id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
4971035
import json import unittest from datetime import datetime as dt import os.path as op from stac_sentinel import sentinel_s2_l1c, sentinel_s2_l2a testpath = op.dirname(__file__) class Test(unittest.TestCase): """ Test main module """ @classmethod def get_metadata(self, collection_id): with open(op.join(testpath, 'metadata', collection_id + '.json')) as f: dat = json.loads(f.read()) return dat def test_sentinel_s2_l1c(self): collection_id = 'sentinel-s2-l1c' metadata = self.get_metadata(collection_id) item = sentinel_s2_l1c(metadata) fname = op.join(testpath, collection_id + '.json') with open(fname, 'w') as f: f.write(json.dumps(item)) def test_sentinel_s2_l2a(self): collection_id = 'sentinel-s2-l2a' metadata = self.get_metadata(collection_id) item = sentinel_s2_l2a(metadata) fname = op.join(testpath, collection_id + '.json') with open(fname, 'w') as f: f.write(json.dumps(item))
StarcoderdataPython
4868467
<reponame>pld/bamboo #!/usr/bin/env python import os import sys sys.path.append(os.getcwd()) from pymongo import ASCENDING from bamboo.config.db import Database from bamboo.core.frame import DATASET_ID from bamboo.models.observation import Observation # The encoded dataset_id will be set to '0'. ENCODED_DATASET_ID = '0' def bamboo_index(collection, key): ensure_index = collection.__getattribute__('ensure_index') ensure_index([(key, ASCENDING)]) ensure_index([(key, ASCENDING), (Observation.DELETED_AT, ASCENDING)]) def ensure_indexing(): """Ensure that bamboo models are indexed.""" db = Database.db() # collections calculations = db.calculations datasets = db.datasets observations = db.observations # indices bamboo_index(datasets, DATASET_ID) bamboo_index(observations, ENCODED_DATASET_ID) bamboo_index(observations, Observation.ENCODING_DATASET_ID) bamboo_index(calculations, DATASET_ID) if __name__ == '__main__': ensure_indexing()
StarcoderdataPython
3241368
<reponame>AOF-BudakHasan/number_to_text<gh_stars>0 import unittest from number_to_text import NTT from adapters import AdapterLangTr class MyTestCase1(unittest.TestCase): # Only use setUp() and tearDown() if necessary def setUp(self): self.test_number = 2345.5265 self.expected_text = "İKİBİNÜÇYÜZKIRKBEŞLİRAELLİÜÇKURUŞ" def tearDown(self): pass def test_lang_tr(self): new_ntt = NTT(adapter=AdapterLangTr, fraction_size=2) result_text = new_ntt.number_to_text(self.test_number) self.assertEqual(result_text, self.expected_text, 'Result should be as self.expected_text') if __name__ == '__main__': unittest.main()
StarcoderdataPython
1651386
<filename>penetration/python/BasicSniffer.py import socket # USAGE: terminal_1: python BasicSniffer.py # terminal_2: ping 192.168.0.103 -c 3 # create the sniffer the raw socket obj # listening for ICMP packets # can also TCP packet or UDP packet sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_ICMP) # bind to localhost, port 0 is officially a reserved port in TCP networking # port 0 is programming technique for specifying allocation the ports # in this case 0 is connection parametr and operation system # will automaticaly search for next avaiable port in dynamic port range sniffer.bind(('0.0.0.0',0)) # make sure that the IP header is included sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL,1) print 'sniffer is listening for incoming connections' # get a single packet print sniffer.recvfrom(65535)
StarcoderdataPython
3311640
from django.apps import AppConfig class LaunchPageConfig(AppConfig): name = 'launch_page'
StarcoderdataPython
3446387
<gh_stars>0 import torch.nn as nn def l2_loss(input, target, batch_size, mask=None): if mask is not None: loss = (input - target) * mask else: loss = input - target loss = (loss * loss) / 2 / batch_size return loss.sum() def mse_loss(output, target, mask): mse = nn.MSELoss() batch_size = output.size(0) num_keypoints = output.size(1) heatmaps_target = target.reshape((batch_size, num_keypoints, -1)).split(1, 1) heatmaps_pred = output.reshape((batch_size, num_keypoints, -1)).split(1, 1) loss = 0 for idx in range(num_keypoints): heatmap_pred = heatmaps_pred[idx].squeeze() heatmap_target = heatmaps_target[idx].squeeze() loss += 0.5 * mse( heatmap_pred.mul(mask.cuda()[:, idx]), heatmap_target.mul(mask[:, idx]).cuda(), ) return loss / num_keypoints
StarcoderdataPython
6419337
<filename>demo_bidirection_streaming/server/server.py import os from concurrent.futures import ThreadPoolExecutor from threading import Thread from signal import signal, SIGTERM import grpc from grpc_interceptor import ExceptionToStatusInterceptor from grpc_interceptor.exceptions import NotFound import logging import math from demo_pb2 import BrokerResponse import demo_pb2_grpc import config logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) class BrokerServiceServicer(demo_pb2_grpc.BrokerServiceServicer): def BidirectionalStreaming(self, request_iterator, context): """Server request callback function""" if not request_iterator: raise NotFound("Client request is incorrect!") for request in request_iterator: logging.info("Client request: %d %g %g %g %g", request.id, request.sensor1, request.sensor2, request.sensor3, request.sensor4) if (self.isPrimeNumber(request.id) == True): yield BrokerResponse(id=request.id, prediction=True) else: yield BrokerResponse(id=request.id, prediction=False) def isFibonacci(self, n): return self.isPerfectSquare(5*n*n + 4) or self.isPerfectSquare(5*n*n - 4) def isPerfectSquare(self, x): s = int(math.sqrt(x)) return s*s == x def isPrimeNumber(self, num): flag = True if num > 1: for i in range(2, num): if (num % i) == 0: flag = False break return flag def main(): interceptors = [ExceptionToStatusInterceptor()] server = grpc.server( ThreadPoolExecutor(max_workers=10), interceptors=interceptors) demo_pb2_grpc.add_BrokerServiceServicer_to_server( BrokerServiceServicer(), server) server.add_insecure_port(config.port) logging.info("Starting server. Listening on port : %s", str(config.port)) server.start() server.wait_for_termination() if __name__ == '__main__': try: main() except KeyboardInterrupt: print("Interrupted!") exit(0)
StarcoderdataPython
1702678
<reponame>JohannesBuchner/pystrict3<gh_stars>1-10 # A* Shortest Path Algorithm # http://en.wikipedia.org/wiki/A* # FB - 201012256 from heapq import heappush, heappop # for priority queue import math import time import random class node: xPos = 0 # x position yPos = 0 # y position distance = 0 # total distance already travelled to reach the node priority = 0 # priority = distance + remaining distance estimate def __init__(self, xPos, yPos, distance, priority): self.xPos = xPos self.yPos = yPos self.distance = distance self.priority = priority def __lt__(self, other): # comparison method for priority queue return self.priority < other.priority def updatePriority(self, xDest, yDest): self.priority = self.distance + self.estimate(xDest, yDest) * 10 # A* # give higher priority to going straight instead of diagonally def nextMove(self, dirs, d): # d: direction to move if dirs == 8 and d % 2 != 0: self.distance += 14 else: self.distance += 10 # Estimation function for the remaining distance to the goal. def estimate(self, xDest, yDest): xd = xDest - self.xPos yd = yDest - self.yPos # Euclidian Distance d = math.sqrt(xd * xd + yd * yd) # Manhattan distance # d = abs(xd) + abs(yd) # Chebyshev distance # d = max(abs(xd), abs(yd)) return(d) # A-star algorithm. # The path returned will be a string of digits of directions. def pathFind(the_map, n, m, dirs, dx, dy, xA, yA, xB, yB): closed_nodes_map = [] # map of closed (tried-out) nodes open_nodes_map = [] # map of open (not-yet-tried) nodes dir_map = [] # map of dirs row = [0] * n for i in range(m): # create 2d arrays closed_nodes_map.append(list(row)) open_nodes_map.append(list(row)) dir_map.append(list(row)) pq = [[], []] # priority queues of open (not-yet-tried) nodes pqi = 0 # priority queue index # create the start node and push into list of open nodes n0 = node(xA, yA, 0, 0) n0.updatePriority(xB, yB) heappush(pq[pqi], n0) open_nodes_map[yA][xA] = n0.priority # mark it on the open nodes map # A* search while len(pq[pqi]) > 0: # get the current node w/ the highest priority # from the list of open nodes n1 = pq[pqi][0] # top node n0 = node(n1.xPos, n1.yPos, n1.distance, n1.priority) x = n0.xPos y = n0.yPos heappop(pq[pqi]) # remove the node from the open list open_nodes_map[y][x] = 0 closed_nodes_map[y][x] = 1 # mark it on the closed nodes map # quit searching when the goal is reached # if n0.estimate(xB, yB) == 0: if x == xB and y == yB: # generate the path from finish to start # by following the dirs path = '' while not (x == xA and y == yA): j = dir_map[y][x] c = str((j + dirs / 2) % dirs) path = c + path x += dx[j] y += dy[j] return path # generate moves (child nodes) in all possible dirs for i in range(dirs): xdx = x + dx[i] ydy = y + dy[i] if not (xdx < 0 or xdx > n-1 or ydy < 0 or ydy > m - 1 or the_map[ydy][xdx] == 1 or closed_nodes_map[ydy][xdx] == 1): # generate a child node m0 = node(xdx, ydy, n0.distance, n0.priority) m0.nextMove(dirs, i) m0.updatePriority(xB, yB) # if it is not in the open list then add into that if open_nodes_map[ydy][xdx] == 0: open_nodes_map[ydy][xdx] = m0.priority heappush(pq[pqi], m0) # mark its parent node direction dir_map[ydy][xdx] = (i + dirs / 2) % dirs elif open_nodes_map[ydy][xdx] > m0.priority: # update the priority open_nodes_map[ydy][xdx] = m0.priority # update the parent direction dir_map[ydy][xdx] = (i + dirs / 2) % dirs # replace the node # by emptying one pq to the other one # except the node to be replaced will be ignored # and the new node will be pushed in instead while not (pq[pqi][0].xPos == xdx and pq[pqi][0].yPos == ydy): heappush(pq[1 - pqi], pq[pqi][0]) heappop(pq[pqi]) heappop(pq[pqi]) # remove the target node # empty the larger size priority queue to the smaller one if len(pq[pqi]) > len(pq[1 - pqi]): pqi = 1 - pqi while len(pq[pqi]) > 0: heappush(pq[1-pqi], pq[pqi][0]) heappop(pq[pqi]) pqi = 1 - pqi heappush(pq[pqi], m0) # add the better node instead return '' # if no route found # MAIN dirs = 8 # number of possible directions to move on the map if dirs == 4: dx = [1, 0, -1, 0] dy = [0, 1, 0, -1] elif dirs == 8: dx = [1, 1, 0, -1, -1, -1, 0, 1] dy = [0, 1, 1, 1, 0, -1, -1, -1] n = 30 # horizontal size of the map m = 30 # vertical size of the map the_map = [] row = [0] * n for i in range(m): # create empty map the_map.append(list(row)) # fillout the map with a '+' pattern for x in range(n / 8, n * 7 / 8): the_map[m / 2][x] = 1 for y in range(m/8, m * 7 / 8): the_map[y][n / 2] = 1 # randomly select start and finish locations from a list sf = [] sf.append((0, 0, n - 1, m - 1)) sf.append((0, m - 1, n - 1, 0)) sf.append((n / 2 - 1, m / 2 - 1, n / 2 + 1, m / 2 + 1)) sf.append((n / 2 - 1, m / 2 + 1, n / 2 + 1, m / 2 - 1)) sf.append((n / 2 - 1, 0, n / 2 + 1, m - 1)) sf.append((n / 2 + 1, m - 1, n / 2 - 1, 0)) sf.append((0, m / 2 - 1, n - 1, m / 2 + 1)) sf.append((n - 1, m / 2 + 1, 0, m / 2 - 1)) (xA, yA, xB, yB) = random.choice(sf) print('Map size (X,Y): ', n, m) print('Start: ', xA, yA) print('Finish: ', xB, yB) t = time.time() route = pathFind(the_map, n, m, dirs, dx, dy, xA, yA, xB, yB) print('Time to generate the route (seconds): ', time.time() - t) print('Route:') print(route) # mark the route on the map if len(route) > 0: x = xA y = yA the_map[y][x] = 2 for i in range(len(route)): j = int(route[i]) x += dx[j] y += dy[j] the_map[y][x] = 3 the_map[y][x] = 4 # display the map with the route added print('Map:') for y in range(m): for x in range(n): xy = the_map[y][x] if xy == 0: print('.', end=' ') # space elif xy == 1: print('O', end=' ') # obstacle elif xy == 2: print('S', end=' ') # start elif xy == 3: print('R', end=' ') # route elif xy == 4: print('F', end=' ') # finish print() input('Press Enter...')
StarcoderdataPython
85501
# Copyright 2016, 2017 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Custom potion db manager """ # # IMPORTS # from flask_potion import exceptions as potion_exceptions from flask_potion.contrib.alchemy.manager import SQLAlchemyManager from sqlalchemy import exc as sa_exceptions from sqlalchemy.orm import aliased from werkzeug.exceptions import BadRequest import logging import re # # CONSTANTS AND DEFINITIONS # # # CODE # class ApiManager(SQLAlchemyManager): """ Extend potion's manager with some features needed by the api """ class DataError(potion_exceptions.PotionException): """ Define a exception in potion's hierarchy to deal with the data type error in database. """ werkzeug_exception = BadRequest def __init__(self, sa_exc): """ Constructors, extract message from sa's exception object Args: sa_exc (DataError): sa's exception """ super().__init__() self._logger = logging.getLogger(__name__) # original exception did not came from postgres: we don't know how # to handle it therefore return generic message if (not hasattr(sa_exc, 'orig') or not hasattr(sa_exc.orig, 'pgcode')): self.msg = 'A value entered is in wrong format.' return # this re extracts the value which caused the error, the message # looks like: # ungültige Eingabesyntax für Typ macaddr: »ff:dd:cc:bb:aa« msg_match = re.match(r'^.*»(.*)«.*$', sa_exc.orig.diag.message_primary) try: value = msg_match.group(1) except (AttributeError, IndexError): self._logger.debug( 'Returning generic msg: failed to match re') self.msg = 'A value entered is in wrong format.' return self.msg = "The value '{}' is in wrong format.".format(value) # __init__() def as_dict(self): """ Wraps original as_dict to return customized message """ ret_dict = super().as_dict() ret_dict['message'] = self.msg return ret_dict # as_dict() # DataError def instances(self, where=None, sort=None): """ Add the functionality to join tables when queries use hybrid attributes that point to another table via a foreign key. Args: where (list): list of SQLAlchemyBaseFilter instances sort (list): list containing sorting conditions Returns: sqlalchemy.orm.query: the sa's query object Raises: None """ # get the model's query object query = self._query() # sanity check if query is None: return [] # filtering condition was specified: build sqlalchemy query expression if where: expressions = [] # each condition is an instance of SQLAlchemyBaseFilter for condition in where: # retrieve the sa object corresponding to the target column col = condition.filter.column # column points to another table: add the join condition to the # query. if (hasattr(col, 'property') and col.property.expression.table.name != self.model.__tablename__): # name of the attribute in the resource, corresponds to the # name of the column attr_name = condition.filter.attribute # specify the attribute in the model containing the # fk relationship definition. Here we rely on our naming # convention where a hybrid column named 'foo' always has # its fk relationship defined under the attribute name # 'foo_rel'. This is better than trying to extract the # relationship information from the column object as it # would require a lot of digging because one has to provide # both target and dependent columns to the join() method, # i.e. join(DepTable.type_id == Target.id) query = query.join(attr_name + '_rel') # special case parent/child for systems elif (self.model.__tablename__ == 'systems' and condition.filter.attribute == 'hypervisor'): parent = aliased(self.model) query = query.join( parent, 'hypervisor_rel') query = query.filter(parent.name == condition.value) continue # special case parent/child for system profiles elif (self.model.__tablename__ == 'system_profiles' and condition.filter.attribute == 'hypervisor_profile'): # TODO: handle the case when user specifies # hypervisor-name/profile-name parent = aliased(self.model) query = query.join( parent, 'hypervisor_profile_rel') query = query.filter(parent.name == condition.value) continue # add the comparison expression (the filter itself) expressions.append(self._expression_for_condition(condition)) # more than one expression specified: build the final statement if expressions: query = self._query_filter( query, self._and_expression(expressions)) # sort field(s) specified: add join to the fk fields as needed if sort: for _, attribute, _ in sort: column = getattr(self.model, attribute) if (hasattr(column, 'property') and column.property.expression.table.name != self.model.__tablename__): query = query.join(attribute + '_rel') # special case parent/child for systems elif (self.model.__tablename__ == 'systems' and attribute == 'hypervisor'): parent = aliased(self.model) query = query.join(parent, 'hypervisor_rel') query = query.filter(parent.id == self.model.hypervisor_id) # special case parent/child for system profiles elif (self.model.__tablename__ == 'system_profiles' and attribute == 'hypervisor_profile'): parent = aliased(self.model) query = query.join(parent, 'hypervisor_profile_rel') query = query.filter( parent.id == self.model.hypervisor_profile_id) query = self._query_order_by(query, sort) return query # instances() def create(self, properties, commit=True): """ Fix the create method which is not catching sa's exception for error in data format. Args: properties (dict): properties for the created item commit (bool): commit session Returns: any: whatever parent's create returns Raises: ApiManager.DataError: in case a data error occurs (i.e. mac address in wrong format) BackendConflict: database could not perform an operation due to data conflicts """ try: return super().create(properties, commit=commit) except sa_exceptions.DataError as sa_exc: session = self._get_session() session.rollback() raise ApiManager.DataError(sa_exc) except sa_exceptions.IntegrityError: session = self._get_session() session.rollback() raise potion_exceptions.BackendConflict() # create() def delete(self, item, commit=True): """ Fix the delete method which is not cleaning up the session after a failed operation Args: item (dict): item to delete commit (bool): commit session Returns: any: whatever parent's delete returns (as of today, None) Raises: BackendConflict: in case a integrity error occurs (i.e. FK depending on item to delete) """ try: return super().delete(item, commit=commit) except sa_exceptions.IntegrityError: session = self._get_session() session.rollback() raise potion_exceptions.BackendConflict() # delete() def update(self, item, changes, commit=True): """ Fix the update method which is not catching sa's exception for error in data format. Args: item (dict): item to update changes (dict): changes to apply commit (bool): commit session Returns: any: whatever parent's update returns Raises: ApiManager.DataError: in case a data error occurs (i.e. mac address in wrong format) BackendConflict: database could not perform an operation due to data conflicts """ try: return super().update(item, changes, commit=commit) except sa_exceptions.DataError as sa_exc: session = self._get_session() session.rollback() raise ApiManager.DataError(sa_exc) except sa_exceptions.IntegrityError: session = self._get_session() session.rollback() raise potion_exceptions.BackendConflict() # update() # ApiManager
StarcoderdataPython
3523822
from datetime import datetime import requests #check a hubmap service #if it returns a 200 from the standard /status call #within 2 seconds return the number of milliseconds it took #to return # # input- service_url: the url of the service (e.g. https://uuid.api.hubmapconsortium.org) # outputs- on success: an integer representing the number of milliseconds the status call took # on failure: the boolean False def check_hm_ws(service_url): start_time = datetime.now() try: failed = False url = service_url.strip() if url.endswith('/'): url = url[:len(url) - 1] if not url.endswith('/status'): url = url + "/status" resp = requests.get(url, timeout=2) if resp.ok == False: failed = True except Exception: failed = True finally: end_time = datetime.now() time_diff = end_time - start_time elapsed_time_millis = int((time_diff.seconds * 1000) + (time_diff.microseconds / 1000)) if failed: return False else: return elapsed_time_millis #print(str(check_hm_ws('https://uuid-api.refactor.hubmapconsortium.org/status/')))
StarcoderdataPython
6706382
import logging import os import sys try: from coloredlogs import ColoredFormatter as Formatter except ImportError: from logging import Formatter __version__ = '0.14.2' PY37 = sys.version_info.minor == 7 logger = logging.getLogger(__name__) handler = logging.StreamHandler() logger.addHandler(handler) handler.setFormatter(Formatter('%(name)s %(levelname)s %(message)s')) try: level = os.environ.get('PANTABLELOGLEVEL', logging.WARNING) logger.setLevel(level=level) except ValueError: logger.setLevel(level=logging.WARNING) logger.error(f'Unknown PANTABLELOGLEVEL {level}, set to default WARNING.')
StarcoderdataPython
1853639
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Generates a loading report. When executed as a script, takes a trace filename and print the report. """ from content_classification_lens import ContentClassificationLens from loading_graph_view import LoadingGraphView import loading_trace from network_activity_lens import NetworkActivityLens from user_satisfied_lens import ( FirstTextPaintLens, FirstContentfulPaintLens, FirstSignificantPaintLens) class LoadingReport(object): """Generates a loading report from a loading trace.""" def __init__(self, trace, ad_rules=None, tracking_rules=None): """Constructor. Args: trace: (LoadingTrace) a loading trace. ad_rules: ([str]) List of ad filtering rules. tracking_rules: ([str]) List of tracking filtering rules. """ self.trace = trace self._text_msec = FirstTextPaintLens(self.trace).SatisfiedMs() self._contentful_paint_msec = ( FirstContentfulPaintLens(self.trace).SatisfiedMs()) self._significant_paint_msec = ( FirstSignificantPaintLens(self.trace).SatisfiedMs()) navigation_start_events = trace.tracing_track.GetMatchingEvents( 'blink.user_timing', 'navigationStart') self._navigation_start_msec = min( e.start_msec for e in navigation_start_events) self._load_end_msec = self._ComputePlt(trace) network_lens = NetworkActivityLens(self.trace) if network_lens.total_download_bytes > 0: self._contentful_byte_frac = ( network_lens.DownloadedBytesAt(self._contentful_paint_msec) / float(network_lens.total_download_bytes)) self._significant_byte_frac = ( network_lens.DownloadedBytesAt(self._significant_paint_msec) / float(network_lens.total_download_bytes)) else: self._contentful_byte_frac = float('Nan') self._significant_byte_frac = float('Nan') self._ad_report = self._AdRequestsReport( trace, ad_rules or [], tracking_rules or []) graph = LoadingGraphView.FromTrace(trace) self._contentful_inversion = graph.GetInversionsAtTime( self._contentful_paint_msec) self._significant_inversion = graph.GetInversionsAtTime( self._significant_paint_msec) def GenerateReport(self): """Returns a report as a dict.""" report = { 'url': self.trace.url, 'first_text_ms': self._text_msec - self._navigation_start_msec, 'contentful_paint_ms': (self._contentful_paint_msec - self._navigation_start_msec), 'significant_paint_ms': (self._significant_paint_msec - self._navigation_start_msec), 'plt_ms': self._load_end_msec - self._navigation_start_msec, 'contentful_byte_frac': self._contentful_byte_frac, 'significant_byte_frac': self._significant_byte_frac, # Take the first (earliest) inversions. 'contentful_inversion': (self._contentful_inversion[0].url if self._contentful_inversion else None), 'significant_inversion': (self._significant_inversion[0].url if self._significant_inversion else None)} report.update(self._ad_report) return report @classmethod def FromTraceFilename(cls, filename, ad_rules_filename, tracking_rules_filename): """Returns a LoadingReport from a trace filename.""" trace = loading_trace.LoadingTrace.FromJsonFile(filename) return LoadingReport(trace, ad_rules_filename, tracking_rules_filename) @classmethod def _AdRequestsReport(cls, trace, ad_rules, tracking_rules): has_rules = bool(ad_rules) or bool(tracking_rules) requests = trace.request_track.GetEvents() result = { 'request_count': len(requests), 'ad_requests': 0 if ad_rules else None, 'tracking_requests': 0 if tracking_rules else None, 'ad_or_tracking_requests': 0 if has_rules else None, 'ad_or_tracking_initiated_requests': 0 if has_rules else None} content_classification_lens = ContentClassificationLens( trace, ad_rules, tracking_rules) if not has_rules: return result for request in trace.request_track.GetEvents(): is_ad = content_classification_lens.IsAdRequest(request) is_tracking = content_classification_lens.IsTrackingRequest(request) if ad_rules: result['ad_requests'] += int(is_ad) if tracking_rules: result['tracking_requests'] += int(is_tracking) result['ad_or_tracking_requests'] += int(is_ad or is_tracking) result['ad_or_tracking_initiated_requests'] = len( content_classification_lens.AdAndTrackingRequests()) return result @classmethod def _ComputePlt(cls, trace): mark_load_events = trace.tracing_track.GetMatchingEvents( 'devtools.timeline', 'MarkLoad') # Some traces contain several load events for the main frame. main_frame_load_events = filter( lambda e: e.args['data']['isMainFrame'], mark_load_events) if main_frame_load_events: return max(e.start_msec for e in main_frame_load_events) # Main frame onLoad() didn't finish. Take the end of the last completed # request. return max(r.end_msec or -1 for r in trace.request_track.GetEvents()) def _Main(args): assert len(args) == 4, 'Usage: report.py trace.json ad_rules tracking_rules' trace_filename = args[1] ad_rules = open(args[2]).readlines() tracking_rules = open(args[3]).readlines() report = LoadingReport.FromTraceFilename( trace_filename, ad_rules, tracking_rules) print json.dumps(report.GenerateReport(), indent=2) if __name__ == '__main__': import sys import json _Main(sys.argv)
StarcoderdataPython
3322807
<filename>isenw_app/migrations/0003_content_new.py # Generated by Django 2.2.24 on 2021-06-25 21:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('isenw_app', '0002_auto_20210625_2110'), ] operations = [ migrations.AddField( model_name='content', name='new', field=models.FileField(default='', upload_to=''), ), ]
StarcoderdataPython
1741687
#!/usr/bin/env python # Copyright 2012 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a list of all the functions that are not auto-generated. # It contains all the meta data that describes the function. The format is: # <function name>, <return_type>, [<args>], <backend function name>, [<sql aliases>] # # 'function name' is the base of what the opcode enum will be generated from. It does not # have to be unique, the script will mangle the name with the signature if necessary. # # 'sql aliases' are the function names that can be used from sql. They are # optional and there can be multiple aliases for a function. # # This is combined with the list in generated_functions to code-gen the opcode # registry in the FE and BE. functions = [ ['Compound_And', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN'], \ 'CompoundPredicate::AndComputeFn', []], ['Compound_Or', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN'], \ 'CompoundPredicate::OrComputeFn', []], ['Compound_Not', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN'], \ 'CompoundPredicate::NotComputeFn', []], ['Constant_Regex', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN'], \ 'LikePredicate::ConstantRegexFn', []], ['Constant_Substring', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN'], \ 'LikePredicate::ConstantSubstringFn', []], ['Like', 'BOOLEAN', ['STRING', 'STRING'], 'LikePredicate::LikeFn', []], ['Regex', 'BOOLEAN', ['STRING', 'STRING'], 'LikePredicate::RegexFn', []], ['Math_Pi', 'DOUBLE', [], 'MathFunctions::Pi', ['pi']], ['Math_E', 'DOUBLE', [], 'MathFunctions::E', ['e']], ['Math_Abs', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Abs', ['abs']], ['Math_Sign', 'FLOAT', ['DOUBLE'], 'MathFunctions::Sign', ['sign']], ['Math_Sin', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Sin', ['sin']], ['Math_Asin', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Asin', ['asin']], ['Math_Cos', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Cos', ['cos']], ['Math_Acos', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Acos', ['acos']], ['Math_Tan', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Tan', ['tan']], ['Math_Atan', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Atan', ['atan']], ['Math_Radians', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Radians', ['radians']], ['Math_Degrees', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Degrees', ['degrees']], ['Math_Ceil', 'BIGINT', ['DOUBLE'], 'MathFunctions::Ceil', ['ceil', 'ceiling']], ['Math_Floor', 'BIGINT', ['DOUBLE'], 'MathFunctions::Floor', ['floor']], ['Math_Round', 'BIGINT', ['DOUBLE'], 'MathFunctions::Round', ['round']], ['Math_Round', 'DOUBLE', ['DOUBLE', 'INT'], 'MathFunctions::RoundUpTo', ['round']], ['Math_Exp', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Exp', ['exp']], ['Math_Ln', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Ln', ['ln']], ['Math_Log10', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Log10', ['log10']], ['Math_Log2', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Log2', ['log2']], ['Math_Log', 'DOUBLE', ['DOUBLE', 'DOUBLE'], 'MathFunctions::Log', ['log']], ['Math_Pow', 'DOUBLE', ['DOUBLE', 'DOUBLE'], 'MathFunctions::Pow', ['pow', 'power']], ['Math_Sqrt', 'DOUBLE', ['DOUBLE'], 'MathFunctions::Sqrt', ['sqrt']], ['Math_Rand', 'DOUBLE', [], 'MathFunctions::Rand', ['rand']], ['Math_Rand', 'DOUBLE', ['INT'], 'MathFunctions::RandSeed', ['rand']], ['Math_Bin', 'STRING', ['BIGINT'], 'MathFunctions::Bin', ['bin']], ['Math_Hex', 'STRING', ['BIGINT'], 'MathFunctions::HexInt', ['hex']], ['Math_Hex', 'STRING', ['STRING'], 'MathFunctions::HexString', ['hex']], ['Math_Unhex', 'STRING', ['STRING'], 'MathFunctions::Unhex', ['unhex']], ['Math_Conv', 'STRING', ['BIGINT', 'TINYINT', 'TINYINT'], \ 'MathFunctions::ConvInt', ['conv']], ['Math_Conv', 'STRING', ['STRING', 'TINYINT', 'TINYINT'], \ 'MathFunctions::ConvString', ['conv']], ['Math_Pmod', 'BIGINT', ['BIGINT', 'BIGINT'], 'MathFunctions::PmodBigInt', ['pmod']], ['Math_Pmod', 'DOUBLE', ['DOUBLE', 'DOUBLE'], 'MathFunctions::PmodDouble', ['pmod']], ['Math_Positive', 'BIGINT', ['BIGINT'], 'MathFunctions::PositiveBigInt', ['positive']], ['Math_Positive', 'DOUBLE', ['DOUBLE'], 'MathFunctions::PositiveDouble', ['positive']], ['Math_Negative', 'BIGINT', ['BIGINT'], 'MathFunctions::NegativeBigInt', ['negative']], ['Math_Negative', 'DOUBLE', ['DOUBLE'], 'MathFunctions::NegativeDouble', ['negative']], ['String_Substring', 'STRING', ['STRING', 'INT'], \ 'StringFunctions::Substring', ['substr', 'substring']], ['String_Substring', 'STRING', ['STRING', 'INT', 'INT'], \ 'StringFunctions::Substring', ['substr', 'substring']], # left and right are key words, leave them out for now. ['String_Left', 'STRING', ['STRING', 'INT'], 'StringFunctions::Left', ['strleft']], ['String_Right', 'STRING', ['STRING', 'INT'], 'StringFunctions::Right', ['strright']], ['String_Length', 'INT', ['STRING'], 'StringFunctions::Length', ['length']], ['String_Lower', 'STRING', ['STRING'], 'StringFunctions::Lower', ['lower', 'lcase']], ['String_Upper', 'STRING', ['STRING'], 'StringFunctions::Upper', ['upper', 'ucase']], ['String_Reverse', 'STRING', ['STRING'], 'StringFunctions::Reverse', ['reverse']], ['String_Trim', 'STRING', ['STRING'], 'StringFunctions::Trim', ['trim']], ['String_Ltrim', 'STRING', ['STRING'], 'StringFunctions::Ltrim', ['ltrim']], ['String_Rtrim', 'STRING', ['STRING'], 'StringFunctions::Rtrim', ['rtrim']], ['String_Space', 'STRING', ['INT'], 'StringFunctions::Space', ['space']], ['String_Repeat', 'STRING', ['STRING', 'INT'], 'StringFunctions::Repeat', ['repeat']], ['String_Ascii', 'INT', ['STRING'], 'StringFunctions::Ascii', ['ascii']], ['String_Lpad', 'STRING', ['STRING', 'INT', 'STRING'], \ 'StringFunctions::Lpad', ['lpad']], ['String_Rpad', 'STRING', ['STRING', 'INT', 'STRING'], \ 'StringFunctions::Rpad', ['rpad']], ['String_Instr', 'INT', ['STRING', 'STRING'], 'StringFunctions::Instr', ['instr']], ['String_Locate', 'INT', ['STRING', 'STRING'], 'StringFunctions::Locate', ['locate']], ['String_Locate', 'INT', ['STRING', 'STRING', 'INT'], \ 'StringFunctions::LocatePos', ['locate']], ['String_Regexp_Extract', 'STRING', ['STRING', 'STRING', 'INT'], \ 'StringFunctions::RegexpExtract', ['regexp_extract']], ['String_Regexp_Replace', 'STRING', ['STRING', 'STRING', 'STRING'], \ 'StringFunctions::RegexpReplace', ['regexp_replace']], ['String_Concat', 'STRING', ['STRING', '...'], 'StringFunctions::Concat', ['concat']], ['String_Concat_Ws', 'STRING', ['STRING', 'STRING', '...'], \ 'StringFunctions::ConcatWs', ['concat_ws']], ['String_Find_In_Set', 'INT', ['STRING', 'STRING'], \ 'StringFunctions::FindInSet', ['find_in_set']], ['String_Parse_Url', 'STRING', ['STRING', 'STRING'], \ 'StringFunctions::ParseUrl', ['parse_url']], ['String_Parse_Url', 'STRING', ['STRING', 'STRING', 'STRING'], \ 'StringFunctions::ParseUrlKey', ['parse_url']], ['Utility_Version', 'STRING', [], 'UtilityFunctions::Version', ['version']], # Timestamp Functions ['Unix_Timestamp', 'INT', [], \ 'TimestampFunctions::Unix', ['unix_timestamp']], ['Unix_Timestamp', 'INT', ['TIMESTAMP'], \ 'TimestampFunctions::Unix', ['unix_timestamp']], ['Unix_Timestamp', 'INT', ['STRING', 'STRING'], \ 'TimestampFunctions::Unix', ['unix_timestamp']], ['From_UnixTime', 'STRING', ['INT'], \ 'TimestampFunctions::FromUnix', ['from_unixtime']], ['From_UnixTime', 'STRING', ['INT', 'STRING'], \ 'TimestampFunctions::FromUnix', ['from_unixtime']], ['Timestamp_year', 'INT', ['TIMESTAMP'], 'TimestampFunctions::Year', ['year']], ['Timestamp_month', 'INT', ['TIMESTAMP'], 'TimestampFunctions::Month', ['month']], ['Timestamp_day', 'INT', ['TIMESTAMP'], 'TimestampFunctions::Day', ['day']], ['Timestamp_dayofmonth', 'INT', ['TIMESTAMP'], \ 'TimestampFunctions::DayOfMonth', ['dayofmonth']], ['Timestamp_weekofyear', 'INT', ['TIMESTAMP'], \ 'TimestampFunctions::WeekOfYear', ['weekofyear']], ['Timestamp_hour', 'INT', ['TIMESTAMP'], 'TimestampFunctions::Hour', ['hour']], ['Timestamp_minute', 'INT', ['TIMESTAMP'], 'TimestampFunctions::Minute', ['minute']], ['Timestamp_second', 'INT', ['TIMESTAMP'], 'TimestampFunctions::Second', ['second']], ['Timestamp_now', 'TIMESTAMP', [], \ 'TimestampFunctions::Now', ['now', 'current_timestamp']], ['Timestamp_to_date', 'STRING', ['TIMESTAMP'], \ 'TimestampFunctions::ToDate', ['to_date']], ['Timestamp_years_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::YearsAdd', ['years_add']], ['Timestamp_years_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::YearsSub', ['years_sub']], ['Timestamp_months_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::MonthsAdd', ['months_add']], ['Timestamp_months_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::MonthsSub', ['months_sub']], ['Timestamp_weeks_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::WeeksAdd', ['weeks_add']], ['Timestamp_weeks_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::WeeksSub', ['weeks_sub']], ['Timestamp_days_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::DaysAdd', ['days_add', 'date_add', 'adddate']], ['Timestamp_days_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::DaysSub', ['days_sub', 'date_sub', 'subdate']], ['Timestamp_hours_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::HoursAdd', ['hours_add']], ['Timestamp_hours_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::HoursSub', ['hours_sub']], ['Timestamp_minutes_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::MinutesAdd', ['minutes_add']], ['Timestamp_minutes_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::MinutesSub', ['minutes_sub']], ['Timestamp_seconds_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::SecondsAdd', ['seconds_add']], ['Timestamp_seconds_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::SecondsSub', ['seconds_sub']], ['Timestamp_milliseconds_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::MillisAdd', ['milliseconds_add']], ['Timestamp_milliseconds_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::MillisSub', ['milliseconds_sub']], ['Timestamp_microseconds_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::MicrosAdd', ['microseconds_add']], ['Timestamp_microseconds_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::MicrosSub', ['microseconds_sub']], ['Timestamp_nanoseconds_add', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::NanosAdd', ['nanoseconds_add']], ['Timestamp_nanoseconds_sub', 'TIMESTAMP', ['TIMESTAMP', 'INT'], \ 'TimestampFunctions::NanosSub', ['nanoseconds_sub']], ['Timestamp_diff', 'INT', ['TIMESTAMP', 'TIMESTAMP'], \ 'TimestampFunctions::DateDiff', ['datediff']], ['From_utc_timestamp', 'TIMESTAMP', ['TIMESTAMP', 'STRING'], \ 'TimestampFunctions::FromUtc', ['from_utc_timestamp']], ['To_utc_timestamp', 'TIMESTAMP', ['TIMESTAMP', 'STRING'], \ 'TimestampFunctions::ToUtc', ['to_utc_timestamp']], # Conditional Functions ['Conditional_If', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN', 'BOOLEAN'], \ 'ConditionalFunctions::IfBool', ['if']], ['Conditional_If', 'BIGINT', ['BOOLEAN', 'BIGINT', 'BIGINT'], \ 'ConditionalFunctions::IfInt', ['if']], ['Conditional_If', 'DOUBLE', ['BOOLEAN', 'DOUBLE', 'DOUBLE'], \ 'ConditionalFunctions::IfFloat', ['if']], ['Conditional_If', 'STRING', ['BOOLEAN', 'STRING', 'STRING'], \ 'ConditionalFunctions::IfString', ['if']], ['Conditional_If', 'TIMESTAMP', ['BOOLEAN', 'TIMESTAMP', 'TIMESTAMP'], \ 'ConditionalFunctions::IfTimestamp', ['if']], ['Conditional_Coalesce', 'BOOLEAN', ['BOOLEAN', '...'], \ 'ConditionalFunctions::CoalesceBool', ['coalesce']], ['Conditional_Coalesce', 'BIGINT', ['BIGINT', '...'], \ 'ConditionalFunctions::CoalesceInt', ['coalesce']], ['Conditional_Coalesce', 'DOUBLE', ['DOUBLE', '...'], \ 'ConditionalFunctions::CoalesceFloat', ['coalesce']], ['Conditional_Coalesce', 'STRING', ['STRING', '...'], \ 'ConditionalFunctions::CoalesceString', ['coalesce']], ['Conditional_Coalesce', 'TIMESTAMP', ['TIMESTAMP', '...'], \ 'ConditionalFunctions::CoalesceTimestamp', ['coalesce']], ]
StarcoderdataPython
3200698
<gh_stars>1-10 import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import os, glob, shutil def crop_center(im, new_height, new_width): height = im.shape[0] # Get dimensions width = im.shape[1] left = (width - new_width) // 2 top = (height - new_height) // 2 right = (width + new_width) // 2 bottom = (height + new_height) // 2 return im[top:bottom, left:right] def process_folder(): img_path1 = '/home/zmy/Downloads/betaDisentangle/374e_beta5_dim55_30' aim_path = '/home/zmy/Downloads/betaDisentangle/374e' img_files = [img for img in os.listdir(img_path1) if img.endswith('.png')] print(img_files) for img_file in img_files: old_file = os.path.join(img_path1, img_file) prefix, rest = img_file.split('_')[0], img_file.split('_')[1] new_name = '1' + prefix.zfill(2) + '_' + rest new_file = os.path.join(aim_path, new_name) shutil.copy(old_file, new_file) print(prefix, rest, new_name, new_file) if __name__ == '__main__': fig = plt.figure(figsize=(55, 16), dpi=100) # width, height rows = 2 columns = 6 img_path = '/home/zmy/Downloads/betaDisentangle/374e' # Method1: plot all cols # row_start = 0 # col_start = 0 # Method2: plot selected cols aim_col_list = [2,4,6,8,9,10] row_start=0 start_inx = 0 col_start = aim_col_list[start_inx] for i in range(1, columns * rows + 1): fig.add_subplot(rows, columns, i) plt.axis('off') name = str(row_start) + str(col_start).zfill(2) + '_gen.png' print("Ploting Image", name) I = mpimg.imread(os.path.join(img_path, name)) I = crop_center(I, 260, 260) plt.imshow(I) # Method1: # col_start += 1 # Method2: start_inx+=1 if start_inx < len(aim_col_list): col_start = aim_col_list[start_inx] # Method1: # if col_start > 10: # col_start = 0 # row_start += 1 # Method2: if start_inx >= len(aim_col_list): start_inx = 0 col_start = aim_col_list[start_inx] row_start += 1 fig.tight_layout() # plt.subplots_adjust(left=0.05, right=0.95,bottom=0.05,top=0.95,wspace=0.2, hspace=0.2) # plt.subplots_adjust(wspace=0.2, hspace=0.2) plt.savefig('/home/zmy/Downloads/betaDisentangle/374e_interpolation_fig_w55_h16_sub_w260_h260.png')
StarcoderdataPython
4946506
import hyperchamber as hc import numpy as np import torch from .base_distribution import BaseDistribution from ..gan_component import ValidationException from torch.distributions import uniform from hypergan.gan_component import ValidationException, GANComponent TINY=1e-12 class FitnessDistribution(BaseDistribution): def __init__(self, gan, config): BaseDistribution.__init__(self, gan, config) klass = GANComponent.lookup_function(None, self.config['source']) self.source = klass(gan, config) self.current_channels = config["z"] self.current_width = 1 self.current_height = 1 self.current_input_size = config["z"] self.z = self.source.z def create(self): pass def next(self): if not hasattr(self, 'best_sample'): self.best_sample = self.source.next() self.best_sample = self.next() if self.config.discard_prior: all_samples = [] all_scores = [] else: all_samples = torch.split(self.best_sample, 1, dim=0) prior_best_scores = self.gan.discriminator(self.gan.generator(self.best_sample)) all_scores = torch.split(prior_best_scores, 1, dim=0) all_scores = [d.mean() for d in all_scores] for i in range(self.config.steps or 1): sample = self.source.next() d_scores = self.gan.discriminator(self.gan.generator(sample)) d_scores = torch.split(d_scores, 1, dim=0) d_scores = [d.mean() for d in d_scores] samples = torch.split(sample, 1, dim=0) all_scores += d_scores all_samples += samples all_scores = [s.item() for s in all_scores] sorted_idx = np.argsort(all_scores) if self.config.reverse: sorted_idx = sorted_idx[::-1] sorted_idx = sorted_idx[:self.gan.batch_size()] sorted_samples = [all_samples[idx] for idx in sorted_idx] self.best_sample = torch.cat(sorted_samples, dim=0) self.z = self.best_sample return self.best_sample
StarcoderdataPython
289789
""" Copyright (C) 2019 <NAME> <<EMAIL>> MIT License """ import multiprocessing import threading import time from collections import defaultdict from queue import Queue from uuid import uuid4 import zmq from dotenv import load_dotenv load_dotenv() from _14_worker import Worker from message_handler import MessageHandler from utils import setup_logging def _zmq_puller(message_queue, zmq_pull_url): ctx = zmq.Context() with ctx.socket(zmq.PULL) as zmq_socket: zmq_socket.setsockopt(zmq.SNDHWM, 10000) zmq_socket.setsockopt(zmq.RCVHWM, 10000) zmq_socket.connect(zmq_pull_url) while True: try: packed = zmq_socket.recv() message_queue.put(packed) except zmq.core.error.ZMQError as e: if e.errno == zmq.ETERM: break def _launch_worker(message_queue, kill_switch): """ Starts worker that connects to the Pusher """ # create dedicated queue for worker process status_queue = multiprocessing.Queue() queue = multiprocessing.JoinableQueue() # create Worker, add to list, and start worker = Worker(queue, status_queue, kill_switch) # recv data from socket and add to queue for slot in range(2500): packed = message_queue.get() print(packed) queue.put(packed) queue.put("END") worker.start() class ZMQPuller(multiprocessing.Process): name = "ZMQPuller" def __init__(self, kill_switch, pull_host=r'127.0.0.1', pull_port="5559", interval_time=10): multiprocessing.Process.__init__(self) self.zmq_pull_url = f'tcp://{pull_host}:{pull_port}' self.kill_switch = kill_switch self.worker_processes = 12 self.work_size = 2500 self.message_queue_size = 2500 self.show_first_message = True self.interval_time = interval_time self.initialize_counters() def run(self): self.logger = multiprocessing.get_logger() self.logger.handlers[0] = setup_logging() self.message_queue = Queue() self._receive_thread = threading.Thread(target=_zmq_puller, args=(self.message_queue, self.zmq_pull_url,), name="ZMQPullerThread") self._receive_thread.start() self.logger.info("\n\n") self.logger.info(f'\tSpawning ZMQPuller') self.logger.info("\n\n") self.running_workers = defaultdict(list) self.finished_workers_and_queues = defaultdict(list) self.initialize_counters() while not self.kill_switch.is_set(): self.check_for_completed_workers() # if queue greater x AND worker processes currently launched less than threshhold if self.message_queue.qsize() > self.message_queue_size and len(self.running_workers) <= self.worker_processes: # _thread = threading.Thread(target=_launch_worker, args=(self.message_queue, self.kill_switch,), name="Message Distributor Thread") # _thread.start() self.launch_worker() else: time.sleep(0.1) self.check_status() def launch_worker(self): """ Starts worker that connects to the Pusher """ # create dedicated queue for worker process status_queue = multiprocessing.Queue() queue = multiprocessing.JoinableQueue() # create Worker, add to list, and start worker = Worker(queue, status_queue, self.kill_switch) # recv data from socket and add to queue for slot in range(self.work_size): packed = self.message_queue.get() queue.put(packed) self.counter_messages_period += 1 queue.put("--END--") worker.start() self.running_workers[str(uuid4())] = worker, queue def check_for_completed_workers(self): if len(self.running_workers) > 0: workers_to_delete = [] # check if alive and queue empty for idx, (uuid, (_worker, _queue)) in enumerate(self.running_workers.items()): if not _worker.is_alive() and _queue.empty(): self.counter_messages_total += self.work_size self.logger.debug(f'Worker[{idx}]:\tis not alive') self.logger.debug(f'Worker[{idx}]:\tqueue is empty') self.logger.debug(f'Moving Worker[{idx}] to Finished Worker List') self.finished_workers_and_queues[uuid] = _worker, _queue self.logger.debug(f'Adding Worker[{idx}] to Finished Worker List') workers_to_delete.append(uuid) if len(workers_to_delete) > 0: for uuid in workers_to_delete: self.logger.debug(f'Removing Worker[{uuid}] from Running Workers List') del self.running_workers[uuid] self.logger.debug(f'\n\n') def check_status(self): self.counter_total_consumer += 1 self.counter_total_manager += 1 self.counter_messages_period_sleep += 1 self.current_loop_iteration += 1 self.counter += 1 if time.time() - self.time_period_start > self.interval_time: time_now = time.time() time_period = time_now - self.time_period_start self.time_total = self.time_total + time_period messages_per_second = round(self.counter_messages_period / time_period, 2) self.logger.info(f'') self.logger.info(f'Time Elapsed:\t{round(self.interval_time, 2)} seconds') self.logger.info(f'Messages During Period:\t{self.counter_messages_period}') self.logger.info(f'Messages Per Second:\t{messages_per_second}') self.logger.info(f'') self.logger.info(f'Total Time Elapsed:\t{round(self.time_total, 2)} seconds') self.logger.info(f'Total Messages Distributed to finished Workers:\t{self.counter_messages_total}') self.logger.info(f'Total Messages Per Second:\t{round((self.counter_messages_total / self.time_total), 2)}') self.logger.info(f'') self.logger.info(f'') self.logger.info(f"\tTotal Messages in _Queue:\t {self.message_queue.qsize()}") self.logger.info(f"\tCurrently Running Workers:\t {len(self.running_workers)}") self.logger.info("\n\n") self.counter_messages_period = 0 self.counter_messages_period_sleep = 0 self.time_period_start = time.time() def initialize_counters(self): self.counter = 0 self.counter_total_manager = 0 self.counter_total_consumer = 0 self.current_loop_iteration = 0 self.counter_messages_total = 0 self.counter_messages_period = 0 self.counter_messages_period_sleep = 0 self.counter_messages_current = 0 self.time_total = 0 self.time_period_start = time.time() def __repr__(self): return self.name def __str__(self): return self.name
StarcoderdataPython
11274143
# Program to digest make depend files import os import re import sys from typing import Dict, List, Set from collections import defaultdict DirectoryName = str FileName = str def usage(): print(""" Usage: python factoroptions.py input-options-filename """) sys.exit(1) def get_includes(line: str) -> Set[str]: """ Return the set of Include options from the -options-for-sources line. """ parts = line.split(";") # parts[0] has the -options-for-sources and the source file. includes = {part for part in parts if (part.startswith("-I ") and not part.startswith("-I /usr"))} return includes def get_usr_includes(line: str) -> Set[str]: """ Return the set of Include options from the -options-for-sources line. """ parts = line.split(";") # parts[0] has the -options-for-sources and the source file. includes = {part for part in parts if part.startswith("-I /usr")} return includes def get_non_includes(line: str) -> Set[str]: """ Return the set of non-Include options from the -options-for-sources line. """ parts = line.split(";") # parts[0] has the -options-for-sources and the source file. others = {part for part in parts[1:] if not part.startswith("-I ")} return others class FactorOptions: """ Digest .depend files""" def __init__(self, input_filename): self.input_filename = input_filename self.output_filename = input_filename + ".factored" self.includes_filename = input_filename + ".includes" self.defines_filename = input_filename + ".defines" self.lines = self.read_input # Collect the -options-for-sources lines. self.ofs_lines = [line for line in self.lines if line.startswith("-options-for-sources ")] common_includes = get_includes(self.ofs_lines[0]) common_usr_includes = get_usr_includes(self.ofs_lines[0]) common_other = get_non_includes(self.ofs_lines[0]) print(f"len(common_includes) = {len(common_includes)}") print(f"len(common_usr_includes) = {len(common_usr_includes)}") print(f"len(common_other) = {len(common_other)}") for i in range(1, len(self.ofs_lines)): this_includes = get_includes(self.ofs_lines[i]) common_includes = common_includes.union(this_includes) print(f"len(common_includes) = {len(common_includes)}") this_usr_includes = get_usr_includes(self.ofs_lines[i]) common_usr_includes = common_usr_includes.union(this_usr_includes) print(f"len(common_usr_includes) = {len(common_usr_includes)}") this_other = get_non_includes((self.ofs_lines[i])) common_other = common_other.union(this_other) print(f"len(common_other) = {len(common_other)}") self.common_includes = common_includes self.common_usr_includes = common_usr_includes self.common_other = common_other self.factored = self.compute_output() pass @property def read_input(self) -> List[str]: with open(self.input_filename, 'r') as f: lines = [line.strip("\\\n") for line in f] return lines def is_common(self, arg): if arg in self.common_includes: return True if arg in self.common_usr_includes: return True return arg in self.common_other def compute_new_ofs(self, ofs_index) -> str: line = self.ofs_lines[ofs_index] parts = line.split(";") args = [] for i in range(1, len(parts)): arg = parts[i] if not self.is_common(arg): args.append(arg) if args: argstring = ';'.join(args) result = ':'.join([parts[0], argstring]) return result return '' def get_common_usr_include_list(self) -> List[str]: # Preserve the order from the first. line = self.ofs_lines[0] parts = line.split(";") result = [] for i in range(1, len(parts)): part = parts[i] if part in self.common_usr_includes: if os.path.isdir(part[3:]): result.append(part) else: print(part + " is not a directory") return result def compute_output(self) -> List[str]: factored_lines = [] ofs_index = 0 for line in self.lines: if line.startswith("-options-for-sources "): factored = self.compute_new_ofs(ofs_index) if factored: factored_lines.append(factored) ofs_index += 1 pass else: if ofs_index == len(self.ofs_lines): # We have processed the last ofs line. Output common. factored_lines += ["# Start of factored options"] # First the non-/usr includes. sorted_includes = [include for include in self.common_includes if os.path.isdir(include[3:])] sorted_includes.sort() factored_lines += sorted_includes # Next the /usr includes. factored_lines += self.get_common_usr_include_list() # Now the others. Let's sort them too. sorted_others = [other for other in self.common_other] sorted_others.sort() factored_lines += sorted_others # increment ofs_index so we don't do this again. ofs_index += 1 factored_lines += ["# End of factored options"] # One of the original lines. factored_lines.append(line) pass return factored_lines def output_factored(self): with open(self.output_filename, "w") as w: for line in self.factored: w.write(line + '\n') pass def output_defines(self): with open(self.defines_filename, "w") as w: for line in self.common_other: w.write(line + '\n') pass def output_includes(self): with open(self.includes_filename, "w") as w: for line in self.common_usr_includes: w.write(line + '\n') for line in self.common_includes: w.write(line + '\n') pass if __name__ == u'__main__': print('Factoring PolySpace Code Prover options\n') options = sys.argv if len(sys.argv) != 2: usage() factor = FactorOptions(options[1]) factor.output_factored() factor.output_defines() factor.output_includes() print('\ndone.\n')
StarcoderdataPython
1957945
# ActivitySim # See full license in LICENSE.txt. import logging import numpy as np import pandas as pd from activitysim.core.interaction_sample_simulate import interaction_sample_simulate from activitysim.core import config from activitysim.core import tracing from activitysim.core import inject from activitysim.core import mem from activitysim.core import chunk from activitysim.core import simulate from activitysim.core import logit from activitysim.core import los from activitysim.core import timetable as tt from activitysim.core.util import reindex from activitysim.core import expressions from activitysim.core.pathbuilder import TransitVirtualPathBuilder logger = logging.getLogger(__name__) TDD_CHOICE_COLUMN = 'tdd' USE_BRUTE_FORCE_TO_COMPUTE_LOGSUMS = False RUN_ALTS_PREPROCESSOR_BEFORE_MERGE = True # see FIXME below before changing this def skims_for_logsums(tour_purpose, model_settings, trace_label): assert 'LOGSUM_SETTINGS' in model_settings network_los = inject.get_injectable('network_los') skim_dict = network_los.get_default_skim_dict() orig_col_name = 'home_zone_id' destination_for_tour_purpose = model_settings.get('DESTINATION_FOR_TOUR_PURPOSE') if isinstance(destination_for_tour_purpose, str): dest_col_name = destination_for_tour_purpose elif isinstance(destination_for_tour_purpose, dict): dest_col_name = destination_for_tour_purpose.get(tour_purpose) else: raise RuntimeError(f"expected string or dict DESTINATION_FOR_TOUR_PURPOSE model_setting for {tour_purpose}") odt_skim_stack_wrapper = skim_dict.wrap_3d(orig_key=orig_col_name, dest_key=dest_col_name, dim3_key='out_period') dot_skim_stack_wrapper = skim_dict.wrap_3d(orig_key=dest_col_name, dest_key=orig_col_name, dim3_key='in_period') odr_skim_stack_wrapper = skim_dict.wrap_3d(orig_key=orig_col_name, dest_key=dest_col_name, dim3_key='in_period') dor_skim_stack_wrapper = skim_dict.wrap_3d(orig_key=dest_col_name, dest_key=orig_col_name, dim3_key='out_period') od_skim_stack_wrapper = skim_dict.wrap(orig_col_name, dest_col_name) skims = { "odt_skims": odt_skim_stack_wrapper, "dot_skims": dot_skim_stack_wrapper, "odr_skims": odr_skim_stack_wrapper, "dor_skims": dor_skim_stack_wrapper, "od_skims": od_skim_stack_wrapper, 'orig_col_name': orig_col_name, 'dest_col_name': dest_col_name, } if network_los.zone_system == los.THREE_ZONE: # fixme - is this a lightweight object? tvpb = network_los.tvpb tvpb_logsum_odt = tvpb.wrap_logsum(orig_key=orig_col_name, dest_key=dest_col_name, tod_key='out_period', segment_key='demographic_segment', trace_label=trace_label, tag='tvpb_logsum_odt') tvpb_logsum_dot = tvpb.wrap_logsum(orig_key=dest_col_name, dest_key=orig_col_name, tod_key='in_period', segment_key='demographic_segment', trace_label=trace_label, tag='tvpb_logsum_dot') skims.update({ 'tvpb_logsum_odt': tvpb_logsum_odt, 'tvpb_logsum_dot': tvpb_logsum_dot }) return skims def _compute_logsums(alt_tdd, tours_merged, tour_purpose, model_settings, network_los, skims, trace_label): """ compute logsums for tours using skims for alt_tdd out_period and in_period """ trace_label = tracing.extend_trace_label(trace_label, 'logsums') with chunk.chunk_log(trace_label): logsum_settings = config.read_model_settings(model_settings['LOGSUM_SETTINGS']) choosers = alt_tdd.join(tours_merged, how='left', rsuffix='_chooser') logger.info(f"{trace_label} compute_logsums for {choosers.shape[0]} choosers {alt_tdd.shape[0]} alts") # - locals_dict constants = config.get_model_constants(logsum_settings) locals_dict = {} locals_dict.update(constants) if network_los.zone_system == los.THREE_ZONE: # TVPB constants can appear in expressions locals_dict.update(network_los.setting('TVPB_SETTINGS.tour_mode_choice.CONSTANTS')) locals_dict.update(skims) # constrained coefficients can appear in expressions coefficients = simulate.get_segment_coefficients(logsum_settings, tour_purpose) locals_dict.update(coefficients) # - run preprocessor to annotate choosers # allow specification of alternate preprocessor for nontour choosers preprocessor = model_settings.get('LOGSUM_PREPROCESSOR', 'preprocessor') preprocessor_settings = logsum_settings[preprocessor] if preprocessor_settings: simulate.set_skim_wrapper_targets(choosers, skims) expressions.assign_columns( df=choosers, model_settings=preprocessor_settings, locals_dict=locals_dict, trace_label=trace_label) # - compute logsums logsum_spec = simulate.read_model_spec(file_name=logsum_settings['SPEC']) logsum_spec = simulate.eval_coefficients(logsum_spec, coefficients, estimator=None) nest_spec = config.get_logit_model_settings(logsum_settings) nest_spec = simulate.eval_nest_coefficients(nest_spec, coefficients, trace_label) logsums = simulate.simple_simulate_logsums( choosers, logsum_spec, nest_spec, skims=skims, locals_d=locals_dict, chunk_size=0, trace_label=trace_label) return logsums def dedupe_alt_tdd(alt_tdd, tour_purpose, trace_label): tdd_segments = inject.get_injectable('tdd_alt_segments', None) alt_tdd_periods = None logger.info(f"tdd_alt_segments specified for representative logsums") with chunk.chunk_log(tracing.extend_trace_label(trace_label, 'dedupe_alt_tdd')): if tdd_segments is not None: dedupe_columns = ['out_period', 'in_period'] # tdd_alt_segments is optionally segmented by tour purpose if 'tour_purpose' in tdd_segments: is_tdd_for_tour_purpose = (tdd_segments.tour_purpose == tour_purpose) if not is_tdd_for_tour_purpose.any(): is_tdd_for_tour_purpose = tdd_segments.tour_purpose.isnull() assert is_tdd_for_tour_purpose.any(), \ f"no segments found for tour purpose {tour_purpose} in tour_departure_and_duration_segments" tdd_segments = tdd_segments[is_tdd_for_tour_purpose].drop(columns=['tour_purpose']) assert len(tdd_segments) > 0, f"tour_purpose '{tour_purpose}' not in tdd_alt_segments" # left join representative start on out_period alt_tdd_periods = \ pd.merge(alt_tdd[['out_period', 'in_period']].reset_index(), tdd_segments[['time_period', 'start']].rename(columns={'time_period': 'out_period'}), how='left', on='out_period') chunk.log_df(trace_label, "alt_tdd_periods", alt_tdd_periods) # left join representative end on in_period alt_tdd_periods = \ pd.merge(alt_tdd_periods, tdd_segments[['time_period', 'end']].rename(columns={'time_period': 'in_period'}), how='left', on=['in_period']) chunk.log_df(trace_label, "alt_tdd_periods", alt_tdd_periods) if tdd_segments.start.isnull().any(): missing_periods = tdd_segments.out_period[tdd_segments.start.isnull()].unique() logger.warning(f"missing out_periods in tdd_alt_segments: {missing_periods}") if tdd_segments.end.isnull().any(): missing_periods = tdd_segments.in_period[tdd_segments.end.isnull()].unique() logger.warning(f"missing in_periods in tdd_alt_segments: {missing_periods}") assert not tdd_segments.start.isnull().any() assert not tdd_segments.end.isnull().any() # drop duplicates alt_tdd_periods = alt_tdd_periods.drop_duplicates().set_index(alt_tdd.index.name) chunk.log_df(trace_label, "alt_tdd_periods", alt_tdd_periods) # representative duration alt_tdd_periods['duration'] = alt_tdd_periods['end'] - alt_tdd_periods['start'] chunk.log_df(trace_label, "alt_tdd_periods", alt_tdd_periods) logger.debug(f"{trace_label} " f"dedupe_alt_tdd.tdd_alt_segments reduced number of rows by " f"{round(100 * (len(alt_tdd) - len(alt_tdd_periods)) / len(alt_tdd), 2)}% " f"from {len(alt_tdd)} to {len(alt_tdd_periods)}") # if there is no tdd_alt_segments file, we can at least dedupe on 'out_period', 'in_period', 'duration' if alt_tdd_periods is None: # FIXME This won't work if they reference start or end in logsum calculations # for MTC only duration is used (to calculate all_day parking cost) dedupe_columns = ['out_period', 'in_period', 'duration'] logger.warning(f"No tdd_alt_segments for representative logsums so fallback to " f"deduping tdd_alts by time_period and duration") # - get list of unique (tour_id, out_period, in_period, duration) in alt_tdd_periods # we can cut the number of alts roughly in half (for mtctm1) by conflating duplicates alt_tdd_periods = alt_tdd[dedupe_columns].reset_index().drop_duplicates().set_index(alt_tdd.index.name) chunk.log_df(trace_label, "alt_tdd_periods", alt_tdd_periods) logger.debug(f"{trace_label} " f"dedupe_alt_tdd.drop_duplicates reduced number of rows by " f"{round(100 * (len(alt_tdd) - len(alt_tdd_periods)) / len(alt_tdd), 2)}% " f"from {len(alt_tdd)} to {len(alt_tdd_periods)}") return alt_tdd_periods, dedupe_columns def compute_logsums(alt_tdd, tours_merged, tour_purpose, model_settings, skims, trace_label): """ Compute logsums for the tour alt_tdds, which will differ based on their different start, stop times of day, which translate to different odt_skim out_period and in_periods. In mtctm1, tdds are hourly, but there are only 5 skim time periods, so some of the tdd_alts will be the same, once converted to skim time periods. With 5 skim time periods there are 15 unique out-out period pairs but 190 tdd alternatives. For efficiency, rather compute a lot of redundant logsums, we compute logsums for the unique (out-period, in-period) pairs and then join them back to the alt_tdds. """ trace_label = tracing.extend_trace_label(trace_label, 'compute_logsums') network_los = inject.get_injectable('network_los') # - in_period and out_period assert 'out_period' not in alt_tdd assert 'in_period' not in alt_tdd alt_tdd['out_period'] = network_los.skim_time_period_label(alt_tdd['start']) alt_tdd['in_period'] = network_los.skim_time_period_label(alt_tdd['end']) alt_tdd['duration'] = alt_tdd['end'] - alt_tdd['start'] # outside chunk_log context because we extend log_df call for alt_tdd made by our only caller _schedule_tours chunk.log_df(trace_label, "alt_tdd", alt_tdd) with chunk.chunk_log(trace_label): if USE_BRUTE_FORCE_TO_COMPUTE_LOGSUMS: # compute logsums for all the tour alt_tdds (inefficient) logsums = _compute_logsums(alt_tdd, tours_merged, tour_purpose, model_settings, network_los, skims, trace_label) return logsums index_name = alt_tdd.index.name deduped_alt_tdds, redupe_columns = dedupe_alt_tdd(alt_tdd, tour_purpose, trace_label) chunk.log_df(trace_label, "deduped_alt_tdds", deduped_alt_tdds) logger.info(f"{trace_label} compute_logsums " f"deduped_alt_tdds reduced number of rows by " f"{round(100 * (len(alt_tdd) - len(deduped_alt_tdds)) / len(alt_tdd), 2)}% " f"from {len(alt_tdd)} to {len(deduped_alt_tdds)} compared to USE_BRUTE_FORCE_TO_COMPUTE_LOGSUMS") t0 = tracing.print_elapsed_time() # - compute logsums for the alt_tdd_periods deduped_alt_tdds['logsums'] = \ _compute_logsums(deduped_alt_tdds, tours_merged, tour_purpose, model_settings, network_los, skims, trace_label) # tracing.log_runtime(model_name=trace_label, start_time=t0) # redupe - join the alt_tdd_period logsums to alt_tdd to get logsums for alt_tdd logsums = pd.merge( alt_tdd.reset_index(), deduped_alt_tdds.reset_index(), on=[index_name] + redupe_columns, how='left' ).set_index(index_name).logsums chunk.log_df(trace_label, "logsums", logsums) del deduped_alt_tdds chunk.log_df(trace_label, "deduped_alt_tdds", None) # this is really expensive TRACE = False if TRACE: trace_logsums_df = logsums.to_frame('representative_logsum') trace_logsums_df['brute_force_logsum'] = \ _compute_logsums(alt_tdd, tours_merged, tour_purpose, model_settings, network_los, skims, trace_label) tracing.trace_df(trace_logsums_df, label=tracing.extend_trace_label(trace_label, 'representative_logsums'), slicer='NONE', transpose=False) # leave it to our caller to pick up logsums with call to chunk.log_df return logsums def get_previous_tour_by_tourid(current_tour_window_ids, previous_tour_by_window_id, alts): """ Matches current tours with attributes of previous tours for the same person. See the return value below for more information. Parameters ---------- current_tour_window_ids : Series A Series of parent ids for the tours we're about make the choice for - index should match the tours DataFrame. previous_tour_by_window_id : Series A Series where the index is the parent (window) id and the value is the index of the alternatives of the scheduling. alts : DataFrame The alternatives of the scheduling. Returns ------- prev_alts : DataFrame A DataFrame with an index matching the CURRENT tours we're making a decision for, but with columns from the PREVIOUS tour of the person associated with each of the CURRENT tours. Columns listed in PREV_TOUR_COLUMNS from the alternatives will have "_previous" added as a suffix to keep differentiated from the current alternatives that will be part of the interaction. """ PREV_TOUR_COLUMNS = ['start', 'end'] previous_tour_by_tourid = \ previous_tour_by_window_id.loc[current_tour_window_ids] previous_tour_by_tourid = alts.loc[previous_tour_by_tourid, PREV_TOUR_COLUMNS] previous_tour_by_tourid.index = current_tour_window_ids.index previous_tour_by_tourid.columns = [x+'_previous' for x in PREV_TOUR_COLUMNS] return previous_tour_by_tourid def tdd_interaction_dataset(tours, alts, timetable, choice_column, window_id_col, trace_label): """ interaction_sample_simulate expects alts index same as choosers (e.g. tour_id) name of choice column in alts Parameters ---------- tours : pandas DataFrame must have person_id column and index on tour_id alts : pandas DataFrame alts index must be timetable tdd id timetable : TimeTable object choice_column : str name of column to store alt index in alt_tdd DataFrame (since alt_tdd is duplicate index on person_id but unique on person_id,alt_id) Returns ------- alt_tdd : pandas DataFrame columns: start, end , duration, <choice_column> index: tour_id """ trace_label = tracing.extend_trace_label(trace_label, 'tdd_interaction_dataset') with chunk.chunk_log(trace_label): alts_ids = np.tile(alts.index, len(tours.index)) chunk.log_df(trace_label, 'alts_ids', alts_ids) tour_ids = np.repeat(tours.index, len(alts.index)) window_row_ids = np.repeat(tours[window_id_col], len(alts.index)) alt_tdd = alts.take(alts_ids) alt_tdd.index = tour_ids alt_tdd[window_id_col] = window_row_ids # add tdd alternative id # by convention, the choice column is the first column in the interaction dataset alt_tdd.insert(loc=0, column=choice_column, value=alts_ids) # slice out all non-available tours available = timetable.tour_available(alt_tdd[window_id_col], alt_tdd[choice_column]) logger.debug(f"tdd_interaction_dataset keeping {available.sum()} of ({len(available)}) available alt_tdds") assert available.any() chunk.log_df(trace_label, 'alt_tdd', alt_tdd) # catch this before we slice on available alt_tdd = alt_tdd[available] chunk.log_df(trace_label, 'alt_tdd', alt_tdd) # FIXME - don't need this any more after slicing del alt_tdd[window_id_col] return alt_tdd def run_alts_preprocessor(model_settings, alts, segment, locals_dict, trace_label): """ run preprocessor on alts, as specified by ALTS_PREPROCESSOR in model_settings we are agnostic on whether alts are merged or not Parameters ---------- model_settings: dict yaml model settings file as dict alts: pandas.DataFrame tdd_alts or tdd_alts merged wiht choosers (we are agnostic) segment: string segment selector as understood by caller (e.g. logsum_tour_purpose) locals_dict: dict we let caller worry about what needs to be in it. though actually depends on modelers needs trace_label: string Returns ------- alts: pandas.DataFrame annotated copy of alts """ preprocessor_settings = model_settings.get('ALTS_PREPROCESSOR', {}) if segment in preprocessor_settings: # segmented by logsum_tour_purpose preprocessor_settings = preprocessor_settings.get(segment) logger.debug(f"running ALTS_PREPROCESSOR with spec for {segment}: {preprocessor_settings.get('SPEC')}") elif 'SPEC' in preprocessor_settings: # unsegmented (either because no segmentation, or fallback if settings has generic preprocessor) logger.debug(f"running ALTS_PREPROCESSOR with unsegmented spec {preprocessor_settings.get('SPEC')}") else: logger.debug(f"skipping alts preprocesser because no ALTS_PREPROCESSOR segment for {segment}") preprocessor_settings = None if preprocessor_settings: logger.debug(f"run_alts_preprocessor calling assign_columns for {segment} preprocessor_settings") alts = alts.copy() expressions.assign_columns( df=alts, model_settings=preprocessor_settings, locals_dict=locals_dict, trace_label=trace_label) return alts def _schedule_tours( tours, persons_merged, alts, spec, logsum_tour_purpose, model_settings, skims, timetable, window_id_col, previous_tour, tour_owner_id_col, estimator, tour_trace_label): """ previous_tour stores values used to add columns that can be used in the spec which have to do with the previous tours per person. Every column in the alternatives table is appended with the suffix "_previous" and made available. So if your alternatives table has columns for start and end, then start_previous and end_previous will be set to the start and end of the most recent tour for a person. The first time through, start_previous and end_previous are undefined, so make sure to protect with a tour_num >= 2 in the variable computation. Parameters ---------- tours : DataFrame chunk of tours to schedule with unique timetable window_id_col persons_merged : DataFrame DataFrame of persons to be merged with tours containing attributes referenced by expressions in spec alts : DataFrame DataFrame of alternatives which represent all possible time slots. tdd_interaction_dataset function will use timetable to filter them to omit unavailable alternatives spec : DataFrame The spec which will be passed to interaction_simulate. model_settings : dict timetable : TimeTable timetable of timewidows for person (or subtour) with rows for tours[window_id_col] window_id_col : str column name from tours that identifies timetable owner (or None if tours index) - person_id for non/mandatory tours - parent_tour_id for subtours, - None (tours index) for joint_tours since every tour may have different participants) previous_tour: Series series with value of tdd_alt choice for last previous tour scheduled for tour_owner_id_col : str column name from tours that identifies 'owner' of this tour (person_id for non/mandatory tours, parent_tour_id for subtours, household_id for joint_tours) tour_trace_label Returns ------- """ logger.info("%s schedule_tours running %d tour choices" % (tour_trace_label, len(tours))) # merge persons into tours # avoid dual suffix for redundant columns names (e.g. household_id) that appear in both tours = pd.merge(tours, persons_merged, left_on='person_id', right_index=True, suffixes=('', '_y')) chunk.log_df(tour_trace_label, "tours", tours) # - add explicit window_id_col for timetable owner if it is index # if no timetable window_id_col specified, then add index as an explicit column # (this is not strictly necessary but its presence makes code simpler in several places) if window_id_col is None: window_id_col = tours.index.name tours[window_id_col] = tours.index # timetable can't handle multiple tours per window_id assert not tours[window_id_col].duplicated().any() # - build interaction dataset filtered to include only available tdd alts # dataframe columns start, end , duration, person_id, tdd # indexed (not unique) on tour_id choice_column = TDD_CHOICE_COLUMN alt_tdd = tdd_interaction_dataset(tours, alts, timetable, choice_column, window_id_col, tour_trace_label) # print(f"tours {tours.shape} alts {alts.shape}") chunk.log_df(tour_trace_label, "alt_tdd", alt_tdd) # - add logsums if logsum_tour_purpose: logsums = compute_logsums(alt_tdd, tours, logsum_tour_purpose, model_settings, skims, tour_trace_label) else: logsums = 0 alt_tdd['mode_choice_logsum'] = logsums del logsums chunk.log_df(tour_trace_label, "alt_tdd", alt_tdd) # - merge in previous tour columns # adds start_previous and end_previous, joins on index tours = tours.join(get_previous_tour_by_tourid(tours[tour_owner_id_col], previous_tour, alts)) chunk.log_df(tour_trace_label, "tours", tours) # - make choices locals_d = { 'tt': timetable } constants = config.get_model_constants(model_settings) if constants is not None: locals_d.update(constants) if not RUN_ALTS_PREPROCESSOR_BEFORE_MERGE: # Note: Clint was running alts_preprocessor here on tdd_interaction_dataset instead of on raw (unmerged) alts # and he was using logsum_tour_purpose as selector, although logically it should be the spec_segment # It just happened to work for example_arc.mandatory_tour_scheduling because, in that model, (unlike semcog) # logsum_tour_purpose and spec_segments are aligned (both logsums and spec are segmented on work, school, univ) # In any case, I don't see any benefit to doing this here - at least not for any existing implementations # but if we do, it will require passing spec_segment to schedule_tours and _schedule_tours # or redundently segmenting alts (yuck!) to conform to more granular tour_segmentation (e.g. univ do school) spec_segment = logsum_tour_purpose # FIXME this is not always right - see note above alt_tdd = run_alts_preprocessor(model_settings, alt_tdd, spec_segment, locals_d, tour_trace_label) chunk.log_df(tour_trace_label, "alt_tdd", alt_tdd) if estimator: # write choosers after annotation estimator.write_choosers(tours) estimator.set_alt_id(choice_column) estimator.write_interaction_sample_alternatives(alt_tdd) log_alt_losers = config.setting('log_alt_losers', False) choices = interaction_sample_simulate( tours, alt_tdd, spec, choice_column=choice_column, log_alt_losers=log_alt_losers, locals_d=locals_d, chunk_size=0, trace_label=tour_trace_label, estimator=estimator ) chunk.log_df(tour_trace_label, 'choices', choices) # - update previous_tour and timetable parameters # update previous_tour (series with most recent previous tdd choices) with latest values previous_tour.loc[tours[tour_owner_id_col]] = choices.values # update timetable with chosen tdd footprints timetable.assign(tours[window_id_col], choices) return choices def schedule_tours( tours, persons_merged, alts, spec, logsum_tour_purpose, model_settings, timetable, timetable_window_id_col, previous_tour, tour_owner_id_col, estimator, chunk_size, tour_trace_label, tour_chunk_tag): """ chunking wrapper for _schedule_tours While interaction_sample_simulate provides chunking support, the merged tours, persons dataframe and the tdd_interaction_dataset are very big, so we want to create them inside the chunking loop to minimize memory footprint. So we implement the chunking loop here, and pass a chunk_size of 0 to interaction_sample_simulate to disable its chunking support. """ if not tours.index.is_monotonic_increasing: logger.info("schedule_tours %s tours not monotonic_increasing - sorting df") tours = tours.sort_index() logger.info("%s schedule_tours running %d tour choices" % (tour_trace_label, len(tours))) # no more than one tour per timetable_window per call if timetable_window_id_col is None: assert not tours.index.duplicated().any() else: assert not tours[timetable_window_id_col].duplicated().any() if 'LOGSUM_SETTINGS' in model_settings: # we need skims to calculate tvpb skim overhead in 3_ZONE systems for use by calc_rows_per_chunk skims = skims_for_logsums(logsum_tour_purpose, model_settings, tour_trace_label) else: skims = None result_list = [] for i, chooser_chunk, chunk_trace_label \ in chunk.adaptive_chunked_choosers(tours, chunk_size, tour_trace_label, tour_chunk_tag): choices = _schedule_tours(chooser_chunk, persons_merged, alts, spec, logsum_tour_purpose, model_settings, skims, timetable, timetable_window_id_col, previous_tour, tour_owner_id_col, estimator, tour_trace_label=chunk_trace_label) result_list.append(choices) chunk.log_df(tour_trace_label, f'result_list', result_list) # FIXME: this will require 2X RAM # if necessary, could append to hdf5 store on disk: # http://pandas.pydata.org/pandas-docs/stable/io.html#id2 if len(result_list) > 1: choices = pd.concat(result_list) assert len(choices.index == len(tours.index)) return choices def vectorize_tour_scheduling(tours, persons_merged, alts, timetable, tour_segments, tour_segment_col, model_settings, chunk_size=0, trace_label=None): """ The purpose of this method is fairly straightforward - it takes tours and schedules them into time slots. Alternatives should be specified so as to define those time slots (usually with start and end times). schedule_tours adds variables that can be used in the spec which have to do with the previous tours per person. Every column in the alternatives table is appended with the suffix "_previous" and made available. So if your alternatives table has columns for start and end, then start_previous and end_previous will be set to the start and end of the most recent tour for a person. The first time through, start_previous and end_previous are undefined, so make sure to protect with a tour_num >= 2 in the variable computation. FIXME - fix docstring: tour_segments, tour_segment_col Parameters ---------- tours : DataFrame DataFrame of tours containing tour attributes, as well as a person_id column to define the nth tour for each person. persons_merged : DataFrame DataFrame of persons containing attributes referenced by expressions in spec alts : DataFrame DataFrame of alternatives which represent time slots. Will be passed to interaction_simulate in batches for each nth tour. spec : DataFrame The spec which will be passed to interaction_simulate. (or dict of specs keyed on tour_type if tour_types is not None) model_settings : dict Returns ------- choices : Series A Series of choices where the index is the index of the tours DataFrame and the values are the index of the alts DataFrame. timetable : TimeTable persons timetable updated with tours (caller should replace_table for it to persist) """ trace_label = tracing.extend_trace_label(trace_label, 'vectorize_tour_scheduling') assert len(tours.index) > 0 assert 'tour_num' in tours.columns assert 'tour_type' in tours.columns # tours must be scheduled in increasing trip_num order # second trip of type must be in group immediately following first # this ought to have been ensured when tours are created (tour_frequency.process_tours) choice_list = [] # keep a series of the the most recent tours for each person # initialize with first trip from alts previous_tour_by_personid = pd.Series(alts.index[0], index=tours.person_id.unique()) timetable_window_id_col = 'person_id' tour_owner_id_col = 'person_id' compute_logsums = ('LOGSUM_SETTINGS' in model_settings) assert isinstance(tour_segments, dict) # no more than one tour per person per call to schedule_tours # tours must be scheduled in increasing trip_num order # second trip of type must be in group immediately following first # segregate scheduling by tour_type if multiple specs passed in dict keyed by tour_type for tour_num, nth_tours in tours.groupby('tour_num', sort=True): tour_trace_label = tracing.extend_trace_label(trace_label, f'tour_{tour_num}') tour_chunk_tag = tracing.extend_trace_label(trace_label, f"tour_{1 if tour_num == 1 else 'n'}") if tour_segment_col is not None: for tour_segment_name, tour_segment_info in tour_segments.items(): segment_trace_label = tracing.extend_trace_label(tour_trace_label, tour_segment_name) segment_chunk_tag = tracing.extend_trace_label(tour_chunk_tag, tour_segment_name) # assume segmentation of spec and coefficients are aligned spec_segment_name = tour_segment_info.get('spec_segment_name') # assume logsum segmentation is same as tours logsum_tour_purpose = tour_segment_name if compute_logsums else None nth_tours_in_segment = nth_tours[nth_tours[tour_segment_col] == tour_segment_name] if nth_tours_in_segment.empty: logger.info("skipping empty segment %s" % tour_segment_name) continue if RUN_ALTS_PREPROCESSOR_BEFORE_MERGE: locals_dict = {} alts = run_alts_preprocessor(model_settings, alts, spec_segment_name, locals_dict, tour_trace_label) choices = \ schedule_tours(nth_tours_in_segment, persons_merged, alts, spec=tour_segment_info['spec'], logsum_tour_purpose=logsum_tour_purpose, model_settings=model_settings, timetable=timetable, timetable_window_id_col=timetable_window_id_col, previous_tour=previous_tour_by_personid, tour_owner_id_col=tour_owner_id_col, estimator=tour_segment_info.get('estimator'), chunk_size=chunk_size, tour_trace_label=segment_trace_label, tour_chunk_tag=segment_chunk_tag) choice_list.append(choices) else: # MTC non_mandatory_tours are not segmented by tour_purpose and do not require logsums # FIXME should support logsums? assert not compute_logsums, "logsums for unsegmented spec not implemented because not currently needed" assert tour_segments.get('spec_segment_name') is None choices = \ schedule_tours(nth_tours, persons_merged, alts, spec=tour_segments['spec'], logsum_tour_purpose=None, model_settings=model_settings, timetable=timetable, timetable_window_id_col=timetable_window_id_col, previous_tour=previous_tour_by_personid, tour_owner_id_col=tour_owner_id_col, estimator=tour_segments.get('estimator'), chunk_size=chunk_size, tour_trace_label=tour_trace_label, tour_chunk_tag=tour_chunk_tag) choice_list.append(choices) choices = pd.concat(choice_list) return choices def vectorize_subtour_scheduling(parent_tours, subtours, persons_merged, alts, spec, model_settings, estimator, chunk_size=0, trace_label=None): """ Like vectorize_tour_scheduling but specifically for atwork subtours subtours have a few peculiarities necessitating separate treatment: Timetable has to be initialized to set all timeperiods outside parent tour footprint as unavailable. So atwork subtour timewindows are limited to the footprint of the parent work tour. And parent_tour_id' column of tours is used instead of parent_id as timetable row_id. Parameters ---------- parent_tours : DataFrame parent tours of the subtours (because we need to know the tdd of the parent tour to assign_subtour_mask of timetable indexed by parent_tour id subtours : DataFrame atwork subtours to schedule persons_merged : DataFrame DataFrame of persons containing attributes referenced by expressions in spec alts : DataFrame DataFrame of alternatives which represent time slots. Will be passed to interaction_simulate in batches for each nth tour. spec : DataFrame The spec which will be passed to interaction_simulate. (all subtours share same spec regardless of subtour type) model_settings : dict chunk_size trace_label Returns ------- choices : Series A Series of choices where the index is the index of the subtours DataFrame and the values are the index of the alts DataFrame. """ if not trace_label: trace_label = 'vectorize_non_mandatory_tour_scheduling' assert len(subtours.index) > 0 assert 'tour_num' in subtours.columns assert 'tour_type' in subtours.columns timetable_window_id_col = 'parent_tour_id' tour_owner_id_col = 'parent_tour_id' logsum_tour_purpose = None # FIXME logsums not currently supported # timetable with a window for each parent tour parent_tour_windows = tt.create_timetable_windows(parent_tours, alts) timetable = tt.TimeTable(parent_tour_windows, alts) # mask the periods outside parent tour footprint timetable.assign_subtour_mask(parent_tours.tour_id, parent_tours.tdd) # print timetable.windows """ [[7 7 7 0 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7] [7 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7] [7 7 7 7 7 0 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7] [7 7 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7]] """ choice_list = [] # keep a series of the the most recent tours for each person # initialize with first trip from alts previous_tour_by_parent_tour_id = \ pd.Series(alts.index[0], index=subtours['parent_tour_id'].unique()) # tours must be scheduled in increasing trip_num order # second trip of type must be in group immediately following first # this ought to have been ensured when tours are created (tour_frequency.process_tours) for tour_num, nth_tours in subtours.groupby('tour_num', sort=True): tour_trace_label = tracing.extend_trace_label(trace_label, f'tour_{tour_num}') tour_chunk_tag = tracing.extend_trace_label(trace_label, f"tour_{1 if tour_num == 1 else 'n'}") # no more than one tour per timetable window per call to schedule_tours assert not nth_tours.parent_tour_id.duplicated().any() choices = \ schedule_tours(nth_tours, persons_merged, alts, spec, logsum_tour_purpose, model_settings, timetable, timetable_window_id_col, previous_tour_by_parent_tour_id, tour_owner_id_col, estimator, chunk_size, tour_trace_label, tour_chunk_tag) choice_list.append(choices) choices = pd.concat(choice_list) # print "\nfinal timetable.windows\n%s" % timetable.windows """ [[7 7 7 0 0 0 0 2 7 7 4 7 7 7 7 7 7 7 7 7 7] [7 0 2 7 4 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7] [7 7 7 7 7 2 4 0 0 0 0 0 0 0 0 7 7 7 7 7 7] [7 7 0 2 7 7 4 0 0 7 7 7 7 7 7 7 7 7 7 7 7]] """ # we dont need to call replace_table() for this nonce timetable # because subtours are occuring during persons timetable scheduled time return choices def build_joint_tour_timetables(joint_tours, joint_tour_participants, persons_timetable, alts): # timetable with a window for each joint tour joint_tour_windows_df = tt.create_timetable_windows(joint_tours, alts) joint_tour_timetable = tt.TimeTable(joint_tour_windows_df, alts) for participant_num, nth_participants in \ joint_tour_participants.groupby('participant_num', sort=True): # nth_participant windows from persons_timetable participant_windows = persons_timetable.slice_windows_by_row_id(nth_participants.person_id) # assign them joint_tour_timetable joint_tour_timetable.assign_footprints(nth_participants.tour_id, participant_windows) return joint_tour_timetable def vectorize_joint_tour_scheduling( joint_tours, joint_tour_participants, persons_merged, alts, persons_timetable, spec, model_settings, estimator, chunk_size=0, trace_label=None): """ Like vectorize_tour_scheduling but specifically for joint tours joint tours have a few peculiarities necessitating separate treatment: Timetable has to be initialized to set all timeperiods... Parameters ---------- tours : DataFrame DataFrame of tours containing tour attributes, as well as a person_id column to define the nth tour for each person. persons_merged : DataFrame DataFrame of persons containing attributes referenced by expressions in spec alts : DataFrame DataFrame of alternatives which represent time slots. Will be passed to interaction_simulate in batches for each nth tour. spec : DataFrame The spec which will be passed to interaction_simulate. (or dict of specs keyed on tour_type if tour_types is not None) model_settings : dict Returns ------- choices : Series A Series of choices where the index is the index of the tours DataFrame and the values are the index of the alts DataFrame. persons_timetable : TimeTable timetable updated with joint tours (caller should replace_table for it to persist) """ trace_label = tracing.extend_trace_label(trace_label, 'vectorize_joint_tour_scheduling') assert len(joint_tours.index) > 0 assert 'tour_num' in joint_tours.columns assert 'tour_type' in joint_tours.columns timetable_window_id_col = None tour_owner_id_col = 'household_id' logsum_tour_purpose = None # FIXME logsums not currently supported choice_list = [] # keep a series of the the most recent tours for each person # initialize with first trip from alts previous_tour_by_householdid = pd.Series(alts.index[0], index=joint_tours.household_id.unique()) # tours must be scheduled in increasing trip_num order # second trip of type must be in group immediately following first # this ought to have been ensured when tours are created (tour_frequency.process_tours) # print "participant windows before scheduling\n%s" % \ # persons_timetable.slice_windows_by_row_id(joint_tour_participants.person_id) for tour_num, nth_tours in joint_tours.groupby('tour_num', sort=True): tour_trace_label = tracing.extend_trace_label(trace_label, f'tour_{tour_num}') tour_chunk_tag = tracing.extend_trace_label(trace_label, f"tour_{1 if tour_num == 1 else 'n'}") # no more than one tour per household per call to schedule_tours assert not nth_tours.household_id.duplicated().any() nth_participants = \ joint_tour_participants[joint_tour_participants.tour_id.isin(nth_tours.index)] timetable = build_joint_tour_timetables( nth_tours, nth_participants, persons_timetable, alts) choices = \ schedule_tours(nth_tours, persons_merged, alts, spec, logsum_tour_purpose, model_settings, timetable, timetable_window_id_col, previous_tour_by_householdid, tour_owner_id_col, estimator, chunk_size, tour_trace_label, tour_chunk_tag) # - update timetables of all joint tour participants persons_timetable.assign( nth_participants.person_id, reindex(choices, nth_participants.tour_id)) choice_list.append(choices) choices = pd.concat(choice_list) return choices
StarcoderdataPython
4935913
from functools import partial import itertools as it import more_itertools as mit import operator as op with open('input') as fh: initial_state = [int(x) for x in fh.readline().split(',')] program = initial_state.copy() inputs = [1] operations = {1: op.add, 2: op.mul, 3: inputs.pop, 4: print} parameter_counts = {1: 2, 2: 2, 3: 0, 4: 1} program_modifiers = dict.fromkeys((1, 2, 3, 4), partial(op.setitem, program)) index_modifiers = dict.fromkeys((1, 2, 3, 4), lambda i, v: i + 1) parameter_modes = {0: partial(op.getitem, program), 1: lambda x: x} def run(): index = 0 while index < len(program): instruction = str(program[index]) index += 1 op_code = int(instruction[-2:]) if op_code == 99: break if parameter_counts[op_code]: parameters = program[index : index + parameter_counts[op_code]] modes = mit.padded(reversed(instruction[:-2]), 0, n=len(parameters)) parameters = [parameter_modes[int(m)](int(p)) for m, p in zip(modes, parameters)] index += parameter_counts[op_code] else: parameters = () value = operations[op_code](*parameters) if value is not None: program_modifiers[op_code](program[index], value) index = index_modifiers[op_code](index, value) print('Part 1:') run() operations[5] = operations[6] = lambda *args: args parameter_counts[5] = parameter_counts[6] = 2 program_modifiers[5] = program_modifiers[6] = lambda i, v: None index_modifiers[5] = lambda i, v: v[1] if v[0] else i index_modifiers[6] = lambda i, v: v[1] if not v[0] else i operations[7] = op.lt operations[8] = op.eq parameter_counts[7] = parameter_counts[8] = 2 program_modifiers[7] = program_modifiers[8] = partial(op.setitem, program) index_modifiers[7] = index_modifiers[8] = lambda i, v: i + 1 program[:] = initial_state inputs[:] = [5] print('Part 2:') run()
StarcoderdataPython
4922028
<gh_stars>1-10 from tokenize_output.tokenize_output import dict_keys_values def test_dict_keys_values(): assert dict_keys_values([{'abc':{'b':{'c':123}}, 'd':[[1,2,3], None, True, {'e':1}]},4]) == {'keys': ['abc', 'b', 'c', 'd', 'e'], 'values': [123, 1, 2, 3, True, 1, 4]}
StarcoderdataPython
6524427
########################################################################### # # Copyright 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### ''' Bulkdozer Bulkdozer is a tool that can reduce trafficking time in Campaign Manager by up to 80%% by providing automated bulk editing capabilities. O p e n t h e < a h r e f = ' h t t p s : / / d o c s . g o o g l e . c o m / s p r e a d s h e e t s / d / 1 h L r p s a p X Y 5 j s b g Q R c S p j H 0 4 a v v d c o r t u f I 0 O X S J Z Q H 8 ' t a r g e t = ' _ b l a n k ' > B u l k d o z e r 0 . 2 3 < / a > f e e d . M a k e y o u r o w n c o p y o f t h e f e e d b y c l i c k i n g t h e F i l e - > M a k e a c o p y . . . m e n u i n t h e f e e d . G i v e i t a m e a n i n f u l n a m e i n c l u d i n g t h e v e r s i o n , y o u r n a m e , a n d t e a m t o h e l p y o u i d e n t i f y i t a n d e n s u r e y o u a r e u s i n g t h e c o r r e c t v e r s i o n . U n d e r t h e A c c o u n t I D f i e l d b e l o w , e n t e r t h e y o u r C a m p a i g n M a n a g e r N e t w o r k I D . U n d e r S h e e t U R L , e n t e r t h e U R L o f y o u r c o p y o f t h e f e e d t h a t y o u j u s t c r e a t e d i n t h e s t e p s a b o v e . G o t o t h e S t o r e t a b o f y o u r n e w f e e d , a n d e n t e r y o u r p r o f i l e I D i n t h e p r o f i l e I d f i e l d ( c e l l B 2 ) . Y o u r p r o f i l e I D i s v i s i b l e i n C a m p a i g n M a n a g e r b y c l i c k i n g y o u r a v a t a r o n t h e t o p r i g h t c o r n e r . C l i c k t h e ' S a v e ' b u t t o n b e l o w . A f t e r c l i c k i n g ' S a v e ' , c o p y t h i s p a g e ' s U R L f r o m y o u r b r o w s e r a d d r e s s b a r , a n d p a s t e i t i n t h e S t o r e t a b f o r t h e r e c i p e _ u r l f i e l d ( c e l l B 5 ) y o u r s h e e t . B u l k d o z e r i s r e a d y f o r u s e S t a y u p t o d a t e o n n e w r e l e a s e s a n d o t h e r g e n e r a l a n o u n c e m e n t s b y j o i n i n g < a h r e f = ' h t t p s : / / g r o u p s . g o o g l e . c o m / f o r u m / # ! f o r u m / b u l k d o z e r - a n n o u n c e m e n t s ' t a r g e t = ' _ b l a n k ' > B u l k d o z e r a n n o u n c e m e n t s < / a > . R e v i e w t h e < a h r e f = ' h t t p s : / / g i t h u b . c o m / g o o g l e / s t a r t h i n k e r / b l o b / m a s t e r / t u t o r i a l s / B u l k d o z e r / I n s t a l l a t i o n _ a n d _ U s e r _ g u i d e s . m d ' t a r g e t = ' _ b l a n k ' > B u l k d o z e r d o c u m e n t a t i o n < / a > . ''' from starthinker_airflow.factory import DAG_Factory USER_CONN_ID = "google_cloud_default" # The connection to use for user authentication. GCP_CONN_ID = "" # The connection to use for service authentication. INPUTS = { 'recipe_timezone': 'America/Chicago', # Timezone for report dates. 'account_id': '', # Campaign Manager Network ID (optional if profile id provided) 'dcm_profile_id': '', # Campaign Manager Profile ID (optional if account id provided) 'sheet_url': '', # Feed Sheet URL } TASKS = [ { 'traffic': { 'hour': [ ], 'account_id': { 'field': { 'name': 'account_id', 'kind': 'string', 'order': 1, 'description': 'Campaign Manager Network ID (optional if profile id provided)', 'default': '' } }, 'dcm_profile_id': { 'field': { 'name': 'dcm_profile_id', 'kind': 'string', 'order': 1, 'description': 'Campaign Manager Profile ID (optional if account id provided)', 'default': '' } }, 'auth': 'user', 'sheet_url': { 'field': { 'name': 'sheet_url', 'kind': 'string', 'order': 2, 'description': 'Feed Sheet URL', 'default': '' } }, 'timezone': { 'field': { 'name': 'recipe_timezone', 'kind': 'timezone', 'description': 'Timezone for report dates.', 'default': 'America/Chicago' } } } } ] DAG_FACTORY = DAG_Factory('bulkdozer', { 'tasks':TASKS }, INPUTS) DAG_FACTORY.apply_credentails(USER_CONN_ID, GCP_CONN_ID) DAG = DAG_FACTORY.execute() if __name__ == "__main__": DAG_FACTORY.print_commandline()
StarcoderdataPython
1780713
#!/usr/bin/python3 import requests from urllib.request import urlopen from requests import get import time import logging # Credentials username = 'username goes here' password = '<PASSWORD>' hostname = 'sub.example.com' timer = 30 ip = '' logging.basicConfig(filename="DynDNS.log", format='%(asctime)s %(message)s', filemode='w') logger = logging.getLogger() logger.setLevel(logging.INFO) while True: try: current_ip = urlopen('https://api.ipify.org/').read().decode('utf-8') except: logger.error('SOMETHING WENT WRONG!!!') time.sleep(timer) else: if ip != current_ip: # Use this line for IPv4 url = 'https://{}:{}@domains.google.com/nic/update?hostname={}&myip={}'.format( username, password, hostname, current_ip) resp = requests.post(url) out = resp.content.decode('utf-8') if ('good' in out or 'nochg' in out): ip = current_ip logger.info('****{} UPDATE****'.format(hostname)) logger.info('DynDNS Response {}'.format(out)) # Use this line for IPv6 # url = 'https://{}:{}@domains.google.com/nic/update?hostname={}'.format(username,password,hostname) time.sleep(timer)
StarcoderdataPython
9799828
<reponame>ezrankayamba/noxyt_bulkpay<filename>backend_rest/payments/tasks.py<gh_stars>0 from background_task import background from payments import models def load_files(): print("Loading files...") batch = models.Batch.objects.filter(status=1).first() count = 0 while(batch): batch.status = 2 batch.save() count += 1 print(f'Batch processed: {count} - {batch.id}') batch = models.Batch.objects.filter(status=1).first() print(f'Initial processing completed by processing {count} batches')
StarcoderdataPython
71032
<reponame>edwinsteele/weather-analyser<filename>retrievers/wunderground_retriever.py from base_retrievers import AbstractRetriever from models import Observation, SingleForecast import decimal import datetime import json __author__ = 'esteele' class WundergroundRetriever(AbstractRetriever): """ http://www.wunderground.com/weather/api/d/docs "local_epoch":"1364800751" "temp_c":22 """ def __init__(self, api_key): super(WundergroundRetriever, self).__init__() self.api_key = api_key @property def source(self): return "Wunderground" @property def observation_reload_delay(self): return 30 @property def forecast_reload_delay(self): return 60 def generate_observation_request_for_location(self, location): return "http://api.wunderground.com/api/%s" \ "/conditions/q/%s/%s.json" % (self.api_key, location.WUNDERGROUND_MAJOR_LOC, location.WUNDERGROUND_MINOR_LOC) def generate_forecast_request_for_location(self, location): # They have a different URL for hourly forecasts! return "http://api.wunderground.com/api/%s" \ "/forecast10day/q/%s/%s.json" % (self.api_key, location.WUNDERGROUND_MAJOR_LOC, location.WUNDERGROUND_MINOR_LOC) def parse_observation_response(self, result): most_recent_ob = json.loads( result, parse_int=decimal.Decimal)["current_observation"] ob_datetime = datetime.datetime.fromtimestamp( float(most_recent_ob["local_epoch"])) return Observation(self.source, ob_datetime, most_recent_ob["temp_c"]) def parse_forecast_response(self, result): forecast_results = [] json_result = json.loads( result, parse_float=decimal.Decimal) issue_date_best_guess = datetime.datetime.now() #XXX ???? for daily_forecast in json_result["forecast"]["simpleforecast"]["forecastday"]: start_time = datetime.datetime.fromtimestamp(float(daily_forecast["date"]["epoch"])) issue_date_best_guess = min(issue_date_best_guess, start_time) #???? forecast_results.append(SingleForecast( self.source, SingleForecast.DAILY_FORECAST_TYPE, start_time, start_time + datetime.timedelta(hours=23, minutes=59), issue_date_best_guess, daily_forecast["low"]["celsius"], daily_forecast["high"]["celsius"] )) # Do hourly forecasts later return forecast_results
StarcoderdataPython
9621537
# Generated by Django 2.0.1 on 2020-07-21 17:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('picture', '0005_image_thumbnail'), ] operations = [ migrations.AlterField( model_name='album', name='name', field=models.CharField(default='No Name', max_length=64, verbose_name='相册名'), ), migrations.AlterField( model_name='image', name='img', field=models.ImageField(default='picture/cover.jpeg', upload_to='picture/%Y/%m/%d/', verbose_name='照片'), ), migrations.AlterField( model_name='image', name='thumbnail', field=models.URLField(blank=True), ), ]
StarcoderdataPython
3210227
#!/usr/bin/env python3 # Copyright 2019 Google, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import datetime import logging import re import sys import time import googleapiclient import googleapiclient.discovery DISK_REGEXP = r'^https:\/\/www\.googleapis\.com\/compute\/v1\/projects\/(.*?)\/zones\/(.*?)\/disks\/(.*?)$' def main(): parser = argparse.ArgumentParser( description= '''Update disks attached to a GCE instance to customer supplied disk-type ''' ) parser.add_argument('--project', required=True, dest='project', action='store', type=str, help='Project containing the GCE instance.') parser.add_argument('--zone', required=True, dest='zone', action='store', type=str, help='Zone containing the GCE instance.') parser.add_argument('--instance', required=True, dest='instance', action='store', type=str, help='Instance name.') parser.add_argument('--disktype', required=True, dest='disktype', action='store', type=str, help='New disk that will replace the old one') parser.add_argument( '--destructive', dest='destructive', action='store_const', const=True, default=False, help= 'Upon completion, delete source disks and snapshots created during migration process.' ) args = parser.parse_args() create_newdisk_process(args.project, args.zone, args.instance, args.disktype, args.destructive) def create_newdisk_process(project, zone, instance, disktype, destructive): start = time.time() region = zone.rpartition("-")[0] compute = googleapiclient.discovery.build('compute', 'v1') stop_instance(compute, project, zone, instance) disks = get_instance_disks(compute, project, zone, instance) disktype = 'https://www.googleapis.com/compute/v1/projects/{0}/zones/{1}/diskTypes/'.format( project, zone) + disktype for source_disk in disks: disk_url = source_disk['source'] boot = source_disk['boot'] auto_delete = source_disk['autoDelete'] deviceName = source_disk['deviceName'][0:46] existing_disk_name = re.search(DISK_REGEXP, disk_url).group(3) snapshot_name = '{}-update-disk-{}'.format( existing_disk_name[0:39], int(datetime.datetime.now().timestamp())) new_disk_name = '{}-disk-{}'.format( existing_disk_name[0:46], int(datetime.datetime.now().timestamp())) create_snapshot(compute, project, zone, existing_disk_name, snapshot_name) create_disk(compute, project, region, zone, snapshot_name, new_disk_name, disktype) detach_disk(compute, project, zone, instance, deviceName) attach_disk(compute, project, zone, instance, new_disk_name, boot, auto_delete, deviceName) if destructive: delete_disk(compute, project, zone, existing_disk_name) delete_snapshot(compute, project, snapshot_name) start_instance(compute, project, zone, instance) end = time.time() logging.info('Migration took %s seconds.', end - start) def get_disk_type(compute, project, zone, disk_name): logging.debug('Getting project=%s, zone=%s, disk_name=%s metadata', project, zone, disk_name) result = compute.disks().get(project=project, zone=zone, disk=disk_name).execute() logging.debug( 'Getting project=%s, zone=%s, disk_name=%s metadata complete.', project, zone, disk_name) return result['type'] def get_instance_disks(compute, project, zone, instance): logging.debug('Getting project=%s, zone=%s, instance=%s disks', project, zone, instance) result = compute.instances().get(project=project, zone=zone, instance=instance).execute() logging.debug('Getting project=%s, zone=%s, instance=%s disks complete.', project, zone, instance) return result['disks'] def create_snapshot(compute, project, zone, disk, snapshot_name): body = { 'name': snapshot_name, } logging.debug('Creating snapshot of disk project=%s, zone=%s, disk=%s', project, zone, disk) operation = compute.disks().createSnapshot(project=project, zone=zone, disk=disk, body=body).execute() result = wait_for_zonal_operation(compute, project, zone, operation) logging.debug('Snapshotting of disk project=%s, zone=%s, disk=%s complete.', project, zone, disk) return result def delete_snapshot(compute, project, snapshot_name): logging.debug('Deleting snapshot project=%s, snapshot_name=%s', project, snapshot_name) operation = compute.snapshots().delete(project=project, snapshot=snapshot_name).execute() result = wait_for_global_operation(compute, project, operation) logging.debug('Deleting snapshot project=%s, snapshot_name=%s complete.', project, snapshot_name) return result def attach_disk(compute, project, zone, instance, disk, boot, auto_delete, deviceName): """ Attaches disk to instance. Requries iam.serviceAccountUser """ disk_url = 'projects/{0}/zones/{1}/disks/{2}'.format(project, zone, disk) body = { 'autoDelete': auto_delete, 'boot': boot, 'deviceName': deviceName, 'source': disk_url, } logging.debug('Attaching disk project=%s, zone=%s, instance=%s, disk=%s', project, zone, instance, disk_url) operation = compute.instances().attachDisk(project=project, zone=zone, instance=instance, body=body).execute() result = wait_for_zonal_operation(compute, project, zone, operation) logging.debug( 'Attaching disk project=%s, zone=%s, instance=%s, disk=%s complete.', project, zone, instance, disk_url) return result def detach_disk(compute, project, zone, instance, disk): logging.debug('Detaching disk project=%s, zone=%s, instance=%s, disk=%s', project, zone, instance, disk) operation = compute.instances().detachDisk(project=project, zone=zone, instance=instance, deviceName=disk).execute() result = wait_for_zonal_operation(compute, project, zone, operation) logging.debug( 'Detaching disk project=%s, zone=%s, instance=%s, disk=%s complete.', project, zone, instance, disk) return result def delete_disk(compute, project, zone, disk): logging.debug('Deleting disk project=%s, zone=%s, disk=%s', project, zone, disk) operation = compute.disks().delete(project=project, zone=zone, disk=disk).execute() result = wait_for_zonal_operation(compute, project, zone, operation) logging.debug('Deleting disk project=%s, zone=%s, disk=%s complete.', project, zone, disk) return result def create_disk(compute, project, region, zone, snapshot_name, disk_name, disk_type): """Creates a new user supplied disk-type from snapshot""" source_snapshot = 'projects/{0}/global/snapshots/{1}'.format( project, snapshot_name) body = { 'name': disk_name, 'sourceSnapshot': source_snapshot, 'type': disk_type } logging.debug( 'Creating new disk project=%s, zone=%s, name=%s source_snapshot=%s, kmsKeyName=%s', project, zone, disk_name, source_snapshot) operation = compute.disks().insert(project=project, zone=zone, body=body).execute() result = wait_for_zonal_operation(compute, project, zone, operation) logging.debug( 'Creating new disk project=%s, zone=%s, name=%s source_snapshot=%s, kmsKeyName=%s complete.', project, zone, disk_name, source_snapshot) return result def start_instance(compute, project, zone, instance): logging.debug('Starting project=%s, zone=%s, instance=%s', project, zone, instance) operation = compute.instances().start(project=project, zone=zone, instance=instance).execute() result = wait_for_zonal_operation(compute, project, zone, operation) logging.debug('Starting project=%s, zone=%s, instance=%s complete.', project, zone, instance) return result def stop_instance(compute, project, zone, instance): logging.debug('Stopping project=%s, zone=%s, instance=%s', project, zone, instance) operation = compute.instances().stop(project=project, zone=zone, instance=instance).execute() result = wait_for_zonal_operation(compute, project, zone, operation) logging.debug('Stopping project=%s, zone=%s, instance=%s complete.', project, zone, instance) return result def wait_for_global_operation(compute, project, operation): """Helper for waiting for global operation to complete.""" operation = operation['name'] def build(): return compute.globalOperations().get(project=project, operation=operation) return _wait_for_operation(operation, build) def wait_for_zonal_operation(compute, project, zone, operation): """Helper for waiting for zonal operation to complete.""" operation = operation['name'] def build(): return compute.zoneOperations().get(project=project, zone=zone, operation=operation) return _wait_for_operation(operation, build) def _wait_for_operation(operation, build_request): """Helper for waiting for operation to complete.""" logging.debug('Waiting for %s', operation) while True: sys.stdout.flush() result = build_request().execute() if result['status'] == 'DONE': logging.debug('done!') if 'error' in result: logging.error('finished with an error') logging.error('Error %s', result['error']) raise Exception(result['error']) return result time.sleep(5) if __name__ == '__main__': main()
StarcoderdataPython
1660061
<reponame>JBlaschke/lcls2<filename>psana/psana/graphqt/PSPopupSelectExp.py #------------------------------ # Module PSPopupSelectExp... #------------------------------ from PyQt5.QtWidgets import QDialog, QListWidget, QPushButton, QListWidgetItem,\ QVBoxLayout, QHBoxLayout, QTabBar from PyQt5.QtCore import Qt, QPoint, QMargins, QEvent from PyQt5.QtGui import QFont, QColor, QCursor #------------------------------ def years(lst_exp) : years = [] for exp in lst_exp : year = exp[-2:] if year in years : continue if not year.isdigit() : continue years.append(year) return ['20%s'%y for y in sorted(years)] #------------------------------ def years_and_runs(lst_exp) : years = [] runs = [] for exp in lst_exp : if len(exp) != 8 : continue year = exp[-2:] if year in years : continue if not year.isdigit() : continue years.append(year) for exp in lst_exp : if len(exp) != 9 : continue run = exp[-2:] if run in runs : continue if not run.isdigit() : continue runs.append(run) return ['20%s'%y for y in sorted(years)], ['Run:%s'%r for r in sorted(runs)] #------------------------------ def lst_exp_for_year(lst_exp, year) : str_year = year if isinstance(year,str) else '%4d'%year pattern = str_year[-2:] # two last digits if the year return [exp for exp in lst_exp if exp[-2:]==pattern] #------------------------------ class PSPopupSelectExp(QDialog) : """ """ def __init__(self, parent=None, lst_exp=[]): QDialog.__init__(self, parent) self.name_sel = None self.list = QListWidget(parent) self.fill_list(lst_exp) # Confirmation buttons #self.but_cancel = QPushButton('&Cancel') #self.but_apply = QPushButton('&Apply') #cp.setIcons() #self.but_cancel.setIcon(cp.icon_button_cancel) #self.but_apply .setIcon(cp.icon_button_ok) #self.connect(self.but_cancel, QtCore.SIGNAL('clicked()'), self.onCancel) #self.connect(self.but_apply, QtCore.SIGNAL('clicked()'), self.onApply) #self.hbox = QVBoxLayout() #self.hbox.addWidget(self.but_cancel) #self.hbox.addWidget(self.but_apply) ##self.hbox.addStretch(1) vbox = QVBoxLayout() vbox.addWidget(self.list) #vbox.addLayout(self.hbox) self.setLayout(vbox) self.list.itemClicked.connect(self.onItemClick) self.showToolTips() self.setStyle() def fill_list_v0(self, lst_exp) : for exp in sorted(lst_exp) : item = QListWidgetItem(exp, self.list) self.list.sortItems(Qt.AscendingOrder) def fill_list_v1(self, lst_exp) : self.years = sorted(years(lst_exp)) for year in self.years : item = QListWidgetItem(year, self.list) item.setFont(QFont('Courier', 14, QFont.Bold)) item.setFlags(Qt.NoItemFlags) #item.setFlags(Qt.NoItemFlags ^ Qt.ItemIsEnabled ^ Qt.ItemIsSelectable) for exp in sorted(lst_exp_for_year(lst_exp, year)) : item = QListWidgetItem(exp, self.list) item.setFont(QFont('Monospace', 11, QFont.Normal)) # Bold)) def fill_list(self, lst_exp) : self.years, self.runs = years_and_runs(lst_exp) for year in self.years : item = QListWidgetItem(year, self.list) item.setFont(QFont('Courier', 14, QFont.Bold)) item.setFlags(Qt.NoItemFlags) #item.setFlags(Qt.NoItemFlags ^ Qt.ItemIsEnabled ^ Qt.ItemIsSelectable) for exp in sorted(lst_exp_for_year(lst_exp, year)) : if len(exp) != 8 : continue item = QListWidgetItem(exp, self.list) item.setFont(QFont('Monospace', 11, QFont.Normal)) # Bold)) for run in self.runs : item = QListWidgetItem(run, self.list) item.setFont(QFont('Courier', 14, QFont.Bold)) item.setFlags(Qt.NoItemFlags) #item.setFlags(Qt.NoItemFlags ^ Qt.ItemIsEnabled ^ Qt.ItemIsSelectable) for exp in sorted(lst_exp_for_year(lst_exp, run)) : if len(exp) != 9 : continue item = QListWidgetItem(exp, self.list) item.setFont(QFont('Monospace', 11, QFont.Normal)) # Bold)) def setStyle(self): self.setWindowTitle('Select experiment') self.setFixedWidth(120) self.setMinimumHeight(600) #self.setMaximumWidth(600) #self.setStyleSheet(cp.styleBkgd) self.setWindowFlags(self.windowFlags() | Qt.FramelessWindowHint) self.layout().setContentsMargins(2,2,2,2) #self.setStyleSheet(cp.styleBkgd) #self.but_cancel.setStyleSheet(cp.styleButton) #self.but_apply.setStyleSheet(cp.styleButton) self.move(QCursor.pos().__add__(QPoint(-110,-50))) def showToolTips(self): #self.but_apply.setToolTip('Apply selection') #self.but_cancel.setToolTip('Cancel selection') self.setToolTip('Select experiment') def onItemClick(self, item): #if item.isSelected(): item.setSelected(False) #widg = self.list.itemWidget(item) #item.checkState() self.name_sel = item.text() if self.name_sel in self.years : return # ignore selection of year if self.name_sel in self.runs : return # ignore selection of run #print(self.name_sel) #logger.debug('Selected experiment %s' % self.name_sel, __name__) self.accept() def event(self, e): """Intercepts mouse clicks outside popup window""" #print('event.type', e.type()) if e.type() == QEvent.WindowDeactivate : self.reject() return QDialog.event(self, e) def closeEvent(self, event): #logger.info('closeEvent', __name__) self.reject() def selectedName(self): return self.name_sel def onCancel(self): #logger.debug('onCancel', __name__) self.reject() def onApply(self): #logger.debug('onApply', __name__) self.accept() #------------------------------ #----------- TESTS ------------ #------------------------------ if __name__ == "__main__" : def select_experiment_v1(parent, lst_exp) : w = PSPopupSelectExp(parent, lst_exp) ##w.show() resp=w.exec_() if resp == QDialog.Accepted : return w.selectedName() elif resp == QDialog.Rejected : return None else : return None #------------------------------ def test_all(tname) : import os from PyQt5.QtWidgets import QApplication lst_exp = sorted(os.listdir('/reg/d/psdm/SXR/')) #lst_exp = sorted(os.listdir('/reg/d/psdm/CXI/')) #print('lst_exps:', lst_exp) print('years form the list of experiments', years(lst_exp)) print('years and runs form the list of experiments', str(years_and_runs(lst_exp))) print('experiments for 2016:', lst_exp_for_year(lst_exp, '2016')) app = QApplication(sys.argv) exp_name = 'N/A' if tname == '1': exp_name = select_experiment_v1(None, lst_exp) print('exp_name = %s' % exp_name) del app #------------------------------ if __name__ == "__main__" : import sys; global sys tname = sys.argv[1] if len(sys.argv) > 1 else '1' print(50*'_', '\nTest %s' % tname) test_all(tname) sys.exit('End of Test %s' % tname) #------------------------------
StarcoderdataPython
11287012
<reponame>jojonki/QA-LSTM<filename>train.py ''' LSTM-based Deep Learning Models for Non-factoid Answer Selection <NAME>, <NAME>, <NAME>, <NAME>, ICLR 2016 https://arxiv.org/abs/1511.04108 ''' import os import random import argparse from tqdm import tqdm import numpy as np import torch from gensim.models.keyedvectors import KeyedVectors from utils import load_data, load_data2, load_vocabulary, Config, load_embd_weights from utils import make_vector from models import QA_LSTM parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=128, help='input batch size') parser.add_argument('--start_epoch', type=int, default=0, help='resume epoch count, default=0') parser.add_argument('--n_epochs', type=int, default=4, help='input batch size') parser.add_argument('--embd_size', type=int, default=300, help='word embedding size') parser.add_argument('--hidden_size', type=int, default=141, help='hidden size of one-directional LSTM') parser.add_argument('--max_sent_len', type=int, default=200, help='max sentence length') parser.add_argument('--margin', type=float, default=0.2, help='margin for loss function') parser.add_argument('--use_pickle', type=int, default=0, help='load dataset from pickles') parser.add_argument('--test', type=int, default=0, help='1 for test, or for training') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--resume', default='./checkpoints/model_best.tar', type=str, metavar='PATH', help='path saved params') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) PAD = '<PAD>' id_to_word, label_to_ans, label_to_ans_text = load_vocabulary('./V2/vocabulary', './V2/InsuranceQA.label2answer.token.encoded') w2i = {w: i for i, w in enumerate(id_to_word.values(), 1)} w2i[PAD] = 0 vocab_size = len(w2i) print('vocab_size:', vocab_size) train_data = load_data('./V2/InsuranceQA.question.anslabel.token.500.pool.solr.train.encoded', id_to_word, label_to_ans_text) test_data = load_data2('./V2/InsuranceQA.question.anslabel.token.500.pool.solr.test.encoded', id_to_word, label_to_ans_text) print('n_train:', len(train_data)) print('n_test:', len(test_data)) args.vocab_size = vocab_size args.pre_embd = None print('loading a word2vec binary...') model_path = './GoogleNews-vectors-negative300.bin' word2vec = KeyedVectors.load_word2vec_format(model_path, binary=True) print('loaded!') pre_embd = load_embd_weights(word2vec, vocab_size, args.embd_size, w2i) # save_pickle(pre_embd, 'pre_embd.pickle') args.pre_embd = pre_embd def save_checkpoint(state, filename): print('save model!', filename) torch.save(state, filename) def loss_fn(pos_sim, neg_sim): loss = args.margin - pos_sim + neg_sim if loss.data[0] < 0: loss.data[0] = 0 return loss def train(model, data, test_data, optimizer, n_epochs=4, batch_size=256): for epoch in range(n_epochs): model.train() print('epoch', epoch) random.shuffle(data) # TODO use idxies losses = [] for i, d in enumerate(tqdm(data)): q, pos, negs = d[0], d[1], d[2] vec_q = make_vector([q], w2i, len(q)) vec_pos = make_vector([pos], w2i, len(pos)) pos_sim = model(vec_q, vec_pos) for _ in range(50): neg = random.choice(negs) vec_neg = make_vector([neg], w2i, len(neg)) neg_sim = model(vec_q, vec_neg) loss = loss_fn(pos_sim, neg_sim) if loss.data[0] != 0: losses.append(loss) break if len(losses) == batch_size or i == len(data) - 1: loss = torch.mean(torch.stack(losses, 0).squeeze(), 0) print(loss.data[0]) optimizer.zero_grad() loss.backward() optimizer.step() losses = [] filename = '{}/Epoch-{}.model'.format('./checkpoints', epoch) save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), }, filename=filename) test(model, test_data) def test(model, data): acc, total = 0, 0 for d in data: q = d[0] print('q', ' '.join(q)) labels = d[1] cands = d[2] # preprare answer labels label_indices = [cands.index(l) for l in labels if l in cands] # build data q = make_vector([q], w2i, len(q)) cands = [label_to_ans_text[c] for c in cands] # id to text max_cand_len = min(args.max_sent_len, max([len(c) for c in cands])) cands = make_vector(cands, w2i, max_cand_len) # predict scores = [model(q, c.unsqueeze(0)).data[0] for c in cands] pred_idx = np.argmax(scores) if pred_idx in label_indices: print('correct') acc += 1 else: print('wrong') total += 1 print('Test Acc:', 100*acc/total, '%') model = QA_LSTM(args) if torch.cuda.is_available(): model.cuda() # optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.01) optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters())) if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] # best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) # TODO ? print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) train(model, train_data, test_data, optimizer) # test(model, test_data)
StarcoderdataPython
6617070
<filename>seimas/migrations/0022_auto_20180816_1903.py<gh_stars>1-10 # Generated by Django 2.1 on 2018-08-16 19:03 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('seimas', '0021_politiciangame'), ] operations = [ migrations.AlterModelOptions( name='politiciangame', options={'ordering': ['-created_at'], 'verbose_name_plural': 'Politicians game'}, ), ]
StarcoderdataPython
11270550
<reponame>anhuaxiang/compose<filename>composeml/label_times.py<gh_stars>1-10 import json import os import pandas as pd from composeml.label_plots import LabelPlots def read_csv(path, filename='label_times.csv', load_settings=True): """Read label times in csv format from disk. Args: path (str) : Directory on disk to read from. filename (str) : Filename for label times. Default value is `label_times.csv`. load_settings (bool) : Whether to load the settings used to make the label times. Returns: LabelTimes : Deserialized label times. """ file = os.path.join(path, filename) assert os.path.exists(file), "data not found: '%s'" % file data = pd.read_csv(file, index_col='id') label_times = LabelTimes(data=data) if load_settings: label_times = label_times._load_settings(path) return label_times def read_parquet(path, filename='label_times.parquet', load_settings=True): """Read label times in parquet format from disk. Args: path (str) : Directory on disk to read from. filename (str) : Filename for label times. Default value is `label_times.parquet`. load_settings (bool) : Whether to load the settings used to make the label times. Returns: LabelTimes : Deserialized label times. """ file = os.path.join(path, filename) assert os.path.exists(file), "data not found: '%s'" % file data = pd.read_parquet(file) label_times = LabelTimes(data=data) if load_settings: label_times = label_times._load_settings(path) return label_times def read_pickle(path, filename='label_times.pickle', load_settings=True): """Read label times in parquet format from disk. Args: path (str) : Directory on disk to read from. filename (str) : Filename for label times. Default value is `label_times.parquet`. load_settings (bool) : Whether to load the settings used to make the label times. Returns: LabelTimes : Deserialized label times. """ file = os.path.join(path, filename) assert os.path.exists(file), "data not found: '%s'" % file data = pd.read_pickle(file) label_times = LabelTimes(data=data) if load_settings: label_times = label_times._load_settings(path) return label_times class LabelTimes(pd.DataFrame): """A data frame containing labels made by a label maker. Attributes: settings """ _metadata = ['settings'] def __init__(self, data=None, target_entity=None, name=None, label_type=None, settings=None, *args, **kwargs): super().__init__(data=data, *args, **kwargs) if label_type is not None: error = 'label type must be "continuous" or "discrete"' assert label_type in ['continuous', 'discrete'], error self.settings = settings or { 'target_entity': target_entity, 'labeling_function': name, 'label_type': label_type, 'transforms': [], } self.plot = LabelPlots(self) def __finalize__(self, other, method=None, **kwargs): """Propagate metadata from other label times. Args: other (LabelTimes) : The label times from which to get the attributes from. method (str) : A passed method name for optionally taking different types of propagation actions based on this value. """ if method == 'concat': other = other.objs[0] for key in self._metadata: value = getattr(other, key, None) setattr(self, key, value) return self return super().__finalize__(other=other, method=method, **kwargs) @property def _constructor(self): return LabelTimes @property def name(self): """Get name of label times.""" return self.settings.get('labeling_function') @name.setter def name(self, value): """Set name of label times.""" self.settings['labeling_function'] = value @property def target_entity(self): """Get target entity of label times.""" return self.settings.get('target_entity') @target_entity.setter def target_entity(self, value): """Set target entity of label times.""" self.settings['target_entity'] = value @property def label_type(self): """Get label type.""" return self.settings.get('label_type') @label_type.setter def label_type(self, value): """Set label type.""" self.settings['label_type'] = value @property def transforms(self): """Get transforms of label times.""" return self.settings.get('transforms', []) @transforms.setter def transforms(self, value): """Set transforms of label times.""" self.settings['transforms'] = value @property def is_discrete(self): """Whether labels are discrete.""" if self.label_type is None: self.label_type = self.infer_type() return self.label_type == 'discrete' @property def distribution(self): """Returns label distribution if labels are discrete.""" if self.is_discrete: labels = self.assign(count=1) labels = labels.groupby(self.name) distribution = labels['count'].count() return distribution @property def count(self): """Returns label count per instance.""" count = self.groupby(self.target_entity) count = count[self.name].count() count = count.to_frame('count') return count @property def count_by_time(self): """Returns label count across cutoff times.""" if self.is_discrete: keys = ['cutoff_time', self.name] value = self.groupby(keys).cutoff_time.count() value = value.unstack(self.name).fillna(0) value = value.cumsum() return value value = self.groupby('cutoff_time') value = value[self.name].count() value = value.cumsum() return value def describe(self): """Prints out label info with transform settings that reproduce labels.""" if self.name is not None and self.is_discrete: print('Label Distribution\n' + '-' * 18, end='\n') distribution = self[self.name].value_counts() distribution.index = distribution.index.astype('str') distribution.sort_index(inplace=True) distribution['Total:'] = distribution.sum() print(distribution.to_string(), end='\n\n\n') settings = pd.Series(self.settings) transforms = settings.pop('transforms') print('Settings\n' + '-' * 8, end='\n') if settings.isnull().all(): print('No settings', end='\n\n\n') else: settings.sort_index(inplace=True) print(settings.to_string(), end='\n\n\n') print('Transforms\n' + '-' * 10, end='\n') for step, transform in enumerate(transforms): transform = pd.Series(transform) transform.sort_index(inplace=True) name = transform.pop('transform') transform = transform.add_prefix(' - ') transform = transform.add_suffix(':') transform = transform.to_string() header = '{}. {}\n'.format(step + 1, name) print(header + transform, end='\n\n') if len(transforms) == 0: print('No transforms applied', end='\n\n') def copy(self): """ Makes a copy of this object. Returns: LabelTimes : Copy of label times. """ label_times = super().copy() label_times.settings = self.settings.copy() label_times.transforms = self.transforms.copy() return label_times def threshold(self, value, inplace=False): """ Creates binary labels by testing if labels are above threshold. Args: value (float) : Value of threshold. inplace (bool) : Modify labels in place. Returns: labels (LabelTimes) : Instance of labels. """ labels = self if inplace else self.copy() labels[self.name] = labels[self.name].gt(value) labels.label_type = 'discrete' labels.settings['label_type'] = 'discrete' transform = {'transform': 'threshold', 'value': value} labels.transforms.append(transform) if not inplace: return labels def apply_lead(self, value, inplace=False): """ Shifts the label times earlier for predicting in advance. Args: value (str) : Time to shift earlier. inplace (bool) : Modify labels in place. Returns: labels (LabelTimes) : Instance of labels. """ labels = self if inplace else self.copy() labels['cutoff_time'] = labels['cutoff_time'].sub(pd.Timedelta(value)) transform = {'transform': 'apply_lead', 'value': value} labels.transforms.append(transform) if not inplace: return labels def bin(self, bins, quantiles=False, labels=None, right=True): """ Bin labels into discrete intervals. Args: bins (int or array) : The criteria to bin by. * bins (int) : Number of bins either equal-width or quantile-based. If `quantiles` is `False`, defines the number of equal-width bins. The range is extended by .1% on each side to include the minimum and maximum values. If `quantiles` is `True`, defines the number of quantiles (e.g. 10 for deciles, 4 for quartiles, etc.) * bins (array) : Bin edges either user defined or quantile-based. If `quantiles` is `False`, defines the bin edges allowing for non-uniform width. No extension is done. If `quantiles` is `True`, defines the bin edges usings an array of quantiles (e.g. [0, .25, .5, .75, 1.] for quartiles) quantiles (bool) : Determines whether to use a quantile-based discretization function. labels (array) : Specifies the labels for the returned bins. Must be the same length as the resulting bins. right (bool) : Indicates whether bins includes the rightmost edge or not. Does not apply to quantile-based bins. Returns: LabelTimes : Instance of labels. Examples: .. _equal-widths: Using bins of `equal-widths`_: >>> labels.bin(2).head(2).T label_id 0 1 customer_id 1 1 cutoff_time 2014-01-01 00:45:00 2014-01-01 00:48:00 my_labeling_function (157.5, 283.46] (31.288, 157.5] .. _custom-widths: Using bins of `custom-widths`_: >>> values = labels.bin([0, 200, 400]) >>> values.head(2).T label_id 0 1 customer_id 1 1 cutoff_time 2014-01-01 00:45:00 2014-01-01 00:48:00 my_labeling_function (200, 400] (0, 200] .. _quantile-based: Using `quantile-based`_ bins: >>> values = labels.bin(4, quantiles=True) # (i.e. quartiles) >>> values.head(2).T label_id 0 1 customer_id 1 1 cutoff_time 2014-01-01 00:45:00 2014-01-01 00:48:00 my_labeling_function (137.44, 241.062] (43.848, 137.44] .. _labels: Assigning `labels`_ to bins: >>> values = labels.bin(3, labels=['low', 'medium', 'high']) >>> values.head(2).T label_id 0 1 customer_id 1 1 cutoff_time 2014-01-01 00:45:00 2014-01-01 00:48:00 my_labeling_function high low """ # noqa label_times = self.copy() values = label_times[self.name].values if quantiles: label_times[self.name] = pd.qcut(values, q=bins, labels=labels) else: label_times[self.name] = pd.cut(values, bins=bins, labels=labels, right=right) transform = { 'transform': 'bin', 'bins': bins, 'quantiles': quantiles, 'labels': labels, 'right': right, } label_times.transforms.append(transform) label_times.label_type = 'discrete' return label_times def sample(self, n=None, frac=None, random_state=None, replace=False): """ Return a random sample of labels. Args: n (int or dict) : Sample number of labels. A dictionary returns the number of samples to each label. Cannot be used with frac. frac (float or dict) : Sample fraction of labels. A dictionary returns the sample fraction to each label. Cannot be used with n. random_state (int) : Seed for the random number generator. replace (bool) : Sample with or without replacement. Default value is False. Returns: LabelTimes : Random sample of labels. Examples: Create mock data: >>> labels = {'labels': list('AABBBAA')} >>> labels = LabelTimes(labels, name='labels') >>> labels labels 0 A 1 A 2 B 3 B 4 B 5 A 6 A Sample number of labels: >>> labels.sample(n=3, random_state=0).sort_index() labels 1 A 2 B 6 A Sample number per label: >>> n_per_label = {'A': 1, 'B': 2} >>> labels.sample(n=n_per_label, random_state=0).sort_index() labels 3 B 4 B 5 A Sample fraction of labels: >>> labels.sample(frac=.4, random_state=2).sort_index() labels 1 A 3 B 4 B Sample fraction per label: >>> frac_per_label = {'A': .5, 'B': .34} >>> labels.sample(frac=frac_per_label, random_state=2).sort_index() labels 4 B 5 A 6 A """ # noqa if isinstance(n, int): sample = super().sample(n=n, random_state=random_state, replace=replace) return sample if isinstance(n, dict): sample_per_label = [] for label, n, in n.items(): label = self[self[self.name] == label] sample = label.sample(n=n, random_state=random_state, replace=replace) sample_per_label.append(sample) sample = pd.concat(sample_per_label, axis=0, sort=False) return sample if isinstance(frac, float): sample = super().sample(frac=frac, random_state=random_state, replace=replace) return sample if isinstance(frac, dict): sample_per_label = [] for label, frac, in frac.items(): label = self[self[self.name] == label] sample = label.sample(frac=frac, random_state=random_state, replace=replace) sample_per_label.append(sample) sample = pd.concat(sample_per_label, axis=0, sort=False) return sample def infer_type(self): """Infer label type. Returns: str : Inferred label type. Either "continuous" or "discrete". """ dtype = self[self.name].dtype is_discrete = pd.api.types.is_bool_dtype(dtype) is_discrete = is_discrete or pd.api.types.is_categorical_dtype(dtype) is_discrete = is_discrete or pd.api.types.is_object_dtype(dtype) if is_discrete: return 'discrete' return 'continuous' def equals(self, other): """Determines if two label time objects are the same. Args: other (LabelTimes) : Other label time object for comparison. Returns: bool : Whether label time objects are the same. """ return super().equals(other) and self.settings == other.settings def _load_settings(self, path): """Read the settings in json format from disk. Args: path (str) : Directory on disk to read from. """ file = os.path.join(path, 'settings.json') assert os.path.exists(file), 'settings not found' with open(file, 'r') as file: settings = json.load(file) if 'dtypes' in settings: dtypes = settings.pop('dtypes') self = LabelTimes(self.astype(dtypes)) self.settings.update(settings) return self def _save_settings(self, path): """Write the settings in json format to disk. Args: path (str) : Directory on disk to write to. """ dtypes = self.dtypes.astype('str') self.settings['dtypes'] = dtypes.to_dict() file = os.path.join(path, 'settings.json') with open(file, 'w') as file: json.dump(self.settings, file) del self.settings['dtypes'] def to_csv(self, path, filename='label_times.csv', save_settings=True): """Write label times in csv format to disk. Args: path (str) : Location on disk to write to (will be created as a directory). filename (str) : Filename for label times. Default value is `label_times.csv`. save_settings (bool) : Whether to save the settings used to make the label times. """ os.makedirs(path, exist_ok=True) file = os.path.join(path, filename) super().to_csv(file) if save_settings: self._save_settings(path) def to_parquet(self, path, filename='label_times.parquet', save_settings=True): """Write label times in parquet format to disk. Args: path (str) : Location on disk to write to (will be created as a directory). filename (str) : Filename for label times. Default value is `label_times.parquet`. save_settings (bool) : Whether to save the settings used to make the label times. """ os.makedirs(path, exist_ok=True) file = os.path.join(path, filename) super().to_parquet(file, compression=None, engine='auto') if save_settings: self._save_settings(path) def to_pickle(self, path, filename='label_times.pickle', save_settings=True): """Write label times in pickle format to disk. Args: path (str) : Location on disk to write to (will be created as a directory). filename (str) : Filename for label times. Default value is `label_times.pickle`. save_settings (bool) : Whether to save the settings used to make the label times. """ os.makedirs(path, exist_ok=True) file = os.path.join(path, filename) super().to_pickle(file) if save_settings: self._save_settings(path)
StarcoderdataPython
77453
import warnings import cv2 import imageio import matplotlib.pyplot as plt import numpy as np import torch import torchvision from PIL import Image import model import opt import train import pdb def set_deterministic(): import random import numpy import torch torch.manual_seed(0) random.seed(0) numpy.random.seed(0) torch.backends.cudnn.benchmark = False def adjust_jupyter_argv(): import sys sys.argv = sys.argv[:1] def write_mp4(name, frames, fps=10): imageio.mimwrite(name + ".mp4", frames, "mp4", fps=fps) def overlay_image(im, im_overlay, coord=(100, 70)): # assumes that im is 3 channel and im_overlay 4 (with alpha) alpha = im_overlay[:, :, 3] offset_rows = im_overlay.shape[0] offset_cols = im_overlay.shape[1] row = coord[0] col = coord[1] im[row : row + offset_rows, col : col + offset_cols, :] = ( 1 - alpha[:, :, None] ) * im[row : row + offset_rows, col : col + offset_cols, :] + alpha[ :, :, None ] * im_overlay[ :, :, :3 ] return im def get_parameters(models): """Get all model parameters recursively.""" parameters = [] if isinstance(models, list): for model in models: parameters += get_parameters(model) elif isinstance(models, dict): for model in models.values(): parameters += get_parameters(model) else: # single pytorch model parameters += list(models.parameters()) return parameters def visualize_depth(depth, cmap=cv2.COLORMAP_JET): x = depth.cpu().numpy() x = np.nan_to_num(x) # change nan to 0 mi = np.min(x) # get minimum depth ma = np.max(x) x = (x - mi) / (ma - mi + 1e-8) # normalize to 0~1 x = (255 * x).astype(np.uint8) x_ = Image.fromarray(cv2.applyColorMap(x, cmap)) x_ = torchvision.transforms.ToTensor()(x_) # (3, H, W) return x_ def assign_appearance(ids_train, ids_unassigned): # described in experiments, (3) NeRF-W: reassign each test embedding to closest train embedding ids = sorted(ids_train + ids_unassigned) g = {} for id in ids_unassigned: pos = ids.index(id) if pos == 0: # then only possible to assign to next embedding id_reassign = ids[1] elif pos == len(ids) - 1: # then only possible to assign to previous embedding id_reassign = ids[pos - 1] else: # otherwise the one that is closes according to frame index id_prev = ids[pos - 1] id_next = ids[pos + 1] id_reassign = min( (abs(ids[pos] - id_prev), id_prev), (abs(ids[pos] - id_next), id_next) )[1] g[ids[pos]] = id_reassign return g def init_model(ckpt_path, dataset): ckpt = torch.load(ckpt_path, map_location="cpu") opt_hp = opt.get_opts(dataset.vid) for j in ckpt["hyper_parameters"]: setattr(opt_hp, j, ckpt["hyper_parameters"][j]) model = train.NeuralDiffSystem( opt_hp, train_dataset=dataset, val_dataset=dataset ).cuda() model.load_state_dict(ckpt["state_dict"]) g_test = assign_appearance(dataset.img_ids_train, dataset.img_ids_test) g_val = assign_appearance(dataset.img_ids_train, dataset.img_ids_val) for g in [g_test, g_val]: for i, i_train in g.items(): model.embedding_a.weight.data[i] = model.embedding_a.weight.data[ i_train ] return model
StarcoderdataPython
6653816
<reponame>S-Stephen/mock-idp<filename>mockidp/saml/response.py # coding: utf-8 import base64 import time import pkg_resources from jinja2 import Environment, PackageLoader, select_autoescape from lxml import etree from signxml import XMLSigner from mockidp.core.config import get_service_provider env = Environment( loader=PackageLoader('mockidp', 'templates'), autoescape=select_autoescape(['html', 'xml']), ) def saml_timestamp(epoch): return time.strftime("%Y-%m-%dT%H:%M:%S", time.gmtime(epoch)) env.filters['timestamp'] = saml_timestamp def read_bytes(path): filename = pkg_resources.resource_filename('mockidp', path) return open(filename, 'rb').read() def sign_assertions(response_str): """ Return signed response string """ response_element = etree.fromstring(response_str) cert = read_bytes("keys/cert.pem") key = read_bytes("keys/key.pem") for e in response_element.findall('{urn:oasis:names:tc:SAML:2.0:assertion}Assertion'): signer = XMLSigner(c14n_algorithm="http://www.w3.org/2001/10/xml-exc-c14n#", signature_algorithm='rsa-sha1', digest_algorithm='sha1') signed_e = signer.sign(e, key=key, cert=cert) response_element.replace(e, signed_e) return etree.tostring(response_element, pretty_print=True) def create_auth_response(config, session): rendered_response = render_response(session, session.user) signed_response = sign_assertions(rendered_response) encoded_response = base64.b64encode(signed_response).decode('utf-8') service_provider = get_service_provider(config, session.sp_entity_id) url = service_provider['response_url'] return url, encoded_response def render_response(session, user): template = env.get_template('saml_response.xml') params = dict( session=session, user=user ) response = template.render(params) return response def create_logout_response(config, session): rendered_response = render_logout_response(config, session.user, session) signed_response = sign_assertions(rendered_response) encoded_response = base64.b64encode(signed_response).decode('utf-8') service_provider = get_service_provider(config, session.sp_entity_id) url = service_provider['logout_url'] return url, encoded_response def render_logout_response(config, user, session): template = env.get_template('saml/logout_response.xml') params = dict( config=config, session=session, user=user ) response = template.render(params) return response
StarcoderdataPython
11335850
<reponame>pdubucq/steamturbines<filename>tools.py # -*- coding: utf-8 -*- """ Created on Sun Oct 21 10:00:15 2018 Gist to show how to write to an excel file without deleting its contents @author: <NAME> """ import pandas as pd import numpy as np from openpyxl import load_workbook def update_excel(df, filename, sheet_name): book = load_workbook(filename) writer = pd.ExcelWriter(filename, engine='openpyxl') writer.book = book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) df.to_excel(writer, sheet_name) writer.save() def read_config(filename): full_params=pd.read_excel(filename, sheet_name='params', index_col=0) params=full_params['Wert'].transpose() ts=pd.read_excel(filename, sheet_name='timeseries', index_col=0) return params, ts if __name__ == "__main__": #%% df=pd.DataFrame(np.random.normal(size=(100,1))).cumsum() update_excel(df, 'test.xlsx', 'python_output')
StarcoderdataPython
23434
<gh_stars>0 import xxhash import numpy as np from base.grid import SimpleGRID import scipy.sparse as SP h = xxhash.xxh64() s_to_i = lambda x,size : size*x[0]+x[1] i_to_s = lambda x,size : (x%size,x//size) def hash(x): h.reset() h.update(x) return h.digest() class Indexer(object): def __init__(self): self.total = 0 self.dict = {} def get(self,hs): val = self.dict.get(hs,-1) if val == -1: val = self.total self.dict[hs] = val self.total += 1 return val def reset(self): self.__init__() class HashIndexer(object): def __init__(self): self.total = 0 self.dict = {} def get(self,state): hs=hash(state) val = self.dict.get(hs,-1) if val == -1: val = self.total self.dict[hs] = val self.total += 1 return val def reset(self): self.__init__() def get_graph(size): env = SimpleGRID(grid_size=size,max_time=5000) input_shape = env.observation_space.shape min_batch = size**2-size indexer = Indexer() W = np.zeros((min_batch,min_batch)) states = np.zeros(min_batch).astype(int) data = np.zeros((min_batch,)+input_shape) while indexer.total<min_batch: done = False s = env.reset() #s = s.transpose(2,0,1)#np.expand_dims(s,axis=0) i = indexer.get(s_to_i(env.get_cat(),size)) states[i] = s_to_i(env.get_cat(),size) data[states[i]] = s while not done: s,r,done = env.step(np.random.randint(4)) #s = np.expand_dims(s,axis=0) #s = s.transpose(-1,0,1) j = indexer.get(s_to_i(env.get_cat(),size)) states[j] = s_to_i(env.get_cat(),size) data[states[j]] = s W[states[i],states[j]] = W[states[j],states[i]] = 1 if r==1: print(s_to_i(env.get_cat(),size),indexer.total) i = j return data, W class GraphBuilder(object): def __init__(self, env, action_set, batch_size): self.env = env self.action_set = action_set self.h = xxhash.xxh64() self.max_size = batch_size self.indices = set() self._total = 0 self.dict = {} self.states = [] self.prev = 0 self.roll = self.roller() def submit(self,state, new=False): hs = self.hash(state) val = self.dict.get(hs,-1) if val == -1: self.states.append(state) val = self._total self.dict[hs] = self._total self._total += 1 if not new: self.indices.add((self.prev,val)) self.prev = val def reset(self): self.indices = set() self._total = 0 self.dict = {} self.states = [] self.prev = 0 def roller(self): done = True while True: self.reset() while not self.full: if done: s = self.env.reset() self.submit(s.copy(), new=done) done = False while not done and not self.full: s,_,done,_ = self.env.step(np.random.choice(self.action_set)) self.submit(s.copy()) S,W = self.get_graph() W = W.toarray() #W = (W+W.T)/2 W = np.maximum(W,W.T) #np.fill_diagonal(W, 1) yield S, W def get(self): return self.roll.__next__() def hash(self,x): self.h.reset() self.h.update(x) return self.h.digest() def get_graph(self): if not self.full: raise "Graph not full Yet" indices = np.array(list(self.indices)) rows = indices[:,0] cols = indices[:,1] data = np.ones(len(rows)) return np.array(self.states),SP.coo_matrix((data, (rows, cols)),shape=(self.max_size, self.max_size)) @property def size(self): return self._total @property def full(self): return self.size == self.max_size
StarcoderdataPython
5124028
<reponame>stfc-aeg/odin-timeslice """Demo adapter for ODIN control Timeslice This class implements a simple adapter used for demonstration purposes in a <NAME>, STFC Application Engineering """ import logging import tornado import time import os from os import path from concurrent import futures import smtplib import email import ssl from tornado.ioloop import IOLoop from tornado.concurrent import run_on_executor from tornado.escape import json_decode from odin.adapters.adapter import ApiAdapter, ApiAdapterResponse, request_types, response_types from odin.adapters.parameter_tree import ParameterTree, ParameterTreeError from odin._version import get_versions from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText class TimesliceAdapter(ApiAdapter): """System info adapter class for the ODIN server. This adapter provides ODIN clients with information about the server and the system that it is running on. """ def __init__(self, **kwargs): """Initialize the TimesliceAdapter object. This constructor initializes the TimesliceAdapter object. :param kwargs: keyword arguments specifying options """ # Intialise superclass super(TimesliceAdapter, self).__init__(**kwargs) rendered_files = (self.options.get('rendered_files')) config_message = (self.options.get('config_message')) self.timeslice = Timeslice(rendered_files,config_message) logging.debug('TimesliceAdapter loaded') @response_types('application/json', default='application/json') def get(self, path, request): """Handle an HTTP GET request. This method handles an HTTP GET request, returning a JSON response. :param path: URI path of request :param request: HTTP request object :return: an ApiAdapterResponse object containing the appropriate response """ try: response = self.timeslice.get(path) status_code = 200 except ParameterTreeError as e: response = {'error': str(e)} status_code = 400 content_type = 'application/json' return ApiAdapterResponse(response, content_type=content_type, status_code=status_code) @request_types('application/json') @response_types('application/json', default='application/json') def put(self, path, request): """Handle an HTTP PUT request. This method handles an HTTP PUT request, returning a JSON response. :param path: URI path of request :param request: HTTP request object :return: an ApiAdapterResponse object containing the appropriate response """ content_type = 'application/json' try: data = json_decode(request.body) self.timeslice.set(path, data) response = self.timeslice.get(path) status_code = 200 except TimesliceError as e: response = {'error': str(e)} status_code = 400 except (TypeError, ValueError) as e: response = {'error': 'Failed to decode PUT request body: {}'.format(str(e))} status_code = 400 logging.debug(response) return ApiAdapterResponse(response, content_type=content_type, status_code=status_code) def delete(self, path, request): """Handle an HTTP DELETE request. This method handles an HTTP DELETE request, returning a JSON response. :param path: URI path of request :param request: HTTP request object :return: an ApiAdapterResponse object containing the appropriate response """ response = 'TimesliceAdapter: DELETE on path {}'.format(path) status_code = 200 logging.debug(response) return ApiAdapterResponse(response, status_code=status_code) class TimesliceError(Exception): """Simple exception class for PSCUData to wrap lower-level exceptions.""" pass class Timeslice(): """Timeslice - class that extracts and stores information about system-level parameters.""" # Thread executor used for background tasks executor = futures.ThreadPoolExecutor(max_workers=1) def __init__(self, rendered_files, config_message,): """Initialise the Timeslice object. This constructor initlialises the Timeslice object, building a parameter tree and launching a background task if enabled """ self.rendered_files = rendered_files self.config_message = config_message self.access_codes = [] self.files = [] self.email_address = "" # Store initialisation time self.init_time = time.time() # Get package version information version_info = get_versions() # Store all information in a parameter tree self.param_tree = ParameterTree({ 'odin_version': version_info['version'], 'tornado_version': tornado.version, 'server_uptime': (self.get_server_uptime, None), 'access_codes': (lambda: self.access_codes, None), 'add_access_code': ("", self.add_task_access_code), 'rendered_files': (lambda: self.rendered_files,None), 'config_message': (lambda: self.config_message,None), 'clear_access_codes' : (False, self.clear_access_codes), 'clear_email' : (False, self.clear_email), 'email_address' : (lambda: self.email_address, None), 'add_email_address' : ("", self.add_email_address), 'send_email_new' : (False, self.send_email_new), 'files': (lambda: self.files, None), }) def get_server_uptime(self): """Get the uptime for the ODIN server. This method returns the current uptime for the ODIN server. """ return time.time() - self.init_time def get(self, path): """Get the parameter tree. This method returns the parameter tree for use by clients via the Timeslice adapter. :param path: path to retrieve from tree """ return self.param_tree.get(path) def set(self, path, data): """Set parameters in the parameter tree. This method simply wraps underlying ParameterTree method so that an exceptions can be re-raised with an appropriate TimesliceError. :param path: path of parameter tree to set values for :param data: dictionary of new data values to set in the parameter tree """ try: self.param_tree.set(path, data) except ParameterTreeError as e: raise TimesliceError(e) def add_task_access_code(self, access_code): """Validate and store entered access codes to be sent in an email When an access code is entered, first the code checks that the entered access code isn't already in the access codes list in order to avoid duplication of attachments in the email. If the code isn't a duplicate the system then checks that it relates to an existing file. If the file exists then the code is added to the list of access codes being stored and the files list recieves both the access code and the file path in order to attach the mp4 file to the email. Otherwise the system sends out an error message """ if access_code in self.access_codes: raise TimesliceError("This code is already stored") file_path = os.path.join(self.rendered_files, access_code + '.mp4') logging.debug("Testing if file {} exists".format(file_path)) if os.path.isfile(os.path.join(file_path)): logging.debug("adding access code %s", access_code) self.access_codes.append(access_code) self.files.append(file_path) logging.debug(self.access_codes) logging.debug(self.files) else: raise TimesliceError("This access code does not match any stored videos, please try again") def clear_access_codes(self, clear): """ This empties both the access codes list and the files list used for attaching mp4 files. """ logging.debug("Setting list clear to %s", clear) self.access_codes = [] self.files = [] logging.debug(self.access_codes) def clear_email(self, clear): """ This empties the stored email address when the page loads""" self.email_address = None logging.debug("clearing email: %s",clear) def add_email_address(self, email_address): """This sets the email address for videos to be sent to """ self.email_address = email_address logging.debug("Email address recieved: %s", email_address) def send_email_new(self, send): """This is the code that actually collects the various pieces of entered information and uses them to send an email out to the timeslice user """ config_message = self.config_message subject = "Timeslice videos" body = (config_message).format(self.email_address, self.access_codes) sender_email = "<NAME> <<EMAIL>>" receiver_email = '{0}'.format(self.email_address) message = MIMEMultipart() message["From"] = sender_email message["To"] = receiver_email message["Subject"] = subject message.attach(MIMEText(body, "plain")) files_list = self.access_codes logging.debug(files_list) for file_number, a_file in enumerate(files_list, start=1): a_file = os.path.join(self.rendered_files, a_file + '.mp4') attachment = open(a_file, "rb") filename = 'STFC-Timeslice-video-{}'.format(file_number)+'.mp4' part = MIMEBase("application", "octet-stream") part.set_payload(attachment.read()) encoders.encode_base64(part) part.add_header( "Content-Disposition", f"attachment; filename= {filename}", ) message.attach(part) try: smtp_obj = smtplib.SMTP('outbox.rl.ac.uk') smtp_obj.sendmail(sender_email, receiver_email, message.as_string()) logging.debug("Yay, we sent mail") except smtplib.SMTPException as error: logging.debug("Boo, emailing failed: {}".format(str(error)))
StarcoderdataPython
1780657
class MarbleDecoration: def maxLength(self, R, G, B): def m(a, b): return 2*min(a, b) + 1 - int(a == b) return max(m(R, G), m(R, B), m(G, B))
StarcoderdataPython
6688573
# flake8: noqa from .core import Bower from .error import Error from .autoversion import (filesystem_second_autoversion, filesystem_microsecond_autoversion) from .utility import module_relative_path from .publisher import PublisherTween from .injector import InjectorTween from .renderer import render_inline_js, render_inline_css
StarcoderdataPython
5084137
from setuptools import setup setup(name='feature_selection', version='0.1', description='Small and simple python package to run filter and wrapper feature selection methods', url='https://github.com/FabianIsensee/FeatureSelection', author='<NAME>, Division of Medical Image Computing, German Cancer Research Center', author_email='<EMAIL>', license='MIT', packages=['feature_selection'] )
StarcoderdataPython
133476
<reponame>ryan-rozario/vyper<gh_stars>0 import copy from vyper import ( ast as vy_ast, ) from vyper.exceptions import ( StructureException, TypeMismatch, VariableDeclarationException, ) from vyper.parser.context import ( Context, ) from vyper.parser.expr import ( Expr, ) from vyper.parser.memory_allocator import ( MemoryAllocator, ) from vyper.types.types import ( BaseType, ByteArrayType, ) from vyper.utils import ( SizeLimits, is_instances, ) class Constants(object): def __init__(self): self._constants = dict() self._constants_ast = dict() def __contains__(self, key): return key in self._constants def unroll_constant(self, const, global_ctx): ann_expr = None expr = Expr.parse_value_expr( const.value, Context( vars=None, global_ctx=global_ctx, origcode=const.full_source_code, memory_allocator=MemoryAllocator() ), ) annotation_type = global_ctx.parse_type(const.annotation.args[0], None) fail = False if is_instances([expr.typ, annotation_type], ByteArrayType): if expr.typ.maxlen < annotation_type.maxlen: return const fail = True elif expr.typ != annotation_type: fail = True # special case for literals, which can be uint256 types as well. is_special_case_uint256_literal = ( is_instances([expr.typ, annotation_type], BaseType) ) and ( [annotation_type.typ, expr.typ.typ] == ['uint256', 'int128'] ) and SizeLimits.in_bounds('uint256', expr.value) is_special_case_int256_literal = ( is_instances([expr.typ, annotation_type], BaseType) ) and ( [annotation_type.typ, expr.typ.typ] == ['int128', 'int128'] ) and SizeLimits.in_bounds('int128', expr.value) if is_special_case_uint256_literal or is_special_case_int256_literal: fail = False if fail: raise TypeMismatch( f"Invalid value for constant type, expected {annotation_type} got " f"{expr.typ} instead", const.value, ) ann_expr = copy.deepcopy(expr) ann_expr.typ = annotation_type ann_expr.typ.is_literal = expr.typ.is_literal # Annotation type doesn't have literal set. return ann_expr def add_constant(self, item, global_ctx): args = item.annotation.args if not item.value: raise StructureException('Constants must express a value!', item) is_correctly_formatted_struct = ( len(args) == 1 and isinstance(args[0], (vy_ast.Subscript, vy_ast.Name, vy_ast.Call)) ) and item.target if is_correctly_formatted_struct: c_name = item.target.id if global_ctx.is_valid_varname(c_name, item): self._constants[c_name] = self.unroll_constant(item, global_ctx) self._constants_ast[c_name] = item.value # TODO: the previous `if` has no else which will result in this # *silently* existing without doing anything. is this intended # behavior. else: raise StructureException('Incorrectly formatted struct', item) def ast_is_constant(self, ast_node): return isinstance(ast_node, vy_ast.Name) and ast_node.id in self._constants def is_constant_of_base_type(self, ast_node, base_types): base_types = (base_types) if not isinstance(base_types, tuple) else base_types valid = self.ast_is_constant(ast_node) if not valid: return False const = self._constants[ast_node.id] if isinstance(const.typ, BaseType) and const.typ.typ in base_types: return True return False def get_constant(self, const_name, context): """ Return unrolled const """ # check if value is compatible with const = self._constants[const_name] if isinstance(const, vy_ast.AnnAssign): # Handle ByteArrays. if context: expr = Expr(const.value, context).lll_node return expr else: raise VariableDeclarationException( f"ByteArray: Can not be used outside of a function context: {const_name}" ) # Other types are already unwrapped, no need return self._constants[const_name]
StarcoderdataPython
4801302
<filename>myWeb/myWeb/model/User.py from myWeb import db class User(db.Model): __tablename__='b_user' id=db.Column(db.Integer,primary_key=True) username=db.Column(db.String(10),unique=True) password=db.Column(db.String(16)) def __init__(self,username,password): self.username=username self.password=password def __repr__(self): return '<user %r>' % self.username
StarcoderdataPython
244564
<filename>270 Closest Binary Search Tree Value.py """ Premium Question """ import sys __author__ = 'Daniel' class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def closestValue(self, root, target): """ Divide the problem into 2 parts: 1. find the value just smaller than target 2. find the value just larger than target :type root: TreeNode :type target: float :rtype: int """ lo = [-sys.float_info.max] self.find(root, target, lo, True) hi = [sys.float_info.max] self.find(root, target, hi, False) if hi[0] - target < target - lo[0]: return int(hi[0]) else: return int(lo[0]) def find(self, root, target, ret, lower=True): if not root: return if root.val == target: ret[0] = root.val return if root.val < target: if lower: ret[0] = max(ret[0], root.val) self.find(root.right, target, ret, lower) else: if not lower: ret[0] = min(ret[0], root.val) self.find(root.left, target, ret, lower) if __name__ == "__main__": assert Solution().closestValue(TreeNode(2147483647), 0.0) == 2147483647
StarcoderdataPython
11306780
from rest_framework import routers from .views import ImageViewSet from django.urls import path, include router = routers.DefaultRouter() router.register('images', ImageViewSet) urlpatterns = [ path('', include(router.urls)) ]
StarcoderdataPython
4896751
""" Copyright (c) 2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import types from typing import Any, Dict, Optional, Tuple import tensorflow as tf from nncf import NNCFConfig from nncf.api.compression import CompressionAlgorithmBuilder from nncf.api.compression import CompressionAlgorithmController from nncf.common.compression import BaseCompressionAlgorithmController as BaseController from nncf.config.structures import ModelEvaluationArgs from nncf.config.utils import is_accuracy_aware_training from nncf.tensorflow.accuracy_aware_training.keras_model_utils import accuracy_aware_fit from nncf.config.extractors import extract_algorithm_names from nncf.tensorflow.algorithm_selector import NoCompressionAlgorithmBuilder from nncf.tensorflow.algorithm_selector import get_compression_algorithm_builder from nncf.tensorflow.api.composite_compression import TFCompositeCompressionAlgorithmBuilder from nncf.tensorflow.helpers.utils import get_built_model def create_compression_algorithm_builder(config: NNCFConfig, should_init: bool) -> CompressionAlgorithmBuilder: """ Factory to create an instance of the compression algorithm builder by NNCFConfig. :param config: An instance of NNCFConfig that defines compression methods. :param should_init: The flag indicates that the generated compression builder will initialize (True) or not (False) the training parameters of the model during model building. :return: An instance of the `CompressionAlgorithmBuilder` """ algo_names = extract_algorithm_names(config) number_compression_algorithms = len(algo_names) if number_compression_algorithms == 0: return NoCompressionAlgorithmBuilder(config, should_init) if number_compression_algorithms == 1: algo_name = next(iter(algo_names)) return get_compression_algorithm_builder(algo_name)(config, should_init) return TFCompositeCompressionAlgorithmBuilder(config, should_init) def create_compressed_model(model: tf.keras.Model, config: NNCFConfig, compression_state: Optional[Dict[str, Any]] = None) \ -> Tuple[CompressionAlgorithmController, tf.keras.Model]: """ The main function used to produce a model ready for compression fine-tuning from an original TensorFlow Keras model and a configuration object. :param model: The original model. Should have its parameters already loaded from a checkpoint or another source. :param config: A configuration object used to determine the exact compression modifications to be applied to the model. :param compression_state: compression state to unambiguously restore the compressed model. Includes builder and controller states. If it is specified, trainable parameter initialization will be skipped during building. :return: A tuple (compression_ctrl, compressed_model) where - compression_ctrl: The controller of the compression algorithm. - compressed_model: The model with additional modifications necessary to enable algorithm-specific compression during fine-tuning. """ model = get_built_model(model, config) original_model_accuracy = None if is_accuracy_aware_training(config, compression_config_passed=True): if config.has_extra_struct(ModelEvaluationArgs): evaluation_args = config.get_extra_struct(ModelEvaluationArgs) original_model_accuracy = evaluation_args.eval_fn(model) builder = create_compression_algorithm_builder(config, should_init=not compression_state) if compression_state: builder.load_state(compression_state[BaseController.BUILDER_STATE]) compressed_model = builder.apply_to(model) compression_ctrl = builder.build_controller(compressed_model) compressed_model.original_model_accuracy = original_model_accuracy if isinstance(compressed_model, tf.keras.Model): compressed_model.accuracy_aware_fit = types.MethodType(accuracy_aware_fit, compressed_model) return compression_ctrl, compressed_model
StarcoderdataPython
8160943
<reponame>Eladhi/VI_Glow import numpy as np import torch from tqdm import tqdm from torchvision.utils import make_grid from torch.utils.data import DataLoader from misc import util class Inferer: def __init__(self, hps, graph, devices, data_device): """ Network inferer :param hps: hyper-parameters for this network :type hps: dict :param graph: model graph :type graph: torch.nn.Module :param devices: list of usable devices for model running :type devices: list :param data_device: list of usable devices for data loading :type data_device: str or int """ # general self.hps = hps # state self.graph = graph self.graph.eval() self.devices = devices self.use_cuda = 'cpu' not in self.devices # data self.data_device = data_device self.batch_size = self.graph.h_top.shape[0] self.num_classes = self.hps.dataset.num_classes # ablation self.y_condition = self.hps.ablation.y_condition def sample(self, z, y_onehot, eps_std=0.5): """ Sample image :param z: latent feature vector :type z: torch.Tensor or None :param y_onehot: one-hot vector of label :type y_onehot: torch.Tensor or None :param eps_std: standard deviation of eps :type eps_std: float :return: generated image :rtype: torch.Tensor """ with torch.no_grad(): # generate sample from model img = self.graph(z=z, y_onehot=y_onehot, eps_std=eps_std, reverse=True) # create image grid grid = make_grid(img) return grid def encode(self, img): """ Encode input image to latent features :param img: input image :type img: torch.Tensor or np.numpy or Image.Image :return: latent features :rtype: torch.Tensor """ with torch.no_grad(): if not torch.is_tensor(img): img = util.image_to_tensor( img, shape=self.hps.model.image_shape) img = util.make_batch(img, self.batch_size) elif len(img.shape) == 3: img = util.make_batch(img, self.batch_size) if self.use_cuda: img = img.cuda() z, _, _ = self.graph(img) return z[0, :, :, :] def decode(self, z): """ :param z: input latent feature vector :type z: torch.Tensor :return: decoded image :rtype: torch.Tensor """ with torch.no_grad(): if len(z.shape) == 3: z = util.make_batch(z, self.batch_size) if self.use_cuda: z = z.cuda() img = self.graph(z=z, y_onehot=None, reverse=True)[0, :, :, :] return img def compute_attribute_delta(self, dataset): """ Compute feature vector deltaz of different attributes :param dataset: dataset for training model :type dataset: torch.utils.data.Dataset :return: :rtype: """ with torch.no_grad(): # initialize variables attrs_z_pos = np.zeros([self.num_classes, *self.graph.flow.output_shapes[-1][1:]]) attrs_z_neg = np.zeros([self.num_classes, *self.graph.flow.output_shapes[-1][1:]]) num_z_pos = np.zeros(self.num_classes) num_z_neg = np.zeros(self.num_classes) deltaz = np.zeros([self.num_classes, *self.graph.flow.output_shapes[-1][1:]]) data_loader = DataLoader(dataset, batch_size=self.batch_size, num_workers=self.hps.dataset.num_workers, shuffle=True, drop_last=True) progress = tqdm(data_loader) for idx, batch in enumerate(progress): # extract batch data assert 'y_onehot' in batch.keys(), 'Compute attribute deltaz needs "y_onehot" in batch data' for i in batch: batch[i] = batch[i].to(self.data_device) x = batch['x'] y_onehot = batch['y_onehot'] # decode latent features z, _, _ = self.graph(x) # append to latent feature list by attributes for i in range(len(batch)): for cls in range(self.num_classes): if y_onehot[i, cls] > 0: attrs_z_pos[cls] += z[i] num_z_pos[cls] += 1 else: attrs_z_neg[cls] += z[i] num_z_neg[cls] += 1 # compute deltaz num_z_pos = [max(1., float(num)) for num in num_z_pos] num_z_neg = [max(1., float(num)) for num in num_z_neg] for cls in range(self.num_classes): mean_z_pos = attrs_z_pos[cls] / num_z_pos[cls] mean_z_neg = attrs_z_neg[cls] / num_z_neg[cls] deltaz[cls] = mean_z_pos - mean_z_neg return deltaz def apply_attribute_delta(self, img, deltaz, interpolation): """ Apply attribute delta to image by given interpolation vector :param img: given image :type img: torch.Tensor or np.numpy or Image.Image :param deltaz: delta vector of attributes in latent space :type deltaz: np.ndarray :param interpolation: interpolation vector :type interpolation: torch.Tensor or np.ndarray or list[float] :return: processed image :rtype: torch.Tensor """ if isinstance(deltaz, np.ndarray): deltaz = torch.Tensor(deltaz) assert len(interpolation) == self.num_classes assert deltaz.shape == torch.Size([self.num_classes, *self.graph.flow.output_shapes[-1][1:]]) # encode z = self.encode(img) # perform interpolation z_interpolated = z.clone() for i in range(len(interpolation)): z_delta = deltaz[i].mul(interpolation[i]) if self.use_cuda: z_delta = z_delta.cuda() z_interpolated += z_delta # decode img = self.decode(z_interpolated) return img
StarcoderdataPython
3299395
<reponame>tungwenyang/sc-projects """ SC101 Baby Names Project Adapted from <NAME>'s Baby Names assignment by <NAME>. This program is to plot the historical trend of a list of name from a given dict of baby name data onto the canvas. """ import tkinter import babynames import babygraphicsgui as gui FILENAMES = [ 'data/full/baby-1900.txt', 'data/full/baby-1910.txt', 'data/full/baby-1920.txt', 'data/full/baby-1930.txt', 'data/full/baby-1940.txt', 'data/full/baby-1950.txt', 'data/full/baby-1960.txt', 'data/full/baby-1970.txt', 'data/full/baby-1980.txt', 'data/full/baby-1990.txt', 'data/full/baby-2000.txt', 'data/full/baby-2010.txt' ] CANVAS_WIDTH = 1000 CANVAS_HEIGHT = 600 YEARS = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] GRAPH_MARGIN_SIZE = 20 COLORS = ['red', 'purple', 'green', 'blue'] TEXT_DX = 2 LINE_WIDTH = 2 MAX_RANK = 1000 def get_x_coordinate(width, year_index): """ Given the width of the canvas and the index of the current year in the YEARS list, returns the x coordinate of the vertical line associated with that year. Input: width (int): The width of the canvas year_index (int): The index of the current year in the YEARS list Returns: x_coordinate (int): The x coordinate of the vertical line associated with the specified year. """ return GRAPH_MARGIN_SIZE + year_index * (width - 2 * GRAPH_MARGIN_SIZE) / len(YEARS) def draw_fixed_lines(canvas): """ Erases all existing information on the given canvas and then draws the fixed background lines on it. Input: canvas (Tkinter Canvas): The canvas on which we are drawing. Returns: This function does not return any value. """ canvas.delete('all') # delete all existing lines from the canvas # Write your code below this line ################################# canvas.create_line(GRAPH_MARGIN_SIZE, GRAPH_MARGIN_SIZE, CANVAS_WIDTH - GRAPH_MARGIN_SIZE, GRAPH_MARGIN_SIZE) canvas.create_line(GRAPH_MARGIN_SIZE, CANVAS_HEIGHT - GRAPH_MARGIN_SIZE, CANVAS_WIDTH - GRAPH_MARGIN_SIZE, CANVAS_HEIGHT - GRAPH_MARGIN_SIZE) canvas.create_line(GRAPH_MARGIN_SIZE, 0, GRAPH_MARGIN_SIZE, CANVAS_HEIGHT) for i in range(len(YEARS)): canvas.create_line(get_x_coordinate(CANVAS_WIDTH, i), 0, get_x_coordinate(CANVAS_WIDTH, i), CANVAS_HEIGHT) canvas.create_text(get_x_coordinate(CANVAS_WIDTH, i) + TEXT_DX, CANVAS_HEIGHT - GRAPH_MARGIN_SIZE, text=YEARS[i], anchor=tkinter.NW) def draw_names(canvas, name_data, lookup_names): """ Given a dict of baby name data and a list of name, plots the historical trend of those names onto the canvas. Input: canvas (Tkinter Canvas): The canvas on which we are drawing. name_data (dict): Dictionary holding baby name data lookup_names (List[str]): A list of names whose data you want to plot Returns: This function does not return any value. """ draw_fixed_lines(canvas) # draw the fixed background grid # Write your code below this line ################################# for i in range(len(lookup_names)): d = name_data[lookup_names[i]] last_x = 0 last_y = 0 for j in range(len(YEARS)): # x coordinate current_x = get_x_coordinate(CANVAS_WIDTH, j) # y coordinate if str(YEARS[j]) in d: current_y = get_y_coordinate(CANVAS_HEIGHT, d[str(YEARS[j])]) else: current_y = CANVAS_HEIGHT - GRAPH_MARGIN_SIZE # create line if not YEAR[0] if j > 0: canvas.create_line(last_x, last_y, current_x, current_y, width=LINE_WIDTH, fill=COLORS[i % len(COLORS)]) # create text if current_y == CANVAS_HEIGHT - GRAPH_MARGIN_SIZE: canvas.create_text(current_x + TEXT_DX, current_y, text=(lookup_names[i], '*'), anchor=tkinter.SW, fill=COLORS[i % len(COLORS)]) else: canvas.create_text(current_x + TEXT_DX, current_y, text=(lookup_names[i], d[str(YEARS[j])]), anchor=tkinter.SW, fill=COLORS[i % len(COLORS)]) # assign current_x,_y as last_x,_y for next loop last_x, last_y = current_x, current_y def get_y_coordinate(height, rank): """ Given the height of the canvas and the rank of the current year to the associated name, returns the y coordinate. Input: height (int): The height of the canvas rank (str): The rank of the current year in the name_data[name] dict Returns: y_coordinate (int): The y coordinate associated with the rank of specified year. """ if int(rank) <= MAX_RANK: return GRAPH_MARGIN_SIZE + int(rank) * (height - 2 * GRAPH_MARGIN_SIZE) / MAX_RANK else: return height - GRAPH_MARGIN_SIZE # main() code is provided, feel free to read through it but DO NOT MODIFY def main(): # Load data name_data = babynames.read_files(FILENAMES) # Create the window and the canvas top = tkinter.Tk() top.wm_title('Baby Names') canvas = gui.make_gui(top, CANVAS_WIDTH, CANVAS_HEIGHT, name_data, draw_names, babynames.search_names) # Call draw_fixed_lines() once at startup so we have the lines # even before the user types anything. draw_fixed_lines(canvas) # This line starts the graphical loop that is responsible for # processing user interactions and plotting data top.mainloop() if __name__ == '__main__': main()
StarcoderdataPython
97446
import pyautogui from pynput.mouse import Button, Listener from datetime import * def clicou(x,y, botao, pressionado): if pressionado == True: im1 = pyautogui.screenshot() im1.save(f'{datetime.now()}.png') listener = Listener(on_click=clicou) listener.start() listener.join()
StarcoderdataPython
325074
<filename>docs/exts/sphinxtr/pluginparameters.py __docformat__ = 'reStructuredText' import sys import os.path import csv from docutils import nodes from docutils.utils import SystemMessagePropagation from docutils.parsers.rst import Directive, Parser from docutils.parsers.rst.directives.tables import Table from docutils.statemachine import ViewList from sphinx.util.nodes import nested_parse_with_titles class PluginParameters(Table): """ Implement tables whose data is encoded as a uniform two-level bullet list using to describe Mitsuba 2 plugin parameters. """ option_spec = {} def run(self): if not self.content: error = self.state_machine.reporter.error( 'The "%s" directive is empty; content required.' % self.name, nodes.literal_block(self.block_text, self.block_text), line=self.lineno) return [error] title, messages = self.make_title() node = nodes.Element() # anonymous container for parsing self.state.nested_parse(self.content, self.content_offset, node) num_cols = self.check_list_content(node) # Hardcode this: col_widths = [20, 15, 65] table_data = [[item.children for item in row_list[0]] for row_list in node[0]] header_rows = self.options.get('header-rows', 1) stub_columns = self.options.get('stub-columns', 0) self.check_table_dimensions(table_data, header_rows-1, stub_columns) table_node = self.build_table_from_list(table_data, col_widths, header_rows, stub_columns) table_node['classes'] += self.options.get('class', ['paramstable']) self.add_name(table_node) if title: table_node.insert(0, title) return [table_node] + messages def check_list_content(self, node): if len(node) != 1 or not isinstance(node[0], nodes.bullet_list): error = self.state_machine.reporter.error( 'Error parsing content block for the "%s" directive: ' 'exactly one bullet list expected.' % self.name, nodes.literal_block(self.block_text, self.block_text), line=self.lineno) raise SystemMessagePropagation(error) list_node = node[0] # Check for a uniform two-level bullet list: for item_index in range(len(list_node)): item = list_node[item_index] if len(item) != 1 or not isinstance(item[0], nodes.bullet_list): error = self.state_machine.reporter.error( 'Error parsing content block for the "%s" directive: ' 'two-level bullet list expected, but row %s does not ' 'contain a second-level bullet list.' % (self.name, item_index + 1), nodes.literal_block( self.block_text, self.block_text), line=self.lineno) raise SystemMessagePropagation(error) elif item_index: # ATTN pychecker users: num_cols is guaranteed to be set in the # "else" clause below for item_index==0, before this branch is # triggered. if len(item[0]) != num_cols: error = self.state_machine.reporter.error( 'Error parsing content block for the "%s" directive: ' 'uniform two-level bullet list expected, but row %s ' 'does not contain the same number of items as row 1 ' '(%s vs %s).' % (self.name, item_index + 1, len(item[0]), num_cols), nodes.literal_block(self.block_text, self.block_text), line=self.lineno) raise SystemMessagePropagation(error) else: num_cols = len(item[0]) return num_cols def build_table_from_list(self, table_data, col_widths, header_rows, stub_columns): table = nodes.table() tgroup = nodes.tgroup(cols=len(col_widths)) table += tgroup for col_width in col_widths: colspec = nodes.colspec(colwidth=col_width) if stub_columns: colspec.attributes['stub'] = 1 stub_columns -= 1 tgroup += colspec rows = [] # Append first row header_text = ['Parameter', 'Type', 'Description'] header_row_node = nodes.row() for text in header_text: entry = nodes.entry() entry += [nodes.paragraph(text=text)] header_row_node += entry rows.append(header_row_node) for row in table_data: row_node = nodes.row() for i, cell in enumerate(row): entry = nodes.entry() # force the first column to be write in paramtype style if i == 0: rst = ViewList() rst.append(""":paramtype:`{name}`""".format(name=str(cell[0][0])), "", 0) parsed_node = nodes.section() parsed_node.document = self.state.document nested_parse_with_titles(self.state, rst, parsed_node) entry += [parsed_node[0]] else: entry += cell row_node += entry rows.append(row_node) if header_rows: thead = nodes.thead() thead.extend(rows[:header_rows]) tgroup += thead tbody = nodes.tbody() tbody.extend(rows[header_rows:]) tgroup += tbody return table def setup(app): app.add_directive('pluginparameters', PluginParameters)
StarcoderdataPython
11333113
#!/usr/bin/env python ''' This script converts data in panoptic COCO format to semantic segmentation. All segments with the same semantic class in one image are combined together. Additional option: - using option '--things_others' the script combine all segments of thing classes into one segment with semantic class 'other'. ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import argparse import numpy as np import json import time import multiprocessing from collections import defaultdict import PIL.Image as Image from panopticapi.utils import get_traceback, rgb2id, save_json try: # set up path for pycocotools # sys.path.append('./cocoapi-master/PythonAPI/') from pycocotools import mask as COCOmask except Exception: raise Exception( "Please install pycocotools module from https://github.com/cocodataset/cocoapi") OTHER_CLASS_ID = 183 @get_traceback def extract_semantic_single_core(proc_id, annotations_set, segmentations_folder, output_json_file, semantic_seg_folder, categories, save_as_png, things_other): annotation_semantic_seg = [] for working_idx, annotation in enumerate(annotations_set): if working_idx % 100 == 0: print('Core: {}, {} from {} images processed'.format(proc_id, working_idx, len(annotations_set))) try: pan_format = np.array( Image.open(os.path.join( segmentations_folder, annotation['file_name'])), dtype=np.uint32 ) except IOError: raise KeyError('no prediction png file for id: {}'.format( annotation['image_id'])) pan = rgb2id(pan_format) semantic = np.zeros(pan.shape, dtype=np.uint8) RLE_per_category = defaultdict(list) for segm_info in annotation['segments_info']: cat_id = segm_info['category_id'] if things_other and categories[cat_id]['isthing'] == 1: cat_id = OTHER_CLASS_ID mask = pan == segm_info['id'] if save_as_png: semantic[mask] = cat_id else: RLE = COCOmask.encode(np.asfortranarray(mask.astype('uint8'))) RLE['counts'] = RLE['counts'].decode('utf8') RLE_per_category[cat_id].append(RLE) if save_as_png: Image.fromarray(semantic).save(os.path.join( semantic_seg_folder, annotation['file_name'])) else: for cat_id, RLE_list in RLE_per_category.items(): if len(RLE_list) == 1: RLE = RLE_list[0] else: RLE = COCOmask.merge(RLE_list) semantic_seg_record = {} semantic_seg_record["image_id"] = annotation['image_id'] semantic_seg_record["category_id"] = cat_id semantic_seg_record["segmentation"] = RLE semantic_seg_record["area"] = int(COCOmask.area(RLE)) semantic_seg_record["bbox"] = list(COCOmask.toBbox(RLE)) semantic_seg_record["iscrowd"] = 0 annotation_semantic_seg.append(semantic_seg_record) print('Core: {}, all {} images processed'.format( proc_id, len(annotations_set))) return annotation_semantic_seg def extract_semantic(input_json_file, segmentations_folder, output_json_file, semantic_seg_folder, categories_json_file, things_other): start_time = time.time() with open(input_json_file, 'r') as f: d_coco = json.load(f) annotations = d_coco['annotations'] if segmentations_folder is None: segmentations_folder = input_json_file.rsplit('.', 1)[0] print("EXTRACTING FROM...") print("COCO panoptic format:") print("\tSegmentation folder: {}".format(segmentations_folder)) print("\tJSON file: {}".format(input_json_file)) print("SEMANTIC SEGMENTATION") if output_json_file is not None and semantic_seg_folder is not None: raise Exception("'--output_json_file' and '--semantic_seg_folder' \ options cannot be used together") save_as_png = False if output_json_file is None: if semantic_seg_folder is None: raise Exception("One of '--output_json_file' and '--semantic_seg_folder' \ options must be used specified") else: save_as_png = True print("in PNG format:") print("\tFolder with semnatic segmentations: {}".format( semantic_seg_folder)) if not os.path.isdir(semantic_seg_folder): print("Creating folder {} for semantic segmentation PNGs".format( semantic_seg_folder)) os.mkdir(semantic_seg_folder) else: print("in COCO detection format:") print("\tJSON file: {}".format(output_json_file)) if things_other: print("Merging all things categories into 'other' category") print('\n') with open(categories_json_file, 'r') as f: categories_list = json.load(f) categories = {category['id']: category for category in categories_list} cpu_num = multiprocessing.cpu_count() annotations_split = np.array_split(annotations, cpu_num) print("Number of cores: {}, images per core: {}".format( cpu_num, len(annotations_split[0]))) workers = multiprocessing.Pool(processes=cpu_num) processes = [] for proc_id, annotations_set in enumerate(annotations_split): p = workers.apply_async(extract_semantic_single_core, (proc_id, annotations_set, segmentations_folder, output_json_file, semantic_seg_folder, categories, save_as_png, things_other)) processes.append(p) annotations_coco_semantic_seg = [] for p in processes: annotations_coco_semantic_seg.extend(p.get()) if not save_as_png: for idx, ann in enumerate(annotations_coco_semantic_seg): ann['id'] = idx d_coco['annotations'] = annotations_coco_semantic_seg categories_coco_semantic_seg = [] for category in categories_list: if things_other and category['isthing'] == 1: continue category.pop('isthing') category.pop('color') categories_coco_semantic_seg.append(category) if things_other: categories_coco_semantic_seg.append({'id': OTHER_CLASS_ID, 'name': 'other', 'supercategory': 'other'}) d_coco['categories'] = categories_coco_semantic_seg save_json(d_coco, output_json_file) t_delta = time.time() - start_time print("Time elapsed: {:0.2f} seconds".format(t_delta)) if __name__ == "__main__": parser = argparse.ArgumentParser( description="This script converts data in panoptic COCO format to \ semantic segmentation. All segments with the same semantic class in one \ image are combined together. See this file's head for more information." ) parser.add_argument('--input_json_file', type=str, help="JSON file with panoptic data") parser.add_argument( '--segmentations_folder', type=str, default=None, help="Folder with \ panoptic COCO format segmentations. Default: X if input_json_file is \ X.json" ) parser.add_argument('--output_json_file', type=str, default=None, help="JSON file with semantic data. If '--output_json_file' \ is specified, resulting semantic segmentation will be \ stored as a JSON file in COCO stuff format (see \ http://cocodataset.org/#format-data for details).") parser.add_argument('--semantic_seg_folder', type=str, default=None, help="Folder for semantic segmentation. If '--semantic_seg_folder' \ is specified, resulting semantic segmentation will be \ stored in the specified folder in PNG format.") parser.add_argument('--categories_json_file', type=str, help="JSON file with Panoptic COCO categories information", default='./panoptic_coco_categories.json') parser.add_argument('--things_other', action='store_true', help="Is set, all things classes are merged into one \ 'other' class") args = parser.parse_args() extract_semantic(args.input_json_file, args.segmentations_folder, args.output_json_file, args.semantic_seg_folder, args.categories_json_file, args.things_other)
StarcoderdataPython
11312284
<reponame>soren5/bee_bot import pprint import json import time import os def create_report(filename, dirname, report, extra): pp = pprint.PrettyPrinter(indent=4) message = pp.pformat(report) extra = pp.pformat(extra) todate = time.localtime() timestamp = time.strftime("%Y-%m-%d %H:%M:%S", todate) if not os.path.exists(dirname): os.makedirs(dirname) with open(dirname + filename, 'w') as fp: json.dump([timestamp, message, extra], fp) def get_progress_data(current_iteration, max_iteration, start_time): progress_data = {} progress_percentage = float(current_iteration + 1) / float(max_iteration) time_elapsed = float(time.time() - start_time) time_estimate = float(time_elapsed) / progress_percentage hours_elapsed = int(time_elapsed / 60 / 60) minutes_elapsed = int(time_elapsed % 60) seconds_elapsed = int(time_elapsed / 60 % 60) hours_left = int(time_estimate / 60 / 60) minutes_left = int(time_estimate % 60) seconds_left = int(time_estimate / 60 % 60) progress_data['progress_percentage'] = str(progress_percentage) progress_data['time_elapsed'] = str(hours_elapsed) + ':' + str(minutes_elapsed) + ':' + str(seconds_elapsed) progress_data['time_left'] = str(hours_left) + ':' + str(minutes_left) + ':' + str(seconds_left) return progress_data #create_report("test.json", 'reports/', ["This is an example report"], ["this is additional hidden information"])
StarcoderdataPython
4855183
from django.shortcuts import render from index.models import * from django.views.generic import ListView from django.conf import settings _ = settings.RANKING_VIEW def rankingView(request): """path '' handler """ # 热搜歌曲 searchs = Dynamic.objects.select_related('song').order_by('-search').all()[:_['SEARCHS']] labels = Label.objects.all() # 歌曲列表信息 t = request.GET.get('type', '') if t: dynamics = \ Dynamic.objects.select_related('song').filter(song__label=t).order_by('-plays').all()[:_['TOP']] else: dynamics = Dynamic.objects.select_related('song').order_by('-plays').all()[:_['TOP']] return render(request, 'ranking.html', locals())
StarcoderdataPython
1705345
import os import simur import sys #------------------------------------------------------------------------------- # #------------------------------------------------------------------------------- def usage(): print(f'{sys.argv[0]} vcs reporoot relpath revision') print(f' e.g. {sys.argv[0]} svn https://barbar/svn/SVNrepo trunk/main.c 3') #------------------------------------------------------------------------------- # #------------------------------------------------------------------------------- def handle_svn(reporoot, relpath, revision): url = reporoot + '/' + relpath command = f'svn cat {url}@{revision}' reply, exit_code = simur.run_process(command, True, extra_dir=None, as_text=False) return reply #------------------------------------------------------------------------------- # #------------------------------------------------------------------------------- def handle_local_git(reporoot, revision): # Make a pushd to the git dir curr_dir = os.getcwd() os.chdir(reporoot) command = f'git show {revision}' reply, exit_code = simur.run_process(command, True, extra_dir=reporoot, as_text=False) os.chdir(curr_dir) return reply #------------------------------------------------------------------------------- # #------------------------------------------------------------------------------- def handle_remote_git(reporoot, revision): git_dir = simur.find_and_update_git_cache(reporoot) if not git_dir: reply = f'Could not find a .git dir from {reporoot}\n' reply += f'when looking in {git_dir}' else: curr_dir = os.getcwd() os.chdir(git_dir) command = f'git show {revision}' reply, exit_code = simur.run_process(command, True, extra_dir=git_dir, as_text=False) os.chdir(curr_dir) return reply #------------------------------------------------------------------------------- # #------------------------------------------------------------------------------- def handle_git(reporoot, revision): if os.path.exists(reporoot): reply = handle_local_git(reporoot, revision) else: reply = handle_remote_git(reporoot, revision) return reply #------------------------------------------------------------------------------- # #------------------------------------------------------------------------------- def main(): if len(sys.argv) < 5: print("Too few arguments") usage() return 3 vcs = sys.argv[1] reporoot = sys.argv[2] relpath = sys.argv[3] revision = sys.argv[4] if vcs == 'svn': reply = handle_svn(reporoot, relpath, revision) elif vcs == 'git': reply = handle_git(reporoot, revision) else: print(f'Cannot handle {vcs}, only svn and git\n') usage() return 3 sys.stdout.buffer.write(reply) return 0 #------------------------------------------------------------------------------- # #------------------------------------------------------------------------------- sys.exit(main())
StarcoderdataPython
9664091
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import os import sys import base58 import uuid # helper function for constructing paths to resource files. def resource_path(relative): if hasattr(sys, "_MEIPASS"): return os.path.join(sys._MEIPASS, relative) abspath = os.path.abspath(os.path.join(__file__, "..", "..", "..")) abspath = os.path.dirname(abspath) #print("abspath: ", abspath) return os.path.join(abspath, relative) # helper function for constructing paths to resource files. def base_path(): if hasattr(sys, "_MEIPASS"): return sys._MEIPASS else: # assumes this file is located at src/eavatar/util/__init__.py abspath = os.path.abspath(os.path.join(__file__, "..", "..", "..")) abspath = os.path.dirname(abspath) return abspath def is_frozen(): """ Checks if in frozen mode. :return: """ return hasattr(sys, "frozen") def new_object_id(): """ Generates a new object ID in base58_check format. :return: """ oid = uuid.uuid1().get_bytes() return base58.b58encode_check(oid)
StarcoderdataPython
1672561
#!/usr/bin/env python from pyknon.plot import plot2, plot2_bw from pyknon.simplemusic import inversion def plot_color(): n1 = [11, 10, 7] for x in range(12): plot2(n1, inversion(n1, x), "ex-inversion-plot-{0:02}.ps".format(x)) n2 = [1, 3, 7, 9, 4] plot2(n2, inversion(n2, 9), "ex-inversion-plot.ps") def plot_black_and_white(): n1 = [11, 10, 7] for x in range(12): plot2_bw(n1, inversion(n1, x), "ex-inversion-plot-bw-{0:02}.ps".format(x)) n2 = [1, 3, 7, 9, 4] plot2_bw(n2, inversion(n2, 9), "ex-inversion-plot-bw.ps") if __name__ == "__main__": plot_color() plot_black_and_white()
StarcoderdataPython
8184419
#!/usr/bin/env python # -*- coding: utf-8 -*- """Testing suite for COS method. """ from __future__ import print_function, division import unittest as ut import numpy as np import scipy.stats as scs from impvol import impvol_bisection, blackscholes_norm, lfmoneyness from fangoosterlee import (cosmethod, cfinverse, GBM, GBMParam, VarGamma, VarGammaParam, Heston, HestonParam, ARG, ARGParam) class COSTestCase(ut.TestCase): """Test COS method.""" def test_gbm(self): """Test GBM model.""" price, strike = 100, 110 riskfree, maturity = .01, 30/365 call = True put = np.logical_not(call) moneyness = lfmoneyness(price, strike, riskfree, maturity) sigma = .15 model = GBM(GBMParam(sigma=sigma), riskfree, maturity) premium = cosmethod(model, moneyness=moneyness, call=call) premium_true = blackscholes_norm(moneyness, maturity, sigma, call) impvol_model = impvol_bisection(moneyness, maturity, premium, call) self.assertEqual(premium.shape, (1,)) np.testing.assert_array_almost_equal(premium, premium_true, 3) np.testing.assert_array_almost_equal(impvol_model, sigma, 2) moneyness = np.linspace(0, .1, 10) premium = cosmethod(model, moneyness=moneyness, call=call) premium_true = blackscholes_norm(moneyness, maturity, sigma, call) impvol_model = impvol_bisection(moneyness, maturity, premium, call) impvol_true = np.ones_like(impvol_model) * sigma self.assertEqual(premium.shape, moneyness.shape) np.testing.assert_array_almost_equal(premium, premium_true, 2) np.testing.assert_array_almost_equal(impvol_model, impvol_true, 2) riskfree = np.zeros_like(moneyness) premium = cosmethod(model, moneyness=moneyness, call=call) premium_true = blackscholes_norm(moneyness, maturity, sigma, call) impvol_model = impvol_bisection(moneyness, maturity, premium, call) self.assertEqual(premium.shape, moneyness.shape) np.testing.assert_array_almost_equal(premium, premium_true, 3) np.testing.assert_array_almost_equal(impvol_model, sigma, 2) moneyness = np.linspace(-.1, 0, 10) premium = cosmethod(model, moneyness=moneyness, call=put) premium_true = blackscholes_norm(moneyness, maturity, sigma, put) impvol_model = impvol_bisection(moneyness, maturity, premium, put) np.testing.assert_array_almost_equal(premium, premium_true, 2) np.testing.assert_array_almost_equal(impvol_model, impvol_true, 2) def test_vargamma(self): """Test VarGamma model.""" price, strike = 100, 90 riskfree, maturity = 0, 30/365 moneyness = np.log(strike/price) - riskfree * maturity nu = .2 theta = -.14 sigma = .25 param = VarGammaParam(theta=theta, nu=nu, sigma=sigma) model = VarGamma(param, riskfree, maturity) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, (1,)) moneyness = np.linspace(-.1, .1, 10) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, moneyness.shape) riskfree = np.zeros_like(moneyness) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, moneyness.shape) def test_heston(self): """Test Heston model.""" price, strike = 100, 90 riskfree, maturity = 0, 30/365 moneyness = np.log(strike/price) - riskfree * maturity lm = 1.5768 mu = .12**2 eta = .5751 rho = -.0 sigma = .12**2 param = HestonParam(lm=lm, mu=mu, eta=eta, rho=rho, sigma=sigma) model = Heston(param, riskfree, maturity) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, (1,)) moneyness = np.linspace(-.1, .1, 10) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, moneyness.shape) riskfree = np.zeros_like(moneyness) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, moneyness.shape) def test_argamma(self): """Test ARG model.""" price, strike = 100, 90 riskfree, maturity = 0, 30/365 moneyness = np.log(strike/price) - riskfree * maturity rho = .55 delta = .75 mu = .2**2/365 sigma = .2**2/365 phi = -.0 theta1 = -16.0 theta2 = 20.95 param = ARGParam(rho=rho, delta=delta, mu=mu, sigma=sigma, phi=phi, theta1=theta1, theta2=theta2) model = ARG(param, riskfree, maturity) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, (1,)) moneyness = np.linspace(-.1, .1, 10) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, moneyness.shape) riskfree = np.zeros_like(moneyness) premium = cosmethod(model, moneyness=moneyness, call=True) self.assertEqual(premium.shape, moneyness.shape) def test_cfinverse(self): """Test Fourier inversion.""" riskfree, maturity = 0, 30/365 sigma = .15 points = int(1e5) model = GBM(GBMParam(sigma=sigma), riskfree, maturity) grid, density = cfinverse(model.charfun, points=points, alim=-1e5, blim=1e5) loc = (riskfree - sigma**2/2) * maturity scale = sigma**2 * maturity norm_density = scs.norm.pdf(grid, loc=loc, scale=scale**.5) self.assertEqual(grid.shape, (points,)) self.assertEqual(density.shape, (points,)) good = np.abs(grid) < 2 np.testing.assert_array_almost_equal(density[good], norm_density[good], decimal=2) if __name__ == '__main__': ut.main()
StarcoderdataPython
8183835
<filename>lib/utils.py import pandas as pd import os import shutil import pdb def make_data_folder(mode): csv_file = "sample/"+mode+"_clean.csv" df=pd.read_csv(csv_file) print(df.head()) directory= "sample/ImageData/" pdb.set_trace() for index,rows in df.iterrows(): img_folder =directory+str(rows['landmark_id']) if not os.path.exists(img_folder): print("Creating Directory {}".format(img_folder)) os.makedirs(img_folder) else: print("Folder {} exists!".format(img_folder)) img = "sample/"+mode+"/"+str(rows["id"])+".jpg" print("Copying image {}".format(img)) shutil.copy2(img,img_folder) if __name__=="__main__": make_data_folder("train")
StarcoderdataPython
3515919
import sys from je_api_testka.utils.test_record.test_record_class import test_record_instance from je_api_testka.utils.exception.exceptions import HTMLException from je_api_testka.utils.exception.exception_tag import html_generate_no_data_tag from threading import Lock lock = Lock() _html_string_head = \ """ <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"/> <title>Load Density Report</title> <style> body{ font-size: 100%; } h1{ font-size: 2em; } .main_table { margin: 0 auto; border-collapse: collapse; width: 75%; font-size: 1.5em; } .success_table_head { border: 3px solid #262626; background-color: aqua; font-family: "Times New Roman", sans-serif; text-align: center; } .failure_table_head { border: 3px solid #262626; background-color: #f84c5f; font-family: "Times New Roman", sans-serif; text-align: center; } .table_data_field_title { border: 3px solid #262626; padding: 0; margin: 0; background-color: #dedede; font-family: "Times New Roman", sans-serif; text-align: center; width: 25%; } .table_data_field_text { border: 3px solid #262626; padding: 0; margin: 0; background-color: #dedede; font-family: "Times New Roman", sans-serif; text-align: left; width: 75%; } .text { text-align: center; font-family: "Times New Roman", sans-serif; } </style> </head> <body> <h1 class="text"> Test Report </h1> """.strip() _html_string_bottom = \ """ </body> </html> """.strip() _success_table = \ r""" <table class="main_table"> <thead> <tr> <th colspan="2" class="success_table_head">Test Report</th> </tr> </thead> <tbody> <tr> <td class="table_data_field_title">status_code</td> <td class="table_data_field_text">{status_code}</td> </tr> <tr> <td class="table_data_field_title">text</td> <td class="table_data_field_text">{text}</td> </tr> <tr> <td class="table_data_field_title">content</td> <td class="table_data_field_text">{content}</td> </tr> <tr> <td class="table_data_field_title">headers</td> <td class="table_data_field_text">{headers}</td> </tr> <tr> <td class="table_data_field_title">history</td> <td class="table_data_field_text">{history}</td> </tr> <tr> <td class="table_data_field_title">encoding</td> <td class="table_data_field_text">{encoding}</td> </tr> <tr> <td class="table_data_field_title">cookies</td> <td class="table_data_field_text">{cookies}</td> </tr> <tr> <td class="table_data_field_title">elapsed</td> <td class="table_data_field_text">{elapsed}</td> </tr> <tr> <td class="table_data_field_title">request_time_sec</td> <td class="table_data_field_text">{request_time_sec}</td> </tr> <tr> <td class="table_data_field_title">request_method</td> <td class="table_data_field_text">{request_method}</td> </tr> <tr> <td class="table_data_field_title">request_url</td> <td class="table_data_field_text">{request_url}</td> </tr> <tr> <td class="table_data_field_title">request_body</td> <td class="table_data_field_text">{request_body}</td> </tr> <tr> <td class="table_data_field_title">start_time</td> <td class="table_data_field_text">{start_time}</td> </tr> <tr> <td class="table_data_field_title">end_time</td> <td class="table_data_field_text">{end_time}</td> </tr> </tbody> </table> <br> """.strip() _failure_table = \ r""" <table class="main_table"> <thead> <tr> <th colspan="2" class="failure_table_head">Test Report</th> </tr> </thead> <tbody> <tr> <td class="table_data_field_title">http_method</td> <td class="table_data_field_text">{http_method}</td> </tr> <tr> <td class="table_data_field_title">test_url</td> <td class="table_data_field_text">{test_url}</td> </tr> <tr> <td class="table_data_field_title">soap</td> <td class="table_data_field_text">{soap}</td> </tr> <tr> <td class="table_data_field_title">record_request_info</td> <td class="table_data_field_text">{record_request_info}</td> </tr> <tr> <td class="table_data_field_title">clean_record</td> <td class="table_data_field_text">{clean_record}</td> </tr> <tr> <td class="table_data_field_title">result_check_dict</td> <td class="table_data_field_text">{result_check_dict}</td> </tr> <tr> <td class="table_data_field_title">error</td> <td class="table_data_field_text">{error}</td> </tr> </tbody> </table> <br> """.strip() def generate_html(html_name: str = "default_name"): """ :param html_name: save html file name :return: html_string """ if len(test_record_instance.test_record_list) == 0 and len(test_record_instance.error_record_list) == 0: raise HTMLException(html_generate_no_data_tag) else: success_list = list() for record_data in test_record_instance.test_record_list: success_list.append( _success_table.format( status_code=record_data.get("status_code"), text=record_data.get("text"), content=str(record_data.get("content"), encoding="utf-8"), headers=record_data.get("headers"), history=record_data.get("history"), encoding=record_data.get("encoding"), cookies=record_data.get("cookies"), elapsed=record_data.get("elapsed"), request_time_sec=record_data.get("request_time_sec"), request_method=record_data.get("request_method"), request_url=record_data.get("request_url"), request_body=record_data.get("request_body"), start_time=record_data.get("start_time"), end_time=record_data.get("end_time"), ) ) failure_list = list() if len(test_record_instance.error_record_list) == 0: pass else: for record_data in test_record_instance.error_record_list: failure_list.append( _failure_table.format( http_method=record_data[0].get("http_method"), test_url=record_data[0].get("test_url"), soap=record_data[0].get("soap"), record_request_info=record_data[0].get("record_request_info"), clean_record=record_data[0].get("clean_record"), result_check_dict=record_data[0].get("result_check_dict"), error=record_data[1] ), ) try: lock.acquire() with open(html_name + ".html", "w+") as file_to_write: file_to_write.writelines( _html_string_head ) for success in success_list: file_to_write.write(success) for failure in failure_list: file_to_write.write(failure) file_to_write.writelines( _html_string_bottom ) except Exception as error: print(repr(error), file=sys.stderr) finally: lock.release() return success_list, failure_list
StarcoderdataPython
5040528
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # vim: ai ts=4 sts=4 et sw=4 ft=python # author : Prakash [प्रकाश] # date : 2019-09-08 23:33 from .asctouni import converter from .translit import translit from .asctouni.converter import Converter from .translit.translit import Translit
StarcoderdataPython
1697899
<filename>hydromet_forecasting/evaluating.py # -*- encoding: UTF-8 -*- from numpy import nan, isnan, arange, corrcoef, mean import numpy as np from matplotlib import pyplot as plt import pandas from hydromet_forecasting.timeseries import FixedIndexTimeseries from string import Template import base64 import tempfile from os import path from collections import OrderedDict, defaultdict from babel.dates import format_date, get_month_names from utils import to_str, activate from plot_utils import PlotUtils class Evaluator(object): """Evaluator class for a predicted timeseries that is given as an FixedIndexTimeseries instance and has annual seasonality. This class enables to evaluate the performance of an forecast by means of comparing the observed and the forecasted timeseries. Those series need to be instances of the FixedIndexTimeseries class. The Evaluator class implements various methods to analyse the series statistically. The method write_html writes a report to a specified path. Attributes: forecast: the forecasted timeseries y_adj: the observed timeseries, reduced to the index of the forecasted timeseries """ _rel_error = None _p = None def __init__(self, y, forecast): """Initialising the Evaluator Instance Args: y: A FixedIndexTimeseries instance of the observed data forecast: A FixedIndexTimeseries instance of the forecasted data of the same mode as y. Returns: The Evaluator instance Raises: ValueError: When the two timeseries are not of the same mode. InsufficientData: If the length of the forecasted timeseries is not sufficient for evalaution. At least two complete years of data must be provided in order to compute standard deviations etc. """ if not y.mode == forecast.mode: raise ValueError("The target timeseries is not of the same mode as the forecasted timeseries.") self.y = y self.forecast = forecast self.y_adj=FixedIndexTimeseries(self.y.timeseries[self.forecast.timeseries.index], mode=self.y.mode) datagroups = [len(self.forecast.data_by_index(i)) for i in range(1,self.forecast.maxindex+1)] if min(datagroups)<2: raise self.__InsufficientData("The length of the forecasted timeseries is not sufficient.") def computeP(self, annualindex=None): """ Returns the P value (Percentage of forecasts with error/stdev > 0.674) Args: annualindex (int): default None Returns: A list of values for each period of the year of the forecasted timeseries if annualindex is None, else one value. NaN is retuned of the value could not be determined (e.g. not enough data) Raises: None """ P = [] indexrange = range(1, self.y_adj.maxindex+1) if annualindex is None else [annualindex] for index in indexrange: allowed_error = 0.674 * self.y.stdev_s(index) try: error = abs(self.forecast.data_by_index(index) - self.y_adj.data_by_index(index)) error = error.dropna() good = sum(error <= allowed_error) P.append(float(good) / len(error)) except: P.append(nan) return P def computeRelError(self, annualindex=None): """ Returns the relative error value of the forecast (error / stdev.sample) Args: None Returns: A list of values for each period of the year of the forecasted timeseries if annualindex is None, else one value. NaN is retuned of the value could not be determined (e.g. not enough data) Raises: None """ relerror = [] indexrange = range(1, self.y_adj.maxindex + 1) if annualindex is None else [annualindex] for index in indexrange: stdev = self.y.stdev_s(index) try: error = abs(self.forecast.data_by_index(index) - self.y_adj.data_by_index(index)) error = error.dropna() relerror.append(error.values/stdev) except: relerror.append(nan) return relerror def trainingdata_count(self, annualindex = None): """ Returns the number of training data for each period of the year Args: annualindex (int): the annualindex for which trainingdata shall be counted. default=None Returns: A list of values for each period of the year of the forecasted timeseries if annualindex is None, else a single integer Raises: None """ if annualindex is None: count = list() indexrange = range(1, self.y_adj.maxindex + 1) for index in indexrange: count.append(len(self.forecast.data_by_index(index))) else: count = len(self.forecast.data_by_index(annualindex)) return count def plot_y_stats(self): norm = self.y.norm() stdev = self.y.stdev_s() upper = [norm[i]+stdev[i] for i in range(0,len(stdev))] lower = [norm[i]-stdev[i] for i in range(0,len(stdev))] fig, ax = PlotUtils.prepare_figure(len(stdev)) [ax.plot(self.y.data_by_year(year).values, label='individual years', color='blue', alpha=.2) for year in range(self.y.timeseries.index[0].year, self.y.timeseries.index[-1].year + 1)] ax.plot(upper, color='black') ax.plot(lower, color='black',label="+/- STDEV") ax.plot(norm,label="NORM", color='red') handles, labels = ax.get_legend_handles_labels() ax.legend(handles[-3:], labels[-3:]) plt.ylabel(self.y.label) return fig def plot_trainingdata(self): count = self.trainingdata_count() fig, ax = PlotUtils.prepare_figure(len(count)) ax.bar(range(0, len(count)), count, width=0.7) ax.bar(range(0, len(count)), count, width=0.7) plt.ylabel(_("Number of training data")) return fig def summary_table(self, frequency): header, indices = self.period_header_and_indices(frequency, len(self.rel_error)) data = OrderedDict(( (header, indices), (_('Number of training data'), self.trainingdata_count()), (_('Minimum'), self.y.min()), (_('Average'), np.round(self.y.norm(), 2)), (_('Maximum'), np.round(self.y.max(), 2)), (_('+/- d'), np.round(self.y.stdev_s(), 2)), (_('P%'), np.round(self.p, 2) * 100), (_('ScaledError'), [np.round(mean(x), 2) for x in self.rel_error]), )) df = pandas.DataFrame(data) return df.to_html(justify='justify-all', index=False) def p_plot_table(self, frequency): header, indices = self.period_header_and_indices(frequency, len(self.p)) data = OrderedDict(( (header, indices), (_('P%'), self.p), )) df = pandas.DataFrame(data) return df.to_html(index=False) def rel_error_table(self, frequency): header, indices = self.period_header_and_indices(frequency, len(self.rel_error)) data = OrderedDict(( (header, indices), (_('ScaledError'), [mean(x) for x in self.rel_error]), )) df = pandas.DataFrame(data) return df.to_html(index=False) def get_spacers(self, frequency, language): spacer_1 = defaultdict(lambda: '0px') spacer_2 = defaultdict(lambda: '0px') spacer_3 = defaultdict(lambda: '0px') spacer_4 = defaultdict(lambda: '0px') spacer_5 = defaultdict(lambda: '0px') # TODO fine tune if needed # spacer_1['monthly_ru'] = '600px' # spacer_2['monthly_ru'] = '800px' # spacer_3['monthly_ru'] = '30px' # spacer_4['monthly_ru'] = '500px' # spacer_5['monthly_ru'] = '30px' # # spacer_2['monthly_en'] = '100px' # spacer_3['monthly_en'] = '200px' # spacer_4['monthly_en'] = '500px' # spacer_5['monthly_en'] = '30px' # # spacer_1['decade_en'] = '100px' # spacer_2['decade_en'] = '100px' # # spacer_1['decade_ru'] = '100px' # spacer_2['decade_ru'] = '100px' # # spacer_1['fiveday_en'] = '200px' # spacer_2['fiveday_en'] = '300px' # spacer_4['fiveday_en'] = '100px' # # spacer_1['fiveday_ru'] = '100px' # spacer_2['fiveday_ru'] = '300px' # spacer_4['fiveday_ru'] = '100px' return { 'SPACER_1': spacer_1['_'.join((frequency, language))], 'SPACER_2': spacer_2['_'.join((frequency, language))], 'SPACER_3': spacer_3['_'.join((frequency, language))], 'SPACER_4': spacer_4['_'.join((frequency, language))], 'SPACER_5': spacer_5['_'.join((frequency, language))], } @staticmethod def load_template_file(filename='template.html'): template_path = path.join(path.dirname(__file__), filename) with open(template_path, 'r') as template_path: page = Template(template_path.read()) return page def write_html( self, username, organization, site_code, site_name, forecast_model_name, forecast_method, forecast_model_params, forecast_method_params, filename=None, htmlpage=None, language='en' ): activate(language) if self.y.mode == 'p': frequency = 'fiveday' elif self.y.mode == 'd': frequency = 'decade' elif self.y.mode == 'm': frequency = 'monthly' page = self.load_template_file() scatter_plot = PlotUtils.plot_ts_comparison( self.y_adj.timeseries, self.forecast.timeseries, frequency, language=language, ) scaled_error_title = _('Scaled Error [RMSE/STDEV]') scaled_error_plot = PlotUtils.plot_rel_error(self.rel_error, frequency, title=scaled_error_title) scaled_error_table = self.rel_error_table(frequency) p_plot_title = _('P% Plot') p_plot_plot = PlotUtils.plot_p(self.p, frequency, title=p_plot_title) p_plot_table = self.p_plot_table(frequency) quality_assessment_table = self.summary_table(frequency) report_data = { 'SITE_INFO': _('Station: {code} - {name}').format( code=to_str(site_code), name=to_str(site_name) ), 'USERNAME': username, 'ORGANIZATION': organization, 'TITLE': _('Forecast Model Training Report'), 'REPORT_DATE': format_date(format='long', locale=language), 'PLOTS_HEADER': _('{frequency} Forecast Model Quality Assessment').format( frequency=frequency.capitalize()), 'SCATTER_PLOT_LABEL': _('Scatter Plot: Observed versus Predicted values'), 'SCALED_ERROR_LABEL': scaled_error_title, 'P_PLOT_LABEL': p_plot_title, 'QUALITY_ASSESSMENT_LABEL': _('Quality Assessment'), 'SCATTER_PLOT_IMAGE': scatter_plot, 'SCALED_ERROR_PLOT_IMAGE': scaled_error_plot, 'SCALED_ERROR_TABLE': scaled_error_table, 'P_PLOT_IMAGE': p_plot_plot, 'P_PLOT_TABLE': p_plot_table, 'QUALITY_ASSESSMENT_TABLE': quality_assessment_table, 'FORECAST_MODEL_INFO': _('Forecast model info:'), 'FORECAST_MODEL_NAME': _('Name: ') + forecast_model_name, 'FORECAST_METHOD': _('Method: ') + forecast_method, 'FORECAST_MODEL_PARAMS': _('Model parameters: ') + str(forecast_model_params), 'FORECAST_METHOD_PARAMS': _('Method parameters: ') + str(forecast_method_params), } report_data.update(self.get_spacers(frequency, language)) self.encode_utf8(report_data) if filename: htmlpage = open(filename, 'w') htmlpage.write(page.safe_substitute(**report_data)) htmlpage.close() return filename elif htmlpage: htmlpage.write(page.safe_substitute(**report_data)) return htmlpage @staticmethod def period_header_and_indices(frequency, num_of_data): if frequency == 'fiveday': header = _('pentade').capitalize() elif frequency == 'decade': header = _('decade').capitalize() elif frequency == 'monthly': header = _('Month') return header, [x + 1 for x in range(num_of_data)] @classmethod def encode_utf8(cls, template_vars): for key, value in template_vars.iteritems(): template_vars[key] = to_str(value) @property def rel_error(self): if self._rel_error is None: self._rel_error = self.computeRelError() return self._rel_error @property def p(self): if self._p is None: self._p = self.computeP() return self._p class __InsufficientData(Exception): pass class SeasonalEvaluator(object): def __init__(self, featurenames,selectedfeatures,modelEvaluators): self.featurenames = featurenames self.selectedfeatures = selectedfeatures self.modelEvaluators = modelEvaluators self.score = [mean(CV.computeRelError()) for CV in self.modelEvaluators] def __prepare_figure(self, width=12, height=3): fig, ax = plt.subplots(1, 1) fig.set_figwidth(width) fig.set_figheight(height) fig.subplots_adjust(left=0.06, bottom=0.16, right=0.94, top=0.92) return fig, ax def __table_summary(self): data = dict({ _('Minimum'): mean(self.modelEvaluators[0].y.min()), _('Average'): self.modelEvaluators[0].y.norm(), _('Maximum'): self.modelEvaluators[0].y.max(), _('+/- d'): self.modelEvaluators[0].y.stdev_s() }) df=pandas.DataFrame(data) return df.to_html(index=False) def model_table(self): feature_selection = OrderedDict() for i, name in enumerate(self.featurenames): # translate substrings for x in ('disch', 'precip', 'temp', 'snow'): name = name.replace(x.capitalize(), _(x).capitalize()) feature = [selected_feature[i] for selected_feature in self.selectedfeatures] feature_dict = OrderedDict(((name, feature), )) feature_selection.update(feature_dict) data = OrderedDict(( ( _('Number of training data'), [CV.trainingdata_count()[0] for CV in self.modelEvaluators] ), ( _('Error/STDEV'), [round(mean(CV.computeRelError()[0]), 2) for CV in self.modelEvaluators] ), ( _('P%'), [round(CV.computeP()[0], 2) for CV in self.modelEvaluators]), )) data.update(feature_selection) df = pandas.DataFrame(data) df = df.sort_values(by=[_('Error/STDEV')]) df.insert(0, column=_('Rank'), value=[x + 1 for x in range(len(self.modelEvaluators))]) return df def __model_htmltable(self): # pandas.set_option('display.max_colwidth', 50) return self.model_table().to_html(justify='justify-all', index=False) def plot_timeseries(self): fig, ax = self.__prepare_figure() [ax.plot( CV.forecast.timeseries, color='red', label=_("individual forecasts").decode('utf-8'), alpha=.2 ) for CV in self.modelEvaluators] df_concat = pandas.concat(([CV.forecast.timeseries for CV in self.modelEvaluators])) by_row_index = df_concat.groupby(df_concat.index) df_means = by_row_index.mean() ax.plot(df_means, color='black', label=_('mean forecast').decode('utf-8')) ax.plot( self.modelEvaluators[0].y.timeseries, color='green', label=_('observed').decode('utf-8') ) ax.set_xlabel(_('Year').decode('utf-8')) handles, labels = ax.get_legend_handles_labels() ax.legend(handles[-3:], labels[-3:]) return fig @staticmethod def load_template_file(filename='template_seasonal.html'): template_path = path.join(path.dirname(__file__), filename) with open(template_path, 'r') as template_path: page = Template(template_path.read()) return page @classmethod def encode_utf8(cls, template_vars): for key, value in template_vars.iteritems(): template_vars[key] = to_str(value) def write_html( self, username, organization, site_code, site_name, forecast_model_name, forecast_method, forecast_model_params, forecast_method_params, filename=None, htmlpage=None, language='en' ): activate(language) page = self.load_template_file() timeseries_plot = self.__encode_figure(self.plot_timeseries()) quality_assessment_table = self.__table_summary() model_table = self.__model_htmltable() report_data = { 'SITE_INFO': _('Station: {code} - {name}').format( code=to_str(site_code), name=to_str(site_name) ), 'USERNAME': username, 'ORGANIZATION': organization, 'TITLE': _('Forecast Model Training Report'), 'REPORT_DATE': format_date(format='long', locale=language), 'PLOTS_HEADER': _('{frequency} Forecast Model Quality Assessment').format( frequency=_('seasonal').capitalize()), 'MODEL_TABLE_LABEL': _('Model table'), 'MODEL_TABLE': model_table, 'QUALITY_ASSESSMENT_LABEL': _('Quality Assessment'), 'QUALITY_ASSESSMENT_TABLE': quality_assessment_table, 'TIMESERIES_LABEL': _('Timeseries plot'), 'TIMESERIES_PLOT': timeseries_plot, 'FORECAST_MODEL_INFO': _('Forecast model info:'), 'FORECAST_MODEL_NAME': _('Name: ') + forecast_model_name, 'FORECAST_METHOD': _('Method: ') + forecast_method, 'FORECAST_MODEL_PARAMS': _('Model parameters: ') + str(forecast_model_params), 'FORECAST_METHOD_PARAMS': _('Method parameters: ') + str(forecast_method_params), } self.encode_utf8(report_data) if filename: htmlpage = open(filename, 'w') htmlpage.write(page.safe_substitute(**report_data)) htmlpage.close() return filename elif htmlpage: htmlpage.write(page.safe_substitute(**report_data)) return htmlpage def __encode_figure(self, fig): with tempfile.TemporaryFile(suffix=".png") as tmpfile: fig.savefig(tmpfile, format="png") tmpfile.seek(0) encoded = base64.b64encode(tmpfile.read()) tmpfile.close() return encoded
StarcoderdataPython
8009277
from distutils.core import setup import py2exe import matplotlib #======================================================================================================================== setup( windows=[{"script":"ServiceApplication.py","dest_base":"ServiceApplication"}], data_files=matplotlib.get_py2exe_datafiles(), options = { 'py2exe': { 'optimize': 2, 'dist_dir':'ServiceApplication', 'includes': ['logging'], #~ 'excludes': ['OpenGL',], "dll_excludes": ["MSVCP90.dll","OLEACC.dll",] } }, )#End of setup #========================================================================================================================== #excludes OLEACC.dll is necessary for wxpython. Another method is to delete this dll in the compiled folder. #Need to excludes MSVCP90.dll. py2exe says: error: [Errno 2] No such file or directory: 'MSVCP90.dll' during compilation
StarcoderdataPython
9730235
<gh_stars>0 # Copyright (C) 2017 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Modals for edit objects.""" from lib import decorator from lib.constants import locator from lib.page.modal import base as modal_base, delete_object from lib.utils import selenium_utils class _EditModal(modal_base.BaseModal): """Modal for edit objects.""" def delete_object(self): """Return: delete_object.DeleteObjectModal """ self._driver.find_element(*locator.ModalEditObject.BUTTON_DELETE).click() return delete_object.DeleteObjectModal(self._driver) @decorator.handle_alert def save_and_close(self): """Edit object and close Edit modal.""" self.button_save_and_close.click() selenium_utils.wait_until_not_present( self._driver, self._locator_button_save) class Assessments(modal_base.AsmtsModal, _EditModal): """Assessments edit modal.""" class Programs(modal_base.ProgramsModal, _EditModal): """Programs edit modal.""" class Controls(modal_base.ControlsModal, _EditModal): """Controls edit modal.""" class Risks(modal_base.RisksModal, _EditModal): """Risks edit modal.""" class OrgGroups(modal_base.OrgGroupsModal, _EditModal): """Org Groups edit modal.""" class Processes(modal_base.ProcessesModal, _EditModal): """Processes edit modal.""" class DataAssets(modal_base.RisksModal, _EditModal): """Data Assets edit modal.""" class Systems(modal_base.RisksModal, _EditModal): """Systems edit modal.""" class Products(modal_base.ProductsModal, _EditModal): """Products edit modal.""" class Projects(modal_base.ProjectsModal, _EditModal): """Projects edit modal."""
StarcoderdataPython
11297700
<gh_stars>0 # Generated by Django 3.2.12 on 2022-03-29 07:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('recipes', '0006_recipeingredientimage'), ] operations = [ migrations.AlterField( model_name='recipeingredientimage', name='image', field=models.ImageField(upload_to='recipes/'), ), ]
StarcoderdataPython
1878297
<gh_stars>10-100 """scrapli_community.siemens.roxii""" from scrapli_community.siemens.roxii.siemens_roxii import SCRAPLI_PLATFORM __all__ = ("SCRAPLI_PLATFORM",)
StarcoderdataPython
6447605
<filename>morphounit/plots/plot_feats_pop_morp_stats.py # For data manipulation import os from scipy import stats import pandas as pd import seaborn as sns import numpy as np import matplotlib matplotlib.use('Agg') # Force matplotlib to not use any Xwindows backend. from matplotlib import pyplot as plt class FeatsPop_MorphStats: """ Displays data in dictionary of cells population morpho-features in the form of correlation, countour and distribution plots """ def __init__(self, testObj): self.testObj = testObj self.prefix_filename_lreg = "prediction_lreg_" self.prefix_filename_stats = "prediction_stats_" self.prefix_filename_stats_all = "prediction_allPlots_" self.filepath_list = list() def FeaturesPop_dict_DFrame(self): """ Formats a dictionary of cells population morpho-features into a dictionary of DataFrame structures """ pop_prediction_raw = self.testObj.prediction_cells_dict prediction_raw = list(pop_prediction_raw.values())[0] dict_pred_CellPart_df = dict() for CellPart in prediction_raw.keys(): dict_pred_CellPart_df[CellPart] = pd.DataFrame(prediction_raw[CellPart]) return dict_pred_CellPart_df def corrfunc(self, x, y, **kws): r, p = stats.pearsonr(x, y) ax = plt.gca() ax.annotate(f"r = {r:.2E}\n(p ={p:.2E})", xy=(.1, .9), xycoords=ax.transAxes) def df_drop_features(self, df=None, threshold_corr=0.95, threshold_var=0.05): '''Drops one in any pair of highly correlated features of a DataFrame, as the calculation of some quantities may not be posible. Besides, columns with no variance are excluded. For instance, joint kernel distributions estimates (kde) for two highly correlated features may not be computed. The same holds for features with low variability. The cutoffs for correlation (or variance) to be considered as too high (or too low) are given by 'threshold_corr' ('threshold_var'). Note: Adapted from https://chrisalbon.com/machine_learning/feature_selection/ drop_highly_correlated_features/ ''' feats_to_drop = list() # Compute the correlation DataFrame of the original DataFrame of feature values corr_matrix_df = df.corr().abs() # Build a copy with the elements below the first diagonal as False upper = corr_matrix_df.where(np.triu(np.ones(corr_matrix_df.shape), k=1).astype(np.bool)) # Find and collect one feature name in any pair of correlated features features_hcorr = [column for column in df.columns if any(upper[column] > threshold_corr)] feats_to_drop.extend(features_hcorr) # Compute the variance DataSeries of the original DataFrame of feature values var_series = df.var().abs() # Find and collect all features with low variance feats_no_var = [column for column in df.columns if var_series[column] < threshold_var] feats_to_drop.extend(feats_no_var) # Drop all those disposable (maybe superfluous) features found df.drop(df[feats_to_drop], axis=1, inplace=True) return df def FeaturesPop_Linreg_plots(self, dict_pred_CellPart_df=None): '''Plots a histogram for values of each morpho-feature, in the diagonal, together with a kernel density estimation (kde) for that histogram. Linear correlation results are shown below and above the diagonal for the same pair of morpho-feattures (i.e., numerical results are symmetric). ''' for CellPart, prediction_raw_df in list(dict_pred_CellPart_df.items()): data = self.df_drop_features(df=prediction_raw_df) g = sns.pairplot(data, height=5, aspect=1, diag_kind="kde") # g = sns.PairGrid(data, size=5, aspect=1, palette=["red"]) # g.map(sns.regplot) # g.map(self.corrfunc) g.map_upper(sns.regplot) g.map_upper(self.corrfunc) g.map_diag(sns.distplot, kde=True) g.map_lower(sns.regplot) g.map_lower(self.corrfunc) plt.subplots_adjust(top=0.95) g.fig.suptitle('Cell part: '+CellPart, fontsize=17) filepath = os.path.join(self.testObj.path_test_output, self.prefix_filename_lreg + CellPart + '_FSI_pop.pdf') plt.savefig(filepath, dpi=600, ) self.filepath_list.append(filepath) def FeaturesPop_ContourLinreg_plots(self, dict_pred_CellPart_df=None): '''Plots a histogram for values of each morpho-feature, in the diagonal, together with a kernel density estimation (kde) for that histogram. Linear correlation results and contour (kde) plots for the same pair of morpho-feattures are shown above and below the diagonal, respectively. Note that some morpho-features are excluded from the analysis, when their correlation is high , as their (kde) countour-plots can not be computed. ''' for CellPart, prediction_raw_df in list(dict_pred_CellPart_df.items()): data = self.df_drop_features(df=prediction_raw_df) g = sns.pairplot(data, height=5, aspect=1, diag_kind="kde") # g = sns.PairGrid(data, size=5, aspect=1, palette=["red"] g.map_upper(sns.regplot) g.map_upper(self.corrfunc) # g.map_upper(plt.reg, s=10) g.map_diag(sns.distplot, kde=True) g.map_lower(sns.kdeplot, cmap="Blues_d", n_levels=8) plt.subplots_adjust(top=0.95) g.fig.suptitle('Cell part: ' + CellPart, fontsize=17) filepath = os.path.join(self.testObj.path_test_output, self.prefix_filename_stats_all + CellPart + '_FSI_pop.pdf') plt.savefig(filepath, dpi=600, ) self.filepath_list.append(filepath) def create(self): Dict_CellPart_DFrame_pred = self.FeaturesPop_dict_DFrame() self.FeaturesPop_Linreg_plots(dict_pred_CellPart_df=Dict_CellPart_DFrame_pred) self.FeaturesPop_ContourLinreg_plots(dict_pred_CellPart_df=Dict_CellPart_DFrame_pred) return self.filepath_list
StarcoderdataPython
5126595
import pymongo import pprint import sys if len(sys.argv) > 1 : host=sys.argv[1] else: host="mongodb://localhost:27017" client = pymongo.MongoClient(host=host) # defaults to mongodb://localhost:27017 blogDatabase = client["blog"] usersCollection = blogDatabase["users"] articlesCollection = blogDatabase[ "articles" ] author = "jdrumgoole" article = { "title" : "This is my first post", "body" : "The is the longer body text for my blog post. We can add lots of text here.", "username" : author, "tags" : [ "joe", "general", "Ireland", "admin" ] } # # Lets check if our author exists # if usersCollection.find_one( { "username" : author }) : doc = articlesCollection.insert_one( article ) pprint.pprint( article ) else: raise ValueError( "Author %s does not exist as a user" % author )
StarcoderdataPython
120977
<gh_stars>0 import argparse from pwn import cyclic_metasploit_find if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-a", "--address", type=str, required=True, help="EIP hex value" ) parser.add_argument( "-c", "--prepend_cmd", type=str, required=False, default="", help="EIP hex value", ) args = parser.parse_args() hex_val = int(args.address, 16) offset = cyclic_metasploit_find(hex_val) cmd = args.prepend_cmd offset_eip = offset + len(cmd) offset_esp = offset_eip + 4 # + 4 bytes after EIP print(f"Offset of {args.address}: {offset}") print(f"Offset of EIP + cmd len : {offset_eip}") print(f"Offset of EIP + cmd len + 4 = ESP: {offset_esp}")
StarcoderdataPython
242327
<gh_stars>1-10 import argparse from endless_sky.datafile import DataFile from re import sub parser = argparse.ArgumentParser() parser.add_argument("locations") parser.add_argument("links") args = parser.parse_args() links = {} for i in DataFile(args.links).root.filter_first("system"): links[i.tokens[1]] = [] for j in i.filter_first("link"): links[i.tokens[1]].append(j.tokens[1]) from pprint import pprint with open(args.locations) as f: contents = f.read() contents = sub(r"\tlink .+\n", "", contents) with open(args.locations + ".linkless.txt", "w") as f: f.write(contents) systems = [] for i in DataFile(args.links).root.filter_first("system"): systems.append(i.tokens[1]) for i in systems: if not links.get(i): continue for j in links[i]: contents = contents.replace(f'system "{i}"', f'system "{i}"\n\tlink "{j}"') contents = contents.replace(f'system {i}\n', f'system {i}\n\tlink "{j}"\n') with open(args.locations + ".merged.txt", "w") as f: f.write(contents)
StarcoderdataPython
1619132
""" Tests for opencadd.structure.superposition.engines.mmligner """ import os import pytest from opencadd.structure.superposition.api import Structure from opencadd.structure.superposition.engines.mmligner import MMLignerAligner def test_mmligner_instantiation(): aligner = MMLignerAligner() @pytest.mark.skipif( "GITHUB_ACTIONS" in os.environ, reason="FIXME: MMLigner in conda-forge is not yet patched" ) def test_mmligner_alignment(): aligner = MMLignerAligner() structures = [Structure.from_pdbid(pdb_id) for pdb_id in ["4u3y", "4u40"]] result = aligner.calculate(structures) # Check API compliance assert "superposed" in result assert "scores" in result assert "rmsd" in result["scores"] assert "metadata" in result # Check RMSD value for these PDBs assert pytest.approx(result["scores"]["rmsd"], 2.279)
StarcoderdataPython
9783452
from pdf2image import convert_from_path from PIL import Image import os PAPERS_DIR = "./data/papers/" PAPERS_IMG_DIR = "./data/paper_img/" IM_SIZE = 256, 256 papers = os.listdir(PAPERS_DIR) for paper in papers: images = convert_from_path(PAPERS_DIR + paper) for im in images: im.thumbnail(IM_SIZE, Image.ANTIALIAS) widths, heights = zip(*(i.size for i in images)) total_width = sum(widths) max_height = max(heights) new_im = Image.new('RGB', (total_width, max_height)) x_offset = 0 for im in images: new_im.paste(im, (x_offset,0)) x_offset += im.size[0] new_im.save(PAPERS_IMG_DIR + paper +'.jpg')
StarcoderdataPython
6431115
<filename>datajob/stepfunctions/stepfunctions_execute.py import json import time from datetime import datetime from typing import Union import boto3 from stepfunctions.workflow import Execution from stepfunctions.workflow import Workflow from datajob import console from datajob import logger from datajob.datajob_execution_input import DataJobExecutionInput CURRENT_DATE = datetime.utcnow() MAX_CHARS = 63 def find_state_machine_arn(state_machine: str) -> str: """lookup the state machine arn based on the state machine name.""" workflows = Workflow.list_workflows() state_machine_object = [ workflow for workflow in workflows if workflow.get("name") == state_machine ] if len(state_machine_object) == 1: logger.debug(f"we have found one statemachine {state_machine_object[0]}") return state_machine_object[0].get("stateMachineArn") elif len(state_machine_object) == 0: logger.error(f"statemachine {state_machine} not found.") raise LookupError("no statemachine found.") else: logger.error(f"more than one statemachine found with name {state_machine}.") raise Exception( "more than one statemachine found. Something strange is going on ..." ) def _describe_stack_resources(sfn_arn: str) -> dict: """Describe stack resources for a stepfunctions workflow arn.""" return boto3.client("cloudformation").describe_stack_resources( PhysicalResourceId=sfn_arn ) def _find_cloudformation_stack_name_for_sfn_workflow(sfn_arn: str) -> str: """Find the cloudformation stackname for a stepfunction workflow. Args: sfn_arn: the AWS ARN of stepfunctions workflow Returns: Stackname """ logger.debug(f"looking for the stack for step functions arn {sfn_arn}") stack_resources = _describe_stack_resources(sfn_arn=sfn_arn) stepfunctions_resource = [ element for element in stack_resources.get("StackResources") if element.get("PhysicalResourceId") == sfn_arn ] stack_name = stepfunctions_resource[0]["StackName"] logger.debug(f"found stack {stack_name}") return stack_name def _describe_stacks(stack_name: str) -> dict: return boto3.client("cloudformation").describe_stacks(StackName=stack_name) def _generate_unique_name( name: str, max_chars: int = MAX_CHARS, unique_identifier: datetime = CURRENT_DATE, datetime_format: str = "%Y%m%dT%H%M%S", ): """Generate a unique name by adding a datetime behind the name. Args: name: the name we want to make unique max_chars: the maximum number of characters a unique name can have. datetime_format: the format of the datetime that gets appended to the name, Returns: the name as the unique name. """ current_date_as_string = unique_identifier.strftime(datetime_format) total_length = len(current_date_as_string) + len(name) difference = max_chars - total_length if difference < 0: logger.debug( f"the length of the unique name is {total_length}. Max chars is {max_chars}. Removing last {difference} chars from name" ) name = name[: difference - 1] unique_name = f"{name}-{current_date_as_string}" logger.debug(f"generated unique name is {unique_name}") return unique_name def _get_execution_input_from_stack(stack_name: str) -> Union[dict, None]: """Look for the execution input in the outputs of this stack. If present generate unique names for the ExecutionInput and return the dict. If not present return None. Args: stack_name: name of the cloudformation stack. Returns: ExecutionInput as a dict or None """ logger.debug(f"looking for execution input in {stack_name}") stack = _describe_stacks(stack_name=stack_name) outputs = stack.get("Stacks")[0].get("Outputs") if outputs: for output in outputs: if ( output.get("OutputKey") == DataJobExecutionInput().DATAJOB_EXECUTION_INPUT ): execution_inputs = json.loads(output.get("OutputValue")) return_value = { execution_input: _generate_unique_name(execution_input) for execution_input in execution_inputs } console.log("execution input found: \n" f"{return_value}") return return_value logger.debug("no execution input found.") def get_execution_input(sfn_arn: str) -> Union[dict, None]: """Get execution input dict for a workflow. - we will first find the cloudformation stack name based on the stepfunctions workflow arn. - then we try to get the execution input schema from the cloudformation stack "Outputs". Args: sfn_arn: arn of the stepfunctions workflow Returns: ExecutionInput or None """ stack_name = _find_cloudformation_stack_name_for_sfn_workflow(sfn_arn=sfn_arn) return _get_execution_input_from_stack(stack_name=stack_name) def get_status(execution: Execution): """get the status of a stepfunctions workflow execution.""" time.sleep(1) description = execution.describe() return description.get("status") def execute(state_machine_arn: str, execution_input: Union[dict, None]): """execute statemachine based on the name.""" workflow = Workflow.attach(state_machine_arn) return workflow.execute(inputs=execution_input)
StarcoderdataPython
3498878
from flask import request from banal import ensure_list from followthemoney import model from marshmallow import Schema, post_dump, pre_load from marshmallow.fields import Nested, Integer, String, List from marshmallow.fields import Dict, Boolean from marshmallow.validate import Length from aleph.core import url_for from aleph.logic.util import document_url, entity_url from aleph.serializers.common import BaseSchema, flatten_id from aleph.serializers.common import SchemaName, PartialDate from aleph.serializers.common import Country, Language from aleph.serializers.roles import RoleReferenceSchema from aleph.serializers.collections import CollectionSchema from aleph.model import Role, Document, Entity, Collection class ShallowCombinedSchema(BaseSchema): collection_id = String() # Joint entity/document attributes collection = Nested(CollectionSchema()) schema = SchemaName() schemata = List(SchemaName()) names = List(String()) addresses = List(String()) phones = List(String()) emails = List(String()) identifiers = List(String()) countries = List(Country()) dates = List(PartialDate()) bulk = Boolean() # Entity attributes foreign_id = String() name = String() entities = List(String()) properties = Dict() # Document attributes status = String() content_hash = String() uploader_id = String() uploader = Nested(RoleReferenceSchema()) error_message = String() title = String() summary = String() languages = List(Language()) keywords = List(String()) date = PartialDate() authored_at = PartialDate() modified_at = PartialDate() published_at = PartialDate() retrieved_at = PartialDate() file_name = String() file_size = Integer() author = String() generator = String() mime_type = String() extension = String() encoding = String() source_url = String() pdf_version = String() columns = List(String()) headers = Dict() children = Integer() # TODO: is this a separate endpoint? text = String() html = String() def document_links(self, data, pk, schemata): links = { 'self': url_for('documents_api.view', document_id=pk), 'tags': url_for('entities_api.tags', id=pk), 'ui': document_url(pk) } if data.get('content_hash'): links['file'] = url_for('documents_api.file', document_id=pk, _authorize=True) if schemata.intersection([Document.SCHEMA_PDF]): links['pdf'] = url_for('documents_api.pdf', document_id=pk, _authorize=True) if schemata.intersection([Document.SCHEMA_PDF, Document.SCHEMA_TABLE]): links['records'] = url_for('documents_api.records', document_id=pk) if schemata.intersection([Document.SCHEMA_FOLDER]): query = (('filter:parent.id', pk),) links['children'] = url_for('documents_api.index', _query=query) return links def entity_links(self, data, pk, schemata): return { 'self': url_for('entities_api.view', id=pk), # 'similar': url_for('entities_api.similar', id=pk), # 'documents': url_for('entities_api.documents', id=pk), 'references': url_for('entities_api.references', id=pk), 'tags': url_for('entities_api.tags', id=pk), 'ui': entity_url(pk) } @post_dump def hypermedia(self, data): pk = str(data.get('id')) collection = data.get('collection', {}) collection_id = collection.get('id') collection_id = collection_id or data.get('collection_id') schemata = set(data.get('schemata', [])) if Document.SCHEMA in schemata: data['links'] = self.document_links(data, pk, schemata) else: data['links'] = self.entity_links(data, pk, schemata) if data.get('bulk'): data['writeable'] = False else: data['writeable'] = request.authz.can_write(collection_id) return data class CombinedSchema(ShallowCombinedSchema): EXPAND = [ ('collection_id', Collection, 'collection', CollectionSchema, False), ('entities', Entity, '_related', ShallowCombinedSchema, True), ('uploader_id', Role, 'uploader', RoleReferenceSchema, False), ('parent', Document, 'parent', ShallowCombinedSchema, False), ] related = List(Nested(ShallowCombinedSchema())) parent = Nested(ShallowCombinedSchema()) @post_dump(pass_many=True) def expand(self, objs, many=False): super(ShallowCombinedSchema, self).expand(objs, many=many) for obj in ensure_list(objs): # This will replace entity IDs for related entities with the # actual entity objects which have been retrieved because they # were all listed in the 'entities' reverse index. related = obj.pop('_related', []) schema = model.get(obj.get('schema')) if schema is None or not len(related): continue related = {r.get('id'): r for r in related} properties = obj.get('properties') for name, prop in schema.properties.items(): if name not in properties or prop.type_name != 'entity': continue values = ensure_list(properties.get(name)) values = [related.get(v) for v in values if v in related] properties[name] = values class EntityUpdateSchema(Schema): name = String(allow_none=True) schema = SchemaName(required=True) properties = Dict() class EntityCreateSchema(EntityUpdateSchema): collection_id = String(required=True) foreign_id = String() @pre_load def flatten_collection(self, data): flatten_id(data, 'collection_id', 'collection') class DocumentParentSchema(Schema): id = String(allow_none=True) foreign_id = String(allow_none=True) class DocumentUpdateSchema(Schema): title = String(allow_none=True) summary = String(allow_none=True) countries = List(Country()) languages = List(Language()) keywords = List(String(validate=Length(min=1, max=5000))) date = PartialDate(allow_none=True) authored_at = PartialDate(allow_none=True) modified_at = PartialDate(allow_none=True) published_at = PartialDate(allow_none=True) retrieved_at = PartialDate(allow_none=True) file_name = String(allow_none=True) author = String(allow_none=True) generator = String(allow_none=True) mime_type = String(allow_none=True) source_url = String(allow_none=True) class DocumentCreateSchema(DocumentUpdateSchema): parent = Nested(DocumentParentSchema())
StarcoderdataPython
193165
<filename>src/cisco_gnmi/client.py """Copyright 2019 Cisco Systems All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. The contents of this file are licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """Python gNMI wrapper to ease usage of gNMI.""" import logging from xml.etree.ElementPath import xpath_tokenizer_re from six import string_types from . import proto from . import util LOGGER = logging.getLogger(__name__) logger = LOGGER class Client(object): """gNMI gRPC wrapper client to ease usage of gNMI. Returns relatively raw response data. Response data may be accessed according to the gNMI specification. Methods ------- capabilities() Retrieve meta information about version, supported models, etc. get(...) Get a snapshot of config, state, operational, or all forms of data. set(...) Update, replace, or delete configuration. subscribe(...) Stream snapshots of data from the device. Examples -------- >>> import grpc >>> from cisco_gnmi import Client >>> from cisco_gnmi.auth import CiscoAuthPlugin >>> channel = grpc.secure_channel( ... '127.0.0.1:9339', ... grpc.composite_channel_credentials( ... grpc.ssl_channel_credentials(), ... grpc.metadata_call_credentials( ... CiscoAuthPlugin( ... 'admin', ... 'its_a_secret' ... ) ... ) ... ) ... ) >>> client = Client(channel) >>> capabilities = client.capabilities() >>> print(capabilities) """ """Defining property due to gRPC timeout being based on a C long type. Should really define this based on architecture. 32-bit C long max value. "Infinity". """ _C_MAX_LONG = 2147483647 # gNMI uses nanoseconds, baseline to seconds _NS_IN_S = int(1e9) def __init__(self, grpc_channel, timeout=_C_MAX_LONG, default_call_metadata=None): """gNMI initialization wrapper which simply wraps some aspects of the gNMI stub. Parameters ---------- grpc_channel : grpc.Channel The gRPC channel to initialize the gNMI stub with. Use ClientBuilder if unfamiliar with gRPC. timeout : uint Timeout for gRPC functionality. default_call_metadata : list Metadata to be sent with each gRPC call. """ self.service = proto.gnmi_pb2_grpc.gNMIStub(grpc_channel) self.default_call_metadata = default_call_metadata self._channel = grpc_channel def capabilities(self): """Capabilities allows the client to retrieve the set of capabilities that is supported by the target. This allows the target to validate the service version that is implemented and retrieve the set of models that the target supports. The models can then be specified in subsequent RPCs to restrict the set of data that is utilized. Reference: gNMI Specification Section 3.2 Returns ------- proto.gnmi_pb2.CapabilityResponse """ message = proto.gnmi_pb2.CapabilityRequest() LOGGER.debug(str(message)) response = self.service.Capabilities( message, metadata=self.default_call_metadata ) return response def get( self, paths, prefix=None, data_type="ALL", encoding="JSON_IETF", use_models=None, extension=None, ): """A snapshot of the requested data that exists on the target. Parameters ---------- paths : iterable of proto.gnmi_pb2.Path An iterable of Paths to request data of. prefix : proto.gnmi_pb2.Path, optional A path to prefix all Paths in paths data_type : proto.gnmi_pb2.GetRequest.DataType, optional A member of the GetRequest.DataType enum to specify what datastore to target [ALL, CONFIG, STATE, OPERATIONAL] encoding : proto.gnmi_pb2.Encoding, optional A member of the proto.gnmi_pb2.Encoding enum specifying desired encoding of returned data [JSON, BYTES, PROTO, ASCII, JSON_IETF] use_models : iterable of proto.gnmi_pb2.ModelData, optional extension : iterable of proto.gnmi_ext.Extension, optional Returns ------- proto.gnmi_pb2.GetResponse """ data_type = util.validate_proto_enum( "data_type", data_type, "GetRequest.DataType", proto.gnmi_pb2.GetRequest.DataType, ) encoding = util.validate_proto_enum( "encoding", encoding, "Encoding", proto.gnmi_pb2.Encoding ) request = proto.gnmi_pb2.GetRequest() if not isinstance(paths, (list, set, map)): raise Exception("paths must be an iterable containing Path(s)!") request.path.extend(paths) request.type = data_type request.encoding = encoding if prefix: request.prefix = prefix if use_models: request.use_models = use_models if extension: request.extension = extension LOGGER.debug(str(request)) get_response = self.service.Get(request, metadata=self.default_call_metadata) return get_response def set( self, prefix=None, updates=None, replaces=None, deletes=None, extensions=None ): """Modifications to the configuration of the target. Parameters ---------- prefix : proto.gnmi_pb2.Path, optional The Path to prefix all other Paths defined within other messages updates : iterable of iterable of proto.gnmi_pb2.Update, optional The Updates to update configuration with. replaces : iterable of proto.gnmi_pb2.Update, optional The Updates which replaces other configuration. The main difference between replace and update is replace will remove non-referenced nodes. deletes : iterable of proto.gnmi_pb2.Path, optional The Paths which refers to elements for deletion. extensions : iterable of proto.gnmi_ext.Extension, optional Returns ------- proto.gnmi_pb2.SetResponse """ request = proto.gnmi_pb2.SetRequest() if prefix: request.prefix.CopyFrom(prefix) test_list = [updates, replaces, deletes] if not any(test_list): raise Exception("At least update, replace, or delete must be specified!") for item in test_list: if not item: continue if not isinstance(item, (list, set)): raise Exception("updates, replaces, and deletes must be iterables!") if updates: request.update.extend(updates) if replaces: request.replaces.extend(replaces) if deletes: request.delete.extend(deletes) if extensions: request.extension.extend(extensions) LOGGER.debug(str(request)) response = self.service.Set(request, metadata=self.default_call_metadata) return response def subscribe(self, request_iter, extensions=None): """Subscribe allows a client to request the target to send it values of particular paths within the data tree. These values may be streamed at a particular cadence (STREAM), sent one off on a long-lived channel (POLL), or sent as a one-off retrieval (ONCE). Reference: gNMI Specification Section 3.5 Parameters ---------- request_iter : iterable of proto.gnmi_pb2.SubscriptionList or proto.gnmi_pb2.Poll or proto.gnmi_pb2.AliasList The requests to embed as the SubscribeRequest, oneof the above. subscribe RPC is a streaming request thus can arbitrarily generate SubscribeRequests into request_iter to use the same bi-directional streaming connection if already open. extensions : iterable of proto.gnmi_ext.Extension, optional Returns ------- generator of SubscriptionResponse """ def validate_request(request): subscribe_request = proto.gnmi_pb2.SubscribeRequest() if isinstance(request, proto.gnmi_pb2.SubscriptionList): subscribe_request.subscribe.CopyFrom(request) elif isinstance(request, proto.gnmi_pb2.Poll): subscribe_request.poll.CopyFrom(request) elif isinstance(request, proto.gnmi_pb2.AliasList): subscribe_request.aliases.CopyFrom(request) else: raise Exception( "request must be a SubscriptionList, Poll, or AliasList!" ) if extensions: subscribe_request.extensions.extend(extensions) LOGGER.debug(str(subscribe_request)) return subscribe_request response_stream = self.service.Subscribe( (validate_request(request) for request in request_iter), metadata=self.default_call_metadata, ) return response_stream def subscribe_xpaths( self, xpath_subscriptions, request_mode="STREAM", sub_mode="SAMPLE", encoding="JSON", sample_interval=_NS_IN_S * 10, suppress_redundant=False, heartbeat_interval=None, prefix=None, ): """A convenience wrapper of subscribe() which aids in building of SubscriptionRequest with request as subscribe SubscriptionList. This method accepts an iterable of simply xpath strings, dictionaries with Subscription attributes for more granularity, or already built Subscription objects and builds the SubscriptionList. Fields not supplied will be defaulted with the default arguments to the method. Generates a single SubscribeRequest. Parameters ---------- xpath_subscriptions : str or iterable of str, dict, Subscription An iterable which is parsed to form the Subscriptions in the SubscriptionList to be passed to SubscriptionRequest. Strings are parsed as XPaths and defaulted with the default arguments, dictionaries are treated as dicts of args to pass to the Subscribe init, and Subscription is treated as simply a pre-made Subscription. request_mode : proto.gnmi_pb2.SubscriptionList.Mode, optional Indicates whether STREAM to stream from target, ONCE to stream once (like a get), POLL to respond to POLL. [STREAM, ONCE, POLL] sub_mode : proto.gnmi_pb2.SubscriptionMode, optional The default SubscriptionMode on a per Subscription basis in the SubscriptionList. TARGET_DEFINED indicates that the target (like device/destination) should stream information however it knows best. This instructs the target to decide between ON_CHANGE or SAMPLE - e.g. the device gNMI server may understand that we only need RIB updates as an ON_CHANGE basis as opposed to SAMPLE, and we don't have to explicitly state our desired behavior. ON_CHANGE only streams updates when changes occur. SAMPLE will stream the subscription at a regular cadence/interval. [TARGET_DEFINED, ON_CHANGE, SAMPLE] encoding : proto.gnmi_pb2.Encoding, optional A member of the proto.gnmi_pb2.Encoding enum specifying desired encoding of returned data [JSON, BYTES, PROTO, ASCII, JSON_IETF] sample_interval : int, optional Default nanoseconds for SAMPLE to occur. Defaults to 10 seconds. suppress_redundant : bool, optional Indicates whether values that have not changed should be sent in a SAMPLE subscription. heartbeat_interval : int, optional Specifies the maximum allowable silent period in nanoseconds when suppress_redundant is in use. The target should send a value at least once in the period specified. Also applies in ON_CHANGE. prefix : proto.gnmi_pb2.Path, optional A common path prepended to all path elements in the message. This reduces message size by removing redundent path elements. Smaller message == improved thoughput. Returns ------- subscribe() """ subscription_list = proto.gnmi_pb2.SubscriptionList() subscription_list.mode = util.validate_proto_enum( "mode", request_mode, "SubscriptionList.Mode", proto.gnmi_pb2.SubscriptionList.Mode, ) subscription_list.encoding = util.validate_proto_enum( "encoding", encoding, "Encoding", proto.gnmi_pb2.Encoding ) if prefix: subscription_list.prefix.CopyFrom(prefix) if isinstance( xpath_subscriptions, (string_types, dict, proto.gnmi_pb2.Subscription) ): xpath_subscriptions = [xpath_subscriptions] subscriptions = [] for xpath_subscription in xpath_subscriptions: subscription = None if isinstance(xpath_subscription, proto.gnmi_pb2.Subscription): subscription = xpath_subscription elif isinstance(xpath_subscription, string_types): subscription = proto.gnmi_pb2.Subscription() subscription.path.CopyFrom( self.parse_xpath_to_gnmi_path(xpath_subscription) ) subscription.mode = util.validate_proto_enum( "sub_mode", sub_mode, "SubscriptionMode", proto.gnmi_pb2.SubscriptionMode, ) if sub_mode == "SAMPLE": subscription.sample_interval = sample_interval elif isinstance(xpath_subscription, dict): subscription_dict = {} if "path" not in xpath_subscription.keys(): raise Exception("path must be specified in dict!") if isinstance(xpath_subscription["path"], proto.gnmi_pb2.Path): subscription_dict["path"] = xpath_subscription["path"] elif isinstance(xpath_subscription["path"], string_types): subscription_dict["path"] = self.parse_xpath_to_gnmi_path( xpath_subscription["path"] ) else: raise Exception("path must be string or Path proto!") sub_mode_name = ( sub_mode if "mode" not in xpath_subscription.keys() else xpath_subscription["mode"] ) subscription_dict["mode"] = util.validate_proto_enum( "sub_mode", sub_mode, "SubscriptionMode", proto.gnmi_pb2.SubscriptionMode, ) if sub_mode_name == "SAMPLE": subscription_dict["sample_interval"] = ( sample_interval if "sample_interval" not in xpath_subscription.keys() else xpath_subscription["sample_interval"] ) if "suppress_redundant" in xpath_subscription.keys(): subscription_dict["suppress_redundant"] = xpath_subscription[ "suppress_redundant" ] if sub_mode_name != "TARGET_DEFINED": if "heartbeat_interval" in xpath_subscription.keys(): subscription_dict["heartbeat_interval"] = xpath_subscription[ "heartbeat_interval" ] subscription = proto.gnmi_pb2.Subscription(**subscription_dict) else: raise Exception("path must be string, dict, or Subscription proto!") subscriptions.append(subscription) subscription_list.subscription.extend(subscriptions) return self.subscribe([subscription_list]) @classmethod def parse_xpath_to_gnmi_path(cls, xpath, origin=None): """Parses an XPath to proto.gnmi_pb2.Path. This function should be overridden by any child classes for origin logic. Effectively wraps the std XML XPath tokenizer and traverses the identified groups. Parsing robustness needs to be validated. Probably best to formalize as a state machine sometime. TODO: Formalize tokenizer traversal via state machine. """ if not isinstance(xpath, string_types): raise Exception("xpath must be a string!") path = proto.gnmi_pb2.Path() if origin: if not isinstance(origin, string_types): raise Exception("origin must be a string!") path.origin = origin curr_elem = proto.gnmi_pb2.PathElem() in_filter = False just_filtered = False curr_key = None # TODO: Lazy xpath = xpath.strip("/") xpath_elements = xpath_tokenizer_re.findall(xpath) path_elems = [] for index, element in enumerate(xpath_elements): # stripped initial /, so this indicates a completed element if element[0] == "/": if not curr_elem.name: raise Exception( "Current PathElem has no name yet is trying to be pushed to path! Invalid XPath?" ) path_elems.append(curr_elem) curr_elem = proto.gnmi_pb2.PathElem() continue # We are entering a filter elif element[0] == "[": in_filter = True continue # We are exiting a filter elif element[0] == "]": in_filter = False continue # If we're not in a filter then we're a PathElem name elif not in_filter: curr_elem.name = element[1] # Skip blank spaces elif not any([element[0], element[1]]): continue # If we're in the filter and just completed a filter expr, # "and" as a junction should just be ignored. elif in_filter and just_filtered and element[1] == "and": just_filtered = False continue # Otherwise we're in a filter and this term is a key name elif curr_key is None: curr_key = element[1] continue # Otherwise we're an operator or the key value elif curr_key is not None: # I think = is the only possible thing to support with PathElem syntax as is if element[0] in [">", "<"]: raise Exception("Only = supported as filter operand!") if element[0] == "=": continue else: # We have a full key here, put it in the map if curr_key in curr_elem.key.keys(): raise Exception("Key already in key map!") curr_elem.key[curr_key] = element[0].strip("'\"") curr_key = None just_filtered = True # Keys/filters in general should be totally cleaned up at this point. if curr_key: raise Exception("Hanging key filter! Incomplete XPath?") # If we have a dangling element that hasn't been completed due to no # / element then let's just append the final element. if curr_elem: path_elems.append(curr_elem) curr_elem = None if any([curr_elem, curr_key, in_filter]): raise Exception("Unfinished elements in XPath parsing!") path.elem.extend(path_elems) return path
StarcoderdataPython
3534139
<reponame>zzpwahaha/VimbaCamJILA # Copyright (C) 2018--2019 <NAME> # Copyright (C) 2018--2019 Steward Observatory # # This file is part of ehtplot. # # ehtplot is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ehtplot is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ehtplot. If not, see <http://www.gnu.org/licenses/>. from __future__ import absolute_import from matplotlib.colors import ListedColormap from matplotlib.cm import register_cmap from ehtplot.color.ctab import list_ctab, load_ctab def unmodified(name): chars = set("0123456789flus") return "_" not in name or not set(name.rsplit("_", 1)[1]) <= chars def register(name=None, cmap=None, path=None): if name is None: # Self-call to register all colormaps in "ehtplot/color/" for name in list_ctab(path=path): register(name=name, cmap=cmap, path=path) else: if cmap is None: cmap = ListedColormap(load_ctab(name, path=path)) # Register the colormap register_cmap(name=name, cmap=cmap) # Register the reversed colormap register_cmap(name=name + ("_r" if unmodified(name) else "r"), cmap=cmap.reversed())
StarcoderdataPython
3413652
from PySide import QtGui, QtCore from PIL import Image, ImageQt, ImageDraw import os, json import numpy import svgwrite #import PointCloud from PointCloud import Point2, PointCloud, intersect_line from gcode import Mach3 as Gc import re class Viewer(QtGui.QMainWindow): def __init__(self, parameters, scale=Point2(1.0,1.0)): super(Viewer, self).__init__() #self.layout = QtGui.QBoxLayout(QtGui.QBoxLayout.TopToBottom, None) self.layout = QtGui.QVBoxLayout() self.setLayout(self.layout) self.layout.setContentsMargins(0, 0, 0, 0) self.parameters = parameters self.multiWidget = QtGui.QScrollArea(self) self.multiWidget.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) self.bl = QtGui.QVBoxLayout(self.multiWidget) #self.bn = QtGui.QPushButton(self, text="Hello") #self.bn.setSizePolicy(QtGui.QSizePolicy.Expanding, # QtGui.QSizePolicy.Expanding) #self.layout.addWidget(self.bn) self.imageLabel = QtGui.QLabel(self.multiWidget) self.imageLabel.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) self.imageLabel.setScaledContents(True) self.bl.addWidget(self.imageLabel) #self.imageLabel.setStyleSheet("border: 0px") #self.imageLabel.setContentsMargins(0, 0, 0, 0) #self.imageLabel.setText("nothing loaded") self.imageLabel2 = QtGui.QLabel(self.multiWidget) self.imageLabel2.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.imageLabel2.setScaledContents(False) #self.imageLabel2.setStyleSheet("border: 0px") #self.imageLabel2.setContentsMargins(0, 0, 0, 0) self.bl.addWidget(self.imageLabel2) self.imageLabel3 = QtGui.QLabel(self.multiWidget) #self.imageLabel3.setSizePolicy(QtGui.QSizePolicy.Ignored, # QtGui.QSizePolicy.Ignored) #self.imageLabel3.setScaledContents(False) #self.imageLabel3.setStyleSheet("border: 0px") #self.imageLabel3.setContentsMargins(0, 0, 0, 0) self.bl.addWidget(self.imageLabel3) self.cutoffSlider = QtGui.QSlider(self.multiWidget, orientation=QtCore.Qt.Horizontal) self.cutoffSlider.sliderReleased.connect(self.updateNailsImage) self.bl.addWidget(self.cutoffSlider) self.setCentralWidget(self.multiWidget) #self.setCentralWidget(self.imageLabel) self.setWindowTitle("NailedIt - analyser") self.resize(600, 600) self.scaleFactor = scale self.deviation = [] self.debug_cnt = 1 self.minNailDist = 2.8 # keep this distance to the nails self.timer = QtCore.QTimer(self) self.connect(self.timer, QtCore.SIGNAL("timeout()"), self.debug) self.timer.setSingleShot(True) #self.timer.start(0) # menu fileMenu = self.menuBar().addMenu("File") fileMenu.addAction("Open", self.openFile) fileMenu.addSeparator() fileMenu.addAction("Export Nails SVG", self.saveNailsSVG) fileMenu.addAction("Generate Gcode", self.generateGcode) optionsMenu = self.menuBar().addMenu("Options") self.showNailsAction = QtGui.QAction("show nails", optionsMenu, checkable=True, triggered=self.updateNailsImage) optionsMenu.addAction(self.showNailsAction) self.showOverlaps = QtGui.QAction("calculate overlaps", optionsMenu, checkable=True, triggered=self.updateNailsImage) optionsMenu.addAction(self.showOverlaps) self.reversePaths = QtGui.QAction("reverse path", optionsMenu, checkable=True, triggered=self.reverseTriggered) optionsMenu.addAction(self.reversePaths) optionsMenu.addAction("check nail distance", self.checkNails) optionsMenu.addAction("calculate COG", self.calculateCOG) #self.layout.addWidget(self.menu) #self.layout.addWidget(self.scrollArea) self.showImage(Image.new("RGB", (500,500))) #if "image" in self.parameters: # self.showImage(self.parameters["image"]) def reverseTriggered(self): self.deviation = [] self.updateNailsImage() def showImage(self, image, slot=0): if slot == 0: self.qim = ImageQt.ImageQt(image) # don't let python clean up the data self.imageLabel.setPixmap(QtGui.QPixmap.fromImage(self.qim)) self.imageLabel.adjustSize() elif slot == 1: self.qim2 = ImageQt.ImageQt(image) # don't let python clean up the data self.imageLabel2.setPixmap(QtGui.QPixmap.fromImage(self.qim2)) self.imageLabel2.adjustSize() elif slot == 2: self.qim3 = ImageQt.ImageQt(image) # don't let python clean up the data self.imageLabel3.setPixmap(QtGui.QPixmap.fromImage(self.qim3)) self.imageLabel3.adjustSize() def checkNails(self): if "Nails" in self.parameters: nails = self.parameters["Nails"]["3:nails"] pc = PointCloud(10,10) print "list", nails pc.addFromList(nails) print pc.p img = self.parameters["image"] draw = ImageDraw.Draw(img) min_dist = 1000 for i,p in enumerate(pc.p): np, d = pc.closestPoint(p.x, p.y, i) min_dist = min(min_dist, d) if d < self.minNailDist: draw.rectangle((p.x-3, p.y - 3, p.x + 3, p.y + 3), outline=(255,0,0)) print "minDist:", min_dist * 1000.0 * self.parameters["Nails"]["2:parameters:"]["ppi"], "mm" self.showImage(img) def openFile(self): filename = QtGui.QFileDialog.getOpenFileName(self, "Open Nailedit File", "./", "Nailedit (*.json)")[0] if filename: js = load_nailedit(filename) if js: self.parameters["Nails"] = js print "num nails:", len(js["3:nails"]), "string length:", js['1:summary']["thread length"] self.parameters["filename"] = filename self.setWindowTitle("NailedIt - analyser (%s)"%os.path.basename(filename)) self.cutoffSlider.setMaximum(len(js["4:thread"])) self.cutoffSlider.setSliderPosition(self.cutoffSlider.maximum()) self.deviation = [] self.updateNailsImage() def updateDeviation(self): if "Nails" in self.parameters and self.deviation: nails = self.parameters["Nails"] w = nails['2:parameters:']["proc_width"] h = nails['2:parameters:']["proc_height"] img = Image.new("RGB", (w, 100), (255,255,255)) draw = ImageDraw.Draw(img, "RGB") for x in xrange(w): d = int(float(x)/w * len(self.deviation)) v = float(self.deviation[d])/self.deviation[0] * 100 draw.line((x, 100, x, 100-v), fill=(255,0,0), width=1) self.showImage(img, slot=1) def debug(self): ################################################################################################# if "Nails" in self.parameters: js = self.parameters["Nails"] nails = js["3:nails"] path = js["4:thread"] img = self.parameters["image"].copy() inters = 0 up_to = self.debug_cnt p4 = Point2(nails[path[up_to]][0], nails[path[up_to]][1]) p3 = Point2(nails[path[up_to-1]][0], nails[path[up_to-1]][1]) draw = ImageDraw.Draw(img, "RGBA") if up_to > 1: p1 = Point2(nails[path[0]][0], nails[path[0]][1]) for c in path[1:up_to]: p2 = Point2(nails[c][0], nails[c][1]) s, t = intersect_line(p1, p2, p3, p4) if 0 < s < 1 and 0 < t < 1: inters += 1 draw.line((p1.x, p1.y, p2.x, p2.y), (0,255,0,255)) p1 = p2 draw.line((p3.x, p3.y, p4.x, p4.y), (255,0,0, 255), width=2) self.debug_cnt += 1 self.showImage(img) print "intersects", inters self.timer.start(1000 if self.debug_cnt % 10 == 0 else 50) def updateNailsImage(self): if "Nails" in self.parameters: nails = self.parameters["Nails"] w = nails['2:parameters:']["proc_width"] h = nails['2:parameters:']["proc_height"] img = self.parameters["image"] = Image.new("RGB", (w, h)) trg = Image.open(nails['2:parameters:']["inputImagePath"]) if trg: trg = trg.resize(img.size) ret = draw_nails(nails, img, showNails=self.showNailsAction.isChecked(), targetImage=trg if not self.deviation else None, lastString=self.cutoffSlider.value(), reversed=self.reversePaths.isChecked()) if ret: self.deviation = ret self.showImage(self.parameters["image"]) self.updateDeviation() if self.showOverlaps.isChecked(): ovl = self.parameters["overlap"] = Image.new("RGB", (w, h)) draw_overlap(nails, ovl, lastString=self.cutoffSlider.value(), reversed=self.reversePaths.isChecked()) self.showImage(ovl, slot=2) def saveNailsSVG(self): if "Nails" in self.parameters: filename = QtGui.QFileDialog.getSaveFileName(self, "Export Nails", "./", "SVG (*.svg)")[0] if filename: save_nails_SVG(self.parameters["Nails"], filename, self.scaleFactor) def generateGcode(self): if not "Nails" in self.parameters: return filename = QtGui.QFileDialog.getSaveFileName(self, "Generate Gcode", "./", "gcode (*.tap)")[0] if not filename: return js = self.parameters["Nails"] nails = js["3:nails"] path = js["4:thread"] w = js["2:parameters:"]["proc_width"] h = js["2:parameters:"]["proc_height"] sf = Point2(1,1) * self.scaleFactor * 1000.0 * js["2:parameters:"]["ppi"] # pixels to millimeters origin = Point2(0,0) pc = PointCloud(1,1) pc.addFromList(nails) cp = pc.closestPoint(origin.x, origin.y) print "origin", nails[cp[0]] engine = Gc(nails, path[:self.cutoffSlider.value()], scaleFactor=sf, origin=pc.p[cp[0]]) code = engine.generateStringPath(os.path.basename(self.parameters["filename"]), startPosition=Point2(w*sf.x*.5, -5), minNailDistance=self.minNailDist) #code = engine.generateStringPath(os.path.basename(self.parameters["filename"]), nails, path[:400], self.minNailDist, scaleFactor=sf, origin=Point2(0,0), startPosition=Point2(0.5, -0.1)*w) spl = os.path.splitext(filename) filename = spl[0]+"_string"+spl[1] with open(filename, "w") as f: f.write(code) f.close() print "written gcode to", filename img = self.drawGcode(self.parameters["image"], code, Point2(1.0/sf.x,1.0/sf.y), Point2(0,0)) self.showImage(img) code = engine.generateDrillPattern(os.path.basename(self.parameters["filename"]), -6.0) filename = spl[0]+"_drills"+spl[1] with open(filename, "w") as f: f.write(code) f.close() print "written gcode to", filename def calculateCOG(self): nailWeight = 9.9 / 100 #grams per nail threadWeightPerMeter = 40.0/1000 # g / m canvas_weight = 838 # grams if "Nails" in self.parameters: js = self.parameters["Nails"] w = js["2:parameters:"]["proc_width"] h = js["2:parameters:"]["proc_height"] sf = Point2(1, 1) * self.scaleFactor * 1000.0 * js["2:parameters:"]["ppi"] # pixels to millimeters origin = Point2(0, 0) pc = PointCloud(1,1) pc.addFromList(js["3:nails"]) #cp = pc.closestPoint(origin.x, origin.y) #origin = pc.p[cp[0]] pc.translate(-origin.x, -origin.y) pc.scale(sf.x, sf.y) # cog nails nails_cog = Point2(0,0) nails_mass = nailWeight * len(pc.p) for p in pc.p: nails_cog += p nails_cog = nails_cog / len(pc.p) # cog thread path = js["4:thread"] cp = pc.p[path[0]] totalThreadLen = 0 thread_cog = Point2(0,0) for pid in path[1:]: nxt = pc.p[pid] l = cp.dist(nxt) totalThreadLen += l thread_cog += (cp+nxt)*0.5*l cp = nxt thread_cog /= totalThreadLen thread_mass = totalThreadLen / 1000 * threadWeightPerMeter # canvas cog canvas_cog = Point2(float(js["2:parameters:"]["proc_width"])*sf.x, float(js["2:parameters:"]["proc_height"])*sf.y)*0.5 print "canvas:", canvas_weight, "g" print "nails:", nails_mass, "g" print "thread:", thread_mass, "g" print "canvas cog:", canvas_cog print "nails cog:", nails_cog print "thread cog:", thread_cog combined_cog = (canvas_cog*canvas_weight + nails_cog * nails_mass + thread_cog * thread_mass) combined_cog /= canvas_weight + nails_mass + thread_mass print "overall COG", combined_cog def drawGcode(self, img, code, scaleFact, origin): drw = ImageDraw.Draw(img) mpx,mpy,mpz = 0,0,0 lines = code.split('\n') for line in lines: x = re.search(r"(Y)([0-9.-]+)", line) x = float(x.group(2)) if x else mpx y = re.search(r"(X)([0-9.-]+)", line) y = float(y.group(2)) if y else mpy z = re.search(r"(Z)([0-9.-]+)", line) z = float(z.group(2)) if z else mpz i = re.search(r"(J)([0-9.-]+)", line) i = float(i.group(2)) if i else None j = re.search(r"(I)([0-9.-]+)", line) j = float(j.group(2)) if j else None if line.startswith("G0 "): drw.line((mpx * scaleFact.x + origin.x, mpy * scaleFact.y + origin.y, x * scaleFact.x + origin.x, y * scaleFact.y + origin.y), (0,0,255)) mpx, mpy, mpz = x, y, z elif line.startswith("G1 "): drw.line((mpx * scaleFact.x + origin.x, mpy * scaleFact.y + origin.y, x * scaleFact.x + origin.x, y * scaleFact.y + origin.y), (255,50,0)) mpx, mpy, mpz = x, y, z elif line.startswith("G2 ") or line.startswith("G3 "): r = Point2(Point2(i,j).length() * scaleFact.x, Point2(i,j).length() * scaleFact.y) drw.arc(((mpx+i) * scaleFact.x + origin.x - abs(r.x), (mpy+j) * scaleFact.y + origin.y - abs(r.x), (mpx+i) * scaleFact.x + origin.x + abs(r.x), (mpy+j) * scaleFact.y + origin.y + abs(r.x)), 0, 360, (255,0,0)) mpx, mpy, mpz = x, y, z return img def load_nailedit(filepath): print 'loading "%s"'%filepath with open(filepath, 'r') as f: js = json.load(f) f.close() print 'done' return js def save_nails_SVG(nails, filename, scale): svg = svgwrite.Drawing(filename, profile='tiny') pnts = nails["3:nails"] r = 1 ptmm = nails["2:parameters:"]["ppi"] * 1000 if "nailDiameter" in nails["2:parameters:"]: r = nails["2:parameters:"]["nailDiameter"] * ptmm for p in pnts: svg.add(svg.circle((p[0]*ptmm*scale.x*svgwrite.mm, p[1]*ptmm*scale.y*svgwrite.mm), r*svgwrite.mm)) svg.save() print "saved as ", filename print "sc:", scale, "dim:", nails["2:parameters:"]["proc_width"]*ptmm*scale, "x", nails["2:parameters:"]["proc_height"]*ptmm*scale def draw_nails(nails, img, showNails=True, lastString=10 ** 7, targetImage=None, reversed=False): pnts = nails["3:nails"] path = nails["4:thread"] if not reversed else nails["4:thread"][::-1] params = nails["2:parameters:"] backgroundCol = params["backgroundColor"] if not isinstance(backgroundCol, list): backgroundCol = (backgroundCol, backgroundCol, backgroundCol) else: backgroundCol = tuple(backgroundCol) stringCol = params["threadColor"] if len(stringCol) == 2: stringCol = [stringCol[0], stringCol[0], stringCol[0], stringCol[1]] print stringCol # over sampling mmpp = params["ppi"]/0.001 #mm per pixel threadThickness = 0.3 # mm oversampling = 3 w = params["proc_width"] * mmpp h = params["proc_height"] * mmpp iw = int(w / threadThickness * oversampling) ih = int(h / threadThickness * oversampling) img_hi = Image.new("RGB", (int(iw), int(ih))) scl = mmpp / threadThickness * oversampling stringCol[3] = 255 width = oversampling print "buffer img %dx%d"%(iw,ih), "thread:", draw = ImageDraw.Draw(img_hi, "RGBA") calcDeviation = targetImage != None if calcDeviation: lastString = 10 ** 7 target_np = numpy.array(targetImage.getchannel("R"), dtype="float32") dev = [] current_p = path[0] for i, next_p in enumerate(path[1:lastString]): draw.line((pnts[current_p][0]*scl, pnts[current_p][1]*scl, pnts[next_p][0]*scl, pnts[next_p][1]*scl), fill=tuple(stringCol), width=oversampling) if calcDeviation and not i % 50: current_np = numpy.array(img_hi.resize(targetImage.size, resample=Image.BICUBIC).getchannel("R"), dtype="float32") deviation = numpy.subtract(target_np, current_np, out=current_np) dev.append( numpy.sum(deviation) / 255 ) if i % 1000 == 0: print 'drawing',i,"/",len(path) current_p = next_p # resize to target image size img.paste(img_hi.resize(img.size, resample=Image.BICUBIC)) if showNails: draw = ImageDraw.Draw(img, "RGBA") for pt in pnts: draw.rectangle([pt[0] - 2, pt[1] - 2, pt[0] + 2, pt[1] + 2], fill=(255,120,0,100), outline=(255, 255, 0, 255)) if calcDeviation: return dev def draw_overlap(nails, img, lastString=10 ** 7, reversed=False): pnts = nails["3:nails"] path = nails["4:thread"] if not reversed else nails["4:thread"][::-1] params = nails["2:parameters:"] img_line = Image.new("F", img.size) draw = ImageDraw.Draw(img_line) overlap_np = numpy.array(img_line) nailConnects = [0]*len(pnts) current_p = path[0] nailConnects[current_p] += 1 for i, next_p in enumerate(path[1:lastString]): img_line.paste(0, (0,0)+img_line.size) draw.line((pnts[current_p][0], pnts[current_p][1], pnts[next_p][0], pnts[next_p][1]), fill=1.0, width=1) draw.rectangle((pnts[current_p][0]-1, pnts[current_p][1]-1, pnts[current_p][0]+1, pnts[current_p][1]+1), fill=0.0) draw.rectangle((pnts[next_p][0]-1, pnts[next_p][1]-1, pnts[next_p][0]+1, pnts[next_p][1]+1), fill=0.0) current_np = numpy.array(img_line, dtype="float32") numpy.add(current_np, overlap_np, out=overlap_np) if i % 1000 == 0: print 'overlap',i,"/",len(path) nailConnects[next_p] += 1 current_p = next_p # resize to target image size print "max overlaps", overlap_np.max(), "max nail connects", max(nailConnects) overlap_np = (overlap_np / overlap_np.max()) * 255.0 overlap = Image.fromarray(overlap_np.astype("uint8")) overlap = Image.merge("RGB", (overlap, overlap, overlap)) redlut = tuple(max(0, (i-85)*3) if i < 170 else 255 for i in xrange(256)) greenlut = tuple(max(0, (i-170)*3) for i in xrange(256)) bluelut = tuple( i*3 if i < 85 else max(0,255-i*3) for i in xrange(256) ) overlap = overlap.point((redlut + greenlut + bluelut)) img.paste(overlap) if __name__ == '__main__': import sys filepath = "Q:\\Projects\\code\\nailedit\\t26.json" #nails = load_nailedit(filepath) #img = Image.new("RGB", (nails['2:parameters:']["proc_width"], nails["2:parameters:"]["proc_height"])) #draw_nails(nails, img) app = QtGui.QApplication(sys.argv) params = { #"image": img } imageViewer = Viewer(params, 29.0/30.0) imageViewer.show() sys.exit(app.exec_())
StarcoderdataPython
1608238
"""NDG XACML package for functions NERC DataGrid """ __author__ = "<NAME>" __date__ = "26/03/10" __copyright__ = "(C) 2010 Science and Technology Facilities Council" __contact__ = "<EMAIL>" __license__ = "BSD - see LICENSE file in top-level directory" __contact__ = "<EMAIL>" __revision__ = "$Id$" from abc import ABCMeta, abstractmethod from datetime import datetime, timedelta import traceback import logging log = logging.getLogger(__name__) from ndg.xacml.core.attributevalue import (AttributeValue, AttributeValueClassFactory) from ndg.xacml.utils import VettedDict, _isIterable from ndg.xacml.utils.factory import callModuleObject # Mapping for function name prefixes that are not real types, but play a similar # role SPECIAL_TYPE_MAP = { 'url-string': 'AnyURI', 'xpath-node': 'String'} class AbstractFunction(object, metaclass=ABCMeta): """Abstract Base class for all XACML matching functions @cvar FUNCTION_NS: namespace for the given function @type FUNCTION_NS: NoneType (must be string in derived type) @cvar V1_0_FUNCTION_NS: XACML 1.0 function namespace prefix @type V1_0_FUNCTION_NS: string @cvar V2_0_FUNCTION_NS: XACML 2.0 function namespace prefix @type V2_0_FUNCTION_NS: string """ FUNCTION_NS = None V1_0_FUNCTION_NS = "urn:oasis:names:tc:xacml:1.0:function:" V2_0_FUNCTION_NS = "urn:oasis:names:tc:xacml:2.0:function:" def __init__(self): """ @raise TypeError: if FUNCTION_NS not set correctly """ if self.__class__.FUNCTION_NS is None: raise TypeError('"FUNCTION_NS" class variable must be defined in ' 'derived classes') @abstractmethod def evaluate(self, *inputs): """Evaluate the function from the given input arguments and context @param inputs: input arguments need to evaluate the function @type inputs: tuple @return: derived type should return True for match, False otherwise @rtype: bool (derived type), NoneType for THIS implementation """ class XacmlFunctionNames(object): """XACML standard match function names @cvar FUNCTION_NAMES: list of all the XACML function URNs @type FUNCTION_NAMES: tuple """ FUNCTION_NAMES = ( 'urn:oasis:names:tc:xacml:1.0:function:string-equal', 'urn:oasis:names:tc:xacml:1.0:function:boolean-equal', 'urn:oasis:names:tc:xacml:1.0:function:integer-equal', 'urn:oasis:names:tc:xacml:1.0:function:double-equal', 'urn:oasis:names:tc:xacml:1.0:function:date-equal', 'urn:oasis:names:tc:xacml:1.0:function:time-equal', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-equal', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-equal', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-equal', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-equal', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-equal', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-equal', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-equal', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-equal', 'urn:oasis:names:tc:xacml:1.0:function:integer-add', 'urn:oasis:names:tc:xacml:1.0:function:double-add', 'urn:oasis:names:tc:xacml:1.0:function:integer-subtract', 'urn:oasis:names:tc:xacml:1.0:function:double-subtract', 'urn:oasis:names:tc:xacml:1.0:function:integer-multiply', 'urn:oasis:names:tc:xacml:1.0:function:double-multiply', 'urn:oasis:names:tc:xacml:1.0:function:integer-divide', 'urn:oasis:names:tc:xacml:1.0:function:double-divide', 'urn:oasis:names:tc:xacml:1.0:function:integer-mod', 'urn:oasis:names:tc:xacml:1.0:function:integer-abs', 'urn:oasis:names:tc:xacml:1.0:function:double-abs', 'urn:oasis:names:tc:xacml:1.0:function:round', 'urn:oasis:names:tc:xacml:1.0:function:floor', 'urn:oasis:names:tc:xacml:1.0:function:string-normalize-space', 'urn:oasis:names:tc:xacml:1.0:function:string-normalize-to-lower-case', 'urn:oasis:names:tc:xacml:1.0:function:double-to-integer', 'urn:oasis:names:tc:xacml:1.0:function:integer-to-double', 'urn:oasis:names:tc:xacml:1.0:function:or', 'urn:oasis:names:tc:xacml:1.0:function:and', 'urn:oasis:names:tc:xacml:1.0:function:n-of', 'urn:oasis:names:tc:xacml:1.0:function:not', 'urn:oasis:names:tc:xacml:1.0:function:integer-greater-than', 'urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:integer-less-than', 'urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:double-greater-than', 'urn:oasis:names:tc:xacml:1.0:function:double-greater-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:double-less-than', 'urn:oasis:names:tc:xacml:1.0:function:double-less-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-add-dayTimeDuration', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-add-yearMonthDuration', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-subtract-dayTimeDuration', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-subtract-yearMonthDuration', 'urn:oasis:names:tc:xacml:1.0:function:date-add-yearMonthDuration', 'urn:oasis:names:tc:xacml:1.0:function:date-subtract-yearMonthDuration', 'urn:oasis:names:tc:xacml:1.0:function:string-greater-than', 'urn:oasis:names:tc:xacml:1.0:function:string-greater-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:string-less-than', 'urn:oasis:names:tc:xacml:1.0:function:string-less-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:time-greater-than', 'urn:oasis:names:tc:xacml:1.0:function:time-greater-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:time-less-than', 'urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-equal', 'urn:oasis:names:tc:xacml:2.0:function:time-in-range', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:date-greater-than', 'urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:date-less-than', 'urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal', 'urn:oasis:names:tc:xacml:1.0:function:string-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:string-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:string-is-in', 'urn:oasis:names:tc:xacml:1.0:function:string-bag', 'urn:oasis:names:tc:xacml:1.0:function:boolean-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:boolean-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:boolean-is-in', 'urn:oasis:names:tc:xacml:1.0:function:boolean-bag', 'urn:oasis:names:tc:xacml:1.0:function:integer-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:integer-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:integer-is-in', 'urn:oasis:names:tc:xacml:1.0:function:integer-bag', 'urn:oasis:names:tc:xacml:1.0:function:double-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:double-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:double-is-in', 'urn:oasis:names:tc:xacml:1.0:function:double-bag', 'urn:oasis:names:tc:xacml:1.0:function:time-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:time-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:time-is-in', 'urn:oasis:names:tc:xacml:1.0:function:time-bag', 'urn:oasis:names:tc:xacml:1.0:function:date-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:date-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:date-is-in', 'urn:oasis:names:tc:xacml:1.0:function:date-bag', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-is-in', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-bag', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-is-in', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-bag', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-is-in', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-bag', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-is-in', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-bag', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-is-in', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-bag', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-is-in', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-bag', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-is-in', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-bag', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-one-and-only', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-bag-size', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-is-in', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-bag', 'urn:oasis:names:tc:xacml:2.0:function:string-concatenate', 'urn:oasis:names:tc:xacml:2.0:function:uri-string-concatenate', 'urn:oasis:names:tc:xacml:1.0:function:any-of', 'urn:oasis:names:tc:xacml:1.0:function:all-of', 'urn:oasis:names:tc:xacml:1.0:function:any-of-any', 'urn:oasis:names:tc:xacml:1.0:function:all-of-any', 'urn:oasis:names:tc:xacml:1.0:function:any-of-all', 'urn:oasis:names:tc:xacml:1.0:function:all-of-all', 'urn:oasis:names:tc:xacml:1.0:function:map', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-match', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match', 'urn:oasis:names:tc:xacml:1.0:function:string-regexp-match', 'urn:oasis:names:tc:xacml:2.0:function:anyURI-regexp-match', 'urn:oasis:names:tc:xacml:2.0:function:ipAddress-regexp-match', 'urn:oasis:names:tc:xacml:2.0:function:dnsName-regexp-match', 'urn:oasis:names:tc:xacml:2.0:function:rfc822Name-regexp-match', 'urn:oasis:names:tc:xacml:2.0:function:x500Name-regexp-match', 'urn:oasis:names:tc:xacml:1.0:function:xpath-node-count', 'urn:oasis:names:tc:xacml:1.0:function:xpath-node-equal', 'urn:oasis:names:tc:xacml:1.0:function:xpath-node-match', 'urn:oasis:names:tc:xacml:1.0:function:string-intersection', 'urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:string-union', 'urn:oasis:names:tc:xacml:1.0:function:string-subset', 'urn:oasis:names:tc:xacml:1.0:function:string-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:boolean-intersection', 'urn:oasis:names:tc:xacml:1.0:function:boolean-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:boolean-union', 'urn:oasis:names:tc:xacml:1.0:function:boolean-subset', 'urn:oasis:names:tc:xacml:1.0:function:boolean-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:integer-intersection', 'urn:oasis:names:tc:xacml:1.0:function:integer-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:integer-union', 'urn:oasis:names:tc:xacml:1.0:function:integer-subset', 'urn:oasis:names:tc:xacml:1.0:function:integer-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:double-intersection', 'urn:oasis:names:tc:xacml:1.0:function:double-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:double-union', 'urn:oasis:names:tc:xacml:1.0:function:double-subset', 'urn:oasis:names:tc:xacml:1.0:function:double-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:time-intersection', 'urn:oasis:names:tc:xacml:1.0:function:time-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:time-union', 'urn:oasis:names:tc:xacml:1.0:function:time-subset', 'urn:oasis:names:tc:xacml:1.0:function:time-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:date-intersection', 'urn:oasis:names:tc:xacml:1.0:function:date-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:date-union', 'urn:oasis:names:tc:xacml:1.0:function:date-subset', 'urn:oasis:names:tc:xacml:1.0:function:date-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-intersection', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-union', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-subset', 'urn:oasis:names:tc:xacml:1.0:function:dateTime-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-intersection', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-union', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-subset', 'urn:oasis:names:tc:xacml:1.0:function:anyURI-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-intersection', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-union', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-subset', 'urn:oasis:names:tc:xacml:1.0:function:hexBinary-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-intersection', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-union', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-subset', 'urn:oasis:names:tc:xacml:1.0:function:base64Binary-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-intersection', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-union', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-subset', 'urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-intersection', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-union', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-subset', 'urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-intersection', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-union', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-subset', 'urn:oasis:names:tc:xacml:1.0:function:x500Name-set-equals', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-intersection', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-at-least-one-member-of', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-union', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-subset', 'urn:oasis:names:tc:xacml:1.0:function:rfc822Name-set-equals', ) from ndg.xacml import XacmlError class UnsupportedFunctionError(XacmlError): """Encountered a function type that is not recognised as part of the XACML specification and is not supported in this implementation""" class UnsupportedStdFunctionError(UnsupportedFunctionError): """Encountered a function type that is not supported even though it is part of the XACML specification""" def unsupportedFunctionErrorFactory(identifier, msg=None): """Factory function to return an unsupported function exception based on the function identifier passed in @param identifier: XACML function namespace to check @type identifier: basestring @return: unsupported function exception instance @rtype: UnsupportedFunctionError or UnsupportedStdFunctionError depending on the identifier passed """ if identifier in XacmlFunctionNames.FUNCTION_NAMES: if msg is None: msg = "%s: %s" % (UnsupportedStdFunctionError.__doc__, identifier) raise UnsupportedStdFunctionError(msg) else: if msg is None: msg = "%s: %s" % (UnsupportedFunctionError.__doc__, identifier) raise UnsupportedFunctionError(msg) class OverwritingStdFunctionError(XacmlError): """Attempting to overwrite a standard function namespace with a custom one (probably from load_custom_function method)""" class FunctionClassFactoryInterface(object): """Interface class for function module class factory class """ __meta__ = ABCMeta @abstractmethod def __call__(self, identifier): '''Create class for the given XACML function identifier @param identifier: XACML function identifier @type identifier: basestring @return: at least one member of class corresponding to the given input identifier @rtype: AbstractFunction derived type or NoneType if no match is found ''' return None class FunctionClassFactoryBase(FunctionClassFactoryInterface): """Base implementation for XACML Function Class Factory. There should be one derived type for each function family implemented in sub-modules of ndg.xacml.core.functions e.g. for urn:oasis:names:tc:xacml:1.0:function:<type>-at-least-one-member-of a class factory should exist, ndg.xacml.core.functions.v1.at_least_one_member_of.FunctionClassFactory which will be capable of returning a type derived from AbstractFunction: <type>AtLeastOneMemberOf e.g. StringAtLeastOneMemberOf, BooleanAtLeastOneMemberOf. This class is for convenience only some function factories are better derived directly from FunctionClassFactoryInterface Derived classes MUST define these class variables: @cvar FUNCTION_NAMES: list of function identifiers that this factory can produce classes for e.g.: ('urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of', ...) @type FUNCTION_NAMES: NoneType (but list in derived class) @cvar FUNCTION_NS_SUFFIX: urn suffix for the family of function to define e.g. -at-least-one-member-of is the suffix for the URN: urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of @type FUNCTION_NS_SUFFIX: NoneType (but basestring in derived class) @cvar FUNCTION_BASE_CLASS: base class for this family of functions e.g for urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of, ndg.xacml.core.functions.v1.at_least_one_member_of.AtLeastOneMemberOfBase @type FUNCTION_BASE_CLASS: NoneType (but AbstractFunction derived type in derived function factory class) """ FUNCTION_NS_SUFFIX = None FUNCTION_NAMES = None FUNCTION_BASE_CLASS = None URN_SEP = ':' FUNCTION_NAME_SEP = '-' __slots__ = ('__map', 'attributeValueClassFactory', 'functionSuffix') def __init__(self): '''This class is in fact abstract - derived types must define the FUNCTION_NS_SUFFIX and FUNCTION_BASE_CLASS class variables ''' if None in (self.__class__.FUNCTION_NS_SUFFIX, self.__class__.FUNCTION_BASE_CLASS): raise TypeError('"FUNCTION_NS_SUFFIX" and "FUNCTION_BASE_CLASS" ' 'must be defined in a derived implementation of ' 'FunctionClassFactoryBase. See ' 'FunctionClassFactoryBase.__doc__ contents') if not _isIterable(self.__class__.FUNCTION_NAMES): raise TypeError('"FUNCTION_NAMES" class variable must be an ' 'iterable of string type function identifiers; got ' '%r' % self.__class__.FUNCTION_NAMES) self.__map = {} # Enables creation of matching attribute types to relevant to the # function classes self.attributeValueClassFactory = AttributeValueClassFactory() functionSuffixParts = self.__class__.FUNCTION_NS_SUFFIX.split( self.__class__.FUNCTION_NAME_SEP) self.functionSuffix = ''.join([n[0].upper() + n[1:] for n in functionSuffixParts if n]) def initAllFunctionClasses(self): """Create classes for all functions for a data type e.g. a derived class could implement a factory for <type>-at-least-one-member-of functions: string-at-least-one-member-of, boolean-at-least-one-member-of, etc. Function classes are placed in a look-up table __map for the __call__() method to access In practice, there shouldn't be a need to load all the functions in one go. The __call__ method loads functions and caches them as needed. """ for identifier in self.__class__.FUNCTION_NAMES: self.loadFunction(identifier) def loadFunction(self, identifier): """Create a class for the given function namespace and cache it in the function class look-up table for future requests. Note that this call overwrites any existing entry in the cache whereas __call__ will try to use an entry in the cache if it already exists @param identifier: XACML function namespace @type identifier: basestring """ # str.capitalize doesn't do what's required: need to capitalize the # first letter of the word BUT retain camel case for the rest of it _capitalize = lambda s: s[0].upper() + s[1:] # Extract the function name and the type portion of the function # name in order to make an implementation of a class to handle it functionName = identifier.split(self.__class__.URN_SEP)[-1] typePart = functionName.split(self.__class__.FUNCTION_NS_SUFFIX)[0] # Attempt to infer from the function name the associated type typeName = _capitalize(typePart) # Remove any hyphens converting to camel case if '-' in typeName: typeName = ''.join([_capitalize(i) for i in typeName.split('-')]) typeURI = AttributeValue.TYPE_URI_MAP.get(typeName) if typeURI is None: # Ugly hack to allow for functions that start with a prefix that # isn't a real type. if typePart in SPECIAL_TYPE_MAP: typeURI = AttributeValue.TYPE_URI_MAP[ SPECIAL_TYPE_MAP[typePart]] else: raise TypeError('No AttributeValue.TYPE_URI_MAP entry for ' '%r type' % typePart) _type = self.attributeValueClassFactory(typeURI) if _type is None: raise TypeError('No AttributeValue.TYPE_MAP entry for %r type' % typeName) className = typeName + self.functionSuffix classVars = { 'TYPE': _type, 'FUNCTION_NS': identifier } functionClass = type(className, (self.__class__.FUNCTION_BASE_CLASS, ), classVars) self.__map[identifier] = functionClass def __call__(self, identifier): """Return the class for the given XACML type function identifier @param identifier: XACML *-at-least-one-member-of type function identifier @type identifier: basestring @return: at least one member of class corresponding to the given input identifier @rtype: AtLeastOneMemberOfBase derived type or None if no match is found """ # Check the cache first functionClass = self.__map.get(identifier) if functionClass is None: # No class set in the cache - try loading the new class and updating # the cache. self.loadFunction(identifier) # This should result in a safe retrieval from the cache because of the # above check - None return would result otherwise. return self.__map.get(identifier) class FunctionMapError(Exception): """Generic Error exception class for FunctionMap""" class FunctionMapConfigError(FunctionMapError): """Configuration related exception for FunctionMap""" class FunctionMap(VettedDict): """Map function IDs to their class implementations in the various function sub-modules. It provide a layer over the various FunctionClassFactoryInterface implementations so that a function class can be obtained directly from a given XACML function URN. @cvar FUNCTION_PKG_PREFIX: python package path for functions package @type FUNCTION_PKG_PREFIX: string @cvar V1_0_PKG_PREFIX: python package path for XACML 1.0 functions package @type V1_0_PKG_PREFIX: string @cvar V2_0_PKG_PREFIX: python package path for XACML 2.0 functions package @type V2_0_PKG_PREFIX: string @cvar SUPPORTED_NSS: mapping of function URN prefix to Python package @type SUPPORTED_NSS: dict @cvar FUNCTION_CLASS_FACTORY_CLASSNAME: standard name for class factory which should be present in each generic function module. This factory is invoked to create the function class for any given function URN related to that module @type FUNCTION_CLASS_FACTORY_CLASSNAME: string """ FUNCTION_PKG_PREFIX = 'ndg.xacml.core.functions.' V1_0_PKG_PREFIX = FUNCTION_PKG_PREFIX + 'v1.' V2_0_PKG_PREFIX = FUNCTION_PKG_PREFIX + 'v2.' SUPPORTED_NSS = { AbstractFunction.V1_0_FUNCTION_NS: V1_0_PKG_PREFIX, AbstractFunction.V2_0_FUNCTION_NS: V2_0_PKG_PREFIX } # Each function module is expected to have a class factory for obtaining # a class for the given function identifier associated with that module FUNCTION_CLASS_FACTORY_CLASSNAME = 'FunctionClassFactory' def __init__(self): """Force type for dictionary key value pairs: function values must be of AbstractFunction derived type and ID keys string type """ # Filters are defined as staticmethods but reference via self here to # enable derived class to override them as standard methods without # needing to redefine this __init__ method VettedDict.__init__(self, self.keyFilter, self.valueFilter) # This classes maintains a list of XACML function URN -> Function class # mappings. This additional dict enables caching of class factories # used to obtain the function classes. There is one class factory per # function module e.g. ndg.xacml.core.functions.v1.equal contains a # class factory which creates the various # urn:oasis:names:tc:xacml:1.0:function:<type>-equal function classes self.__classFactoryMap = {} self.__custom_class_factory_map = {} @staticmethod def keyFilter(key): """Enforce string type keys @param key: function URN @type key: basestring @return: True for valid key type @rtype: bool @raise TypeError: invalid key type """ if not isinstance(key, str): raise TypeError('Expecting %r type for key; got %r' % (str, type(key))) return True @staticmethod def valueFilter(value): """Enforce AbstractFunction derived types for match functions @param value: function URN @type value: ndg.xacml.core.functions.AbstractFunction / NotImplemented @return: True for valid function type @rtype: bool @raise TypeError: invlaid key type """ if value is NotImplemented: return True elif not issubclass(value, AbstractFunction): raise TypeError('Expecting %r derived type for value; got %r' % (AbstractFunction, value)) return True def loadAllCore(self): """Load all core XACML functions""" for functionNs in XacmlFunctionNames.FUNCTION_NAMES: self.loadFunction(functionNs) def loadFunction(self, functionNs): """Get package to retrieve function class for the given XACML function namespace @param functionNs: XACML function namespace @type functionNs: basestring """ # Try map for custom function class if functionNs in self: return self[functionNs] # else try the class factory - there is one factory per family of # functions e.g. bag functions, at least one member of functions etc. functionFactory = self.__classFactoryMap.get(functionNs) if functionFactory is not None: # Get function class from previously cached factory self[functionNs] = functionFactory(functionNs) return # No Factory has been cached for this function yet cls = FunctionMap classPath = None for namespacePrefix, pkgNamePrefix in list(cls.SUPPORTED_NSS.items()): if functionNs.startswith(namespacePrefix): # Namespace is recognised - translate into a path to a # function class in the right functions package functionName = functionNs.split(namespacePrefix)[-1] functionNameParts = functionName.split('-') if len(functionNameParts) == 1: moduleName = functionNameParts[0] else: prefix = None # Ugly hack to allow for functions that start with a prefix # that isn't a real type. for pfx in SPECIAL_TYPE_MAP.keys(): pfxsep = pfx + '-' if functionName.startswith(pfxsep): prefix = pfxsep break if prefix: suffix = functionName[len(prefix):] moduleName = '_'.join(suffix.split('-')).lower() else: moduleName = '_'.join(functionNameParts[1:]).lower() classPath = pkgNamePrefix + moduleName + '.' + \ cls.FUNCTION_CLASS_FACTORY_CLASSNAME break if classPath is None: raise FunctionMapConfigError('Namespace for function not ' 'recognised: %r' % functionNs) # Try instantiating the function class and loading it into the map try: functionFactory = callModuleObject(classPath) except (ImportError, AttributeError) as e: log.error("Error importing function factory class %r for function " "identifier %r: %s", classPath, functionNs, str(e)) # No implementation exists - default to Abstract function self[functionNs] = NotImplemented else: function = functionFactory(functionNs) if function is None: raise unsupportedFunctionErrorFactory(functionNs) self[functionNs] = function self.__classFactoryMap[functionNs] = functionFactory def load_custom_function(self, function_ns, function_factory=None, function_factory_path=None): """Add a user defined function to the list of functions supported""" if function_ns in XacmlFunctionNames.FUNCTION_NAMES: raise OverwritingStdFunctionError("Attempting to overwrite the " "standard function namespace %r" "with a new custom function" % function_ns) if function_factory is None: if not isinstance(function_factory_path, str): raise TypeError('Expecting "function_factory_path" keyword ' 'set to string function factory path; got %r' % function_factory_path) try: function_factory = callModuleObject(function_factory_path) except (ImportError, AttributeError) as e: log.error("Error importing function factory class %r for custom " "function identifier %r: %s", function_factory_path, function_ns, str(e)) raise function = function_factory(function_ns) if function is None: raise unsupportedFunctionErrorFactory(function_ns) self[function_ns] = function self.__custom_class_factory_map[function_ns] = function_factory def __getitem__(self, key): """Override base class implementation to load and cache function classes if they don't otherwise exist @param key: function URN @type key: basestring @return: function class @rtype: ndg.xacml.core.functions.AbstractFunction / NotImplemented """ functionClass = VettedDict.get(self, key) if functionClass is None: self.loadFunction(key) return VettedDict.__getitem__(self, key) def get(self, key, *arg): """Likewise to __getitem__, enable loading and caching of function classes if they don't otherwise exist @param key: XACML function URN @type key: basestring @param arg: set a single additional argument if required which is used as the default value should the key not be found in the map @type arg: tuple @return: function class @rtype: ndg.xacml.core.functions.AbstractFunction / NotImplemented """ functionClass = VettedDict.get(self, key, *arg) if functionClass is None: self.loadFunction(key) return VettedDict.get(self, key, *arg) else: return functionClass # Function map singleton used by match and apply classes - add new keys to # this dictionary to enable support for custom functions functionMap = FunctionMap()
StarcoderdataPython
9614708
<gh_stars>0 # website-to-note # simple python app that giving a url from the clipboard scrapes a web page for its title and returns a useful information for use in docs, notetaking apps, etc. # by <NAME> # github.com/wisehackermonkey # <EMAIL> # 20200420 import requests import pyperclip import validators # script for getting the date in format yyyymmdd for easy use from dateformate import current_date # scrape url for title # credit goes to this stackoverflow post # https://stackoverflow.com/questions/51233/how-can-i-retrieve-the-page-title-of-a-webpage-using-python def get_website_title(url): if not url: print("no url givin") return -1 hearders = {'headers':'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:51.0) Gecko/20100101 Firefox/51.0'} n = requests.get(url, headers=hearders) al = n.text; title = al[al.find('<title>') + 7 : al.find('</title>')] return title def main(): # grab the contents of the clipboard clipboard_url = pyperclip.paste() #check if the clipboard has a url if not validators.url(clipboard_url): print("Clipboard Does not contain a URL") return -1 # format the title, url, and date for the website in a string result = f""" {get_website_title(clipboard_url)} {clipboard_url} {current_date()} """ print(result) #copy result back into clipboard pyperclip.copy(result) if __name__ == "__main__": print("website-to-note by <NAME> 20200420") # start of the program main()
StarcoderdataPython
237330
# Generated by Django 3.1 on 2021-08-12 15:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("corpus", "0015_add_document_date"), ] operations = [ migrations.RenameField( model_name="document", old_name="probable_languages", new_name="secondary_languages", ), migrations.AlterField( model_name="document", name="languages", field=models.ManyToManyField( blank=True, to="corpus.LanguageScript", verbose_name="Primary Languages" ), ), migrations.AlterField( model_name="document", name="secondary_languages", field=models.ManyToManyField( blank=True, limit_choices_to=models.Q(_negated=True, language__exact="Unknown"), related_name="secondary_document", to="corpus.LanguageScript", ), ), ]
StarcoderdataPython
4918694
<reponame>black-perl/priest<filename>priest/__init__.py ''' _ _ _ __ _ __(_) ___ ___| |_ | '_ \| '__| |/ _ \/ __| __| | |_) | | | | __/\__ \ |_ | .__/|_| |_|\___||___/\__| |_| Generate wishes from your command line with full customization. Usage: ====== >>> from priest import morning >>> morning() # => Generates a morning message in your native language Flexibility : ------------- >>> morning(lang='en',pic=True) # => Generates a picture message in English language Now : ----- >>> from priest import now >>> now() # => Automatically gets the timezone and predicts whether it is morning,afternoon,evening # or night and generates a message accordingly in your native language For more : github.com/black-perl/priest ''' import os __dir__ = os.path.abspath(os.path.dirname(__file__)) __version__ = 0.5 from priest.lib.core import *
StarcoderdataPython
9697063
from data_importers.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "BOS" addresses_name = "2021-03-25T12:39:18.697471/Bolsover Democracy_Club__06May2021.tsv" stations_name = "2021-03-25T12:39:18.697471/Bolsover Democracy_Club__06May2021.tsv" elections = ["2021-05-06"] csv_delimiter = "\t" def station_record_to_dict(self, record): # Bolsover Parish Rooms, Hornscroft Road, Bolsover, Chesterfield if record.polling_place_id == "4511": record = record._replace(polling_place_postcode="S44 6HG") # The Shoulder at Hardstoft, Hardstoft, Chesterfield, Derbyshire if record.polling_place_id == "4490": record = record._replace(polling_place_postcode="S45 8AX") return super().station_record_to_dict(record) def address_record_to_dict(self, record): uprn = record.property_urn.strip().lstrip("0") if uprn in [ "10013062215", # 3 ROTHERHAM ROAD, SCARCLIFFE, CHESTERFIELD "10013062214", # 1 ROTHERHAM ROAD, SCARCLIFFE, CHESTERFIELD "10013068383", # LIVING ACCOMMODATION HORSE AND GROOM MANSFIELD ROAD, SCARCLIFFE "10013072767", # THE FLAT THE CASTLEWOOD PUBLIC HOUSE CARTER LANE EAST, SOUTH NORMANTON "200004519933", # APEX INSULATION SUPPLIES LTD, SAWPIT LANE, TIBSHELF, ALFRETON ]: return None if record.addressline6 in ["NG20 8FJ", "S44 6QH"]: return None return super().address_record_to_dict(record)
StarcoderdataPython
11276185
import math def xp_for_level_up(level): return math.floor(level * math.sqrt(level) * 10) if __name__ == "__main__": XP_GAIN = 300 level = int(input()) xp_needed = int(input()) nb_puzzles = int(input()) xp_gained = (nb_puzzles * XP_GAIN) + (xp_for_level_up(level) - xp_needed) while xp_gained >= xp_for_level_up(level): xp_gained -= xp_for_level_up(level) level += 1 xp_needed = xp_for_level_up(level) - xp_gained print(level) print(xp_needed)
StarcoderdataPython
1981185
<gh_stars>10-100 from django.contrib.sitemaps import Sitemap from django.urls import reverse from .models import ( Category, Product, NoticeMessage, Testimonials ) class StaticSitemap(Sitemap): priority = 0.7 changefreq = 'daily' def items(self): return [ ('shop:home', {'store': 'default'}), ('help:faq-list', {'store': 'default'}), ('help:guide', {'store': 'default'}), ('shop:gamemeca-ranking', {'store': 'default'}), ('shop:gamemeca-news', {'store': 'default', 'slug': 'latest'}), ('shop:gamemeca-news', {'store': 'default', 'slug': 'top'}), ('shop:gamemeca-news', {'store': 'default', 'slug': 'review'}), ('shop:gamemeca-news', {'store': 'default', 'slug': 'preview'}), ('shop:gamemeca-news', {'store': 'default', 'slug': 'feature'}), ('site_terms', {}), ('site_privacy', {}), ] def location(self, item): (name, kwargs) = item return reverse(name, kwargs=kwargs) class ProductCategorySitemap(Sitemap): priority = 1.0 changefreq = 'daily' def items(self): """ Retrieve leaf nodes Category.objects.filter(children__isnull=True) Category.objects.filter(lft=F('rght') - 1) """ categories = [] for category in Category.objects.filter(level__gt=0): categories.append(('shop:product-category', {'store': 'default', 'slug': category.slug})) return categories def location(self, item): (name, kwargs) = item return reverse(name, kwargs=kwargs) class ProductSitemap(Sitemap): priority = 0.9 changefreq = 'daily' def items(self): products = [] for product in Product.objects.store('default').enabled().available(): products.append(('shop:product-detail', {'store': 'default', 'pk': product.pk, 'code': product.code})) return products def location(self, item): (name, kwargs) = item return reverse(name, kwargs=kwargs) class NoticeMessageSitemap(Sitemap): priority = 1.0 changefreq = 'daily' def items(self): messages = [] for message in NoticeMessage.objects.filter(store__code='default', is_removed=False).order_by('-created'): messages.append(('help:notice-detail', {'store': 'default', 'pk': message.pk})) return messages def location(self, item): (name, kwargs) = item return reverse(name, kwargs=kwargs) class TestimonialsSitemap(Sitemap): priority = 1.0 changefreq = 'daily' def items(self): messages = [] for message in Testimonials.objects.filter(store__code='default', is_removed=False).order_by('-created'): messages.append(('help:testimonials-detail', {'store': 'default', 'pk': message.pk})) return messages def location(self, item): (name, kwargs) = item return reverse(name, kwargs=kwargs)
StarcoderdataPython
6414929
import os, time, re import sublime import sublime_plugin import glob import os from xml.etree import ElementTree current_path = None # class CreatePolicyFromTemplateCommand(sublime_plugin.WindowCommand): ROOT_DIR_PREFIX = '[root: ' ROOT_DIR_SUFFIX = ']' INPUT_PANEL_CAPTION = 'File name:' def run(self): if not self.find_root(): return self.find_templates() self.show_quick_panel(self.templates, self.template_selected) def create_and_open_file(self, path): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) open(path, 'w') global template template = { 'content': self.replace_variables(self.get_content(path)), 'filename': os.path.basename(path), 'path': os.path.dirname(path) } global current_path view = self.window.open_file(path) current_path = view.file_name() if not view.is_loading(): populate_file(view) def get_content(self, path): content = '' try: content = self.template.find("content").text except: pass try: path = os.path.abspath(os.path.join(os.path.dirname(self.template_path), self.template.find("file").text)) content = open(path).read() print(content) except: pass return content def find_root(self): folders = self.window.folders() if len(folders) == 0: sublime.error_message('Could not find project root') return False self.root = folders[0] self.rel_path_start = len(self.root) + 1 return True def construct_excluded_pattern(self): patterns = [pat.replace('|', '\\') for pat in self.get_setting('excluded_dir_patterns')] self.excluded = re.compile('^(?:' + '|'.join(patterns) + ')$') def get_setting(self, key): settings = None view = self.window.active_view() if view: settings = self.window.active_view().settings() if settings and settings.has('PolicyTemplates') and key in settings.get('PolicyTemplates'): # Get project-specific setting results = settings.get('PolicyTemplates')[key] else: # Get user-specific or default setting settings = sublime.load_settings('PolicyTemplates.sublime-settings') results = settings.get(key) return results def find_templates(self): self.templates = [] self.template_paths = [] for root, dirnames, filenames in os.walk(sublime.packages_path()): for filename in filenames: if filename.endswith(".file-template"): print(filename) self.template_paths.append(os.path.join(root, filename)) self.templates.append(os.path.basename(root) + ": " + os.path.splitext(filename)[0]) def template_selected(self, selected_index): if selected_index != -1: self.template_path = self.template_paths[selected_index] #print self.template_path tree = ElementTree.parse(open(self.template_path)) self.template = tree self.construct_excluded_pattern() self.build_relative_paths() #self.move_current_directory_to_top() self.show_quick_panel(self.relative_paths, self.dir_selected) def build_relative_paths(self): self.relative_paths = [] try: path = self.template.find("path").text except: path = "" if len(path) > 0: self.relative_paths = [ "Default: " + self.template.find("path").text ] self.relative_paths.append( self.ROOT_DIR_PREFIX + os.path.split(self.root)[-1] + self.ROOT_DIR_SUFFIX ) for base, dirs, files in os.walk(self.root): dirs_copy = dirs[:] [dirs.remove(dir) for dir in dirs_copy if self.excluded.search(dir)] for dir in dirs: relative_path = os.path.join(base, dir)[self.rel_path_start:] self.relative_paths.append(relative_path) def move_current_directory_to_top(self): view = self.window.active_view() if view: cur_dir = os.path.dirname(view.file_name())[self.rel_path_start:] for path in self.relative_paths: if path == cur_dir: i = self.relative_paths.index(path) self.relative_paths.insert(0, self.relative_paths.pop(i)) break def dir_selected(self, selected_index): if selected_index != -1: self.selected_dir = self.relative_paths[selected_index] filename = '' if len(self.template.find("filename").text) > 0: filename = self.template.find("filename").text try: self.arguments = list(self.template.find("arguments")) except: self.arguments = [] self.variables = {} self.next_argument() def next_argument(self): if len(self.arguments) > 0 : self.argument = self.arguments.pop(0) caption = self.argument.text self.window.show_input_panel(caption, '', self.process_argument, None, None) else: self.file_name_input() def process_argument(self, value): self.variables[self.argument.tag] = value self.next_argument() def replace_variables(self, text): for variable in self.variables.keys(): text = text.replace( "$" + variable, self.variables[variable] ) return text def file_name_input(self): file_name = self.template.find("filename").text file_name = self.replace_variables(file_name) dir = self.selected_dir if self.selected_dir.startswith(self.ROOT_DIR_PREFIX): dir = '' if self.selected_dir.startswith("Default: "): dir = self.template.find("path").text dir = self.replace_variables(dir) full_path = os.path.join(self.root, dir, file_name) if os.path.lexists(full_path): sublime.error_message('Policy already exists:\n%s' % full_path) return else: self.create_and_open_file(full_path) def show_quick_panel(self, options, done): sublime.set_timeout(lambda: self.window.show_quick_panel(options, done), 10) class PolicyTemplatesListener(sublime_plugin.EventListener): def on_load(self, view): global current_path if view.file_name() == current_path: populate_file(view) current_path = None def populate_file(view): global template view.run_command("insert_snippet", {'contents': template["content"]})
StarcoderdataPython
1811631
# Copyright (c) 2020 the original author or authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import pytest from sample_images import IMG_DIR from src.services.facescan.scanner.facenet.facenet import Facenet2018 from src.services.facescan.scanner.facescanner import FaceScanner from src.services.facescan.scanner.facescanners import TESTED_SCANNERS from src.services.facescan.scanner.insightface.insightface import InsightFace from src.services.facescan.scanner.test._scanner_cache import get_scanner from src.services.utils.pyutils import first_and_only DIFFERENCE_THRESHOLD = { InsightFace: 400, Facenet2018: 0.2 } def embeddings_are_equal(embedding1, embedding2, difference_threshold): difference = sum(((a - b) ** 2 for a, b in zip(embedding1, embedding2))) print(f"Embedding difference: {difference}, difference threshold: {difference_threshold}") return difference < difference_threshold @pytest.mark.integration @pytest.mark.parametrize('scanner_cls', TESTED_SCANNERS) def test__given_same_face_images__when_scanned__then_returns_same_embeddings(scanner_cls): scanner: FaceScanner = get_scanner(scanner_cls) img1 = IMG_DIR / '007_B.jpg' img2 = IMG_DIR / '008_B.jpg' emb1 = first_and_only(scanner.scan(img1)).embedding emb2 = first_and_only(scanner.scan(img2)).embedding assert embeddings_are_equal(emb1, emb2, DIFFERENCE_THRESHOLD[scanner_cls]) @pytest.mark.integration @pytest.mark.parametrize('scanner_cls', TESTED_SCANNERS) def test__given_diff_face_images__when_scanned__then_returns_diff_embeddings(scanner_cls): scanner: FaceScanner = get_scanner(scanner_cls) img1 = IMG_DIR / '007_B.jpg' img2 = IMG_DIR / '009_C.jpg' emb1 = first_and_only(scanner.scan(img1)).embedding emb2 = first_and_only(scanner.scan(img2)).embedding assert not embeddings_are_equal(emb1, emb2, DIFFERENCE_THRESHOLD[scanner_cls])
StarcoderdataPython
6436132
import logging import math from typing import Set, Dict import torch from psob_authorship.features.java.ast.Ast import FileAst from psob_authorship.features.java.ast_metrics.StatementsMetricsCalculator import StatementsMetricsCalculator from psob_authorship.features.java.ast_metrics.VariableMetricsCalculator import VariableMetricsCalculator class AstMetricsCalculator: LOGGER = logging.getLogger('metrics_calculator') def __init__(self, language_config, ast_path, character_number_for_file: Dict[str, int], filenames=None) -> None: self.LOGGER.info("Started calculating ast metrics") super().__init__() self.LOGGER.info("Started loading ast to memory") self.asts = FileAst.load_asts_from_files(ast_path, filenames) self.LOGGER.info("End loading ast to memory") self.variable_metrics_calculator = VariableMetricsCalculator(language_config, self.asts) self.statements_metrics_calculator = StatementsMetricsCalculator(language_config, self.asts, character_number_for_file) self.LOGGER.info("End calculating ast metrics") def maximum_depth_of_an_ast(self, filepaths: Set[str]) -> torch.Tensor: """ Max depth of files ast. :param filepaths: paths to files for which metric should be calculated :return: files ast max depth. """ return torch.tensor([ math.log10(float(max([self.asts[filepath].depth for filepath in filepaths]))) ]) def get_metrics(self, filepaths: Set[str]) -> torch.Tensor: return torch.cat(( self.variable_metrics_calculator.get_metrics(filepaths), self.statements_metrics_calculator.get_metrics(filepaths), self.maximum_depth_of_an_ast(filepaths) )) @staticmethod def get_metric_names(): return VariableMetricsCalculator.get_metrics_names() + StatementsMetricsCalculator.get_metrics_names() + \ ["maximum_depth_of_an_ast"]
StarcoderdataPython
301881
<filename>src/data/113.py n, q = map(int, input().split()) tree = [[] for _ in range(n)] for _ in range(n - 1): a, b = map(int, input().split()) a -= 1 b -= 1 tree[a].append(b) tree[b].append(a) from collections import deque dq = deque() dq.append(0) dist = [-1] * n dist[0] = 1 while dq: now = dq.popleft() for next in tree[now]: if dist[next] != -1: continue dist[next] = dist[now] + 1 dq.append(next) for _ in range(q): c, d = map(int, input().split()) c -= 1 d -= 1 c2 = dist[c] % 2 d2 = dist[d] % 2 if c2 ^ d2: print('Road') else: print('Town')
StarcoderdataPython
6467109
<gh_stars>1-10 from setuptools import setup, find_packages setup( name='Python Template', version='0.1', description='Python Template', url='https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareArchitecture/PythonTemplate', author='<NAME>', author_email='<EMAIL>', license='BSD-3 license', packages=find_packages( exclude=[ 'doc', 'tests', ] ) )
StarcoderdataPython
1627164
<gh_stars>1000+ # Copyright 2015 ClusterHQ Inc. See LICENSE file for details. """ Tests for ``flocker.node.agents.cinder``. """ from ..cinder import _openstack_verify_from_config, _get_compute_id from ....common import ipaddress_from_string from ....testtools import TestCase class VerifyTests(TestCase): """ Tests for _openstack_verify_from_config. """ def test_verify_not_set(self): """ HTTPS connections are verified using system CA's if not overridden. """ config = { 'backend': 'openstack', 'auth_plugin': 'password', } self.assertEqual(_openstack_verify_from_config(**config), True) def test_verify_ca_path(self): """ HTTPS connections are verified using a CA bundle if ``verify_ca_path`` is provided. """ config = { 'backend': 'openstack', 'auth_plugin': 'password', 'verify_peer': True, 'verify_ca_path': '/a/path' } self.assertEqual(_openstack_verify_from_config(**config), '/a/path') def test_verify_false(self): """ HTTPS connections are not verified if ``verify_peer`` is false. """ config = { 'backend': 'openstack', 'auth_plugin': 'password', 'verify_peer': False, } self.assertEqual(_openstack_verify_from_config(**config), False) def test_verify_false_ca_path(self): """ HTTPS connections are not verified if ``verify_peer`` is false, even if a ``verify_ca_path`` is provided. """ config = { 'backend': 'openstack', 'auth_plugin': 'password', 'verify_peer': False, 'verify_ca_path': '/a/path' } self.assertEqual(_openstack_verify_from_config(**config), False) class GetComputeIdTests(TestCase): """ Tests for ``_get_compute_id``. """ def test_local_ips_equal_reported_ips(self): """ If local IPs are the same as a node's IPs that node is the one chosen. """ local_ips_1 = {ipaddress_from_string("192.0.0.1"), ipaddress_from_string("10.0.0.1")} local_ips_2 = {ipaddress_from_string("10.0.0.2")} reported_ips = {u"server1": local_ips_1, u"server2": local_ips_2} self.assertEqual( (_get_compute_id(local_ips_1, reported_ips), _get_compute_id(local_ips_2, reported_ips)), (u"server1", u"server2")) def test_local_ips_superset_of_reported_ips(self): """ If local IPs are a superset of a node's IPs that node is the one chosen. We expect local IPs to include addresses like 127.0.0.1 which won't show up in reported IPs for remote nodes. """ local_ips_1 = {ipaddress_from_string("192.0.0.1"), ipaddress_from_string("10.0.0.1")} local_ips_2 = {ipaddress_from_string("10.0.0.2"), ipaddress_from_string("192.0.0.2")} reported_ips = {u"server1": {ipaddress_from_string("192.0.0.1")}, u"server2": {ipaddress_from_string("192.0.0.2")}} self.assertEqual( (_get_compute_id(local_ips_1, reported_ips), _get_compute_id(local_ips_2, reported_ips)), (u"server1", u"server2")) def test_local_ips_subset_of_reported_ips(self): """ If local IPs are a subset of a node's IPs that node is the one chosen. Floating IPs will show up in reported IPs for remote nodes but are not known to the local machine. """ local_ips_1 = {ipaddress_from_string("192.0.0.1")} local_ips_2 = {ipaddress_from_string("192.0.0.2")} reported_ips = {u"server1": {ipaddress_from_string("192.0.0.1"), ipaddress_from_string("10.0.0.1")}, u"server2": {ipaddress_from_string("192.0.0.2"), ipaddress_from_string("10.0.0.2")}} self.assertEqual( (_get_compute_id(local_ips_1, reported_ips), _get_compute_id(local_ips_2, reported_ips)), (u"server1", u"server2")) def test_local_ips_intersection_of_reported_ips(self): """ If local IPs intersect with a node's IPs that node is the one chosen. This can happen if there are floating IPs reported for remote node and local list includes things like 127.0.0.1. """ local_ips_1 = {ipaddress_from_string("192.0.0.1"), ipaddress_from_string("127.0.0.1")} local_ips_2 = {ipaddress_from_string("192.0.0.2"), ipaddress_from_string("127.0.0.1")} reported_ips = {u"server1": {ipaddress_from_string("192.0.0.1"), ipaddress_from_string("10.0.0.1")}, u"server2": {ipaddress_from_string("192.0.0.2"), ipaddress_from_string("10.0.0.2")}} self.assertEqual( (_get_compute_id(local_ips_1, reported_ips), _get_compute_id(local_ips_2, reported_ips)), (u"server1", u"server2")) def test_unknown_ip(self): """ A ``KeyError`` is raised if ID can't be calculated. """ local_ips = {ipaddress_from_string("192.0.0.1"), ipaddress_from_string("10.0.0.1")} reported_ips = {u"server2": {ipaddress_from_string("192.0.0.2")}} self.assertRaises(KeyError, _get_compute_id, local_ips, reported_ips) def test_reported_ips_empty(self): """ If reported IPs are blank that node is never chosen. """ local_ips = {ipaddress_from_string("192.0.0.1"), ipaddress_from_string("10.0.0.1")} reported_ips = {u"server2": {ipaddress_from_string("192.0.0.1")}, u"server1": set()} self.assertEqual(_get_compute_id(local_ips, reported_ips), u"server2")
StarcoderdataPython
3356665
import abc import asyncio import collections import contextlib import fcntl import functools import inspect import io import mmap import operator import os import pathlib import random import signal import socket import stat import struct import subprocess import tempfile import termios import time import types import typing import warnings from typing import Any, BinaryIO, Callable, Dict, Generator, List, Optional, Set, Tuple import pytest import trio from setuptools import Distribution from hades import constants from hades.leases.server import Server # Available since CPython 3.10 F_GETPIPE_SZ = getattr(fcntl, "F_GETPIPE_SZ", 1032) AncillaryData = List[Tuple[int, int, bytes]] RECVMSG = Tuple[bytes, AncillaryData, int] Result = Tuple[ int, bytes, bytes, Optional[List[RECVMSG]], Optional[bytes], ] T = typing.TypeVar('T') SIZEOF_INT = struct.calcsize("i") ucred = struct.Struct("iII") TIMEOUT = 1.0 RECVMSG_FLAGS = socket.MSG_CMSG_CLOEXEC @pytest.fixture(scope="session") def socket_path() -> bytes: return os.fsencode(tempfile.mktemp(prefix="hades-", suffix=".sock")) def read_int_sysctl(variable: str) -> int: with (pathlib.PosixPath("/proc/sys") / variable).open("rb", 0) as f: return int(f.read()) @pytest.fixture(scope="session") def optmem_max() -> int: return read_int_sysctl("net/core/optmem_max") @pytest.fixture(scope="session") def wmem_default() -> int: return read_int_sysctl("net/core/wmem_default") @pytest.fixture(scope="session") def uid(): return os.getuid() @pytest.fixture(scope="session") def gid(): return os.getgid() @pytest.fixture(scope="class") def server(socket_path) -> socket.socket: with contextlib.ExitStack() as stack: type_ = socket.SOCK_STREAM | socket.SOCK_NONBLOCK | socket.SOCK_CLOEXEC sock = stack.enter_context(socket.socket(socket.AF_UNIX, type_)) sock.bind(socket_path) stack.callback(os.unlink, socket_path) sock.listen() yield sock def test_short_write_possible(wmem_default): """On Linux only the sender can influence the size of a Unix stream socket buffer.""" got = os.sysconf("SC_ARG_MAX") expected = wmem_default + mmap.PAGESIZE assert got > expected, "Cannot test short writes" @contextlib.contextmanager def chdir(directory): prev_cwd = os.getcwd() os.chdir(directory) try: yield directory finally: os.chdir(prev_cwd) @pytest.fixture(scope="session") def executable(request) -> pathlib.PosixPath: """Let setuptools compute the path to the built executable""" with chdir(request.config.rootdir) as root_dir: command = "build" distribution = Distribution({ "script_name": __file__, "script_args": [command], }) distribution.parse_config_files() distribution.parse_command_line() command = distribution.get_command_obj(command) command.ensure_finalized() return ( pathlib.PosixPath(root_dir).absolute() / command.build_platlib / "hades-dhcp-script" ) def test_executable_exists(executable: pathlib.PosixPath): assert executable.exists() class ChildStopped(Exception): pass class TimeoutExceeded(Exception): pass @contextlib.contextmanager def pipe(): r, w = os.pipe2(os.O_CLOEXEC | os.O_NONBLOCK) r = os.fdopen(r, "rb", buffering=0, closefd=True) w = os.fdopen(w, "wb", buffering=0, closefd=True) with r, w: yield r, w def drain_pipe(stream: io.FileIO, buffer: typing.BinaryIO) -> Optional[int]: chunk = stream.readall() if chunk is not None: buffer.write(chunk) return len(chunk) else: return None async def read_pipe(stream: trio.abc.ReceiveStream, buffer: io.BytesIO): async for chunk in stream: buffer.write(chunk) async def receive_messages( client: trio.SocketStream, wmem_default: int, optmem_max: int, messages: List[RECVMSG], ): while (r := await client.socket.recvmsg( wmem_default, optmem_max, RECVMSG_FLAGS, ))[0]: messages.append(r[:3]) async def send_reply(client: trio.SocketStream, reply: bytes) -> bytes: reply = memoryview(reply) sent_total = 0 try: while ( sent_total < len(reply) and (sent := await client.socket.send(reply[sent_total:])) ): sent_total += sent except BrokenPipeError: pass return reply[:sent_total].tobytes() async def track_process(process: trio.Process): await process.wait() raise ChildStopped() async def run_with_trio( executable: pathlib.PosixPath, argv: List[bytes], environ: Dict[bytes, bytes], stdin: Tuple[io.FileIO, io.FileIO], stdout: Tuple[io.FileIO, io.FileIO], stderr: Tuple[io.FileIO, io.FileIO], server: socket.socket, reply: bytes, wmem_default: int, optmem_max: int, uid: int, gid: int, ) -> Result: stdout_content = io.BytesIO() stderr_content = io.BytesIO() messages = None sent = None with trio.move_on_after(TIMEOUT): process = await trio.open_process( argv, executable=executable, env=environ, bufsize=0, text=False, encoding=None, stdin=os.dup(stdin[0].fileno()), stdout=os.dup(stdout[1].fileno()), stderr=os.dup(stderr[1].fileno()), ) try: async with trio.open_nursery() as nursery: nursery: trio.Nursery = nursery # Read stdout/stderr in the background nursery.start_soon(track_process, process) nursery.start_soon(read_pipe, trio.lowlevel.FdStream(os.dup(stdout[0].fileno())), stdout_content) nursery.start_soon(read_pipe, trio.lowlevel.FdStream(os.dup(stderr[0].fileno())), stderr_content) server = trio.socket.from_stdlib_socket(server) client, _ = await server.accept() client = trio.SocketStream(client) credentials = ucred.unpack(client.getsockopt( socket.SOL_SOCKET, socket.SO_PEERCRED, ucred.size, )) assert (process.pid, uid, gid) == credentials messages = [] await receive_messages(client, wmem_default, optmem_max, messages) sent = await send_reply(client, reply) await client.send_eof() except ChildStopped: pass else: process.kill() drain_pipe(stdout[0], stdout_content) drain_pipe(stderr[0], stderr_content) return process.returncode, stdout_content.getvalue(), stderr_content.getvalue(), messages, sent class BaseRun(abc.ABC): RECVMSG_FLAGS = socket.MSG_CMSG_CLOEXEC TIMEOUT = 5.0 @pytest.fixture(scope="class") def environ(self, server: socket.socket) -> Dict[bytes, bytes]: path = os.fsencode(server.getsockname()) return collections.OrderedDict(( (b"HADES_AUTH_DHCP_SCRIPT_SOCKET", path), )) @pytest.fixture(scope="class") def stdin(self) -> Tuple[io.FileIO, io.FileIO]: with pipe() as p: yield p @pytest.fixture(scope="class") def stdout(self) -> Tuple[io.FileIO, io.FileIO]: with pipe() as p: yield p @pytest.fixture(scope="class") def stderr(self) -> Tuple[io.FileIO, io.FileIO]: with pipe() as p: yield p @pytest.fixture(scope="class") def result( self, executable: pathlib.PosixPath, argv: List[bytes], environ: Dict[bytes, bytes], stdin: Tuple[io.FileIO, io.FileIO], stdout: Tuple[io.FileIO, io.FileIO], stderr: Tuple[io.FileIO, io.FileIO], server: socket.socket, reply: bytes, wmem_default: int, optmem_max: int, uid: int, gid: int, ) -> Result: return trio.run( run_with_trio, executable, argv, environ, stdin, stdout, stderr, server, reply, wmem_default, optmem_max, uid, gid, ) @pytest.fixture(scope="class") def status(self, result: Result) -> int: return result[0] @pytest.fixture(scope="class") def stdout_content(self, result: Result) -> bytes: return result[1] @pytest.fixture(scope="class") def stderr_content(self, result: Result) -> bytes: return result[2] @pytest.fixture(scope="class") def messages(self, result: Result) -> Optional[List[RECVMSG]]: return result[3] @pytest.fixture(scope="class") def sent(self, result: Result) -> Optional[bytes]: return result[4] @property @abc.abstractmethod def expected_status(self) -> int: pass @pytest.fixture(scope="class") def reply(self) -> bytes: return struct.pack("b", self.expected_status) def test_status(self, status: int): assert status == self.expected_status @property @abc.abstractmethod def expected_stdout(self) -> bytes: pass def test_stdout_content(self, stdout_content: bytes): assert stdout_content == self.expected_stdout @property @abc.abstractmethod def expected_stderr(self) -> bytes: pass def test_stderr_content(self, stderr_content: bytes): assert stderr_content == self.expected_stderr class SuccessfulRun(BaseRun, abc.ABC): @property def expected_status(self): return os.EX_OK class NoStdoutOutputRun(BaseRun, abc.ABC): @property def expected_stdout(self) -> bytes: return b"" class PrematureExitRun(NoStdoutOutputRun, abc.ABC): @property def expected_stderr(self) -> bytes: return inspect.cleandoc( f""" hades-dhcp-script ARGS... Sends its command-line arguments, environment variables starting with DNSMASQ_ and the stdin/stdout file descriptors to the UNIX socket set via the HADES_AUTH_DHCP_SCRIPT_SOCKET environment variable (defaults to {constants.AUTH_DHCP_SCRIPT_SOCKET}). See the -6, --dhcp-script options of dnsmasq for details. """ ).encode("ascii") def test_messages(self, messages: Optional[List[RECVMSG]]): assert messages is None def test_sent(self, sent: Optional[bytes]): assert sent is None class TestUsageExit(PrematureExitRun): @property def expected_status(self) -> int: return os.EX_USAGE @pytest.fixture(scope="session") def argv(self, executable: pathlib.PosixPath) -> List[bytes]: return [bytes(executable)] class TestHelpExit(PrematureExitRun, SuccessfulRun): @pytest.fixture( scope="session", params=[[b"-h"], [b"--help"], [b"help"]] ) def argv(self, request, executable: pathlib.PosixPath) -> List[bytes]: return [bytes(executable)] + request.param class ConnectedRun(BaseRun, abc.ABC): @pytest.fixture(scope="class") def messages(self, result: Result) -> List[RECVMSG]: messages = result[3] if messages is None: pytest.fail("No messages") return messages @pytest.fixture(scope="class") def file_descriptors( self, messages: List[RECVMSG], ) -> Generator[List[io.FileIO], None, None]: streams = [] with contextlib.ExitStack() as stack: for _, ancdata, _ in messages: streams.extend( stack.enter_context(stream) for stream in Server.parse_ancillary_data(ancdata) ) # Make received file descriptors non-blocking for stream in streams: os.set_blocking(stream.fileno(), False) yield streams @pytest.fixture(scope="class") def passed_stdin(self, file_descriptors: List[io.FileIO]): if len(file_descriptors) != 3: pytest.fail("Wrong number of file descriptors") return file_descriptors[0] @pytest.fixture(scope="class") def passed_stdout(self, file_descriptors: List[io.FileIO]): if len(file_descriptors) != 3: pytest.fail("Wrong number of file descriptors") return file_descriptors[1] @pytest.fixture(scope="class") def passed_stderr(self, file_descriptors: List[io.FileIO]): if len(file_descriptors) != 3: pytest.fail("Wrong number of file descriptors") return file_descriptors[2] def test_sent(self, sent: Optional[bytes], reply: bytes): assert sent == reply def test_flags(self, messages: Optional[List[RECVMSG]]): got = [flags for _, _, flags in messages] expected = [self.RECVMSG_FLAGS for _, _, _ in messages] assert got == expected def test_ancillary_data(self, messages: Optional[List[RECVMSG]]): expected = [ ( socket.SOL_SOCKET, socket.SCM_RIGHTS, len(cmsg_data) - len(cmsg_data) % SIZEOF_INT, ) for _, ancdata, _ in messages for _, _, cmsg_data in ancdata ] got = [ (cmsg_level, cmsg_type, len(cmsg_data)) for _, ancdata, _ in messages for cmsg_level, cmsg_type, cmsg_data in ancdata ] assert got == expected @pytest.mark.xfail(raises=BlockingIOError) def test_file_descriptor_count( self, file_descriptors: List[BinaryIO], ): assert len(file_descriptors) == 3 @staticmethod def assert_file(our_file: io.FileIO, passed_file: io.FileIO): our_readable = our_file.readable() got_mode = passed_file.mode our_stat = os.fstat(our_file.fileno()) passed_stat = os.fstat(passed_file.fileno()) is_fifo = stat.S_ISFIFO(passed_stat.st_mode) expected_mode = "wb" if our_readable else "rb" reader = our_file if our_readable else passed_file writer = passed_file if our_readable else our_file # Verify that we have a pipe with its two ends if is_fifo and our_stat == passed_stat: pipe_size = fcntl.fcntl(writer.fileno(), F_GETPIPE_SZ) # Check for pending bytes in the pipe pending_bytes = bytearray(SIZEOF_INT) fcntl.ioctl(reader.fileno(), termios.FIONREAD, pending_bytes) pending_bytes = struct.unpack_from("=i", pending_bytes)[0] test_size = min(mmap.PAGESIZE, pipe_size - pending_bytes) expected_bytes = random.randbytes(test_size) writer.write(expected_bytes) writer.flush() got_bytes = reader.read(pipe_size) else: expected_bytes = None got_bytes = None assert ( got_mode, is_fifo, passed_stat, got_bytes ) == ( expected_mode, True, our_stat, expected_bytes ) @pytest.mark.xfail(raises=BlockingIOError) def test_passed_stdin( self, stdin: Tuple[io.FileIO, io.FileIO], passed_stdin: io.FileIO, ): self.assert_file(stdin[1], passed_stdin) @pytest.mark.xfail(raises=BlockingIOError) def test_passed_stdout( self, stdout: Tuple[io.FileIO, io.FileIO], passed_stdout: io.FileIO, ): self.assert_file(stdout[0], passed_stdout) @pytest.mark.xfail(raises=BlockingIOError) def test_passed_stderr( self, stderr: Tuple[io.FileIO, io.FileIO], passed_stderr: io.FileIO, ): self.assert_file(stderr[0], passed_stderr) def test_message( self, argv: List[bytes], environ: Dict[bytes, bytes], messages: Optional[List[RECVMSG]], ): got = b"".join(map(operator.itemgetter(0), messages)) expected = b"".join([ struct.pack("=i", len(argv)), ] + [ arg + b"\x00" for arg in argv ] + [ struct.pack("=i", len(environ)), ] + [ b"%b=%b\x00" % i for i in environ.items() ]) assert got == expected class TestSuccess(ConnectedRun, SuccessfulRun, NoStdoutOutputRun): @property def expected_stderr(self) -> bytes: return b"" @pytest.fixture(scope="session") def argv( self, executable: pathlib.PosixPath, wmem_default: int, ) -> List[bytes]: random_args = random.randbytes(2 * wmem_default).split(b"\x00") return [ bytes(executable), b"add", ] + random_args @pytest.fixture(scope="class") def environ(self, server: socket.socket) -> Dict[bytes, bytes]: path = os.fsencode(server.getsockname()) return collections.OrderedDict(( (b"NON_DNSMASQ_PREFIX_ENV", b"1"), (b"DNSMASQ_PREFIX_ENV", b"2"), (b"DNSMASQ_PREFIX_WITH_WHITESPACE", b" \twith\t whitespace\t "), (b"DNSMASQ_CHARACTERS", bytes(range(0x01, 0x100))), (b"HADES_AUTH_DHCP_SCRIPT_SOCKET", path), )) class TestExitStatus(ConnectedRun, NoStdoutOutputRun): @property def expected_stderr(self) -> bytes: return b"" @pytest.fixture(scope="session") def argv(self, executable: pathlib.PosixPath) -> List[bytes]: return [ bytes(executable), b"test" ] @property def expected_status(self) -> int: return 5
StarcoderdataPython
9650395
# -*- coding: utf-8 -*- #----------------------------------------------------------------------------- # Copyright (c) 2011, <NAME> # # Distributed under the terms of the Lesser GNU General Public License (LGPL) #----------------------------------------------------------------------------- ''' Created on Jun 8, 2011 @author: evan ''' from lxml import etree from kayako.core.lib import UnsetParameter from kayako.core.object import KayakoObject from kayako.objects.ticket.ticket_note import TicketNote from kayako.objects.ticket.ticket_post import TicketPost from kayako.objects.ticket.ticket_time_track import TicketTimeTrack from kayako.exception import KayakoRequestError, KayakoResponseError class Ticket(KayakoObject): ''' Kayako Ticket API Object. subject The Ticket Subject fullname Full Name of creator email Email Address of creator contents The contents of the first ticket post departmentid The Department ID ticketstatusid The Ticket Status ID ticketpriorityid The Ticket Priority ID tickettypeid The Ticket Type ID userid The User ID, if the ticket is to be created as a user. staffid The Staff ID, if the ticket is to be created as a staff ownerstaffid The Owner Staff ID, if you want to set an Owner for this ticket type The ticket type: 'default' or 'phone' ''' controller = '/Tickets/Ticket' __parameters__ = [ 'id', 'subject', 'fullname', 'email', 'contents', 'departmentid', 'ticketstatusid', 'ticketpriorityid', # synonym for priorityid 'tickettypeid', 'userid', 'staffid', 'ownerstaffid', 'type', 'flagtype', 'displayid', 'statusid', 'typeid', 'userorganization', 'userorganizationid', 'ownerstaffname', 'lastreplier', 'creationtime', 'lastactivity', 'laststaffreply', 'lastuserreply', 'slaplanid', 'nextreplydue', 'resolutiondue', 'replies', 'ipaddress', 'creator', 'creationmode', 'creationtype', 'isescalated', 'escalationruleid', 'tags', 'watchers', 'workflows', 'notes', 'posts', 'timetracks', ] __required_add_parameters__ = ['subject', 'fullname', 'email', 'contents', 'departmentid', 'ticketstatusid', 'ticketpriorityid', 'tickettypeid', ] __add_parameters__ = ['subject', 'fullname', 'email', 'contents', 'departmentid', 'ticketstatusid', 'ticketpriorityid', 'tickettypeid', 'userid', 'staffid', 'ownerstaffid', 'type'] __save_parameters__ = ['subject', 'fullname', 'email', 'departmentid', 'ticketstatusid', 'ticketpriorityid', 'ownerstaffid', 'userid', ] @classmethod def _parse_ticket(cls, api, ticket_tree): ticketid = cls._parse_int(ticket_tree.get('id')) workflows = [dict(id=workflow_node.get('id'), title=workflow_node.get('title')) for workflow_node in ticket_tree.findall('workflow')] watchers = [dict(staffid=watcher_node.get('staffid'), name=watcher_node.get('name')) for watcher_node in ticket_tree.findall('watcher')] notes = [TicketNote(api, **TicketNote._parse_ticket_note(ticket_note_tree, ticketid)) for ticket_note_tree in ticket_tree.findall('note') if ticket_note_tree.get('type') == 'ticket'] timetracks = [TicketTimeTrack(api, **TicketTimeTrack._parse_ticket_time_track(ticket_time_track_tree, ticketid)) for ticket_time_track_tree in ticket_tree.findall('note') if ticket_note_tree.get('type') == 'timetrack'] posts = [] posts_node = ticket_tree.find('posts') if posts_node is not None: posts = [TicketPost(api, **TicketPost._parse_ticket_post(ticket_post_tree, ticketid)) for ticket_post_tree in posts_node.findall('post')] params = dict( id=ticketid, subject=cls._get_string(ticket_tree.find('subject')), fullname=cls._get_string(ticket_tree.find('fullname')), email=cls._get_string(ticket_tree.find('email')), departmentid=cls._get_int(ticket_tree.find('departmentid')), ticketstatusid=cls._get_int(ticket_tree.find('ticketstatusid'), required=False), ticketpriorityid=cls._get_int(ticket_tree.find('priorityid')), # Note the difference, request param is ticketpriorityid, response is priorityid tickettypeid=cls._get_int(ticket_tree.find('tickettypeid'), required=False), userid=cls._get_int(ticket_tree.find('userid')), ownerstaffid=cls._get_int(ticket_tree.find('ownerstaffid')), flagtype=cls._parse_int(ticket_tree.get('flagtype'), 'flagtype'), displayid=cls._get_string(ticket_tree.find('displayid')), statusid=cls._get_int(ticket_tree.find('statusid')), typeid=cls._get_int(ticket_tree.find('typeid')), userorganization=cls._get_string(ticket_tree.find('userorganization')), userorganizationid=cls._get_int(ticket_tree.find('userorganizationid'), required=False), ownerstaffname=cls._get_string(ticket_tree.find('ownerstaffname')), lastreplier=cls._get_string(ticket_tree.find('lastreplier')), creationtime=cls._get_date(ticket_tree.find('creationtime')), lastactivity=cls._get_date(ticket_tree.find('lastactivity')), laststaffreply=cls._get_date(ticket_tree.find('laststaffreply')), lastuserreply=cls._get_date(ticket_tree.find('lastuserreply')), slaplanid=cls._get_int(ticket_tree.find('slaplanid')), nextreplydue=cls._get_date(ticket_tree.find('nextreplydue')), resolutiondue=cls._get_date(ticket_tree.find('resolutiondue')), replies=cls._get_int(ticket_tree.find('replies')), ipaddress=cls._get_string(ticket_tree.find('ipaddress')), creator=cls._get_int(ticket_tree.find('creator')), creationmode=cls._get_int(ticket_tree.find('creationmode')), creationtype=cls._get_int(ticket_tree.find('creationtype')), isescalated=cls._get_boolean(ticket_tree.find('isescalated')), escalationruleid=cls._get_int(ticket_tree.find('escalationruleid')), tags=cls._get_string(ticket_tree.find('tags')), watchers=watchers, workflows=workflows, notes=notes, posts=posts, timetracks=timetracks, ) return params def _update_from_response(self, ticket_tree): ticketid = self._parse_int(ticket_tree.get('id')) if ticketid is not None: self.id = ticketid priority_node = ticket_tree.find('priorityid') if priority_node is not None: self.ticketpriorityid = self._get_int(priority_node) for int_node in ['departmentid', 'userid', 'ownerstaffid', 'flagtype', 'statusid', 'slaplanid', 'replies', 'creator', 'creationmode', 'creationtype', 'escalationruleid', 'ticketstatusid', 'tickettypeid', 'userorganizationid' ]: node = ticket_tree.find(int_node) if node is not None: setattr(self, int_node, self._get_int(node, required=False)) for str_node in ['subject', 'email', 'displayid', 'userorganization', 'ownerstaffname', 'lastreplier', 'ipaddress', 'tags']: node = ticket_tree.find(str_node) if node is not None: setattr(self, str_node, self._get_string(node)) for bool_node in ['isescalated']: node = ticket_tree.find(bool_node) if node is not None: setattr(self, bool_node, self._get_boolean(node, required=False)) for date_node in ['creationtime', 'lastactivity', 'lastuserreply', 'nextreplydue', 'resolutiondue', ]: node = ticket_tree.find(date_node) if node is not None: setattr(self, date_node, self._get_date(node, required=False)) @classmethod def get_all(cls, api, departmentid, ticketstatusid= -1, ownerstaffid= -1, userid= -1): ''' Get all of the tickets filtered by the parameters: Lists are converted to comma-separated values. Required: departmentid Filter the tickets by the specified department id, you can specify multiple id's by separating the values using a comma. Example: 1,2,3 Optional: ticketstatusid Filter the tickets by the specified ticket status id, you can specify multiple id's by separating the values using a comma. Example: 1,2,3 ownerstaffid Filter the tickets by the specified owner staff id, you can specify multiple id's by separating the values using a comma. Example: 1,2,3 userid Filter the tickets by the specified user id, you can specify multiple id's by separating the values using a comma. Example: 1,2,3 ''' if isinstance(departmentid, (list, tuple)): departmentid = ','.join([str(id_item) for id_item in departmentid]) if isinstance(ticketstatusid, (list, tuple)): ticketstatusid = ','.join([str(id_item) for id_item in ticketstatusid]) if isinstance(ownerstaffid, (list, tuple)): ownerstaffid = ','.join([str(id_item) for id_item in ownerstaffid]) if isinstance(userid, (list, tuple)): userid = ','.join([str(id_item) for id_item in userid]) response = api._request('%s/ListAll/%s/%s/%s/%s/' % (cls.controller, departmentid, ticketstatusid, ownerstaffid, userid), 'GET') tree = etree.parse(response) return [Ticket(api, **cls._parse_ticket(api, ticket_tree)) for ticket_tree in tree.findall('ticket')] @classmethod def get(cls, api, id): try: response = api._request('%s/%s/' % (cls.controller, id), 'GET') except KayakoResponseError, error: if 'HTTP Error 404' in str(error): return None else: raise tree = etree.parse(response) node = tree.find('ticket') if node is None: return None params = cls._parse_ticket(api, node) return Ticket(api, **params) def add(self): ''' Add this Ticket. Requires: subject The Ticket Subject fullname <NAME> creator email Email Address of creator contents The contents of the first ticket post departmentid The Department ID ticketstatusid The Ticket Status ID ticketpriorityid The Ticket Priority ID tickettypeid The Ticket Type ID At least one of these must be present: userid The User ID, if the ticket is to be created as a user. staffid The Staff ID, if the ticket is to be created as a staff Optional: ownerstaffid The Owner Staff ID, if you want to set an Owner for this ticket type The ticket type: 'default' or 'phone' ''' if self.id is not UnsetParameter: raise KayakoRequestError('Cannot add a pre-existing %s. Use save instead. (id: %s)' % (self.__class__.__name__, self.id)) parameters = self.add_parameters for required_parameter in self.__required_add_parameters__: if required_parameter not in parameters: raise KayakoRequestError('Cannot add %s: Missing required field: %s.' % (self.__class__.__name__, required_parameter)) if 'userid' not in parameters and 'staffid' not in parameters: raise KayakoRequestError('To add a Ticket, at least one of the following parameters must be set: userid, staffid. (id: %s)' % self.id) response = self.api._request(self.controller, 'POST', **parameters) tree = etree.parse(response) node = tree.find('ticket') self._update_from_response(node) def save(self): ''' Save this ticket. Saves only the following: subject The Ticket Subject fullname <NAME> creator email Email Address of creator departmentid The Department ID ticketstatusid The Ticket Status ID ticketpriorityid The Ticket Priority ID tickettypeid The Ticket Type ID ownerstaffid The Owner Staff ID, if you want to set an Owner for this ticket userid The User ID, if you want to change the user for this ticket ''' response = self._save('%s/%s/' % (self.controller, self.id)) tree = etree.parse(response) node = tree.find('ticket') self._update_from_response(node) def delete(self): self._delete('%s/%s/' % (self.controller, self.id)) def __str__(self): return '<Ticket (%s): %s - %s>' % (self.id, 'UNSUBMITTED' if not self.displayid else self.displayid, self.subject)
StarcoderdataPython
163562
from netapp.snapshot.snapshot_schedule_info import SnapshotScheduleInfo from netapp.netapp_object import NetAppObject class SnapshotPolicyInfo(NetAppObject): """ A typedef containing information about the Snapshot Scheduling Policies. When returned as part of the output, all elements of this typedef are reported, unless limited by a set of desired attributes specified by the caller. <p> When used as input to specify desired attributes to return, omitting a given element indicates that it shall not be returned in the output. In contrast, by providing an element (even with no value) the caller ensures that a value for that element will be returned, given that the value can be retrieved. <p> When used as input to specify queries, any element can be omitted in which case the resulting set of objects is not constrained by any specific value of that attribute. """ _comment = None @property def comment(self): """ A human readable description associated with the snasphot policy. The maximum length of this field can be 255 characters. Attributes: optional-for-create, modifiable """ return self._comment @comment.setter def comment(self, val): if val != None: self.validate('comment', val) self._comment = val _policy_owner = None @property def policy_owner(self): """ Owner of the policy Attributes: non-creatable, non-modifiable """ return self._policy_owner @policy_owner.setter def policy_owner(self, val): if val != None: self.validate('policy_owner', val) self._policy_owner = val _vserver_name = None @property def vserver_name(self): """ Vserver Name Attributes: key, non-creatable, non-modifiable """ return self._vserver_name @vserver_name.setter def vserver_name(self, val): if val != None: self.validate('vserver_name', val) self._vserver_name = val _enabled = None @property def enabled(self): """ The state of the snapshot policy. If true, the snapshot policy is enabled and scheduled snapshots will be created on the volume associated with this policy. Attributes: required-for-create, modifiable """ return self._enabled @enabled.setter def enabled(self, val): if val != None: self.validate('enabled', val) self._enabled = val _total_schedules = None @property def total_schedules(self): """ Total Number of Schedules in this Policy Attributes: non-creatable, non-modifiable """ return self._total_schedules @total_schedules.setter def total_schedules(self, val): if val != None: self.validate('total_schedules', val) self._total_schedules = val _snapshot_policy_schedules = None @property def snapshot_policy_schedules(self): """ Information about individual snapshot schedules """ return self._snapshot_policy_schedules @snapshot_policy_schedules.setter def snapshot_policy_schedules(self, val): if val != None: self.validate('snapshot_policy_schedules', val) self._snapshot_policy_schedules = val _policy = None @property def policy(self): """ A human readable string describing the name of the snapshot scheduling policy. Attributes: key, required-for-create, non-modifiable """ return self._policy @policy.setter def policy(self, val): if val != None: self.validate('policy', val) self._policy = val @staticmethod def get_api_name(): return "snapshot-policy-info" @staticmethod def get_desired_attrs(): return [ 'comment', 'policy-owner', 'vserver-name', 'enabled', 'total-schedules', 'snapshot-policy-schedules', 'policy', ] def describe_properties(self): return { 'comment': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'policy_owner': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'vserver_name': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'enabled': { 'class': bool, 'is_list': False, 'required': 'optional' }, 'total_schedules': { 'class': int, 'is_list': False, 'required': 'optional' }, 'snapshot_policy_schedules': { 'class': SnapshotScheduleInfo, 'is_list': True, 'required': 'optional' }, 'policy': { 'class': basestring, 'is_list': False, 'required': 'optional' }, }
StarcoderdataPython
5139696
import pandas as pd import xgboost as xgb from notecoin.huobi.model import BaseModel class XgboostModel(BaseModel): def __init__(self, windows=-15, *args, **kwargs): super(XgboostModel, self).__init__(*args, **kwargs) self.model = None self.windows = windows def solve(self, df, train=True): df2 = df.copy() df2 = df2.sort_values(['id']) df2 = df2.reset_index(drop=True) def ma_n(n): df2['MA' + str(n)] = df2['open'].rolling(window=n).mean() def shift_n(name, n): df2[name + '_' + str(n)] = df2[name].shift(n) [ma_n(i) for i in (2, 3, 4, 5, 10, 15, 20, 25, 30)] cols = [col for col in df2.columns] [[shift_n(name, n) for name in cols if (name in ('MA5', 'open') or 'MA' in name)] for n in (1, 2, 3, 4, 5, 10, 15, 30)] df2['label'] = df2['open'].shift(self.windows) del df2['symbol'], df2['id'] if train: df2.dropna(axis=0, how='any', inplace=True) x = df2[df2.columns[1:-1]].values y = df2['label'].values return x, y else: del df2['label'] df2.dropna(axis=0, how='any', inplace=True) x = df2[df2.columns[1:]].values return x def train(self, df, *args, **kwargs): x, y = self.solve(df) self.model = xgb.XGBRegressor(n_jobs=1).fit(x, y) def predict(self, df, *args, **kwargs): x = self.solve(df, train=False) return self.model.predict(x) class MultiXgboostModel(BaseModel): def __init__(self, windows=None, *args, **kwargs): super(MultiXgboostModel, self).__init__(*args, **kwargs) if windows is None: windows = [-5, -10, -15] self.model = None self.windows = windows def solve(self, df, train=True): df2 = df.copy() df2 = df2.sort_values(['id']) df2 = df2.reset_index(drop=True) def ma_n(n): df2['MA' + str(n)] = df2['open'].rolling(window=n).mean() def shift_n(name, n): df2[name + '_' + str(n)] = df2[name].shift(n) [ma_n(i) for i in (2, 3, 4, 5, 10, 15, 20, 25, 30)] cols = [col for col in df2.columns] [[shift_n(name, n) for name in cols if (name in ('MA5', 'open') or 'MA' in name)] for n in (1, 2, 3, 4, 5, 10, 15, 30)] #del df2['symbol'], df2['id'] if train: cols = [] df2['open2'] = df2['open'] - df2['open'].shift() df2['open2'] = df2['open2'].apply(lambda x: 1 if x > 0 else 0) for window in self.windows: col = f'label{window}' df2[col] = df2['open2'].shift(window) cols.append(col) df2.dropna(axis=0, how='any', inplace=True) x = df2[df2.columns[1:-1 - len(cols)]].values y = df2[cols].values return df2, x, y else: df2.dropna(axis=0, how='any', inplace=True) x = df2[df2.columns[1:]].values return df2, x def train(self, df, *args, **kwargs): df2, x, y = self.solve(df) from sklearn.multiclass import OneVsRestClassifier from xgboost import XGBClassifier self.model = OneVsRestClassifier( XGBClassifier(eval_metric=['logloss', 'auc', 'error'], use_label_encoder=False)) self.model.fit(x, y) def predict(self, df, *args, **kwargs): df2, x = self.solve(df, train=False) return df2, self.model.predict(x)
StarcoderdataPython
5129772
import sys import os from os import path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) import argparse import time import shutil import cv2 # for pretrained model import torchvision.models as models import glob # load models and pretrained selector network from models.nets import * from models.selector import * from data import * import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np from torchvision.utils import save_image import torch.utils.data import torch.utils.data.distributed import matplotlib.pyplot as plt import random def make_glyph (args): # generator initialize generator = Generator (args.latent_dim) output = [] save_fpaths = glob.glob(args.pretrained_location + '/*.pth.tar') save_fpaths = [os.path.abspath(f) for f in save_fpaths] exp_name = save_fpaths[0].split('/')[-2] for idx, path in enumerate(save_fpaths): checkpoint = torch.load(path, map_location=torch.device('cpu')) prefix = 'module.' n_clip = len(prefix) gen = checkpoint['gen_model'] adapted_gen = {k[n_clip:]: v for k, v in gen.items() if k.startswith(prefix)} generator.load_state_dict(adapted_gen) target_input = plt.imread(args.input_location) # 64*(64*5)*3 if (len(target_input.shape)==2): target_input = np.stack((target_input,)*3, axis=-1) # gray -> rgb target_input = torch.from_numpy(target_input).float() # 64*(64*5)*3 target_input = torch.unsqueeze(target_input.permute(2,0,1), 0) # 1*3*64*(64*5) alphabet_list = 'abcdefghijklmnopqrstuvwxyz' alphabet_num = 5 rand_word = ''.join(random.sample(alphabet_list, alphabet_num)) position_list = alphabet_position(rand_word) source_list = [] for p in position_list: source_list.append(target_input[:,:,:,64*(p-1):64*p]) source_input = torch.cat(source_list, dim=3) # b*3*64*(64*5) glyph_address = args.input_location.replace("_colorGrad64", '64')[:-5] + '0.png' glyph_input = plt.imread(glyph_address) if (len(glyph_input.shape)==2): glyph_input = np.stack((glyph_input,)*3, axis=-1) # gray -> rgb glyph_input = torch.from_numpy(glyph_input).float() # 64*(64*26)*3 glyph_input = torch.unsqueeze(glyph_input.permute(2,0,1), 0) # 1*3*64*(64*26) save_image (source_input, 'source_test.png') save_image (glyph_input, 'glyph_test.png') with torch.no_grad(): output.append(generator(source_input, glyph_input)) print('Generation from {}-th save file done!'.format(idx)) return torch.squeeze(torch.stack(output, dim=0)), exp_name if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--input_location', help='location of input source', type=str, default='source_input.png') parser.add_argument('--pretrained_location', help='location of pretrained model', type=str, default='results/ckpt.pt') parser.add_argument('--output_folder', help='output folder', type=str, default='../outputs/') parser.add_argument('--output_name', help='location of output png', type=str, default='test.png') parser.add_argument('--latent_dim', help='latent vector dimension in generator', type=int, default=1024) parser.add_argument('--color_path', help='path for style data sources', type=str, default='datasets/Capitals_colorGrad64/train/') parser.add_argument('--noncolor_path', help='path for glyph data sources', type=str, default='datasets/Capitals64/BASE/') parser.add_argument('--batch_size', help='batch size', type=int, default=1) args = parser.parse_args() output_dir = os.path.abspath(args.output_folder) if not os.path.exists(output_dir): os.mkdir(output_dir) whatwemade, expname = make_glyph(args) # 1*3*64*(64*26) oname, ftype = args.output_name.split('.') for idx in range(whatwemade.shape[0]): save_image(whatwemade[idx], output_dir + '/' + oname + '_' + expname + '_' + str(idx) + '.' + ftype) print ("Congratulations!! {} saved:)".format(oname + '_' + expname + '_' + str(idx) + '.' + ftype))
StarcoderdataPython
3506946
def listify(x, n=1): ret = None if isinstance(x, list): ret = x else: ret = [x] * n return ret
StarcoderdataPython
134516
<filename>sskl_webui/my_hisapi.py # Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe import json import redis import requests from frappe.model.document import Document from frappe.utils import cint from frappe import throw, msgprint, _, _dict from iot.iot.doctype.iot_hdb_settings.iot_hdb_settings import IOTHDBSettings @frappe.whitelist() def taghisdata(sn=None, vsn=None, fields=None, condition=None): vsn = vsn or sn fields = fields or "*" doc = frappe.get_doc('IOT Device', sn) doc.has_permission("read") inf_server = IOTHDBSettings.get_influxdb_server() if not inf_server: frappe.logger(__name__).error("InfluxDB Configuration missing in IOTHDBSettings") return 500 query = 'SELECT ' + fields + ' FROM "' + vsn + '"' if condition: query = query + " WHERE " + condition else: query = query + " LIMIT 1000" domain = frappe.get_value("Cloud Company", doc.company, "domain") r = requests.session().get(inf_server + "/query", params={"q": query, "db": domain}, timeout=10) if r.status_code == 200: res = r.json()["results"][0]['series'][0]['values'] taghis = [] for i in range(0, len(res)): hisvalue = {} if len(res[i]) == 5: hisvalue = {'name': res[i][1], 'value': res[i][3], 'time': res[i][0], 'quality': 0} taghis.append(hisvalue) elif len(res[i]) == 6: hisvalue = {'name': res[i][1], 'value': res[i][4], 'time': res[i][0], 'quality': 0} taghis.append(hisvalue) #print(taghis) return taghis or r.json() @frappe.whitelist() def iot_device_tree(sn=None): sn = sn or frappe.form_dict.get('sn') doc = frappe.get_doc('IOT Device', sn) doc.has_permission("read") client = redis.Redis.from_url(IOTHDBSettings.get_redis_server() + "/1") return client.lrange(sn, 0, -1)
StarcoderdataPython
8065227
<filename>Wurm/PyWurm/Leg.py<gh_stars>0 from ControlledSystem import ControlledSystem from math import sin, cos, sqrt, pi # The leg can only enter and exit stance at I_max class Leg(ControlledSystem): def __init__( self, I_min, I_max, I_dot_max, a, k, c, phi, b ): # Used to validate states and controls... self.I_min = I_min self.I_max = I_max self.I_dot_max = I_dot_max # System Parameters self.b = b self.A = 2*a*k*c*sin(phi / 2) self.B = 4*a*a*k*cos(phi / 4) def f(self, x, u): th = x["th"] th_dot = x["th_dot"] I = x["I"] I_dot = u return {"th": th_dot, "th_dot": - ( self.b * th_dot + self.A * sin(th) + self.B * sin(th / 2) ) / I, "I": I_dot} import pygame def drawGait(screen, leg, traj, t): T = traj.timeline[-1][0] # Time for a half step. th_0 = traj.timeline[0][1]["th"] t_residue = t n = 0 state = False # Describes which legs are moving... while t_residue > T: t_residue -= T n += 1 state = not state if state: state = 1 else: state = 0 x = traj.estimate(t_residue) def b_th(i,n): if n > 1: return -th_0 + b_th(i, n-1) return i * pi / 3 def th(i): if i % 2 == state: return b_th(i,n) return b_th(i,n) + x["th"] center = (250, 250) c_x, c_y = center l_max = 50 * sqrt( leg.I_max ) pygame.draw.circle(screen, (0,0,0), center, 5) def leg_state(i): if i % 2 == state: l = l_max planted = True else: l = 50 * sqrt( x["I"] ) planted = False theta = th(i) return l, theta, planted def draw_leg(i): l, theta, planted = leg_state(i) pole_end = (int(c_x + l_max * sin(theta)), int(c_y + l_max * cos(theta))) bob = (int(c_x + l * sin(theta)), int(c_y + l * cos(theta))) pygame.draw.line(screen, (0,0,0), center, pole_end,3) pygame.draw.circle(screen, (0,0,255), bob, 14, 0) if planted: pygame.draw.circle(screen, (0,0,0), pole_end, 20, 3) def draw_spring(start): end = (start + 1) % 6 th_start = th(start) th_end = th(end) a = 50 att_start = (int(c_x + a * sin(th_start)), int(c_y + a * cos(th_start))) att_end = (int(c_x + a * sin(th_end)), int(c_y + a * cos(th_end))) length = sqrt( (att_start[0] - att_end[0]) ** 2 + (att_start[1] - att_end[1]) ** 2 ) / 50.0 def color(l): if l < 1: alpha = 1 - l return (50 + alpha*175,50,50) alpha = (l - 1) / sqrt(3) return (50,50+alpha*175,50) pygame.draw.line(screen, color(length), att_start, att_end,3) for i in range(6): draw_leg(i) draw_spring(i) # TODO: Draw springs.
StarcoderdataPython
11265843
from urllib.parse import urlencode, parse_qs from django.conf import settings from urllib.request import urlopen import json from itsdangerous import TimedJSONWebSignatureSerializer as Serializer, BadData from .exceptions import QQAPIException from . import constants import logging # 日志记录器 logger = logging.getLogger('django') class QQOauth(object): """QQ登录的工具类,内部封装业务逻辑的过程""" def __init__(self, client_id=None, client_secret=None, redirect_uri=None, state=None): """构造方法:接受在够到对象时初次传入的参数""" self.client_id = client_id or settings.QQ_CLIENT_ID self.client_secret = client_secret or settings.QQ_CLIENT_SECRET self.redirect_uri = redirect_uri or settings.QQ_REDIRECT_URI self.state = state or settings.QQ_STATE def get_login_url(self): """获取login_url # login_url = https://graph.qq.com/oauth2.0/authorize?response_type=code&client_id=101474184 &redirect_uri=xx&state=next参数&scope=get_user_info """ # 准备url url = 'https://graph.qq.com/oauth2.0/authorize?' # 准备请求参数 params = { 'response_type':'code', 'client_id':self.client_id, 'redirect_uri':self.redirect_uri, 'state':self.state, 'scope':'get_user_info' } # 将params字典转成查询字符串 query_params = urlencode(params) # 使用url拼接请求参数 login_url = url + query_params return login_url def get_access_token(self, code): """ 使用code获取access_token :param code: authorization code :return: access_toekn """ # 准备url url = 'https://graph.qq.com/oauth2.0/token?' # 准备参数 params = { 'grant_type': 'authorization_code', 'client_id': self.client_id, 'client_secret': self.client_secret, 'code': code, 'redirect_uri': self.redirect_uri } # 拼接请求地址 # url = url + urlencode(params) url += urlencode(params) # 美多商城给QQ服务器发送GET请求,获取access_token try: # response_data = (bytes)'access_token=FE04************************CCE2&expires_in=7776000&refresh_token=88E4************************BE14' response_data = urlopen(url).read() # (str)'access_token=FE04************************CCE2&expires_in=7776000&refresh_token=<PASSWORD>' response_str = response_data.decode() # 尽量的将response_str,转成字典,方便读取access_token response_dict = parse_qs(response_str) # 读取access_token access_token = response_dict.get('access_token')[0] except Exception as e: logger.error(e) # 在我们定义工具类中的工具方法的时候,如果出现了异常,直接抛出异常,谁使用我的工具谁捕获异常并解决 # 类比 BookInfo.objects.get(id=13468954890965468909765) ==> DoesNotExist raise QQAPIException('获取access_token失败') # 返回access_token return access_token def get_openid(self, access_token): """ 使用access_token获取openid :param access_token: 获取openid的凭据 :return: openid """ # 准备url url = 'https://graph.qq.com/oauth2.0/me?access_token=%s' % access_token response_str = '' try: # 发送GET请求,获取openid # (bytes)'callback( {"client_id":"YOUR_APPID","openid":"YOUR_OPENID"} );' response_data = urlopen(url).read() # (str)'callback( {"client_id":"YOUR_APPID","openid":"YOUR_OPENID"} );' response_str = response_data.decode() # 使用字符串的切片,将response_str中的json字符串切出来 # 返回的数据 callback( {"client_id":"YOUR_APPID","openid":"YOUR_OPENID"} )\n; response_dict = json.loads(response_str[10:-4]) # 获取openid openid = response_dict.get('openid') except Exception as e: # 如果有异常,QQ服务器返回 "code=xxx&msg=xxx" err_data = parse_qs(response_str) logger.error(e) raise QQAPIException('code=%s msg=%s' % (err_data.get('code'), err_data.get('msg'))) return openid @staticmethod def generate_save_user_token(openid): """ 生成保存用户数据的token :param openid: 用户的openid :return: token """ serializer = Serializer(settings.SECRET_KEY, expires_in=constants.SAVE_QQ_USER_TOKEN_EXPIRES) data = {'openid': openid} token = serializer.dumps(data) return token.decode() @staticmethod def check_save_user_token(token): """ 检验保存用户数据的token :param token: token :return: openid or None """ serializer = Serializer(settings.SECRET_KEY, expires_in=constants.SAVE_QQ_USER_TOKEN_EXPIRES) try: data = serializer.loads(token) except BadData: return None else: return data.get('openid')
StarcoderdataPython
9625165
<reponame>lynnyi/clustering_on_transcript_compatibility_counts from sklearn.metrics.pairwise import pairwise_distances from scipy.stats import entropy import pickle import numpy as np import sys import multiprocessing as mp import itertools print(len(sys.argv)) if len(sys.argv)!=4: print ('usage is \n python get_pairwise_distances.py ip-file op-file num-processes') exit(1) #def jensen_shannon(pqtuple): # p=pqtuple[0] # q=pqtuple[1] def jensen_shannon(p,q): # pshape=np.shape(p) # qshape=np.shape(q) # assert pshape[1]==1 # assert qshape[1]==1 # assert pshape[0]==qshape[0] # assert min(p) >= 0 # assert min(q) >= 0 #assert sum(p)<=1 + np.finfo(float).eps and sum(p) >= 1- np.finfo(float).eps #assert sum(q)<=1 + np.finfo(float).eps and sum(q) >= 1- np.finfo(float).eps m=0.5*p+0.5*q p = np.transpose(p[p > 0]) q = np.transpose(q[q > 0]) m = np.transpose(m[m > 0]) if entropy(m)-0.5*entropy(q)-0.5*entropy(p) < 0: print (entropy(m)-0.5*entropy(q)-0.5*entropy(p)) print ('m = '+ str(entropy(m))) print ('q = '+ str(entropy(q))) print ('p = '+ str(entropy(p))) return np.sqrt(entropy(m)-0.5*entropy(q)-0.5*entropy(p)) print (sys.argv[1]) print (sys.argv[2]) num_jobs=int(sys.argv[3]) with open(sys.argv[1], 'rb') as infile: X = pickle.load(infile) print (np.shape(X)) #Y=X #num_rows=np.shape(Y)[0] #for ind in range(num_rows): # print(X[ind].sum(), ind) D = pairwise_distances(X,metric=jensen_shannon,n_jobs=num_jobs) #D=np.zeros((num_rows,num_rows)) #for i in range(num_rows): # print(i) # pool=mp.Pool(processes=40) # pqtuple=itertools.product([X[i,:]], X) # D[i,:]=pool.map(jensen_shannon,pqtuple) with open(sys.argv[2],'wb') as outfile: pickle.dump(D, outfile, pickle.HIGHEST_PROTOCOL)
StarcoderdataPython
9780404
<gh_stars>0 # PROJECT : kungfucms # TIME : 19-2-8 下午10:20 # AUTHOR : <NAME> # EMAIL : <EMAIL> # CELL : 13811754531 # WECHAT : 13811754531 # https://github.com/youngershen/
StarcoderdataPython
11398006
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file '/Users/blogin/Projects/fix-masternode-tool/src/ui/ui_upd_mn_service_dlg.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_UpdMnServiceDlg(object): def setupUi(self, UpdMnServiceDlg): UpdMnServiceDlg.setObjectName("UpdMnServiceDlg") UpdMnServiceDlg.resize(600, 311) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(UpdMnServiceDlg.sizePolicy().hasHeightForWidth()) UpdMnServiceDlg.setSizePolicy(sizePolicy) self.verticalLayout = QtWidgets.QVBoxLayout(UpdMnServiceDlg) self.verticalLayout.setSizeConstraint(QtWidgets.QLayout.SetMinimumSize) self.verticalLayout.setContentsMargins(-1, -1, -1, 0) self.verticalLayout.setSpacing(12) self.verticalLayout.setObjectName("verticalLayout") self.label = QtWidgets.QLabel(UpdMnServiceDlg) self.label.setWordWrap(True) self.label.setOpenExternalLinks(True) self.label.setObjectName("label") self.verticalLayout.addWidget(self.label) self.line_2 = QtWidgets.QFrame(UpdMnServiceDlg) self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.verticalLayout.addWidget(self.line_2) self.stackedWidget = QtWidgets.QStackedWidget(UpdMnServiceDlg) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.stackedWidget.sizePolicy().hasHeightForWidth()) self.stackedWidget.setSizePolicy(sizePolicy) self.stackedWidget.setObjectName("stackedWidget") self.page0 = QtWidgets.QWidget() sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.page0.sizePolicy().hasHeightForWidth()) self.page0.setSizePolicy(sizePolicy) self.page0.setObjectName("page0") self.gridLayout = QtWidgets.QGridLayout(self.page0) self.gridLayout.setSizeConstraint(QtWidgets.QLayout.SetMinimumSize) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setVerticalSpacing(8) self.gridLayout.setObjectName("gridLayout") self.lblOperatorPayout = QtWidgets.QLabel(self.page0) self.lblOperatorPayout.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lblOperatorPayout.setObjectName("lblOperatorPayout") self.gridLayout.addWidget(self.lblOperatorPayout, 2, 0, 1, 1) self.layOperatorPayout = QtWidgets.QHBoxLayout() self.layOperatorPayout.setSpacing(8) self.layOperatorPayout.setObjectName("layOperatorPayout") self.edtOperatorPayoutAddress = QtWidgets.QLineEdit(self.page0) self.edtOperatorPayoutAddress.setPlaceholderText("") self.edtOperatorPayoutAddress.setClearButtonEnabled(True) self.edtOperatorPayoutAddress.setObjectName("edtOperatorPayoutAddress") self.layOperatorPayout.addWidget(self.edtOperatorPayoutAddress) self.gridLayout.addLayout(self.layOperatorPayout, 2, 1, 1, 1) self.lblIP = QtWidgets.QLabel(self.page0) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.lblIP.setFont(font) self.lblIP.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lblIP.setObjectName("lblIP") self.gridLayout.addWidget(self.lblIP, 1, 0, 1, 1) self.lblOperatorPayoutMsg = QtWidgets.QLabel(self.page0) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Ignored, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lblOperatorPayoutMsg.sizePolicy().hasHeightForWidth()) self.lblOperatorPayoutMsg.setSizePolicy(sizePolicy) self.lblOperatorPayoutMsg.setText("") self.lblOperatorPayoutMsg.setWordWrap(True) self.lblOperatorPayoutMsg.setOpenExternalLinks(True) self.lblOperatorPayoutMsg.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse|QtCore.Qt.TextSelectableByMouse) self.lblOperatorPayoutMsg.setObjectName("lblOperatorPayoutMsg") self.gridLayout.addWidget(self.lblOperatorPayoutMsg, 3, 1, 1, 1) self.layPayoutAddress = QtWidgets.QHBoxLayout() self.layPayoutAddress.setSpacing(8) self.layPayoutAddress.setObjectName("layPayoutAddress") self.edtIP = QtWidgets.QLineEdit(self.page0) self.edtIP.setPlaceholderText("") self.edtIP.setClearButtonEnabled(True) self.edtIP.setObjectName("edtIP") self.layPayoutAddress.addWidget(self.edtIP) self.label_2 = QtWidgets.QLabel(self.page0) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_2.setFont(font) self.label_2.setObjectName("label_2") self.layPayoutAddress.addWidget(self.label_2) self.edtPort = QtWidgets.QLineEdit(self.page0) self.edtPort.setMaximumSize(QtCore.QSize(100, 16777215)) self.edtPort.setClearButtonEnabled(True) self.edtPort.setObjectName("edtPort") self.layPayoutAddress.addWidget(self.edtPort) self.gridLayout.addLayout(self.layPayoutAddress, 1, 1, 1, 1) self.stackedWidget.addWidget(self.page0) self.verticalLayout.addWidget(self.stackedWidget) self.line = QtWidgets.QFrame(UpdMnServiceDlg) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.verticalLayout.addWidget(self.line) self.lblManualCommands = QtWidgets.QLabel(UpdMnServiceDlg) self.lblManualCommands.setText("") self.lblManualCommands.setObjectName("lblManualCommands") self.verticalLayout.addWidget(self.lblManualCommands) self.edtManualCommands = QtWidgets.QTextBrowser(UpdMnServiceDlg) self.edtManualCommands.setOpenExternalLinks(True) self.edtManualCommands.setOpenLinks(True) self.edtManualCommands.setObjectName("edtManualCommands") self.verticalLayout.addWidget(self.edtManualCommands) self.frame = QtWidgets.QFrame(UpdMnServiceDlg) self.frame.setFrameShape(QtWidgets.QFrame.NoFrame) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.horizontalLayout = QtWidgets.QHBoxLayout(self.frame) self.horizontalLayout.setContentsMargins(12, 12, 12, 12) self.horizontalLayout.setObjectName("horizontalLayout") self.btnCancel = QtWidgets.QPushButton(self.frame) self.btnCancel.setAutoDefault(False) self.btnCancel.setObjectName("btnCancel") self.horizontalLayout.addWidget(self.btnCancel) self.lblDocumentation = QtWidgets.QLabel(self.frame) self.lblDocumentation.setText("") self.lblDocumentation.setOpenExternalLinks(True) self.lblDocumentation.setObjectName("lblDocumentation") self.horizontalLayout.addWidget(self.lblDocumentation) spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.btnSendUpdateTx = QtWidgets.QPushButton(self.frame) self.btnSendUpdateTx.setAutoDefault(False) self.btnSendUpdateTx.setObjectName("btnSendUpdateTx") self.horizontalLayout.addWidget(self.btnSendUpdateTx) self.btnClose = QtWidgets.QPushButton(self.frame) self.btnClose.setObjectName("btnClose") self.horizontalLayout.addWidget(self.btnClose) self.verticalLayout.addWidget(self.frame) self.retranslateUi(UpdMnServiceDlg) self.stackedWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(UpdMnServiceDlg) UpdMnServiceDlg.setTabOrder(self.edtIP, self.edtPort) UpdMnServiceDlg.setTabOrder(self.edtPort, self.edtOperatorPayoutAddress) UpdMnServiceDlg.setTabOrder(self.edtOperatorPayoutAddress, self.edtManualCommands) UpdMnServiceDlg.setTabOrder(self.edtManualCommands, self.btnSendUpdateTx) UpdMnServiceDlg.setTabOrder(self.btnSendUpdateTx, self.btnClose) UpdMnServiceDlg.setTabOrder(self.btnClose, self.btnCancel) def retranslateUi(self, UpdMnServiceDlg): _translate = QtCore.QCoreApplication.translate UpdMnServiceDlg.setWindowTitle(_translate("UpdMnServiceDlg", "Update service")) self.label.setText(_translate("UpdMnServiceDlg", "The transaction type associated with this action (ProUpServTx) is used to update information relating to the operator (<a href=\"https://docs.fix.org/en/stable/masternodes/maintenance.html#proupservtx\">details</a>).")) self.lblOperatorPayout.setText(_translate("UpdMnServiceDlg", "<b>Operator Payout address</b> ")) self.lblIP.setText(_translate("UpdMnServiceDlg", "IP")) self.label_2.setText(_translate("UpdMnServiceDlg", "Port")) self.btnCancel.setText(_translate("UpdMnServiceDlg", "Cancel")) self.btnSendUpdateTx.setText(_translate("UpdMnServiceDlg", "Send Update Transaction")) self.btnClose.setText(_translate("UpdMnServiceDlg", "Close")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) UpdMnServiceDlg = QtWidgets.QDialog() ui = Ui_UpdMnServiceDlg() ui.setupUi(UpdMnServiceDlg) UpdMnServiceDlg.show() sys.exit(app.exec_())
StarcoderdataPython
3228967
<reponame>cyandterry/Python-Study """ Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6. click to show more practice. More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. """ class Solution: # @param A, a list of integers # @return an integer def maxSubArray(self, A): return self.maxSubArray_2(A) def maxSubArray_1(self, A): max_sum = A[0] cur_sum = 0 for num in A: cur_sum += num max_sum = max(max_sum, cur_sum) if cur_sum < 0: cur_sum = 0 return max_sum def maxSubArray_2(self, A): res = A[0] dp = A[0] for num in A[1:]: dp = max(num, dp+num) res = max(res, dp) return res # Note # 1. dp[i] means maximum subarray ends with A[i] # 2. dp[0] = A[0] # 3. dp[i] = max(A[i], A[i] + dp[i-1]) 意思就是如果end with A[i-1]的dp是负的话我们就不取,otherwise就取 # 4. dp[N-1] # Because we don't need to store dp[i], so simplify to dp
StarcoderdataPython