id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
1840691
# -*- coding: utf-8 -*- import os from django.conf import settings from django import forms from django.utils.translation import ugettext_lazy as _ from .models import * class VideoForm(forms.ModelForm): class Meta: model = Example exclude = [] widgets = { 'video': forms.ClearableFileInput, } # class Media: # css = { # "all": [ # "css/bootstrap.css", # "css/bootstrap-progressbar-2.3.2.css", # ] # } # js = [ # 'js/jquery.js', # 'js/bootstrap.js', # 'js/bootstrap-progressbar.js', # ]
StarcoderdataPython
80326
from django.test import TestCase from addressbase.models import UprnToCouncil, Address from councils.tests.factories import CouncilFactory from data_importers.tests.stubs import stub_addressimport # High-level functional tests for import scripts class ImporterTest(TestCase): opts = {"nochecks": True, "verbosity": 0} def set_up(self, addressbase, uprns, addresses_name): for address in addressbase: Address.objects.update_or_create(**address) for uprn in uprns: UprnToCouncil.objects.update_or_create(pk=uprn, lad="X01000000") CouncilFactory(pk="ABC", identifiers=["X01000000"]) cmd = stub_addressimport.Command() cmd.addresses_name = addresses_name cmd.handle(**self.opts) def test_duplicate_uprns(self): """ In the csv there are two matching uprns with different polling station ids. Despite one appearing in addressbase, neither should be imported. """ test_params = { "uprns": ["1", "2", "6"], "addressbase": [ { "address": "Another Haringey Park, London", "uprn": "1", "postcode": "N8 8NM", }, {"address": "Haringey Park, London", "uprn": "2", "postcode": "N8 9JG"}, { "address": "80 Pine Vale Cres, Bournemouth", "uprn": "6", "postcode": "BH10 6BJ", }, ], "addresses_name": "duplicate_uprns.csv", } self.set_up(**test_params) imported_uprns = ( UprnToCouncil.objects.filter(lad="X01000000") .exclude(polling_station_id="") .order_by("uprn") .values_list("uprn", "polling_station_id") ) self.assertEqual(1, len(imported_uprns)) expected = {("6", "2")} self.assertEqual(set(imported_uprns), expected) def test_uprn_not_in_addressbase(self): """uprn does not appear in addressbase data, or in UprnToCouncil table""" test_params = { "uprns": ["6"], "addressbase": [ {"address": "3 Factory Rd, Poole", "uprn": "4", "postcode": "BH16 5HT"}, { "address": "80 Pine Vale Cres, Bournemouth", "uprn": "6", "postcode": "BH10 6BJ", }, ], "addresses_name": "uprn_missing.csv", } self.set_up(**test_params) imported_uprns = ( UprnToCouncil.objects.filter(lad="X01000000") .exclude(polling_station_id="") .order_by("uprn") .values_list("uprn", "polling_station_id") ) self.assertEqual(1, len(imported_uprns)) expected = {("6", "2")} self.assertEqual(set(imported_uprns), expected) def test_uprn_assigned_to_wrong_council(self): """Uprn exists but we've located it in a different council in UprnToCouncil table""" test_params = { "uprns": ["6"], "addressbase": [ {"address": "3 Factory Rd, Poole", "uprn": "4", "postcode": "BH16 5HT"}, { "address": "80 Pine Vale Cres, Bournemouth", "uprn": "6", "postcode": "BH10 6BJ", }, ], "addresses_name": "uprn_missing.csv", } self.set_up(**test_params) UprnToCouncil.objects.update_or_create(pk=4, lad="X01000002") imported_uprns = ( UprnToCouncil.objects.filter(lad="X01000000") .exclude(polling_station_id="") .order_by("uprn") .values_list("uprn", "polling_station_id") ) self.assertEqual(1, len(imported_uprns)) expected = {("6", "2")} self.assertEqual(set(imported_uprns), expected) def test_postcode_mismatch(self): """Uprn exists but postcodes don't match""" test_params = { "uprns": ["4", "7"], "addressbase": [ {"address": "3 Factory Rd, Poole", "uprn": "4", "postcode": "BH16 5HT"}, { "address": "4 Factory Rd, Poole", "uprn": "7", "postcode": "BH16 5HT", # postcode is 'BH17 5HT' in csv }, ], "addresses_name": "uprn_missing.csv", } self.set_up(**test_params) imported_uprns = ( UprnToCouncil.objects.filter(lad="X01000000") .exclude(polling_station_id="") .order_by("uprn") .values_list("uprn", "polling_station_id") ) self.assertEqual(1, len(imported_uprns)) expected = {("4", "1")} self.assertEqual(set(imported_uprns), expected) def test_address_import(self): test_params = { "uprns": ["1", "3", "4", "5", "6", "7"], "addressbase": [ {"address": "Haringey Park, London", "uprn": "1", "postcode": "N8 9JG"}, # uprn '2' in addresses.csv but wasn't in addressbase so not in uprntocouncil either { "address": "36 Abbots Park, London", "uprn": "3", "postcode": "SW2 3QD", }, {"address": "3 Factory Rd, Poole", "uprn": "4", "postcode": "BH16 5HT"}, { "address": "5-6 Mickleton Dr, Southport", "uprn": "5", "postcode": "PR8 2QX", }, { "address": "80 Pine Vale Cres, Bournemouth", "uprn": "6", "postcode": "BH10 6BJ", }, { "address": "4 Factory Rd, Poole", "uprn": "7", "postcode": "BH16 5HT", # postcode is 'BH17 5HT' in csv }, ], "addresses_name": "addresses.csv", } self.set_up(**test_params) imported_uprns = ( UprnToCouncil.objects.filter(lad="X01000000") .exclude(polling_station_id="") .order_by("uprn") .values_list("uprn", "polling_station_id") ) self.assertEqual(3, len(imported_uprns)) expected = {("3", "3"), ("4", "1"), ("6", "2")} self.assertEqual(set(imported_uprns), expected)
StarcoderdataPython
6521789
<filename>backend/model_api/urls.py from django.urls import path from model_api import views urlpatterns = [ path('affected_by/', views.affected_by), path('areas/', views.areas), path('cumulative_infections/', views.cumulative_infections), path('predict/', views.predict), path('predict_all/', views.predict_all), path('models/', views.models), path('infection_models/', views.infection_models), path('death_models/', views.death_models), path('current_date/', views.getCurrentDate), path('scores/', views.scores), path('scores_all/', views.scores_all), path('check_history/', views.check_history), path('history_cumulative/', views.history_cumulative), path('latest_score_date/', views.latest_score_date), path('cumulative_death/', views.cumulative_death), path('all_mrf_scores/', views.all_mrf_scores), path('get_maximum/', views.get_maximum) ]
StarcoderdataPython
5178258
import json import uuid import aiohttp import pytest HOSTNAME, PATH = 'https://test.ar', 'index' async def test_match_request(ar, session): ar.get(HOSTNAME, PATH, handler={}) try: await session.get(f'{HOSTNAME}/{PATH}') except aiohttp.ClientConnectionError as e: pytest.fail(f'Should not have returned {e}', pytrace=True) async def test_no_match(ar, session): with pytest.raises(aiohttp.ClientConnectionError): await session.get(f'{HOSTNAME}/{PATH}') async def test_response_single_use(ar, session): ar.get(HOSTNAME, PATH, handler={}) await session.get(f'{HOSTNAME}/{PATH}') with pytest.raises(aiohttp.ClientConnectionError): await session.get(f'{HOSTNAME}{PATH}') async def test_post_reponse(ar, session): ar.post(HOSTNAME, PATH, handler={}) try: await session.post(f'{HOSTNAME}/{PATH}') except aiohttp.ClientConnectionError as e: pytest.fail(f'Should not have returned {e}', pytrace=True) async def test_get_response(ar, session): ar.get(HOSTNAME, PATH, handler={}) try: await session.get(f'{HOSTNAME}/{PATH}') except aiohttp.ClientConnectionError as e: pytest.fail(f'Should not have returned {e}', pytrace=True) async def test_dict_handler(ar, session): payload = {'test': 'test'} ar.get(HOSTNAME, PATH, handler=payload) resp = await session.get(f'{HOSTNAME}/{PATH}') json = await resp.json() assert json == payload async def test_callable_handler(ar, session): def handler(data, **kwargs): return kwargs kwargs = {'json': '{"key": "val"}'} ar.post(HOSTNAME, PATH, handler=handler) resp = await session.post(f'{HOSTNAME}/{PATH}', **kwargs) json = await resp.json() assert json == kwargs async def test_str_handler(ar, session): ar.get(HOSTNAME, PATH, handler='test') response = await session.get(f'{HOSTNAME}/{PATH}') with pytest.raises(json.JSONDecodeError): await response.json() async def test_body_not_serializable(ar, session): with pytest.raises(ValueError): ar.post(HOSTNAME, PATH, handler={}) await session.post(f'{HOSTNAME}/{PATH}', json={'id': uuid.uuid4()}) async def test_exception_handler(ar, session): with pytest.raises(ZeroDivisionError): ar.get(HOSTNAME, PATH, handler=ZeroDivisionError()) await session.get(f'{HOSTNAME}/{PATH}') async def test_raise_for_status(ar, session): ar.get(HOSTNAME, PATH, handler={'test': 'test'}, status=500) with pytest.raises(aiohttp.ClientResponseError): await session.get(f'{HOSTNAME}/{PATH}', raise_for_status=True) ar.get(HOSTNAME, PATH, handler=ZeroDivisionError()) with pytest.raises(aiohttp.ClientResponseError): await session.get(f'{HOSTNAME}/{PATH}', raise_for_status=True) async def test_preserve_response_class(ar): class CustomResponse(aiohttp.ClientResponse): async def json(self, *args, **kwargs): return {'hello': 'world'} ar.get(HOSTNAME, PATH, handler={}) async with aiohttp.ClientSession(response_class=CustomResponse) as session: response = await session.get(f'{HOSTNAME}/{PATH}') assert await response.json() == {'hello': 'world'} assert isinstance(response, CustomResponse)
StarcoderdataPython
3428963
import argparse import collections import inspect import re import signal import sys from datetime import datetime as dt import numpy as np def argparsify(f, test=None): args, _, _, defaults = inspect.getargspec(f) assert(len(args) == len(defaults)) parser = argparse.ArgumentParser() i = 0 for arg in args: argtype = type(defaults[i]) if argtype == bool: # convert to action if defaults[i] == False: action="store_true" else: action="store_false" parser.add_argument("-%s" % arg, "--%s" % arg, action=action, default=defaults[i]) else: parser.add_argument("-%s"%arg, "--%s"%arg, type=type(defaults[i])) i += 1 if test is not None: par = parser.parse_args([test]) else: par = parser.parse_args() kwargs = {} for arg in args: if getattr(par, arg) is not None: kwargs[arg] = getattr(par, arg) return kwargs def argprun(f, sigint_shell=True, **kwargs): # command line overrides kwargs def handler(sig, frame): # find the frame right under the argprun print "custom handler called" original_frame = frame current_frame = original_frame previous_frame = None stop = False while not stop and current_frame.f_back is not None: previous_frame = current_frame current_frame = current_frame.f_back if "_FRAME_LEVEL" in current_frame.f_locals \ and current_frame.f_locals["_FRAME_LEVEL"] == "ARGPRUN": stop = True if stop: # argprun frame found __toexposelocals = previous_frame.f_locals # f-level frame locals class L(object): pass l = L() for k, v in __toexposelocals.items(): setattr(l, k, v) stopprompt = False while not stopprompt: whattodo = raw_input("(s)hell, (k)ill\n>>") if whattodo == "s": embed() elif whattodo == "k": "Killing" sys.exit() else: stopprompt = True if sigint_shell: _FRAME_LEVEL="ARGPRUN" prevhandler = signal.signal(signal.SIGINT, handler) try: f_args = argparsify(f) for k, v in kwargs.items(): if k not in f_args: f_args[k] = v f(**f_args) except KeyboardInterrupt: print("Interrupted by Keyboard")
StarcoderdataPython
278578
#!/usr/bin/python #coding=utf-8 """ 第 0009 题:一个HTML文件,找出里面的链接 """ from bs4 import BeautifulSoup def find_the_link(filepath): links = [] with open(filepath) as f: text = f.read() bs =BeautifulSoup(text) for i in bs.find_all('a'): links.append(i['href']) return links if __name__ == '__main__': print find_the_link('Show-Me-the-Code_show-me-the-code_1.html')
StarcoderdataPython
294967
""" Django settings for matatu project. Generated by 'django-admin startproject' using Django 3.2.9. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path import django_heroku import dj_database_url from decouple import config,Csv import cloudinary import cloudinary.uploader import cloudinary.api cloudinary.config( cloud_name = config('CD_NAME'), api_key= config('CD_API'), api_secret=config('CD_SECRET'), secure = config('CD_SECURE') ) # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! MODE=config("MODE", default="dev") SECRET_KEY = config('SECRET_KEY') DEBUG = os.environ.get('DEBUG', True) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'mat', # 'tinymice', 'bootstrap4', 'bootstrap3', 'crispy_forms', # 'django_static_fontawesome', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django.contrib.sites', 'django_daraja', ] CRISPY_TEMPLATE_PACK = 'bootstrap4' MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'matatu.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'matatu.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases if config('MODE')=='dev': DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } else: DATABASES = { 'default': dj_database_url.config(default=config('DATABASE_URL')) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS =['.localhost','.herokuapp.com','127.0.0.1'] # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] SOCIALACCOUNT_PROVIDERS = { 'google': { 'SCOPE': [ 'profile', 'email', ], 'AUTH_PARAMS': { 'access_type': 'online', } } } # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') django_heroku.settings(locals()) SITE_ID = 4 LOGIN_REDIRECT_URL ='/' LOGOUT_REDIRECT_URL ='/' EMAIL_USE_TLS = config('EMAIL_USE_TLS') EMAIL_HOST = config('EMAIL_HOST') EMAIL_PORT = config('EMAIL_PORT') EMAIL_HOST_USER = config('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD') AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ] # The Mpesa environment to use # Possible values: sandbox, production MPESA_ENVIRONMENT = 'sandbox' # Credentials for the daraja app MPESA_CONSUMER_KEY = config('MPESA_CONSUMER_KEY') MPESA_CONSUMER_SECRET = config('MPESA_CONSUMER_SECRET') #Shortcode to use for transactions. For sandbox use the Shortcode 1 provided on test credentials page MPESA_SHORTCODE = config('MPESA_SHORTCODE') # Shortcode to use for Lipa na MPESA Online (MPESA Express) transactions # This is only used on sandbox, do not set this variable in production # For sandbox use the Lipa na MPESA Online Shorcode provided on test credentials page MPESA_EXPRESS_SHORTCODE = config('MPESA_SHORTCODE') # Type of shortcode # Possible values: # - paybill (For Paybill) # - till_number (For Buy Goods Till Number) MPESA_SHORTCODE_TYPE = 'paybill' # Lipa na MPESA Online passkey # Sandbox passkey is available on test credentials page # Production passkey is sent via email once you go live MPESA_PASSKEY = config('MPESA_PASSKEY') # Username for initiator (to be used in B2C, B2B, AccountBalance and TransactionStatusQuery Transactions) MPESA_INITIATOR_USERNAME = 'initiator_username' # Plaintext password for initiator (to be used in B2C, B2B, AccountBalance and TransactionStatusQuery Transactions) MPESA_INITIATOR_SECURITY_CREDENTIAL = 'initiator_security_credential'
StarcoderdataPython
6502997
#!/usr/local/bin/python3 from driver import Driver from log import Log from selenium.common.exceptions import NoSuchElementException class Element(Driver): def find_by_id(self, id=None): if not id: return False try: return self.driver.find_element_by_id(id) except NoSuchElementException: Log().write_log('Driver','Element Select Faild!!!') def find_by_css_select(self, css=None): if not css: return False try: return self.driver.find_element_by_css_selector(css) except NoSuchElementException: Log().write_log('Driver', 'Element Select Faild!!!') def find_by_class_name(self, name=None): if not name: return False try: return self.driver.find_element_by_class_name(name) except NoSuchElementException: Log().write_log('Driver', 'Element Select Faild!!!') def find_by_link_text(self, text): if not text: return False try: return self.driver.find_element_by_link_text(text) except NoSuchElementException: Log().write_log('Driver', 'Element Select Faild!!!')
StarcoderdataPython
5130331
<filename>tg_gui_core/__init__.py from . import implementation_support from .implementation_support import TYPE_CHECKING from .shared import Identifiable, Pixels, UID from .widget import Widget from .attrs import WidgetAttr, widget from .container import ContainerWidget
StarcoderdataPython
11283566
from .binomial_regression import BinomRegression from .linear_regression import BayesianLinearRegression
StarcoderdataPython
8360
<filename>tests/pyre/components/component_class_registration_model.py<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # <NAME> # orthologue # (c) 1998-2018 all rights reserved # """ Verify that component registration interacts correctly with the pyre configurator model """ # access # print(" -- importing pyre") import pyre # print(" -- done") def declare(): # declare a protocol class protocol(pyre.protocol): """a protocol""" # properties p1 = pyre.properties.str() p2 = pyre.properties.str() # behavior @pyre.provides def do(self): """behave""" # declare a component class component(pyre.component, family="test", implements=protocol): """a component""" # traits p1 = pyre.properties.str(default="p1") p2 = pyre.properties.str(default="p2") @pyre.export def do(self): """behave""" return "component" return component def test(): # and the model model = pyre.executive.nameserver # model.dump(pattern='test') # print(" -- making some configuration changes") # add an assignment model['test.p1'] = 'step 1' # an alias model.alias(alias='p1', target='test.p1') # and a reference to the alias model['ref'] = '{p1}' # check that they point to the same slot assert model.retrieve(name='p1') == model.retrieve(name='test.p1') # save the nodes ref = model.retrieve(name='ref') step_0 = model.retrieve(name='test.p1') # now declare the component and its protocol # print(" -- declaring components") component = declare() # print(" -- done") # model.dump(pattern='') assert component.p1 == 'step 1' assert component.p2 == 'p2' # check that the model is as we expect # model.dump() assert model['test.p1'] == component.p1 assert model['test.p2'] == component.p2 # how about the alias and the reference? assert model['ref'] == component.p1 assert model['p1'] == component.p1 # make a late registration to what is now the component trait model['test.p2'] = 'step 2' # model.dump(pattern='test') # and check assert component.p1 == 'step 1' assert component.p2 == 'step 2' return # main if __name__ == "__main__": test() # end of file
StarcoderdataPython
8159114
<filename>apps/auth/views.py import logging import datetime from misc.mixins import myTemplateView class indexView(myTemplateView): template='index.tpl' class expressauthView(myTemplateView): template='auth/expressauth.tpl' class regView(myTemplateView): template='auth/reg.tpl' class repairView(myTemplateView): template='auth/repair.tpl'
StarcoderdataPython
1739936
List = list(map(int, input().split())) List.insert(0, List.pop()) print(*List)
StarcoderdataPython
300589
#// #// ------------------------------------------------------------- #// Copyright 2004-2011 Synopsys, Inc. #// Copyright 2010 Mentor Graphics Corporation #// Copyright 2010-2011 Cadence Design Systems, Inc. #// Copyright 2019-2020 <NAME> (tpoikela) #// All Rights Reserved Worldwide #// #// Licensed under the Apache License, Version 2.0 (the #// "License"); you may not use this file except in #// compliance with the License. You may obtain a copy of #// the License at #// #// http://www.apache.org/licenses/LICENSE-2.0 #// #// Unless required by applicable law or agreed to in #// writing, software distributed under the License is #// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR #// CONDITIONS OF ANY KIND, either express or implied. See #// the License for the specific language governing #// permissions and limitations under the License. #// ------------------------------------------------------------- #// import cocotb from cocotb.triggers import Timer, RisingEdge from uvm.macros import * from uvm.base import sv, UVMConfigDb, UVMComponent from uvm.reg import UVMRegPredictor from regmodel import dut_regmodel from apb.apb_agent import apb_agent from apb.apb_rw import reg2apb_adapter EXPLICIT_MON = 1 #// #// This example shows how to integrate a register model #// directly onto a bus sequencer. #// #// By default, the mirror in the register model is updated implicitly. #// For explicit monitoring, define the `EXPLICIT_MON macro #// class tb_env(UVMComponent): def __init__(self, name, parent=None): super().__init__(name,parent) self.regmodel = None # dut_regmodel self.Aapb = None # apb_agent self.seq = None # uvm_reg_sequence self.vif = None if EXPLICIT_MON: self.apb2reg_predictor = None # uvm_reg_predictor#(apb_rw) def build_phase(self, phase): if self.regmodel is None: self.regmodel = dut_regmodel.type_id.create("regmodel",None,self.get_full_name()) self.regmodel.build() self.regmodel.lock_model() self.apb = apb_agent.type_id.create("apb", self) if EXPLICIT_MON: self.apb2reg_predictor = UVMRegPredictor("apb2reg_predictor", self) hdl_root = "dut" sv.value_plusargs("ROOT_HDL_PATH=%s",hdl_root) # cast to 'void' removed self.regmodel.set_hdl_path_root(hdl_root) vif = [] if UVMConfigDb.get(self, "apb", "vif", vif): self.vif = vif[0] else: uvm_fatal("NO_VIF", "Could not find vif from config DB") def connect_phase(self, phase): if self.apb is not None: self.reg2apb = reg2apb_adapter('adapter') self.regmodel.default_map.set_sequencer(self.apb.sqr, self.reg2apb) if EXPLICIT_MON: self.apb2reg_predictor.map = self.regmodel.default_map self.apb2reg_predictor.adapter = self.reg2apb self.regmodel.default_map.set_auto_predict(0) self.apb.mon.ap.connect(self.apb2reg_predictor.bus_in) else: self.regmodel.default_map.set_auto_predict(1) self.regmodel.print_obj() async def run_phase(self, phase): phase.raise_objection(self) if self.seq is None: uvm_fatal("NO_SEQUENCE","Env's sequence is not defined. Nothing to do. Exiting.") return # begin : do_reset uvm_info("RESET","Performing reset of 5 cycles", UVM_LOW) self.vif.rst <= 1 for _ in range(5): await RisingEdge(self.vif.clk) self.vif.rst <= 0 await Timer(100, "NS") uvm_info("START_SEQ", "Starting sequence '" + self.seq.get_name() + "'", UVM_LOW) self.seq.model = self.regmodel await self.seq.start(None) phase.drop_objection(self) uvm_component_utils(tb_env)
StarcoderdataPython
1960162
<gh_stars>1-10 from chutil.visualize import show
StarcoderdataPython
3229582
# -*- coding: utf-8 -*- import os from distutils.core import setup here = os.path.dirname(__file__) def get_long_desc(): return open(os.path.join(here, 'README.rst')).read() # Function borrowed from carljm. def get_version(): fh = open(os.path.join(here, "faq", "__init__.py")) try: for line in fh.readlines(): if line.startswith("__version__ ="): return line.split("=")[1].strip().strip("'") finally: fh.close() setup( name='django-faq', version=get_version(), description='Frequently Asked Question (FAQ) management for Django apps.', url='https://github.com/benspaulding/django-faq/', author='<NAME>', author_email='<EMAIL>', license='BSD', download_url='http://github.com/benspaulding/django-faq/tarball/v%s' % get_version(), long_description = get_long_desc(), packages = [ 'faq', 'faq.tests', 'faq.urls', 'faq.views', ], package_data = { 'faq': [ 'fixtures/*', 'locale/*/LC_MESSAGES/*', 'templates/faq/*', 'templates/search/indexes/faq/*', ], }, classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Site Management', ], )
StarcoderdataPython
3297897
from .base import UrbanClient, UrbanDefinition, UrbanDictionaryError
StarcoderdataPython
6469605
<filename>cloakifyFactory.py #!/usr/bin/python # # Filename: cloakifyFactory.py # # Version: 1.0.1 # # Author: <NAME> (TryCatchHCF) # # Summary: Cloakify Factory is part of the Cloakify Exfiltration toolset that transforms # any fileype into lists of words / phrases / Unicode to ease exfiltration of data across # monitored networks, defeat data whitelisting restrictions, hiding the data in plain # sight, and facilitates social engineering attacks against human analysts and their # workflows. Bonus Feature: Defeats signature-based malware detection tools (cloak your # other tools). Leverages other scripts of the Cloakify Exfiltration Toolset, including # cloakify.py, decloakify.py, and the noise generator scripts. # # Description: Base64-encodes the given payload and translates the output using a list # of words/phrases/Unicode provided in the cipher. This is NOT a secure encryption tool, # the output is vulnerable to frequency analysis attacks. Use the Noise Generator scripts # to add entropy to your cloaked file. You should encrypt the file before cloaking if # secrecy is needed. # # Prepackaged ciphers include: lists of desserts in English, Arabic, Thai, Russian, # Hindi, Chinese, Persian, and Muppet (Swedish Chef); PokemonGo creatures; Top 100 IP # Addresses; Top Websites; GeoCoords of World Capitols; MD5 Password Hashes; An Emoji # cipher; Star Trek characters; Geocaching Locations; Amphibians (Scientific Names); # evadeAV cipher (simple cipher that minimizes size of the resulting obfuscated data). # # To create your own cipher: # # - Generate a list of at least 66 unique words (Unicode-16 accepted) # - Remove all duplicate entries and blank lines # - Randomize the list # - Place in the 'ciphers/' subdirectory # - Relaunch cloakifyFactory and it will automatically detect the new cipher # # Example: # # $ ./cloakifyFactory.py # import os, sys, getopt, random, base64, cloakify, decloakify # Load list of ciphers gCipherFiles = next(os.walk("./ciphers/"))[2] # Load list of noise generators gNoiseScripts = [] for root, dirs, files in os.walk( "./noiseTools" ): for file in files: if file.endswith('.py'): gNoiseScripts.append( file ) def CloakifyFile(): print "" print "==== Cloakify a File ====" print "" sourceFile = raw_input("Enter filename to cloak (e.g. ImADolphin.exe or /foo/bar.zip): ") print "" cloakedFile = raw_input("Save cloaked data to filename (default: 'tempList.txt'): ") if cloakedFile == "": cloakedFile = "tempList.txt" cipherNum = SelectCipher() noiseNum = -1 choice = raw_input("Add noise to cloaked file? (y/n): ") if choice == "y": noiseNum = SelectNoise() print "" print "Creating cloaked file using cipher:", gCipherFiles[ cipherNum ] try: cloakify.Cloakify( sourceFile, "ciphers/" + gCipherFiles[ cipherNum ], cloakedFile ) except: print "" print "!!! Well that didn't go well. Verify that your cipher is in the 'ciphers/' subdirectory." print "" if noiseNum >=0: print "Adding noise to cloaked file using noise generator:", gNoiseScripts[ noiseNum ] try: os.system( "noiseTools/%s %s" % ( gNoiseScripts[ noiseNum ], cloakedFile )) except: print "" print "!!! Well that didn't go well. Verify that '", cloakedFile, "'" print "!!! is in the current working directory or try again giving full filepath." print "" print "" print "Cloaked file saved to:", cloakedFile print "" choice = raw_input( "Preview cloaked file? (y/n): " ) if choice == "y": print "" with open( cloakedFile ) as file: cloakedPreview = file.readlines() i = 0; while ( i<20 ): print cloakedPreview[ i ], i = i+1 print "" choice = raw_input( "Press return to continue... " ) def DecloakifyFile(): decloakTempFile = "decloakTempFile.txt" print "" print "==== Decloakify a Cloaked File ====" print "" sourceFile = raw_input( "Enter filename to decloakify (e.g. /foo/bar/MyBoringList.txt): " ) print "" decloakedFile = raw_input( "Save decloaked data to filename (default: 'decloaked.file'): " ) print "" if decloakedFile == "": decloakedFile = "decloaked.file" # Reviewing the cloaked file within cloakifyFactory will save a little time for those who # forgot the format of the cloaked file and don't want to hop into a new window just to look choice = raw_input( "Preview cloaked file? (y/n default=n): " ) if choice == "y": print "" try: with open( sourceFile ) as file: cloakedPreview = file.readlines() i = 0; while ( i<20 ): print cloakedPreview[ i ], i = i+1 print "" except: print "" print "!!! Well that didn't go well. Verify that '", sourceFile, "'" print "!!! is in the current working directory or the filepath you gave." print "" choice = raw_input("Was noise added to the cloaked file? (y/n default=n): ") if choice == "y": noiseNum = SelectNoise() stripColumns = 2 # No upper bound checking, relies on SelectNoise() returning valid value, fix in next release if noiseNum >= 0: try: # Remove Noise, overwrite the source file with the stripped contents print "Removing noise from noise generator:", gNoiseScripts[ noiseNum ] os.system( "./removeNoise.py %s %s %s" % ( stripColumns, sourceFile, decloakTempFile )) # Copy decloak temp filename to sourceFile so that Decloakify() gets the right filename sourceFile = decloakTempFile except: print "!!! Error while removing noise from file. Was calling 'removeNoise.py'.\n" cipherNum = SelectCipher() print "Decloaking file using cipher: ", gCipherFiles[ cipherNum ] # Call Decloakify() try: decloakify.Decloakify( sourceFile, "ciphers/" + gCipherFiles[ cipherNum ], decloakedFile ) print "" print "Decloaked file", sourceFile, ", saved to", decloakedFile except: print "" print "!!! Oh noes! Error decloaking file (did you select the same cipher it was cloaked with?)" print "" try: os.system( "rm -f %s" % ( decloakTempFile )) except: print "" print "!!! Oh noes! Error while deleting temporary file:", decloakTempFile print "" choice = raw_input("Press return to continue... ") def SelectCipher(): print "" print "Ciphers:" print "" cipherCount = 1 for cipherName in gCipherFiles: print cipherCount, "-", cipherName cipherCount = cipherCount + 1 print "" selection = -1 while ( selection < 0 or selection > (cipherCount - 2)): try: cipherNum = raw_input( "Enter cipher #: " ) selection = int ( cipherNum ) - 1 if ( cipherNum == "" or selection < 0 or selection > (cipherCount - 1)): print "Invalid cipher number, try again..." selection = -1 except ValueError: print "Invalid cipher number, try again..." print "" return selection def BrowseCiphers(): print "" print "======== Preview Ciphers ========" cipherNum = SelectCipher() print "===== Cipher:", gCipherFiles[ cipherNum ], " =====" print "" try: with open( "ciphers/"+gCipherFiles[ cipherNum ] ) as cipherList: arrayCipher = cipherList.read() print( arrayCipher ) except: print "!!! Error opening cipher file.\n" choice = raw_input( "Press return to continue... " ) def SelectNoise(): print "" print "Noise Generators:" print "" noiseCount = 1 for noiseName in gNoiseScripts: print noiseCount, "-", noiseName noiseCount = noiseCount + 1 print "" selection = -1 noiseTotal = noiseCount - 2 while ( selection < 0 or selection > noiseTotal ): try: noiseNum = raw_input( "Enter noise generator #: " ) selection = int ( noiseNum ) - 1 if ( selection == "" or selection < 0 or selection > noiseTotal ): print "Invalid generator number, try again..." selection = -1 except ValueError: print "Invalid generator number, try again..." return selection def BrowseNoise(): print "" print "======== Preview Noise Generators ========" noiseNum = SelectNoise() print "" # No upper bounds checking, relies on SelectNoise() to return a valid value, fix in next update if noiseNum >= 0: try: print "Sample output of prepended strings, using noise generator:", gNoiseScripts[ noiseNum ], "\n" os.system( "noiseTools/%s" % ( gNoiseScripts[ noiseNum ] )) except: print "!!! Error while generating noise preview.\n" print "" choice = raw_input( "Press return to continue... " ) def Help(): print "" print "===================== Using Cloakify Factory =====================" print "" print "For background and full tutorial, see the presentation slides at" print "https://github.com/TryCatchHCF/Cloakify" print "" print "WHAT IT DOES:" print "" print "Cloakify Factory transforms any filetype (e.g. .zip, .exe, .xls, etc.) into" print "a list of harmless-looking strings. This lets you hide the file in plain sight," print "and transfer the file without triggering alerts. The fancy term for this is" print "'text-based steganography', hiding data by making it look like other data." print "" print "For example, you can transform a .zip file into a list made of Pokemon creatures" print "or Top 100 Websites. You then transfer the cloaked file however you choose," print "and then decloak the exfiltrated file back into its original form. The ciphers" print "are designed to appear like harmless / ignorable lists, though some (like MD5" print "password hashes) are specifically meant as distracting bait." print "" print "BASIC USE:" print "" print "Cloakify Factory will guide you through each step. Follow the prompts and" print "it will show you the way." print "" print "Cloakify a Payload:" print "- Select 'Cloakify a File' (any filetype will work - zip, binaries, etc.)" print "- Enter filename that you want to Cloakify (can be filename or filepath)" print "- Enter filename that you want to save the cloaked file as" print "- Select the cipher you want to use" print "- Select a Noise Generator if desired" print "- Preview cloaked file if you want to check the results" print "- Transfer cloaked file via whatever method you prefer" print "" print "Decloakify a Payload:" print "- Receive cloaked file via whatever method you prefer" print "- Select 'Decloakify a File'" print "- Enter filename of cloaked file (can be filename or filepath)" print "- Enter filename to save decloaked file to" print "- Preview cloaked file to review which Noise Generator and Cipher you used" print "- If Noise Generator was used, select matching Generator to remove noise" print "- Select the cipher used to cloak the file" print "- Your decloaked file is ready to go!" print "" print "You can browse the ciphers and outputs of the Noise Generators to get" print "an idea of how to cloak files for your own needs." print "" print "Anyone using the same cipher can decloak your cloaked file, but you can" print "randomize (scramble) the preinstalled ciphers. See 'randomizeCipherExample.txt'" print "in the Cloakify directory for an example." print "" print "NOTE: Cloakify is not a secure encryption scheme. It's vulnerable to" print "frequency analysis attacks. Use the 'Add Noise' option to add entropy when" print "cloaking a payload to help degrade frequency analysis attacks. Be sure to" print "encrypt the file prior to cloaking if secrecy is needed." def About(): print "" print "===================== About Cloakify Factory =====================" print "" print " \"Hide & Exfiltrate Any Filetype in Plain Sight\"" print "" print " Written by TryCatchHCF" print " https://github.com/TryCatchHCF/Cloakify" print "" print "Data Exfiltration In Plain Sight; Evade DLP/MLS Devices; Social Engineering" print "of Analysts; Defeat Data Whitelisting Controls; Evade AV Detection. Text-based" print "steganography usings lists. Convert any file type (e.g. executables, Office," print "Zip, images) into a list of everyday strings. Very simple tools, powerful" print "concept, limited only by your imagination." print "" print "Cloakify Factory uses Python scripts to cloak / uncloak any file type using" print "list-based ciphers (text-based steganography). Allows you to transfer data" print "across a secure network's perimeter without triggering alerts, defeating data" print "whitelisting controls, and derailing analyst's review via social engineering" print "attacks against their workflows. As a bonus, cloaked files defeat signature-" print "based malware detection tools." print "" print "NOTE: Cloakify is not a secure encryption scheme. It's vulnerable to" print "frequency analysis attacks. Use the 'Add Noise' option to add entropy when" print "cloaking a payload to help degrade frequency analysis attacks. Be sure to" print "encrypt the file prior to cloaking if secrecy is needed." print "" print "DETAILS:" print "" print "Cloakify first Base64-encodes the payload, then applies a cipher to generate" print "a list of strings that encodes the Base64 payload. Once exfiltrated, use" print "Decloakify with the same cipher to decode the payload. The ciphers are" print "designed to appear like harmless / ingorable lists, though some (like MD5" print "password hashes) are specifically meant as distracting bait." print "" print "Prepackaged ciphers include lists of:" print "" print "- Amphibians (scientific names)" print "- Belgian Beers" print "- Desserts in English, Arabic, Thai, Russian, Hindi, Chinese, Persian, and" print " Muppet (Swedish Chef)" print "- Emoji" print "- evadeAV (smallest cipher space, x3 payload size)" print "- GeoCoords World Capitals (Lat/Lon)" print "- GeoCaching Coordinates (w/ Site Names)" print "- IPv4 Addresses of Popular Websites" print "- MD5 Password Hashes" print "- PokemonGo Monsters" print "- Top 100 Websites" print "- Ski Resorts" print "- Status Codes (generic)" print "- Star Trek characters" print "- World Beaches" print "- World Cup Teams" print "" print "Prepackaged scripts for adding noise / entropy to your cloaked payloads:" print "" print "- prependEmoji.py: Adds a randomized emoji to each line" print "- prependID.py: Adds a randomized ID tag to each line" print "- prependLatLonCoords.py: Adds random LatLong coordinates to each line" print "- prependTimestamps.py: Adds timestamps (log file style) to each line" print "" print "CREATE YOUR OWN CIPHERS:" print "" print "Cloakify Factory is at its best when you're using your own customized" print "ciphers. The default ciphers may work for most needs, but in a unique" print "exfiltration scenario you may need to build your own." print "" print "Creating a Cipher:" print "" print "- Create a list of at least 66 unique words/phrases/symbols (Unicode accepted)" print "- Randomize the list order" print "- Remove all duplicate entries and all blank lines" print "- Place cipher file in the 'ciphers/' subdirectory" print "- Re-run Cloakify Factory to automatically load the new cipher" print "- Test cloaking / decloaking with new cipher before using operationally" print "" def MainMenu(): print " ____ _ _ _ __ ______ _ " print " / __ \ | | | |_|/ _| | ___| | | " print "| / \/ | ___ __ _| | ___| |_ _ _ | |_ __ _ ___| |_ ___ _ __ _ _ " print "| | | |/ _ \ / _` | |/ / | _| | | | | _/ _` |/ __| __/ _ \| '__| | | |" print "| \__/\ | |_| | |_| | <| | | | |_| | | || |_| | |__| || |_| | | | |_| |" print " \____/_|\___/ \__,_|_|\_\_|_| \__, | \_| \__,_|\___|\__\___/|_| \__, |" print " __/ | __/ |" print " |___/ |___/ " print "" print " \"Hide & Exfiltrate Any Filetype in Plain Sight\"" print "" print " Written by TryCatchHCF" print " https://github.com/TryCatchHCF" print " (\~---." print " / (\-`-/)" print " ( ' ' ) data.xls image.jpg \\ List of emoji, IP addresses," print " \ ( \_Y_/\\ ImADolphin.exe backup.zip --> sports teams, desserts," print " \"\"\ \___// LoadMe.war file.doc / beers, anything you imagine" print " `w \"" selectionErrorMsg = "1-7 are your options. Try again." notDone = 1 while ( notDone ): print "" print "==== Cloakify Factory Main Menu ====" print "" print "1) Cloakify a File" print "2) Decloakify a File" print "3) Browse Ciphers" print "4) Browse Noise Generators" print "5) Help / Basic Usage" print "6) About Cloakify Factory" print "7) Exit" print "" invalidSelection = 1 while ( invalidSelection ): try: choice = int( raw_input( "Selection: " )) if ( choice > 0 and choice < 8 ): invalidSelection = 0 else: print selectionErrorMsg except ValueError: print selectionErrorMsg if choice == 1: CloakifyFile() elif choice == 2: DecloakifyFile() elif choice == 3: BrowseCiphers() elif choice == 4: BrowseNoise() elif choice == 5: Help() elif choice == 6: About() elif choice == 7: notDone = 0 else: print selectionErrorMsg byeArray = ("Bye!", "Ciao!", "Adios!", "Aloha!", "Hei hei!", "Bless bless!", "Hej da!", "Tschuss!", "Adieu!", "Cheers!") print "" print random.choice( byeArray ) print "" # ============================== Main Loop ================================ # MainMenu()
StarcoderdataPython
1769435
<gh_stars>1-10 """ 参数化clock装饰器 """ import time DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) ->{result}' def clock(fmt=DEFAULT_FMT): # 参数化装饰器工厂函数 def decorate(func): # 真正的装饰器 def clocked(*_args): # 包装被装饰的函数 t0 = time.time() _result = func(*_args) # 被装饰的函数返回额真正结果 elapsed = time.time() - t0 name = func.__name__ args = ', '.join(repr(arg) for arg in _args) # _args是clocked的参数,args是显示用的字符串 result = repr(_result) # 字符串表示用于显示 # 使用**locals(0是为了在fmt中引用clocked的局部变量) print(fmt.format(**locals())) return _result return clocked return decorate def main(): @clock() def snooze(seconds): time.sleep(seconds) @clock('{name}: {elapsed}s') def snooze1(seconds): time.sleep(seconds) @clock('{name}({args} dt={elapsed:0.3f}s)') def snooze2(seconds): time.sleep(seconds) for _ in range(3): snooze(.123) snooze1(.456) snooze2(.789) if __name__ == '__main__': main()
StarcoderdataPython
11267301
<reponame>niacdoial/armory from arm.logicnode.arm_nodes import * class TimeNode(ArmLogicTreeNode): """Returns the application execution time and the delta time.""" bl_idname = 'LNTimeNode' bl_label = 'Get Application Time' arm_version = 1 def init(self, context): super(TimeNode, self).init(context) self.add_output('NodeSocketFloat', 'Time') self.add_output('NodeSocketFloat', 'Delta')
StarcoderdataPython
11229289
import unittest import json from pyvdk.tools import Keyboard, TextButton class KeyboardTests(unittest.TestCase): def test_limit(self): # Arrange keyboard = Keyboard(inline=True) b = [ TextButton( color='w', label=str(i), payload=str(i) ) for i in range(6) ] # Act keyboard.extend(b) keyboard[1].extend(b) # Assert with self.assertRaises(Exception): keyboard[2].extend(b) def test_structure(self): # Arrange keyboard = Keyboard(one_time=True) b = [ TextButton( color='w', label=str(i + 1), payload=str(i + 1) ) for i in range(3) ] keyboard.extend(b[:2]) keyboard[2].append(b[2]) # Act data = json.loads(keyboard()) # Assert self.assertTrue(data['one_time']) self.assertFalse(data['inline']) self.assertEqual(len(data['buttons'][0]), 2) self.assertEqual(len(data['buttons'][1]), 1) self.assertEqual(data['buttons'][0][1]['action']['label'], "2") self.assertEqual(data['buttons'][1][0]['action']['payload'], "{\"command\": \"3\"}")
StarcoderdataPython
9613089
<filename>more_collections/sorted/_sorted_iterable.py from __future__ import annotations import sys from typing import Generic, TypeVar if sys.version_info < (3, 9): from typing import Iterable, Iterator else: from collections.abc import Iterable, Iterator from ._abc_iterable import SortedIterable, SortedIterator __all__ = ["SortedUserIterable", "SortedUserIterator"] T = TypeVar("T") class SortedUserIterable(SortedIterable[T], Generic[T]): __iterable: Iterable[T] def __init__(self: SortedUserIterable[T], iterable: Iterable[T], /) -> None: if isinstance(iterable, Iterable): self.__iterable = iterable else: raise TypeError(f"{type(self).__name__} expected an iterable, got {iterable!r}") def __iter__(self: SortedUserIterable[T], /) -> SortedUserIterator[T]: return SortedUserIterator(self.__iterable) class SortedUserIterator(SortedIterator[T], Generic[T]): __iterator: Iterator[T] def __init__(self: SortedUserIterator[T], iterable: Iterable[T], /) -> None: if isinstance(iterable, Iterable): self.__iterator = iter(iterable) else: raise TypeError(f"{type(self).__name__} expected an iterable, got {iterable!r}") def __next__(self: SortedUserIterator[T], /) -> T: return next(self.__iterator)
StarcoderdataPython
8147711
import math class Circulo(): def __init__(self): super() self.__raio = None def get_perimetro(self): return 2 * math.pi * self.raio def get_area(self): return math.pi * self.raio ** 2 @property def raio(self): return self.__raio @raio.setter def raio(self, x): self.__raio = x def __setattr__(self, key, value): if not hasattr(self, key): raise TypeError("Não pode criar atributos para esta classe") object.__setattr__(self, key, value) c = Circulo() c.raio = 2 # ok c.lado = 2 # AttributeError #https://pt.stackoverflow.com/q/220908/101
StarcoderdataPython
12818857
<reponame>mhungerford/pebble-glracer #!/usr/bin/env python # encoding: utf-8 # <NAME>, 2013 """Writes the c and cpp compile commands into build/compile_commands.json see http://clang.llvm.org/docs/JSONCompilationDatabase.html""" import json import os from waflib import Logs, TaskGen, Task from waflib.Tools import c, cxx @TaskGen.feature('*') @TaskGen.after_method('process_use') def collect_compilation_db_tasks(self): "Add a compilation database entry for compiled tasks" try: clang_db = self.bld.clang_compilation_database_tasks except AttributeError: clang_db = self.bld.clang_compilation_database_tasks = [] self.bld.add_post_fun(write_compilation_database) for task in getattr(self, 'compiled_tasks', []): if isinstance(task, (c.c, cxx.cxx)): clang_db.append(task) def write_compilation_database(ctx): "Write the clang compilation database as json" database_file = ctx.bldnode.make_node('compile_commands.json') file_path = str(database_file.path_from(ctx.path)) if not os.path.exists(file_path): with open(file_path, 'w') as f: f.write('[]') Logs.info("Store compile comands in %s" % file_path) clang_db = dict((x["file"], x) for x in json.load(database_file)) for task in getattr(ctx, 'clang_compilation_database_tasks', []): try: cmd = task.last_cmd except AttributeError: continue filename = task.inputs[0].abspath() entry = { "directory" : getattr(task, 'cwd', ctx.variant_dir), "command" : " ".join(cmd), "file" : filename, } clang_db[filename] = entry database_file.write(json.dumps(clang_db.values(), indent=2)) def options(opt): "opitions for clang_compilation_database" pass def configure(cfg): "configure for clang_compilation_database" pass
StarcoderdataPython
9787361
""" Easier factory functions for creating Pymunk objects. """ from functools import wraps from typing import Sequence, Union, Callable, TypeVar, TYPE_CHECKING, Any from . import Color, DrawOptions from .helpers import get_pyxel from ..core import CircleBody, SegmentBody, PolyBody, Body, Space from ..typing import VecLike if TYPE_CHECKING: from .camera import Camera T = TypeVar("T") ColorT = Union[Color, int] DEFAULT_PYXEL = get_pyxel() DEFAULT_SPACE = None DEFAULT_COLOR = None MOMENT_MULTIPLIER = 5.0 DEFAULT_ELASTICITY = 0.0 DEFAULT_FRICTION = 0.0 def body_maker_function(col_arg, func): # type: ignore """ Decorate function that normalize input arguments and outputs for a pyxel context. """ @wraps(func) def maker(*args, **kwargs): args = list(args) kwargs.setdefault("space", DEFAULT_SPACE) kwargs.setdefault("elasticity", DEFAULT_ELASTICITY) kwargs.setdefault("friction", DEFAULT_FRICTION) target_body = kwargs.pop("body", None) if len(args) > col_arg: color = args.pop(col_arg) elif "color" in kwargs: color = kwargs.pop("color") else: color = DEFAULT_COLOR body = func(*args, **kwargs) if "moment" not in kwargs: body.moment *= MOMENT_MULTIPLIER if color is not None: body.shapes.apply(color=color) body.color = color if target_body is not None: for shape in body.shapes: shape_ = shape.copy(body=target_body) if target_body.space: target_body.space.add(shape_) body = target_body return body return maker # We use this trick to convince static analysis of the right types while # sidekick do not provide good types for Curried functions. def body_maker(n: int) -> Callable[[T], T]: def decorator(fn: T) -> T: return body_maker_function(n, fn) # type: ignore return decorator # # Basic geometric shapes # @body_maker(3) def circ(x: float, y: float, r: float, col: int = None, **kwargs) -> CircleBody: """ Creates a body with a Circle shape attached to it. Args: x: Center point x coordinate y: Center point y coordinate r: Circle radius col: Object's color """ if col is not None: kwargs["color"] = col return CircleBody(r, position=(x, y), **kwargs) @body_maker(4) def line( x1: float, y1: float, x2: float, y2: float, col: int = None, radius: float = 1.0, **kwargs ) -> SegmentBody: """ Creates a body with a Segment shape attached to it. Args: x1: x coordinate of starting point y1: y coordinate of starting point x2: x coordinate of ending point y2: y coordinate of ending point col: Object's color radius (float): Collision radius for line element. """ if col is not None: kwargs["color"] = col return SegmentBody((x1, y1), (x2, y2), radius=radius, **kwargs) @body_maker(6) def tri( x1: float, y1: float, x2: float, y2: float, x3: float, y3: float, col: int = None, radius: float = 0.0, **kwargs ) -> PolyBody: """ Creates a Pymunk body with a triangular Poly shape attached to it. Args: x1: x coordinate of first point y1: y coordinate of first point x2: x coordinate of second point y2: y coordinate of second point x3: x coordinate of last point y3: y coordinate of last point col: Object's color radius: Collision radius for line element. """ if col is not None: kwargs["color"] = col return PolyBody([(x1, y1), (x2, y2), (x3, y3)], radius=radius, **kwargs) @body_maker(4) def rect( x: float, y: float, w: float, h: float, col: int = None, radius: float = 0.0, **kwargs ) -> PolyBody: """ Creates a Pymunk body with a triangular Poly shape attached to it. Args: x: x coordinate of starting point y: y coordinate of starting point w: width h: height col: Object's color radius: Collision radius for line element. """ x_ = x + w / 2 y_ = y + h / 2 if col is not None: kwargs["color"] = col return PolyBody.new_box((w, h), position=(x_, y_), radius=radius, **kwargs) @body_maker(1) def poly( vs: Sequence[VecLike], col: int = None, radius: float = 0.0, **kwargs ) -> PolyBody: """ Creates a Pymunk body with a polygonal shape attached to it. Args: vs: sequence of vertices. col: Object's color radius: collision radius tolerance. """ if col is not None: kwargs["color"] = col return PolyBody(vs, radius=radius, **kwargs) @body_maker(4) def margin( x: float = 0, y: float = 0, width: float = None, height: float = None, col: int = None, **kwargs ) -> Body: """ Creates a margin around the screen. """ pyxel = getattr(DEFAULT_SPACE, "pyxel", DEFAULT_PYXEL) if width is None: width = pyxel.width - 1 if height is None: height = pyxel.height - 1 a, b, c, d = (x, y), (x + width, y), (x + width, y + height), (x, y + height) # noinspection PyProtectedMember if col is not None: kwargs["color"] = col opts = {k: kwargs.pop(k) for k in Body._init_kwargs if k in kwargs} body = Body(body_type=Body.STATIC, **opts) body.create_segment(a, b, **kwargs) body.create_segment(b, c, **kwargs) body.create_segment(c, d, **kwargs) body.create_segment(d, a, **kwargs) return body class PhysSpace(Space): _init_kwargs = { *Space._init_kwargs, "background_color", "sub_steps", "camera", "pyxel", } background_color: int = 0 sub_steps: int = 1 camera: "Camera" pyxel: Any = None def update(self, dt: float = None): """ Default update step for space. """ if dt is None: fps = getattr(self.pyxel, "DEFAULT_FPS", 30) dt = 1 / fps self.step(dt, self.sub_steps, skip_events=("after-step",)) def draw(self, options=None, clear: Union[bool, Color] = False): """ Draw space on screen. """ if clear is True: self.pyxel.cls(self.background_color) elif not isinstance(clear, bool): self.pyxel.cls(clear) self.debug_draw(options or self.draw_options) self._execute_step_handlers("after-step") def run(self): """ Run pyxel engine alongside with physics. """ self.pyxel.run(self.update, lambda: self.draw(clear=True)) # noinspection PyTypeHints def space( bg: ColorT = Color.BLACK, col: ColorT = Color.WHITE, camera=None, draw_options=None, wireframe: bool = False, friction: float = 0.0, elasticity: float = 0.0, sub_steps: int = 1, pyxel: Any = None, **kwargs ) -> PhysSpace: """ Create a space object. Args: bg: Background color. If set to None, prevents clearing screen. col: Default foreground color. camera: A module of functions with all drawing functions of the Pyxel API. This can be used to implement cameras or to implement transformations before committing pixels to the screen. draw_options: An instance of :class:`easymunk.pyxel.DebugDraw()`. Takes precedence over the camera and wireframe options. wireframe: Draw shapes in wireframe mode. elasticity: Default elasticity of shapes in space. friction: Default friction of shapes in space. sub_steps: The number of physics sub-steps to perform at each iteration. Keyword Args: It accepts arguments of :class:`easymunk.Space`. """ global DEFAULT_SPACE, DEFAULT_FRICTION, DEFAULT_ELASTICITY, DEFAULT_COLOR if pyxel is None: pyxel = get_pyxel() if camera is None: camera = pyxel if draw_options is None: draw_options = DrawOptions(camera, wireframe=wireframe, keep_shape_colors=True) else: draw_options = draw_options kwargs["background_color"] = bg kwargs["sub_steps"] = sub_steps kwargs["camera"] = camera DEFAULT_FRICTION = friction DEFAULT_ELASTICITY = elasticity DEFAULT_COLOR = col DEFAULT_SPACE = PhysSpace(draw_options=draw_options, pyxel=pyxel, **kwargs) return DEFAULT_SPACE def moment_multiplier(value: float = None) -> float: """ Default multiplier used to calculate the moment of standard shapes. Call with argument to set value, and return value if called with no arguments. """ global MOMENT_MULTIPLIER if value is None: return MOMENT_MULTIPLIER else: MOMENT_MULTIPLIER = float(value) return MOMENT_MULTIPLIER def reset_space(): """ Reset the default space. """ global DEFAULT_SPACE DEFAULT_SPACE = None
StarcoderdataPython
3377062
<reponame>pcarivbts/vbts-webadmin<filename>vbts_webadmin/tests/locust/locustfile_api_promo.py """ Copyright (c) 2015-present, Philippine-California Advanced Research Institutes- The Village Base Station Project (PCARI-VBTS). All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. """ from locust import HttpLocust from locust import TaskSet from locust import task base_url = 'http://127.0.0.1:7000' test_promokey = 'SDISC' test_imsi = 'IMSI001010000000008' test_imsi2 = 'IMSI001010000000009' class PromoSubscriptionBehavior(TaskSet): @task(1) def promo_status_normal(self): url = base_url + '/api/promo/status' name = 'promo_status_normal' data = {'imsi': test_imsi, 'keyword': test_promokey} self.client.post(url=url, data=data, name=name) @task(1) def promo_subscribe(self): """ NOTE: give test_imsi2 a large amount of credit if we are going to do repetitive tests """ data = {'imsi': test_imsi2, 'keyword': test_promokey} url = base_url + '/api/promo/subscribe' self.client.post(url=url, data=data) url = base_url + '/api/promo/unsubscribe' self.client.post(url=url, data=data) class PromoQuotaUsageBehavior(TaskSet): @task(1) def promo_get_min_bal(self): url = base_url + '/api/promo/getminbal' data = { 'trans': 'U_local_sms', 'tariff': 100000 } self.client.post(url=url, data=data) @task(1) def promo_get_service_tariff(self): url = base_url + '/api/promo/getservicetariff' data = { 'imsi': test_imsi, 'trans': 'U_local_sms', 'dest': '' } self.client.post(url=url, data=data) @task(1) def promo_get_service_type(self): url = base_url + '/api/promo/getservicetype' data = { 'imsi': test_imsi, 'trans': 'local_sms', 'dest': '631234567' } self.client.post(url=url, data=data) @task(1) def promo_get_seconds_available(self): url = base_url + '/api/promo/getsecavail' data = { 'imsi': test_imsi, 'trans': 'U_local_sms', 'balance': 1000000, 'dest': '6312345678' } self.client.post(url=url, data=data) @task def promo_quota_deduct(self): url = base_url + '/api/promo/deduct' data = { 'imsi': test_imsi, 'trans': 'U_local_sms', 'amount': 100000, 'dest': '6312345678' } # applicable only for bulk type with self.client.post(url=url, data=data, catch_response=True) as response: if response.status_code == 400: response.success() class UserBehavior(TaskSet): tasks = { PromoSubscriptionBehavior: 1, PromoQuotaUsageBehavior: 1 } class WebsiteUser(HttpLocust): host = 'http://1172.16.31.10:7000' task_set = UserBehavior min_wait = 1000 max_wait = 5000
StarcoderdataPython
1761779
<gh_stars>0 # Generated by Django 2.1.5 on 2019-06-09 09:11 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('gpsschool', '0013_auto_20190609_0557'), ] operations = [ migrations.AddField( model_name='task', name='subject', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='gpsschool.Subject'), ), ]
StarcoderdataPython
6458655
"""Util functions.""" import logging from functools import wraps from pathlib import Path from morphio.mut import Morphology from tqdm import tqdm tqdm.pandas() EXTS = {".asc", ".h5", ".swc"} # allowed extensions def is_morphology(filename): """Returns True if the extension is supported.""" try: Morphology(filename) ext = Path(filename).suffix.lower() return ext in EXTS, ext except Exception: # pylint: disable=broad-except return False, None def silent_logger(log_name): """A decorator to silent a logger during the function execution.""" def _silent_logger(function): @wraps(function) def decorated_func(*args, **kwargs): func_logger = logging.getLogger(log_name) func_logger.disabled = True try: return function(*args, **kwargs) finally: func_logger.disabled = False return decorated_func return _silent_logger
StarcoderdataPython
3267265
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ import os import sys # Parse arguments if len(sys.argv) != 3: print('Incorrect number of args') exit() engine_path = sys.argv[1] if not os.path.exists(engine_path): print(f'Given path {engine_path} does not exist') exit() project_path = sys.argv[2] if not os.path.exists(project_path): print(f'Given path {project_path} does not exist') exit() sys.path.insert(0, os.path.join(engine_path, 'Gems/Atom/RPI/Tools/')) from atom_rpi_tools.pass_data import PassTemplate import atom_rpi_tools.utils as utils # Folder of this py file dir_name = os.path.dirname(os.path.realpath(__file__)) # Patch render pipeline to insert a custom LyShine parent pass # Gem::Atom_Feature_Common gem's path since default render pipeline is comming from this gem gem_assets_path = os.path.join(engine_path,'Gems/Atom/feature/Common/Assets/') pipeline_relatvie_path = 'Passes/MainPipeline.pass' srcRenderPipeline = os.path.join(gem_assets_path, pipeline_relatvie_path) destRenderPipeline = os.path.join(project_path, pipeline_relatvie_path) # If the project doesn't have a customized main pipeline # copy the default render pipeline from Atom_Common_Feature gem to same path in project folder utils.find_or_copy_file(destRenderPipeline, srcRenderPipeline) # Load project render pipeline renderPipeline = PassTemplate(destRenderPipeline) # Skip if LyShinePass already exist newPassName = 'LyShinePass' if renderPipeline.find_pass(newPassName)>-1: print('Skip merging. LyShinePass already exists') exit() # Insert LyShinePass between DebugOverlayPass and UIPass refPass = '<PASSWORD>' # The data file for new pass request is in the same folder of the py file newPassRequestFilePath = os.path.join(dir_name, 'LyShinePass.data') newPassRequestData = utils.load_json_file(newPassRequestFilePath) insertIndex = renderPipeline.find_pass(refPass) + 1 if insertIndex>-1: renderPipeline.insert_pass_request(insertIndex, newPassRequestData) else: print('Failed to find ', refPass) exit() # Update attachment references for the passes following LyShinePass renderPipeline.replace_references_after(newPassName, 'DebugOverlayPass', 'InputOutput', 'LyShinePass', 'ColorInputOutput') # Save the updated render pipeline renderPipeline.save()
StarcoderdataPython
8144729
<reponame>kpahawa/quick_config import os from quick_config.provider_wrapper import load_config_from_path from quick_config.validator import validate_config_dir config = None _env_key = 'CONFIG_DIR' __all__ = [ 'config', 'load_config', 'setup_config_with_path', 'clear_config', ] def clear_config(): global config config = None def load_config(): wd = os.getcwd() conf_dir = os.environ.get(_env_key) if not conf_dir: conf_dir = "config" path = os.path.join(wd, conf_dir) validate_config_dir(path) return load_config_from_path(path) def setup_config_with_path(path: str): """ sets up the config provider with an explicit path to the location of the desired directory of configs :param path: the location of the config directory of a project to parse and load """ global config config = load_config_from_path(path) if __name__ != '__main__': if config is None: config = load_config()
StarcoderdataPython
6642065
<filename>CUILArg.py class CUIL(): def __init__(self, Dni, Sexo): self.dni = Dni.replace('.', '') self.sexo = Sexo self.get = '' self.get_dni() self.get_sexo() self.get_cuil() def get_dni(self): if len(self.dni) == 7: self.dni = '0' + self.dni return True elif len(self.dni) != 8: return False def get_sexo(self): if self.sexo.startswith('f'): self.sexo = 'f' elif self.sexo.startswith('m'): self.sexo = 'm' else: return False return True def get_cuil(self): self.get = '' if self.sexo == 'f': self.get += '27' else: self.get += '20' self.get += '-' self.get += self.dni Suma_digitos = str(11 - (int(self.get[0])*5 + int(self.get[1])*4+ int(self.get[3])*3+ int(self.get[4])*2+ int(self.get[5])*7+ int(self.get[6])*6+ int(self.get[7])*5+ int(self.get[8])*4+ int(self.get[9])*3+ int(self.get[10])*2) % 11) if Suma_digitos == '11': Suma_digitos = '0' elif Suma_digitos == '10': Suma_digitos = '9' self.get += '-' self.get += Suma_digitos def get(Dni, Sexo): return CUIL(Dni = Dni, Sexo = Sexo).get
StarcoderdataPython
6527373
import os from daskperiment.util.text import trim_indent class TestText(object): def test_trim_indent(self): res = trim_indent("") assert res == "" res = trim_indent("ab") assert res == "ab" res = trim_indent(os.linesep) assert res == os.linesep def test_trim_multi(self): res = trim_indent(""" aaa""") assert res == """ aaa""" res = trim_indent(""" aaa aaa""") assert res == """aaa aaa""" res = trim_indent(""" aaa aaa""") assert res == """aaa aaa""" res = trim_indent(""" aaa aaa""") assert res == """aaa aaa""" def test_trim_multi_endsep(self): res = trim_indent(""" aaa """) assert res == """ aaa """ res = trim_indent(""" aaa aaa """) assert res == """aaa aaa """ res = trim_indent(""" aaa aaa """) assert res == """aaa aaa """ def test_trim_multi_blankline(self): res = trim_indent(""" aaaa a aa aaa aaaa aaaaa """) assert res == """aaaa a """
StarcoderdataPython
6651092
from lxml import etree from dataset.data import Data from strategy.parser.default_parser import DefaultParser import re class PostParser(DefaultParser): def __init__(self): self.super = super(PostParser, self) self.super.__init__() def get_url_value(self): v = re.search(r'\d*.html$', self._url).group() return int(re.search(r'^\d*', v).group()) def clear_space(self, content): # r, n = re.subn(r'>\\n\s*<', '><', content) r = re.compile(r'\n\s*') return r.sub('', content) def _get_new_data(self, dom): new_datas = [] try: nodes = dom.xpath("//article//h1//a/text()") if len(nodes) < 1: return None author = nodes[0].encode('utf8') nodes = dom.xpath("//article//h1/text()") if len(nodes) < 1: return None title = nodes[1].encode('utf8') content = '' nodes = dom.xpath("//article//section") for node in nodes: content = content + etree.tostring(node, encoding='utf8') data = Data('post') data.set('title', title) data.set('author', self.clear_space(author)) data.set('content', self.clear_space(content)) data.set('id', self.get_url_value()) new_datas.append(data) except Exception as e: print(str(e)) return new_datas def _get_next_page_url(self, dom): return None
StarcoderdataPython
5082141
<reponame>lh70/s-connect-python import esp32 from lh_lib.sensors.sensor import AbstractSensor class Hall(AbstractSensor): """ sets an integer of range +- unknown representing the current internal hall sensor reading """ def update(self): self.value = esp32.hall_sensor()
StarcoderdataPython
9642762
from django.test import TestCase from playlists.models import Playlist # Create your tests here. class PlaylistModelTests(TestCase): def setUp(self): Playlist.objects.create(code='1', title='playlist title 1') def test_instance_get_string_repr(self): """ Playlist object string representation returns its title """ playlist_1 = Playlist.objects.get(code='1') self.assertEquals(str(playlist_1), playlist_1.title) def test_instance_get_youtube_valid_url(self): """ All Playlist models have a property that returns the external youtube url. """ playlist_1 = Playlist.objects.get(code='1') self.assertEquals(playlist_1.youtube_url, 'https://www.youtube.com/playlist?list=1')
StarcoderdataPython
1613404
from leapp.actors import Actor from leapp.libraries.actor import opensshuseprivilegeseparationcheck from leapp.models import Report, OpenSshConfig from leapp.tags import ChecksPhaseTag, IPUWorkflowTag class OpenSshUsePrivilegeSeparationCheck(Actor): """ UsePrivilegeSeparation configuration option was removed. Check the value of UsePrivilegeSeparation in OpenSSH server config file and warn about its deprecation if it is set to non-default value. """ name = 'open_ssh_use_privilege_separation' consumes = (OpenSshConfig, ) produces = (Report, ) tags = (ChecksPhaseTag, IPUWorkflowTag) def process(self): opensshuseprivilegeseparationcheck.process(self.consume(OpenSshConfig))
StarcoderdataPython
3375923
import torch import matplotlib.pyplot as plt from matplotlib.pyplot import cm import h5py import os from glob import glob from patch_manager import StridedRollingPatches2D, StridedPatches2D, NoPatches2D from utils import squeeze_repr import torch.utils.data as torch_data import numpy as np from transforms import RndAugmentationTfs, add_sp_gauss_noise import torchvision import nifty.graph.rag as nrag class SpgDset(torch_data.Dataset): def __init__(self, root_dir, patch_manager="", patch_stride=None, patch_shape=None, reorder_sp=False, spatial_augmentation=False, intensity_augmentation=False, noise_augmentation=False): """ dataset for loading images (raw, gt, superpixel segs) and according rags""" self.norm_tf = torchvision.transforms.Normalize(0, 1, inplace=False) self.graph_dir = os.path.join(root_dir, 'graph_data') self.pix_dir = os.path.join(root_dir, 'pix_data') self.graph_file_names = sorted(glob(os.path.join(self.graph_dir, "*.h5"))) self.pix_file_names = sorted(glob(os.path.join(self.pix_dir, "*.h5"))) self.reorder_sp = reorder_sp self.intensity_augmentation = intensity_augmentation if intensity_augmentation: self.augm_tf = RndAugmentationTfs(patch_shape, n_chnl_for_intensity=1) self.spatial_augmentation = spatial_augmentation if spatial_augmentation: self.spatial_augmentation = spatial_augmentation self.intensity_augmentation = intensity_augmentation self.noise_augmentation = noise_augmentation pix_file = h5py.File(self.pix_file_names[0], 'r') self.image_shape = pix_file["gt"][:].shape if patch_manager == "rotated": self.pm = StridedRollingPatches2D(patch_stride, patch_shape, self.image_shape) elif patch_manager == "no_cross": self.pm = StridedPatches2D(patch_stride, patch_shape, self.image_shape) else: self.pm = NoPatches2D() self.length = len(self.graph_file_names) * np.prod(self.pm.n_patch_per_dim) print('found ', self.length, " data files") def __len__(self): return self.length def viewItem(self, idx): pix_file = h5py.File(self.pix_file_names[idx], 'r') graph_file = h5py.File(self.graph_file_names[idx], 'r') raw = pix_file["raw"][:] gt = pix_file["gt"][:] sp_seg = graph_file["node_labeling"][:] fig, (a1, a2, a3) = plt.subplots(1, 3, sharex='col', sharey='row', gridspec_kw={'hspace': 0, 'wspace': 0}) a1.imshow(raw, cmap='gray') a1.set_title('raw') a2.imshow(cm.prism(gt/gt.max())) a2.set_title('gt') a3.imshow(cm.prism(sp_seg/sp_seg.max())) a3.set_title('sp') plt.tight_layout() plt.show() def __getitem__(self, idx): img_idx = idx // np.prod(self.pm.n_patch_per_dim) patch_idx = idx % np.prod(self.pm.n_patch_per_dim) pix_file = h5py.File(self.pix_file_names[img_idx], 'r') graph_file = h5py.File(self.graph_file_names[img_idx], 'r') raw = pix_file["raw_2chnl"][:] if raw.ndim == 2: raw = torch.from_numpy(raw.astype(np.float)).float().unsqueeze(0) else: raw = torch.from_numpy(raw.astype(np.float)).float() # raw -= raw.min() # raw /= raw.max() nc = raw.shape[0] gt = torch.from_numpy(pix_file["gt"][:].astype(np.long)).unsqueeze(0).float() sp_seg = torch.from_numpy(graph_file["node_labeling"][:].astype(np.long)).unsqueeze(0).float() affs = torch.from_numpy(graph_file["affinities"][:].astype(np.float)).float() offs = torch.from_numpy(graph_file["offsets"][:]).long() augm_or_not = torch.randint(0, 3, (3,)) all = torch.cat([raw, gt, sp_seg, affs], 0) patch = self.pm.get_patch(all, patch_idx) if augm_or_not[0] == 0 and self.spatial_augmentation: spat_tf, int_tf = self.augm_tf.sample(1, 1) patch = spat_tf(patch) if not self.reorder_sp: return patch[:nc], patch[nc:nc+1], patch[nc+1:nc+2], patch[nc+2:], offs, torch.tensor([img_idx, patch_idx]) gt = patch[nc:nc+1] sp_seg = patch[nc+1:nc+2] augm_raw = patch[:nc] if augm_or_not[1] == 0 and self.intensity_augmentation: spat_tf, int_tf = self.augm_tf.sample(1, 1) augm_raw = int_tf(augm_raw) if augm_or_not[2] == 0 and self.noise_augmentation: augm_raw = add_sp_gauss_noise(augm_raw, 0.2, 0.1, 0.3) # relabel to consecutive ints starting at 0 un = torch.unique(sp_seg) mask = sp_seg == un[:, None, None] sp_seg = (mask * (torch.arange(len(un), device=sp_seg.device)[:, None, None] + 1)).sum(0) - 1 un = torch.unique(gt) mask = gt == un[:, None, None] gt = (mask * (torch.arange(len(un), device=gt.device)[:, None, None] + 1)).sum(0) - 1 return augm_raw, gt.float()[None], sp_seg.float()[None], patch[nc+2:], offs, torch.tensor([img_idx, patch_idx]) def get_graphs(self, indices, patches, device="cpu"): edges, edge_feat, diff_to_gt, gt_edge_weights, affs = [], [], [], [], [] for idx, patch in zip(indices, patches): img_idx, patch_idx = idx[0], idx[1] nodes = torch.unique(patch).unsqueeze(-1).unsqueeze(-1) graph_file = h5py.File(self.graph_file_names[img_idx], 'r') # get subgraph defined by patch overlap es = torch.from_numpy(graph_file["edges"][:]).to(device).sort(0)[0] iters_1 = (es.unsqueeze(0) == nodes).float().sum(0).sum(0) >= 2 es = es[:, iters_1] nodes, es, patch = squeeze_repr(nodes.squeeze(-1).squeeze(-1), es, patch.squeeze(0)) rag = nrag.gridRag(patch.squeeze(0).long().cpu().numpy(), int(patch.max()) + 1, numberOfThreads=1) _edges = torch.from_numpy(rag.uvIds().astype(np.int)).to(device).T.sort(0)[0] iters_2 = ((es.unsqueeze(1) == _edges.unsqueeze(-1)).float().sum(0) == 2.0).sum(0) == 1 es = es[:, iters_2] edges.append(es) edge_feat.append(torch.from_numpy(graph_file["edge_feat"][:]).to(device)[iters_1][iters_2]) diff_to_gt.append(torch.tensor(graph_file["diff_to_gt"][()], device=device)) gt_edge_weights.append(torch.from_numpy(graph_file["gt_edge_weights"][:]).to(device)[iters_1][iters_2]) affs.append(self.pm.get_patch(torch.from_numpy(graph_file["affinities"][:]).to(device), patch_idx)) return edges, edge_feat, diff_to_gt, gt_edge_weights, affs if __name__ == "__main__": set = SpgDset() ret = set.get(3) a=1
StarcoderdataPython
208585
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sistema', '0023_auto_20170105_1514'), ] operations = [ migrations.RenameField( model_name='detallefactura', old_name='total', new_name='subtotal', ), ]
StarcoderdataPython
8008180
def add(x, y): return (x+y) def mul(x, y): return (x*y) def sub(x, y): return (x-y) def div(x, y): return (x/y)
StarcoderdataPython
1631979
#!/usr/bin/python import os import sys import binascii import grpc from lndlibs import rpc_pb2 as ln from lndlibs import rpc_pb2_grpc as lnrpc from pathlib2 import Path print("This is the legacy - Python2 only - version.") if sys.version_info > (3, 0): print("Can't run on Python3") sys.exit() # display config script info if len(sys.argv) <= 1 or sys.argv[1] == "-h" or sys.argv[1] == "help": print("# ! always activate virtual env first: source /home/admin/python-env-lnd/bin/activate") print("# ! and run with with: python /home/admin/config.scripts/lnd.initwallet.py") print("# creating or recovering the LND wallet") print("# lnd.initwallet.py new [walletpassword] [?seedpassword]") print("# lnd.initwallet.py seed [walletpassword] [\"seeds-words-seperated-spaces\"] [?seedpassword]") print("# lnd.initwallet.py scb [walletpassword] [\"seeds-words-seperated-spaces\"] [filepathSCB] [?seedpassword]") print("err='missing parameters'") sys.exit(1) mode = sys.argv[1] def new(stub, wallet_password="", seed_entropy=None): if seed_entropy: # provide 16-bytes of static data to get reproducible seeds for TESTING!) print("WARNING: Use this for testing only!!") request = ln.GenSeedRequest(seed_entropy=seed_entropy) else: request = ln.GenSeedRequest() try: response = stub.GenSeed(request) seed_words = response.cipher_seed_mnemonic seed_words_str = ', '.join(seed_words) print("seedwords='" + seed_words_str + "'") # add a 6x4 formatted version to the output seed_words_6x4 = "" for i in range(0, len(seed_words)): if i % 6 == 0 and i != 0: seed_words_6x4 = seed_words_6x4 + "\n" single_word = str(i + 1) + ":" + seed_words[i] while len(single_word) < 12: single_word = single_word + " " seed_words_6x4 = seed_words_6x4 + single_word print("seedwords6x4='" + seed_words_6x4 + "'") except grpc.RpcError as rpc_error_call: code = rpc_error_call.code() print >> sys.stderr, code details = rpc_error_call.details() print("err='RPCError GenSeedRequest'") print("errMore='" + details + "'") sys.exit(1) except: e = sys.exc_info()[0] print >> sys.stderr, e print("err='GenSeedRequest'") sys.exit(1) request = ln.InitWalletRequest( wallet_password=<PASSWORD>, cipher_seed_mnemonic=seed_words ) try: response = stub.InitWallet(request) except grpc.RpcError as rpc_error_call: code = rpc_error_call.code() print >> sys.stderr, code details = rpc_error_call.details() print("err='RPCError InitWallet'") print("errMore='" + details + "'") sys.exit(1) except: e = sys.exc_info()[0] print >> sys.stderr, e print("err='InitWallet'") sys.exit(1) def seed(stub, wallet_password="", seed_words="", seed_password=""): request = ln.InitWalletRequest( wallet_password=<PASSWORD>_password, cipher_seed_mnemonic=seed_words, recovery_window=250, aezeed_passphrase=seed_password ) try: response = stub.InitWallet(request) except grpc.RpcError as rpc_error_call: code = rpc_error_call.code() print >> sys.stderr, code details = rpc_error_call.details() print("err='RPCError InitWallet'") print("errMore='" + details + "'") sys.exit(1) except: e = sys.exc_info()[0] print >> sys.stderr, e print("err='InitWallet'") sys.exit(1) def scb(stub, wallet_password="", seed_words="", seed_password="", file_path_scb=""): with open(file_path_scb, 'rb') as f: content = f.read() scb_hex_str = binascii.hexlify(content) print(scb_hex_str) request = ln.InitWalletRequest( wallet_password=<PASSWORD>, cipher_seed_mnemonic=seed_words, recovery_window=250, aezeed_passphrase=<PASSWORD>, channel_backups=scb_hex_str ) try: response = stub.InitWallet(request) except grpc.RpcError as rpc_error_call: code = rpc_error_call.code() print >> sys.stderr, code details = rpc_error_call.details() print("err='RPCError InitWallet'") print("errMore='" + details + "'") sys.exit(1) except: e = sys.exc_info()[0] print >> sys.stderr, e print("err='InitWallet'") sys.exit(1) print("err='TODO: implement creating from seed/scb'") sys.exit(1) def parse_args(): wallet_password = "" seed_words = "" seed_password = "" filepath_scb = "" if mode == "new": print("# *** CREATING NEW LND WALLET ***") if len(sys.argv) > 2: wallet_password = sys.argv[2] if len(wallet_password) < 8: print("err='wallet password is too short'") sys.exit(1) else: print("err='wallet password is too short'") sys.exit(1) if len(sys.argv) > 3: seed_password = sys.argv[3] elif mode == "seed" or mode == "scb": if len(sys.argv) > 2: wallet_password = sys.argv[2] if len(wallet_password) < 8: print("err='wallet password is too short'") sys.exit(1) else: print("err='not correct amount of parameter - missing wallet password'") sys.exit(1) if len(sys.argv) > 3: seed_word_str = sys.argv[3] seed_words = seed_word_str.split(" ") if len(seed_words) < 24: print("err='not 24 seed words separated by just spaces (surrounded with \")'") sys.exit(1) else: print("err='not correct amount of parameter - missing seed string'") sys.exit(1) if mode == "seed": if len(sys.argv) > 4: seed_password = sys.argv[4] elif mode == "scb": if len(sys.argv) > 4: filepath_scb = sys.argv[4] scb_file = Path(filepath_scb) if scb_file.is_file(): print("# OK SCB file exists") else: print("err='the given filepathSCB - file does not exists or no permission'") sys.exit(1) else: print("err='not correct amount of parameter - missing seed filepathSCB'") sys.exit(1) if len(sys.argv) > 5: seed_password = sys.argv[4] else: print("err='unknown mode parameter - run without any parameters to see options'") sys.exit(1) return wallet_password, seed_words, seed_password, filepath_scb def main(): wallet_password, seed_words, seed_password, file_path_scb = parse_args() os.environ['GRPC_SSL_CIPHER_SUITES'] = 'HIGH+ECDSA' cert = open('/mnt/hdd/lnd/tls.cert', 'rb').read() ssl_creds = grpc.ssl_channel_credentials(cert) channel = grpc.secure_channel('localhost:10009', ssl_creds) stub = lnrpc.WalletUnlockerStub(channel) if mode == "new": new(stub, wallet_password) elif mode == "seed": seed(stub, wallet_password, seed_words, seed_password) elif mode == "scb": scb(stub, wallet_password, seed_words, seed_password, file_path_scb) if __name__ == '__main__': main()
StarcoderdataPython
3433461
<gh_stars>0 from ayeauth import db from ayeauth.models import BaseModel, _get_uuid class AuthorizationCode(BaseModel): __tablename__ = "authorization_codes" code = db.Column(db.String(36), nullable=False, default=_get_uuid) expiry = db.Column(db.DateTime(), nullable=False) state = db.Column(db.String(36), nullable=False) user_id = db.Column(db.String(36), db.ForeignKey("users.id")) application_id = db.Column(db.String(36), db.ForeignKey("applications.id")) def __init__(self, expiry, state, user_id, application_id): self.expiry = expiry self.state = state self.user_id = user_id self.application_id = application_id
StarcoderdataPython
6695280
<reponame>beikerta/sasmodels<gh_stars>0 r""" .. warning:: This model and this model description are under review following concerns raised by SasView users. If you need to use this model, please email <EMAIL> for the latest situation. *The SasView Developers. September 2018.* Definition ---------- Calculates the scattering from a **body-centered cubic lattice** with paracrystalline distortion. Thermal vibrations are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian distribution. The scattering intensity $I(q)$ is calculated as .. math:: I(q) = \frac{\text{scale}}{V_p} V_\text{lattice} P(q) Z(q) where *scale* is the volume fraction of spheres, $V_p$ is the volume of the primary particle, $V_\text{lattice}$ is a volume correction for the crystal structure, $P(q)$ is the form factor of the sphere (normalized), and $Z(q)$ is the paracrystalline structure factor for a body-centered cubic structure. Equation (1) of the 1990 reference\ [#Matsuoka1990]_ is used to calculate $Z(q)$, using equations (29)-(31) from the 1987 paper\ [#Matsuoka1987]_ for $Z1$, $Z2$, and $Z3$. The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of particles of radius $R$ and nearest neighbor separation $D$ is .. math:: V_\text{lattice} = \frac{16\pi}{3} \frac{R^3}{\left(D\sqrt{2}\right)^3} The distortion factor (one standard deviation) of the paracrystal is included in the calculation of $Z(q)$ .. math:: \Delta a = g D where $g$ is a fractional distortion based on the nearest neighbor distance. .. figure:: img/bcc_geometry.jpg Body-centered cubic lattice. For a crystal, diffraction peaks appear at reduced q-values given by .. math:: \frac{qD}{2\pi} = \sqrt{h^2 + k^2 + l^2} where for a body-centered cubic lattice, only reflections where $(h + k + l) = \text{even}$ are allowed and reflections where $(h + k + l) = \text{odd}$ are forbidden. Thus the peak positions correspond to (just the first 5) .. math:: \begin{array}{lccccc} q/q_o & 1 & \sqrt{2} & \sqrt{3} & \sqrt{4} & \sqrt{5} \\ \text{Indices} & (110) & (200) & (211) & (220) & (310) \\ \end{array} .. note:: The calculation of $Z(q)$ is a double numerical integral that must be carried out with a high density of points to properly capture the sharp peaks of the paracrystalline scattering. So be warned that the calculation is slow. Fitting of any experimental data must be resolution smeared for any meaningful fit. This makes a triple integral which may be very slow. This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above default values. The 2D (Anisotropic model) is based on the reference below where $I(q)$ is approximated for 1d scattering. Thus the scattering pattern for 2D may not be accurate, particularly at low $q$. For general details of the calculation and angular dispersions for oriented particles see :ref:`orientation`. Note that we are not responsible for any incorrectness of the 2D model computation. .. figure:: img/parallelepiped_angle_definition.png Orientation of the crystal with respect to the scattering plane, when $\theta = \phi = 0$ the $c$ axis is along the beam direction (the $z$ axis). References ---------- .. [#Matsuoka1987] Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 (Original Paper) .. [#Matsuoka1990] Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854-3856 (Corrections to FCC and BCC lattice structure calculation) Authorship and Verification --------------------------- * **Author:** <NAME> **Date:** pre 2010 * **Last Modified by:** <NAME> **Date:** September 29, 2016 * **Last Reviewed by:** <NAME> **Date:** March 21, 2016 """ import numpy as np from numpy import inf, pi name = "bcc_paracrystal" title = "Body-centred cubic lattic with paracrystalline distortion" description = """ Calculates the scattering from a **body-centered cubic lattice** with paracrystalline distortion. Thermal vibrations are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian distribution. """ category = "shape:paracrystal" #note - calculation requires double precision single = False # pylint: disable=bad-whitespace, line-too-long # ["name", "units", default, [lower, upper], "type","description" ], parameters = [["dnn", "Ang", 220, [-inf, inf], "", "Nearest neighbour distance"], ["d_factor", "", 0.06, [-inf, inf], "", "Paracrystal distortion factor"], ["radius", "Ang", 40, [0, inf], "volume", "Particle radius"], ["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld", "Particle scattering length density"], ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld", "Solvent scattering length density"], ["theta", "degrees", 60, [-360, 360], "orientation", "c axis to beam angle"], ["phi", "degrees", 60, [-360, 360], "orientation", "rotation about beam"], ["psi", "degrees", 60, [-360, 360], "orientation", "rotation about c axis"] ] # pylint: enable=bad-whitespace, line-too-long source = ["lib/sas_3j1x_x.c", "lib/gauss150.c", "lib/sphere_form.c", "bcc_paracrystal.c"] def random(): """Return a random parameter set for the model.""" # Define lattice spacing as a multiple of the particle radius # using the formulat a = 4 r/sqrt(3). Systems which are ordered # are probably mostly filled, so use a distribution which goes from # zero to one, but leaving 90% of them within 80% of the # maximum bcc packing. Lattice distortion values are empirically # useful between 0.01 and 0.7. Use an exponential distribution # in this range 'cuz its easy. radius = 10**np.random.uniform(1.3, 4) d_factor = 10**np.random.uniform(-2, -0.7) # sigma_d in 0.01-0.7 dnn_fraction = np.random.beta(a=10, b=1) dnn = radius*4/np.sqrt(3)/dnn_fraction pars = dict( #sld=1, sld_solvent=0, scale=1, background=1e-32, dnn=dnn, d_factor=d_factor, radius=radius, ) return pars # april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! # add 2d test later # TODO: fix the 2d tests q = 4.*pi/220. tests = [ [{}, [0.001, q, 0.215268], [1.46601394721, 2.85851284174, 0.00866710287078]], #[{'theta': 20.0, 'phi': 30, 'psi': 40.0}, (-0.017, 0.035), 2082.20264399], #[{'theta': 20.0, 'phi': 30, 'psi': 40.0}, (-0.081, 0.011), 0.436323144781], ]
StarcoderdataPython
11327942
# Owner(s): ["oncall: jit"] import os import sys import warnings import torch from typing import List, Dict, Optional # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from torch.testing._internal.jit_utils import JitTestCase if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestScriptModuleInstanceAttributeTypeAnnotation(JitTestCase): # NB: There are no tests for `Tuple` or `NamedTuple` here. In fact, # reassigning a non-empty Tuple to an attribute previously typed # as containing an empty Tuple SHOULD fail. See note in `_check.py` def test_annotated_falsy_base_type(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.x: int = 0 def forward(self, x: int): self.x = x return 1 with warnings.catch_warnings(record=True) as w: self.checkModule(M(), (1,)) assert(len(w) == 0) def test_annotated_nonempty_container(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.x: List[int] = [1, 2, 3] def forward(self, x: List[int]): self.x = x return 1 with warnings.catch_warnings(record=True) as w: self.checkModule(M(), ([1, 2, 3],)) assert(len(w) == 0) def test_annotated_empty_tensor(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() self.x: torch.Tensor = torch.empty(0) def forward(self, x: torch.Tensor): self.x = x return self.x with warnings.catch_warnings(record=True) as w: self.checkModule(M(), (torch.rand(2, 3),)) assert(len(w) == 0) def test_annotated_with_jit_attribute(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() self.x = torch.jit.Attribute([], List[int]) def forward(self, x: List[int]): self.x = x return self.x with warnings.catch_warnings(record=True) as w: self.checkModule(M(), ([1, 2, 3],)) assert(len(w) == 0) def test_annotated_class_level_annotation_only(self): class M(torch.nn.Module): x: List[int] def __init__(self): super().__init__() self.x = [] def forward(self, y: List[int]): self.x = y return self.x with warnings.catch_warnings(record=True) as w: self.checkModule(M(), ([1, 2, 3],)) assert(len(w) == 0) def test_annotated_class_level_annotation_and_init_annotation(self): class M(torch.nn.Module): x: List[int] def __init__(self): super().__init__() self.x: List[int] = [] def forward(self, y: List[int]): self.x = y return self.x with warnings.catch_warnings(record=True) as w: self.checkModule(M(), ([1, 2, 3],)) assert(len(w) == 0) def test_annotated_class_level_jit_annotation(self): class M(torch.nn.Module): x: List[int] def __init__(self): super().__init__() self.x: List[int] = torch.jit.annotate(List[int], []) def forward(self, y: List[int]): self.x = y return self.x with warnings.catch_warnings(record=True) as w: self.checkModule(M(), ([1, 2, 3],)) assert(len(w) == 0) def test_annotated_empty_list(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.x: List[int] = [] def forward(self, x: List[int]): self.x = x return 1 with self.assertRaisesRegexWithHighlight(RuntimeError, "Tried to set nonexistent attribute", "self.x = x"): with self.assertWarnsRegex(UserWarning, "doesn't support " "instance-level annotations on " "empty non-base types"): torch.jit.script(M()) def test_annotated_empty_dict(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.x: Dict[str, int] = {} def forward(self, x: Dict[str, int]): self.x = x return 1 with self.assertRaisesRegexWithHighlight(RuntimeError, "Tried to set nonexistent attribute", "self.x = x"): with self.assertWarnsRegex(UserWarning, "doesn't support " "instance-level annotations on " "empty non-base types"): torch.jit.script(M()) def test_annotated_empty_optional(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.x: Optional[str] = None def forward(self, x: Optional[str]): self.x = x return 1 with self.assertRaisesRegexWithHighlight(RuntimeError, "Wrong type for attribute assignment", "self.x = x"): with self.assertWarnsRegex(UserWarning, "doesn't support " "instance-level annotations on " "empty non-base types"): torch.jit.script(M()) def test_annotated_with_jit_empty_list(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.x = torch.jit.annotate(List[int], []) def forward(self, x: List[int]): self.x = x return 1 with self.assertRaisesRegexWithHighlight(RuntimeError, "Tried to set nonexistent attribute", "self.x = x"): with self.assertWarnsRegex(UserWarning, "doesn't support " "instance-level annotations on " "empty non-base types"): torch.jit.script(M()) def test_annotated_with_jit_empty_dict(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.x = torch.jit.annotate(Dict[str, int], {}) def forward(self, x: Dict[str, int]): self.x = x return 1 with self.assertRaisesRegexWithHighlight(RuntimeError, "Tried to set nonexistent attribute", "self.x = x"): with self.assertWarnsRegex(UserWarning, "doesn't support " "instance-level annotations on " "empty non-base types"): torch.jit.script(M()) def test_annotated_with_jit_empty_optional(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.x = torch.jit.annotate(Optional[str], None) def forward(self, x: Optional[str]): self.x = x return 1 with self.assertRaisesRegexWithHighlight(RuntimeError, "Wrong type for attribute assignment", "self.x = x"): with self.assertWarnsRegex(UserWarning, "doesn't support " "instance-level annotations on " "empty non-base types"): torch.jit.script(M()) def test_annotated_with_torch_jit_import(self): from torch import jit class M(torch.nn.Module): def __init__(self): super().__init__() self.x = jit.annotate(Optional[str], None) def forward(self, x: Optional[str]): self.x = x return 1 with self.assertRaisesRegexWithHighlight(RuntimeError, "Wrong type for attribute assignment", "self.x = x"): with self.assertWarnsRegex(UserWarning, "doesn't support " "instance-level annotations on " "empty non-base types"): torch.jit.script(M())
StarcoderdataPython
8129698
<reponame>igushev/fase_lib<gh_stars>1-10 import re DEMO_PHONE_REGEXP = '\+100000000[0-9][0-9]' DEMO_ACTIVATION_CODE = 321654 def PhoneNumberIsDemo(phone_number): return re.fullmatch(DEMO_PHONE_REGEXP, phone_number) is not None
StarcoderdataPython
1693531
<reponame>andrewsmedina/django-admin2 from __future__ import unicode_literals from blog.views import BlogListView, BlogDetailView from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from djadmin2.site import djadmin2_site admin.autodiscover() djadmin2_site.autodiscover() urlpatterns = [ url(r'^admin2/', include(djadmin2_site.urls)), url(r'^admin/', include(admin.site.urls)), url(r'^blog/', BlogListView.as_view(template_name="blog/blog_list.html"), name='blog_list'), url(r'^blog/detail(?P<pk>\d+)/$', BlogDetailView.as_view(template_name="blog/blog_detail.html"), name='blog_detail'), url(r'^$', BlogListView.as_view(template_name="blog/home.html"), name='home'), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
StarcoderdataPython
5085668
__all__ = [ "RunTest" ]
StarcoderdataPython
9681277
from pypika.dialects import Query from weaverbird.backends.pypika_translator.dialects import SQLDialect from weaverbird.backends.pypika_translator.translators.base import SQLTranslator class AthenaTranslator(SQLTranslator): DIALECT = SQLDialect.ATHENA QUERY_CLS = Query SUPPORT_ROW_NUMBER = True SUPPORT_SPLIT_PART = True SQLTranslator.register(AthenaTranslator)
StarcoderdataPython
5099691
<reponame>SaxenaKartik/Convin-Backend from django.contrib import admin from tracker_api import models # Register your models here. admin.site.register(models.Task) admin.site.register(models.TaskTracker)
StarcoderdataPython
9718521
# number = [5, 6, 4, 2, 1, 9] # max = number[0] # for x in number: # if number > x: # x = number # print(max) number = [1, 1, 2, 2, 5, 7, 8, 5, 5] # number = list(dict.fromkeys(number)) # print(number) numbers = [] for numb in number: if numb not in number: numbers.append(numb) print(numbers)
StarcoderdataPython
3213275
<filename>backend/readImages.py import numpy as np # import pandas as pd # f = open('dataset/data/imagedata.txt') # contents = f.read() # f.close() checkArray = np.loadtxt('dataset/data/imagedata.npy') checkArray = checkArray.reshape(1800, 48400) print(checkArray.shape) print(checkArray.size)
StarcoderdataPython
1818412
""" * ******************************************************* * Copyright (c) VMware, Inc. 2016-2018. All Rights Reserved. * SPDX-License-Identifier: MIT * ******************************************************* * * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """ __author__ = 'VMware, Inc.' from samples.vsphere.common.vim.file import (detect_file, delete_file, parse_datastore_path) from samples.vsphere.common.vim.inventory import get_datastore_mo from samples.vsphere.common.vim import datastore_file def setup_floppy_image(context): """Copy floppy image used to run vcenter samples""" floppy_src_url = context.testbed.config['FLOPPY_SRC_URL'] datacenter_name = context.testbed.config['FLOPPY_DATACENTER_NAME'] datastore_path = context.testbed.config['FLOPPY_DATASTORE_PATH'] (datastore_name, path) = parse_datastore_path(datastore_path) datastore_mo = get_datastore_mo(context.client, context.service_instance._stub, datacenter_name, datastore_name) if not datastore_mo: raise Exception("Could not find datastore '{}'".format(datastore_name)) # See if the Floppy image exists. Copy it into the system if it does not # exist dsfile = datastore_file.File(datastore_mo) if not dsfile.exists(datastore_path): print("Putting Floppy file from '{}' at '{}'". format(floppy_src_url, datastore_path)) dsfile.put(path=path, src_url=floppy_src_url) def cleanup_floppy_image(context): """Delete floppy image after running samples""" datacenter_name = context.testbed.config['FLOPPY_DATACENTER_NAME'] datastore_path = context.testbed.config['FLOPPY_DATASTORE_PATH'] delete_file(context.client, context.service_instance, 'Floppy Image', datacenter_name, datastore_path) def detect_floppy_image(context): """Find the floppy image used to run vcenter samples""" datacenter_name = context.testbed.config['FLOPPY_DATACENTER_NAME'] datastore_path = context.testbed.config['FLOPPY_DATASTORE_PATH'] return detect_file(context, 'Floppy Image', datacenter_name, datastore_path) def setup(context): setup_floppy_image(context) def cleanup(context): cleanup_floppy_image(context) def validate(context): return detect_floppy_image(context)
StarcoderdataPython
8188956
<gh_stars>1-10 import discord from discord_components import Button, ButtonStyle import modules.buttons.globals as global_values class ComponentMessage: def __init__(self, actionrows, **kwargs): self.temporary = kwargs["temporary"] if "temporary" in kwargs else True self.components = [] i = 0 for row in actionrows: self.components.append([]) for component in row: self.components[len(self.components) - 1].append(FullButton(self, i, **component)) i += 1 self.message = None self.embed = None self.content= None # Envoie le choix async def send(self, _channel, **kwargs): self.embed = kwargs["embed"] if "embed" in kwargs else None self.content = kwargs["content"] if "content" in kwargs else None if not (self.content or self.embed): raise Exception("Missing content or embed") self.message = await _channel.send(self.content, embed=self.embed, components=self.components) #Met à jour le message async def update(self, actionrows=None): if not self.message: return if actionrows: for row in self.components: for component in row: component.delete() self.components = [] i = 0 for row in actionrows: self.components.append([]) for component in row: self.components[len(self.components) - 1].append(FullButton(self, i, **component)) i += 1 await self.message.edit(self.content, embed=self.embed, components=self.components) # Supprime l'objet (et le message si force=True) async def delete(self, force=False, keepButtons=False): if self.temporary or force: await self.message.delete() elif not keepButtons: await self.message.edit(components=[]) for row in self.components: for component in row: component.delete() del component class FullButton(Button): def __init__(self, _componentMessage, index, **kwargs): self.effect = kwargs.pop("effect") self.cond = kwargs.pop("cond") super().__init__(**kwargs) self.componentMessage = _componentMessage self.index = index global_values.components[self.id] = self async def disable(self): self.disabled = True await self.componentMessage.update() async def enable(self): self.disabled = False await self.componentMessage.update() def delete(self): del global_values.components[self.id] # Module créé par Le Codex#9836
StarcoderdataPython
3515855
<filename>src/models/ops/conv_blocks.py import tensorflow as tf from tensorflow.keras import layers from tensorflow.nn import relu6 from models.ops import conv_ops as ops # Bloque comun de convolucion que consiste: # > conv2d # > batch normalization # > activation # > dropout class basic_conv_block(layers.Layer): # Args: # filters: entero con el numero de filtros de la convolucion # kernel: par de numeros con tamaño del kernel # strides: arreglo de strides # dropout: fraccion a la cual se le va aplicar dropout # activation: el topo de activacion de la capa def __init__(self, filters, kernel, stride=1, dropout=0.25, activation="ReLU", name="conv_block", **kwargs): super(basic_conv_block, self).__init__(name=name, **kwargs) self.filters = filters self.kernel = kernel self.strides = [1, stride, stride, 1] self.dropout = dropout self.activation = activation self.conv = ops.normal_conv(filters, kernel, strides=self.strides, name=name+"_conv2d") self.bn = layers.BatchNormalization(name=name+"_bn") if self.activation == "ReLU": self.activation = layers.Activation("relu", name=name+"_relu") if self.activation == "ReLU6": self.activation = ops.ReLU6(name=name+"_relu6") self.dropout = layers.Dropout(dropout, name=name+"_dropout") # # serializa la configuracion de la capa def get_config(self): config = super(basic_conv_block, self).get_config() config.update({ "filters": self.filters, "kernel": self.kernel, "stride": self.strides[1], "dropout": self.dropout, "activation": self.activation }) return config def call(self, inputs, training=None): # Operacion depth wise x = self.conv(inputs) x = self.bn(x) x = self.activation(x) if training == True: x = self.dropout(x) return x # Bloque de pointwise convolution # > pointwise # > batch normalization # > activation # > dropout class pwise_conv_block(layers.Layer): # Args: # filters: entero con el numero de filtros de la convolucion # strides: arreglo de strides # dropout: fraccion a la cual se le va aplicar dropout # activation: el topo de activacion de la capa def __init__(self, filters, stride=1, dropout=0.25, activation="ReLU", name="pwise_conv_block", **kwargs): super(pwise_conv_block, self).__init__(name=name, **kwargs) self.filters = filters self.strides = [1, stride, stride, 1] self.dropout = dropout self.activation = activation self.conv = ops.pointwise_conv(filters, strides=self.strides, name=name+"_pwise_conv") self.bn = layers.BatchNormalization(name=name+"_bn") if self.activation == "ReLU": self.activation = layers.Activation("relu", name=name+"_relu") if self.activation == "ReLU6": self.activation = ops.ReLU6(name=name+"_relu6") self.dropout = layers.Dropout(dropout, name=name+"_dropout") # # serializa la configuracion de la capa def get_config(self): config = super(pwise_conv_block, self).get_config() config.update({ "filters": self.filters, "stride": self.strides[1], "dropout": self.dropout, "activation": self.activation }) return config def call(self, inputs, training=None): # Operacion depth wise x = self.conv(inputs) x = self.bn(x) x = self.activation(x) if training == True: x = self.dropout(x) return x # # Bloque de capas de mobilenetV1 que realiza lo siguiente # > 3x3 Depthwise conv, stride=(1|2) # > Batch Normalization # > ReLU Activation # > 1x1xfilters Conv (Pointwise conv) # > Batch Normalization # > ReLU Activations # class separable_conv_block(layers.Layer): # # Crea el bloque segun los argumentos # Args: # filters: numero de filtros que realizara la Pointwise Conv # stride: stride de la layer Depthwise Conv, 1 o 2 # name: nombre del bloque # def __init__(self, filters, stride, dropout=0.25, name="separable_conv_block", **kwargs): super(separable_conv_block, self).__init__(name=name, **kwargs) self.filters = filters self.stride = stride self.dropout = dropout # Asegura de que el filters sea un entero if type(filters) is float: filters = int(filters) # deptwise operation self.dwise = ops.depthwise_conv((3,3), strides=[1, stride, stride, 1]) self.dwbn = layers.BatchNormalization() self.dwrelu = layers.Activation("relu") self.dwdo = layers.Dropout(dropout) #point wise operation self.pwise = ops.pointwise_conv(filters) self.pwbn = layers.BatchNormalization() self.pwrelu = layers.Activation("relu") self.pwdo = layers.Dropout(dropout) # # serializa la configuracion de la capa def get_config(self): config = super(separable_conv_block, self).get_config() config.update({ "filters": self.filters, "stride": self.stride, "dropout": self.dropout }) return config def call(self, inputs, training=None): # Operacion depth wise x = self.dwise(inputs) x = self.dwbn(x) x = self.dwrelu(x) if training == True: x = self.dwdo(x) # Luego point wise convolution x = self.pwise(x) x = self.pwbn(x) x = self.pwrelu(x) if training == True: x = self.pwdo(x) return x # # Bloque basico para MobileNetV2, realiza lo siguiente: # > (1x1xinput_channels*t) conv # > Batch Normalization # > ReLU6 # > 3x3 Depthwise conv, stride=(1|2) # > Batch Normalization # > ReLU6 # > (1x1xoutput_channels) conv # > Si stride == 1 entonces residual = output + input # class BottleneckResidualBlock(layers.Layer): # # Crea el bloque segun los argumentos # Args: # input_channels: numero de channels que entraran al bloque # filters: numero de filtros del volumen final # stride: stride de la layer Depthwise Conv, 1 o 2 # t: expansion factor, por defecto 6 # dropout: cantidad de dropout que se realizara # name: nombre del bloque # def __init__(self, input_channels, filters, stride=1, t=6, dropout=0.25, store_output=False, name="BottleneckResidualBlock", **kwargs): super(BottleneckResidualBlock, self).__init__(name=name, **kwargs) # Asegura de que el input_channels sea un entero if type(input_channels) is float: input_channels = int(input_channels) # Asegura de que el filters sea un entero if type(filters) is float: filters = int(filters) self.input_channels = input_channels self.output_channels = filters self.stride = stride self.t = t self.dropout = dropout self.store_output = store_output self.expansion_output = None self.block_output = None self.pw_exp = ops.pointwise_conv(input_channels * t, name=name + "_expansion_conv") self.bn_exp = layers.BatchNormalization(name=name+"_expansion_bn") self.do_exp = layers.Dropout(self.dropout, name=name+"_expansion_do") self.dwise = ops.depthwise_conv((3,3), strides=[1, stride, stride, 1], name=name+"_depthwise_conv") self.bn_dwise = layers.BatchNormalization(name=name+"_depthwise_bn") self.do_dwise = layers.Dropout(self.dropout, name=name+"_depthwise_do") self.pw_bottleneck = ops.pointwise_conv(self.output_channels, name=name+"_bottleneck_conv") self.bn_bottleneck = layers.BatchNormalization(name=name+"_bottleneck_bn") self.do_bottleneck = layers.Dropout(self.dropout, name=name+"_bottleneck_do") # En caso de que el input y output no concuerden, # se realiza un 1x1 conv para que concuerdes # if self.input_channels != self.output_channels: # self.pw_residual = ops.pointwise_conv(self.output_channels) # # serializa la configuracion de la capa def get_config(self): config = super(BottleneckResidualBlock, self).get_config() config.update({ "input_channels": self.input_channels, "filters": self.output_channels, "stride": self.stride, "t": self.t, "dropout": self.dropout, "store_output": self.store_output }) return config def call(self, inputs, training=None): residual = inputs # Expansion de los channels de entrada x = self.pw_exp(inputs) x = self.bn_exp(x) x = relu6(x) if training == True: x = self.do_exp(x) res_expansion = x # Realisamos la depthwise convolution x = self.dwise(x) x = self.bn_dwise(x) x = relu6(x) if training == True: x = self.do_dwise(x) res_depthwise = x # Bottleneck para reducir los channels de salida x = self.pw_bottleneck(x) x = self.bn_bottleneck(x) # checa si hay que sumar el residual if self.stride == 1: if self.input_channels == self.output_channels: x = x + residual #residual = self.pw_residual(residual) #x = x + residual if training == True: x = self.do_bottleneck(x) res_bottleneck = x return res_bottleneck
StarcoderdataPython
1873864
import numpy as np from scipy import integrate from matplotlib.pylab import * import matplotlib.pyplot as plt ''' Stiff combustion equation ''' def combustion(t,y): n = len(y) dydt = np.zeros((n,1)) #dydt[0] = -15*y dydt[0] = y**2 - y**3 return dydt # The ``driver`` that will integrate the ODE(s): if __name__ == '__main__': backend = 'dopri5' #backend = 'dop853' r = integrate.ode(combustion).set_integrator(backend,rtol=1e-4, nsteps=1500, first_step=1e-6, max_step=1e-1, verbosity=True) t_start=0.0 t_final=2000.0 delta_t=1 num_steps = np.floor((t_final - t_start)/delta_t) + 1 y0=0.001 r.set_initial_value([y0], t_start) t = np.zeros((int(num_steps), 1)) y = np.zeros((int(num_steps), 1)) t[0] = t_start y[0] = y0 sol = [] k = 1 while r.successful() and k < num_steps: r.integrate(r.t + delta_t) # Store the results to plot later t[k] = r.t y[k] = r.y[0] k += 1 sol.append([r.t, r.y]) sol = np.array(sol) # All done! Plot the trajectories: plt.plot(t, y, 'bo') ylim([-0.1,0.5]) grid('on') xlabel('Time [minutes]') ylabel('Concentration [mol/L]') plt.show()
StarcoderdataPython
6640460
from alembic import op """Drop UserObservation unique constraint in favor of history Revision ID: <KEY> Revises: <PASSWORD> Create Date: 2018-04-06 04:47:18.518343 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<PASSWORD>' def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint( u'_user_observation', 'user_observations', type_='unique') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_unique_constraint( u'_user_observation', 'user_observations', ['user_id', 'observation_id']) # ### end Alembic commands ###
StarcoderdataPython
11275326
# Generated by Django 3.2.4 on 2021-06-16 18:08 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('quiz', '0013_auto_20210616_2305'), ] operations = [ migrations.RenameModel( old_name='Questions', new_name='QuizQuestions', ), ]
StarcoderdataPython
9697876
from Clases.Helpers import Helpers from Clases.QLDBDriver import QLDBDriver from Clases.Password import Password class Service(): def __init__(self): self.password = Password() self.db = QLDBDriver() def validate_user(self, user, password): user_data = self.get_user(user) if user_data is None: return False user_password = user_data["password"] valid = self.password.verify_password(user_password, password) if not valid: return False return True def create_user(self, user, password): password_hash = self.password.hash_password(password) data_to_save = { "username" : user, "password" : password_<PASSWORD> } self.db.create_insert("users", data_to_save) def get_user(self, username): query = "SELECT * FROM users WHERE username = '{}'".format(username) data = self.db.create_query(query) if len(data) > 0: return data[0] return None def save_ws_log(self, request, response): data_to_save = { "request": Helpers.remove_special(request), "response": Helpers.remove_special(response) } self.db.create_insert("ws_log", data_to_save)
StarcoderdataPython
5010266
#!/usr/bin/env python # -*- coding: utf-8 -*- import setuptools from pbr.packaging import parse_requirements entry_points = { } setuptools.setup( name='placementclient', version='0.3.0', description=('Client for the Placement API'), author='<NAME>', author_email='<EMAIL>', url='https://github.com/NeCTAR-RC/python-placementclient', packages=[ 'placementclient', ], include_package_data=True, install_requires=parse_requirements(), license="Apache", zip_safe=False, classifiers=( 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Operating System :: OS Independent', ), entry_points=entry_points, )
StarcoderdataPython
9792563
import mkdocs_gen_files import os import glob # iterate over pages and append glossary for file in glob.glob("/docs/docs/**/*.md", recursive = True): if file.endswith('.md'): text = open(file).read() with mkdocs_gen_files.open(file.replace('/docs/docs/', ''), "w") as f: print(text + '\n--8<-- "./glossary.md"', file=f)
StarcoderdataPython
6484546
import os import docx from docx.shared import Inches class doc: def __init__(self, filesize, filename,generator,WORD_SEPARATOR): self.filesize = filesize self.filename = filename self.generator = generator self.word_separator = WORD_SEPARATOR def execute(self): for i in range(0,len(self.filename)): statinfo = 0 file_size = int(self.filesize[i]) file_name = self.filename[i] doc = docx.Document() doc.save(file_name) while statinfo < file_size: #f = open(file_name,"a") doc = docx.Document(file_name) temptxt = "" temptxt = self.generator.generate(self.word_separator) #print(temptxt) doc.add_heading('Heading, level 1', level=1) for i in range(0, 1000): #f.write(self.generator.generate(self.word_separator)) temptxt = temptxt + " " + self.generator.generate(self.word_separator) try: doc.add_paragraph(temptxt) except ValueError as e: print("ATTENTION:"+temptxt) doc.add_picture('1.jpg') doc.add_paragraph('first item in unordered list', style='ListBullet') doc.add_paragraph('first item in ordered list', style='ListNumber') #f.close() doc.save(file_name) statinfo = os.stat(file_name).st_size print(statinfo)
StarcoderdataPython
4853168
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 14 14:45:53 2022 @author: fatemehmohebbi """ from Bio import Phylo import networkx as nx import numpy as np import pandas as pd from scipy import sparse import scipy.special as sc import matplotlib.pyplot as plt import pydot from networkx.drawing.nx_pydot import graphviz_layout import math, statistics from networkx.algorithms.tree import Edmonds def find_parents(tree): parents = [] for leaf in tree.find_clades(terminal=True, order="level"): parents.append(tree.get_path(leaf)[-2]) def to_adjacency_matrix(tree): """Create an adjacency matrix (NumPy array) from clades/branches in tree""" allclades = list(tree.find_clades(order="level")) lookup = {} for i, elem in enumerate(allclades): lookup[elem] = i adjmat = np.zeros((len(allclades), len(allclades))) for parent in tree.find_clades(terminal=False, order="level"): for child in parent.clades: adjmat[lookup[parent], lookup[child]] = 1 if not tree.rooted: # Branches can go from "child" to "parent" in unrooted trees adjmat = adjmat + adjmat.transpose() return (allclades, np.matrix(adjmat)) def log_choose_k(n, k, flag): if flag == 'int': l = sum(np.log(np.array(range(1,n)))) - sum(np.log(np.array(range(1,n - k)))) - \ sum(np.log(np.array(range(1,k)))) if flag == 'real': l = sc.gammaln(n + 1) - sc.gammaln(k + 1) - sc.gammaln(n - k + 1) return l def get_ids(patients): """the ids may be different for different trees, fix it""" ids = [] for name in patients: try: ids.append(name.split('|')[1]) except: ids.append(name) return ids def read_tree(tree_, meta_file, tree_type): """read the tree file and return adjacency and weight matrices, and the list of patients""" print('Reading data ...') metadata = pd.read_csv(meta_file) metadata = metadata.set_index('name') tree = Phylo.read(tree_, tree_type) graph = Phylo.to_networkx(tree) #adjacency_mat.toarray() to read the mat # weight_mat = nx.adjacency_matrix(graph, weight='weight') # adjacency_mat = sparse.csr_matrix(np.sign(weight_mat.toarray())) weight_mat = nx.to_numpy_matrix(graph, weight='weight') adjacency_mat = sparse.csr_matrix(np.sign(weight_mat)) patients_ids= [] # dates = [] for node in graph.nodes: if node.name is not None: # dates.append(metadata['date'].loc[node.name]) patients_ids.append(str(metadata['host'].loc[node.name])) else: # dates.append(np.nan) patients_ids.append('None') return adjacency_mat, weight_mat, patients_ids def tree_reduction(adjacency_mat, weight_mat, patients): """the children of each node (leaves as children) are removed if they have the same label""" # ids = get_ids(patients) print('Tree reduction ...') ids = patients[:] G = nx.from_numpy_matrix(np.triu(weight_mat), create_using=nx.DiGraph) for i in list(G.in_degree): if i[1] == 0: root = i[0] dfs_order = list(nx.dfs_preorder_nodes(G, source=root)) dfs_order.reverse() #are labels matching nodes properly? nodes_removed = [] for i in dfs_order: if G.out_degree(i) == 0: continue else: child = list(G.successors(i)) if (ids[child[0]] == ids[child[1]]) & (ids[child[0]] != 'None'): ids[i] = ids[child[0]] nodes_removed.extend((child[0], child[1])) ids[child[0]] = '-1' ids[child[1]] = '-1' G.remove_nodes_from(nodes_removed) weight_mat = nx.to_numpy_matrix(G, weight='weight') adjacency_mat = sparse.csr_matrix(np.sign(weight_mat)) return adjacency_mat, weight_mat, [x for x in ids if x != '-1'] def get_consensus_net(networks, networks_likelihood): """calculates consensus network for all networks given as input""" inf_nets = np.where(networks_likelihood == -math.inf) if len(inf_nets[0]) != 0: networks_likelihood = np.delete(networks_likelihood, inf_nets[0]) networks = np.delete(networks, inf_nets[0], 0) mean_value = statistics.mean(networks_likelihood) avg_added_likel = networks_likelihood[:] - mean_value weight_mats = [i * math.exp(j) for i, j in zip(networks, avg_added_likel)] weight_sum = weight_mats[0] for net_i in weight_mats[1:]: weight_sum = np.add(weight_sum, net_i) G = nx.from_numpy_matrix(weight_sum, create_using=nx.DiGraph) edmonds = Edmonds(G) T = edmonds.find_optimum(attr='weight', kind='max') tree_adj_mat = nx.to_numpy_matrix(T) #nx.adjacency_matrix(T).toarray() return np.where(tree_adj_mat != 0, 1, 0) def plot_network(the_consensus, patients, output_dir): """plot and save the transmission network""" G = nx.from_numpy_matrix(the_consensus, create_using=nx.DiGraph) pos = graphviz_layout(G, prog = 'dot') #"twopi") ids = sorted(list(set(patients)))[:-1] labels = {} count = 0 for i in ids: labels[count] = str(i) count = count + 1 nx.draw(G, pos) nx.draw_networkx_labels(G, pos, labels, font_size=7.5) plt.savefig(output_dir + 'transmission_network.svg') print('Transmission network is saved as transmission_network.svg') plt.show()
StarcoderdataPython
3518345
import json def lambda_handler(event, context): #debugEvent(event) #.1 Parse the querystring parameters params = readParams(event) #.2 Construct the body of the response responseBody = { "transactionId": params["transactionId"], "transactionType": params["transactionType"], "transactionAmount": params["transactionAmount"], "message": "Hello from Lambda" } #.3 Return the HTTP response return { 'statusCode': 200, "headers": [ {"Content-Type": "application/json"} ], 'body': json.dumps(responseBody) } def readParams(event): if not ("queryStringParameters" in event): raise Exception("Querystring is missed") params = event["queryStringParameters"] return { "transactionId": readParam(params, "transactionId"), "transactionType": readParam(params, "type"), "transactionAmount": readParam(params, "amount") } def readParam(params, paramName): if paramName in params: return params[paramName] else: raise Exception(f"{paramName} in Querystring is missed") def debugEvent(event): print("debugEvent") for x in event: print(x)
StarcoderdataPython
9710475
import sys from flask import Flask app = Flask(__name__) @app.route("/") def main(): with open("pylabs.html") as f: return f.read() @app.route("/favicon.ico") def favicon(): with open("favicon.ico", "rb") as fb: return fb.read() @app.route("/hello") def hello(): return "Hello, world."
StarcoderdataPython
4852171
# This is where the classes and objects are defined import random class Game: def __init__(self, difficulty, length, cave_map): self.cave_map = cave_map self.difficulty = difficulty self.length = length class Condition: def __init__(self, name, damage, ac_reduction, duration): self.name = name self.damage = damage self.ac_reduction = ac_reduction self.duration = duration poisoned = Condition(name='poisoned', damage=1, duration=0, ac_reduction=0) hobbled = Condition(name='hobbled', damage=0, duration=1, ac_reduction=0) # not implemented blind = Condition(name='blind', damage=0, duration=1, ac_reduction=-4) # not implemented conditions = [poisoned, hobbled, blind] class Weapon: def __init__(self, name, attack_bonus, damage, value, apply_condition): self.name = name self.attack_bonus = attack_bonus self.damage = damage self.value = value self.apply_condition = apply_condition unarmed = Weapon(name='fists', attack_bonus=0, damage=1, value=0, apply_condition=0) rusty_dagger = Weapon(name='rusty dagger', attack_bonus=0, damage=2, value=50, apply_condition=0) steel_sword = Weapon(name='steel sword', attack_bonus=1, damage=4, value=200, apply_condition=0) bow = Weapon(name='bow', attack_bonus=4, damage=3, value=300, apply_condition=0) poisoned_fangs = Weapon(name='poisoned fangs', attack_bonus=2, damage=1, value=0, apply_condition=poisoned) wand = Weapon(name='wand', attack_bonus=5, damage=5, value=400, apply_condition=0) weapons = [unarmed, rusty_dagger, steel_sword, bow, poisoned_fangs, wand] class Enemy: def __init__(self, name, max_hp, hp, ac, attack, weapon, xp_worth): self.name = name self.max_hp = max_hp self.hp = hp self.ac = ac self.attack = attack self.weapon = weapon self.xp_worth = xp_worth goblin = Enemy(name="Goblin", max_hp=4, hp=4, ac=12, attack=4, weapon=rusty_dagger, xp_worth=1) goblin_champion = Enemy(name="<NAME>", max_hp=6, hp=6, ac=14, attack=4, weapon=steel_sword, xp_worth=3) kobold_archer = Enemy(name="<NAME>", max_hp=3, hp=3, ac=10, attack=6, weapon=bow, xp_worth=2) spider = Enemy(name="Spider", max_hp=3, hp=3, ac=11, attack=5, weapon=poisoned_fangs, xp_worth=3) enemy_types = [goblin, goblin_champion, kobold_archer, spider] class PlayerCharacter: def __init__(self, max_hp, hp, ac, attack, weapon, xp, level, location, condition, class_, killed): self.max_hp = max_hp self.hp = hp self.ac = ac self.attack = attack self.weapon = weapon self.xp = xp self.level = level self.location = location self.condition = condition self.class_ = class_ self.killed = killed def sheet(self): print(f'######################################') print(f'# {self.class_} HP {self.hp}/{self.max_hp} AC {self.ac} ATT {self.attack} XP {self.xp}') print(f'# {self.weapon.name.capitalize()} equipped DMG {self.weapon.damage} ATT {self.weapon.attack_bonus}') print(f'# Enemies killed {self.killed}') if self.condition != 0: print(f'# {self.condition.name} ') print(f'######################################') print('') ranger = PlayerCharacter(max_hp=8, hp=8, ac=12, attack=1, weapon=bow, xp=0, level=1, location=None, condition=0, class_='Ranger', killed=0) fighter = PlayerCharacter(max_hp=10, hp=10, ac=14, attack=2, weapon=steel_sword, xp=0, level=1, location=None, condition=0, class_='Fighter', killed=0) wizard = PlayerCharacter(max_hp=7, hp=7, ac=10, attack=5, weapon=wand, xp=0, level=0, location=None, condition=0, class_='Wizard', killed=0) player_classes = [ranger, fighter, wizard] class Tile: def __init__(self, ways_out, trap_type, text_description, enemy, link0, link1, link2, link3, visited, start_tile): self.ways_out = ways_out self.trap_type = trap_type self.text_description = text_description self.enemy = enemy self.link0 = link0 # link to back/previous tile self.link1 = link1 # link to next tile left if 1 or 3 ways out self.link2 = link2 # link to next tile forward if 1 or 3 ways out self.link3 = link3 # link to next tile right if 3 ways out self.visited = visited self.start_tile = start_tile cave_word1 = ['a dimly lit', 'an ominously dark', 'an eerily quiet', 'an uncomfortably cold', 'a horribly humid'] cave_word2 = ['corridor', 'spot', 'room', 'cavern'] cave_word3 = ['with damp walls', 'with a slippery floor', 'traversed by a snaking creek'] def cave_description(): description = random.choice(cave_word1) + " " + random.choice(cave_word2) + " " + random.choice(cave_word3) return description
StarcoderdataPython
5008172
from tts_pipeline.pipelines.waterfall.pipeline import WaterfallPipeline from tts_pipeline.pipelines.waterfall.models.UnifiedKeywordExtractor import UnifiedKeywordExtractor from tts_pipeline.pipelines.waterfall.models.gnews_models import GNewsWaterfallEmbedder from tts_pipeline.pipelines.waterfall.models.examples import DummyWaterfallDimensionalityReducer from tts_websocketserver.utils import assets_folder import os def get_pipeline(): return WaterfallPipeline( keyword_extractor = UnifiedKeywordExtractor( target_words = ["Bright","Dark","Full","Hollow","Smooth","Rough","Warm","Metallic","Clear","Muddy","Thin","thick","Pure","Noisy","Rich","Sparse","Soft","Hard"], ner_model_path = os.path.join(assets_folder, "ner_model") ), embedder = GNewsWaterfallEmbedder(), # this is very small, so it runs fast dimensionality_reducer = DummyWaterfallDimensionalityReducer())
StarcoderdataPython
181004
<gh_stars>1000+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing as mp import os import pickle import random from typing import Optional import numpy as np from torch.utils.data import Dataset from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec __all__ = ["BertInformationRetrievalDataset"] class BaseInformationRetrievalDataset(Dataset): """ Base information retrieval dataset on which other datasets are built. Args: tokenizer: tokenizer max_query_length: maximum length of query in tokens max_passage_length: maximum length of passage in tokens """ def __init__( self, tokenizer: TokenizerSpec, max_query_length: Optional[int] = 31, max_passage_length: Optional[int] = 190, ): self.tokenizer = tokenizer self.max_query_length = max_query_length self.max_passage_length = max_passage_length def parse_npz(self, file, max_seq_length): """ Function which parses passages (documents) in npz format. After pre-processing and tokenization, the dataset will be saved as numpy matrix, i_th entry of which corresponds to i_th passage (document) and has the following form: [n, token_1, ..., token_n, 0, ..., 0] where n is the passage length (in tokens) and 0s correspond to pad tokens. Args: file: str, path to file with passages (documents) max_seq_length: maximum length of sequence in tokens """ cached_collection = file + ".npz" if os.path.isfile(cached_collection): dataset_npz = np.load(cached_collection)["data"] else: dataset_dict = self.tokenize_dataset(file, max_seq_length) dataset_npz = np.zeros((len(dataset_dict), max_seq_length + 1)) for key in dataset_dict: dataset_npz[key][0] = len(dataset_dict[key]) dataset_npz[key][1 : len(dataset_dict[key]) + 1] = dataset_dict[key] np.savez(cached_collection, data=dataset_npz) return dataset_npz def parse_pkl(self, file, max_seq_length): """ Function which parses passages (documents, queries) in pkl format. After pre-processing and tokenization, the dataset will be saved as pkl dict, i_th entry of which corresponds to i_th passage (document, query) and has the following form: {passage_id: [token_1, ..., token_n]} where n is the passage length (in tokens). Args: file: str, path to file with passages (documents) max_seq_length: maximum length of sequence in tokens """ cached_collection = file + ".pkl" if os.path.isfile(cached_collection): dataset_dict = pickle.load(open(cached_collection, "rb")) else: dataset_dict = self.tokenize_dataset(file, max_seq_length) pickle.dump(dataset_dict, open(cached_collection, "wb")) return dataset_dict def tokenize_dataset(self, file, max_seq_length): """ Function which pre-tokenizes the dataset. """ lines = open(file, "r").readlines() with mp.Pool() as pool: dataset_dict = pool.map(self.preprocess_line, lines) dataset_dict = {id_: tokens[:max_seq_length] for (id_, tokens) in dataset_dict} return dataset_dict def preprocess_line(self, line): """ Parse a single entry (line) of tsv file. """ if "\t" not in line: raise ValueError(f"Provided dataset does not have a form of tsv file") id_, text = line.split("\t") token_ids = self.tokenizer.text_to_ids(text.strip()) return int(id_), token_ids def construct_input(self, token_ids1, max_seq_length, token_ids2=None): """ Function which constructs a valid input to BERT from tokens. If only one list of tokens (token_ids1) is passed, the input will be [CLS] token_ids1 [SEP] if two lists of tokens are passed, the input will be [CLS] token_ids1 [SEP] token_ids2 [SEP] """ input_ids = [self.tokenizer.pad_id] * max_seq_length bert_input = [self.tokenizer.cls_id] + token_ids1 + [self.tokenizer.sep_id] sentence1_length = len(bert_input) if token_ids2 is not None: bert_input = bert_input + token_ids2 + [self.tokenizer.sep_id] bert_input = bert_input[:max_seq_length] num_nonpad_tokens = len(bert_input) input_ids[:num_nonpad_tokens] = bert_input input_ids = np.array(input_ids, dtype=np.long) input_mask = input_ids != self.tokenizer.pad_id input_type_ids = np.ones_like(input_ids) input_type_ids[:sentence1_length] = 0 return input_ids, input_mask, input_type_ids def preprocess_bert(self, query_id, psg_ids): """ Transforms query id (Q) and a list of passages ids (P1, ..., Pk) into a tensor of size [k, max_length] with the following rows: [CLS] Q_text [SEP] Pi_text [SEP], i = 1, ..., k """ max_seq_length = self.max_query_length + self.max_passage_length + 3 input_ids, input_mask, input_type_ids = [], [], [] for psg_id in psg_ids: inputs = self.construct_input(self.queries[query_id], max_seq_length, self._psgid2tokens(psg_id)) input_ids.append(inputs[0]) input_mask.append(inputs[1]) input_type_ids.append(inputs[2]) input_ids = np.stack(input_ids) input_mask = np.stack(input_mask) input_type_ids = np.stack(input_type_ids) return input_ids, input_mask, input_type_ids def preprocess_dpr(self, query_id, psg_ids): """ Transforms query id (Q) and a list of passages ids (P1, ..., Pk) into two tensors of sizes [1, max_q_length] and [k, max_p_length] with the following rows: 1) [CLS] Q_text [SEP] 2) [CLS] Pi_text [SEP], i = 1, ..., k """ q_input_ids, q_input_mask, q_type_ids = self.construct_input(self.queries[query_id], self.max_query_length + 2) input_ids, input_mask, input_type_ids = [], [], [] for psg_id in psg_ids: inputs = self.construct_input(self._psgid2tokens(psg_id), self.max_passage_length + 2) input_ids.append(inputs[0]) input_mask.append(inputs[1]) input_type_ids.append(inputs[2]) input_ids = np.stack(input_ids) input_mask = np.stack(input_mask) input_type_ids = np.stack(input_type_ids) return ( q_input_ids[None, ...], q_input_mask[None, ...], q_type_ids[None, ...], input_ids, input_mask, input_type_ids, ) def _psgid2tokens(self, psg_id): """ Internal function which maps passage id to its tokens. """ pass def psgid2tokens_npz(self, psg_id): """ Mapping from passage id to its tokens in case of npz cache format. """ seq_len = self.passages[psg_id][0] return self.passages[psg_id][1 : seq_len + 1].tolist() def psgid2tokens_pkl(self, psg_id): """ Mapping from passage id to its tokens in case of pkl cache format. """ return self.passages[psg_id] class BertInformationRetrievalDataset(BaseInformationRetrievalDataset): def __init__( self, tokenizer: TokenizerSpec, passages: str, queries: str, query_to_passages: str, max_query_length: Optional[int] = 31, max_passage_length: Optional[int] = 190, num_negatives: Optional[int] = 10, preprocess_fn: Optional[str] = "preprocess_bert", psg_cache_format: Optional[str] = "npz", ): """ Dataset for training information retrieval models. Args: tokenizer: tokenizer passages: path to tsv with [psg_id, psg_text] entries queries: path to tsv with [query_id, query_text] entries query_to_passages: path to tsv with [query_id, pos_psg_id, neg_psg_id_1, ..., neg_psg_id_k] entries max_query_length: maximum length of query in tokens max_passage_length: maximum length of passage in tokens num_negatives: number of negative passages per positive to use for training preprocess_fn: either preprocess_bert or preprocess_dpr preprocess_bert: joint input: [CLS] query [SEP] passage [SEP] preprocess_dpr: separate inputs: [CLS] query [SEP], [CLS] passage [SEP] psg_cache_format: either pkl or npz """ super().__init__(tokenizer, max_query_length, max_passage_length) self.num_negatives = num_negatives self.passages = getattr(self, f"parse_{psg_cache_format}")(passages, max_passage_length) self._psgid2tokens = getattr(self, f"psgid2tokens_{psg_cache_format}") self.queries = self.parse_pkl(queries, max_query_length) self.idx2psgs = self.parse_query_to_passages(query_to_passages) self._preprocess_fn = getattr(self, preprocess_fn) def __getitem__(self, idx): query_and_psgs = self.idx2psgs[idx] query_id, psg_ids = query_and_psgs[0], query_and_psgs[1:] inputs = self._preprocess_fn(query_id, psg_ids) return [*inputs, query_id, np.array(psg_ids)] def __len__(self): return len(self.idx2psgs) def parse_query_to_passages(self, file): """ Function which parses query to passages correspondence file. """ idx2psgs = {} idx = 0 for line in open(file, "r").readlines(): if "\t" not in line: raise ValueError(f"Provided dataset does not have a form of tsv file") query_and_psgs = line.split("\t") query_and_psgs_ids = [int(id_) for id_ in query_and_psgs] query_and_rel_psg_ids, irrel_psgs_ids = query_and_psgs_ids[:2], query_and_psgs_ids[2:] random.shuffle(irrel_psgs_ids) num_samples = len(irrel_psgs_ids) // self.num_negatives for j in range(num_samples): left = self.num_negatives * j right = self.num_negatives * (j + 1) idx2psgs[idx] = query_and_rel_psg_ids + irrel_psgs_ids[left:right] idx += 1 return idx2psgs
StarcoderdataPython
6543960
# ./pyxb/bundles/wssplat/raw/wsdl11.py # -*- coding: utf-8 -*- # PyXB bindings for NM:d363f64a147eb09d66a961a815c9d842964c1c79 # Generated 2016-09-18 17:34:04.329631 by PyXB version 1.2.5 using Python 2.7.12.final.0 # Namespace http://schemas.xmlsoap.org/wsdl/ from __future__ import unicode_literals import pyxb import pyxb.binding import pyxb.binding.saxer import io import pyxb.utils.utility import pyxb.utils.domutils import sys import pyxb.utils.six as _six # Unique identifier for bindings created at the same time _GenerationUID = pyxb.utils.utility.UniqueIdentifier('urn:uuid:00f20444-7df0-11e6-9fa4-3497f68b2e96') # Version of PyXB used to generate the bindings _PyXBVersion = '1.2.5' # Generated bindings are not compatible across PyXB versions if pyxb.__version__ != _PyXBVersion: raise pyxb.PyXBVersionError(_PyXBVersion) # A holder for module-level binding classes so we can access them from # inside class definitions where property names may conflict. _module_typeBindings = pyxb.utils.utility.Object() # Import bindings for namespaces imported into schema import pyxb.binding.datatypes # NOTE: All namespace declarations are reserved within the binding Namespace = pyxb.namespace.NamespaceForURI('http://schemas.xmlsoap.org/wsdl/', create_if_missing=True) Namespace.configureCategories(['typeBinding', 'elementBinding']) def CreateFromDocument (xml_text, default_namespace=None, location_base=None): """Parse the given XML and use the document element to create a Python instance. @param xml_text An XML document. This should be data (Python 2 str or Python 3 bytes), or a text (Python 2 unicode or Python 3 str) in the L{pyxb._InputEncoding} encoding. @keyword default_namespace The L{pyxb.Namespace} instance to use as the default namespace where there is no default namespace in scope. If unspecified or C{None}, the namespace of the module containing this function will be used. @keyword location_base: An object to be recorded as the base of all L{pyxb.utils.utility.Location} instances associated with events and objects handled by the parser. You might pass the URI from which the document was obtained. """ if pyxb.XMLStyle_saxer != pyxb._XMLStyle: dom = pyxb.utils.domutils.StringToDOM(xml_text) return CreateFromDOM(dom.documentElement, default_namespace=default_namespace) if default_namespace is None: default_namespace = Namespace.fallbackNamespace() saxer = pyxb.binding.saxer.make_parser(fallback_namespace=default_namespace, location_base=location_base) handler = saxer.getContentHandler() xmld = xml_text if isinstance(xmld, _six.text_type): xmld = xmld.encode(pyxb._InputEncoding) saxer.parse(io.BytesIO(xmld)) instance = handler.rootObject() return instance def CreateFromDOM (node, default_namespace=None): """Create a Python instance from the given DOM node. The node tag must correspond to an element declaration in this module. @deprecated: Forcing use of DOM interface is unnecessary; use L{CreateFromDocument}.""" if default_namespace is None: default_namespace = Namespace.fallbackNamespace() return pyxb.binding.basis.element.AnyCreateFromDOM(node, default_namespace) # Complex type {http://schemas.xmlsoap.org/wsdl/}tDocumentation with content type MIXED class tDocumentation (pyxb.binding.basis.complexTypeDefinition): """Complex type {http://schemas.xmlsoap.org/wsdl/}tDocumentation with content type MIXED""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_MIXED _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tDocumentation') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 37, 2) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType _HasWildcardElement = True _ElementMap.update({ }) _AttributeMap.update({ }) _module_typeBindings.tDocumentation = tDocumentation Namespace.addCategoryObject('typeBinding', 'tDocumentation', tDocumentation) # Complex type {http://schemas.xmlsoap.org/wsdl/}tDocumented with content type ELEMENT_ONLY class tDocumented (pyxb.binding.basis.complexTypeDefinition): """ This type is extended by component types to allow them to be documented """ _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tDocumented') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 43, 2) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Element {http://schemas.xmlsoap.org/wsdl/}documentation uses Python identifier documentation __documentation = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'documentation'), 'documentation', '__httpschemas_xmlsoap_orgwsdl_tDocumented_httpschemas_xmlsoap_orgwsdldocumentation', False, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6), ) documentation = property(__documentation.value, __documentation.set, None, None) _ElementMap.update({ __documentation.name() : __documentation }) _AttributeMap.update({ }) _module_typeBindings.tDocumented = tDocumented Namespace.addCategoryObject('typeBinding', 'tDocumented', tDocumented) # Complex type {http://schemas.xmlsoap.org/wsdl/}tExtensibilityElement with content type EMPTY class tExtensibilityElement (pyxb.binding.basis.complexTypeDefinition): """Complex type {http://schemas.xmlsoap.org/wsdl/}tExtensibilityElement with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = True _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tExtensibilityElement') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 306, 2) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Attribute {http://schemas.xmlsoap.org/wsdl/}required uses Python identifier required __required = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(Namespace, 'required'), 'required', '__httpschemas_xmlsoap_orgwsdl_tExtensibilityElement_httpschemas_xmlsoap_orgwsdlrequired', pyxb.binding.datatypes.boolean) __required._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 305, 2) __required._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 307, 4) required = property(__required.value, __required.set, None, None) _ElementMap.update({ }) _AttributeMap.update({ __required.name() : __required }) _module_typeBindings.tExtensibilityElement = tExtensibilityElement Namespace.addCategoryObject('typeBinding', 'tExtensibilityElement', tExtensibilityElement) # Complex type {http://schemas.xmlsoap.org/wsdl/}tExtensibleAttributesDocumented with content type ELEMENT_ONLY class tExtensibleAttributesDocumented (tDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tExtensibleAttributesDocumented with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = True _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tExtensibleAttributesDocumented') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 54, 2) _ElementMap = tDocumented._ElementMap.copy() _AttributeMap = tDocumented._AttributeMap.copy() # Base type is tDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented _AttributeWildcard = pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')) _ElementMap.update({ }) _AttributeMap.update({ }) _module_typeBindings.tExtensibleAttributesDocumented = tExtensibleAttributesDocumented Namespace.addCategoryObject('typeBinding', 'tExtensibleAttributesDocumented', tExtensibleAttributesDocumented) # Complex type {http://schemas.xmlsoap.org/wsdl/}tExtensibleDocumented with content type ELEMENT_ONLY class tExtensibleDocumented (tDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tExtensibleDocumented with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = True _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tExtensibleDocumented') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 67, 2) _ElementMap = tDocumented._ElementMap.copy() _AttributeMap = tDocumented._AttributeMap.copy() # Base type is tDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented _HasWildcardElement = True _ElementMap.update({ }) _AttributeMap.update({ }) _module_typeBindings.tExtensibleDocumented = tExtensibleDocumented Namespace.addCategoryObject('typeBinding', 'tExtensibleDocumented', tExtensibleDocumented) # Complex type {http://schemas.xmlsoap.org/wsdl/}tDefinitions with content type ELEMENT_ONLY class tDefinitions (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tDefinitions with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tDefinitions') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 131, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Element {http://schemas.xmlsoap.org/wsdl/}import uses Python identifier import_ __import = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'import'), 'import_', '__httpschemas_xmlsoap_orgwsdl_tDefinitions_httpschemas_xmlsoap_orgwsdlimport', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 112, 6), ) import_ = property(__import.value, __import.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}types uses Python identifier types __types = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'types'), 'types', '__httpschemas_xmlsoap_orgwsdl_tDefinitions_httpschemas_xmlsoap_orgwsdltypes', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 113, 6), ) types = property(__types.value, __types.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}message uses Python identifier message __message = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'message'), 'message', '__httpschemas_xmlsoap_orgwsdl_tDefinitions_httpschemas_xmlsoap_orgwsdlmessage', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 114, 6), ) message = property(__message.value, __message.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}portType uses Python identifier portType __portType = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'portType'), 'portType', '__httpschemas_xmlsoap_orgwsdl_tDefinitions_httpschemas_xmlsoap_orgwsdlportType', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 120, 6), ) portType = property(__portType.value, __portType.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}binding uses Python identifier binding __binding = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'binding'), 'binding', '__httpschemas_xmlsoap_orgwsdl_tDefinitions_httpschemas_xmlsoap_orgwsdlbinding', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 121, 6), ) binding = property(__binding.value, __binding.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}service uses Python identifier service __service = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'service'), 'service', '__httpschemas_xmlsoap_orgwsdl_tDefinitions_httpschemas_xmlsoap_orgwsdlservice', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 122, 6), ) service = property(__service.value, __service.set, None, None) # Attribute targetNamespace uses Python identifier targetNamespace __targetNamespace = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'targetNamespace'), 'targetNamespace', '__httpschemas_xmlsoap_orgwsdl_tDefinitions_targetNamespace', pyxb.binding.datatypes.anyURI) __targetNamespace._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 137, 8) __targetNamespace._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 137, 8) targetNamespace = property(__targetNamespace.value, __targetNamespace.set, None, None) # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tDefinitions_name', pyxb.binding.datatypes.NCName) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 138, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 138, 8) name = property(__name.value, __name.set, None, None) _HasWildcardElement = True _ElementMap.update({ __import.name() : __import, __types.name() : __types, __message.name() : __message, __portType.name() : __portType, __binding.name() : __binding, __service.name() : __service }) _AttributeMap.update({ __targetNamespace.name() : __targetNamespace, __name.name() : __name }) _module_typeBindings.tDefinitions = tDefinitions Namespace.addCategoryObject('typeBinding', 'tDefinitions', tDefinitions) # Complex type {http://schemas.xmlsoap.org/wsdl/}tImport with content type ELEMENT_ONLY class tImport (tExtensibleAttributesDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tImport with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tImport') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 143, 2) _ElementMap = tExtensibleAttributesDocumented._ElementMap.copy() _AttributeMap = tExtensibleAttributesDocumented._AttributeMap.copy() # Base type is tExtensibleAttributesDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Attribute namespace uses Python identifier namespace __namespace = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'namespace'), 'namespace', '__httpschemas_xmlsoap_orgwsdl_tImport_namespace', pyxb.binding.datatypes.anyURI, required=True) __namespace._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 146, 8) __namespace._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 146, 8) namespace = property(__namespace.value, __namespace.set, None, None) # Attribute location uses Python identifier location __location = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'location'), 'location', '__httpschemas_xmlsoap_orgwsdl_tImport_location', pyxb.binding.datatypes.anyURI, required=True) __location._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 147, 8) __location._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 147, 8) location = property(__location.value, __location.set, None, None) _AttributeWildcard = pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')) _ElementMap.update({ }) _AttributeMap.update({ __namespace.name() : __namespace, __location.name() : __location }) _module_typeBindings.tImport = tImport Namespace.addCategoryObject('typeBinding', 'tImport', tImport) # Complex type {http://schemas.xmlsoap.org/wsdl/}tTypes with content type ELEMENT_ONLY class tTypes (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tTypes with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tTypes') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 152, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented _HasWildcardElement = True _ElementMap.update({ }) _AttributeMap.update({ }) _module_typeBindings.tTypes = tTypes Namespace.addCategoryObject('typeBinding', 'tTypes', tTypes) # Complex type {http://schemas.xmlsoap.org/wsdl/}tMessage with content type ELEMENT_ONLY class tMessage (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tMessage with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tMessage') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 158, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Element {http://schemas.xmlsoap.org/wsdl/}part uses Python identifier part __part = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'part'), 'part', '__httpschemas_xmlsoap_orgwsdl_tMessage_httpschemas_xmlsoap_orgwsdlpart', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 162, 10), ) part = property(__part.value, __part.set, None, None) # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tMessage_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 164, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 164, 8) name = property(__name.value, __name.set, None, None) _HasWildcardElement = True _ElementMap.update({ __part.name() : __part }) _AttributeMap.update({ __name.name() : __name }) _module_typeBindings.tMessage = tMessage Namespace.addCategoryObject('typeBinding', 'tMessage', tMessage) # Complex type {http://schemas.xmlsoap.org/wsdl/}tPart with content type ELEMENT_ONLY class tPart (tExtensibleAttributesDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tPart with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tPart') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 169, 2) _ElementMap = tExtensibleAttributesDocumented._ElementMap.copy() _AttributeMap = tExtensibleAttributesDocumented._AttributeMap.copy() # Base type is tExtensibleAttributesDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tPart_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 172, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 172, 8) name = property(__name.value, __name.set, None, None) # Attribute element uses Python identifier element __element = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'element'), 'element', '__httpschemas_xmlsoap_orgwsdl_tPart_element', pyxb.binding.datatypes.QName) __element._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 173, 8) __element._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 173, 8) element = property(__element.value, __element.set, None, None) # Attribute type uses Python identifier type __type = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'type'), 'type', '__httpschemas_xmlsoap_orgwsdl_tPart_type', pyxb.binding.datatypes.QName) __type._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 174, 8) __type._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 174, 8) type = property(__type.value, __type.set, None, None) _AttributeWildcard = pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')) _ElementMap.update({ }) _AttributeMap.update({ __name.name() : __name, __element.name() : __element, __type.name() : __type }) _module_typeBindings.tPart = tPart Namespace.addCategoryObject('typeBinding', 'tPart', tPart) # Complex type {http://schemas.xmlsoap.org/wsdl/}tPortType with content type ELEMENT_ONLY class tPortType (tExtensibleAttributesDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tPortType with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tPortType') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 179, 2) _ElementMap = tExtensibleAttributesDocumented._ElementMap.copy() _AttributeMap = tExtensibleAttributesDocumented._AttributeMap.copy() # Base type is tExtensibleAttributesDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Element {http://schemas.xmlsoap.org/wsdl/}operation uses Python identifier operation __operation = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'operation'), 'operation', '__httpschemas_xmlsoap_orgwsdl_tPortType_httpschemas_xmlsoap_orgwsdloperation', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 183, 10), ) operation = property(__operation.value, __operation.set, None, None) # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tPortType_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 185, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 185, 8) name = property(__name.value, __name.set, None, None) _AttributeWildcard = pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')) _ElementMap.update({ __operation.name() : __operation }) _AttributeMap.update({ __name.name() : __name }) _module_typeBindings.tPortType = tPortType Namespace.addCategoryObject('typeBinding', 'tPortType', tPortType) # Complex type {http://schemas.xmlsoap.org/wsdl/}tOperation with content type ELEMENT_ONLY class tOperation (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tOperation with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tOperation') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 190, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Element {http://schemas.xmlsoap.org/wsdl/}input uses Python identifier input __input = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'input'), 'input', '__httpschemas_xmlsoap_orgwsdl_tOperation_httpschemas_xmlsoap_orgwsdlinput', False, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 207, 6), ) input = property(__input.value, __input.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}output uses Python identifier output __output = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'output'), 'output', '__httpschemas_xmlsoap_orgwsdl_tOperation_httpschemas_xmlsoap_orgwsdloutput', False, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 209, 5), ) output = property(__output.value, __output.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}fault uses Python identifier fault __fault = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'fault'), 'fault', '__httpschemas_xmlsoap_orgwsdl_tOperation_httpschemas_xmlsoap_orgwsdlfault', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 210, 2), ) fault = property(__fault.value, __fault.set, None, None) # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tOperation_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 199, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 199, 8) name = property(__name.value, __name.set, None, None) # Attribute parameterOrder uses Python identifier parameterOrder __parameterOrder = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'parameterOrder'), 'parameterOrder', '__httpschemas_xmlsoap_orgwsdl_tOperation_parameterOrder', pyxb.binding.datatypes.NMTOKENS) __parameterOrder._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 200, 8) __parameterOrder._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 200, 8) parameterOrder = property(__parameterOrder.value, __parameterOrder.set, None, None) _HasWildcardElement = True _ElementMap.update({ __input.name() : __input, __output.name() : __output, __fault.name() : __fault }) _AttributeMap.update({ __name.name() : __name, __parameterOrder.name() : __parameterOrder }) _module_typeBindings.tOperation = tOperation Namespace.addCategoryObject('typeBinding', 'tOperation', tOperation) # Complex type {http://schemas.xmlsoap.org/wsdl/}tParam with content type ELEMENT_ONLY class tParam (tExtensibleAttributesDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tParam with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tParam') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 225, 2) _ElementMap = tExtensibleAttributesDocumented._ElementMap.copy() _AttributeMap = tExtensibleAttributesDocumented._AttributeMap.copy() # Base type is tExtensibleAttributesDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tParam_name', pyxb.binding.datatypes.NCName) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 228, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 228, 8) name = property(__name.value, __name.set, None, None) # Attribute message uses Python identifier message __message = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'message'), 'message', '__httpschemas_xmlsoap_orgwsdl_tParam_message', pyxb.binding.datatypes.QName, required=True) __message._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 229, 8) __message._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 229, 8) message = property(__message.value, __message.set, None, None) _AttributeWildcard = pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')) _ElementMap.update({ }) _AttributeMap.update({ __name.name() : __name, __message.name() : __message }) _module_typeBindings.tParam = tParam Namespace.addCategoryObject('typeBinding', 'tParam', tParam) # Complex type {http://schemas.xmlsoap.org/wsdl/}tFault with content type ELEMENT_ONLY class tFault (tExtensibleAttributesDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tFault with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tFault') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 234, 2) _ElementMap = tExtensibleAttributesDocumented._ElementMap.copy() _AttributeMap = tExtensibleAttributesDocumented._AttributeMap.copy() # Base type is tExtensibleAttributesDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tFault_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 237, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 237, 8) name = property(__name.value, __name.set, None, None) # Attribute message uses Python identifier message __message = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'message'), 'message', '__httpschemas_xmlsoap_orgwsdl_tFault_message', pyxb.binding.datatypes.QName, required=True) __message._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 238, 8) __message._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 238, 8) message = property(__message.value, __message.set, None, None) _AttributeWildcard = pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')) _ElementMap.update({ }) _AttributeMap.update({ __name.name() : __name, __message.name() : __message }) _module_typeBindings.tFault = tFault Namespace.addCategoryObject('typeBinding', 'tFault', tFault) # Complex type {http://schemas.xmlsoap.org/wsdl/}tBinding with content type ELEMENT_ONLY class tBinding (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tBinding with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tBinding') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 243, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Element {http://schemas.xmlsoap.org/wsdl/}operation uses Python identifier operation __operation = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'operation'), 'operation', '__httpschemas_xmlsoap_orgwsdl_tBinding_httpschemas_xmlsoap_orgwsdloperation', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 247, 10), ) operation = property(__operation.value, __operation.set, None, None) # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tBinding_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 249, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 249, 8) name = property(__name.value, __name.set, None, None) # Attribute type uses Python identifier type __type = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'type'), 'type', '__httpschemas_xmlsoap_orgwsdl_tBinding_type', pyxb.binding.datatypes.QName, required=True) __type._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 250, 8) __type._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 250, 8) type = property(__type.value, __type.set, None, None) _HasWildcardElement = True _ElementMap.update({ __operation.name() : __operation }) _AttributeMap.update({ __name.name() : __name, __type.name() : __type }) _module_typeBindings.tBinding = tBinding Namespace.addCategoryObject('typeBinding', 'tBinding', tBinding) # Complex type {http://schemas.xmlsoap.org/wsdl/}tBindingOperationMessage with content type ELEMENT_ONLY class tBindingOperationMessage (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tBindingOperationMessage with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tBindingOperationMessage') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 255, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tBindingOperationMessage_name', pyxb.binding.datatypes.NCName) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 258, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 258, 8) name = property(__name.value, __name.set, None, None) _HasWildcardElement = True _ElementMap.update({ }) _AttributeMap.update({ __name.name() : __name }) _module_typeBindings.tBindingOperationMessage = tBindingOperationMessage Namespace.addCategoryObject('typeBinding', 'tBindingOperationMessage', tBindingOperationMessage) # Complex type {http://schemas.xmlsoap.org/wsdl/}tBindingOperationFault with content type ELEMENT_ONLY class tBindingOperationFault (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tBindingOperationFault with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tBindingOperationFault') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 263, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tBindingOperationFault_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 266, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 266, 8) name = property(__name.value, __name.set, None, None) _HasWildcardElement = True _ElementMap.update({ }) _AttributeMap.update({ __name.name() : __name }) _module_typeBindings.tBindingOperationFault = tBindingOperationFault Namespace.addCategoryObject('typeBinding', 'tBindingOperationFault', tBindingOperationFault) # Complex type {http://schemas.xmlsoap.org/wsdl/}tBindingOperation with content type ELEMENT_ONLY class tBindingOperation (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tBindingOperation with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tBindingOperation') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 271, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Element {http://schemas.xmlsoap.org/wsdl/}input uses Python identifier input __input = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'input'), 'input', '__httpschemas_xmlsoap_orgwsdl_tBindingOperation_httpschemas_xmlsoap_orgwsdlinput', False, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 275, 10), ) input = property(__input.value, __input.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}output uses Python identifier output __output = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'output'), 'output', '__httpschemas_xmlsoap_orgwsdl_tBindingOperation_httpschemas_xmlsoap_orgwsdloutput', False, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 276, 10), ) output = property(__output.value, __output.set, None, None) # Element {http://schemas.xmlsoap.org/wsdl/}fault uses Python identifier fault __fault = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'fault'), 'fault', '__httpschemas_xmlsoap_orgwsdl_tBindingOperation_httpschemas_xmlsoap_orgwsdlfault', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 277, 10), ) fault = property(__fault.value, __fault.set, None, None) # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tBindingOperation_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 279, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 279, 8) name = property(__name.value, __name.set, None, None) _HasWildcardElement = True _ElementMap.update({ __input.name() : __input, __output.name() : __output, __fault.name() : __fault }) _AttributeMap.update({ __name.name() : __name }) _module_typeBindings.tBindingOperation = tBindingOperation Namespace.addCategoryObject('typeBinding', 'tBindingOperation', tBindingOperation) # Complex type {http://schemas.xmlsoap.org/wsdl/}tService with content type ELEMENT_ONLY class tService (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tService with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tService') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 284, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Element {http://schemas.xmlsoap.org/wsdl/}port uses Python identifier port __port = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(Namespace, 'port'), 'port', '__httpschemas_xmlsoap_orgwsdl_tService_httpschemas_xmlsoap_orgwsdlport', True, pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 288, 10), ) port = property(__port.value, __port.set, None, None) # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tService_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 290, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 290, 8) name = property(__name.value, __name.set, None, None) _HasWildcardElement = True _ElementMap.update({ __port.name() : __port }) _AttributeMap.update({ __name.name() : __name }) _module_typeBindings.tService = tService Namespace.addCategoryObject('typeBinding', 'tService', tService) # Complex type {http://schemas.xmlsoap.org/wsdl/}tPort with content type ELEMENT_ONLY class tPort (tExtensibleDocumented): """Complex type {http://schemas.xmlsoap.org/wsdl/}tPort with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'tPort') _XSDLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 295, 2) _ElementMap = tExtensibleDocumented._ElementMap.copy() _AttributeMap = tExtensibleDocumented._AttributeMap.copy() # Base type is tExtensibleDocumented # Element documentation ({http://schemas.xmlsoap.org/wsdl/}documentation) inherited from {http://schemas.xmlsoap.org/wsdl/}tDocumented # Attribute name uses Python identifier name __name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpschemas_xmlsoap_orgwsdl_tPort_name', pyxb.binding.datatypes.NCName, required=True) __name._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 298, 8) __name._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 298, 8) name = property(__name.value, __name.set, None, None) # Attribute binding uses Python identifier binding __binding = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, 'binding'), 'binding', '__httpschemas_xmlsoap_orgwsdl_tPort_binding', pyxb.binding.datatypes.QName, required=True) __binding._DeclarationLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 299, 8) __binding._UseLocation = pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 299, 8) binding = property(__binding.value, __binding.set, None, None) _HasWildcardElement = True _ElementMap.update({ }) _AttributeMap.update({ __name.name() : __name, __binding.name() : __binding }) _module_typeBindings.tPort = tPort Namespace.addCategoryObject('typeBinding', 'tPort', tPort) definitions = pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'definitions'), tDefinitions, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 82, 2)) Namespace.addCategoryObject('elementBinding', definitions.name().localName(), definitions) def _BuildAutomaton (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton del _BuildAutomaton import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 39, 6)) counters.add(cc_0) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=pyxb.binding.content.Wildcard.NC_any), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 39, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) st_0._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tDocumentation._Automaton = _BuildAutomaton() tDocumented._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'documentation'), tDocumentation, scope=tDocumented, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6))) def _BuildAutomaton_ (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_ del _BuildAutomaton_ import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tDocumented._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) st_0._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tDocumented._Automaton = _BuildAutomaton_() def _BuildAutomaton_2 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_2 del _BuildAutomaton_2 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tExtensibleAttributesDocumented._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) st_0._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tExtensibleAttributesDocumented._Automaton = _BuildAutomaton_2() def _BuildAutomaton_3 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_3 del _BuildAutomaton_3 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tExtensibleDocumented._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) st_1._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tExtensibleDocumented._Automaton = _BuildAutomaton_3() tDefinitions._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'import'), tImport, scope=tDefinitions, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 112, 6))) tDefinitions._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'types'), tTypes, scope=tDefinitions, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 113, 6))) tDefinitions._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'message'), tMessage, scope=tDefinitions, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 114, 6))) tDefinitions._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'portType'), tPortType, scope=tDefinitions, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 120, 6))) tDefinitions._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'binding'), tBinding, scope=tDefinitions, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 121, 6))) tDefinitions._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'service'), tService, scope=tDefinitions, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 122, 6))) def _BuildAutomaton_4 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_4 del _BuildAutomaton_4 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) cc_2 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 135, 10)) counters.add(cc_2) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tDefinitions._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tDefinitions._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'import')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 112, 6)) st_2 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_2) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tDefinitions._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'types')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 113, 6)) st_3 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_3) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tDefinitions._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'message')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 114, 6)) st_4 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_4) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tDefinitions._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'portType')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 120, 6)) st_5 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_5) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tDefinitions._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'binding')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 121, 6)) st_6 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_6) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tDefinitions._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'service')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 122, 6)) st_7 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_7) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_1, False) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_1, False) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_1, False) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_1, False) ])) transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_1, False) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_1, False) ])) st_1._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_2, True) ])) st_2._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_2, True) ])) st_3._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_2, True) ])) st_4._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_2, True) ])) st_5._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_2, True) ])) st_6._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_2, True) ])) st_7._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tDefinitions._Automaton = _BuildAutomaton_4() def _BuildAutomaton_5 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_5 del _BuildAutomaton_5 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tImport._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) st_0._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tImport._Automaton = _BuildAutomaton_5() def _BuildAutomaton_6 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_6 del _BuildAutomaton_6 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tTypes._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) st_1._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tTypes._Automaton = _BuildAutomaton_6() tMessage._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'part'), tPart, scope=tMessage, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 162, 10))) def _BuildAutomaton_7 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_7 del _BuildAutomaton_7 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) cc_2 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 162, 10)) counters.add(cc_2) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tMessage._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tMessage._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'part')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 162, 10)) st_2 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_2) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_1, False) ])) st_1._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) st_2._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tMessage._Automaton = _BuildAutomaton_7() def _BuildAutomaton_8 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_8 del _BuildAutomaton_8 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tPart._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) st_0._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tPart._Automaton = _BuildAutomaton_8() tPortType._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'operation'), tOperation, scope=tPortType, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 183, 10))) def _BuildAutomaton_9 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_9 del _BuildAutomaton_9 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 183, 10)) counters.add(cc_1) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tPortType._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.ElementUse(tPortType._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'operation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 183, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) st_1._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tPortType._Automaton = _BuildAutomaton_9() tOperation._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'input'), tParam, scope=tOperation, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 207, 6))) tOperation._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'output'), tParam, scope=tOperation, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 209, 5))) tOperation._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'fault'), tFault, scope=tOperation, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 210, 2))) def _BuildAutomaton_10 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_10 del _BuildAutomaton_10 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) cc_2 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 208, 3)) counters.add(cc_2) cc_3 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 210, 2)) counters.add(cc_3) cc_4 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 218, 3)) counters.add(cc_4) cc_5 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 220, 2)) counters.add(cc_5) states = [] final_update = None symbol = pyxb.binding.content.ElementUse(tOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = None symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) final_update = set() symbol = pyxb.binding.content.ElementUse(tOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'input')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 207, 6)) st_2 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_2) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'output')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 209, 5)) st_3 = fac.State(symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False) states.append(st_3) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) final_update.add(fac.UpdateInstruction(cc_3, False)) symbol = pyxb.binding.content.ElementUse(tOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'fault')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 210, 2)) st_4 = fac.State(symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False) states.append(st_4) final_update = set() symbol = pyxb.binding.content.ElementUse(tOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'output')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 217, 6)) st_5 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_5) final_update = set() final_update.add(fac.UpdateInstruction(cc_4, False)) symbol = pyxb.binding.content.ElementUse(tOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'input')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 219, 5)) st_6 = fac.State(symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False) states.append(st_6) final_update = set() final_update.add(fac.UpdateInstruction(cc_4, False)) final_update.add(fac.UpdateInstruction(cc_5, False)) symbol = pyxb.binding.content.ElementUse(tOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'fault')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 220, 2)) st_7 = fac.State(symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False) states.append(st_7) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_1, False) ])) transitions.append(fac.Transition(st_5, [ fac.UpdateInstruction(cc_1, False) ])) st_1._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_3, [ ])) st_2._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_4, [ ])) st_3._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, True), fac.UpdateInstruction(cc_3, False) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_3, True) ])) st_4._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_6, [ ])) st_5._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_4, True) ])) transitions.append(fac.Transition(st_7, [ ])) st_6._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_6, [ fac.UpdateInstruction(cc_4, True), fac.UpdateInstruction(cc_5, False) ])) transitions.append(fac.Transition(st_7, [ fac.UpdateInstruction(cc_5, True) ])) st_7._set_transitionSet(transitions) return fac.Automaton(states, counters, False, containing_state=None) tOperation._Automaton = _BuildAutomaton_10() def _BuildAutomaton_11 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_11 del _BuildAutomaton_11 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tParam._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) st_0._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tParam._Automaton = _BuildAutomaton_11() def _BuildAutomaton_12 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_12 del _BuildAutomaton_12 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tFault._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) st_0._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tFault._Automaton = _BuildAutomaton_12() tBinding._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'operation'), tBindingOperation, scope=tBinding, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 247, 10))) def _BuildAutomaton_13 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_13 del _BuildAutomaton_13 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) cc_2 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 247, 10)) counters.add(cc_2) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tBinding._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tBinding._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'operation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 247, 10)) st_2 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_2) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_1, False) ])) st_1._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) st_2._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tBinding._Automaton = _BuildAutomaton_13() def _BuildAutomaton_14 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_14 del _BuildAutomaton_14 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tBindingOperationMessage._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) st_1._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tBindingOperationMessage._Automaton = _BuildAutomaton_14() def _BuildAutomaton_15 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_15 del _BuildAutomaton_15 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tBindingOperationFault._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) st_1._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tBindingOperationFault._Automaton = _BuildAutomaton_15() tBindingOperation._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'input'), tBindingOperationMessage, scope=tBindingOperation, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 275, 10))) tBindingOperation._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'output'), tBindingOperationMessage, scope=tBindingOperation, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 276, 10))) tBindingOperation._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'fault'), tBindingOperationFault, scope=tBindingOperation, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 277, 10))) def _BuildAutomaton_16 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_16 del _BuildAutomaton_16 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) cc_2 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 275, 10)) counters.add(cc_2) cc_3 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 276, 10)) counters.add(cc_3) cc_4 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 277, 10)) counters.add(cc_4) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tBindingOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tBindingOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'input')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 275, 10)) st_2 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_2) final_update = set() final_update.add(fac.UpdateInstruction(cc_3, False)) symbol = pyxb.binding.content.ElementUse(tBindingOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'output')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 276, 10)) st_3 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_3) final_update = set() final_update.add(fac.UpdateInstruction(cc_4, False)) symbol = pyxb.binding.content.ElementUse(tBindingOperation._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'fault')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 277, 10)) st_4 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_4) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_1, False) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_1, False) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_1, False) ])) st_1._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_2, False) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_2, False) ])) st_2._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_3, [ fac.UpdateInstruction(cc_3, True) ])) transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_3, False) ])) st_3._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_4, [ fac.UpdateInstruction(cc_4, True) ])) st_4._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tBindingOperation._Automaton = _BuildAutomaton_16() tService._AddElement(pyxb.binding.basis.element(pyxb.namespace.ExpandedName(Namespace, 'port'), tPort, scope=tService, location=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 288, 10))) def _BuildAutomaton_17 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_17 del _BuildAutomaton_17 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) cc_2 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 288, 10)) counters.add(cc_2) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tService._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) final_update = set() final_update.add(fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse(tService._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'port')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 288, 10)) st_2 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_2) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_1, False) ])) st_1._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_2, [ fac.UpdateInstruction(cc_2, True) ])) st_2._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tService._Automaton = _BuildAutomaton_17() def _BuildAutomaton_18 (): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_18 del _BuildAutomaton_18 import pyxb.utils.fac as fac counters = set() cc_0 = fac.CounterCondition(min=0, max=1, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) counters.add(cc_0) cc_1 = fac.CounterCondition(min=0, max=None, metadata=pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) counters.add(cc_1) states = [] final_update = set() final_update.add(fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse(tPort._UseForTag(pyxb.namespace.ExpandedName(Namespace, 'documentation')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 50, 6)) st_0 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_0) final_update = set() final_update.add(fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.WildcardUse(pyxb.binding.content.Wildcard(process_contents=pyxb.binding.content.Wildcard.PC_lax, namespace_constraint=(pyxb.binding.content.Wildcard.NC_not, 'http://schemas.xmlsoap.org/wsdl/')), pyxb.utils.utility.Location('/tmp/pyxbdist.mjW1MNk/PyXB-1.2.5/pyxb/bundles/wssplat/schemas/wsdl11.xsd', 76, 10)) st_1 = fac.State(symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False) states.append(st_1) transitions = [] transitions.append(fac.Transition(st_0, [ fac.UpdateInstruction(cc_0, True) ])) transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_0, False) ])) st_0._set_transitionSet(transitions) transitions = [] transitions.append(fac.Transition(st_1, [ fac.UpdateInstruction(cc_1, True) ])) st_1._set_transitionSet(transitions) return fac.Automaton(states, counters, True, containing_state=None) tPort._Automaton = _BuildAutomaton_18()
StarcoderdataPython
5097165
#pragma error #pragma repy restrictions.fewevents def foo(timername): mycontext[timername] = True sleep(2) if callfunc=='initialize': mycontext['timetogo'] = False myval = settimer(.2, foo, ('a',)) myval = settimer(.3, foo, ('b',)) myval = settimer(.4, foo, ('c',)) sleep(1) if mycontext['a'] and mycontext['b'] and mycontext['c']: print "Bye!"
StarcoderdataPython
146966
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Definition of Beam TFX runner.""" import os from typing import Any, Iterable from absl import logging import apache_beam as beam from tfx.orchestration import metadata from tfx.orchestration.portable import launcher from tfx.orchestration.portable import tfx_runner from tfx.proto.orchestration import pipeline_pb2 from tfx.utils import telemetry_utils from ml_metadata.proto import metadata_store_pb2 # TODO(jyzhao): confirm it's re-executable, add test case. @beam.typehints.with_input_types(Any) @beam.typehints.with_output_types(Any) class _PipelineNodeAsDoFn(beam.DoFn): """Wrap component as beam DoFn.""" def __init__(self, pipeline_node: pipeline_pb2.PipelineNode, mlmd_connection: metadata.Metadata, pipeline_info: pipeline_pb2.PipelineInfo, pipeline_runtime_spec: pipeline_pb2.PipelineRuntimeSpec): """Initializes the _PipelineNodeAsDoFn. Args: pipeline_node: The specification of the node that this launcher lauches. mlmd_connection: ML metadata connection. The connection is expected to not be opened before launcher is initiated. pipeline_info: The information of the pipeline that this node runs in. pipeline_runtime_spec: The runtime information of the pipeline that this node runs in. """ self._launcher = launcher.Launcher( pipeline_node=pipeline_node, mlmd_connection=mlmd_connection, pipeline_info=pipeline_info, pipeline_runtime_spec=pipeline_runtime_spec) self._component_id = pipeline_node.node_info.id def process(self, element: Any, *signals: Iterable[Any]) -> None: """Executes component based on signals. Args: element: a signal element to trigger the component. *signals: side input signals indicate completeness of upstream components. """ for signal in signals: assert not list(signal), 'Signal PCollection should be empty.' self._run_component() def _run_component(self) -> None: logging.info('Component %s is running.', self._component_id) self._launcher.launch() logging.info('Component %s is finished.', self._component_id) class BeamDagRunner(tfx_runner.TfxRunner): """Tfx runner on Beam.""" def __init__(self): """Initializes BeamDagRunner as a TFX orchestrator. """ def run(self, pipeline: pipeline_pb2.Pipeline) -> None: """Deploys given logical pipeline on Beam. Args: pipeline: Logical pipeline in IR format. """ # For CLI, while creating or updating pipeline, pipeline_args are extracted # and hence we avoid deploying the pipeline. if 'TFX_JSON_EXPORT_PIPELINE_ARGS_PATH' in os.environ: return # TODO(b/163003901): Support beam DAG runner args through IR. # TODO(b/163003901): MLMD connection config should be passed in via IR. connection_config = metadata_store_pb2.ConnectionConfig() connection_config.sqlite.SetInParent() mlmd_connection = metadata.Metadata( connection_config=connection_config) with telemetry_utils.scoped_labels( {telemetry_utils.LABEL_TFX_RUNNER: 'beam'}): with beam.Pipeline() as p: # Uses for triggering the component DoFns. root = p | 'CreateRoot' >> beam.Create([None]) # Stores mapping of component to its signal. signal_map = {} # pipeline.components are in topological order. for node in pipeline.nodes: # TODO(b/160882349): Support subpipeline pipeline_node = node.pipeline_node component_id = pipeline_node.node_info.id # Signals from upstream components. signals_to_wait = [] for upstream_node in pipeline_node.upstream_nodes: assert upstream_node in signal_map, ('Components is not in ' 'topological order') signals_to_wait.append(signal_map[upstream_node]) logging.info('Component %s depends on %s.', component_id, [s.producer.full_label for s in signals_to_wait]) # Each signal is an empty PCollection. AsIter ensures component will # be triggered after upstream components are finished. # LINT.IfChange signal_map[component_id] = ( root | 'Run[%s]' % component_id >> beam.ParDo( _PipelineNodeAsDoFn(pipeline_node, mlmd_connection, pipeline.pipeline_info, pipeline.runtime_spec), * [beam.pvalue.AsIter(s) for s in signals_to_wait])) # LINT.ThenChange(../beam/beam_dag_runner.py) logging.info('Component %s is scheduled.', component_id)
StarcoderdataPython
6443411
<gh_stars>1-10 import json import os import requests from urllib3 import Retry class Reporter: def __init__(self, cookie: str) -> None: self.__read_sites() self.__init_session(cookie) def __read_sites(self) -> None: with open(os.path.join("src", "sites.json"), "r", encoding="utf-8") as fr: self.__sites = json.load(fr) def __init_session(self, cookie: str) -> None: self.__session = requests.Session() adapter = requests.adapters.HTTPAdapter( max_retries=Retry( total=50, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504] ) ) self.__session.mount("http://", adapter) self.__session.mount("https://", adapter) self.__session.cookies.update({"SESSION": cookie}) self.__session.headers.update({"content-type": "application/json"}) def __request(self, api: str) -> dict: site = self.__sites[api] return self.__session.request( method=site["method"], url=site["url"], timeout=5, json=site["data"], ).json() def run(self) -> tuple[bool, str]: status = self.__request("status")["data"] if status == None: return (False, "invalid cookie") elif status["appliedTimes"] != 0: return (True, "duplicated") elif status["schoolStatus"] == 0: response = self.__request("unreturned") elif status["schoolStatus"] == 1: response = self.__request("returned") else: return (False, "invalid status") if response["data"] == True: return (True, "success") else: return (False, "invalid data") if __name__ == "__main__": cookies = os.environ.get("COOKIES") if cookies == None: raise Exception("session id not provided") else: cookies = cookies.split("#") results = [] for index, cookie in enumerate(cookies): reporter = Reporter(cookie) result, message = reporter.run() results.append(result) print(f"Student {index+1}: {message}") if not all(results): exit(-1)
StarcoderdataPython
26782
# -*- coding: utf-8 -*- # Author: t0pep0 # e-mail: <EMAIL> # Jabber: <EMAIL> # BTC : 1ipEA2fcVyjiUnBqUx7PVy5efktz2hucb # donate free =) # Forked and modified by <NAME> # Compatible Python3 import hmac import hashlib import time import urllib.request, urllib.parse, urllib.error import json class Api(object): __username = '' __api_key = '' __api_secret = '' __nonce_v = '' # Init class def __init__(self, username, api_key, api_secret): self.__username = username self.__api_key = api_key self.__api_secret = api_secret # get timestamp as nonce def __nonce(self): self.__nonce_v = '{:.10f}'.format(time.time() * 1000).split('.')[0] # generate signature def __signature(self): byte_secret = bytes(self.__api_secret, "ascii") string = self.__nonce_v + self.__username + self.__api_key # create string encode_string = string.encode ('utf-8') signature = hmac.new(byte_secret, encode_string, digestmod=hashlib.sha256).hexdigest().upper() # create signature return signature def __post(self, url, param): # Post Request (Low Level API call) post_url = url header = { 'User-agent': 'bot-cex.io-' } params = urllib.parse.urlencode(param) post_data = params.encode( "ascii") req = urllib.request.Request(url = post_url, data = post_data, headers = header) page = urllib.request.urlopen(req).read() return page def api_call(self, method, param={}, private=0, couple=''): # api call (Middle level) url = 'https://cex.io/api/' + method + '/' # generate url if couple != '': url = url + couple + '/' # set couple if needed if private == 1: # add auth-data if needed self.__nonce() param.update({ 'key': self.__api_key, 'signature': self.__signature(), 'nonce': self.__nonce_v}) answer = self.__post(url, param) # Post Request a = answer.decode("utf-8") #return json.loads(answer) # generate dict and return return a # generates a valid json output def ticker(self, couple='MHC/BTC'): return self.api_call('ticker', {}, 0, couple) def tickers(self, couple='USD'): return self.api_call('tickers', {}, 0, couple) def ohlcv(self, end_date, couple='BTC/USD'): return self.api_call('ohlcv/hd/'+str(end_date), {}, 0, couple) def order_book(self, couple='MHC/BTC'): return self.api_call('order_book', {}, 0, couple) def trade_history(self, since=1, couple='MHC/BTC'): return self.api_call('trade_history', {"since": str(since)}, 0, couple) def balance(self): return self.api_call('balance', {}, 1) def current_orders(self, couple='MHC/BTC'): return self.api_call('open_orders', {}, 1, couple) def cancel_order(self, order_id): return self.api_call('cancel_order', {"id": order_id}, 1) def place_order(self, ptype='buy', amount=1, price=1, couple='MHC/BTC'): return self.api_call('place_order', {"type": ptype, "amount": str(amount), "price": str(price)}, 1, couple) def archived_orders(self, couple='XLM/USD'): return self.api_call('archived_orders', {}, 1, couple) def price_stats(self, last_hours, max_resp_arr_size, couple='MHC/BTC'): return self.api_call( 'price_stats', {"lastHours": last_hours, "maxRespArrSize": max_resp_arr_size}, 0, couple)
StarcoderdataPython
1812593
from django.shortcuts import render # Create your views here. from django.db import transaction from django.utils.decorators import method_decorator #create global transactional class mixin from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters class TransactionalViewMixin(object): """This is a global view wrapper that provides , transactions and filters """ filter_backends = (DjangoFilterBackend,filters.SearchFilter,) def perform_destroy(self,model_object): """ called by generic detail view for flagging is_deleted to True. """ model_object.is_deleted=True model_object.save() @method_decorator(transaction.atomic) def dispatch(self, *args, **kwargs): return super(TransactionalViewMixin, self).dispatch(*args, **kwargs)
StarcoderdataPython
6598969
<filename>src/empirical_fire_modelling/analysis/pfi.py # -*- coding: utf-8 -*- """PFI calculation.""" import eli5 from wildfires.qstat import get_ncpus from ..cache import cache @cache def calculate_pfi(rf, X, y): """Calculate the PFI.""" rf.n_jobs = get_ncpus() perm_importance = eli5.sklearn.PermutationImportance(rf, random_state=1).fit(X, y) return eli5.explain_weights_df(perm_importance, feature_names=list(X.columns))
StarcoderdataPython
11290772
<filename>scripts/mmd/MMD-critic/mmd.py # maintained by <EMAIL> from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np # from mpi4py import MPI import sys import math ############################################################################################################################## # function to select criticisms # ARGS: # K: Kernel matrix # selectedprotos: prototypes already selected # m : number of criticisms to be selected # reg: regularizer type. # is_K_sparse: True means K is the pre-computed csc sparse matrix? False means it is a dense matrix. # RETURNS: indices selected as criticisms ############################################################################################################################## def select_criticism_regularized(K, selectedprotos, m, reg='logdet', is_K_sparse=True): n = np.shape(K)[0] if reg in ['None','logdet','iterative']: pass else: print("wrong regularizer :" + reg) exit(1) options = dict() selected = np.array([], dtype=int) candidates2 = np.setdiff1d(range(n), selectedprotos) inverse_of_prev_selected = None # should be a matrix if is_K_sparse: colsum = np.array(K.sum(0)).ravel()/n else: colsum = np.sum(K, axis=0)/n for i in range(m): maxx = -sys.float_info.max argmax = -1 candidates = np.setdiff1d(candidates2, selected) s1array = colsum[candidates] temp = K[selectedprotos, :][:, candidates] if is_K_sparse: s2array = temp.sum(0) else: s2array = np.sum(temp, axis=0) s2array = s2array / (len(selectedprotos)) s1array = np.abs(s1array - s2array) if reg == 'logdet': if inverse_of_prev_selected is not None: # first call has been made already temp = K[selected, :][:, candidates] if is_K_sparse: temp2 = temp.transpose().dot(inverse_of_prev_selected) regularizer = temp.transpose().multiply(temp2) regcolsum = regularizer.sum(1).ravel()# np.sum(regularizer, axis=0) regularizer = np.abs(K.diagonal()[candidates] - regcolsum) else: # hadamard product temp2 = np.array(np.dot(inverse_of_prev_selected, temp)) regularizer = temp2 * temp regcolsum = np.sum(regularizer, axis=0) regularizer = np.log(np.abs(np.diagonal(K)[candidates] - regcolsum)) s1array = s1array + regularizer else: if is_K_sparse: s1array = s1array - np.log(np.abs(K.diagonal()[candidates])) else: s1array = s1array - np.log(np.abs(np.diagonal(K)[candidates])) argmax = candidates[np.argmax(s1array)] maxx = np.max(s1array) selected = np.append(selected, argmax) if reg == 'logdet': KK = K[selected,:][:,selected] if is_K_sparse: KK = KK.todense() inverse_of_prev_selected = np.linalg.inv(KK) # shortcut if reg == 'iterative': selectedprotos = np.append(selectedprotos, argmax) return selected ############################################################################################################################## # Function choose m of all rows by MMD as per kernelfunc # ARGS: # K : kernel matrix # candidate_indices : array of potential choices for selections, returned values are chosen from these indices # m: number of selections to be made # is_K_sparse: True means K is the pre-computed csc sparse matrix? False means it is a dense matrix. # RETURNS: subset of candidate_indices which are selected as prototypes ############################################################################################################################## def greedy_select_protos(K, candidate_indices, m, is_K_sparse=False): if len(candidate_indices) != np.shape(K)[0]: K = K[:,candidate_indices][candidate_indices,:] n = len(candidate_indices) # colsum = np.array(K.sum(0)).ravel() # same as rowsum if is_K_sparse: colsum = 2*np.array(K.sum(0)).ravel() / n else: colsum = 2*np.sum(K, axis=0) / n selected = np.array([], dtype=int) value = np.array([]) for i in range(m): maxx = -sys.float_info.max argmax = -1 candidates = np.setdiff1d(range(n), selected) s1array = colsum[candidates] if len(selected) > 0: temp = K[selected, :][:, candidates] if is_K_sparse: # s2array = temp.sum(0) *2 s2array = temp.sum(0) * 2 + K.diagonal()[candidates] else: s2array = np.sum(temp, axis=0) *2 + np.diagonal(K)[candidates] s2array = s2array/(len(selected) + 1) s1array = s1array - s2array else: if is_K_sparse: s1array = s1array - (np.abs(K.diagonal()[candidates])) else: s1array = s1array - (np.abs(np.diagonal(K)[candidates])) argmax = candidates[np.argmax(s1array)] # print("max %f" %np.max(s1array)) selected = np.append(selected, argmax) # value = np.append(value,maxx) KK = K[selected, :][:, selected] if is_K_sparse: KK = KK.todense() inverse_of_prev_selected = np.linalg.inv(KK) # shortcut return candidate_indices[selected]
StarcoderdataPython
11211858
from motor_typing import TYPE_CHECKING def options(option_context): # type: (Options.OptionsContext) -> None pass if TYPE_CHECKING: from waflib import Options
StarcoderdataPython
5121322
# utility functions for working with json from types import * # merges keys from j2 into j1 def json_merge_missing_keys(j1, j2, overwrite=False, exclude=[]): for key in j2: if ((not key in j1) or overwrite) and (key not in exclude): j1[key] = j2[key]; def get_child_by_key_values(j1, kvs={}): if 'children' in j1: for c in j1['children']: if type(c) is DictType: match = True for kv in kvs: if not (kv in c and c[kv] == kvs[kv]): match = False if match: return c return None
StarcoderdataPython
201651
<gh_stars>1-10 #!/usr/bin/python # (c) 2018-2019, NetApp Inc. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) ''' na_ontap_vscan ''' from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'certified'} DOCUMENTATION = ''' module: na_ontap_vscan short_description: NetApp ONTAP Vscan enable/disable. extends_documentation_fragment: - netapp.ontap.netapp.na_ontap version_added: 2.9.0 author: NetApp Ansible Team (@carchi8py) <<EMAIL>> notes: - on demand task, on_access_policy and scanner_pools must be set up before running this module description: - Enable and Disable Vscan options: enable: description: - Whether to enable to disable a Vscan type: bool default: True vserver: description: - the name of the data vserver to use. required: true type: str ''' EXAMPLES = """ - name: Enable Vscan na_ontap_vscan: enable: True username: '{{ netapp_username }}' password: '{{ <PASSWORD> }}' hostname: '{{ netapp_hostname }}' vserver: trident_svm - name: Disable Vscan na_ontap_vscan: enable: False username: '{{ netapp_username }}' password: '{{ <PASSWORD> }}' hostname: '{{ netapp_hostname }}' vserver: trident_svm """ RETURN = """ """ import traceback from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native import ansible_collections.netapp.ontap.plugins.module_utils.netapp as netapp_utils from ansible_collections.netapp.ontap.plugins.module_utils.netapp import OntapRestAPI from ansible_collections.netapp.ontap.plugins.module_utils.netapp_module import NetAppModule HAS_NETAPP_LIB = netapp_utils.has_netapp_lib() class NetAppOntapVscan(object): ''' enable/disable vscan ''' def __init__(self): self.use_rest = False self.argument_spec = netapp_utils.na_ontap_host_argument_spec() self.argument_spec.update(dict( enable=dict(type='bool', default=True), vserver=dict(required=True, type='str'), )) self.module = AnsibleModule( argument_spec=self.argument_spec, supports_check_mode=True ) self.na_helper = NetAppModule() self.parameters = self.na_helper.set_parameters(self.module.params) # API should be used for ONTAP 9.6 or higher, Zapi for lower version self.rest_api = OntapRestAPI(self.module) if self.rest_api.is_rest(): self.use_rest = True else: if HAS_NETAPP_LIB is False: self.module.fail_json(msg="the python NetApp-Lib module is required") else: self.server = netapp_utils.setup_na_ontap_zapi(module=self.module, vserver=self.parameters['vserver']) def get_vscan(self): if self.use_rest: params = {'fields': 'svm,enabled', "svm.name": self.parameters['vserver']} api = "protocols/vscan" message, error = self.rest_api.get(api, params) if error: self.module.fail_json(msg=error) return message['records'][0] else: vscan_status_iter = netapp_utils.zapi.NaElement('vscan-status-get-iter') vscan_status_info = netapp_utils.zapi.NaElement('vscan-status-info') vscan_status_info.add_new_child('vserver', self.parameters['vserver']) query = netapp_utils.zapi.NaElement('query') query.add_child_elem(vscan_status_info) vscan_status_iter.add_child_elem(query) try: result = self.server.invoke_successfully(vscan_status_iter, True) except netapp_utils.zapi.NaApiError as error: self.module.fail_json(msg='Error getting Vscan info for Vserver %s: %s' % (self.parameters['vserver'], to_native(error)), exception=traceback.format_exc()) if result.get_child_by_name('num-records') and int(result.get_child_content('num-records')) >= 1: return result.get_child_by_name('attributes-list').get_child_by_name('vscan-status-info') def enable_vscan(self, uuid=None): if self.use_rest: params = {"svm.name": self.parameters['vserver']} data = {"enabled": self.parameters['enable']} api = "protocols/vscan/" + uuid dummy, error = self.rest_api.patch(api, data, params) if error is not None: self.module.fail_json(msg=error) else: vscan_status_obj = netapp_utils.zapi.NaElement("vscan-status-modify") vscan_status_obj.add_new_child('is-vscan-enabled', str(self.parameters['enable'])) try: self.server.invoke_successfully(vscan_status_obj, True) except netapp_utils.zapi.NaApiError as error: self.module.fail_json(msg="Error Enable/Disabling Vscan: %s" % to_native(error), exception=traceback.format_exc()) def asup_log(self): if self.use_rest: # TODO: logging for Rest return else: # Either we are using ZAPI, or REST failed when it should not try: netapp_utils.ems_log_event("na_ontap_vscan", self.server) except Exception: # TODO: we may fail to connect to REST or ZAPI, the line below shows REST issues only # self.module.fail_json(msg=repr(self.rest_api.errors), log=repr(self.rest_api.debug_logs)) pass def apply(self): changed = False self.asup_log() current = self.get_vscan() if self.use_rest: if current['enabled'] != self.parameters['enable']: if not self.module.check_mode: self.enable_vscan(current['svm']['uuid']) changed = True else: if current.get_child_content('is-vscan-enabled') != str(self.parameters['enable']).lower(): if not self.module.check_mode: self.enable_vscan() changed = True self.module.exit_json(changed=changed) def main(): """ Execute action from playbook """ command = NetAppOntapVscan() command.apply() if __name__ == '__main__': main()
StarcoderdataPython
3491775
import logging import random import string from datetime import date, datetime from enum import Enum, auto from threading import RLock, Timer from typing import TYPE_CHECKING, Dict, Literal, Optional from localstack import config from localstack.services.awslambda.invocation.executor_endpoint import ServiceEndpoint from localstack.services.awslambda.invocation.lambda_models import FunctionVersion from localstack.services.awslambda.invocation.runtime_executor import RuntimeExecutor from localstack.utils.strings import to_str if TYPE_CHECKING: from localstack.services.awslambda.invocation.version_manager import QueuedInvocation STARTUP_TIMEOUT_SEC = 10.0 HEX_CHARS = [str(num) for num in range(10)] + ["a", "b", "c", "d", "e", "f"] LOG = logging.getLogger(__name__) class RuntimeStatus(Enum): INACTIVE = auto() STARTING = auto() READY = auto() RUNNING = auto() FAILED = auto() STOPPED = auto() InitializationType = Literal["on-demand", "provisioned-concurrency"] class InvalidStatusException(Exception): def __init__(self, message: str): super().__init__(message) def generate_runtime_id() -> str: return "".join(random.choices(string.hexdigits[:16], k=32)).lower() class RuntimeEnvironment: runtime_executor: RuntimeExecutor status_lock: RLock status: RuntimeStatus initialization_type: InitializationType last_returned: datetime startup_timer: Optional[Timer] def __init__( self, function_version: FunctionVersion, initialization_type: InitializationType, service_endpoint: ServiceEndpoint, ): self.id = generate_runtime_id() self.status = RuntimeStatus.INACTIVE self.status_lock = RLock() self.function_version = function_version self.initialization_type = initialization_type self.runtime_executor = RuntimeExecutor( self.id, function_version, service_endpoint=service_endpoint ) self.last_returned = datetime.min self.startup_timer = None def get_log_group_name(self) -> str: return f"/aws/lambda/{self.function_version.id.function_name}" def get_log_stream_name(self) -> str: return f"{date.today():%Y/%m/%d}/[{self.function_version.qualifier}]{self.id}" def get_environment_variables(self) -> Dict[str, str]: """ Returns the environment variable set for the runtime container :return: Dict of environment variables """ env_vars = { # Runtime API specifics "LOCALSTACK_RUNTIME_ID": self.id, "LOCALSTACK_RUNTIME_ENDPOINT": f"http://{self.runtime_executor.get_endpoint_from_executor()}:{self.runtime_executor.executor_endpoint.port}", # General Lambda Environment Variables "AWS_LAMBDA_LOG_GROUP_NAME": self.get_log_group_name(), "AWS_LAMBDA_LOG_STREAM_NAME": self.get_log_stream_name(), "AWS_LAMBDA_FUNCTION_NAME": self.function_version.qualified_arn, # TODO use name instead of arn "AWS_LAMBDA_FUNCTION_TIMEOUT": self.function_version.config.timeout, "AWS_LAMBDA_FUNCTION_MEMORY_SIZE": self.function_version.config.memory_size, # TODO use correct memory size "AWS_LAMBDA_FUNCTION_VERSION": self.function_version.qualifier, # TODO use name instead of arn "AWS_DEFAULT_REGION": self.function_version.qualified_arn, # TODO use region instead of arn "AWS_REGION": self.function_version.qualified_arn, # TODO use region instead of arn "TASK_ROOT": "/var/task", # TODO custom runtimes? "RUNTIME_ROOT": "/var/runtime", # TODO custom runtimes? "AWS_LAMBDA_INITIALIZATION_TYPE": self.initialization_type, "TZ": ":UTC", # TODO does this have to match local system time? format? # Access IDs for role TODO make dependent on role arn "AWS_ACCESS_KEY_ID": "test", "AWS_SECRET_ACCESS_KEY": "test", "AWS_SESSION_TOKEN": "<PASSWORD>", # TODO xray # LocalStack endpoint specifics "LOCALSTACK_HOSTNAME": self.runtime_executor.get_endpoint_from_executor(), "EDGE_PORT": str(config.EDGE_PORT), "AWS_ENDPOINT_URL": f"http://{self.runtime_executor.get_endpoint_from_executor()}:{config.EDGE_PORT}", } if self.function_version.config.handler: env_vars["_HANDLER"] = self.function_version.config.handler if self.function_version.config.runtime: env_vars["AWS_EXECUTION_ENV"] = f"Aws_Lambda_{self.function_version.config.runtime}" env_vars.update(self.function_version.config.environment) return env_vars # Lifecycle methods def start(self) -> None: """ Starting the runtime environment """ with self.status_lock: if self.status != RuntimeStatus.INACTIVE: raise InvalidStatusException("Runtime Handler can only be started when inactive") self.status = RuntimeStatus.STARTING self.runtime_executor.start(self.get_environment_variables()) self.startup_timer = Timer(STARTUP_TIMEOUT_SEC, self.timed_out) self.startup_timer.start() def stop(self) -> None: """ Stopping the runtime environment """ with self.status_lock: if self.status in [RuntimeStatus.INACTIVE, RuntimeStatus.STOPPED]: raise InvalidStatusException("Runtime Handler cannot be shutdown before started") self.runtime_executor.stop() self.status = RuntimeStatus.STOPPED # Status methods def set_ready(self) -> None: with self.status_lock: if self.status != RuntimeStatus.STARTING: raise InvalidStatusException( "Runtime Handler can only be set active while starting" ) self.status = RuntimeStatus.READY if self.startup_timer: self.startup_timer.cancel() self.startup_timer = None def invocation_done(self) -> None: self.last_returned = datetime.now() with self.status_lock: if self.status != RuntimeStatus.RUNNING: raise InvalidStatusException("Runtime Handler can only be set ready while running") self.status = RuntimeStatus.READY def timed_out(self) -> None: LOG.debug( "Executor %s for function %s timed out during startup", self.id, self.function_version.qualified_arn, ) self.startup_timer = None self.errored() def errored(self) -> None: with self.status_lock: if self.status != RuntimeStatus.STARTING: raise InvalidStatusException("Runtime Handler can only error while starting") self.status = RuntimeStatus.FAILED if self.startup_timer: self.startup_timer.cancel() try: self.runtime_executor.stop() except Exception: LOG.debug("Unable to shutdown runtime handler '%s'", self.id) def invoke(self, invocation_event: "QueuedInvocation") -> None: with self.status_lock: if self.status != RuntimeStatus.READY: raise InvalidStatusException("Invoke can only happen if status is ready") self.status = RuntimeStatus.RUNNING invoke_payload = { "invoke-id": invocation_event.invocation_id, "payload": to_str(invocation_event.invocation.payload), } self.runtime_executor.invoke(payload=invoke_payload)
StarcoderdataPython
8086306
<reponame>technoborsch/AtomREST<gh_stars>0 NO_REMARKS_TIPS = [ 'Это ненадолго :)', 'По крайней мере, мы о них не знаем', 'Это не значит, что всё правильно', 'Сейчас добавим :)', 'Держу в курсе', 'Можно расслабиться', 'Удивительно', 'Классно же', 'Вау!', 'Но ты-то сам знаешь, где ошибки, не так ли?', 'Error 404: errors not found', 'Никогда такого не было', '...пока что.', 'Замечаний - нет, ошибки - есть.', ]
StarcoderdataPython
6687367
<reponame>marty1912/dna_app<filename>trialgen.py #!/bin/python3 import sys import json import shutil import os import subprocess import random import time import pandas as pd import argparse import copy from os import listdir from os.path import isfile, join, basename ,splitext from os import walk from pandas.core.frame import DataFrame def listToStringwithDoubleQuotes(mylist): copy = mylist.copy() return '["'+ '","'.join(copy)+'"]' def getNumberPatternTrials(base_path= 'assets/images/pattern_numbers/',n_choices =4): ''' ''' #distances = [2,3,4] distances = [1] missing_index = [0,2,4] direction = [1,-1] problem_len = 5 choices_len= 4 min_num = 1 max_num = 30 def appendBasePath(my_list): new_list = [] for i in range(0,len(my_list)): item = base_path + str(my_list[i]) + ".PNG" new_list.append(item) return new_list trials = [] for dist in distances: for missing in missing_index: for dir in direction: if(dir == 1): first_number = random.randint(min_num,max_num - (problem_len-1)*dist) else: first_number = random.randint(min_num + (problem_len-1)*dist,max_num) numbers = [first_number + i*dist*dir for i in range(problem_len)] translation = "\"dist:"+str(dist)+",missing:"+str(missing)+",dir:"+str(dir) +"\"" choices = [] choices.append(numbers[missing]) max_offset = dist*2 while(len(choices) < choices_len): correct_solution = choices[0] guess = correct_solution+random.randint(-max_offset, max_offset) if(guess > max_num or guess < min_num): continue if(guess in choices): continue choices.append(guess) random.shuffle(choices) numbers = appendBasePath(numbers) choices = appendBasePath(choices) solution = numbers.copy() solution_str = listToStringwithDoubleQuotes(solution) problem = numbers.copy() problem[missing] = "" problem_str = listToStringwithDoubleQuotes(problem) choices_str = listToStringwithDoubleQuotes(choices) trials.append([problem_str,solution_str,choices_str,translation]) return trials def getPatternUnitOfRepeatTrials(symbols = [ 'assets/images/pattern_symbols/triangle.PNG', 'assets/images/pattern_symbols/tripleCircle.PNG', 'assets/images/pattern_symbols/ArrowOverlay.PNG', 'assets/images/pattern_symbols/ArrowLeft.PNG', 'assets/images/pattern_symbols/square.PNG', 'assets/images/pattern_symbols/robotface.PNG', 'assets/images/pattern_symbols/circle.PNG', 'assets/images/pattern_symbols/rhombus.PNG', 'assets/images/pattern_symbols/ArrowRight.PNG'] ,choose_from=None,n_choices =3): ''' ''' complete_patterns = [ ([0,1,1,0,1,1],[[0,1,1],[0,1,1,0],[0,1]]), #1 ABBABB ([0,0,1,0,0,1],[[0,0,1],[0,0],[0,1]]), #1 AABAAB <- as in Rittle-Johnson et.al (2015) #[0,1,0,2,0,1], #2 ABACAB # [0,1,2,2,1,0] , #3 ABCCBA <- does not have one # [0,1,0,1,1,0,1,1,1] , #4 ABABBABBB <- growing pattern does not have a single unit of repeat. ([0,1,2,3,4,0],[[0,1,2,3,4],[0,1,2,3,4,0],[0,1,2]]) , #5 AJDXNA # [0,1,0,2,0,3,0,1,0,2,0,3] , #6 ABACADABACAD # [0,1,2,3,2,1,0] , #7 ABCDCDA # [0,1,1,1,0,1,1,0,1] , #8 ABBBABBAB ] pattern_trans_table= ["A","B","C","D","E","F","G","H"] trials = [] for pattern_tuple in complete_patterns: pattern = pattern_tuple[0] choice_patterns = pattern_tuple[1] shuffled_sym = list(symbols) random.shuffle(shuffled_sym) problem = [] translation = [] for index in pattern: problem.append(shuffled_sym[index]) translation.append(pattern_trans_table[index]) choose_from = [] for choice in choice_patterns: choose_from.append([]) for index in choice: choose_from[-1].append(shuffled_sym[index]) solution = choose_from[0].copy() # problem[missing] = "" # we also shuffle this so the correct choice is not always leftmost. random.shuffle(choose_from) problem = listToStringwithDoubleQuotes(problem) solution= listToStringwithDoubleQuotes(solution) choose_from_strings = [] for my_list in choose_from: string_list = listToStringwithDoubleQuotes(my_list) print("-"*80) print(string_list) print("-"*80) choose_from_strings.append(string_list) choice = listToStringwithDoubleQuotes(choose_from_strings) choice = choice.replace("\"[\"","[\"") choice = choice.replace("\"]\"","\"]") translation = '"' + "".join(translation) + '"' trials.append([problem,solution,choice,translation]) return trials def getPatternGeneralizeTrials(symbols = [ 'assets/images/pattern_symbols/triangle.PNG', 'assets/images/pattern_symbols/tripleCircle.PNG', 'assets/images/pattern_symbols/ArrowOverlay.PNG', 'assets/images/pattern_symbols/ArrowLeft.PNG', 'assets/images/pattern_symbols/square.PNG', 'assets/images/pattern_symbols/robotface.PNG', 'assets/images/pattern_symbols/circle.PNG', 'assets/images/pattern_symbols/rhombus.PNG', 'assets/images/pattern_symbols/ArrowRight.PNG'] ,choose_from=None,n_choices =4): ''' ''' complete_patterns = [ [0,1,1,0,1,1] , #1 ABBABB [0,1,0,2,0,1], #2 ABACAB [0,1,2,2,1,0] , #3 ABCCBA [0,1,0,1,1,0,1,1,1] , #4 ABABBABBB # [0,1,2,3,4,0] , #5 AJDXNA Not possible with only 4 choices.. # [0,1,0,2,0,3,0,1,0,2,0,3] , #6 ABACADABACAD # [0,1,2,3,2,1,0] , #7 ABCDCDA # [0,1,1,1,0,1,1,0,1] , #8 ABBBABBAB ] pattern_trans_table= ["A","B","C","D","E","F","G","H"] missing_pos = [0,-1] trials = [] for pattern in complete_patterns: for missing in missing_pos: shuffled_sym = list(symbols) random.shuffle(shuffled_sym) solution = [] translation = [] for index in pattern: solution.append(shuffled_sym[index]) translation.append(pattern_trans_table[index]) problem = solution.copy() # problem[missing] = "" # get the choices. # for the generalization we want anything that does not occur in the # original pattern choose_from = [] while(len(choose_from) < n_choices): next_symbol = random.choice(symbols) if(next_symbol in problem): continue if(next_symbol in choose_from): continue choose_from.append(next_symbol) # we also shuffle this so the correct choice is not always leftmost. random.shuffle(choose_from) user_input = ["" for i in range(len(problem))] problem = listToStringwithDoubleQuotes(problem) user_input = listToStringwithDoubleQuotes(user_input) solution= listToStringwithDoubleQuotes(solution) choice = listToStringwithDoubleQuotes(choose_from) translation = '"' + "".join(translation) + '"' trials.append([problem,solution,choice,translation,user_input]) return trials def getPatternExtendTrials(symbols = [ 'assets/images/pattern_symbols/triangle.PNG', 'assets/images/pattern_symbols/tripleCircle.PNG', 'assets/images/pattern_symbols/ArrowOverlay.PNG', 'assets/images/pattern_symbols/ArrowLeft.PNG', 'assets/images/pattern_symbols/square.PNG', 'assets/images/pattern_symbols/robotface.PNG', 'assets/images/pattern_symbols/circle.PNG', 'assets/images/pattern_symbols/rhombus.PNG', 'assets/images/pattern_symbols/ArrowRight.PNG'] ,choose_from=None,n_choices =4): ''' ''' complete_patterns = [ [0,1,1,0,1,1] , #1 ABBABB [0,1,0,2,0,1], #2 ABACAB [0,1,2,2,1,0] , #3 ABCCBA [0,1,0,1,1,0,1,1,1] , #4 ABABBABBB [0,1,2,3,4,0] , #5 AJDXNA # [0,1,0,2,0,3,0,1,0,2,0,3] , #6 ABACADABACAD # [0,1,2,3,2,1,0] , #7 ABCDCDA # [0,1,1,1,0,1,1,0,1] , #8 ABBBABBAB ] pattern_trans_table= ["A","B","C","D","E","F","G","H"] missing_pos = [0,-1] trials = [] for pattern in complete_patterns: for missing in missing_pos: shuffled_sym = list(symbols) random.shuffle(shuffled_sym) solution = [] translation = [] for index in pattern: solution.append(shuffled_sym[index]) translation.append(pattern_trans_table[index]) problem = solution.copy() problem[missing] = "" # get the choices. choose_from = [] # we need to have the correct one for sure. choose_from.append(solution[missing]) # now we use some others from the pattern. unique_symbols = set(solution) unique_symbols.remove(solution[missing]) while(len(choose_from) < n_choices and len(unique_symbols) > 0): choose_from.append(unique_symbols.pop()) # if we still do not have enough choices we select them from the remaining symbols. while(len(choose_from) < n_choices): next_symbol = random.choice(symbols) if(next_symbol in choose_from): continue choose_from.append(next_symbol) # we also shuffle this so the correct choice is not always leftmost. random.shuffle(choose_from) problem = listToStringwithDoubleQuotes(problem) solution= listToStringwithDoubleQuotes(solution) choice = listToStringwithDoubleQuotes(choose_from) translation = '"' + "".join(translation) + '"' trials.append([problem,solution,choice,translation]) return trials def nonSymbTrialsFromFile(): """ here we use pre generated trials from a file. However to have less trials we randomly choose some subset of those trials. """ filename = "python_templates/dot_gen_trials.csv" df = pd.read_csv(filename, sep=",") lst = df.to_dict('records') lst_left = lst[:len(lst)//2] lst_buckets = [[],[],[],[]] for row in (lst_left): lst_buckets[row["bucket"]-1].append(row) for i in range(0,len(lst_buckets)): bucket = lst_buckets[i] lst_buckets[i]= random.sample(bucket,5) print("-"*80) print("buckets len:",len(lst_buckets[0])) print("-"*80) lst_left = lst_buckets[0] for i in range(1,len(lst_buckets)): lst_left.extend(lst_buckets[i]) lst_right = copy.deepcopy(lst_left) for row_index in range(0,len(lst_left)): tmp = lst_left[row_index]["left_num"] lst_left[row_index]["left_num"] = lst_left[row_index]["right_num"] lst_left[row_index]["right_num"] =tmp lst_left[row_index]["direction"] ="Left" lst_left.extend(lst_right) nonSymbTrialsStats(lst_left) return lst_left def nonSymbTrialGen(numbers=[i for i in range(5,22)], buckets = [{'min':1,'max':1.3},{'min':1.3,'max':1.9},{'min':1.9,'max':3},{'min':3,'max':4}]): ''' returns a dict with the fields that are needed. it does not however tell you the filename! ''' all_matchings = [] print("starting..") for left_num in range(22,5,-1): for right_num in range(5,22): # no same things. if(left_num <= right_num): print("left:",left_num,"right",right_num, "BREAK") break continue higher_num = max(left_num,right_num) lower_num = min(left_num,right_num) this_match = {"left_num":left_num,"right_num":right_num,"solution":higher_num,"ratio":round(higher_num/lower_num,2),"solution":"RIGHT"} this_match['bucket'] = -1 for bucket_index in range(0,len(buckets)): bucket = buckets[bucket_index] if this_match['ratio'] <= bucket['max'] and this_match['ratio'] >= bucket['min']: this_match['bucket'] = bucket_index break # if it does not fit into a bucket we dont need it. """ if(this_match['bucket'] == -1): continue """ all_matchings.append(this_match) # until here left is always larger. all_matchings = random.sample(all_matchings,20) matchings_left = copy.deepcopy(all_matchings) for row_index in range(0,len(matchings_left)): tmp = matchings_left[row_index]["left_num"] matchings_left[row_index]["left_num"] = matchings_left[row_index]["right_num"] matchings_left[row_index]["right_num"] =tmp matchings_left[row_index]["solution"] ="LEFT" all_matchings.extend(matchings_left) # debug: df = DataFrame.from_records(all_matchings) df.to_csv("generated_trials.csv") return all_matchings def nonSymbTrialsStats(data): buckets_n = [0,0,0,0] directions = [0,0] for match_index in range(0,len(data)): match = data[match_index] #print("left:",match["left_num"],"right:",match["right_num"]) buckets_n[match["bucket"] -1] += 1 print(":-:"*20) print("total len:",len(data)) print("buckets freq:",buckets_n) print(":-:"*20) return def genNonSymbTrials(): ''' this function knows how to name the files and what to do with the trials generated by nonsymTrialGen ''' #all_matchings = nonSymbTrialGen() all_matchings = nonSymbTrialsFromFile() nonSymbTrialsStats(all_matchings) ids_area_control = [i for i in range(0,17)] ids_radius_control = [i for i in range(17,34)] # we have each match 2 times. once for the area controlled and another time for the radius. min_n_dots = 5 trials = [] for match_index in range(0,len(all_matchings)): match = all_matchings[match_index] left_num = match['left_num'] right_num = match['right_num'] solution_num = match['solution'] left_filename_area = "id_"+str(ids_area_control[left_num-min_n_dots])+"_dots_"+str(left_num)+".png" right_filename_area = "id_"+str(ids_area_control[right_num-min_n_dots])+"_dots_"+str(right_num)+".png" solution_filename_area = "id_"+str(ids_area_control[solution_num-min_n_dots])+"_dots_"+str(solution_num)+".png" trials.append([left_filename_area,right_filename_area,solution_filename_area,json.dumps(match)]) ''' left_filename_radius = "id_"+str(ids_radius_control[left_num-min_n_dots])+"_dots_"+str(left_num)+".png" right_filename_radius = "id_"+str(ids_radius_control[right_num-min_n_dots])+"_dots_"+str(right_num)+".png" solution_filename_radius = "id_"+str(ids_radius_control[solution_num-min_n_dots])+"_dots_"+str(solution_num)+".png" trials.append([left_filename_radius,right_filename_radius,solution_filename_radius,match]) ''' return trials def genSymbolicNumberCompareTrials(distances=[1,2,3,4,5,6,7,8],numbers=[1,2,3,4,5,6,7,8,9]): ''' our output tells us that we have: have 8 for distance: 1 have 7 for distance: 2 have 4 for distance: 5 have 3 for distance: 6 so we use the distance 5 and 6 double to make it more balanced ''' trials_per_dist = [] for dist in distances: dist_poss_count = 0 cur_dist = [] for num in numbers: left_num = num right_num = num+dist solution = max(left_num,right_num) if (not left_num in numbers) or (not right_num in numbers): continue # append both directions trials = [] trials.append([left_num,right_num,solution,dist]) trials.append([right_num,left_num,solution,dist]) dist_poss_count +=1 cur_dist.append(trials) trials_per_dist.append(cur_dist) print("have ",dist_poss_count,"for distance:",dist) for i in range(0,len(trials_per_dist)): n_per_dist = 3 # the trials are longer than n_per_dist so we randomly select some trials. if(len(trials_per_dist[i])>= n_per_dist): trials_per_dist[i] = random.sample(trials_per_dist[i],n_per_dist) continue # the trials are shorter than n_per_dist so we use the trials multiple times. cur_dist = copy.deepcopy(trials_per_dist[i]) while(len(cur_dist)+len(trials_per_dist[i]) <= n_per_dist): cur_dist.extend(trials_per_dist[i]) if(len(cur_dist) < n_per_dist): diff = n_per_dist - len(cur_dist) cur_dist.extend(random.sample(trials_per_dist[i],diff)) trials_per_dist[i] = cur_dist trials = [] for dist in trials_per_dist: for d in dist: for trial in d: trials.append(trial) return trials def appendPathToNum(num,base_path= "assets/images/pattern_numbers/",file_end=".PNG"): return base_path + str(num)+file_end def getNewNumericalCompTrials(): trials = [] base_path = "assets/images/pattern_numbers/" file_end = ".PNG" for trial in genSymbolicNumberCompareTrials(): trials.append([base_path+str(trial[0])+file_end,base_path+str(trial[1])+file_end,base_path+str(trial[2])+file_end,"\"left:"+str(trial[0])+",right"+str(trial[1])+",dist"+str(trial[3])+"\""]) return trials def genNewOrdinalNumberVerificationTrials(filename="python_templates/ord_trials.csv"): df = pd.read_csv(filename, sep=",") trial_dict = df.to_dict('records') trials = [] for row in trial_dict: trials.append([appendPathToNum(row['left']),appendPathToNum(row['middle']),appendPathToNum(row['right']),row['solution'],row]) return trials def genOrdinalNumberVerificationTrials(distances=[1,2,3],numbers=[1,2,3,4,5,6,7,8,9]): ''' our output tells us that we have: have 7 for distance: 1 have 5 for distance: 2 have 3 for distance: 3 so we use the distance 3 ones double to make it more balanced ''' dist_lsts = [] for dist in distances: dist_poss_count = 0 lst_per_dist = [] for num in numbers: left_num = num mid_num = num+dist right_num = num+2*dist solution = "IN_ORDER" if (not left_num in numbers) or (not mid_num in numbers) or (not right_num in numbers): continue trials = [] # append both directions trials.append([appendPathToNum(left_num),appendPathToNum(mid_num),appendPathToNum(right_num),solution,"ASCENDING",dist]) trials.append([appendPathToNum(right_num),appendPathToNum(mid_num),appendPathToNum(left_num),solution,"DESCENDING",dist]) solution = "MIXED_ORDER" # ascending mixed trials.append([appendPathToNum(mid_num),appendPathToNum(right_num),appendPathToNum(left_num),solution,"ASCENDING",dist]) #descending mixed trials.append([appendPathToNum(mid_num),appendPathToNum(left_num),appendPathToNum(right_num),solution,"DESCENDING",dist]) lst_per_dist.append(trials) dist_poss_count +=1 print("have ",dist_poss_count,"for distance:",dist) dist_lsts.append(lst_per_dist) for i in range(0,len(dist_lsts)): n_per_dist = 4 if(len(dist_lsts[i])>= n_per_dist): dist_lsts[i] = random.sample(dist_lsts[i],n_per_dist) continue trials_for_dist = copy.deepcopy(dist_lsts[i]) while(len(trials_for_dist)+len(dist_lsts[i]) <= n_per_dist): trials_for_dist.extend(dist_lsts[i]) if(len(trials_for_dist) < n_per_dist): diff = n_per_dist - len(trials_for_dist) trials_for_dist.extend(random.sample(dist_lsts[i],diff)) dist_lsts[i] = trials_for_dist trials = [] for dist in dist_lsts: for d in dist: for trial in d: trials.append(trial) print("-"*80) print(trials) print("-"*80) return trials def genNumLineTrials(ranges=[x for x in range(32,64+1)],targets=[x for x in range(4,32+1)]): ''' our output tells us that we have: so we use the distance 3 ones double to make it more balanced ''' trials = [] for rang in ranges: for num in targets: trials.append([rang,num]) trials = random.sample(trials,24) return trials def getPossibleMatchings(numbers_left=[2,3,4,5,6,7,8,9],numbers_right=[2,3,4,5,6,7,8,9]): matchings = [] for num_1 in numbers_left: for num_2 in numbers_right: matchings.append([num_1,num_2]) return matchings def getTripleAdditionTrials(numbers=[i for i in range(10,100)]): calcs = [] for num_1 in numbers: for num_2 in numbers: for num_3 in numbers: solution = num_1+num_2+num_3 calcs.append([num_1,num_2,num_3,solution]) n_two_digits = 60 calcs = random.sample(calcs,n_two_digits) template_friendly_trials = [] for calc in calcs: template_friendly_trials.append([str(calc[0])+"+"+str(calc[1]),calc[2],calc[3]]) return template_friendly_trials def genAdditionTrials(numbers=[2,3,4,5,6,7,8,9]): ''' ''' trials = [] # single digit numbers matchings = getPossibleMatchings(numbers_left=numbers,numbers_right=numbers) for match in matchings: solution = match[0]+match[1] trials.append([match[0],match[1],solution]) two_digit_trials = [] matchings = getPossibleMatchings(numbers_left=[i for i in range(10,100)],numbers_right=[i for i in range(10,100)]) for match in matchings: solution = match[0]+match[1] two_digit_trials.append([match[0],match[1],solution]) # solution must be 2 digits also two_digit_trials = [i for i in two_digit_trials if not i[2] >= 100] # only with "zehnerübergang" two_digit_trials = [i for i in two_digit_trials if ((i[0]%10) + (i[1]%10))>10] # ignore stuff with the same last digit (66+36,...) two_digit_trials = [i for i in two_digit_trials if not (i[0]%10) == (i[1]%10)] # ignore numbers with same digits (55,66,...) two_digit_trials = [i for i in two_digit_trials if not (((i[0]%10) == ((i[0]//10)%10)) or ((i[1]%10) == ((i[1]//10)%10)) or ((i[2]%10) == ((i[2]//10)%10)))] print("len two digits.",len(two_digit_trials)) n_two_digits = 60 two_digit_trials = random.sample(two_digit_trials,n_two_digits) # no same operants trials = [i for i in trials if not i[0] == i[1]] # ignore 2 digit operants for kids. # trials = trials + two_digit_trials return trials def genMultiplicationTrials(numbers = [2,3,4,5,6,7,8,9]): trials = [] for num_1 in numbers: for num_2 in numbers: if(num_1 == num_2): continue solution = num_1*num_2 trials.append([num_1,num_2,solution]) two_digit_trials = getPossibleMatchings(numbers_left=[i for i in range(12,100)],numbers_right=[i for i in range(3,10)]) for numbers in two_digit_trials: # add the mult result. numbers.append(numbers[0]*numbers[1]) #two_digit_trials = [i for i in two_digit_trials if not (i[0] == i[1])] two_digit_trials = [i for i in two_digit_trials if (i[2] < 100)] #two_digit_trials = [i for i in two_digit_trials if not (((i[0]%10) == ((i[0]//10)%10)) or ((i[1]%10) == ((i[1]//10)%10)) or ((i[2]%10) == ((i[2]//10)%10)))] print("len two digits.",len(two_digit_trials)) #n_two_digits = 60 #two_digit_trials = random.sample(two_digit_trials,n_two_digits) return trials + two_digit_trials def genSubtractionTrials(numbers= [2,3,4,5,6,7,8,9]): trials = genAdditionTrials(numbers) for trial in trials: # swap the solution with the first operant print(trial) temp = trial[0] trial[0] = trial[2] trial[2] = temp return trials def genTypingTrials(numbers=[x for x in range(1,300)]): ''' we want to resemble the arithmetic trials as this task will be the control for that. there we have solutions with the following digits: single 152 double 245 triple 55 so we will do the same here. ''' trials = [] numbers = [i for i in range(1,20)] for num in numbers: trials.append([num,num]) return trials n_singles = 152 n_doubles = 245 n_triple = 55 single_digit_numbers = [i for i in range(0,10)] double_digit_numbers = [i for i in range(10,100)] # we choose the range of 300 as this is also the case with the arithmetic trials triple_digit_numbers = [i for i in range(100,300)] for single in range(0,n_singles): solution = random.choice(single_digit_numbers) trials.append([solution,solution]) for double in range(0,n_doubles): solution = random.choice(double_digit_numbers) trials.append([solution,solution]) for triple in range(0,n_triple): solution = random.choice(triple_digit_numbers) trials.append([solution,solution]) return trials def insertListIntoTemplate(template_string,numbers_list): ''' insertLIstIntoTemplate inserts a list into a template the template string needs to have the spots marked with INSERT_HERE_0,INSERT_HERE_1,... @ret the string with everything replaced. ''' for index in range(0,len(numbers_list)): template_string = template_string.replace("INSERT_HERE_"+str(index),str(numbers_list[index])) return template_string def genMathAnxietyTrials(): return [[i] for i in range(1,14)] def main(): generatorMap = {"symb":getNewNumericalCompTrials, "ord":genOrdinalNumberVerificationTrials,#genNewOrdinalNumberVerificationTrials, "numline":genNumLineTrials, "add":genAdditionTrials, "triple_add":getTripleAdditionTrials, "sub":genSubtractionTrials, "mult":genMultiplicationTrials, "speed":genTypingTrials, "nonsymb":genNonSymbTrials, "mathanxiety":genMathAnxietyTrials, "pattern_extend":getPatternExtendTrials, "pattern_generalize":getPatternGeneralizeTrials, "pattern_uof":getPatternUnitOfRepeatTrials, "pattern_num":getNumberPatternTrials, } parser = argparse.ArgumentParser(description="Trial generator for DNA Tasks.") parser.add_argument('task',choices=generatorMap.keys(), help="this arg lets you choose the task you want to generate the trials for.") parser.add_argument('template', help="path to template file.") # in order to get replicable results we use a random seed #random.seed(42) args = parser.parse_args() trials = generatorMap[args.task]() df = DataFrame.from_records(trials) df.to_csv("generated_trials/"+args.task+".csv",sep=";") template_file = args.template temp_string = "" with open(template_file) as tempfile: temp_string = tempfile.read() string_with_all_trials = "" for trial in trials: string_with_all_trials += insertListIntoTemplate(temp_string,trial) print(string_with_all_trials) if __name__ == "__main__": main()
StarcoderdataPython
228442
<reponame>yyht/topmine_py3<gh_stars>1-10 import numpy as np def merge_single_char(phrase): segment_lst = phrase[0].strip().split() leng = [len(item) for item in segment_lst]
StarcoderdataPython
8050832
# -*- coding: utf-8 -*- import os import sys import cv2 import pytest import mock import numpy as np import sksurgeryutils.common_overlay_apps as coa def test_OverlayOnVideoFeedCropRecord_from_file(setup_qt, tmpdir): in_github_ci = os.environ.get('CI') if in_github_ci and sys.platform.startswith("linux"): pytest.skip("Test not working on Linux runner \ because of unknown issue.") input_file = 'tests/data/100x50_100_frames.avi' out_file = os.path.join(tmpdir, 'overlay_test.avi') overlay_app = coa.OverlayOnVideoFeedCropRecord(input_file, out_file) # Start app and get a frame from input, so that # the window is showing something, before we start # recording. overlay_app.start() overlay_app.update() overlay_app.on_record_start() for i in range(50): overlay_app.update() overlay_app.on_record_stop() overlay_app.stop() # Check that 50 frames were actually written to the output file output_video = cv2.VideoCapture(out_file) for i in range(50): ret, _ = output_video.read() assert ret # Trying to read 51st frame should return False ret, _ = output_video.read() assert not ret output_video.release() def test_OverlayOnVideoFeedCropRecord_from_webcam(setup_qt): """ Test will only run if there is a camera avilable. """ # Try to open a camera. If one isn't available, the rest of test # will be skipped. source = 0 cam = cv2.VideoCapture(source) if not cam.isOpened(): pytest.skip("No camera available") cam.release() # Don't pass an output filename as a parameter, so that # the code to generate a filename from current date/time is executed. overlay_app = coa.OverlayOnVideoFeedCropRecord(0) # Start app and get a frame from input, so that # the window is showing something, before we start # recording. overlay_app.start() overlay_app.update() overlay_app.on_record_start() for i in range(50): overlay_app.update() overlay_app.on_record_stop() overlay_app.stop() def test_OverlayBaseAppRaisesNotImplementedError(setup_qt): class ErrorApp(coa.OverlayBaseApp): def something(self): pass with pytest.raises(NotImplementedError): input_file = 'tests/data/100x50_100_frames.avi' overlay_app = ErrorApp(input_file) overlay_app.update() def test_OverlayOnVideoFeedCropRecord_set_roi(setup_qt): input_file = 'tests/data/100x50_100_frames.avi' overlay_app = coa.OverlayOnVideoFeedCropRecord(input_file) overlay_app.update() # Get a frame so that we can crop it with pytest.raises(RuntimeError): overlay_app.set_roi() def test_DuplicateOverlayWindow(setup_qt): input_file = 'tests/data/100x50_100_frames.avi' overlay_app = coa.OverlayOnVideoFeed(input_file) duplicate = coa.DuplicateOverlayWindow() duplicate.set_source_window(overlay_app) overlay_app.update() duplicate.update() np.testing.assert_array_equal(overlay_app.img, duplicate.vtk_overlay_window.input) def test_DuplicateOverlayWindowWithCrop(setup_qt): input_file = 'tests/data/100x50_100_frames.avi' overlay_app = coa.OverlayOnVideoFeedCropRecord(input_file) duplicate = coa.DuplicateOverlayWindow() duplicate.set_source_window(overlay_app) overlay_app.update() duplicate.update() np.testing.assert_array_equal(overlay_app.img, duplicate.vtk_overlay_window.input)
StarcoderdataPython
1827458
<gh_stars>1-10 # Copyright 2017-present Open Networking Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- # Generated by Django 1.11.21 on 2019-06-27 00:27 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('volt', '0010_auto_20190620_1906'), ] operations = [ migrations.AlterField( model_name='technologyprofile_decl', name='technology', field=models.CharField(choices=[(b'gpon', b'gpon'), (b'xgspon', b'xgspon')], db_index=True, help_text=b'The technology being utilized by the adaptor', max_length=16), ), ]
StarcoderdataPython
8092540
text = open("out-sorted.txt").read().strip("\n") a = []; b = [] for i in text.split("\n"): a.append(i.split(",")[0]) for i in text.split("\n"): b.append(i.split(",")[1]) text = "" for i in range(0, len(b)): text += chr(int(a[i])) print text
StarcoderdataPython
1715694
#!/usr/bin/python3 from serial import Serial from time import sleep ser = Serial('/dev/ttyUSB0', baudrate=115200) # open music.raw unsigned 8-bit PCM audio with open('music.raw','rb') as f: b = f.read(16) while(len(b)>0): ser.write(b) ser.flush() b = f.read(16) print("done")
StarcoderdataPython
11248178
<filename>src/tests/utils.py<gh_stars>1-10 import os from abc import abstractmethod from unittest import TestCase from PIL import Image SHOW_MISMATCH = True ASSERT_ON = False def get_reference_img_path(folder, *args): return get_reference_dir_path(folder) + '_'.join(map(str, args)) + '.png' def get_reference_dir_path(folder): return 'assets/tests/reference/' + folder + '/' def assert_images_equal(im1: Image, im2: Image, ref_path, args): assert im1.mode == im2.mode, im1.mode + " " + im2.mode assert im1.size == im2.size for pix1, pix2 in zip(im1.getdata(), im2.getdata()): if pix1 != pix2: print(f'test failed with args: {args}') if SHOW_MISMATCH: im1.show(title="reference " + ref_path) im2.show(title="tested " + ref_path) if ASSERT_ON: assert pix1 == pix2, str(pix1) + " " + str(pix2) + " " + ref_path return print(f'test passed with args: {args}') class ComponentRegressionTestCase(TestCase): @staticmethod def generate_test_variants(): pass @staticmethod def generate_component(*args): pass @classmethod def generate_reference(cls): os.makedirs(get_reference_dir_path(cls.__name__), exist_ok=True) print('Generating: ' + get_reference_dir_path(cls.__name__)) variants = cls.generate_test_variants() for args in variants: component = cls.generate_component(*args) im = component.image() im.save(get_reference_img_path(cls.__name__, *args)) def execute(self): for args in self.generate_test_variants(): im = self.generate_component(*args).image() path = get_reference_img_path(type(self).__name__, *args) im_ref = Image.open(path) assert_images_equal(im_ref, im, path, args)
StarcoderdataPython
4990917
<reponame>Bakkhos/aepp-sdk-python import logging import os from aeternity.config import Config from aeternity.signing import Account from aeternity import node # for tempdir import shutil import tempfile from contextlib import contextmanager import random import string logging.getLogger("requests").setLevel(logging.DEBUG) logging.getLogger("urllib3").setLevel(logging.DEBUG) logging.getLogger("aeternity").setLevel(logging.DEBUG) logging.root.setLevel(logging.DEBUG) PUBLIC_KEY = os.environ.get('WALLET_PUB') PRIVATE_KEY = os.environ.get('WALLET_PRIV') NODE_URL = os.environ.get('TEST_URL') NODE_URL_DEBUG = os.environ.get('TEST_DEBUG_URL') NETWORK_ID = os.environ.get('TEST_NETWORK_ID') # set the key folder as environment variables genesis = Account.from_public_private_key_strings(PUBLIC_KEY, PRIVATE_KEY) # default values for tests TEST_FEE = 20000 TEST_TTL = 50 Config.set_defaults(Config( external_url=NODE_URL, internal_url=NODE_URL_DEBUG, network_id=NETWORK_ID )) # Instantiate the node client for the tests NODE_CLI = node.NodeClient(blocking_mode=True, debug=True, native=False) # create a new account and fill it with some money ACCOUNT = Account.generate() NODE_CLI.spend(genesis, ACCOUNT.get_address(), 1000000000) a = NODE_CLI.get_account_by_pubkey(pubkey=ACCOUNT.get_address()) print(f"Test account is {ACCOUNT.get_address()} with balance {a.balance}") ACCOUNT_1 = Account.generate() # required for oracles NODE_CLI.spend(genesis, ACCOUNT_1.get_address(), 1000000000) a = NODE_CLI.get_account_by_pubkey(pubkey=ACCOUNT_1.get_address()) print(f"Test account (1) is {ACCOUNT_1.get_address()} with balance {a.balance}") @contextmanager def tempdir(): # contextmanager to generate and delete a temporary directory path = tempfile.mkdtemp() try: yield path finally: shutil.rmtree(path) def random_domain(length=10): rand_str = ''.join(random.choice(string.ascii_letters) for _ in range(length)) return f"{rand_str}.test"
StarcoderdataPython
11227915
import duckdb try: import pyarrow import pyarrow.parquet import urllib.request can_run = True except: can_run = False class TestArrow(object): def test_arrow(self, duckdb_cursor): if not can_run: return parquet_filename = 'userdata1.parquet' urllib.request.urlretrieve('https://github.com/cwida/duckdb-data/releases/download/v1.0/userdata1.parquet', parquet_filename) cols = 'id, first_name, last_name, email, gender, ip_address, cc, country, birthdate, salary, title, comments' # TODO timestamp userdata_parquet_table = pyarrow.parquet.read_table(parquet_filename) userdata_parquet_table.validate(full=True) rel_from_arrow = duckdb.arrow(userdata_parquet_table).project(cols).arrow() rel_from_arrow.validate(full=True) rel_from_duckdb = duckdb.from_parquet(parquet_filename).project(cols).arrow() rel_from_duckdb.validate(full=True) # batched version, lets use various values for batch size for i in [7, 51, 99, 100, 101, 500, 1000, 2000]: userdata_parquet_table2 = pyarrow.Table.from_batches(userdata_parquet_table.to_batches(i)) assert userdata_parquet_table.equals(userdata_parquet_table2, check_metadata=True) rel_from_arrow2 = duckdb.arrow(userdata_parquet_table2).project(cols).arrow() rel_from_arrow2.validate(full=True) assert rel_from_arrow.equals(rel_from_arrow2, check_metadata=True) assert rel_from_arrow.equals(rel_from_duckdb, check_metadata=True) con = duckdb.connect() con.execute("select NULL c_null, (c % 4 = 0)::bool c_bool, (c%128)::tinyint c_tinyint, c::smallint*1000 c_smallint, c::integer*100000 c_integer, c::bigint*1000000000000 c_bigint, c::float c_float, c::double c_double, 'c_' || c::string c_string from (select case when range % 2 == 0 then range else null end as c from range(-10000, 10000)) sq") arrow_result = con.fetch_arrow_table() arrow_result.validate(full=True) arrow_result.combine_chunks() arrow_result.validate(full=True) round_tripping = duckdb.from_arrow_table(arrow_result).to_arrow_table() round_tripping.validate(full=True) assert round_tripping.equals(arrow_result, check_metadata=True)
StarcoderdataPython
9643270
import matplotlib.pyplot as plt from wordcloud import WordCloud import platform def create_cloud(word_list): pf = platform.system() if pf == 'Windows': font_path = r"C:\WINDOWS\Fonts\UDDIGIKYOKASHON-R.TTC" elif pf == 'Darwin': font_path = "/System/Library/Fonts/ヒラギノ角ゴシック W4.ttc" elif pf == 'Linux': print('None') # ストップワードの設定 stop_words = [u'てる', u'いる', u'なる', u'れる', u'する', u'ある', u'こと', u'これ', u'さん', u'して', u'くれる', u'やる', u'くださる', u'そう', u'せる', u'した', u'思う', u'ます', u'それ', u'ここ', u'ちゃん', u'くん', u'って', u'て', u'に', u'を', u'は', u'の', u'が', u'と', u'た', u'し', u'で', u'ない', u'も', u'な', u'い', u'か', u'ので', u'よう', u'から', u'けど', 'https', 't', '.', '/', '://', 'co', '@', '_', 'http', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '()', '!'] # print(word_list) word_cloud = WordCloud(background_color="black", font_path=font_path, width=3500, height=2000, max_words=500, stopwords=set(stop_words)).generate(word_list) plt.figure(figsize=(20, 12)) plt.imshow(word_cloud) plt.axis("off") plt.show() # plt.savefig('./test.png') if __name__ in '__main__': part = '' with open('./document/test.txt', mode='r', encoding='utf-8') as text_file: text, test = wakati(text_file.read(), part) word_list = " ".join(test) print(word_list) create_cloud(word_list)
StarcoderdataPython
11237079
<reponame>VaCH2/tosca-analysis import os import pandas as pd #calculator is the class that calculates the source code measurements upon provided TOSCA blueprints from toscametrics import calculator import pickle from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity root_folder = os.path.dirname(os.path.dirname( __file__ )) temp_data_folder = os.path.join(root_folder, 'temp_data', 'source_code_measurements') if not os.path.exists(temp_data_folder): os.makedirs(temp_data_folder) class Data(): def __init__(self, split='all', metrics_type='tosca_and_general'): '''A dictionary were the keys are the possible alternatives in the provided split. The value is the corresponding, filtered dataframe.''' try: raw_df = pickle.load(open(os.path.join(temp_data_folder, 'all_raw_df'), 'rb')) except (OSError, IOError): files = self.get_indices('all', None) json_data = self.json_data(metrics_type, files.get('all')) raw_df = self.to_df(json_data) pickle.dump(raw_df, open(os.path.join(temp_data_folder, 'all_raw_df'), 'wb')) self.raw_df = raw_df raw_size = self.raw_df.shape[0] try: df = pickle.load(open(os.path.join(temp_data_folder, 'all_df'), 'rb')) except (OSError, IOError): df = self.cleaning(self.raw_df) pickle.dump(df, open(os.path.join(temp_data_folder, 'all_df'), 'wb')) cleaned_size = df.shape[0] self.droppedrows = raw_size - cleaned_size split_indices = self.get_indices(split, df) #Include only valid #Because get_indices looks at all files, so does not exclude the ones dropped during cleaning #We also rename the index to the relative path. filtered_dfs = {} for split, files in split_indices.items(): files = [file.replace('c', 'C', 1) if file[0] == 'c' else file for file in files] #files = [file.replace('\\analysis\\..\\', '\\') for file in files] files = [file for file in files if file in list(df.index)] if len(files) == 0: continue ix_mapping = {file : file.split('tmp\\')[1] for file in files} filtered_df = df.loc[files] filtered_df = filtered_df.rename(index=ix_mapping) filtered_dfs[split] = filtered_df self.dfs = filtered_dfs def get_indices(self, split, df): '''Filters the provided dataframe on the desired split and returns the indices of the filtered dataframe''' data_path = os.path.join(root_folder, 'dataminer', 'tmp') owners = [ item for item in os.listdir(data_path)] owner_and_repo = [] for owner in owners: repos = os.listdir(os.path.join(data_path, owner)) for repo in repos: owner_and_repo.append((owner, repo)) professionalities = ['Example', 'Industry'] if split == 'repo': split_paths = {f'{oar[0]}-{oar[1]}' : [os.path.join(data_path, oar[0], oar[1])] for oar in owner_and_repo} elif split == 'professionality': repo_paths = [os.path.join(data_path, oar[0], oar[1]) for oar in owner_and_repo] split_paths = {} for prof in professionalities: split_paths[prof] = [os.path.join(repo_path, prof) for repo_path in repo_paths] elif split == 'purpose': split_files = self.filter_filetype(df) elif split == 'all': split_paths = {'all' : [data_path]} else: raise ValueError if split != 'purpose': split_files = {} for split, paths in split_paths.items(): files = [] for path in paths: files.extend(self.get_yaml_files(path)) split_files[split] = files return split_files def get_yaml_files(self, path): '''Returns all the files with a YAML extension found in the provided path''' extensions = ['.yaml', '.yml'] allFiles = [] listOfFile = os.listdir(path) for entry in listOfFile: fullPath = os.path.join(path, entry) if os.path.isdir(fullPath): allFiles = allFiles + self.get_yaml_files(fullPath) else: for extension in extensions: if fullPath.endswith(extension): allFiles.append(fullPath) return allFiles def calculate_vectors(self, instanceblock): '''Transforms the provided instanceblock (string) into vectors''' vectorizer = CountVectorizer(token_pattern='[^\s]+').fit(instanceblock) vectorizer = vectorizer.transform(instanceblock) vectors =vectorizer.toarray() return vectors def calculate_cosine(self, vec1, vec2): '''Calculates the cosine similarity score''' vec1 = vec1.reshape(1, -1) vec2 = vec2.reshape(1, -1) return cosine_similarity(vec1, vec2)[0][0] def check_similarity(self, file_list): '''Calculates the similarity score for each pair of the provided files and returns this in a list''' try: sims = pickle.load(open(os.path.join(temp_data_folder, 'similarity_scores'), 'rb')) except (OSError, IOError): string_list = [] for filePath in file_list: try: with open(filePath, 'r') as file: yml = file.read() except UnicodeDecodeError: with open(filePath, 'r', encoding='utf-8') as file: yml = file.read() string_list.append(yml) vectors = self.calculate_vectors(string_list) sims = [] for i in list(enumerate(vectors)): next_index = i[0] + 1 for j in list(enumerate(vectors))[next_index:]: sims.append((i[0], j[0], self.calculate_cosine(i[1], j[1]))) pickle.dump(sims, open(os.path.join(temp_data_folder, 'similarity_scores'), 'wb')) return sims def json_data(self, metrics_type, yaml_files): '''Calculates all the metrics over the provided files''' metrics = calculator.MetricCalculator(yaml_files, metrics_type).getresults return metrics def to_df(self, json_data): '''Transforms a JSON file to Pandas DataFrame''' flat_dict = {} for key, value in json_data.items(): df = pd.io.json.json_normalize(value, sep='_') value = df.to_dict(orient='records')[0] flat_dict[key] = value df = pd.DataFrame.from_dict(flat_dict, orient='index') return df def cleaning(self, df): '''Applies cleaning steps on the provided dataframe. Steps are: delete similar files, check if files are valid tosca files, drop error message columns, drop rows containing nan and make every column numeric.''' print('size raw df: ', df.shape) #Check similarity similarity_scores = self.check_similarity(list(df.index)) similar_files = [pair for pair in similarity_scores if pair[2] == 1] #Because in order so multiple duplicates will be deleted eventually #here range because we have a numerical index, in the next one we have the actual index to_exclude = [pair[1] for pair in similar_files] ixs_to_keep = [ix for ix in range(df.shape[0]) if ix not in to_exclude] df = df.iloc[ixs_to_keep] print('size df after similarity deletion: ', df.shape) #Check valid tosca tosca_metrics = ['na_count', 'nc_count', 'nc_min', 'nc_max', 'nc_median', 'nc_mean', 'ni_count', 'nif_count', 'ninp_count', 'ninpc_count', 'nn_count', 'nout_count', 'np_count', 'np_min', 'np_max', 'np_median', 'np_mean', 'nr_count', 'ttb_check', 'cdnt_count', 'cdrt_count', 'cdat_count', 'cdct_count', 'cddt_count', 'cdgt_count', 'cdit_count', 'cdpt_count', 'nw_count', 'tdb_check', 'nrq_count', 'nsh_count', 'ncys_count', 'tob_check', 'ngro_count', 'npol_count', 'nf_count'] check_tosca_df = df[tosca_metrics] check_tosca_df['valid_file'] = check_tosca_df.any(1) to_exclude = list(check_tosca_df[check_tosca_df['valid_file'] == False].index) ixs_to_keep = [ix for ix in list(df.index) if ix not in to_exclude] df = df.loc[ixs_to_keep] print('size df after invalid TOSCA deletion: ', df.shape) #Drop NaN rows and error columns, and make numeric df = df.drop(labels=(df.filter(regex='msg').columns), axis=1) df = df.dropna() cols = df.select_dtypes(include=['bool', 'object']).columns df[cols] = df[cols].astype(int) df = df.dropna() print('size df after NaN and error column drops: ', df.shape) return df def filter_filetype(self, original_df): '''Filter on the file type. A file could be a service template, or containing custom type definitions, both or none of these two. It returns a dictionary with the indices belonging to each purpose.''' df = original_df.copy() custom_indicators = ['cdnt_count', 'cdrt_count', 'cdat_count', 'cdct_count', 'cddt_count', 'cdgt_count', 'cdit_count', 'cdpt_count'] cus_df = df[custom_indicators] non_df = cus_df[(cus_df == 0).all(1)] df['custom_def'] = [False if x in non_df.index else True for x in df.index] split_paths = {} split_paths['topology'] = df[(df['ttb_check'] == 1) & (df['custom_def'] == False)].index split_paths['custom'] = df[(df['ttb_check'] == 0) & (df['custom_def'] == True)].index split_paths['both'] = df[(df['ttb_check'] == 1) & (df['custom_def'] == True)].index assigned_indices = list(split_paths['topology']) + list(split_paths['custom']) + list(split_paths['both']) not_assigned_indices = [ix for ix in list(df.index) if ix not in assigned_indices] split_paths['none'] = df.loc[not_assigned_indices].index return split_paths
StarcoderdataPython
4886192
import redis import time import math class RedisMonitor: """ Monitor Redis keys and send updates to all web socket clients. """ def __init__(self, host="localhost", port=6379, password="", db=0, refresh_rate=0.5, key_filter="", realtime=False): """ If realtime is specified, RedisMonitor will enable notifications for all set events and subscribe to these notifications. """ self.host = host self.port = port self.password = password self.db = db self.refresh_rate = refresh_rate self.key_filter = key_filter self.realtime = realtime self.redis_db = redis.Redis(host=self.host, port=self.port, password=<PASSWORD>, db=self.db, decode_responses=False) self.message_last = {} if self.realtime: self.pubsub = self.redis_db.pubsub() self.lock = threading.Lock() self.message_buffer = [] # Need to perform the following command to enable keyevent notifications: # config set notify-keyspace-events "$E" notify_keyspace_events = self.redis_db.config_get("notify-keyspace-events")["notify-keyspace-events"] if "$" not in notify_keyspace_events and "A" not in notify_keyspace_events: # Add string commands to notifications notify_keyspace_events += "$" if "E" not in notify_keyspace_events: # Add keyevent events to notifications notify_keyspace_events += "E" self.redis_db.config_set("notify-keyspace-events", notify_keyspace_events) self.pubsub.psubscribe("__keyevent@%s__:set" % self.db) def messenger(self, ws_server): """ When realtime is set, this thread sends messages to all web socket clients every refresh_rate seconds. """ while True: time.sleep(self.refresh_rate) self.lock.acquire() if not self.message_buffer: self.lock.release() continue keyvals = self.message_buffer self.message_buffer = [] self.lock.release() ws_server.lock.acquire() for client in ws_server.clients: client.send(ws_server.encode_message(keyvals)) ws_server.lock.release() def parse_val(self, key, skip_unchanged=True): """ Get the value from Redis and parse if it's an array. If skip_unchanged = True, only returns values updated since the last call. """ import re def isnumeric(s): """ Helper function to test if string is a number """ try: float(s) return True except ValueError: return False if self.key_filter and re.match(self.key_filter, key) is None: return val = self.redis_db.get(key) # Skip if the value hasn't changed if skip_unchanged: if key in self.message_last and val == self.message_last[key]: return None self.message_last[key] = val try: # If the first element is a number, try converting all the elements to numbers val = val.decode("utf-8") except: # Otherwise, leave it as a string pass return val def _initialize_redis_keys(self): import json interaction = { "key_object": "", "idx_link": 0, "pos_click_in_link": [0,0,0], "pos_mouse_in_world": [0,0,0], "modifier_keys": [], "key_down": "" } self.redis_db.set("webapp::simulator::interaction", json.dumps(interaction)) def run_forever(self, ws_server): """ Listen for redis keys (either realtime or every refresh_rate seconds) and send updated values to all web socket clients every refresh_rate seconds. """ self._initialize_redis_keys() if not self.realtime: # Send messages to clients every refresh_rate seconds prev_keys = set() while True: time.sleep(self.refresh_rate) key_vals = [] new_keys = set() keys = [key for key in self.redis_db.scan_iter()] for key in keys: if self.redis_db.type(key) != b"string": continue key = key.decode("utf-8") if "high_res" in key: continue new_keys.add(key) val = self.parse_val(key) if val is None: continue key_vals.append((key, val)) del_keys = list(prev_keys - new_keys) prev_keys = new_keys if not key_vals and not del_keys: continue for key in del_keys: self.message_last.pop(key, None) ws_server.lock.acquire() for client in ws_server.clients: client.send(ws_server.encode_message({"update": key_vals, "delete": del_keys})) ws_server.lock.release() else: # Create thread to send messages to client with refresh rate messenger_thread = threading.Thread(target=self.messenger, args=(ws_server,)) messenger_thread.daemon = True messenger_thread.start() # Listen for redis notifications for msg in self.pubsub.listen(): if msg["pattern"] is None: continue key = msg["data"] val = self.parse_val(key) if val is None: continue self.lock.acquire() self.message_buffer.append((key, val)) self.lock.release() def initialize_client(self, ws_server, client): """ On first connection, send client all Redis keys. """ key_vals = [] # TODO: Don't disrupt other clients self.message_last = {} for key in sorted(self.redis_db.scan_iter()): if self.redis_db.type(key) != b"string": continue val = self.parse_val(key, skip_unchanged=False) if val is None: continue key_vals.append((key.decode("utf-8"), val)) client.send(ws_server.encode_message({"update": key_vals, "delete": []}))
StarcoderdataPython
6568423
""" @file: __init__.py @time: 2020-09-23 20:37:10 """
StarcoderdataPython
4999770
#!/usr/bin/env python # coding: utf-8 # In[1]: from matplotlib import pyplot as plt #get_ipython().magic(u'matplotlib notebook') from keras.models import load_model from model import get_personlab from scipy.ndimage.filters import gaussian_filter import cv2 import numpy as np from time import time from config import config import random from post_proc import * # In[2]: tic = time() #model = get_personlab(train=False, with_preprocess_lambda=True, # intermediate_supervision=True, # intermediate_layer='res4b12_relu', # build_base_func=get_resnet101_base, # output_stride=16) model = get_personlab(train=False, with_preprocess_lambda=True, output_stride=8) print 'Loading time: {}'.format(time()-tic) # In[3]: #model.load_weights('models/personlab_res101_400_r32_0510.h5') model.load_weights('personlab_model_101_best.h5') # In[4]: # Pad image appropriately (to match relationship to output_stride as in training) def pad_img(img, mult=16): h, w, _ = img.shape h_pad = 0 w_pad = 0 if (h-1)%mult > 0: h_pad = mult-((h-1)%mult) if (w-1)%mult > 0: w_pad = mult-((w-1)%mult) return np.pad(img, ((0,h_pad), (0,w_pad), (0,0)), 'constant') #img = cv2.imread('testim.jpg') #img = cv2.resize(img, (0,0), fx=.9, fy=.9) #img = cv2.resize(img, (388,388)) #img = pad_img(img) #print 'Image shape: {}'.format(img.shape) # In[6]: cap = cv2.VideoCapture('vid.mov') while(cap.isOpened()): ret, frame = cap.read() img = cv2.resize(frame, (0,0), fx=.9, fy=.9) img = pad_img(img) outputs = model.predict(img[np.newaxis,...]) outputs = [o[0] for o in outputs] H = compute_heatmaps(kp_maps=outputs[0], short_offsets=outputs[1]) # Gaussian filtering helps when there are multiple local maxima for the same keypoint. for i in range(17): H[:,:,i] = gaussian_filter(H[:,:,i], sigma=2) pred_kp = get_keypoints(H) print(len(pred_kp)) cv2.imshow('frame',img) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() # In[ ]:
StarcoderdataPython
6508299
<gh_stars>0 #!/usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2008, <NAME>, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of <NAME>, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Revision $Id$ ## Simple talker demo that published std_msgs/Strings messages ## to the 'chatter' topic import rospy import curses import time from config import * from std_msgs.msg import Int16MultiArray # get the curses screen window screen = curses.initscr() # turn off input echoing curses.noecho() # respond to keys immediately (don't wait for enter) curses.cbreak() # map arrow keys to special values screen.keypad(True) safety_counter = 0 no_response_max_time = 5000 # milliseconds #def timeout(): # safety_counter += 1 # screen.addstr(3, 65, str(safety_counter)) # if safety_counter > no_response_max_time: # pwm_input.data = [steering_neutral,throttle_neutral] # screen.addstr(3, 0, '<<<<<<<<<<<< TIMEOUT REACHED, RESETTING TO NEUTRAL >>>>>>>>>>>') # safety_counter = 0 def talker(): pub = rospy.Publisher('controls', Int16MultiArray, queue_size=10) rospy.init_node('talker', anonymous=True) rate = rospy.Rate(100) # 100hz steering_neutral = round((STEERING_RIGHT_PWM + STEERING_LEFT_PWM)/2.0) throttle_neutral = THROTTLE_STOPPED_PWM + 10 throttle_max = THROTTLE_STOPPED_PWM + THROTTLE_RANGE throttle_min = THROTTLE_STOPPED_PWM - THROTTLE_RANGE steering_scale = 15 steering_string_range = round((STEERING_RIGHT_PWM - STEERING_LEFT_PWM)/(2*steering_scale)) while not rospy.is_shutdown(): pwm_input = Int16MultiArray() pwm_input.data = [steering_neutral,throttle_neutral] screen.addstr(0, 0, \ 'Receiving Inputs Now\n'\ 'DO NOT PRESS CTRL-C TO QUIT\n'\ 'Must press q instead\n'\ 'Currently outputting:'\ '[Steering PWM, Throttle PWM] = \n\n') screen.addstr(3, 52, str(pwm_input.data)) screen.addstr(5, 0, 'Steering Angle:') try: while True: screen.timeout(no_response_max_time) char = screen.getch() if char == ord('q'): return elif char == curses.KEY_RIGHT: # print doesn't work with curses, use addstr instead if pwm_input.data[0] >= STEERING_RIGHT_PWM: # limit the steering max value (right side) pwm_input.data[0] = STEERING_RIGHT_PWM else: pwm_input.data[0] += steering_scale screen.addstr(3, 0, \ 'Currently outputting:'\ '[Steering PWM, Throttle PWM] = ') screen.addstr(3, 52, str(pwm_input.data)) steering_angle = round((pwm_input.data[0] - steering_neutral)/steering_scale) whitespace_range = steering_string_range - abs(steering_angle) whitespace = " "*whitespace_range if steering_angle < 0: steering_angle = -steering_angle anglespace = '<'*steering_angle display_angle = '|' + whitespace + anglespace + 'O' + " "*steering_string_range + '|' screen.addstr(5,15, display_angle) elif steering_angle > 0: anglespace = '>'*steering_angle display_angle = '|' + " "*steering_string_range + 'O' + anglespace + whitespace + '|' screen.addstr(5,15, display_angle) else: display_angle = '|' + " "*steering_string_range + 'O' + " "*steering_string_range +\ '|' screen.addstr(5,15, display_angle) elif char == curses.KEY_LEFT: if pwm_input.data[0] <= STEERING_LEFT_PWM: # limit the steering max value (left side) pwm_input.data[0] = STEERING_LEFT_PWM else: pwm_input.data[0] -= steering_scale screen.addstr(3, 0, \ 'Currently outputting:'\ '[Steering PWM, Throttle PWM] = ') screen.addstr(3, 52, str(pwm_input.data)) steering_angle = round((pwm_input.data[0] - steering_neutral)/steering_scale) whitespace_range = steering_string_range - abs(steering_angle) whitespace = " "*whitespace_range if steering_angle < 0: steering_angle = -steering_angle anglespace = '<'*steering_angle display_angle = '|' + whitespace + anglespace + 'O' + " "*steering_string_range + '|' screen.addstr(5,15, display_angle) elif steering_angle > 0: anglespace = '>'*steering_angle display_angle = '|' + " "*steering_string_range + 'O' + anglespace + whitespace + '|' screen.addstr(5,15, display_angle) else: display_angle = '|' + " "*steering_string_range + 'O' + " "*steering_string_range +\ '|' screen.addstr(5,15, display_angle) elif char == curses.KEY_UP: if pwm_input.data[1] >= throttle_max: # limit the steering max value pwm_input.data[1] = throttle_max else: pwm_input.data[1] += 1 screen.addstr(3, 0, \ 'Currently outputting:'\ '[Steering PWM, Throttle PWM] = ') screen.addstr(3, 52, str(pwm_input.data)) elif char == curses.KEY_DOWN: if pwm_input.data[1] <= throttle_min: # limit the steering max value pwm_input.data[1] = throttle_min else: pwm_input.data[1] -= 1 screen.addstr(3, 0, \ 'Currently outputting:'\ '[Steering PWM, Throttle PWM] = ') screen.addstr(3, 52, str(pwm_input.data)) elif char == ord(' '): # hard stop -- hitting spacebar resets steering/throttle to neutral pwm_input.data[1] = throttle_neutral screen.addstr(3, 0, \ 'HARD STOP TRIGGERED: RESET TO NEUTRAL THROTTLE ') elif char == -1: # Increase the safety counter, in case connection is lost this will trigger a stop pwm_input.data = [steering_neutral,throttle_neutral] screen.addstr(3, 0, '<<<<<<<<<<<<<< TIMEOUT REACHED, RESET TO NEUTRAL >>>>>>>>>>>>> ') #if char == curses.KEY_RIGHT and char == curses.KEY_UP: # pwm_input.data[0] += 1 # pwm_input.data[1] += 1 #char = screen.getch() #rospy.logerr(pwm_input) pub.publish(pwm_input) rate.sleep() finally: # shut down cleanly curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin() #hello_str = "hello world %s" % rospy.get_time() #rospy.loginfo(tpwm_input) #pub.publish(tpwm_input) #rate.sleep() if __name__ == '__main__': try: talker() except rospy.ROSInterruptException: curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin() pass
StarcoderdataPython
5138658
from __future__ import absolute_import, division, print_function from panoptes_client.panoptes import PanoptesObject, LinkResolver from panoptes_client.utils import isiterable, split BATCH_SIZE = 50 class User(PanoptesObject): _api_slug = 'users' _link_slug = 'users' _edit_attributes = ( 'valid_email', ) @classmethod def where(cls, **kwargs): email = kwargs.get('email') login = kwargs.get('login') if email and login: raise ValueError( 'Queries are supported on at most ONE of email and login' ) # This is a workaround for # https://github.com/zooniverse/Panoptes/issues/2733 kwargs['page_size'] = BATCH_SIZE if email: if not isiterable(email): email = [email] for batch in split(email, BATCH_SIZE): kwargs['email'] = ",".join(batch) for user in super(User, cls).where(**kwargs): yield user elif login: if not isiterable(login): login = [login] for batch in split(login, BATCH_SIZE): kwargs['login'] = ",".join(batch) for user in super(User, cls).where(**kwargs): yield user else: for user in super(User, cls).where(**kwargs): yield user @property def avatar(self): """ A dict containing metadata about the user's avatar. """ return User.http_get('{}/avatar'.format(self.id))[0] LinkResolver.register(User) LinkResolver.register(User, 'owner')
StarcoderdataPython
1849464
import sys from typing import Dict from reportlab.lib.units import inch from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont import uharfbuzz as hb SCALE_MULT = 1e5 class RLKerningError(Exception): pass # TODO drop the text arg once drawGlyphs has been implemented # TODO rajouter sapce between words # TODO struct cached_shape which includes the font name and size def drawStringHB(pdf_canvas, x, y, text, cached_shape, mode=None, direction=None): """Draws a string in the current text styles.""" if sys.version_info[0] == 3 and not isinstance(text, str): text = text.decode("utf-8") t = pdf_canvas.beginText(x, y, direction=direction) if mode is not None: t.setTextRenderMode(mode) x_advance = 0 y_advance = 0 # assumes the cached_shape buffer corresponds to the current text and style # of the canvas for i, pos in enumerate(cached_shape.glyph_positions): xchar = x + x_advance / SCALE_MULT + pos.x_offset / SCALE_MULT if pdf_canvas.bottomup: # TODO verify if y_advance / offset is always be 0 for horizontal languages ychar = y + y_advance / SCALE_MULT + pos.y_offset / SCALE_MULT else: ychar = y - y_advance / SCALE_MULT - pos.y_offset / SCALE_MULT t.setTextOrigin(xchar, ychar) t.textOut(text[i]) x_advance += pos.x_advance y_advance += pos.y_advance if mode is not None: t.setTextRenderMode(0) pdf_canvas.drawText(t) def stringWidthHB(cached_shape): x_advance = 0 # actually equals to : # font.stringWidth (which sums the glyph widths) + 2*sum(x_offset) for pos in cached_shape.glyph_positions: x_advance += pos.x_advance return x_advance / SCALE_MULT def canvas_shapeHB(pdf_canvas, text, features: Dict[str, bool] = None): font_name = pdf_canvas._fontname font_size = pdf_canvas._fontsize return shapeHB(text, font_name, font_size, features) def shapeHB(text, font_name, font_size, features: Dict[str, bool] = None): font = pdfmetrics.getFont(font_name) if not isinstance(font, TTFont): # TODO make valid for all types of fonts raise RLKerningError("Not a TTF font") fontdata = font.face._ttf_data face = hb.Face(fontdata) font = hb.Font(face) # HB scales to integers in offset and advance so very big scale # will divide by SCALE_MULT to get the actual size in fractional points font.scale = (font_size * SCALE_MULT, font_size * SCALE_MULT) hb.ot_font_set_funcs(font) buf = hb.Buffer() buf.add_str(text) buf.guess_segment_properties() hb.shape(font, buf, features) return buf if __name__ == "__main__": from reportlab.pdfgen import canvas # isort:skip from reportlab.lib.colors import red # isort:skip # fonts = ["FiraCode-Regular"] pdfmetrics.registerFont(TTFont("tnr", "tests/times-new-roman.ttf")) pdf_canvas = canvas.Canvas("test.pdf", pagesize=(8.5 * inch, 8.5 * inch)) pdf_canvas.saveState() font = ("tnr", 26) pdf_canvas.setFont(*font) text = "l <NAME> AV <NAME>" cached_shape = canvas_shapeHB(pdf_canvas, text) drawStringHB(pdf_canvas, 1.5 * inch, 1.7 * inch, text, cached_shape) pdf_canvas.drawString(1.5 * inch, 2 * inch, text) # draw bbox def draw_bbox(size, pos): pdf_canvas.saveState() pdf_canvas.setStrokeColor(red) pdf_canvas.setLineWidth(1) p = pdf_canvas.beginPath() p.rect(*size, *pos) pdf_canvas.drawPath(p, stroke=True, fill=False) pdf_canvas.restoreState() asc, desc = pdfmetrics.getAscentDescent(*font) width = stringWidthHB(cached_shape) draw_bbox((1.5 * inch, 1.7 * inch + desc), (width, asc - desc)) width = pdfmetrics.stringWidth(text, *font) draw_bbox((1.5 * inch, 2 * inch + desc), (width, asc - desc)) pdf_canvas.restoreState() pdf_canvas.showPage() pdf_canvas.save() import freetype # isort:skip from freetype.ft_enums import FT_LOAD_NO_SCALE # isort:skip pdfmetrics.registerFont(TTFont("FiraCode-Regular", "tests/FiraCode-Regular.ttf")) face = freetype.Face("tests/FiraCode-Regular.ttf") font = ("FiraCode-Regular", 26) buf = shapeHB("www", *font) infos = buf.glyph_infos poss = buf.glyph_positions for info, pos in zip(infos, poss): gid = info.codepoint cluster = info.cluster xa = pos.x_advance / SCALE_MULT xo = pos.x_offset / SCALE_MULT name = face.get_glyph_name(gid) a = 3 face = freetype.Face("tests/FiraCode-Regular.ttf") empty = face.get_glyph_name(1625) con = face.get_glyph_name(1495) face.set_char_size(48 * 64) face.load_glyph(1625) m = face.glyph.metrics a = 3 pdfmetrics.registerFont(TTFont("MinionPro-Regular", "tests/Minion Pro Regular.ttf")) face = freetype.Face("tests/Minion Pro Regular.ttf") units_em = face.units_per_EM font = ("MinionPro-Regular", 48) buf = shapeHB("ffi ffl", *font) infos = buf.glyph_infos poss = buf.glyph_positions for info, pos in zip(infos, poss): gid = info.codepoint cluster = info.cluster name = face.get_glyph_name(gid) xa = pos.x_advance / SCALE_MULT xo = pos.x_offset / SCALE_MULT face.set_char_size(48 * 64) face.load_glyph(gid, FT_LOAD_NO_SCALE) # xa == horiadvance / units_em * font_size m = face.glyph.metrics a = 3
StarcoderdataPython
8118471
<filename>covariant_compositional_networks_tf2/tests/testModel_2.py from covariant_compositional_networks_tf2.CCN_Model import CCN_Model import tensorflow as tf from functools import reduce from operator import mul from ordered_set import OrderedSet import numpy as np from sklearn.metrics import accuracy_score from graphColoring import randomNPGraph, checkIfGraphConnected channels_in = 2 feature_vector_shape=[1] k=2 model = CCN_Model(lr =2e-4, lr_decay_rate=0.95, lr_min=3e-6, loss = tf.losses.logcosh, nonlinearity=tf.nn.tanh, feature_vector_shape=feature_vector_shape, num_layers=5, k=k, channels_in=[channels_in,4,5,4,3,1]) helperVar = reduce(mul, [channels_in] + feature_vector_shape) inp = [[tf.Variable(tf.reshape(tf.range(helperVar, dtype=tf.float32) + 1, [channels_in] + [1] * k + feature_vector_shape )), tf.Variable(tf.reshape(tf.range(helperVar, dtype=tf.float32) + helperVar + 1, [channels_in] + [1] * k + feature_vector_shape)), tf.Variable(tf.reshape(tf.range(helperVar, dtype=tf.float32) + helperVar * 2 + 1, [channels_in]+ [1] * k + feature_vector_shape))], # 2 feature vectors # for k =2 its [ [[[1,2,3]]], [[[5,6,7]]] ] np.array([[1, 1, 0], [1, 1, 1], [0, 1, 1]]), # adjacency matrix of DIRECTED graph - node[0] will gather inputs from [0] and [1] # and node[1] only from [1] [OrderedSet([0]), OrderedSet([1]), OrderedSet([2])]] # parts - P(0) = {0}, and P(1) = {1} - cummulative receptive field def complete_graph(nodes): node_features = [tf.Variable(tf.reshape(tf.ones(helperVar, dtype=tf.float32), [channels_in] + [1] * k + feature_vector_shape ))] * nodes adjM = np.ones((nodes, nodes)) parts = [OrderedSet([i]) for i in range(nodes)] return [node_features, adjM, parts] def uncomplete_graph(nodes): node_features = [tf.Variable(tf.reshape(tf.ones(helperVar, dtype=tf.float32), [channels_in] + [1] * k + feature_vector_shape ))] * nodes while True: adjM = randomNPGraph(nodes, 0.5, diagonal = True, undirected = True) if checkIfGraphConnected(adjM) and not np.array_equal(adjM, np.ones(adjM.shape)): break parts = [OrderedSet([i]) for i in range(nodes)] return [node_features, adjM, parts] def gen_graphs(num, nodes, p=.5): graphs = [] for _ in range(num): if np.random.rand()>p: G, y = complete_graph(nodes), tf.constant([1.]) graphs.append(G + [y]) else: G, y = uncomplete_graph(nodes), tf.constant([0.]) graphs.append(G + [y]) return graphs def train_test_split(graphs, train_fraction=0.8): split_idx = int(np.round(train_fraction*len(graphs), decimals=0)) g_train, g_test = graphs[:split_idx], graphs[split_idx:] return g_train, g_test def data_preparation(n = 200, nodes = 4): graphs = gen_graphs(n, nodes) idxs = np.arange(len(graphs), dtype=np.int) return train_test_split(graphs, train_fraction=0.8) #result = model.predict(inp[0], inp[1], inp[2]) #resultSum = np.sum(result) #y = tf.constant([2.0]) #print(y) #print(result) def train_and_test(model, data, epochs=100): g_train, g_test = data for epoch in range(epochs): for i in range(g_train): features, adjM, parts, y = g_train[i] model.fit(features, y, adjM, parts) predicted = [] target = [] for i in range(len(g_test)): features, adjM, parts, y = g_train[i] target.append(y) predicted.append(model.predict(features, adjM, parts)) print("Accuracy of the model is {}".format(accuracy_score(y_test, predicted))) if __name__=='__main__': train_and_test(model, data_preparation()) # for i in range(100): # # #model.fit(inp[0], y, inp[1], inp[2]) # for i in range(len(y)): # # result = model.predict(inp[0], inp[1], inp[2]) # print(result) #list(reversed(inp[0])) # inpSwap = [inp[0][1], inp[0][2], inp[0][0]] # adjMOther = np.array([[1, 1, 1], [1, 1, 1], [1,1,1]]) # result = model.predict(inp[0], adjMOther, inp[2]) # print(result)
StarcoderdataPython
1824825
import pickle import time import numpy as np from sklearn import metrics from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import utils as u def get_classifiers(): return [ # ('Logistic Regression (C=1)', LogisticRegression(C=1)), # ('SVM, linear', SVC(kernel="linear", C=0.015, cache_size=200)), # ('k nn', KNeighborsClassifier(3)), # ('Decision Tree', DecisionTreeClassifier(max_depth=15)), ('Random Forest', RandomForestClassifier(n_estimators=500, n_jobs=10)), # ('AdaBoost', AdaBoostClassifier()), # ('Naive Bayes', GaussianNB()), # ('LDA', LinearDiscriminantAnalysis()), # ('QDA', QuadraticDiscriminantAnalysis()), # ('Gradient Boosting', GradientBoostingClassifier(learning_rate=0.5, n_estimators=50)) ] def train_and_evaluate_all(feature_set): data = get_data(feature_set) classifiers = get_classifiers() # one loop to fit them all classifier_data = {} best = [] for clf_name, clf in classifiers: print("\n'%s' classifier..." % clf_name) t0 = time.time() clf.fit(data['train']['X'], data['train']['y']) t1 = time.time() an_data = get_results(clf, data, t1 - t0, feature_set, clf_name=clf_name, save_confusion=True) classifier_data[clf_name] = {'training_time': t1 - t0, 'testing_time': an_data['testing_time'], 'accuracy': an_data['accuracy']} best.append((clf_name, an_data['accuracy'])) best = sorted(best, key=lambda x: x[1]) # sort by accuracy print_top_n(best, 10) pickle.dump(best, open('./sk_classifier_results_%s.p' % feature_set, "wb")) def get_results(clf, data, fit_time, feature_set, clf_name='', save_confusion=False): results = {} t0 = time.time() predicted = np.array([]) for i in range(0, len(data['test']['X']), 128): # go in chunks of size 128 predicted_single = clf.predict(data['test']['X'][i:(i + 128)]) predicted = np.append(predicted, predicted_single) t1 = time.time() cm = metrics.confusion_matrix(data['test']['y'], predicted) results['testing_time'] = t1 - t0 results['accuracy'] = metrics.accuracy_score(data['test']['y'], predicted) print("classifier: %s" % clf_name) print("training time: %0.4fs" % fit_time) print("testing time: %0.4fs" % results['testing_time']) print("accuracy: %0.4f" % results['accuracy']) print("confusion matrix:\n%s" % cm) if save_confusion: path = './confusion_plots/%s_%s' % (clf_name, feature_set) title = '%s (accuracy: %0.2f)' % (clf_name, results['accuracy']) u.plot_confusion_matrix(cm, path, title=title) return results def get_data(feature_set): # load dataset paths = u.load_paths('PATHS.yaml') # get paths from file train_x, val_x, test_x = u.load_data(paths['extracted_data'] + 'features_%s.p' % feature_set) train_y, val_y, test_y = u.load_data(paths['extracted_data'] + 'labels_%s.p' % feature_set) test_x = np.vstack((val_x, test_x)) # dont use validation set for grid search, add to test data test_y = np.vstack((val_y, test_y)) train_y = u.inv_one_hot_encode(train_y) # remove one hot encoding test_y = u.inv_one_hot_encode(test_y) if feature_set == u.FEATURE_SET_SPECS_NORM: # flatten 128 x 128 image length = train_x.shape[1] * train_x.shape[2] train_x = train_x.reshape(train_x.shape[0], length) test_x = test_x.reshape(test_x.shape[0], length) data = {'train': {'X': train_x, 'y': train_y}, 'test': {'X': test_x, 'y': test_y}, 'n_classes': len(np.unique(train_y))} print("dataset has %i training samples and %i test samples." % (len(data['train']['X']), len(data['test']['X']))) return data def print_top_n(l, n=10): print('\nTop %d' % n) for i in range(0, n): name, acc = l.pop() print('%d : %s (%0.2f)' % (i + 1, name, acc)) if __name__ == '__main__': feature_set = u.FEATURE_SET_MEANS # feature_set = u.FEATURE_SET_SPECS_NORM results = train_and_evaluate_all(feature_set)
StarcoderdataPython
12825797
<reponame>iamharshit/ML_works import tensorflow as tf import numpy as np import cv2 img_original = cv2.imread('jack.jpg') #data.camera() img = cv2.resize(img_original, (64*5,64*5)) # for positions xs = [] # for corresponding colors ys = [] for row_i in range(img.shape[0]): for col_i in range(img.shape[1]): xs.append([row_i, col_i]) ys.append(img[row_i, col_i]) # list->numpy array xs,ys = np.array(xs),np.array(ys) # normalising input img xs = (xs-np.mean(xs))/np.std(xs) # placeholders for input and output X = tf.placeholder(tf.float32, shape=[None, 2], name='X') Y = tf.placeholder(tf.float32, shape=[None, 3], name='Y') #defining weights,bias,non-linearity def linear(X, n_input, n_output, activation=None, scope=None): with tf.variable_scope(scope or "linear"): W = tf.get_variable( name='W', shape=[n_input, n_output], initializer=tf.random_normal_initializer(mean=0.0, stddev=0.1)) b = tf.get_variable( name='b', shape=[n_output], initializer=tf.constant_initializer()) h = tf.matmul(X, W) + b if activation is not None: h = activation(h) return h #building neural-net with 5 layers n_neurons = [2,64,64,64,64,64,64,3] #defining optimizer def distance(p1, p2): return tf.abs(p1 - p2) #building network current_input = X for layer_i in range(1, len(n_neurons)): current_input = linear( X=current_input, n_input=n_neurons[layer_i - 1], n_output=n_neurons[layer_i], activation=tf.nn.relu if (layer_i+1) < len(n_neurons) else None, scope='layer_' + str(layer_i)) Y_pred = current_input cost = tf.reduce_mean(tf.reduce_sum(distance(Y_pred,Y),1) ) optimizer = tf.train.AdamOptimizer(0.001).minimize(cost) #training Neural Net n_iterations = 500 batch_size = 50 with tf.Session() as sess: sess.run(tf.initialize_all_variables()) prev_training_cost = 0.0 for it_i in range(n_iterations): idxs = np.random.permutation(range(len(xs))) n_batches = len(idxs) // batch_size for batch_i in range(n_batches): idxs_i = idxs[batch_i * batch_size: (batch_i + 1) * batch_size] sess.run(optimizer, feed_dict={X: xs[idxs_i], Y: ys[idxs_i] }) training_cost = sess.run(cost, feed_dict={X: xs, Y: ys}) print(it_i, training_cost) if (it_i + 1) % 20 == 0: ys_pred = Y_pred.eval(feed_dict={X: xs}, session=sess) fig, ax = plt.subplots(1, 1) print ys_pred.shape,img.shape print ys_pred img = np.clip(ys_pred.reshape(img.shape), 0, 255).astype(np.uint8) cv2.imwrite("face____" + str(it_i) + ".jpg", img)
StarcoderdataPython
1945085
<reponame>immuta/tap-canny """tap-canny"""
StarcoderdataPython