可以获胜,则选择该位置 for move in legal_moves(boardcopy): boardcopy[move] = computerLetter if isWinner(boardcopy): return move boardcopy[move] = str(move) # 规则二:某个位置玩家下一步落子可以获胜,则选择该位置 for move in legal_moves(boardcopy): boardcopy[move] = playerLetter if isWinner(boardcopy): return move boardcopy[move] = str(move) # 规则三:按照中心、角、边的顺序选择空的位置 for move in (4, 0, 2, 6, 8, 1, 3, 5, 7): if move in legal_moves(board): return move def isWinner(board): """判断所给的棋子是否获胜""" WAYS_TO_WIN = {(0, 1, 2), (3, 4, 5), (6, 7, 8), (0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 4, 8), (2, 4, 6)} for r in WAYS_TO_WIN: if board[r[0]] == board[r[1]] == board[r[2]]: return True return False def isTie(board): """判断是否平局""" for i in list("012345678"): if i in board: return False return True def tic_tac_toe(): """井字棋""" board = list("012345678") playerLetter = input("请选择棋子X或者O(X先走,O后走):") if playerLetter in ("X", "x"): turn = "player" playerLetter = "X" computerLetter = "O" else: turn = "computer" computerLetter = "X" playerLetter = "O" print("{}先走!".format(turn)) while True: display_board(board) if turn == 'player': move = getPlayerMove(board) board[move] = playerLetter if isWinner(board): display_board(board) print("恭喜玩家获胜!") break else: turn = "computer" else: move = getComputerMove(board, computerLetter, playerLetter) print("计算机人工智能AI落子位置:", move) board[move] = computerLetter if isWinner(board): display_board(board) print("计算机人工智能AI获胜!") break else: turn = "player" if isTie(board): display_board(board) print('平局!!!') break if __name__ == '__main__': tic_tac_toe()
StarcoderdataPython
4937867
# -*- coding: utf-8 -*- import csv import codecs import decimal path_pomodone_log = 'pomodone-log.csv' path_trello_archived = 'Archived trello.csv' path_trello = 'trello.csv' path_output = 'output.csv' rfile_pomodone_log = codecs.open(path_pomodone_log, 'rb', encoding="utf-8") rfile_trello_archived = codecs.open( path_trello_archived, 'rb', encoding="big5") rfile_trello = codecs.open(path_trello, 'rb', encoding="big5") csv_pomodone_log = csv.DictReader(rfile_pomodone_log, delimiter=',') csv_trello_archived = csv.DictReader(rfile_trello_archived, delimiter=',') csv_trello = csv.DictReader(rfile_trello, delimiter=',') write_output = codecs.open(path_output, 'w', encoding='utf-8') dict_task = {} # name dict_time = {} # time spent dict_count = {} # excution times dict_label = {} # labels list_test = [] task_date = "" task_date_temp = "" count_date = 0 # read pomodone logs as dictionary for temp in csv_pomodone_log: task_id = temp['description'][temp['description'].find('c/') + 2:] if task_date_temp == str(temp['date']): pass else: task_date_temp = str(temp['date']) count_date += 1 if len(task_id) == 0: continue task_time = ( int(temp['time spent'][:2]) * 60 * 60 + int(temp['time spent'][3:5]) * 60 + int(temp['time spent'][7:])) # task id dictionary try: test = dict_task[task_id] except KeyError: dict_task[task_id] = task_id # 時間 try: test = dict_time[task_id] task_time_temp = dict_time[task_id] dict_time[task_id] = task_time_temp + task_time except KeyError: dict_time[task_id] = task_time # 計數 if int(temp['time spent'][:2]) * 60 * 60 > 1500: counter = 2 else: counter = 1 try: test = dict_time[task_id] task_count_temp = dict_count[task_id] dict_count[task_id] += counter except KeyError: dict_count[task_id] = counter # 標籤 try: test = dict_label[task_id] except KeyError: dict_label[task_id] = task_id try: list_test.index(task_id) except ValueError: list_test.append(task_id) for temp in csv_trello_archived: task_id = temp['Card URL'][temp['Card URL'].find('c/') + 2:] if len(task_id) == 0: continue try: test = dict_task[task_id] task_title = temp['Title'][temp['Title'].find('] ') + 2:] task_label = temp['Labels'] # 項目 dict_task[task_id] = task_title dict_label[task_id] = task_label except KeyError: pass for temp in csv_trello: task_id = temp['Card URL'][temp['Card URL'].find('c/') + 2:] try: test = dict_task[task_id] task_title = temp['Title'] task_label = temp['Labels'] # 項目 dict_task[task_id] = task_title dict_label[task_id] = task_label except KeyError: pass write_output.write('id,工項,總工時(秒),總工時(分),總工時(時),總工時(日),\ 佔用工作日,總工作日佔比,執行次數,日均執行,標籤\n') def wfile_output(task_id, task, time, count, labels): write_output.write('"' + str(task_id) + '",') # id write_output.write('"' + str(task) + '",') # 工項 write_output.write('"' + str(time) + '",') # 總工時(秒) write_output.write('"' + str(decimal.Decimal( time / 60).quantize(decimal.Decimal('0.01'))) + '",') # 總工時(分) write_output.write('"' + str( decimal.Decimal(time / 60 / 60).quantize( decimal.Decimal('0.01'))) + '",') # 總工時(時) write_output.write('"' + str( decimal.Decimal(time / 60 / 60 / 24).quantize( decimal.Decimal('0.01'))) + '",') # 總工時(日) write_output.write('"' + str(decimal.Decimal( time / 60 / time_avg_mins).quantize( decimal.Decimal('0.01'))) + '",') # 佔用工作日 write_output.write('"' + str(decimal.Decimal( time / 60 / time_avg_mins / count_date).quantize( decimal.Decimal('0.0001'))) + '",') # 總工作日佔比 write_output.write('"' + str(count) + '",') # 執行次數 write_output.write('"' + str( decimal.Decimal(count / count_date).quantize( decimal.Decimal('0.01'))) + '",') # 日均執行 write_output.write('"' + str(labels) + '"\n') # 標籤 time_total_secs = 0 for temp in dict_task: time_total_secs += dict_time[temp] time_avg_mins = time_total_secs / 60 / count_date time_avg_hours = time_total_secs / 60 / 60 / count_date for temp in dict_task: wfile_output( temp, dict_task[temp], dict_time[temp], dict_count[temp], dict_label[temp])
StarcoderdataPython
1878168
import sys import os.path # sys.path.insert(0, os.path.abspath("./simple-dnn")) import tensorflow as tf import numpy as np import tensorflow.contrib.slim as slim import scipy.misc import time class BaseGAN(object): """ Base class for Generative Adversarial Network implementation. """ def __init__(self, x_dims, x_ch, y_dim, generator=None, # Generator Net discriminator=None, # Discriminator Net x_reshape=None, x_scale=None, x_inverse_scale=None, z_dim=100, d_optimizer=tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5), g_optimizer=tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5), d_label_smooth=0.75, batch_size=128, iterations=2000, display_step=100, save_step=1000, oracle=None, graph=None, sess=None, sample_writer=None, # Object of SampleWriter class. model_directory=None, #Directory to save trained model to. ): """ Args: x_dims - list; the width of and hight of image x. x_ch - int; the number of channels(depth) of input x. y_dim - int; number of data labeles. z_dim - int; number of units for the latent variable z. generator - an callable or an object with __call__ method; for creating G network. discriminator - an callable or an object with __call__ method; for creating D network. x_reshape - a callable; for reshaping input. It is advised to rescale input between [-1, 1] x_scale - a callable; for rescaling input to range between [-1, 1]. x_inverse_scale - callable; for reversing the scale from [-1, 1] to original input range. d_optimizer - optimizer for D network. g_optimizer - optimizer for G network. d_label_smooth - Desired probability for real class, to enable one side label smotiong as suggensted in http://papers.nips.cc/paper/6124-improved-techniques-for-training-gans batch_size - training batch size, iterations - number of training iterations. display_step - intervals to display training stats. save_step - intervals to save trained model. oracle - If used the oracle is a callable for measuring the quality of generated samples. It should be a callable or a class with __call__ function implemented. the callable should take (X, reformat=False) as input an return a single float value. graph - The tensorflow graph to use. If None new graph is created. sess - The tenserflow session to use. If None new session is created. sample_writer - Object of SampleWriter class. model_directory - model saving directory. Defaults is None. """ # Data Config self.x_dims = x_dims self.x_ch = x_ch self.y_dim = y_dim self.z_size = z_dim self.x_reshape = x_reshape if x_scale is not None or x_inverse_scale is not None: # If one is not none the both should be not none assert x_scale is not None and x_inverse_scale is not None self.x_scale = x_scale self.x_inverse_scale = x_inverse_scale ######################## Generator and Discriminator Networks self.generator = generator self.discriminator = discriminator ######################## Training config self.d_optimizer = d_optimizer self.g_optimizer = g_optimizer self.d_label_smooth = d_label_smooth self.iterations = iterations self.batch_size = batch_size self.display_step = display_step self.save_step = save_step self.sample_writer = sample_writer self.model_directory = model_directory self.oracle = oracle if graph: self.graph = graph else: self.graph = tf.Graph() with self.graph.as_default(): self.build_model() if sess: self.sess = sess else: self.sess = tf.Session() # To save and restore checkpoints. self.saver = tf.train.Saver() def build_model(self): pass def fit(self, X, y=None, val_x=None, val_y=None): pass def _iter_stats(self, i, start_time, gLoss, dLoss, xs=None, ys=None, zs=None, ys_fake=None, val_x=None, val_y=None): pass def generate(self, ys=None, n_samples=None): pass def x_reformat(self, xs): """ Rescale and reshape x if x_scale and x_reshape functions are provided. """ if self.x_scale is not None: xs = self.x_scale(xs) if self.x_reshape is not None: xs = self.x_reshape(xs) return xs def _save_samples(self, i): if self.sample_writer is None: return n_samples = 36 generated_x = self.generate(n_samples) self.sample_writer.write(generated_x, str(i)) def _next_batch(self, x, y): start_index = np.random.randint(0, x.shape[0] - self.batch_size) return x[start_index:(start_index + self.batch_size)], \ y[start_index:(start_index + self.batch_size)] def _accuracy(self, val_x, val_y, reformat=True): pred_y = self.predict(val_x, reformat=reformat) return (np.argmax(val_y, axis=1) == pred_y).mean() def predict(self, X, reformat=True): probs = self.predict_prob(X, reformat=reformat) if self.y_dim == 1: pred = np.zeros_like(probs) pred[probs > 0.5] = 1 else: pred = np.argmax(probs, axis=1) return pred def predict_prob(self, X, reformat=True): self.discriminator.is_training = False probs_list = [] with self.graph.as_default(): for i in range(0, X.shape[0], self.batch_size): start = i end = min(i+self.batch_size, X.shape[0]) if reformat: xs = self.x_reformat(X[start:end]) else: xs = X[start:end] if self.y_dim == 1: probs_list.append(self.sess.run(tf.sigmoid(logits=self.Dx), feed_dict={self.real_in:xs})) else: probs_list.append(self.sess.run(tf.nn.softmax(logits=self.Dx), feed_dict={self.real_in:xs})) self.discriminator.is_training = True return np.vstack(probs_list) def save_model(self, model_file_name): if self.model_directory is None: return 'ERROR: Model directory is None' if not os.path.exists(self.model_directory): os.makedirs(self.model_directory) return self.saver.save(self.sess, os.path.join(self.model_directory, model_file_name)) def restore_model(self, model_file): with self.graph.as_default(): self.saver.restore(self.sess, model_file) def generate(self, n_samples=36, ys=None): """ Generate samples. :param n_samples: number of samples to generate if ys is not specified. """ if ys is not None: n_samples = ys.shape[0] self.discriminator.is_training = False generated_x_list = [] batch = self.batch_size for i in range(0, n_samples, batch): start = i end = min(i+batch, n_samples) zs = np.random.uniform(-1.0,1.0, size=[end-start,self.z_size]).astype(np.float32) if self.conditional: if ys is None: gen_ys = np.random.multinomial(1, [1.0 / float(self.y_dim+1)]*(self.y_dim+1), end-start) else: gen_ys = np.concatenate((ys[start:end], np.zeros((end-start, 1))), axis=1) generated_x_list.append(self.sess.run(self.Gz, feed_dict={self.z_in:zs, self.real_label:gen_ys})) else: generated_x_list.append(self.sess.run(self.Gz, feed_dict={self.z_in:zs})) generated_x = np.vstack(generated_x_list) self.discriminator.is_training = True return self.x_inverse_scale(generated_x) if self.x_inverse_scale is not None \ else generated_x class MultiClassGAN(BaseGAN): """ Implementation of Deep Convolutional Conditional Generative Adversarial Network. """ def __init__(self, x_dims, x_ch, y_dim, generator=None, # Generator Net discriminator=None, # Discriminator Net x_reshape=None, x_scale=None, x_inverse_scale=None, z_dim=100, d_optimizer=tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5), g_optimizer=tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5), g_loss_fn='default', g_target=1.0, d_label_smooth=0.75, sigmoid_alpha=10, l2_penalty=0.01, conditional=False, batch_size=128, iterations=2000, display_step=100, save_step=1000, oracle=None, graph=None, sess=None, sample_writer=None, #Directory to save sample images from generator in. model_directory=None, #Directory to save trained model to. ): """ Args: x_dims - list; the width of and hight of image x. x_ch - int; the number of channels(depth) of input x. y_dim - int; number of data labeles. z_dim - int; number of units for the latent variable z. generator - an callable or an object with __call__ method; for creating G network. discriminator - an callable or an object with __call__ method; for creating D network. x_reshape - a callable; for reshaping input. It is advised to rescale input between [-1, 1] x_scale - a callable; for rescaling input to range between [-1, 1]. x_inverse_scale - callable; for reversing the scale from [-1, 1] to original input range. d_optimizer - optimizer for D network. g_optimizer - optimizer for G network. g_loss_fn - type of loss function used for G. Options include: ['default', 'smoothed', 'sigmoid', 'feature_matching', 'feature_default', 'l2_default', 'least_square'] g_target - the target probability when g_loss_fn='smoothed'. For Generated instances. For G smoting set to value < 1.0. d_label_smooth - Desired probability for real class, to enable one side label smotiong as suggensted in http://papers.nips.cc/paper/6124-improved-techniques-for-training-gans sigmoid_alpha - alpha values when g_loss_fn='sigmoid' l2_penalty - l2 penalty coefficient when g_loss_fn='l2_default' batch_size - training batch size, iterations - number of training iterations. display_step - intervals to display training stats. save_step - intervals to save trained model. oracle - If used the oracle is a callable for measuring the quality of generated samples. It should be a callable or a class with __call__ function implemented. the callable should take (X, reformat=False) as input an return a single float value. graph - The tensorflow graph to use. If None new graph is created. sess - The tenserflow session to use. If None new session is created. sample_writer - Object of SampleWriter class. model_directory - model saving directory. Defaults is None. """ ######################## Training config assert g_loss_fn in ['default', 'smoothed', 'sigmoid', 'feature_matching', 'feature_default', 'l2_default', 'least_square'] self.g_loss_fn = g_loss_fn if self.g_loss_fn == 'feature_matching' or self.g_loss_fn == 'feature_default': assert matching_layer == -1 or matching_layer < len(conv_units) self.matching_layer = matching_layer if matching_layer != -1 else len(conv_units) - 1 self.sigmoid_alpha = sigmoid_alpha self.g_target = g_target self.l2_penalty = l2_penalty self.conditional = conditional super(MultiClassGAN, self).__init__( x_dims, x_ch, y_dim, generator=generator, discriminator=discriminator, z_dim=z_dim, x_reshape=x_reshape, x_scale=x_scale, x_inverse_scale=x_inverse_scale, d_optimizer=d_optimizer, g_optimizer=g_optimizer, d_label_smooth=d_label_smooth, batch_size=batch_size, iterations=iterations, display_step=display_step, save_step=save_step, oracle=oracle, graph=graph, sess=sess, sample_writer=sample_writer, model_directory=model_directory) @staticmethod def sigmoid_cost(input, alpha): exp = tf.exp(-alpha * (input - 0.5)) return tf.divide(1.0, 1 + exp) def build_model(self): with self.graph.as_default(): # Placeholders self.z_in = tf.placeholder(name='z_in', shape=[None,self.z_size], dtype=tf.float32) #Random vector self.real_in = tf.placeholder(name='real_in', shape=[None] + self.x_dims + [self.x_ch], dtype=tf.float32) #Real images self.real_label = tf.placeholder(name='real_label', shape=[None, self.y_dim + 1], dtype=tf.float32) #real image labels self.fake_label = tf.placeholder(name='fake_label', shape=[None, self.y_dim + 1], dtype=tf.float32) #fake image labels # One side D label smoothing self.real_label = self.real_label * self.d_label_smooth self.Gz = self.generator(self.z_in, ys=self.real_label if self.conditional else None) # Condition generator on real labels self.Dx, fm_layer_x = self.discriminator( self.real_in, logits=True, matching_layer=self.matching_layer if self.g_loss_fn == 'feature_matching' else None) self.Dg, fm_layer_g = self.discriminator( self.Gz, reuse=True, logits=True, matching_layer=self.matching_layer if self.g_loss_fn == 'feature_matching' else None) Dx_softmax = tf.nn.softmax(logits=self.Dx) Dg_softmax = tf.nn.softmax(logits=self.Dg) # d_loss and g_loss together define the optimization objective of the GAN. if self.g_loss_fn == 'least_square': ls_dx = 0.5 * tf.reduce_mean(tf.square(tf.subtract(Dx_softmax, self.real_label))) ls_dg = 0.5 * tf.reduce_mean(tf.square(tf.subtract(Dg_softmax, self.fake_label))) self.d_loss = ls_dx + ls_dg else: d_loss_real = tf.nn.softmax_cross_entropy_with_logits(logits=self.Dx, labels=self.real_label) d_loss_fake = tf.nn.softmax_cross_entropy_with_logits(logits=self.Dg, labels=self.fake_label) self.d_loss = tf.reduce_mean(d_loss_real + d_loss_fake) tvars = tf.trainable_variables() d_vars = [var for var in tvars if 'd_' in var.name] g_vars = [var for var in tvars if 'g_' in var.name] if self.g_loss_fn == 'smoothed': self.g_loss = -tf.reduce_mean( (1 - self.g_target) * tf.log(Dg_softmax[:, -1]) + self.g_target * tf.log(1. - Dg_softmax[:, -1]) ) elif self.g_loss_fn == 'sigmoid': self.g_loss = -tf.reduce_mean(tf.log(1 - MultiClassGAN.sigmoid_cost( Dg_softmax[:, -1], self.sigmoid_alpha))) elif self.g_loss_fn == 'feature_matching': self.g_loss = tf.reduce_mean(tf.square(tf.subtract(fm_layer_x, fm_layer_g))) elif self.g_loss_fn == 'feature_default': self.g_loss = -tf.reduce_mean(tf.log(1. - Dg_softmax[:, -1])) + \ tf.reduce_mean(tf.square(tf.subtract(fm_layer_x, fm_layer_g))) elif self.g_loss_fn == 'l2_default': g_l2_loss = 0. for w in g_vars: g_l2_loss += (self.l2_penalty * tf.reduce_mean(tf.nn.l2_loss(w))) self.g_loss = -tf.reduce_mean(tf.log(1. - Dg_softmax[:, -1])) + g_l2_loss elif self.g_loss_fn == 'least_square': # based on https://arxiv.org/abs/1611.04076 self.g_loss = 0.5 * tf.reduce_mean(tf.square((1. - Dg_softmax[:, -1]) - 1)) else: self.g_loss = -tf.reduce_mean(tf.log(1. - Dg_softmax[:, -1])) # Compute gradients trainerD = self.d_optimizer trainerG = self.g_optimizer d_grads = trainerD.compute_gradients(self.d_loss, d_vars) #Only update the weights for the discriminator network. g_grads = trainerG.compute_gradients(self.g_loss, g_vars) #Only update the weights for the generator network. ## For Debuging d_grads_decomposed, _ = list(zip(*d_grads)) g_grads_decomposed, _ = list(zip(*g_grads)) self.d_grad_norm = tf.global_norm(d_grads_decomposed) self.g_grad_norm = tf.global_norm(g_grads_decomposed) self.d_w_norm = tf.global_norm(d_vars) self.g_w_norm = tf.global_norm(g_vars) ## self.update_D = trainerD.apply_gradients(d_grads) self.update_G = trainerG.apply_gradients(g_grads) def _iter_stats(self, i, start_time, gLoss, dLoss, xs=None, ys=None, zs=None, ys_fake=None, val_x=None, val_y=None): d_grad_norm, g_grad_norm, oracle_x, d_w_norm, g_w_norm = self.sess.run( (self.d_grad_norm, self.g_grad_norm, self.Gz, self.d_w_norm, self.g_w_norm), feed_dict={self.z_in:zs, self.real_in:xs, self.real_label:ys, self.fake_label:ys_fake}) tr_acc = None if xs is not None and ys is not None and ys_fake is not None: tr_x = np.concatenate((xs, oracle_x), axis=0) tr_y = np.concatenate((ys, ys_fake), axis=0) tr_acc = self._accuracy(tr_x, tr_y, reformat=False) v_acc = None if val_x is not None and val_y is not None: v_acc = self._accuracy(val_x, val_y) oracle_acc = None if self.oracle is not None: oracle_acc = self.oracle(oracle_x) if i == 0: print('{0:5}| {1:6}| {2:5}| {3:4}| {4:6}| {5:6}| {6:6}| {7:5}| {8:4}| {9:6}| {10:6}'.format( 'i', 'GLOSS', 'DLOSS', 'TIME', 'GGRAD', 'DGRAD', 'TR_ACC','V_ACC', 'ORA', 'DW', 'GW')) print('{0:5}| {1:5.3}| {2:5.3}| {3:4}s| {4}| {5}| {6}| {7}| {8}| {9}| {10}'.format( i, gLoss, dLoss, int(time.time()-start_time), ' ' if g_grad_norm is None else '{:6.4}'.format(g_grad_norm), ' ' if d_grad_norm is None else '{:6.4}'.format(d_grad_norm), ' ' if tr_acc is None else '{:6.3}'.format(tr_acc), ' ' if v_acc is None else '{:5.3}'.format(v_acc), ' ' if oracle_acc is None else '{:4.2}'.format(oracle_acc), ' ' if d_w_norm is None else '{:6.4}'.format(d_w_norm), ' ' if g_w_norm is None else '{:6.4}'.format(g_w_norm))) def fit(self, X, y=None, val_x=None, val_y=None): start = time.time() self.discriminator.is_training = True with self.graph.as_default(): self.sess.run(tf.global_variables_initializer()) for i in range(self.iterations): zs = np.random.uniform(-1.0, 1.0, size=[self.batch_size, self.z_size]).astype(np.float32) xs, ys = self._next_batch(X, y) xs = self.x_reformat(xs) # Create space for the fake class label for the real data labels ys = np.concatenate((ys, np.zeros_like(ys[:,0])[:,None]), axis=1) # Create the labels for the generated data. ys_fake = np.zeros_like(ys) ys_fake[:,-1] = 1 _, dLoss = self.sess.run( [self.update_D, self.d_loss], feed_dict={self.z_in:zs, self.real_in:xs, self.real_label:ys, self.fake_label:ys_fake}) _, gLoss = self.sess.run( [self.update_G, self.g_loss], feed_dict={self.z_in:zs, self.real_in:xs, self.real_label:ys}) if i % self.display_step == 0: self._iter_stats(i, start, gLoss, dLoss, xs=xs, ys=ys, zs=zs, ys_fake=ys_fake, val_x=val_x, val_y=val_y) self._save_samples(i) if i % self.save_step == 0 and i != 0 and self.model_directory is not None: self.save_model('model-'+str(i)+'.cptk') print("Saved Model") self._iter_stats(i, start, gLoss, dLoss, xs=xs, ys=ys, zs=zs, ys_fake=ys_fake, val_x=val_x, val_y=val_y) self._save_samples(i) if self.model_directory is not None: self.save_model('model-'+str(i)+'.cptk') print("Saved Model") self.discriminator.is_training = False class FlatGAN(BaseGAN): """ Implementation of Deep Convolutional Conditional Generative Adversarial Network. """ def __init__(self, x_dims, x_ch, y_dim, generator=None, # Generator Net discriminator=None, # Discriminator Net x_reshape=None, x_scale=None, x_inverse_scale=None, z_dim=100, d_optimizer=tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5), g_optimizer=tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5), d_label_smooth=1., batch_size=128, iterations=2000, display_step=100, save_step=1000, d_iter=1, # number of discriminator update for each generator update conditional=False, oracle=None, graph=None, sess=None, sample_writer=None, #Directory to save sample images from generator in. model_directory=None, #Directory to save trained model to. ): ######################## Training config self.d_iter = d_iter self.conditional = conditional super(FlatGAN, self).__init__( x_dims, x_ch, y_dim, generator=generator, discriminator=discriminator, z_dim=z_dim, x_reshape=x_reshape, x_scale=x_scale, x_inverse_scale=x_inverse_scale, d_optimizer=d_optimizer, g_optimizer=g_optimizer, d_label_smooth=d_label_smooth, batch_size=batch_size, iterations=iterations, display_step=display_step, save_step=save_step, oracle=oracle, graph=graph, sess=sess, sample_writer=sample_writer, model_directory=model_directory) def build_model(self): with self.graph.as_default(): n_features = 1 for dim in self.x_dims: n_features *= dim n_features *= self.x_ch # Placeholders self.z_in = tf.placeholder(shape=[None,self.z_size], dtype=tf.float32) self.real_in = tf.placeholder( shape=[None, n_features], dtype=tf.float32) #Real samples self.real_label = tf.placeholder( shape=[None, self.y_dim + (0 if self.y_dim == 1 else 1)], dtype=tf.float32) #real sample labels self.fake_label = tf.placeholder( shape=[None, self.y_dim + (0 if self.y_dim == 1 else 1)], dtype=tf.float32) #fake sample labels # One side D label smoothing self.real_label = self.real_label * self.d_label_smooth # Condition generator on real labels self.Gz = self.generator(self.z_in, ys=self.real_label if self.conditional else None) self.Dx, _ = self.discriminator(self.real_in, logits=True) self.Dg, _ = self.discriminator(self.Gz, reuse=True, logits=True) if self.y_dim == 1: Dg_softmax = tf.sigmoid(self.Dg) else: Dg_softmax = tf.nn.softmax(logits=self.Dg) # D Loss d_loss_real = tf.nn.softmax_cross_entropy_with_logits(logits=self.Dx, labels=self.real_label) d_loss_fake = tf.nn.softmax_cross_entropy_with_logits(logits=self.Dg, labels=self.fake_label) self.d_loss = tf.reduce_mean(d_loss_real + d_loss_fake) # G Loss if self.y_dim == 1: self.g_loss = -tf.reduce_mean(tf.log(Dg_softmax)) else: self.g_loss = -tf.reduce_mean(tf.log(1. - Dg_softmax[:, -1])) tvars = tf.trainable_variables() d_vars = [var for var in tvars if 'd_' in var.name] g_vars = [var for var in tvars if 'g_' in var.name] # Compute gradients trainerD = self.d_optimizer trainerG = self.g_optimizer d_grads = trainerD.compute_gradients(self.d_loss, d_vars) #Only update the weights for the discriminator network. g_grads = trainerG.compute_gradients(self.g_loss, g_vars) #Only update the weights for the generator network. ## For Debuging d_grads_decomposed, _ = list(zip(*d_grads)) g_grads_decomposed, _ = list(zip(*g_grads)) self.d_grad_norm = tf.global_norm(d_grads_decomposed) self.g_grad_norm = tf.global_norm(g_grads_decomposed) self.d_w_norm = tf.global_norm(d_vars) self.g_w_norm = tf.global_norm(g_vars) ## self.update_D = trainerD.apply_gradients(d_grads) self.update_G = trainerG.apply_gradients(g_grads) def _iter_stats(self, i, start_time, gLoss, dLoss, xs=None, ys=None, zs=None, ys_fake=None, val_x=None, val_y=None): d_grad_norm, g_grad_norm, oracle_x, d_w_norm, g_w_norm = self.sess.run( (self.d_grad_norm, self.g_grad_norm, self.Gz, self.d_w_norm, self.g_w_norm), feed_dict={self.z_in:zs, self.real_in:xs, self.real_label:ys, self.fake_label:ys_fake}) tr_acc = None if xs is not None and ys is not None and ys_fake is not None: tr_x = np.concatenate((xs, oracle_x), axis=0) tr_y = np.concatenate((ys, ys_fake), axis=0) tr_acc = self._accuracy(tr_x, tr_y, reformat=False) v_acc = None if val_x is not None and val_y is not None: v_acc = self._accuracy(val_x, val_y) oracle_acc = None if self.oracle is not None: oracle_acc = self.oracle(oracle_x) if i == 0: print ('{0:5}| {1:6}| {2:5}| {3:4}| {4:6}| {5:6}| {6:6}| {7:5}| {8:4}| {9:6}| {10:6}'.format( 'i', 'GLOSS', 'DLOSS', 'TIME', 'GGRAD', 'DGRAD', 'TR_ACC','V_ACC', 'ORA', 'DW', 'GW')) print('{0:5}| {1:5.3}| {2:5.3}| {3:4}s| {4}| {5}| {6}| {7}| {8}| {9}| {10}'.format( i, gLoss, dLoss, int(time.time()-start_time), ' ' if g_grad_norm is None else '{:6.4}'.format(g_grad_norm), ' ' if d_grad_norm is None else '{:6.4}'.format(d_grad_norm), ' ' if tr_acc is None else '{:6.3}'.format(tr_acc), ' ' if v_acc is None else '{:5.3}'.format(v_acc), ' ' if oracle_acc is None else '{:4.2}'.format(oracle_acc), ' ' if d_w_norm is None else '{:6.4}'.format(d_w_norm), ' ' if g_w_norm is None else '{:6.4}'.format(g_w_norm))) def fit(self, X, y=None, val_x=None, val_y=None): start = time.time() self.discriminator.is_training = True with self.graph.as_default(): self.sess.run(tf.global_variables_initializer()) for i in range(self.iterations): for j in range(self.d_iter): zs = np.random.uniform(-1.0, 1.0, size=[self.batch_size, self.z_size]).astype(np.float32) xs, ys = self._next_batch(X, y) xs = self.x_reformat(xs) if self.y_dim != 1: # Create space for the fake class label for the real data labels ys = np.concatenate((ys, np.zeros_like(ys[:,0])[:,None]), axis=1) # Create the labels for the generated data. ys_fake = np.zeros_like(ys) if self.y_dim != 1: ys_fake[:,-1] = 1 _, dLoss = self.sess.run( [self.update_D, self.d_loss], feed_dict={self.z_in:zs, self.real_in:xs, self.real_label:ys, self.fake_label:ys_fake}) _, gLoss = self.sess.run( [self.update_G, self.g_loss], feed_dict={self.z_in:zs, self.real_in:xs, self.real_label:ys}) if i % self.display_step == 0: self._iter_stats(i, start, gLoss, dLoss, xs=xs, ys=ys, zs=zs, ys_fake=ys_fake, val_x=val_x, val_y=val_y) self._save_samples(i) if i % self.save_step == 0 and i != 0 and self.model_directory is not None: self.save_model('model-'+str(i)+'.cptk') print("Saved Model") self._iter_stats(i, start, gLoss, dLoss, xs=xs, ys=ys, zs=zs, ys_fake=ys_fake, val_x=val_x, val_y=val_y) self._save_samples(i) if self.model_directory is not None: self.save_model('model-'+str(i)+'.cptk') print("Saved Model") self.discriminator.is_training = False
StarcoderdataPython
6523447
from django.core.cache import cache def get_cache_key(document, revision): cache_key = "discussion_length_{}_{}".format(document.pk, revision) return cache_key def get_discussion_length(revision): """Get the number of remarkes on a revision. This is a helper method to return a cached value. Settings the cache must be done elsewhere. (Currently in discussion/signals.py/update_cache.) """ cache_key = get_cache_key(revision.document, revision.revision) length = cache.get(cache_key, 0) return length
StarcoderdataPython
3543450
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from itertools import product from unittest.mock import MagicMock import numpy as np from ax.models.model_utils import best_observed_point, check_duplicate from ax.utils.common.testutils import TestCase class ModelUtilsTest(TestCase): def setUp(self): pass def testBestObservedPoint(self): model = MagicMock() X1 = np.array(list(product(np.arange(0.0, 10.0), np.arange(0.0, 10.0)))) X2 = np.array(list(product(np.arange(5.0, 15.0), np.arange(5.0, 15.0)))) # Overlap of 5x5=25 points X3 = np.array(list(product(np.arange(20.0, 30.0), np.arange(20.0, 30.0)))) # X3 not used in objective or constraints model.Xs = [X1, X2, X3] bounds = [(0.0, 8.0), (0.0, 8.0)] # Filters to 4x4=16 points fixed_features = {1: 6.0} # Filters to 4 points linear_constraints = ( np.array([[2.0, 2.0], [0.0, 1.0]]), np.array([[27.0], [7.0]]), ) # Filters to 3 objective_weights = np.array([-1.0, 1.0, 0.0]) outcome_constraints = ( np.array([[0.0, 1.0, 0.0], [1.0, 1.0, 0.0]]), np.array([[10.0], [24.0]]), ) # f and cov constructed to give objectives [0, 4, 6] and pfeas [1, 0.5, 0.25] f = np.array([[1.0, 1.0, -1.0], [6.0, 10.0, -1.0], [5.0, 11.0, -1.0]]) cov = np.tile(np.diag([1, 1, 1]), (3, 1, 1)) model.predict.return_value = (f, cov) # Test with defaults xbest = best_observed_point( model=model, bounds=bounds, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, ) X_obs = model.predict.mock_calls[0][1][0] self.assertEqual(X_obs.shape, (3, 2)) self.assertTrue(np.array_equal(X_obs[1, :], xbest)) # 1 should be best # Test with specified utility baseline xbest = best_observed_point( model=model, bounds=bounds, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, options={"utility_baseline": 4.0}, ) X_obs = model.predict.mock_calls[1][1][0] self.assertEqual(X_obs.shape, (3, 2)) self.assertTrue(np.array_equal(X_obs[2, :], xbest)) # 2 should be best # Test with feasibility threshold xbest = best_observed_point( model=model, bounds=bounds, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, options={"best_point_method": "feasible_threshold"}, ) X_obs = model.predict.mock_calls[2][1][0] self.assertEqual(X_obs.shape, (3, 2)) self.assertTrue(np.array_equal(X_obs[0, :], xbest)) # 0 should be best # Parameter infeasible xbest = best_observed_point( model=model, bounds=bounds, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features={1: 100}, options={"best_point_method": "feasible_threshold"}, ) self.assertIsNone(xbest) # Outcome infeasible xbest = best_observed_point( model=model, bounds=bounds, objective_weights=objective_weights, outcome_constraints=(np.array([[1.0, 0.0, 0.0]]), np.array([[-100.0]])), linear_constraints=linear_constraints, fixed_features=fixed_features, options={"best_point_method": "feasible_threshold"}, ) self.assertIsNone(xbest) # No objective. with self.assertRaises(ValueError): xbest = best_observed_point( model=model, bounds=bounds, objective_weights=np.zeros(3), outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features={1: 100}, options={"method": "feasible_threshold"}, ) with self.assertRaises(ValueError): delattr(model, "Xs") xbest = best_observed_point( model=model, bounds=bounds, objective_weights=np.zeros(3), outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features={1: 100}, options={"method": "feasible_threshold"}, ) def testCheckDuplicate(self): duplicate_point = np.array([0, 1]) not_duplicate_point = np.array([9, 9]) points = np.array([[0, 1], [0, 2], [0, 1]]) self.assertTrue(check_duplicate(duplicate_point, points)) self.assertFalse(check_duplicate(not_duplicate_point, points))
StarcoderdataPython
11273721
<gh_stars>0 """ This module contains constants representing the kinds of user that can be logged in, based on their roles and permissions. """ from .role_kinds import ADMIN # noqa F401 from .role_kinds import ASSIGNABLE_COACH # noqa F401 from .role_kinds import COACH # noqa F401 LEARNER = 'learner' SUPERUSER = 'superuser' ANONYMOUS = 'anonymous' CAN_MANAGE_CONTENT = 'can manage content'
StarcoderdataPython