id
stringlengths 2
8
| text
stringlengths 16
264k
| dataset_id
stringclasses 1
value |
---|---|---|
1709006
|
<reponame>mounaiban/padsweb<filename>padsweb/forms.py
#
#
# Public Archive of Days Since Timers
# Form Classes
#
#
from django import forms
from django.utils import timezone
from padsweb.settings import *
from padsweb.strings import labels
from padsweb.misc import get_timezones_all
# Python Beginner's PROTIP:
#
# Due to the way Django (1.11.2) initialises forms, For some of the
# Fields in the Forms herein, the initial state had to be set from the
# __init__ constructor, using a dictionary named 'initial'.
# A good example is ChoiceField.
#
# See: https://stackoverflow.com/a/11400559
# See Also: http://avilpage.com/2015/03/django-form-gotchas-dynamic-initial.html
class TimerGroupForm(forms.Form):
timer_group = forms.ChoiceField(
label = labels['TIMER_GROUP'],)
def __init__(self, *args, **kwargs):
try:
timer_group_choices = kwargs.pop('timer_group_choices')
except:
pass
super().__init__(*args, **kwargs)
# TODO: Find out why choices must be extended in both choices
# and widget.choices, and why widget.choices wasn't automatically
# extended along with choices.
self.fields['timer_group'].widget.choices.extend(
timer_group_choices)
self.fields['timer_group'].choices.extend(
timer_group_choices)
class TimerGroupNamesForm(forms.Form):
group_names = forms.CharField(
label=labels['TIMER_GROUP_FIELD'],
max_length=MAX_MESSAGE_LENGTH_SHORT,
min_length=1,)
class QuickListImportForm(TimerGroupForm):
password = forms.CharField(
label=labels['PASSWORD_QL'],
max_length=MAX_MESSAGE_LENGTH_SHORT,
strip=True,)
timer_group = forms.ChoiceField(
label=labels['QL_IMPORT_TO_GROUP'],
choices=[('', labels['NONE'])],
required=False,)
class TimerRenameForm(forms.Form):
description=forms.CharField(
label=labels['DESCRIPTION'],
max_length=MAX_MESSAGE_LENGTH_SHORT,
strip=True,)
class NewTimerForm(forms.Form):
description = forms.CharField(
label=labels['DESCRIPTION'],
max_length=MAX_MESSAGE_LENGTH_SHORT,)
first_history_message = forms.CharField(
label=labels['TIMER_FIRST_HISTORY'],
max_length=MAX_MESSAGE_LENGTH_SHORT,
initial=labels['TIMER_DEFAULT_CREATION_REASON'],)
year = forms.DecimalField(
label = 'Year',
max_value = 9999,
min_value = 1,
max_digits = 4,
decimal_places = 0,)
month = forms.ChoiceField(
label = labels['MONTH'],
choices = (
(1, labels['GREGORIAN_MONTH_1']),
(2, labels['GREGORIAN_MONTH_2']),
(3, labels['GREGORIAN_MONTH_3']),
(4, labels['GREGORIAN_MONTH_4']),
(5, labels['GREGORIAN_MONTH_5']),
(6, labels['GREGORIAN_MONTH_6']),
(7, labels['GREGORIAN_MONTH_7']),
(8, labels['GREGORIAN_MONTH_8']),
(9, labels['GREGORIAN_MONTH_9']),
(10, labels['GREGORIAN_MONTH_10']),
(11, labels['GREGORIAN_MONTH_11']),
(12, labels['GREGORIAN_MONTH_12']),
), )
day = forms.DecimalField(
label = labels['DAY'],
max_digits = 2,
max_value = 31,
min_value = 1,
decimal_places = 0,)
hour = forms.DecimalField(
label = labels['HOUR'],
max_digits = 2,
max_value = 23,
min_value = 0,
decimal_places = 0,)
minute = forms.DecimalField(
label = labels['MINUTE'],
max_digits = 2,
max_value = 59,
min_value = 0,
decimal_places = 0,)
second = forms.DecimalField(
label = labels['SECOND'],
max_digits = 2,
max_value = 59,
min_value = 0,
decimal_places = 0,)
use_current_date_time = forms.BooleanField(
label=labels['TIMER_USE_CURRENT_DATE_TIME'],
required=False,
initial=False,)
historical = forms.BooleanField(
label=labels['TIMER_CREATE_HISTORICAL'],
required=False,
initial=False,)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) # Important!
self.start_datetime = timezone.now()
self.initial = {
'year' : self.start_datetime.year,
'month': self.start_datetime.month,
'day': self.start_datetime.day,
'hour': self.start_datetime.hour,
'minute': self.start_datetime.minute,
'second': self.start_datetime.second,
}
class NewTimerGroupForm(forms.Form):
name = forms.CharField(
label=labels['NAME'],
strip=True,
max_length = MAX_NAME_LENGTH_SHORT,)
class PasswordChangeForm(forms.Form):
old_password = forms.CharField(
label=labels['PASSWORD_CURRENT'],
widget=forms.PasswordInput,
strip=False,
max_length=MAX_MESSAGE_LENGTH_SHORT,
min_length=MIN_USER_PASSWORD_LENGTH,)
new_password = forms.CharField(
label=labels['PASSWORD_NEW'],
widget=forms.PasswordInput,
strip=False,
max_length=MAX_MESSAGE_LENGTH_SHORT,
min_length=MIN_USER_PASSWORD_LENGTH,)
new_password_confirm = forms.CharField(
label=labels['PASSWORD_NEW_CONFIRM'],
widget=forms.PasswordInput,
strip=False,
max_length=MAX_MESSAGE_LENGTH_SHORT,
min_length=MIN_USER_PASSWORD_LENGTH,)
user_id = forms.CharField(
widget=forms.HiddenInput,)
class SignInForm(forms.Form):
username = forms.SlugField(
label=labels['USERNAME'],
max_length=MAX_NAME_LENGTH_SHORT,
)
password = forms.CharField(
label=labels['PASSWORD'],
widget=forms.PasswordInput,
strip=False,
max_length=MAX_MESSAGE_LENGTH_SHORT,
min_length=1,)
class SignInQuickListForm(forms.Form):
password = forms.CharField(
label=labels['PASSWORD_QL'],
max_length=MAX_MESSAGE_LENGTH_SHORT,
strip=True,)
class SignUpForm(forms.Form):
username = forms.SlugField(
label=labels['USERNAME'],
max_length=MAX_NAME_LENGTH_SHORT,
min_length=MIN_USERNAME_LENGTH,)
password = forms.CharField(
label=labels['PASSWORD'],
widget=forms.PasswordInput,
strip=False,
max_length=MAX_MESSAGE_LENGTH_SHORT,
min_length=MIN_USER_PASSWORD_LENGTH,)
password_confirm = forms.CharField(
label=labels['PASSWORD_<PASSWORD>'],
widget=forms.PasswordInput,
strip=False,
max_length=MAX_MESSAGE_LENGTH_SHORT,
min_length=MIN_USER_PASSWORD_LENGTH,)
class ReasonForm(forms.Form):
reason = forms.CharField(
label=labels['REASON'],
initial=labels['REASON_NONE'],
max_length=MAX_MESSAGE_LENGTH_SHORT,
min_length=1,)
class TimeZoneForm(forms.Form):
time_zone = forms.ChoiceField(
label=labels['TIME_ZONE'],
choices=get_timezones_all(),)
|
StarcoderdataPython
|
9665256
|
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(val):
return 1/(1 + np.exp(-val))
def stable_coeff(alpha_1, alpha_2):
a_1 = 2*np.tanh(alpha_1)
a_2 = np.abs(a_1) + (2 - np.abs(a_1))*sigmoid(alpha_2) - 1
return a_1, a_2
def roots_polynomial(a_1, a_2):
delta = a_1**2 - 4 * a_2
delta = delta.astype(np.complex)
root_1 = (-a_1 + np.sqrt(delta))/2
root_2 = (-a_1 - np.sqrt(delta))/2
idx_real = delta > 0
return root_1, root_2, idx_real
if __name__ == '__main__':
N = 10000
alpha_1 = np.random.randn(N)*1
alpha_2 = np.random.randn(N)*1
a_1, a_2 = stable_coeff(alpha_1, alpha_2)
r_1, r_2, idx_real = roots_polynomial(a_1, a_2)
fig, ax = plt.subplots()
ax.plot(a_1, a_2, '*')
ax.plot(a_1[idx_real], a_2[idx_real], 'k*')
ax.set_xlabel('a_1')
ax.set_ylabel('a_2')
ax.set_xlim([-2, 2])
ax.set_ylim([-2, 2])
fig, ax = plt.subplots()
ax.plot(np.real(r_1), np.imag(r_1), 'r*')
ax.plot(np.real(r_2), np.imag(r_2), 'r*')
ax.plot(np.real(r_1)[idx_real], np.imag(r_1)[idx_real], 'k*')
ax.plot(np.real(r_2)[idx_real], np.imag(r_2)[idx_real], 'k*')
ax.set_xlim([-1.2, 1.2])
ax.set_ylim([-1.2, 1.2])
perc_real = np.sum(idx_real) / N *100
print(f"Real poles in {perc_real:.1f} cases")
|
StarcoderdataPython
|
8055538
|
from .. import IrccGenerator, IrccType
from motor_typing import TYPE_CHECKING
_UNSIGNED_VERSIONS = {'i8': 'u8', 'i16': 'u16', 'i32': 'u32', 'i64': 'u64'}
class IrccCTypes(IrccGenerator):
_VECTOR_TYPES = {} # type: Dict[str, str]
def __init__(self, file):
# type: (TextIO) -> None
IrccGenerator.__init__(self, file)
def type_void(self):
# type: () -> IrccType
return IrccType(['', '', 'void', ''])
def type_builtin(self, builtin):
# type: (str) -> IrccType
# typedefs in the source map the builtins
return IrccType(['', '', builtin, ''], ['', '', _UNSIGNED_VERSIONS.get(builtin, builtin), ''])
def type_declared(self, name):
# type: (str) -> IrccType
return IrccType(['', '', name, ''])
def make_array(self, type, size):
# type: (IrccType, int) -> IrccType
return IrccType(['', '', '', '[%d]' % (size)], base=type, sep='')
def make_ptr(self, type):
# type: (IrccType) -> IrccType
return IrccType(['', '', '*', ''], base=type, sep='')
def make_struct(self, fields):
# type: (List[Tuple[IrccType, str]]) -> IrccType
struct_body = ' '.join('%s;' % type.format(['', '', name, '']) for type, name in fields)
return IrccType(['struct', '{ %s }' % struct_body, '', ''])
def make_const(self, type):
# type: (IrccType) -> IrccType
return IrccType(['', '', 'const', ''], ['', '', 'const', ''], type)
def make_address_space(self, type, address_space):
# type: (IrccType, int) -> IrccType
return type
def make_vector(self, type, count):
# type: (IrccType, int) -> IrccType
base_type = type._declaration[2]
base_type_unsigned = type._unsigned_declaration[2]
assert base_type in ['i8', 'i16', 'i32', 'i64', 'float']
assert count in [2, 4, 8, 16]
assert type._declaration[0] == ''
assert type._declaration[1] == ''
assert type._declaration[3] == ''
return IrccType(
['', '', self._VECTOR_TYPES[base_type] % {
'size': count
}, ''], ['', '', self._VECTOR_TYPES[base_type_unsigned] % {
'size': count
}, '']
)
if TYPE_CHECKING:
from typing import Dict, List, TextIO, Tuple
from ircc import IrccType
|
StarcoderdataPython
|
6584555
|
<reponame>Zhiyuan-w/DeepReg
"""Provide helper functions or classes for defining loss or metrics."""
from typing import List, Optional, Union
import tensorflow as tf
from deepreg.loss.kernel import cauchy_kernel1d
from deepreg.loss.kernel import gaussian_kernel1d_sigma as gaussian_kernel1d
class MultiScaleMixin(tf.keras.losses.Loss):
"""
Mixin class for multi-scale loss.
It applies the loss at different scales (gaussian or cauchy smoothing).
It is assumed that loss values are between 0 and 1.
"""
kernel_fn_dict = dict(gaussian=gaussian_kernel1d, cauchy=cauchy_kernel1d)
def __init__(
self,
scales: Optional[Union[List, float, int]] = None,
kernel: str = "gaussian",
**kwargs,
):
"""
Init.
:param scales: list of scalars or None, if None, do not apply any scaling.
:param kernel: gaussian or cauchy.
:param kwargs: additional arguments.
"""
super().__init__(**kwargs)
if kernel not in self.kernel_fn_dict:
raise ValueError(
f"Kernel {kernel} is not supported."
f"Supported kernels are {list(self.kernel_fn_dict.keys())}"
)
if scales is not None and not isinstance(scales, list):
scales = [scales]
self.scales = scales
self.kernel = kernel
def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
"""
Use super().call to calculate loss at different scales.
:param y_true: ground-truth tensor, shape = (batch, dim1, dim2, dim3).
:param y_pred: predicted tensor, shape = (batch, dim1, dim2, dim3).
:return: multi-scale loss, shape = (batch, ).
"""
if self.scales is None:
return super().call(y_true=y_true, y_pred=y_pred)
kernel_fn = self.kernel_fn_dict[self.kernel]
losses = []
for s in self.scales:
if s == 0:
# no smoothing
losses.append(
super().call(
y_true=y_true,
y_pred=y_pred,
)
)
else:
losses.append(
super().call(
y_true=separable_filter(
tf.expand_dims(y_true, axis=4), kernel_fn(s)
)[..., 0],
y_pred=separable_filter(
tf.expand_dims(y_pred, axis=4), kernel_fn(s)
)[..., 0],
)
)
loss = tf.add_n(losses)
loss = loss / len(self.scales)
return loss
def get_config(self) -> dict:
"""Return the config dictionary for recreating this class."""
config = super().get_config()
config["scales"] = self.scales
config["kernel"] = self.kernel
return config
class NegativeLossMixin(tf.keras.losses.Loss):
"""Mixin class to revert the sign of the loss value."""
def __init__(self, **kwargs):
"""
Init without required arguments.
:param kwargs: additional arguments.
"""
super().__init__(**kwargs)
self.name = self.name + "Loss"
def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
"""
Revert the sign of loss.
:param y_true: ground-truth tensor.
:param y_pred: predicted tensor.
:return: negated loss.
"""
return -super().call(y_true=y_true, y_pred=y_pred)
def separable_filter(tensor: tf.Tensor, kernel: tf.Tensor) -> tf.Tensor:
"""
Create a 3d separable filter.
Here `tf.nn.conv3d` accepts the `filters` argument of shape
(filter_depth, filter_height, filter_width, in_channels, out_channels),
where the first axis of `filters` is the depth not batch,
and the input to `tf.nn.conv3d` is of shape
(batch, in_depth, in_height, in_width, in_channels).
:param tensor: shape = (batch, dim1, dim2, dim3, 1)
:param kernel: shape = (dim4,)
:return: shape = (batch, dim1, dim2, dim3, 1)
"""
strides = [1, 1, 1, 1, 1]
kernel = tf.cast(kernel, dtype=tensor.dtype)
tensor = tf.nn.conv3d(
tf.nn.conv3d(
tf.nn.conv3d(
tensor,
filters=tf.reshape(kernel, [-1, 1, 1, 1, 1]),
strides=strides,
padding="SAME",
),
filters=tf.reshape(kernel, [1, -1, 1, 1, 1]),
strides=strides,
padding="SAME",
),
filters=tf.reshape(kernel, [1, 1, -1, 1, 1]),
strides=strides,
padding="SAME",
)
return tensor
|
StarcoderdataPython
|
3243759
|
<gh_stars>1-10
from .. import DB_BASE as Base
from sqlalchemy import Column, Integer, Sequence, Text
class BlogInfoORM(Base):
__tablename__ = 'tb_blog_info'
__table_args__ = {'comment': '博客简介信息表'}
id = Column(Integer, Sequence("tb_blog_info_id_seq"), primary_key=True)
about_content = Column(Text, nullable=False, comment='关于我的内容')
__all__ = ["BlogInfoORM"]
|
StarcoderdataPython
|
11370888
|
# -*- coding: utf-8 -*-
import os
import numpy as np
import statsmodels.api as sm # recommended import according to the docs
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats.mstats as mstats
from common import globals as glob
import seaborn as sns
sns.set(color_codes=True)
from scipy import stats
BIN_SIZE = 5
def draw_hist(df, country, name):
plt.cla()
plt.figure(1, figsize=(9, 6))
x = df[country].dropna().values
bins = np.linspace(0, (max(x)), (max(x)/BIN_SIZE))
#plt.hist(x, bins, alpha=0.5, label=[country])
sns.distplot(x, bins=bins, kde=False, fit=stats.erlang);
plt.legend(loc='upper right')
plt.title('Histogram for distribution of Starbucks stores across cities in ' + name)
dname = os.path.join(glob.OUTPUT_DIR_NAME, glob.EDA_DIR, 'more', country)
os.makedirs(dname, exist_ok=True)
fname = os.path.join(dname, 'stores_hist.png')
plt.savefig(fname)
def draw_ecdf(df, country, name):
#ecdf
# Create a figure instance
plt.cla()
plt.figure(1, figsize=(9, 6))
x = df[country].dropna().values
ecdf = sm.distributions.ECDF(x)
y = ecdf(x)
plt.step(x, y)
ax = plt.gca()
ax.grid(True)
major_ticks = np.arange(0, 1, 0.1)
#minor_ticks = np.arange(0, 101, 5)
ax.set_yticks(major_ticks)
#ax.set_yticks(minor_ticks, minor=True)
major_ticks = np.arange(0, max(x), BIN_SIZE*5)
ax.set_xticks(major_ticks)
plt.title('ECDF for distribution of Starbucks stores across cities in ' + name)
dname = os.path.join(glob.OUTPUT_DIR_NAME, glob.EDA_DIR, 'more', country)
os.makedirs(dname, exist_ok=True)
fname = os.path.join(dname, 'stores_ecdf.png')
plt.savefig(fname)
def draw_combined_hist(df, countries, country_names, winsorize=False):
#make a combined histogram
plt.cla()
plt.figure(1, figsize=(5, 3))
TRIM = 0.05 if winsorize == True else 0.0
m = 0
#get the max value amongsts all series that we are going to plot
for c in countries:
x = df[c].dropna().values
x=mstats.winsorize(x,(0, TRIM))
if max(x) > m:
m = max(x)
#we have the max value, now plot each series, bins are decided based on max
i = 0
for c in countries:
x = df[c].dropna().values
x=mstats.winsorize(x,(0, TRIM))
bins = np.linspace(0, m, m)
plt.hist(x, bins, alpha=0.5, label=country_names[i])
i += 1
plt.legend(loc='upper right')
plt.title('Histogram for distribution of Starbucks stores\n across cities in a country')
name = 'hist.png' if winsorize == False else 'winsorized_hist.png'
fname = os.path.join(glob.OUTPUT_DIR_NAME, glob.EDA_DIR, 'more', name)
plt.savefig(fname)
#plt.show()
def draw_combined_boxplot(df, countries, country_names, winsorize=False):
plt.cla()
# Create the boxplot
plt.figure(1, figsize=(5, 6))
TRIM = 0.05 if winsorize == True else 0.0
data = []
for c in countries:
x = df[c].dropna().values
x = mstats.winsorize(x,(0, TRIM))
data.append(x)
plt.boxplot(data, labels=country_names, whis='range')
plt.title('Boxplot for distribution of Starbucks stores\n across cities in a country')
#plt.xticks(rotation = 45)
# Save the figure
name = 'boxplot.png' if winsorize == False else 'winsorized_boxplot.png'
fname = os.path.join(glob.OUTPUT_DIR_NAME, glob.EDA_DIR, 'more', name)
plt.savefig(fname)
def explore_distribution_across_countries(df):
countries = ['US', 'GB', 'AE', 'KW', 'KR', 'CA']
country_names = ['United States', 'United Kingdom',
'UAE', 'Kuwait',
'Republic of Korea', 'Canada']
df3 = pd.DataFrame(columns=countries)
#kind of kludgy way of doing this but ok..
max_l = 0
city_w_max_stores = []
count_in_city_w_max_stores = []
for country in countries:
df2 = df[df['country'] == country]
distribution = df2['city'].value_counts()
l = len(distribution)
if l > max_l:
max_l = l
glob.log.info('Max number of stores (%s, %d)' %(distribution.index[0], distribution.ix[0]))
city_w_max_stores.append(distribution.index[0])
count_in_city_w_max_stores.append(distribution.ix[0])
df_temp = pd.DataFrame(columns = ['country', 'city_with_most_starbucks_stores', 'count_in_city_with_most_stores'])
df_temp['country'] = country_names
df_temp['city_with_most_starbucks_stores'] = city_w_max_stores
df_temp['count_in_city_with_most_stores'] = count_in_city_w_max_stores
fname = os.path.join(glob.OUTPUT_DIR_NAME, glob.EDA_DIR, 'more', 'cities_withmost_stores.csv')
df_temp.to_csv(fname, index=False, encoding='utf-8')
for country in countries:
df2 = df[df['country'] == country]
distribution = df2['city'].value_counts()
#df3 = pd.DataFrame(columns=['stores'])
values = distribution.values
if len(values) < max_l:
padding = max_l - len(values)
values = np.append(values, np.repeat(np.nan, padding))
df3[country] = values
#now make plots for individual countries and combinations
#histogram
i = 0
for country in countries:
draw_hist(df3, country, country_names[i])
draw_ecdf(df3, country, country_names[i])
i += 1
#combined histogram, followed by a winsorized version
draw_combined_hist(df3, countries, country_names)
draw_combined_hist(df3, countries, country_names, True)
#make a boxplot,followed by a winsorized version
draw_combined_boxplot(df3, countries, country_names)
draw_combined_boxplot(df3, countries, country_names, True)
def run():
glob.log.info('about to begin additional analysis...')
fname = os.path.join(glob.OUTPUT_DIR_NAME, glob.COMBINED_DATASET_CSV)
df_combined = pd.read_csv(fname)
fname = os.path.join(glob.OUTPUT_DIR_NAME, glob.SB_CSV_FILE_W_FEATURES)
df_sb = pd.read_csv(fname)
explore_distribution_across_countries(df_sb)
if __name__ == "__main__":
# execute only if run as a script
run(sys.argv)
|
StarcoderdataPython
|
5139914
|
<reponame>vainotuisk/icecreamratings
__version__ = '16.0'
|
StarcoderdataPython
|
363050
|
<filename>challenges/String_Info_Calculator/poller/for-release/machine.py
#!/usr/bin/env python
#
# Copyright (C) 2014 <NAME>ustries <<EMAIL>>
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
from generator.actions import Actions, Variable
from random import choice, randint
from os.path import dirname, abspath, join
import sys
import struct
sys.path.append(join(dirname(dirname(dirname(abspath(__file__)))), "support"))
import support as sp
from common import DEBUG
class StrInfo(Actions):
INBUFSZ = 1000
DEBUG_CONTENT = False
TERM = '\x03'
GIMME = "Give me your sentences.{0}".format(TERM)
DONE = "Here are your results...{0}".format(TERM)
def _get_content(self):
all_chars = [chr(x) for x in range(128)]
all_chars.remove(self.TERM)
result = ''
b_len = randint(5, self.INBUFSZ-1) #TERM is added at the end.
remaining = b_len
while 0 < remaining:
if self.chance(0.7):
result += sp.random_alpha(0, 10 if remaining > 10 else remaining)
elif self.chance(0.3):
result += sp.random_digits(0, 10 if remaining > 10 else remaining)
else:
result += ''.join(choice(all_chars) for _ in range(0, 10 if remaining > 10 else remaining))
if len(result) >= b_len:
break
if self.chance(0.7):
result += ' '
else:
result += '.'
if self.chance(0.1):
result += '\n'
remaining = b_len - len(result)
if True == self.DEBUG_CONTENT:
result = "Bob's discount randumb stor-E gener8r for only $12.99. Come on in.\nGet your storie today!\n"
if True == DEBUG:
r = '\\'.join(hex(ord(c)) for c in result)
print "result hex: {0}".format(r)
print "result: {0}".format(result)
return result
def _get_results(self, s):
'''
unsigned int hash;
unsigned short chars;
unsigned short words;
unsigned short sentences;
unsigned short paragraphs;
unsigned short printable;
unsigned short non_printable;
unsigned short letters;
unsigned short numbers;
unsigned short symbols;
unsigned short session_id;
'''
r = {'chars': 0, 'words': 0,
'sentences': 0, 'paragraphs': 0, 'printable': 0,
'non_printable': 0, 'letters': 0, 'numbers': 0, 'symbols': 0,
'session_id': 0}
r = self._compute_char_type(s, r)
r = self._compute_grammar_components(s, r)
r = self._compute_session_id(r)
return r
def _compute_char_type(self, s, r):
for ch in s:
if True == sp.is_non_printable(ord(ch)):
r['non_printable'] += 1
else:
r['printable'] += 1
if True == sp.is_digit(ord(ch)):
r['numbers'] += 1
elif True == sp.is_letter(ord(ch)):
r['letters'] += 1
else:
r['symbols'] += 1
if True == DEBUG:
print "type: {0}".format(r)
return r
def _compute_grammar_components(self, s, r):
ch_prev = '\x04'
for ch in s:
r['chars'] += 1
if True == sp.is_word_end_char(ch) and \
True == sp.is_letter(ord(ch_prev)):
r['words'] += 1
if True == sp.is_sentence_end_char(ch_prev):
if ' ' == ch:
r['sentences'] += 1
elif True == sp.is_paragraph_end_char(ch):
r['sentences'] += 1
r['paragraphs'] += 1
ch_prev = ch
if True == DEBUG:
print "grammar: {0}".format(r)
return r
def _compute_session_id(self, r):
'''
const char *magic_sauce = (const char*)FLAG_PAGE;
char session_id[2] = 0;
unsigned short *p_sid = (unsigned short *)session_id;
session_id[0] = magic_sauce[0] ^ magic_sauce[1000];
session_id[1] = magic_sauce[2000] ^ magic_sauce[3000];
r->session_id = *p_sid;
'''
b1 = ord(self.magic_page[0]) ^ ord(self.magic_page[1000])
b2 = ord(self.magic_page[2000]) ^ ord(self.magic_page[3000])
r['session_id'] = (b2 << 8) + b1
return r
def start(self):
self.delay(50)
pass
def banner(self):
self.read(delim=self.TERM, expect=self.GIMME)
def content(self):
s = self._get_content()
self.write(s + self.TERM)
r_clear = self._get_results(s)
if True == DEBUG:
print "clear: {0}".format(r_clear)
r_packed = sp.pack_results(r_clear)
if True == DEBUG:
r = '\\'.join(hex(ord(c)) for c in r_packed)
print "packed: {0}".format(r)
self.read(delim=self.TERM, expect=self.DONE)
self.read(length=4) # read the hash
self.read(length=len(r_packed), expect=r_packed) # read the results
# self.read(length=2) # read the session_id value
def end(self):
return
|
StarcoderdataPython
|
8182110
|
def even_numbers(maximum):
return_string = ""
for x in range(2, maximum+1, 2):
return_string += str(x) + " "
return return_string.strip()
print(even_numbers(6)) # Should be 2 4 6
print(even_numbers(10)) # Should be 2 4 6 8 10
print(even_numbers(1)) # No numbers displayed
print(even_numbers(3)) # Should be 2
print(even_numbers(0)) # No numbers displayed
|
StarcoderdataPython
|
123877
|
<reponame>gablin/python-verisure
"""
A python module for reading and changing status of verisure devices through
verisure app API.
"""
__all__ = [
'Error',
'LoginError',
'ResponseError',
'Session'
]
from .session import ( # NOQA
Error,
LoginError,
ResponseError,
Session
)
ALARM_ARMED_HOME = 'ARMED_HOME'
ALARM_ARMED_AWAY = 'ARMED_AWAY'
ALARM_DISARMED = 'DISARMED'
LOCK_LOCKED = 'LOCKED'
LOCK_UNLOCKED = 'UNLOCKED'
SMARTPLUG_ON = 'on'
SMARTPLUG_OFF = 'off'
|
StarcoderdataPython
|
3228726
|
<gh_stars>1-10
# Transform Bible verse lists into a format that Accordance accepts.
import re
from romnum import romNumVal
from urllib import quote
def escapePath(value):
return quote(value.encode('utf_8'))
def escapeQuery(value):
value = value.replace(' ', '_')
return quote(value.encode('utf_8'), ':;,._')
def accordURL(text, verses):
return 'accord://read/{}?{}'.format(escapePath(text), escapeQuery(verses))
# Group book and chapter refs into a shorter form: Gen 1:1; Gen 1:3; Gen 2:1 -> Gen 1:1,3; 2:1
def consolidate(verses):
result = ''
curbook = ''
curchap = 0
for verse in verses.split(';'):
verse = verse.strip()
sep = '; '
match = re.search('\s*(.*?)\s+(\d*:?\d+)', verse)
if match != None:
book = match.group(1)
ref = match.group(2)
match = re.search('(\d+):(\d+)', ref)
if match != None:
ch = match.group(1)
vs = match.group(2)
else:
ch = 1
vs = ref
if book == curbook:
verse = ref
if curchap == ch:
sep = ','
verse = vs
else:
curchap = ch
else:
curbook = book
curchap = ch
if result != '':
result = result + sep
result = result + verse
return result
def rn(match):
return str(romNumVal(match.group(1)))
# Handles Roman numerals and extraneous punctuation.
def normalize(refs):
refs = re.sub(r'\s+', r' ', refs, re.U) # combine redundant spaces
refs = re.sub(r'\s+([,;])', r'\1', refs, re.U) # remove space before punctuation
refs = re.sub(r'\\u2013', r'-', refs, re.U) # en dash to hyphen
refs = re.sub(r'\s*-\s*', r'-', refs, re.U) # remove spaces around hyphen
refs = re.sub(r'\b([clxvi]+)\b', rn, refs, re.U | re.I) # decode Roman numeral
refs = re.sub(r'(\d+)[.:] *(\d+)', r'\1:\2', refs, re.U) # use : for verses
refs = re.sub(r'(\w+)\.', r'\1', refs, re.U) # remove . after book number
refs = re.sub(r'(\d+)\s+([A-Za-z]+)', r'\1\2', refs, re.U) # join book num and name
refs = re.sub(r'([,;]){2,}', r'\1', refs, re.U) # combine redundant punctuation
refs = re.sub(r'^[ ,;]+|[ ,;]+$', r'', refs, re.U) # leading/trailing junk
return refs
if __name__ == '__main__':
import fileinput
for line in fileinput.input():
print(consolidate(normalize(line)))
|
StarcoderdataPython
|
5084052
|
# encoding: utf-8
import numpy as np
import tensorflow as tf
import os
import cv2
from tqdm import tqdm
import re
import sys
sys.path.append('..')
from config import cfg
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return [float(x), float(y), float(w), float(h)]
def load_file(file_path):
'''
load imgs_path, classes and labels
'''
imgs_path = []
#classes = []
#labels = []
labels_and_classes = []
with open(file_path, 'r') as f:
lines = f.readlines()
for line in lines:
img_path = '/diskdt/dataset/bar_chart_dataset/bar_chart_batch_1/' + line.strip().split(' ')[0]
#cls = int(line.strip().split(' ')[1])
cls_and_label = [float(i) for i in line.strip().split(' ')[1:]]
if len(cls_and_label) > 30*5:
continue
cls_and_label = np.asarray(cls_and_label).reshape(-1,5)[:, [0,1,3,2,4]]
cls_and_bb = []
for i in range(cls_and_label.shape[0]):
cls = [float(cls_and_label[i][0])]
bb = convert((600,600), cls_and_label[i][1:])
bb.extend(cls)
cls_and_bb.extend(bb)
if cls_and_label.shape[0] < 30:
cls_and_bb = cls_and_bb + [0,0,0,0,0]*(30-int(cls_and_label.shape[0]))
imgs_path.append(img_path)
#classes.append(cls)
#labels.append(label)
#label.append(cls)
labels_and_classes.append(cls_and_bb)
return np.asarray(imgs_path), np.array(labels_and_classes)
def extract_image(image_path, height, width, is_resize=True):
'''
get b->g->r image data
'''
image = cv2.imread(image_path)
if is_resize:
print('is_resize')
image = cv2.resize(image, (width, height))
#image_data = np.array(image, dtype='float32') / 255.0
image_data = np.array(image, dtype='uint8')
return image_data
def run_encode(file_path, tf_records_filename):
'''
encode func
'''
imgs_path, labels_and_classes = load_file(file_path)
height, width = 1080, 1920
imgs = []
writer = tf.python_io.TFRecordWriter(tf_records_filename)
for i in tqdm(range(imgs_path.shape[0])):
img = extract_image(imgs_path[i], height, width, is_resize=False)
img = img.tostring()
label_and_class = labels_and_classes[i].flatten().tolist()
example = tf.train.Example(features=tf.train.Features(feature={
'label_and_class' : tf.train.Feature(float_list = tf.train.FloatList(value=label_and_class)),
'feature': tf.train.Feature(bytes_list = tf.train.BytesList(value=[img]))
}))
writer.write(example.SerializeToString())
writer.close()
if __name__ == '__main__':
file_path = re.sub(r'prepare_data', '', os.getcwd()) + 'data/train_list/train_list.txt'
tf_records_filename = cfg.data_path
run_encode(file_path, tf_records_filename)
|
StarcoderdataPython
|
11332195
|
<reponame>AnonymusRaccoon/dotfiles<gh_stars>1-10
# Store interactive Python shell history in ~/.cache/python_history
# instead of ~/.python_history.
#
# Create the following .config/pythonstartup.py file
# and export its path using PYTHONSTARTUP environment variable:
#
# export PYTHONSTARTUP="${XDG_CONFIG_HOME:-$HOME/.config}/pythonstartup.py"
import atexit
import os
import readline
histfile = os.path.join(os.getenv("XDG_CACHE_HOME", os.path.expanduser("~/.cache")), "python_history")
try:
readline.read_history_file(histfile)
# default history len is -1 (infinite), which may grow unruly
readline.set_history_length(1000)
except FileNotFoundError:
pass
atexit.register(readline.write_history_file, histfile)
|
StarcoderdataPython
|
3401049
|
<gh_stars>1-10
from django.shortcuts import render, HttpResponse, redirect
from courses.models import Course
def home(request):
return render(request, 'home.html', )
def aboutUs(request):
return render(request,'about.html',{})
def Contactus(request):
if request.method == 'POST':
#work for it's backend !!
return render(request,'../accounts/templates/thanks.html',{
'user':first_name,
'message':'Thank You for your invaluable feedback!!.We will reach to you as soon as possible.',
'msg_cnt':'Your Feedback feedback has been sent successfully!!'
})
else:
return render(request,'contact.html',{})
|
StarcoderdataPython
|
8080261
|
from .model_base import Baseline
from .model_eval_op import TwoStreamSwitchBNOp
|
StarcoderdataPython
|
5181969
|
"""Modules that handle the events the bot recognizes and reacts to"""
|
StarcoderdataPython
|
1812199
|
#sample script to be executed by pipeViewer Console
from model.node_element import NodeElement
highest_access_count = 0
for element in context.GetElements():
if isinstance(element, NodeElement):
split = element.GetProperty('data').split(':')
if len(split) < 2:
continue # either Start or End
accesses = int(split[1])
if accesses > highest_access_count:
highest_access_count = accesses
for element in context.GetElements():
if isinstance(element, NodeElement):
split = element.GetProperty('data').split(':')
if len(split) < 2:
continue # either Start or End
accesses = int(split[1])
color_val = int((1 - accesses/(highest_access_count*1.0))*255)
context.dbhandle.database.AddMetadata(element.GetProperty('name'), {'color':(color_val, 255, 255)})
|
StarcoderdataPython
|
11313696
|
<reponame>miott/genielibs<filename>pkgs/ops-pkg/src/genie/libs/ops/stp/iosxr/stp.py
'''
Stp Genie Ops Object for IOSXR - CLI.
'''
# Genie
from genie.libs.ops.stp.stp import Stp as SuperStp
from genie.ops.base import Context
# Parser
from genie.libs.parser.iosxr.show_spanning_tree import ShowSpanningTreeMst, \
ShowSpanningTreeMstag, \
ShowSpanningTreePvrst, \
ShowSpanningTreePvrsTag, \
ShowSpanningTreePvsTag
class Stp(SuperStp):
'''STP Genie Ops Object'''
def learn(self, mst_domain=None, mstag_domain=None, pvst_id=None, pvrstag_domain=None, pvstag_domain=None):
'''Learn stp Ops'''
########################################################################
# info
########################################################################
# global - N/A
# bridge_assurance - N/A
# etherchannel_misconfig_guard - N/A
# bpduguard_timeout_recovery - N/A
# loop_guard - N/A
# bpdu_guard - N/A
# bpdu_filter - N/A
# mstp
# mst_domain
# domain - N/A
# name - N/A
# revision - N/A
# max_hop - N/A
# hello_time - N/A
# max_age - N/A
# forwarding_delay - N/A
# hold_count - N/A
# mst_instances
# mst_id
# mst_id
# vlan
# bridge_priority
# bridge_address
# designated_root_priority
# designated_root_address
# root_port - N/A
# root_cost
# hold_time - N/A
# topology_changes - N/A
# time_since_topology_change - N/A
# interfaces
# m_interface
# name
# cost
# port_priority
# port_num
# role
# port_state
# designated_root_priority - N/A
# designated_root_address - N/A
# designated_cost - N/A
# designated_bridge_priority
# designated_bridge_address
# designated_port_priority
# designated_port_num
# forward_transitions - N/A
# counters - N/A
# bpdu_sent - N/A
# bpdu_received - N/A
# interfaces - N/A
# m_interface - N/A
# name - N/A
# edge_port - N/A
# link_type - N/A
# guard - N/A
# bpdu_guard - N/A
# bpdu_filter - N/A
# mstag
# mag_domain
# domain
# interfaces
# mag_interface
# interface
# name
# revision
# bridge_id
# preempt_delay
# preempt_delay_state - N/A
# max_age
# provider_bridge
# port_id
# external_cost
# hello_time
# active
# counters - N/A
# bpdu_sent - N/A
# instances
# mag_id
# instance
# root_id
# vlans
# priority
# root_priority
# port_priority
# cost
# counters
# topology_changes
# pvst
# pvst_id
# pvst_id
# max_age - N/A
# hold_count - N/A
# forwarding_delay - N/A
# hello_time - N/A
# vlans
# vlan_id
# vlan_id
# hello_time - N/A
# max_age - N/A
# forwarding_delay - N/A
# bridge_priority
# configured_bridge_priority - N/A
# sys_id_ext
# bridge_address
# designated_root_priority
# designated_root_address
# root_port - N/A
# root_cost - N/A
# hold_time - N/A
# topology_changes - N/A
# time_since_topology_change - N/A
# interface
# v_interface
# name
# cost
# port_priority
# port_num
# role
# port_state
# designated_root_priority - N/A
# designated_root_address - N/A
# designated_cost - N/A
# designated_bridge_priority
# designated_bridge_address
# designated_port_priority
# designated_port_num
# forward_transitions - N/A
# counters - N/A
# bpdu_sent - N/A
# bpdu_received - N/A
# interfaces - N/A
# p_interface - N/A
# name - N/A
# edge_port - N/A
# link_type - N/A
# guard - N/A
# bpdu_guard - N/A
# bpdu_filter - N/A
# hello_time - N/A
# rapid_pvst - N/A
# pvst_id - N/A
# pvst_id - N/A
# max_age - N/A
# hold_count - N/A
# forwarding_delay - N/A
# hello_time - N/A
# vlans - N/A
# vlan_id - N/A
# vlan_id - N/A
# hello_time - N/A
# max_age - N/A
# forwarding_delay - N/A
# bridge_priority - N/A
# configured_bridge_priority - N/A
# sys_id_ext - N/A
# bridge_address - N/A
# designated_root_priority - N/A
# designated_root_address - N/A
# root_port - N/A
# root_cost - N/A
# hold_time - N/A
# topology_changes - N/A
# time_since_topology_change - N/A
# interface - N/A
# v_interface - N/A
# name - N/A
# cost - N/A
# port_priority - N/A
# port_num - N/A
# role - N/A
# port_state - N/A
# designated_root_priority - N/A
# designated_root_address - N/A
# designated_cost - N/A
# designated_bridge_priority - N/A
# designated_bridge_address - N/A
# designated_port_priority - N/A
# designated_port_num - N/A
# forward_transitions - N/A
# counters - N/A
# bpdu_sent - N/A
# bpdu_received - N/A
# interfaces - N/A
# p_interface - N/A
# name - N/A
# edge_port - N/A
# link_type - N/A
# guard - N/A
# bpdu_guard - N/A
# bpdu_filter - N/A
# hello_time - N/A
# pvrstag
# prag_domain
# domain
# interfaces
# prag_interface
# interface
# vlans
# prag_vlan
# root_priority
# root_id - N/A
# root_cost
# priority - N/A
# bridge_id
# port_priority
# max_age
# hello_time
# preempt_delay
# preempt_delay_state
# sub_interface
# sub_interface_state
# port_id
# active
# counters
# bpdu_sent - N/A
# topology_changes
# pvstag
# pag_domain
# domain
# interfaces
# pag_interface
# interface
# vlans
# pag_vlan
# root_priority
# root_id - N/A
# root_cost
# priority - N/A
# bridge_id
# port_priority
# max_age
# hello_time
# preempt_delay
# preempt_delay_state
# sub_interface
# sub_interface_state
# port_id
# active
# counters
# bpdu_sent - N/A
# topology_changes
mstp_domain_instances_src = '[mstp][(?P<mstp_domain>.*)][mst_instances][(?P<mst_id>.*)]'
mstp_domain_instances_des = 'info[mstp][(?P<mstp_domain>.*)][mst_instances][(?P<mst_id>.*)]'
if mst_domain:
for key in ['mst_id', 'vlan', 'bridge_priority',
'bridge_address' ,
'designated_root_priority', 'designated_root_address', 'root_cost',
]:
self.add_leaf(cmd=ShowSpanningTreeMst,
src=mstp_domain_instances_src + '[%s]' % key,
dest=mstp_domain_instances_des + '[%s]' % key,
mst=mst_domain)
mstp_domain_interfaces_src = mstp_domain_instances_src + '[interfaces][(?P<m_interface>.*)]'
mstp_domain_interfaces_des = mstp_domain_instances_des + '[interfaces][(?P<m_interface>.*)]'
if mst_domain:
for key in ['name', 'cost', 'port_priority', 'port_num', 'role',
'port_state', 'designated_cost', 'designated_bridge_priority',
'designated_bridge_address', 'designated_port_priority',
'designated_port_num']:
self.add_leaf(cmd=ShowSpanningTreeMst,
src=mstp_domain_interfaces_src + '[%s]' % key,
dest=mstp_domain_interfaces_des + '[%s]' % key,
mst=mst_domain)
mstag_src = '[mstag][(?P<mstag>.*)]'
mstag_des = 'info[mstag][(?P<mstag>.*)]'
if mstag_domain:
self.add_leaf(cmd=ShowSpanningTreeMstag,
src=mstag_src + '[domain]',
dest=mstag_des + '[domain]',
mag_domain=mstag_domain)
mstag_interfaces_src = mstag_src + '[interfaces][(?P<m_interface>.*)]'
mstag_interfaces_des = mstag_des + '[interfaces][(?P<m_interface>.*)]'
if mstag_domain:
for key in ['interface', 'preempt_delay', 'name', 'revision' , 'max_age',
'provider_bridge', 'bridge_id', 'port_id', 'external_cost', 'hello_time',
'active']:
self.add_leaf(cmd=ShowSpanningTreeMstag,
src=mstag_interfaces_src + '[%s]' % key,
dest=mstag_interfaces_des + '[%s]' % key,
mag_domain=mstag_domain)
mstag_instances_src = mstag_src + '[interfaces][instances][(?P<m_instance>.*)]'
mstag_instances_des = mstag_des + '[interfaces][instances][(?P<m_instance>.*)]'
if mstag_domain:
for key in ['instance', 'vlans', 'priority', 'port_priority', 'cost',
'root_priority']:
self.add_leaf(cmd=ShowSpanningTreeMstag,
src=mstag_instances_src + '[%s]' % key,
dest=mstag_instances_des + '[%s]' % key,
mag_domain=mstag_domain)
self.add_leaf(cmd=ShowSpanningTreeMstag,
src= mstag_instances_src + '[counters][topology_changes]',
dest=mstag_instances_des + '[counters][topology_changes]',
mag_domain=mstag_domain)
pvst_src = '[pvst][(?P<pvst>.*)]'
pvst_des = 'info[pvst][(?P<pvst>.*)]'
if pvst_id:
self.add_leaf(cmd=ShowSpanningTreePvrst,
src= pvst_src + '[pvst_id]',
dest=pvst_des + '[pvst_id]',
pvst_id=pvst_id)
pvst_vlans_src = pvst_src + '[vlans][(?P<vlans>.*)]'
pvst_vlans_des = pvst_des + '[vlans][(?P<vlans>.*)]'
if pvst_id:
for key in ['vlan_id', 'designated_root_priority', 'designated_root_address',
'bridge_priority', 'sys_id_ext', 'bridge_address']:
self.add_leaf(cmd=ShowSpanningTreePvrst,
src=pvst_vlans_src + '[%s]' % key,
dest=pvst_vlans_des + '[%s]' % key,
pvst_id=pvst_id)
pvst_vlans_interface_src = pvst_vlans_src + '[interface][(?P<m_interface>.*)]'
pvst_vlans_interface_des = pvst_vlans_des + '[interface][(?P<m_interface>.*)]'
if pvst_id:
for key in ['name', 'cost', 'role', 'port_priority', 'port_num', 'port_state',
'designated_bridge_priority', 'designated_bridge_address',
'designated_port_priority', 'designated_port_num']:
self.add_leaf(cmd=ShowSpanningTreePvrst,
src=pvst_vlans_interface_src + '[%s]' % key,
dest=pvst_vlans_interface_des + '[%s]' % key,
pvst_id=pvst_id)
pvrstag_src = '[pvrstag][(?P<pvrstag>.*)]'
pvrstag_des = 'info[pvrstag][(?P<pvrstag>.*)]'
if pvrstag_domain:
self.add_leaf(cmd=ShowSpanningTreePvrsTag,
src=pvrstag_src + '[domain]',
dest=pvrstag_des + '[domain]',
pvrstag_domain=pvrstag_domain)
pvrstag_interfaces_src = pvrstag_src + '[interfaces][(?P<m_interface>.*)]'
pvrstag_interfaces_des = pvrstag_des + '[interfaces][(?P<m_interface>.*)]'
if pvrstag_domain:
self.add_leaf(cmd=ShowSpanningTreePvrsTag,
src=pvrstag_interfaces_src + '[interface]',
dest=pvrstag_interfaces_des + '[interface]',
pvrstag_domain=pvrstag_domain)
pvrstag_vlans_src = pvrstag_interfaces_src + '[vlans][(?P<vlans>.*)]'
pvrstag_vlans_des = pvrstag_interfaces_des + '[vlans][(?P<vlans>.*)]'
if pvrstag_domain:
for key in ['preempt_delay', 'preempt_delay_state', 'sub_interface',
'sub_interface_state', 'max_age', 'root_priority',
'root_cost', 'bridge_id', 'port_priority',
'port_id', 'hello_time', 'active']:
self.add_leaf(cmd=ShowSpanningTreePvrsTag,
src=pvrstag_vlans_src + '[%s]' % key,
dest=pvrstag_vlans_des + '[%s]' % key,
pvrstag_domain=pvrstag_domain)
self.add_leaf(cmd=ShowSpanningTreePvrsTag,
src= pvrstag_vlans_src + '[counters][topology_changes]',
dest=pvrstag_vlans_des + '[counters][topology_changes]',
pvrstag_domain=pvrstag_domain)
pvstag_src = '[pvstag][(?P<pvrstag>.*)]'
pvstag_des = 'info[pvstag][(?P<pvrstag>.*)]'
if pvstag_domain:
self.add_leaf(cmd=ShowSpanningTreePvsTag,
src=pvstag_src + '[domain]',
dest=pvstag_des + '[domain]',
pvstag_domain=pvstag_domain)
pvstag_interfaces_src = pvstag_src + '[interfaces][(?P<m_interface>.*)]'
pvstag_interfaces_des = pvstag_des + '[interfaces][(?P<m_interface>.*)]'
if pvstag_domain:
self.add_leaf(cmd=ShowSpanningTreePvsTag,
src=pvstag_interfaces_src + '[interface]',
dest=pvstag_interfaces_des + '[interface]',
pvstag_domain=pvstag_domain)
pvstag_vlans_src = pvstag_interfaces_src + '[vlans][(?P<vlans>.*)]'
pvstag_vlans_des = pvstag_interfaces_des + '[vlans][(?P<vlans>.*)]'
if pvstag_domain:
for key in ['preempt_delay', 'preempt_delay_state', 'sub_interface',
'sub_interface_state', 'max_age', 'root_priority',
'root_cost', 'bridge_id', 'port_priority',
'port_id', 'hello_time', 'active']:
self.add_leaf(cmd=ShowSpanningTreePvsTag,
src=pvstag_vlans_src + '[%s]' % key,
dest=pvstag_vlans_des + '[%s]' % key,
pvstag_domain=pvstag_domain)
self.add_leaf(cmd=ShowSpanningTreePvsTag,
src= pvstag_vlans_src + '[counters][topology_changes]',
dest=pvstag_vlans_des + '[counters][topology_changes]',
pvstag_domain=pvstag_domain)
# make to write in cache
self.make(final_call=True)
|
StarcoderdataPython
|
4837467
|
<filename>src/SyntaxHighlight.py
"""
defines syntax_function which turns str into CSS/HTML formatted
syntax highlighted TikZ code
"""
import re
try:
from pygments import highlight, lexers
from pygments.styles import get_style_by_name
from pygments.formatters import HtmlFormatter
except ImportError:
highlight, lexers, get_style_by_name, HtmlFormatter = 4 * [None]
def pygments_syntax_highlight(method, text):
"""Return CSS/HTML syntax-highlighted TikZ code using Pygments."""
print(method)
style = get_style_by_name(method)
formatter = HtmlFormatter(full=True, noclasses=True, style=style)
lex = lexers.get_lexer_by_name("latex")
return highlight(text, lex, formatter)
def alternative_syntax_highlight(text):
"""Return syntax-highlighted text for LaTeX code using regex."""
def replace_pivot_spaces(text): # TODO replace whole function with a regular expression substitution
"""Replace leading spaces to HTML  ."""
exit_condition = True
while exit_condition:
exit_condition = False
for i in range(len(text)-1):
if text[i] == '\n' and text[i+1] == ' ':
numspace = 1
while text[i+1+numspace] == ' ':
numspace += 1
text = text[:i+1] + numspace*' ' + text[i+1+numspace:]
exit_condition = True
return text
match = re.findall(r'[^\\](%.*)\n', text) # find all inline comments
does_not_contain_this_word = ''
for i in range(5, 10000): # find a word not present in the text
if text.find(i * 'a') == -1:
does_not_contain_this_word = i * 'a'
break
for i, result in enumerate(match): # replace and index the inline comments in the text
text = text.replace(result, str(i) + does_not_contain_this_word)
# highlight begin-end environments
text = re.sub(r'(\\begin{.+}|\\end{.*})', r'<span style="color:DarkCyan;font-weight:bold">\1</span>', text)
# highlight commands starting with "\"
text = re.sub(r'(?!\\begin|\\end)(\\\w+)', r'<span style="color:brown;font-weight:bold">\1</span>', text)
# highlight %\, \\, \#
text = re.sub(r'(\\%|\\\\|\\#)', r'<span style="color:brown;font-weight:bold">\1</span>', text)
# highlight numbers
text = re.sub(r'(\W)(\d*\.?\d+)(\W)', r'\1<span style="color:green">\2</span>\3', text)
text = replace_pivot_spaces(text)
text = text.replace('\n', '<br>')
for i, result in enumerate(match): # load back the inline comments and add syntax highlight
text = text.replace(str(i) + does_not_contain_this_word,
f'<span style="color:blue;font-weight:bold">{result}</span>')
return text
def syntax_highlight(method, text):
"""Highlight syntax either with or without Pygments."""
method = '' if method[0] == '$' else method[1:]
if not method:
return alternative_syntax_highlight(text)
try:
return pygments_syntax_highlight(method, text)
except ImportError:
return alternative_syntax_highlight(text)
|
StarcoderdataPython
|
1838556
|
from selenium import webdriver
import time
class JdSpider:
def __init__(self):
self.driver = webdriver.Chrome()
self.driver.get(url='https://www.jd.com/')
self.driver.find_element_by_xpath('//*[@id="key"]').send_keys("<PASSWORD>")
self.driver.find_element_by_xpath('//*[@id="search"]/div/div[2]/button').click()
time.sleep(2)
def get_one_page(self):
"""获取商品数据"""
self.driver.execute_script(
'window.scrollTo(0,document.body.scrollHeight)'
)
# 一定给页面元素的加载预留时间
time.sleep(2)
# 提取数据
li_list = self.driver.find_elements_by_xpath('//*[@id="J_goodsList"]/ul/li')
for li in li_list:
print(li.text)
print('*' * 50)
def crawl(self):
while True:
self.get_one_page()
if self.driver.page_source.find("pn-next disabled") == -1:
self.driver.find_element_by_xpath('//*[@id="J_bottomPage"]/span[1]/a[9]').click()
time.sleep(1)
else:
self.driver.quit()
break
if __name__ == '__main__':
spider = JdSpider()
spider.crawl()
|
StarcoderdataPython
|
22477
|
#!C:\Users\stpny\Downloads\grasp_public-master\grasp_public-master\Scripts\python.exe
# EASY-INSTALL-ENTRY-SCRIPT: 'imageio==2.5.0','console_scripts','imageio_remove_bin'
__requires__ = 'imageio==2.5.0'
import re
import sys
from pkg_resources import load_entry_point
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(
load_entry_point('imageio==2.5.0', 'console_scripts', 'imageio_remove_bin')()
)
|
StarcoderdataPython
|
8198582
|
<filename>src/run.py
import tempfile
from subprocess import check_output, run
def run_script(cwd, script, return_output=False):
output = ""
print(f"Running script:\n{script}")
with tempfile.NamedTemporaryFile() as f:
f.write(script.encode("utf-8"))
f.seek(0)
if return_output:
output = (
check_output(["/bin/bash", "-euo", "pipefail", f.name], cwd=cwd)
.decode("utf-8")
.strip()
)
else:
run(["/bin/bash", "-euo", "pipefail", f.name], cwd=cwd, check=True)
if return_output:
print(f"Returning output:\n{output}")
return output
|
StarcoderdataPython
|
146426
|
<reponame>applejenny66/snoopy<filename>utils.py
# utils.py
import numpy as np
import cv2
import os
def clearall():
import shutil
shutil.rmtree('./test')
os.mkdir('./test')
def blankarray(shape):
array = np.zeros(shape)
for x in range(0, shape[0]):
for y in range(0, shape[1]):
array[x, y, 0] = array[x, y, 1] = array[x, y, 2] = 255
return (array)
|
StarcoderdataPython
|
11302519
|
import fs.path
from .utils import Docs
class TestRegression(Docs):
def setUp(self):
super(TestRegression, self).setUp()
self.base_folder = fs.path.join("tests", "regression_tests")
def test_helper_and_partial(self):
expected = (
"<h1>People</h1>"
+ "<ul><li>Bill 100</li><li>Bob 90</li><li>Mark 25</li></ul>"
)
folder = "level-11-helpers-and-partials"
self.run_moban(
[
"moban",
"-pd",
"helper_and_partial",
"-c",
"data.json",
"--template-type",
"hbs",
'{{>header}}{{#list people}}{{name}} {{age}}{{/list}}',
],
folder,
[("moban.output", expected)],
)
|
StarcoderdataPython
|
11356631
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from builtins import range
from builtins import super
import mock
import string
import unittest
from parameterized import parameterized
import random
import json
from pprint import pprint
from bhive import Hive, exceptions
from bhive.amount import Amount
from bhive.memo import Memo
from bhive.version import version as bsteem_version
from bhive.wallet import Wallet
from bhive.witness import Witness
from bhive.account import Account
from bhivegraphenebase.account import PrivateKey
from bhive.instance import set_shared_hive_instance
from bhive.nodelist import NodeList
from bhive.hiveconnect import HiveConnect
# Py3 compatibility
import sys
core_unit = "STM"
class Testcases(unittest.TestCase):
@classmethod
def setUpClass(cls):
nodelist = NodeList()
nodelist.update_nodes(hive_instance=Hive(node=nodelist.get_nodes(exclude_limited=False), num_retries=10))
cls.bts = Hive(
node=nodelist.get_nodes(exclude_limited=True),
nobroadcast=True,
unsigned=True,
data_refresh_time_seconds=900,
num_retries=10)
cls.account = Account("test", full=True, hive_instance=cls.bts)
def test_transfer(self):
bts = self.bts
acc = self.account
acc.hive.txbuffer.clear()
tx = acc.transfer(
"test1", 1.000, "HIVE", memo="test")
sc2 = HiveConnect(hive_instance=bts)
url = sc2.url_from_tx(tx)
url_test = 'https://hiveconnect.com/sign/transfer?from=test&to=test1&amount=1.000+HIVE&memo=test'
self.assertEqual(len(url), len(url_test))
self.assertEqual(len(url.split('?')), 2)
self.assertEqual(url.split('?')[0], url_test.split('?')[0])
url_parts = (url.split('?')[1]).split('&')
url_test_parts = (url_test.split('?')[1]).split('&')
self.assertEqual(len(url_parts), 4)
self.assertEqual(len(list(set(url_parts).intersection(set(url_test_parts)))), 4)
def test_login_url(self):
bts = self.bts
sc2 = HiveConnect(hive_instance=bts)
url = sc2.get_login_url("localhost", scope="login,vote")
url_test = 'https://hiveconnect.com/oauth2/authorize?client_id=None&redirect_uri=localhost&scope=login,vote'
self.assertEqual(len(url), len(url_test))
self.assertEqual(len(url.split('?')), 2)
self.assertEqual(url.split('?')[0], url_test.split('?')[0])
url_parts = (url.split('?')[1]).split('&')
url_test_parts = (url_test.split('?')[1]).split('&')
self.assertEqual(len(url_parts), 3)
self.assertEqual(len(list(set(url_parts).intersection(set(url_test_parts)))), 3)
|
StarcoderdataPython
|
3451101
|
# ==============================================================================
# Copyright (c) 2018, Yamagishi Laboratory, National Institute of Informatics
# Author: <NAME> (<EMAIL>)
# All rights reserved.
# ==============================================================================
""" """
import tensorflow as tf
class MultiSpeakerPreNet(tf.layers.Layer):
def __init__(self, out_units, speaker_embed, is_training, drop_rate=0.5,
trainable=True, name=None, dtype=None, **kwargs):
super(MultiSpeakerPreNet, self).__init__(trainable=trainable, name=name, dtype=dtype, **kwargs)
self.out_units = out_units
self.drop_rate = drop_rate
self.is_training = is_training
self.dense0 = tf.layers.Dense(out_units, activation=tf.nn.relu, dtype=dtype)
self.dense = tf.layers.Dense(out_units, activation=tf.nn.relu, dtype=dtype)
self.speaker_projection = tf.layers.Dense(out_units, activation=tf.nn.softsign, dtype=dtype)
self.speaker_embed = speaker_embed
def build(self, _):
self.built = True
def call(self, inputs, **kwargs):
dense0 = self.dense0(inputs)
dense0 += self.speaker_projection(self.speaker_embed)
dense = self.dense(dense0)
dropout = tf.layers.dropout(dense, rate=self.drop_rate, training=self.is_training)
return dropout
def compute_output_shape(self, input_shape):
return self.dense.compute_output_shape(input_shape)
|
StarcoderdataPython
|
8128161
|
# encoding: utf-8
from flask import Blueprint
import ckan.plugins as p
import ckan.plugins.toolkit as tk
def fancy_route(package_type: str):
return u'Hello, {}'.format(package_type)
def fancy_new_route(package_type: str):
return u'Hello, new {}'.format(package_type)
def fancy_resource_route(package_type: str, id: str):
return u'Hello, {}:{}'.format(package_type, id)
class ExampleIDatasetFormPlugin(p.SingletonPlugin, tk.DefaultDatasetForm):
p.implements(p.IDatasetForm)
def is_fallback(self):
return False
def package_types(self):
return [u'fancy_type']
def prepare_dataset_blueprint(self, package_type: str, bp: Blueprint):
bp.add_url_rule(u'/fancy-route', view_func=fancy_route)
bp.add_url_rule(u'/new', view_func=fancy_new_route)
return bp
def prepare_resource_blueprint(self, package_type: str, bp: Blueprint):
bp.add_url_rule(u'/new', view_func=fancy_resource_route)
return bp
|
StarcoderdataPython
|
12800276
|
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from scipy import fftpack
from scipy import signal
import os
# import soundfile as sf
#import pyAudioAnalysis
#module to output the sound
from playsound import playsound
#metadata is a python file which contains a dictoinary of all the speakers and their detals
# import metadata
"""
lets assume the users are tagged the following indices:
Speaker 0 : jackson
Speaker 1 : nicolas
Speaker 2 : theo
Speaker 3 : yweweler
"""
#length of all sample is 1 seconds
sample_length = 1 #in seconds
samples = [] ; sample_rate = []
#name of the folder containing the samples
dataset_folder = "recordings"
current_dir = os.listdir()
main_dir = os.getcwd()
os.chdir(current_dir[current_dir.index(dataset_folder)])
sample_dir = os.getcwd()
all_samples = os.listdir()
# all_samples.sort()
print((all_samples[2]))
class Feature_Extraction:
"""
this class extracts the features from the input dataset ,
A list of probable features are:
1) Compactness.
2) Magnitude spectrum.
3) Mel-frequency cepstral coefficients.
4) Pitch.
5) Power Spectrum.
6) RMS.
7) Rhythm.
8) Spectral Centroid.
9) Spectral Flux.
10) Spectral RollOff Point.
11) Spectral Variability.
12) Zero Crossings
"""
def __init__(self,sample,mutiple=False):
self.sample = sample
self.mutiple = False
def ZCR(self):
ZCR = []
for i in range(len(self.sample)):
#for zero crossing it is necessary that the data points are centered around a mean values
# self.sample[i] = self.sample[i] - self.sample[i].mean()
pos = self.sample[i]>0
npos = ~pos
ZCR.append(len(((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]))
return np.array(ZCR)
#the for loop for zcr calculation takes about 342 milliseconds more
#for a single input value to compute than the stackflow one
# ZCR = 0
# for i in range(1,len(sample)):
# prev_sign = np.signbit(sample[i-1])
# cur_sign = np.signbit(sample[i])
# if( (cur_sign != prev_sign) ):
# ZCR+=1
def spect(self):
freq =[]
time = []
power = []
for i in range(len(self.sample)):
f, t, p = signal.spectrogram(self.sample[i],fs=8000,window='blackman') #works good
freq.append(list(f))
time.append(t)
power.append(p)
return np.array(freq),np.array(time), np.array(power)
def plot_spectogram(self):
# select a random file from the dataset
random = np.random.randint(0,2000)
freq , t , power = signal.spectrogram(self.sample[random],fs=8000,window='blackman')
plt.figure(1)
plt.subplot(311)
plt.plot(self.sample[random])
plt.subplot(312)
plt.specgram(self.sample[random],Fs=8000)
plt.colorbar()
plt.subplot(313)
plt.pcolormesh(t,freq,power)
pass
def print_ZCR(self):
print(self.ZCR())
def extract_labels(all_samples):
"""
this function extracts the labels and speaker from the dataset
"""
labels = []
speakers = []
print("Extracting Labels")
for i in range(len(all_samples)):
temp = all_samples[i]
temp = (temp[0:-3].split("_"))
labels.append(temp[0])
speakers.append(temp[1])
if i%16==0:
print("-",end="")
print("\nLabels Extracted\n")
return np.array(labels),np.array(speakers)
def import_data(all_samples):
"""
this function imports all the wave files in dataset
"""
samples = []
sample_rate = []
print("Loading Dataset")
for i in range(len(all_samples)):
s_len, s = wavfile.read(all_samples[i])
samples.append(s);
sample_rate.append(s_len)
if i%16==0:
print("-",end="")
print("\nDataset Loaded\n")
return np.array(samples),sample_rate
def normalize_data(samples):
print("Normalizing Data ")
for i in range(len(samples)):
samples[i] = ( samples[i] - samples[i].mean() ) / samples[i].std()
if i%16==0:
print("-",end="")
print("\nData Normalized\n")
return samples
def extract_features(sample):
# sample = np.array(sample)
sample = sample - sample.mean()
# sample = sample[sample!=0]
#code from stackflow
# pos = sample>0
# npos = ~pos
# return len(((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0])
# return ZCR
return signal.spectrogram(sample,fs=8000,window='blackman') #works good
# pass
def visualize_data(sample,mutiple="False"):
"""
one or mutiple sample can be given as a input to this function
makes the figures accordingy
set mutiple to true if multiple samples are passed
"""
for i in range(sample.shape[0]):
plt.figure(i)
plt.subplot(411)
pass
def zero_padding(samples):
"""
this function pads the samples to make every sample the equal length
it cuts off excess values and addes zeros to the insufficient ones
making the length a power of 2 makes the calculation of fft faster and convinient
"""
for i in range(len(samples)):
length = len(samples[i])
diff = int(abs(4096-length) / 2)
diff = abs(4096-length)
pad0 = int(diff/2)
pad1 = diff-pad0
if(length == 4096):
continue
elif(length < 4096):
samples[i] = np.pad(samples[i],(pad0,pad1))
else:
#chopping the signals with higher number of datas
samples[i] = samples[i][pad0:-pad1]
return samples
def make_dataframe(all_samples):
"""
"""
samples,sample_rate = import_data(all_samples)
labels, speakers = extract_labels(all_samples)
# samples = zero_padding(samples)
samples = zero_padding(samples)
#putting the parsed data into a dataframe
data = np.transpose(np.array([samples ,sample_rate,labels,speakers]))
data = pd.DataFrame(data,
columns=['Audio_Data','Sample_Rate','Labels', 'Speakers'])
#exploring the formed data frame
# print(data.head(10))
#saving the dataframe into a file (excel file, html table file )
# data.to_excel(main_dir+"/parsed_data.xlsx")
# data.to_html(main_dir+"/parsed_data.html")
return data
def train_test_split(samples):
pass
samples,sample_rate = import_data(all_samples)
labels, speakers = extract_labels(all_samples)
# samples = zero_padding(samples)
samples = zero_padding(samples)
samples = normalize_data(samples)
labels = labels.astype("uint8")
#putting the parsed data into a dataframe
data = np.transpose(np.array([samples ,sample_rate,labels,speakers]))
data = pd.DataFrame(data,
columns=['Audio_Data','Sample_Rate','Labels', 'Speakers'])
features = Feature_Extraction(samples)
freq , t , power = features.spect()
ZCR = features.ZCR()
print(freq[0].shape,t.shape,power.shape,ZCR.shape)
features.plot_spectogram()
print(type(freq[0]),type(t),type(power))
# print(freq[0:2])
# data["frequency"] = freq
# data.insert(2,"frequency",freq)
features_ZCR = pd.DataFrame(ZCR,
columns= ["ZCR"])
data = pd.concat([data,features_ZCR],axis=1)
# data.to_excel(main_dir+"/parsed_zcr.xlsx")
# data.to_html(main_dir+"/parsed_zcr.html")
print(data.info())
plt.figure(2)
plt.hist(data["ZCR"])
plt.show()
|
StarcoderdataPython
|
351334
|
x = int(input())
d = [0] * 1000001
for i in range(2,x+1):
d[i] = d[i-1] + 1
if i%2 == 0:
d[i] = min(d[i], d[i//2] + 1)
if i%3 == 0:
d[i] = min(d[i], d[i//3] + 1)
print(d[x])
|
StarcoderdataPython
|
6554118
|
<filename>custom_functions.py<gh_stars>0
# This module contains custom functions functions for data wrangling
import pandas as pd
def remove_column_substr(df, substr):
'''
remove substring from a column name in a pandas dataframe
:param df: pandas dataframe
:param substr: substring to remove
:return: pandas dataframe with new column names
'''
df.columns = df.columns.str.replace(substr, '')
return df
|
StarcoderdataPython
|
6591958
|
#!/usr/bin/env python
from rftool.rf import get_args, main
if __name__ == '__main__':
args = get_args()
main(args.file, args.cv)
|
StarcoderdataPython
|
11302325
|
from hashlib import sha256
# genesis block
hash = (sha256(sha256(
bytearray.fromhex(
"0100000000000000000000000000000000000000000000000000000000000000000000003ba3edfd7a7b12b27ac72c3e67768f617fc81bc3888a51323a9fb8aa4b1e5e4a29ab5f49ffff001d1dac2b7c"
)).digest()).digest().hex())
print(hash)
# block from test_data.txt
hash = (sha256(sha256(
bytearray.fromhex(
"010000007CC5C24C39FD05792C2865999E25FE87E066A37D7A08DC351F1400000000000049B6276425052B2FC24BFB784ECA55369B2B9E8B4180C869778CACB2BED171159395E64D2194261A0E33337A"
)).digest()).digest().hex())
print(hash)
|
StarcoderdataPython
|
1683176
|
<filename>sampling/potential_LAMMPS.py<gh_stars>1-10
##############################################################################
# Python-force-field-parameterization-workflow:
# A Python Library for performing force-field optimization
#
# Authors: <NAME>, <NAME>
#
# Python-force-field-parameterization-workflow is free software;
# you can redistribute it and/or modify it under the terms of the
# MIT License
# You should have received a copy of the MIT License along with the package.
##############################################################################
"""
This module contains a class to invoke LAMMPS
optimization.
The executable "optimize" is invoked from the command-line interface. It
will call "main()", which then call the function "optimize_main".
Some other command-line programs related to this package can be developed,
and invoked in an anaglous fashion.
The "optimize_main" is composed of several instances from different modules,
whic are laid out in procedure-oriented fashion so that the user can
easily understand the whole workflow. This should make the customization
more transparant.
"""
# Standard library:
import logging
import os
import itertools
import sys
# Local library:
# Third-parties library:
# GMSO
import mbuild as mb
import gmso
from gmso.external.convert_mbuild import from_mbuild
from gmso.formats.top import write_top
from gmso.formats import write_lammpsdata
from unyt import unyt_quantity
# This module defines the force field output format for LAMMPS
# Customized pair_style function returns:
# A dictionary with the filename as "key", and its content as "values"
def choose_lammps_potential(ptype, force_field_parameters):
potential_logger = logging.getLogger(__name__)
potential_logger.debug("function:choose_lammps_potential "
"entered successfully")
# a list of available LAMMPS potential functional:
potential_type = {
"tersoff": __pair_style_tersoff,
"tersoff/table": __pair_style_tersoff,
"stillinger_weber": __pair_style_sw,
"lj/cut": __pair_style_lj_cut,
"buck/coul/long": __pair_style_buck_coul_long,
"lj/smooth/linear": __pair_style_lj_smooth_linear_GMSO
}
# raise the errors and exit the program if
# requested potential is not defined
if (ptype not in potential_type.keys()):
potential_logger.error(
"ERROR: LAMMPS potential type: "
" %s is invalid: \n" % ptype +
"Solutions: \n" +
"1. Check the spelling\n" +
"2. Define a customized force field "
"named %s in potential.py\n" % ptype +
"Currently available potential types are: " +
" , ".join(pt for pt in potential_type.keys()) +
"\n")
sys.exit("Error messages found in the log file")
# choose the chosen output force field
chosen_potential = potential_type[ptype]
output_force_field_dict = chosen_potential(ptype, force_field_parameters)
potential_logger.debug("function:choose_lammps_potential "
"returned successfully; Potential type: "
"%s is used ..." % ptype)
return output_force_field_dict
def propagate_force_field(wk_folder_tple, output_force_field_dict):
potential_logger = logging.getLogger(__name__)
potential_logger.debug("function: propagate_force_field "
"entered successfully !")
for every_type in wk_folder_tple:
for each_folder in every_type:
for output_file in output_force_field_dict:
output_content = output_force_field_dict[output_file]
if (len(output_content) > 1
and output_content[0] == "TurnOnGMSO"):
pass
#write_lammpsdata = output_content[1]
#filename = os.path.join(each_folder, output_file)
#write_lammpsdata(output_content[2], filename, output_content[-1])
else:
filename = os.path.join(each_folder, output_file)
with open(filename, "w") as output:
for line in output_content:
output.write(line)
potential_logger.debug("function:propagate_force_field "
" returned successfully; force-field parameters ")
return None
def set_lj_smooth_linear_GMSO(top, force_field_parameters):
ff = gmso.ForceField('ar.xml')
ar_type = ff.atom_types['Ar']
ar_type.parameters["sigma"] = unyt_quantity(force_field_parameters[1], 'angstrom')
ar_type.parameters["epsilon"] = unyt_quantity(force_field_parameters[0], "6.947694845464e-21*J")
for site in top.sites:
site.atom_type = ar_type
top.update_topology()
return top
def __pair_style_lj_smooth_linear_GMSO(ptype, force_field_parameters):
# output dictionary:
# Generate a small box of Argon atoms using mBuild
# output dictionary :
force_field_dict = {}
ar = mb.Compound(name='Ar')
# (1.3954 g/cm^3 / 39.948 amu) * (3 nm) ^3
packed_system = mb.fill_box(
compound=ar,
n_compounds=512,
box=mb.Box([4.22187, 4.22187, 4.22187]),
)
# Convert system to a backend object
top = from_mbuild(packed_system)
lamp_data_name = "ar.lmp"
force_field_dict[lamp_data_name] = ("TurnOnGMSO", write_lammpsdata, top, "atomic", set_lj_smooth_linear_GMSO)
return force_field_dict
def __pair_style_lj_cut(ptype, force_field_parameters):
# output dictionary :
force_field_dict = {}
# define the filename
include_file = "force_field_parameters"
# define the command for each filename
lammps_cmd_comment = "#pair style: %s is used \n" % ptype
lammps_cmd_1 = "pair_style lj/cut %.3f" % force_field_parameters[0]
lammps_cmd_2 = "pair_coeff * * %.9f %.9f" % (force_field_parameters[1],
force_field_parameters[2])
lammps_cmd_3 = "pair_modify tail yes"
force_field_dict[include_file] = (lammps_cmd_comment,
lammps_cmd_1,
lammps_cmd_2,
lammps_cmd_3)
return force_field_dict
def __pair_style_sw(ptype, force_field_parameters):
# output dictionary :
force_field_dict = {}
# define the filename
potential_file = "mW.sw"
# define the filename
include_file = "force_field_parameters"
lammps_cmd_comment = "#pair style: %s is used \n" % ptype
element = "WT"
command1 = "pair_style sw\n"
command2 = ("pair_coeff" + " " + "* *" +
" " + potential_file + " " + element + "\n")
pair_command = ((element+" ")*3 +
" ".join(str(para) for para in force_field_parameters))
force_field_dict[include_file] = (lammps_cmd_comment,
command1,
command2)
force_field_dict[potential_file] = (pair_command)
return force_field_dict
def __pair_style_tersoff(ptype, force_field_parameters):
# output dictionary:
force_field_dict = {}
# define the filename
potential_file = "WT_ML-BOP.tersoff"
# define the filename
include_file = "force_field_parameters"
lammps_cmd_comment = "# pair style: %s is used \n" % ptype
element = "WT"
if ("table" in ptype):
command1 = "pair_style tersoff/table\n"
else:
command1 = "pair_style tersoff\n"
command2 = "pair_coeff" + " * * " + potential_file + " " + element
pair_command = ((element + " ")*3 +
" ".join(str(para) for para in force_field_parameters))
force_field_dict[include_file] = (lammps_cmd_comment, command1, command2)
force_field_dict[potential_file] = (pair_command)
return force_field_dict
def __pair_style_buck_coul_long(ptype, force_field_parameters):
# output dictionary:
force_field_dict = {}
# define the filename
include_file = "force_field_parameters"
# comment of included potential file
lammps_cmd_comment = "#pair style: %s is used \n" % ptype
# lammps command:
lammps_command_1 = ("pair_style buck/coul/long %.3f"
% force_field_parameters[0])
lammps_command_2 = ("pair_coeff 1 1 %.5f %.5f %.5f"
% (force_field_parameters[1],
force_field_parameters[2],
force_field_parameters[3]))
lammps_command_3 = ("pair_coeff 2 2 %.5f %.5f %.5f"
% (force_field_parameters[4],
force_field_parameters[5],
force_field_parameters[6]))
lammps_command_4 = ("pair_coeff 1 2 %.5f %.5f %.5f"
% (force_field_parameters[7],
force_field_parameters[8],
force_field_parameters[9]))
lammps_command_5 = "kspace_style pppm 1.0e-4"
force_field_dict[include_file] = (lammps_cmd_comment,
lammps_command_1,
lammps_command_2,
lammps_command_3,
lammps_command_4,
lammps_command_5)
return force_field_dict
|
StarcoderdataPython
|
3467485
|
(dog+cat).cat.print(10)
f"hi{dog}cat"
|
StarcoderdataPython
|
6609124
|
<gh_stars>100-1000
import sys
import os
import io
from contextlib import contextmanager
from unittest import TestCase
from sqflint import parse_args, entry_point
@contextmanager
def captured_output():
new_out, new_err = io.StringIO(), io.StringIO()
old_out, old_err = sys.stdout, sys.stderr
try:
sys.stdout, sys.stderr = new_out, new_err
yield sys.stdout, sys.stderr
finally:
sys.stdout, sys.stderr = old_out, old_err
class ParseCode(TestCase):
def test_stdin(self):
with captured_output() as (out, err):
sys.stdin = io.StringIO()
sys.stdin.write('hint _x')
sys.stdin.seek(0)
entry_point([])
self.assertEqual(
out.getvalue(),
'[1,5]:warning:Local variable "_x" is not from this scope (not private)\n')
def test_parser_error(self):
with captured_output() as (out, err):
sys.stdin = io.StringIO()
sys.stdin.write('hint (_x')
sys.stdin.seek(0)
entry_point([])
self.assertEqual(
out.getvalue(),
'[1,5]:error:Parenthesis "(" not closed\n')
def test_directory(self):
args = parse_args(['--directory', 'tests/test_dir'])
self.assertEqual('tests/test_dir', args.directory)
def test_directory_invalid(self):
with self.assertRaises(Exception) as context:
parse_args(['--directory', 'i_dont_exist'])
self.assertTrue('is not a valid path' in str(context.exception))
def test_exclude(self):
args = parse_args(['--exclude', 'tests/test_dir', '--exit', 'w', '--exclude', 'tests/test_dir/test.sqf'])
self.assertEqual(['tests/test_dir', 'tests/test_dir/test.sqf'], args.exclude)
def test_exit_code(self):
with captured_output():
exit_code = entry_point(['tests/test_dir/test.sqf'])
self.assertEqual(exit_code, 0)
# there are no errors, only a warning
with captured_output():
exit_code = entry_point(['tests/test_dir/test.sqf', '-e', 'e'])
self.assertEqual(exit_code, 0)
with captured_output():
exit_code = entry_point(['tests/test_dir/test.sqf', '-e', 'w'])
self.assertEqual(exit_code, 1)
def test_filename_run(self):
with captured_output() as (out, err):
entry_point(['tests/test_dir/test.sqf'])
self.assertEqual(out.getvalue(),
'[1,5]:warning:Local variable "_0" is not from this scope (not private)\n')
def test_directory_run(self):
with captured_output() as (out, err):
entry_point(['--directory', 'tests/test_dir'])
self.assertEqual(
out.getvalue(),
'test.sqf\n\t[1,5]:warning:Local variable "_0" is not from this scope (not private)\n'
'test1.sqf\n\t[1,5]:warning:Local variable "_1" is not from this scope (not private)\n'
'subdir/test2.sqf\n\t[1,5]:warning:Local variable "_2" is not from this scope (not private)\n'
'subdir/test3.sqf\n\t[1,5]:warning:Local variable "_3" is not from this scope (not private)\n')
def test_directory_run_with_exclusion(self):
with captured_output() as (out, err):
entry_point(['--directory', 'tests/test_dir', '--exclude', 'subdir', '-x', 'test.\.sqf'])
self.assertEqual(
out.getvalue(),
'test.sqf\n\t[1,5]:warning:Local variable "_0" is not from this scope (not private)\n'
'tests/test_dir/test1.sqf EXCLUDED\n'
'tests/test_dir/subdir EXCLUDED\n')
def test_directory_run_to_file(self):
entry_point(['--directory', 'tests/test_dir', '-o', 'tests/result.txt'])
with open('tests/result.txt') as f:
result = f.read()
try:
os.remove('tests/result.txt')
except OSError:
pass
self.assertEqual(
result,
'test.sqf\n\t[1,5]:warning:Local variable "_0" is not from this scope (not private)\n'
'test1.sqf\n\t[1,5]:warning:Local variable "_1" is not from this scope (not private)\n'
'subdir/test2.sqf\n\t[1,5]:warning:Local variable "_2" is not from this scope (not private)\n'
'subdir/test3.sqf\n\t[1,5]:warning:Local variable "_3" is not from this scope (not private)\n')
|
StarcoderdataPython
|
3214224
|
<reponame>zeou1/maggot_models<filename>notebooks/114.0-BDP-flow-revisited.py
# %% [markdown]
# ##
from src.hierarchy import signal_flow
from src.data import load_metagraph
from src.visualization import matrixplot
from src.visualization import CLASS_COLOR_DICT
from src.io import savefig
import os
from src.graph import preprocess
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
FNAME = os.path.basename(__file__)[:-3]
print(FNAME)
def stashfig(name, **kws):
savefig(name, foldername=FNAME, save_on=True, **kws)
VERSION = "2020-03-09"
print(f"Using version {VERSION}")
graph_types = ["G", "Gad", "Gaa", "Gdd", "Gda"]
# load the data
graphs = []
for graph_type in graph_types:
threshold = 0
weight = "weight"
mg = load_metagraph(graph_type, VERSION)
mg = preprocess(
mg,
threshold=threshold,
sym_threshold=False,
remove_pdiff=True,
binarize=False,
weight=weight,
)
print(
f"Preprocessed graph {graph_type} with threshold={threshold}, weight={weight}"
)
graphs.append(mg)
# %% [markdown]
# ## signal flow sort and plot
sns.set_context("talk", font_scale=1.25)
graph_sfs = []
for mg, graph_type in zip(graphs, graph_types):
meta = mg.meta
sf = signal_flow(mg.adj)
meta["signal_flow"] = -sf
graph_sfs.append(sf)
fig, ax = plt.subplots(1, 1, figsize=(20, 20))
matrixplot(
mg.adj,
ax=ax,
col_meta=meta,
row_meta=meta,
col_item_order="signal_flow",
row_item_order="signal_flow",
col_colors="Merge Class",
row_colors="Merge Class",
col_palette=CLASS_COLOR_DICT,
row_palette=CLASS_COLOR_DICT,
plot_type="scattermap",
sizes=(2.5, 5),
)
fig.suptitle(f"{graph_type}, signal flow sorted", y=0.91)
stashfig(f"sf-sort-scattermap-{graph_type}")
# %% [markdown]
# ## plot the rank orders for each
from scipy.stats import rankdata
sfs = []
rank_sfs = []
for mg, name in zip(graphs, graph_types):
sf = mg.meta["signal_flow"].copy()
sf.name = name
sfs.append(sf)
rank_sf = rankdata(sf)
rank_sf = pd.Series(index=sf.index, data=rank_sf, name=name)
rank_sfs.append(rank_sf)
sf_df = pd.DataFrame(sfs).T
sns.pairplot(sf_df)
# %% [markdown]
# ##
rank_sf_df = pd.DataFrame(rank_sfs).T
rank_sf_df.loc[meta.index, "class"] = meta["Merge Class"]
pg = sns.PairGrid(
rank_sf_df, vars=graph_types, hue="class", palette=CLASS_COLOR_DICT, corner=True
)
pg.map_offdiag(sns.scatterplot, s=5, alpha=0.5, linewidth=0)
def tweak(x, y, **kws):
ax = plt.gca()
if len(x) > 0:
xmax = np.nanmax(x)
xtop = ax.get_xlim()[-1]
if xmax > xtop:
ax.set_xlim([-1, xmax + 1])
if len(y) > 0:
ymax = np.nanmax(y)
ytop = ax.get_ylim()[-1]
if ymax > ytop:
ax.set_ylim([-1, ymax + 1])
ax.set_xticks([])
ax.set_yticks([])
def remove_diag(x, **kws):
ax = plt.gca()
ax.axis("off")
ax.set_xticks([])
ax.set_yticks([])
ax.spines["bottom"].set_visible(False)
def hide_current_axis(*args, **kwds):
plt.gca().set_visible(False)
pg.map_offdiag(tweak)
pg.map_diag(remove_diag)
stashfig("rank-sf-pairs")
# %% [markdown]
# ## plot sorted by some kind of random walk thingy
|
StarcoderdataPython
|
1710803
|
<gh_stars>10-100
import smbus
from time import sleep
from skeleton import InputSkeleton
class InputDevice(InputSkeleton):
"""A driver for Adafruit-developed Raspberry Pi character LCD&button shields based on MCP23017, either Adafruit-made or Chinese-made.
Tested on hardware compatible with Adafruit schematic and working with Adafruit libraries, but not on genuine Adafruit hardware.
"""
default_mapping = [
"KEY_KPENTER",
"KEY_RIGHT",
"KEY_DOWN",
"KEY_UP",
"KEY_LEFT"]
previous_data = 0
def __init__(self, addr = 0x20, bus = 1, **kwargs):
"""Initialises the ``InputDevice`` object.
Kwargs:
* ``bus``: I2C bus number.
* ``addr``: I2C address of the expander.
"""
self.bus_num = bus
self.bus = smbus.SMBus(self.bus_num)
if type(addr) in [str, unicode]:
addr = int(addr, 16)
self.addr = addr
self.init_expander()
InputSkeleton.__init__(self, **kwargs)
def init_expander(self):
"""Initialises the IO expander."""
self.setMCPreg(0x00, 0x1F)
self.setMCPreg(0x0C, 0x1F)
def runner(self):
"""Polling loop (only one there can be on this shield, since interrupt pin is not connected)."""
button_states = []
while not self.stop_flag:
if self.enabled:
data = (~self.readMCPreg(0x12)&0x1F)
if data != self.previous_data:
self.process_data(data)
self.previous_data = data
sleep(0.01)
def process_data(self, data):
"""Checks data received from IO expander and classifies changes as either "button up" or "button down" events. On "button up", calls send_key with the corresponding button name from ``self.mapping``. """
data_difference = data ^ self.previous_data
changed_buttons = []
for i in range(8):
if data_difference & 1<<i:
changed_buttons.append(i)
for button_number in changed_buttons:
if not data & 1<<button_number:
self.send_key(self.mapping[button_number])
def setMCPreg(self, reg, val):
"""Sets the MCP23017 register."""
self.bus.write_byte_data(self.addr, reg, val)
def readMCPreg(self, reg):
"""Reads the MCP23017 register."""
return self.bus.read_byte_data(self.addr, reg)
if __name__ == "__main__":
id = InputDevice(addr = 0x20, threaded=False)
id.runner()
|
StarcoderdataPython
|
3303416
|
<filename>src/im_task_webapp2/__init__.py
from im_task import _launch_task, get_taskroute
import webapp2
from google.appengine.ext import webapp
def get_webapp_url():
return "%s/(.*)" % get_taskroute()
class TaskHandler(webapp.RequestHandler):
def post(self, name):
_launch_task(self.request.body, name, self.request.headers)
class TaskHandler2(webapp2.RequestHandler):
def post(self, name):
_launch_task(self.request.body, name, self.request.headers)
def addrouteforwebapp(routes):
routes.append((get_webapp_url(), TaskHandler))
def addrouteforwebapp2(routes):
routes.append((get_webapp_url(), TaskHandler2))
|
StarcoderdataPython
|
19045
|
<reponame>bbueno5000/BuildAnAIStartUpDemo
import app
import flask
import flask_debugtoolbar
app = flask.Flask(__name__)
app.config.from_object('app.config')
db = flask.ext.sqlalchemy.SQLAlchemy(app)
mail = flask.ext.mail.Mail(app)
app.config['DEBUG_TB_TEMPLATE_EDITOR_ENABLED'] = True
app.config['DEBUG_TB_PROFILER_ENABLED'] = True
toolbar = flask_debugtoolbar.DebugToolbarExtension(app)
bcrypt = flask.ext.bcrypt.Bcrypt(app)
app.register_blueprint(app.views.user.userbp)
login_manager = flask.ext.login.LoginManager()
login_manager.init_app(app)
login_manager.login_view = 'userbp.signin'
@login_manager.user_loader
def load_user(email):
"""
DOCSTRING
"""
return app.models.User.query.filter(app.models.User.email == email).first()
|
StarcoderdataPython
|
8129396
|
<gh_stars>0
s = input('Enter string to get frequency of its words: ')
words = s.split()
d = {}
for word in words :
if word not in d :
d[word] = 1
else :
d[word] = d[word] + 1
print('Words and their frequencies are')
for i in d :
print(i, d[i])
|
StarcoderdataPython
|
3368078
|
<reponame>Tobias2023/dolosse
"""
file: test_data.py
brief: File containing test data for the various Pixie16 test fixtures.
author: <NAME>
date: November 02, 2019
"""
from struct import pack
def pack_data(data, type):
"""
Packs an iterable into a bytes like object
:param data: The data that we'll pack into the bytes object.
:param type: The data type that we'll pack into, E.g. unsigned int, long int, double.
:return: The bytes like object that we've packed from the list.
"""
payload = b''
for element in data:
payload += pack(type, element)
return payload
class Pixie16TestData:
def __init__(self):
pass
@staticmethod
def qdc(as_bytes=False):
data = [123, 456, 789, 987, 654, 321, 147, 258]
if as_bytes:
return pack_data(data, 'I')
return data
@staticmethod
def trace(as_bytes=False):
data = [437, 436, 434, 434, 437, 437, 438, 435, 434, 438, 439, 437, 438,
434, 435, 439, 438, 434, 434, 435, 437, 440, 439, 435, 437, 439,
438, 435, 436, 436, 437, 439, 435, 433, 434, 436, 439, 441, 436,
437, 439, 438, 438, 435, 434, 434, 438, 438, 434, 434, 437, 440,
439, 438, 434, 436, 439, 439, 437, 436, 434, 436, 438, 437, 436,
437, 440, 440, 439, 436, 435, 437, 501, 1122, 2358, 3509, 3816,
3467, 2921, 2376, 1914, 1538, 1252, 1043, 877, 750, 667, 619,
591, 563, 526, 458, 395, 403, 452, 478, 492, 498, 494, 477, 460,
459, 462, 461, 460, 456, 452, 452, 455, 453, 446, 441, 440, 444,
456, 459, 451, 450, 447, 445, 449, 456, 456, 455]
if as_bytes:
return pack_data(data, "H")
return data
@staticmethod
def external_timestamp(as_bytes=False):
data = [987654321, 1596]
if as_bytes:
return pack_data(data, "I")
return data
@staticmethod
def esums(as_bytes=False, decoded=False):
data = [12, 13, 14, 1164725159]
if as_bytes:
return pack_data(data, "I")
if decoded:
data[3] = 3780.728271484375
return data
@staticmethod
def header(freq=250, firmware=30474, as_bytes=False, decoded=False):
if freq == 250 and firmware == 30474:
data = [540717, 123456789, 26001, 2345]
if decoded:
data = {
'channel': 13,
'slot': 2,
'crate': 0,
'header_length': 4,
'event_length': 4,
'finish_code': 0,
'event_time_low': 123456789,
'event_time_high': 26001,
'cfd_fractional_time': 0,
'cfd_trigger_source_bit': 0,
'cfd_forced_trigger_bit': 0,
'energy': 2345,
'trace_length': 0,
'trace_out_of_range': 0
}
if as_bytes:
return pack_data(data, 'I')
return data
@staticmethod
def header_with_trace(freq=250, firmware=30474, as_bytes=False, decoded=False):
if freq == 250 and firmware == 30474:
data = [8667181, 123456789, 26001, 8128809]
if decoded:
data = {
'channel': 13,
'slot': 2,
'crate': 0,
'header_length': 4,
'event_length': 66,
'finish_code': 0,
'event_time_low': 123456789,
'event_time_high': 26001,
'cfd_fractional_time': 0,
'cfd_trigger_source_bit': 0,
'cfd_forced_trigger_bit': 0,
'energy': 2345,
'trace_length': 124,
'trace_out_of_range': 0
}
if as_bytes:
return pack_data(data, 'I')
return data
|
StarcoderdataPython
|
309009
|
"""gecasmo is a package for estimating click models"""
from .GCM import GCM
from .clickdefinitionreader import ClickDefinition
|
StarcoderdataPython
|
3498174
|
<reponame>sarangbhagwat/Bioindustrial-Park
# -*- coding: utf-8 -*-
# BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules
# Copyright (C) 2020, <NAME> <<EMAIL>>
#
# This module is under the UIUC open-source license. See
# github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt
# for license details.
"""
"""
import biosteam as bst
from .. import PY37
from . import (utils,
_process_settings,
_chemicals,
_system,
_tea,
)
__all__ = [*utils.__all__,
*_process_settings.__all__,
*_chemicals.__all__,
*_system.__all__,
*_tea.__all__,
'lipidcane_sys',
'lipidcane_tea',
'flowsheet',
]
from .utils import *
from ._process_settings import *
from ._chemicals import *
from ._system import *
from ._tea import *
_system_loaded = False
_chemicals_loaded = False
def load_chemicals():
global chemicals, _chemicals_loaded
chemicals = create_chemicals()
_chemicals_loaded = True
def load(name):
import biosteam as bst
from biosteam import main_flowsheet as F, UnitGroup
global lipidcane_sys, lipidcane_tea, specs, flowsheet, _system_loaded
global unit_groups
if not _chemicals_loaded: load_chemicals()
flowsheet = bst.Flowsheet('lipidcane2g')
F.set_flowsheet(flowsheet)
bst.settings.set_thermo(chemicals)
load_process_settings()
dct = globals()
u = flowsheet.unit
s = flowsheet.stream
if name == 'divided 1 and 2g front end oil separation':
lipidcane_sys = create_lipidcane_to_biodiesel_and_ethanol_divided_1_and_2g_front_end_oil_separation()
area_names = [
'Feedstock handling',
'Juicing',
'Biod. prod.',
'Conv. ferm.',
'Pretreatment',
'Cofementation',
'Ethanol sep.',
'Wastewater treatment',
'Boiler turbogenerator',
'Utilities',
'Storage'
]
bst.rename_unit(u.BT, 1000)
bst.rename_units([u.FT, u.CWP, u.CIP_package, u.ADP, u.CT, u.PWC], 1100)
bst.rename_units([i for i in lipidcane_sys.units if bst.is_storage_unit(i)], 1200)
elif name == 'divided 1 and 2g hydrolyzate oil separation':
area_names = [
'Feedstock handling',
'Juicing',
'Biod. prod.',
'Conv. ferm.',
'Pretreatment',
'Cofementation',
'Ethanol sep.',
'Wastewater treatment',
'Boiler turbogenerator',
'Utilities',
'Storage'
]
lipidcane_sys = create_lipidcane_to_biodiesel_and_ethanol_divided_1_and_2g_hydrolyzate_oil_separation()
bst.rename_unit(u.BT, 1000)
bst.rename_units([u.FT, u.CWP, u.CIP_package, u.ADP, u.CT, u.PWC], 1100)
bst.rename_units([i for i in lipidcane_sys.units if bst.is_storage_unit(i)], 1200)
elif name == '1g':
lipidcane_sys = create_lipidcane_to_biodiesel_and_ethanol_1g()
elif name == 'sugarcane 2g':
global sugarcane_sys
sugarcane_sys = create_sugarcane_to_ethanol_2g()
else:
raise NotImplementedError(name)
unit_groups = UnitGroup.group_by_area(lipidcane_sys.units)
if '2g' in name:
# lipidcane_tea = create_tea(lipidcane_sys)
# for i in lipidcane_tea.TEAs: i.operating_days = 200
# lipidcane_sys.simulate()
for i, j in zip(unit_groups, area_names): i.name = j
partial_lipidcane_tea = create_tea(lipidcane_sys)
partial_lipidcane_tea.operating_days = 200
cornstover_sys = trim_to_cornstover_hot_water_cellulosic_ethanol(lipidcane_sys)
partial_cornstover_tea = create_tea(cornstover_sys)
partial_cornstover_tea.operating_days = 130
lipidcane_tea = bst.AgileTEA([partial_lipidcane_tea, partial_cornstover_tea], 0.1)
lipidcane_sys.simulate()
lipidcane_tea.save_scenario(0)
cornstover_sys.simulate()
lipidcane_tea.save_scenario(1)
dct.update(flowsheet.to_dict())
lipidcane_tea.IRR = 0.10
s.ethanol.price = lipidcane_tea.solve_price(s.ethanol)
else:
lipidcane_tea = create_tea(lipidcane_sys)
for i in lipidcane_tea.TEAs: i.operating_days = 200
try:
lipidcane_sys.simulate()
except Exception as e:
raise e
else:
lipidcane_tea.IRR = 0.10
s.ethanol.price = lipidcane_tea.solve_price(s.ethanol)
finally:
dct.update(flowsheet.to_dict())
def ethanol_price():
return lipidcane_tea.solve_price(flowsheet.stream.ethanol) * 2.98668849
|
StarcoderdataPython
|
3495438
|
<filename>src/staff/urls.py
from django.urls import path
from django.shortcuts import render
from django.contrib.admin.views.decorators import staff_member_required
from .views import ConsistencyTestView
def home_view(request):
return render(request, "staff/home.html", {})
urlpatterns = [
path("", home_view, name="staff-home"),
path(
"consistency-test",
staff_member_required(ConsistencyTestView.as_view()),
name="staff-consistency_test",
),
]
|
StarcoderdataPython
|
178586
|
import networkx as nx
import numpy as np
def project3d(points, direction):
"""
投影函数,将三维点集投影到二维
投影平面内的y方向为z轴投影(如果投影的法向量为z轴,则y方向为x轴投影)
:param points: 三维点集
:param direction: 投影平面的法向量(u,v,w),投影平面通过原点(0,0,0)
"""
d = direction / np.linalg.norm(direction)
y0 = np.array([1, 0, 0]) if np.array([0, 0, 1]).dot(d) == 1 else np.array([0, 0, 1])
y1 = y0 - np.dot(d, y0) * d
norm_y = y1 / np.linalg.norm(y1)
x0 = np.cross(norm_y, d)
norm_x = x0 / np.linalg.norm(x0)
pos = {}
for k in points:
p0 = np.array(points[k])
p1 = p0 - np.dot(d, p0) * d
pos[k] = (np.dot(norm_y, p1), np.dot(norm_x, p1))
return pos
class Graph:
"""
包装nx.Graph的图类
"""
def __init__(self, name, nx_graph=None):
self.name = name
self.info = {}
self.g = nx.Graph(nx_graph)
def __len__(self):
return len(self.nodes())
def __getitem__(self, node):
return self.g[node]
def copy(self):
return Graph(self.name, self.g)
def add_node(self, node, **attr):
self.g.add_node(node, **attr)
def add_edge(self, node1, node2, **attr):
self.g.add_edge(node1, node2, **attr)
def remove_node(self, node):
self.g.remove_node(node)
def nodes(self):
return self.g.nodes
def edges(self):
return self.g.edges
def degree(self, node=None):
if node is not None:
return self.g.degree[node]
return self.g.degree
def subgraph(self, nodes):
return Graph(self.name, self.g.subgraph(nodes))
def max_subgraph(self):
mc = max(nx.connected_components(self.g), key=len)
return Graph(self.name, self.g.subgraph(mc))
def is_connected(self):
return nx.is_connected(self.g)
def get_node_attributes(self, attr):
return nx.get_node_attributes(self.g, attr)
def get_edge_attributes(self, attr):
return nx.get_edge_attributes(self.g, attr)
def draw_graph(self, axes, highlight=None, direction=(0, 0, 1), rotation=None):
"""用matlotlib画二维投影图"""
axes.clear()
points = self.get_node_attributes('location')
if rotation is not None:
for k in points:
points[k] = np.dot(points[k], rotation)
pos = project3d(points, np.array(direction))
label = self.get_node_attributes('label')
edge_label = self.get_edge_attributes('dist')
nx.draw_networkx(self.g, pos, alpha=0.7, with_labels=False, edge_color='.4', ax=axes)
if highlight is not None:
nx.draw_networkx_nodes(self.g, pos=pos, nodelist=highlight, node_color='r', ax=axes)
nx.draw_networkx_labels(self.g, pos, labels=label, ax=axes)
nx.draw_networkx_edge_labels(self.g, pos, edge_labels=edge_label, ax=axes)
axes.axis('off')
def draw_3d_graph(self, axes, highlight=None):
"""用matlotlib画三维图"""
axes.clear()
points = self.get_node_attributes('location')
label = self.get_node_attributes('label')
if highlight is None:
highlight = []
for key, value in points.items():
c = 'blue' # 普通原子为蓝色
if key in highlight:
c = 'red' # 高亮原子用红色表示
xi, yi, zi = value
axes.scatter(xi, yi, zi, label[key], c=c, alpha=0.9)
for i, j in enumerate(self.edges()):
# 用两端原子的坐标连线,绘制化学键
x = np.array((points[j[0]][0], points[j[1]][0]))
y = np.array((points[j[0]][1], points[j[1]][1]))
z = np.array((points[j[0]][2], points[j[1]][2]))
axes.plot(x, y, z, c='black', alpha=0.9)
def number_of_edges(self, u, v):
return self.g.number_of_edges(u, v)
|
StarcoderdataPython
|
3303285
|
from ...utils.json_schema import method_signature_to_json_schema, JsonParameter, JsonSchemaDocument
from ..existing_table_handling import ExistingTableHandling
from records_mover.records.delimited.hints import Hints
from typing import Any, Dict, List, Callable
from ...mover_types import JsonSchema
HINT_PARAMETERS = [
JsonParameter(hint_enum.value.hint_name,
hint_enum.value.json_schema_document(),
optional=True)
for hint_enum in list(Hints)
]
def method_to_json_schema(method: Callable[..., Any]) -> JsonSchema:
special_handling: Dict[str, List[JsonParameter]] = {
'google_cloud_creds': [JsonParameter('gcp_creds_name', JsonSchemaDocument('string'))],
'db_engine': [JsonParameter('db_name', JsonSchemaDocument('string'))],
'records_format': ([JsonParameter('variant', JsonSchemaDocument('string'), optional=True)] +
HINT_PARAMETERS),
'initial_hints': HINT_PARAMETERS,
'existing_table_handling':
[JsonParameter('existing_table',
JsonSchemaDocument('string',
enum=[k.lower()
for k in ExistingTableHandling.__members__],
default='delete_and_overwrite'),
optional=True)],
}
parameters_to_ignore = [
'self',
# maybe in the future we can have people point us to a JSON
# file for hints...
'hints',
# ...and maybe this particular way of passing in dicts:
'add_user_perms_for',
'add_group_perms_for',
# oh yeah, and a way to pass a filename in for those that have
# hand-crafted a records schema file yet don't have a full
# records directory...
'records_schema'
]
return method_signature_to_json_schema(method,
special_handling=special_handling,
parameters_to_ignore=parameters_to_ignore)
|
StarcoderdataPython
|
1744921
|
<filename>python/exercicios mundo 1/ex004/ex006.py
#O mesmo professor do desafio 19 quer sortear a ordem de apresentação de trabalhos dos alunos. Faça um programa que leia o nome dos quatro alunos e mostre a ordem sorteada.
import random
n1 =str(input('primeiro aluno: '))
n2 =str(input('segundo aluno: '))
n3 =str(input('terceiro aluno: '))
n4 =str(input('quarto aluno: '))
lista = [n1, n2, n3, n4]
random.shuffle(lista)
print('a ordem da apresentação será ')
print(lista)
|
StarcoderdataPython
|
6413054
|
from ..layers.HeteroLinear import HeteroMLPLayer
from ..layers.GeneralGNNLayer import MultiLinearLayer
def HGNNPreMP(args, node_types, num_pre_mp, in_dim, hidden_dim):
"""
HGNNPreMP, dimension is in_dim, hidden_dim, hidden_dim ...
Note:
Final layer has activation.
Parameters
----------
args
node_types
num_pre_mp
in_dim
hidden_dim
Returns
-------
"""
if num_pre_mp > 0:
linear_dict = {}
for ntype in node_types:
linear_dict[ntype] = [in_dim]
for _ in range(num_pre_mp):
linear_dict[ntype].append(hidden_dim)
return HeteroMLPLayer(linear_dict, act=args.activation, dropout=args.dropout,
has_l2norm=args.has_l2norm, has_bn=args.has_bn, final_act=True)
def HGNNPostMP(args, node_types, num_post_mp, hidden_dim, out_dim):
"""
HGNNPostMLP, hidden_dim, hidden_dim, ..., out_dim
Final layer has no activation.
Parameters
----------
args
node_types
num_post_mp
hidden_dim
out_dim
Returns
-------
"""
if num_post_mp > 0:
linear_dict = {}
for ntype in node_types:
linear_dict[ntype] = [hidden_dim]
for _ in range(num_post_mp-1):
linear_dict[ntype].append(hidden_dim)
linear_dict[ntype].append(out_dim)
return HeteroMLPLayer(linear_dict, act=args.activation, dropout=args.dropout,
has_l2norm=args.has_l2norm, has_bn=args.has_bn, final_act=False)
# def GNNPreMP(args, in_dim, hidden_dim):
# linear_list = [in_dim] + args.layers_pre_mp * [hidden_dim]
# return MultiLinearLayer(linear_list, dropout=args.dropout, act=args.activation, has_bn=args.has_bn,
# has_l2norm=args.has_l2norm)
#
#
# def GNNPostMP(args, hidden_dim, out_dim):
# linear_list = args.layers_pre_mp * [hidden_dim] + [out_dim]
# return MultiLinearLayer(linear_list, dropout=args.dropout, act=args.activation, has_bn=args.has_bn,
# has_l2norm=args.has_l2norm)
|
StarcoderdataPython
|
1948674
|
<gh_stars>1-10
from abnormal import AB
import proxies
def get_proxies():
return proxies.get_proxies()
def test_create_ab():
ab = AB(get_proxies())
assert ab
def test_get_proxies():
working_proxies = get_proxies()
assert len(working_proxies) > 100
|
StarcoderdataPython
|
1620904
|
import unittest
import warnings
import pytest
from qiskit import QuantumCircuit
from cirq import ParamResolver
from qiskit.providers import JobStatus
from azure.quantum.job.job import Job
from azure.quantum.qiskit import AzureQuantumProvider
from azure.quantum.cirq import AzureQuantumService
from azure.quantum.cirq.targets.target import Target
from common import QuantumTestBase, ZERO_UID
class TestQiskit(QuantumTestBase):
"""TestIonq
Tests the azure.quantum.target.ionq module.
"""
mock_create_job_id_name = "create_job_id"
create_job_id = Job.create_job_id
def get_test_job_id(self):
return ZERO_UID if self.is_playback \
else Job.create_job_id()
def _3_qubit_ghz(self):
circuit = QuantumCircuit(3, 3)
circuit.name = "Qiskit Sample - 3-qubit GHZ circuit"
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 2)
circuit.measure([0,1,2], [0, 1, 2])
return circuit
@pytest.mark.ionq
@pytest.mark.live_test
def test_plugins_submit_qiskit_to_ionq(self):
circuit = self._3_qubit_ghz()
self._test_qiskit_submit_ionq(circuit=circuit, num_shots=500, num_shots_actual=500)
@pytest.mark.ionq
@pytest.mark.live_test
def test_plugins_submit_qiskit_qobj_to_ionq(self):
from qiskit import assemble
circuit = self._3_qubit_ghz()
qobj = assemble(circuit)
self._test_qiskit_submit_ionq(circuit=qobj, num_shots=1024, num_shots_actual=1024)
def _qiskit_wait_to_complete(self, qiskit_job, provider):
job = qiskit_job._azure_job
self.pause_recording()
try:
job.wait_until_completed(timeout_secs=60)
except TimeoutError:
self.resume_recording()
warnings.warn(f"Qiskit Job {job.id} exceeded timeout. Skipping fetching results.")
else:
self.resume_recording()
self.assertEqual(JobStatus.DONE, qiskit_job.status())
qiskit_job = provider.get_job(job.id)
self.assertEqual(JobStatus.DONE, qiskit_job.status())
def _test_qiskit_submit_ionq(self, circuit, num_shots, num_shots_actual):
with unittest.mock.patch.object(
Job,
self.mock_create_job_id_name,
return_value=self.get_test_job_id(),
):
workspace = self.create_workspace()
provider = AzureQuantumProvider(workspace=workspace)
assert "azure-quantum-qiskit" in provider._workspace.user_agent
backend = provider.get_backend("ionq.simulator")
qiskit_job = backend.run(
circuit=circuit,
shots=num_shots
)
# Make sure the job is completed before fetching the results
# playback currently does not work for repeated calls
# See: https://github.com/microsoft/qdk-python/issues/118
if self.in_recording:
self._qiskit_wait_to_complete(qiskit_job, provider)
if JobStatus.DONE == qiskit_job.status():
result = qiskit_job.result()
assert result.data()["counts"] == {
'000': num_shots_actual//2, '111': num_shots_actual//2
}
assert result.data()["probabilities"] == {'000': 0.5, '111': 0.5}
counts = result.get_counts()
assert counts == result.data()["counts"]
@pytest.mark.ionq
@pytest.mark.live_test
def test_plugins_retrieve_job(self):
with unittest.mock.patch.object(
Job,
self.mock_create_job_id_name,
return_value=self.get_test_job_id(),
):
workspace = self.create_workspace()
provider = AzureQuantumProvider(workspace=workspace)
backend = provider.get_backend("ionq.simulator")
circuit = self._3_qubit_ghz()
qiskit_job = backend.run(
circuit=circuit,
num_shots=100
)
# Make sure the job is completed before fetching the results
# playback currently does not work for repeated calls
# See: https://github.com/microsoft/qdk-python/issues/118
if self.in_recording:
self._qiskit_wait_to_complete(qiskit_job, provider)
if JobStatus.DONE == qiskit_job.status():
fetched_job = backend.retrieve_job(qiskit_job.id())
assert fetched_job.id() == qiskit_job.id()
result = fetched_job.result()
assert result.data() == {
'counts': {
'000': 250,
'111': 250
},
'probabilities': {
'000': 0.5,
'111': 0.5
}
}
@pytest.mark.honeywell
@pytest.mark.live_test
def test_plugins_submit_qiskit_to_honeywell(self):
self._test_qiskit_submit_honeywell(num_shots=None)
def _test_qiskit_submit_honeywell(self, num_shots):
with unittest.mock.patch.object(
Job,
self.mock_create_job_id_name,
return_value=self.get_test_job_id(),
):
workspace = self.create_workspace()
provider = AzureQuantumProvider(workspace=workspace)
backend = provider.get_backend("honeywell.hqs-lt-s1-apival")
assert "honeywell.hqs-lt-s1-apival" in backend.backend_names
assert backend.backend_names[0] in [t.name for t in workspace.get_targets(provider_id="honeywell")]
circuit = self._3_qubit_ghz()
qiskit_job = backend.run(
circuit=circuit,
num_shots=num_shots
)
# Make sure the job is completed before fetching the results
# playback currently does not work for repeated calls
# See: https://github.com/microsoft/qdk-python/issues/118
if self.in_recording:
self._qiskit_wait_to_complete(qiskit_job, provider)
if JobStatus.DONE == qiskit_job.status():
result = qiskit_job.result()
assert result.data()["counts"] == {'000': 500}
assert result.data()["probabilities"] == {'000': 1.0}
class TestCirq(QuantumTestBase):
mock_create_job_id_name = "create_job_id"
def get_test_job_id(self):
return ZERO_UID if self.is_playback \
else Job.create_job_id()
def _3_qubit_ghz_cirq(self):
import cirq
# Create qubits
q0 = cirq.LineQubit(0)
q1 = cirq.LineQubit(1)
q2 = cirq.LineQubit(2)
# Create a circuit
circuit = cirq.Circuit(
cirq.H(q0), # H gate
cirq.CNOT(q0, q1),
cirq.CNOT(q1, q2),
cirq.measure(q0, key='q0'),
cirq.measure(q1, key='q1'),
cirq.measure(q2, key='q2'),
)
return circuit
def test_plugins_cirq_user_agent(self):
# VCR is incompatible with parametrized tests
for app_id in [
"test-user-agent",
"test-very-very-very-very-very-very-very-very-long-user-agent"
]:
workspace = self.create_workspace(user_agent=app_id)
service = AzureQuantumService(workspace=workspace)
assert app_id in service._workspace.user_agent
assert "-azure-quantum-cirq" in service._workspace.user_agent
@pytest.mark.honeywell
@pytest.mark.ionq
@pytest.mark.live_test
def test_plugins_cirq_get_targets(self):
workspace = self.create_workspace()
service = AzureQuantumService(workspace=workspace)
assert "azure-quantum-cirq" in service._workspace.user_agent
targets = service.targets()
target_names = [t.name for t in targets]
assert all([isinstance(t, Target) for t in targets])
assert "honeywell.hqs-lt-s1-apival" in target_names
assert "ionq.simulator" in target_names
@pytest.mark.ionq
@pytest.mark.live_test
def test_plugins_ionq_cirq(self):
with unittest.mock.patch.object(
Job,
self.mock_create_job_id_name,
return_value=self.get_test_job_id(),
):
workspace = self.create_workspace()
service = AzureQuantumService(workspace=workspace)
try:
run_result = service.run(
program=self._3_qubit_ghz_cirq(),
repetitions=500,
target="ionq.simulator",
timeout_seconds=60
)
except TimeoutError as e:
# Pass on timeout
warnings.warn("IonQ execution exceeded timeout. \
Skipping fetching results.")
if self.is_playback:
raise e
except RuntimeError as e:
# cirq_ionq currently throws a RuntimeError both if the job
# failed and on timeout.
# See: https://github.com/quantumlib/Cirq/issues/4507
if 'Job failed' in str(e) or self.is_playback:
warnings.warn(f"IonQ job execution failed: {str(e)}")
raise e
else:
warnings.warn("IonQ execution exceeded timeout. \
Skipping fetching results.")
else:
job = service.get_job(self.get_test_job_id())
job_result = job.results().to_cirq_result()
for result in [run_result, job_result]:
assert "q0" in result.measurements
assert "q1" in result.measurements
assert "q2" in result.measurements
assert len(result.measurements["q0"]) == 500
assert len(result.measurements["q1"]) == 500
assert len(result.measurements["q2"]) == 500
assert result.measurements["q0"].sum() == result.measurements["q1"].sum()
assert result.measurements["q1"].sum() == result.measurements["q2"].sum()
@pytest.mark.honeywell
@pytest.mark.live_test
def test_plugins_honeywell_cirq(self):
with unittest.mock.patch.object(
Job,
self.mock_create_job_id_name,
return_value=self.get_test_job_id(),
):
workspace = self.create_workspace()
service = AzureQuantumService(workspace=workspace)
program = self._3_qubit_ghz_cirq()
try:
run_result = service.run(
program=program,
repetitions=500,
target="honeywell.hqs-lt-s1-apival",
timeout_seconds=60
)
except TimeoutError as e:
# Pass on timeout
warnings.warn("Honeywell execution exceeded timeout. \
Skipping fetching results.")
if self.is_playback:
raise e
except RuntimeError as e:
# cirq_ionq currently throws a RuntimeError both if the job
# failed and on timeout.
# See: https://github.com/quantumlib/Cirq/issues/4507
if 'Job failed' in str(e) or self.is_playback:
warnings.warn(f"Honeywell job execution failed: {str(e)}")
raise e
else:
warnings.warn("Honeywell execution exceeded timeout. \
Skipping fetching results.")
else:
job_no_program = service.get_job(self.get_test_job_id())
job_with_program = service.get_job(
self.get_test_job_id(), program=program)
target = service._target_factory.create_target(
provider_id="honeywell", name="honeywell.hqs-lt-s1-apival")
job_result1 = target._to_cirq_result(
result=job_no_program.results(), param_resolver=ParamResolver({}))
job_result2 = target._to_cirq_result(
result=job_with_program.results(), param_resolver=ParamResolver({}))
for result in [run_result, job_result1, job_result2]:
assert "q0" in result.measurements
assert "q1" in result.measurements
assert "q2" in result.measurements
assert len(result.measurements["q0"]) == 500
assert len(result.measurements["q1"]) == 500
assert len(result.measurements["q2"]) == 500
assert result.measurements["q0"].sum() == result.measurements["q1"].sum()
assert result.measurements["q1"].sum() == result.measurements["q2"].sum()
|
StarcoderdataPython
|
1685
|
import unittest
from networks.QoS import QoS
from networks.connections.mathematical_connections import FunctionalDegradation
from networks.slicing import SliceConceptualGraph
from utils.location import Location
class TestBaseStationLinear(unittest.TestCase):
def setUp(self):
self.name = "network"
self.wireless_connection_type = "LinearDegradation"
self.backhaul_qos = {'latency': {'delay': '3.0ms', 'deviation': '1.0ms'}, 'bandwidth': '100.0mbps',
'error_rate': '1.0%'}
self.midhaul_qos = {'latency': {'delay': '3.0ms', 'deviation': '1.0ms'}, 'bandwidth': '100.0mbps',
'error_rate': '1.0%'}
self.parameters = dict(
best_qos={'latency': {'delay': '5.0ms', 'deviation': '2.0ms'}, 'bandwidth': '10.0mbps',
'error_rate': '1.0%'},
worst_qos={'latency': {'delay': '100.0ms', 'deviation': '20.0ms'}, 'bandwidth': '5.0mbps',
'error_rate': '2.0%'}, radius="5km")
self.network = SliceConceptualGraph(self.name, self.midhaul_qos, self.backhaul_qos, self.parameters)
def test_creation(self):
self.assertEqual(self.network.get_name(), "network")
def test_get_empty_nodes(self):
self.assertEqual(self.network.get_nodes(), {})
def test_add_node(self):
name, lat, lon = 'node', 33, 40
lat, lon = 33, 40
self.network.set_RU(lat, lon)
self.network.add_node(name, lat, lon)
self.assertEqual(self.network.get_nodes(), {'node': Location(lat, lon)})
with self.assertRaises(SliceConceptualGraph.NetworkSliceException):
self.network.add_node('node', 33, 40)
def test_get_empty_RUs(self):
self.assertEqual(self.network.get_RUs(), {})
def test_set_basetastion(self):
lat, lon = 33, 40
self.network.set_RU(lat, lon)
self.assertEqual(self.network.get_RUs(), {f'{lat}-{lon}': Location(lat, lon)})
with self.assertRaises(SliceConceptualGraph.NetworkSliceException):
self.network.set_RU(lat, lon)
def test_constructor(self):
with self.assertRaises(FunctionalDegradation.FunctionDegradationNetworkException):
SliceConceptualGraph('test', {}, {}, {})
SliceConceptualGraph('test', self.midhaul_qos, {}, {})
SliceConceptualGraph('test', {}, self.backhaul_qos, {})
SliceConceptualGraph('test', {}, {}, self.parameters)
def test_get_qos(self):
self.assertEqual(self.network.get_backhaul(), QoS(self.backhaul_qos))
def test_set_qos(self):
self.network.set_backhaul(QoS.minimum_qos_dict)
self.assertEqual(self.network.get_backhaul(), QoS(QoS.minimum_qos_dict))
def test_qos_from_distance(self):
self.assertEqual(self.network.get_qos_from(5).get_formated_qos(), self.parameters.get('worst_qos'))
self.assertEqual(self.network.get_qos_from(0.0).get_formated_qos(), self.parameters.get('best_qos'))
def test_get_node_location(self):
lat, lon = 33, 40
self.network.set_RU(lat, lon)
self.network.add_node('test', 10, 10)
self.assertEqual(self.network.get_node_location('test2'), None)
self.assertEqual(self.network.get_node_location('test'), Location(10, 10))
def test_has_to_pass_through_backhaul(self):
self.network.set_RU(10, 10)
self.network.set_RU(20, 20)
self.network.add_node('source1', 10, 10)
self.network.add_node('destination1', 10, 10)
self.network.add_node('destination2', 20, 20)
def test_set_RUs(self):
self.network.set_RUs([{'lat': 10, 'lon': 10}, {'lat': 5, 'lon': 5}])
self.assertEqual(self.network.get_RUs(),
{'10-10': Location(**{'lat': 10, 'lon': 10}), '5-5': Location(**{'lat': 5, 'lon': 5})})
lat, lon = 33, 40
self.network.set_RU(lat, lon)
with self.assertRaises(SliceConceptualGraph.NetworkSliceException):
self.network.set_RUs([{'lat': 10, 'lon': 10}, {'lat': 5, 'lon': 5}])
def test_set_node_location(self):
lat, lon = 33, 40
self.network.set_RU(lat, lon)
self.network.add_node('destination1', 10, 10)
self.network.set_node_location('destination1', 20, 20)
self.assertEqual(self.network.get_node_location('destination1'), Location(20, 20))
with self.assertRaises(Location.LocationException):
self.network.set_node_location('destination1', 'test', 20)
with self.assertRaises(Location.LocationException):
self.network.set_node_location('destination1', 20, 'test')
class TestBaseLog2Degradation(unittest.TestCase):
def setUp(self):
self.name = "network"
self.wireless_connection_type = "Log2Degradation"
self.midhaul_qos = {'latency': {'delay': '3.0ms', 'deviation': '1.0ms'}, 'bandwidth': '100.0mbps',
'error_rate': '1.0%'}
self.backhaul_qos = {'latency': {'delay': '3.0ms', 'deviation': '1.0ms'}, 'bandwidth': '100.0mbps',
'error_rate': '1.0%'}
self.parameters = dict(
best_qos={'latency': {'delay': '5.0ms', 'deviation': '2.0ms'}, 'bandwidth': '10.0mbps',
'error_rate': '1.0%'},
worst_qos={'latency': {'delay': '100.0ms', 'deviation': '20.0ms'}, 'bandwidth': '5.0mbps',
'error_rate': '2.0%'}, radius="5km")
self.network = SliceConceptualGraph(self.name, self.midhaul_qos, self.backhaul_qos, self.parameters)
def test_creation(self):
self.assertEqual(self.network.get_name(), "network")
def test_get_empty_nodes(self):
self.assertEqual(self.network.get_nodes(), {})
def test_add_node(self):
name, lat, lon = 'node', 33, 40
with self.assertRaises(SliceConceptualGraph.NetworkSliceException):
self.network.add_node(name, lat, lon)
self.network.set_RU(33, 40, 0)
self.network.add_node(name, lat, lon)
self.assertEqual(self.network.get_nodes(), {'node': Location(lat, lon)})
with self.assertRaises(SliceConceptualGraph.NetworkSliceException):
self.network.add_node('node', 33, 40)
def test_get_empty_RUs(self):
self.assertEqual(self.network.get_RUs(), {})
def test_set_basetastion(self):
lat, lon = 33, 40
self.network.set_RU(lat, lon)
self.assertEqual(self.network.get_RUs(), {f'{lat}-{lon}': Location(lat, lon)})
with self.assertRaises(SliceConceptualGraph.NetworkSliceException):
self.network.set_RU(lat, lon)
def test_constructor(self):
with self.assertRaises(FunctionalDegradation.FunctionDegradationNetworkException):
SliceConceptualGraph('test', {} ,{}, {})
SliceConceptualGraph('test', self.midhaul_qos, {}, {})
SliceConceptualGraph('test', {}, self.backhaul_qos, {})
SliceConceptualGraph('test', {}, {}, self.parameters)
def test_get_qos(self):
self.assertEqual(self.network.get_backhaul(), QoS(self.backhaul_qos))
def test_set_qos(self):
self.network.set_backhaul(QoS.minimum_qos_dict)
self.assertEqual(self.network.get_backhaul(), QoS(QoS.minimum_qos_dict))
def test_qos_from_distance(self):
self.assertEqual(self.network.get_qos_from(5).get_formated_qos(), self.parameters.get('worst_qos'))
self.assertEqual(self.network.get_qos_from(0.0).get_formated_qos(), self.parameters.get('best_qos'))
def test_get_node_location(self):
lat, lon = 33, 40
self.network.set_RU(lat, lon)
self.network.add_node('test', 10, 10)
self.assertEqual(self.network.get_node_location('test2'), None)
self.assertEqual(self.network.get_node_location('test'), Location(10, 10))
def test_set_RUs(self):
self.network.set_RUs([{'lat': 10, 'lon': 10}, {'lat': 5, 'lon': 5}])
self.assertEqual(self.network.get_RUs(),
{'10-10': Location(**{'lat': 10, 'lon': 10}), '5-5': Location(**{'lat': 5, 'lon': 5})})
with self.assertRaises(SliceConceptualGraph.NetworkSliceException):
self.network.set_RUs([{'lat': 10, 'lon': 10}, {'lat': 5, 'lon': 5}])
def test_set_node_location(self):
lat, lon = 33, 40
self.network.set_RU(lat, lon)
self.network.add_node('destination1', 10, 10)
self.network.set_node_location('destination1', 20, 20)
self.assertEqual(self.network.get_node_location('destination1'), Location(20, 20))
with self.assertRaises(Location.LocationException):
self.network.set_node_location('destination1', 'test', 20)
with self.assertRaises(Location.LocationException):
self.network.set_node_location('destination1', 20, 'test')
|
StarcoderdataPython
|
8050898
|
import pytest
from godot import RID, Environment, Node
def test_base():
v = RID()
assert type(v) == RID
def test_equal():
v1 = RID()
v2 = RID()
assert v1 == v2
# Environment is a Ressource which provides unique rid per instance
res_a = Environment()
v_a_1 = RID(res_a)
assert v_a_1 != v1
v_a_2 = RID(res_a)
assert v_a_1 == v_a_2
res_b = Environment()
v_b = RID(res_b)
assert not v_a_1 == v_b # Force use of __eq__
@pytest.mark.parametrize("arg", [None, 0, "foo"])
def test_bad_equal(arg):
arr = RID(Environment())
assert arr != arg
def test_bad_equal_with_rid():
# Doing `RID(Environment())` will cause garbage collection of enclosed
# Environment object and possible reuse of it id
env1 = Environment()
env2 = Environment()
rid1 = RID(env1)
rid2 = RID(env2)
assert rid1 != rid2
def test_lt():
env1 = Environment()
env2 = Environment()
rid1 = RID(env1)
rid2 = RID(env2)
# Ordered is based on resource pointer, so cannot know the order ahead of time
small, big = sorted([rid1, rid2])
assert small < big
assert big > small
assert not small > big
assert not big < small
def test_repr():
v = RID()
assert repr(v) == "<RID(id=0)>"
@pytest.mark.parametrize("arg", [42, "dummy", RID()])
def test_bad_instantiate(arg):
with pytest.raises(TypeError):
RID(arg)
def test_bad_instantiate_with_not_resource(generate_obj):
# Node doesn't inherit from Resource
node = generate_obj(Node)
with pytest.raises(TypeError):
RID(node)
@pytest.mark.parametrize("args", [["get_id", int, ()]], ids=lambda x: x[0])
def test_methods(args):
v = RID()
# Don't test methods' validity but bindings one
field, ret_type, params = args
assert hasattr(v, field)
method = getattr(v, field)
assert callable(method)
ret = method(*params)
assert type(ret) == ret_type
# @pytest.mark.parametrize('args', [
# (Vector2(0, 0), Vector2(2, 3)),
# (Vector2(3, 2), Vector2(-1, 1)),
# (Vector2(-1, -1), Vector2(3, 4)),
# ], ids=lambda x: x[0])
# def test_lt(args):
# param, result = args
# calc = Vector2(2, 3) - param
# assert calc == result
# @pytest.mark.parametrize('arg', [
# None, 1, 'dummy'
# ], ids=lambda x: x[0])
# def test_bad_add(arg):
# with pytest.raises(TypeError):
# Vector2(2, 3) + arg
|
StarcoderdataPython
|
1891373
|
import numpy as np
import cv2
from config import *
from keras.utils.np_utils import to_categorical
def pre_process_img(img,colorChannel='RGB'):
#first remove the hood of car
img = img[TOPCROP:BOTTOMCROP,...];
#normalize image
return img/255.-0.5
def pre_process_label(label):
#only use third index
label = label[:,:,2];
#set car hood to zero
mask = (label[-115:,:]==10)
mask = np.pad(mask,((485,0),(0,0)),mode='constant');
label[mask] = 0;
label = label[TOPCROP:BOTTOMCROP,:];
#set pixels labeled as lane markings(value=6) to be same as the road surface(value=7)
mask = (label==6)
label[mask] = 7;
#now set anything that is not vehicle or drivable surface to 'Other'
mask = (label==7) + (label==10);
label[~mask] = 0;
#now set vehicles and roads
label[(label==7)] = 1; #roads
label[(label==10)] = 2; #vehicles
return label
def augment_data(img,label):
choice = np.random.choice(['flip','flip','shift','noise','rotate']);
if choice=='rotate':
M_rot = cv2.getRotationMatrix2D((W/2,H/2),np.random.randint(-15,15),1);
img = cv2.warpAffine(img,M_rot,(W,H));
label = cv2.warpAffine(label,M_rot,(W,H));
elif choice=='shift':
M_shift = np.float32([[1,0,np.random.randint(0,50)],[0,1,np.random.randint(0,50)]])
img = cv2.warpAffine(img,M_shift,(W,H))
label = cv2.warpAffine(label,M_shift,(W,H));
elif choice=='noise':
mean = 0.0 # some constant
std = 0.1 # some constant (standard deviation)
img = img + np.random.normal(mean, std, img.shape)
elif choice=='zoom':
zoomfactor = np.random.randint(1,8)
M_zoom = cv2.getRotationMatrix2D((W/2,H/2), 0, zoomfactor)
img = cv2.warpAffine(img, M_zoom,(W,H))
label = cv2.warpAffine(label, M_zoom,(W,H))
elif choice=='flip':
img = cv2.flip(img,1);
label = cv2.flip(label,1);
return img,label
def data_generator(imgs,labels,batchSize=50,augment=True):
#initialize pointer
idx,n = 0,len(imgs);
#input data
X_in = np.zeros((batchSize,H,W,C),dtype='float32');
X_out = np.zeros((batchSize,H,W,numClasses),dtype='float32');
#yield data with or w/o augmentation
while True:
for i in range(batchSize):
img = cv2.imread(imgs[idx%n]);
img = pre_process_img(img);
#get label data
label = cv2.imread(labels[idx%n]);
label = pre_process_label(label);
if augment:
img, label = augment_data(img,label)
X_in[i,:,:,:] = img.astype('float32');
X_out[i,:,:,:] = to_categorical(label,num_classes=numClasses).reshape((H,W,numClasses)).astype('float32');
#increment counter
idx+=1;
yield X_in, X_out
|
StarcoderdataPython
|
1687288
|
from features.numpy_sift import SIFTDescriptor
import numpy as np
import features.feature_utils
from features.DetectorDescriptorTemplate import DetectorAndDescriptor
class np_sift(DetectorAndDescriptor):
def __init__(self, peak_thresh=10.0):
super(
np_sift,
self).__init__(
name='np_sift',
is_detector=True,
is_descriptor=True,
is_both=True,
patch_input=True)
self.peak_thresh = peak_thresh
self.descriptor = None
def detect_feature(self, image):
pass
def extract_descriptor(self, image, feature):
pass
def extract_all(self, image):
pass
def extract_descriptor_from_patch(self, patches):
patch_num = patches.shape[0]
patches.shape[1]
w = patches.shape[2]
if self.descriptor is None or self.descriptor.patchSize != w:
self.descriptor = SIFTDescriptor(w)
descriptors = np.zeros((patch_num, 128))
for i in range(patch_num):
patch = features.feature_utils.all_to_gray(patches[i, :, :, :])
patch = patch[:, :, 0]
descriptors[i, :] = self.descriptor.describe(patch).flatten()
return descriptors
|
StarcoderdataPython
|
1986993
|
<filename>Game/PlayerLogic/Actions/Double.py
import IAction
# BUG: Double hits and stands as well?
class Double(IAction.IAction):
def legal(self, player, admin):
return player.cardCount() == 2 and player.isActive()
def effect(self, player, admin):
admin.dealCard(player)
player.active = False
admin.wagers[player] *= 2
def actionName(self):
return "Double"
|
StarcoderdataPython
|
5133202
|
<filename>main.py
#!/usr/bin/env python3
import requests
import json
from dotenv import load_dotenv
import os
import mariadb
import datetime
import time
import dateutil.relativedelta
load_dotenv()
PI_IP = os.getenv("PI_IP")
API_KEY = os.getenv("API_KEY")
DB_USER = os.getenv("DB_USER")
DB_PASSWD = os.getenv("<PASSWORD>")
DB_IP = os.getenv("DB_IP")
DB_DATABASE = os.getenv("DB_DATABASE")
try:
conn = mariadb.connect(
user=DB_USER,
password=<PASSWORD>,
host=DB_IP,
port=3306,
database=DB_DATABASE
)
except mariadb.Error as e:
print(f"Error connecting to MariaDB Platform: {e}")
# exit()
def scannet():
c = conn.cursor()
print("[*] Creating table if it doesn't exist...")
c.execute('''CREATE TABLE IF NOT EXISTS network (addres VARCHAR(255),name VARCHAR(255),macaddr VARCHAR(255),maccompany VARCHAR(255), lastquery INT(255), PRIMARY KEY(addres));''')
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'en-US,en;q=0.5',
'X-Requested-With': 'XMLHttpRequest',
'Connection': 'keep-alive',
'Sec-GPC': '1',
'DNT': '1',
}
params = (
('auth', API_KEY),
('network', ''),
('_', '1624463201689'),
)
response = requests.get(f'http://{PI_IP}/admin/api_db.php', headers=headers,params=params)
print("[*] Sending request...")
devices = response.text
json_data = json.loads(devices)
json_data = json_data['network']
print("[*] Sending data to database...")
#print(f"{rd.years} years, {rd.months} months, {rd.days} days, {rd.hours} hours, {rd.minutes} minutes and {rd.seconds} seconds")
from alive_progress import alive_bar
with alive_bar(len(json_data)) as bar:
for entry in json_data:
bar()
host = "Not found"
hostname = None
macaddr = None
maccompany = None
lastQuery = None
if entry['lastQuery']:
curr_time = time.time()
other_time = entry['lastQuery']
dt1 = datetime.datetime.fromtimestamp(other_time)
dt2 = datetime.datetime.fromtimestamp(curr_time)
rd = dateutil.relativedelta.relativedelta (dt2, dt1)
if rd.days >= 1:
pass
else:
lastQuery = entry['lastQuery']
if entry['ip']:
host = entry['ip'][0]
bar.text(host)
if entry['name']:
hostname = entry['name'][0]
if entry['hwaddr']:
macaddr = entry['hwaddr']
if entry['macVendor']:
maccompany = entry['macVendor']
c.execute("replace into network values (?,?,?,?,?);", (host,hostname,macaddr,maccompany,lastQuery))
conn.commit()
# print("[*] Network scan has completed and has been uploaded...")
def client():
cur = conn.cursor()
cur.execute('SELECT distinct * from network;')
print("[*] Fetching results from database...")
for entry in cur:
host = None
hostname = None
macaddr = None
maccompany = None
lastQuery = None
if entry[0]:
host = entry[0]
if entry[1]:
hostname = entry[1]
if entry[2]:
macaddr = entry[2]
if entry[3]:
maccompany = entry[3]
if entry[4]:
lastQuery = entry[4]
print(host,hostname,macaddr,maccompany,lastQuery)
conn.close()
def main():
scannet()
# client()
if __name__ == "__main__":
main()
|
StarcoderdataPython
|
8083321
|
#!/usr/bin/env python
import subprocess, shlex, json
def get_threat_list():
isi_threat_list_raw = "isi antivirus reports threats list --format json -a -z"
isi_threat_list_split = shlex.split(isi_threat_list_raw)
isi_threat_list_cmd = subprocess.Popen(isi_threat_list_split, stdout = subprocess.PIPE)
isi_threat_list_strings = isi_threat_list_cmd.communicate()[0]
isi_threat_list_results = json.loads(isi_threat_list_strings)
return isi_threat_list_results
def release_threats():
isi_threat_list_results = get_threat_list()
for i in isi_threat_list_results:
isi_release_quarantine_raw = "isi antivirus release --verbose"
isi_release_quarantine_split = shlex.split(isi_release_quarantine_raw)
isi_release_quarantine_split.append(i["file"])
isi_release_quarantine_cmd = subprocess.Popen(isi_release_quarantine_split, stdout = subprocess.PIPE)
isi_release_quarantine_results = isi_release_quarantine_cmd.communicate()[0]
print(isi_release_quarantine_results)
def main():
release_threats()
if __name__ == '__main__':
main()
|
StarcoderdataPython
|
1642261
|
<filename>Python/136_SingleNumber.py
class Solution(object):
def singleNumber(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
#Using XOR to find the single number.
#Because every number appears twice, while N^N=0, 0^N=N,
#XOR is cummutative, so the order of elements does not matter.
#Finally, it will be res = 0 ^ singlenumber ==> res = singlenumber
res = 0
for num in nums:
res ^= num
return res
nums = [1,1,5,5,3,4,4,9,9,8,8,7,7]
foo = Solution()
print foo.singleNumber(nums)
|
StarcoderdataPython
|
42166
|
<gh_stars>0
# 저자: Charles
# 공공 번호; Charles의 피카츄
# python 작은 게임 시리즈 만들기 - FlappyBird
import Bird
import Pipe
import pygame
from pygame.locals import *
# 일부 상수 정의
WIDTH, HEIGHT = 640, 480
# 메인 함수
def main():
# 초기화
pygame.init()
screen = pygame.display.set_mode((WIDTH, HEIGHT), 0, 32)
pygame.display.set_caption('FlappyBird-公众号: Charles的皮卡丘')
# 공공번호: Charles의 피카츄
# 사진 삽입
background_img = pygame.image.load("./resources/images/background.png")
gameover_img = pygame.image.load("./resources/images/gameover.png")
# 음악 삽입
jump_sound = pygame.mixer.Sound("./resources/audios/jump.wav")
jump_sound.set_volume(6)
pygame.mixer.music.load('./resources/audios/moonlight.wav')
pygame.mixer.music.play(-1, 0.0)
pygame.mixer.music.set_volume(12)
# 서체 지정
font = pygame.font.Font("./resources/fonts/simkai.ttf", 24)
# 시계
clock = pygame.time.Clock()
# 작은 새
bird = Bird.Bird(HEIGHT, WIDTH)
# 파이프
pipes = []
# 시간
time0 = 0
time_interval = 2
# 점수
SCORE = 0
running = True
# 메인 루프
while running:
# 배경 지정
screen.fill(0)
for x in range(WIDTH // background_img.get_width() + 1):
for y in range(HEIGHT // background_img.get_height() + 1):
screen.blit(background_img, (x * 100, y * 100))
time_passed = clock.tick() / 1000
# 이벤트
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
exit(0)
if event.type == pygame.KEYDOWN:
if event.key == K_SPACE:
jump_sound.play()
bird.cur_jump_height = 0
bird.is_jump = True
# 색칠한 새
bird.update(time_passed)
screen.blit(bird.rotated_bird, bird.rect)
if bird.is_dead():
running = False
# 페인트 파이프
time1 = pygame.time.get_ticks() / 1000
if time1 - time0 > time_interval:
time0 = time1
pipes.append(Pipe.Pipe(HEIGHT, WIDTH))
for i, pipe in enumerate(pipes):
pipe.update(time_passed)
for p in pipe.pipe:
screen.blit(p.img, p.rect)
if bird.rect.left > pipe.x + Pipe.pipeHead().width and not pipe.add_score:
SCORE += 1
pipe.add_score = True
if pipe.x + Pipe.pipeHead().width < 0:
pipes.pop(i)
# 충돌 감지
if pygame.sprite.spritecollide(bird, pipe.pipe, False, None):
if bird.rect.left < pipe.x + (Pipe.pipeHead().width + Pipe.pipeBody().width) / 2:
running = False
# 점수 표시
scoreText = font.render('Score: ' + str(SCORE), True, (0, 0, 0))
scoreRect = scoreText.get_rect()
scoreRect.topleft = [10, 10]
screen.blit(scoreText, scoreRect)
pygame.display.flip()
pygame.display.update()
screen.blit(gameover_img, (0, 0))
pygame.display.flip()
pygame.display.update()
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
exit(0)
if __name__ == "__main__":
main()
|
StarcoderdataPython
|
12833266
|
class NotInsideTransaction(Exception):
def __init__(self):
message = 'Trying to perform an operation that needs to be inside transaction'
super(NotInsideTransaction, self).__init__(message)
class MixedPositionalAndNamedArguments(Exception):
def __init__(self):
message = 'Cannot mix positional and named arguments in query'
super(MixedPositionalAndNamedArguments, self).__init__(message)
|
StarcoderdataPython
|
3319739
|
from unittest import mock
from django.db.utils import IntegrityError
from django.test import Client, SimpleTestCase, TestCase
from django.urls import resolve, reverse
from users.api import CheckVerificationCodeView, EmailView
from users.models import Emails
from users.tasks import send_verification_code
from users.utils import (
generate_verification_code,
is_code_correct,
is_code_in_redis,
set_verification_code,
)
class TestUrls(SimpleTestCase):
def test_user_email_is_resolved(self):
url = reverse("send-verification-code")
self.assertEqual(resolve(url).func.view_class, EmailView)
def test_verification_code_check_is_resolved(self):
url = reverse("check-verification-code")
self.assertEqual(
resolve(url).func.view_class, CheckVerificationCodeView
)
class TestViews(TestCase):
def setUp(self):
self.client = Client()
self.send_verification_code_url = reverse("send-verification-code")
self.check_verification_code_url = reverse("check-verification-code")
def test_verification_code_POST_no_data_provided(self):
response = self.client.post(self.send_verification_code_url)
print(response)
self.assertEqual(response.status_code, 400)
self.assertEqual(
response.json().get("email")[0], "This field is required."
)
@mock.patch("users.utils.redis.StrictRedis.get", return_value=False)
@mock.patch("users.api.is_code_in_redis", return_value=False)
def test_verification_code_POST_successful(
self, mock_is_code_in_redis, mock_r_get
):
response = self.client.post(
self.send_verification_code_url, data={"email": "<EMAIL>"}
)
self.assertTrue(mock_is_code_in_redis.called)
self.assertEqual(response.status_code, 200)
self.assertContains(response, "please check your inbox")
@mock.patch("users.api.is_code_in_redis", return_value=True)
def test_verification_code_POST_wait_120_sec(self, mock_is_code_in_redis):
response = self.client.post(
self.send_verification_code_url, data={"email": "<EMAIL>"}
)
self.assertTrue(mock_is_code_in_redis.called)
self.assertEqual(response.status_code, 202)
self.assertEqual(
response.json().get("detail"), "please wait 120 seconds"
)
@mock.patch("users.tasks.send_mail")
def test_send_verification_code_func(self, mock_send_mail):
ret = send_verification_code(email="<EMAIL>", code="234123")
self.assertTrue(mock_send_mail.called)
def test_check_verification_POST_no_data(self):
response = self.client.post(self.check_verification_code_url)
self.assertEqual(response.status_code, 400)
def test_check_verification_POST_invalid_email(self):
response = self.client.post(
self.check_verification_code_url, data={"email": "not_an_email"}
)
self.assertEqual(response.status_code, 400)
self.assertEqual(
response.json().get("email")[0], "Enter a valid email address."
)
def test_check_verification_POST_invalid_non_digit_code(self):
response = self.client.post(
self.check_verification_code_url, data={"code": "abcdef"}
)
self.assertEqual(response.status_code, 400)
self.assertEqual(
response.json().get("code")[0], "Only digits are allowed"
)
def test_check_verification_POST_invalid_short_code(self):
response = self.client.post(
self.check_verification_code_url, data={"code": "12345"}
)
self.assertEqual(response.status_code, 400)
self.assertEqual(
response.json().get("code")[0], "Code is only 6 digits long"
)
def test_check_verification_POST_invalid_long_code(self):
response = self.client.post(
self.check_verification_code_url, data={"code": "1234567"}
)
self.assertEqual(response.status_code, 400)
self.assertEqual(
response.json().get("code")[0], "Code is only 6 digits long"
)
@mock.patch("users.api.is_code_correct", return_value=False)
def test_check_verification_POST_not_valid_code(self, mock_is_code_correct):
response = self.client.post(
self.check_verification_code_url,
data={"email": "<EMAIL>", "code": "123456"},
)
self.assertTrue(mock_is_code_correct.called)
self.assertEqual(response.status_code, 401)
self.assertEqual(response.json().get("detail"), "Code is not correct")
@mock.patch("users.api.is_code_correct", return_value=True)
def test_check_verification_POST_valid_code(self, mock_is_code_correct):
response = self.client.post(
self.check_verification_code_url,
data={"email": "<EMAIL>", "code": "123456"},
)
self.assertTrue(mock_is_code_correct.called)
self.assertEqual(response.status_code, 200)
self.assertEqual(response.json().get("detail"), "successful")
email_obj = Emails.objects.get(email="<EMAIL>")
self.assertTrue(email_obj.is_active)
class TestModels(TestCase):
@classmethod
def setUpTestData(cls):
cls.email_obj = Emails.objects.create(
email="<EMAIL>", is_active=True
)
def test_email_field__uniqueness(self):
with self.assertRaises(IntegrityError):
Emails.objects.create(email="<EMAIL>")
def test_email_model_str(self):
self.assertEqual(
str(self.email_obj),
f"{self.email_obj.email} (active: {self.email_obj.is_active})",
)
class TestUtils(SimpleTestCase):
def test_generate_verification_code_length(self):
self.assertEqual(len(generate_verification_code()), 6)
def test_generate_verification_code_is_digit(self):
self.assertTrue(generate_verification_code().isdigit())
def test_generate_verification_code_returns_str(self):
self.assertTrue(type(generate_verification_code()) == str)
@mock.patch("users.utils.redis.StrictRedis.set", return_value=True)
def test_set_verification_code(self, mock_set_verification_code):
ret = set_verification_code("<EMAIL>", "123456")
self.assertTrue(mock_set_verification_code.called)
self.assertTrue(ret)
@mock.patch("users.utils.redis.StrictRedis.get", return_value=True)
def test_is_code_in_redis(self, mock_is_code_in_redis):
self.assertTrue(is_code_in_redis("<EMAIL>"))
self.assertTrue(mock_is_code_in_redis.called)
@mock.patch("users.utils.redis.StrictRedis.get", return_value=b"123123")
def test_is_code_correct(self, mock_is_code_correct):
self.assertTrue(is_code_correct("<EMAIL>", 123123))
self.assertTrue(mock_is_code_correct.called)
@mock.patch("users.utils.redis.StrictRedis.get", return_value="123123")
def test_is_code_correct_not_working_with_str_return_from_redis(
self, mock_is_code_correct
):
# returns false because the data that is fetched from redis
# should be in byte type.
# if you call `.decode()` on it, it will raise an AttributeError
self.assertFalse(is_code_correct("<EMAIL>", "123123"))
self.assertTrue(mock_is_code_correct.called)
|
StarcoderdataPython
|
389856
|
<filename>galois/factor.py<gh_stars>0
"""
A module containing routines for integer factorization.
"""
import bisect
import functools
import math
import random
import numpy as np
from .math_ import isqrt
from .overrides import set_module
from .prime import PRIMES, is_prime
__all__ = ["prime_factors", "is_smooth"]
def trial_division_factor(n):
max_factor = isqrt(n)
max_prime_idx = bisect.bisect_right(PRIMES, max_factor)
p, e = [], []
for prime in PRIMES[0:max_prime_idx]:
degree = 0
while n % prime == 0:
degree += 1
n //= prime
if degree > 0:
p.append(prime)
e.append(degree)
if n == 1:
break
return p, e, n
@functools.lru_cache(maxsize=1024)
def pollard_rho_factor(n, c=1):
"""
References
----------
* Section 3.2.2 from https://cacr.uwaterloo.ca/hac/about/chap3.pdf
"""
f = lambda x: (x**2 + c) % n
a, b, d = 2, 2, 1
while True:
a = f(a)
b = f(f(b))
b = f(f(b))
d = math.gcd(a - b, n)
if 1 < d < n:
return d
if d == n:
return None # Failure
# def fermat_factors(n):
# a = isqrt(n) + 1
# b2 = a**2 - n
# while isqrt(b2)**2 != b2:
# a += 1
# b2 = a**2 - n
# b = isqrt(b2)
# return a - b, a + b
@set_module("galois")
def prime_factors(n):
"""
Computes the prime factors of the positive integer :math:`n`.
The integer :math:`n` can be factored into :math:`n = p_1^{e_1} p_2^{e_2} \\dots p_{k-1}^{e_{k-1}}`.
**Steps**:
1. Test if :math:`n` is prime. If so, return `[n], [1]`.
2. Use trial division with a list of primes up to :math:`10^6`. If no residual factors, return the discovered prime factors.
3. Use Pollard's Rho algorithm to find a non-trivial factor of the residual. Continue until all are found.
Parameters
----------
n : int
The positive integer to be factored.
Returns
-------
list
Sorted list of :math:`k` prime factors :math:`p = [p_1, p_2, \\dots, p_{k-1}]` with :math:`p_1 < p_2 < \\dots < p_{k-1}`.
list
List of corresponding prime powers :math:`e = [e_1, e_2, \\dots, e_{k-1}]`.
Examples
--------
.. ipython:: python
p, e = galois.prime_factors(120)
p, e
# The product of the prime powers is the factored integer
np.multiply.reduce(np.array(p) ** np.array(e))
Prime factorization of 1 less than a large prime.
.. ipython:: python
prime =1000000000000000035000061
galois.is_prime(prime)
p, e = galois.prime_factors(prime - 1)
p, e
np.multiply.reduce(np.array(p) ** np.array(e))
"""
if not isinstance(n, (int, np.integer)):
raise TypeError(f"Argument `n` must be an integer, not {type(n)}.")
if not n > 1:
raise ValueError(f"Argument `n` must be greater than 1, not {n}.")
n = int(n)
# Step 1
if is_prime(n):
return [n], [1]
# Step 2
p, e, n = trial_division_factor(n)
# Step 3
while n > 1 and not is_prime(n):
f = pollard_rho_factor(n) # A non-trivial factor
while f is None:
# Try again with a different random function f(x)
f = pollard_rho_factor(n, c=random.randint(2, n // 2))
if is_prime(f):
degree = 0
while n % f == 0:
degree += 1
n //= f
p.append(f)
e.append(degree)
else:
raise RuntimeError(f"Encountered a very large composite {f}. Please report this as a GitHub issue at https://github.com/mhostetter/galois/issues.")
if n > 1:
p.append(n)
e.append(1)
return p, e
@set_module("galois")
def is_smooth(n, B):
"""
Determines if the positive integer :math:`n` is :math:`B`-smooth, i.e. all its prime factors satisfy :math:`p \\le B`.
The :math:`2`-smooth numbers are the powers of :math:`2`. The :math:`5`-smooth numbers are known
as *regular numbers*. The :math:`7`-smooth numbers are known as *humble numbers* or *highly composite numbers*.
Parameters
----------
n : int
A positive integer.
B : int
The smoothness bound.
Returns
-------
bool
`True` if :math:`n` is :math:`B`-smooth.
Examples
--------
.. ipython:: python
galois.is_smooth(2**10, 2)
galois.is_smooth(10, 5)
galois.is_smooth(12, 5)
galois.is_smooth(60**2, 5)
"""
if not isinstance(n, (int, np.integer)):
raise TypeError(f"Argument `n` must be an integer, not {type(n)}.")
if not isinstance(B, (int, np.integer)):
raise TypeError(f"Argument `B` must be an integer, not {type(B)}.")
if not n > 0:
raise ValueError(f"Argument `n` must be non-negative, not {n}.")
if not B >= 2:
raise ValueError(f"Argument `B` must be at least 2, not {B}.")
if n == 1:
return True
else:
p, _ = prime_factors(n)
return p[-1] <= B
|
StarcoderdataPython
|
180966
|
<filename>p1_navigation/plots.py<gh_stars>0
import matplotlib.pyplot as plt
def plot_loss(history):
history['agent_avg_loss'].plot(label='avg_loss');
history['agent_avg_loss'].rolling(10).mean().plot(label='rolling(10) mean of avg_loss');
plt.title('Agent average loss')
plt.xlabel('Episodes')
plt.ylabel('Loss')
plt.legend();
def plot_score(history):
history['score'].plot(label='score');
history['score'].rolling(100).mean().plot(label='rolling(100) mean of score')
plt.title('Agent score')
plt.xlabel('Episodes')
plt.ylabel('Score')
plt.legend();
|
StarcoderdataPython
|
1931642
|
<gh_stars>1-10
#!/usr/bin/env python3
# This script converts MeCab analysis result to Juman++ training data
import sys
import csv
import random
def escape(x):
if '"' in x or ',' in x:
replaced = x.replace('"', '""')
return f'"{replaced}"'
else:
return x
FIELD_NAMES = [
"pos1",
"pos2",
"pos3",
"pos4",
"cType",
"cForm",
"lForm",
"lemma",
"orth",
"pron",
"orthBase",
"pronBase",
"goshu",
"iType",
"iForm",
"fType",
"fForm",
"iConType",
"fConType",
"type",
"kana",
"kanaBase",
"form",
"formBase",
"aType",
"aConType",
"aModType",
"lid",
"lemma_id",
]
TRAIN_FIELDS = {"pos1", "pos2", "pos3", "pos4", "cType", "cForm", "lForm", "lemma", "orth", "pron", "orthBase",
"pronBase", "goshu", "type", "aType", "aConType", "aModType"}
HIRAGANA = 'ぁあぃいぅうぇえぉおかがきぎくぐけげこごさざしじすずせぜそぞただちぢっつづてでとどなにぬねのはばぱひびぴふぶぷへべぺほぼぽまみむめもゃやゅゆょよらりるれろわをんーゎゐゑゕゖゔゝゞ・「」。、'
FULL_KATA = 'ァアィイゥウェエォオカガキギクグケゲコゴサザシジスズセゼソゾタダチヂッツヅテデトドナニヌネノハバパヒビピフブプヘベペホボポマミムメモャヤュユョヨラリルレロワヲンーヮヰヱヵヶヴヽヾ・「」。、'
KATA_TO_HIRA = str.maketrans(FULL_KATA, HIRAGANA)
class Unidic(object):
def __init__(self):
self.lookup = {}
@staticmethod
def makeKey(fparts):
pos1 = fparts[0] or '*'
pos2 = fparts[1] or '*'
pos3 = fparts[2] or '*'
pos4 = fparts[3] or '*'
cType = fparts[4] or '*'
cForm = fparts[5] or '*'
lForm = fparts[6] or '*'
lemma = fparts[7] or '*'
pron = fparts[9] or '*'
pronBase = fparts[11] or '*'
goshu = fparts[12] or '*'
type = fparts[19] or '*'
aType = fparts[24] or '*'
aConType = fparts[25] or '*'
aModType = fparts[26] or '*'
return (
pos1,
pos2,
pos3,
pos4,
cType,
cForm,
lForm,
lemma,
pron,
pronBase,
goshu,
type,
aType,
aConType,
aModType
)
def add(self, fparts):
if len(fparts) < 29:
return
orth = fparts[8]
orthBase = fparts[10]
key = Unidic.makeKey(fparts)
rds = self.lookup.setdefault(key, [])
val = (orth, orthBase)
if orth not in rds:
rds.append(val)
def get(self, fparts):
if len(fparts) < 27:
return None
orth = fparts[8]
orthBase = fparts[10]
key = Unidic.makeKey(fparts)
retval = orth, orthBase
items = self.lookup.get(key, None)
if items is None:
return None
notMe = [item for item in items if item != retval]
if len(notMe) == 0:
return None
return random.choice(notMe)
def deleteSingles(self):
todelete = []
for k, v in self.lookup.items():
if len(v) == 1:
todelete.append(k)
for i in todelete:
self.lookup.pop(i)
def readUnidic(file):
unidic = Unidic()
with open(file, 'rt', newline='', encoding='utf-8') as fd:
for line in csv.reader(fd):
unidic.add(line[4:])
unidic.deleteSingles()
return unidic
def makeDict(fields):
res = {}
for i in range(len(fields)):
val = fields[i]
if val != '*' and len(val) > 0 and FIELD_NAMES[i] in TRAIN_FIELDS:
res[FIELD_NAMES[i]] = val
return res
def writePart(lines, fd, unidic):
for line in lines:
fparts = line[1:]
dic = makeDict(fparts)
surf = line[0]
if unidic is not None:
changed = unidic.get(fparts)
if changed is not None:
surf = changed[0]
dic['orth'] = surf
dic['orthBase'] = changed[1]
fd.write('\t')
fd.write(surf)
for k in dic:
v = dic[k]
fd.write('\t')
fd.write(k)
fd.write(':')
fd.write(v)
fd.write('\n')
fd.write('\n')
def writeFull(lines, fd, unidic):
for line in lines:
surf = line[0]
fparts = line[1:]
featutres = [
surf,
fparts[0],
fparts[1],
fparts[2],
fparts[3],
fparts[4],
fparts[5],
fparts[6],
fparts[7],
fparts[8],
fparts[9],
fparts[10],
fparts[11],
fparts[12],
fparts[19],
fparts[24],
fparts[25],
fparts[26]
]
if unidic is not None:
changed = unidic.get(fparts)
if changed is not None:
orth, orthBase = changed
featutres[0] = orth
featutres[9] = orth
featutres[11] = orthBase
print(",".join(escape(x) for x in featutres), file=fd)
print("EOS", file=fd)
def process(fd, full, part, unidic):
lines = []
is_full = True
for line in csv.reader(fd):
if len(line) == 1:
if is_full:
writeFull(lines, full, None)
writeFull(lines, full, unidic)
else:
writePart(lines, part, None)
writePart(lines, part, unidic)
lines.clear()
is_full = True
continue
lines.append(line)
if len(line) < 10:
is_full = False
def main():
unidic = readUnidic(sys.argv[1])
files = sys.argv[2:]
for file in files:
full_name = file + ".full-tdata"
part_name = file + ".part-tdata"
with open(file, 'rt', encoding='utf-8', newline='') as fd:
with open(full_name, 'wt', encoding='utf-8') as full:
with open(part_name, 'wt', encoding='utf-8') as part:
process(fd, full, part, unidic)
if __name__ == '__main__':
main()
|
StarcoderdataPython
|
352601
|
"""
Created on May 25, 2016
@author: xiul, t-zalipt
"""
import numpy as np
################################################################################
# Some helper functions
################################################################################
def unique_states(training_data):
unique = []
for datum in training_data:
if contains(unique, datum[0]):
pass
else:
unique.append(datum[0].copy())
return unique
def contains(unique, candidate_state):
for state in unique:
if np.array_equal(state, candidate_state):
return True
else:
pass
return False
|
StarcoderdataPython
|
8135739
|
<filename>2021-08-11/valid_lab_results.py
"""
Valid Lab Results | Cannabis Data Science
Authors:
UFO Software, LLC
<NAME> <<EMAIL>>
Created: Thursday, July 29, 2021 21:51
Updated: 8/10/2021
License GPLv3+: GNU GPL version 3 or later https://gnu.org/licenses/gpl.html This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.
"""
import pandas as pd
import numpy as np
from pathlib import Path
import os
import seaborn as sns
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
def get_lab_results_df():
# reduce the size of the dataframe's memory footprint by specifying data types
# comment out columns you are not using to further decrease the memory footprint
col_dtypes = {'global_id' : 'string',
#'#mme_id' : 'category',
#'user_id' : 'string',
#'external_id' : 'string',
#'inventory_id' : 'string',
'status' : 'category',
#'testing_status' : 'category',
#'batch_id' : 'string',
#'parent_lab_result_id' : 'string',
#'og_parent_lab_result_id' : 'string',
#'copied_from_lab_id' : 'string',
#'lab_user_id' : 'string',
'type' : 'category',
#'foreign_matter' : 'bool',
#'moisture_content_percent' : 'float16', #if you are not using Dask change this to float16
#'growth_regulators_ppm' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_status' : 'category',
#'cannabinoid_editor' : 'float32', #if you are not using Dask change this to float16
#'cannabinoid_d9_thca_percent': 'float16',
#'cannabinoid_d9_thca_mg_g' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_d9_thc_percent' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_d9_thc_mg_g' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_d8_thc_percent' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_d8_thc_mg_g' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_cbd_percent' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_cbd_mg_g' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_cbda_percent' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_cbda_mg_g' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_cbdv_percent' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_cbg_percent' : 'float16', #if you are not using Dask change this to float16
#'cannabinoid_cbg_mg_g' : 'float16', #if you are not using Dask change this to float16
#'terpenoid_pinene_percent' : 'float16', #if you are not using Dask change this to float16
#'terpenoid_pinene_mg_g' : 'float16', #if you are not using Dask change this to float16
#'microbial_status' : 'category',
#'microbial_editor' : 'string',
#'microbial_bile_tolerant_cfu_g' : 'float16', #if you are not using Dask change this to float16
#'microbial_pathogenic_e_coli_cfu_g' : 'float16', #if you are not using Dask change this to float16
#'microbial_salmonella_cfu_g' : 'float16', #if you are not using Dask change this to float16
#'mycotoxin_status' : 'category',
#'mycotoxin_editor' : 'string',
#'mycotoxin_aflatoxins_ppb' : 'float16', #if you are not using Dask change this to float16
#'mycotoxin_ochratoxin_ppb' : 'float16', #if you are not using Dask change this to float16
#'metal_status' : 'category',
#'metal_editor': 'string',
#'metal_arsenic_ppm' : 'float16', #if you are not using Dask change this to float16
#'metal_cadmium_ppm' : 'float16', #if you are not using Dask change this to float16
#'metal_lead_ppm' : 'float16', #if you are not using Dask change this to float16
#'metal_mercury_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_status' : 'category',
#'pesticide_editor' : 'string',
#'pesticide_abamectin_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_acequinocyl_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_bifenazate_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_cyfluthrin_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_cypermethrin_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_etoxazole_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_flonicamid_ppm' : 'float', #if you are not using Dask change this to float16
#'pesticide_fludioxonil_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_imidacloprid_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_myclobutanil_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_spinosad_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_spirotetramet_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_thiamethoxam_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_trifloxystrobin_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_status' : 'category',
#'solvent_editor' : 'string',
#'solvent_butanes_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_heptane_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_propane_ppm' : 'float16', #if you are not using Dask change this to float16
#'notes' : 'float32', #if you are not using Dask change this to float16
#'thc_percent' : 'float16', #if you are not using Dask change this to float16
'intermediate_type' : 'category',
#'moisture_content_water_activity_rate' : 'float16', #if you are not using Dask change this to float16
#'solvent_acetone_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_benzene_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_cyclohexane_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_chloroform_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_dichloromethane_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_ethyl_acetate_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_hexanes_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_isopropanol_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_methanol_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_pentanes_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_toluene_ppm' : 'float16', #if you are not using Dask change this to float16
#'solvent_xylene_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_acephate_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_acetamiprid_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_aldicarb_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_azoxystrobin_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_bifenthrin_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_boscalid_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_carbaryl_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_carbofuran_ppm' : 'float16', #if you are not using Dask change this to float16
#'pesticide_chlorantraniliprole_ppm' : 'float16' #if you are not using Dask change this to float16
}
date_cols = ['created_at',
#'deleted_at',
#'updated_at',
#'tested_at',
#'received_at' deprecated
]
# combine the column names to load only the columns you are using
cols = list(col_dtypes.keys()) + date_cols
lab_results_df = pd.read_csv(file_path / 'LabResults_0.csv', sep = '\t', encoding = 'utf-16', usecols = cols, dtype = col_dtypes, parse_dates = date_cols, skipinitialspace = True)
# all the datasets in the WA data use global_id but it has different meaning for each dataset which makes the data difficult to understand and causes issues with Pandas when trying to perform operations on more than one dataframe.
lab_results_df.rename(columns={'global_id':'lab_results_id'}, inplace=True)
# dataframe with rows from the origanal dataframe where the lab_results_id is nan
null_lab_results_id_df = lab_results_df.loc[lab_results_df.lab_results_id.isna()]
# drop rows with nan lab_results_ids
lab_results_df.dropna(subset=['lab_results_id'], inplace=True)
# exract the lab_id from the lab_results_id
# lab_ids are embedded in the lab_results_id in the form "WAL##."
lab_results_df['lab_id'] = lab_results_df.lab_results_id.map(lambda x: x[x.find('WAL') : x.find('.')])
# dataframe with the rows that did not contain a valid lab_id in the lab_results_id
# The lab_results_id does not contain a substring in the form of "WA##."
invalid_lab_id_df = lab_results_df.loc[(lab_results_df.lab_id == '')]
#remove the rows with invalid lab_ids from the dataframe
lab_results_df = lab_results_df.loc[~(lab_results_df.lab_id == '')]
return lab_results_df, null_lab_results_id_df, invalid_lab_id_df
if __name__ == '__main__':
# change the file path to match where your data is stored
file_path = Path('../.datasets')
pd.set_option('display.max_columns', None)
pd.options.display.float_format = "{:.2f}".format
# Read in the data
lab_results_df, null_lab_results_id_df, invalid_lab_id_df = get_lab_results_df()
|
StarcoderdataPython
|
5179843
|
<gh_stars>1-10
import pathlib
from setuptools import setup
import versioneer
# The directory containing this file
HERE = pathlib.Path(__file__).parent
# The text of the README file
README = (HERE / "README.md").read_text()
# This call to setup() does all the work
setup(
name="anonymizedf",
version=versioneer.get_version(),
cmdclass=versioneer.get_cmdclass(),
description="a convenient way to anonymize your data for analytics",
long_description=README,
long_description_content_type="text/markdown",
url="https://github.com/AlexFrid/anonymizedf",
author="<NAME>",
author_email="<EMAIL>",
license="BSD",
classifiers=[
"License :: OSI Approved :: BSD License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Scientific/Engineering",
],
keywords='faker pandas anonymize fake mock data',
packages=["anonymizedf"],
include_package_data=True,
install_requires=["pandas", "faker"]
)
|
StarcoderdataPython
|
5063596
|
<filename>utils2.py
import numpy as np
import sklearn
import gtg
import os
from math import log
import random
random.seed(314)
def one_hot(labels, nr_classes):
labells = labels[:, 0]
labells = labells.astype(int)
label_one_hot = np.zeros((labells.size, nr_classes))
label_one_hot[np.arange(labells.size), labells] = 1
return label_one_hot
def create_mapping(nr_objects, percentage_labels):
mapping = np.arange(nr_objects)
np.random.shuffle(mapping)
nr_labelled = int(percentage_labels * nr_objects)
labelled = mapping[:nr_labelled]
unlabelled = mapping[nr_labelled:]
return np.sort(labelled), np.sort(unlabelled)
def create_mapping2(labels, percentage_labels):
nr_classes = int(labels.max() + 1)
labelled, unlabelled = [], []
for n_class in xrange(nr_classes):
class_labels = list(np.where(labels == n_class)[0])
split = int(percentage_labels * len(class_labels))
random.shuffle(class_labels)
labelled += class_labels[:split]
unlabelled += class_labels[split:]
return np.array(labelled), np.array(unlabelled)
def gen_init_rand_probability(labels, labelled, unlabelled, nr_classes):
labels_one_hot = np.zeros((labels.shape[0], nr_classes))
for element in labelled:
labels_one_hot[element, int(labels[element])] = 1.0
for element in unlabelled:
labels_one_hot[element, :] = np.full((1, nr_classes), 1.0/nr_classes)
return labels_one_hot
def gen_init_probability(W, labels, labelled, unlabelled):
"""
:param W: similarity matrix to generate the labels for the unlabelled observations
:param labels: labels of the already labelled observations
:return:
"""
n = W.shape[0]
k = int(log(n) + 1.)
# labelled, unlabelled = create_mapping(n, perc_lab)
W = W[np.ix_(unlabelled, labelled)]
ps = np.zeros(labels.shape)
ps[labelled] = labels[labelled]
max_k_inds = labelled[np.argpartition(W, -k, axis=1)[:, -k:]]
tmp = np.zeros((unlabelled.shape[0], labels.shape[1]))
for row in max_k_inds.T:
tmp += labels[row]
tmp /= float(k)
ps[unlabelled] = tmp
return ps
def get_accuracy(W, softmax_features, labels, labelled, unlabelled, testing_set_size):
"""
This function computes the accuracy in the testing set
:param fc7_features: fc7 features for both training and testing set
:param softmax_features: softmax features for both training and testing set
:param labels: labels for both training and testing set
:param accuracy_cnn: the accuracy of cnn (baseline)
:param testing_set_size: the size of the testing set
:return: accuracy of our method, accuracy of cnn
"""
P_new = gtg.gtg(W, softmax_features, labelled, unlabelled, max_iter=1, labels=labels)
conf = sklearn.metrics.confusion_matrix(labels[unlabelled, :], (P_new[unlabelled, :]).argmax(axis=1))
return float(conf.trace()) / conf.sum(), P_new
def gen_gtg_label_file(fnames, names_folds, labels_GT, out_fname):
with open(out_fname, 'w') as file:
for i in xrange(len(fnames)):
splitted_name = fnames[i][0].split('/')
new_name = splitted_name[4] + '/' + splitted_name[5] + ' ' + names_folds[labels_GT[i]] + "\n"
file.write(new_name)
def only_labelled_file(fnames, labelled, out_fname):
with open(out_fname, 'w') as file:
for i in xrange(len(fnames)):
splitted_name = fnames[i][0].split('/')
if i in labelled:
new_name = splitted_name[4] + '/' + splitted_name[5] + ' ' + splitted_name[4] + "\n"
file.write(new_name)
def unit_test():
"""
unit_test for gen_init_probability function
:return:
"""
np.random.seed(314)
# unlab = 0, 1, 3. lab = 2, 4, 5
W = np.array([[5, 3, (8), 4, (9), (1)],
[1, 2, (3), 4, (7), (9)],
[7, 1, 2 , 8, 4 , 3 ],
[9, 7, (4), 3, (2), (1)],
[5, 7, 4 , 2, 8 , 6 ],
[6, 4, 5 , 3, 1 , 2 ]])
labels = np.array([[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1],
[0, 1, 0, 0, 0]])
res = np.array([[0, 0 , 0.5, 0, 0.5],
[0, 0.5, 0 , 0, 0.5],
[0, 0 , 1 , 0, 0 ],
[0, 0 , 0.5, 0, 0.5],
[0, 0 , 0 , 0, 1 ],
[0, 1 , 0 , 0, 0 ]])
print(gen_init_probability(W, labels, 0.5))
|
StarcoderdataPython
|
11371801
|
import functools
import operator
import torch
from sklearn.metrics import (
classification_report,
f1_score,
precision_recall_fscore_support,
)
from torch import optim as optim, nn as nn
from models import Model
import time
""" def fit(
TEXT,
train_dl,
valid_dl,
config,
conv_depth,
dense_depth,
hidden_dim=100,
lr=1e-3,
kernel_size=3,
pool_size=2,
similarity="dot",
loss="BCELoss",
validate_each_epoch=True,
trainable=False,
):
model = Model(
TEXT,
hidden_dim=hidden_dim,
conv_depth=conv_depth,
dense_depth=dense_depth,
similarity=similarity,
max_len=20,
kernel_size=kernel_size,
pool_size=pool_size,
trainable=trainable,
)
opt = optim.Adam(model.parameters(), lr=lr)
loss_func = getattr(nn, loss)()
model.train()
if validate_each_epoch:
y_true = [v[2] for v in test_dl]
y_true = functools.reduce(operator.iconcat, y_true, [])
print("Start training")
for epoch in range(1, config["epochs"] + 1):
running_loss = 0.0
t0 = time.time()
for left, right, y in train_dl:
opt.zero_grad()
preds = model([left, right])
loss = loss_func(preds, torch.unsqueeze(y, 1))
loss.backward()
opt.step()
running_loss += loss.data.item()
epoch_loss = running_loss / len(train_dl)
print(
"Epoch: {}, Elapsed: {:.2f}s, Training Loss: {:.4f}".format(
epoch, time.time() - t0, epoch_loss
)
)
if validate_each_epoch:
# calculate the validation loss for this epoch
predictions = []
val_loss = 0.0
model.eval() # turn on evaluation mode
for left, right, y in valid_dl:
preds = model([left, right])
loss = loss_func(preds, torch.unsqueeze(y, 1))
val_loss += loss.data.item()
val_loss /= len(valid_dl)
print("Validate epoch: {}, Val Loss: {:.4f}".format(epoch, val_loss))
return model
def evaluate(model, test_dl, print_results=True):
y_true = [v[2] for v in test_dl]
y_true = functools.reduce(operator.iconcat, y_true, [])
predictions = []
model.eval() # turn on evaluation mode
for left, right, y in test_dl:
preds = model([left, right])
predictions.extend(preds.data > 0.5)
if print_results:
print(classification_report(y_true, predictions))
return f1_score(y_true, predictions, average="weighted") + 1e-10 """
def fit(
TEXT,
train_dl,
valid_dl,
config,
hidden_dim,
conv_depth,
kernel_size,
dense_depth1,
dense_depth2,
lr=1e-3,
pool_size=2,
similarity="dot",
loss="CrossEntropyLoss",
validate_each_epoch=True,
trainable=False,
):
model = Model(
TEXT,
hidden_dim=hidden_dim,
conv_depth=conv_depth,
kernel_size=kernel_size,
pool_size=pool_size,
dense_depth1=dense_depth1,
dense_depth2=dense_depth2,
max_len=20,
similarity=similarity,
trainable=trainable,
)
opt = optim.Adam(model.parameters(), lr=lr)
loss_func = getattr(nn, loss)()
model.train()
if validate_each_epoch:
y_true = [v[2] for v in valid_dl]
y_true = functools.reduce(operator.iconcat, y_true, [])
print("Start training")
for epoch in range(1, config["epochs"] + 1):
running_loss = 0.0
t0 = time.time()
for left, right, y in train_dl:
opt.zero_grad()
preds = model([left, right])
loss = loss_func(preds, y.long())
loss.backward()
opt.step()
running_loss += loss.data.item()
epoch_loss = running_loss / len(train_dl)
print(
"Epoch: {}, Elapsed: {:.2f}s, Training Loss: {:.4f}".format(
epoch, time.time() - t0, epoch_loss
)
)
if validate_each_epoch:
# calculate the validation loss for this epoch
predictions = []
val_loss = 0.0
model.eval() # turn on evaluation mode
for left, right, y in valid_dl:
preds = model([left, right])
loss = loss_func(preds, y.long())
val_loss += loss.data.item()
predictions.extend(torch.argmax(torch.log_softmax(preds, dim=1), dim=1))
val_loss /= len(valid_dl)
prec, rec, f1, _ = precision_recall_fscore_support(
y_true, predictions, labels=[0, 1], average="weighted"
)
print(
"Validate epoch: {}, Val Loss: {:.4f}, Prec: {:.4f}, Rec: {:.4f}, F1: {:.4f}".format(
epoch, val_loss, prec, rec, f1
)
)
return model
def evaluate(model, test_dl, print_results=True):
y_true = [v[2] for v in test_dl]
y_true = functools.reduce(operator.iconcat, y_true, [])
predictions = []
model.eval() # turn on evaluation mode
for left, right, y in test_dl:
preds = model([left, right])
predictions.extend(torch.argmax(torch.log_softmax(preds, dim=1), dim=1))
if print_results:
print(classification_report(y_true, predictions))
return f1_score(y_true, predictions, average="weighted") + 1e-10
|
StarcoderdataPython
|
12809214
|
<reponame>xuhang57/atmosphere
"""
Service Provider model for atmosphere.
"""
from django.db import models
from django.utils import timezone
from core.models.provider import Provider
class NodeController(models.Model):
"""
NodeControllers are specific to a provider
They have a dedicated, static IP address and a human readable name
To use the image manager they must also provide a valid private ssh key
"""
provider = models.ForeignKey(Provider)
alias = models.CharField(max_length=256)
hostname = models.CharField(max_length=256)
port = models.IntegerField(default=22)
private_ssh_key = models.TextField()
start_date = models.DateTimeField(default=timezone.now)
end_date = models.DateTimeField(null=True, blank=True)
def ssh_key_added(self):
return len(self.private_ssh_key) > 0
ssh_key_added.boolean = True
def __unicode__(self):
return "%s - %s" % (self.alias, self.hostname)
class Meta:
db_table = 'node_controller'
app_label = 'core'
|
StarcoderdataPython
|
5007430
|
<reponame>ArniDagur/auto-rental
"""
# Data file specification:
## Fundamentals:
* Data files shall be given the extension .df
* Data files be encoded in valid UTF-8
## Revision ID:
* The first line of a data file shall contain the file's revision ID.
* The revision ID may be any positive number that has the following properties:
1. A revision ID must be unique for each revision.
2. The number representing the revision ID must get bigger as time
progresses.
* An example of a number that fulfills the given requirements is the
number of seconds since 1. January 1970 (epoch time).
## Data columns:
TODO: Expand further...
Data file example:
```
1543597775.6957102
TODO: Expand further...
```
"""
from time import time
def new_revision_id():
epoch_time = time()
return float(epoch_time)
class FileData:
def __init__(self, file_name):
self.__file_name = file_name
try:
self.read()
except FileNotFoundError:
# File did not exist; let's fix that
self.__revision_id = new_revision_id()
self.__cache = []
self.write()
"""
Reads the data file located at self.__file_name, and sets the following attributes:
self.__revision_id
self.__cache
Does nothing if cache data is newer than file data.
"""
def read(self):
with open(self.__file_name, 'r', encoding='utf-8') as df:
lines = df.readlines()
df_revision_id = float(lines[0])
if self.__revision_id < df_revision_id:
# The data that's in the file is newer than what we've got
# in our cache.
# Let's write to file what's in our cache...
self.__revision_id = df_revision_id
"""
If cache data is newer than file data, or if no file exists at self.__file_name,
write the cache data to the file located at self.__file_name.
"""
def write(self):
with open(self.__file_name, 'wr+', encoding='utf-8') as df:
lines = df.readlines()
if not lines:
df_revision_id = -1
else:
df_revision_id = float(lines[0])
if self.__revision_id > df_revision_id:
# The data that's in our cache is newer than what is in the
# datafile.
# Write to file what's in our cache...
pass
|
StarcoderdataPython
|
329080
|
<gh_stars>0
import sys
import binascii
init_byte = 0x0f
def step(current_byte, in_bit):
out_bit = in_bit ^ ((current_byte & 0x20) >> 5)
next_byte = (current_byte & 0x01) << 7
next_byte |= (current_byte & 0x18) << 2
next_byte |= (current_byte & 0x80) >> 3
next_byte |= (current_byte & 0x06) << 1
next_byte |= (current_byte & 0x40) >> 5
next_byte |= ((current_byte & 0x40) >> 6) ^ ((current_byte & 0x20) >> 5) ^ ((current_byte & 0x08) >> 3) ^ ((current_byte & 0x02) >> 1) ^ 0x01
return next_byte, out_bit
def run(data, state=init_byte):
ret = []
for d in data:
state, r = step(state, d)
ret.append(r)
return ret
def n2ba(n, bit_length=None):
assert(n >= 0)
if bit_length is None:
bit_length = n.bit_length() if n > 0 else 1
return [(n >> i) & 1 for i in range(bit_length)]
def ba2n(ba):
n = 0
for i in range(len(ba)):
n |= ba[i] << i
return n
def ba2s(ba):
assert(len(ba) % 8 == 0)
r = []
c = 0
for i in range(0, len(ba), 8):
for j, e in zip(range(8), ba[i:i+8]):
c |= e << j
r.insert(0, chr(c))
c = 0
return ''.join(r)
if __name__=='__main__':
code = '2FED5B7FEB81D3C44E39E4AEA346010240E0CBBB'
ba = n2ba(int(code, 16), len(code) * 4)
for i in range(256):
ret = ba2s(run(ba, i))
if (ret[:5] == '34C3_'):
print ret
|
StarcoderdataPython
|
4884150
|
import logging
from dataclasses import astuple, fields
from pywps import LiteralInput
from ravenpy.models import GR4JCN
from raven import config
from . import wpsio as wio
from .wps_raven import RavenProcess
LOGGER = logging.getLogger("PYWPS")
"""
Notes
-----
The configuration files for RAVEN's GR4J-Cemaneige model and in models/raven-gr4j-cemaneige.
All parameters that could potentially be user-defined are tagged using {}. These tags need to be replaced by
actual values before the model is launched.
"""
params_defaults = GR4JCN.Params(
GR4J_X1=0.529,
GR4J_X2=-3.396,
GR4J_X3=407.29,
GR4J_X4=1.072,
CEMANEIGE_X1=16.9,
CEMANEIGE_X2=0.947,
)
params = LiteralInput(
"params",
"Comma separated list of model parameters",
abstract="Parameters: " + ", ".join(f.name for f in fields(params_defaults)),
data_type="string",
default=", ".join(map(str, astuple(params_defaults))),
min_occurs=0,
max_occurs=config.max_parallel_processes,
)
class RavenGR4JCemaNeigeProcess(RavenProcess):
"""
RAVEN emulator for the GR4J-Cemaneige model.
This process runs the GR4J-Cemaneige model using a RAVEN emulator. Users need to provide netCDF input files for
rain, snow minimum and maximum temperature as well as potential evapotranspiration. To run diagnostics, observed
stream flows are also required.
"""
identifier = "raven-gr4j-cemaneige"
abstract = "Raven GR4J + CEMANEIGE hydrological model"
title = ""
version = ""
model_cls = GR4JCN
tuple_inputs = {"params": GR4JCN.Params}
inputs = [
wio.ts,
wio.nc_spec,
params,
wio.start_date,
wio.end_date,
wio.nc_index,
wio.duration,
wio.run_name,
wio.hrus,
wio.area,
wio.latitude,
wio.longitude,
wio.elevation,
wio.evaporation,
wio.rain_snow_fraction,
wio.rvc,
]
|
StarcoderdataPython
|
8137965
|
#!/usr/bin/env python2
import signal, socket, pickle, zlib, os
signal.signal(signal.SIGCHLD, signal.SIG_IGN)
s = socket.socket()
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(("0.0.0.0", 1024))
s.listen(5)
entries = {}
def rl():
l = ""
while not l.endswith("\n"):
c = s.recv(1)
assert(c)
l += c
return l[:-1]
def spam_list():
s.sendall("Listing %d passwords:\n" % len(entries))
for k, v in entries.iteritems():
s.sendall("%s: %s\n" % (k,v))
s.sendall("---\n")
def spam_add():
s.sendall("Enter name of the site: ")
name = rl()
s.sendall("Enter password: ")
pasw = rl()
entries[name] = pasw
s.sendall("Password successfully added.\n")
def spam_del():
s.sendall("Enter name of the site which should be deleted: ")
name = rl()
if name not in entries:
s.sendall("Entry not found.\n")
else:
del entries[name]
s.sendall("Entry successfully deleted.\n")
def spam_backup():
s.sendall("Your backup: %s\n" % zlib.compress(pickle.dumps(entries)).encode("base64"))
def spam_restore():
s.sendall("Paste your backup here: ")
backup = rl()
global entries
entries = pickle.loads(zlib.decompress(backup.decode("base64")))
s.sendall("Successfully restored %d entries\n" % len(entries))
while 1:
c, _ = s.accept()
p = os.fork()
if p != 0:
c.close()
continue
else:
s.close()
break
s = c
del c
s.sendall("Welcome to Super Password Authentication Manager (SPAM)!\n")
while 1:
while 1:
s.sendall("Menu:\n")
s.sendall("1) List Passwords\n")
s.sendall("2) Add a Password\n")
s.sendall("3) Remove a Password\n")
s.sendall("4) Backup Passwords\n")
s.sendall("5) Restore backup\n")
l = rl()
if len(l) == 1 and l in "12345":
[spam_list, spam_add, spam_del, spam_backup, spam_restore][int(l) - 1]()
else:
s.sendall("Invalid choice.\n")
|
StarcoderdataPython
|
325500
|
<gh_stars>1-10
from face.lbpcascade_animeface import LibCascadeAnimeFace
class FaceModel:
model = None
def __init__(self, name):
if name == "lbpcascade_animeface":
self.model = LibCascadeAnimeFace()
def show(self, img_path, args):
self.model.show(img_path, args)
if __name__ == "__main__":
model = FaceModel("lbpcascade_animeface")
model.show("I:\\work\\WORK\\ReclassifyAnimeCG\\ReclassifyAnimeCG\\data-sample\\train\\Emilia\\1.jpg", None)
|
StarcoderdataPython
|
11256980
|
<reponame>dolboBobo/python3_ios
"""
===================
Centered Ticklabels
===================
sometimes it is nice to have ticklabels centered. Matplotlib currently
associates a label with a tick, and the label can be aligned
'center', 'left', or 'right' using the horizontal alignment property::
ax.xaxis.set_tick_params(horizontalalignment='right')
but this doesn't help center the label between ticks. One solution
is to "fake it". Use the minor ticks to place a tick centered
between the major ticks. Here is an example that labels the months,
centered between the ticks
"""
import numpy as np
import matplotlib.cbook as cbook
import matplotlib.dates as dates
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
# load some financial data; apple's stock price
with cbook.get_sample_data('aapl.npz') as fh:
r = np.load(fh)['price_data'].view(np.recarray)
r = r[-250:] # get the last 250 days
# Matplotlib works better with datetime.datetime than np.datetime64, but the
# latter is more portable.
date = r.date.astype('O')
fig, ax = plt.subplots()
ax.plot(date, r.adj_close)
ax.xaxis.set_major_locator(dates.MonthLocator())
ax.xaxis.set_minor_locator(dates.MonthLocator(bymonthday=15))
ax.xaxis.set_major_formatter(ticker.NullFormatter())
ax.xaxis.set_minor_formatter(dates.DateFormatter('%b'))
for tick in ax.xaxis.get_minor_ticks():
tick.tick1line.set_markersize(0)
tick.tick2line.set_markersize(0)
tick.label1.set_horizontalalignment('center')
imid = len(r) // 2
ax.set_xlabel(str(date[imid].year))
plt.show()
|
StarcoderdataPython
|
9686603
|
import numpy as np
from neuralnet.utils import prep_batch
from neuralnet.optimizers import GradientDescent
class NeuralNet:
def __init__(self,hidden,initializer,optimizer):
self.hidden = hidden
self.initializer = initializer
self.training_error = []
self.validation_error = []
self.layer = None
self.optimizer = optimizer
def __compile(self,X,y,seed):
"Prepare for training."
self.weight = self.__weights(y.shape[1],X.shape[1],self.hidden,seed=seed)
self.layer = [0 for i in range(len(self.weight)+1)]
self.error = [0 for i in range(len(self.weight))]
self.delta = self.error.copy()
self.n_features = X.shape[1]
self.n_samples = X.shape[0]
def __weights(self,row,col,hidden,seed):
"Create connections."
np.random.seed(seed)
num_hidden = len(hidden)
result = []
result.append(self.initializer(col,hidden[0])) # input weights
for i in range(1,num_hidden):
result.append(self.initializer(hidden[i-1],hidden[i])) # hidden layer connections with neighbor layers
result.append(self.initializer(hidden[-1],row)) # output weights
return result
def train(self,X,y,epoch=100,batch_size=16,val_X=None,val_y=None,seed=None):
if self.layer is None:
self.__compile(X,y,seed)
for _ in range(epoch):
for _X,_y in prep_batch(batch_size,X,y):
self.layer[0] = _X
# Calculate forward through the network. (feed forward)
for i in range(1,len(self.layer)):
self.layer[i] = self.optimizer.activation.forward(np.dot(self.layer[i-1],self.weight[i-1]))
self.weight = self.optimizer.optimize(_y,self.weight,self.layer)
self.training_error.append(self.optimizer.loss.error(y,self.predict(X)))
if val_X is not None:
self.validation_error.append(self.optimizer.loss.error(val_y,self.predict(val_X)))
return self
def predict(self,X):
x = X.copy()
for weight in self.weight:
x = self.optimizer.activation.forward(np.dot(x,weight))
return x
|
StarcoderdataPython
|
6442121
|
<reponame>Arenhart/Portfolio
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 4 14:10:31 2020
@author: <NAME>
"""
from skimage import draw
from skimage import filters
from skimage import morphology
import numpy as np
import math
import csv
import matplotlib.pyplot as plt
import io
from scipy import ndimage
from numba import jit, njit, prange, int32, int64, uint32
from numba.typed import Dict
import tkinter.filedialog as filedialog
import PIL.Image as pil
from reportlab.pdfgen import canvas
from reportlab.lib.units import cm, inch
from reportlab.lib.pagesizes import A4
from reportlab.lib.utils import ImageReader
DICT_PATH = 'dimensions_list.csv'
def add_region(arr, position, size, porosity, shape):
view = arr[position[0] : position[0] + size[0],
position[1] : position[1] + size[1]]
target_porosity= - math.log(1-porosity)
target_area = size[0] * size[1] * target_porosity
pore_area = shape[0] * shape[1] * math.pi
n_pores = int(target_area // pore_area)
for _ in range(n_pores):
x = np.random.randint(0,size[0])
y = np.random.randint(0,size[1])
rr, cc = draw.ellipse(x, y, shape[0], shape[1], shape = size)
view[rr, cc] = 1
def old_correlation(arr):
'''
Legacy code, only for binary correlation
'''
x, y = arr.shape
corr_x = np.zeros(x//2)
corr_y = np.zeros(y//2)
corr_x[0] = arr.sum()/arr.size
corr_y[0] = arr.sum()/arr.size
for i in range(1,x//2):
corr_x[i] = (arr[i:,:] * arr[:-i,:]).sum() / (arr.size - arr.shape[1] * i)
for i in range(1,y//2):
corr_y[i] = (arr[:,i:] * arr[:,:-i]).sum() / (arr.size - arr.shape[0] * i)
return corr_x, corr_y
def covariance_3d(arr):
'''
3D correlation for scalar arrays
'''
x, y, z = arr.shape
corr = np.zeros((3, max(x,y,z)-1))
corr[:,0] = 1
for ax in (0,1,2):
for i in range(1, arr.shape[ax] - 1):
null_index = slice(None, None, None)
left_index = slice(i, None)
right_index = slice(-i)
left_slice = [null_index,] * 3
left_slice[ax] = left_index
left_slice = tuple(left_slice)
right_slice = [null_index,] * 3
right_slice[ax] = right_index
right_slice = tuple(right_slice)
corr[ax][i] =1 - ((((arr[left_slice] - arr[right_slice])**2).sum() / (arr[left_slice]).size)
/ limit_covariance(arr[left_slice],arr[right_slice]))
return corr
def limit_covariance(arr1, arr2):
low = min(arr1.min(), arr2.min())
high = max(arr2.max(), arr2.max())
bins = int(min(high - low + 1, np.sqrt(arr1.size + arr2.size)))
count_1, edges_1 = np.histogram(arr1, bins = bins)
count_2, edges_2 = np.histogram(arr2, bins = bins)
if 'int' in str(arr1.dtype):
disp = edges_1[1]
edges_1 -= disp
edges_1+= 2*disp * np.linspace(0, 1, num = edges_1.size)
if 'int' in str(arr2.dtype):
disp = edges_2[1]
edges_2 -= disp
edges_2 += 2*disp * np.linspace(0, 1, num = edges_2.size)
total_1 = count_1.sum()
count_1 = count_1 / total_1
total_2 = count_2.sum()
count_2 = count_2 / total_2
covariance = 0
for i, j in ((a,b) for a in range(bins) for b in range(bins)):
mean_i = (edges_1[i] + edges_1[i+1]) / 2
mean_j = (edges_2[j] + edges_2[j+1]) / 2
probability = count_1[i] * count_2[j]
value = (mean_i - mean_j) ** 2
covariance += probability * value
return covariance
'''
def correlation(arr):
x, y = arr.shape
corr_x = np.zeros(x)
corr_y = np.zeros(y)
for i in range(x):
corr_y += np.correlate(arr[i,:], arr[i,:], mode = 'full')[-y:]
corr_y /= arr.size
for i in range(y):
corr_x += np.correlate(arr[:,i], arr[:,i], mode = 'full')[-x:]
corr_x /= arr.size
return corr_x, corr_y
def vector_correlation(v):
corr = []
corr.append(np.sum(v*v))
for i in range(1,len(v)):
corr.append(np.sum(v[i:] * v[:-i]))
'''
def draw_image(arr, name = 'default.png'):
fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(10, 6))
corr_x, corr_y = old_correlation(arr)
phi = arr.mean()
phi2 = phi**2
x_size = max((len(corr_x), len(corr_y)))
ax1.imshow(arr)
ax1.axis('off')
ax2.plot(corr_x)
ax2.plot(corr_y)
ax2.plot((0,x_size), (phi2, phi2), color = '0.75', ls = '--')
plt.savefig(f'REV/{name}')
def rve_porosity(img, individual_results = False):
x, y, z = img.shape
divisors = np.array(img.shape)
divisors = np.log2(divisors).astype('uint16')
total_divisions = divisors.min()
extra_divisions = divisors - total_divisions
results = []
partial_results = []
for i in range(1, total_divisions):
partial = []
for steps in ((x_step, y_step, z_step) for x_step in range(2**(i+extra_divisions[0]))
for y_step in range(2**(i+extra_divisions[1]))
for z_step in range(2**(i+extra_divisions[2]))):
length = 2 ** (total_divisions - i)
porosity = img[length*steps[0]: length*(1+steps[0]),
length*steps[1]: length*(1+steps[1]),
length*steps[2]: length*(1+steps[2])].mean()
results.append((i, porosity))
partial.append((porosity))
partial = np.array(partial)
partial_results.append((i, partial.mean(), partial.std()))
if individual_results:
return np.array(partial_results), np.array(results)
else:
return np.array(partial_results)
@jit(nopython=True, parallel = False)
def maxi_balls_serial(img, image_edt):
out = np.zeros(img.shape)
distances = image_edt
for x in prange(img.shape[0]):
for y in range(img.shape[1]):
for z in range(img.shape[2]):
if x == y and y == z and x%10 == 0: print(x)
radius = distances[x,y,z]
if radius <= 0.5: continue
point = np.array((x,y,z))
b_size = int(radius)*2+1
b = create_sphere(b_size)
if b.shape[0]%2 == 0: b = b[0:-1,0:-1,0:-1]
b_radius = b.shape[0] // 2
lower_bounds = point - b_radius
upper_bounds = point + b_radius +1
for ax, value in enumerate(lower_bounds):
if value < 0:
index = [slice(None, None),] * 3
index[ax] = slice(-value, None)
b = b[(index[0],index[1],index[2])]
lower_bounds[ax] = 0
for ax, value in enumerate(upper_bounds):
if value > img.shape[ax]:
index = [slice(None, None),] * 3
index[ax] = slice(None, img.shape[ax] - value)
b = b[(index[0],index[1],index[2])]
upper_bounds[ax] = img.shape[ax]
#image_slice = ([slice(lower_bounds[i], upper_bounds[i]) for i in range(3)])
#image_slice = (image_slice[0], image_slice[1], image_slice[2])
#print(type(radius), b.dtype, img.dtype)
sub_img = img[lower_bounds[0]:upper_bounds[0], lower_bounds[1]: upper_bounds[1], lower_bounds[2]: upper_bounds[2]].astype(np.float64)
b_value = b * radius
#print(b_value.dtype, sub_img.dtype, b_value.shape, sub_img.shape,'\n')
b_value = b_value * sub_img
out[lower_bounds[0]:upper_bounds[0], lower_bounds[1]: upper_bounds[1], lower_bounds[2]: upper_bounds[2]] = np.where(b_value>out[lower_bounds[0]:upper_bounds[0], lower_bounds[1]: upper_bounds[1], lower_bounds[2]: upper_bounds[2]], b_value, out[lower_bounds[0]:upper_bounds[0], lower_bounds[1]: upper_bounds[1], lower_bounds[2]: upper_bounds[2]])
print('Finished Maxiballs')
return out
def maxi_balls(img):
calculated_spheres = Dict.empty(key_type = int64, value_type = uint32[:,:,::1],)
image_edt = ndimage.morphology.distance_transform_edt(img).astype('uint32')
return _maxi_balls(img, image_edt, calculated_spheres)
#distances = ndimage.morphology.distance_transform_edt(img)#.astype('uint16')
@jit(nopython=True, parallel = False)
def _maxi_balls(img, image_edt, calculated_spheres):
x_max, y_max, z_max = img.shape
out = np.zeros(img.shape).astype(np.uint64)
distances = image_edt
progress_steps = (y_max * z_max) // 20
progress = 0
for z in prange(z_max):
for y in range(y_max):
for x in range(x_max):
radius = distances[x,y,z]
if radius <= 0.5: continue
point = np.array((x,y,z))
b_size = int(radius)*2+1
registered_key = 0
for key in calculated_spheres.keys():
if b_size == key:
b = calculated_spheres[b_size]
registered_key = 1
break
if registered_key == 0:
calculated_spheres[b_size] = create_sphere(b_size)
b = calculated_spheres[b_size]
if b.shape[0]%2 == 0: b = b[0:-1,0:-1,0:-1]
b_radius = b.shape[0] // 2
lower_bounds = point - b_radius
upper_bounds = point + b_radius +1
for ax, value in enumerate(lower_bounds):
if value < 0:
index = [slice(None, None),] * 3
index[ax] = slice(-value, None)
b = b[(index[0],index[1],index[2])]
lower_bounds[ax] = 0
for ax, value in enumerate(upper_bounds):
if value > img.shape[ax]:
index = [slice(None, None),] * 3
index[ax] = slice(None, img.shape[ax] - value)
b = b[(index[0],index[1],index[2])]
upper_bounds[ax] = img.shape[ax]
sub_out = out[lower_bounds[0]:upper_bounds[0], lower_bounds[1]: upper_bounds[1], lower_bounds[2]: upper_bounds[2]]
sub_img = img[lower_bounds[0]:upper_bounds[0], lower_bounds[1]: upper_bounds[1], lower_bounds[2]: upper_bounds[2]]
b_value = b * radius
b_value = b_value * sub_img
#print(sub_out, b_value, radius, radius <= 0.5, (x,y,z))
inscribe_spheres(sub_out, b_value, b.shape)
print('Finished Maxiballs')
return out
@njit(parallel = False)
def inscribe_spheres(img, values, shape):
for x in prange(shape[0]):
for y in range(shape[1]):
for z in range(shape[2]):
if values[x,y,z] > img[x,y,z]:
img[x,y,z] = values[x,y,z]
@jit(nopython=True)
def create_sphere(diameter):
ind = np.zeros((3,diameter, diameter, diameter))
for i in range(1, diameter):
ind[0,i,:,:] = i
ind[1,:,i,:] = i
ind[2,:,:,i] = i
ind -= (diameter - 1) / 2
ball = np.sqrt(ind[0,:,:,:]**2 + ind[1,:,:,:]**2 + ind[2,:,:,:]**2)
radius = (diameter-1)/2
ball = (ball <= radius).astype(np.uint32)
return ball
def run(debug = False):
samples = []
sample_names = filedialog.askopenfilenames()
saved_dimensions = {}
try:
with open(DICT_PATH, mode = 'r') as csvfile:
reader = csv.reader(csvfile, delimiter=',')
for row in reader:
x, y, z = [int(i.strip()) for i in row[1].split(',')]
saved_dimensions[row[0]] = (x, y, z)
except FileNotFoundError:
pass
modified_dict = False
for sample in sample_names:
if sample in saved_dimensions.keys():
samples.append((sample, saved_dimensions[sample]))
else:
dimensions = input(f'Amostra: {sample} Dimensões ( [x,y,z] separadas por virgula): ')
x, y, z = [int(i.strip()) for i in dimensions.split(',')]
samples.append((sample, (x, y, z)))
saved_dimensions[sample] = f'{x},{y},{z}'
modified_dict = True
if modified_dict:
with open(DICT_PATH, mode = 'w', newline = '') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
for key in saved_dimensions.keys():
writer.writerow([key, saved_dimensions[key]])
for sample in samples:
path = sample[0]
x, y, z = sample[1]
img = np.fromfile(path, dtype = 'uint8')
img = img.reshape((z,y,x), order = 'C')
img = np.transpose(img)
mb_img = maxi_balls(img)
results = covariance_3d(mb_img)
hist = np.histogram(mb_img.flatten(), bins = 20)
np.savetxt(path[:-4]+'_covariogram.csv', results, delimiter = ';')
np.savetxt(path[:-4]+'_histogram_count.csv', hist[0], delimiter = ';')
np.savetxt(path[:-4]+'_histogram_edges.csv', hist[1], delimiter = ';')
def plt_as_variable(fig):
buffer = io.BytesIO()
fig.savefig(buffer)
buffer.seek(0)
return pil.open(buffer)
def consolidate_covariogram_results():
folder = filedialog.askdirectory()
reference_file = 'dimensions_list.csv'
str_cov = '_covariogram.csv'
str_hist_count = '_histogram_count.csv'
str_hist_edges = '_histogram_edges.csv'
volumes = {}
with open(folder + '//' + reference_file, newline = '', encoding = 'utf-8') as file:
csv_reader = csv.reader(file, delimiter = ',')
for line in csv_reader:
key = line[0].split('/')[-1][:-4]
val = {}
val['size'] = eval(f'({line[1]})')
val['res'] = int(line[2])
for new_key, i in (('rock_type', 3),('pore_type', 4),('pore_size',5)):
try:
val[new_key] = line[i]
except IndexError:
val[new_key] = 'Indefinido'
volumes[key] = val
for sample in volumes.keys():
with open(f'{folder}//{sample}{str_cov}', newline = '') as file:
csv_reader = csv.reader(file, delimiter = ';')
volumes[sample]['covariogram_x'] = [float(i) for i in next(csv_reader)]
volumes[sample]['covariogram_y'] = [float(i) for i in next(csv_reader)]
volumes[sample]['covariogram_z'] = [float(i) for i in next(csv_reader)]
with open(f'{folder}//{sample}{str_hist_count}', newline = '') as file:
count = [float(i) for i in file]
volumes[sample]['histogram_count'] = count
with open(f'{folder}//{sample}{str_hist_edges}', newline = '') as file:
count = [float(i) for i in file]
volumes[sample]['histogram_edges'] = count
return volumes
def color_gen():
colors = ('blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'darkgreen', 'gold', 'crimson', 'tomato', 'pink', 'indigo')
i = 0
while i < len(colors):
yield colors[i]
i += 1
def generate_report(volumes, output_file = 'report.pdf'):
c = canvas.Canvas(output_file)
for sample in volumes.keys():
c.drawString(3*cm, 27*cm, f'Amostra: {sample}')
c.drawString(3*cm, 4*cm, f'Tipo de rocha: {volumes[sample]["rock_type"]}')
c.drawString(3*cm, 3.5*cm, f'Tipo de poro: {volumes[sample]["pore_type"]}')
c.drawString(3*cm, 3*cm, f'Tamanho de poro: {volumes[sample]["pore_size"]}')
fig = plt.figure(dpi = 300, figsize = [15 * (cm/inch), 18 * (cm/inch)])
ax1 = fig.add_subplot(211, title = 'Covariograma', xlabel = 'Distância [nm]', ylabel = 'Covariância')
ax2 = fig.add_subplot(212, title = 'Distribuição de tamanho de poro', xlabel = 'Tamanho de poro [nm]', ylabel = 'Frequência')
res = volumes[sample]['res']
for cov in ('covariogram_x', 'covariogram_y', 'covariogram_z'):
vals = volumes[sample][cov]
x_axis = [i*res for i in range(len(vals))]
ax1.plot(x_axis, vals, label=cov)
ax1.legend()
edges = volumes[sample]['histogram_edges']
bins = [((edges[i] + edges[i+1])/2)*res for i in range(len(edges)-1)]
count = volumes[sample]['histogram_count']
for i in range(1, len(count)-1):
if count[i] == 0 and count[i-1] >0 and count[i+1]>0:
count[i] = (count[i-1] + count[i+1]) / 2
bins = bins[1:]
count = count[1:]
ax2.plot(bins, count)
img = ImageReader(plt_as_variable(fig))
c.drawImage(img, 3*cm, 5*cm, width = cm*15, height = cm*20)
c.showPage()
plt.close(fig)
for prop in ('rock_type','pore_type','pore_size'):
c.setStrokeColor('black')
c.drawString(3*cm, 27*cm, f'Propriedade: {prop}')
fig = plt.figure(dpi = 300, figsize = [15 * (cm/inch), 18 * (cm/inch)])
ax1 = fig.add_subplot(211, xscale = 'log')
ax2 = fig.add_subplot(212, xscale = 'log')
col_gen = color_gen()
vals = [volumes[i][prop] for i in volumes.keys()]
vals = list(set(vals))
legend_pos = 4
for val in vals:
color = next(col_gen)
c.setStrokeColor(color)
c.setFillColor(color)
c.drawString(3*cm, legend_pos*cm, f'{val}')
legend_pos -= 0.5
samples = [i for i in volumes.keys() if volumes[i][prop] == val]
for sample in samples:
res = volumes[sample]['res']
vals = volumes[sample]['covariogram_z']
x_axis = [i*res for i in range(len(vals))]
ax1.plot(x_axis, vals, color = color, linewidth = 1)
edges = volumes[sample]['histogram_edges']
bins = [((edges[i] + edges[i+1])/2)*res for i in range(len(edges)-1)]
count = volumes[sample]['histogram_count']
for i in range(1, len(count)-1):
if count[i] == 0 and count[i-1] >0 and count[i+1]>0:
count[i] = (count[i-1] + count[i+1]) / 2
bins = bins[1:]
count = count[1:]
total = sum(count)
count = [i/total for i in count]
ax2.plot(bins, count, color = color, linewidth = 1)
img = ImageReader(plt_as_variable(fig))
c.drawImage(img, 3*cm, 5*cm, width = cm*15, height = cm*20)
c.showPage()
plt.close(fig)
c.save()
'''
Examples:
arr = np.zeros((2000,2000))
add_region(arr, (0,0), (2000,2000), 0.55, (20,10))
draw_image(arr, 'teste3.png')
arr = np.zeros((2000,2000))
add_region(arr, (0,0), (1000,2000), 0.55, (20,10))
add_region(arr, (1000,0), (1000,2000), 0.25, (60,60))
draw_image(arr, 'teste4.png')
arr = np.zeros((2000,2000))
add_region(arr, (0,0), (1000,2000), 0.55, (20,10))
add_region(arr, (1000,0), (1000,2000), 0.25, (5,5))
draw_image(arr, 'teste5.png')
arr = np.zeros((2000,2000))
add_region(arr, (0,0), (1000,2000), 0.55, (20,10))
add_region(arr, (1000,0), (1000,2000), 0.55, (5,5))
draw_image(arr, 'teste6.png')
arr = np.zeros((2000,2000))
add_region(arr, (0,0), (2000,2000), 0.35, (3,3))
add_region(arr, (0,0), (2000,2000), 0.25, (100,100))
draw_image(arr, 'teste1.png')
arr = np.zeros((2000,2000))
add_region(arr, (0,0), (300,2000), 0.25, (10,10))
add_region(arr, (300,0), (300,2000), 0.55, (3,3))
add_region(arr, (600,0), (100,2000), 0.25, (10,10))
add_region(arr, (700,0), (500,2000), 0.55, (3,3))
add_region(arr, (1200,0), (300,2000), 0.25, (10,10))
add_region(arr, (1300,0), (200,2000), 0.55, (3,3))
add_region(arr, (1500,0), (500,2000), 0.25, (10,10))
draw_image(arr, 'teste2.png')
arr = np.zeros((2000,2000))
add_region(arr, (0,0), (2000,2000), 0.25, (10,10))
add_region(arr, (100,100), (400,400), 0.55, (3,3))
add_region(arr, (50,600), (400,400), 0.55, (3,3))
add_region(arr, (1500,600), (400,400), 0.55, (3,3))
add_region(arr, (1000,100), (400,400), 0.55, (3,3))
add_region(arr, (1000,1000), (400,400), 0.55, (3,3))
add_region(arr, (1300,500), (400,400), 0.55, (3,3))
add_region(arr, (500,1300), (400,400), 0.55, (3,3))
draw_image(arr, 'teste7.png')
arr = np.zeros((2000,2000))
arr[300:600,:] = 1
arr[700:1200,:] = 1
arr[1300:1500,:] = 1
draw_image(arr, 'teste8.png')
sample image
path = r'D:\\Desktop\\amostra imagem'
dol = np.fromfile(path+r'\dol_crop.raw', dtype = 'int16')
dol = dol.reshape((512,512,256), order = 'F')
thresh = filters.threshold_otsu(dol)
dol = (dol <= thresh).astype('uint8')
dol_p = maxi_balls(dol)
dol_n = maxi_balls(1 - dol)
dol_np = dol_p - dol_n
cov_r = covariance_3d(dol)
cov_p = covariance_3d(dol_p)
cov_n = covariance_3d(dol_n)
cov_np = covariance_3d(dol_np)
2 * p * (1-p) #dol_r limit covariance
limit_covariance(dol_p)
limit_covariance(dol_n)
limit_covariance(dol_np)
for i,j in (('x',0),('y',1),('z',2)):
np.savetxt(f'cov_p_{i}.txt', cov_p[j], delimiter = ';')
for i,j in (('x',0),('y',1),('z',2)):
np.savetxt(f'cov_n_{i}.txt', cov_n[j], delimiter = ';')
for i,j in (('x',0),('y',1),('z',2)):
np.savetxt(f'cov_np_{i}.txt', cov_np[j], delimiter = ';')
for i,j in (('x',0),('y',1),('z',2)):
np.savetxt(f'cov_r_{i}.txt', cov_r[j], delimiter = ';')
plt.imsave('dol_np_slice.png', dol_np[:,:,100], cmap = 'seismic')
plt.imsave('dol_n_slice.png', dol_n[:,:,100], cmap = 'plasma')
plt.imsave('dol_p_slice.png', dol_p[:,:,100], cmap = 'plasma')
mb = maxi_balls(arr,edt)
maxi_balls.parallel_diagnostics(level=2)
'''
|
StarcoderdataPython
|
3222130
|
<filename>stubs/micropython-v1_12-pyboard/stm.py<gh_stars>0
"""
Module: 'stm' on micropython-v1.12-pyboard
"""
# MCU: {'ver': 'v1.12', 'port': 'pyboard', 'arch': 'armv7emsp', 'sysname': 'pyboard', 'release': '1.12.0', 'name': 'micropython', 'mpy': 7685, 'version': '1.12.0', 'machine': 'PYBv1.1 with STM32F405RG', 'build': '', 'nodename': 'pyboard', 'platform': 'pyboard', 'family': 'micropython'}
# Stubber: 1.5.4
from typing import Any
ADC1 = 1073815552 # type: int
ADC123_COMMON = 1073816320 # type: int
ADC2 = 1073815808 # type: int
ADC3 = 1073816064 # type: int
ADC_CR1 = 4 # type: int
ADC_CR2 = 8 # type: int
ADC_DR = 76 # type: int
ADC_HTR = 36 # type: int
ADC_JDR1 = 60 # type: int
ADC_JDR2 = 64 # type: int
ADC_JDR3 = 68 # type: int
ADC_JDR4 = 72 # type: int
ADC_JOFR1 = 20 # type: int
ADC_JOFR2 = 24 # type: int
ADC_JOFR3 = 28 # type: int
ADC_JOFR4 = 32 # type: int
ADC_JSQR = 56 # type: int
ADC_LTR = 40 # type: int
ADC_SMPR1 = 12 # type: int
ADC_SMPR2 = 16 # type: int
ADC_SQR1 = 44 # type: int
ADC_SQR2 = 48 # type: int
ADC_SQR3 = 52 # type: int
ADC_SR = 0 # type: int
CAN1 = 1073767424 # type: int
CAN2 = 1073768448 # type: int
CRC = 1073885184 # type: int
CRC_CR = 8 # type: int
CRC_DR = 0 # type: int
CRC_IDR = 4 # type: int
DAC = 1073771520 # type: int
DAC1 = 1073771520 # type: int
DAC_CR = 0 # type: int
DAC_DHR12L1 = 12 # type: int
DAC_DHR12L2 = 24 # type: int
DAC_DHR12LD = 36 # type: int
DAC_DHR12R1 = 8 # type: int
DAC_DHR12R2 = 20 # type: int
DAC_DHR12RD = 32 # type: int
DAC_DHR8R1 = 16 # type: int
DAC_DHR8R2 = 28 # type: int
DAC_DHR8RD = 40 # type: int
DAC_DOR1 = 44 # type: int
DAC_DOR2 = 48 # type: int
DAC_SR = 52 # type: int
DAC_SWTRIGR = 4 # type: int
DBGMCU = 3758366720 # type: int
DBGMCU_APB1FZ = 8 # type: int
DBGMCU_APB2FZ = 12 # type: int
DBGMCU_CR = 4 # type: int
DBGMCU_IDCODE = 0 # type: int
DMA1 = 1073897472 # type: int
DMA2 = 1073898496 # type: int
DMA_HIFCR = 12 # type: int
DMA_HISR = 4 # type: int
DMA_LIFCR = 8 # type: int
DMA_LISR = 0 # type: int
EXTI = 1073822720 # type: int
EXTI_EMR = 4 # type: int
EXTI_FTSR = 12 # type: int
EXTI_IMR = 0 # type: int
EXTI_PR = 20 # type: int
EXTI_RTSR = 8 # type: int
EXTI_SWIER = 16 # type: int
FLASH = 1073888256 # type: int
FLASH_ACR = 0 # type: int
FLASH_CR = 16 # type: int
FLASH_KEYR = 4 # type: int
FLASH_OPTCR = 20 # type: int
FLASH_OPTCR1 = 24 # type: int
FLASH_OPTKEYR = 8 # type: int
FLASH_SR = 12 # type: int
GPIOA = 1073872896 # type: int
GPIOB = 1073873920 # type: int
GPIOC = 1073874944 # type: int
GPIOD = 1073875968 # type: int
GPIOE = 1073876992 # type: int
GPIOF = 1073878016 # type: int
GPIOG = 1073879040 # type: int
GPIOH = 1073880064 # type: int
GPIOI = 1073881088 # type: int
GPIO_AFR0 = 32 # type: int
GPIO_AFR1 = 36 # type: int
GPIO_BSRR = 24 # type: int
GPIO_BSRRH = 26 # type: int
GPIO_BSRRL = 24 # type: int
GPIO_IDR = 16 # type: int
GPIO_LCKR = 28 # type: int
GPIO_MODER = 0 # type: int
GPIO_ODR = 20 # type: int
GPIO_OSPEEDR = 8 # type: int
GPIO_OTYPER = 4 # type: int
GPIO_PUPDR = 12 # type: int
I2C1 = 1073763328 # type: int
I2C2 = 1073764352 # type: int
I2C3 = 1073765376 # type: int
I2C_CCR = 28 # type: int
I2C_CR1 = 0 # type: int
I2C_CR2 = 4 # type: int
I2C_DR = 16 # type: int
I2C_OAR1 = 8 # type: int
I2C_OAR2 = 12 # type: int
I2C_SR1 = 20 # type: int
I2C_SR2 = 24 # type: int
I2C_TRISE = 32 # type: int
I2S2EXT = 1073755136 # type: int
I2S3EXT = 1073758208 # type: int
IWDG = 1073754112 # type: int
IWDG_KR = 0 # type: int
IWDG_PR = 4 # type: int
IWDG_RLR = 8 # type: int
IWDG_SR = 12 # type: int
PWR = 1073770496 # type: int
PWR_CR = 0 # type: int
PWR_CSR = 4 # type: int
RCC = 1073887232 # type: int
RCC_AHB1ENR = 48 # type: int
RCC_AHB1LPENR = 80 # type: int
RCC_AHB1RSTR = 16 # type: int
RCC_AHB2ENR = 52 # type: int
RCC_AHB2LPENR = 84 # type: int
RCC_AHB2RSTR = 20 # type: int
RCC_AHB3ENR = 56 # type: int
RCC_AHB3LPENR = 88 # type: int
RCC_AHB3RSTR = 24 # type: int
RCC_APB1ENR = 64 # type: int
RCC_APB1LPENR = 96 # type: int
RCC_APB1RSTR = 32 # type: int
RCC_APB2ENR = 68 # type: int
RCC_APB2LPENR = 100 # type: int
RCC_APB2RSTR = 36 # type: int
RCC_BDCR = 112 # type: int
RCC_CFGR = 8 # type: int
RCC_CIR = 12 # type: int
RCC_CR = 0 # type: int
RCC_CSR = 116 # type: int
RCC_PLLCFGR = 4 # type: int
RCC_PLLI2SCFGR = 132 # type: int
RCC_SSCGR = 128 # type: int
RNG = 1342572544 # type: int
RNG_CR = 0 # type: int
RNG_DR = 8 # type: int
RNG_SR = 4 # type: int
RTC = 1073752064 # type: int
RTC_ALRMAR = 28 # type: int
RTC_ALRMASSR = 68 # type: int
RTC_ALRMBR = 32 # type: int
RTC_ALRMBSSR = 72 # type: int
RTC_BKP0R = 80 # type: int
RTC_BKP10R = 120 # type: int
RTC_BKP11R = 124 # type: int
RTC_BKP12R = 128 # type: int
RTC_BKP13R = 132 # type: int
RTC_BKP14R = 136 # type: int
RTC_BKP15R = 140 # type: int
RTC_BKP16R = 144 # type: int
RTC_BKP17R = 148 # type: int
RTC_BKP18R = 152 # type: int
RTC_BKP19R = 156 # type: int
RTC_BKP1R = 84 # type: int
RTC_BKP2R = 88 # type: int
RTC_BKP3R = 92 # type: int
RTC_BKP4R = 96 # type: int
RTC_BKP5R = 100 # type: int
RTC_BKP6R = 104 # type: int
RTC_BKP7R = 108 # type: int
RTC_BKP8R = 112 # type: int
RTC_BKP9R = 116 # type: int
RTC_CALIBR = 24 # type: int
RTC_CALR = 60 # type: int
RTC_CR = 8 # type: int
RTC_DR = 4 # type: int
RTC_ISR = 12 # type: int
RTC_PRER = 16 # type: int
RTC_SHIFTR = 44 # type: int
RTC_SSR = 40 # type: int
RTC_TAFCR = 64 # type: int
RTC_TR = 0 # type: int
RTC_TSDR = 52 # type: int
RTC_TSSSR = 56 # type: int
RTC_TSTR = 48 # type: int
RTC_WPR = 36 # type: int
RTC_WUTR = 20 # type: int
SDIO = 1073818624 # type: int
SPI1 = 1073819648 # type: int
SPI2 = 1073756160 # type: int
SPI3 = 1073757184 # type: int
SPI_CR1 = 0 # type: int
SPI_CR2 = 4 # type: int
SPI_CRCPR = 16 # type: int
SPI_DR = 12 # type: int
SPI_I2SCFGR = 28 # type: int
SPI_I2SPR = 32 # type: int
SPI_RXCRCR = 20 # type: int
SPI_SR = 8 # type: int
SPI_TXCRCR = 24 # type: int
SYSCFG = 1073821696 # type: int
SYSCFG_CMPCR = 32 # type: int
SYSCFG_EXTICR0 = 8 # type: int
SYSCFG_EXTICR1 = 12 # type: int
SYSCFG_EXTICR2 = 16 # type: int
SYSCFG_EXTICR3 = 20 # type: int
SYSCFG_MEMRMP = 0 # type: int
SYSCFG_PMC = 4 # type: int
TIM1 = 1073807360 # type: int
TIM10 = 1073824768 # type: int
TIM11 = 1073825792 # type: int
TIM12 = 1073747968 # type: int
TIM13 = 1073748992 # type: int
TIM14 = 1073750016 # type: int
TIM2 = 1073741824 # type: int
TIM3 = 1073742848 # type: int
TIM4 = 1073743872 # type: int
TIM5 = 1073744896 # type: int
TIM6 = 1073745920 # type: int
TIM7 = 1073746944 # type: int
TIM8 = 1073808384 # type: int
TIM9 = 1073823744 # type: int
TIM_ARR = 44 # type: int
TIM_BDTR = 68 # type: int
TIM_CCER = 32 # type: int
TIM_CCMR1 = 24 # type: int
TIM_CCMR2 = 28 # type: int
TIM_CCR1 = 52 # type: int
TIM_CCR2 = 56 # type: int
TIM_CCR3 = 60 # type: int
TIM_CCR4 = 64 # type: int
TIM_CNT = 36 # type: int
TIM_CR1 = 0 # type: int
TIM_CR2 = 4 # type: int
TIM_DCR = 72 # type: int
TIM_DIER = 12 # type: int
TIM_DMAR = 76 # type: int
TIM_EGR = 20 # type: int
TIM_OR = 80 # type: int
TIM_PSC = 40 # type: int
TIM_RCR = 48 # type: int
TIM_SMCR = 8 # type: int
TIM_SR = 16 # type: int
UART4 = 1073761280 # type: int
UART5 = 1073762304 # type: int
USART1 = 1073811456 # type: int
USART2 = 1073759232 # type: int
USART3 = 1073760256 # type: int
USART6 = 1073812480 # type: int
USART_BRR = 8 # type: int
USART_CR1 = 12 # type: int
USART_CR2 = 16 # type: int
USART_CR3 = 20 # type: int
USART_DR = 4 # type: int
USART_GTPR = 24 # type: int
USART_SR = 0 # type: int
WWDG = 1073753088 # type: int
WWDG_CFR = 4 # type: int
WWDG_CR = 0 # type: int
WWDG_SR = 8 # type: int
mem16: Any ## <class 'mem'> = <16-bit memory>
mem32: Any ## <class 'mem'> = <32-bit memory>
mem8: Any ## <class 'mem'> = <8-bit memory>
|
StarcoderdataPython
|
1995254
|
# Write the benchmarking functions here.
# See "Writing benchmarks" in the asv docs for more information.
import numpy as np
import xarray as xr
from scipy.stats import norm
from xskillscore import (
brier_score,
crps_ensemble,
crps_gaussian,
crps_quadrature,
threshold_brier_score,
)
from . import parameterized, randn, requires_dask
PROBABILISTIC_METRICS = [
crps_ensemble,
crps_gaussian,
crps_quadrature,
brier_score,
threshold_brier_score,
]
including_crps_quadrature = False
large_lon_lat = 2000
large_lon_lat_chunksize = large_lon_lat // 2
nmember = 4
class Generate:
"""
Generate random fct and obs to be benckmarked.
"""
timeout = 600
repeat = (2, 5, 20)
def make_ds(self, nmember, nx, ny):
# ds
self.obs = xr.Dataset()
self.fct = xr.Dataset()
self.nmember = nmember
self.nx = nx # 4 deg
self.ny = ny # 4 deg
frac_nan = 0.0
members = np.arange(1, 1 + self.nmember)
lons = xr.DataArray(
np.linspace(0, 360, self.nx),
dims=('lon',),
attrs={'units': 'degrees east', 'long_name': 'longitude'},
)
lats = xr.DataArray(
np.linspace(-90, 90, self.ny),
dims=('lat',),
attrs={'units': 'degrees north', 'long_name': 'latitude'},
)
self.fct['tos'] = xr.DataArray(
randn((self.nmember, self.nx, self.ny), frac_nan=frac_nan),
coords={'member': members, 'lon': lons, 'lat': lats},
dims=('member', 'lon', 'lat'),
name='tos',
encoding=None,
attrs={'units': 'foo units', 'description': 'a description'},
)
self.obs['tos'] = xr.DataArray(
randn((self.nx, self.ny), frac_nan=frac_nan),
coords={'lon': lons, 'lat': lats},
dims=('lon', 'lat'),
name='tos',
encoding=None,
attrs={'units': 'foo units', 'description': 'a description'},
)
self.fct.attrs = {'history': 'created for xarray benchmarking'}
self.obs.attrs = {'history': 'created for xarray benchmarking'}
# set nans for land sea mask
self.fct = self.fct.where(
(abs(self.fct.lat) > 20) | (self.fct.lat < 100) | (self.fct.lat > 160)
)
self.obs = self.obs.where(
(abs(self.obs.lat) > 20) | (self.obs.lat < 100) | (self.obs.lat > 160)
)
class Compute_small(Generate):
"""
A benchmark xskillscore.metric for small xr.DataArrays"""
def setup(self, *args, **kwargs):
self.make_ds(nmember, 90, 45) # 4 degree grid
@parameterized('metric', PROBABILISTIC_METRICS)
def time_xskillscore_probabilistic_small(self, metric):
"""Take time for xskillscore.metric."""
if metric is crps_gaussian:
mu = 0.5
sig = 0.2
metric(self.obs['tos'], mu, sig)
elif metric is crps_quadrature:
if not including_crps_quadrature:
pass
else:
xmin, xmax, tol = -10, 10, 1e-6
cdf_or_dist = norm
metric(self.obs['tos'], cdf_or_dist, xmin, xmax, tol)
elif metric is crps_ensemble:
metric(self.obs['tos'], self.fct['tos'])
elif metric is threshold_brier_score:
threshold = 0.5
metric(self.obs['tos'], self.fct['tos'], threshold)
elif metric is brier_score:
metric(self.obs['tos'] > 0.5, (self.fct['tos'] > 0.5).mean('member'))
@parameterized('metric', PROBABILISTIC_METRICS)
def peakmem_xskillscore_probabilistic_small(self, metric):
"""Take time for xskillscore.metric."""
if metric is crps_gaussian:
mu = 0.5
sig = 0.2
metric(self.obs['tos'], mu, sig)
elif metric is crps_quadrature:
if not including_crps_quadrature:
pass
else:
xmin, xmax, tol = -10, 10, 1e-6
cdf_or_dist = norm
metric(self.obs['tos'], cdf_or_dist, xmin, xmax, tol)
elif metric is crps_ensemble:
metric(self.obs['tos'], self.fct['tos'])
elif metric is threshold_brier_score:
threshold = 0.5
metric(self.obs['tos'], self.fct['tos'], threshold)
elif metric is brier_score:
metric(self.obs['tos'] > 0.5, (self.fct['tos'] > 0.5).mean('member'))
class Compute_large(Generate):
"""
A benchmark xskillscore.metric for large xr.DataArrays."""
def setup(self, *args, **kwargs):
self.make_ds(nmember, large_lon_lat, large_lon_lat)
@parameterized('metric', PROBABILISTIC_METRICS)
def time_xskillscore_probabilistic_large(self, metric):
"""Take time for xskillscore.metric."""
if metric is crps_gaussian:
mu = 0.5
sig = 0.2
metric(self.obs['tos'], mu, sig)
elif metric is crps_quadrature:
if not including_crps_quadrature:
pass
else:
xmin, xmax, tol = -10, 10, 1e-6
cdf_or_dist = norm
metric(self.obs['tos'], cdf_or_dist, xmin, xmax, tol)
elif metric is crps_ensemble:
metric(self.obs['tos'], self.fct['tos'])
elif metric is threshold_brier_score:
threshold = 0.5
metric(self.obs['tos'], self.fct['tos'], threshold)
elif metric is brier_score:
metric(self.obs['tos'] > 0.5, (self.fct['tos'] > 0.5).mean('member'))
@parameterized('metric', PROBABILISTIC_METRICS)
def peakmem_xskillscore_probabilistic_large(self, metric):
"""Take time for xskillscore.metric."""
if metric is crps_gaussian:
mu = 0.5
sig = 0.2
metric(self.obs['tos'], mu, sig)
elif metric is crps_quadrature:
if not including_crps_quadrature:
pass
else:
xmin, xmax, tol = -10, 10, 1e-6
cdf_or_dist = norm
metric(self.obs['tos'], cdf_or_dist, xmin, xmax, tol)
elif metric is crps_ensemble:
metric(self.obs['tos'], self.fct['tos'])
elif metric is threshold_brier_score:
threshold = 0.5
metric(self.obs['tos'], self.fct['tos'], threshold)
elif metric is brier_score:
metric(self.obs['tos'] > 0.5, (self.fct['tos'] > 0.5).mean('member'))
class Compute_large_dask(Generate):
"""
A benchmark xskillscore.metric for large xr.DataArrays with dask."""
def setup(self, *args, **kwargs):
requires_dask()
self.make_ds(nmember, large_lon_lat, large_lon_lat)
self.obs = self.obs.chunk(
{'lon': large_lon_lat_chunksize, 'lat': large_lon_lat_chunksize}
)
self.fct = self.fct.chunk(
{'lon': large_lon_lat_chunksize, 'lat': large_lon_lat_chunksize}
)
@parameterized('metric', PROBABILISTIC_METRICS)
def time_xskillscore_probabilistic_large_dask(self, metric):
"""Take time for xskillscore.metric."""
if metric is crps_gaussian:
mu = 0.5
sig = 0.2
metric(self.obs['tos'], mu, sig).compute()
elif metric is crps_quadrature:
if not including_crps_quadrature:
pass
else:
xmin, xmax, tol = -10, 10, 1e-6
cdf_or_dist = norm
metric(self.obs['tos'], cdf_or_dist, xmin, xmax, tol).compute()
elif metric is crps_ensemble:
metric(self.obs['tos'], self.fct['tos']).compute()
elif metric is threshold_brier_score:
threshold = 0.5
metric(self.obs['tos'], self.fct['tos'], threshold).compute()
elif metric is brier_score:
metric(
self.obs['tos'] > 0.5, (self.fct['tos'] > 0.5).mean('member')
).compute()
@parameterized('metric', PROBABILISTIC_METRICS)
def peakmem_xskillscore_probabilistic_large_dask(self, metric):
"""Take time for xskillscore.metric."""
if metric is crps_gaussian:
mu = 0.5
sig = 0.2
metric(self.obs['tos'], mu, sig).compute()
elif metric is crps_quadrature:
if not including_crps_quadrature:
pass
else:
xmin, xmax, tol = -10, 10, 1e-6
cdf_or_dist = norm
metric(self.obs['tos'], cdf_or_dist, xmin, xmax, tol).compute()
elif metric is crps_ensemble:
metric(self.obs['tos'], self.fct['tos']).compute()
elif metric is threshold_brier_score:
threshold = 0.5
metric(self.obs['tos'], self.fct['tos'], threshold).compute()
elif metric is brier_score:
metric(
self.obs['tos'] > 0.5, (self.fct['tos'] > 0.5).mean('member')
).compute()
|
StarcoderdataPython
|
9762342
|
<reponame>scolemann/mlfinlab
"""
Implements the Combinatorial Purged Cross-Validation class from Chapter 12
"""
from itertools import combinations
from typing import List
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
from .cross_validation import ml_get_train_times
class CombinatorialPurgedKFold(KFold):
"""
Implements Combinatial Purged Cross Validation (CPCV) from Chapter 12
The train is purged of observations overlapping test-label intervals
Test set is assumed contiguous (shuffle=False), w/o training samples in between
:param n_splits: The number of splits. Default to 3
:param samples_info_sets: The information range on which each record is constructed from
*samples_info_sets.index*: Time when the information extraction started.
*samples_info_sets.value*: Time when the information extraction ended.
:param pct_embargo: Percent that determines the embargo size.
"""
def __init__(self,
n_splits: int = 3,
n_test_splits: int = 2,
samples_info_sets: pd.Series = None,
pct_embargo: float = 0.):
if not isinstance(samples_info_sets, pd.Series):
raise ValueError('The samples_info_sets param must be a pd.Series')
super(CombinatorialPurgedKFold, self).__init__(n_splits, shuffle=False, random_state=None)
self.samples_info_sets = samples_info_sets
self.pct_embargo = pct_embargo
self.n_test_splits = n_test_splits
self.backtest_paths = {k: list(range(self.n_splits)) for k in
range(self.n_splits - 1)} # Dictionary of backtest paths, number of paths = n_splits - 1
def _generate_combinatorial_test_ranges(self, splits_indices: dict) -> List:
"""
Using start and end indices of test splits from KFolds and number of test_splits (self.n_test_splits),
generates combinatorial test ranges splits
:param splits_indices: (dict) of test fold integer index: [start test index, end test index]
:return: (list) of combinatorial test splits ([start index, end index])
"""
# Possible test splits for each fold
combinatorial_splits = list(combinations(list(splits_indices.keys()), self.n_test_splits))
combinatorial_test_ranges = [] # List of test indices formed from combinatorial splits
for combination in combinatorial_splits:
temp_test_indices = [] # Array of test indices for current split combination
for int_index in combination:
temp_test_indices.append(splits_indices[int_index])
combinatorial_test_ranges.append(temp_test_indices)
return combinatorial_test_ranges
# noinspection PyPep8Naming
def split(self,
X: pd.DataFrame,
y: pd.Series = None,
groups=None):
"""
The main method to call for the PurgedKFold class
:param X: The pd.DataFrame samples dataset that is to be split
:param y: The pd.Series sample labels series
:param groups: array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set.
:return: This method yields uples of (train, test) where train and test are lists of sample indices
"""
if X.shape[0] != self.samples_info_sets.shape[0]:
raise ValueError("X and the 'samples_info_sets' series param must be the same length")
test_ranges: [(int, int)] = [(ix[0], ix[-1] + 1) for ix in np.array_split(np.arange(X.shape[0]), self.n_splits)]
splits_indices = {}
for index, [start_ix, end_ix] in enumerate(test_ranges):
splits_indices[index] = [start_ix, end_ix]
combinatorial_test_ranges = self._generate_combinatorial_test_ranges(splits_indices)
embargo: int = int(X.shape[0] * self.pct_embargo)
for test_splits in combinatorial_test_ranges:
# Embargo
test_times = pd.Series(index=[self.samples_info_sets[ix[0]] for ix in test_splits], data=[
self.samples_info_sets[ix[1] - 1] if ix[1] - 1 + embargo >= X.shape[0] else self.samples_info_sets[
ix[1] - 1 + embargo]
for ix in test_splits])
test_indices = []
for [start_ix, end_ix] in test_splits:
test_indices.extend(list(range(start_ix, end_ix)))
# Purge
train_times = ml_get_train_times(self.samples_info_sets, test_times)
# Get indices
train_indices = []
for train_ix in train_times.index:
train_indices.append(self.samples_info_sets.index.get_loc(train_ix))
yield np.array(train_indices), np.array(test_indices)
|
StarcoderdataPython
|
11328220
|
import logging
import unittest
from vodem.api import save_sms
class TestSaveSms(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.valid_response = {
}
@unittest.skip('skip')
def test_logs_defaults(self):
params = {'SMSMessage': '0074006500730074'}
with self.assertLogs(level=logging.DEBUG) as cm:
save_sms(params)
|
StarcoderdataPython
|
9686363
|
<filename>DQM/L1TMonitor/python/L1TdeGEMTPG_cfi.py
import FWCore.ParameterSet.Config as cms
l1tdeGEMTPGCommon = cms.PSet(
monitorDir = cms.string("L1TEMU/L1TdeGEMTPG"),
verbose = cms.bool(False),
## when multiple chambers are enabled, order them by station number!
chambers = cms.vstring("GE11"),
dataEmul = cms.vstring("data","emul"),
clusterVars = cms.vstring("size", "pad", "bx"),
clusterNBin = cms.vuint32(20,384,10),
clusterMinBin = cms.vdouble(0,0,-5),
clusterMaxBin = cms.vdouble(20,384,5),
## GEM VFAT data is not captured in BX's other than BX0
## For a good comparison, leave out those data clusters
useDataClustersOnlyInBX0 = cms.bool(True),
B904Setup = cms.bool(False),
)
from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer
l1tdeGEMTPG = DQMEDAnalyzer(
"L1TdeGEMTPG",
l1tdeGEMTPGCommon,
data = cms.InputTag("emtfStage2Digis"),
emul = cms.InputTag("valMuonGEMPadDigiClusters"),
)
|
StarcoderdataPython
|
1792856
|
#!/usr/bin/env python3
import unittest
from torch.testing._internal.common_distributed import MultiProcessTestCase
from torch.testing._internal.common_utils import TEST_WITH_ASAN, run_tests
from torch.testing._internal.distributed.rpc.rpc_test import RpcTest
@unittest.skipIf(
TEST_WITH_ASAN, "Skip ASAN as torch + multiprocessing spawn have known issues"
)
class RpcTestWithSpawn(MultiProcessTestCase, RpcTest):
def setUp(self):
super(RpcTestWithSpawn, self).setUp()
self._spawn_processes()
if __name__ == "__main__":
run_tests()
|
StarcoderdataPython
|
9760190
|
from torch.testing._internal.jit_utils import JitTestCase
import io
import os
import sys
import torch
import torch._C
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
def to_test_backend(module, method_compile_spec):
return torch._C._jit_to_test_backend(module, {"forward": method_compile_spec})
def to_test_backend_multi(module, method_compile_spec):
return torch._C._jit_to_test_backend(module, method_compile_spec)
class MyModule(torch.nn.Module):
def __init__(self):
super(MyModule, self).__init__()
def forward(self, x, h):
return self.accum(x, h), self.sub_accum(x, h)
def accum(self, x, h):
return x + h
def sub_accum(self, x, h):
return x - h
class TestBackends(JitTestCase):
def setUp(self):
super().setUp()
# Create Python, JIT and backend versions of MyModule.
self.module = MyModule()
self.scripted_module = torch.jit.script(MyModule())
self.lowered_module = to_test_backend_multi(
self.scripted_module._c, {"accum": {"": ""}, "sub_accum": {"": ""}, "forward": {"": ""}})
def compare_py_jit_backend(self, name, input):
"""
This is a helper function for comparing the outputs of self.module (Python), self.scripted_module (JIT)
and self.lowered_module (backend) when the method named 'name' is invoked using 'input'.
"""
# Get handles for Python, JIT and backend methods.
python_method = self.module.__getattribute__(name)
jit_method = self.scripted_module.__getattr__(name)
backend_method = self.lowered_module.__getattr__(name)
# Run methods.
python_output = python_method(input, input)
jit_output = jit_method(input, input)
backend_output = backend_method(input, input)
# The answers returned by Python, JIT and to_backend should all match.
self.assertEqual(python_output, backend_output)
self.assertEqual(jit_output, backend_output)
def test_simple(self):
"""
This is a simple test that compiles MyModule for the test backend and ensures it produces the correct
answers for each method.
"""
# Test execution with backend against Python and JIT.
input = torch.randn(5)
# Test all three module methods.
self.compare_py_jit_backend("accum", input)
self.compare_py_jit_backend("sub_accum", input)
self.compare_py_jit_backend("forward", input)
def test_save_load(self):
"""
This method tests that a lowered module till produces the same output as a Python module and ScriptModule after
saving and loading.
"""
# Save the lowered module.
buffer = io.BytesIO()
torch.jit.save(self.lowered_module, buffer)
# Save the compile spec to compare against the version retrieved after loading.
pre_compile_spec = self.lowered_module.__getattr__("__method_compile_spec")
# Load the lowered module.
buffer.seek(0)
self.lowered_module = torch.jit.load(buffer)
# Get the compile spec after loading.
post_compile_spec = self.lowered_module.__getattr__("__method_compile_spec")
# Compile specs should match.
self.assertEqual(pre_compile_spec, post_compile_spec)
# Test execution with backend against Python and JIT.
input = torch.randn(5)
# Test all three module methods.
self.compare_py_jit_backend("accum", input)
self.compare_py_jit_backend("sub_accum", input)
self.compare_py_jit_backend("forward", input)
|
StarcoderdataPython
|
1637631
|
<reponame>MeiK-h/JudgeLight
import sys
from distutils.core import Extension, setup
sources = [
'JudgeLight/JudgeLightRunner/judgelightrunner.c',
'JudgeLight/JudgeLightRunner/jl_runner.c',
'JudgeLight/JudgeLightRunner/jl_memory.c',
'JudgeLight/JudgeLightRunner/jl_limit.c',
'JudgeLight/JudgeLightRunner/jl_convert.c',
'JudgeLight/JudgeLightRunner/jl_rules.c',
]
setup(
name='JudgeLight',
version='2.0.7',
ext_modules=[Extension('JudgeLight/JudgeLightRunner', sources=sources)],
packages=['JudgeLight'],
license='MIT',
author='MeiK',
author_email='<EMAIL>',
url='https://github.com/MeiK2333/JudgeLight',
)
|
StarcoderdataPython
|
9737083
|
#!/usr/bin/env python3
def bytes_to_array(dat, sz):
dat = dat.split()
arr = []
for i in range(0, len(dat), sz):
arr.append(int(''.join(reversed(dat[i:i+sz])), 16))
return arr
key = "IdontKnowWhatsGoingOn"
s = "08 00 00 00 06 00 00 00 2c 00 00 00 3a 00 00 00 32 00 00 00 30 00 00 00 1c 00 00 00 5c 00 00 00 01 00 00 00 32 00 00 00 1a 00 00 00 12 00 00 00 45 00 00 00 1d 00 00 00 20 00 00 00 30 00 00 00 0d 00 00 00 1b 00 00 00 03 00 00 00 7c 00 00 00 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00"
s = bytes_to_array(s, 4)
pw = []
for i in range(len(key)):
pw.append(ord(key[i]) ^ s[i])
print(''.join(map(chr, pw)))
|
StarcoderdataPython
|
5153235
|
#!/usr/bin/env python
"""
Converts an event price (tax-included) to a retail price (pre-tax)
or vice versa.
Event prices are calculated by applying a discount to the online
price, adding sales tax, and rounding to the nearest dollar.
Retail prices are calculated by removing sales tax, inverting the
discount, rounding to the nearest dime, and subtracting a penny.
To generate a table of event to retail prices::
echo "event,retail";\
i=1; while [ "$i" -le 10 ]; do\
echo "$i,`./calc_price.py retail $i`";\
i=`echo $i+1|bc`;\
done
"""
from __future__ import print_function
import argparse
import math
import Tkinter
import tkMessageBox
def calc_event_price(retail_price, discount_percent, sales_tax_percent):
"""Calculate the event price from the retail price."""
# Apply discount.
price = float(retail_price) * (1.0 - float(discount_percent) / 100.0)
# Impose sales tax.
price = price * (1.0 + float(sales_tax_percent) / 100.0)
# Round to the nearest dollar.
price = max(1.0, math.floor(price + 0.5))
# Return as a float.
return price
def calc_retail_price(event_price, discount_percent, sales_tax_percent):
"""Calculate the retail price from the event price."""
# Remove sales tax.
price = float(event_price) / (1.0 + float(sales_tax_percent) / 100.0)
# Unapply discount.
price = price / (1.0 - float(discount_percent) / 100.0)
# Round to the nearest dime and subtract a penny.
price = max(0.01, math.floor(price * 10.0 + 0.5) / 10.0 - 0.01)
# Return as a float.
return price
def calc_wholesale_price(retail_price, wholesale_fraction):
"""Calculate the wholesale price from the retail price."""
# Round the price to the nearest dollar.
retail_price = float(retail_price)
if retail_price > 1.0:
price = math.floor(retail_price + 0.5)
else:
price = retail_price
# Apply the wholesale fraction.
return price * wholesale_fraction
class AppGUI(object):
"""Application graphical user interface."""
# Width of price text entry boxes.
PRICE_WIDTH = 10
# pylint: disable=no-self-use
def __init__(self, args, root):
self.args = args
self.root = root
self.frame = Tkinter.Frame(root)
self.frame.pack()
# Retail price group.
retail_group = Tkinter.LabelFrame(
self.frame,
text="Retail (website) price",
padx=5,
pady=5
)
retail_group.pack(padx=10, pady=10)
self.retail_entry = Tkinter.Entry(
retail_group,
width=AppGUI.PRICE_WIDTH
)
self.retail_entry.bind('<Return>', self.calc_from_retail_price)
self.retail_entry.pack(side=Tkinter.LEFT)
calc_from_retail_button = Tkinter.Button(
retail_group,
text="Calc event and wholesale",
command=self.calc_from_retail_price
)
calc_from_retail_button.bind('<Return>', self.calc_from_retail_price)
calc_from_retail_button.pack(side=Tkinter.LEFT, padx=(10, 0))
# Event price group.
event_group = Tkinter.LabelFrame(
self.frame,
text="Event (discounted) price",
padx=5,
pady=5
)
event_group.pack(padx=10, pady=10)
self.event_entry = Tkinter.Entry(
event_group,
width=AppGUI.PRICE_WIDTH
)
self.event_entry.bind('<Return>', self.calc_from_event_price)
self.event_entry.pack(side=Tkinter.LEFT)
calc_from_event_button = Tkinter.Button(
event_group,
text="Calc retail and wholesale",
command=self.calc_from_event_price
)
calc_from_event_button.bind('<Return>', self.calc_from_event_price)
calc_from_event_button.pack(side=Tkinter.LEFT, padx=(10, 0))
# Wholesale price group.
wholesale_group = Tkinter.LabelFrame(
self.frame,
text="Wholesale price",
padx=5,
pady=5
)
wholesale_group.pack(fill=Tkinter.X, padx=10, pady=10)
self.wholesale_entry = Tkinter.Entry(
wholesale_group,
width=AppGUI.PRICE_WIDTH
)
self.wholesale_entry.bind('<Return>', self.calc_from_wholesale_price)
self.wholesale_entry.pack(side=Tkinter.LEFT)
calc_from_wholesale_button = Tkinter.Button(
wholesale_group,
text="Calc retail and event",
command=self.calc_from_wholesale_price
)
calc_from_wholesale_button.bind(
'<Return>',
self.calc_from_wholesale_price
)
calc_from_wholesale_button.pack(side=Tkinter.LEFT, padx=(10, 0))
# Quit button
self.quit_button = Tkinter.Button(
self.frame,
text="Quit",
command=self.frame.quit
)
self.quit_button.pack(side=Tkinter.LEFT, padx=5, pady=5)
# Give focus to the retail_entry.
self.retail_entry.focus_set()
def get_price(self, entry, entry_name):
"""Get float value from text entry box."""
price_str = entry.get()
if price_str is None:
self.error("No {} price specified".format(entry_name))
return None
try:
price_float = float(price_str)
except ValueError:
self.error(
"{} price of '{}' is not a valid number".format(
entry_name,
price_str
)
)
return None
return price_float
def set_price(self, entry, price):
"""Set price in text entry box."""
entry.delete(0, Tkinter.END)
entry.insert(0, price)
# Copy to clipboard.
# Does not work now that there are 2 derived prices.
# self.root.clipboard_clear()
# self.root.clipboard_append(price)
def calc_from_retail_price(self, _=None):
"""
Calculate prices derived from retail price action.
Second arg is event when called via <Return>.
"""
retail_price = self.get_price(self.retail_entry, "Retail")
if retail_price is None:
return
event_price = calc_event_price(
retail_price,
self.args.discount_percent,
self.args.avg_tax_percent
)
self.set_price(self.event_entry, "{:,.2f}".format(event_price))
wholesale_price = calc_wholesale_price(
retail_price,
self.args.wholesale_fraction
)
self.set_price(self.wholesale_entry, "{:,.2f}".format(wholesale_price))
def calc_from_event_price(self, _=None):
"""
Calculate prices derived from event price action.
Second arg is event when called via <Return>.
"""
event_price = self.get_price(self.event_entry, "Event")
if event_price is None:
return
retail_price = calc_retail_price(
event_price,
self.args.discount_percent,
self.args.avg_tax_percent
)
self.set_price(self.retail_entry, "{:,.2f}".format(retail_price))
wholesale_price = calc_wholesale_price(
retail_price,
self.args.wholesale_fraction
)
self.set_price(self.wholesale_entry, "{:,.2f}".format(wholesale_price))
def calc_from_wholesale_price(self, _=None):
"""
Calculate prices derived from wholesale price action.
Second arg is event when called via <Return>.
"""
wholesale_price = self.get_price(self.wholesale_entry, "Wholesale")
if wholesale_price is None:
return
retail_price = wholesale_price / self.args.wholesale_fraction
self.set_price(self.retail_entry, "{:,.2f}".format(retail_price))
event_price = calc_event_price(
retail_price,
self.args.discount_percent,
self.args.avg_tax_percent
)
self.set_price(self.event_entry, "{:,.2f}".format(event_price))
def error(self, msg):
"""Display an error message."""
tkMessageBox.showerror("Error", msg)
def main():
"""main"""
arg_parser = argparse.ArgumentParser(
description="Calculate pre-tax price based upon tax-included price "
"or vice-versa."
)
arg_parser.add_argument(
"--discount",
type=float,
dest="discount_percent",
metavar="PCT",
default=30,
help="discount in percent (default=%(default).0f)"
)
arg_parser.add_argument(
"--avg-tax",
type=float,
dest="avg_tax_percent",
metavar="PCT",
default=8.3,
help="average sales tax rate in percent (default=%(default).2f)"
)
arg_parser.add_argument(
"--whsle-frac",
type=float,
dest="wholesale_fraction",
metavar="FRAC",
default=0.5,
help="wholesale price fraction (default=%(default).2f)"
)
subparsers = arg_parser.add_subparsers(help='operations')
subparsers.add_parser("gui", help="display graphical interface")
event_parser = subparsers.add_parser(
"event",
help="calculate event price"
)
event_parser.add_argument(
"retail_price",
type=float,
help="price"
)
retail_parser = subparsers.add_parser(
"retail",
help="calculate retail price"
)
retail_parser.add_argument(
"event_price",
type=float,
help="price"
)
# Parse command line arguments.
args = arg_parser.parse_args()
# Convert and print price.
if "retail_price" in args:
price = calc_event_price(
args.retail_price,
args.discount_percent,
args.avg_tax_percent
)
print("{:,.0f}".format(price))
elif "event_price" in args:
price = calc_retail_price(
args.event_price,
args.discount_percent,
args.avg_tax_percent
)
print("{:,.2f}".format(price))
else:
root = Tkinter.Tk()
root.title("Calc Product Price")
AppGUI(args, root)
root.mainloop()
return 0
if __name__ == "__main__":
main()
|
StarcoderdataPython
|
4802137
|
print(*map(lambda x: x.count(x[0]), [input()]))
|
StarcoderdataPython
|
6478164
|
<filename>apps/backend/subscription/constants.py
# -*- coding: utf-8 -*-
"""
TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-节点管理(BlueKing-BK-NODEMAN) available.
Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved.
Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at https://opensource.org/licenses/MIT
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
"""
# 动作轮询间隔
from __future__ import absolute_import, unicode_literals
from celery.schedules import crontab
ACTION_POLLING_INTERVAL = 1
# 动作轮询超时时间
ACTION_POLLING_TIMEOUT = 60 * 3 * ACTION_POLLING_INTERVAL
# 自动下发触发周期
SUBSCRIPTION_UPDATE_INTERVAL = crontab(hour="*", minute="*/15", day_of_week="*", day_of_month="*", month_of_year="*")
# 订阅任务清理周期
INSTANCE_CLEAR_INTERVAL = crontab(minute="*/5", hour="*", day_of_week="*", day_of_month="*", month_of_year="*")
# 任务超时时间。距离 create_time 多久后会被判定为超时,防止 pipeline 后台僵死的情况
TASK_TIMEOUT = 60 * 15
# 最大重试次数
MAX_RETRY_TIME = 3
# 自动下发 - 订阅配置单个切片所包含的最大订阅个数 (根据经验,一个订阅需要消耗1~2s)
SUBSCRIPTION_UPDATE_SLICE_SIZE = 20
# 单个任务主机数量
TASK_HOST_LIMIT = 500
# 订阅范围实例缓存时间
SUBSCRIPTION_SCOPE_CACHE_TIME = 60 * 60
|
StarcoderdataPython
|
5094602
|
#!/usr/bin/env python
# Copyright 2016 The LUCI Authors. All rights reserved.
# Use of this source code is governed under the Apache License, Version 2.0
# that can be found in the LICENSE file.
import contextlib
import json
import logging
import os
import socket
import sys
import tempfile
import time
import unittest
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(
__file__.decode(sys.getfilesystemencoding()))))
sys.path.insert(0, ROOT_DIR)
sys.path.insert(0, os.path.join(ROOT_DIR, 'third_party'))
from depot_tools import auto_stub
from depot_tools import fix_encoding
from third_party import requests
from utils import authenticators
from utils import auth_server
from utils import net
from utils import oauth
from libs import luci_context
import net_utils
def global_test_setup():
# Terminate HTTP server in tests 50x faster. Impacts performance though.
auth_server._HTTPServer.poll_interval = 0.01
def call_rpc(scopes):
ctx = luci_context.read('local_auth')
r = requests.post(
url='http://127.0.0.1:%d/rpc/LuciLocalAuthService.GetOAuthToken' %
ctx['rpc_port'],
data=json.dumps({
'scopes': scopes,
'secret': ctx['secret'],
}),
headers={'Content-Type': 'application/json'})
return r.json()
@contextlib.contextmanager
def local_auth_server(token_cb, **overrides):
class MockedProvider(object):
def generate_token(self, scopes):
return token_cb(scopes)
s = auth_server.LocalAuthServer()
try:
local_auth = s.start(MockedProvider())
local_auth.update(overrides)
with luci_context.write(local_auth=local_auth):
yield
finally:
s.stop()
class LocalAuthServerTest(auto_stub.TestCase):
epoch = 12345678
def setUp(self):
super(LocalAuthServerTest, self).setUp()
self.mock_time(0)
def mock_time(self, delta):
self.mock(time, 'time', lambda: self.epoch + delta)
def test_works(self):
calls = []
def token_gen(scopes):
calls.append(scopes)
return auth_server.AccessToken('tok', time.time() + 300)
with local_auth_server(token_gen):
# Grab initial token.
resp = call_rpc(['B', 'B', 'A', 'C'])
self.assertEqual(
{u'access_token': u'tok', u'expiry': self.epoch + 300}, resp)
self.assertEqual([('A', 'B', 'C')], calls)
del calls[:]
# Reuses cached token until it is close to expiration.
self.mock_time(200)
resp = call_rpc(['B', 'A', 'C'])
self.assertEqual(
{u'access_token': u'tok', u'expiry': self.epoch + 300}, resp)
self.assertFalse(calls)
# Expired. Generated new one.
self.mock_time(300)
resp = call_rpc(['A', 'B', 'C'])
self.assertEqual(
{u'access_token': u'tok', u'expiry': self.epoch + 600}, resp)
self.assertEqual([('A', 'B', 'C')], calls)
def test_handles_token_errors(self):
fatal = False
code = 123
def token_gen(_scopes):
raise auth_server.TokenError(code, 'error message', fatal=fatal)
with local_auth_server(token_gen):
self.assertEqual(
{u'error_code': 123, u'error_message': u'error message'},
call_rpc(['B', 'B', 'A', 'C']))
# Non-fatal errors aren't cached.
code = 456
self.assertEqual(
{u'error_code': 456, u'error_message': u'error message'},
call_rpc(['B', 'B', 'A', 'C']))
# Fatal errors are cached.
fatal = True
code = 789
self.assertEqual(
{u'error_code': 789, u'error_message': u'error message'},
call_rpc(['B', 'B', 'A', 'C']))
# Same cached error.
code = 111
self.assertEqual(
{u'error_code': 789, u'error_message': u'error message'},
call_rpc(['B', 'B', 'A', 'C']))
def test_http_level_errors(self):
def token_gen(_scopes):
self.fail('must not be called')
with local_auth_server(token_gen):
# Wrong URL.
ctx = luci_context.read('local_auth')
r = requests.post(
url='http://127.0.0.1:%d/blah/LuciLocalAuthService.GetOAuthToken' %
ctx['rpc_port'],
data=json.dumps({
'scopes': ['A', 'B', 'C'],
'secret': ctx['secret'],
}),
headers={'Content-Type': 'application/json'})
self.assertEqual(404, r.status_code)
# Wrong HTTP method.
r = requests.get(
url='http://127.0.0.1:%d/rpc/LuciLocalAuthService.GetOAuthToken' %
ctx['rpc_port'],
data=json.dumps({
'scopes': ['A', 'B', 'C'],
'secret': ctx['secret'],
}),
headers={'Content-Type': 'application/json'})
self.assertEqual(501, r.status_code)
# Wrong content type.
r = requests.post(
url='http://127.0.0.1:%d/rpc/LuciLocalAuthService.GetOAuthToken' %
ctx['rpc_port'],
data=json.dumps({
'scopes': ['A', 'B', 'C'],
'secret': ctx['secret'],
}),
headers={'Content-Type': 'application/xml'})
self.assertEqual(400, r.status_code)
# Bad JSON.
r = requests.post(
url='http://127.0.0.1:%d/rpc/LuciLocalAuthService.GetOAuthToken' %
ctx['rpc_port'],
data='not a json',
headers={'Content-Type': 'application/json'})
self.assertEqual(400, r.status_code)
def test_validation(self):
def token_gen(_scopes):
self.fail('must not be called')
with local_auth_server(token_gen):
def must_fail(err, body, code=400):
ctx = luci_context.read('local_auth')
r = requests.post(
url='http://127.0.0.1:%d/rpc/LuciLocalAuthService.GetOAuthToken' %
ctx['rpc_port'],
data=json.dumps(body),
headers={'Content-Type': 'application/json'})
self.assertEqual(code, r.status_code)
self.assertIn(err, r.text)
must_fail('"scopes" is required', {})
must_fail('"scopes" is required', {'scopes': []})
must_fail('"scopes" must be a list of strings', {'scopes': 'abc'})
must_fail('"scopes" must be a list of strings', {'scopes': [1]})
must_fail('"secret" is required', {'scopes': ['a']})
must_fail('"secret" must be a string', {'scopes': ['a'], 'secret': 123})
must_fail(
'Invalid "secret"',
{'scopes': ['a'], 'secret': 'abc'},
code=403)
class LocalAuthHttpServiceTest(auto_stub.TestCase):
"""Tests for LocalAuthServer and LuciContextAuthenticator."""
epoch = 12345678
def setUp(self):
super(LocalAuthHttpServiceTest, self).setUp()
self.mock_time(0)
def mock_time(self, delta):
self.mock(time, 'time', lambda: self.epoch + delta)
@staticmethod
def mocked_http_service(
url='http://example.com',
perform_request=None):
class MockedRequestEngine(object):
def perform_request(self, request):
return perform_request(request) if perform_request else None
@classmethod
def timeout_exception_classes(cls):
return ()
@classmethod
def parse_request_exception(cls, exc):
del exc # Unused argument
return None, None
return net.HttpService(
url,
authenticator=authenticators.LuciContextAuthenticator(),
engine=MockedRequestEngine())
def test_works(self):
service_url = 'http://example.com'
request_url = '/some_request'
response = 'True'
token = '<PASSWORD>'
def token_gen(scopes):
self.assertEqual(1, len(scopes))
self.assertEqual(oauth.OAUTH_SCOPES, scopes[0])
return auth_server.AccessToken(token, time.time() + 300)
def handle_request(request):
self.assertTrue(
request.get_full_url().startswith(service_url + request_url))
self.assertEqual('', request.body)
self.assertEqual(u'Bearer %s' % token,
request.headers['Authorization'])
return net_utils.make_fake_response(response, request.get_full_url())
with local_auth_server(token_gen):
service = self.mocked_http_service(perform_request=handle_request)
self.assertEqual(service.request(request_url, data={}).read(), response)
def test_bad_secret(self):
service_url = 'http://example.com'
request_url = '/some_request'
response = 'False'
def token_gen(scopes):
del scopes # Unused argument
self.fail('must not be called')
def handle_request(request):
self.assertTrue(
request.get_full_url().startswith(service_url + request_url))
self.assertEqual('', request.body)
self.assertIsNone(request.headers.get('Authorization'))
return net_utils.make_fake_response(response, request.get_full_url())
with local_auth_server(token_gen, secret='invalid'):
service = self.mocked_http_service(perform_request=handle_request)
self.assertEqual(service.request(request_url, data={}).read(), response)
def test_bad_port(self):
request_url = '/some_request'
def token_gen(scopes):
del scopes # Unused argument
self.fail('must not be called')
def handle_request(request):
del request # Unused argument
self.fail('must not be called')
# this little dance should pick an unused port, bind it and then close it,
# trusting that the OS will not reallocate it between now and when the http
# client attempts to use it as a local_auth service. This is better than
# picking a static port number, as there's at least some guarantee that the
# port WASN'T in use before this test ran.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('localhost', 0))
port = sock.getsockname()[1]
sock.close()
with local_auth_server(token_gen, rpc_port=port):
service = self.mocked_http_service(perform_request=handle_request)
with self.assertRaises(socket.error):
self.assertRaises(service.request(request_url, data={}).read())
def test_expired_token(self):
service_url = 'http://example.com'
request_url = '/some_request'
response = 'False'
token = '<PASSWORD>'
def token_gen(scopes):
self.assertEqual(1, len(scopes))
self.assertEqual(oauth.OAUTH_SCOPES, scopes[0])
return auth_server.AccessToken(token, time.time())
def handle_request(request):
self.assertTrue(
request.get_full_url().startswith(service_url + request_url))
self.assertEqual('', request.body)
self.assertIsNone(request.headers.get('Authorization'))
return net_utils.make_fake_response(response, request.get_full_url())
with local_auth_server(token_gen):
service = self.mocked_http_service(perform_request=handle_request)
self.assertEqual(service.request(request_url, data={}).read(), response)
if __name__ == '__main__':
fix_encoding.fix_encoding()
logging.basicConfig(
level=logging.DEBUG if '-v' in sys.argv else logging.CRITICAL)
global_test_setup()
unittest.main()
|
StarcoderdataPython
|
11312336
|
<gh_stars>0
import numpy as np
from queue import deque
class Memory():
"""Sets up the memory element"""
def __init__(self, max_size):
"""Initializes the memory element"""
self.buffer = deque(maxlen = max_size)
def add(self, experience):
"""Adds player experience to the memory element"""
self.buffer.append(experience)
def sample(self, batch_size):
"""Collects player experience from the memory element"""
buffer_size = len(self.buffer)
index = np.random.choice(np.arange(buffer_size),
size = batch_size,
replace = False)
return [self.buffer[i] for i in index]
|
StarcoderdataPython
|
6644463
|
import numpy as np
class ExperienceReplay:
def __init__(self, size):
self.size = size
class PrioritisedExperienceReplay:
def __init__(self, size):
self.size = size
|
StarcoderdataPython
|
8042298
|
load("@local_config_env//:env.bzl", "FELICIA_ROOT")
load("@local_config_python//:py.bzl", "PYTHON_BIN")
LastChangeInfo = provider("lastchange")
def _lastchange_impl(ctx):
outputs = [ctx.actions.declare_file("LASTCHANGE"), ctx.actions.declare_file("LASTCHANGE.committime")]
tool_path = ctx.expand_location("$(location //third_party/chromium/build/util:lastchange.py)", [ctx.attr._tool])
# Should run on FELICIA_ROOT, otherwise can't run git command.
ctx.actions.run_shell(
tools = ctx.files._tool,
outputs = outputs,
progress_message = "Generating LASTCHANGE",
use_default_shell_env = True,
command = "%s %s --source-dir %s --output LASTCHANGE && mv LASTCHANGE LASTCHANGE.committime %s" % (
PYTHON_BIN,
tool_path,
FELICIA_ROOT,
outputs[0].dirname,
),
)
return [
DefaultInfo(files = depset(outputs)),
LastChangeInfo(lastchange = depset(outputs)),
]
lastchange = rule(
implementation = _lastchange_impl,
attrs = {
"_tool": attr.label(
allow_single_file = True,
default = Label("//third_party/chromium/build/util:lastchange.py"),
),
},
)
|
StarcoderdataPython
|
3212855
|
<gh_stars>0
"""
This file provides a wrapper around resnet and vote_fc and is useful for inference since it fuses both forward passes in one.
"""
import torch
import torch.nn as nn
from models import get_pose_net, SMPL
# from models.resnet import resnet50
# from models.sc_layers_share_global6d import SCFC_Share
from models import HMR_HR
# from models.geometric_layers import orthographic_projection, rodrigues, quat2mat
import numpy as np
class HSModel(nn.Module):
def __init__(self, cfg, is_train, smpl_mean_params, pretrained_checkpoint=None):
super(HSModel, self).__init__()
self.hrnet = get_pose_net(cfg, is_train)
# hidden_neuron_list = [4096,4096]
self.hmr_hr = HMR_HR(cfg, smpl_mean_params)
# self.smpl = SMPL()
if pretrained_checkpoint is not None:
checkpoint = torch.load(pretrained_checkpoint)
try:
self.hrnet.load_state_dict(checkpoint['hrnet'])
except KeyError:
print('Warning: hrnet was not found in checkpoint')
try:
self.hmr_hr.load_state_dict(checkpoint['hmr_hr'])
except KeyError:
print('Warning: hmr_hr was not found in checkpoint')
def forward(self, image):
"""Fused forward pass for the 2 networks
Inputs:
image: size = (B, 3, 224, 224)
Returns:
Regressed SMPL shape: size = (B, 6890, 3)
Weak-perspective camera: size = (B, 3)
SMPL pose parameters (as rotation matrices): size = (B, 24, 3, 3)
SMPL shape parameters: size = (B, 10)
"""
batch_size = image.shape[0]
with torch.no_grad():
outputs = self.hrnet(image)
pred_rotmat, pred_shape, pred_cam = self.hmr_hr(outputs)
# pred_camera = pred_camera_with_global_rot[:,:3] #(B,3)
# pred_global_rot = pred_camera_with_global_rot[:,3:][:,None,:] #(B,1,4)
# pose_cube = pred_theta.view(-1, 4) # (batch_size * 24, 4)
# R = quat2mat(pose_cube).view(batch_size, 23, 3, 3)
# pred_rotmat = R.view(batch_size, 23, 3, 3)
# pred_global_rot = pred_global_rot.view(batch_size, 1, 3, 3)
# pred_rotmat = torch.cat((pred_global_rot,pred_rotmat),dim=1) #(B,24,3,3)
# pred_vertices = self.smpl(pred_rotmat, pred_beta)
return outputs, pred_rotmat, pred_shape, pred_cam
|
StarcoderdataPython
|
12863384
|
"""
This script creates users in a JAMF Pro Server instance from an LDAP query.
"""
# Copyright 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import sys
from collections import namedtuple
from multiprocessing.pool import ThreadPool
from typing import List
from json.decoder import JSONDecodeError
import ldap
import requests
from ldap.controls import SimplePagedResultsControl
from conf import (
JAMF_PASSWORD,
JAMF_URL,
JAMF_USERNAME,
LDAP_BIND_PASSWORD,
LDAP_BIND_URI,
LDAP_BIND_USERNAME,
LDAP_FILTER,
LDAP_INSECURE,
LDAP_SEARCH_DN_LIST,
)
JAMF_AUTH = requests.auth.HTTPBasicAuth(JAMF_USERNAME, JAMF_PASSWORD)
SESSION = requests.Session()
User = namedtuple("User", ["sAMAccountName", "email", "last_name", "first_name"])
def eprint(*args, **kwargs):
"""Like print, but outputs to stderr."""
print(*args, file=sys.stderr, **kwargs)
def results_for_dn(directory: ldap.ldapobject, base_dn: str, filter: str) -> List[User]:
"""Returns a list of User objects found in the directory object for filter
:param directory: A ldap.LDAPObject that has already been bound to a
directory.
:param base_dn: The base of the directory tree to run the search filter
against.
:param filter: The LDAP search filter to run on base_dn using directory.
"""
req_ctrl = SimplePagedResultsControl(True, size=5000, cookie="")
known_ldap_resp_ctrls = {
SimplePagedResultsControl.controlType: SimplePagedResultsControl,
}
# Send search request
msgid = directory.search_ext(
base_dn, ldap.SCOPE_SUBTREE, filterstr=LDAP_FILTER, serverctrls=[req_ctrl]
)
results = []
while True:
__, result_data, __, serverctrls = directory.result3(
msgid, resp_ctrl_classes=known_ldap_resp_ctrls
)
results.extend(
[
User(
ldap_entry["sAMAccountName"][0].decode(),
ldap_entry["mail"][0].decode(),
ldap_entry["sn"][0].decode(),
ldap_entry["givenName"][0].decode(),
)
for __, ldap_entry in result_data
]
)
page_controls = [
control
for control in serverctrls
if control.controlType == SimplePagedResultsControl.controlType
]
if page_controls:
if page_controls[0].cookie:
# Copy cookie from response control to request control
req_ctrl.cookie = page_controls[0].cookie
msgid = directory.search_ext(
base_dn,
ldap.SCOPE_SUBTREE,
filterstr=LDAP_FILTER,
serverctrls=[req_ctrl],
)
else:
break
else:
eprint("Warning: Server ignores RFC 2696 control.")
break
return results
def create_user_in_jamf(user: User):
""" Creates a user in the JPS
:param user: A User object which will be used to create the JPS user.
This function uses the following module variables:
* SESSION must be a requests.Session instance
* JAMF_AUTH must be a requests.auth interface instance
* JAMF_URL must be the full base URL of a JAMF instance.
"""
eprint("Attempting to create", user.sAMAccountName)
xml = """
<user>
<name>{name}</name>
<full_name>{last_name}, {first_name}</full_name>
<email>{email}</email>
</user>
""".format(
name=user.sAMAccountName,
last_name=user.last_name,
first_name=user.first_name,
email=user.email,
).encode()
r = SESSION.post(
JAMF_URL + "/JSSResource/users/id/-1",
data=xml,
headers={"Content-Type": "application/xml", "Accept": "application/xml"},
auth=JAMF_AUTH,
)
try:
r.raise_for_status()
except requests.exceptions.RequestException as e:
eprint("Failed to create user with username", user.sAMAccountName)
eprint(e)
eprint(r.text)
else:
print(user.sAMAccountName)
def main():
eprint("Binding to LDAP...")
if LDAP_INSECURE:
ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER)
directory = ldap.initialize(LDAP_BIND_URI)
directory.protocol_version = 3
directory.simple_bind_s(who=LDAP_BIND_USERNAME, cred=LDAP_BIND_PASSWORD)
eprint("Searching directory for users...")
ldap_users = []
for base_dn in LDAP_SEARCH_DN_LIST:
eprint("Searching DN", base_dn, "with filter", LDAP_FILTER)
ldap_users.extend(results_for_dn(directory, base_dn, LDAP_FILTER))
directory.unbind_s()
directory = None
eprint("Total LDAP users:", len(ldap_users))
eprint("Asking JPS for its user list...")
jamf_user_request = requests.get(
JAMF_URL + "/JSSResource/users",
auth=JAMF_AUTH,
headers={"Accept": "application/json"},
)
try:
jamf_user_json = jamf_user_request.json()
except JSONDecodeError:
eprint(jamf_user_request.text)
eprint("Failed to decode /JSSResource/users response as JSON.")
sys.exit(1)
jamf_usernames = frozenset([user["name"] for user in jamf_user_json["users"]])
eprint("Total JAMF users:", len(jamf_usernames))
missing_users = [
user for user in ldap_users if user.sAMAccountName not in jamf_usernames
]
eprint("Users to create:", len(missing_users))
with ThreadPool(10) as pool:
results = pool.map(create_user_in_jamf, missing_users)
eprint("Done. Created users:", len(results))
if __name__ == "__main__":
main()
|
StarcoderdataPython
|
9770450
|
import collections
from copy import deepcopy
import meshio
import numpy
from ._common import (
get_local_index,
get_meshio_version,
get_new_meshio_cells,
get_old_meshio_cells,
meshio_data,
)
from ._properties import (
_connections,
_face_areas,
_face_normals,
_faces,
_materials,
_volumes,
)
__all__ = [
"Cells",
"Mesh",
"from_meshio",
]
Cells = collections.namedtuple("Cells", ["type", "data"])
class Mesh(object):
"""toughio mesh.
This class is updated following the latest :module:`meshio` version and
brings backward compatibility with its previous versions.
Parameters
----------
points : array_like (n_points, 3)
Cooordinates of points.
cells : list of tuples (cell_type, data)
Connectivity of cells.
point_data : dict or None, optional, default None
Point data arrays.
cell_data : dict or None, optional, default None
Cell data arrays.
field_data : dict or None, optional, default None
Field data names.
point_sets : dict or None, optional, default None
Sets of points.
cell_sets : dict or None, optional, default None
Sets of cells.
"""
def __init__(
self,
points,
cells,
point_data=None,
cell_data=None,
field_data=None,
point_sets=None,
cell_sets=None,
):
self.points = points
self.cells = cells
self.point_data = point_data if point_data else {}
self.cell_data = cell_data if cell_data else {}
self.field_data = field_data if field_data else {}
self.point_sets = point_sets if point_sets else {}
self.cell_sets = cell_sets if cell_sets else {}
def __repr__(self):
lines = [
"<toughio mesh object>",
" Number of points: {}".format(len(self.points)),
]
if len(self.cells) > 0:
lines.append(" Number of cells:")
for tpe, elems in self.cells:
lines.append(" {}: {}".format(tpe, len(elems)))
else:
lines.append(" No cells.")
if self.point_sets:
lines.append(" Point sets: {}".format(", ".join(self.point_sets.keys())))
if self.point_data:
lines.append(" Point data: {}".format(", ".join(self.point_data.keys())))
if self.cell_data:
lines.append(" Cell data: {}".format(", ".join(self.cell_data.keys())))
return "\n".join(lines)
def extrude_to_3d(self, height=1.0, axis=2, inplace=True):
"""Convert a 2D mesh to 3D by extruding cells along given axis.
Parameters
----------
height : scalar or array_like, optional, default 1.0
Height of extrusion.
axis : int (0, 1 or 2), optional, default 2
Axis along which extrusion is performed.
inplace : bool, optional, default True
If `False`, return a new :class:`toughio.Mesh`.
Returns
-------
toughio.Mesh
Extruded mesh (only if ``inplace == False``).
"""
if axis not in [0, 1, 2]:
raise ValueError("axis must be 0, 1 or 2.")
mesh = self if inplace else deepcopy(self)
height = [height] if isinstance(height, (int, float)) else height
npts, nh = len(mesh.points), len(height)
if mesh.points.shape[1] == 3:
if len(set(mesh.points[:, axis])) != 1:
raise ValueError("Cannot extrude mesh along axis {}.".format(axis))
else:
mesh.points = numpy.column_stack((mesh.points, numpy.zeros(npts)))
if axis != 2:
mesh.points[:, [axis, 2]] = mesh.points[:, [2, axis]]
extra_points = numpy.array(mesh.points)
for h in height:
extra_points[:, axis] += h
mesh.points = numpy.vstack((mesh.points, extra_points))
extruded_types = {
"triangle": "wedge",
"quad": "hexahedron",
}
cells = []
for ic, c in enumerate(mesh.cells):
if c.type in extruded_types.keys():
extruded_type = extruded_types[c.type]
nr, nc = c.data.shape
cell = Cells(extruded_type, numpy.tile(c.data, (nh, 2)))
for i in range(nh):
ibeg, iend = i * nr, (i + 1) * nr
cell.data[ibeg:iend, :nc] += i * npts
cell.data[ibeg:iend, nc:] += (i + 1) * npts
cells.append(cell)
if mesh.cell_data:
for k, v in mesh.cell_data.items():
v[ic] = numpy.tile(v[ic], nh)
mesh.cells = cells
if mesh.field_data:
for k in mesh.field_data.keys():
mesh.field_data[k][1] = 3
if not inplace:
return mesh
def prune_duplicates(self, inplace=True):
"""Delete duplicate points and cells.
Parameters
----------
inplace : bool, optional, default True
If `False`, return a new :class:`toughio.Mesh`.
Returns
-------
toughio.Mesh
Pruned mesh (only if ``inplace == False``).
Note
----
Does not preserve points order from original array in mesh.
"""
mesh = self if inplace else deepcopy(self)
cells = [[c.type, c.data] for c in mesh.cells]
# Prune duplicate points
unique_points, pind, pinv = numpy.unique(
mesh.points, axis=0, return_index=True, return_inverse=True,
)
if len(unique_points) < len(mesh.points):
mesh.points = unique_points
for k, v in mesh.point_data.items():
mesh.point_data[k] = v[pind]
for ic, (k, v) in enumerate(cells):
cells[ic][1] = pinv[v]
# Prune duplicate cells
for ic, (k, v) in enumerate(cells):
vsort = numpy.sort(v, axis=1)
_, order = numpy.unique(vsort, axis=0, return_index=True)
cells[ic][1] = v[order]
if mesh.cell_data:
for kk, vv in mesh.cell_data.items():
mesh.cell_data[kk][ic] = vv[ic][order]
mesh.cells = cells
if not inplace:
return mesh
def split(self, arr):
"""Split input array into subarrays for each cell block in mesh.
Parameters
----------
arr : array_like
Input array.
Returns
-------
list of array_like
List of subarrays.
"""
if len(arr) != self.n_cells:
raise ValueError()
sizes = numpy.cumsum([len(c.data) for c in self.cells])
return numpy.split(numpy.asarray(arr), sizes[:-1])
def to_meshio(self):
"""Convert mesh to :class:`meshio.Mesh`.
Returns
-------
meshio.Mesh
Output mesh.
"""
keys = ["points", "point_data", "field_data"]
kwargs = {key: getattr(self, key) for key in keys}
version = get_meshio_version()
if version[0] >= 4:
kwargs.update(
{
"cells": self.cells,
"cell_data": self.cell_data,
"point_sets": self.point_sets,
"cell_sets": self.cell_sets,
}
)
else:
cells, cell_data = get_old_meshio_cells(self.cells, self.cell_data)
kwargs.update(
{"cells": cells, "cell_data": cell_data, "node_sets": self.point_sets,}
)
return meshio.Mesh(**kwargs)
def to_pyvista(self):
"""Convert mesh to :class:`pyvista.UnstructuredGrid`.
Returns
-------
pyvista.UnstructuredGrid
Output mesh.
"""
try:
import pyvista
from ._common import (
meshio_to_vtk_type,
vtk_type_to_numnodes,
)
except ImportError:
raise ImportError(
"Converting to pyvista.UnstructuredGrid requires pyvista to be installed."
)
# Extract cells from toughio.Mesh object
offset = []
cells = []
cell_type = []
next_offset = 0
for c in self.cells:
vtk_type = meshio_to_vtk_type[c.type]
numnodes = vtk_type_to_numnodes[vtk_type]
offset += [next_offset + i * (numnodes + 1) for i in range(len(c.data))]
cells.append(
numpy.hstack((numpy.full((len(c.data), 1), numnodes), c.data)).ravel()
)
cell_type += [vtk_type] * len(c.data)
next_offset = offset[-1] + numnodes + 1
# Extract cell data from toughio.Mesh object
cell_data = {k: numpy.concatenate(v) for k, v in self.cell_data.items()}
# Create pyvista.UnstructuredGrid object
points = self.points
if points.shape[1] == 2:
points = numpy.hstack((points, numpy.zeros((len(points), 1))))
mesh = pyvista.UnstructuredGrid(
numpy.array(offset),
numpy.concatenate(cells),
numpy.array(cell_type),
numpy.array(points, numpy.float64),
)
# Set point data
mesh.point_arrays.update(
{k: numpy.array(v, numpy.float64) for k, v in self.point_data.items()}
)
# Set cell data
mesh.cell_arrays.update(cell_data)
return mesh
def to_tough(self, filename="MESH", **kwargs):
"""Write TOUGH `MESH` file.
Parameters
----------
filename : str, optional, default 'MESH'
Output file name.
"""
self.write(filename, file_format="tough", **kwargs)
def read_output(self, file_or_output, time_step=-1):
"""Import TOUGH results to the mesh.
Parameters
----------
file_or_output : str, namedtuple or list of namedtuple
Input file name or output data.
time_step : int, optional, default -1
Data for given time step to import. Default is last time step.
"""
from .. import read_output
from .._io._helpers import Output, Save, _reorder_labels
if not isinstance(file_or_output, (str, list, tuple, Output, Save)):
raise TypeError()
if not isinstance(time_step, int):
raise TypeError()
if isinstance(file_or_output, str):
out = read_output(file_or_output)
else:
out = file_or_output
if not isinstance(out, (Output, Save)):
if not (-len(out) <= time_step < len(out)):
raise ValueError()
out = out[time_step]
if len(out.labels) != self.n_cells:
raise ValueError()
out = _reorder_labels(out, self.labels)
self.cell_data.update(out.data)
def write(self, filename, file_format=None, **kwargs):
"""Write mesh to file.
Parameters
----------
filename : str
Output file name.
file_format : str or None, optional, default None
Output file format. If `None`, it will be guessed from file's
extension. To write TOUGH MESH, `file_format` must be specified
as 'tough' (no specific extension exists for TOUGH MESH).
"""
from ._helpers import write
write(filename, self, file_format, **kwargs)
def plot(self, *args, **kwargs):
"""Display mesh using :method:`pyvista.UnstructuredGrid.plot``."""
mesh = self.to_pyvista()
mesh.plot(*args, **kwargs)
def add_point_data(self, label, data):
"""Add a new point data array.
Parameters
----------
label : str
Point data array name.
data : array_like
Point data array.
"""
if not isinstance(label, str):
raise TypeError()
if not isinstance(data, (list, tuple, numpy.ndarray)):
raise TypeError()
if len(data) != self.n_points:
raise ValueError()
self.point_data[label] = numpy.asarray(data)
def add_cell_data(self, label, data):
"""Add a new cell data array.
Parameters
----------
label : str
Cell data array name.
data : array_like
Cell data array.
"""
if not isinstance(label, str):
raise TypeError()
if not isinstance(data, (list, tuple, numpy.ndarray)):
raise TypeError()
if len(data) != self.n_cells:
raise ValueError()
self.cell_data[label] = self.split(data)
def set_material(self, material, xlim=None, ylim=None, zlim=None):
"""Set material to cells in box.
Set material for cells within box selection defined by `xlim`, `ylim` and `zlim`.
Parameters
----------
material : str
Material name.
xlim : array_like or None, optional, default None
Minimum and maximum values in X direction.
ylim : array_like or None, optional, default None
Minimum and maximum values in Y direction.
zlim : array_like or None, optional, default None
Minimum and maximum values in Z direction.
Raises
------
AssertionError
If any input argument is not valid.
"""
def isinbounds(x, bounds):
return (
numpy.logical_and(x >= min(bounds), x <= max(bounds))
if bounds is not None
else numpy.ones(len(x), dtype=bool)
)
if not isinstance(material, str):
raise TypeError()
if not (xlim is not None or ylim is not None or zlim is not None):
raise TypeError()
if not (
xlim is None
or (isinstance(xlim, (list, tuple, numpy.ndarray)) and len(xlim) == 2)
):
raise ValueError()
if not (
ylim is None
or (isinstance(ylim, (list, tuple, numpy.ndarray)) and len(ylim) == 2)
):
raise ValueError()
if not (
zlim is None
or (isinstance(zlim, (list, tuple, numpy.ndarray)) and len(zlim) == 2)
):
raise ValueError()
x, y, z = numpy.concatenate(self.centers).T
mask_x = isinbounds(x, xlim)
mask_y = isinbounds(y, ylim)
mask_z = isinbounds(z, zlim)
mask = numpy.logical_and(numpy.logical_and(mask_x, mask_y), mask_z)
if mask.any():
data = numpy.concatenate(self.cell_data["material"])
imat = (
self.field_data[material][0]
if material in self.field_data.keys()
else data.max() + 1
)
data[mask] = imat
self.add_cell_data("material", data)
self.field_data[material] = numpy.array([imat, 3])
def near(self, point):
"""Return local index of cell nearest to query point.
Parameters
----------
point : array_like
Coordinates of point to query.
Returns
-------
tuple
Local index of cell as a tuple (iblock, icell).
"""
if not isinstance(point, (list, tuple, numpy.ndarray)):
raise TypeError()
if numpy.ndim(point) != 1:
raise ValueError()
if len(point) != self.points.shape[1]:
raise ValueError()
centers = numpy.concatenate(self.centers)
idx = numpy.arange(self.n_cells)
idx = idx[numpy.argmin(numpy.linalg.norm(centers - point, axis=1))]
return get_local_index(self, idx)
@property
def points(self):
"""Return coordinates of points."""
return self._points
@points.setter
def points(self, value):
self._points = value
@property
def cells(self):
"""Return connectivity of cells."""
if self._cells:
return self._cells
else:
return [Cells(k, v) for k, v in self._cells_dict.items()]
@cells.setter
def cells(self, value):
if isinstance(value, dict):
self._cells = []
self._cells_dict = value
else:
self._cells = [Cells(k, v) for k, v in value]
self._cells_dict = {}
@property
def cells_dict(self):
"""Return connectivity of cells (``meshio < 4.0.0``)."""
if self._cells:
return get_old_meshio_cells(self._cells)
else:
return self._cells_dict
@property
def point_data(self):
"""Return point data arrays."""
return self._point_data
@point_data.setter
def point_data(self, value):
self._point_data = value
@property
def cell_data(self):
"""Return cell data arrays."""
return self._cell_data
@cell_data.setter
def cell_data(self, value):
self._cell_data = value
@property
def field_data(self):
"""Return field data names."""
return self._field_data
@field_data.setter
def field_data(self, value):
self._field_data = value
@property
def point_sets(self):
"""Return sets of points."""
return self._point_sets
@point_sets.setter
def point_sets(self, value):
self._point_sets = value
@property
def cell_sets(self):
"""Return sets of cells."""
return self._cell_sets
@cell_sets.setter
def cell_sets(self, value):
self._cell_sets = value
@property
def n_points(self):
"""Return number of points."""
return len(self.points)
@property
def n_cells(self):
"""Return number of cells."""
return sum(len(c.data) for c in self.cells)
@property
def labels(self):
"""Return labels of cell in mesh."""
from ._common import labeler
return self.split([labeler(i) for i in range(self.n_cells)])
@property
def centers(self):
"""Return node centers of cell in mesh."""
return [self.points[c.data].mean(axis=1) for c in self.cells]
@property
def materials(self):
"""Return materials of cell in mesh."""
return _materials(self)
@property
def faces(self):
"""Return connectivity of faces of cell in mesh."""
out = _faces(self)
arr = numpy.full((self.n_cells, 6, 4), -1)
for i, x in enumerate(out):
arr[i, : len(x[0]), : x[0].shape[1]] = x[0]
if len(x) > 1:
arr[i, len(x[0]) : len(x[0]) + len(x[1]), : x[1].shape[1]] = x[1]
return self.split(arr)
@property
def face_normals(self):
"""Return normal vectors of faces in mesh."""
return [
numpy.array([face for face in faces])
for faces in self.split(_face_normals(self))
]
@property
def face_areas(self):
"""Return areas of faces in mesh."""
return [
numpy.array([face for face in faces])
for faces in self.split(_face_areas(self))
]
@property
def volumes(self):
"""Return volumes of cell in mesh."""
return _volumes(self)
@property
def connections(self):
"""Return mesh connections.
Assume conformity and that points and cells are uniquely defined in mesh.
Note
----
Only for 3D meshes and first order cells.
"""
return self.split(_connections(self))
def from_meshio(mesh):
"""Convert a :class:`meshio.Mesh` to :class:`toughio.Mesh`.
Parameters
----------
mesh : meshio.Mesh
Input mesh.
Returns
-------
toughio.Mesh
Output mesh.
"""
if mesh.cell_data:
version = get_meshio_version()
if version[0] >= 4:
cells = mesh.cells
cell_data = mesh.cell_data
else:
cells, cell_data = get_new_meshio_cells(mesh.cells, mesh.cell_data)
for k in cell_data.keys():
if k in meshio_data:
cell_data["material"] = cell_data.pop(k)
break
else:
cell_data = {}
out = Mesh(
points=mesh.points,
cells=cells,
point_data=mesh.point_data,
cell_data=cell_data,
field_data=mesh.field_data,
point_sets=(
mesh.point_sets
if hasattr(mesh, "point_sets")
else mesh.node_sets
if hasattr(mesh, "node_sets")
else None
),
cell_sets=mesh.cell_sets if hasattr(mesh, "cell_sets") else None,
)
if "material" not in out.cell_data.keys():
imat = (
numpy.max([v[0] for v in mesh.field_data.values() if v[1] == 3]) + 1
if mesh.field_data
else 1
)
out.cell_data["material"] = out.split(numpy.full(out.n_cells, imat, dtype=int))
out.field_data["dfalt"] = numpy.array([imat, 3])
return out
|
StarcoderdataPython
|
9638171
|
import logging
import re
# STOP: Do not make changes to this file! This file contains defaults for the open group server and
# is intended to be replaced on upgrade. If you want to override any changes you should instead set
# the variable you care about in `config.py`, which overrides values specified here.
# The paths we use for storage; if relative these are in the current working directory of the server
# process running sogs.
DB_PATH = 'sogs.db'
DB_SCHEMA_FILE = 'schema.sql'
KEY_FILE = 'key_x25519'
# Base url for generating links. Can be http, https, and may or may not include a port. Note if
# using https that you need to set up proper HTTPS certificates, for example using certbot to obtain
# a free Let's Encrypt certificate.
URL_BASE = 'http://example.net'
# The log level.
LOG_LEVEL = logging.WARNING
# Default upload expiry time, in days.
UPLOAD_DEFAULT_EXPIRY_DAYS = 15
# We truncate filenames if the sanitized name (not including the initial 'ID_') is longer than this.
UPLOAD_FILENAME_MAX = 60
# When a filename exceeds UPLOAD_FILENAME_MAX, we keep this many characters from the beginning,
# append "...", and then append enough from the end (i.e. max - this - 3) to hit the _MAX value.
UPLOAD_FILENAME_KEEP_PREFIX = 40
UPLOAD_FILENAME_KEEP_SUFFIX = 17
# Maximum size of a file upload that we accept, in bytes. Note that onion requests have a hard
# limit of 10MB for a fully-wrapped request, and that Session uploads with base64 encoding,
# so this is deliberately set conservatively below that limit.
UPLOAD_FILE_MAX_SIZE = 6_000_000
# Regex that matches *invalid* characters in a user-supplied filename (if any); any matches of this
# regex get replaced with a single _ when writing the file to disk. The default is intended to
# strip out enough so that the filename is storable portably on modern OS filesystems.
UPLOAD_FILENAME_BAD = re.compile(r"[^\w+\-.'()@\[\]]+")
# How long without activity before we drop user-room activity info, in days.
ROOM_ACTIVE_PRUNE_THRESHOLD = 60
# The default user activity cutoff that is used to report a room's current "active users" count; the
# unit is in days.
ROOM_DEFAULT_ACTIVE_THRESHOLD = 7
# How long we keep message edit/deletion history, in days.
MESSAGE_HISTORY_PRUNE_THRESHOLD = 30
# dev import testing option, to be removed in the future
IMPORT_ADJUST_MS = 0
# file containing "bad" words for filtration. This feature in temporary and will be removed once
# more robust bot/spam filtering is available.
BAD_WORDS_FILE = 'badwords.txt'
|
StarcoderdataPython
|
3380572
|
<gh_stars>0
import numpy as np
import tensorflow as tf
import h5py
from sklearn.preprocessing import OneHotEncoder
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import time
# Download data from .mat file into numpy array
print('==> Experiment 5d')
# Functions for initializing neural nets parameters
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1, dtype=tf.float64)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape, dtype=tf.float64)
return tf.Variable(initial)
filepath = '/pylon2/ci560sp/mint96/exp5d_d15_1s.mat'
print('==> Loading data from {}'.format(filepath))
f = h5py.File(filepath)
data_train = np.array(f.get('trainingFeatures'))
# y_train = np.array(f.get('trainingLabels'))
data_val = np.array(f.get('validationFeatures'))
# y_val = np.array(f.get('validationLabels'))
X_test = np.array(f.get('window_testFeatures'))
y_test = np.array(f.get('window_testLabels'))
del f
print('==> Data sizes:',data_train.shape, data_val.shape, X_test.shape, y_test.shape)
# Transform labels into on-hot encoding form
enc = OneHotEncoder()
#y_train = enc.fit_transform(y_train.copy()).astype(int).toarray()
#y_val = enc.fit_transform(y_val.copy()).astype(int).toarray()
y_test = enc.fit_transform(y_test.copy()).astype(int).toarray()
sub_window_size_list = [1, 2, 4, 8, 16]
ploty_train_all = []
ploty_val_all = []
ploty_test_all = []
hidden_layer_size = 0
for sub_window_size in sub_window_size_list:
'''
NN config parameters
'''
num_features = 169*sub_window_size
num_frames = 16
hidden_layer_size = hidden_layer_size + 800
num_classes = y_test.shape[1]
print("Number of features:", num_features)
print("Number of frames:",num_frames)
print("Hidden layer size:", hidden_layer_size)
# Reshape input features
X_train = np.reshape(data_train,(-1, num_features))
X_val = np.reshape(data_val,(-1,num_features))
print("Input sizes:", X_train.shape, X_val.shape)
y_train = []
y_val = []
# Add Labels
for label in range(num_classes):
for sampleCount in range(X_train.shape[0]/num_classes):
y_train.append([label])
for sampleCount in range(X_val.shape[0]/num_classes):
y_val.append([label])
X_train = np.concatenate((X_train, y_train), axis=1)
X_val = np.concatenate((X_val, y_val), axis=1)
# Shuffle
np.random.shuffle(X_train)
np.random.shuffle(X_val)
# Separate coefficients and labels
y_train = X_train[:, -1].reshape(-1, 1)
X_train = X_train[:, :-1]
y_val = X_val[:, -1].reshape(-1, 1)
X_val = X_val[:, :-1]
print('==> Data sizes:',X_train.shape, y_train.shape, X_val.shape, y_val.shape)
y_train = enc.fit_transform(y_train.copy()).astype(int).toarray()
y_val = enc.fit_transform(y_val.copy()).astype(int).toarray()
# Done Processing Data
plotx = []
ploty_train = []
ploty_val = []
ploty_test = []
# Set-up NN layers
x = tf.placeholder(tf.float64, [None, num_features])
W1 = weight_variable([num_features, hidden_layer_size])
b1 = bias_variable([hidden_layer_size])
# Hidden layer activation function: ReLU
h1 = tf.nn.relu(tf.matmul(x, W1) + b1)
W2 = weight_variable([hidden_layer_size, num_classes])
b2 = bias_variable([num_classes])
# Softmax layer (Output), dtype = float64
y = tf.matmul(h1, W2) + b2
y_group = tf.reshape(tf.reduce_mean(y, 0),[-1, num_classes])
# NN desired value (labels)
y_ = tf.placeholder(tf.float64, [None, num_classes])
# Loss function
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
cross_entropy_group = -tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y_group)))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.InteractiveSession()
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
correct_prediction_group = tf.equal(tf.argmax(y_group, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
accuracy_group = tf.reduce_mean(tf.cast(correct_prediction_group, tf.float64))
sess.run(tf.global_variables_initializer())
# Training
numTrainingVec = len(X_train)
batchSize = 500
numEpochs = 1000
startTime = time.time()
for epoch in range(numEpochs):
for i in range(0,numTrainingVec,batchSize):
# Batch Data
batchEndPoint = min(i+batchSize, numTrainingVec)
trainBatchData = X_train[i:batchEndPoint]
trainBatchLabel = y_train[i:batchEndPoint]
train_step.run(feed_dict={x: trainBatchData, y_: trainBatchLabel})
# Print accuracy
if epoch%50 == 0 or epoch == numEpochs-1:
plotx.append(epoch)
train_error = cross_entropy.eval(feed_dict={x:X_train, y_: y_train})
validation_error = cross_entropy.eval(feed_dict={x:X_val, y_: y_val})
train_acc = accuracy.eval(feed_dict={x:X_train, y_: y_train})
val_acc = accuracy.eval(feed_dict={x:X_val, y_: y_val})
ploty_train.append(train_error)
ploty_val.append(validation_error)
print("epoch: %d, train acc %g, val acc %g, train error %g, val error %g"%(epoch, train_acc, val_acc, train_error, validation_error))
# Evaluating multi-frame validation set
total_error = 0
total_acc = 0
for t in range(len(X_test)):
this_x = X_test[t]
this_y = [y_test[t]]
x_image = np.reshape(this_x, (-1, num_features))
total_error = total_error + cross_entropy_group.eval(feed_dict={x:x_image, y_: this_y})
total_acc = total_acc + accuracy_group.eval(feed_dict={x:x_image, y_: this_y})
ploty_test.append(total_error/len(X_test))
print("====> Window acc %g, err: %g"%(total_acc/len(X_test),ploty_test[-1]))
endTime = time.time()
print("Elapse Time:", endTime - startTime)
ploty_train_all.append(ploty_train)
ploty_val_all.append(ploty_val)
ploty_test_all.append(ploty_test)
print('==> Generating error plot...')
errfig = plt.figure()
trainErrPlot = errfig.add_subplot(111)
trainErrPlot.set_xlabel('Number of Epochs')
trainErrPlot.set_ylabel('Cross-Entropy Error')
trainErrPlot.set_title('Error vs Number of Epochs')
trainErrPlot.scatter(plotx, ploty_train)
valErrPlot = errfig.add_subplot(111)
valErrPlot.scatter(plotx, ploty_val, c='r')
testErrPlot = errfig.add_subplot(111)
testErrPlot.scatter(plotx, ploty_test, c='g')
errfig.savefig('exp5d_s'+str(sub_window_size)+'_result.png')
# Final Result
print("Validation accuracy:",total_acc/len(X_test))
print("Validation error:", ploty_test[-1])
print("============================================")
# END OF OUTERMOST FOR-LOOP
print('==> Generating FINAL training error plot...')
errfig = plt.figure()
s1_Plot = errfig.add_subplot(111)
s1_Plot.set_xlabel('Number of Epochs')
s1_Plot.set_ylabel('Cross-Entropy Error')
s1_Plot.set_title('Error vs Number of Epochs')
s1_Plot.scatter(plotx, ploty_train_all[0])
s2_Plot = errfig.add_subplot(111)
s2_Plot.scatter(plotx, ploty_train_all[1], c='r')
s4_Plot = errfig.add_subplot(111)
s4_Plot.scatter(plotx, ploty_train_all[2], c='g')
s8_Plot = errfig.add_subplot(111)
s8_Plot.scatter(plotx, ploty_train_all[3], c='yellow')
s16_Plot = errfig.add_subplot(111)
s16_Plot.scatter(plotx, ploty_train_all[4], c='magenta')
errfig.savefig('exp5d_final_train_error.png')
print('==> Generating FINAL validation error plot...')
errfig = plt.figure()
s1_Plot = errfig.add_subplot(111)
s1_Plot.set_xlabel('Number of Epochs')
s1_Plot.set_ylabel('Cross-Entropy Error')
s1_Plot.set_title('Error vs Number of Epochs')
s1_Plot.scatter(plotx, ploty_val_all[0])
s2_Plot = errfig.add_subplot(111)
s2_Plot.scatter(plotx, ploty_val_all[1], c='r')
s4_Plot = errfig.add_subplot(111)
s4_Plot.scatter(plotx, ploty_val_all[2], c='g')
s8_Plot = errfig.add_subplot(111)
s8_Plot.scatter(plotx, ploty_val_all[3], c='yellow')
s16_Plot = errfig.add_subplot(111)
s16_Plot.scatter(plotx, ploty_val_all[4], c='magenta')
errfig.savefig('exp5d_final_val_error.png')
print('==> Generating FINAL window validation error plot...')
errfig = plt.figure()
s1_Plot = errfig.add_subplot(111)
s1_Plot.set_xlabel('Number of Epochs')
s1_Plot.set_ylabel('Cross-Entropy Error')
s1_Plot.set_title('Error vs Number of Epochs')
s1_Plot.scatter(plotx, ploty_test_all[0])
s2_Plot = errfig.add_subplot(111)
s2_Plot.scatter(plotx, ploty_test_all[1], c='r')
s4_Plot = errfig.add_subplot(111)
s4_Plot.scatter(plotx, ploty_test_all[2], c='g')
s8_Plot = errfig.add_subplot(111)
s8_Plot.scatter(plotx, ploty_test_all[3], c='yellow')
s16_Plot = errfig.add_subplot(111)
s16_Plot.scatter(plotx, ploty_test_all[4], c='magenta')
errfig.savefig('exp5d_final_test_error.png')
|
StarcoderdataPython
|
6406172
|
<reponame>AshuMaths1729/Sudoku-Vision<filename>data/gen_n10_data.py
import numpy as np
import cv2 as cv
fileName = "n10.data"
def gendata():
img = np.zeros((50, 50, 3), np.uint8)*255
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
roi = img[:,:]
roi_1 = np.append([10], roi)
roi_2 = np.append([10], cv.bitwise_not(roi))
res = np.array([roi_1,roi_2])
np.savetxt(fileName, res, delimiter=',', fmt='%u')
print("Generate data completed")
# [10, cv.bitwise_not(roi)]])
gendata()
|
StarcoderdataPython
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.