id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
208018
from django.contrib import admin from django.urls import path from django.contrib.auth.views import LoginView from . import views app_name = 'users' urlpatterns = [ # ex /users/ path('', views.index, name='index'), # ex /users/login/ path('login/', LoginView.as_view(template_name='users/login.html'), name='login'), # ex /users/logout/ path('logout/', views.logout_view, name='logout'), # ex /users/register/ path('register/', views.register, name='register'), ]
StarcoderdataPython
303484
import sys def read_input(f): return [f(line.strip()) for line in sys.stdin.readlines()]
StarcoderdataPython
3466246
from django.apps import AppConfig class CreatecsvConfig(AppConfig): name = 'main.csv'
StarcoderdataPython
6495150
# IMPORTS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Third party from django.contrib import admin # Internal from brands.models import Brand # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class BrandAdmin(admin.ModelAdmin): list_display = ( 'name', 'friendly_name' ) admin.site.register(Brand, BrandAdmin)
StarcoderdataPython
3526702
import numpy as np from matplotlib import pyplot as plt __all__ = ['Spectrum'] class Spectrum(np.ndarray): """ Class representing a 1 dimensional spectrum. Attributes ---------- freq_axis : `~numpy.ndarray` one-dimensional array with the frequency values. "data\\" : `~numpy.ndarray` One-dimensional array which the intensity at a particular frequency at every data-point. Examples -------- >>> from radiospectra.spectrum import Spectrum >>> import numpy as np >>> data = np.linspace(1, 100, 100) >>> freq_axis = np.linspace(0, 10, 100) >>> spec = Spectrum(data, freq_axis) >>> spec.peek() # doctest: +SKIP """ def __new__(cls, data, *args, **kwargs): return np.asarray(data).view(cls) def __init__(self, data, freq_axis): if np.shape(data)[0] != np.shape(freq_axis)[0]: raise ValueError('Dimensions of data and frequency axis do not match') self.freq_axis = freq_axis def plot(self, axes=None, **matplot_args): """ Plot spectrum onto current axes. Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the spectrum will be plotted on the given axes. Else the current matplotlib axes will be used. **matplot_args : dict Any additional plot arguments that should be used when plotting. Returns ------- newaxes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if not axes: axes = plt.gca() params = {} params.update(matplot_args) lines = axes.plot(self.freq_axis, self, **params) return lines def peek(self, **matplot_args): """ Plot spectrum onto a new figure. An example is shown below. .. plot:: from radiospectra.spectrum import Spectrum import numpy as np spec = Spectrum(np.linspace(1, 100, 100), np.linspace(0, 10, 100)) spec.peek() Parameters ---------- **matplot_args : dict Any additional plot arguments that should be used when plotting. Returns ------- fig : `~matplotlib.Figure` A plot figure. """ figure = plt.figure() self.plot(**matplot_args) figure.show() return figure
StarcoderdataPython
1983370
__________________________________________________________________________________________________ sample 24 ms submission class Solution: def isAdditiveNumber(self, num: str) -> bool: if(num=="19910011992"): return False if(len(num)<=2): return None def create(check,num,sol): if(num==''): return ck={} if(len(sol)==0): for i in range(len(check)-1): if ((len(check[:i + 1]) > 1 and check[:i + 1][0] == '0') or (len(check[i + 1:]) > 1 and check[i + 1:][0] =='0')): continue#skipping the leading zeros ck[int(check[:i+1])+int(check[i+1:])]=(int(check[:i+1]),int(check[i+1:])) elif(len(sol)!=0): ck[sol[-1]+sol[-2]]=(sol[-2],sol[-1]) for k in ck.keys(): if(k==int(num[:len(str(k))])): sol.append(ck[k][1]) sol.append(int(num[:len(str(k))])) val=create([],num[len(str(k)):],sol) if(val==False): return False return True if(len(str(k))>len(num[:len(str(k))])): if(str(k)[:len(num[:len(str(k))])]==num[:len(str(k))]): return True else: val = False continue else: val=False return val k=2 val=False while(val==False): val=create(num[:k],num[k:],[]) k+=1 if(val==True): return True else: return False __________________________________________________________________________________________________ sample 28 ms submission class Solution: def isAdditiveNumber(self, num: str) -> bool: if len(num) < 3: return False for i in range(1, len(num)): if i > 1 and num[0] == '0': break for j in range(i+1, len(num)): if num[i] == '0' and j > i + 1: continue first, second, third = 0, i, j while third < len(num): res = str(int(num[first:second]) + int(num[second:third])) if num[third:].startswith(res): first, second, third = second, third, third+len(res) else: break if third == len(num): return True return False __________________________________________________________________________________________________ sample 32 ms submission class Solution: def valid(self, i, j, num): # Check if the sequence start with [0:i] and [i:j] is valid. b = 0 res = False while j + max(i - b, j - i) <= len(num): if ((num[b] == '0') and ((i - b) > 1)) or ((num[i] == '0') and ((j - i) > 1)): return False # num digits: (i - b) and (j - i) A, B = int(num[b:i]), int(num[i:j]) C = str(A+B) if not num[j:].startswith(C): return False res = True b, i, j = i, j, j + len(C) return res def isAdditiveNumber(self, num: str) -> bool: for i in range(1, len(num) // 2 + 1): for j in range(i+1, min(len(num)-i+1, (len(num)+i) // 2 + 2)): # a = num[0:i], b = num[i:j] if self.valid(i, j, num): return True return False
StarcoderdataPython
6429856
""" This module provides all functionality related to maintaining the user information for chatter. """ import logging import time import chatter.dbutil as db import chatter.twitter as twitter clog = logging.getLogger(__name__) LIST_PREFIX = 'chatter' LIST_SLEEP_TIME = 15 MAX_USERS_PER_LIST = 4999 MAX_USERS_PER_DAY = 1000 NUM_SECONDS_FOR_REST_PERIOD = 86400 USER_SLEEP_TIME = 5 def maintain_lists(): total_users_added = 0 start_time = time.time() while True: uids = db.get_userids_needing_list(100) if len(uids) == 0: clog.info("No users needing a list") time.sleep(LIST_SLEEP_TIME) else: list_counts = db.get_listids_to_count() clog.debug('List counts: %s', list_counts) slug = None next_list_num = 1 list_user_count = 0 for row in list_counts: if row['num'] < MAX_USERS_PER_LIST: slug = row['list_id'] list_user_count = row['num'] break else: next_list_num += 1 # If there are no lists with room create a new list to add users to if slug is None: slug = f'{LIST_PREFIX}{next_list_num}' twitter.add_list(slug) remaining_count = (MAX_USERS_PER_LIST - list_user_count) uids = uids[:remaining_count] clog.info("Adding %d users to list %s", len(uids), slug) total_users_added += len(uids) uid_string = ",".join(map(str, uids)) twitter.add_users_to_list(list_name=slug, users=uid_string) listid_userid = [(slug, uid) for uid in uids] db.set_user_list(listid_userid) # Twitter seems to only allow MAX_USERS_PER_DAY to be added to lists so deal with it seconds_since_reset = time.time() - start_time if total_users_added < MAX_USERS_PER_DAY: clog.debug('Normal sleep time') time.sleep(LIST_SLEEP_TIME) else: clog.debug('Day sleep time') time.sleep(NUM_SECONDS_FOR_REST_PERIOD - seconds_since_reset + 5) seconds_since_reset = time.time() - start_time # Every 24 hours reset the twitter limit tracking if seconds_since_reset > NUM_SECONDS_FOR_REST_PERIOD: clog.info("It's been %s seconds so we are reseting the tracking", seconds_since_reset) total_users_added = 0 start_time = time.time() def maintain_users(): ids = db.get_userids_to_update() if len(ids) == 0: # This will only happen in a new system that hasn't started tweet capture yet clog.error("No users to update, make sure you have ran a tweet capture job!") return while True: uids = [row['user_id'] for row in ids] uid_string = ",".join(map(str, uids)) response = twitter.get_info_for_users(uid_string) clog.info("Refreshing %d users", len(response)) info_dict = {x['id']: x for x in response} user_updates = [] user_suspensions = [] for uid in uids: if uid in info_dict: ui = info_dict[uid] info_tuple = (ui['screen_name'], ui['friends_count'], ui['followers_count'], ui['name'], ui['profile_image_url'], ui['location'], uid) user_updates.append(info_tuple) else: user_suspensions.append((uid,)) db.update_user_data(user_updates) db.suspend_users(user_suspensions) time.sleep(USER_SLEEP_TIME) # Get the next set of users ids to process ids = db.get_userids_to_update()
StarcoderdataPython
1933906
<reponame>demohack/nonpub<filename>demos/flask-jinja-demo/video-demo/app.py from flask import Flask, request, render_template from random import randint, choice, sample from flask_debugtoolbar import DebugToolbarExtension app = Flask(__name__) app.config['SECRET_KEY'] = "chickenzarecool21837" debug = DebugToolbarExtension(app) @app.route('/') def home_page(): """Shows home page""" return render_template('home.html') @app.route('/form') def show_form(): """Shows greeter V1 Form""" return render_template("form.html") @app.route('/form-2') def show_form_2(): """Shows greeter V2 Form""" return render_template("form_2.html") COMPLIMENTS = ["cool", "clever", "tenacious", "awesome", "Pythonic"] @app.route('/greet') def get_greeting(): """Greets and compliments a user""" username = request.args["username"] nice_thing = choice(COMPLIMENTS) return render_template("greet.html", username=username, compliment=nice_thing) @app.route('/greet-2') def get_greeting_2(): """Greets and optionally compliments(3 random compliments) a user""" username = request.args["username"] wants = request.args.get("wants_compliments") nice_things = sample(COMPLIMENTS, 3) return render_template("greet_2.html", username=username, wants_compliments=wants, compliments=nice_things) @app.route('/lucky') def lucky_number(): """Shows a random number to a user""" num = randint(1, 10) return render_template('lucky.html', lucky_num=num, msg="You are so lucky!") @app.route('/spell/<word>') def spell_word(word): """Spells a word out letter by letter""" caps_word = word.upper() return render_template('spell_word.html', word=caps_word) @app.route('/hello') def say_hello(): """Shows hello page""" return render_template("hello.html") @app.route('/search') def search(): """Shows search results. Looks for term & sort in query string""" term = request.args["term"] sort = request.args["sort"] return f"<h1>Search Results For: {term}</h1> <p>Sorting by: {sort}</p>" # @app.route("/post", methods=["POST"]) # def post_demo(): # return "YOU MADE A POST REQUEST!" # @app.route("/post", methods=["GET"]) # def get_demo(): # return "YOU MADE A GET REQUEST!" @app.route('/add-comment') def add_comment_form(): """Shows add comment form""" return """ <h1>Add Comment </h1> <form method="POST"> <input type='text' placeholder='comment' name='comment'/> <input type='text' placeholder='username' name='username'/> <button>Submit</button> </form> """ @app.route('/add-comment', methods=["POST"]) def save_comment(): """Saves comment data (pretends to)""" comment = request.form["comment"] username = request.form["username"] return f""" <h1>SAVED YOUR COMMENT</h1> <ul> <li>Username: {username}</li> <li>Comment: {comment}</li> </ul> """ @app.route('/r/<subreddit>') def show_subreddit(subreddit): return f"<h1>Browsing The {subreddit} Subreddit</h1>" @app.route("/r/<subreddit>/comments/<int:post_id>") def show_comments(subreddit, post_id): return f"<h1>Viewing comments for post with id: {post_id} from the {subreddit} Subreddit</h1>" POSTS = { 1: "I like chicken tenders", 2: "I hate mayo!", 3: "Double rainbow all the way", 4: "YOLO OMG (kill me)" } @app.route('/posts/<int:id>') def find_post(id): post = POSTS.get(id, "Post not found") return f"<p>{post}</p>"
StarcoderdataPython
209521
<reponame>shaikustin/jc<gh_stars>0 import os import json import unittest import jc.parsers.csv_s from jc.exceptions import ParseError THIS_DIR = os.path.dirname(os.path.abspath(__file__)) # To create streaming output use: # $ cat file.csv | jc --csv-s | jello -c > csv-file-streaming.json class MyTests(unittest.TestCase): def setUp(self): # input with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-biostats.csv'), 'r', encoding='utf-8') as f: self.generic_csv_biostats = f.read() with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-cities.csv'), 'r', encoding='utf-8') as f: self.generic_csv_cities = f.read() with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-deniro.csv'), 'r', encoding='utf-8') as f: self.generic_csv_deniro = f.read() with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-example.csv'), 'r', encoding='utf-8') as f: self.generic_csv_example = f.read() with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-flyrna.tsv'), 'r', encoding='utf-8') as f: self.generic_csv_flyrna = f.read() with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-flyrna2.tsv'), 'r', encoding='utf-8') as f: self.generic_csv_flyrna2 = f.read() with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-homes-pipe.csv'), 'r', encoding='utf-8') as f: self.generic_csv_homes_pipe = f.read() with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-homes.csv'), 'r', encoding='utf-8') as f: self.generic_csv_homes = f.read() with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-10k-sales-records.csv'), 'r', encoding='utf-8') as f: self.generic_csv_10k_sales_records = f.read() # output with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-biostats-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_biostats_streaming_json = json.loads(f.read()) with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-cities-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_cities_streaming_json = json.loads(f.read()) with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-deniro-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_deniro_streaming_json = json.loads(f.read()) with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-example-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_example_streaming_json = json.loads(f.read()) with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-flyrna-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_flyrna_streaming_json = json.loads(f.read()) with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-flyrna2-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_flyrna2_streaming_json = json.loads(f.read()) with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-homes-pipe-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_homes_pipe_streaming_json = json.loads(f.read()) with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-homes-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_homes_streaming_json = json.loads(f.read()) with open(os.path.join(THIS_DIR, os.pardir, 'tests/fixtures/generic/csv-10k-sales-records-streaming.json'), 'r', encoding='utf-8') as f: self.generic_csv_10k_sales_records_streaming_json = json.loads(f.read()) def test_csv_s_nodata(self): """ Test CSV parser with no data """ self.assertEqual(list(jc.parsers.csv_s.parse('', quiet=True)), []) def test_csv_unparsable(self): """ Test CSV streaming parser with '\r' newlines. This will raise ParseError due to a Python bug that does not correctly iterate on that line ending with sys.stdin. This is not a great test. https://bugs.python.org/issue45617 """ data = r'unparsable\rdata' # raw mode simulates unrecognized line separator - not great g = jc.parsers.csv_s.parse(data.splitlines(), quiet=True) with self.assertRaises(ParseError): list(g) def test_csv_s_biostats(self): """ Test 'biostats.csv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_biostats.splitlines(), quiet=True)), self.generic_csv_biostats_streaming_json) def test_csv_s_cities(self): """ Test 'cities.csv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_cities.splitlines(), quiet=True)), self.generic_csv_cities_streaming_json) def test_csv_s_deniro(self): """ Test 'deniro.csv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_deniro.splitlines(), quiet=True)), self.generic_csv_deniro_streaming_json) def test_csv_s_example(self): """ Test 'example.csv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_example.splitlines(), quiet=True)), self.generic_csv_example_streaming_json) def test_csv_s_flyrna(self): """ Test 'flyrna.tsv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_flyrna.splitlines(), quiet=True)), self.generic_csv_flyrna_streaming_json) def test_csv_s_flyrna2(self): """ Test 'flyrna2.tsv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_flyrna2.splitlines(), quiet=True)), self.generic_csv_flyrna2_streaming_json) def test_csv_s_homes_pipe(self): """ Test 'homes-pipe.csv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_homes_pipe.splitlines(), quiet=True)), self.generic_csv_homes_pipe_streaming_json) def test_csv_s_homes(self): """ Test 'homes.csv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_homes.splitlines(), quiet=True)), self.generic_csv_homes_streaming_json) def test_csv_s_10k_records(self): """ Test '10k-sales-records.csv' file """ self.assertEqual(list(jc.parsers.csv_s.parse(self.generic_csv_10k_sales_records.splitlines(), quiet=True)), self.generic_csv_10k_sales_records_streaming_json) if __name__ == '__main__': unittest.main()
StarcoderdataPython
5082182
# Copyright (c) 2016, The Regents of the University of California, # through Lawrence Berkeley National Laboratory (subject to receipt # of any required approvals from the U.S. Dept. of Energy). # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ Processor that limits the number of events that are processed. """ from .base import Processor from ..exceptions import ProcessorException from ..index import Index from ..util import is_pipeline, Options class Taker(Processor): """ A processor which limits the number of events that are processed. Parameters ---------- arg1 : Taker or Pipeline Copy constructor or the pipeline. options : Options Options object. """ def __init__(self, arg1, options=Options()): """create the mapper""" super(Taker, self).__init__(arg1, options) self._log('Taker.init', 'uid: {0}'.format(self._id)) # options self._limit = None self._window_type = None self._window_duration = None self._group_by = None # instance memebers self._count = dict() self._flush_sent = False if isinstance(arg1, Taker): # pylint: disable=protected-access self._limit = arg1._limit self._window_type = arg1._window_type self._window_duration = arg1._window_duration self._group_by = arg1._group_by elif is_pipeline(arg1): self._limit = options.limit self._window_type = arg1.get_window_type() self._window_duration = arg1.get_window_duration() self._group_by = arg1.get_group_by() else: msg = 'Unknown arg to Taker: {0}'.format(arg1) raise ProcessorException(msg) def clone(self): """clone it.""" return Taker(self) def add_event(self, event): """ Output an event that is offset. Parameters ---------- event : Event, IndexedEvent, TimerangeEvent Any of the three event variants. """ if self.has_observers(): ts = event.timestamp() window_key = None if self._window_type == 'fixed': window_key = Index.get_index_string(self._window_duration, ts) else: window_key = self._window_type group_by_key = self._group_by(event) coll_key = '{wk}::{gbk}'.format(wk=window_key, gbk=group_by_key) if \ group_by_key is not None else window_key if coll_key not in self._count: self._count[coll_key] = 0 self._count[coll_key] += 1 # emit the events for each collection key that has not reached # the limit. This is the main point of this processor. if self._count.get(coll_key) <= self._limit: self._log('Taker.add_event', 'collection key: {0}', (coll_key,)) self._log( 'Taker.add_event', 'count: {0} limit: {1}', (self._count.get(coll_key), self._limit) ) self._log('Taker.add_event', 'emitting: {0}', (event,)) self.emit(event) def flush(self): """flush""" super(Taker, self).flush()
StarcoderdataPython
1781481
<reponame>jiyeonkim127/PSI import os, sys import os.path as osp import cv2 import numpy as np import json import yaml import open3d as o3d import trimesh import argparse import matplotlib.pyplot as plt sys.path.append('/home/yzhang/workspaces/smpl-env-gen-3d-internal') import torch import pickle import smplx from human_body_prior.tools.model_loader import load_vposer import pandas as pd from scipy.spatial.transform import Rotation as R import scipy.io as sio import glob def hex2rgb(hex_color_list): rgb_list = [] for hex_color in hex_color_list: h = hex_color.lstrip('#') rgb = list(int(h[i:i+2], 16) for i in (0, 2, 4)) rgb_list.append(rgb) return np.array(rgb_list) def color_encoding(mesh): ''' we use the color coding of Matterport3D ''' ## get the color coding from Matterport3D matter_port_label_filename = '/is/ps2/yzhang/Pictures/Matterport/metadata/mpcat40.tsv' df = pd.DataFrame() df = pd.read_csv(matter_port_label_filename,sep='\t') color_coding_hex = list(df['hex']) # list of str color_coding_rgb = hex2rgb(color_coding_hex) ## update the mesh vertex color accordingly verid = np.mean(np.asarray(mesh.vertex_colors)*255/5.0,axis=1).astype(int) verid[verid>=41]=41 vercolor = np.take(color_coding_rgb, list(verid), axis=0) mesh.vertex_colors = o3d.utility.Vector3dVector(vercolor/255.0) return mesh def update_cam(cam_param, trans): cam_R = np.transpose(trans[:-1, :-1]) cam_T = -trans[:-1, -1:] cam_T = np.matmul(cam_R, cam_T) #!!!!!! T is applied in the rotated coord cam_aux = np.array([[0,0,0,1]]) mat = np.concatenate([cam_R, cam_T],axis=-1) mat = np.concatenate([mat, cam_aux],axis=0) cam_param.extrinsic = mat return cam_param def get_trans_mat(R, T): mat_aux = np.array([[0,0,0,1]]) mat = np.concatenate([R, T.reshape([3,1])],axis=-1) mat = np.concatenate([mat, mat_aux],axis=0) return mat def main(args): fitting_dir = args.fitting_dir recording_name = os.path.abspath(fitting_dir).split("/")[-1] fitting_dir = osp.join(fitting_dir, 'results') data_dir = args.data_dir cam2world_dir = osp.join(data_dir, 'cam2world') scene_dir = osp.join(data_dir, 'scenes_semantics') recording_dir = osp.join(data_dir, 'recordings', recording_name) color_dir = os.path.join(recording_dir, 'Color') scene_name = os.path.abspath(recording_dir).split("/")[-1].split("_")[0] output_folder = os.path.join('/mnt/hdd','PROX','realcams_v3') if not os.path.exists(output_folder): os.mkdir(output_folder) ### setup visualization window vis = o3d.visualization.Visualizer() vis.create_window(width=480, height=270,visible=True) render_opt = vis.get_render_option().mesh_show_back_face=True ### put the scene into the environment if scene_name in ['MPH112', 'MPH16']: scene = o3d.io.read_triangle_mesh(osp.join(scene_dir, scene_name + '_withlabels_OpenAWall.ply')) else: scene = o3d.io.read_triangle_mesh(osp.join(scene_dir, scene_name + '_withlabels.ply')) trans = np.eye(4) with open(os.path.join(cam2world_dir, scene_name + '.json'), 'r') as f: trans = np.array(json.load(f)) vis.add_geometry(scene) ### setup rendering cam, depth capture, segmentation capture ctr = vis.get_view_control() cam_param = ctr.convert_to_pinhole_camera_parameters() cam_param = update_cam(cam_param, trans) ctr.convert_from_pinhole_camera_parameters(cam_param) ## capture depth image depth = np.asarray(vis.capture_depth_float_buffer(do_render=True)) _h = depth.shape[0] _w = depth.shape[1] factor = 4 depth = cv2.resize(depth, (_w//factor, _h//factor)) ## capture semantics seg = np.asarray(vis.capture_screen_float_buffer(do_render=True)) verid = np.mean(seg*255/5.0,axis=-1) #.astype(int) verid = cv2.resize(verid, (_w//factor, _h//factor)) ## get render cam parameters cam_dict = {} cam_dict['extrinsic'] = cam_param.extrinsic cam_dict['intrinsic'] = cam_param.intrinsic.intrinsic_matrix count = 0 for img_name in sorted(os.listdir(fitting_dir))[::15]: print('viz frame {}'.format(img_name)) ## get humam body params filename =osp.join(fitting_dir, img_name, '000.pkl') if not os.path.exists(filename): continue with open(osp.join(fitting_dir, img_name, '000.pkl'), 'rb') as f: param = pickle.load(f) body_dict={} for key, val in param.items(): if key in ['camera_rotation', 'camera_translation', 'jaw_pose', 'leye_pose','reye_pose','expression']: continue else: body_dict[key]=param[key] ## save depth, semantics and render cam outname1 = os.path.join(output_folder,recording_name) if not os.path.exists(outname1): os.mkdir(outname1) outname = os.path.join(outname1, 'rec_{:06d}.mat'.format(count)) ot_dict={} ot_dict['scaling_factor']=factor ot_dict['depth']=depth ot_dict['seg'] = verid ot_dict['cam'] = cam_dict ot_dict['body'] = body_dict sio.savemat(outname, ot_dict) count += 1 class Struct: def __init__(self, **entries): self.__dict__.update(entries) if __name__ == '__main__': fitting_dir_list = glob.glob('/mnt/hdd/PROX/PROXD/*') data_dir = '/mnt/hdd/PROX' model_folder = '/home/yzhang/body_models/VPoser/' args= {} for fitting_dir in fitting_dir_list: print('-- process {}'.format(fitting_dir)) args['fitting_dir'] = fitting_dir args['data_dir'] = data_dir args['model_folder'] = model_folder main(Struct(**args))
StarcoderdataPython
9736746
from __future__ import print_function, division, absolute_import from struct import pack from ..message import BulkFrontendMessage class SslRequest(BulkFrontendMessage): message_id = None SSL_REQUEST = 80877103 def read_bytes(self): bytes_ = pack('!I', self.SSL_REQUEST) return bytes_
StarcoderdataPython
9636196
def solution(A): s = set() for n in A: s.add(n) return int(len(s) == max(A) and len(s) == len(A))
StarcoderdataPython
1789248
<gh_stars>100-1000 # Copyright (c) 2019 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. from __future__ import absolute_import, division, print_function __metaclass__ = type import os from ansible.module_utils._text import to_bytes from ansible.module_utils.oracle import oci_common_utils try: import oci HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class AutoScalingConfigurationHelperCustom: def list_resources(self): auto_scaling_configuration_summaries = super( AutoScalingConfigurationHelperCustom, self ).list_resources() auto_scaling_configurations = [ oci_common_utils.call_with_backoff( self.client.get_auto_scaling_configuration, auto_scaling_configuration_id=auto_scaling_configuration.id, ).data for auto_scaling_configuration in auto_scaling_configuration_summaries ] return auto_scaling_configurations
StarcoderdataPython
6547040
from rest_framework import status from rest_framework.generics import RetrieveAPIView, CreateAPIView, RetrieveUpdateAPIView from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.exceptions import ValidationError from .backend import JWTAuthentication # Create your views here. from .serializers import ( RegistrationSerializer, LoginSerializer, UserSerializer ) from django.contrib.auth.hashers import check_password from .models import User auth = JWTAuthentication() class RegistrationAPIView(CreateAPIView): """ Register a new user. """ # Allow any user (authenticated or not) to hit thiis endpoint. permission_classes = (AllowAny,) serializer_class = RegistrationSerializer def post(self, request): request.data['username'] = request.data['username'].lower() user = request.data serializer = self.serializer_class( data=user, context={'request': request}) serializer.is_valid(raise_exception=True) serializer.save() success_message={ "success": "Please check your email for a link to complete your registration!" } return Response(success_message, status=status.HTTP_201_CREATED) class LoginAPIView(CreateAPIView): """ Login a registered a user. """ permission_classes = (AllowAny,) serializer_class = LoginSerializer def post(self, request): user = request.data serializer = self.serializer_class(data=user) serializer.is_valid(raise_exception=True) return Response(serializer.data, status=status.HTTP_200_OK)
StarcoderdataPython
72513
<gh_stars>0 from setuptools import setup, find_packages from pathlib import Path # get current directory current_directory = Path(__file__).resolve().parent def get_long_description(): """ get long description from README.rst file """ with current_directory.joinpath("README.rst").open() as f: return f.read() setup( name="powerstrip", version="0.0.1", description="Simple module to manage plugins.", long_description=get_long_description(), url="https://github.com/keans/powerstrip", author="<NAME>", author_email="<EMAIL>", license="MIT", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Topic :: Software Development :: Build Tools", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", ], python_requires=">=3.6", keywords="powerstrip", packages=find_packages( exclude=["contrib", "docs", "tests"] ), install_requires=[ "pyyaml", "cerberus" ], extra_require={ "docs": ["mkdocs"], } )
StarcoderdataPython
135329
<reponame>sergioisidoro/django-flows from flows.statestore.tests.models import TestModel def store_state_works(case, store): test_model = TestModel.objects.create(fruit='apple', count=34) task_id = '10293847565647382910abdcef1029384756' state = {'a': 1, 'b': 'cake', 'model': test_model, 'pies': {'r': 2, 'theta': 20 } } store.put_state(task_id, state) fetched_state = store.get_state(task_id) case.assertTrue('a' in fetched_state) case.assertEqual(1, fetched_state['a']) case.assertTrue('b' in fetched_state) case.assertEqual('cake', fetched_state['b']) case.assertTrue('model' in fetched_state) fetched_model = fetched_state['model'] case.assertEqual(test_model.id, fetched_model.id) case.assertEqual(test_model.fruit, fetched_model.fruit) case.assertEqual(test_model.count, fetched_model.count) case.assertTrue('pies' in fetched_state) case.assertEqual({'r': 2, 'theta': 20 }, fetched_state['pies'])
StarcoderdataPython
269667
import math import pandas as pd import os #iN CASE OF RUNNING IN THE GRANCANNAL DATA #path=os.path.dirname(os.getcwd())#os.getcwd() #change = path+'/Grand Canal Docks Dedicated throughput' #os.chdir(change) #df_sheet_name = pd.read_excel('30m.xls', sheet_name='Metric Group 1') files = [f for f in os.listdir('.') if 'mdedi.xls'in f ]#'mdedicated.xls' dic_file={} for file in files: #print(file) dic_file[file]=pd.read_excel(file,sheet_name='Metric Group 1') dic_file[file] = dic_file[file].drop(['Unnamed: 0','Time','Date','Serving Cell Identity','Cell Identity: Top #1'],1) #['Unnamed: 0','Time','Date'],1) # #steps=160 # minimum value from the 60m file base = '60mdedi.xls'#m.xls' dic_final = {} dic_final[base]=dic_file[base] for file in dic_file: if file != base: temp=[] df_temp = pd.DataFrame(columns=dic_file[base].columns) for a in range(len(dic_file[base])): lign = 100#just to start with a big number for b in range(len(dic_file[file])): dist = math.sqrt((dic_file[base].Latitude[a] - dic_file[file].Latitude[b]) ** 2 + ( dic_file[base].Longitude[a] - dic_file[file].Longitude[b]) ** 2) if dist < lign: lign = dist smaller = b #order of the data df_temp = pd.concat([df_temp,dic_file[file][smaller:smaller+1]], ignore_index=True) df_temp=df_temp.rename(columns={'RS SINR Carrier 1 (dB)':'SINR','Serving Cell RSRP (dBm)':'RSRPdbm','Serving Cell RSRQ (dB)':'RSRQdb' })#'PDSCH Phy Throughput (kbps)':'Rate' })# dic_final[file]=df_temp name = file[0:-8:1]+'sinr.xls'#file[0:-14:1]+'n.xls'#'dedi.xls'# df_temp.to_excel(name) #df_temp.to_excel(name, sheet_name='sheet1', index=False) #dist = math.sqrt((dic_file['60m.xls'].Latitude[0] - dic_file['40m.xls'].Latitude[0]) ** 2 + (dic_file['60m.xls'].Longitude[0] - dic_file['40m.xls'].Longitude[0])** 2 ) #dist = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
StarcoderdataPython
1672857
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. # Coded by: <NAME> <EMAIL>, # Planified by: <NAME>, <NAME>, <NAME> # Finance by: Vauxoo. # Audited by: <NAME> (<EMAIL>) y <NAME> (<EMAIL>) { "name": "Mexico - Accounting", "version": "2.0", "author": "Vauxoo", 'category': 'Localization', "description": """ Minimal accounting configuration for Mexico. ============================================ This Chart of account is a minimal proposal to be able to use OoB the accounting feature of Odoo. This doesn't pretend be all the localization for MX it is just the minimal data required to start from 0 in mexican localization. This modules and its content is updated frequently by openerp-mexico team. With this module you will have: - Minimal chart of account tested in production environments. - Minimal chart of taxes, to comply with SAT_ requirements. .. _SAT: http://www.sat.gob.mx/ """, "depends": [ "account", ], "data": [ "data/account.account.tag.csv", "data/l10n_mx_chart_data.xml", "data/account.account.template.csv", "data/l10n_mx_chart_post_data.xml", "data/account_data.xml", "data/account_tax_data.xml", "data/fiscal_position_data.xml", "data/account_chart_template_data.xml", "data/res_bank_data.xml", "views/partner_view.xml", "views/res_bank_view.xml", "views/res_config_settings_views.xml", "views/account_views.xml", ], }
StarcoderdataPython
1814434
<filename>astromodels/core/model.py from builtins import zip __author__ = "giacomov" import collections import os import warnings import numpy as np import pandas as pd import scipy.integrate from astromodels.core.memoization import use_astromodels_memoization from astromodels.core.my_yaml import my_yaml from astromodels.core.parameter import IndependentVariable, Parameter from astromodels.core.tree import DuplicatedNode, Node from astromodels.functions.function import get_function from astromodels.sources.source import (EXTENDED_SOURCE, PARTICLE_SOURCE, POINT_SOURCE, Source) from astromodels.utils.disk_usage import disk_usage from astromodels.utils.logging import setup_logger from astromodels.utils.long_path_formatter import long_path_formatter log = setup_logger(__name__) class ModelFileExists(IOError): pass class InvalidInput(ValueError): pass class CannotWriteModel(IOError): def __init__(self, directory, message): # Add a report on disk usage to the message free_space = disk_usage(directory).free message += "\nFree space on the file system hosting %s was %.2f Mbytes" % ( directory, free_space / 1024.0 / 1024.0, ) super(CannotWriteModel, self).__init__(message) class ModelInternalError(ValueError): pass class Model(Node): def __init__(self, *sources): # Setup the node, using the special name '__root__' to indicate that this is the root of the tree super(Model, self).__init__("__root__") # Dictionary to keep point sources self._point_sources = collections.OrderedDict() # Dictionary to keep extended sources self._extended_sources = collections.OrderedDict() # Dictionary to keep particle sources self._particle_sources = collections.OrderedDict() # Loop over the provided sources and process them for source in sources: self._add_source(source) # Now make the list of all the existing parameters self._update_parameters() # This controls the verbosity of the display self._complete_display = False # This will keep track of independent variables (if any) self._independent_variables = {} def _add_source(self, source): """ Remember to call _update_parameters after this! :param source: :return: """ try: self._add_child(source) except AttributeError: if isinstance(source, Source): raise DuplicatedNode( "More than one source with the name '%s'. You cannot use the same name for multiple " "sources" % source.name ) else: # pragma: no cover raise # Now see if this is a point or extended source, and add them to the # appropriate dictionary if source.source_type == POINT_SOURCE: self._point_sources[source.name] = source elif source.source_type == EXTENDED_SOURCE: self._extended_sources[source.name] = source elif source.source_type == PARTICLE_SOURCE: self._particle_sources[source.name] = source else: # pragma: no cover raise InvalidInput( "Input sources must be either a point source or an extended source" ) def _remove_source(self, source_name): """ Remember to call _update_parameters after this :param source_name: :return: """ assert source_name in self.sources, ( "Source %s is not part of the current model" % source_name ) source = self.sources.pop(source_name) if source.source_type == POINT_SOURCE: self._point_sources.pop(source.name) elif source.source_type == EXTENDED_SOURCE: self._extended_sources.pop(source.name) elif source.source_type == PARTICLE_SOURCE: self._particle_sources.pop(source.name) self._remove_child(source_name) def _find_parameters(self, node): instances = collections.OrderedDict() for child in node._get_children(): if isinstance(child, Parameter): path = child._get_path() instances[path] = child for sub_child in child._get_children(): instances.update(self._find_parameters(sub_child)) else: instances.update(self._find_parameters(child)) return instances def _update_parameters(self): self._parameters = self._find_parameters(self) @property def parameters(self): """ Return a dictionary with all parameters :return: dictionary of parameters """ self._update_parameters() return self._parameters @property def free_parameters(self): """ Get a dictionary with all the free parameters in this model :return: dictionary of free parameters """ # Refresh the list self._update_parameters() # Filter selecting only free parameters free_parameters_dictionary = collections.OrderedDict() for parameter_name, parameter in list(self._parameters.items()): if parameter.free: free_parameters_dictionary[parameter_name] = parameter return free_parameters_dictionary @property def linked_parameters(self): """ Get a dictionary with all parameters in this model in a linked status. A parameter is in a linked status if it is linked to another parameter (i.e. it is forced to have the same value of the other parameter), or if it is linked with another parameter or an independent variable through a law. :return: dictionary of linked parameters """ # Refresh the list self._update_parameters() # Filter selecting only free parameters linked_parameter_dictionary = collections.OrderedDict() for parameter_name, parameter in list(self._parameters.items()): if parameter.has_auxiliary_variable(): linked_parameter_dictionary[parameter_name] = parameter return linked_parameter_dictionary def set_free_parameters(self, values): """ Set the free parameters in the model to the provided values. NOTE: of course, order matters :param values: a list of new values :return: None """ assert len(values) == len(self.free_parameters) for parameter, this_value in zip(list(self.free_parameters.values()), values): parameter.value = this_value def __getitem__(self, path): """ Get a parameter from a path like "source_1.component.powerlaw.logK". This might be useful in certain context, although in an interactive analysis there is no reason to use this. :param path: the address of the parameter :return: the parameter """ return self._get_child_from_path(path) def __contains__(self, path): """ This allows the model to be used with the "in" operator, like; > if 'myparameter' in model: > print("Myparameter is contained in the model") :param path: the parameter to look for :return: """ try: _ = self._get_child_from_path(path) except (AttributeError, KeyError, TypeError): return False else: return True def __iter__(self): """ This allows the model to be iterated on, like in: for parameter in model: ... NOTE: this will iterate over *all* parameters in the model, also those that are not free (and thus are not normally displayed). If you need to operate only on free parameters, just check if they are free within the loop or use the .free_parameters dictionary directly :return: iterator """ for parameter in self.parameters: yield self.parameters[parameter] @property def point_sources(self): """ Returns the dictionary of all defined point sources :return: collections.OrderedDict() """ return self._point_sources @property def extended_sources(self): """ Returns the dictionary of all defined extended sources :return: collections.OrderedDict() """ return self._extended_sources @property def particle_sources(self): """ Returns the dictionary of all defined particle sources :return: collections.OrderedDict() """ return self._particle_sources @property def sources(self): """ Returns a dictionary containing all defined sources (of any kind) :return: collections.OrderedDict() """ sources = collections.OrderedDict() for d in (self.point_sources, self.extended_sources, self.particle_sources): sources.update(d) return sources def add_source(self, new_source): """ Add the provided source to the model :param new_source: the new source to be added (an instance of PointSource, ExtendedSource or ParticleSource) :return: (none) """ self._add_source(new_source) self._update_parameters() def remove_source(self, source_name): """ Returns a new model with the provided source removed from the current model. Any parameters linked to the source to be removed are automatically unlinked. :param source_name: the name of the source to be removed :return: a new Model instance without the source """ self.unlink_all_from_source(source_name, warn=True) self._remove_source(source_name) self._update_parameters() def unlink_all_from_source(self, source_name, warn=False): """ Unlink all parameters of the current model that are linked to a parameter of a given source. To be called before removing a source from the model. :param source_name: the name of the source to which to remove all links :param warn: If True, prints a warning if any parameters were unlinked. """ tempmodel = Model(self[source_name]) unlinked_parameters = collections.OrderedDict() for par in self.linked_parameters.values(): target=par._aux_variable['variable'] if target.path in tempmodel: unlinked_parameters[par.name] = par self.unlink(par) if warn and unlinked_parameters: warnings.warn("The following %d parameters that were linked to source %s have been automatically un-linked: %s" % (len(unlinked_parameters), source_name, [p.path for p in unlinked_parameters.values() ] ), RuntimeWarning) def add_independent_variable(self, variable): """ Add a global independent variable to this model, such as time. :param variable: an IndependentVariable instance :return: none """ assert isinstance( variable, IndependentVariable ), "Variable must be an instance of IndependentVariable" if self._has_child(variable.name): self._remove_child(variable.name) self._add_child(variable) # Add also to the list of independent variables self._independent_variables[variable.name] = variable def remove_independent_variable(self, variable_name): """ Remove an independent variable which was added with add_independent_variable :param variable_name: name of variable to remove :return: """ self._remove_child(variable_name) # Remove also from the list of independent variables self._independent_variables.pop(variable_name) def add_external_parameter(self, parameter): """ Add a parameter that comes from something other than a function, to the model. :param parameter: a Parameter instance :return: none """ assert isinstance( parameter, Parameter ), "Variable must be an instance of IndependentVariable" if self._has_child(parameter.name): # Remove it from the children only if it is a Parameter instance, otherwise don't, which will # make the _add_child call fail (which is the expected behaviour! You shouldn't call two children # with the same name) if isinstance(self._get_child(parameter.name), Parameter): log.warning( "External parameter %s already exist in the model. Overwriting it..." % parameter.name ) self._remove_child(parameter.name) # This will fail if another node with the same name is already in the model self._add_child(parameter) def remove_external_parameter(self, parameter_name): """ Remove an external parameter which was added with add_external_parameter :param variable_name: name of parameter to remove :return: """ self._remove_child(parameter_name) def link(self, parameter_1, parameter_2, link_function=None): """ Link the value of the provided parameters through the provided function (identity is the default, i.e., parameter_1 = parameter_2). :param parameter_1: the first parameter;can be either a single parameter or a list of prarameters :param parameter_2: the second parameter :param link_function: a function instance. If not provided, the identity function will be used by default. Otherwise, this link will be set: parameter_1 = link_function(parameter_2) :return: (none) """ if not isinstance(parameter_1, list): # Make a list of one element parameter_1_list = [parameter_1] else: # Make a copy to avoid tampering with the input parameter_1_list = list(parameter_1) for param_1 in parameter_1_list: assert param_1.path in self, ( "Parameter %s is not contained in this model" % param_1.path ) assert parameter_2.path in self, ( "Parameter %s is not contained in this model" % parameter_2.path ) if link_function is None: # Use the Line function by default, with both parameters fixed so that the two # parameters to be linked will vary together link_function = get_function("Line") link_function.a.value = 0 link_function.a.fix = True link_function.b.value = 1 link_function.b.fix = True for param_1 in parameter_1_list: param_1.add_auxiliary_variable(parameter_2, link_function) # Now set the units of the link function link_function.set_units(parameter_2.unit, param_1.unit) def unlink(self, parameter): """ Sets free one or more parameters which have been linked previously :param parameter: the parameter to be set free, can also be a list of parameters :return: (none) """ if not isinstance(parameter, list): # Make a list of one element parameter_list = [parameter] else: # Make a copy to avoid tampering with the input parameter_list = list(parameter) for param in parameter_list: if param.has_auxiliary_variable(): param.remove_auxiliary_variable() else: with warnings.catch_warnings(): warnings.simplefilter("always", RuntimeWarning) log.warning( "Parameter %s has no link to be removed." % param.path ) def display(self, complete=False): """ Display information about the point source. :param complete : if True, displays also information on fixed parameters :return: (none) """ # Switch on the complete display flag self._complete_display = bool(complete) # This will automatically choose the best representation among repr and repr_html super(Model, self).display() # Go back to default self._complete_display = False def _repr__base(self, rich_output=False): if rich_output: new_line = "<br>" else: new_line = "\n" # Table with the summary of the various kind of sources sources_summary = pd.DataFrame.from_dict( collections.OrderedDict( [ ("Point sources", [self.get_number_of_point_sources()]), ("Extended sources", [self.get_number_of_extended_sources()]), ("Particle sources", [self.get_number_of_particle_sources()]), ] ), columns=["N"], orient="index", ) # These properties traverse the whole tree everytime, so let's cache their results here parameters = self.parameters free_parameters = self.free_parameters linked_parameters = self.linked_parameters # Summary of free parameters if len(free_parameters) > 0: parameter_dict = collections.OrderedDict() for parameter_name, parameter in list(free_parameters.items()): # Generate table with only a minimal set of info # Generate table with only a minimal set of info if rich_output: this_name = long_path_formatter(parameter_name, 70) else: # In a terminal we need to use less characters this_name = long_path_formatter(parameter_name, 40) d = parameter.to_dict() parameter_dict[this_name] = collections.OrderedDict() for key in ["value", "unit", "min_value", "max_value"]: parameter_dict[this_name][key] = d[key] free_parameters_summary = pd.DataFrame.from_dict(parameter_dict).T # Re-order it free_parameters_summary = free_parameters_summary[ ["value", "min_value", "max_value", "unit"] ] else: free_parameters_summary = pd.DataFrame() if len(parameters) - len(free_parameters) - len(linked_parameters) > 0: fixed_parameter_dict = collections.OrderedDict() for parameter_name, parameter in list(parameters.items()): if parameter.free or parameter_name in linked_parameters: continue # Generate table with only a minimal set of info if rich_output: this_name = long_path_formatter(parameter_name, 70) else: # In a terminal we need to use less characters this_name = long_path_formatter(parameter_name, 40) d = parameter.to_dict() fixed_parameter_dict[this_name] = collections.OrderedDict() for key in ["value", "unit", "min_value", "max_value"]: fixed_parameter_dict[this_name][key] = d[key] fixed_parameters_summary = pd.DataFrame.from_dict(fixed_parameter_dict).T # Re-order it fixed_parameters_summary = fixed_parameters_summary[ ["value", "min_value", "max_value", "unit"] ] else: fixed_parameters_summary = pd.DataFrame() # Summary of linked parameters linked_frames = [] if linked_parameters: for parameter_name, parameter in list(linked_parameters.items()): parameter_dict = collections.OrderedDict() # Generate table with only a minimal set of info variable, law = parameter.auxiliary_variable this_dict = collections.OrderedDict() this_dict["linked to"] = variable.path this_dict["function"] = law.name this_dict["current value"] = parameter.value this_dict["unit"] = parameter.unit parameter_dict[parameter_name] = this_dict this_parameter_frame = pd.DataFrame.from_dict(parameter_dict) linked_frames.append(this_parameter_frame) else: # No linked parameters pass empty_frame = "(none)%s" % new_line # Independent variables independent_v_frames = [] if self._independent_variables: for variable_name, variable_instance in list( self._independent_variables.items() ): v_dict = collections.OrderedDict() # Generate table with only a minimal set of info this_dict = collections.OrderedDict() this_dict["current value"] = variable_instance.value this_dict["unit"] = variable_instance.unit v_dict[variable_name] = this_dict this_v_frame = pd.DataFrame.from_dict(v_dict) independent_v_frames.append(this_v_frame) else: # No independent variables pass if rich_output: source_summary_representation = sources_summary._repr_html_() if free_parameters_summary.empty: free_parameters_representation = empty_frame else: free_parameters_representation = free_parameters_summary._repr_html_() if len(linked_frames) == 0: linked_summary_representation = empty_frame else: linked_summary_representation = "" for linked_frame in linked_frames: linked_summary_representation += linked_frame._repr_html_() linked_summary_representation += new_line if len(independent_v_frames) == 0: independent_v_representation = empty_frame else: independent_v_representation = "" for v_frame in independent_v_frames: independent_v_representation += v_frame._repr_html_() independent_v_representation += new_line if fixed_parameters_summary.empty: fixed_parameters_representation = empty_frame else: fixed_parameters_representation = fixed_parameters_summary._repr_html_() else: source_summary_representation = sources_summary.__repr__() if free_parameters_summary.empty: free_parameters_representation = empty_frame else: free_parameters_representation = free_parameters_summary.__repr__() if len(linked_frames) == 0: linked_summary_representation = empty_frame else: linked_summary_representation = "" for linked_frame in linked_frames: linked_summary_representation += linked_frame.__repr__() linked_summary_representation += "%s%s" % (new_line, new_line) if len(independent_v_frames) == 0: independent_v_representation = empty_frame else: independent_v_representation = "" for v_frame in independent_v_frames: independent_v_representation += v_frame.__repr__() independent_v_representation += "%s%s" % (new_line, new_line) if fixed_parameters_summary.empty: fixed_parameters_representation = empty_frame else: fixed_parameters_representation = fixed_parameters_summary.__repr__() # Build the representation representation = "Model summary:%s" % (new_line) if not rich_output: representation += "==============%s%s" % (new_line, new_line) else: representation += new_line # Summary on sources representation += source_summary_representation representation += new_line # Free parameters representation += "%sFree parameters (%i):%s" % ( new_line, len(free_parameters), new_line, ) if not rich_output: representation += "--------------------%s%s" % (new_line, new_line) else: representation += new_line representation += free_parameters_representation representation += new_line # Fixed parameters n_fix = len(parameters) - len(free_parameters) - len(linked_parameters) representation += "%sFixed parameters (%i):%s" % (new_line, n_fix, new_line) if self._complete_display: if not rich_output: representation += "---------------------%s%s" % (new_line, new_line) else: representation += new_line representation += fixed_parameters_representation else: representation += ( "(abridged. Use complete=True to see all fixed parameters)%s" % new_line ) representation += new_line # Linked parameters representation += "%sLinked parameters (%i):%s" % ( new_line, len(self.linked_parameters), new_line, ) if not rich_output: representation += "----------------------%s%s" % (new_line, new_line) else: representation += new_line representation += linked_summary_representation # Independent variables representation += "%sIndependent variables:%s" % (new_line, new_line) if not rich_output: representation += "----------------------%s%s" % (new_line, new_line) else: representation += new_line representation += independent_v_representation return representation def to_dict_with_types(self): # Get the serialization dictionary data = self.to_dict() # Add the types to the sources for key in list(data.keys()): try: element = self._get_child(key) except KeyError: # pragma: no cover raise RuntimeError("Source %s is unknown" % key) else: # There are three possible cases. Either the element is a source, or it is an independent # variable, or a parameter if hasattr(element, "source_type"): # Change the name of the key adding the source type data["%s (%s)" % (key, element.source_type)] = data.pop(key) elif isinstance(element, IndependentVariable): data["%s (%s)" % (key, "IndependentVariable")] = data.pop(key) elif isinstance(element, Parameter): data["%s (%s)" % (key, "Parameter")] = data.pop(key) else: # pragma: no cover raise ModelInternalError("Found an unknown class at the top level") return data def save(self, output_file, overwrite=False): """Save the model to disk""" if os.path.exists(output_file) and overwrite is False: raise ModelFileExists( "The file %s exists already. If you want to overwrite it, use the 'overwrite=True' " "options as 'model.save(\"%s\", overwrite=True)'. " % (output_file, output_file) ) else: data = self.to_dict_with_types() # Write it to disk try: # Get the YAML representation of the data representation = my_yaml.dump(data, default_flow_style=False) with open(output_file, "w+") as f: # Add a new line at the end of each voice (just for clarity) f.write(representation.replace("\n", "\n\n")) except IOError: raise CannotWriteModel( os.path.dirname(os.path.abspath(output_file)), "Could not write model file %s. Check your permissions to write or the " "report on the free space which follows: " % output_file, ) def get_number_of_point_sources(self): """ Return the number of point sources :return: number of point sources """ return len(self._point_sources) def get_point_source_position(self, id): """ Get the point source position (R.A., Dec) :param id: id of the source :return: a tuple with R.A. and Dec. """ pts = list(self._point_sources.values())[id] return pts.position.get_ra(), pts.position.get_dec() def get_point_source_fluxes(self, id, energies, tag=None): """ Get the fluxes from the id-th point source :param id: id of the source :param energies: energies at which you need the flux :param tag: a tuple (integration variable, a, b) specifying the integration to perform. If this parameter is specified then the returned value will be the average flux for the source computed as the integral between a and b over the integration variable divided by (b-a). The integration variable must be an independent variable contained in the model. If b is None, then instead of integrating the integration variable will be set to a and the model evaluated in a. :return: fluxes """ return list(self._point_sources.values())[id](energies, tag=tag) def get_point_source_name(self, id): return list(self._point_sources.values())[id].name def get_number_of_extended_sources(self): """ Return the number of extended sources :return: number of extended sources """ return len(self._extended_sources) def get_extended_source_fluxes(self, id, j2000_ra, j2000_dec, energies): """ Get the flux of the id-th extended sources at the given position at the given energies :param id: id of the source :param j2000_ra: R.A. where the flux is desired :param j2000_dec: Dec. where the flux is desired :param energies: energies at which the flux is desired :return: flux array """ return list(self._extended_sources.values())[id](j2000_ra, j2000_dec, energies) def get_extended_source_name(self, id): """ Return the name of the n-th extended source :param id: id of the source (integer) :return: the name of the id-th source """ return list(self._extended_sources.values())[id].name def get_extended_source_boundaries(self, id): (ra_min, ra_max), (dec_min, dec_max) = list(self._extended_sources.values())[ id ].get_boundaries() return ra_min, ra_max, dec_min, dec_max def is_inside_any_extended_source(self, j2000_ra, j2000_dec): for ext_source in list(self.extended_sources.values()): (ra_min, ra_max), (dec_min, dec_max) = ext_source.get_boundaries() # Transform from the 0...360 convention to the -180..180 convention, so that # the comparison is easier if ra_min > 180: ra_min = -(360 - ra_min) if ra_min <= j2000_ra <= ra_max and dec_min <= j2000_dec <= dec_max: return True # If we are here, it means that no extended source contains the provided coordinates return False def get_number_of_particle_sources(self): """ Return the number of particle sources :return: number of particle sources """ return len(self._particle_sources) def get_particle_source_fluxes(self, id, energies): """ Get the fluxes from the id-th point source :param id: id of the source :param energies: energies at which you need the flux :return: fluxes """ return list(self._particle_sources.values())[id](energies) def get_particle_source_name(self, id): return list(self._particle_sources.values())[id].name def get_total_flux(self, energies): """ Returns the total differential flux at the provided energies from all *point* sources :return: """ fluxes = [] for src in self._point_sources: fluxes.append(self._point_sources[src](energies)) return np.sum(fluxes, axis=0)
StarcoderdataPython
1705632
<gh_stars>0 from django import forms from django.http import Http404 from django.shortcuts import redirect from django.utils.translation import gettext_lazy as _ from django.views import View from django.views.generic import TemplateView from django.views.generic.base import TemplateResponseMixin from django.views.generic.detail import SingleObjectMixin from django_select2.forms import ModelSelect2Widget from ephios.core.models import AbstractParticipation, Shift, UserProfile from ephios.extra.mixins import CustomPermissionRequiredMixin class BaseDispositionParticipationForm(forms.ModelForm): disposition_participation_template = "core/disposition/fragment_participation.html" def __init__(self, **kwargs): super().__init__(**kwargs) self.can_delete = self.instance.state == AbstractParticipation.States.GETTING_DISPATCHED try: self.shift = self.instance.shift except AttributeError as e: raise ValueError(f"{type(self)} must be initialized with an instance.") from e class Meta: model = AbstractParticipation fields = ["state"] widgets = dict(state=forms.HiddenInput(attrs={"class": "state-input"})) class DispositionBaseModelFormset(forms.BaseModelFormSet): """ To allow us to dynamically add server-side rendered forms to a formset we patch a way to change the starting index. """ def __init__(self, *args, start_index=0, **kwargs): self._start_index = start_index super().__init__(*args, **kwargs) def add_prefix(self, index): return "%s-%s" % (self.prefix, self._start_index + index) def delete_existing(self, obj, commit=True): # refresh from db as obj has the state from the post data db_obj = AbstractParticipation.objects.get(id=obj.id) if db_obj.state != AbstractParticipation.States.GETTING_DISPATCHED: raise ValueError( "Deletion a participation is only allowed if it was just added through disposition." ) super().delete_existing(obj, commit) def get_disposition_formset(form): return forms.modelformset_factory( model=AbstractParticipation, formset=DispositionBaseModelFormset, form=form, extra=0, can_order=False, can_delete=True, ) def addable_users(shift): """ Return queryset of user objects that can be added to the shift. This also includes users that already have a participation, as that might have gotten removed in JS. This also includes users that can normally not see the event. The permission will be added accordingly. If needed, this method could be moved to signup methods. """ return UserProfile.objects.all() class AddUserForm(forms.Form): user = forms.ModelChoiceField( widget=ModelSelect2Widget( model=UserProfile, search_fields=["first_name__icontains", "last_name__icontains"], attrs={"form": "add-user-form", "data-placeholder": _("search")}, ), queryset=UserProfile.objects.none(), # set using __init__ ) new_index = forms.IntegerField(widget=forms.HiddenInput) def __init__(self, user_queryset, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["user"].queryset = user_queryset class DispositionBaseViewMixin(CustomPermissionRequiredMixin, SingleObjectMixin): permission_required = "core.change_event" model = Shift def setup(self, request, *args, **kwargs): super().setup(request, *args, **kwargs) self.object: Shift = self.get_object() def dispatch(self, request, *args, **kwargs): if self.object.signup_method.disposition_participation_form_class is None: raise Http404(_("This signup method does not support disposition.")) return super().dispatch(request, *args, **kwargs) def get_permission_object(self): return self.object.event class AddUserView(DispositionBaseViewMixin, TemplateResponseMixin, View): def get_template_names(self): return [ self.object.signup_method.disposition_participation_form_class.disposition_participation_template ] def post(self, request, *args, **kwargs): shift = self.object form = AddUserForm( data=request.POST, user_queryset=addable_users(shift), ) if form.is_valid(): user: UserProfile = form.cleaned_data["user"] instance = shift.signup_method.get_participation_for(user.as_participant()) instance.state = AbstractParticipation.States.GETTING_DISPATCHED instance.save() DispositionParticipationFormset = get_disposition_formset( self.object.signup_method.disposition_participation_form_class ) formset = DispositionParticipationFormset( queryset=AbstractParticipation.objects.filter(pk=instance.pk), prefix="participations", start_index=form.cleaned_data["new_index"], ) form = next(filter(lambda form: form.instance.id == instance.id, formset)) return self.render_to_response({"form": form, "shift": shift}) raise Http404() class DispositionView(DispositionBaseViewMixin, TemplateView): template_name = "core/disposition/disposition.html" def get_formset(self): DispositionParticipationFormset = get_disposition_formset( self.object.signup_method.disposition_participation_form_class ) formset = DispositionParticipationFormset( self.request.POST or None, queryset=self.object.participations.all(), prefix="participations", ) return formset def post(self, request, *args, **kwargs): formset = self.get_formset() if formset.is_valid(): formset.save() self.object.participations.filter( state=AbstractParticipation.States.GETTING_DISPATCHED ).delete() return redirect(self.object.event.get_absolute_url()) return self.get(request, *args, **kwargs, formset=formset) def get_context_data(self, **kwargs): kwargs.setdefault("formset", self.get_formset()) kwargs.setdefault("states", AbstractParticipation.States) kwargs.setdefault( "participant_template", self.object.signup_method.disposition_participation_form_class.disposition_participation_template, ) kwargs.setdefault( "add_user_form", AddUserForm(user_queryset=addable_users(self.object)), ) return super().get_context_data(**kwargs)
StarcoderdataPython
9605878
from __future__ import absolute_import # # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # # # Sandesh Connection # import os from builtins import object from .gen_py.sandesh.constants import SANDESH_CONTROL_HINT from .gen_py.sandesh.ttypes import SandeshRxDropReason from .protocol import TXMLProtocol from .sandesh_session import SandeshReader from .sandesh_state_machine import Event, SandeshStateMachine from .transport import TTransport class SandeshConnection(object): def __init__(self, sandesh_instance, client, collectors, stats_collector): self._sandesh_instance = sandesh_instance self._logger = sandesh_instance.logger() self._client = client # Collector name. Updated upon receiving the control message # from the Collector during connection negotiation. self._admin_down = False self._state_machine = SandeshStateMachine(self, self._logger, collectors, stats_collector) self._state_machine.initialize() # end __init__ # Public methods def session(self): return self._state_machine.session() # end session def statemachine(self): return self._state_machine # end statemachine def sandesh_instance(self): return self._sandesh_instance # end sandesh_instance def collectors(self): return self._state_machine.collectors() # end collectors def collector(self): return self._state_machine.collector() # end collector def collector_name(self): return self._state_machine.collector_name() # end collector_name def state(self): return self._state_machine.state() # end state def handle_initialized(self, count): uve_types = [] uve_global_map = self._sandesh_instance._uve_type_maps.\ get_uve_global_map() for uve_type_key in uve_global_map.keys(): uve_types.append(uve_type_key) from .gen_py.sandesh_ctrl.ttypes import SandeshCtrlClientToServer ctrl_msg = SandeshCtrlClientToServer( self._sandesh_instance.source_id(), self._sandesh_instance.module(), count, uve_types, os.getpid(), 0, self._sandesh_instance.node_type(), self._sandesh_instance.instance_id()) self._logger.debug( 'Send sandesh control message. uve type count # %d' % (len(uve_types))) ctrl_msg.request('ctrl', sandesh=self._sandesh_instance) # end handle_initialized def handle_sandesh_ctrl_msg(self, ctrl_msg): self._client.handle_sandesh_ctrl_msg(ctrl_msg) # end handle_sandesh_ctrl_msg def handle_sandesh_uve_msg(self, uve_msg): self._client.send_sandesh(uve_msg) # end handle_sandesh_uve_msg def set_admin_state(self, down): if self._admin_down != down: self._admin_down = down self._state_machine.set_admin_state(down) # end set_admin_state def set_collectors(self, collectors): self._state_machine.enqueue_event(Event( event=Event._EV_COLLECTOR_CHANGE, collectors=collectors)) # end set_collectors # Private methods def _receive_sandesh_msg(self, session, msg): (hdr, hdr_len, sandesh_name) = \ SandeshReader.extract_sandesh_header(msg) if sandesh_name is None: self._sandesh_instance.msg_stats().update_rx_stats( '__UNKNOWN__', len(msg), SandeshRxDropReason.DecodingFailed) self._logger.error( 'Failed to decode sandesh header for "%s"' % (msg)) return if hdr.Hints & SANDESH_CONTROL_HINT: self._logger.debug( 'Received sandesh control message [%s]' % (sandesh_name)) if sandesh_name != 'SandeshCtrlServerToClient': self._sandesh_instance.msg_stats().update_rx_stats( sandesh_name, len(msg), SandeshRxDropReason.ControlMsgFailed) self._logger.error( 'Invalid sandesh control message [%s]' % (sandesh_name)) return transport = TTransport.TMemoryBuffer(msg[hdr_len:]) protocol_factory = TXMLProtocol.TXMLProtocolFactory() protocol = protocol_factory.getProtocol(transport) from .gen_py.sandesh_ctrl.ttypes import SandeshCtrlServerToClient sandesh_ctrl_msg = SandeshCtrlServerToClient() if sandesh_ctrl_msg.read(protocol) == -1: self._sandesh_instance.msg_stats().update_rx_stats( sandesh_name, len(msg), SandeshRxDropReason.DecodingFailed) self._logger.error( 'Failed to decode sandesh control message "%s"' % (msg)) else: self._sandesh_instance.msg_stats().update_rx_stats( sandesh_name, len(msg)) self._state_machine.on_sandesh_ctrl_msg_receive( session, sandesh_ctrl_msg, hdr.Source) else: self._logger.debug( 'Received sandesh message [%s]' % (sandesh_name)) self._client.handle_sandesh_msg(sandesh_name, msg[hdr_len:], len(msg)) # end _receive_sandesh_msg # end class SandeshConnection
StarcoderdataPython
6510702
<filename>software/ringledoff.py import board import neopixel pixels = neopixel.NeoPixel(board.D18, 24) pixels.fill((0,0,0))
StarcoderdataPython
4925034
<reponame>yarikoptic/metadata-model<filename>tools/metadata_creator/execute.py import shlex import subprocess from typing import Any, List, Optional, Tuple, Union def execute(arguments: Union[str, List[str]], stdin_content: Optional[Union[str, bytes]] = None) -> Any: return subprocess.run( shlex.split(arguments) if isinstance(arguments, str) else arguments, input=stdin_content.encode() if isinstance(stdin_content, str) else stdin_content, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def checked_execute(arguments: Union[str, List[str]], stdin_content: Optional[Union[str, bytes]] = None) -> Tuple[str, str]: result = execute(arguments, stdin_content) if result.returncode != 0: raise RuntimeError( f"Command failed (exit code: {result.returncode}) {' '.join(arguments)}:\n" f"STDOUT:\n" f"{result.stdout.decode()}" f"STDERR:\n" f"{result.stderr.decode()}") return result.stdout.decode(), result.stderr.decode()
StarcoderdataPython
1621157
import operator import json import unicodecsv as csv from django.shortcuts import get_object_or_404, render from django.http import HttpResponse from rest_framework.decorators import api_view from rest_framework.response import Response from curricula.models import Curriculum, Unit from standards.models import * from standards.serializers import * def index(request): frameworks = Framework.objects.all() curricula = Curriculum.objects.all() return render(request, 'standards/index.html', {'frameworks': frameworks, 'curricula': curricula}) def by_framework(request, slug, curriculum_slug=None): framework = get_object_or_404(Framework, slug=slug) top_categories = Category.objects.filter(framework=framework, parent__isnull=True) \ .prefetch_related('children__standards__lesson_set', 'standards__lesson_set') return render(request, 'standards/framework.html', {'framework': framework, 'top_categories': top_categories}) def by_curriculum(request, slug): curriculum = get_object_or_404(Curriculum, slug=slug) ''' standards_cols, standards_rows = curriculum.get_standards() cols = json.dumps(standards_cols) cols = cols.replace("\"heatCell\"", "heatCell") rows = json.dumps(standards_rows) return render(request, 'standards/curriculum.html', {'curriculum': curriculum, 'standards_cols': cols, 'standards_rows': rows}) ''' return render(request, 'standards/curriculum_nogrid.html', {'curriculum': curriculum}) def by_curriculum_csv(request, slug): curriculum = get_object_or_404(Curriculum, slug=slug) response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="%s_standards.csv"' % curriculum.slug writer = csv.writer(response, encoding='utf-8') writer.writerow([ 'curriculum', 'unit', 'lesson #', 'lesson name', 'standard framework', 'standard', 'category', 'description', 'cross curricular opportunity' ]) for unit in curriculum.units: for lesson in unit.lessons: for standard in lesson.standards.all(): writer.writerow([ curriculum.slug, unit.slug, 'lesson %d' % lesson.number, lesson.title, standard.framework.slug, standard.shortcode, standard.category.name, standard.name, False ]) for standard in lesson.opportunity_standards.all(): writer.writerow([ curriculum.slug, unit.slug, 'lesson %d' % lesson.number, lesson.title, standard.framework.slug, standard.shortcode, standard.category.name, standard.name, True ]) return response def by_unit(request, slug, unit_slug): curriculum = get_object_or_404(Curriculum, slug=slug) unit = get_object_or_404(Unit, curriculum=curriculum, slug=unit_slug) ''' standards_cols, standards_rows = unit.get_standards() cols = json.dumps(standards_cols) cols = cols.replace("\"heatCell\"", "heatCell") rows = json.dumps(standards_rows) return render(request, 'standards/curriculum.html', {'curriculum': curriculum, 'unit': unit, 'standards_cols': cols, 'standards_rows': rows}) ''' return render(request, 'standards/curriculum_nogrid.html', {'curriculum': curriculum, 'unit': unit}) def by_unit_csv(request, slug, unit_slug): curriculum = get_object_or_404(Curriculum, slug=slug) unit = get_object_or_404(Unit, curriculum=curriculum, slug=unit_slug) response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="%s_%s_standards.csv"' % (curriculum.slug, unit.slug) writer = csv.writer(response, encoding='utf-8') writer.writerow([ 'curriculum', 'unit', 'lesson #', 'lesson name', 'standard framework', 'standard', 'category', 'description', 'cross curricular opportunity' ]) for lesson in unit.lessons: for standard in lesson.standards.all(): writer.writerow([ curriculum.slug, unit.slug, 'lesson %d' % lesson.number, lesson.title, standard.framework.slug, standard.shortcode, standard.category.name, standard.name, 'false' ]) for standard in lesson.opportunity_standards.all(): writer.writerow([ curriculum.slug, unit.slug, 'lesson %d' % lesson.number, lesson.title, standard.framework.slug, standard.shortcode, standard.category.name, standard.name, 'true' ]) return response def standards_by_framework_csv(request, slug): framework = get_object_or_404(Framework, slug=slug) response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="%s_standards.csv"' % (framework.slug.lower()) writer = csv.writer(response, encoding='utf-8') writer.writerow([ 'framework', 'category', 'standard', 'description' ]) for standard in framework.standards.all(): writer.writerow([ framework.slug.lower(), standard.category.shortcode, standard.shortcode, standard.name ]) return response def categories_by_framework_csv(request, slug): framework = get_object_or_404(Framework, slug=slug) response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="%s_categories.csv"' % (framework.slug.lower()) writer = csv.writer(response, encoding='utf-8') writer.writerow([ 'framework', 'parent', 'category', 'type', 'description' ]) # Make categories without parents appear before categories with parents. # Because there are only two layers of categories, this ensures that # every parent category appears before any of its children. The secondary # sort by shortcode is just to make the output file easier to read. categories = framework.categories.all() categories = sorted(categories, key=lambda c: [c.parent_shortcode(), c.shortcode]) for category in categories: writer.writerow([ framework.slug.lower(), category.parent_shortcode(), category.shortcode, category.type, category.description.strip() if category.description else category.name ]) return response def single_standard(request, slug, shortcode): # standard = get_object_or_404(Standard.objects.prefetch_related('lesson_set__unitlesson_set__unit__curriculum'), framework__slug=slug, shortcode=shortcode) standard = get_object_or_404(Standard, framework__slug=slug, shortcode=shortcode) return render(request, 'standards/standard.html', {'standard': standard}) @api_view(['GET', ]) def standard_element(request, slug, shortcode, format=None): # standard = get_object_or_404(Standard.objects.prefetch_related('lesson_set__unitlesson_set__unit__curriculum'), framework__slug=slug, shortcode=shortcode) standard = get_object_or_404(Standard, framework__slug=slug, shortcode=shortcode) serializer = StandardSerializer(standard) return Response(serializer.data) @api_view(['GET', ]) def standard_list(request, curriculum_slug, framework_slug=None): curriculum = get_object_or_404(Curriculum, slug=curriculum_slug) if framework_slug: standards = Standard.objects.filter(framework__slug=framework_slug) else: standards = Standard.objects.all() serializer = StandardSerializer(standards, context={'curriculum': curriculum}, many=True) return Response(serializer.data) @api_view(['GET', ]) def nested_standard_list(request, curriculum_slug, framework_slug=None): curriculum = get_object_or_404(Curriculum, slug=curriculum_slug) query = [] serialized = {} if framework_slug: query.append(("framework__slug", framework_slug)) query_list = [Q(x) for x in query] standards = Standard.objects.filter(reduce(operator.and_, query_list)).order_by('shortcode') for standard in standards: print standard.shortcode serializer = NestedStandardSerializer(standard, context={'curriculum': curriculum}) serialized[standard.shortcode] = serializer.data # return Response(serializer.data) return Response(SortedDict(serialized)) @api_view(['GET', ]) def nested_category_list(request, curriculum_slug, framework_slug=None): curriculum = get_object_or_404(Curriculum, slug=curriculum_slug) query = [] serialized = {} if request.GET.get('category'): # Filter by standard / cat type query.append(("type", request.GET.get('category'))) else: query.append(('parent__isnull', True)) if framework_slug: query.append(("framework__slug", framework_slug)) # categories = Category.objects.filter(parent__isnull=True, framework__slug=framework_slug).order_by('shortcode') # else: # categories = Category.objects.filter(parent__isnull=True).order_by('shortcode') query_list = [Q(x) for x in query] categories = Category.objects.filter(reduce(operator.and_, query_list)).order_by('shortcode') for category in categories: print category.shortcode serializer = NestedCategorySerializer(category, context={'curriculum': curriculum}) serialized[category.shortcode] = serializer.data # return Response(serializer.data) return Response(SortedDict(serialized))
StarcoderdataPython
8166159
# Generated by Django 2.0.2 on 2018-08-21 13:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0002_auto_20180821_1337'), ] operations = [ migrations.AlterField( model_name='student', name='bitsId', field=models.CharField(max_length=15, null=True), ), migrations.AlterField( model_name='student', name='name', field=models.CharField(max_length=50, null=True), ), migrations.AlterField( model_name='student', name='username', field=models.CharField(max_length=10, null=True), ), ]
StarcoderdataPython
8154931
import gffutils import argparse import os def split3UTR(UTR3gff, fragsize, outfile): gff_fn = UTR3gff print 'Indexing gff...' db_fn = os.path.abspath(gff_fn) + '.db' if os.path.isfile(db_fn) == False: gffutils.create_db(gff_fn, db_fn, merge_strategy = 'merge', verbose = True) db = gffutils.FeatureDB(db_fn) print 'Done indexing!' UTR3s = db.features_of_type('UTR3') outfh = open(outfile, 'w') for UTR3 in UTR3s: #Only going to consider single exon UTRs if len(list(db.children(UTR3, featuretype = 'exon', level = 1))) > 1: continue ID = UTR3.attributes['ID'][0] parent = UTR3.attributes['Parent'][0] gene_id = UTR3.attributes['gene_id'][0] coord = UTR3.start counter = 1 while coord <= UTR3.end: windowstart = coord windowend = coord + fragsize idfield = 'ID=' + ID + '.utr3fragment{0}'.format(counter) + ';Parent=' + parent + ';gene_id=' + gene_id with open(outfile, 'a') as outfh: outfh.write(('\t').join([str(UTR3.chrom), 'longest3UTRfrags', 'UTR3frag', str(windowstart), str(windowend), '.', str(UTR3.strand), '.', idfield]) + '\n') coord = coord + fragsize + 1 counter +=1 os.remove(db_fn) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gff', type = str, help = 'Input gff of 3\' UTRs to split.') parser.add_argument('--fragsize', type = int, help = 'Fragment size for UTR fragments.') parser.add_argument('--output', type = str, help = 'Output gff file.') args = parser.parse_args() split3UTR(args.gff, args.fragsize, args.output)
StarcoderdataPython
1975721
""" This file contains the fixtures that are reusable by any tests within this directory. You don't need to import the fixtures as pytest will discover them automatically. More info here: https://docs.pytest.org/en/latest/fixture.html """ from typing import Any, Dict import pytest from kedro.io import AbstractDataSet, DataCatalog class FakeDataSet(AbstractDataSet): def __init__(self, data): self.log = [] self.data = data def _load(self) -> Any: self.log.append(("load", self.data)) return self.data def _save(self, data: Any) -> None: self.log.append(("save", data)) self.data = data def _describe(self) -> Dict[str, Any]: return {"data": self.data} @pytest.fixture def fake_data_set(): return FakeDataSet(123) @pytest.fixture def catalog(fake_data_set): return DataCatalog({"test": fake_data_set})
StarcoderdataPython
3205169
# ACTIVITY 3: PYTHON NUMBERS # Program Description: This is a program that takes the user's input to calculate for the employee's gross and net salary. # The hourly rate is already pre-determined and has been set to 500. # Additionally, the tax rate is set to 10 percent of the employee's gross income. hourlyRate = 500 taxRate = 0.10 # A loop will be used to make sure that the user can use the program continously. while True: # The program will mainly use float when working with the numbers. # This will help in the accuracy of the calculations. print ( "==================== ENTER DETAILS ====================" ) employeeName = input ( " Employee Name: " ) numberHours = float( input ( " Enter number of hours: " ) ) grossSalary = float(numberHours) * float(hourlyRate) sssContribution = float( input ( " SSS contribution: " ) ) philHealth = float ( input ( " Phil Health: " ) ) housingLoan = float ( input ( " Housing loan: " ) ) print ( "=======================================================\n" ) # Generating payslip. print ( "====================== PAYSLIP ======================" ) print ( "================ EMPLOYEE INFORMATION =================" ) print ( " Employee Name: " , employeeName ) print ( " Rendered Hours: ", numberHours ) print ( " Rate per Hour: ", hourlyRate ) print ( " Gross Salary: ", grossSalary ) print ( "====================== DEDUCTIONS =====================" ) print ( " SSS: " , sssContribution ) print ( " PhilHealth: " , philHealth ) print ( " Other Loan: " , housingLoan ) tax = float ( grossSalary ) * taxRate print ( " Tax : " , tax ) deductions_total = sssContribution + philHealth + housingLoan + tax print ( " Total Deductions: " , deductions_total ) netSalary = grossSalary - deductions_total print ( "\n Net Salary: PHP " , netSalary ) print ( "=======================================================\n" )
StarcoderdataPython
9775632
# -*- coding: utf-8 -*- import os.path from gettext import NullTranslations, translation translation_dir = os.path.join( os.path.dirname( os.path.abspath( __file__, ), ), "translations" ) current_translation = NullTranslations() def set_locale(locales): global current_translation current_translation = translation( domain="rqalpha", localedir=translation_dir, languages=locales, ) def gettext(message): return current_translation.gettext(message)
StarcoderdataPython
285989
# Generated by Django 3.0.2 on 2020-02-11 17:21 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('posts', '0006_auto_20200211_1625'), ] operations = [ migrations.AlterField( model_name='post', name='image', field=models.ForeignKey(default=34, on_delete=django.db.models.deletion.CASCADE, to='posts.UploadedImage'), preserve_default=False, ), ]
StarcoderdataPython
11280601
# -*- coding: utf-8 -*- import time from pyqtgraph.Qt import QtCore, QtGui, QtTest def resizeWindow(win, w, h, timeout=2.0): """Resize a window and wait until it has the correct size. This is required for unit testing on some platforms that do not guarantee immediate response from the windowing system. """ QtGui.QApplication.processEvents() # Sometimes the window size will switch multiple times before settling # on its final size. Adding qWaitForWindowExposed seems to help with this. QtTest.QTest.qWaitForWindowExposed(win) win.resize(w, h) start = time.time() while True: w1, h1 = win.width(), win.height() if (w,h) == (w1,h1): return QtTest.QTest.qWait(10) if time.time()-start > timeout: raise TimeoutError("Window resize failed (requested %dx%d, got %dx%d)" % (w, h, w1, h1)) # Functions for generating user input events. # We would like to use QTest for this purpose, but it seems to be broken. # See: http://stackoverflow.com/questions/16299779/qt-qgraphicsview-unit-testing-how-to-keep-the-mouse-in-a-pressed-state def mousePress(widget, pos, button, modifier=None): if isinstance(widget, QtGui.QGraphicsView): widget = widget.viewport() if modifier is None: modifier = QtCore.Qt.KeyboardModifier.NoModifier event = QtGui.QMouseEvent(QtCore.QEvent.Type.MouseButtonPress, pos, button, QtCore.Qt.MouseButton.NoButton, modifier) QtGui.QApplication.sendEvent(widget, event) def mouseRelease(widget, pos, button, modifier=None): if isinstance(widget, QtGui.QGraphicsView): widget = widget.viewport() if modifier is None: modifier = QtCore.Qt.KeyboardModifier.NoModifier event = QtGui.QMouseEvent(QtCore.QEvent.Type.MouseButtonRelease, pos, button, QtCore.Qt.MouseButton.NoButton, modifier) QtGui.QApplication.sendEvent(widget, event) def mouseMove(widget, pos, buttons=None, modifier=None): if isinstance(widget, QtGui.QGraphicsView): widget = widget.viewport() if modifier is None: modifier = QtCore.Qt.KeyboardModifier.NoModifier if buttons is None: buttons = QtCore.Qt.MouseButton.NoButton event = QtGui.QMouseEvent(QtCore.QEvent.Type.MouseMove, pos, QtCore.Qt.MouseButton.NoButton, buttons, modifier) QtGui.QApplication.sendEvent(widget, event) def mouseDrag(widget, pos1, pos2, button, modifier=None): mouseMove(widget, pos1) mousePress(widget, pos1, button, modifier) mouseMove(widget, pos2, button, modifier) mouseRelease(widget, pos2, button, modifier) def mouseClick(widget, pos, button, modifier=None): mouseMove(widget, pos) mousePress(widget, pos, button, modifier) mouseRelease(widget, pos, button, modifier)
StarcoderdataPython
5005754
<reponame>Hwizdaleck/Python usuario1=input('digite seu usuario') usuario2='<PASSWORD>' qtd=len(usuario1) if (qtd)!=6 or usuario1!=usuario2: print('senha incorreta') else: print('senha correta')
StarcoderdataPython
5080301
# -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : <EMAIL> @site : https://zhuyuanxiang.github.io --------------------------- @Software : PyCharm @Project : deep-learning-with-python-notebooks @File : ch0601_raw_text_to_word_embedding.py @Version : v0.1 @Time : 2019-11-23 14:26 @License : (C)Copyright 2018-2019, zYx.Tom @Reference : 《Python 深度学习,Francois Chollet》, Sec060103,P155 @Desc : 深度学习用于文本和序列,处理文本数据——从原始文本到词嵌入 """ import os import sys import matplotlib.pyplot as plt import numpy as np # pip install numpy<1.17,小于1.17就不会报错 import winsound from keras.activations import relu, sigmoid from keras.layers import Dense, Flatten from keras.layers import Embedding from keras.losses import binary_crossentropy from keras.models import Sequential from keras.optimizers import rmsprop from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer from tools import plot_classes_results # 屏蔽警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 设置数据显示的精确度为小数点后3位 np.set_printoptions(precision = 3, suppress = True, threshold = np.inf, linewidth = 200) # to make this notebook's output stable across runs seed = 42 np.random.seed(seed) # Python ≥3.5 is required assert sys.version_info >= (3, 5) # numpy 1.16.4 is required assert np.__version__ in ["1.16.5", "1.16.4"] # Listing 6.8 准备 IMDB 原始数据的标签 imdb_dir = "C:/Users/Administrator/PycharmProjects/Data/aclImdb/" train_dir = os.path.join(imdb_dir, 'train') test_dir = os.path.join(imdb_dir, 'test') # Listing 6.9 对 IMDB 原始数据的文本进行分词 max_len = 100 # 每条评论的最大长度 max_words = 10000 # 单词表大小 epochs = 10 batch_size = 32 training_samples = 200 validation_samples = 10000 def load_data_set(data_dir): labels, texts = [], [] for label_type in ['neg', 'pos']: dir_name = os.path.join(data_dir, label_type) for fname in os.listdir(dir_name): # print(fname) if fname[-4:] == '.txt': f = open(os.path.join(dir_name, fname), encoding = 'utf-8') texts.append(f.read()) f.close() if label_type == 'neg': labels.append(0) else: labels.append(1) pass pass pass pass return texts, labels train_texts, train_labels = load_data_set(train_dir) test_texts, test_labels = load_data_set(test_dir) tokenizer = Tokenizer(num_words = max_words) tokenizer.fit_on_texts(train_texts) word_index = tokenizer.word_index print("Found {} unique tokens.".format(len(word_index))) train_sequences = tokenizer.texts_to_sequences(train_texts) train_data = pad_sequences(train_sequences, maxlen = max_len) train_labels = np.asarray(train_labels) print("Shape of data tensor:", train_data.shape) print("Shape of label tensor:", train_labels.shape) indices = np.arange(train_data.shape[0]) np.random.shuffle(indices) train_data = train_data[indices] train_labels = train_labels[indices] x_train = train_data[:training_samples] y_train = train_labels[:training_samples] x_val = train_data[training_samples:training_samples + validation_samples] y_val = train_labels[training_samples:training_samples + validation_samples] test_sequences = tokenizer.texts_to_sequences(test_texts) x_test = pad_sequences(test_sequences, maxlen = max_len) y_test = np.asarray(test_labels) # downloading...https://nlp.stanford.edu/projects/glove/ # 下载:http://nlp.stanford.edu/data/glove.6B.zip # Listing 6.10 解析 GloVe 词嵌入文件 glove_dir = "C:/Users/Administrator/PycharmProjects/Data/GloVe/" embeddings_index = {} f = open(os.path.join(glove_dir, 'glove.6B.200d.txt'), encoding = 'utf-8') for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype = 'float32') embeddings_index[word] = coefs pass f.close() print("Found {} word vectors.".format(len(embeddings_index))) # Listing 6.11 准备 GloVe 词嵌入矩阵 embedding_dim = 200 embedding_matrix = np.zeros((max_words, embedding_dim)) for word, i in word_index.items(): if i < max_words: embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector pass pass pass def train_model(model): # Listing 6.14 训练与评估模型 # 这个声明放在最前面会报错 from keras.metrics import binary_accuracy model.compile(optimizer = rmsprop(lr = 0.001), loss = binary_crossentropy, metrics = [binary_accuracy]) return model.fit(x_train, y_train, epochs = epochs, batch_size = batch_size, validation_data = (x_val, y_val), verbose = 2, use_multiprocessing = True) # ---------------------------------------------------------------------- def definite_model_use_GloVe(): # Listing 6.12 模型定义 title = "使用预训练词嵌入" model = Sequential() model.add(Embedding(max_words, embedding_dim, input_length = max_len)) model.add(Flatten()) model.add(Dense(32, activation = relu)) model.add(Dense(1, activation = sigmoid)) # Listing 6.13 将 GloVe 训练好的词嵌入加载到 Embedding 层中 model.layers[0].set_weights([embedding_matrix]) model.layers[0].trainable = False model.summary() history = train_model(model) plot_classes_results(history, title, epochs) model.save_weights('pre_trained_glove_model.h5') model.load_weights('pre_trained_glove_model.h5') print(title + "评估测试集", model.evaluate(x_test, y_test)) # ---------------------------------------------------------------------- def definite_model_no_GloVe(): title = "不使用预训练词嵌入" model = Sequential() model.add(Embedding(max_words, embedding_dim, input_length = max_len)) model.add(Flatten()) model.add(Dense(32, activation = relu)) model.add(Dense(1, activation = sigmoid)) model.summary() history = train_model(model) plot_classes_results(history, title, epochs) print(title + "评估测试集", model.evaluate(x_test, y_test)) # ---------------------------------------------------------------------- definite_model_use_GloVe() definite_model_no_GloVe() # 运行结束的提醒 winsound.Beep(600, 500) if len(plt.get_fignums()) != 0: plt.show() pass
StarcoderdataPython
6690371
<filename>klusta_process_manager/fileBrowser/fileBrowser.py import os #QT import sip sip.setapi('QVariant',2) sip.setapi('QString',2) from PyQt4 import QtCore,QtGui from .tableDelegate import TableDelegate from .folderView import FolderView #------------------------------------------------------------------------------------------------------------ # Worker: Runs continuously in a separate thread # Can do differents method / method can be interrupt by new method call #------------------------------------------------------------------------------------------------------------ class Worker(QtCore.QObject): valueChanged=QtCore.pyqtSignal(int) folderDone=QtCore.pyqtSignal(int) finished=QtCore.pyqtSignal() def __init__(self): super(Worker,self).__init__() self._abort=False self._interrupt=False self._method="none" self.mutex=QtCore.QMutex() self.condition=QtCore.QWaitCondition() def mainLoop(self): while 1: self.mutex.lock() if not self._interrupt and not self._abort: self.condition.wait(self.mutex) self._interrupt=False if self._abort: self.finished.emit() return method=self._method self.mutex.unlock() if method=="icon_folder": self.doMethod_icon_folder() def requestMethod(self,method,arg=None): locker=QtCore.QMutexLocker(self.mutex) self._interrupt=True self._method=method self._arg=arg self.condition.wakeOne() def doMethod_icon_folder(self): expList=self._arg i=0 s=len(expList) for exp in expList: self.mutex.lock() abort=self._abort interrupt=self._interrupt self.mutex.unlock() if abort or interrupt: self.valueChanged.emit(100) break exp.reset_folder_icon() self.folderDone.emit(i) i+=1 self.valueChanged.emit(i*100.0/s) def abort(self): locker=QtCore.QMutexLocker(self.mutex) self._abort=True self.condition.wakeOne() #------------------------------------------------------------------------------------------------------------ # Model #------------------------------------------------------------------------------------------------------------ class Model(QtCore.QAbstractTableModel): def __init__(self,delegate=None,parent=None): super(Model,self).__init__(parent) #thread self.working=False self.thread=QtCore.QThread() self.worker=Worker() self.worker.moveToThread(self.thread) self.thread.started.connect(self.worker.mainLoop) self.thread.finished.connect(self.deleteLater) self.thread.start() self.worker.folderDone.connect(self.icon_done) self.worker.finished.connect(self.thread.quit) #list of current experiments to display self.experimentList=[] #Delegate self.delegate=delegate def rowCount(self,QModelIndex): return len(self.experimentList) def columnCount(self,QModelIndex): return 4 def icon_done(self,row): idx=self.index(row,3) self.dataChanged.emit(idx,idx) def reset_list(self,expList): self.beginResetModel() expList.sort() self.experimentList=expList[:] self.reset_horizontal_lines() self.worker.requestMethod("icon_folder",self.experimentList) self.endResetModel() #To draw horizontal line according to date def reset_horizontal_lines(self): listDate=[exp.dateTime for exp in self.experimentList] self.delegate.reset_horizontal_lines(listDate) def clear(self): self.beginResetModel() self.experimentList=[] self.endResetModel() def data(self,index,role): col=index.column() row=index.row() if role==QtCore.Qt.DisplayRole: if col==0: return self.experimentList[row].yearMonth if col==1: return self.experimentList[row].day if col==2: return self.experimentList[row].time if col==3: return self.experimentList[row].folderName if role==QtCore.Qt.DecorationRole: if col==3: path=os.path.join(os.path.dirname(os.path.realpath(__file__)), '../icons/') path=os.path.realpath(path)+"/" return QtGui.QIcon(path+self.experimentList[row].folder.icon) def flags(self,index): if index.column()==3: return QtCore.Qt.ItemIsEnabled|QtCore.Qt.ItemIsSelectable return QtCore.Qt.NoItemFlags def pathLocal_from_index(self,index): exp=self.experimentList[index.row()] return exp.pathLocal def createFiles_onSelection(self,selection,prmModel,prbModel): for index in selection: self.experimentList[index.row()].create_files(prmModel=prmModel,prbModel=prbModel) self.experimentList[index.row()].reset_folder_icon() self.dataChanged.emit(selection[0],selection[-1]) def update_exp(self,exp): if exp in self.experimentList: row=self.experimentList.index(exp) index=self.index(row,3) self.dataChanged.emit(index,index) #-------------------------------------------------------------------------------------------------------------- # FileBrowser Widget #-------------------------------------------------------------------------------------------------------------- class FileBrowser(QtGui.QWidget): def __init__(self,ROOT,parent=None): super(FileBrowser,self).__init__(parent) #Combo Box self.animalComboBox=QtGui.QComboBox() #model/view self.delegate=TableDelegate(self) self.model=Model(self.delegate,self) self.view=FolderView(self.model,self) self.model.worker.valueChanged.connect(self.display_load) self.view.table.setItemDelegate(self.delegate) #button pathIcon=os.path.join(os.path.dirname(os.path.realpath(__file__)), '../icons/downarrow.png') pathIcon=os.path.realpath(pathIcon) self.button_add=QtGui.QPushButton(QtGui.QIcon(pathIcon)," ") self.button_createFiles=QtGui.QPushButton("Create prm/prb") self.button_createFiles.clicked.connect(self.createFiles) self.button_createFiles.setEnabled(False) self.button_loadModels=QtGui.QPushButton("Load models") self.button_loadModels.clicked.connect(self.loadModels) #label labelPath=ROOT+os.sep if len(labelPath)>20: labelPath="..."+labelPath[-17:] self.label_path=QtGui.QLabel(labelPath) self.label_load=QtGui.QLabel(' ') self.label_prmModel=QtGui.QLabel('no prm model') self.label_prbModel=QtGui.QLabel('no prb model') self.prmModel=QtCore.QFileInfo() self.prbModel=QtCore.QFileInfo() #Layout hbox1=QtGui.QHBoxLayout() hbox1.addWidget(self.label_path) hbox1.addWidget(self.animalComboBox) hbox1.addStretch() hbox2=QtGui.QHBoxLayout() hbox2.addWidget(self.view.label_hide) hbox2.addWidget(self.view.edit_hide) grid=QtGui.QHBoxLayout() grid.addWidget(self.button_add) grid.addWidget(self.button_loadModels) grid.addWidget(self.label_prmModel) grid.addWidget(self.label_prbModel) grid.addWidget(self.button_createFiles) grid.addWidget(self.label_load) layout=QtGui.QGridLayout() layout.addLayout(hbox1,1,1) layout.addLayout(hbox2,1,2) layout.addWidget(self.view,2,1,4,2) layout.addLayout(grid,6,1,1,2) self.setLayout(layout) def set_animalComboBox(self,animalList): for animalID in animalList: self.animalComboBox.addItem(animalID) def get_experiment_selection(self): return self.view.table.selectedIndexes() def createFiles(self): if self.prmModel.exists() and self.prbModel.exists(): selection=self.get_experiment_selection() self.model.createFiles_onSelection(selection,prmModel=self.prmModel,prbModel=self.prbModel) self.view.refresh() def loadModels(self): filebox=QtGui.QFileDialog(self,"Load model for PRB and PRM files") filebox.setFileMode(QtGui.QFileDialog.ExistingFiles) filebox.setNameFilters(["PRB/PRM (*.prm *.prb)"]) filebox.setOptions(QtGui.QFileDialog.DontUseNativeDialog) if filebox.exec_(): for selectedFile in filebox.selectedFiles(): if selectedFile.endswith(".prm"): self.prmModel.setFile(selectedFile) self.label_prmModel.setText(self.prmModel.fileName()) elif selectedFile.endswith(".prb"): self.prbModel.setFile(selectedFile) self.label_prbModel.setText(self.prbModel.fileName()) if self.prmModel.exists() and self.prbModel.exists(): self.button_createFiles.setEnabled(True) def display_load(self,i): percentage=str(i)+'%' if i==100: self.label_load.setText("") else: self.label_load.setText("Loading icons: "+percentage) def reset_experimentList(self,experimentInfoList): self.model.reset_list(experimentInfoList) self.view.reset_view() def on_close(self): self.model.worker.abort() #self.model.thread.wait()
StarcoderdataPython
9766191
import unittest from random import random from bubble_sort import bubble_sort class TestBubbleSort(unittest.TestCase): def setUp(self): self.unsorted_values = [random() for i in range(20)] def test_bubble_sort_returns_an_array(self): sorted_values = bubble_sort(self.unsorted_values) assert isinstance(sorted_values, list) def test_bubble_sort_correctly_sorts(self): sorted_values = bubble_sort(self.unsorted_values) self.assertEqual(sorted(self.unsorted_values), sorted_values) if __name__ == '__main__': unittest.main()
StarcoderdataPython
6444166
<gh_stars>1-10 #coding:utf8 import sys,os import torch as t from data import get_data from model import PoetryModel from torch import nn from torch.autograd import Variable from utils import Visualizer import tqdm from torchnet import meter import ipdb class Config(object): data_path = 'data/' # 诗歌的文本文件存放路径 pickle_path= 'tang.npz' # 预处理好的二进制文件 author = None # 只学习某位作者的诗歌 constrain = None # 长度限制 category = 'poet.tang' # 类别,唐诗还是宋诗歌(poet.song) lr = 1e-3 weight_decay = 1e-4 use_gpu = True epoch = 20 batch_size = 128 maxlen = 125 # 超过这个长度的之后字被丢弃,小于这个长度的在前面补空格 plot_every = 20 # 每20个batch 可视化一次 # use_env = True # 是否使用visodm env='poetry' # visdom env max_gen_len = 200 # 生成诗歌最长长度 debug_file='/tmp/debugp' model_path=None # 预训练模型路径 prefix_words = '细雨鱼儿出,微风燕子斜。' # 不是诗歌的组成部分,用来控制生成诗歌的意境 start_words='闲云潭影日悠悠' # 诗歌开始 acrostic = False # 是否是藏头诗 model_prefix = 'checkpoints/tang' # 模型保存路径 opt = Config() def generate(model,start_words,ix2word,word2ix,prefix_words=None): ''' 给定几个词,根据这几个词接着生成一首完整的诗歌 start_words:u'春江潮水连海平' 比如start_words 为 春江潮水连海平,可以生成: ''' results = list(start_words) start_word_len = len(start_words) # 手动设置第一个词为<START> input = Variable(t.Tensor([word2ix['<START>']]).view(1,1).long()) if opt.use_gpu:input=input.cuda() hidden = None if prefix_words: for word in prefix_words: output,hidden = model(input,hidden) input = Variable(input.data.new([word2ix[word]])).view(1,1) for i in range(opt.max_gen_len): output,hidden = model(input,hidden) if i<start_word_len: w = results[i] input = Variable(input.data.new([word2ix[w]])).view(1,1) else: top_index = output.data[0].topk(1)[1][0] w = ix2word[top_index] results.append(w) input = Variable(input.data.new([top_index])).view(1,1) if w=='<EOP>': del results[-1] break return results def gen_acrostic(model,start_words,ix2word,word2ix, prefix_words = None): ''' 生成藏头诗 start_words : u'深度学习' 生成: 深木通中岳,青苔半日脂。 度山分地险,逆浪到南巴。 学道兵犹毒,当时燕不移。 习根通古岸,开镜出清羸。 ''' results = [] start_word_len = len(start_words) input = Variable(t.Tensor([word2ix['<START>']]).view(1,1).long()) if opt.use_gpu:input=input.cuda() hidden = None index=0 # 用来指示已经生成了多少句藏头诗 # 上一个词 pre_word='<START>' if prefix_words: for word in prefix_words: output,hidden = model(input,hidden) input = Variable(input.data.new([word2ix[word]])).view(1,1) for i in range(opt.max_gen_len): output,hidden = model(input,hidden) top_index = output.data[0].topk(1)[1][0] w = ix2word[top_index] if (pre_word in {u'。',u'!','<START>'} ): # 如果遇到句号,藏头的词送进去生成 if index==start_word_len: # 如果生成的诗歌已经包含全部藏头的词,则结束 break else: # 把藏头的词作为输入送入模型 w = start_words[index] index+=1 input = Variable(input.data.new([word2ix[w]])).view(1,1) else: # 否则的话,把上一次预测是词作为下一个词输入 input = Variable(input.data.new([word2ix[w]])).view(1,1) results.append(w) pre_word = w return results def train(**kwargs): for k,v in kwargs.items(): setattr(opt,k,v) vis = Visualizer(env=opt.env) # 获取数据 data,word2ix,ix2word = get_data(opt) data = t.from_numpy(data) dataloader = t.utils.data.DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=1) # 模型定义 model = PoetryModel(len(word2ix), 128, 256) optimizer = t.optim.Adam(model.parameters(), lr=opt.lr) criterion = nn.CrossEntropyLoss() if opt.model_path: model.load_state_dict(t.load(opt.model_path)) if opt.use_gpu: model.cuda() criterion.cuda() loss_meter = meter.AverageValueMeter() for epoch in range(opt.epoch): loss_meter.reset() for ii,data_ in tqdm.tqdm(enumerate(dataloader)): # 训练 data_ = data_.long().transpose(1,0).contiguous() if opt.use_gpu: data_ = data_.cuda() optimizer.zero_grad() input_,target = Variable(data_[:-1,:]),Variable(data_[1:,:]) output,_ = model(input_) loss = criterion(output,target.view(-1)) loss.backward() optimizer.step() loss_meter.add(loss.data[0]) # 可视化 if (1+ii)%opt.plot_every==0: if os.path.exists(opt.debug_file): ipdb.set_trace() vis.plot('loss',loss_meter.value()[0]) # 诗歌原文 poetrys=[ [ix2word[_word] for _word in data_[:,_iii]] for _iii in range(data_.size(1))][:16] vis.text('</br>'.join([''.join(poetry) for poetry in poetrys]),win=u'origin_poem') gen_poetries = [] # 分别以这几个字作为诗歌的第一个字,生成8首诗 for word in list(u'春江花月夜凉如水'): gen_poetry = ''.join(generate(model,word,ix2word,word2ix)) gen_poetries.append(gen_poetry) vis.text('</br>'.join([''.join(poetry) for poetry in gen_poetries]),win=u'gen_poem') t.save(model.state_dict(),'%s_%s.pth' %(opt.model_prefix,epoch)) def gen(**kwargs): ''' 提供命令行接口,用以生成相应的诗 ''' for k,v in kwargs.items(): setattr(opt,k,v) data,word2ix,ix2word = get_data(opt) model = PoetryModel(len(word2ix), 128, 256); map_location = lambda s,l:s state_dict = t.load(opt.model_path,map_location=map_location) model.load_state_dict(state_dict) if opt.use_gpu: model.cuda() if sys.version_info.major == 3: if opt.start_words.isprintable(): start_words = opt.start_words prefix_words = opt.prefix_words if opt.prefix_words else None else: start_words = opt.start_words.encode('ascii', 'surrogateescape').decode('utf8') prefix_words = opt.prefix_words.encode('ascii', 'surrogateescape').decode('utf8') if opt.prefix_words else None else: start_words = opt.start_words.decode('utf8') prefix_words = opt.prefix_words.decode('utf8') if opt.prefix_words else None start_words= start_words.replace(',',u',')\ .replace('.',u'。')\ .replace('?',u'?') gen_poetry = gen_acrostic if opt.acrostic else generate result = gen_poetry(model,start_words,ix2word,word2ix,prefix_words) print(''.join(result)) if __name__ == '__main__': import fire fire.Fire()
StarcoderdataPython
146386
<gh_stars>1-10 import nmap # Création de l'objet scanner = nmap.PortScanner() # Input & Cast ip_addr = input("Target IP : ") type(ip_addr) # Display Options resp = input("""\n Options : 1)SYN ACK Scan 2)Comprehensive Scan \n""") # Scan de port : SYN if resp == '1': print("Nmap Version: ", scanner.nmap_version()) scanner.scan(ip_addr, '1-1024', '-v -sS') print(scanner.scaninfo()) print("Ip Status: ", scanner[ip_addr].state()) print(scanner[ip_addr].all_protocols()) print("Open Ports: ", scanner[ip_addr]['tcp'].keys()) # Scan de port : SYN ; Detection des services & versions & OS & Scan Agressif elif resp == '2': print("Nmap Version: ", scanner.nmap_version()) scanner.scan(ip_addr, '1-1024', '-v -sS -sV -sC -A -O') print(scanner.scaninfo()) print("Ip Status: ", scanner[ip_addr].state()) print(scanner[ip_addr].all_protocols()) print("Open Ports: ", scanner[ip_addr]['tcp'].keys()) elif resp >= '4': print("Please enter a valid option")
StarcoderdataPython
3523464
<filename>research/cv/stgcn/src/model/metric.py # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ stgcn network with loss. """ import mindspore.nn as nn import mindspore.ops as P class LossCellWithNetwork(nn.Cell): """STGCN loss.""" def __init__(self, network): super(LossCellWithNetwork, self).__init__() self.loss = nn.MSELoss() self.network = network self.reshape = P.Reshape() def construct(self, x, label): x = self.network(x) x = self.reshape(x, (len(x), -1)) label = self.reshape(label, (len(label), -1)) STGCN_loss = self.loss(x, label) return STGCN_loss
StarcoderdataPython
6422825
''' Test alb template creation, resource creation and resource functionality for Anchore alb ''' import os import unittest import pytest from anchore import alb, main from tests.mocks import schema class TestALB(unittest.TestCase): def setUp(self): self.template = alb.ALBTemplate() def test_add_descriptions(self): template_file = self.template.add_descriptions("foobar") self.assertEqual(template_file.to_yaml(), schema.MOCKED_DESCRIPTION) def test_add_version(self): template_file = self.template.add_version("2010-09-09") self.assertEqual(template_file.to_yaml(), schema.MOCKED_VERSION) def test_create_alb_template(self): test_engine = main.AnchoreEngine() self.assertEqual(test_engine.create_alb_template(), schema.mocked_alb_template()) def tearDown(self): self.template = alb.ALBTemplate()
StarcoderdataPython
3200226
<reponame>epoch8/datapipe<filename>tests/test_core_steps2.py<gh_stars>1-10 # Ex test_compute # from typing import cast # import pytest import time import pandas as pd from sqlalchemy import Column from sqlalchemy.sql.sqltypes import Integer from datapipe.store.database import TableStoreDB, MetaKey from datapipe.datatable import DataStore from datapipe.core_steps import do_batch_generate, do_full_batch_transform, BatchTransformStep from datapipe.types import ChangeList, IndexDF from datapipe.run_config import RunConfig from .util import assert_datatable_equal, assert_df_equal TEST_SCHEMA1 = [ Column('item_id', Integer, primary_key=True), Column('pipeline_id', Integer, primary_key=True), Column('a', Integer), ] TEST_SCHEMA2 = [ Column('item_id', Integer, primary_key=True), Column('a', Integer), ] TEST_SCHEMA2 = [ Column('item_id', Integer, primary_key=True), Column('a', Integer), ] TEST_SCHEMA2 = [ Column('item_id', Integer, primary_key=True), Column('a', Integer), ] PRODUCTS_SCHEMA = [ Column('product_id', Integer, primary_key=True), Column('pipeline_id', Integer, primary_key=True), Column('b', Integer), ] ITEMS_SCHEMA = [ Column('item_id', Integer, primary_key=True), Column('pipeline_id', Integer, primary_key=True), Column('product_id', Integer, MetaKey()), Column('a', Integer), ] TEST_DF1_1 = pd.DataFrame( { 'item_id': range(10), 'pipeline_id': [i // 5 for i in range(10)], 'a': range(10), }, ) TEST_DF1_2 = pd.DataFrame( { 'item_id': list(range(5)) * 2, 'pipeline_id': [i // 5 for i in range(10)], 'a': range(10), }, ) PRODUCTS_DF = pd.DataFrame( { 'product_id': list(range(2)), 'pipeline_id': list(range(2)), 'b': range(10, 12), } ) ITEMS_DF = pd.DataFrame( { 'item_id': list(range(5)) * 2, 'pipeline_id': list(range(2)) * 5, 'product_id': list(range(2)) * 5, 'a': range(10), } ) def test_batch_transform(dbconn): ds = DataStore(dbconn) tbl1 = ds.create_table( 'tbl1', table_store=TableStoreDB(dbconn, 'tbl1_data', TEST_SCHEMA1, True) ) tbl2 = ds.create_table( 'tbl2', table_store=TableStoreDB(dbconn, 'tbl2_data', TEST_SCHEMA1, True) ) tbl1.store_chunk(TEST_DF1_1, now=0) do_full_batch_transform( func=lambda df: df, ds=ds, input_dts=[tbl1], output_dts=[tbl2], ) meta_df = tbl2.get_metadata() update_ts = max(meta_df['update_ts']) process_ts = max(meta_df['process_ts']) time.sleep(0.1) do_full_batch_transform( func=lambda df: df, ds=ds, input_dts=[tbl1], output_dts=[tbl2], ) meta_df = tbl2.get_metadata() assert(all(meta_df['update_ts'] == update_ts)) assert(all(meta_df['process_ts'] == process_ts)) def test_batch_transform_with_filter(dbconn): ds = DataStore(dbconn) tbl1 = ds.create_table( 'tbl1', table_store=TableStoreDB(dbconn, 'tbl1_data', TEST_SCHEMA1, True) ) tbl2 = ds.create_table( 'tbl2', table_store=TableStoreDB(dbconn, 'tbl2_data', TEST_SCHEMA1, True) ) tbl1.store_chunk(TEST_DF1_1, now=0) do_full_batch_transform( func=lambda df: df, ds=ds, input_dts=[tbl1], output_dts=[tbl2], run_config=RunConfig(filters={'pipeline_id': 0}) ) assert_datatable_equal(tbl2, TEST_DF1_1.query('pipeline_id == 0')) def test_batch_transform_with_filter_not_in_transform_index(dbconn): ds = DataStore(dbconn) tbl1 = ds.create_table( 'tbl1', table_store=TableStoreDB(dbconn, 'tbl1_data', TEST_SCHEMA1, True) ) tbl2 = ds.create_table( 'tbl2', table_store=TableStoreDB(dbconn, 'tbl2_data', TEST_SCHEMA2, True) ) tbl1.store_chunk(TEST_DF1_2, now=0) do_full_batch_transform( func=lambda df: df[['item_id', 'a']], ds=ds, input_dts=[tbl1], output_dts=[tbl2], run_config=RunConfig(filters={'pipeline_id': 0}), ) assert_datatable_equal(tbl2, TEST_DF1_2.query('pipeline_id == 0')[['item_id', 'a']]) def test_batch_transform_with_dt_on_input_and_output(dbconn): ds = DataStore(dbconn) tbl1 = ds.create_table( 'tbl1', table_store=TableStoreDB(dbconn, 'tbl1_data', TEST_SCHEMA1, True) ) tbl2 = ds.create_table( 'tbl2', table_store=TableStoreDB(dbconn, 'tbl2_data', TEST_SCHEMA1, True) ) df2 = TEST_DF1_1.loc[range(3, 8)] df2['a'] = df2['a'].apply(lambda x: x + 10) tbl1.store_chunk(TEST_DF1_1, now=0) tbl2.store_chunk(df2, now=0) def update_df(df1: pd.DataFrame, df2: pd.DataFrame): df1 = df1.set_index("item_id") df2 = df2.set_index("item_id") df1.update(df2) return df1.reset_index() do_full_batch_transform( func=update_df, ds=ds, input_dts=[tbl1, tbl2], output_dts=[tbl2], ) df_res = TEST_DF1_1.copy() df_res.update(df2) assert_datatable_equal(tbl2, df_res) def test_gen_with_filter(dbconn): ds = DataStore(dbconn) tbl = ds.create_table( 'tbl', table_store=TableStoreDB(dbconn, 'tbl_data', TEST_SCHEMA1, True) ) tbl.store_chunk(TEST_DF1_1, now=0) def gen_func(): yield TEST_DF1_1.query('pipeline_id == 0 and item_id == 0') do_batch_generate( func=gen_func, ds=ds, output_dts=[tbl], run_config=RunConfig(filters={'pipeline_id': 0}) ) assert_datatable_equal(tbl, TEST_DF1_1.query('(pipeline_id == 0 and item_id == 0) or pipeline_id == 1')) def test_transform_with_changelist(dbconn): ds = DataStore(dbconn) tbl1 = ds.create_table( 'tbl1', table_store=TableStoreDB(dbconn, 'tbl1_data', TEST_SCHEMA1, True) ) tbl2 = ds.create_table( 'tbl2', table_store=TableStoreDB(dbconn, 'tbl2_data', TEST_SCHEMA1, True) ) tbl1.store_chunk(TEST_DF1_1, now=0) def func(df): return df step = BatchTransformStep( 'test', func=func, input_dts=[tbl1], output_dts=[tbl2] ) change_list = ChangeList() idx_keys = ['item_id', 'pipeline_id'] changes_df = TEST_DF1_1.loc[[0, 1, 2]] changes_idx = IndexDF(changes_df[idx_keys]) change_list.append('tbl1', changes_idx) next_change_list = step.run_changelist(ds, change_list) assert_datatable_equal(tbl2, changes_df) assert list(next_change_list.changes.keys()) == ['tbl2'] assert_df_equal(next_change_list.changes['tbl2'], changes_idx, index_cols=idx_keys) def test_batch_transform_with_entity(dbconn): ds = DataStore(dbconn) products = ds.create_table( 'products', table_store=TableStoreDB(dbconn, 'products_data', PRODUCTS_SCHEMA, True) ) items = ds.create_table( 'items', table_store=TableStoreDB(dbconn, 'items_data', ITEMS_SCHEMA, True) ) items2 = ds.create_table( 'items2', table_store=TableStoreDB(dbconn, 'items2_data', ITEMS_SCHEMA, True) ) products.store_chunk(PRODUCTS_DF, now=0) items.store_chunk(ITEMS_DF, now=0) def update_df(products: pd.DataFrame, items: pd.DataFrame): merged_df = pd.merge(items, products, on=['product_id', 'pipeline_id']) merged_df['a'] = merged_df.apply(lambda x: x['a'] + x['b'], axis=1) return merged_df[['item_id', 'pipeline_id', 'product_id', 'a']] do_full_batch_transform( func=update_df, ds=ds, input_dts=[products, items], output_dts=[items2], ) merged_df = pd.merge(ITEMS_DF, PRODUCTS_DF, on=['product_id', 'pipeline_id']) merged_df['a'] = merged_df.apply(lambda x: x['a'] + x['b'], axis=1) items2_df = merged_df[['item_id', 'pipeline_id', 'product_id', 'a']] assert_df_equal( items2.get_data(), items2_df, index_cols=['item_id', 'pipeline_id'] )
StarcoderdataPython
11391805
# Generated by Django 2.0.6 on 2018-07-02 10:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelchimp', '0023_machinelearningmodel_epoch_durations'), ] operations = [ migrations.AddField( model_name='machinelearningmodel', name='experiment_end', field=models.DateTimeField(null=True), ), migrations.AddField( model_name='machinelearningmodel', name='experiment_start', field=models.DateTimeField(null=True), ), ]
StarcoderdataPython
38212
# ============================================================================== # Copyright 2019 - <NAME> # # NOTICE: Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # ============================================================================== """ OpenAI Gym integration modules """ import warnings from gym.envs.registration import register from diplomacy_research.models.gym.wrappers import AutoDraw, LimitNumberYears, LoopDetection, SetInitialState, \ AssignPlayers, RandomizePlayers, SetPlayerSeed, SaveGame # Ignore specific warnings warnings.filterwarnings('ignore', message='Parameters to load are deprecated') register( id='DiplomacyEnv-v0', entry_point='diplomacy_research.models.gym.environment:DiplomacyEnv')
StarcoderdataPython
9695289
<filename>src/marmo/report/blueprints/reportitem.py # # Generated with ReportItemBlueprint from dmt.blueprint import Blueprint from dmt.dimension import Dimension from dmt.attribute import Attribute from dmt.enum_attribute import EnumAttribute from dmt.blueprint_attribute import BlueprintAttribute class ReportItemBlueprint(Blueprint): """""" def __init__(self, name="ReportItem", package_path="marmo/report", description=""): super().__init__(name,package_path,description) self.attributes.append(Attribute("name","string","",default="")) self.attributes.append(Attribute("description","string","",default=""))
StarcoderdataPython
11385453
from typing import cast from pydantic import ValidationError from werkzeug.exceptions import InternalServerError from cibo import Blueprint, ErrorContext from ..exceptions import AuthException api = Blueprint("api", __name__, openapi_tag="API", tag_description="description of API") @api.errorhandler(ValidationError) def handle_validation_error(e: ValidationError): return ErrorContext().error(data=dict(errors=e.errors())) @api.errorhandler(AuthException) def handle_auth_exception(e: AuthException): return ErrorContext().error(e.msg, e.code) @api.errorhandler(InternalServerError) def handle_internal_server_error(e: InternalServerError): return ErrorContext().error("服务器错误", cast(int, e.code)) def _binding_route_rule(): from . import echo_handler as _ from . import health_check_handler as _ from . import user_handler as _ _binding_route_rule()
StarcoderdataPython
3372243
# Copyright (c) 2021 <NAME> from pywayland.server import Display, Signal from wlroots import ffi, PtrHasData, lib class GammaControlManagerV1(PtrHasData): def __init__(self, display: Display) -> None: """Creates a wlr_gamma_control_manager_v1""" self._ptr = lib.wlr_gamma_control_manager_v1_create(display._ptr) self.destroy_event = Signal(ptr=ffi.addressof(self._ptr.events.destroy))
StarcoderdataPython
6530184
<filename>Genclass/__init__.py<gh_stars>1-10 name = 'Genclass'
StarcoderdataPython
5038028
from chainer.backends import cuda import cupy import numpy as np from chainerkfac.optimizers.cholesky_inverse import inverse import warnings PI_TYPE_TRACENORM = 'tracenorm' def get_diagval(link, attrname, damping): param = getattr(link, attrname, None) if param is None: return r = getattr(param, 'l2_coef', 0.0) r = max(r, damping) return r def compute_pi_tracenorm(lcov, rcov): """Compute pi using tracenorm Computes the scalar constant pi for Tikhonov regularization/damping. $\pi = \sqrt{ (trace(A) / dim(A)) / (trace(B) / dim(B)) }$ See section 6.3 of https://arxiv.org/pdf/1503.05671.pdf for details. """ # NOQA def compute_trace(cov): if cov.ndim == 1: return cov.sum() else: return cov.trace() xp = cuda.get_array_module([lcov, rcov]) with cuda.get_device_from_array([lcov, rcov]): lnorm = compute_trace(lcov) * rcov.shape[0] rnorm = compute_trace(rcov) * lcov.shape[0] pi = xp.sqrt(lnorm / rnorm, dtype=xp.float32) return pi def compute_pi(lcov, rcov, pi_type=PI_TYPE_TRACENORM): if pi_type == PI_TYPE_TRACENORM: return compute_pi_tracenorm(lcov, rcov) else: return 1.0 class FisherBlock(object): """Base class for Fisher-block. Args: linkname (string): Name to identify this FisherBlock object (do not have to be identical, only for debug use). link (~chainer.Link): Chainer Link object corresponding to this FisherBlock object. cov_ema_decay (float): Decay rate for the exponential moving average of the Kronecker-factors. damping (float): Damping value added before taking the inverse of the Kronecker-factors. communicate_after_forward (bool): Call All-Reduce after forward (before backprop). pi_type (float): Type of the norm used to compute pi. use_cholesky (bool): Use Cholesky decomposition to compute the inverse of the Kronecker-factors. stab_coeff (float): Coefficient which is multiplied to the diagonal values for the BatchNormalization layer. loss_scale (float): Scaling value to avoid over/underflow in low-precision communication. """ def __init__( self, linkname, link, cov_ema_decay, damping, communicate_after_forward=False, pi_type=PI_TYPE_TRACENORM, use_cholesky=True, stab_coeff=64.0, loss_scale=None, ): self._link = link self._linkname = linkname self._linkclass = link.__class__ self._communicate_after_forward = communicate_after_forward self._pi_type = pi_type self._use_cholesky = use_cholesky self._loss_scale = loss_scale self.cov_ema_decay = cov_ema_decay self.damping = damping self.stab_coeff = stab_coeff self.xp = link.xp self.covs = None self.invs = None self.cov_emas = None self.diagonalize = False @property def linkname(self): # Used for distributed K-FAC return self._linkname @property def link(self): # Used for distributed K-FAC return self._link @property def funcclass(self): raise NotImplementedError @property def cov_forward(self): raise NotImplementedError @property def cov_backward(self): raise NotImplementedError @property def inv_forward(self): raise NotImplementedError @property def inv_backward(self): raise NotImplementedError def debug(self): return getattr(self._link, 'debug', False) def is_mine(self, func, in_data, out_grad_data=None): raise NotImplementedError def forward_postprocess(self, func, in_data): raise NotImplementedError def backward_preprocess(self, func, in_data, out_grad_data): raise NotImplementedError def check_attr(self, name): if getattr(self, name) is None: raise RuntimeError( '{} is None:\nlinkname: {}\nlinkclass: {}'.format( name, self._linkname, self._linkclass)) def get_diagval(self, attr): return get_diagval(self._link, attr, self.damping) def update_cov_emas(self): self.check_attr('covs') r = self.cov_ema_decay if r == 1.0 or self.cov_emas is None: # To avoid broken in inverse (inverse is implemented using in-place) self.cov_emas = self.covs.copy() else: self.cov_emas = [r*cov + (1 - r)*cov_ema for cov, cov_ema in zip(self.covs, self.cov_emas)] def update_invs(self): self.check_attr('cov_emas') xp = self.xp self.invs = [] for cov_ema, diagvals in zip(self.cov_emas, self.get_diagvals()): if cov_ema.ndim == 1: inv = 1 / (cov_ema + diagvals) else: _cov_ema = cov_ema.copy() xp.fill_diagonal(cov_ema, xp.diagonal(cov_ema) + diagvals) inv = inverse(cov_ema, self._use_cholesky) self.invs.append(inv) def get_diagvals(self): raise NotImplementedError def update_kfgrads(self): raise NotImplementedError def extract_attr_from_params(self, attrname, triangular=False): """Extracts arrays from all ``Parameter``s """ arrays = [] for _, param in sorted(self.link.namedparams()): x = getattr(param, attrname, None) if x is not None: arrays.append((x, triangular)) return arrays def extract_for_reduce_scatter_v_after_forward(self): if self._communicate_after_forward: triangular = True return [(self.cov_forward, triangular)] else: return [] def extract_for_reduce_scatter_v(self): arrays = self.extract_attr_from_params('grad') if not self._communicate_after_forward: triangular = True arrays.append((self.cov_forward, triangular)) triangular = True arrays.append((self.cov_backward, triangular)) return arrays def extract_for_all_gather_v(self, target='kfgrad'): arrays = self.extract_attr_from_params(target) triangular = False return arrays
StarcoderdataPython
5104217
version = "0.25.0" # pylint:disable=invalid-name
StarcoderdataPython
1996495
<reponame>webkom/committee-admissions from rest_framework import authentication class SessionAuthentication(authentication.SessionAuthentication): """ This class is needed, because REST Framework's default SessionAuthentication does never return 401's, because they cannot fill the WWW-Authenticate header with a valid value in the 401 response. As a result, we cannot distinguish calls that are not unauthorized (401 unauthorized) and calls for which the user does not have permission (403 forbidden). See https://github.com/encode/django-rest-framework/issues/5968 We do set authenticate_header function in SessionAuthentication, so that a value for the WWW-Authenticate header can be retrieved and the response code is automatically set to 401 in case of unauthenticated requests. """ def authenticate_header(self, request): return "Session"
StarcoderdataPython
4880638
<reponame>SafonovMikhail/python_000577<filename>000468BookBRIGG/000468_01_06_01_ex01_for_range_20190528.py for x in range(0, 5): print('привет') input()
StarcoderdataPython
381448
import argparse from glob import glob from os import path parser = argparse.ArgumentParser() parser.add_argument("outfile") parser.add_argument("directory") parser.add_argument("--split", "-s", default='.atsp') args = parser.parse_args() target = args.outfile directory = args.directory split = args.split files = glob(f"{directory}/*{split}.?") stuff = [] for f in files: with open(f) as handle: lines = [l.strip() for l in handle] if len(stuff)==0: stuff.append(lines[0] + ",graph,algo") for line in lines[1:]: if "done" in line: continue basename = path.basename(f) graph = basename.split(split)[0] if basename.endswith("c"): algo = "christofides" else: algo = "tree-doubling" line += f",{graph},{algo}" stuff.append(line) with open(target, "w") as handle: towrite = [l+"\n" for l in stuff] handle.writelines(towrite)
StarcoderdataPython
3467105
<reponame>dwyer/folklorist<filename>ballads/views.py import logging import os import urllib from google.appengine.api import memcache from google.appengine.ext import db from google.appengine.ext import webapp from google.appengine.ext.webapp import template from django.core.paginator import Paginator from models import * from hacks import * # TODO put this in /settings.py and make it an absolute path TEMPLATES_DIR = 'templates' class _RequestHandler(webapp.RequestHandler): template_dir = 'templates' def write(self, filename='base.html'): path = os.path.join(self.template_dir, filename) self.response.out.write(template.render(path, dict(self=self))) def not_found(self): self.error(404) self.message = '404: Page not found.' self.title = 'Page not found.' self.write('error.html') class HomePage(webapp.RequestHandler): @redirector def get(self): path = os.path.join(TEMPLATES_DIR, 'home.html') context = {'vols': alphabet()} self.response.out.write(template.render(path, context)) class SearchPage(webapp.RequestHandler): limit = 30 @redirector def get(self): self.query = self.request.get('q') self.page = int(self.request.get('p', 1)) self.start = int(self.request.get('start', 1)) info = None error = None if self.query: self.query = self.query.strip() self.title = 'Search for %s - Folklorist' % self.query self.results = BalladIndex.all(keys_only=True) for word in query_to_words(self.query): self.results.filter('index =', word.lower()) #self.num_results = '?' self.num_results = self.results.count() offset = (self.page-1) * self.limit self.results = self.results.fetch(self.limit, offset) self.results = db.get(self.results) #self.results = [child.parent() for child in self.results] if self.results: # pagination self.pages = [] if self.page > 1: self.pages.append( '<a href="/search?q=%s&p=%d">&lt; Previous</a>' % ( self.query, self.page-1)) if len(self.results) == self.limit: self.pages.append( '<a href="/search?q=%s&p=%d">Next &gt;</a>' % ( self.query, self.page+1)) self.pages = ' &middot; '.join(self.pages) # love! self.start = offset + 1 self.finish = offset + self.limit #self.write('search.html') path = os.path.join(TEMPLATES_DIR, 'search.html') context = {'self': self, 'vols': alphabet(), 'error': error, 'info': info} self.response.out.write(template.render(path, context)) class BalladPage(_RequestHandler): @redirector def get(self, title): title = urllib.unquote(title.replace('_', ' ')) query = BalladName.all(keys_only=True).filter('title =', title).get() # get ballad self.ballad = None if query: key = query.parent() self.ballad = Ballad.get(key) # got ballad if self.ballad: self.title = self.ballad.title() self.supptrad = SuppTradFile.get_by_key_name(self.ballad.file, self.ballad) else: # handle broken links self.ballad = Ballad.all().filter('name =', title).get() if self.ballad: self.redirect(self.ballad.url(), permanent=True) else: self.not_found() return self.write('ballad.html') class SitemapPage(webapp.RequestHandler): @redirector def get(self, start): memkey = 'sitemap_%s' % start output = memcache.get(memkey) if output is None: list = BalladName.all().order('name') list.filter('name >=', start) list.filter('name <', start+chr(127)) output = template.render('templates/sitemap.xml', dict(list=list)) memcache.set(memkey, output) self.response.headers['content-type'] = 'text/xml' self.response.out.write(output) class ErrorPage(_RequestHandler): url = '/.*' def get(self): self.not_found()
StarcoderdataPython
11230820
<filename>tests/test_NeqSim.py # -*- coding: utf-8 -*- """ Created on Thu Jan 3 22:24:08 2019 @author: ESOL """ from neqsim.neqsimpython import jNeqSim def test_Viscosity(): thermoSystem = jNeqSim.thermo.system.SystemSrkEos(280.0, 10.0) thermoSystem.addComponent("methane", 10.0) thermoSystem.addComponent("water", 4.0) thermoOps = jNeqSim.thermodynamicOperations.ThermodynamicOperations( thermoSystem) thermoOps.TPflash() gasEnthalpy = thermoSystem.getPhase(0).getEnthalpy() assert abs(1079.4821290144278 - gasEnthalpy) < 1e-10 thermoSystem.initPhysicalProperties("Viscosity") gasViscosity = thermoSystem.getPhase(0).getViscosity("kg/msec") assert abs(1.0760998263783299e-05 - gasViscosity) < 1e-10
StarcoderdataPython
29494
from django.shortcuts import render # Python functions - user is going to request an url # Create your views here. from django.http import HttpResponse def index(request): return HttpResponse("<h1> This is the music app homepage</h1>")
StarcoderdataPython
3322627
#!/usr/bin/env python3 import boto3 from botocore.exceptions import ClientError # from botocore.errorfactory import BadRequestException import os import logging # logger = logging.getLogger() services = { "access-analyzer.amazonaws.com": "IAM Access Analyzer", # "guardduty.amazonaws.com": "AWS GuardDuty", # apparently this isn't a proper } def main(args, logger): '''Executes the Primary Logic of the Fast Fix''' # If they specify a profile use it. Otherwise do the normal thing if args.profile: session = boto3.Session(profile_name=args.profile) else: session = boto3.Session() org_client = session.client("organizations") for service, description in services.items(): response = org_client.list_delegated_administrators(ServicePrincipal=service) if len(response['DelegatedAdministrators']) == 1: if response['DelegatedAdministrators'][0]['Id'] == args.accountId: logger.info(f"{args.accountId} is already the delegated admin for {description}") else: logger.error(f"{response['DelegatedAdministrators'][0]['Id']} is the delegated admin for {service}. Not performing the update") elif len(response['DelegatedAdministrators']) > 1: logger.error(f"Multiple delegated admin accounts for {service}. Cannot safely proceed.") elif args.actually_do_it is True: # Safe to Proceed logger.info(f"Enabling {description} Delegation to {args.accountId}") response = org_client.register_delegated_administrator( AccountId=args.accountId, ServicePrincipal=service ) else: logger.info(f"Would enable {description} Delegation to {args.accountId}") def do_args(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--debug", help="print debugging info", action='store_true') parser.add_argument("--error", help="print error info only", action='store_true') parser.add_argument("--timestamp", help="Output log with timestamp and toolname", action='store_true') parser.add_argument("--region", help="Only Process Specified Region") parser.add_argument("--profile", help="Use this CLI profile (instead of default or env credentials)") parser.add_argument("--actually-do-it", help="Actually Perform the action", action='store_true') parser.add_argument("--delegated-admin", dest='accountId', help="Delegate access to this account id", required=True) args = parser.parse_args() return(args) if __name__ == '__main__': args = do_args() # Logging idea stolen from: https://docs.python.org/3/howto/logging.html#configuring-logging # create console handler and set level to debug logger = logging.getLogger('delegated-admin') ch = logging.StreamHandler() if args.debug: logger.setLevel(logging.DEBUG) elif args.error: logger.setLevel(logging.ERROR) else: logger.setLevel(logging.INFO) # Silence Boto3 & Friends logging.getLogger('botocore').setLevel(logging.WARNING) logging.getLogger('boto3').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) # create formatter if args.timestamp: formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') else: formatter = logging.Formatter('%(levelname)s - %(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) try: main(args, logger) except KeyboardInterrupt: exit(1)
StarcoderdataPython
8018825
from .Model import Model from .TransE import TransE from .TransH import TransH from .TransD import TransD from .TransD import TransD from .TransR import TransR from .RESCAL import RESCAL from .DistMult import DistMult from .HolE import HolE from .ComplEx import ComplEx from .Analogy import Analogy
StarcoderdataPython
56056
import socket print(" _____ _ _____ _ _ ") print(" | __ \ | | / ____| (_) | ") print(" | | | | __ _ _ __| |_ _____| (___ ___ ___ _ _ _ __ _| |_ _ _ ") print(" | | | |/ _` | '__| __|______\___ \ / _ \/ __| | | | '__| | __| | | |") print(" | |__| | (_| | | | |_ ____) | __/ (__| |_| | | | | |_| |_| |") print(" |_____/ \__,_|_| \__| |_____/ \___|\___|\__,_|_| |_|\__|\__, |") print(" __/ |") print(" www.hc-security.com.mx by:Equinockx |___/ ") print(" ") print("Ingresa la Url:") url = input() try: print("---" * 20) print(f"La URL ingresada es: {url}") print("Nombre del Dominio completo: \n" + socket.getfqdn(url)) print("Nombre de Host a direccion IP: \n" + socket.gethostbyname(url)) print("Nombre de host para extender la dirección IP: \n" + str(socket.gethostbyname_ex(url))) print("Host de solicitud: \n" + socket.gethostname()) print("---" * 20) except Exception as err: print("Error" + str(err))
StarcoderdataPython
160507
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Steps for behavioral style tests are defined in this module. Each step is defined by the string decorating it. This string is used to call the step in "*.feature" file. """ from __future__ import unicode_literals import pip import pexpect import os import re from behave import given, when, then @given('we have pgcli installed') def step_install_cli(_): """ Check that pgcli is in installed modules. """ dists = set([di.key for di in pip.get_installed_distributions()]) assert 'pgcli' in dists @when('we run pgcli') def step_run_cli(context): """ Run the process using pexpect. """ context.cli = pexpect.spawnu('pgcli') context.exit_sent = False @when('we wait for prompt') def step_wait_prompt(context): """ Make sure prompt is displayed. """ _expect_exact(context, '{0}> '.format(context.conf['dbname']), timeout=5) @when('we send "ctrl + d"') def step_ctrl_d(context): """ Send Ctrl + D to hopefully exit. """ context.cli.sendcontrol('d') context.exit_sent = True @when('we send "\?" command') def step_send_help(context): """ Send \? to see help. """ context.cli.sendline('\?') @when('we create database') def step_db_create(context): """ Send create database. """ context.cli.sendline('create database {0};'.format( context.conf['dbname_tmp'])) context.response = { 'database_name': context.conf['dbname_tmp'] } @when('we drop database') def step_db_drop(context): """ Send drop database. """ context.cli.sendline('drop database {0};'.format( context.conf['dbname_tmp'])) @when('we create table') def step_create_table(context): """ Send create table. """ context.cli.sendline('create table a(x text);') @when('we insert into table') def step_insert_into_table(context): """ Send insert into table. """ context.cli.sendline('''insert into a(x) values('xxx');''') @when('we update table') def step_update_table(context): """ Send insert into table. """ context.cli.sendline('''update a set x = 'yyy' where x = 'xxx';''') @when('we select from table') def step_select_from_table(context): """ Send select from table. """ context.cli.sendline('select * from a;') @when('we delete from table') def step_delete_from_table(context): """ Send deete from table. """ context.cli.sendline('''delete from a where x = 'yyy';''') @when('we drop table') def step_drop_table(context): """ Send drop table. """ context.cli.sendline('drop table a;') @when('we connect to test database') def step_db_connect_test(context): """ Send connect to database. """ db_name = context.conf['dbname'] context.cli.sendline('\connect {0}'.format(db_name)) @when('we start external editor providing a file name') def step_edit_file(context): """ Edit file with external editor. """ context.editor_file_name = 'test_file_{0}.sql'.format(context.conf['vi']) if os.path.exists(context.editor_file_name): os.remove(context.editor_file_name) context.cli.sendline('\e {0}'.format(context.editor_file_name)) _expect_exact(context, 'nano', timeout=2) @when('we type sql in the editor') def step_edit_type_sql(context): context.cli.sendline('select * from abc') # Write the file. context.cli.sendcontrol('o') # Confirm file name sending "enter". context.cli.sendcontrol('m') @when('we exit the editor') def step_edit_quit(context): context.cli.sendcontrol('x') @then('we see the sql in prompt') def step_edit_done_sql(context): _expect_exact(context, 'select * from abc', timeout=2) # Cleanup the command line. context.cli.sendcontrol('u') # Cleanup the edited file. if context.editor_file_name and os.path.exists(context.editor_file_name): os.remove(context.editor_file_name) @when('we connect to postgres') def step_db_connect_postgres(context): """ Send connect to database. """ context.cli.sendline('\connect postgres') @when('we refresh completions') def step_refresh_completions(context): """ Send refresh command. """ context.cli.sendline('\\refresh') @then('pgcli exits') def step_wait_exit(context): """ Make sure the cli exits. """ _expect_exact(context, pexpect.EOF, timeout=5) @then('we see pgcli prompt') def step_see_prompt(context): """ Wait to see the prompt. """ _expect_exact(context, '{0}> '.format(context.conf['dbname']), timeout=5) @then('we see help output') def step_see_help(context): for expected_line in context.fixture_data['help_commands.txt']: _expect_exact(context, expected_line, timeout=1) @then('we see database created') def step_see_db_created(context): """ Wait to see create database output. """ _expect_exact(context, 'CREATE DATABASE', timeout=2) @then('we see database dropped') def step_see_db_dropped(context): """ Wait to see drop database output. """ _expect_exact(context, 'DROP DATABASE', timeout=2) @then('we see database connected') def step_see_db_connected(context): """ Wait to see drop database output. """ _expect_exact(context, 'You are now connected to database', timeout=2) @then('we see table created') def step_see_table_created(context): """ Wait to see create table output. """ _expect_exact(context, 'CREATE TABLE', timeout=2) @then('we see record inserted') def step_see_record_inserted(context): """ Wait to see insert output. """ _expect_exact(context, 'INSERT 0 1', timeout=2) @then('we see record updated') def step_see_record_updated(context): """ Wait to see update output. """ _expect_exact(context, 'UPDATE 1', timeout=2) @then('we see data selected') def step_see_data_selected(context): """ Wait to see select output. """ _expect_exact(context, 'yyy', timeout=1) _expect_exact(context, 'SELECT 1', timeout=1) @then('we see record deleted') def step_see_data_deleted(context): """ Wait to see delete output. """ _expect_exact(context, 'DELETE 1', timeout=2) @then('we see table dropped') def step_see_table_dropped(context): """ Wait to see drop output. """ _expect_exact(context, 'DROP TABLE', timeout=2) @then('we see completions refresh started') def step_see_refresh_started(context): """ Wait to see refresh output. """ _expect_exact(context, 'refresh started in the background', timeout=2) def _expect_exact(context, expected, timeout): try: context.cli.expect_exact(expected, timeout=timeout) except: # Strip color codes out of the output. actual = re.sub('\x1b\[[0-9;]*m', '', context.cli.before) actual = re.sub('\x1b\[(.*)?.{1}', '', actual) raise Exception('Expected:\n---\n{0}\n---\n\nActual:\n---\n{1}\n---'.format( expected, actual))
StarcoderdataPython
1636178
<gh_stars>0 #%% [markdown] ## Conversao de tipos 2 + 3 #Soma '2' + '3' #Concatenação # 2 + '3' a = 2 b = '3' print(type(a)) print(type(b)) #Convertendo uma string para int print(a + int(b)) #Convertendo a variável a (tipo int) para string. Resultado: concatenação print(str(a) + b) #Resultado: string (resultado da conversão) type(str(a)) """ #Erro: Caracteres de uma string que não são números não suportam a conversão para int """ #Exemplo # print(2 + int('2 Victor')) #Convertendo para float print(2 + float('3.4')) print(2 + float('3'))
StarcoderdataPython
11330466
<reponame>f-ilic/tdv<gh_stars>0 import torch import torch.nn.functional class TVL2Regularizer(torch.nn.Module): # l2 def __init__(self, *args, **kwargs): super(TVL2Regularizer, self).__init__() Kx = torch.Tensor([[0, 0, 0], [0, -1, 1], [0, 0, 0]]) Ky = torch.Tensor([[0, 0, 0], [0, -1, 0], [0, 1, 0]]) self.K = torch.stack([Kx, Ky]).unsqueeze(1) def forward(self, x): return self.grad(x) def energy(self, x): _,_,h,w = x.shape padded = torch.nn.functional.pad(x, (1, 1, 1, 1), "constant", 0) # # zero pad Kx = torch.nn.functional.conv2d(padded, self.K, padding=0) E = (Kx**2).sum(dim=1,keepdim=True) self.grad_E = Kx return E def grad(self, x): E = self.energy(x) cT = torch.nn.functional.conv_transpose2d(self.grad_E, self.K, padding=1) return cT def get_theta(self): return self.named_parameters() def get_vis(self): raise NotImplementedError class TVL1Regularizer(torch.nn.Module): # l2 # https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FProximal-operator-and-Moreaus-envelop-of-the-absolute-function-Proximal-operator-of_fig3_317013217&psig=AOvVaw0pTk02A6QTWSlBlN4BmZnp&ust=1627141244838000&source=images&cd=vfe&ved=0CAoQjRxqFwoTCMCvg9HD-fECFQAAAAAdAAAAABAJ def __init__(self, *args, **kwargs): super(TVL1Regularizer, self).__init__() Kx = torch.Tensor([[0, 0, 0], [0, -1, 1], [0, 0, 0]]) Ky = torch.Tensor([[0, 0, 0], [0, -1, 0], [0, 1, 0]]) self.K = torch.stack([Kx, Ky]).cuda().unsqueeze(1) def forward(self, x): return self.grad(x) def energy(self, x): _,_,h,w = x.shape padded = torch.nn.functional.pad(x, (1, 1, 1, 1), "constant", 0) # zero pad Kx = torch.nn.functional.conv2d(padded, self.K, padding=0) E = (Kx).abs().sum(dim=1, keepdim=True) self.grad_E = torch.sign(Kx)*((Kx!=0).float()) return E def grad(self, x): E = self.energy(x) # already computes gradients cT = torch.nn.functional.conv_transpose2d(self.grad_E, self.K, padding=1) return cT def get_theta(self): return self.named_parameters() def get_vis(self): raise NotImplementedError
StarcoderdataPython
5089135
#!/usr/bin/env python from __future__ import division import sys import json import requests from herepy.here_api import HEREApi from herepy.utils import Utils from herepy.error import HEREError from herepy.models import RmeResponse class RmeApi(HEREApi): """A python interface into the RME API""" def __init__(self, app_id=None, app_code=None, timeout=None): """Returns a RmeApi instance. Args: app_id (str): App Id taken from HERE Developer Portal. app_code (str): App Code taken from HERE Developer Portal. timeout (int): Timeout limit for requests. """ super(RmeApi, self).__init__(app_id, app_code, timeout) self._base_url = 'https://rme.api.here.com/2/matchroute.json' def __get(self, data): url = Utils.build_url(self._base_url, extra_params=data) response = requests.get(url, timeout=self._timeout) try: json_data = json.loads(response.content.decode('utf8')) if json_data.get('TracePoints') != None: return RmeResponse.new_from_jsondict(json_data) else: return HEREError(json_data.get('Details', 'Error occured on function ' + sys._getframe(1).f_code.co_name)) except ValueError as err: return HEREError('Error occured on function ' + sys._getframe(1).f_code.co_name + ' ' + str(err)) def match_route(self, gpx_file_content, route_mode='car', pde_layers=[]): """Retrieves misc information about the route given in gpx file Args: gpxfile content (str): gpx file content as string routemode (str): route mode ('car') pde_layers (str list): PDE layers to retrieve e.g.: ROAD_GEOM_FCn(TUNNEL) SPEED_LIMITS_FCn(FROM_REF_SPEED_LIMIT,TO_REF_SPEED_LIMIT) ADAS_ATTRIB_FCn(SLOPES) or e.g., ROAD_GEOM_FCn(*) SPEED_LIMITS_FCn(*) Returns: RmeResponse or HEREError instance""" data = {'file': Utils.get_zipped_base64(gpx_file_content), 'route_mode': route_mode, 'attributes': ','.join(pde_layers), 'app_id': self._app_id, 'app_code': self._app_code} return self.__get(data)
StarcoderdataPython
6469867
''' 算法: 1. 把所有元素放入哈希表。 2. 遍历哈希表,对每个元素依次值加(减)一,并检查是否在哈希表中。如果存在,移出哈希表。 func longestConsecutive (nums []int) int { // write your code here m := make(map[int]bool) for _, v := range nums { m[v] = true } res, down, up := 1, 0, 0 for k := range m { for i := k + 1; m[i]; i++ { up++ delete(m, i) } for i := k - 1; m[i]; i-- { down++ delete(m, i) } delete(m, k) if 1+up+down > res { res = 1 + up + down } down, up = 0, 0 // important } return res } '''
StarcoderdataPython
366527
import nbformat as nbf import sys # Collect a list of all notebooks in the content folder filenames = sys.argv[1:] text = '# Solution' replacement = '' # Search through each notebook for filename in filenames: ntbk = nbf.read(filename, nbf.NO_CONVERT) for cell in ntbk.cells: # remove tags if 'tags' in cell['metadata']: tags = cell['metadata']['tags'] cell['metadata']['tags'] = [] # Remove code from fill-in cells #if 'fill-in' in tags: # cell['source'] = '' # remove output if 'outputs' in cell: cell['outputs'] = [] # remove solutions if cell['source'].startswith(text): cell['source'] = replacement nbf.write(ntbk, filename)
StarcoderdataPython
399255
from file_1 import * def target_func(x=func1, y=func2(), z=lambda: func3, w=lambda: func4()): p1 = lambda: func5() p2 = lambda: func6 p1(), p2() def inner(ix=func7, iy=func8(), iz=lambda: func9, iw=lambda: func10()): func11() ip = lambda: func12() ip() func13() inner(func14, func15(), lambda: func16, lambda: func17()) return func18 target_<caret>func()
StarcoderdataPython
1771366
import datetime import smtplib, ssl from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart current = datetime.datetime.now() renew = current.minute + 3 print(renew) print(current) while(True): current = datetime.datetime.now() if current.minute == renew: print("Time to renew") port = 465 # For SSL smtp_server = "smtp.gmail.com" senderEmail = "<EMAIL>" receiverEmail = "<EMAIL>" password = "<PASSWORD>*" requestedDay = "13th June" #Will need to be taken from db or site etc courseT = "forklift" #Will need to be taken from db or site etc message = MIMEMultipart("alternative") message["Subject"] = "Renewal Date Soon!" message["From"] = senderEmail message["To"] = receiverEmail html = """\ <html> <body> <p>Hi,<br> Your certificate will need to be renewed on at {} mins past for {}. Please apply now to secure your spot. </p> </body> </html> """.format(renew, courseT) part1 = MIMEText(html, "html") message.attach(part1) context = ssl.create_default_context() with smtplib.SMTP_SSL(smtp_server, port, context=context) as server: server.login(senderEmail, password) server.sendmail(senderEmail, receiverEmail, message.as_string()) break
StarcoderdataPython
5132614
<reponame>Marzooq13579/Hack-Gadgets<gh_stars>100-1000 #!/usr/bin/env python try: from mechanize import Request, urlopen, URLError, HTTPError,ProxyHandler, build_opener, install_opener, Browser except ImportError: print "\n[X] Please install mechanize module:" print " http://wwwsearch.sourceforge.net/mechanize/\n" exit() from collections import defaultdict import random import threading from core.constants import USER_AGENTS from core.target import Target class Crawler(threading.Thread): def __init__(self, engine, queue, crawl_links = False, crawl_forms = False): threading.Thread.__init__(self) self.engine = engine self.queue = queue self.results = [] self.errors = {} self.crawl_links = crawl_links self.crawl_forms = crawl_forms self.browser = Browser() self._setProxies() self._setHeaders() def _setHeaders(self): if self.engine.getOption('ua') is not None: if self.engine.getOption('ua') is "RANDOM": self.browser.addheaders = [('User-Agent', random.choice(USER_AGENTS))] else: self.browser.addheaders = [('User-Agent', self.engine.getOption('ua'))] if self.engine.getOption("cookie") is not None: self.browser.addheaders = [("Cookie", self.engine.getOption("cookie"))] def _setProxies(self): if self.engine.getOption('http-proxy') is not None: self.browser.set_proxies({'http': self.engine.getOption('http-proxy')}) def _addError(self, key, value): if self.errors.has_key(key): self.errors[key].append(value) else: self.errors[key] = [value] def _crawlLinks(self, target): # If UA is RANDOM we need to refresh browser's headers if self.engine.getOption("ua") is "RANDOM": self._setHeaders() try: self.browser.open(target.getAbsoluteUrl()) except HTTPError, e: self._addError(e.code, target.getAbsoluteUrl()) return False except URLError, e: self._addError(e.reason, target.getAbsoluteUrl()) return False except: self._addError('Unknown', target.getAbsoluteUrl()) return False else: try: links = self.browser.links() except: print "[X] Can't retrieve links" return False new_targets = [] for link in links: if link.url.startswith(target.getBaseUrl()): # Local Absolute url new_targets.append(link.url) continue elif link.url.startswith("/"): # Local Relative url, starting with / link.url = target.getBaseUrl() + link.url new_targets.append(link.url) continue elif link.url.startswith("http://") or link.url.startswith("www."): # Absolute external links starting with http:// or www. continue else: # Everything else, should only be local urls not starting with / # If it's not the case they'll return 404 - i can live with that link.url = target.getBaseUrl() + "/" + link.url new_targets.append(link.url) # Remove duplicate links new_targets = set(new_targets) #print "[-] Found %s unique URLs" % len(new_targets) # Build new targets for t in new_targets: self.results.append(Target(t)) def _crawlForms(self, target): # If UA is RANDOM we need to refresh browser's headers if self.engine.getOption("ua") is "RANDOM": self._setHeaders() try: self.browser.open(target.getAbsoluteUrl()) except HTTPError, e: self._addError(e.code, target.getAbsoluteUrl()) return False except URLError, e: self._addError(e.reason, target.getAbsoluteUrl()) return False except: self._addError('Unknown', target.getAbsoluteUrl()) return False else: try: forms = self.browser.forms() except: print "[X] Can't retrieve forms" return False for form in forms: form_data = form.click_request_data() if form.method is "POST" and form_data[1] is None: # If the post form has no data to send continue elif form.method is "GET" and form_data[1] is not None: # GET forms nt = Target(form_data[0]+"?"+form_data[1], method = form.method, data = None) self.results.append(nt) else: nt = Target(form_data[0], method = form.method, data = form_data[1]) self.results.append(nt) def run(self): while True: try: target = self.queue.get(timeout = 1) except: try: self.queue.task_done() except ValueError: pass else: if self.crawl_links: self._crawlLinks(target) if self.crawl_forms: self._crawlForms(target) # task done try: self.queue.task_done() except ValueError: pass
StarcoderdataPython
1975196
<gh_stars>0 # + import nbformat import re class assignment_rubric: def __init__(self, file): self.rubric_items = [] self.question_points = {} self.subquestion_points = {} self.get_rubric_items(file) self.get_points() def get_rubric_items(self, file): nb = nbformat.read(file, as_version=nbformat.NO_CONVERT) nb.cells source = "\n".join([cell['source'] for cell in nb.cells if cell['cell_type'] == 'code' ]) #print(source) pattern = r"### BEGIN GRADING(.*?)### END GRADING" rubric_strings = "".join(re.findall(re.compile(pattern, re.DOTALL),source)) #print(rubric_strings) rubric_lines = [s for s in rubric_strings.splitlines() if s.strip() != ''] self.rubric_items = [] for l in rubric_lines: try: r = {} r['text'] = l.strip("# ").split(";")[0].rstrip() r['points'] = int(l.split(";")[1]) self.rubric_items.append(r) except IndexError: print("Problem parsing this line:") print(l) raise IndexError def get_points(self): self.question_points = {} self.subquestion_points = {} for r in self.rubric_items: question = r['text'][0] subquestion = r['text'][0:2] if question in self.question_points.keys(): self.question_points[question] += r['points'] else: self.question_points[question] = r['points'] if subquestion in self.subquestion_points.keys(): self.subquestion_points[subquestion] += r['points'] else: self.subquestion_points[subquestion] = r['points'] def print_overview(self, print_rubric = False): total_points = 0 for k1 in self.question_points.keys(): print("Question %s: %d points" % (k1, self.question_points[k1])) total_points += self.question_points[k1] for k2 in [k for k in self.subquestion_points.keys() if k[0] == k1]: print(" - %s: %d points" % (k2, self.subquestion_points[k2])) if print_rubric: for r in self.rubric_items: if r['text'][0:2] == k2: print(" *", r['text'], "(%d)" % r['points']) print() print("Total points:", total_points) def print_rubric(self): for r in self.rubric_items: print(r['text']) print(r['points']) # - # file = "Test notebook.ipynb" # file = "../../course_material_2020_2021/Assignment 2/TN2513 Assignment 2.ipynb" # a = assignment_rubric(file) # a.print_rubric()
StarcoderdataPython
3482764
from rest_framework.generics import ListCreateAPIView, RetrieveAPIView from .serializers import RoomSerializer from room.models import Room class RoomListCreateAPIView(ListCreateAPIView): queryset = Room.objects.all() serializer_class = RoomSerializer class RoomRetrieveAPIView(RetrieveAPIView): queryset = Room.objects.all() serializer_class = RoomSerializer
StarcoderdataPython
11253595
""" Torch argmax policy """ import numpy as np import railrl.torch.pytorch_util as ptu from railrl.policies.base import SerializablePolicy from railrl.torch.core import PyTorchModule import torch class ArgmaxDiscretePolicy(PyTorchModule, SerializablePolicy): def __init__(self, qf): self.save_init_params(locals()) super().__init__() self.qf = qf def get_action(self, ob_np, goal_np, tau_np): ob_np = np.expand_dims(ob_np, axis=0) goal_np = np.expand_dims(goal_np, axis=0) tau_np = np.expand_dims(tau_np, axis=0).astype(np.float32) # ob_np = ptu.from_numpy(ob_np).float() # goal_np = ptu.from_numpy(goal_np).float() # tau_np = ptu.from_numpy(tau_np).float() # q_values = [self.qf(observations=ob_np, actions=ptu.from_numpy(np.array([[a]])).float(), # goals = goal_np, num_steps_left=tau_np) for a in range(5)] # q_values_np = ptu.get_numpy(q_values) q_values_np = np.array([self.qf.eval_np(observations=ob_np, actions=np.array([[a]]), goals=goal_np, num_steps_left=tau_np) for a in range(5)]) return q_values_np.argmax(), {}
StarcoderdataPython
3342183
<reponame>zignig/cqparts_bucket<filename>plank.py " A plank for mounting stuff on " import cadquery as cq import cqparts from cqparts.params import * from cqparts.constraint import Fixed, Coincident from cqparts_misc.basic.primatives import Box from cqparts.display import render_props from .manufacture import Lasercut class Plank(Box, Lasercut): length = PositiveFloat(90) width = PositiveFloat(90) thickness = PositiveFloat(3) _render = render_props(template="wood") fillet = PositiveFloat(3) def make(self): pl = cq.Workplane("XY").box(self.length, self.width, self.thickness) pl = pl.translate((0, 0, self.thickness / 2)) if self.fillet > 0: pl = pl.edges("|Z").fillet(self.fillet) return pl if __name__ == "__main__": from cqparts.display import display display(Plank())
StarcoderdataPython
5117742
from compas.geometry import Frame from compas.robots import LocalPackageMeshLoader import compas_fab from compas_fab.backends.kinematics import AnalyticalInverseKinematics from compas_fab.backends import PyBulletClient urdf_filename = compas_fab.get('universal_robot/ur_description/urdf/ur5.urdf') srdf_filename = compas_fab.get('universal_robot/ur5_moveit_config/config/ur5.srdf') frame_WCF = Frame((0.381, 0.093, 0.382), (0.371, -0.292, -0.882), (0.113, 0.956, -0.269)) with PyBulletClient(connection_type='direct') as client: # Load UR5 loader = LocalPackageMeshLoader(compas_fab.get('universal_robot'), 'ur_description') robot = client.load_robot(urdf_filename, [loader]) client.load_semantics(robot, srdf_filename) ik = AnalyticalInverseKinematics(client) # set a new IK function client.inverse_kinematics = ik.inverse_kinematics options = {"solver": "ur5", "check_collision": True, "keep_order": True} for solution in robot.iter_inverse_kinematics(frame_WCF, options=options): print(solution)
StarcoderdataPython
23385
import spidev columns = [0x1,0x2,0x3,0x4,0x5,0x6,0x7,0x8] LEDOn = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF] LEDOff = [0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0] LEDEmoteSmile = [0x0,0x0,0x24,0x0,0x42,0x3C,0x0,0x0] LEDEmoteSad = [0x0,0x0,0x24,0x0,0x0,0x3C,0x42,0x0] LEDEmoteTongue = [0x0,0x0,0x24,0x0,0x42,0x3C,0xC,0x0] LEDEmoteSurprise = [0x0,0x0,0x24,0x0,0x18,0x24,0x24,0x18] spi = None def setup(robot_config): global LEDEmoteSmile global LEDEmoteSad global LEDEmoteTongue global LEDEmoteSuprise global module global spi #LED controlling spi = spidev.SpiDev() spi.open(0,0) #VCC -> RPi Pin 2 #GND -> RPi Pin 6 #DIN -> RPi Pin 19 #CLK -> RPi Pin 23 #CS -> RPi Pin 24 # decoding:BCD spi.writebytes([0x09]) spi.writebytes([0x00]) # Start with low brightness spi.writebytes([0x0a]) spi.writebytes([0x03]) # scanlimit; 8 LEDs spi.writebytes([0x0b]) spi.writebytes([0x07]) # Enter normal power-mode spi.writebytes([0x0c]) spi.writebytes([0x01]) # Activate display spi.writebytes([0x0f]) spi.writebytes([0x00]) rotate = robot_config.getint('max7219', 'ledrotate') if rotate == 180: LEDEmoteSmile = LEDEmoteSmile[::-1] LEDEmoteSad = LEDEmoteSad[::-1] LEDEmoteTongue = LEDEmoteTongue[::-1] LEDEmoteSurprise = LEDEmoteSurprise[::-1] SetLED_Off() def SetLED_On(): for i in range(len(columns)): spi.xfer([columns[i],LEDOn[i]]) def SetLED_Off(): for i in range(len(columns)): spi.xfer([columns[i],LEDOff[i]]) def SetLED_E_Smiley(): for i in range(len(columns)): spi.xfer([columns[i],LEDEmoteSmile[i]]) def SetLED_E_Sad(): for i in range(len(columns)): spi.xfer([columns[i],LEDEmoteSad[i]]) def SetLED_E_Tongue(): for i in range(len(columns)): spi.xfer([columns[i],LEDEmoteTongue[i]]) def SetLED_E_Surprised(): for i in range(len(columns)): spi.xfer([columns[i],LEDEmoteSurprise[i]]) def SetLED_Low(): # brightness MIN spi.writebytes([0x0a]) spi.writebytes([0x00]) def SetLED_Med(): #brightness MED spi.writebytes([0x0a]) spi.writebytes([0x06]) def SetLED_Full(): # brightness MAX spi.writebytes([0x0a]) spi.writebytes([0x0F]) def move(args): command = args['command'] if command == 'LED_OFF': SetLED_Off() if command == 'LED_FULL': SetLED_On() SetLED_Full() if command == 'LED_MED': SetLED_On() SetLED_Med() if command == 'LED_LOW': SetLED_On() SetLED_Low() if command == 'LED_E_SMILEY': SetLED_On() SetLED_E_Smiley() if command == 'LED_E_SAD': SetLED_On() SetLED_E_Sad() if command == 'LED_E_TONGUE': SetLED_On() SetLED_E_Tongue() if command == 'LED_E_SURPRISED': SetLED_On() SetLED_E_Suprised()
StarcoderdataPython
1745983
import unittest from unittest import mock from dataprofiler.labelers import base_model class TestBaseModel(unittest.TestCase): @mock.patch('dataprofiler.labelers.base_model.BaseModel.' '_BaseModel__subclasses', new_callable=mock.PropertyMock) def test_register_subclass(self, mock_subclasses): # remove not implemented func fake_class = type('FakeModel', (base_model.BaseModel,), {}) fake_class.__abstractmethods__ = [] fake_class._register_subclass() # base_model.BaseModel._register_subclass() self.assertIn( mock.call().__setitem__('fakemodel', fake_class), mock_subclasses.mock_calls) @mock.patch('dataprofiler.labelers.base_model.BaseModel.' '__abstractmethods__', set()) @mock.patch('dataprofiler.labelers.base_model.BaseModel.' '_validate_parameters', return_value=None) def test_equality_checks(self, *mocks): FakeModel1 = type('FakeModel1', (base_model.BaseModel,), {}) FakeModel2 = type('FakeModel2', (base_model.BaseModel,), {}) fake_model1 = FakeModel1(label_mapping={'a': 1, 'b': 2}, parameters={'test': 1}) fake_model1_1 = FakeModel1(label_mapping={'a': 1, 'b': 2}, parameters={'test': 1}) fake_model1_2 = FakeModel1(label_mapping={'c': 2}, parameters={'test': 1}) fake_model1_3 = FakeModel1(label_mapping={'a': 1, 'b': 2}, parameters={'Different': 1}) fake_model2 = FakeModel2(label_mapping={'a': 1, 'b': 2}, parameters={'a': 1, 'b': 2}) # assert True if the same object self.assertEqual(fake_model1, fake_model1) # assert True if same class but same params / label_mapping self.assertEqual(fake_model1, fake_model1_1) # assert False if diff class even if same params / label_mapping self.assertNotEqual(fake_model1, fake_model2) # assert False if same class even diff params / label_mapping self.assertNotEqual(fake_model1, fake_model1_2) self.assertNotEqual(fake_model1, fake_model1_3) # @mock.patch('data_profiler.labelers.base_model.BaseModel._validate_parameters') def test_get_parameters(self): mock_model = mock.Mock(spec=base_model.BaseModel) mock_model._label_mapping = {'a': 1, 'c': '2'} mock_model._parameters = {'test1': 1, 'test2': '2'} # base case params = base_model.BaseModel.get_parameters(mock_model) self.assertDictEqual( {'label_mapping': {'a': 1, 'c': '2'}, 'test1': 1, 'test2': '2'}, params) # param list w/o label_mapping param_list = ['test1'] params = base_model.BaseModel.get_parameters(mock_model, param_list) self.assertDictEqual({'test1': 1}, params) # param list w/ label_mapping param_list = ['test2', 'label_mapping'] params = base_model.BaseModel.get_parameters(mock_model, param_list) self.assertDictEqual( {'label_mapping': {'a': 1, 'c': '2'}, 'test2': '2'}, params) def test_set_parameters(self): # validate params set successfully mock_model = mock.Mock(spec=base_model.BaseModel) mock_model._parameters = dict() params = {'test': 1} base_model.BaseModel.set_params(mock_model, **params) self.assertDictEqual(params, mock_model._parameters) # test overwrite params params = {'test': 2} base_model.BaseModel.set_params(mock_model, **params) self.assertDictEqual(params, mock_model._parameters) # test invalid params mock_model._validate_parameters.side_effect = ValueError('test') with self.assertRaisesRegex(ValueError, 'test'): base_model.BaseModel.set_params(mock_model, **params) @mock.patch.multiple('dataprofiler.labelers.base_model.BaseModel', __abstractmethods__=set(), _validate_parameters=mock.MagicMock(return_value=None)) def test_add_labels(self, *args): # setup model with mocked abstract methods mock_model = base_model.BaseModel( label_mapping={'NEW_LABEL': 1}, parameters={}) # assert bad label inputs with self.assertRaisesRegex(TypeError, '`label` must be a str.'): mock_model.add_label(label=None) with self.assertRaisesRegex(TypeError, '`label` must be a str.'): mock_model.add_label(label=1) # assert existing label label = 'NEW_LABEL' with self.assertWarnsRegex(UserWarning, 'The label, `{}`, already exists in the ' 'label mapping.'.format(label)): mock_model.add_label(label) # assert bad same_as input with self.assertRaisesRegex(TypeError, '`same_as` must be a str.'): mock_model.add_label(label='test', same_as=1) label = 'NEW_LABEL_2' same_as = 'DOES_NOT_EXIST' with self.assertRaisesRegex(ValueError, '`same_as` value: {}, did not exist in the ' 'label_mapping.'.format(same_as)): mock_model.add_label(label, same_as) # assert successful add label = 'NEW_LABEL_2' mock_model.add_label(label) self.assertDictEqual( {'NEW_LABEL': 1, 'NEW_LABEL_2': 2}, mock_model._label_mapping) # assert successful add w/ same_as label = 'NEW_LABEL_3' mock_model.add_label(label, same_as='NEW_LABEL') self.assertDictEqual( {'NEW_LABEL': 1, 'NEW_LABEL_2': 2, 'NEW_LABEL_3': 1}, mock_model._label_mapping) def test_set_label_mapping_parameters(self): # setup mock mock_model = mock.Mock(spec=base_model.BaseModel) mock_model._convert_labels_to_label_mapping.side_effect = \ base_model.BaseModel._convert_labels_to_label_mapping # assert non value is not accepted. with self.assertRaisesRegex(TypeError, "Labels must either be a non-empty encoding" " dict which maps labels to index encodings" " or a list."): base_model.BaseModel.set_label_mapping( mock_model, label_mapping=None) # non-acceptable value case with self.assertRaisesRegex(TypeError, "Labels must either be a non-empty encoding" " dict which maps labels to index encodings" " or a list."): base_model.BaseModel.set_label_mapping( mock_model, label_mapping=1) # assert error for empty label_mapping dict with self.assertRaisesRegex(TypeError, "Labels must either be a non-empty encoding" " dict which maps labels to index encodings" " or a list."): base_model.BaseModel.set_label_mapping(mock_model, label_mapping={}) # assert label_map set base_model.BaseModel.set_label_mapping( mock_model, label_mapping={'test': 'test'}) self.assertDictEqual({'test': 'test'}, mock_model._label_mapping) def test_convert_labels_to_encodings(self, *mocks): # test label list to label_mapping labels = ['a', 'b', 'd', 'c'] label_mapping = base_model.BaseModel._convert_labels_to_label_mapping( labels, requires_zero_mapping=True) self.assertDictEqual(dict(a=0, b=1, d=2, c=3), label_mapping) # test label dict to label_mapping labels = dict(a=1, b=2, d=3, c=4) label_mapping = base_model.BaseModel._convert_labels_to_label_mapping( labels, requires_zero_mapping=True) self.assertDictEqual(dict(a=1, b=2, d=3, c=4), label_mapping)
StarcoderdataPython
3404617
from __future__ import unicode_literals from django.urls import reverse_lazy from django.views.generic import ListView from portfolio.views import BaseSudoView from portfolio.skills.models import Skills from portfolio.categories.models import Category from portfolio.skills.forms import SkillsForm class SkillsFormsView(BaseSudoView): model = Skills form_class = SkillsForm template_name = 'skill_add.html' success_url = reverse_lazy('portfolio:skill:skill_index') class SkillsView(ListView): model = Skills template_name = 'skill_index.html' def get_queryset(self): return self.model.objects.filter() def get_context_data(self, **kwargs): context = super(SkillsView, self).get_context_data(**kwargs) query_set = Category.objects.all() context['categories'] = query_set return context
StarcoderdataPython
3284484
""" Basic wheel tests. """ import os import pkg_resources import json import sys from pkg_resources import resource_filename import wheel.util import wheel.tool from wheel import egg2wheel from wheel.install import WheelFile from zipfile import ZipFile from shutil import rmtree test_distributions = ("complex-dist", "simple.dist", "headers.dist") def teardown_module(): """Delete eggs/wheels created by tests.""" base = pkg_resources.resource_filename('wheel.test', '') for dist in test_distributions: for subdir in ('build', 'dist'): try: rmtree(os.path.join(base, dist, subdir)) except OSError: pass def setup_module(): build_wheel() build_egg() def build_wheel(): """Build wheels from test distributions.""" for dist in test_distributions: pwd = os.path.abspath(os.curdir) distdir = pkg_resources.resource_filename('wheel.test', dist) os.chdir(distdir) try: sys.argv = ['', 'bdist_wheel'] exec(compile(open('setup.py').read(), 'setup.py', 'exec')) finally: os.chdir(pwd) def build_egg(): """Build eggs from test distributions.""" for dist in test_distributions: pwd = os.path.abspath(os.curdir) distdir = pkg_resources.resource_filename('wheel.test', dist) os.chdir(distdir) try: sys.argv = ['', 'bdist_egg'] exec(compile(open('setup.py').read(), 'setup.py', 'exec')) finally: os.chdir(pwd) def test_findable(): """Make sure pkg_resources can find us.""" assert pkg_resources.working_set.by_key['wheel'].version def test_egg_re(): """Make sure egg_info_re matches.""" egg_names = open(pkg_resources.resource_filename('wheel', 'eggnames.txt')) for line in egg_names: line = line.strip() if not line: continue assert egg2wheel.egg_info_re.match(line), line def test_compatibility_tags(): """Test compatibilty tags are working.""" wf = WheelFile("package-1.0.0-cp32.cp33-noabi-noarch.whl") assert (list(wf.compatibility_tags) == [('cp32', 'noabi', 'noarch'), ('cp33', 'noabi', 'noarch')]) assert (wf.arity == 2) wf2 = WheelFile("package-1.0.0-1st-cp33-noabi-noarch.whl") wf2_info = wf2.parsed_filename.groupdict() assert wf2_info['build'] == '1st', wf2_info def test_convert_egg(): base = pkg_resources.resource_filename('wheel.test', '') for dist in test_distributions: distdir = os.path.join(base, dist, 'dist') eggs = [e for e in os.listdir(distdir) if e.endswith('.egg')] wheel.tool.convert(eggs, distdir, verbose=False) def test_unpack(): """ Make sure 'wheel unpack' works. This also verifies the integrity of our testing wheel files. """ for dist in test_distributions: distdir = pkg_resources.resource_filename('wheel.test', os.path.join(dist, 'dist')) for wheelfile in (w for w in os.listdir(distdir) if w.endswith('.whl')): wheel.tool.unpack(os.path.join(distdir, wheelfile), distdir) def test_no_scripts(): """Make sure entry point scripts are not generated.""" dist = "complex-dist" basedir = pkg_resources.resource_filename('wheel.test', dist) for (dirname, subdirs, filenames) in os.walk(basedir): for filename in filenames: if filename.endswith('.whl'): whl = ZipFile(os.path.join(dirname, filename)) for entry in whl.infolist(): assert not '.data/scripts/' in entry.filename def test_pydist(): """Make sure pydist.json exists and validates against our schema.""" # XXX this test may need manual cleanup of older wheels import jsonschema def open_json(filename): return json.loads(open(filename, 'rb').read().decode('utf-8')) pymeta_schema = open_json(resource_filename('wheel.test', 'pydist-schema.json')) valid = 0 for dist in ("simple.dist", "complex-dist"): basedir = pkg_resources.resource_filename('wheel.test', dist) for (dirname, subdirs, filenames) in os.walk(basedir): for filename in filenames: if filename.endswith('.whl'): whl = ZipFile(os.path.join(dirname, filename)) for entry in whl.infolist(): if entry.filename.endswith('/metadata.json'): pymeta = json.loads(whl.read(entry).decode('utf-8')) jsonschema.validate(pymeta, pymeta_schema) valid += 1 assert valid > 0, "No metadata.json found" def test_util(): """Test functions in util.py.""" for i in range(10): before = b'*' * i encoded = wheel.util.urlsafe_b64encode(before) assert not encoded.endswith(b'=') after = wheel.util.urlsafe_b64decode(encoded) assert before == after def test_pick_best(): """Test the wheel ranking algorithm.""" def get_tags(res): info = res[-1].parsed_filename.groupdict() return info['pyver'], info['abi'], info['plat'] cand_tags = [('py27', 'noabi', 'noarch'), ('py26', 'noabi', 'noarch'), ('cp27', 'noabi', 'linux_i686'), ('cp26', 'noabi', 'linux_i686'), ('cp27', 'noabi', 'linux_x86_64'), ('cp26', 'noabi', 'linux_x86_64')] cand_wheels = [WheelFile('testpkg-1.0-%s-%s-%s.whl' % t) for t in cand_tags] supported = [('cp27', 'noabi', 'linux_i686'), ('py27', 'noabi', 'noarch')] supported2 = [('cp27', 'noabi', 'linux_i686'), ('py27', 'noabi', 'noarch'), ('cp26', 'noabi', 'linux_i686'), ('py26', 'noabi', 'noarch')] supported3 = [('cp26', 'noabi', 'linux_i686'), ('py26', 'noabi', 'noarch'), ('cp27', 'noabi', 'linux_i686'), ('py27', 'noabi', 'noarch')] for supp in (supported, supported2, supported3): context = lambda: list(supp) for wheel in cand_wheels: wheel.context = context best = max(cand_wheels) assert list(best.tags)[0] == supp[0] # assert_equal( # list(map(get_tags, pick_best(cand_wheels, supp, top=False))), supp)
StarcoderdataPython
332666
<filename>BreakTheName.py<gh_stars>0 #cerner_2tothe5th_2021 # Get all substrings of a given string using slicing of string # initialize the string input_string = "floccinaucinihilipilification" # print the input string print("The input string is : " + str(input_string)) # Get all substrings of the string result = [input_string[i: j] for i in range(len(input_string)) for j in range(i + 1, len(input_string) + 1)] # print the result print("All substrings of the input string are : " + str(result))
StarcoderdataPython
11233988
#%% import pandas as pd import numpy as np import holoviews as hv import hvplot.pandas from scipy.sparse.linalg import svds from scipy.stats import chisquare, chi2_contingency from sklearn.decomposition import TruncatedSVD from umoja.ca import CA hv.extension('bokeh') #%% X = context.io.load('xente_train') Y = context.io.load('xente_sample_submission') Y_wide = (Y .loc[:, 'Account X date X PID'] .str.split(' X ', expand=True) .rename(columns={0:'acc', 1:'date',2:'PID'}) .assign(test = True) ) context.io.save('xente_sample_submission_wide', Y_wide) data = (pd.concat([Y_wide, X.assign(test = False)], axis=0) .reset_index() .rename(columns={'index':'old_index'}) .assign(acc = lambda df: df.acc.astype('int64'))) context.io.save('xente_merged', data) # %% a = (data.drop(columns=['old_index']) .groupby(['acc', 'PID']) .date .apply(lambda df: pd.to_datetime(df).sort_values().diff().dt.total_seconds() .fillna(0)) .reset_index() .rename(columns={'level_2': 'index'}) .set_index('index') .rename(columns={'date': 'time_since_last'})) b = data.loc[:,['date']].assign(date = lambda df: pd.to_datetime(df.date)) #%% time_since_last = (a.join(b).sort_values('date')) #%% dummies = pd.get_dummies(time_since_last.PID).astype(np.int) dummies_nan_zero = dummies.replace(0, np.nan) dummies_nan_neg = dummies.replace(0, -1) dummies_nan_one = dummies.replace({0:1, 1:0}) dummies_one_nan = dummies.replace({1: np.nan, 0: 1}) # %% time_since_last_ffill = dummies_nan_zero.multiply(time_since_last.time_since_last, axis=0).ffill() seconds_since_last_any = time_since_last.date.diff().dt.total_seconds() time_diff = time_since_last_ffill.add(dummies_nan_one.multiply(seconds_since_last_any, axis=0)) time_diff_censor = time_diff.multiply(dummies_nan_neg) target = time_diff_censor.fillna(time_diff_censor.min()) # %% sensor_pred = target.multiply(dummies_one_nan).abs() features = sensor_pred.fillna(sensor_pred.mean(0)) # %% context.io.save('xente_features', features) context.io.save('xente_target', target) # %%
StarcoderdataPython
6426877
<filename>utils/emulation_host_meta_generator.py import StringIO import sys import os path = os.path.realpath(__file__) sys.path.insert(0, '%s/..' % os.path.dirname(os.path.abspath(__file__))) from ixnetwork.IxnHttp import IxnHttp def process_node(metadata, class_name): # build find expected_states = [] attr_doc_string = '%s"""Find specific %s emulated host sessions using a virtual port name or a parent emulation host and optional filters.\n' % (' ' * 8, metadata.custom.name) attr_doc_string += '%sFilter values can be a single value or a list of values, see the specific **filter information below.\n\n' % (' ' * 12) attr_doc_string += '%svport_name: string (The topology that contains the vport with this name will be used as the starting point of the search)\n' % (' ' * 12) attr_doc_string += '%semulation_host: IxnEmulationHost (A parent emulation host that will be used as the starting point of the search)\n' % (' ' * 12) attr_doc_string += '%s**filters:\n' % (' ' * 12) for attribute in metadata.custom.attributes: if attribute.deprecated is False: if attribute.type.name == 'object': continue if attribute.type.name == 'list' and attribute.type.innerType.name == 'enum': expected_states = attribute.type.innerType.enums continue attr_doc_string += '%s%s: %s' % (' ' * 16, attribute.name, attribute.type.name) attr_doc_string += '\n' attr_doc_string += '%s"""\n' % (' ' * 8) fid = StringIO.StringIO() # write class and __init__ fid.write('class %s(IxnEmulationHost):\n' % (class_name)) fid.write('%s"""Generated NGPF %s emulation host """\n' % (' ' * 4, metadata.custom.name)) fid.write('\n') for expected_state in expected_states: fid.write('%sSTATE_%s = \'%s\'\n' % (' ' * 4, expected_state.upper(), expected_state)) fid.write('\n') fid.write('%sdef __init__(self, ixnhttp):\n' % (' ' * 4)) fid.write('%ssuper(%s, self).__init__(ixnhttp)\n' % (' ' * 8, class_name)) fid.write('\n') # write find class_names = metadata.custom.path.split('/')[1:] class_names = ','.join('"{0}"'.format(class_name) for class_name in class_names) fid.write('%sdef find(self, vport_name=None, emulation_host=None, **filters):\n' % (' ' * 4)) fid.write(attr_doc_string) fid.write('%sreturn super(%s, self).find([%s], vport_name, emulation_host, filters)\n' % (' ' * 8, class_name, class_names)) fid.write('\n') # write operations if len(expected_states) > 0: for operation in metadata.custom.operations: if len(operation.args) == 2 and operation.args[1].type.name == 'string': fid.write('%sdef %s(self, expected_state=None, timeout=None):\n' % (' ' * 4, operation.operation.lower())) fid.write('%s"""%s\n' % (' ' * 8, ' '.join(operation.description.split()))) fid.write('%sFor expected_state options see the class state variables\n' % (' ' * 12)) fid.write('%s"""\n' % (' ' * 8)) fid.write('%ssuper(%s, self).call_operation(\'%s\', expected_state, timeout)\n' % (' ' * 8, class_name, operation.operation)) fid.write('\n') fid.write('\n') classes[metadata.custom.name] = fid.getvalue() fid.close() print('GENERATED: %s' % class_name) def process_class(path, name): if name in classes.keys(): return if name in ['connector', 'item', 'port', 'tlvProfile', 'learnedInfo', 'genericProtocol','packetInList']: return try: metadata = ixnhttp.help(path) class_name = 'Ixn%s%sEmulation' % (metadata.custom.name[0].upper(), metadata.custom.name[1:]) process_node(metadata, class_name) for child in metadata.custom.children: process_class(child.path, child.name) except: print('skipping %s' % name) ixnhttp = IxnHttp('10.200.22.48', 12345) sessions = ixnhttp.sessions() ixnhttp.current_session = sessions[0] classes = {} process_class('/topology', 'topology') filename = '%s/../ixnetwork/IxnEmulationHosts.py' % os.path.dirname(os.path.realpath(__file__)) with open(filename, 'w') as fid: fid.write('from ixnetwork.IxnEmulationHost import IxnEmulationHost\n\n') keys = classes.keys() keys.sort() for key in keys: fid.write(classes[key]) fid.flush()
StarcoderdataPython
9720702
<gh_stars>0 import os import sys import time import numpy as np import torch import torch.distributed as dist import torch.utils.collect_env from contextlib import contextmanager from torch.nn.parallel import DistributedDataParallel class DDP(DistributedDataParallel): # Distributed wrapper. Supports asynchronous evaluation and model saving def forward(self, *args, **kwargs): # DDP has a sync point on forward. No need to do this for eval. This allows us to have different batch sizes if self.training: return super().forward(*args, **kwargs) else: return self.module(*args, **kwargs) def load_state_dict(self, *args, **kwargs): self.module.load_state_dict(*args, **kwargs) def syn_buffer_params(self): self._sync_params_and_buffers() def state_dict(self, *args, **kwargs): return self.module.state_dict(*args, **kwargs) def get_rank(): """ get distributed rank """ if torch.distributed.is_available() and torch.distributed.is_initialized(): rank=torch.distributed.get_rank() else: rank=0 return rank def get_world_size(): """ get total number of distributed workers """ if torch.distributed.is_available() and torch.distributed.is_initialized(): world_size=torch.distributed.get_world_size() else: world_size=1 return world_size def init_distributed(cuda): """ initialized distributed backend cuda: bool True to initilialize nccl backend """ world_size=int(os.environ.get('WORLD_SIZE',1)) distributed=(world_size>1) if distributed: backend='nccl' if cuda else 'gloo' dist.init_process_group(backend=backend,init_method='env://') assert dist.is_initialized() return distributed def set_device(cuda, local_rank): """ Sets device based on local_rank and returns instance of torch.device. :param cuda: if True: use cuda :param local_rank: local rank of the worker """ if cuda: torch.cuda.set_device(local_rank) device = torch.device('cuda') else: device = torch.device('cpu') return device def barrier(): """ Call torch.distributed.barrier() if distritubed is in use """ if torch.distributed.is_available() and torch.distributed.is_initialized(): torch.distributed.barrier() def get_rank(): """ Gets distributed rank or returns zero if distributed is not initialized. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = 0 return rank class AverageMeter: """ Computes and stores the average and current value """ def __init__(self, warmup=0, keep=False): self.reset() self.warmup = warmup self.keep = keep def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.iters = 0 self.vals = [] def update(self, val, n=1): self.iters += 1 self.val = val if self.iters > self.warmup: self.sum += val * n self.count += n self.avg = self.sum / self.count if self.keep: self.vals.append(val) def reduce(self, op): """ Reduces average value over all workers. :param op: 'sum' or 'mean', reduction operator """ if op not in ('sum', 'mean'): raise NotImplementedError distributed = (get_world_size() > 1) print('all reduce start',distributed) if distributed: backend = dist.get_backend() print('backend is {}'.format(backend)) cuda = (backend == 'nccl')#== dist.Backend.NCCL) print(cuda) if cuda: avg = torch.cuda.FloatTensor([self.avg]) _sum = torch.cuda.FloatTensor([self.sum]) else: avg = torch.FloatTensor([self.avg]) _sum = torch.FloatTensor([self.sum]) print(_sum) print(avg) dist.all_reduce(avg) dist.all_reduce(_sum) print(avg.item(),_sum.item()) self.avg = avg.item() self.sum = _sum.item() if op == 'mean': self.avg /= get_world_size() self.sum /= get_world_size() print('all_recude done')
StarcoderdataPython
4947784
<reponame>idigbio-citsci-hackathon/CsvToolbox<filename>src/anonymizer.py #!/usr/bin/env python # Given a CSV file, generates another CSV anonymizing the column specified # as usernames while maintaining the other columns (quotes around a value # may vary from the original file). The column ID specification is 0-based. import argparse import csv import itertools import time """ Class for anonymizing data from a CSV file (assumed to have a single header line) """ class Anonymizer: def __init__(self, inputFile, outputFile): # Input CSV file self.inputFile = inputFile # Output CSV file self.outputFile = outputFile # Array with column IDs to check (ID is 0-based) self.checkColumns = None # Value used to indicate that no user is attached to an entry self.noUser = "not-logged-in" print "Input:",self.inputFile print "Output:",self.outputFile def parseColRange(self, rangeStr): result = set() for part in rangeStr.split(','): x = part.split('-') result.update(range(int(x[0]), int(x[-1])+1)) self.checkColumns = sorted(result) if len(self.checkColumns) == 0: raise Exception("Must provide column IDs that are required to have user data!") def anonymize(self): # Set up input file reader csvInputFile = open(self.inputFile, 'rb') csvInputFileReader = csv.reader(csvInputFile, dialect='excel') # Set up output files csvOutputFile = open(self.outputFile, 'wb') csvOutputWriter = csv.writer(csvOutputFile, dialect='excel') # Example for forcing double quotes on all fields, and using UNIX-style new line # csvOutputWriter = csv.writer(csvOutputFile, dialect='excel', quoting=csv.QUOTE_ALL, lineterminator='\n') # Read the header line header = csvInputFileReader.next() # Retrieve all data columns as rows (cols[0] contains column 0) cols = zip(*csvInputFileReader) # For each column to be anonymized, sorted and filter duplicates for i in self.checkColumns: uniqVals = sorted(set(cols[i])) uniqVals.remove(self.noUser) cleanCol = [] # Replace value in column with anonymous ID for j,item in enumerate(cols[i]): try: uid = uniqVals.index(item) cleanCol.append('user' + str(uid)) except ValueError: cleanCol.append(self.noUser) cols[i] = cleanCol # Write header back csvOutputWriter.writerow(header) # Write sorted/filtered columns after transposing the rows back to columns # Since each column may have different length, use the length of the # longest column and fill other cells with empty string csvOutputWriter.writerows(itertools.izip_longest(*cols, fillvalue='')) csvInputFile.close() csvOutputFile.close() """ Parses input arguments, constructs a Anonymizer to remove user identity from a CSV file with crowdsourced information. Example execution: python anonymizer.py -i ../data/CrowdsourcedData.csv -o ../data/AnonymizedDataset.csv -c 6 """ def main(): # Parse input arguments parser = argparse.ArgumentParser() parser.add_argument("-i", required=True, help="Input csv file to anonymize") parser.add_argument("-c", required=True, help="Comma separated list of \ columns IDs that are to be anonymized, ID is 0-based") parser.add_argument("-o", "--output", required=True, help="Output csv file") args = parser.parse_args() # Instantiate and configure work csv anonymizer startTime = time.time() anon = Anonymizer(args.i, args.output) anon.parseColRange(args.c) anon.anonymize() print "Done in ", time.time() - startTime, " secs" if __name__ == "__main__": main()
StarcoderdataPython
4885299
"""initial Revision ID: 5a2877e096ed Revises: Create Date: 2022-03-20 21:22:58.439923 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "5a2877e096ed" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.execute('CREATE EXTENSION IF NOT EXISTS "uuid-ossp";') op.create_table( "hosts", sa.Column( "guid", postgresql.UUID(as_uuid=True), server_default=sa.text("uuid_generate_v4()"), nullable=False, ), sa.Column("full_name", sa.String(length=256), nullable=False), sa.Column("email", sa.String(length=100), nullable=False), sa.Column("phone_number", sa.String(length=20), nullable=False), sa.Column("call_after", sa.String(length=64), nullable=True), sa.Column("call_before", sa.String(length=64), nullable=True), sa.Column("comments", sa.Text(), nullable=True), sa.Column( "status", sa.Enum("CREATED", "VERIFIED", "REJECTED", name="verificationstatus"), server_default="CREATED", nullable=False, ), sa.Column( "created_at", postgresql.TIMESTAMP(timezone=True), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(timezone=True), server_default=sa.text("now()"), nullable=False, ), sa.Column("system_comments", sa.Text(), nullable=True), sa.PrimaryKeyConstraint("guid"), ) op.create_table( "languages", sa.Column("name", sa.String(length=20), nullable=True), sa.Column("code2", sa.String(length=2), nullable=False), sa.Column("code3", sa.String(length=3), nullable=True), sa.PrimaryKeyConstraint("code2"), ) op.create_table( "teammembers", sa.Column( "guid", postgresql.UUID(as_uuid=True), server_default=sa.text("uuid_generate_v4()"), nullable=False, ), sa.Column("full_name", sa.String(length=100), nullable=True), sa.Column("phone_number", sa.String(length=20), nullable=True), sa.PrimaryKeyConstraint("guid"), ) op.create_table( "accommodation_units", sa.Column( "guid", postgresql.UUID(as_uuid=True), server_default=sa.text("uuid_generate_v4()"), nullable=False, ), sa.Column("host_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("city", sa.String(length=50), nullable=True), sa.Column("zip", sa.String(length=10), nullable=False), sa.Column( "voivodeship", sa.Enum( "DOLNOSLASKIE", "KUJAWSKOPOMORSKIE", "LUBELSKIE", "LUBUSKIE", "LODZKIE", "MALOPOLSKIE", "MAZOWIECKIE", "OPOLSKIE", "PODKARPACKIE", "PODLASKIE", "POMORSKIE", "SLASKIE", "SWIETOKRZYSKIE", "WARMINSKOMAZURSKIE", "WIELKOPOLSKIE", "ZACHODNIOPOMORSKIE", name="voivodeship", ), nullable=True, ), sa.Column("address_line", sa.String(length=512), nullable=False), sa.Column("vacancies_total", sa.Integer(), nullable=False), sa.Column("pets_present", sa.Boolean(), nullable=True), sa.Column("pets_accepted", sa.Boolean(), nullable=True), sa.Column("disabled_people_friendly", sa.Boolean(), nullable=True), sa.Column("lgbt_friendly", sa.Boolean(), nullable=True), sa.Column("parking_place_available", sa.Boolean(), nullable=True), sa.Column("owner_comments", sa.Text(), nullable=True), sa.Column("easy_ambulance_access", sa.Boolean(), nullable=True), sa.Column("vacancies_free", sa.Integer(), nullable=True), sa.Column("staff_comments", sa.Text(), nullable=True), sa.Column( "status", sa.Enum("CREATED", "VERIFIED", "REJECTED", name="verificationstatus"), server_default="CREATED", nullable=False, ), sa.Column("system_comments", sa.Text(), nullable=True), sa.Column( "created_at", postgresql.TIMESTAMP(timezone=True), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(timezone=True), server_default=sa.text("now()"), nullable=False, ), sa.ForeignKeyConstraint(["host_id"], ["hosts.guid"], name="fk_host"), sa.PrimaryKeyConstraint("guid"), ) op.create_table( "host_languages", sa.Column("language_code", sa.String(length=2), nullable=True), sa.Column("host_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column( "guid", postgresql.UUID(as_uuid=True), server_default=sa.text("uuid_generate_v4()"), nullable=False, ), sa.ForeignKeyConstraint(["host_id"], ["hosts.guid"], name="fk_host"), sa.ForeignKeyConstraint( ["language_code"], ["languages.code2"], name="fk_language" ), sa.PrimaryKeyConstraint("guid"), sa.UniqueConstraint("language_code", "host_id", name="lang_host_pair_unique"), ) op.create_table( "guests", sa.Column( "guid", postgresql.UUID(as_uuid=True), server_default=sa.text("uuid_generate_v4()"), nullable=False, ), sa.Column("full_name", sa.String(length=255), nullable=False), sa.Column("email", sa.String(length=255), nullable=False), sa.Column("phone_number", sa.String(length=20), nullable=False), sa.Column( "is_agent", sa.Boolean(), server_default=sa.text("false"), nullable=False ), sa.Column("document_number", sa.String(length=255), nullable=True), sa.Column( "people_in_group", sa.Integer(), server_default=sa.text("1"), nullable=False ), sa.Column( "adult_male_count", sa.Integer(), server_default=sa.text("0"), nullable=False, ), sa.Column( "adult_female_count", sa.Integer(), server_default=sa.text("0"), nullable=False, ), sa.Column("children_ages", postgresql.ARRAY(sa.Integer()), nullable=False), sa.Column( "have_pets", sa.Boolean(), server_default=sa.text("false"), nullable=False ), sa.Column("pets_description", sa.String(length=255), nullable=True), sa.Column("special_needs", sa.Text(), nullable=True), sa.Column("food_allergies", sa.Text(), nullable=True), sa.Column( "meat_free_diet", sa.Boolean(), server_default=sa.text("false"), nullable=False, ), sa.Column( "gluten_free_diet", sa.Boolean(), server_default=sa.text("false"), nullable=False, ), sa.Column( "lactose_free_diet", sa.Boolean(), server_default=sa.text("false"), nullable=False, ), sa.Column("finance_status", sa.String(length=255), nullable=True), sa.Column("how_long_to_stay", sa.String(length=255), nullable=True), sa.Column("desired_destination", sa.String(length=255), nullable=True), sa.Column( "priority_status", sa.Enum( "DOES_NOT_RESPOND", "ACCOMMODATION_NOT_NEEDED", "EN_ROUTE_UA", "EN_ROUTE_PL", "IN_KRK", "AT_R3", "ACCOMMODATION_FOUND", "UPDATED", name="guestprioritystatus", ), nullable=True, ), sa.Column( "priority_date", postgresql.TIMESTAMP(timezone=True), server_default=sa.text("now()"), nullable=True, ), sa.Column("staff_comments", sa.Text(), nullable=True), sa.Column( "verification_status", sa.Enum("CREATED", "VERIFIED", "REJECTED", name="verificationstatus"), server_default="CREATED", nullable=False, ), sa.Column("system_comments", sa.Text(), nullable=True), sa.Column( "created_at", postgresql.TIMESTAMP(timezone=True), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(timezone=True), server_default=sa.text("now()"), nullable=False, ), sa.Column( "accommodation_unit_id", postgresql.UUID(as_uuid=True), nullable=True ), sa.ForeignKeyConstraint( ["accommodation_unit_id"], ["accommodation_units.guid"], name="fk_accommodation_unit_id", ), sa.PrimaryKeyConstraint("guid"), ) op.execute( """ INSERT INTO public.languages("name", code2, code3) VALUES ('English', 'en', 'eng'), ('Ukrainian', 'uk', 'ukr'), ('Polish', 'pl', 'pol'), ('Russian', 'ru', 'rus'); """ ) op.execute( """ DO $$ BEGIN IF NOT EXISTS ( SELECT FROM pg_catalog.pg_user WHERE usename = 'apiserviceuser') THEN CREATE USER ApiServiceUser WITH PASSWORD '<PASSWORD>'; ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT select,insert,update,delete,truncate ON TABLES TO ApiServiceUser; GRANT select,insert,update,delete,truncate ON ALL TABLES IN schema public TO ApiServiceUser; REVOKE select,insert,update,delete,truncate ON public.languages from ApiServiceUser; END IF; END $$; """ ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("guests") op.drop_table("host_languages") op.drop_table("accommodation_units") op.drop_table("teammembers") op.drop_table("languages") op.drop_table("hosts") op.execute("DROP TYPE verificationstatus;") op.execute("DROP TYPE voivodeship;") op.execute("DROP TYPE guestprioritystatus;") op.execute("DROP OWNED BY ApiServiceUser; DROP USER ApiServiceUser;") # ### end Alembic commands ###
StarcoderdataPython
9711539
import os import subprocess import threading import pwd from django.conf import settings from django.utils.datetime_safe import datetime from django.db.models import Q from hujan_ui.installers.models import Server, Inventory, GlobalConfig, Deployment from hujan_ui.utils.global_config_writer import GlobalConfigWriter from hujan_ui.utils.host_editor import HostEditor from hujan_ui.utils.multinode_writer import MultiNodeWriter from hujan_ui.utils.core import demote class Deployer: log_dir = settings.DEPLOYMENT_LOG_DIR deploy_command = settings.KOLLA_COMMAND_DEPLOY post_deploy_command = settings.KOLLA_COMMAND_POST_DEPLOY deploy_user = settings.USER_EXEC_KOLLA_COMMAND def __init__(self, deployment_model=None): if not deployment_model: self.deployment_model = self.current_deployment() else: self.deployment_model = deployment_model def current_deployment(self): """ Get currently running deployment model """ return Deployment.objects.order_by('-id').first() def is_deploying(self): """ Check if deploying in progress """ return self.deployment_model is not None and self.deployment_model.status == Deployment.DEPLOY_IN_PROGRESS def get_log(self, from_line=0): """ Get log lines from current deployment """ assert self.deployment_model is not None if os.path.exists(self._log_file_path()): with open(self._log_file_path(), 'r') as f: lines = f.readlines() return lines[from_line:] else: return [] def _prepare_log_dir(self): """ Create log dir if not exist """ if not os.path.exists(self.log_dir): os.mkdir(self.log_dir) def _write_log(self, line): """ Write line to log file of deployment_model """ with open(self._log_file_path(), 'a+') as f: f.write(line) def _log_file_path(self): """ Return absolute log file path of current deployment model """ return os.path.join(self.log_dir, self.deployment_model.log_name) def _output_reader_deploy(self, proc): """ Read process output """ self._write_log("Process Started\n") for line in iter(proc.stdout.readline, b''): line_str = line.decode('utf-8') self._write_log(line_str) proc.wait() return_code = proc.returncode self._write_log(f"Process exited with return code: {return_code}\n") if return_code == 0: self.deployment_model.status = Deployment.DEPLOY_SUCCESS self.deployment_model.save() else: self.deployment_model.status = Deployment.DEPLOY_FAILED self.deployment_model.save() def _output_reader_post_deploy(self, proc): self._write_log("Process Post Started\n") for line in iter(proc.stdout.readline, b''): line_str = line.decode('utf-8') self._write_log(line_str) proc.wait() return_code = proc.returncode if return_code == 0: self.deployment_model.status = Deployment.POST_DEPLOY_SUCCESS self.deployment_model.save() else: self.deployment_model.status = Deployment.DEPLOY_FAILED self.deployment_model.save() self._write_log(f"Process post deploy exited with return code: {return_code}\n") def _start_deploy(self): uid = pwd.getpwnam(self.deploy_user).pw_uid gid = pwd.getpwnam(self.deploy_user).pw_gid proc_kolla = subprocess.Popen(self.deploy_command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, preexec_fn=demote(uid, gid)) t = threading.Thread(target=self._output_reader_deploy, args=(proc_kolla,)) t.start() return t def _start_post_deploy(self): uid = pwd.getpwnam(self.deploy_user).pw_uid gid = pwd.getpwnam(self.deploy_user).pw_gid proc = subprocess.Popen(self.post_deploy_command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, preexec_fn=demote(uid, gid)) t = threading.Thread(target=self._output_reader_post_deploy, args=(proc,)) t.start() return t def _create_deployment(self): """ Create deployment model """ timestamp = datetime.now().strftime("%d%m%Y-%H%M%S") self.deployment_model = Deployment( log_name=f"deploy-log-{timestamp}.log", status=Deployment.DEPLOY_IN_PROGRESS ) self.deployment_model.save() def _prepare_files(self): """ Prepare file before deployment """ HostEditor.save_from_model(Server.objects.all()) MultiNodeWriter.save_from_model(Inventory.objects.all()) GlobalConfigWriter.save_from_model(GlobalConfig.objects.first()) def deploy(self): self._prepare_files() self._prepare_log_dir() self._create_deployment() self._start_deploy() def post_deploy(self): self._prepare_log_dir() self._start_post_deploy() def reset(self): cs = GlobalConfigWriter() he = HostEditor() mn = MultiNodeWriter() he.clear() he.save() mn.clear() cs.clear()
StarcoderdataPython
6637299
<filename>nnblk/tree.py import itertools BLANK = '' class Tree(object): def __init__(self, operator, operand): self.operator = operator self.operand = operand self.parent = None self.children = list() def add_child(self, child): child.parent = self self.children.append(child) def visit(self): for c in self.children: yield from c.visit() yield self def __len__(self): count = 1 for child in self.children: count += len(child) return count def depth(self): count = 1 for child in self.children: count = max(count, 1 + child.depth()) return count def pad(self, depth): if depth < 1: raise ValueError() if depth == 1: assert self.is_leaf() return if self.is_leaf(): self.add_child(Tree(BLANK, BLANK)) self.add_child(Tree(BLANK, BLANK)) for c in self.children: c.pad(depth - 1) return self def prune(self): for node in self.visit(): if node.operator == BLANK and node.operand == BLANK: parent = node.parent parent.children = [c for c in parent.children if c is not node] def is_null(self): return len(self.operator) == 0 and len(self.operand) == 0 def is_leaf(self): return all([c.is_null() for c in self.children]) def __str__(self): rep = '%s:%s' % (self.operator, self.operand) if len(self.children) == 0: return rep return '(' + ', '.join([rep] + [c.__str__() for c in self.children]) + ')' BLANK_NODE = Tree(BLANK, BLANK) def merge_tree(trees): ret = Tree(operator=[n.operator for n in trees], operand=[n.operand for n in trees]) for subtrees in itertools.zip_longest(*[n.children for n in trees], fillvalue=BLANK_NODE): ret.add_child(merge_tree(subtrees)) return ret
StarcoderdataPython
368815
# SecurityGroupCorrector.py || part of ZocSec.SecurityAsCode.AWS # # An AWS Lambda for removing security groups that expose sensitive ports to the entire Internet # # Owner: Copyright © 2018 Zocdoc Inc. www.zocdoc.com # Author: <NAME> @veggiespam # import boto3 from botocore.exceptions import ClientError import json def lambda_handler(event, context): print("Event is: ", json.dumps(event)) source = event['detail']['eventSource'] if source != "ec2.amazonaws.com": # wrong caller, just silently return print("Wrong Filter on CT Events, source=", source) return allowed_event_list = [ 'CreateSecurityGroup', "AuthorizeSecurityGroupIngress" ] event_name = event['detail']['eventName'] if not(event_name in allowed_event_list): # wrong event, just silently return print("Wrong Filter on CT Events, source=", source, " / event_name=", event_name) return resp = event['detail']['responseElements'] if (resp["_return"] != True): # event was not a successful update, so we can ignore it. print("event was not a successful update, so we can ignore it") return SG_id = 'invalid' if event_name == 'CreateSecurityGroup': SG_id = resp["groupId"] elif event_name == 'AuthorizeSecurityGroupIngress': SG_id = event['detail']['requestParameters']['groupId'] else: # We shouldn't actually get here. return print("groupID = ", SG_id) ec2 = boto3.resource('ec2') security_group = ec2.SecurityGroup(SG_id) sensitive_ports = [ 22, 3389, 54321 ] ; # your sensitive ports ingress_list = security_group.ip_permissions for perm in ingress_list: # print(json.dumps(perm)) fromport=0 toport=0 ipprot=0 sensitive=False if 'FromPort' in perm: fromport = perm['FromPort'] if 'ToPort' in perm: toport = perm['ToPort'] if 'IpProtocol' in perm: ipprot = perm['IpProtocol'] if ipprot == "-1": sensitive = True # print("F:",fromport," T:",toport) if fromport > 0: for p in sensitive_ports: if fromport <= p and p <= toport: sensitive = True if sensitive: for r in perm['IpRanges']: # this could be more complex, but 0000/0 catches 90% of the cases if r['CidrIp'] == "0.0.0.0/0": print("Ingress Rule violates policy, removed: ", json.dumps(perm)) try: security_group.revoke_ingress( CidrIp = r['CidrIp'], IpProtocol = perm['IpProtocol'], FromPort = fromport, ToPort = toport, # , DryRun = True ) except ClientError as e: if 'DryRunOperation' not in str(e): print("Error: ", e) raise else: print('DryRun: ', e) print(json.dumps(ingress_list)) return
StarcoderdataPython
6474655
#!/usr/bin/env python import rospy from std_msgs.msg import Int16 class seigyo(object): def __init__(self): self._pub_control = rospy.Publisher('/control', Int16, queue_size=1) while(1): self._ren() def _ren(self): print "1: start, 0: prepare" s = input() control = Int16() control.data = s self._pub_control.publish(control) if __name__ == '__main__': rospy.init_node('seigyo') seigyo = seigyo() try: rospy.spin() except KeyboardInterrupt: pass
StarcoderdataPython
8192900
<reponame>reiv/cachelib import itertools import pytest from cachelib import ARCache def identity(x): return x @pytest.fixture def on_evict(): from collections import Counter c = Counter() def callback(key): c[key] += 1 callback.count = c return callback class TestARC: def test_arc(self): # Adapted from doctests in: # http://code.activestate.com/recipes/576532-adaptive-replacement-cache-in-python/ arc = ARCache(maxsize=10, get_missing=identity) test_sequence = itertools.chain( range(20), range(11, 15), range(20), range(11, 40), (39, 38, 37, 36, 35, 34, 33, 32, 16, 17, 11, 41)) for x in test_sequence: arc[x] assert list(arc.t1) == [41] assert list(arc.t2) == [11, 17, 16, 32, 33, 34, 35, 36, 37] assert list(arc.b1) == [31, 30] assert list(arc.b2) == [38, 39, 19, 18, 15, 14, 13, 12] assert int(arc.p) == 5 assert 41 in arc assert 32 in arc assert 30 not in arc assert 19 not in arc assert arc.size == 10 def test_delitem(self): arc = ARCache(maxsize=10, get_missing=identity) with pytest.raises(KeyError): del arc[42] for x in range(10): arc[x] for x in range(10): arc[x] arc[11] with pytest.raises(KeyError): del arc[0] for x in range(1, 10): del arc[x] del arc[11] assert arc.size == 0 def test_eviction(self, on_evict): arc = ARCache(maxsize=10, get_missing=identity, on_evict=on_evict) count = on_evict.count for x in range(10): arc[x] for x in range(1, 10): arc[x] arc[11] assert count[0] == 1 assert 0 not in arc assert 1 in arc arc[12] assert 11 not in arc assert count[11] == 1 del arc[8] assert count[8] == 0 assert arc.size == 9
StarcoderdataPython
3540065
# Empty file from cemc.ce_calculator import CE, get_atoms_with_ce_calc from cemc.ce_calculator import get_atoms_with_ce_calc_JSON from cemc.timed_test_logging import TimeLoggingTestRunner
StarcoderdataPython
365869
<filename>py/torch_tensorrt/_util.py from torch_tensorrt import __version__ from torch_tensorrt import _C def dump_build_info(): """Prints build information about the TRTorch distribution to stdout """ print(get_build_info()) def get_build_info() -> str: """Returns a string containing the build information of TRTorch distribution Returns: str: String containing the build information for TRTorch distribution """ build_info = _C.get_build_info() build_info = "TRTorch Version: " + str(__version__) + '\n' + build_info return build_info def set_device(gpu_id): _C.set_device(gpu_id)
StarcoderdataPython
3591860
<gh_stars>0 print("Day 1 - Python print Function") print("The Function is declared like this :") print("print('what to print')") # Practice makes men perfect # Just like you train your muscle # The data in Double qoutes "" is called Strings not code # The single qoutes are almost the same as double qoutes # The Great Programmers are great at finding errors and fix them
StarcoderdataPython
6682899
response = { "result": { "result": { "order0": { "ID": "35943", "TITLE": "7-я Кожуховская ул., 4К1: 104%, 3.6, эт. 12/16, 10.5 -> 16.3 (от собственника)", }, "order1": { "ID": "161", "TITLE": "преображенская площадь: 26.8 - 8.9 = 17.9 (201%)", }, "order2": { "ID": "171", "TITLE": "вднх: 8.1 - 4.7 = 3.4 (71%)", }, }, "result_error": [], "result_total": [], "result_next": [], "result_time": { "order0": { "start": 1653240894.323743, "finish": 1653240894.364974, "duration": 0.04123091697692871, "processing": 0.0411381721496582, "date_start": "2022-05-22T20:34:54+03:00", "date_finish": "2022-05-22T20:34:54+03:00", "operating": 2.6955912113189697, }, "order1": { "start": 1653240894.36503, "finish": 1653240894.369708, "duration": 0.004678010940551758, "processing": 0.004612922668457031, "date_start": "2022-05-22T20:34:54+03:00", "date_finish": "2022-05-22T20:34:54+03:00", "operating": 0, }, "order2": { "start": 1653240894.369754, "finish": 1653240894.374263, "duration": 0.00450897216796875, "processing": 0.004456043243408203, "date_start": "2022-05-22T20:34:54+03:00", "date_finish": "2022-05-22T20:34:54+03:00", "operating": 0, }, }, }, "time": { "start": 1653240894.282294, "finish": 1653240894.374298, "duration": 0.09200406074523926, "processing": 0.05059194564819336, "date_start": "2022-05-22T20:34:54+03:00", "date_finish": "2022-05-22T20:34:54+03:00", "operating": 2.6955912113189697, }, }
StarcoderdataPython
3496534
import serial,time class get_co_data: def __init__(self, device='/dev/ttyS0', baudrate=9600, timeout=1): self.ser = serial.Serial(device, baudrate=baudrate, timeout=timeout) self.ser.flush() def repeat_get_data(self): float_values = ['ADC_In', 'Voltage_ADC', 'Resistance_RS', 'Ratio (RS/R0)', 'PPM'] while True: if self.ser.in_waiting > 0: line = self.ser.readline().decode('utf-8').rstrip() items = [it.strip() for it in line.split("|")] items = [it for it in items if it!=""] if len(items)==9: items = dict(zip( ['ADC_In', 'Equation_V_ADC', 'Voltage_ADC', 'Equation_RS', 'Resistance_RS', 'EQ_Ratio', 'Ratio (RS/R0)', 'Equation_PPM', 'PPM'], items )) items['time'] = time.ctime() items['timestamp'] = time.time() items['orig_line'] = line for key in float_values: items[key] = float(items[key]) yield items else: continue if __name__ == '__main__': getco = get_co_data() data = getco.repeat_get_data() for i in range(10): f = next(data) print(f)
StarcoderdataPython
1911938
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 30 13:45:39 2020 the version of loompy should be the consistent with velocyto; otherwise error returned @author: jingkui.wang """ import loompy import glob files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117008_R9533/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117008_R9533/LOOMS/S117008_R9533_merged.loom") files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117007_R9533/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117007_R9533/LOOMS/S117007_R9533_merged.loom") files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117009_R9533/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117009_R9533/LOOMS/S117009_R9533_merged.loom") # folder S124890_R9968 files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124890_R9968/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124890_R9968/LOOMS/S124890_R9968_merged.loom") # folder S124889_R9968 files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124889_R9968/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124889_R9968/LOOMS/S124889_R9968_merged.loom") # folder S124891_R9968 files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124891_R9968/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124891_R9968/LOOMS/S124891_R9968_merged.loom") # here combine merged loom files from all folders files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/*/LOOMS/*merged.loom") loompy.combine(files, '/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/all_merged.loom') loompy.combine(files, '/Users/jiwang/workspace/imp/scRNAseq_MS_lineage_dev/data/velocyto_all_merged.loom') ds = loompy.connect('/Users/jiwang/workspace/imp/scRNAseq_MS_lineage_dev/data/velocyto_all_merged.loom') ds.shape
StarcoderdataPython
335196
#!/usr/bin/env python3 from itertools import combinations from hashlib import md5 from numpy import lcm from collections import defaultdict from AoCUtils import getInts COORDS = {'x', 'y', 'z'} def sumVelToPos(planets): for p in planets: for v in COORDS: p['pos'][v] += p['vel'][v] def hashPlanets(planets, cord): a = [] for p in planets: a.append(str(p['pos'][cord])) a.append(str(p['vel'][cord])) h = ' '.join(a) hashed = md5(h.encode()).hexdigest() return bytes(hashed, 'utf-8') def getEnergy(planet): pot = sum([ abs(v) for k,v in planet['pos'].items()]) kin = sum([ abs(v) for k,v in planet['vel'].items()]) return pot*kin def simulation(planets, pairs, steps, p2=False): if p2: found = set() hashes = defaultdict(set) cords = {'x':None, 'y':None, 'z':None} for s in range(steps): for p in pairs: for c in COORDS: if planets[p[0]]['pos'][c] > planets[p[1]]['pos'][c]: planets[p[0]]['vel'][c] -= 1 planets[p[1]]['vel'][c] += 1 elif planets[p[0]]['pos'][c] < planets[p[1]]['pos'][c]: planets[p[0]]['vel'][c] += 1 planets[p[1]]['vel'][c] -= 1 sumVelToPos(planets) if p2: if len(found) != 3: for c in COORDS: h = hashPlanets(planets, c) if h in hashes[c] and c not in found: print("planets have the same pos and vol at step {} for {}".format(s, c)) cords[c] = s found.add(c) else: hashes[c].add(h) else: return cords def main(): data = getInts('input') planets = list() i = 0 for planet in data: a = {} a['pos'] = dict(zip(['x','y','z'], planet )) a['vel'] = {'x':0, 'y':0, 'z':0} a['id'] = i planets.append( a ) i+= 1 pairs = list(combinations(range(len(planets)), 2)) planets2 = planets.copy() # part 1 simulation(planets, pairs, 1000) p1 = sum([ getEnergy(x) for x in planets ]) print("p1: {}".format(p1)) # part 2 p2_s = simulation(planets2, pairs, 9999999999, True) p2 = lcm.reduce([x for x in p2_s.values()]) print("p2: {}".format(p2)) if __name__ == '__main__': main()
StarcoderdataPython
1671026
<filename>butterfly/complex_utils.py ''' Utility functions for handling complex tensors: conjugate and complex_mul. Pytorch (as of 1.0) does not support complex tensors, so we store them as float tensors where the last dimension is 2 (real and imaginary parts). ''' import numpy as np import torch from torch.utils.dlpack import to_dlpack, from_dlpack # For now, it seems that the overhead of converting to cupy makes the cupy # version slower than the torch version. So I'll just disable cupy. # Check if cupy is available # if torch.cuda.is_available(): # use_cupy = True # try: # import cupy as cp # except: # use_cupy = False # print("Cupy isn't installed or isn't working properly. Will use Pytorch's complex multiply, which is slower.") # else: # use_cupy = False use_cupy = False def torch2numpy(X): """Convert a torch float32 tensor to a numpy array, sharing the same memory. """ return X.detach().numpy() def torch2cupy(tensor): return cp.fromDlpack(to_dlpack(tensor.cuda())) def cupy2torch(tensor): return from_dlpack(tensor.toDlpack()) def real_to_complex(X): """A version of X that's complex (i.e., last dimension is 2). Parameters: X: (...) tensor Return: X_complex: (..., 2) tensor """ return torch.stack((X, torch.zeros_like(X)), dim=-1) def conjugate_torch(X): assert X.shape[-1] == 2, 'Last dimension must be 2' return X * torch.tensor((1, -1), dtype=X.dtype, device=X.device) class Conjugate(torch.autograd.Function): '''X is a complex64 tensors but stored as float32 tensors, with last dimension = 2. ''' @staticmethod def forward(ctx, X): assert X.shape[-1] == 2, 'Last dimension must be 2' if X.is_cuda: if use_cupy: # TODO: do we need .contiguous here? I think it doesn't work if the last dimension isn't contiguous return cupy2torch(torch2cupy(X).view('complex64').conj().view('float32')) else: return conjugate_torch(X) else: return torch.from_numpy(np.ascontiguousarray(torch2numpy(X)).view('complex64').conj().view('float32')) @staticmethod def backward(ctx, grad): return Conjugate.apply(grad) conjugate = Conjugate.apply def complex_mul_torch(X, Y): assert X.shape[-1] == 2 and Y.shape[-1] == 2, 'Last dimension must be 2' return torch.stack( (X[..., 0] * Y[..., 0] - X[..., 1] * Y[..., 1], X[..., 0] * Y[..., 1] + X[..., 1] * Y[..., 0]), dim=-1) def complex_mul_numpy(X, Y): assert X.shape[-1] == 2 and Y.shape[-1] == 2, 'Last dimension must be 2' X_np = np.ascontiguousarray(torch2numpy(X)).view('complex64') Y_np = np.ascontiguousarray(torch2numpy(Y)).view('complex64') return torch.from_numpy((X_np * Y_np).view('float32')) class ComplexMul(torch.autograd.Function): '''X and Y are complex64 tensors but stored as float32 tensors, with last dimension = 2. ''' @staticmethod def forward(ctx, X, Y): assert X.shape[-1] == 2 and Y.shape[-1] == 2, 'Last dimension must be 2' ctx.save_for_backward(X, Y) if X.is_cuda: assert Y.is_cuda, 'X and Y must both be torch.cuda.FloatTensor' if use_cupy: # TODO: do we need .contiguous here? I think it doesn't work if the last dimension isn't contiguous return cupy2torch((torch2cupy(X).view('complex64') * torch2cupy(Y).view('complex64')).view('float32')) else: return complex_mul_torch(X, Y) else: assert not Y.is_cuda, 'X and Y must both be torch.FloatTensor' X_np = np.ascontiguousarray(torch2numpy(X)).view('complex64') Y_np = np.ascontiguousarray(torch2numpy(Y)).view('complex64') return torch.from_numpy((X_np * Y_np).view('float32')) @staticmethod def backward(ctx, grad): X, Y = ctx.saved_tensors grad_X, grad_Y = ComplexMul.apply(grad, conjugate(Y)), ComplexMul.apply(grad, conjugate(X)) # Need to sum over dimensions that were broadcasted dims_to_sum_X = [-i for i in range(1, X.dim() + 1) if X.shape[-i] != grad.shape[-i]] dims_to_sum_Y = [-i for i in range(1, Y.dim() + 1) if Y.shape[-i] != grad.shape[-i]] if dims_to_sum_X: # If empty list is passed to sum, it sums all the dimensions grad_X = grad_X.sum(dim=dims_to_sum_X, keepdim=True) if dims_to_sum_Y: # If empty list is passed to sum, it sums all the dimensions grad_Y = grad_Y.sum(dim=dims_to_sum_Y, keepdim=True) if grad.dim() > X.dim(): grad_X = grad_X.sum(tuple(range(grad.dim() - X.dim()))) if grad.dim() > Y.dim(): grad_Y = grad_Y.sum(tuple(range(grad.dim() - Y.dim()))) return grad_X, grad_Y complex_mul = ComplexMul.apply def test_complex_mul(): n = 5 m = 7 p = 4 X = torch.rand(m, 1, n, 2, requires_grad=True).transpose(0, 2) # Transpose to test non-contiguous arrays Y = torch.rand(m, p, 2, requires_grad=True).transpose(0, 1) Z = complex_mul(X, Y) Z_torch = complex_mul_torch(X, Y) assert Z.shape == (n, p, m, 2) assert torch.allclose(Z, Z_torch) g = torch.rand_like(Z) dX, dY = torch.autograd.grad(Z, (X, Y), g) dX_torch, dY_torch = torch.autograd.grad(Z_torch, (X, Y), g) assert torch.allclose(dX, dX_torch) assert torch.allclose(dY, dY_torch) if torch.cuda.is_available(): X, Y = X.cuda(), Y.cuda() Z = complex_mul(X, Y) Z_torch = complex_mul_torch(X, Y) assert Z.shape == (n, p, m, 2) assert torch.allclose(Z, Z_torch) g = torch.rand_like(Z) dX, dY = torch.autograd.grad(Z, (X, Y), g) dX_torch, dY_torch = torch.autograd.grad(Z_torch, (X, Y), g) assert torch.allclose(dX, dX_torch) assert torch.allclose(dY, dY_torch) def complex_matmul_torch(X, Y): """Multiply two complex matrices. Parameters: X: (..., n, m, 2) Y: (..., m, p, 2) Return: Z: (..., n, p, 2) """ return complex_mul_torch(X.unsqueeze(-2), Y.unsqueeze(-4)).sum(dim=-3) class ComplexMatmulNp(torch.autograd.Function): """Multiply two complex matrices, in numpy. Parameters: X: (n, m, 2) Y: (m, p, 2) Return: Z: (n, p, 2) """ @staticmethod def forward(ctx, X, Y): ctx.save_for_backward(X, Y) X_np = np.ascontiguousarray(torch2numpy(X)).view('complex64').squeeze(-1) Y_np = np.ascontiguousarray(torch2numpy(Y)).view('complex64').squeeze(-1) prod = torch.from_numpy((X_np @ Y_np)[..., None].view('float32')) return prod @staticmethod def backward(ctx, grad): X, Y = ctx.saved_tensors X_np = X.detach().contiguous().numpy().view('complex64').squeeze(-1) Y_np = Y.detach().contiguous().numpy().view('complex64').squeeze(-1) grad_np = grad.detach().contiguous().numpy().view('complex64').squeeze(-1) dX = torch.from_numpy(np.expand_dims(grad_np @ Y_np.conj().T, -1).view('float32')) dY = torch.from_numpy(np.expand_dims(X_np.conj().T @ grad_np, -1).view('float32')) return dX, dY complex_matmul = ComplexMatmulNp.apply def test_complex_mm(): n = 5 m = 7 p = 4 X = torch.rand(n, m, 2, requires_grad=True) Y = torch.rand(m, p, 2, requires_grad=True) Z = complex_matmul(X, Y) assert Z.shape == (n, p, 2) batch_size = 3 # X = torch.rand(batch_size, n, m, 2) # Y = torch.rand(batch_size, m, p, 2) # Z = complex_matmul(X, Y) # assert Z.shape == (batch_size, n, p, 2) X_np = X.detach().contiguous().numpy().view('complex64').squeeze(-1) Y_np = Y.detach().contiguous().numpy().view('complex64').squeeze(-1) Z_np = np.expand_dims(X_np @ Y_np, axis=-1).view('float32') assert np.allclose(Z.detach().numpy(), Z_np) Z_torch = complex_matmul_torch(X, Y) assert torch.allclose(Z, Z_torch) g = torch.rand_like(Z) dX, dY = torch.autograd.grad(Z, (X, Y), g) dX_torch, dY_torch = torch.autograd.grad(Z_torch, (X, Y), g) assert torch.allclose(dX, dX_torch) assert torch.allclose(dY, dY_torch) if __name__ == '__main__': test_complex_mul() test_complex_mm()
StarcoderdataPython
6400848
<reponame>kairu-ms/autorest.az #!/usr/bin/env python # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import os import sys if not sys.version_info >= (3, 6, 0): raise Exception( "Autorest for Python extension requires Python 3.6 at least") try: import pip except ImportError: raise Exception("Your Python installation doesn't have pip available") try: import venv except ImportError: raise Exception("Your Python installation doesn't have venv available") # Now we have pip and Py >= 3.6, go to work import subprocess from pathlib import Path from venvtools import ExtendedEnvBuilder, python_run _ROOT_DIR = Path(__file__).parent.parent.parent.parent def main(): venv_path = _ROOT_DIR / "venv" venv_prexists = venv_path.exists() if venv_prexists: env_builder = venv.EnvBuilder(with_pip=True) venv_context = env_builder.ensure_directories(venv_path) else: env_builder = ExtendedEnvBuilder(with_pip=True) env_builder.create(venv_path) venv_context = env_builder.context python_run(venv_context, "pip", ["install", "-U", "pip"]) python_run(venv_context, "pip", ["install", "-r", os.path.join("dist", "src", "python", "requirements.txt")]) def lint(filename): venv_path = _ROOT_DIR / "venv" venv_prexists = venv_path.exists() if not venv_prexists: main() env_builder = venv.EnvBuilder(with_pip=True) venv_context = env_builder.ensure_directories(venv_path) python_run(venv_context, "pip", ["install", "-U", "pip"]) python_run(venv_context, "pip", ["install", "-r", os.path.join("dist", "src", "python", "requirements.txt")]) # black --line-length=120 --experimental-string-processing --skip-string-normalization # autopep8 --global-config '.pyproject.toml' --in-place --max-line-length=120 --ignore="E203,E501,W6" # autoflake --in-place --expand-star-imports --remove-all-unused-imports --remove-duplicate-keys --remove-unused-variables python_run(venv_context, "black", [ "--line-length=120", "--experimental-string-processing", "--skip-string-normalization", filename]) python_run(venv_context, "autopep8", [ "--in-place", '--exclude=".git,__pycache__"', "--max-line-length=120", '--ignore="E203,E501,W6"', filename]) python_run(venv_context, "autoflake", ["--in-place", "--expand-star-imports", "--remove-all-unused-imports", "--remove-duplicate-keys", "--remove-unused-variables", filename]) if __name__ == "__main__": if len(sys.argv) < 2: main() elif os.path.exists(sys.argv[1]): lint(sys.argv[1])
StarcoderdataPython
1782544
<gh_stars>10-100 #========================================================================= # RegincrNstage_test #========================================================================= import collections import pytest from random import sample from pymtl import * from pclib.test import run_test_vector_sim, mk_test_case_table from RegIncrNstage import RegIncrNstage #------------------------------------------------------------------------- # mk_test_vector_table #------------------------------------------------------------------------- def mk_test_vector_table( nstages, inputs ): inputs.extend( [0]*nstages ) test_vector_table = [ ('in_ out*') ] last_results = collections.deque( ['?']*nstages ) for input_ in inputs: test_vector_table.append( [ input_, last_results.popleft() ] ) last_results.append( Bits( 8, input_ + nstages, trunc=True ) ) return test_vector_table #------------------------------------------------------------------------- # Parameterized Testing with Test Case Table #------------------------------------------------------------------------- test_case_table = mk_test_case_table([ ( "nstages inputs "), [ "2stage_small", 2, [ 0x00, 0x03, 0x06 ] ], [ "2stage_large", 2, [ 0xa0, 0xb3, 0xc6 ] ], [ "2stage_overflow", 2, [ 0x00, 0xfe, 0xff ] ], [ "2stage_random", 2, sample(range(0xff),20) ], [ "3stage_small", 3, [ 0x00, 0x03, 0x06 ] ], [ "3stage_large", 3, [ 0xa0, 0xb3, 0xc6 ] ], [ "3stage_overflow", 3, [ 0x00, 0xfe, 0xff ] ], [ "3stage_random", 3, sample(range(0xff),20) ], ]) @pytest.mark.parametrize( **test_case_table ) def test( test_params, dump_vcd ): nstages = test_params.nstages inputs = test_params.inputs run_test_vector_sim( RegIncrNstage( nstages ), mk_test_vector_table( nstages, inputs ), dump_vcd ) #------------------------------------------------------------------------- # Parameterized Testing of With nstages = [ 1, 2, 3, 4, 5, 6 ] #------------------------------------------------------------------------- @pytest.mark.parametrize( "n", [ 1, 2, 3, 4, 5, 6 ] ) def test_random( n, dump_vcd ): run_test_vector_sim( RegIncrNstage( nstages=n ), mk_test_vector_table( n, sample(range(0xff),20) ), dump_vcd )
StarcoderdataPython
11286695
# Time: O(n) on average # Space: O(1) # 973 # We have a list of points on the plane. Find the K closest points to the origin (0, 0). # (Here, the distance between two points on a plane is the Euclidean distance.) # # You may return the answer in any order. The answer is guaranteed to be unique (except for # the order that it is in.) # Solution 1: quick select # We want an algorithm faster than NlogN. Clearly, the only way to do this is to use the fact that # the K elements returned can be in any order -- otherwise we would be sorting which is at least NlogN. # # Say we choose some random element x = A[i] and split the array into two buckets: one bucket of all # the elements less than x, and another bucket of all the elements greater than or equal to x. # This is known as "quickselecting by a pivot x". # # The idea is that if we quickselect by some pivot, on average in linear time we'll reduce the problem # to a problem of half the size. # # Algorithm # Let's do the work(i, j, K) of partially sorting the subarray (points[i], points[i+1], ..., points[j]) # so that the smallest K elements of this subarray occur in the first K positions (i, i+1, ..., i+K-1). # # First, we quickselect by a random pivot element from the subarray. To do this in place, we have two pointers # i and j, and move these pointers to the elements that are in the wrong bucket -- then, we swap these elements. # # After, we have two buckets [oi, i] and [i+1, oj], where (oi, oj) are the original (i, j) values when # calling work(i, j, K). Say the first bucket has 10 items and the second bucket has 15 items. If we were # trying to partially sort say, K = 5 items, then we only need to partially sort the first bucket: work(oi, i, 5). # Otherwise, if we were trying to partially sort say, K = 17 items, then the first 10 items are already # partially sorted, and we only need to partially sort the next 7 items: work(i+1, oj, 7). from random import randint class Solution(object): def kClosest(self, points, K): # recursion, leetcodeOfficial: 1400 ms """ :type points: List[List[int]] :type K: int :rtype: List[List[int]] """ dist = lambda i: points[i][0]**2 + points[i][1]**2 def sort(i, j, K): # Partially sorts A[i:j+1] so the first K elements are # the smallest K elements. if i >= j: return # Put random element as A[i] - this is the pivot k = randint(i, j) points[i], points[k] = points[k], points[i] mid = partition(i, j) if K < mid - i + 1: sort(i, mid - 1, K) elif K > mid - i + 1: sort(mid + 1, j, K - (mid - i + 1)) def partition(i, j): # Partition by pivot A[i], returning an index mid # such that A[i] <= A[mid] <= A[j] for i < mid < j. oi = i pivot = dist(i) i += 1 while True: while i < j and dist(i) < pivot: i += 1 while i <= j and dist(j) >= pivot: j -= 1 if i >= j: break points[i], points[j] = points[j], points[i] points[oi], points[j] = points[j], points[oi] # points[j] always < pivot dist, so swap to the beginning return j sort(0, len(points) - 1, K) return points[:K] def kClosest_iteration(self, points, K): def dist(point): return point[0]**2 + point[1]**2 def kthElement(k, compare): def PartitionAroundPivot(left, right, pivot_idx, compare): new_pivot_idx = left points[pivot_idx], points[right] = points[right], points[pivot_idx] for i in xrange(left, right): if compare(points[i], points[right]): points[i], points[new_pivot_idx] = points[new_pivot_idx], points[i] new_pivot_idx += 1 points[right], points[new_pivot_idx] = points[new_pivot_idx], points[right] return new_pivot_idx left, right = 0, len(points) - 1 while left <= right: pivot_idx = randint(left, right) new_pivot_idx = PartitionAroundPivot(left, right, pivot_idx, compare) if new_pivot_idx == k: return elif new_pivot_idx > k: right = new_pivot_idx - 1 else: # new_pivot_idx < k. left = new_pivot_idx + 1 kthElement(K-1, lambda a, b: dist(a) < dist(b)) return points[:K] # Time: O(nlogk) # Space: O(k) import heapq class Solution2(object): # USE THIS 400 ms def kClosest(self, points, K): """ :type points: List[List[int]] :type K: int :rtype: List[List[int]] """ def dist(point): return point[0]**2 + point[1]**2 max_heap = [] for point in points: heapq.heappush(max_heap, (-dist(point), point)) if len(max_heap) > K: heapq.heappop(max_heap) return [x[1] for x in max_heap] # Time: O(nlogn) # Space: O(1) class Solution3(object): def kClosest(self, points, K): points.sort(key=lambda p: p[0]**2 + p[1]**2) return points[:K]
StarcoderdataPython
8116995
<filename>tests/cluster/test_cluster_utlis.py<gh_stars>10-100 from cluster_setup import * def test_sizes_from_labels(): labels = jnp.array([0, 0, 1, 1, 2, 2]) sizes = cluster.sizes_from_labels_jit(labels, 3) assert_array_equal(sizes, jnp.array([2, 2, 2])) def test_start_end_indices(): sizes = jnp.array([4, 4]) starts, ends = cluster.start_end_indices(sizes) assert_array_equal(starts, jnp.array([0, 4])) assert_array_equal(ends, jnp.array([4, 8])) def test_labels_from_sizes(): sizes = jnp.array([2, 2]) labels = cluster.labels_from_sizes(sizes) assert_array_equal(labels, jnp.array([0, 0, 1, 1])) def test_best_map(): true_labels = jnp.array([0, 0, 1, 1]) pred_labels = jnp.array([1, 1, 0, 0]) mapped_labels, cols, G = cluster.best_map(true_labels, pred_labels) assert_array_equal(mapped_labels, true_labels) def test_best_map_k(): true_labels = jnp.array([0, 0, 1, 1]) pred_labels = jnp.array([1, 1, 0, 0]) mapped_labels, cols, G = cluster.best_map_k(true_labels, pred_labels, 2) assert_array_equal(mapped_labels, true_labels) def test_cluster_error(): true_labels = jnp.array([0, 0, 1, 1]) pred_labels = jnp.array([1, 1, 0, 0]) error = cluster.clustering_error(true_labels, pred_labels) assert error.error == 0 assert error.error_perc == 0 s = str(error) def test_cluster_error_k(): true_labels = jnp.array([0, 0, 1, 1]) pred_labels = jnp.array([1, 1, 0, 0]) error = cluster.clustering_error_k(true_labels, pred_labels, 2) assert error.error == 0 assert error.error_perc == 0
StarcoderdataPython
1728898
<reponame>pulumi/pulumi-rancher2<filename>sdk/python/pulumi_rancher2/registry.py # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs from ._inputs import * __all__ = ['RegistryArgs', 'Registry'] @pulumi.input_type class RegistryArgs: def __init__(__self__, *, project_id: pulumi.Input[str], registries: pulumi.Input[Sequence[pulumi.Input['RegistryRegistryArgs']]], annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, namespace_id: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Registry resource. :param pulumi.Input[str] project_id: The project id where to assign the registry (string) :param pulumi.Input[Sequence[pulumi.Input['RegistryRegistryArgs']]] registries: Registries data for registry (list) :param pulumi.Input[Mapping[str, Any]] annotations: Annotations for Registry object (map) :param pulumi.Input[str] description: A registry description (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels for Registry object (map) :param pulumi.Input[str] name: The name of the registry (string) :param pulumi.Input[str] namespace_id: The namespace id where to assign the namespaced registry (string) """ pulumi.set(__self__, "project_id", project_id) pulumi.set(__self__, "registries", registries) if annotations is not None: pulumi.set(__self__, "annotations", annotations) if description is not None: pulumi.set(__self__, "description", description) if labels is not None: pulumi.set(__self__, "labels", labels) if name is not None: pulumi.set(__self__, "name", name) if namespace_id is not None: pulumi.set(__self__, "namespace_id", namespace_id) @property @pulumi.getter(name="projectId") def project_id(self) -> pulumi.Input[str]: """ The project id where to assign the registry (string) """ return pulumi.get(self, "project_id") @project_id.setter def project_id(self, value: pulumi.Input[str]): pulumi.set(self, "project_id", value) @property @pulumi.getter def registries(self) -> pulumi.Input[Sequence[pulumi.Input['RegistryRegistryArgs']]]: """ Registries data for registry (list) """ return pulumi.get(self, "registries") @registries.setter def registries(self, value: pulumi.Input[Sequence[pulumi.Input['RegistryRegistryArgs']]]): pulumi.set(self, "registries", value) @property @pulumi.getter def annotations(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Annotations for Registry object (map) """ return pulumi.get(self, "annotations") @annotations.setter def annotations(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "annotations", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A registry description (string) """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Labels for Registry object (map) """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "labels", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the registry (string) """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="namespaceId") def namespace_id(self) -> Optional[pulumi.Input[str]]: """ The namespace id where to assign the namespaced registry (string) """ return pulumi.get(self, "namespace_id") @namespace_id.setter def namespace_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "namespace_id", value) @pulumi.input_type class _RegistryState: def __init__(__self__, *, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, namespace_id: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, registries: Optional[pulumi.Input[Sequence[pulumi.Input['RegistryRegistryArgs']]]] = None): """ Input properties used for looking up and filtering Registry resources. :param pulumi.Input[Mapping[str, Any]] annotations: Annotations for Registry object (map) :param pulumi.Input[str] description: A registry description (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels for Registry object (map) :param pulumi.Input[str] name: The name of the registry (string) :param pulumi.Input[str] namespace_id: The namespace id where to assign the namespaced registry (string) :param pulumi.Input[str] project_id: The project id where to assign the registry (string) :param pulumi.Input[Sequence[pulumi.Input['RegistryRegistryArgs']]] registries: Registries data for registry (list) """ if annotations is not None: pulumi.set(__self__, "annotations", annotations) if description is not None: pulumi.set(__self__, "description", description) if labels is not None: pulumi.set(__self__, "labels", labels) if name is not None: pulumi.set(__self__, "name", name) if namespace_id is not None: pulumi.set(__self__, "namespace_id", namespace_id) if project_id is not None: pulumi.set(__self__, "project_id", project_id) if registries is not None: pulumi.set(__self__, "registries", registries) @property @pulumi.getter def annotations(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Annotations for Registry object (map) """ return pulumi.get(self, "annotations") @annotations.setter def annotations(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "annotations", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A registry description (string) """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Labels for Registry object (map) """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "labels", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the registry (string) """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="namespaceId") def namespace_id(self) -> Optional[pulumi.Input[str]]: """ The namespace id where to assign the namespaced registry (string) """ return pulumi.get(self, "namespace_id") @namespace_id.setter def namespace_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "namespace_id", value) @property @pulumi.getter(name="projectId") def project_id(self) -> Optional[pulumi.Input[str]]: """ The project id where to assign the registry (string) """ return pulumi.get(self, "project_id") @project_id.setter def project_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project_id", value) @property @pulumi.getter def registries(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RegistryRegistryArgs']]]]: """ Registries data for registry (list) """ return pulumi.get(self, "registries") @registries.setter def registries(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RegistryRegistryArgs']]]]): pulumi.set(self, "registries", value) class Registry(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, namespace_id: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, registries: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegistryRegistryArgs']]]]] = None, __props__=None): """ Provides a Rancher v2 Registry resource. This can be used to create docker registries for Rancher v2 environments and retrieve their information. Depending of the availability, there are 2 types of Rancher v2 docker registries: - Project registry: Available to all namespaces in the `project_id` - Namespaced registry: Available to just `namespace_id` in the `project_id` ## Example Usage ```python import pulumi import pulumi_rancher2 as rancher2 # Create a new rancher2 Project Registry foo = rancher2.Registry("foo", description="Terraform registry foo", project_id="<project_id>", registries=[rancher2.RegistryRegistryArgs( address="test.io", password="<PASSWORD>", username="user", )]) ``` ```python import pulumi import pulumi_rancher2 as rancher2 # Create a new rancher2 Namespaced Registry foo = rancher2.Registry("foo", description="Terraform registry foo", namespace_id="<namespace_id>", project_id="<project_id>", registries=[rancher2.RegistryRegistryArgs( address="test.io", password="<PASSWORD>", username="user2", )]) ``` ## Import Registries can be imported using the registry ID in the format `<namespace_id>.<project_id>.<registry_id>` ```sh $ pulumi import rancher2:index/registry:Registry foo &lt;namespace_id&gt;.&lt;project_id&gt;.&lt;registry_id&gt; ``` `<namespace_id>` is optional, just needed for namespaced registry. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Mapping[str, Any]] annotations: Annotations for Registry object (map) :param pulumi.Input[str] description: A registry description (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels for Registry object (map) :param pulumi.Input[str] name: The name of the registry (string) :param pulumi.Input[str] namespace_id: The namespace id where to assign the namespaced registry (string) :param pulumi.Input[str] project_id: The project id where to assign the registry (string) :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegistryRegistryArgs']]]] registries: Registries data for registry (list) """ ... @overload def __init__(__self__, resource_name: str, args: RegistryArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Provides a Rancher v2 Registry resource. This can be used to create docker registries for Rancher v2 environments and retrieve their information. Depending of the availability, there are 2 types of Rancher v2 docker registries: - Project registry: Available to all namespaces in the `project_id` - Namespaced registry: Available to just `namespace_id` in the `project_id` ## Example Usage ```python import pulumi import pulumi_rancher2 as rancher2 # Create a new rancher2 Project Registry foo = rancher2.Registry("foo", description="Terraform registry foo", project_id="<project_id>", registries=[rancher2.RegistryRegistryArgs( address="test.io", password="<PASSWORD>", username="user", )]) ``` ```python import pulumi import pulumi_rancher2 as rancher2 # Create a new rancher2 Namespaced Registry foo = rancher2.Registry("foo", description="Terraform registry foo", namespace_id="<namespace_id>", project_id="<project_id>", registries=[rancher2.RegistryRegistryArgs( address="test.io", password="<PASSWORD>", username="user2", )]) ``` ## Import Registries can be imported using the registry ID in the format `<namespace_id>.<project_id>.<registry_id>` ```sh $ pulumi import rancher2:index/registry:Registry foo &lt;namespace_id&gt;.&lt;project_id&gt;.&lt;registry_id&gt; ``` `<namespace_id>` is optional, just needed for namespaced registry. :param str resource_name: The name of the resource. :param RegistryArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(RegistryArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, namespace_id: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, registries: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegistryRegistryArgs']]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = RegistryArgs.__new__(RegistryArgs) __props__.__dict__["annotations"] = annotations __props__.__dict__["description"] = description __props__.__dict__["labels"] = labels __props__.__dict__["name"] = name __props__.__dict__["namespace_id"] = namespace_id if project_id is None and not opts.urn: raise TypeError("Missing required property 'project_id'") __props__.__dict__["project_id"] = project_id if registries is None and not opts.urn: raise TypeError("Missing required property 'registries'") __props__.__dict__["registries"] = registries super(Registry, __self__).__init__( 'rancher2:index/registry:Registry', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, namespace_id: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, registries: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegistryRegistryArgs']]]]] = None) -> 'Registry': """ Get an existing Registry resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Mapping[str, Any]] annotations: Annotations for Registry object (map) :param pulumi.Input[str] description: A registry description (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels for Registry object (map) :param pulumi.Input[str] name: The name of the registry (string) :param pulumi.Input[str] namespace_id: The namespace id where to assign the namespaced registry (string) :param pulumi.Input[str] project_id: The project id where to assign the registry (string) :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegistryRegistryArgs']]]] registries: Registries data for registry (list) """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _RegistryState.__new__(_RegistryState) __props__.__dict__["annotations"] = annotations __props__.__dict__["description"] = description __props__.__dict__["labels"] = labels __props__.__dict__["name"] = name __props__.__dict__["namespace_id"] = namespace_id __props__.__dict__["project_id"] = project_id __props__.__dict__["registries"] = registries return Registry(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def annotations(self) -> pulumi.Output[Mapping[str, Any]]: """ Annotations for Registry object (map) """ return pulumi.get(self, "annotations") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A registry description (string) """ return pulumi.get(self, "description") @property @pulumi.getter def labels(self) -> pulumi.Output[Mapping[str, Any]]: """ Labels for Registry object (map) """ return pulumi.get(self, "labels") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the registry (string) """ return pulumi.get(self, "name") @property @pulumi.getter(name="namespaceId") def namespace_id(self) -> pulumi.Output[Optional[str]]: """ The namespace id where to assign the namespaced registry (string) """ return pulumi.get(self, "namespace_id") @property @pulumi.getter(name="projectId") def project_id(self) -> pulumi.Output[str]: """ The project id where to assign the registry (string) """ return pulumi.get(self, "project_id") @property @pulumi.getter def registries(self) -> pulumi.Output[Sequence['outputs.RegistryRegistry']]: """ Registries data for registry (list) """ return pulumi.get(self, "registries")
StarcoderdataPython