id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
3588290
<filename>src/psiopic2/app/baseApp.py import sys from datetime import datetime from docopt import docopt from psiopic2.app.ui.prompt import ask, prompt import logging import textwrap from psiopic2.app.tasks import TaskException import traceback BASE_OPTIONS = """Options: --no-widgets Turn off all widgets, useful for logfiles --no-colors Turn off any coloring -d Enable debugging -h --help Show this help information -v --version Version information """ class Arg(object): def __init__(self, **kwargs): self.title = kwargs.get('title') or kwargs.get('name') self.name = kwargs.get('name') self.description = kwargs.get('description') self.defaultValue = kwargs.get('defaultValue') self.valueDesc = kwargs.get('valueDesc', '') self.prompt = kwargs.get('prompt', True) self.smallName = kwargs.get('smallName', '') self.startTime = None self.endTime = None BASE_ARGS = [ Arg( title="Force", name='force', description='Do not prompt user for missing settings. Use defaults', defaultValue=False, prompt=False ), Arg( title='No Widgets', name='no-widgets', description='Turn off all widgets, useful for logfiles', defaultValue=False, prompt=False ), Arg( title='No Colours', name='no-colors', description='Turn off all colours', defaultValue=False, prompt=False ), Arg( title='Debug', name='debug', smallName='d', description='Turn on debugging', defaultValue=False, prompt=False ), Arg( title='Help', name='help', smallName='h', description='Display this help', defaultValue=False, prompt=False ), Arg( title='Version', name='version', description='Display product version', defaultValue=False, prompt=False ) ] class BaseApp(object): def __init__(self, name, argv, version=None, title=None, description=None): self._argv = argv self._name = name self._docString = None self._version = version self._availArgs = None self._args = None self._cliArgs = None self._workQueue = [] self._log = None self.description = description self.title = title or name def help(self): sys.stdout.write(self.getDocString()) def version(self): sys.stdout.write(self._version) sys.stdout.write("\n") def getLogger(self): if self._log == None: self._log = logging.getLogger('psiopic.' + self._name) return self._log def addArg(self, name, title=None, description=None, defaultValue=None, prompt=True): if self._availArgs == None: self._availArgs = [] if name.__class__ == Arg: self._availArgs.append(name) else: self._availArgs.append(Arg( name=name, title=title, description=description, defaultValue=defaultValue, prompt=prompt )) def getDocString(self): if self._docString == None: docString = "" if self.title: docString += self.title + "\n" if self.description: docString += "\n" + self.description docString += "\nUsage: psiopic2 %s [options]\n" % self._name docString += "\n" docString += "Options (%s):\n" % self._name # find longest argument name longestLen = max(len(arg.name) + len(arg.valueDesc) + len(arg.smallName) for arg in self._availArgs) longestLen = longestLen + 12 # allow for additional formatting descriptionWidth = 80 - longestLen for arg in self._availArgs: descriptionLines = textwrap.wrap(arg.description, descriptionWidth) optString = " " if arg.smallName: optString += "-%s " % (arg.smallName) if arg.name and arg.name != arg.smallName: optString += "--%s" % (arg.name) if arg.valueDesc: optString += '=%s' % (arg.valueDesc) optString += ' ' if len(optString) < longestLen: optString += " " * (longestLen - len(optString)) docString += optString + '%s\n' % (descriptionLines.pop()) if len(descriptionLines) > 0: for line in descriptionLines: docString += " " * longestLen docString += line + "\n" docString += "\n" # docString += BASE_OPTIONS self._docString = docString return self._docString def getCliArgs(self): if self._cliArgs == None: self._cliArgs = docopt(self.getDocString(), self._argv[1:], False) return self._cliArgs def getArg(self, argName): return self._args[argName] def addTask(self, task, taskOpts, taskTitle=None): if taskTitle == None: taskTitle = task.__name__ self._workQueue.append((task, taskOpts, taskTitle)) def initConfiguration(self): if self._args == None: self._args = {} cliArgs = self.getCliArgs() argValue = None for arg in self._availArgs: if '--' + arg.name in cliArgs and cliArgs['--' + arg.name] != None: argValue = cliArgs['--' + arg.name] elif arg.prompt and cliArgs['--force'] != True: argValue = ask(arg.title, arg.defaultValue) else: argValue = arg.defaultValue self._args[arg.name] = argValue def run(self): ret = 0 log = self.getLogger() self.startTime = datetime.now() self.initConfiguration() if len(self._workQueue) == 0: log.warning("There are no tasks in the work queue, is this app setup properly?") else: try: for taskClass, taskOpts, taskTitle in self._workQueue: task = taskClass(self._args) log.info(taskTitle or task.name) task.run(**taskOpts) except TaskException as e: log.error('%s failed' % task.name) log.exception(e) ret = 1 except Exception as e: log.critical('Unhandled exception from %s' % taskTitle) log.critical(traceback.format_exc()) ret = 1 self.endTime = datetime.now() - self.startTime log.info('Completed in: %s' % self.endTime) return ret
StarcoderdataPython
1639003
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- from django.contrib import admin from jamendo.models import Artist, Album, Track, License, Language,\ Country, State, City, Playlist, Radio, JamendoUser, Genre, Review admin.site.register(Artist) admin.site.register(Album) admin.site.register(Track) admin.site.register(License) admin.site.register(Language) admin.site.register(Country) admin.site.register(State) admin.site.register(City) admin.site.register(Playlist) admin.site.register(Radio) admin.site.register(JamendoUser) admin.site.register(Genre) admin.site.register(Review)
StarcoderdataPython
3388119
from twittertail.get_twitter_values import GetTwitterValues from twittertail.exceptions import ( FailedToGetTwitterValueException, FailedToGetTweetsException ) from html import unescape import requests import re class GetTweetsAPI: ''' GetTweetsAPI mimmicks the process a browser uses when accessing a Twitter user's tweet timeline in an unauthenticated session. To do this, it: 1. Gets the "guest token" from the Twitter markup, and uses it in the "x-guest-token" request header in the API call. 2. Gets the bearer token from the Twitter main.js, and uses it in the "authorization" request header in the API call. 3. Gets the user id for the supplied username from a GraphQL query. 4. Queries the Twitter API at /2/timeline/profile/X.json, where X is the user id. Arguments: user (str): the username of the Twitter user to query against. retweets (bool): toggles whether to return retweets Raises: FailedToGetTweetsException: if the username is invalid by Twitter standards. ''' def __init__(self, user, retweets=False): if len(user) > 15 or re.search('[^a-zA-Z0-9_]+', user): raise FailedToGetTweetsException( 'Invalid username - Twitter usernames must be 15 or fewer ' 'characters in length, and must be alphanumeric only ' '(with underscores).' ) self.user = user self.retweets = retweets self.__refresh_twitter_values() self.s_twitter = requests.session() self.headers = { 'x-guest-token': self.gt, 'authorization': 'Bearer %s' % (self.bearer_token), 'content-type': 'application/json' } self.user_id = self.__get_user_id() def __refresh_twitter_values(self): ( self.gt, self.bearer_token, self.query_id ) = self.__get_new_twitter_values() def __get_new_twitter_values(self): ''' Collect the values needed to make an unauthenticated request to the Twitter API for a user's timeline, using GetTwitterValues. Raises: FailedToGetTweetsException: if values could not be retrieved. Return: gt, bearer_token, query_id (tuple): the API values. ''' twitter_values = GetTwitterValues() try: gt = twitter_values.get_guest_token() bearer_token = twitter_values.get_bearer_token() query_id = twitter_values.get_query_id() except FailedToGetTwitterValueException as e: raise FailedToGetTweetsException(e) return (gt, bearer_token, query_id) def get_twitter_values(self): ''' Returns the current tokens retrieved from Twitter. Returns: tuple: the guest token, bearer token, and query id ''' return (self.gt, self.bearer_token, self.query_id) def __get_user_id(self): ''' Gets the id of the Twitter username supplied, by querying the GraphQL API's "UserByScreenName" operation. Raises: FailedToGetTweetsException: if the user id could not be retrieved. Returns: user_id (str): the user id. ''' user_id = None url = ( 'https://api.twitter.com/graphql/%s/UserByScreenName' % (self.query_id) ) params = { 'variables': ( '{"screen_name":"%s","withHighlightedLabel":true}' % (self.user) ) } try: r = self.s_twitter.get( url, params=params, headers=self.headers ) graph_ql_json = r.json() except Exception as e: raise FailedToGetTweetsException( 'Failed to get the user id, request excepted with: %s' % (str(e)) ) try: user_id = graph_ql_json['data']['user']['rest_id'] except KeyError: raise FailedToGetTweetsException( 'Failed to get the user id, could not find user rest_id in ' 'GraphQL response.' ) return user_id def get_tweets( self, count=None, refresh_tokens=False, last_id=None ): ''' Queries the Twitter API using a guest token and authorization bearer token retrived from GetTwitterValues(). Arguments: count (int): the amount of tweets to get. refresh_tokens (bool): get new tokens before checking for tweets. last_id (int): the id of the latest seen tweet. Raises: FailedToGetTweetsException: if tweets could not be retrieved. Returns: tweets (list): a list of tweet timestamp and text tuples for the user, sorted ascending in time, limited by the 'limit' argument. ''' if refresh_tokens: self.__refresh_twitter_values() tweets = list() try: url = ( 'https://api.twitter.com/2/timeline/profile/%s.json' % self.user_id ) # the 'count' param in this query is actually a maximum, # where deleted or suspended tweets are removed after the # count is applied, so we don't supply a count param in # the API query and instead apply it to the response data # later. params = { 'tweet_mode': 'extended' } r = self.s_twitter.get(url, headers=self.headers, params=params) timeline_json = r.json() except Exception as e: raise FailedToGetTweetsException( 'Failed to get tweets, request excepted with: %s' % (str(e)) ) try: tweets_json = timeline_json['globalObjects']['tweets'] if self.retweets: tweet_ids = list(int(x) for x in tweets_json.keys()) else: tweet_ids = list( int(x) for x in tweets_json.keys() if 'retweeted_status_id_str' not in tweets_json[x] ) # if a last id value is supplied, only return tweets which an id # greater if last_id: tweet_ids = list(x for x in tweet_ids if x > last_id) if len(tweet_ids) > 0: # an assumption here is the display should be oldest to newest, # i.e. opposite to Twitter's UI, as it makes more sense in a # cli environment. tweet_ids.sort(reverse=True) tweet_ids_culled = tweet_ids[:count] tweet_ids_culled.sort() tweets = ( list( ( tweets_json[str(x)]['created_at'], unescape(tweets_json[str(x)]['full_text']), tweets_json[str(x)]['id_str'] ) for x in tweet_ids_culled ) ) except KeyError: raise FailedToGetTweetsException('Failed to get tweets.') return tweets
StarcoderdataPython
4914791
import pytask from src.config import BLD from src.config import SRC import numpy as np import json from itertools import product import pandas as pd from statsmodels.nonparametric.kernel_regression import KernelReg from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from src.conformal_methods.utils import flatten, generate_X_fixed_positions, generate_y_fixed_positions, x_scale, construc_cond_metric_df_simulation from src.conformal_methods.split_conformal_inference import SplitConformalRegressor from src.conformal_methods.r_objects import QuantregForest def conc_tuples(index_prep, method, i): conc = (method, i) return index_prep + conc def run_simulation(specs, produces): methods = ["mean-based", "weighted-mean-based", "quantile-based", "cdf-based"] simulation_ids = np.arange(specs["n_sims"]) index_prep = [( specs["n"], specs["p"], specs["X_dist"], specs["X_correlation"], specs["eps_dist"], specs["error_type"], specs["functional_form"], specs["non_zero_beta_count"], specs["uniform_upper"], bool(int(specs["standardized_X"])), ) ] index = product(index_prep, methods, simulation_ids) index = flatten(l=list(index)) index = pd.MultiIndex.from_tuples( index, names=( "n", "p", "X_dist", "X_correlation", "eps_dist", "error_type", "functional_form", "non_zero_beta_count", "uniform_upper", "standardized_X", "method", "simulation_id", ), ) df = pd.DataFrame( columns=[ "mean_interval_length", "mean_coverage", "conditional_metrics_df", ], index=index, ) same_case_as_previous_round = False for index in df.index: if index[11] != 0: print("Previous index is: " + str(previous_index)) print("Current index is: " + str(index)) if index[11] != 0: same_case_as_previous_round = True for i in range(len(previous_index) - 1): if previous_index[i] != index[i]: same_case_as_previous_round = False total_sample = index[0] + specs["pred_samples"] # draw samples: X = generate_X_fixed_positions( n=total_sample, p=index[1], X_dist=index[2], cor=index[3], standardize=index[9], uniform_upper=index[8], ) if index[6] == "stochastic_poisson": y = generate_y_fixed_positions( X_mat=X, eps_dist=index[4], error_type=index[5], functional_form=index[6], non_zero_beta_count=index[7], ) else: y, eps, sigma_vec, mu, beta = generate_y_fixed_positions( X_mat=X, eps_dist=index[4], error_type=index[5], functional_form=index[6], non_zero_beta_count=index[7], ) X_predict, X_split_again, y_predict, y_split_again = train_test_split( X, y, train_size=specs["pred_samples"] ) # X_train, X_conf, y_train, y_conf = train_test_split( # X_split_again, y_split_again, train_size=specs["train_size"] # ) if X_split_again.shape[1] > 1: max_features = round(X_split_again.shape[1] / 3) elif X_split_again.shape[1] == 1: max_features = 1 else: raise ValueError("X has a dimensionality problem, missing regressors.") if (index[10] == "mean-based"): reg = SplitConformalRegressor(RandomForestRegressor, method="mean-based", conf_size=1-specs["train_size"], quantiles_to_fit=np.array([0.05,0.95])) reg = reg.fit(X=X_split_again, y=y_split_again, params={"min_samples_leaf": specs["nodesize"], "max_features": max_features, "n_estimators": specs["n_estimators"]}) res = reg.predict_intervals(X_pred=X_predict, alpha=0.1) elif (index[10] == "weighted-mean-based"): reg = SplitConformalRegressor(RandomForestRegressor, method="weighted-mean-based", conf_size=1-specs["train_size"], quantiles_to_fit=np.array([0.05,0.95])) reg = reg.fit(X=X_split_again, y=y_split_again, params={"min_samples_leaf": specs["nodesize"], "max_features": max_features, "n_estimators": specs["n_estimators"]}) res = reg.predict_intervals(X_pred=X_predict, alpha=0.1) elif (index[10] == "quantile-based"): reg = SplitConformalRegressor(QuantregForest, method="quantile-based", conf_size=1-specs["train_size"], quantiles_to_fit=np.array([0.05,0.95])) reg = reg.fit(X=X_split_again, y=y_split_again, params={"nodesize": specs["nodesize"], "mtry": max_features}) res = reg.predict_intervals(X_pred=X_predict, alpha=0.1) elif (index[10] == "cdf-based"): reg = SplitConformalRegressor(QuantregForest, method="cdf-based", conf_size=1-specs["train_size"]) reg = reg.fit(X=X_split_again, y=y_split_again, params={"nodesize": specs["nodesize"], "mtry": max_features}) res = reg.predict_intervals(X_pred=X_predict, alpha=0.1) else: raise ValueError("Method misspecified.") # determine metrics: length_bands = res[:, 1] - res[:, 0] mean_interval_length = np.mean(length_bands) in_the_range = np.sum((y_predict.flatten() >= res[:, 0]) & (y_predict.flatten() <= res[:, 1])) mean_coverage = in_the_range / len(y_predict) # this determines which x-scale should be used for the later plots (X in univariate, or X*beta in multivariate case) if index[5] == "simple_linear": # these are process_types 3 and 4 (univariate) x_scale_diag = x_scale(X_mat=X_predict, error_type=index[5]) else: linear_part = X_predict @ beta x_scale_diag = x_scale(X_mat=X_predict, error_type=index[5], linear_part=linear_part) cond_metrics_df = construc_cond_metric_df_simulation(x_scale=x_scale_diag, result_pred_bands=res, y_predict=y_predict) df.at[index, "mean_interval_length"] = mean_interval_length df.at[index, "mean_coverage"] = mean_coverage df.at[index, "conditional_metrics_df"] = cond_metrics_df previous_index = index # after for loop and calculation, write average metrics into file: result = (df[["mean_interval_length", "mean_coverage"]].groupby(by=["method"]).sum() / specs["n_sims"]) result.to_csv(produces["average_metrics_df"]) # the following generates the kernel regression estimates for the four methods: for i in range(specs["n_sims"]): if i == 0: res_mean_based = df.at[conc_tuples(index_prep=index_prep[0], method="mean-based", i=i), "conditional_metrics_df",] # res_mean_based = df.at[(200, 10, "mixture", "auto", "t", "varying_third_moment_mu", "linear", 5, 1, True, "pred_band_mean_based", i), "conditional_metrics_df"] else: tmp = df.at[conc_tuples(index_prep=index_prep[0], method="mean-based", i=i), "conditional_metrics_df",] res_mean_based = np.concatenate((res_mean_based, tmp), axis=0) for i in range(specs["n_sims"]): if i == 0: res_weighted_mean_based = df.at[ conc_tuples( index_prep=index_prep[0], method="weighted-mean-based", i=i ), "conditional_metrics_df", ] else: tmp = df.at[ conc_tuples( index_prep=index_prep[0], method="weighted-mean-based", i=i ), "conditional_metrics_df", ] res_weighted_mean_based = np.concatenate((res_weighted_mean_based, tmp), axis=0) for i in range(specs["n_sims"]): if i == 0: res_quantile_based = df.at[ conc_tuples( index_prep=index_prep[0], method="quantile-based", i=i ), "conditional_metrics_df", ] else: tmp = df.at[ conc_tuples( index_prep=index_prep[0], method="quantile-based", i=i ), "conditional_metrics_df", ] res_quantile_based = np.concatenate((res_quantile_based, tmp), axis=0) for i in range(specs["n_sims"]): if i == 0: res_cdf_based = df.at[ conc_tuples(index_prep=index_prep[0], method="cdf-based", i=i), "conditional_metrics_df", ] else: tmp = df.at[ conc_tuples(index_prep=index_prep[0], method="cdf-based", i=i), "conditional_metrics_df", ] res_cdf_based = np.concatenate((res_cdf_based, tmp), axis=0) upper = 0.999 lower = 0.001 df_mean_based = pd.DataFrame( { "x_scale": res_mean_based[:, 0], "length": res_mean_based[:, 1], "coverage": res_mean_based[:, 2], } ) df_w_mean_based = pd.DataFrame( { "x_scale": res_weighted_mean_based[:, 0], "length": res_weighted_mean_based[:, 1], "coverage": res_weighted_mean_based[:, 2], } ) df_quantile_based = pd.DataFrame( { "x_scale": res_quantile_based[:, 0], "length": res_quantile_based[:, 1], "coverage": res_quantile_based[:, 2], } ) df_cdf_based = pd.DataFrame( { "x_scale": res_cdf_based[:, 0], "length": res_cdf_based[:, 1], "coverage": res_cdf_based[:, 2], } ) Q3 = df_mean_based.x_scale.quantile(upper) Q1 = df_mean_based.x_scale.quantile(lower) df_mean_based_cleaned = df_mean_based[ (df_mean_based.x_scale < Q3) & (df_mean_based.x_scale > Q1) ] Q3 = df_w_mean_based.x_scale.quantile(upper) Q1 = df_w_mean_based.x_scale.quantile(lower) df_w_mean_based_cleaned = df_w_mean_based[ (df_w_mean_based.x_scale < Q3) & (df_w_mean_based.x_scale > Q1) ] Q3 = df_quantile_based.x_scale.quantile(upper) Q1 = df_quantile_based.x_scale.quantile(lower) df_quantile_based_cleaned = df_quantile_based[ (df_quantile_based.x_scale < Q3) & (df_quantile_based.x_scale > Q1) ] Q3 = df_cdf_based.x_scale.quantile(upper) Q1 = df_cdf_based.x_scale.quantile(lower) df_cdf_based_cleaned = df_cdf_based[ (df_cdf_based.x_scale < Q3) & (df_cdf_based.x_scale > Q1) ] x_scales_merged = np.concatenate( ( np.array(df_mean_based_cleaned["x_scale"]), np.array(df_w_mean_based_cleaned["x_scale"]), np.array(df_quantile_based_cleaned["x_scale"]), np.array(df_cdf_based_cleaned["x_scale"]), ) ) minimum = np.min(x_scales_merged) maximum = np.max(x_scales_merged) grid = np.linspace(minimum, maximum, 1000) print("Start.") df_mean_based_cleaned.to_csv(produces["conditional_res_mean_based"]) df_w_mean_based_cleaned.to_csv(produces["conditional_res_w_mean_based"]) df_quantile_based_cleaned.to_csv(produces["conditional_res_quantile_based"]) df_cdf_based_cleaned.to_csv(produces["conditional_res_cdf_based"]) # generate kernel estimates: for mode in ["coverage", "length"]: if mode == "coverage": print("Coverage stage.") kde_cov_mean_based = KernelReg( endog=df_mean_based_cleaned["coverage"], exog=df_mean_based_cleaned["x_scale"], var_type="o", ) kernel_fit_cov_mean_based, marginal_cov_mean_based = kde_cov_mean_based.fit( data_predict=grid ) ## print("Fitted mean based.") kde_cov_weighted_mean_based = KernelReg( endog=df_w_mean_based_cleaned["coverage"], exog=df_w_mean_based_cleaned["x_scale"], var_type="o", ) ( kernel_fit_cov_weigthed_mean_based, marginal_cov_weighted_mean_based, ) = kde_cov_weighted_mean_based.fit(data_predict=grid) ## print("Fitted w. mean based.") # kde_cov_quantile_based = KernelReg( endog=df_quantile_based_cleaned["coverage"], exog=df_quantile_based_cleaned["x_scale"], var_type="o", ) ( kernel_fit_cov_quantile_based, marginal_cov_quantile_based, ) = kde_cov_quantile_based.fit(data_predict=grid) ## print("Fitted quantile_based.") kde_cov_cdf_based = KernelReg( endog=df_cdf_based_cleaned["coverage"], exog=df_cdf_based_cleaned["x_scale"], var_type="o", ) kernel_fit_cov_cdf_based, marginal_cov_cdf_based = kde_cov_cdf_based.fit( data_predict=grid ) ### print("Fitted cdf_based.") dataset = pd.DataFrame( { "cond_variance_y_grid": grid, "mean_based_cond_coverage": kernel_fit_cov_mean_based, "w_mean_based_cond_coverage": kernel_fit_cov_weigthed_mean_based, "quantile_based_cond_coverage": kernel_fit_cov_quantile_based, "cdf_based_cond_coverage": kernel_fit_cov_cdf_based, } ) dataset.to_csv(produces["final_kernel_estimated_coverage"]) elif mode == "length": print("Length stage.") kde_cov_mean_based = KernelReg( endog=df_mean_based_cleaned["length"], exog=df_mean_based_cleaned["x_scale"], var_type="c", reg_type="lc", ) kernel_fit_cov_mean_based, marginal_cov_mean_based = kde_cov_mean_based.fit( data_predict=grid ) ## print("Fitted mean based.") kde_cov_weighted_mean_based = KernelReg( endog=df_w_mean_based_cleaned["length"], exog=df_w_mean_based_cleaned["x_scale"], var_type="c", ) ( kernel_fit_cov_weigthed_mean_based, marginal_cov_weighted_mean_based, ) = kde_cov_weighted_mean_based.fit(data_predict=grid) ## print("Fitted w. mean based.") # kde_cov_quantile_based = KernelReg( endog=df_quantile_based_cleaned["length"], exog=df_quantile_based_cleaned["x_scale"], var_type="c", ) ( kernel_fit_cov_quantile_based, marginal_cov_quantile_based, ) = kde_cov_quantile_based.fit(data_predict=grid) ## print("Fitted quantile_based.") kde_cov_cdf_based = KernelReg( endog=df_cdf_based_cleaned["length"], exog=df_cdf_based_cleaned["x_scale"], var_type="c", ) kernel_fit_cov_cdf_based, marginal_cov_cdf_based = kde_cov_cdf_based.fit( data_predict=grid ) ### print("Fitted cdf_based.") dataset = pd.DataFrame( { "cond_variance_y_grid": grid, "mean_based_cond_length": kernel_fit_cov_mean_based, "w_mean_based_cond_length": kernel_fit_cov_weigthed_mean_based, "quantile_based_cond_length": kernel_fit_cov_quantile_based, "cdf_based_cond_length": kernel_fit_cov_cdf_based, } ) dataset.to_csv(produces["final_kernel_estimated_length"]) else: print("Mode not specified.") @pytask.mark.parametrize("depends_on, produces", [ ( { "type": SRC / "simulations" / "specs" / f"cond_sim_type_{type}.json", }, { "average_metrics_df": BLD / "simulations" / "cond_perf_simulations" / f"average_results_{type}.csv", "conditional_res_mean_based": BLD / "simulations" / "cond_perf_simulations" / "cond_detailed_dfs" / f"cond_res_mean_based_{type}.csv", "conditional_res_w_mean_based": BLD / "simulations" / "cond_perf_simulations" / "cond_detailed_dfs" / f"cond_res_w_mean_based_{type}.csv", "conditional_res_quantile_based": BLD / "simulations" / "cond_perf_simulations" / "cond_detailed_dfs" / f"cond_res_quantile_based_{type}.csv", "conditional_res_cdf_based": BLD / "simulations" / "cond_perf_simulations" / "cond_detailed_dfs" / f"cond_res_cdf_based_{type}.csv", "final_kernel_estimated_coverage": BLD / "simulations" / "cond_perf_simulations" / f"kernel_coverage_results_{type}.csv", "final_kernel_estimated_length": BLD / "simulations" / "cond_perf_simulations" / f"kernel_length_results_{type}.csv", } ) for type in [1,2,3,4] ], ) def task_cond_perf_simulations(depends_on, produces): # dictionary imported into "specs": specs = json.loads(depends_on["type"].read_text(encoding="utf-8")) run_simulation(specs, produces)
StarcoderdataPython
1867357
<reponame>sonata-nfv/son-monitor ## ALL RIGHTS RESERVED. ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ## Neither the name of the SONATA-NFV, 5GTANGO [, ANY ADDITIONAL AFFILIATION] ## nor the names of its contributors may be used to endorse or promote ## products derived from this software without specific prior written ## permission. ## ## This work has been performed in the framework of the SONATA project, ## funded by the European Commission under Grant number 671517 through ## the Horizon 2020 and 5G-PPP programmes. The authors would like to ## acknowledge the contributions of their colleagues of the SONATA ## partner consortium (www.sonata-nfv.eu). ## ## This work has been performed in the framework of the 5GTANGO project, ## funded by the European Commission under Grant number 761493 through ## the Horizon 2020 and 5G-PPP programmes. The authors would like to ## acknowledge the contributions of their colleagues of the 5GTANGO ## partner consortium (www.5gtango.eu). # encoding: utf-8 from rest_framework import status from rest_framework.decorators import api_view from rest_framework.response import Response from api.serializers import * from api.prometheus import * from rest_framework import generics from rest_framework.reverse import reverse from itertools import * import json, socket, os, base64 from api.httpClient import Http from django.db.models import Q import datetime import psutil, logging from django.db import IntegrityError from api.logger import TangoLogger # Create your views here. LOG = TangoLogger.getLogger(__name__, log_level=logging.INFO, log_json=True) TangoLogger.getLogger("Monitoring_manager", logging.INFO, log_json=True) LOG.setLevel(logging.INFO) LOG.info('Monitoring Manager started') @api_view(('GET',)) def api_root(request, format=None): return Response({ 'user': reverse('UserDetail', request=request, format=format), 'tests': reverse('TestList', request=request, format=format), 'test': reverse('TestDetail', request=request, format=format), 'tests': reverse('UserList', request=request, format=format), }) class SntPLCRuleconf(generics.CreateAPIView): serializer_class = SntPLCRulesConfSerializer def post(self, request, *args, **kwargs): dt = request.data if 'plc_cnt' in dt.keys(): policy_cnt = dt['plc_cnt'] if 'srvID' in self.kwargs: srvid = self.kwargs['srvID'] elif 'sonata_service_id' in dt.keys(): srvid = dt['sonata_service_id'] else: LOG.info("Undefined service_id") return Response({'error': 'Undefined service_id'}, status=status.HTTP_400_BAD_REQUEST) if 'vnfs' in dt.keys(): vnfs = dt['vnfs'] else: LOG.info("Undefined VNFs") return Response({'error': 'Undefined vnfs'}, status=status.HTTP_400_BAD_REQUEST) # Check if service exists srv = monitoring_services.objects.all().filter(sonata_srv_id=srvid) if srv.count() == 0: if srvid != 'generic': LOG.info("Requested Service not found") return Response({'error': 'Requested Service not found'}, status=status.HTTP_404_NOT_FOUND) else: srvid = 'alerts' # Delete old rule from DB rules_db = monitoring_rules.objects.all().filter(service__sonata_srv_id=srvid, consumer='PLC') rules_db.delete() # Create prometheus configuration file rls = {} rls['rules'] = [] srvrules = [] rules_status = 0 rls['service'] = 'plc-' + srvid for vnf in dt['vnfs']: rls['vnf'] = vnf['vnf_id'] if 'vdus' in vnf.keys(): for vdu in vnf['vdus']: rls['vdu_id'] = vdu['vdu_id'] rules = vdu['rules'] rules_status += len(rules) for r in rules: nt = monitoring_notif_types.objects.all().filter(id=r['notification_type']['id']) if nt.count() == 0: LOG.info("Alert notification type does not supported. Action Aborted") return Response({'error': 'Alert notification type does not supported. Action Aborted'}, status=status.HTTP_400_BAD_REQUEST) else: if srvid != "alerts": rule = monitoring_rules(service=srv[0], summary=r['summary'], notification_type=nt[0], name=r['name'], condition=r['condition'], duration=r['duration'], description=r['description'], consumer='PLC', function=rls['vnf'], vdu=rls['vdu_id']) rule.save() rl = {} rl['name'] = r['name'] rl['description'] = r['description'] rl['summary'] = r['summary'] rl['duration'] = r['duration'] rl['notification_type'] = r['notification_type'] rl['condition'] = r['condition'] rl['labels'] = ["serviceID=\"" + srvid + "\", functionID=\"" + rls['vnf'] + "\", tp=\"PLC\""] rls['rules'].append(rl) srvrules += rules if len(srvrules) > 0: cl = Http() rsp = cl.POST('http://prometheus:9089/prometheus/rules', [], json.dumps(rls)) if rsp == 200: LOG.info("PLC rules added") return Response({'status': "success", "rules": rules_status}) else: LOG.warning("PLC rule update failed") return Response({'error': 'Rule update fail ' + str(rsp)}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) else: LOG.warning('No PLC rules defined') return Response({'error': 'No rules defined'}) class SntPLCRulesDetail(generics.DestroyAPIView): serializer_class = SntRulesSerializer def delete(self, request, *args, **kwargs): queryset = monitoring_rules.objects.all() srvid = self.kwargs['sonata_srv_id'] fq = queryset.filter(service__sonata_srv_id=srvid, consumer='PLC') if fq.count() > 0: fq.delete() cl = Http() rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/' + str('plc-' + srvid), []) LOG.info('PLC Rules deleted') return Response({'staus': "service's rules removed"}, status=status.HTTP_204_NO_CONTENT) else: LOG.info('PLC Rules not found') return Response({'status': "rules not found"}, status=status.HTTP_404_NOT_FOUND) class SntPLCRulesPerServiceList(generics.ListAPIView): serializer_class = SntRulesPerSrvSerializer def get_queryset(self): queryset = monitoring_rules.objects.all() srvid = self.kwargs['srv_id'] return queryset.filter(service__sonata_srv_id=srvid, consumer='PLC') def delete(self, request, *args, **kwargs): queryset = monitoring_rules.objects.all() srvid = self.kwargs['srv_id'] fq = queryset.filter(service__sonata_srv_id=srvid, consumer='PLC') if fq.count() > 0: fq.delete() cl = Http() rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/' + str('plc-' + srvid), []) LOG.info("PLC rules removed") return Response({'status': "service's rules removed"}, status=status.HTTP_204_NO_CONTENT) else: LOG.info("PLC rules not found") return Response({'status': "rules not found"}, status=status.HTTP_404_NOT_FOUND) class SntPLCRulesList(generics.ListAPIView): serializer_class = SntRulesSerializer def get_queryset(self): queryset = monitoring_rules.objects.all() return queryset.filter(consumer='PLC') ###SLA Rules class SntSLARuleconf(generics.CreateAPIView): serializer_class = SntSLARulesConfSerializer def post(self, request, *args, **kwargs): dt = request.data if 'srvID' in self.kwargs: srvid = self.kwargs['srvID'] elif 'sonata_service_id' in dt: srvid = dt['sonata_service_id'] else: LOG.info('service_id is missing') return Response({'error': 'sonata_service_id missing'}, status=status.HTTP_400_BAD_REQUEST) if 'plc_cnt' in dt.keys(): policy_cnt = dt['plc_cnt'] if 'vnfs' in dt.keys(): vnfs = dt['vnfs'] else: LOG.info('Undefined VNFs') return Response({'error': 'Undefined vnfs'}, status=status.HTTP_400_BAD_REQUEST) # Check if service exists srv = monitoring_services.objects.all().filter(sonata_srv_id=srvid) if srv.count() == 0: if srvid != 'generic': LOG.info('Requested Service not found') return Response({'error': 'Requested Service not found'}, status=status.HTTP_404_NOT_FOUND) else: srvid = 'alerts' # Delete old rule from DB rules_db = monitoring_rules.objects.all().filter(service__sonata_srv_id=srvid, consumer='SLA') rules_db.delete() # Create prometheus configuration file rls = {} rls['rules'] = [] srvrules = [] rules_status = 0 rls['service'] = 'sla-' + srvid for vnf in dt['vnfs']: rls['vnf'] = vnf['vnf_id'] if 'vdus' in vnf.keys(): for vdu in vnf['vdus']: rls['vdu_id'] = vdu['vdu_id'] rules = vdu['rules'] rules_status += len(rules) for r in rules: nt = monitoring_notif_types.objects.all().filter(id=r['notification_type']['id']) if nt.count() == 0: LOG.info('Alert notification type does not supported. Action Aborted') return Response({'error': 'Alert notification type does not supported. Action Aborted'}, status=status.HTTP_400_BAD_REQUEST) else: if srvid != "alerts": rule = monitoring_rules(service=srv[0], summary=r['summary'], notification_type=nt[0], name=r['name'], condition=r['condition'], duration=r['duration'], description=r['description'], consumer='SLA', function=rls['vnf'], vdu=rls['vdu_id']) rule.save() rl = {} rl['name'] = r['name'] rl['description'] = r['description'] rl['summary'] = r['summary'] rl['duration'] = r['duration'] rl['notification_type'] = r['notification_type'] rl['condition'] = r['condition'] rl['labels'] = ["serviceID=\"" + srvid + "\", functionID=\"" + rls['vnf'] + "\", tp=\"SLA\""] rls['rules'].append(rl) srvrules += rules if len(srvrules) > 0: cl = Http() rsp = cl.POST('http://prometheus:9089/prometheus/rules', [], json.dumps(rls)) if rsp == 200: LOG.info("SLA rules added") return Response({'status': "success", "rules": rules_status}) else: LOG.info("SLA rules update failed") return Response({'error': 'Rules update fail ' + str(rsp)}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) else: LOG.info("No SLA rules defined") return Response({'error': 'No rules defined'}) class SntSLARulesDetail(generics.DestroyAPIView): serializer_class = SntRulesSerializer def delete(self, request, *args, **kwargs): queryset = monitoring_rules.objects.all() srvid = self.kwargs['sonata_srv_id'] fq = queryset.filter(service__sonata_srv_id=srvid, consumer='SLA') if fq.count() > 0: fq.delete() cl = Http() rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/' + str('sla-' + srvid), []) LOG.info("SLA rules removed") return Response({'status': "service's rules removed"}, status=status.HTTP_204_NO_CONTENT) else: LOG.info("SLA rules not found") return Response({'status': "rules not found"}, status=status.HTTP_404_NOT_FOUND) class SntSLARulesPerServiceList(generics.ListAPIView): serializer_class = SntRulesPerSrvSerializer def get_queryset(self): queryset = monitoring_rules.objects.all() srvid = self.kwargs['srv_id'] return queryset.filter(service__sonata_srv_id=srvid, consumer='SLA') def delete(self, request, *args, **kwargs): queryset = monitoring_rules.objects.all() srvid = self.kwargs['srv_id'] fq = queryset.filter(service__sonata_srv_id=srvid, consumer='SLA') if fq.count() > 0: fq.delete() cl = Http() rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/' + str('sla-' + srvid), []) LOG.info("SLA rules removed") return Response({'status': "service's rules removed"}, status=status.HTTP_204_NO_CONTENT) else: LOG.info("SLA rules not found") return Response({'status': "rules not found"}, status=status.HTTP_404_NOT_FOUND) class SntSLAAlertsList(generics.ListAPIView): serializer_class = SntAlertsListSerializer def get(self, request, *args, **kwargs): cl = Http() rsp = cl.GET('http://prometheus:9090/api/v1/series?match[]=ALERTS{tp="SLA",alertstate="firing"}', []) if rsp['status'] == 'success': r = {} r['status'] = rsp['status'] r['alerts'] = rsp['data'] LOG.info(r) return Response(r, status=status.HTTP_200_OK) else: LOG.info('SLA rules retrieve failed') return Response(rsp, status=status.HTTP_404_NOT_FOUND) class SntPLCAlertsList(generics.ListAPIView): serializer_class = SntAlertsListSerializer def get(self, request, *args, **kwargs): cl = Http() rsp = cl.GET('http://prometheus:9090/api/v1/series?match[]=ALERTS{tp="PLC",alertstate="firing"}', []) if rsp['status'] == 'success': r = {} r['status'] = rsp['status'] r['alerts'] = rsp['data'] LOG.info(r) return Response(r, status=status.HTTP_200_OK) else: LOG.warning('SLA rules retrieve failed') return Response(rsp, status=status.HTTP_404_NOT_FOUND) class SntSLARulesList(generics.ListAPIView): serializer_class = SntRulesSerializer def get_queryset(self): queryset = monitoring_rules.objects.all() return queryset.filter(consumer='SLA') class SntSNMPEntCreate(generics.ListCreateAPIView): queryset = monitoring_snmp_entities.objects.all() serializer_class = SntSNMPEntFullSerializer class SntSNMPEntList(generics.ListAPIView): queryset = monitoring_snmp_entities.objects.all() serializer_class = SntSNMPEntSerializer class SntSNMPEntDetail(generics.DestroyAPIView): # queryset = monitoring_snmp_entities.objects.all() # serializer_class = SntSNMPEntSerializer def delete(self, request, *args, **kwargs): id = self.kwargs['pk'] queryset = monitoring_snmp_entities.objects.all().filter(id=id) if queryset.count() > 0: queryset.update(status='DELETED') LOG.info('SNMP oids removed') return Response(status=status.HTTP_204_NO_CONTENT) else: LOG.info('SNMP server not found') return Response({'status': "SNMP server not found"}, status=status.HTTP_404_NOT_FOUND) class SntSmtpCreate(generics.CreateAPIView): # queryset = monitoring_smtp.objects.all() serializer_class = SntSmtpSerializerCreate def post(self, request, *args, **kwargs): queryset = monitoring_smtp.objects.filter(component=request.data['component']) if queryset.count() > 0: queryset.update(smtp_server=request.data['smtp_server'], port=request.data['port'], user_name=request.data['user_name'], password=request.data['password'], sec_type=request.data['sec_type']) LOG.info('SNMP oids updated') return Response(monitoring_smtp.objects.values().filter(component=request.data['component'])) else: smtp = monitoring_smtp(smtp_server=request.data['smtp_server'], port=request.data['port'], user_name=request.data['user_name'], password=request.data['password'], component=request.data['component'], sec_type=request.data['sec_type']) smtp.save() LOG.info('SNMP oids added') return Response(monitoring_smtp.objects.values().filter(component=request.data['component'])) class SntSmtpList(generics.ListAPIView): serializer_class = SntSmtpSerializerList def get_queryset(self): comp = self.kwargs['component'] queryset = monitoring_smtp.objects.filter(component=comp) return queryset class SntSmtpDetail(generics.DestroyAPIView): queryset = monitoring_smtp.objects.all() serializer_class = SntSmtpSerializerList class SntCredList(generics.ListAPIView): # serializer_class = SntSmtpSerializerList serializer_class = SntSmtpSerializerCred def get(self, request, *args, **kwargs): smtp = monitoring_smtp.objects.filter(component=self.kwargs['component']) if smtp.count() > 0: dict = [obj.as_dict() for obj in smtp] psw = (dict[0])['psw'] psw = base64.b64encode(psw) return Response({'status': 'key found', 'creds': psw}, status=status.HTTP_200_OK) else: return Response({'status': 'key not found'}, status=status.HTTP_200_OK) def is_json(myjson): try: json_object = json.loads(myjson) except ValueError as e: return False return True def getPromIP(pop_id_): arch = os.environ.get('MON_ARCH', 'CENTRALIZED') pop_id = pop_id_ pop = monitoring_pops.objects.values('prom_url').filter(sonata_pop_id=pop_id) if pop.count() == 0: LOG.info('Undefined POP') return {'status': 'failed', 'msg': 'Undefined POP', 'addr': None} # return Response({'status':"Undefined POP"}, status=status.HTTP_404_NOT_FOUND) elif pop.count() > 1: LOG.info('Muliple POPs with same id') return {'status': 'failed', 'msg': 'Many POPs with same id', 'addr': None} # return Response({'status':"Many POPs with same id"}, status=status.HTTP_404_NOT_FOUND) if arch != 'CENTRALIZED': prom_url = monitoring_pops.objects.values('prom_url').filter(sonata_pop_id=pop_id)[0]['prom_url'] if prom_url == 'undefined': LOG.info('Undefined Prometheus address') return {'status': 'failed', 'msg': 'Undefined Prometheus address', 'addr': None} # return Response({'status':"Undefined Prometheus address"}, status=status.HTTP_404_NOT_FOUND) else: prom_url = 'prometheus' LOG.info('Prometheus address found') return {'status': 'success', 'msg': 'Prometheus address found', 'addr': prom_url} class SntPOPList(generics.ListCreateAPIView): serializer_class = SntPOPSerializer def get_queryset(self): queryset = monitoring_pops.objects.all() return queryset def getCfgfile(self): url = 'http://prometheus:9089/prometheus/configuration' cl = Http() rsp = cl.GET(url, []) return rsp def postCfgfile(self, confFile): url = 'http://prometheus:9089/prometheus/configuration' cl = Http() rsp = cl.POST(url, [], json.dumps(confFile)) return rsp def updatePromConf(self, pop): arch = os.environ.get('MON_ARCH', 'CENTRALIZED') if arch == 'CENTRALIZED': return 200 updated = False file = self.getCfgfile() if 'scrape_configs' in file: for obj in file['scrape_configs']: if 'target_groups' in obj: for trg in obj['target_groups']: if 'labels' in trg: if 'pop_id' in trg['labels']: if trg['labels']['pop_id'] == pop['sonata_pop_id'] and trg['labels']['sp_id'] == pop[ 'sonata_sp_id']: trg['labels']['name'] = pop['name'] trg['targets'] = [] trg['targets'].append(pop['prom_url']) updated = True continue if not updated: newTrg = {} newTrg['labels'] = {} newTrg['labels']['pop_id'] = pop['sonata_pop_id'] newTrg['labels']['sp_id'] = pop['sonata_sp_id'] newTrg['labels']['name'] = pop['name'] newTrg['targets'] = [] newTrg['targets'].append(pop['prom_url']) obj['target_groups'].append(newTrg) else: LOG.info('NOT FOUND scrape_configs') return 'NOT FOUND scrape_configs' if not is_json(json.dumps(file)): LOG.info('Prometheus reconfiguration failed') return Response({'status': "Prometheus reconfiguration failed"}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) code = self.postCfgfile(file) LOG.info('Prometheus reconfiguration successed') return code def post(self, request, *args, **kwargs): pop_id = request.data['sonata_pop_id'] sp_id = request.data['sonata_sp_id'] name = 'undefined' prom_url = 'udefined' if 'name' in request.data: name = request.data['name'] if 'prom_url' in request.data: prom_url = request.data['prom_url'] sp = monitoring_service_platforms.objects.all().filter(sonata_sp_id=sp_id) if sp.count() == 0: sp = monitoring_service_platforms(sonata_sp_id=sp_id, name='undefined', manager_url='127.0.0.1') sp.save() pop = monitoring_pops.objects.all().filter(sonata_pop_id=pop_id, sonata_sp_id=sp_id) if pop.count() == 1: # pop = monitoring_pops(sonata_pop_id=pop_id,sonata_sp_id=sp_id, name=name,prom_url=prom_url) code = self.updatePromConf(request.data) if code == 200: pop.update(name=name, prom_url=prom_url) else: LOG.info('Prometheus reconfiguration failed') return Response({'status': "Prometheus reconfiguration failed"}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) elif pop.count() > 1: LOG.info('Multiple POPs with same id') return Response({'status': "Many POPs with same id"}, status=status.HTTP_404_NOT_FOUND) else: code = self.updatePromConf(request.data) if code == 200: pop = monitoring_pops(sonata_pop_id=pop_id, sonata_sp_id=sp_id, name=name, prom_url=prom_url) pop.save() else: LOG.info('Prometheus reconfiguration failed') return Response({'status': "Prometheus reconfiguration failed"}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) LOG.info('New POP added') return Response(monitoring_pops.objects.values().filter(sonata_pop_id=pop_id, sonata_sp_id=sp_id)) class SntPOPperSPList(generics.ListAPIView): # queryset = monitoring_functions.objects.all() serializer_class = SntPOPSerializer def get_queryset(self): queryset = monitoring_pops.objects.all() service_platform_id = self.kwargs['spID'] return queryset.filter(sonata_sp_id=service_platform_id) class SntPOPDetail(generics.DestroyAPIView): serializer_class = SntPOPSerializer def getCfgfile(self): url = 'http://prometheus:9089/prometheus/configuration' cl = Http() rsp = cl.GET(url, []) return rsp def postCfgfile(self, confFile): url = 'http://prometheus:9089/prometheus/configuration' cl = Http() rsp = cl.POST(url, [], json.dumps(confFile)) return rsp def updatePromConf(self, pop_id): arch = os.environ.get('MON_ARCH', 'CENTRALIZED') if arch == 'CENTRALIZED': return 200 updated = False file = self.getCfgfile() if 'scrape_configs' in file: for obj in file['scrape_configs']: if 'target_groups' in obj: for trg in obj['target_groups']: if 'labels' in trg: if 'pop_id' in trg['labels']: if trg['labels']['pop_id'] == pop_id: obj['target_groups'].remove(trg) updated = True else: return 'NOT FOUND scrape_configs' if not is_json(json.dumps(file)): LOG.info('Prometheus reconfiguration failed') return Response({'status': "Prometheus reconfiguration failed"}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) code = self.postCfgfile(file) LOG.info('Prometheus reconfiguration successed') return code def delete(self, request, *args, **kwargs): # karpa start self.lookup_field = 'sonata_pop_id' pop_id = self.kwargs['pop_id'] queryset = monitoring_pops.objects.all() queryset = queryset.filter(sonata_pop_id=pop_id) if queryset.count() > 0: code = self.updatePromConf(pop_id) if code == 200: queryset.delete() LOG.info('POP removed') return Response({'status': "POP removed"}, status=status.HTTP_204_NO_CONTENT) else: LOG.info('POP not found') return Response({'status': "POP not found"}, status=status.HTTP_404_NOT_FOUND) class SntSPList(generics.ListCreateAPIView): queryset = monitoring_service_platforms.objects.all() serializer_class = SntSPSerializer class SntSPDetail(generics.DestroyAPIView): queryset = monitoring_service_platforms.objects.all() serializer_class = SntSPSerializer class SntPromMetricPerPOPList(generics.RetrieveAPIView): serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): pop_id = self.kwargs['popID'] prom_url = getPromIP(pop_id) if prom_url['status'] == 'failed': LOG.info('Prometheus not found') return Response({'status': prom_url['msg']}, status=status.HTTP_404_NOT_FOUND) mt = ProData(prom_url['addr'], 9090) data = mt.getMetrics() response = {} response['metrics'] = data['data'] return Response(response) class SntPromMetricPerPOPDetail(generics.ListAPIView): serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): metric_name = self.kwargs['metricName'] pop_id = self.kwargs['popID'] prom_url = getPromIP(pop_id) if prom_url['status'] == 'failed': LOG.info('Prometheus not found') return Response({'status': prom_url['msg']}, status=status.HTTP_404_NOT_FOUND) mt = ProData(prom_url['addr'], 9090) data = mt.getMetricFullDetail(metric_name) response = {} response['metrics'] = data['data'] return Response(response) class SntPromMetricPerPOPData(generics.CreateAPIView): serializer_class = SntPromMetricSerializer ''' { "name": "up", "start": "2016-02-28T20:10:30.786Z", "end": "2016-03-03T20:11:00.781Z", "step": "1h", "labels": [{"labeltag":"instance", "labelid":"192.168.1.39:9090"},{"labeltag":"group", "labelid":"development"}] } ''' def post(self, request, *args, **kwargs): pop_id = self.kwargs['popID'] prom_url = getPromIP(pop_id) if prom_url['status'] == 'failed': return Response({'status': prom_url['msg']}, status=status.HTTP_404_NOT_FOUND) mt = ProData(prom_url['addr'], 9090) data = mt.getTimeRangeData(request.data) response = {} try: response['metrics'] = data['data'] except KeyError: response = data LOG.info('KEY ERROR exception') return Response(response) class SntPromSrvPerPOPConf(generics.ListAPIView): # start from here serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): pop_id = self.kwargs['popID'] prom_url = getPromIP(pop_id) if prom_url['status'] == 'failed': LOG.info('Prometheus not found') return Response({'status': prom_url['msg']}, status=status.HTTP_404_NOT_FOUND) url = 'http://' + prom_url['addr'] + ':9089/prometheus/configuration' cl = Http() rsp = cl.GET(url, []) return Response({'config': rsp}, status=status.HTTP_200_OK) class SntUserList(generics.ListAPIView): serializer_class = SntUserSerializer def get_queryset(self): queryset = monitoring_users.objects.all() userid = self.kwargs['pk'] return queryset.filter(pk=userid) class SntUserPerTypeList(generics.ListAPIView): # queryset = monitoring_users.objects.all().filter(component=self.kwargs['pk']) serializer_class = SntUserSerializer def get_queryset(self): queryset = monitoring_users.objects.all() user_type = self.kwargs['type'] return queryset.filter(type=user_type) class SntUsersList(generics.ListCreateAPIView): queryset = monitoring_users.objects.all() serializer_class = SntUserSerializer class SntUsersDetail(generics.DestroyAPIView): queryset = monitoring_users.objects.all() serializer_class = SntUserSerializer class SntServicesPerUserList(generics.ListAPIView): # queryset = monitoring_services.objects.all().filter(self.kwargs['usrID']) serializer_class = SntServicesFullSerializer def get_queryset(self): queryset = monitoring_services.objects.all() userid = self.kwargs['usrID'] return queryset.filter(user__sonata_userid=userid) class SntServiceList(generics.ListAPIView): # queryset = monitoring_services.objects.all().filter(self.kwargs['usrID']) serializer_class = SntServicesSerializer def get_queryset(self): queryset = monitoring_services.objects.all() srvid = self.kwargs['srvID'] return queryset.filter(sonata_srv_id=srvid) class SntServicesList(generics.ListCreateAPIView): queryset = monitoring_services.objects.all() serializer_class = SntServicesSerializer class SntFunctionsPerServiceList(generics.ListAPIView): # queryset = monitoring_functions.objects.all() serializer_class = SntFunctionsFullSerializer def get_queryset(self): queryset = monitoring_functions.objects.all() srvid = self.kwargs['srvID'] return queryset.filter(service__sonata_srv_id=srvid) class SntServicesDetail(generics.DestroyAPIView): serializer_class = SntServicesDelSerializer def delete(self, request, *args, **kwargs): self.lookup_field = 'srv_id' queryset = monitoring_services.objects.all() srvid = self.kwargs['srv_id'] queryset = queryset.filter(sonata_srv_id=srvid) if queryset.count() > 0: # DELETE also the SNMP entities (if any) fcts = monitoring_functions.objects.all().filter(service__sonata_srv_id=srvid) if fcts.count() > 0: for f in fcts: snmp_entities = monitoring_snmp_entities.objects.all().filter( Q(entity_id=f.host_id) & Q(entity_type='vnf')) if snmp_entities.count() > 0: snmp_entities.update(status='DELETED') queryset.delete() cl = Http() rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/' + str(srvid), []) time.sleep(2) rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/sla-' + str(srvid), []) time.sleep(2) rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/plc-' + str(srvid), []) LOG.info('Network Service deteted') return Response({'status': "service removed"}, status=status.HTTP_200_OK) else: LOG.info('Network Service not found') return Response({'status': "service not found"}, status=status.HTTP_200_OK) class SntFunctionsList(generics.ListAPIView): queryset = monitoring_functions.objects.all() serializer_class = SntFunctionsSerializer class SntFunctionsDetail(generics.RetrieveUpdateDestroyAPIView): queryset = monitoring_functions.objects.all() serializer_class = SntFunctionsSerializer class SntNotifTypesList(generics.ListCreateAPIView): queryset = monitoring_notif_types.objects.all() serializer_class = SntNotifTypeSerializer class SntNotifTypesDetail(generics.DestroyAPIView): queryset = monitoring_notif_types.objects.all() serializer_class = SntNotifTypeSerializer class SntMetricsList(generics.ListAPIView): queryset = monitoring_metrics.objects.all() serializer_class = SntMetricsSerializer class SntMetricsPerFunctionList(generics.ListAPIView): # queryset = monitoring_metrics.objects.all() serializer_class = SntMetricsFullSerializer def get_queryset(self): queryset = monitoring_metrics.objects.all() functionid = self.kwargs['funcID'] result_list = list(chain(monitoring_services.objects.all(), monitoring_functions.objects.all(), monitoring_metrics.objects.all())) return queryset.filter(function__sonata_func_id=functionid) class SntMetricsPerFunctionList1(generics.ListAPIView): # queryset = monitoring_metrics.objects.all() def list(self, request, *args, **kwargs): functionid = kwargs['funcID'] queryset = monitoring_metrics.objects.all().filter(function_id=functionid) dictionaries = [obj.as_dict() for obj in queryset] response = {} response['data_server_url'] = 'http://sp.int2.sonata-nfv.eu:9091' response['metrics'] = dictionaries return Response(response) class SntNewServiceConf(generics.ListCreateAPIView): def get_queryset(self): self.serializer_class = SntServicesSerializer queryset = monitoring_services.objects.all() return queryset def post(self, request, *args, **kwargs): self.serializer_class = NewServiceSerializer if not 'service' in request.data: LOG.info('Received new Service notification: Undefined Service') return Response({'error': 'Undefined Service'}, status=status.HTTP_400_BAD_REQUEST) if not 'functions' in request.data: LOG.info('Received new Service notification: Undefined Functions') return Response({'error': 'Undefined Functions'}, status=status.HTTP_400_BAD_REQUEST) if not 'rules' in request.data: LOG.info('Received new Service notification: Undefined Rules') return Response({'error': 'Undefined Rules'}, status=status.HTTP_400_BAD_REQUEST) LOG.info('Received new Service notification: ' + json.dumps(request.data)) service = request.data['service'] functions = request.data['functions'] rules = request.data['rules'] functions_status = 0 metrics_status = 0 rules_status = 0 oids_status = 0 usr = None if 'sonata_usr' in service: customer = {} customer['email'] = None customer['phone'] = None if 'email' in service['sonata_usr']: customer['email'] = service['sonata_usr']['email'] if 'phone' in service['sonata_usr']: customer['phone'] = service['sonata_usr']['phone'] u = monitoring_users.objects.all().filter( Q(email=customer['email']) & Q(mobile=customer['phone']) & Q(type='cst')) if len(u) == 0: usr = monitoring_users(mobile=customer['phone'], email=customer['email'], type='cst') usr.save() else: usr = u[0] dev = None if 'sonata_dev' in service: developer = {} developer['email'] = None developer['phone'] = None if 'email' in service['sonata_dev']: developer['email'] = service['sonata_dev']['email'] if 'phone' in service['sonata_dev']: developer['phone'] = service['sonata_dev']['phone'] u = monitoring_users.objects.all().filter( Q(email=developer['email']) & Q(mobile=developer['phone']) & Q(type='dev')) if len(u) == 0: dev = monitoring_users(mobile=developer['phone'], email=developer['email'], type='dev') dev.save() else: dev = u[0] srv_pop_id = '' srv_host_id = '' if service['pop_id']: srv_pop_id = service['pop_id'] pop = monitoring_pops.objects.all().filter(sonata_pop_id=srv_pop_id) if pop.count() == 0: pop = monitoring_pops(sonata_pop_id=srv_pop_id, sonata_sp_id="undefined", name="undefined", prom_url="undefined", type="undefined") pop.save() if service['host_id']: srv_host_id = service['host_id'] srv = monitoring_services.objects.all().filter(sonata_srv_id=service['sonata_srv_id']) if srv.count() > 0: old_vnf = monitoring_functions.objects.all().filter(service_id=srv.values('id')) if old_vnf.count() > 0: old_vnf.delete() srv=srv[0] else: srv = monitoring_services(sonata_srv_id=service['sonata_srv_id'], name=service['name'], description=service['description'], host_id=srv_host_id, pop_id=srv_pop_id) srv.save() if isinstance(usr, monitoring_users): srv.user.add(usr) if isinstance(dev, monitoring_users): srv.user.add(dev) srv.save() oids_status = 0 metrics_status = 0 for f in functions: fnc_pop_id = f['pop_id'] pop = monitoring_pops.objects.all().filter(sonata_pop_id=fnc_pop_id) functions_status = len(functions) pop_type = 'undefined' sch_key = 'resource_id' if 'host_id' in f: vdu = f['host_id'] sch_key = 'resource_id' pop_type = 'openstack' if 'cnt_name' in f: vdu = f['cnt_name'][0] sch_key = 'container_name' pop_type = 'k8s' if pop.count() == 0: pop = monitoring_pops(sonata_pop_id=fnc_pop_id, sonata_sp_id="undefined", name="undefined",prom_url="undefined",type=pop_type) pop.save() func = monitoring_functions(service=srv, host_id=vdu, name=f['name'], host_type=sch_key, sonata_func_id=f['sonata_func_id'], description=f['description'], pop_id=f['pop_id']) func.save() for m in f['metrics']: metrics_status += 1 metric = monitoring_metrics(function=func, name=m['name'], cmd=m['cmd'], threshold=m['threshold'], interval=m['interval'], description=m['description']) metric.save() old_snmps = monitoring_snmp_entities.objects.all().filter(entity_id=vdu) if old_snmps.count() > 0: old_snmps.update(status='DELETED') if 'snmp' in f: if len(f['snmp']) > 0: snmp = f['snmp'] if 'port' in snmp: port = snmp['port'] else: port = 161 ent = monitoring_snmp_entities(entity_id=vdu, version=snmp['version'], auth_protocol=snmp['auth_protocol'], security_level=snmp['security_level'], ip=snmp['ip'], port=port, username=snmp['username'], password='<PASSWORD>', interval=snmp['interval'], entity_type='vnf') ent.save() for o in snmp['oids']: oid = monitoring_snmp_oids(snmp_entity=ent, oid=o['oid'], metric_name=o['metric_name'], metric_type=o['metric_type'], unit=o['unit'], mib_name=o['mib_name']) oid.save() oids_status += 1 rls = {} rls['service'] = service['sonata_srv_id'] rls['vnf'] = "To be found..." rls['rules'] = [] for r in rules: nt = monitoring_notif_types.objects.all().filter(id=r['notification_type']) if nt.count() == 0: LOG.info('Alert notification type does not supported. Action Aborted') return Response({'error': 'Alert notification type does not supported. Action Aborted'}, status=status.HTTP_400_BAD_REQUEST) srv.delete() else: rules_status = len(rules) rule = monitoring_rules(service=srv, summary=r['summary'], notification_type=nt[0], name=r['name'], condition=r['condition'], duration=r['duration'], description=r['description']) rule.save() rl = {} rl['name'] = r['name'] rl['description'] = r['description'] rl['summary'] = r['summary'] rl['duration'] = r['duration'] rl['notification_type'] = r['notification_type'] rl['condition'] = r['condition'] rl['labels'] = ["serviceID=\"" + rls['service'] + "\", tp=\"DEV\""] rls['rules'].append(rl) if len(rules) > 0: cl = Http() rsp = cl.POST('http://prometheus:9089/prometheus/rules', [], json.dumps(rls)) if rsp == 200: LOG.info('New NS addition successed') return Response( {'status': "success", "vnfs": functions_status, "metrics": metrics_status, "rules": rules_status, "snmp_oids": oids_status}) else: srv.delete() LOG.info('Service update failed') return Response({'error': 'Service update fail ' + str(rsp)}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) else: LOG.info('New NS addition successed') return Response( {'status': "success", "vnfs": functions_status, "metrics": metrics_status, "rules": rules_status, "snmp_oids": oids_status}) def getVnfId(funct_, host_): for fn in funct_: if fn['host_id'] == host_: return fn['sonata_func_id'] else: return 'Undefined' class SntMetricsDetail(generics.DestroyAPIView): queryset = monitoring_metrics.objects.all() serializer_class = SntMetricsSerializer class SntRulesList(generics.ListAPIView): serializer_class = SntRulesSerializer def get_queryset(self): queryset = monitoring_rules.objects.all() return queryset.filter(consumer='DEV') class SntRulesPerServiceList(generics.ListAPIView): # queryset = monitoring_functions.objects.all() serializer_class = SntRulesPerSrvSerializer def get_queryset(self): queryset = monitoring_rules.objects.all() srvid = self.kwargs['srvID'] return queryset.filter(service__sonata_srv_id=srvid, consumer='DEV') class SntRulesDetail(generics.DestroyAPIView): # queryset = monitoring_rules.objects.all() serializer_class = SntRulesSerializer def delete(self, request, *args, **kwargs): queryset = monitoring_rules.objects.all() srvid = self.kwargs['sonata_srv_id'] fq = queryset.filter(service__sonata_srv_id=srvid) if fq.count() > 0: fq.delete() cl = Http() rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/' + str(srvid), []) rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/' + str('plc-' + srvid), []) rsp = cl.DELETE('http://prometheus:9089/prometheus/rules/' + str('sla-' + srvid), []) LOG.info("Service's rules removed (inl. SLA, POLICY)") return Response({'status': "Service's rules removed (inl. SLA, POLICY)"}, status=status.HTTP_204_NO_CONTENT) else: LOG.info("Service's rules not found") return Response({'status': "rules not found"}, status=status.HTTP_404_NOT_FOUND) class SntPromMetricList(generics.RetrieveAPIView): serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): mt = ProData('prometheus', 9090) data = mt.getMetrics() response = {} if 'data' in data: response['metrics'] = data['data'] else: response = data print (response) return Response(response) class SntPromNSMetricListVnf(generics.RetrieveAPIView): serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): time_window = request.GET.get('tm',None) mt = ProData('prometheus', 9090) queryset = monitoring_functions.objects.all() srvid = self.kwargs['srv_id'] vnfs = queryset.filter(service__sonata_srv_id=srvid) response = {} if vnfs.count() == 0: response['status'] = "Fail (VNF not found)" return Response(response) response['vnfs'] = [] response['status'] = 'Success' for vnf in vnfs: f = {} f['vnf_id'] = vnf.sonata_func_id f['vdus'] = [] vdu={} vdu['vdu_id'] = vnf.host_id data = mt.getMetricsResId(vnf.host_type,vnf.host_id,time_window) if 'data' in data: vdu['metrics'] = data['data'] else: vdu['metrics'] = [] f['vdus'].append(vdu) response['vnfs'].append(f) return Response(response) class SntPromMetricListVnf(generics.RetrieveAPIView): serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): time_window = request.GET.get('tm', None) mt = ProData('prometheus', 9090) vnfid = self.kwargs['vnf_id'] queryset = monitoring_functions.objects.all() vnf = queryset.filter(sonata_func_id=vnfid) response = {} if vnf.count() == 0: response['status'] = "Fail (VNF not found)" return Response(response) vdus = [] vdus.append(vnf[0].host_id) response['status'] = 'Success' response['vdus'] = [] for vdu in vdus: dt = {} dt['vdu_id'] = vdu data = mt.getMetricsResId(vnf[0].host_type,vdu,time_window) if 'data' in data: dt['metrics'] = data['data'] else: dt['metrics'] = [] response['vdus'].append(dt) return Response(response) class SntPromMetricListVnfVdu(generics.RetrieveAPIView): serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): time_window = request.GET.get('tm', None) mt = ProData('prometheus', 9090) vnfid = self.kwargs['vnf_id'] vduid = self.kwargs['vdu_id'] queryset = monitoring_functions.objects.all() vnf = queryset.filter(sonata_func_id=vnfid) response = {} if vnf.count() == 0: response['status'] = "Fail (VNF: " + vnfid + " not found)" return Response(response) vdus = [] vdus.append(vnf[0].host_id) if vduid not in vdus: response['status'] = "Fail (VDU: " + vduid + " doesn't belong in VNF:" + vnfid + ")" return Response(response) response['status'] = 'Success' response['vdus'] = [] for vdu in vdus: dt = {} dt['vdu_id'] = vdu data = mt.getMetricsResId(vnf[0].host_type,vdu,time_window) if 'data' in data: dt['metrics'] = data['data'] else: dt['metrics'] = [] response['vdus'].append(dt) return Response(response) class SntPromVnfMetricDetail(generics.ListAPIView): serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): metric_name = self.kwargs['metricName'] vnfid = self.kwargs['vnf_id'] mt = ProData('prometheus', 9090) queryset = monitoring_functions.objects.all() vnf = queryset.filter(sonata_func_id=vnfid) response = {} if vnf.count() == 0: response['status'] = "Fail (VNF: " + vnfid + " not found)" return Response(response) vdus = [] vdus.append(vnf[0].host_id) response['status'] = 'Success' response['vdus'] = [] for vdu in vdus: dt = {} dt['vdu_id'] = vdu data = mt.getMetricDetail(vdu, metric_name) if 'data' in data: dt['metrics'] = data['data']['result'] else: dt['metrics'] = [] response['vdus'].append(dt) return Response(response) class SntWSreq(generics.CreateAPIView): serializer_class = SntWSreqSerializer def post(self, request, *args, **kwargs): filters = [] psw = socket.gethostbyname('pushgateway') if 'filters' in request.data.keys(): filters = request.data['filters'] metric = request.data['metric'] url = "http://" + psw + ":8002/new/?metric=" + metric + "&params=" + json.dumps(filters).replace(" ", "") cl = Http() rsp = cl.GET(url, []) response = {} try: if 'name_space' in rsp: response['status'] = "SUCCESS" response['metric'] = request.data['metric'] response['ws_url'] = "ws://" + psw + ":8002/ws/" + str(rsp['name_space']) else: response['status'] = "FAIL" response['ws_url'] = None except KeyError: response = request.data pass return Response(response) class SntWSreqPerPOP(generics.CreateAPIView): serializer_class = SntWSreqSerializer def post(self, request, *args, **kwargs): filters = [] if 'filters' in request.data.keys(): filters = request.data['filters'] metric = request.data['metric'] pop_id = self.kwargs['popID'] prom_url = getPromIP(pop_id) if prom_url['status'] == 'failed': return Response({'status': prom_url['msg']}, status=status.HTTP_404_NOT_FOUND) ip = socket.gethostbyname(prom_url['addr']) url = "http://" + ip + ":8002/new/?metric=" + metric + "&params=" + json.dumps(filters).replace(" ", "") cl = Http() rsp = cl.GET(url, []) response = {} try: if 'name_space' in rsp: response['status'] = "SUCCESS" response['metric'] = request.data['metric'] response['ws_url'] = "ws://" + ip + ":8002/ws/" + str(rsp['name_space']) else: response['status'] = "FAIL" response['ws_url'] = None except KeyError: response = request.data pass return Response(response) class SntRuleconf(generics.CreateAPIView): serializer_class = SntRulesConfSerializer def post(self, request, *args, **kwargs): srvid = self.kwargs['srvID'] if 'rules' in request.data.keys(): rules = request.data['rules'] else: return Response({'error': 'Undefined rules'}, status=status.HTTP_400_BAD_REQUEST) # Check if service exists srv = monitoring_services.objects.all().filter(sonata_srv_id=srvid) if srv.count() == 0: if srvid != 'generic': return Response({'error': 'Requested Service not found'}, status=status.HTTP_404_NOT_FOUND) else: srvid = 'alerts' # Delete old rule from DB rules_db = monitoring_rules.objects.all().filter(service__sonata_srv_id=srvid, consumer='DEV') rules_db.delete() # Create prometheus configuration file rls = {} rls['service'] = srvid rls['vnf'] = "To be found..." rls['rules'] = [] rules_status = len(rules) for r in rules: nt = monitoring_notif_types.objects.all().filter(id=r['notification_type']) if nt.count() == 0: return Response({'error': 'Alert notification type does not supported. Action Aborted'}, status=status.HTTP_400_BAD_REQUEST) else: if srvid != "alerts": rule = monitoring_rules(service=srv[0], summary=r['summary'], notification_type=nt[0], name=r['name'], condition=r['condition'], duration=r['duration'], description=r['description']) rule.save() rl = {} rl['name'] = r['name'] rl['description'] = r['description'] rl['summary'] = r['summary'] rl['duration'] = r['duration'] rl['notification_type'] = r['notification_type'] rl['condition'] = r['condition'] rl['labels'] = ["serviceID=\"" + rls['service'] + "\", tp=\"DEV\""] rls['rules'].append(rl) if len(rules) > 0: cl = Http() rsp = cl.POST('http://' + prometheus + ':9089/prometheus/rules', [], json.dumps(rls)) if rsp == 200: LOG.info('Rules updated') return Response({'status': "success", "rules": rules_status}) else: LOG.info('Rules update failed') return Response({'error': 'Rule update fail ' + str(rsp)}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) else: LOG.info('No rules defined') return Response({'error': 'No rules defined'}) class SntPromMetricData(generics.CreateAPIView): serializer_class = SntPromMetricSerializer ''' { "name": "up", "start": "2016-02-28T20:10:30.786Z", "end": "2016-03-03T20:11:00.781Z", "step": "1h", "labels": [{"labeltag":"instance", "labelid":"192.168.1.39:9090"},{"labeltag":"group", "labelid":"development"}] } ''' def post(self, request, *args, **kwargs): mt = ProData('prometheus', 9090) data = mt.getTimeRangeData(request.data) response = {} try: response['metrics'] = data['data'] except KeyError: response = data return Response(response) class SntPromMetricDataPerVnf(generics.CreateAPIView): serializer_class = SntPromMetricSerializer ''' { "name": "up", "start": "2016-02-28T20:10:30.786Z", "end": "2016-03-03T20:11:00.781Z", "step": "1h", "labels": [{"labeltag":"instance", "labelid":"192.168.1.39:9090"},{"labeltag":"group", "labelid":"development"}] } ''' def post(self, request, *args, **kwargs): mt = ProData('prometheus', 9090) vnfid = self.kwargs['vnf_id'] request.data["name"] = "cpu_util" queryset = monitoring_functions.objects.all() vnf = queryset.filter(sonata_func_id=vnfid) request.data["labels"] = [{"labeltag": "resource_id", "labelid": vnf[0].host_id}] data = mt.getTimeRangeDataVnf(request.data) response = {} try: response['metrics'] = data['data'] except KeyError: response = data return Response(response) class SntPromMetricDetail(generics.ListAPIView): serializer_class = promMetricsListSerializer def get(self, request, *args, **kwargs): metric_name = self.kwargs['metricName'] mt = ProData('prometheus', 9090) data = mt.getMetricFullDetail(metric_name) response = {} response['metrics'] = data['data'] #print (response) return Response(response) class SntPromSrvConf(generics.ListAPIView): # start from here def get(self, request, *args, **kwargs): url = 'http://prometheus:9089/prometheus/configuration' cl = Http() rsp = cl.GET(url, []) return Response({'config': rsp}, status=status.HTTP_200_OK) class SntPromSrvTargets(generics.ListCreateAPIView): serializer_class = SntPromTargetsSerialazer url = 'http://prometheus:9089/prometheus/configuration' def get(self, request, *args, **kwargs): cl = Http() rsp = cl.GET(self.url, []) if 'scrape_configs' in rsp: rsp = rsp['scrape_configs'] else: rsp = [] return Response({'targets': rsp}, status=status.HTTP_200_OK) def post(self, request, *args, **kwargs): data = request.data if not 'targets' in data: return Response({"error":"data malformed"}, status=status.HTTP_400_BAD_REQUEST) if type(data['targets']) is list: for trg in data['targets']: if not 'static_configs' in trg or not 'job_name' in trg: LOG.info("Data malformed") return Response({"error": "data malformed"}, status=status.HTTP_400_BAD_REQUEST) if type(trg['static_configs']) is list: for url in trg['static_configs']: if not 'targets' in url: LOG.info("Data malformed") return Response({"error": "data malformed"}, status=status.HTTP_400_BAD_REQUEST) else: LOG.info("Data malformed") return Response({"error": "data malformed"}, status=status.HTTP_400_BAD_REQUEST) else: LOG.info("Data malformed") return Response({"error": "data malformed"}, status=status.HTTP_400_BAD_REQUEST) #Get current congiguration from prometheus cl = Http() rsp = cl.GET(self.url, []) #Update configuration if 'scrape_configs' in rsp: rsp['scrape_configs'] = data['targets'] #Save the new configuration rsp = cl.POST(url_=self.url, headers_=[], data_=json.dumps(rsp)) LOG.info("Prometheus targets updated") return Response({"prometheus_conf":rsp}, status=status.HTTP_200_OK) class SntActMRList(generics.ListAPIView): serializer_class = SntActMonResSerializer def get_queryset(self): queryset = active_monitoring_res.objects.all() service_id_ = self.kwargs['service_id'] return queryset.filter(service_id=service_id_) def delete(self, request, *args, **kwargs): self.lookup_field = 'service_id' queryset = active_monitoring_res.objects.all() srvid = self.kwargs['srv_id'] queryset = queryset.filter(service_id=srvid) if queryset.count() > 0: queryset.delete() return Response(status=status.HTTP_204_NO_CONTENT) else: LOG.info("Monitoring Data not found") return Response({'status': "Results not found"}, status=status.HTTP_404_NOT_FOUND) class SntActMRDetail(generics.ListAPIView): serializer_class = SntActMonResDetailSerializer def get_queryset(self): queryset = active_monitoring_res.objects.all() service_id_ = self.kwargs['srv_id'] test_id_ = self.kwargs['test_id'] return queryset.filter(service_id=service_id_, test_id=test_id_) class SntActMRPost(generics.CreateAPIView): serializer_class = SntActMonResDetailSerializer def post(self, request, *args, **kwargs): queryset = active_monitoring_res.objects.all() data_ = request.data if 'service_id' in self.kwargs: service_id_ = self.kwargs['service_id'] elif 'ServiceID' in data_: service_id_ = data_['ServiceID'] else: LOG.info('service_id tag is missing') return Response({'error': 'service_id missing...'}, status=status.HTTP_400_BAD_REQUEST) if 'test_id' in self.kwargs: test_id_ = self.kwargs['test_id'] elif 'TestID' in data_: test_id_ = data_['TestID'] else: LOG.info('test_id tag is missing') return Response({'error': 'test_id missing...'}, status=status.HTTP_400_BAD_REQUEST) tmstp_ = data_['Timestamp'] cnfg_ = data_['TestConfig'] tm = datetime.datetime.utcfromtimestamp(float(tmstp_)).strftime('%Y-%m-%d %H:%M:%S') try: data = active_monitoring_res(test_id=test_id_, service_id=service_id_, timestamp=tm, config=cnfg_, data=data_) data.save() except IntegrityError as e: return Response({'error': str(e)}, status=status.HTTP_400_BAD_REQUEST) LOG.info('Montoring data-set added') return Response({'service_id': service_id_, 'test_id': test_id_, 'timestamp': tm, 'configuration': cnfg_}, status=status.HTTP_200_OK) class Ping(generics.ListAPIView): serializer_class = HealthSerializer def get(self, request, *args, **kwargs): p = psutil.Process(os.getpid()) uptime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(p.create_time())) + ' UTC' LOG.info(json.dumps({'alive_since':uptime})) return Response({'alive_since': uptime}, status=status.HTTP_200_OK)
StarcoderdataPython
4994792
input = """ 1 2 2 1 3 4 1 3 2 1 2 4 1 4 0 0 1 5 2 1 6 7 1 6 2 1 5 7 1 7 0 0 1 8 2 1 9 10 1 9 2 1 8 10 1 10 0 0 1 11 2 1 12 13 1 12 2 1 11 13 1 13 0 0 1 14 2 1 15 16 1 15 2 1 14 16 1 16 0 0 1 17 2 1 18 19 1 18 2 1 17 19 1 19 0 0 1 20 2 1 21 22 1 21 2 1 20 22 1 22 0 0 1 23 2 1 24 25 1 24 2 1 23 25 1 25 0 0 1 26 1 0 2 1 27 1 0 17 1 28 2 0 27 20 1 29 2 0 26 5 1 26 2 0 29 5 1 30 2 0 29 14 1 31 2 0 28 23 1 32 2 0 30 8 1 1 1 1 30 1 1 1 1 31 1 1 2 0 31 32 1 33 2 1 26 5 1 33 2 1 32 8 0 27 j 33 p 12 n_d 20 g 26 i 2 a 8 c 32 o 11 d 3 n_a 18 n_f 24 n_h 31 n 30 m 9 n_c 5 b 29 l 17 f 23 h 28 k 15 n_e 14 e 21 n_g 6 n_b 0 B+ 0 B- 1 0 1 """ output = """ {b, n_c, e, f, g, h, i, j, k, l, m, n, a} """
StarcoderdataPython
11211195
<filename>many_classes/__init__.py<gh_stars>0 """ This package contains an example on how to run a Tango Device Server with 2 or more Device Classes. It includes the said 2 example Device Classes and a module to run them in one Device Server. """ __author__ = "<NAME>" __all__ = ["device_one", "device_two", "run_server"]
StarcoderdataPython
4993574
# -*- coding: utf-8 -*- """Top-level package for lidar.""" __author__ = """<NAME>""" __email__ = '<EMAIL>' __version__ = '0.5.0' from .filling import ExtractSinks from .slicing import DelineateDepressions from .filtering import MeanFilter, MedianFilter, GaussianFilter from .gui import gui, GUI # from .mounts import DelineateMounts
StarcoderdataPython
6442462
import unittest from unittest.mock import patch from tmc import points from tmc.utils import load, load_module, reload_module, get_stdout, check_source from functools import reduce import os import textwrap from random import choice, randint exercise = 'src.factorials' function = 'factorials' def get_correct(test_case: int) -> dict: k = lambda n: reduce(lambda a,b: a * b, range(1, n + 1)) return {i: k(i) for i in range (1, test_case + 1)} def output(d: dict): for key in sorted(d.keys()): print(str(key) + ": " + str(d[key])) @points('5.factorials') class FactorialsTest(unittest.TestCase): @classmethod def setUpClass(cls): with patch('builtins.input', side_effect=[AssertionError("Asking input from the user was not expected")]): cls.module = load_module(exercise, 'en') def test_0_main_program_ok(self): ok, line = check_source(self.module) message = """The code for testing the functions should be placed inside if __name__ == "__main__": block. The following row should be moved: """ self.assertTrue(ok, message+line) def test_1_function_exists(self): try: from src.factorials import factorials except: self.assertTrue(False, 'Your code should contain function named as factorials(n: int)') try: factorials = load(exercise, function, 'en') factorials(1) except: self.assertTrue(False, 'Make sure, that function can be called as follows\nfactorials(1)') def test_2_type_of_return_value(self): factorials = load(exercise, function, 'en') val = factorials(1) self.assertTrue(type(val) == dict, f"Function {function} should return value which type is dict.") def test_3_factorials(self): test_cases = (1,2,4,3,5,6,8,10) for test_case in test_cases: with patch('builtins.input', side_effect=[AssertionError("Asking input from the user was not expected")]): reload_module(self.module) output_alussa = get_stdout() factorials = load(exercise, function, 'en') value = factorials(test_case) correct = get_correct(test_case) self.assertEqual(len(correct), len(value), f"The returned dictionary should contain {len(correct)} items, but it contains {len(value)} items: \n{value}\nwhen calling factorials({test_case})") self.assertEqual(value, correct, f"The result \n{value}\ndoes not match with the model solution \n{correct}\nwhen calling factorials({test_case})") if __name__ == '__main__': unittest.main()
StarcoderdataPython
1929622
<gh_stars>1000+ from typing import Any from packaging import version import optuna from optuna._deprecated import deprecated from optuna._imports import try_import with try_import() as _imports: import fastai if version.parse(fastai.__version__) >= version.parse("2.0.0"): raise ImportError( f"You don't have fastai V1 installed! Fastai version: {fastai.__version__}" ) from fastai.basic_train import Learner from fastai.callbacks import TrackerCallback if not _imports.is_successful(): TrackerCallback = object # NOQA @deprecated("2.4.0", "4.0.0") class FastAIV1PruningCallback(TrackerCallback): """FastAI callback to prune unpromising trials for fastai. .. note:: This callback is for fastai<2.0. See `the example <https://github.com/optuna/optuna-examples/blob/main/ fastai/fastaiv1_simple.py>`__ if you want to add a pruning callback which monitors validation loss of a ``Learner``. Example: Register a pruning callback to ``learn.fit`` and ``learn.fit_one_cycle``. .. code:: learn.fit(n_epochs, callbacks=[FastAIPruningCallback(learn, trial, "valid_loss")]) learn.fit_one_cycle( n_epochs, cyc_len, max_lr, callbacks=[FastAIPruningCallback(learn, trial, "valid_loss")], ) Args: learn: `fastai.basic_train.Learner <https://docs.fast.ai/basic_train.html#Learner>`_. trial: A :class:`~optuna.trial.Trial` corresponding to the current evaluation of the objective function. monitor: An evaluation metric for pruning, e.g. ``valid_loss`` and ``Accuracy``. Please refer to `fastai.callbacks.TrackerCallback reference <https://fastai1.fast.ai/callbacks.tracker.html#TrackerCallback>`_ for further details. """ def __init__(self, learn: "Learner", trial: optuna.trial.Trial, monitor: str) -> None: super().__init__(learn, monitor) _imports.check() self._trial = trial def on_epoch_end(self, epoch: int, **kwargs: Any) -> None: value = self.get_monitor_value() if value is None: return # This conversion is necessary to avoid problems reported in issues. # - https://github.com/optuna/optuna/issue/642 # - https://github.com/optuna/optuna/issue/655. self._trial.report(float(value), step=epoch) if self._trial.should_prune(): message = "Trial was pruned at epoch {}.".format(epoch) raise optuna.TrialPruned(message)
StarcoderdataPython
1643741
<gh_stars>0 from uuid import uuid4 def generateUUID(): return str(uuid4())
StarcoderdataPython
8096511
<reponame>ethereum/asyncio-cancel-token import asyncio from typing import ( # noqa: F401 Any, Awaitable, List, Sequence, TypeVar, cast, ) from .exceptions import ( EventLoopMismatch, OperationCancelled, ) _R = TypeVar('_R') class CancelToken: def __init__(self, name: str, loop: asyncio.AbstractEventLoop = None) -> None: self.name = name self._chain: List['CancelToken'] = [] self._triggered = asyncio.Event(loop=loop) self._loop = loop @property def loop(self) -> asyncio.AbstractEventLoop: """ Return the `loop` that this token is bound to. """ return self._loop def chain(self, token: 'CancelToken') -> 'CancelToken': """ Return a new CancelToken chaining this and the given token. The new CancelToken's triggered will return True if trigger() has been called on either of the chained tokens, but calling trigger() on the new token has no effect on either of the chained tokens. """ if self.loop != token._loop: raise EventLoopMismatch("Chained CancelToken objects must be on the same event loop") chain_name = ":".join([self.name, token.name]) chain = CancelToken(chain_name, loop=self.loop) chain._chain.extend([self, token]) return chain def trigger(self) -> None: """ Trigger this cancel token and any child tokens that have been chained with it. """ self._triggered.set() @property def triggered_token(self) -> 'CancelToken': """ Return the token which was triggered. The returned token may be this token or one that it was chained with. """ if self._triggered.is_set(): return self for token in self._chain: if token.triggered: # Use token.triggered_token here to make the lookup recursive as self._chain may # contain other chains. return token.triggered_token return None @property def triggered(self) -> bool: """ Return `True` or `False` whether this token has been triggered. """ if self._triggered.is_set(): return True return any(token.triggered for token in self._chain) def raise_if_triggered(self) -> None: """ Raise `OperationCancelled` if this token has been triggered. """ if self.triggered: raise OperationCancelled( "Cancellation requested by {} token".format(self.triggered_token)) async def wait(self) -> None: """ Coroutine which returns when this token has been triggered """ if self.triggered_token is not None: return futures = [asyncio.ensure_future(self._triggered.wait(), loop=self.loop)] for token in self._chain: futures.append(asyncio.ensure_future(token.wait(), loop=self.loop)) try: done, pending = await asyncio.wait( futures, return_when=asyncio.FIRST_COMPLETED, loop=self.loop, ) except asyncio.CancelledError as err: # Since we use return_when=asyncio.FIRST_COMPLETED above, we can # be sure none of our futures will be done here, so we don't need # to check if any is done before cancelling. for future in futures: future.cancel() for future in futures: try: await future except asyncio.CancelledError: pass raise err else: for future in pending: future.cancel() for future in pending: try: await future except asyncio.CancelledError: pass async def cancellable_wait(self, *awaitables: Awaitable[_R], timeout: float = None) -> _R: """ Wait for the first awaitable to complete, unless we timeout or the token is triggered. Returns the result of the first awaitable to complete. Raises TimeoutError if we timeout or `~cancel_token.exceptions.OperationCancelled` if the cancel token is triggered. All pending futures are cancelled before returning. """ futures = [asyncio.ensure_future(a, loop=self.loop) for a in awaitables + (self.wait(),)] try: done, pending = await asyncio.wait( futures, timeout=timeout, return_when=asyncio.FIRST_COMPLETED, loop=self.loop, ) except asyncio.CancelledError as err: # Since we use return_when=asyncio.FIRST_COMPLETED above, we can # be sure none of our futures will be done here, so we don't need # to check if any is done before cancelling. for future in futures: future.cancel() for future in futures: try: await future except asyncio.CancelledError: pass raise err else: for future in pending: future.cancel() for future in pending: try: await future except asyncio.CancelledError: pass if not done: raise asyncio.TimeoutError() if self.triggered_token is not None: # We've been asked to cancel so we don't care about our future, but we must # consume its exception or else asyncio will emit warnings. for task in done: task.result() raise OperationCancelled( "Cancellation requested by {} token".format(self.triggered_token) ) return done.pop().result() def __str__(self) -> str: return self.name def __repr__(self) -> str: return '<CancelToken: {0}>'.format(self.name)
StarcoderdataPython
12805764
New Algorithms for Simulating Dynamical Friction <NAME>, <NAME>, <NAME> — RadiaSoft, LLC This notebook describes—and documents in code—algorithms for simulating the dynamical friction experienced by ions in the presence of magnetized electrons. The $\LaTeX$ preamble is here. $$ %% math text \newcommand{\hmhsp}{\mspace{1mu}}% math hair space \newcommand{\mhsp}{\mspace{2mu}}% math hair space \newcommand{\ud}{\mathop{}\!\mathrm{d}}% upright d for differential \newcommand{\ui}{\mathrm{i}}% upright i for imaginary unit \newcommand{\ue}{\mathrm{e}}% upright e for Euler number %% \newcommand{\Mion}{m_\text{ion}} \newcommand{\Me}{m_\text{e}} %% \newcommand{\vQion}{\vec{q}_\text{ion}} \newcommand{\vPion}{\vec{p}_\text{ion}} \newcommand{\Qion}[1]{#1_\text{ion}} \newcommand{\Pion}[1]{p_{\text{ion},\hmhsp#1}} %% \newcommand{\vQe}{\vec{q}_\text{e}} \newcommand{\vPe}{\vec{p}_\text{e}} \newcommand{\Qe}[1]{#1_\text{e}} \newcommand{\Pe}[1]{p_{\text{e},\hmhsp#1}} %% \newcommand{\Map}[2][]{\mathcal{#2}^{#1}} %% \newcommand{\pgc}{p_\text{gc}} \newcommand{\xgc}{x_\text{gc}} \newcommand{\ygc}{y_\text{gc}} $$ In [3]: """ Python preamble """ %matplotlib inline In [4]: print mp NameErrorTraceback (most recent call last) <ipython-input-4-f80345107578> in <module>() ----> 1 print mp NameError: name 'mp' is not defined In [5]: """ Python preamble (cont.) """ from __future__ import division import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm import matplotlib as mpl from scipy.constants import pi from scipy.constants import speed_of_light as clight from scipy.constants import epsilon_0 as eps0 from scipy.constants import mu_0 as mu0 from scipy.constants import elementary_charge as qe from scipy.constants import electron_mass as me from scipy.constants import proton_mass as mp from scipy.constants import Boltzmann as kB fourPiEps0 = 4 * pi * eps0 invFourPiEps0 = 1 / fourPiEps0 """ reset some default options """ np.set_printoptions(linewidth=96) """ indexing """ (Ix, Ipx, Iy, Ipy, Iz, Ipz) = range(6) """ prefixes """ (femto, pico, nano, micro, milli, one, kilo, mega, giga, tera, peta) = \ 10. ** np.asarray(range(-15, 15+1, 3)) We define the ion charge and mass here as global parameters. We do the same for the magnetic field strength $B$ and the thermal velocity $v_\text{th}$. Then we compute various related derived quantities. In [6]: """ angular frequency of Larmor rotations NB: This is a *signed* quantity, which means that for electrons, say, you must set Z = -1. """ def omega_Larmor(mass, B, Z = 1): return Z * qe * B / mass Z_ion = 1 M_ion = mp B_mag = 1. # Tesla e_temp = 300. # Kelvin N_gyro = 100 # a somewhat arbitrary choice, range [100, 160] """ derived quantities """ V_th = math.sqrt(2 * kB * e_temp / me) rho_gc = me * V_th / (qe * B_mag) Omega_e = omega_Larmor(me, B_mag, Z = -1) T_e = (2 * pi) / abs(Omega_e) T_intxn = N_gyro * T_e print "V_th = ", V_th print "rho_gc / µm = ", rho_gc / micro print "Omega_e / s^(-1) = ", Omega_e print "frequency / GHz = ", Omega_e / (2 * pi) / giga print "T_e / ns = ", T_e / nano print "T_intxn / ns = ", T_intxn / nano V_th = 95361.4171888 rho_gc / µm = 0.542189740332 Omega_e / s^(-1) = -1.7588200236e+11 frequency / GHz = -27.9924900765 T_e / ns = 0.0357238672682 T_intxn / ns = 3.57238672682 Two-body Magnetized Collisions The Hamiltonian for a two-body interaction between an ion and a magnetized electron is $$ \vphantom{\Big]} H(\vQion, \vPion, \vQe, \vPe) = H_0(\vPion, \Qe{y}, \vPe) + H_\text{C}(\vQion, \vQe) $$ where $$$$\begin{align} H_0(\vPion, \Qe{y}, \vPe) &amp;= \frac{1}{2\Mion}\bigl(\Pion{x}^2 + \Pion{y}^2 + \Pion{z}^2\bigr) + \frac{1}{2\Me}\bigl((\Pe{x} + e B \Qe{y})^2 + \Pe{y}^2 + \Pe{z}^2\bigr),\\[1ex] H_\text{C}(\vQion, \vQe) &amp;= -\frac{Ze^2}{4\pi\varepsilon_0} \big/ {\sqrt{(\Qion{x}-\Qe{x})^2 + (\Qion{y}-\Qe{y})^2 + (\Qion{z}-\Qe{z})^2}}, \end{align}$$ $$1ex] $$ and $$$ denotes the elementary quantum of charge. The simplest second-order scheme for integrating this system uses a split-operator approach: We approximate the total map $\Map{M}$ for a time step of size $h$ by the symmetric form $$ \vphantom{\Big]} \Map{M}(h) \approx \Map{M}_0(h/2) \Map{M}_C(h) \Map{M}_0(h/2) $$ where $\Map{M}_0$ and $\Map{M}_C$ are the exact maps for the Hamiltonians $H_0$ and $H_C$ respectively. The map $\Map{M}_0$ is a simple linear map. The map $\Map{M}_C$ generates a nonlinear kick of both ion and electron momenta. Hamiltonians for Two-body Magnetized Collisions In [5]: """ Hamiltonian for free ion and electron in a magnetic field, under the assuption that the ion is unaffected by that magnetic field. Arguments: z_i (ndArray): 6 x N array of canonical coördinates and conjugate momenta for the ions z_e (ndArray): 6 x N array of canonical coördinates and conjugate momenta for the electrons In both of the above arrays, the six phase-space variables are given in the order(x, px, y, py, z, pz) Return: the total 'free' energy of each ion-electron pair """ def H_twobody_0(z_i, z_e): ham_i = ((z_i[Ipx,:] ** 2 + z_i[Ipy,:] ** 2 + z_i[Ipz,:] ** 2) / (2 * M_ion)) ham_e = ((z_e[Ipx,:] + (-qe) * B_mag * z_e[Iy,:]) ** 2 + z_e[Ipy,:] ** 2 + z_e[Ipz,:] ** 2) / (2 * me) return ham_i + ham_e """ Hamiltonian for the interaction of each ion-electron pair. """ def H_twobody_C(z_i, z_e): g_ie = -(Z_ion * qe ** 2) / (4 * pi * eps0) intxn = g_ie / np.sqrt( + (z_i[Ix,:] - z_e[Ix,:]) ** 2 + (z_i[Iy,:] - z_e[Iy,:]) ** 2 + (z_i[Iz,:] - z_e[Iz,:]) ** 2) return intxn """ Total Hamiltonian for each ion-electron pair. """ def H_twobody(z_i, z_e): ham_0 = H_twobody_0(z_i, z_e) ham_C = H_twobody_C(z_i, z_e) return ham_0 + ham_C Maps for Two-body Magnetized Collisions In [6]: """ define transfer maps for ions and electrons There are three maps to define here: one each for ions and electrons under H_0, and another """ """ matrix for a linear drift """ def MatD(mass, h): Mdrift = np.identity(6) for i in (Ix, Iy, Iz): Mdrift[i, i + 1] = h / mass return Mdrift """ matrix for linear electron dynamics in a solenoidal field """ def MatK0_e(h): mw = me * Omega_e wh = Omega_e * h cwh = math.cos(wh) swh = math.sin(wh) cwh1m = 2 * math.sin(wh / 2) ** 2 # 1 - cos(a) = 2 sin^2(a / 2) MK0 = np.identity(6) MK0[Iy, Iy ] = cwh MK0[Ipy, Ipy] = cwh MK0[Iy, Ipy] = swh / mw MK0[Ipy, Iy ] = -mw * swh MK0[Iz, Ipz] = h / me MK0[Ix, Ipx] = swh / mw MK0[Ix, Iy ] = swh MK0[Ix, Ipy] = cwh1m / mw MK0[Iy, Ipx] = -cwh1m / mw MK0[Ipy, Ipx] = -swh return MK0 """ map phase-space coördinates forward in time by amount h based on the Hamiltonian H_0, which describes the free motion of ions and the motion of electrons in a solenoidal magnetic field """ def MapZ_0(h, z_i, z_e): mat = MatD(M_ion, h) zf_i = mat.dot(z_i) mat = MatK0_e(h) zf_e = mat.dot(z_e) return zf_i, zf_e """ map phase-space coördinates forward in time by amount h based on the Hamiltonian H_C, which describes the collision between a single ion-electron pair """ def MapZ_C(h, z_i, z_e): g = h * Z_ion * qe ** 2 / (4 * pi * eps0) dz = z_i - z_e denom = (dz[Ix,:] ** 2 + dz[Iy,:] ** 2 + dz[Iz,:] ** 2) ** (3/2) zf_i = z_i.copy() zf_e = z_e.copy() for ip in (Ipx, Ipy, Ipz): zf_i[ip,:] = z_i[ip,:] - g * dz[ip - 1] / denom zf_e[ip,:] = z_e[ip,:] + g * dz[ip - 1] / denom return zf_i, zf_e def apply_MapZ_0(h, n, z_i, z_e): mat_i = MatD(M_ion, h) mat_e = MatK0_e(h) zf_i = [z_i] zf_e = [z_e] for i in range(n): z_i = mat_i.dot(z_i) z_e = mat_e.dot(z_e) zf_i.append(z_i) zf_e.append(z_e) return np.asarray(zf_i), np.asarray(zf_e) """ second-order split-operator integration for the total Hamiltonian """ def apply_MapZ(h, n, z_i, z_e): hh = 0.5 * h mat_i = MatD(M_ion, hh) mat_e = MatK0_e(hh) zf_i = [z_i] zf_e = [z_e] for i in range(n): z_i = mat_i.dot(z_i) z_e = mat_e.dot(z_e) z_i, z_e = MapZ_C(h, z_i, z_e) z_e = mat_e.dot(z_e) z_i = mat_i.dot(z_i) zf_i.append(z_i) zf_e.append(z_e) return np.asarray(zf_i), np.asarray(zf_e) Guiding-center Coördinates and $\Theta$-J Coördinates Transformations To and From Guiding-center Coördinates and $\Theta$-J Coördinates We transform the electron's transverse phase-space coördinates using the type-1 generating function $$ F_1(x,y;\, \phi,\ygc) = m\Omega\Bigl[\frac{1}{2}(y - \ygc)^2\cot\phi - y \ygc\Bigr]. $$ This yields the following transformation rules: to guiding-center coördinates $$ \begin{align} m\Omega &amp;= qB_0, \quad\text{(this is a signed quantity)}\\[1ex] \phi &amp;= \arctan\Bigl(\frac{p_x + e B y}{p_y}\Bigr),\\[1ex] p_\phi &amp;= \frac{1}{2m\Omega}\bigl[(p_x + m\Omega y)^2 + p_y^2\bigr],\\[1ex] \ygc &amp;= -\frac{p_x}{m\Omega},\\[1ex] \pgc &amp;= p_y + m\Omega x. \end{align} $$ from guiding-center coördinates $$ \begin{align} r_L &amp;= \frac{1}{m\Omega}\sqrt{2m\Omega\,p_\phi}, \quad\text{(this is a signed quantity)}\\[1ex] x &amp;= \frac{\pgc}{m\Omega} - r_L\cos\phi,\\[1ex] p_x &amp;= -m\Omega\,\ygc,\\[1ex] y &amp;= \ygc + r_L\sin\phi,\\[1ex] p_y &amp;= m\Omega\,r_L\cos\phi. \end{align} $$ We also require the transformation to and from the coördinates $\Theta$-J: $$ \begin{align} \Theta &= \dotsb, \ J &= p_\phi + \frac{Ze^2}{4\pi\varepsilon_0} \frac{r_L}{\Omega} \frac{(\Qion{x}-\xgc)\cos\phi - (\Qion{y}-\ygc)\sin\phi}{% \bigl[(\Qion{x}-\Qe{x})^2 + (\Qion{y}-\Qe{y})^2 + (\Qion{z}-\Qe{z})^2 + r_L^2\bigr]^{3/2}}. \end{align} $$ $$ \begin{align} \phi &amp;= \dotsb, \\ p_\phi &amp;= \dotsb. \end{align} $$ In [7]: """ convert to guiding-center coordinates """ def toGuidingCenter(z_e): mOmega = me * Omega_e zgc = z_e.copy() zgc[Ix,:] = np.arctan2(z_e[Ipx,:] + mOmega * z_e[Iy,:], z_e[Ipy,:]) zgc[Ipx,:] = (((z_e[Ipx,:] + mOmega * z_e[Iy,:]) ** 2 + z_e[Ipy,:] ** 2) / (2 * mOmega)) zgc[Iy,:] = - z_e[Ipx,:] / mOmega zgc[Ipy,:] = z_e[Ipy,:] + mOmega * z_e[Ix,:] return zgc """ convert from guiding-center coordinates """ def fromGuidingCenter(zgc): mOmega = me * Omega_e rhoL = np.sqrt(2 * mOmega * zgc[Ipx,:]) / mOmega z_e = zgc.copy() z_e[Ix,:] = zgc[Ipy,:] / mOmega - rhoL * np.cos(zgc[Ix,:]) z_e[Ipx,:] = - mOmega * zgc[Iy,:] z_e[Iy,:] = zgc[Iy,:] + rhoL * np.sin(zgc[Ix,:]) z_e[Ipy,:] = mOmega * rhoL * np.cos(zgc[Ix,:]) return z_e """ return J(z_gc) coordinates using the (probably correct) minus sign """ def actionJ(z_i, zgc): g = Z_ion * qe ** 2 / (4 * pi * eps0) mOmega = me * Omega_e rhoL = np.sqrt(2 * zgc[Ipx,:] / mOmega) num = ((z_i[Ix,:] - zgc[Ipy,:] / mOmega) * np.cos(zgc[Ix,:]) - (z_i[Iy,:] - zgc[Iy,:]) * np.sin(zgc[Ix,:])) den = ((z_i[Ix,:] - zgc[Ipy,:] / mOmega) ** 2 + (z_i[Iy,:] - zgc[Iy,:]) ** 2 + (z_i[Iz,:] - zgc[Iz,:]) ** 2 + rhoL ** 2) ** (3/2) return zgc[Ipx,:] + g * (rhoL / Omega_e) * num / den In [8]: """ return the Larmor radius """ def rLarmor(z_e): mOmega = me * Omega_e return np.sqrt((z_e[Ipx,:] + mOmega * z_e[Iy,:]) ** 2 + z_e[Ipy,:] ** 2) / mOmega """ return the Larmor radius """ def rLarmor_gc(zgc): mOmega = me * Omega_e return np.sqrt(2 * mOmega * zgc[Ipx,:]) / mOmega """ return the perturbation ratio (uses the minus sign) """ def pertubationRatio(z_i, zgc): mOmega = me * Omega_e rhoL = np.sqrt(2 * mOmega * zgc[Ipx,:]) / mOmega num = ((z_i[Ix,:] - zgc[Ipy,:] / mOmega) * np.cos(zgc[Ix,:]) - (z_i[Iy,:] - zgc[Iy,:]) * np.sin(zgc[Ix,:])) den = ((z_i[Ix,:] - zgc[Ipy,:] / mOmega) ** 2 + (z_i[Iy,:] - zgc[Iy,:]) ** 2 + (z_i[Iz,:] - zgc[Iz,:]) ** 2 + rhoL ** 2) return 2 * rhoL * num / den """ return the ratio (impact parameter) / (Larmor radius) """ def impactParamOverRL(z_i, zgc): mOmega = me * Omega_e rhoL = np.sqrt(2 * mOmega * zgc[Ipx,:]) / mOmega b = np.sqrt((z_i[Ix,:] - zgc[Ipy,:] / mOmega) ** 2 + (z_i[Iy,:] - zgc[Iy,:]) ** 2) return b / rhoL Hamiltonians using Guiding-center Coördinates In [9]: """ Hamiltonian for free ion and electron in a magnetic field, under the assuption that the ion is unaffected by that magnetic field. """ def H_gc_0(z_i, zgc): ham_i = ((z_i[Ipx,:] ** 2 + z_i[Ipy,:] ** 2 + z_i[Ipz,:] ** 2) / (2 * M_ion)) ham_e = Omega_e * actionJ(z_i, zgc) + zgc[Ipz,:] ** 2 / (2 * me) return ham_i + ham_e """ Hamiltonian for the ion-electron interaction in guiding-center (Θ,J) coördinates. """ def H_gc_C(z_i, zgc): g_ie = (Z_ion * qe ** 2) / (4 * pi * eps0) mOmega = me * Omega_e intxn = -g_ie / np.sqrt( + (z_i[Ix,:] - zgc[Ipy,:] / mOmega) ** 2 + (z_i[Iy,:] - zgc[Iy,:]) ** 2 + (z_i[Iz,:] - zgc[Iz,:]) ** 2 + 2 * actionJ(z_i, zgc) / mOmega) return intxn """ total Hamiltonian for the ion-electron system in GC coördinates """ def H_gc(z_i, zgc): ham_0 = H_gc_0(z_i, zgc) ham_C = H_gc_C(z_i, zgc) return ham_0 + ham_C """ Hamiltonian for the ion-electron interaction in guiding-center (Θ,J) coördinates. """ def H_gc_Cp(z_i, zgc): g_ie = (Z_ion * qe ** 2) / (4 * pi * eps0) mOmega = me * Omega_e intxn = -g_ie / np.sqrt( + (z_i[Ix,:] - zgc[Ipy,:] / mOmega) ** 2 + (z_i[Iy,:] - zgc[Iy,:]) ** 2 + (z_i[Iz,:] - zgc[Iz,:]) ** 2 + 2 * actionJp(z_i, zgc) / mOmega) return intxn """ total Hamiltonian for the ion-electron system in GC coördinates """ def H_gc_m(z_i, zgc): ham_0 = H_gc_0(z_i, zgc) ham_C = H_gc_Cm(z_i, zgc) return ham_0 + ham_C Maps using Guiding-center Coördinates In [10]: """ define transfer maps for ions and electrons There are three maps to define here: one each for ions and electrons under H_0, and another for the interaction under H_c """ """ Map phase-space coördinates forward in time by amount h. This map is based on the Hamiltonian H_gc_0, which describes the free motion of ions and the averaged motion of electrons in a solenoidal magnetic field. NB: We do not update the \Theta coördinate, as it does not contribute to the dynamics of any other variables. """ def MapZgc_0(h, z_i, zgc): matD = MatD(M_ion, h) zf_i = matD.dot(z_i) zf_e = zgc.copy() zf_e[Iz,:] += (h / me) * zgc[Ipz,:] return zf_i, zf_e """ Map phase-space coördinates forward in time by amount h. This map is based on the Hamiltonian H_gc_C, which describes the collision between a single ion-electron pair in guiding-center coördinates. NB: We do not update the \Theta coördinate, as it does not contribute to the dynamics of any other variables. """ def MapZgc_C(h, z_i, zgc): g_ie = Z_ion * qe ** 2 / (4 * pi * eps0) mOmega = me * Omega_e dr3 = ((z_i[Ix,:] - zgc[Ipy,:] / mOmega) ** 2 + (z_i[Iy,:] - zgc[Iy,:]) ** 2 + (z_i[Iz,:] - zgc[Iz,:]) ** 2 + (2 / mOmega) * actionJ(z_i, zgc)) ** (3/2) Omega_gc = (g_ie / mOmega) / dr3 S = np.sin(Omega_gc * h) C1 = 2 * np.sin(Omega_gc * (h / 2)) ** 2 zf_i = z_i.copy() zf_e = zgc.copy() Dxgc = ((z_i[Ix,:] - zgc[Ipy,:] / mOmega) * C1 + (z_i[Iy,:] - zgc[Iy,:]) * S) Dygc = ((z_i[Iy,:] - zgc[Iy,:]) * C1 - (z_i[Ix,:]- zgc[Ipy,:] / mOmega) * S) Dpz = (Omega_gc * h) * mOmega * (z_i[Iz,:] - zgc[Iz,:]) zf_i[Ipx,:] += mOmega * Dygc zf_i[Ipy,:] -= mOmega * Dxgc zf_i[Ipz,:] -= Dpz zf_e[Iy,:] += Dygc zf_e[Ipy,:] += mOmega * Dxgc zf_e[Ipz,:] += Dpz return zf_i, zf_e def apply_MapZgc_0(h, n, z_i, zgc): mat_i = MatD(M_ion, h) mat_e = np.identity(6) mat_e[Iz, Ipz] = h / me zf_i = [z_i] zf_e = [zgc] for i in range(n): z_i = mat_i.dot(z_i) zgc = mat_e.dot(zgc) zf_i.append(z_i) zf_e.append(zgc) return np.asarray(zf_i), np.asarray(zf_e) def apply_MapZgc(h, n, z_i, zgc): hh = 0.5 * h mat_i = MatD(M_ion, hh) mat_e = np.identity(6) mat_e[Iz, Ipz] = hh / me zf_i = [z_i] zf_e = [zgc] for i in range(n): z_i = mat_i.dot(z_i) zgc = mat_e.dot(zgc) z_i, zgc = MapZgc_C(h, z_i, zgc) zgc = mat_e.dot(zgc) z_i = mat_i.dot(z_i) zf_i.append(z_i) zf_e.append(zgc) return np.asarray(zf_i), np.asarray(zf_e) Maps using the Magnus Expansion In [11]: """ compute $\Delta P_\text{ion}$ using the Magnus expansion """ def magnus_deltaPIon(h, z_i, zgc): g_ie = (Z_ion * qe ** 2) / (4 * pi * eps0) mOmega = me * Omega_e xgc = zgc[Ipy,:] / mOmega C1 = ((z_i[Ix,:] - xgc) ** 2 + (z_i[Iy,:] - zgc[Iy,:]) ** 2 + (z_i[Iz,:] - zgc[Iz,:]) ** 2 + (2 / mOmega) * actionJ(z_i, zgc)) C2 = (2 * ((z_i[Ix,:] - xgc) * z_i[Ipx,:] / M_ion + (z_i[Iy,:] - zgc[Iy,:]) * z_i[Ipy,:] / M_ion + (z_i[Iz,:] - zgc[Iz,:]) * (z_i[Ipz,:] / M_ion - zgc[Ipz,:] / me))) C3 = ((z_i[Ipx,:] / M_ion) ** 2 + (z_i[Ipy,:] / M_ion) ** 2 + (z_i[Ipz,:] / M_ion - zgc[Ipz,:] / me) ** 2) B = np.sqrt(C1 + (C2 + C3 * h) * h) Delta = 4 * C1 * C3 - C2 ** 2 D1 = (2 * C3 * h + C2) / B - C2 / np.sqrt(C1) D2 = (C2 * h + 2 * C1) / B - 2 * np.sqrt(C1) dPx = - ((2 * g_ie / Delta) * ((z_i[Ix,:] - xgc) * D1 - (z_i[Ipx,:] / M_ion) * D2)) dPy = - ((2 * g_ie / Delta) * ((z_i[Iy,:] - zgc[Iy,:]) * D1 - (z_i[Ipy,:] / M_ion) * D2)) dPz = - ((2 * g_ie / Delta) * ((z_i[Iz,:] - zgc[Iz,:]) * D1 - (z_i[Ipz,:] / M_ion - zgc[Ipz,:] / me) * D2)) return np.asarray(( dPx, dPy, dPz)).T In [12]: """ For the Magnus computation to work well, the interaction must be perturbative. This function return a value for the minimum impact parameter, above which the interaction becomes perturbative. """ def minImpactParam(magB, EkOverEV, bOverRL): numer = 2 * EkOverEV * (invFourPiEps0 * Z_ion * me) denom = ((1 / bOverRL) ** 2 + (tan_alpha / (N_gyro * pi)) ** 2) * magB ** 2 return (numer / denom) ** (1/3) Conversion from (Q,V) to (Q,P) In [13]: """ define matrix that transforms ion coördinate-velocity data to canonically conjugate phase-space variables """ QVtoZion = np.identity(6) for i in (Ipx, Ipy, Ipz): QVtoZion[i, i] = M_ion """ define matrix that transforms electron coördinate-velocity data to canonically conjugate phase-space variables NB: This depends on the local magnetic vector potential, hence on the local magnetic field. """ QVtoZe = np.identity(6) for i in (Ipx, Ipy, Ipz): QVtoZe[i, i] = me QVtoZe[Ipx, Iy] = (-qe) * (-B_mag) Explore a range of values for the perturbation parameters In [14]: Z_ion = 1 M_ion = mp e_temp = 300. # Kelvin B_mag = 1. # Tesla N_gyro = 100 # enforce adequate averaging tan_alpha = 5.0 # and an adequate opening angle """ derived quantities """ Omega_e = omega_Larmor(me, B_mag, Z = -1) T_e = (2 * pi) / abs(Omega_e) In [17]: bOverLarmorR = 20.0 # 20 ==> max perturbation ratio of about 0.1 EkinOverVmax = 10.0 # 10 ==> eV_closest_approach / E_kinetic = 0.1 print minImpactParam(B_mag, EkinOverVmax, bOverLarmorR) / micro 3.90333173895 In [26]: decades = 2 pts_per_decade = 3 logBs = np.linspace(0., 1. * float(decades), num = 1 + pts_per_decade * decades, endpoint = True) bvals = np.power(10, logBs) impactParameterB = micro * bvals print "b / μm = ", impactParameterB / micro print "b_min / μm =", minImpactParam(B_mag, EkinOverVmax, bOverLarmorR) / micro b / μm = [ 1. 2.15443469 4.64158883 10. 21.5443469 46.41588834 100. ] b_min / μm = 3.90333173895 In [27]: """ (the following depend on the impact parameter) """ LarmorR = impactParameterB / bOverLarmorR # (this version is defined positive) V_perp = - LarmorR * Omega_e L_intxn = tan_alpha * impactParameterB #[-1] * np.ones_like(impactParameterB) V_z = 2 * L_intxn / (N_gyro * T_e) T_intxn = 2 * L_intxn / V_z In [28]: num_steps_per_gyro = 40 delta_Te = T_e / num_steps_per_gyro print T_intxn / delta_Te num_steps = int(np.floor(T_intxn[0] / delta_Te)) print "num_steps =", num_steps [ 4000. 4000. 4000. 4000. 4000. 4000. 4000.] num_steps = 4000 In [29]: """ initial condition for the ion --- just one, for now """ QVion = np.array([ ( 0.0 * rho_gc, 0.000 * V_th, 0.0 * rho_gc, 0.000 * V_th, 0.0, 0.000 * V_th) ]).transpose() Zion = QVtoZion.dot(QVion) """ initial conditions for the electrons """ QVelec = np.asarray([ np.zeros(impactParameterB.shape), V_perp, impactParameterB - LarmorR, np.zeros(impactParameterB.shape), - L_intxn, L_intxn * abs(Omega_e) / (pi * N_gyro) ]) Zelec = QVtoZe.dot(QVelec) num_elec0 = Zelec.shape[1] num_ion0 = Zion.shape[1] """ === create arrays of electrons and ions === Here we arrange them so that we can pair each ion with each electron, and compute the \Delta{p} for each interaction. """ ZI_elec = np.hstack([Zelec for e in range(num_ion0)]) ZI_ion = Zion[:, np.arange(num_ion0 * num_elec0) // num_elec0] num_elec = ZI_elec.shape[1] num_ion = ZI_ion.shape[1] In [30]: ZF_i, ZF_e = apply_MapZ(delta_Te, num_steps, ZI_ion, ZI_elec) In [31]: navg = 1 # number of gyrotron oscillations over which to average; set to 1, 2, 4, 5, or 10 ZI_elec_gc = toGuidingCenter(ZI_elec) ZFgc_i, ZFgc_e = apply_MapZgc(navg * 40*delta_Te, num_steps//40 // navg, ZI_ion, ZI_elec_gc) In [32]: deltaP_exp = np.array(ZF_i[-1, [Ipx, Ipy, Ipz], :] - ZF_i[0, [Ipx, Ipy, Ipz], :]).T deltaP_avg = np.array(ZFgc_i[-1, [Ipx, Ipy, Ipz], :] - ZFgc_i[0, [Ipx, Ipy, Ipz], :]).T deltaP_mgn = magnus_deltaPIon(T_intxn, ZI_ion, ZI_elec_gc) print deltaP_exp print print deltaP_avg print print deltaP_mgn [[ 1.08030578e-26 5.72808106e-26 1.45007842e-27] [ 4.03458322e-28 1.66767979e-26 1.38486416e-27] [ 2.76032939e-29 6.40599505e-27 9.05956974e-29] [ 7.85620796e-31 1.58638251e-27 2.60010730e-30] [ 1.75039675e-32 3.47567664e-28 5.80271684e-32] [ 3.78408946e-34 7.50099341e-29 1.25468090e-33] [ 8.15538018e-36 1.61631831e-29 2.70410697e-35]] [[ 1.05836708e-26 5.67504416e-26 8.51768805e-28] [ 4.00940540e-28 1.66262914e-26 1.38431451e-27] [ 2.74641067e-29 6.39066436e-27 9.05285901e-29] [ 7.81439841e-31 1.58238970e-27 2.59745819e-30] [ 1.74099270e-32 3.46684860e-28 5.79654896e-32] [ 3.76373889e-34 7.48192282e-29 1.25334141e-33] [ 8.11151685e-36 1.61220857e-29 2.70121883e-35]] [[ -0.00000000e+00 1.61222627e-25 -1.01894869e-40] [ -0.00000000e+00 3.47345583e-26 -3.78365367e-41] [ -0.00000000e+00 7.48333795e-27 -0.00000000e+00] [ -0.00000000e+00 1.61223638e-27 -0.00000000e+00] [ -0.00000000e+00 3.47345800e-28 -0.00000000e+00] [ -0.00000000e+00 7.48333842e-29 -4.49591691e-44] [ -0.00000000e+00 1.61223639e-29 -0.00000000e+00]] In [33]: dDeltaP_ax = deltaP_avg - deltaP_exp dDeltaP_mx = deltaP_mgn - deltaP_exp relErr_avg = (np.linalg.norm(dDeltaP_ax, axis = 1) / np.linalg.norm(deltaP_exp, axis = 1)) relErr_mgn = (np.linalg.norm(dDeltaP_mx, axis = 1) / np.linalg.norm(deltaP_exp, axis = 1)) eV_closest_approach = (invFourPiEps0 * Z_ion * qe ** 2 / impactParameterB) E_kinetic_e = (me / 2) * (V_perp ** 2 + V_z ** 2) eVcaOverEkin = eV_closest_approach / E_kinetic_e llres = plt.figure() plt.loglog(eVcaOverEkin, relErr_avg, 'bo') plt.loglog(eVcaOverEkin, relErr_mgn, 'rs') plt.annotate(s="Averging",xy=(1.e-1,1.e-3)) plt.annotate(s="Magnus",xy=(1.e-2,5.e-1)) plt.xlabel("$eV_{\mathrm{ca}} / E_{\mathrm{kin}}$") plt.ylabel("relative error in $\Delta{P}_{\mathrm{ion}}$") plt.show() llres.savefig("/Users/dabell/Desktop/foo.pdf") In [ ]: mae_compare.savefig("/Users/dabell/RadiaSoft/MCool/MgnAvgExpCompare.pdf")
StarcoderdataPython
3556834
from .. import eval as ev from .. import nodes as no def test_eval(): q = no.Select( [ no.AllSelectItem(), ], [ no.Table( no.QualifiedNameNode.of(['t0'])), ], no.BinaryExpr( no.QualifiedNameNode.of(['id']), no.BinaryOp.EQ, no.Integer(2)), ) print(ev.StmtEvaluator().eval(q)) def test_rels(): q = no.Select( [ no.AllSelectItem() ], [ no.Join( no.Table( no.QualifiedNameNode.of(['t0'])), no.JoinType.DEFAULT, no.Table( no.QualifiedNameNode.of(['t1'])), ) ] ) print(ev.StmtEvaluator().eval(q))
StarcoderdataPython
1644207
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for listing available reivions.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.run import global_methods from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.run import commands from googlecloudsdk.command_lib.run import connection_context from googlecloudsdk.command_lib.run import flags from googlecloudsdk.command_lib.run import pretty_print from googlecloudsdk.command_lib.run import serverless_operations from googlecloudsdk.core import properties from googlecloudsdk.core import resources def _SucceededStatus(job): return '{} / {}'.format( job.get('status', {}).get('succeeded', 0), job.get('spec', {}).get('completions', 0)) def _ByStartAndCreationTime(job): """Sort key that sorts jobs by start time, newest and unstarted first. All unstarted jobs will be first and sorted by their creation timestamp, all started jobs will be second and sorted by their start time. Args: job: googlecloudsdk.api_lib.run.job.Job Returns: The lastTransitionTime of the Started condition or the creation timestamp of the job if the job is unstarted. """ return (False if job.started_condition and job.started_condition['status'] is not None else True, job.started_condition['lastTransitionTime'] if job.started_condition else job.creation_timestamp) @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class List(commands.List): """List jobs.""" detailed_help = { 'DESCRIPTION': """ {description} """, 'EXAMPLES': """ To list all jobs in all regions: $ {command} """, } @classmethod def CommonArgs(cls, parser): parser.display_info.AddFormat( 'table(' '{ready_column},' 'name:label=JOB,' 'region:label=REGION,' 'status.active.yesno(no="0"):label=RUNNING,' 'succeeded_status():label=COMPLETE,' 'creation_timestamp.date("%Y-%m-%d %H:%M:%S %Z"):label=CREATED,' 'author:label="CREATED BY")'.format( ready_column=pretty_print.READY_COLUMN)) parser.display_info.AddUriFunc(cls._GetResourceUri) parser.display_info.AddTransforms({ 'succeeded_status': _SucceededStatus, }) @classmethod def Args(cls, parser): cls.CommonArgs(parser) def _SortJobs(self, jobs): return sorted( commands.SortByName(jobs), key=_ByStartAndCreationTime, reverse=True) def Run(self, args): """List available revisions.""" # Use the mixer for global request if there's no --region flag. if not args.IsSpecified('region'): client = global_methods.GetServerlessClientInstance( api_version='v1alpha1') self.SetPartialApiEndpoint(client.url) # Don't consider region property here, we'll default to all regions return self._SortJobs(global_methods.ListJobs(client)) conn_context = connection_context.GetConnectionContext( args, flags.Product.RUN, self.ReleaseTrack(), version_override='v1alpha1') namespace_ref = resources.REGISTRY.Parse( properties.VALUES.core.project.Get(required=True), collection='run.namespaces', api_version='v1alpha1') with serverless_operations.Connect(conn_context) as client: self.SetCompleteApiEndpoint(conn_context.endpoint) return self._SortJobs(client.ListJobs(namespace_ref))
StarcoderdataPython
6439497
<filename>Dynamic Programming/27_correct_word.py # We are given a function dict(word) that always works in O(1) time, which returns if a word is # a correct word of the language. We are given as an input a string without a space. Find an algorithm # that will find out if it is possible to insert spaces in the input string so that the string of # word we receive creates word from the given language. # For example: “alamakotainiemapsa” we can split as “ala ma kota i nie ma psa". # The algorithm should be fast, but the most important thing is that it should be correct. def dict(word): words = ['ala', 'ma', 'kota', 'i', 'nie', 'ma', 'psa'] if word in words: return True return False def correct_word(string): DP = [False] * (len(string) + 1) DP[0] = True for i in range(len(string) + 1): for j in range(i, -1, -1): if DP[i]: break actual_word = string[j: i] if dict(actual_word): DP[i] = DP[j] return DP[-1] string = "alamakotainiemapsa" print(correct_word(string))
StarcoderdataPython
1723258
"""Functions to fit MRI SPGR signal to obtain T1. Created 28 September 2020 @authors: <NAME> @email: <EMAIL> @institution: University of Edinburgh, UK Functions: fit_vfa_2_point: obtain T1 using analytical formula based on two images fit_vfa_linear: obtain T1 using linear regression fit_vfa_nonlinear: obtain T1 using non-linear least squares fit fit_hifi: obtain T1 by fitting a combination of SPGR and IR-SPGR scans spgr_signal: get SPGR signal irspgr_signal: get IR-SPGR signal """ import numpy as np from scipy.optimize import curve_fit, least_squares from fitting import calculator class vfa_2points(calculator): def __init__(self, fa, tr): self.fa = np.asarray(fa) self.tr = tr self.fa_rad = np.pi*self.fa/180 def proc(self, s, k_fa=1): with np.errstate(divide='ignore', invalid='ignore'): fa_true = k_fa * self.fa_rad sr = s[0] / s[1] t1 = self.tr / np.log( (sr*np.sin(fa_true[1])*np.cos(fa_true[0]) - np.sin(fa_true[0])*np.cos(fa_true[1])) / (sr*np.sin(fa_true[1]) - np.sin(fa_true[0]))) s0 = s[0] * ((1-np.exp(-self.tr/t1)*np.cos(fa_true[0])) / ((1-np.exp(-self.tr/t1))*np.sin(fa_true[0]))) t1 = np.nan if ~np.isreal(t1) | (t1 <= 0) | np.isinf(t1) else t1 s0 = np.nan if (s0 <= 0) | np.isinf(s0) else s0 return {'s0': s0, 't1': t1} class vfa_linear(calculator): def __init__(self, fa, tr): self.fa = np.asarray(fa) self.tr = tr self.fa_rad = np.pi*self.fa/180 def proc(self, s, k_fa=1): fa_true = k_fa * self.fa_rad y = s / np.sin(fa_true) x = s / np.tan(fa_true) A = np.stack([x, np.ones(x.shape)], axis=1) slope, intercept = np.linalg.lstsq(A, y, rcond=None)[0] is_valid = (intercept > 0) and (0. < slope < 1.) t1, s0 = (-self.tr/np.log(slope), intercept/(1-slope)) if is_valid else (np.nan, np.nan) return {'s0': s0, 't1': t1} class vfa_nonlinear(calculator): def __init__(self, fa, tr): self.fa = np.asarray(fa) self.tr = tr self.fa_rad = np.pi*self.fa/180 self.linear_fitter = vfa_linear(fa, tr) def proc(self, s, k_fa=1): # use linear fit to obtain initial guess result_linear = self.linear_fitter.proc(s, k_fa=k_fa) x_linear = np.array((result_linear['s0'], result_linear['t1'])) if (~np.isnan(x_linear[0]) & ~np.isnan(x_linear[1])): x0 = x_linear else: x0 = np.array([s[0] / spgr_signal(1., 1., self.tr, k_fa*self.fa[0]), 1.]) result = least_squares(self.__residuals, x0, args=(s, k_fa), bounds=((1e-8,1e-8),(np.inf,np.inf)), method='trf', x_scale=x0 ) if result.success is False: raise ArithmeticError(f'Unable to fit VFA data' f': {result.message}') s0, t1 = result.x return {'s0': s0, 't1': t1} def __residuals(self, x, s, k_fa): s0, t1 = x s_est = spgr_signal(s0, t1, self.tr, k_fa*self.fa) return s - s_est class hifi(calculator): def __init__(self, esp, ti, n, b, td, centre): self.esp = esp self.ti = ti self.n = n self.b = b self.td = td self.centre = centre # get information about the scans self.n_scans = len(esp) self.is_ir = ~np.isnan(ti) self.is_spgr = ~self.is_ir self.idx_spgr = np.where(self.is_spgr)[0] self.n_spgr = self.idx_spgr.size self.get_linear_estimate = self.n_spgr > 1 and np.all( np.isclose(esp[self.idx_spgr], esp[self.idx_spgr[0]])) self.linear_fitter = vfa_linear( b[self.is_spgr], esp[self.idx_spgr[0]]) def proc(self, s, k_fa_fixed=None): # First get a quick linear T1 estimate if self.get_linear_estimate: # If >1 SPGR, use linear VFA fit result_lin = self.linear_fitter.proc(s[self.is_spgr]) if ~np.isnan(result_lin['s0']) and ~np.isnan(result_lin['t1']): s0_init, t1_init = result_lin['s0'], result_lin['t1'] else: # if result invalid, assume T1=1 t1_init = 1 s0_init = s[self.idx_spgr[0]] / spgr_signal(1, t1_init, self.esp[self.idx_spgr[0]], self.b[self.idx_spgr[0]]) elif self.n_spgr == 1: # If 1 SPGR, assume T1=1 and estimate s0 based on this scan t1_init = 1 s0_init = s[self.idx_spgr[0]] / spgr_signal(1, t1_init, self.esp[self.idx_spgr[0]], self.b[self.idx_spgr[0]]) else: # If 0 SPGR, assume T1=1 and estimate s0 based on 1st scan t1_init = 1 s0_init = s[0] / irspgr_signal(1, t1_init, self.esp[0], self.ti[0], self.n[0], self.b[0], 180, self.td[0], self.centre[0]) # Non-linear fit if k_fa_fixed is None: k_init = 1 bounds = ([0, 0, 0], [np.inf, np.inf, np.inf]) else: k_init = k_fa_fixed bounds = ([0, 0, 1], [np.inf, np.inf, 1]) x_0 = np.array([t1_init, s0_init, k_init]) result = least_squares(self.__residuals, x_0, args=(s,), bounds=bounds, method='trf', x_scale=(t1_init, s0_init, k_init) ) x_opt = result.x if result.success else (np.nan, np.nan, np.nan) t1_opt, s0_opt, k_fa_opt = x_opt s_opt = self.__signal(x_opt) return {'t1': t1_opt, 's0': s0_opt, 'k_fa': k_fa_opt, 's_opt': s_opt} def __residuals(self, x, s): return s - self.__signal(x) def __signal(self, x): t1, s0, k_fa = x s = np.zeros(self.n_scans) s[self.is_ir] = irspgr_signal(s0, t1, self.esp[self.is_ir], self.ti[self.is_ir], self.n[self.is_ir], k_fa*self.b[self.is_ir], self.td[self.is_ir], self.centre[self.is_ir]) s[self.is_spgr] = spgr_signal(s0, t1, self.esp[self.is_spgr], k_fa*self.b[self.is_spgr]) return s def spgr_signal(s0, t1, tr, fa): """Return signal for SPGR sequence. Parameters ---------- s0 : float Equilibrium signal. t1 : float T1 value (s). tr : float TR value (s). fa : float Flip angle (deg). Returns ------- s : float Steady-state SPGR signal. """ fa_rad = np.pi*fa/180 e = np.exp(-tr/t1) s = s0 * (((1-e)*np.sin(fa_rad)) / (1-e*np.cos(fa_rad))) return s def irspgr_signal(s0, t1, esp, ti, n, b, td=0, centre=0.5): """Return signal for IR-SPGR sequence. Uses formula by Deichmann et al. (2000) to account for modified apparent relaxation rate during the pulse train. Note inversion is assumed to be ideal. Parameters ---------- s0 : float Equilibrium signal. t1 : float T1 value (s). esp : float Echo spacing (s). For SPGR, this is the TR. ti : float Inversion time (s). Note this is the actual time delay between the inversion pulse and the start of the echo train. The effective TI may be different, e.g for linear phase encoding of the echo train. n : int Number of excitation pulses per inversion pulse b : float Readout pulse flip angle (deg) td : float Delay between end of readout train and the next inversion (s). centre : float Time in readout train when centre of k-space is acquired, expressed as a fraction of the readout duration. e.g. = 0 for centric phase encoding, = 0.5 for linear phase encoding. Returns ------- s : float Steady-state IR-SPGR signal. """ b_rad = np.pi*b/180 tau = esp * n t1_star = (1/t1 - 1/esp*np.log(np.cos(b_rad)))**-1 m0_star = s0 * ((1-np.exp(-esp/t1)) / (1-np.exp(-esp/t1_star))) r1 = -tau/t1_star e1 = np.exp(r1) e2 = np.exp(-td/t1) e3 = np.exp(-ti/t1) a1 = m0_star * (1-e1) a2 = s0 * (1 - e2) a3 = s0 * (1 - e3) a = a3 - a2*e3 - a1*e2*e3 b = -e1*e2*e3 m1 = a/(1-b) s = np.abs(( m0_star + (m1-m0_star)*np.exp(centre*r1))*np.sin(b_rad)) return s
StarcoderdataPython
9646089
# -*- coding: utf-8 -*- import os from setuptools import setup from numericalunits import __version__ # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() descrip = ("A package that lets you define quantities with units, which can " "then be used in almost any numerical calculation in any " "programming language. Checks that calculations pass dimensional " "analysis, performs unit conversions, and defines physical " "constants.") setup( name = "numericalunits", version = __version__, author = "<NAME>", author_email = "<EMAIL>", description = descrip, license = "MIT", keywords = "units, quantities, physical constants, dimensional analysis", url = "http://pypi.python.org/pypi/numericalunits", py_modules=['numericalunits'], long_description=read('README.rst'), classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3.4"] )
StarcoderdataPython
301498
<filename>p1_basic/day32_35thread/day33/11_线程池.py from concurrent.futures import ThreadPoolExecutor import time def task(a1, a2): time.sleep(2) print(a1, a2) # 创建了一个线程池(最多5个线程) pool = ThreadPoolExecutor(5) for i in range(40): # 去线程池中申请一个线程,让线程执行task函数。 pool.submit(task, i, 8)
StarcoderdataPython
3583026
<filename>testslider.py import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.25) fig.canvas.set_window_title('Reaktionsfortschritt') t0 = 0 t = np.arange(0, t0, .5) k0 = 0.17 a = np.exp(- k0 * t) min_t = 5 l, = ax.plot(t, a, lw=3, color='crimson') plt.axis([0, 20, 0, 1]) axrs = plt.axes([0.25, 0.1, 0.65, 0.03]) srs = Slider(axrs, 'Reaktionsschritte', 0, 20, valinit=min_t) def update(x): base_t = np.arange(0,20,0.5) base_y = np.exp(-k0*base_t) ax.plot(base_t,base_y,lw=0.1,alpha=0.1) t0 = x t = np.arange(min_t, t0, .5) ax.lines.pop(0) # remove previous line plot ax.plot(t, np.exp(- k0 * t), lw=3, color='crimson') # plot new one fig.canvas.draw() srs.on_changed(update) plt.show()
StarcoderdataPython
3379421
import pytest import torch from espnet2.enh.loss.criterions.tf_domain import FrequencyDomainL1 from espnet2.enh.loss.wrappers.fixed_order import FixedOrderSolver @pytest.mark.parametrize("num_spk", [1, 2, 3]) def test_PITSolver_forward(num_spk): batch = 2 inf = [torch.rand(batch, 10, 100) for spk in range(num_spk)] ref = [inf[num_spk - spk - 1] for spk in range(num_spk)] # reverse inf as ref solver = FixedOrderSolver(FrequencyDomainL1()) loss, stats, others = solver(ref, inf)
StarcoderdataPython
6622156
<reponame>CurryEleison/workdocs-disaster-recovery from argparse import ArgumentParser, ArgumentTypeError from os.path import isdir from pathlib import Path import logging from workdocs_dr.cli_arguments import clients_from_input, bucket_url_from_input, logging_setup, organization_id_from_input, wdfilter_from_input from workdocs_dr.directory_restore import DirectoryRestoreRunner rootlogger = logging.getLogger() rootlogger.setLevel(logging.INFO) def main(): parser = ArgumentParser() parser.add_argument("--profile", help="AWS profile", default=None) parser.add_argument("--region", help="AWS region", default=None) parser.add_argument("--user-query", help="Query of user", default=None) parser.add_argument("--folder", help="Folder(s) to restore", default=None) parser.add_argument("--organization-id", help="Workdocs organization id (directory id)", default=None) parser.add_argument( "--prefix", help="Prefix for bucket access", default=None) parser.add_argument("--bucket-name", help="Name of bucket", default=None) parser.add_argument("--path", type=dir_path, default=Path(".")) parser.add_argument( "--bucket-role-arn", help="ARN of role that puts/gets disaster recovery documents", default=None) parser.add_argument("--verbose", help="Verbose output", dest="verbose", action="store_true") args = parser.parse_args() clients = clients_from_input(profile_name=args.profile, region_name=args.region, workdocs_role_arn=None, bucket_role_arn=args.bucket_role_arn) bucket = bucket_url_from_input(args.bucket_name, args.prefix) filter = wdfilter_from_input(args.user_query, args.folder) organization_id = organization_id_from_input(args.organization_id) # Restorer goes here drr = DirectoryRestoreRunner( clients, organization_id, bucket, filter, args.path ) drr.runall() logging_setup(rootlogger=rootlogger, verbose=args.verbose) def dir_path(path): if isdir(path): return path else: raise ArgumentTypeError(f"readable_dir:{path} is not a valid path") if __name__ == '__main__': main()
StarcoderdataPython
185856
<filename>power_perceiver/pytorch_modules/satellite_processor.py from dataclasses import dataclass import einops import torch from torch import nn from power_perceiver.consts import BatchKey from power_perceiver.pytorch_modules.query_generator import reshape_time_as_batch from power_perceiver.utils import assert_num_dims # See https://discuss.pytorch.org/t/typeerror-unhashable-type-for-my-torch-nn-module/109424/6 # for why we set `eq=False` @dataclass(eq=False) class HRVSatelliteProcessor(nn.Module): def __post_init__(self): super().__init__() def forward(self, x: dict[BatchKey, torch.Tensor]) -> torch.Tensor: """Returns a byte array ready for Perceiver. Args: x: A batch with at least these BatchKeys: hrvsatellite_actual hrvsatellite_predicted hrvsatellite_time_utc_fourier hrvsatellite_y_osgb_fourier hrvsatellite_x_osgb_fourier hrvsatellite_surface_height hrvsatellite_solar_azimuth hrvsatellite_solar_elevation hrvsatellite_t0_idx hrvsatellite: shape (batch_size, y, x) (timesteps have been folded into batch_size) Returns: tensor of shape (example, (y * x), (time * feature)). """ # The strategy is to first get all the tensors into shape (example * x, y, x, features) # and then, at the end of the function, flatten y and x, so each position is seen # as a new element. # Combine actual (history) and predicted satellite: t0_idx = x[BatchKey.hrvsatellite_t0_idx] hrvsatellite = torch.concat( ( x[BatchKey.hrvsatellite_actual][:, : t0_idx + 1, 0], x[BatchKey.hrvsatellite_predicted].detach(), ), dim=1, # Concat on the time dimension. ) n_timesteps = hrvsatellite.shape[1] # Reshape so each timestep is seen as a separate example! hrvsatellite = einops.rearrange(hrvsatellite, "example time ... -> (example time) ...") timeless_x = reshape_time_as_batch( x=x, batch_keys=( BatchKey.hrvsatellite_time_utc_fourier, BatchKey.hrvsatellite_solar_azimuth, BatchKey.hrvsatellite_solar_elevation, ), ) # Patch the hrvsatellite PATCH_SIZE = 4 hrvsatellite = einops.rearrange( hrvsatellite, "example (y y_patch) (x x_patch) -> example y x (y_patch x_patch)", y_patch=PATCH_SIZE, x_patch=PATCH_SIZE, ) # Get position encodings: y_fourier = x[BatchKey.hrvsatellite_y_osgb_fourier] x_fourier = x[BatchKey.hrvsatellite_x_osgb_fourier] # y_fourier and x_fourier are now of shape (example, y, x, n_fourier_features). # Patch the position encodings def _reduce(tensor): return einops.reduce( tensor, "example (y y_patch) (x x_patch) ... -> example y x ...", "mean", y_patch=PATCH_SIZE, x_patch=PATCH_SIZE, ) y_fourier = _reduce(y_fourier) x_fourier = _reduce(x_fourier) time_fourier = timeless_x[BatchKey.hrvsatellite_time_utc_fourier] # `time_fourier` is now shape: (example * time, n_features) time_fourier = einops.repeat( time_fourier, "example features -> example y x features", y=hrvsatellite.shape[1], x=hrvsatellite.shape[2], ) time_fourier_t0 = x[BatchKey.hrvsatellite_time_utc_fourier_t0] time_fourier_t0 = einops.repeat( time_fourier_t0, "example features -> (example time) y x features", time=n_timesteps, y=hrvsatellite.shape[1], x=hrvsatellite.shape[2], ) surface_height = x[BatchKey.hrvsatellite_surface_height] # (example, y, x) surface_height = _reduce(surface_height) surface_height = surface_height.unsqueeze(-1) # (example, y, x, 1) y_fourier = torch.repeat_interleave(y_fourier, repeats=n_timesteps, dim=0) x_fourier = torch.repeat_interleave(x_fourier, repeats=n_timesteps, dim=0) surface_height = torch.repeat_interleave(surface_height, repeats=n_timesteps, dim=0) # Reshape solar features to shape: (example, y, x, 1): def _repeat_solar_feature_over_x_and_y(feature: torch.Tensor) -> torch.Tensor: # Select the last timestep: assert_num_dims(feature, 1) return einops.repeat( feature, "example -> example y x 1", y=hrvsatellite.shape[1], x=hrvsatellite.shape[2], ) solar_azimuth = _repeat_solar_feature_over_x_and_y( timeless_x[BatchKey.hrvsatellite_solar_azimuth] ) solar_elevation = _repeat_solar_feature_over_x_and_y( timeless_x[BatchKey.hrvsatellite_solar_elevation] ) # Concatenate spatial features and solar features onto satellite imagery: # The shape of each tensor, and the concatenated `byte_array`, should be: # example * time, y, x, feature byte_array = torch.concat( ( time_fourier, time_fourier_t0, solar_azimuth, solar_elevation, y_fourier, x_fourier, surface_height, hrvsatellite, ), dim=3, ) # Reshape so each location is seen as a separate element. byte_array = einops.rearrange( byte_array, "example y x feature -> example (y x) feature", ) return byte_array # TODO: Test. At an absolute minimum, do something like this: # HRVSatelliteProcessor()(batch).shape
StarcoderdataPython
376515
# Objective 1: Read table from multiple pdf files contained in a directory to a list # Obkective 2: clean the pdf text data and find unique words then save them to a dictionary # To read tables contained within the pdf files, I'm using the tabula.py library # To install tabula.py on Python3 in windows OS, ensure Java version 8 is installed. # Next, open a command-prompt window, browse to python directory and execute the command, pip3 install tabula.py import tabula, os, re, string from collections import Counter # path to pdf files filePath = "C:\\Users\\Ashoo\\Documents\\PythonPlayground\\text-analysis\\data\\pdf" stripped = [] # initialize an empty string for filename in os.listdir(filePath): # search for files ending with .txt extension and read them in memory if filename.strip().endswith('.pdf'): print(filename) # Mote: python will read the pdf file as 'rb' or 'wb' as a binary read and write format with(open(os.path.join(filePath,filename),'rb')) as pdfFiles: #df= tabula.read_pdf(f, stream=True)[0] # read all pdf pages df= tabula.read_pdf(pdfFiles, pages="all") print(df) # convert pdf table to csv format tabula.convert_into(pdfFiles, "pdf_to_csv.csv", output_format="csv", stream=True) pdfFiles.close()
StarcoderdataPython
1691187
<reponame>cloudtools/awacs<gh_stars>100-1000 #!/usr/bin/env python3 import asyncio import importlib import sys import urllib.parse from pathlib import Path from typing import DefaultDict, Dict, Iterable, List, Set, Tuple import aiofiles import httpx from bs4 import BeautifulSoup BASE_URL = "https://docs.aws.amazon.com/IAM/latest/UserGuide/" HEADER = """\ # Copyright (c) 2012-2021, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN """ CLASSES = """\ class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) """ CLASSES_S3 = """\ class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: # account is empty for S3 buckets if not resource.startswith(("accesspoint/", "job/", "storage-lens/")): account = "" super().__init__( service=prefix, resource=resource, region=region, account=account ) """ BASEDIR = "awacs" IGNORED_SERVICE_ALIASES = { "Amazon API Gateway Management V2": "apigateway", "Amazon Kinesis Analytics V2": "kinesisanalytics", "Amazon Lex V2": "lex", "Amazon Pinpoint Email Service": "ses", "Amazon Simple Email Service v2": "ses", "AWS Cloud Control API": "cloudformation", "AWS IoT Greengrass V2": "greengrass", "AWS Marketplace Catalog": "aws-marketplace", "AWS Marketplace Entitlement Service": "aws-marketplace", "AWS Marketplace Image Building Service": "aws-marketplace", "AWS Marketplace Metering Service": "aws-marketplace", "AWS Marketplace Private Marketplace": "aws-marketplace", "AWS Marketplace Procurement Systems Integration": "aws-marketplace", "AWS Private Marketplace": "aws-marketplace", "Elastic Load Balancing V2": "elasticloadbalancing", } RENAME_SERVICE = { "lambda": "awslambda", } def rename_service(name): return RENAME_SERVICE.get(name, name) async def main() -> None: services_with_actions: DefaultDict[str, Set[str]] = DefaultDict(set) service_names: Dict[str, str] = {} service_page_responses = await collect_service_info() for link, r in service_page_responses: service_name, service_prefix, actions = await extract_actions( html=r.text, link=link ) services_with_actions[service_prefix].update(actions) if IGNORED_SERVICE_ALIASES.get(service_name) != service_prefix: if ( service_prefix in service_names and service_names[service_prefix] != service_name ): raise ValueError( "Found two different service names for service prefix" f" {service_prefix!r}: {service_names[service_prefix]!r}" f" and {service_name!r}." ) service_names[service_prefix] = service_name original_services_with_actions = await collect_existing_actions() for service_prefix, actions in services_with_actions.items(): actions.update(original_services_with_actions.get(service_prefix) or set()) await asyncio.gather( *( write_service(service_prefix, service_names[service_prefix], actions) for service_prefix, actions in services_with_actions.items() ) ) async def collect_existing_actions() -> Dict[str, Set[str]]: # pylint: disable=import-outside-toplevel if "" in sys.path: sys.path.remove("") # Import the installed awacs (that was processed by 2to3) import awacs from awacs.aws import Action as BaseAction services_with_actions: DefaultDict[str, Set[str]] = DefaultDict(set) for path in (path.stem for path in Path(awacs.__file__).parent.glob("*.py")): if path.startswith("__"): continue module = importlib.import_module(f"awacs.{path}") for action in vars(module).values(): if not isinstance(action, BaseAction): continue services_with_actions[action.prefix].add(action.action) return dict(services_with_actions) async def collect_service_info() -> Iterable[Tuple[str, httpx.Response]]: max_connections = 2 async with httpx.AsyncClient( http2=True, limits=httpx.Limits(max_connections=max_connections), timeout=10.0, ) as client: r = await client.get( urllib.parse.urljoin( BASE_URL, "reference_policies_actions-resources-contextkeys.html", ) ) parsed_html = BeautifulSoup(r.text, features="lxml") service_links: List[str] = [] for link in parsed_html.body.find_all("a"): href = link.attrs["href"] if href.startswith("./list_") and href.endswith(".html"): service_links.append(href) # This doesn't work at the moment, # see https://github.com/encode/httpx/issues/1171 # # return await asyncio.gather( # *[ # client.get(urllib.parse.urljoin(BASE_URL, link)) # for link in service_links # ] # ) # # workaround service_page_responses = [] for start in range(0, len(service_links), max_connections): service_page_responses += await asyncio.gather( *[ client.get(urllib.parse.urljoin(BASE_URL, link)) for link in service_links[start : start + max_connections] ] ) return zip(service_links, service_page_responses) async def extract_actions(html: str, link: str) -> Tuple[str, str, Set[str]]: parsed_html = BeautifulSoup(html, features="lxml") service_prefixes = parsed_html.body.find_all(is_service_prefix) if len(service_prefixes) < 1: raise ValueError(f"Found no service prefix in {link!r}.") if len(service_prefixes) > 1: raise ValueError(f"Found more than one service prefix in {link!r}.") service_prefix_tag = service_prefixes[0] service_name = service_prefix_tag.previous.strip()[: -len(" (service prefix:")] service_prefix = service_prefix_tag.text actions = set() for table in parsed_html.body.find_all("table"): header = table.find("th") if not header or header.text != "Actions": continue actions |= await _actions_from_table(table) return service_name, service_prefix, actions async def write_service( service_prefix: str, service_name: str, actions: Set[str] ) -> None: content: List[str] = [] content.append(HEADER) content.append(f'service_name = "{service_name}"') content.append(f'prefix = "{service_prefix}"') content.append("") content.append("") content.append(CLASSES_S3 if service_prefix == "s3" else CLASSES) content.append("") for action in sorted(actions): action = action.strip() # Handle action such as "ReEncrypt*" if action[-1] == "*": action = action[:-1] action_string = '{action} = Action("{action}")' content.append(action_string.format(action=action)) if content[-1] != "": # Add a final newline content.append("") awacs_service = rename_service(service_prefix.replace("-", "_")) filename = "".join([BASEDIR, "/", awacs_service, ".py"]) async with aiofiles.open(filename, "w") as fp: await fp.write("\n".join(content)) async def _actions_from_table(table) -> Set[str]: actions = set() skip_next_lines = 0 for table_row in table.find_all("tr"): if skip_next_lines: skip_next_lines -= 1 continue table_cell = table_row.find("td") if not table_cell: continue skip_next_lines = int(table_cell.attrs.get("rowspan") or 1) - 1 action: str = (table_cell.text.strip().split() or [""])[0] if not action: continue actions.add(action) return actions def is_service_prefix(tag): return ( tag and tag.name == "code" and tag.previous_element and tag.previous_element.strip().endswith("(service prefix:") ) if __name__ == "__main__": asyncio.run(main()) print("And now run 'black awacs/'", flush=True)
StarcoderdataPython
3448649
<reponame>t18cs020/discordpy-startup from discord.ext import commands import os import traceback bot = commands.Bot(command_prefix='/') token = os.environ['DISCORD_BOT_TOKEN'] #!/usr/bin/env python # coding: utf-8 # In[1]: # インストールした discord.py を読み込む import discord import random import csv import asyncio import datetime # 接続に必要なオブジェクトを生成 client = discord.Client() #ブキ読み込み with open('./Splatoon2weapons.csv',encoding="utf-8") as f: reader = csv.reader(f) weapons = [] for row in reader: weapons += row f.close() #名前読み込み with open('./parts.txt', 'r', encoding='UTF-8') as f: parts = [s.strip() for s in f.readlines()] f.close() with open('./parts2.txt', 'r', encoding='UTF-8') as f: parts2 = [s.strip() for s in f.readlines()] f.close() #馬名読み込み with open('./uma1.txt', 'r', encoding='UTF-8') as f: uma_parts = [s.strip() for s in f.readlines()] f.close() with open('./uma2.txt', 'r', encoding='UTF-8') as f: uma_parts2 = [s.strip() for s in f.readlines()] f.close() voice = None player = None #豚彦用 ramen_size = ['ミニ','小','大'] buta = ['ラーメン','ぶた'] siru = ['','汁なし'] ninniku = ['','ニンニク少し','ニンニク','ニンニクマシマシ'] yasai= ['ヤサイ少なめ','','ヤサイマシ','ヤサイマシマシ'] seabura = ['','アブラマシ','アブラマシマシ'] karame = ['','カラメ','カラカラ'] #Apex用 with open('./apex_legends.txt', 'r', encoding='UTF-8') as f: apexlegends = [s.strip() for s in f.readlines()] f.close() with open('./apex_weapons.txt', 'r', encoding='UTF-8') as f: apexweapons = [s.strip() for s in f.readlines()] f.close() #音声ファイル ikuokamoto = discord.FFmpegPCMAudio('./ikuokamoto.mp3') ikisugiokamoto = discord.FFmpegPCMAudio('./ikisugiokamoto.mp3') dokaben = discord.FFmpegPCMAudio('./dokaben.mp3') watatai = discord.FFmpegPCMAudio('./watatai.mp3') # 起動時に動作する処理 @client.event async def on_ready(): # 起動したらターミナルにログイン通知が表示される print('ログインしました') # メッセージ受信時に動作する処理 @client.event async def on_message(message): global voice, player msg = message.content # メッセージ送信者がBotだった場合は無視する if message.author.bot: return # 「/neko」と発言したら「にゃーん」が返る処理 if message.content == '/neko': await message.channel.send('にゃーん') if message.content == '/spla': size = len(weapons) i = random.randint(0,size-1) await message.channel.send('おめぇのブキは、' + weapons[i] + 'だな!') if message.content == '/apex': deletes = [] for num in range(1,4): i = random.randint(0,len(apexlegends)-1) weapon1 = "" weapon2 = "" p2020 = random.random() if p2020 < 0.5: j = random.randint(0,len(apexweapons)-1) weapon1 = apexweapons[j] else: weapon1 = "p2020" p2020 = random.random() if p2020 < 0.5: k = random.randint(0,len(apexweapons)-1) weapon2 = apexweapons[k] else: weapon2 = "p2020" #リストからレジェンドを削除(被らないように) legend = apexlegends.pop(i) await message.channel.send(str(num) + "人目は、" + legend + "で" + weapon1 + "と" + weapon2 + "だな!") #削除されたレジェンドのリスト deletes.append(legend) #終わった後にまた元のリストに戻す apexlegends.extend(deletes) if message.content == '/myname': i = random.randint(0,len(parts)) j = random.randint(0,len(parts)-1) k = random.randint(0,len(parts2)-1) if i == len(parts): await message.channel.send('おめぇの名前は、性器絶頂チンポギアだな!') else: await message.channel.send('おめぇの名前は、' + parts[i] + parts[j] + parts2[k] + 'だな!') if message.content == '/uma': i = random.randint(0,len(uma_parts)) j = random.randint(0,len(uma_parts2)-1) if i == len(uma_parts): name = '性器絶頂チンポギア' await message.channel.send('おめぇの名前は、性器絶頂チンポギアだな!') await message.author.edit(nick=name) else: await message.channel.send('おめぇの愛馬は、' + uma_parts[i] + uma_parts2[j] + 'だな!') if message.content == '/changename': i = random.randint(0,len(parts)) j = random.randint(0,len(parts)-1) k = random.randint(0,len(parts2)-1) name = "" if i == len(parts): name = '性器絶頂チンポギア' else: name = parts[i] + parts[j] + parts2[k] await message.channel.send("おめぇの名前は、" + name + "だな!") await message.author.edit(nick=name) if message.content == '/showparts': for i in range(len(parts)): await message.channel.send(parts[i]) if message.content == 'イク岡本': if message.author.voice is None: await message.channel.send("あなたはボイスチャンネルに接続していません。") return # ボイスチャンネルに接続する vc = await message.author.voice.channel.connect() #再生する vc.play(ikuokamoto) #切断する await asyncio.sleep(2) await message.guild.voice_client.disconnect() if message.content == 'イキスギ岡本': if message.author.voice is None: await message.channel.send("あなたはボイスチャンネルに接続していません。") return # ボイスチャンネルに接続する vc = await message.author.voice.channel.connect() #再生する vc.play(ikisugiokamoto) #切断する await asyncio.sleep(2) await message.guild.voice_client.disconnect() if message.content == '/bakadon': if message.author.voice is None: await message.channel.send("あなたはボイスチャンネルに接続していません。") return # ボイスチャンネルに接続する vc = await message.author.voice.channel.connect() #GIFを送信する file = discord.File("./bakadon.gif", filename="bakadon.gif") await message.channel.send(file=file) await asyncio.sleep(1) #再生する vc.play(dokaben) #切断する await asyncio.sleep(6) await message.guild.voice_client.disconnect() if message.content == '/butahiko': i = random.randint(0,len(ramen_size)-1) j = random.randint(0,len(buta)-1) k = random.randint(0,len(siru)-1) l = random.randint(0,len(ninniku)-1) m = random.randint(0,len(yasai)-1) n = random.randint(0,len(seabura)-1) o = random.randint(0,len(karame)-1) await message.channel.send('おめぇのラーメンは、' + ramen_size[i] + buta[j] + siru[k] + ninniku[l] + yasai[m] + seabura[n] + karame[o] + 'だな!') if message.content == 'ニンニク入れますか?' or message.content == 'ニンニク入れますか?': l = random.randint(0,len(ninniku)-1) m = random.randint(0,len(yasai)-1) n = random.randint(0,len(seabura)-1) o = random.randint(0,len(karame)-1) await message.channel.send('俺のラーメンは、' + ninniku[l] + yasai[m] + seabura[n] + karame[o] + 'だな!') if message.content == '/enter': await message.author.voice.channel.connect() if message.content == '/exit': await message.guild.voice_client.disconnect() # チャンネル入退室時の通知処理 @client.event async def on_voice_state_update(member, before, after): if before.channel != after.channel: vc = before.channel vc.play(watatai) # Botの起動とDiscordサーバーへの接続 client.run(token) <PASSWORD>
StarcoderdataPython
3448043
import importlib.metadata __version__ = importlib.metadata.version("cuda_checker")
StarcoderdataPython
226433
<filename>skm_tea/utils/env.py import os from iopath.common.file_io import PathManager, PathManagerFactory from meddlr.utils.cluster import Cluster from meddlr.utils.env import is_repro, supports_cupy # noqa: F401 def get_path_manager(key="skm_tea") -> PathManager: return PathManagerFactory.get(key) def cache_dir() -> str: return get_path_manager().get_local_path( os.path.join(Cluster.working_cluster().cache_dir, "skm-tea") )
StarcoderdataPython
9701789
from biobb_common.tools import test_fixtures as fx from biobb_io.api.memprotmd_sim_list import memprotmd_sim_list class TestMemProtMDSimList(): def setUp(self): fx.test_setup(self,'memprotmd_sim_list') def tearDown(self): fx.test_teardown(self) pass def test_memprotmd_sim_list(self): memprotmd_sim_list(properties=self.properties, **self.paths) assert fx.not_empty(self.paths['output_simulations']) assert fx.equal(self.paths['output_simulations'], self.paths['reference_output_simulations'])
StarcoderdataPython
86924
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import json import mock import unittest from mock import patch from google.protobuf import duration_pb2 from google.protobuf import empty_pb2 from google.protobuf import struct_pb2 from google.protobuf import timestamp_pb2 from infra_libs import bqh from infra_libs.test import testmessage_pb2 class TestBigQueryHelper(unittest.TestCase): def setUp(self): super(TestBigQueryHelper, self).setUp() self.bq_client = mock.Mock() self.dataset_id = 'test_dataset' self.table_id = 'test_table' self.table = self.bq_client.get_table( self.bq_client.dataset(self.dataset_id).table(self.table_id)) self.mock_create_rows = self.bq_client.create_rows self.mock_create_rows.return_value = None def test_send_rows_tuple(self): rows = [('a',), ('b',), ('c',)] bqh.send_rows(self.bq_client, self.dataset_id, self.table_id, rows) self.mock_create_rows.assert_any_call(self.table, rows) def test_send_iterable_rows(self): rows = [('a',), ('b',), ('c',)] bqh.send_rows(self.bq_client, self.dataset_id, self.table_id, iter(rows)) self.mock_create_rows.assert_any_call(self.table, rows) def test_batch_sizes(self): rows = [('a',), ('b',), ('c',)] bqh.send_rows(self.bq_client, self.dataset_id, self.table_id, rows, 0) self.mock_create_rows.assert_any_call(self.table, rows) bqh.send_rows(self.bq_client, self.dataset_id, self.table_id, rows, 1) self.mock_create_rows.assert_any_call(self.table, [('a',)]) self.mock_create_rows.assert_any_call(self.table, [('b',)]) self.mock_create_rows.assert_any_call(self.table, [('c',)]) bqh.send_rows(self.bq_client, self.dataset_id, self.table_id, rows, bqh._BATCH_LIMIT+1) self.mock_create_rows.assert_any_call(self.table, rows) def test_send_rows_unsupported_type(self): with self.assertRaises(bqh.UnsupportedTypeError): bqh.send_rows(self.bq_client, self.dataset_id, self.table_id, [{}]) def test_send_rows_message(self): rows = [testmessage_pb2.TestMessage(str='a')] bqh.send_rows(self.bq_client, self.dataset_id, self.table_id, rows) expected_rows_arg = [{'num': 0, 'e': 'E0', 'str': u'a'}] self.mock_create_rows.assert_any_call(self.table, expected_rows_arg) def test_send_rows_with_errors(self): rows = [('a',), ('b',), ('c',)] self.mock_create_rows.return_value = [ { 'index': 0, 'errors': ['some err'], }, ] with self.assertRaises(bqh.BigQueryInsertError): bqh.send_rows(self.bq_client, self.dataset_id, self.table_id, rows) def test_message_to_dict(self): struct0 = struct_pb2.Struct() struct0['a'] = 0 struct1 = struct_pb2.Struct() struct1['a'] = 1 dt0 = datetime.datetime(2018, 2, 20) dt1 = datetime.datetime(2018, 2, 21) ts0 = timestamp_pb2.Timestamp() ts0.FromDatetime(dt0) ts1 = timestamp_pb2.Timestamp() ts1.FromDatetime(dt1) dur = duration_pb2.Duration() dur.FromTimedelta(datetime.timedelta(seconds=2, microseconds=3)) mmap_hello=testmessage_pb2.NestedMessage(num=100) mmap_world=testmessage_pb2.NestedMessage(str='yo.') msg = testmessage_pb2.TestMessage( str='a', strs=['a', 'b'], num=1, nums=[0, 1, 2], nested=testmessage_pb2.NestedMessage(num=1, str='a'), nesteds=[ testmessage_pb2.NestedMessage(num=1, str='a'), testmessage_pb2.NestedMessage(num=2, str='b'), ], empty=empty_pb2.Empty(), empties=[empty_pb2.Empty(), empty_pb2.Empty()], e=testmessage_pb2.E1, es=[testmessage_pb2.E0, testmessage_pb2.E2], struct=struct0, structs=[struct0, struct1], timestamp=ts0, timestamps=[ts0, ts1], repeated_container=testmessage_pb2.RepeatedContainer(nums=[1, 2]), duration=dur, enum_map={ 'hello': testmessage_pb2.E1, 'world': testmessage_pb2.E2, }, scalar_map={'hello': 1, 'world': 2}, message_map={'hello': mmap_hello, 'world': mmap_world}, ) row = bqh.message_to_dict(msg) expected = { 'str': u'a', 'strs': [u'a', u'b'], 'num': 1, 'nums': [0, 1, 2], 'nested': { 'num': 1, 'str': u'a' }, 'nesteds': [ { 'num': 1, 'str': u'a' }, { 'num': 2, 'str': u'b' }, ], # empty messages are omitted 'e': 'E1', 'es': ['E0', 'E2'], # structs are compared separately. 'timestamp': dt0.isoformat(), 'timestamps': [dt0.isoformat(), dt1.isoformat()], 'repeated_container': { 'nums': [1, 2] }, 'duration': 2.000003, 'enum_map': [ {'key': u'hello', 'value': 'E1'}, {'key': u'world', 'value': 'E2'}, ], 'scalar_map': [ {'key': u'hello', 'value': 1}, {'key': u'world', 'value': 2}, ], 'message_map': [ {'key': u'hello', 'value': {'num': 100, 'str': u''}}, {'key': u'world', 'value': {'num': 0, 'str': u'yo.'}}, ], } # compare structs as JSON values, not strings. self.assertEqual(json.loads(row.pop('struct')), {'a': 0}) self.assertEqual( [json.loads(s) for s in row.pop('structs')], [{'a': 0}, {'a': 1}] ) self.assertEqual(row, expected) def test_message_to_dict_empty(self): row = bqh.message_to_dict(testmessage_pb2.TestMessage()) expected = {'e': 'E0', 'str': u'', 'num': 0} self.assertEqual(row, expected) def test_message_to_dict_repeated_container_with_no_elems(self): row = bqh.message_to_dict(testmessage_pb2.TestMessage( repeated_container=testmessage_pb2.RepeatedContainer())) self.assertNotIn('repeated_container', row) def test_message_to_dict_invalid_enum(self): with self.assertRaisesRegexp( ValueError, '^Invalid value -1 for enum type bigquery.E$'): bqh.message_to_dict(testmessage_pb2.TestMessage(e=-1)) def test_message_to_dict_omit_null(self): with self.assertRaisesRegexp( ValueError, '^Invalid value -1 for enum type bigquery.E$'): bqh.message_to_dict(testmessage_pb2.TestMessage(e=-1)) if __name__ == '__main__': unittest.main()
StarcoderdataPython
5076901
# # Testcase for DataHub # import pytest from macaca import DataHub def test_datahub(): print(DataHub) datahub = DataHub(hostname='127.0.0.1', port='9200') datahub.switch_scene(hub='sample', pathname='test1', data={ 'currentScene': 'scene1' }) datahub.switch_all_scenes(hub='sample', data={ 'currentScene': 'default' })
StarcoderdataPython
5002622
from typing import Union from uuid import UUID from .base import BaseFunction from ..request import ( Request, SSEContextManager, ) class BackgroundTask(BaseFunction): """ Provides server-sent events streaming functions. """ task_id: UUID def __init__(self, task_id: Union[UUID, str]) -> None: self.task_id = task_id if isinstance(task_id, UUID) else UUID(task_id) # only supported in AsyncAPISession def listen_events(self) -> SSEContextManager: """ Opens an event stream of the background task updates. :returns: a context manager that returns an :class:`SSEResponse` object. """ params = { 'task_id': str(self.task_id), } request = Request( 'GET', '/events/background-task', params=params, ) return request.connect_events()
StarcoderdataPython
3515295
""" Entropy calculations """ import math import zlib from collections import Counter from pathlib import Path from typing import Mapping from .analyzer import IPathPropertyAnalysis from . import register_analysis class EntropyCalculator(IPathPropertyAnalysis): @classmethod def ticks(cls) -> Mapping[float, str]: return { 0.0: 'Low', 0.1: 'Text', 0.8: 'Code', 0.95: 'Compressed', 1.0: 'Encrypted' } name = 'entropy' @staticmethod def entropy_estimate(data: bytes) -> float: """ Heuristic for estimating entropy based on zlib compression ratio """ data_len = len(data) if data_len == 0: return 0 if data_len < 0x100: return len(set(data)) / data_len return min(len(zlib.compress(data)) / data_len, 1.0) @staticmethod def entropy_math(data, unit='shannon') -> float: """ Actual mathematical calculation of entropy """ base = { 'shannon': 2., 'natural': math.exp(1), 'hartley': 10. } if len(data) <= 1: return 0 counts = Counter() for d in data: counts[d] += 1 ent = 0 probabilities = [float(c) / len(data) for c in counts.values()] for p in probabilities: if p > 0.: ent -= p * math.log(p, base[unit]) return ent / 8 def calculate_file(self, file_path: Path) -> float: return self.entropy_estimate(file_path.read_bytes()) register_analysis(EntropyCalculator)
StarcoderdataPython
8184466
import torch a = torch.ones([10, 10]) b = torch.rand([10, 10]) print(a[:, None, :].size())
StarcoderdataPython
52843
from fabric.api import * def live(): """ Set the target to production. """ env.hosts = ['kurosaki@ichigo'] env.remote_app_dir = '/home/kurosaki/htdocs/setr.co.uk/' env.build_dir = '_site/' def push(): """ Pushes the code to nominated server. restart included. doesn't touch the db """ require('hosts', provided_by=[live, ]) put('%s*' % (env.build_dir,), env.remote_app_dir) def start(): local('jekyll serve')
StarcoderdataPython
211538
# The ExchangeAgent expects a numeric agent id, printable name, agent type, timestamp to open and close trading, # a list of equity symbols for which it should create order books, a frequency at which to archive snapshots # of its order books, a pipeline delay (in ns) for order activity, the exchange computation delay (in ns), # the levels of order stream history to maintain per symbol (maintains all orders that led to the last N trades), # whether to log all order activity to the agent log, and a random state object (already seeded) to use # for stochasticity. from agent.FinancialAgent import FinancialAgent from message.Message import Message from util.OrderBook import OrderBook from util.util import log_print import datetime as dt import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=UserWarning) import jsons as js import pandas as pd pd.set_option('display.max_rows', 500) from copy import deepcopy class ExchangeAgent(FinancialAgent): def __init__(self, id, name, type, mkt_open, mkt_close, symbols, book_freq='S', wide_book=False, pipeline_delay = 40000, computation_delay = 1, stream_history = 0, log_orders = False, random_state = None): super().__init__(id, name, type, random_state) # Do not request repeated wakeup calls. self.reschedule = False # Store this exchange's open and close times. self.mkt_open = mkt_open self.mkt_close = mkt_close # Right now, only the exchange agent has a parallel processing pipeline delay. This is an additional # delay added only to order activity (placing orders, etc) and not simple inquiries (market operating # hours, etc). self.pipeline_delay = pipeline_delay # Computation delay is applied on every wakeup call or message received. self.computation_delay = computation_delay # The exchange maintains an order stream of all orders leading to the last L trades # to support certain agents from the auction literature (GD, HBL, etc). self.stream_history = stream_history # Log all order activity? self.log_orders = log_orders # Create an order book for each symbol. self.order_books = {} for symbol in symbols: self.order_books[symbol] = OrderBook(self, symbol) # At what frequency will we archive the order books for visualization and analysis? self.book_freq = book_freq # Store orderbook in wide format? ONLY WORKS with book_freq == 0 self.wide_book = wide_book self.wide_book_warning() # The subscription dict is a dictionary with the key = agent ID, # value = dict (key = symbol, value = list [levels (no of levels to recieve updates for), # frequency (min number of ns between messages), last agent update timestamp] # e.g. {101 : {'AAPL' : [1, 10, pd.Timestamp(10:00:00)}} self.subscription_dict = {} # The exchange agent overrides this to obtain a reference to an oracle. # This is needed to establish a "last trade price" at open (i.e. an opening # price) in case agents query last trade before any simulated trades are made. # This can probably go away once we code the opening cross auction. def kernelInitializing (self, kernel): super().kernelInitializing(kernel) self.oracle = self.kernel.oracle # Obtain opening prices (in integer cents). These are not noisy right now. for symbol in self.order_books: try: self.order_books[symbol].last_trade = self.oracle.getDailyOpenPrice(symbol, self.mkt_open) log_print ("Opening price for {} is {}", symbol, self.order_books[symbol].last_trade) except AttributeError as e: log_print(str(e)) # The exchange agent overrides this to additionally log the full depth of its # order books for the entire day. def kernelTerminating (self): super().kernelTerminating() # If the oracle supports writing the fundamental value series for its # symbols, write them to disk. if hasattr(self.oracle, 'f_log'): for symbol in self.oracle.f_log: dfFund = pd.DataFrame(self.oracle.f_log[symbol]) if not dfFund.empty: dfFund.set_index('FundamentalTime', inplace=True) self.writeLog(dfFund, filename='fundamental_{}'.format(symbol)) log_print("Fundamental archival complete.") if self.book_freq is None: return else: # Iterate over the order books controlled by this exchange. for symbol in self.order_books: start_time = dt.datetime.now() self.logOrderBookSnapshots(symbol) end_time = dt.datetime.now() print("Time taken to log the order book: {}".format(end_time - start_time)) print("Order book archival complete.") def receiveMessage(self, currentTime, msg): super().receiveMessage(currentTime, msg) # Unless the intent of an experiment is to examine computational issues within an Exchange, # it will typically have either 1 ns delay (near instant but cannot process multiple orders # in the same atomic time unit) or 0 ns delay (can process any number of orders, always in # the atomic time unit in which they are received). This is separate from, and additional # to, any parallel pipeline delay imposed for order book activity. # Note that computation delay MUST be updated before any calls to sendMessage. self.setComputationDelay(self.computation_delay) # Is the exchange closed? (This block only affects post-close, not pre-open.) if currentTime > self.mkt_close: # Most messages after close will receive a 'MKT_CLOSED' message in response. A few things # might still be processed, like requests for final trade prices or such. if msg.body['msg'] in ['LIMIT_ORDER', 'CANCEL_ORDER', 'MODIFY_ORDER']: log_print("{} received {}: {}", self.name, msg.body['msg'], msg.body['order']) self.sendMessage(msg.body['sender'], Message({"msg": "MKT_CLOSED"})) # Don't do any further processing on these messages! return elif 'QUERY' in msg.body['msg']: # Specifically do allow querying after market close, so agents can get the # final trade of the day as their "daily close" price for a symbol. pass else: log_print("{} received {}, discarded: market is closed.", self.name, msg.body['msg']) self.sendMessage(msg.body['sender'], Message({"msg": "MKT_CLOSED"})) # Don't do any further processing on these messages! return # Log order messages only if that option is configured. Log all other messages. if msg.body['msg'] in ['LIMIT_ORDER', 'CANCEL_ORDER']: if self.log_orders: self.logEvent(msg.body['msg'], js.dump(msg.body['order'], strip_privates=True)) else: self.logEvent(msg.body['msg'], msg.body['sender']) # Handle the DATA SUBSCRIPTION request and cancellation messages from the agents. if msg.body['msg'] in ["MARKET_DATA_SUBSCRIPTION_REQUEST", "MARKET_DATA_SUBSCRIPTION_CANCELLATION"]: log_print("{} received {} request from agent {}", self.name, msg.body['msg'], msg.body['sender']) self.updateSubscriptionDict(msg, currentTime) # Handle all message types understood by this exchange. if msg.body['msg'] == "WHEN_MKT_OPEN": log_print("{} received WHEN_MKT_OPEN request from agent {}", self.name, msg.body['sender']) # The exchange is permitted to respond to requests for simple immutable data (like "what are your # hours?") instantly. This does NOT include anything that queries mutable data, like equity # quotes or trades. self.setComputationDelay(0) self.sendMessage(msg.body['sender'], Message({"msg": "WHEN_MKT_OPEN", "data": self.mkt_open})) elif msg.body['msg'] == "WHEN_MKT_CLOSE": log_print("{} received WHEN_MKT_CLOSE request from agent {}", self.name, msg.body['sender']) # The exchange is permitted to respond to requests for simple immutable data (like "what are your # hours?") instantly. This does NOT include anything that queries mutable data, like equity # quotes or trades. self.setComputationDelay(0) self.sendMessage(msg.body['sender'], Message({"msg": "WHEN_MKT_CLOSE", "data": self.mkt_close})) elif msg.body['msg'] == "QUERY_LAST_TRADE": symbol = msg.body['symbol'] if symbol not in self.order_books: log_print("Last trade request discarded. Unknown symbol: {}", symbol) else: log_print("{} received QUERY_LAST_TRADE ({}) request from agent {}", self.name, symbol, msg.body['sender']) # Return the single last executed trade price (currently not volume) for the requested symbol. # This will return the average share price if multiple executions resulted from a single order. self.sendMessage(msg.body['sender'], Message({"msg": "QUERY_LAST_TRADE", "symbol": symbol, "data": self.order_books[symbol].last_trade, "mkt_closed": True if currentTime > self.mkt_close else False})) elif msg.body['msg'] == "QUERY_SPREAD": symbol = msg.body['symbol'] depth = msg.body['depth'] if symbol not in self.order_books: log_print("Bid-ask spread request discarded. Unknown symbol: {}", symbol) else: log_print("{} received QUERY_SPREAD ({}:{}) request from agent {}", self.name, symbol, depth, msg.body['sender']) # Return the requested depth on both sides of the order book for the requested symbol. # Returns price levels and aggregated volume at each level (not individual orders). self.sendMessage(msg.body['sender'], Message({"msg": "QUERY_SPREAD", "symbol": symbol, "depth": depth, "bids": self.order_books[symbol].getInsideBids(depth), "asks": self.order_books[symbol].getInsideAsks(depth), "data": self.order_books[symbol].last_trade, "mkt_closed": True if currentTime > self.mkt_close else False, "book": ''})) # It is possible to also send the pretty-printed order book to the agent for logging, but forcing pretty-printing # of a large order book is very slow, so we should only do it with good reason. We don't currently # have a configurable option for it. # "book": self.order_books[symbol].prettyPrint(silent=True) })) elif msg.body['msg'] == "QUERY_ORDER_STREAM": symbol = msg.body['symbol'] length = msg.body['length'] if symbol not in self.order_books: log_print("Order stream request discarded. Unknown symbol: {}", symbol) else: log_print("{} received QUERY_ORDER_STREAM ({}:{}) request from agent {}", self.name, symbol, length, msg.body['sender']) # We return indices [1:length] inclusive because the agent will want "orders leading up to the last # L trades", and the items under index 0 are more recent than the last trade. self.sendMessage(msg.body['sender'], Message({"msg": "QUERY_ORDER_STREAM", "symbol": symbol, "length": length, "mkt_closed": True if currentTime > self.mkt_close else False, "orders": self.order_books[symbol].history[1:length + 1] })) elif msg.body['msg'] == 'QUERY_TRANSACTED_VOLUME': symbol = msg.body['symbol'] lookback_period = msg.body['lookback_period'] if symbol not in self.order_books: log_print("Order stream request discarded. Unknown symbol: {}", symbol) else: log_print("{} received QUERY_TRANSACTED_VOLUME ({}:{}) request from agent {}", self.name, symbol, lookback_period, msg.body['sender']) self.sendMessage(msg.body['sender'], Message({"msg": "QUERY_TRANSACTED_VOLUME", "symbol": symbol, "transacted_volume": self.order_books[symbol].get_transacted_volume(lookback_period), "mkt_closed": True if currentTime > self.mkt_close else False })) elif msg.body['msg'] == "LIMIT_ORDER": order = msg.body['order'] log_print("{} received LIMIT_ORDER: {}", self.name, order) if order.symbol not in self.order_books: log_print("Order discarded. Unknown symbol: {}", order.symbol) else: # Hand the order to the order book for processing. self.order_books[order.symbol].handleLimitOrder(deepcopy(order)) self.publishOrderBookData() elif msg.body['msg'] == "CANCEL_ORDER": # Note: this is somewhat open to abuse, as in theory agents could cancel other agents' orders. # An agent could also become confused if they receive a (partial) execution on an order they # then successfully cancel, but receive the cancel confirmation first. Things to think about # for later... order = msg.body['order'] log_print("{} received CANCEL_ORDER: {}", self.name, order) if order.symbol not in self.order_books: log_print("Cancellation request discarded. Unknown symbol: {}", order.symbol) else: # Hand the order to the order book for processing. self.order_books[order.symbol].cancelOrder(deepcopy(order)) self.publishOrderBookData() elif msg.body['msg'] == 'MODIFY_ORDER': # Replace an existing order with a modified order. There could be some timing issues # here. What if an order is partially executed, but the submitting agent has not # yet received the norification, and submits a modification to the quantity of the # (already partially executed) order? I guess it is okay if we just think of this # as "delete and then add new" and make it the agent's problem if anything weird # happens. order = msg.body['order'] new_order = msg.body['new_order'] log_print("{} received MODIFY_ORDER: {}, new order: {}".format(self.name, order, new_order)) if order.symbol not in self.order_books: log_print("Modification request discarded. Unknown symbol: {}".format(order.symbol)) else: self.order_books[order.symbol].modifyOrder(deepcopy(order), deepcopy(new_order)) self.publishOrderBookData() def updateSubscriptionDict(self, msg, currentTime): # The subscription dict is a dictionary with the key = agent ID, # value = dict (key = symbol, value = list [levels (no of levels to recieve updates for), # frequency (min number of ns between messages), last agent update timestamp] # e.g. {101 : {'AAPL' : [1, 10, pd.Timestamp(10:00:00)}} if msg.body['msg'] == "MARKET_DATA_SUBSCRIPTION_REQUEST": agent_id, symbol, levels, freq = msg.body['sender'], msg.body['symbol'], msg.body['levels'], msg.body['freq'] self.subscription_dict[agent_id] = {symbol: [levels, freq, currentTime]} elif msg.body['msg'] == "MARKET_DATA_SUBSCRIPTION_CANCELLATION": agent_id, symbol = msg.body['sender'], msg.body['symbol'] del self.subscription_dict[agent_id][symbol] def publishOrderBookData(self): ''' The exchange agents sends an order book update to the agents using the subscription API if one of the following conditions are met: 1) agent requests ALL order book updates (freq == 0) 2) order book update timestamp > last time agent was updated AND the orderbook update time stamp is greater than the last agent update time stamp by a period more than that specified in the freq parameter. ''' for agent_id, params in self.subscription_dict.items(): for symbol, values in params.items(): levels, freq, last_agent_update = values[0], values[1], values[2] orderbook_last_update = self.order_books[symbol].last_update_ts if (freq == 0) or \ ((orderbook_last_update > last_agent_update) and ((orderbook_last_update - last_agent_update).delta >= freq)): self.sendMessage(agent_id, Message({"msg": "MARKET_DATA", "symbol": symbol, "bids": self.order_books[symbol].getInsideBids(levels), "asks": self.order_books[symbol].getInsideAsks(levels), "last_transaction": self.order_books[symbol].last_trade})) self.subscription_dict[agent_id][symbol][2] = orderbook_last_update def logOrderBookSnapshots(self, symbol): """ Log full depth quotes (price, volume) from this order book at some pre-determined frequency. Here we are looking at the actual log for this order book (i.e. are there snapshots to export, independent of the requested frequency). """ def get_quote_range_iterator(s): """ Helper method for order book logging. Takes pandas Series and returns python range() from first to last element. """ forbidden_values = [0, 19999900] # TODO: Put constant value in more sensible place! quotes = sorted(s) for val in forbidden_values: try: quotes.remove(val) except ValueError: pass return quotes book = self.order_books[symbol] if book.book_log: print("Logging order book to file...") dfLog = pd.DataFrame(book.book_log) dfLog.set_index('QuoteTime', inplace=True) dfLog = dfLog[~dfLog.index.duplicated(keep='last')] dfLog.sort_index(inplace=True) if str(self.book_freq).isdigit() and int(self.book_freq) == 0: # Save all possible information # With all order snapshots saved DataFrame is very sparse dfLog = pd.SparseDataFrame(dfLog) # Get the full range of quotes at the finest possible resolution. quotes = get_quote_range_iterator(dfLog.columns.unique()) # Restructure the log to have multi-level rows of all possible pairs of time and quote # with volume as the only column. if not self.wide_book: filledIndex = pd.MultiIndex.from_product([dfLog.index, quotes], names=['time', 'quote']) dfLog = dfLog.stack() dfLog = dfLog.reindex(filledIndex) filename = f'ORDERBOOK_{symbol}_FULL' else: # Sample at frequency self.book_freq # With multiple quotes in a nanosecond, use the last one, then resample to the requested freq. dfLog = dfLog.resample(self.book_freq).ffill() dfLog.sort_index(inplace=True) # Create a fully populated index at the desired frequency from market open to close. # Then project the logged data into this complete index. time_idx = pd.date_range(self.mkt_open, self.mkt_close, freq=self.book_freq, closed='right') dfLog = dfLog.reindex(time_idx, method='ffill') dfLog.sort_index(inplace=True) dfLog = dfLog.stack() dfLog.sort_index(inplace=True) # Get the full range of quotes at the finest possible resolution. quotes = get_quote_range_iterator(dfLog.index.get_level_values(1).unique()) # Restructure the log to have multi-level rows of all possible pairs of time and quote # with volume as the only column. filledIndex = pd.MultiIndex.from_product([time_idx, quotes], names=['time', 'quote']) dfLog = dfLog.reindex(filledIndex) filename = f'ORDERBOOK_{symbol}_FREQ_{self.book_freq}' # Final cleanup if not self.wide_book: dfLog.rename('Volume') df = pd.SparseDataFrame(index=dfLog.index) df['Volume'] = dfLog else: df = dfLog df = df.reindex(sorted(df.columns), axis=1) # Archive the order book snapshots directly to a file named with the symbol, rather than # to the exchange agent log. self.writeLog(df, filename=filename) print("Order book logging complete!") def sendMessage (self, recipientID, msg): # The ExchangeAgent automatically applies appropriate parallel processing pipeline delay # to those message types which require it. # TODO: probably organize the order types into categories once there are more, so we can # take action by category (e.g. ORDER-related messages) instead of enumerating all message # types to be affected. if msg.body['msg'] in ['ORDER_ACCEPTED', 'ORDER_CANCELLED', 'ORDER_EXECUTED']: # Messages that require order book modification (not simple queries) incur the additional # parallel processing delay as configured. super().sendMessage(recipientID, msg, delay = self.pipeline_delay) if self.log_orders: self.logEvent(msg.body['msg'], js.dump(msg.body['order'], strip_privates=True)) else: # Other message types incur only the currently-configured computation delay for this agent. super().sendMessage(recipientID, msg) # Simple accessor methods for the market open and close times. def getMarketOpen(self): return self.__mkt_open def getMarketClose(self): return self.__mkt_close def wide_book_warning(self): """ Prints warning message about wide orderbook format usage. """ if self.wide_book and (self.book_freq != 0): log_print(f"WARNING: (wide_book == True) and (book_freq != 0). Orderbook will be logged in column MultiIndex " "format at frequency {self.book_freq}.")
StarcoderdataPython
5197128
<gh_stars>0 # Add the following code to your script to create a new Custom Vision service project. # Insert your subscription keys in the appropriate definitions. # Also, get your Endpoint URL from the Settings page of the Custom Vision website. from azure.cognitiveservices.vision.customvision.training import CustomVisionTrainingClient from azure.cognitiveservices.vision.customvision.training.models import ImageFileCreateEntry ENDPOINT = "https://southcentralus.api.cognitive.microsoft.com/" # Replace with a valid key training_key = "edb35a52aa04460d8edcffc78893ec9c3" prediction_key = "<your prediction key>" prediction_resource_id = "/subscriptions/b580d1b7-163e-4a91-bb43-1d260d3753a5/resourceGroups/mygroup/providers/Microsoft.CognitiveServices/accounts/Mol_Images" publish_iteration_name = "model1" trainer = CustomVisionTrainingClient(training_key, endpoint=ENDPOINT) # Create a new project print ("Creating project...") project = trainer.create_project("OPVDB_classification") # Make two tags in the new project mol_tag = trainer.create_tag(project.id, "mol") curve_tag = trainer.create_tag(project.id, "curve") # uvvis_tag = trainer.create_tag(project.id, "uvvis") imaging_tag = trainer.create_tag(project.id, "imaging") # To add the sample images to the project, insert the following code after the tag creation. # This code uploads each image with its corresponding tag. # You can upload up to 64 images in a single batch. base_image_url = "train_img/" print("Adding images...") image_list = [] for image_num in range(1, 12): file_name = "mol/{}.jpg".format(image_num) with open(base_image_url + "mol/" + file_name, "rb") as image_contents: image_list.append(ImageFileCreateEntry(name=file_name, contents=image_contents.read(), tag_ids=[mol_tag.id])) for image_num in range(1, 20): file_name = "curve/{}.jpg".format(image_num) with open(base_image_url + "curve/" + file_name, "rb") as image_contents: image_list.append(ImageFileCreateEntry(name=file_name, contents=image_contents.read(), tag_ids=[curve_tag.id])) for image_num in range(1, 15): file_name = "imaging/{}.jpg".format(image_num) with open(base_image_url + "imaging/" + file_name, "rb") as image_contents: image_list.append(ImageFileCreateEntry(name=file_name, contents=image_contents.read(), tag_ids=[imaging_tag.id])) upload_result = trainer.create_images_from_files(project.id, images=image_list) if not upload_result.is_batch_successful: print("Image batch upload failed.") for image in upload_result.images: print("Image status: ", image.status) exit(-1) # Train the classifier and publish import time print ("Training...") iteration = trainer.train_project(project.id) while (iteration.status != "Completed"): iteration = trainer.get_iteration(project.id, iteration.id) print ("Training status: " + iteration.status) time.sleep(1) # The iteration is now trained. Publish it to the project endpoint trainer.publish_iteration(project.id, iteration.id, publish_iteration_name, prediction_resource_id) print ("Done!") # Get and use the published iteration on the prediction endpoint from azure.cognitiveservices.vision.customvision.prediction import CustomVisionPredictionClient # Now there is a trained endpoint that can be used to make a prediction predictor = CustomVisionPredictionClient(prediction_key, endpoint=ENDPOINT) with open(base_image_url + "images/test_img/mol_1.png", "rb") as image_contents: results = predictor.classify_image( project.id, publish_iteration_name, image_contents.read()) # Display the results. for prediction in results.predictions: print("\t" + prediction.tag_name + ": {0:.2f}%".format(prediction.probability * 100))
StarcoderdataPython
6706097
''' Applications of computer vision ''' # pylint: disable=W0401 from .capture import * from .ipcam import *
StarcoderdataPython
5097000
# -*- coding: utf-8 -*- # MinIO Python Library for Amazon S3 Compatible Cloud Storage, (C) # 2020 MinIO, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Request/response of PutObjectRetention and GetObjectRetention APIs.""" from __future__ import absolute_import import datetime from .commonconfig import COMPLIANCE, GOVERNANCE from .time import from_iso8601utc, to_iso8601utc from .xml import Element, SubElement, findtext class Retention: """Retention configuration.""" def __init__(self, mode, retain_until_date): if mode not in [GOVERNANCE, COMPLIANCE]: raise ValueError(f"mode must be {GOVERNANCE} or {COMPLIANCE}") if not isinstance(retain_until_date, datetime.datetime): raise ValueError( "retain until date must be datetime.datetime type", ) self._mode = mode self._retain_until_date = retain_until_date @property def mode(self): """Get mode.""" return self._mode @property def retain_until_date(self): """Get retain util date.""" return self._retain_until_date @classmethod def fromxml(cls, element): """Create new object with values from XML element.""" mode = findtext(element, "Mode", True) retain_until_date = from_iso8601utc( findtext(element, "RetainUntilDate", True), ) return cls(mode, retain_until_date) def toxml(self, element): """Convert to XML.""" element = Element("Retention") SubElement(element, "Mode", self._mode) SubElement( element, "RetainUntilDate", to_iso8601utc(self._retain_until_date), ) return element
StarcoderdataPython
6455195
#!/usr/bin/env pytest import logging import os from pathlib import Path from pytest_httpserver import HTTPServer from ornithology import ( config, standup, action, JobStatus, ClusterState, ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # Unset HTTP_PROXY for correct operation in Docker containers lowered = dict() for k in os.environ: lowered[k.lower()] = k os.environ.pop(lowered.get("http_proxy", "http_proxy"), None) @action def server(): with HTTPServer() as httpserver: yield httpserver @action(params={"404": 404, "500": 500}) def bad_url(server, request): server.expect_request("/badurl").respond_with_data(status=request.param) return "http://localhost:{}/badurl".format(server.port) @action def good_url(server): server.expect_request("/goodurl").respond_with_data("Great success!") return "http://localhost:{}/goodurl".format(server.port) @action def job_with_good_url(default_condor, good_url, test_dir, path_to_sleep): job = default_condor.submit( { "executable": path_to_sleep, "arguments": "1", "log": (test_dir / "good_url.log").as_posix(), "transfer_input_files": good_url, "transfer_output_files": "goodurl", "should_transfer_files": "YES", } ) assert job.wait(condition=ClusterState.all_terminal) return job @action def job_with_bad_url(default_condor, bad_url, test_dir, path_to_sleep): job = default_condor.submit( { "executable": path_to_sleep, "arguments": "1", "log": (test_dir / "bad_url.log").as_posix(), "transfer_input_files": bad_url, "should_transfer_files": "YES", } ) assert job.wait(condition=ClusterState.all_terminal) return job class TestCurlPlugin: def test_job_with_good_url_succeeds(self, job_with_good_url): assert job_with_good_url.state[0] == JobStatus.COMPLETED def test_job_with_good_url_file_contents_are_correct( self, job_with_good_url, test_dir ): assert Path("goodurl").read_text() == "Great success!" def test_job_with_bad_url_holds(self, job_with_bad_url): assert job_with_bad_url.state[0] == JobStatus.HELD
StarcoderdataPython
1746644
<filename>training-data/src/classification_data_tools.py from src.classification_print_tools import print_data_statistics def limit_negative_samples(features, targets, negative_count): limited_features = [] limited_targets = [] for i in range(0, len(targets)): if targets[i] == 1 or negative_count > 0: limited_features.append(features[i]) limited_targets.append(targets[i]) if targets[i] == 0: negative_count -= 1 return limited_features, limited_targets def split_data(features, targets, training_ratio, neg_limit=False, print_stats=True): boundary_index = int(len(features) * training_ratio) training_data = [ features[:boundary_index], targets[:boundary_index] ] if neg_limit != False: training_data[0], training_data[1] = limit_negative_samples(training_data[0], training_data[1], neg_limit) test_data = [ features[boundary_index:], targets[boundary_index:] ] if print_stats: print_data_statistics(training_data, test_data) return training_data, test_data
StarcoderdataPython
6441603
<gh_stars>0 from __future__ import absolute_import from __future__ import print_function import os import sys sys.path.insert(0, os.getcwd()) from twisted.internet import reactor from twisted.internet import defer from txjsonrpc.netstring.jsonrpc import Proxy def printValue(value): print("Result: %s" % str(value)) def printError(error): print('error', error) def shutDown(data): print("Shutting down reactor...") reactor.stop() proxy = Proxy('127.0.0.1', 7080) dl = [] d = proxy.callRemote('system.listMethods') d.addCallbacks(printValue, printError) dl.append(d) d = proxy.callRemote('echo', 'bite me') d.addCallbacks(printValue, printError) dl.append(d) d = proxy.callRemote('testing.getList') d.addCallbacks(printValue, printError) dl.append(d) d = proxy.callRemote('math.add', 3, 5) d.addCallbacks(printValue, printError) dl.append(d) dl = defer.DeferredList(dl) dl.addCallback(shutDown) reactor.run()
StarcoderdataPython
11322354
<gh_stars>0 from __future__ import unicode_literals import frappe from frappe.core.doctype.user.user import create_contact import re def execute(): """ Create Contact for each User if not present """ frappe.reload_doc('integrations', 'doctype', 'google_contacts') frappe.reload_doc('contacts', 'doctype', 'contact') frappe.reload_doc('core', 'doctype', 'dynamic_link') frappe.reload_doc('communication', 'doctype', 'call_log') contact_meta = frappe.get_meta("Contact") if contact_meta.has_field("phone_nos") and contact_meta.has_field("email_ids"): frappe.reload_doc('contacts', 'doctype', 'contact_phone') frappe.reload_doc('contacts', 'doctype', 'contact_email') users = frappe.get_all('User', filters={"name": ('not in', 'Administrator, Guest')}, fields=["*"]) for user in users: if user.first_name: user.first_name = re.sub("[<>]+", '', frappe.safe_decode(user.first_name)) if user.last_name: user.last_name = re.sub("[<>]+", '', frappe.safe_decode(user.last_name)) create_contact(user, ignore_links=True, ignore_mandatory=True)
StarcoderdataPython
176572
#!/usr/bin/env python3 from setuptools import setup, find_packages setup( name="Markdown-Video", version="0.1", url="http://github.com/Holzhaus/Python-Markdown-Video", license="GPL", author="<NAME>", author_email="<EMAIL>", description="Video Extension for Markdown", classifiers=[ "Environment :: Web Environment", "Intended Audience :: Developers", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Documentation", "Topic :: Utilities", ], platforms="any", py_modules=["markdown_video"], include_package_data=False, install_requires=[ "Markdown", ], )
StarcoderdataPython
1837439
<gh_stars>0 # Censys exceptions class CensysTenableException(Exception): """Base Exception raised for errors in Censys Tenable integration.""" def __init__(self, message=None): self.message = message or "Error: Censys ASM assets not exported into Tenable" super().__init__(self.message) class MissingCensysAPIKeyError(CensysTenableException): """Exception raised when the Censys API key is not configured.""" def __init__( self, message="Censys API key is missing. Please set it in the env file." ): super().__init__(message) class InvalidLogLevelError(CensysTenableException): """Exception raised when the log level is not set to one of [ CRITICAL, ERROR, WARNING, INFO, DEBUG ].""" def __init__( self, message="Invalid log level. Please set it to one of " "[ CRITICAL, ERROR, WARNING, INFO, DEBUG ] in the env file.", ): super().__init__(message) class RunIntervalTooSmallError(CensysTenableException): """Exception raised when the run interval is set to a value less than 120 and greater than -1.""" def __init__( self, message="Run interval must be set to a value greater than 120 or equal to -1.", ): super().__init__(message) class MissingRunIntervalError(CensysTenableException): """Exception raised when the run interval is not configured.""" def __init__(self, message="Invalid run interval. Please set to an integer"): super().__init__(message) # Tenable exceptions class MissingTenableAccessKeyError(CensysTenableException): """Exception raised when no Tenable access key is configured.""" def __init__( self, message="Missing Tenable access key. Please set it in config.yml.", ): super().__init__(message) class MissingTenableSecretKeyError(CensysTenableException): """Exception raised when the Tenable secret key is not configured.""" def __init__( self, message="Missing Tenable secret key. Please set it in config.yml.", ): super().__init__(message) class MissingTenableHostSourceError(CensysTenableException): """Exception raised when the Tenable host source is not configured.""" def __init__( self, message="Missing Tenable host source. Please set it in config.yml.", ): super().__init__(message)
StarcoderdataPython
6582346
"""The Alarmo Integration.""" import logging import bcrypt import base64 from homeassistant.core import ( callback, ) from homeassistant.components.alarm_control_panel import DOMAIN as PLATFORM from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( ATTR_CODE, ATTR_NAME, ) from homeassistant.core import HomeAssistant, asyncio from homeassistant.helpers import device_registry as dr from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.service import ( async_register_admin_service, ) from . import const from .store import async_get_registry from .panel import ( async_register_panel, async_unregister_panel, ) from .card import async_register_card from .websockets import async_register_websockets from .sensors import ( SensorHandler, ATTR_GROUP, ATTR_ENTITIES ) from .automations import AutomationHandler from .mqtt import MqttHandler from .event import EventHandler _LOGGER = logging.getLogger(__name__) async def async_setup(hass, config): """Track states and offer events for sensors.""" return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up Alarmo integration from a config entry.""" session = async_get_clientsession(hass) store = await async_get_registry(hass) coordinator = AlarmoCoordinator(hass, session, entry, store) device_registry = dr.async_get(hass) device_registry.async_get_or_create( config_entry_id=entry.entry_id, identifiers={(const.DOMAIN, coordinator.id)}, name=const.NAME, model=const.NAME, sw_version=const.VERSION, manufacturer=const.MANUFACTURER, ) hass.data.setdefault(const.DOMAIN, {}) hass.data[const.DOMAIN] = { "coordinator": coordinator, "areas": {}, "master": None } if entry.unique_id is None: hass.config_entries.async_update_entry(entry, unique_id=coordinator.id, data={}) hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, PLATFORM) ) # Register the panel (frontend) await async_register_panel(hass) await async_register_card(hass) # Websocket support await async_register_websockets(hass) # Register custom services register_services(hass) return True async def async_unload_entry(hass, entry): """Unload Alarmo config entry.""" unload_ok = all( await asyncio.gather( *[hass.config_entries.async_forward_entry_unload(entry, PLATFORM)] ) ) if not unload_ok: return False async_unregister_panel(hass) coordinator = hass.data[const.DOMAIN]["coordinator"] await coordinator.async_unload() return True async def async_remove_entry(hass, entry): """Remove Alarmo config entry.""" async_unregister_panel(hass) coordinator = hass.data[const.DOMAIN]["coordinator"] await coordinator.async_delete_config() del hass.data[const.DOMAIN] class AlarmoCoordinator(DataUpdateCoordinator): """Define an object to hold Alarmo device.""" def __init__(self, hass, session, entry, store): """Initialize.""" self.id = entry.unique_id self.hass = hass self.entry = entry self.store = store self._subscriptions = [] self._subscriptions.append( async_dispatcher_connect( hass, "alarmo_platform_loaded", self.setup_alarm_entities ) ) self.register_events() super().__init__(hass, _LOGGER, name=const.DOMAIN) @callback def setup_alarm_entities(self): self.hass.data[const.DOMAIN]["sensor_handler"] = SensorHandler(self.hass) self.hass.data[const.DOMAIN]["automation_handler"] = AutomationHandler(self.hass) self.hass.data[const.DOMAIN]["mqtt_handler"] = MqttHandler(self.hass) self.hass.data[const.DOMAIN]["event_handler"] = EventHandler(self.hass) areas = self.store.async_get_areas() config = self.store.async_get_config() for item in areas.values(): async_dispatcher_send(self.hass, "alarmo_register_entity", item) if len(areas) > 1 and config["master"]["enabled"]: async_dispatcher_send(self.hass, "alarmo_register_master", config["master"]) async def async_update_config(self, data): if "master" in data: old_config = self.store.async_get_config() if old_config[const.ATTR_MASTER] != data["master"]: if self.hass.data[const.DOMAIN]["master"]: await self.async_remove_entity("master") if data["master"]["enabled"]: async_dispatcher_send(self.hass, "alarmo_register_master", data["master"]) else: automations = self.hass.data[const.DOMAIN]["automation_handler"].get_automations_by_area(None) if len(automations): for el in automations: self.store.async_delete_automation(el) async_dispatcher_send(self.hass, "alarmo_automations_updated") self.store.async_update_config(data) async_dispatcher_send(self.hass, "alarmo_config_updated") async def async_update_area_config(self, area_id: str = None, data: dict = {}): if const.ATTR_REMOVE in data: # delete an area res = self.store.async_get_area(area_id) if not res: return sensors = self.store.async_get_sensors() sensors = dict(filter(lambda el: el[1]["area"] == area_id, sensors.items())) if sensors: for el in sensors.keys(): self.store.async_delete_sensor(el) async_dispatcher_send(self.hass, "alarmo_sensors_updated") automations = self.hass.data[const.DOMAIN]["automation_handler"].get_automations_by_area(area_id) if len(automations): for el in automations: self.store.async_delete_automation(el) async_dispatcher_send(self.hass, "alarmo_automations_updated") self.store.async_delete_area(area_id) await self.async_remove_entity(area_id) if len(self.store.async_get_areas()) == 1 and self.hass.data[const.DOMAIN]["master"]: await self.async_remove_entity("master") elif self.store.async_get_area(area_id): # modify an area entry = self.store.async_update_area(area_id, data) if "name" not in data: async_dispatcher_send(self.hass, "alarmo_config_updated", area_id) else: await self.async_remove_entity(area_id) async_dispatcher_send(self.hass, "alarmo_register_entity", entry) else: # create an area entry = self.store.async_create_area(data) async_dispatcher_send(self.hass, "alarmo_register_entity", entry) config = self.store.async_get_config() if len(self.store.async_get_areas()) == 2 and config["master"]["enabled"]: async_dispatcher_send(self.hass, "alarmo_register_master", config["master"]) def async_update_sensor_config(self, entity_id: str, data: dict): group = None if ATTR_GROUP in data: group = data[ATTR_GROUP] del data[ATTR_GROUP] if const.ATTR_REMOVE in data: self.store.async_delete_sensor(entity_id) self.assign_sensor_to_group(entity_id, None) elif self.store.async_get_sensor(entity_id): self.store.async_update_sensor(entity_id, data) self.assign_sensor_to_group(entity_id, group) else: self.store.async_create_sensor(entity_id, data) self.assign_sensor_to_group(entity_id, group) async_dispatcher_send(self.hass, "alarmo_sensors_updated") def async_update_user_config(self, user_id: str = None, data: dict = {}): if const.ATTR_REMOVE in data: self.store.async_delete_user(user_id) return if ATTR_CODE in data and data[ATTR_CODE]: data[const.ATTR_CODE_FORMAT] = "number" if data[ATTR_CODE].isdigit() else "text" data[const.ATTR_CODE_LENGTH] = len(data[ATTR_CODE]) hashed = bcrypt.hashpw( data[ATTR_CODE].encode("utf-8"), bcrypt.gensalt(rounds=12) ) hashed = base64.b64encode(hashed) data[ATTR_CODE] = hashed.decode() if not user_id: self.store.async_create_user(data) else: if ATTR_CODE in data: if const.ATTR_OLD_CODE not in data: return False elif not self.async_authenticate_user(data[const.ATTR_OLD_CODE], user_id): return False else: del data[const.ATTR_OLD_CODE] self.store.async_update_user(user_id, data) else: self.store.async_update_user(user_id, data) def async_authenticate_user(self, code: str, user_id: str = None): if not user_id: users = self.store.async_get_users() else: users = { user_id: self.store.async_get_user(user_id) } for (user_id, user) in users.items(): if not user[const.ATTR_ENABLED]: continue elif not user[ATTR_CODE] and not code: return user elif user[ATTR_CODE]: hash = base64.b64decode(user[ATTR_CODE]) if bcrypt.checkpw(code.encode("utf-8"), hash): return user return def async_update_automation_config(self, automation_id: str = None, data: dict = {}): if const.ATTR_REMOVE in data: self.store.async_delete_automation(automation_id) elif not automation_id: self.store.async_create_automation(data) else: self.store.async_update_automation(automation_id, data) async_dispatcher_send(self.hass, "alarmo_automations_updated") def register_events(self): # handle push notifications with action buttons @callback async def async_handle_push_event(event): if not event.data: return action = event.data.get("actionName") if "actionName" in event.data else event.data.get("action") if action not in [ const.EVENT_ACTION_FORCE_ARM, const.EVENT_ACTION_RETRY_ARM, const.EVENT_ACTION_DISARM ]: return if self.hass.data[const.DOMAIN]["master"]: alarm_entity = self.hass.data[const.DOMAIN]["master"] elif len(self.hass.data[const.DOMAIN]["areas"]) == 1: alarm_entity = list(self.hass.data[const.DOMAIN]["areas"].values())[0] else: _LOGGER.info("Cannot process the push action, since there are multiple areas.") return arm_mode = alarm_entity.arm_mode if not arm_mode: _LOGGER.info("Cannot process the push action, since the arm mode is not known.") return if action == const.EVENT_ACTION_FORCE_ARM: _LOGGER.info("Received request for force arming") await alarm_entity.async_handle_arm_request(arm_mode, skip_code=True, bypass_open_sensors=True) elif action == const.EVENT_ACTION_RETRY_ARM: _LOGGER.info("Received request for retry arming") await alarm_entity.async_handle_arm_request(arm_mode, skip_code=True) elif action == const.EVENT_ACTION_DISARM: _LOGGER.info("Received request for disarming") await alarm_entity.async_alarm_disarm(code=None, skip_code=True) self._subscriptions.append( self.hass.bus.async_listen(const.PUSH_EVENT, async_handle_push_event) ) async def async_remove_entity(self, area_id: str): entity_registry = self.hass.helpers.entity_registry.async_get(self.hass) if area_id == "master": entity = self.hass.data[const.DOMAIN]["master"] entity_registry.async_remove(entity.entity_id) self.hass.data[const.DOMAIN]["master"] = None else: entity = self.hass.data[const.DOMAIN]["areas"][area_id] entity_registry.async_remove(entity.entity_id) self.hass.data[const.DOMAIN]["areas"].pop(area_id, None) def async_get_sensor_groups(self): """fetch a list of sensor groups (websocket API hook)""" groups = self.store.async_get_sensor_groups() return list(groups.values()) def async_get_group_for_sensor(self, entity_id: str): groups = self.async_get_sensor_groups() result = next((el for el in groups if entity_id in el[ATTR_ENTITIES]), None) return result["group_id"] if result else None def assign_sensor_to_group(self, entity_id: str, group_id: str): old_group = self.async_get_group_for_sensor(entity_id) if old_group and group_id != old_group: # remove sensor from group el = self.store.async_get_sensor_group(old_group) if len(el[ATTR_ENTITIES]) > 2: self.store.async_update_sensor_group(old_group, { ATTR_ENTITIES: [x for x in el[ATTR_ENTITIES] if x != entity_id] }) else: self.store.async_delete_sensor_group(old_group) if group_id: # add sensor to group el = self.store.async_get_sensor_group(group_id) if not el: _LOGGER.error("Failed to assign entity {} to group {}".format(entity_id, group_id)) return self.store.async_update_sensor_group(group_id, { ATTR_ENTITIES: el[ATTR_ENTITIES] + [entity_id] }) async_dispatcher_send(self.hass, "alarmo_sensors_updated") def async_update_sensor_group_config(self, group_id: str = None, data: dict = {}): if const.ATTR_REMOVE in data: self.store.async_delete_sensor_group(group_id) elif not group_id: self.store.async_create_sensor_group(data) else: self.store.async_update_sensor_group(group_id, data) async_dispatcher_send(self.hass, "alarmo_sensors_updated") async def async_unload(self): """remove all alarmo objects""" # remove alarm_control_panel entities areas = list(self.hass.data[const.DOMAIN]["areas"].keys()) for area in areas: await self.async_remove_entity(area) if self.hass.data[const.DOMAIN]["master"]: await self.async_remove_entity("master") del self.hass.data[const.DOMAIN]["sensor_handler"] del self.hass.data[const.DOMAIN]["automation_handler"] del self.hass.data[const.DOMAIN]["mqtt_handler"] del self.hass.data[const.DOMAIN]["event_handler"] # remove subscriptions for coordinator while len(self._subscriptions): self._subscriptions.pop()() async def async_delete_config(self): """wipe alarmo storage""" await self.store.async_delete() @callback def register_services(hass): """Register services used by alarmo component.""" coordinator = hass.data[const.DOMAIN]["coordinator"] async def async_srv_toggle_user(call): """Enable a user by service call""" name = call.data.get(ATTR_NAME) enable = True if call.service == const.SERVICE_ENABLE_USER else False users = coordinator.store.async_get_users() user = next((item for item in list(users.values()) if item[ATTR_NAME] == name), None) if user is None: _LOGGER.warning("Failed to {} user, no match for name '{}'".format("enable" if enable else "disable", name)) return coordinator.store.async_update_user(user[const.ATTR_USER_ID], {const.ATTR_ENABLED: enable}) _LOGGER.debug("User user '{}' was {}".format(name, "enabled" if enable else "disabled")) async_register_admin_service( hass, const.DOMAIN, const.SERVICE_ENABLE_USER, async_srv_toggle_user, schema=const.SERVICE_TOGGLE_USER_SCHEMA ) async_register_admin_service( hass, const.DOMAIN, const.SERVICE_DISABLE_USER, async_srv_toggle_user, schema=const.SERVICE_TOGGLE_USER_SCHEMA )
StarcoderdataPython
138535
<filename>usuarios/views.py from django.shortcuts import render from django.shortcuts import redirect from django.contrib.auth import authenticate from django.contrib.auth import login from django.contrib.auth import logout from django.contrib.auth.models import User from products.models import Product from cart.models import Cart # Create your views here. def home_view(request): context = {} context["products"] = Product.objects.all() return render(request, 'home.html', context=context) def logout_view(request): if request.user.is_authenticated: logout(request) return redirect('home') def login_view(request): if(request.method == 'POST'): username = request.POST['username'] password = request.POST['password'] user = authenticate(request, username=username, password=password) if (user is not None): login(request, user) return redirect('home') return render(request, 'login.html',{'error': 'Credenciales incorrectas, vuelta a intentarlo'}) return render(request, 'login.html') def register_view(request): if(request.method == 'POST'): username = request.POST['username'] email = request.POST['email'] password = request.POST['password'] user = User.objects.create_user(username=username, email=email, password=password) user.save() user_cart = Cart.objects.create(user=user) user_cart.save() login(request, user) return redirect('home') return render(request, 'register.html')
StarcoderdataPython
1682952
<reponame>xuanqing94/NeuralSDE import torch import torch.nn as nn from .diffusion_fn import MultiplicativeNoise, AdditiveNoise from .integrated_flow import IntegratedFlow from .flow_fn import RandFlowFn, RandFlowFn_v2 from .flow_net import MultiScaleFlow from .layers.conv2d import RandConv2d from .layers.linear import RandLinear from .layers.groupnorm2d import RandGroupNorm def rand_norm(dim, **rand_args): return RandGroupNorm(min(32, dim), dim, **rand_args) class Flatten(nn.Module): def __init__(self): super(Flatten, self).__init__() def forward(self, x): shape = torch.prod(torch.tensor(x.shape[1:])).item() return x.view(-1, shape) def heavy_downsampling(in_nc, nc_hidden, **rand_args): downsampling_layers = [ RandConv2d(in_nc, nc_hidden, 3, 1, 1, **rand_args), rand_norm(nc_hidden, **rand_args), nn.ReLU(inplace=True), RandConv2d(nc_hidden, nc_hidden * 2, 3, 1, 1, **rand_args), rand_norm(nc_hidden * 2, **rand_args), nn.ReLU(inplace=True), RandConv2d(nc_hidden * 2, nc_hidden * 4, 4, 2, 1, **rand_args), ] return downsampling_layers, nc_hidden * 4 def light_downsampling(in_nc, nc_hidden, **rand_args): downsampling_layers = [RandConv2d(in_nc, nc_hidden, 3, 1, **rand_args)] return downsampling_layers, nc_hidden class BayesianClassifier(nn.Module): def __init__( self, n_scale, nclass, nc, nc_hidden, grid_size, T, downsampling_type="heavy", version="v1", **rand_args, ): super().__init__() if downsampling_type == "light": layers, nc_hidden = light_downsampling(nc, nc_hidden, **rand_args) self.downsampling_layers = nn.Sequential(*layers) elif downsampling_type == "heavy": layers, nc_hidden = heavy_downsampling(nc, nc_hidden, **rand_args) self.downsampling_layers = nn.Sequential(*layers) else: raise ValueError("Invalid value of downsampling_type") flows = [] for _ in range(n_scale): flow_fn = RandFlowFn(nc_hidden, **rand_args) if version == "v1" else RandFlowFn_v2(nc_hidden, **rand_args) flows.append(IntegratedFlow(flow_fn, None, grid_size, T)) self.multiscale_flows = MultiScaleFlow(flows) self.fc_layers = nn.Sequential( rand_norm(nc_hidden, **rand_args), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1)), Flatten(), RandLinear(nc_hidden, nclass, **rand_args), ) def forward(self, x): out = self.downsampling_layers(x) out = self.multiscale_flows(out) out = self.fc_layers(out) return out if __name__ == "__main__": rand_args = { 'sigma_0': 1.0, 'N': 100, 'init_s': 1.0, 'alpha': 0.01, } classifier = BayesianClassifier( n_scale=3, nclass=10, nc=3, nc_hidden=64, grid_size=0.1, T=1.0, **rand_args, ) x = torch.randn(13, 3, 32, 32) out = classifier(x) print(out.size())
StarcoderdataPython
4804075
""" Tests for fileio module """ # author: <NAME> (arm61) import unittest from datetime import datetime import os.path import pytest import yaml from orsopy.fileio.orso import Orso, OrsoDataset from orsopy.fileio.data_source import (DataSource, Experiment, Sample, Measurement, InstrumentSettings) from orsopy.fileio.reduction import Reduction, Software from orsopy.fileio.base import Person, ValueRange, Value, File, Column, Creator from orsopy.fileio.base import _validate_header_data, _read_header_data from orsopy import fileio as fileio import numpy as np class TestOrso(unittest.TestCase): """ Testing the Orso class. """ def test_creation(self): """ Creation of Orso object. """ c = Creator( 'A Person', 'Some Uni', datetime.now(), "", contact="<EMAIL>" ) e = Experiment( 'Experiment 1', 'ESTIA', datetime(2021, 7, 7, 16, 31, 10), 'neutrons' ) s = Sample('The sample') inst = InstrumentSettings( Value(4.0, 'deg'), ValueRange(2., 12., 'angstrom') ) df = [File('README.rst', None)] m = Measurement(inst, df, scheme="angle-dispersive") p = Person('A Person', 'Some Uni') ds = DataSource(p, e, s, m) soft = Software('orsopy', '0.0.1', 'macOS-10.15') p2 = Person('<NAME>', 'European Spallation Source') redn = Reduction( soft, datetime(2021, 7, 14, 10, 10, 10), p2, ['footprint', 'background'] ) cols = [Column("Qz", unit='1/angstrom'), Column("R")] value = Orso(c, ds, redn, cols, 0) assert value.creator.name == "<NAME>" assert value.creator.contact == "<EMAIL>" ds = value.data_source dsm = ds.measurement assert ds.owner.name == '<NAME>' assert dsm.data_files[0].file == 'README.rst' assert dsm.instrument_settings.incident_angle.magnitude == 4.0 assert dsm.instrument_settings.wavelength.min == 2.0 assert dsm.instrument_settings.wavelength.max == 12.0 assert value.reduction.software.name == 'orsopy' assert value.reduction.software.version == "0.0.1" assert value.reduction.timestamp == datetime(2021, 7, 14, 10, 10, 10) assert value.columns[0].name == 'Qz' assert value.columns[1].name == 'R' assert value.data_set == 0 h = value.to_yaml() h = "\n".join( ["# ORSO reflectivity data file | 0.1 standard | YAML encoding" " | https://www.reflectometry.org/", h] ) g = yaml.safe_load_all(h) _validate_header_data([next(g)]) def test_creation_data_set1(self): """ Creation of Orso object with a non-zero data_set. """ c = Creator( '<NAME>', '<NAME>', datetime.now(), "", contact="<EMAIL>" ) e = Experiment( 'Experiment 1', 'ESTIA', datetime(2021, 7, 7, 16, 31, 10), 'neutrons' ) s = Sample('The sample') inst = InstrumentSettings( Value(4.0, 'deg'), ValueRange(2., 12., 'angstrom') ) df = [File('README.rst', None)] m = Measurement(inst, df, scheme="angle-dispersive") p = Person('A Person', 'Some Uni') ds = DataSource(p, e, s, m) soft = Software('orsopy', '0.0.1', 'macOS-10.15') p2 = Person('<NAME>', 'European Spallation Source') redn = Reduction( soft, datetime(2021, 7, 14, 10, 10, 10), p2, ['footprint', 'background'] ) cols = [Column("Qz", unit='1/angstrom'), Column("R")] value = Orso(c, ds, redn, cols, 1) dsm = value.data_source.measurement assert value.data_source.owner.name == 'A Person' assert dsm.data_files[0].file == 'README.rst' assert value.reduction.software.name == 'orsopy' assert value.columns[0].name == 'Qz' assert value.data_set == 1 # check that data_set can also be a string. value = Orso(c, ds, redn, cols, 'fokdoks') assert value.data_set == 'fokdoks' # don't want class construction coercing a str to an int value = Orso(c, ds, redn, cols, '1') assert value.data_set == '1' def test_write_read(self): # test write and read of multiple datasets info = fileio.Orso.empty() info2 = fileio.Orso.empty() data = np.zeros((100, 3)) data[:] = np.arange(100.0)[:, None] info.columns = [ fileio.Column("Qz", "1/angstrom"), fileio.Column("R"), fileio.Column("sR"), ] info2.columns = info.columns info.data_source.measurement.instrument_settings.polarization = "p" info2.data_source.measurement.instrument_settings.polarization = "m" info.data_set = "up polarization" info2.data_set = "down polarization" info2.data_source.sample.comment = "this is a comment" ds = fileio.OrsoDataset(info, data) ds2 = fileio.OrsoDataset(info2, data) info3 = fileio.Orso( creator=fileio.Creator( name="<NAME>", affiliation="Paul Scherrer Institut", timestamp=datetime.now(), computer="localhost", ), data_source=fileio.DataSource( sample=fileio.Sample( name="My Sample", type="solid", description="Something descriptive", ), experiment=fileio.Experiment( title="Main experiment", instrument="Reflectometer", date=datetime.now(), probe="x-rays", ), owner=fileio.Person("someone", "important"), measurement=fileio.Measurement( instrument_settings=fileio.InstrumentSettings( incident_angle=fileio.Value(13.4, "deg"), wavelength=fileio.Value(5.34, "A"), ), data_files=["abc", "def", "ghi"], references=["more", "files"], scheme="angle-dispersive", ), ), reduction=fileio.Reduction(software="awesome orso"), data_set="Filled header", columns=info.columns, ) ds3 = fileio.OrsoDataset(info3, data) fileio.save_orso([ds, ds2, ds3], "test.ort", comment='Interdiffusion') ls1, ls2, ls3 = fileio.load_orso("test.ort") assert ls1 == ds assert ls2 == ds2 assert ls3 == ds3 _read_header_data("test.ort", validate=True) def test_unique_dataset(self): # checks that data_set is unique on saving of OrsoDatasets info = Orso.empty() info.data_set = 0 info.columns = [Column("stuff")] * 4 info2 = Orso.empty() info2.data_set = 0 info2.columns = [Column("stuff")] * 4 ds = OrsoDataset(info, np.empty((2, 4))) ds2 = OrsoDataset(info2, np.empty((2, 4))) with pytest.raises(ValueError): fileio.save_orso([ds, ds2], 'test_data_set.ort') def test_extra_elements(self): # if there are extra elements present in the ORT file they should still # be loadable. They won't be there as dataclass fields, but they'll be # visible as attributes. datasets = fileio.load_orso(os.path.join("tests", "test_example.ort")) info = datasets[0].info assert hasattr( info.data_source.measurement.instrument_settings.incident_angle, 'resolution' ) class TestFunctions(unittest.TestCase): """ Tests for functionality in the Orso module. """ def test_make_empty(self): """ Creation of the empty Orso object. """ empty = Orso.empty() assert issubclass(empty.__class__, Orso) ds = empty.data_source assert ds.owner.name is None assert ds.experiment.title is None assert ds.experiment.instrument is None assert ds.experiment.date is None assert ds.experiment.probe is None assert ds.sample.name is None assert ds.measurement.instrument_settings.incident_angle.magnitude is None assert ds.measurement.instrument_settings.wavelength.magnitude is None assert ds.measurement.data_files is None assert empty.reduction.software.name is None assert empty.reduction.software.version is None assert empty.reduction.software.platform is None assert empty.reduction.timestamp is None assert empty.reduction.creator is None assert ds.owner.affiliation is None assert ds.sample.name is None assert empty.reduction.corrections is None assert empty.reduction.creator is None assert empty.columns == [Column.empty()] assert empty.data_set is None dct = empty.to_dict() _validate_header_data([dct]) def test_empty_to_yaml(self): """ Checking yaml string form empty Orso object. TODO: Fix once correct format is known. """ empty = Orso.empty() req = ( 'creator:\n name: null\n affiliation: null\n timestamp: null\n' ' computer: null\ndata_source:\n owner:\n name: null\n' ' affiliation: null\n experiment:\n title: null\n' ' instrument: null\n date: null\n probe: null\n' ' sample:\n name: null\n measurement:\n' ' instrument_settings:\n incident_angle:\n magnitude: null\n' ' wavelength:\n magnitude: null\n polarization: unpolarized\n' ' data_files: null\nreduction:\n software:\n name: null\n' 'columns:\n- name: null\n' ) assert empty.to_yaml() == req
StarcoderdataPython
1971753
<filename>python/sklearn/linear-regression/workload-analysis/bench-gpu/post-process/roofline/roofline.py #!/usr/bin/env python3 from collections import OrderedDict import matplotlib import matplotlib.pyplot as plt import seaborn as sns; def extract_model_data(data_file_path, debug=True): data_file_reader = open(data_file_path, 'r') # key is net name, value is list of <batch size, gflops, intensity> tuples gflops_intensity_dict = {} try: text_lines = data_file_reader.readlines() # two lines, the first line is glops, the second is operational intensity for i, line in enumerate(text_lines): # extract the first line(GFLOPS) and then get the next line(Operational Intensity) if i % 2 == 0: # extract gflops current_line = line.rstrip('\n') gflops_list = current_line.split('\t') # extract operational intensity next_line = text_lines[i+1].rstrip('\n') intensity_list = next_line.split('\t') dict_values_list = [] for j, item in enumerate(gflops_list): # the first item is net name if j == 0: continue # batch size, gflops, op intensity dict_values_list.append((2**(j-1), float(item), float(intensity_list[j]))) gflops_intensity_dict[gflops_list[0]] = dict_values_list else: continue if debug: print(gflops_intensity_dict) finally: data_file_reader.close() return gflops_intensity_dict def extract_op_data(data_file_path, debug=True): data_file_reader = open(data_file_path, 'r') # key is net name, value is list of <batch size, gflops, intensity> tuples op_data_list = [] try: text_lines = data_file_reader.readlines() for line in text_lines: line = line.rstrip('\n') _, op_type, glops, intensity = line.split('\t') op_data_list.append((op_type, float(glops), float(intensity))) if debug: print(op_data_list) finally: data_file_reader.close() return op_data_list # find out the max intensity and min gflops def find_boundard_pairs(gflops_intensity_dict): max_intensity = -1 min_flops = 1.79e+100 for k, v in gflops_intensity_dict.items(): for _, gflops, intensity in v: max_intensity = max(max_intensity, intensity) min_flops = min(min_flops, gflops) return max_intensity, min_flops def draw_model_roofline(gflops_intensity_dict, peak_flops, peak_membdw): # set color palette for different dnns net_type_set = {k for k in gflops_intensity_dict} colors = sns.color_palette("hls", n_colors=len(net_type_set) + 2) net_color_map = {val:i for i, val in enumerate(list(net_type_set))} fig, ax = plt.subplots(figsize=(6, 6)) # 1. plot the <flops, intensity> pairs for k, v in gflops_intensity_dict.items(): # k is net name if k == 'MobileNetV1': for batch_size, gflops, intensity in v: ax.plot(intensity, gflops, 'x', color=colors[net_color_map[k]], label=k, marker='x') elif k == 'SqueezeNet': for batch_size, gflops, intensity in v: ax.plot(intensity, gflops, 'v', color=colors[net_color_map[k]], label=k, marker='v') elif k == 'DenseNet121': for batch_size, gflops, intensity in v: ax.plot(intensity, gflops, '*', color=colors[net_color_map[k]], label=k, marker='*') elif k == 'ResNet50': for batch_size, gflops, intensity in v: ax.plot(intensity, gflops, 's', color=colors[net_color_map[k]], label=k, marker='s') elif k == 'SSD_MobileNetV1': for batch_size, gflops, intensity in v: ax.plot(intensity, gflops, 'd', color=colors[net_color_map[k]], label=k, marker='d') elif k == 'SSD_VGG16': for batch_size, gflops, intensity in v: ax.plot(intensity, gflops, 'p', color=colors[net_color_map[k]], label=k, marker='p') # 2. plot the roof line x1 = peak_flops / peak_membdw y1 = peak_flops max_op_intensity, min_flops = find_boundard_pairs(gflops_intensity_dict) print('max intensity:', max_op_intensity, 'min flops:', min_flops) if max_op_intensity < x1: ''' for this case: ----- / /* /* /* x / x ''' ax.hlines(y=y1, xmin=x1, xmax=x1+5, linewidth=1.5, color='red') else: ax.hlines(y=y1, xmin=x1, xmax=max_op_intensity+10, linewidth=1.5, color='red') x2 = min_flops/ peak_membdw y2 = peak_membdw * x2 if x2 > x1: ''' for this case: ------- \ * x \ x * \ * x ''' x2 = peak_flops / peak_membdw - 0.1 y2 = (peak_flops / peak_membdw)*x2 print('x1:', x1, ' y1:', y1, ' x2:', x2, ' y2:', y2) #ax.plot([x1, x2], [y1, y2], linewidth=1.5, color='red') ax.plot([0.1, x1], [peak_membdw*0.1, y1], linewidth=1.5, color='red') ax.set_yscale('log') ax.set_xscale('log') #plt.xscale('log', basex=2) #plt.yscale('log', basey=2) ax.set_ylabel('GFLOps/sec', fontsize=10) ax.set_xlabel('Operational Intensity (FLOps/Byte)', fontsize=10) handles, labels = ax.get_legend_handles_labels() #print(labels) labels_od = OrderedDict(zip(labels, handles)) ax.legend(labels_od.values(), labels_od.keys(), loc='upper left') plt.show() def draw_op_roofline(op_data_list, peak_flops, peak_membdw): op_type_set = {record[0] for record in op_data_list} colors = sns.color_palette("hls", n_colors=len(op_type_set) + 2) layer_color_map = {val:i for i, val in enumerate(list(op_type_set))} #print(layer_color_map) fig, ax = plt.subplots(figsize=(6, 6)) # 1. plot the <flops, intensity> pairs for i in op_data_list: op_type, flops, intensity = str(i[0]), i[1], i[2] if op_type == 'Convolution' or op_type == 'convolution': ax.plot(intensity, flops, 'x', color=colors[layer_color_map[op_type]], label=op_type, marker='x') elif op_type == 'InnerProduct': ax.plot(intensity, flops, 'v', color=colors[layer_color_map[op_type]], label=op_type, marker='v') elif op_type == 'Pooling' or op_type == 'pooling': ax.plot(intensity, flops, '*', color=colors[layer_color_map[op_type]], label=op_type, marker='*') elif op_type == 'Scale' or op_type == 'scale': ax.plot(intensity, flops, 's', color=colors[layer_color_map[op_type]], label=op_type, marker='s') elif op_type == 'Eltwise' or op_type == 'element-wise': ax.plot(intensity, flops, 'd', color=colors[layer_color_map[op_type]], label=op_type, marker='d') elif op_type == 'ReLU' or op_type == 'relu': ax.plot(intensity, flops, 'p', color=colors[layer_color_map[op_type]], label=op_type, marker='p') elif op_type == 'BatchNorm' or op_type == 'batchnorm': ax.plot(intensity, flops, 'o', color=colors[layer_color_map[op_type]], label=op_type, marker='o') elif op_type == 'Softmax' or op_type == 'softmax': ax.plot(intensity, flops, '+', color=colors[layer_color_map[op_type]], label=op_type, marker='+') elif op_type == 'LRN' or op_type == 'lrn': ax.plot(intensity, flops, '^', color=colors[layer_color_map[op_type]], label=op_type, marker='^') elif op_type == 'GEMV' or op_type == 'gemv': ax.plot(intensity, flops, '<', color=colors[layer_color_map[op_type]], label=op_type, marker='<') elif op_type == 'GEMM' or op_type == 'gemm': ax.plot(intensity, flops, 'P', color=colors[layer_color_map[op_type]], label=op_type, marker='P') # 2. plot the roof line x1 = peak_flops / peak_membdw y1 = peak_flops max_op_intensity = max([i[2] for i in op_data_list]) ax.hlines(y=y1, xmin=x1, xmax=max_op_intensity+15, linewidth=1.5, color='red') min_flops = min([i[1] for i in op_data_list]) x2 = min_flops / peak_membdw y2 = peak_membdw * x2 ax.plot([x1, x2], [y1, y2], linewidth=1.5, color='red') ax.set_yscale('log') ax.set_xscale('log') #plt.xscale('log', basex=2) #plt.yscale('log', basey=2) ax.set_ylabel('GFLOps/sec', fontsize=10) ax.set_xlabel('Operational Intensity (FLOps/Byte)', fontsize=10) handles, labels = ax.get_legend_handles_labels() #print(labels) labels_od = OrderedDict(zip(labels, handles)) ax.legend(labels_od.values(), labels_od.keys(), loc='upper left') plt.show() if __name__ == '__main__': # Titan Xp 12.15 TFLOPS, 547.7 GB/s # Tesla K40m 5.046 TFLOPS, 288.4 GB/s titan_model_data = extract_model_data('titan_xp_model_throughput.txt') titan_peak_flops = 12.15*1000 titan_peak_mem_bandwidth = 547.7 draw_model_roofline(titan_model_data, titan_peak_flops, titan_peak_mem_bandwidth) k40m_model_data = extract_model_data('tesla_k40m_model_throughput.txt') k40m_peak_flops = 5.046*1000 k40m_peak_mem_bandwidth = 288.4 #draw_model_roofline(k40m_model_data, titan_peak_flops, titan_peak_mem_bandwidth) titan_op_data = extract_op_data('titan_xp_op_throughput.txt') draw_op_roofline(titan_op_data, titan_peak_flops, titan_peak_mem_bandwidth) k40m_op_data = extract_op_data('tesla_k40m_op_throughput.txt') #draw_op_roofline(k40m_op_data, k40m_peak_flops, k40m_peak_mem_bandwidth) tesla_k40m_mobilenet_op_data = extract_op_data('tesla_k40m_mobilenet_batch_op.txt') #draw_op_roofline(tesla_k40m_mobilenet_op_data, k40m_peak_flops, k40m_peak_mem_bandwidth) titan_xp_mobilenet_op_data = extract_op_data('titan_xp_mobilenet_batch_op.txt') draw_op_roofline(titan_xp_mobilenet_op_data, titan_peak_flops, titan_peak_mem_bandwidth)
StarcoderdataPython
11263904
""" intercepts.registration ~~~~~~~~~~~~~~~~~~~~~~~ This module implements the intercepts registration api. """ import atexit import sys import types from functools import partial # , update_wrapper from typing import Callable, Dict, List, Union import intercepts.builtinhandler as builtinhandler from .functypes import PyCFunctionObject from .utils import ( addr, create_code_like, copy_builtin, replace_builtin, copy_function, replace_function, update_wrapper, ) MethodOrFunction = Union[types.FunctionType, types.MethodType] _HANDLERS = {} # type: Dict[int, List[Callable]] def _intercept_handler(*args, **kwargs): consts = sys._getframe(0).f_code.co_consts func_id = consts[-1] _func = _HANDLERS[func_id][0] handler = _func for _handler in _HANDLERS[func_id][2:]: handler = update_wrapper(partial(_handler, handler), _func) result = handler(*args, **kwargs) return result def register_builtin(func, handler): func_addr = addr(func) if func_addr not in _HANDLERS: func_copy = PyCFunctionObject() copy_builtin(addr(func_copy), func_addr) _handler = builtinhandler.get_handler(func_addr) _HANDLERS[func_addr] = [func_copy, _handler] replace_builtin(func_addr, addr(_handler)) _HANDLERS[func_addr].append(handler) return func def register_function( func: types.FunctionType, handler: types.FunctionType ) -> types.FunctionType: r"""Registers an intercept handler for a function. :param func: The function to intercept. :param handler: A function to handle the intercept. """ func_addr = addr(func) if func_addr not in _HANDLERS: handler_code = create_code_like( _intercept_handler.__code__, consts=(_intercept_handler.__code__.co_consts + (func_addr,)), name=func.__name__, ) global_dict = _intercept_handler.__globals__ _handler = types.FunctionType( handler_code, global_dict, func.__name__, func.__defaults__, func.__closure__, ) _handler.__code__ = handler_code handler_addr = addr(_handler) def func_copy(*args, **kwargs): pass copy_function(addr(func_copy), func_addr) _HANDLERS[func_addr] = [func_copy, _handler] replace_function(func_addr, handler_addr) _HANDLERS[func_addr].append(handler) return func def register_method( method: types.MethodType, handler: types.FunctionType ) -> types.MethodType: r"""Registers an intercept handler for a method. :param method: The method to intercept. :param handler: A function to handle the intercept. """ register_function(method.__func__, handler) return method def register(obj: MethodOrFunction, handler: types.FunctionType) -> MethodOrFunction: r"""Registers an intercept handler. :param obj: The callable to intercept. :param handler: A function to handle the intercept. Usage:: >>> import intercepts >>> increment = lambda x: x + 1 >>> handler = lambda func, arg: arg - (func(arg) - arg) >>> intercepts.register(increment, handler) >>> increment(43) 42 """ if not isinstance(handler, types.FunctionType): raise ValueError("Argument `handler` must be a function.") if not callable(obj): raise TypeError("Cannot intercept non-callable objects") if obj == handler: raise ValueError("A function cannot handle itself") if isinstance(obj, types.BuiltinFunctionType): return register_builtin(obj, handler) elif isinstance(obj, types.FunctionType): return register_function(obj, handler) elif isinstance(obj, types.MethodType): return register_method(obj, handler) else: raise NotImplementedError("Unsupported type: {}".format(repr(type(obj)))) def unregister(obj: MethodOrFunction, depth: int = -1) -> MethodOrFunction: r"""Unregisters the handlers for an object. :param obj: The callable for which to unregister handlers. :param depth: (optional) The maximum number of handlers to unregister. Defaults to all. """ # TODO : use an isinstance replacement if isinstance(obj, (types.BuiltinFunctionType, types.FunctionType)): func_addr = addr(obj) else: func_addr = addr(obj.__func__) handlers = _HANDLERS[func_addr] if depth < 0 or len(handlers) - depth <= 2: orig_func = handlers[0] if isinstance(orig_func, types.BuiltinFunctionType): replace_builtin(func_addr, addr(orig_func)) elif isinstance(orig_func, types.FunctionType): replace_function(func_addr, addr(orig_func)) else: raise ValueError("Unknown type of handled function: %s" % type(orig_func)) del _HANDLERS[func_addr] assert func_addr not in _HANDLERS else: _HANDLERS[func_addr] = handlers[:-depth] return obj @atexit.register def unregister_all() -> None: r"""Unregisters all handlers. """ global _HANDLERS for func_addr, handlers in _HANDLERS.items(): orig_func = handlers[0] if isinstance(orig_func, types.BuiltinFunctionType): replace_builtin(func_addr, addr(orig_func)) elif isinstance(orig_func, types.FunctionType): replace_function(func_addr, addr(orig_func)) else: raise ValueError("Unknown type of handled function: %s" % type(orig_func)) _HANDLERS = {}
StarcoderdataPython
241042
import math def function(x1): while True: try: value = int(input(x1)) except : print("HUEVON") continue else: break return float(value) while True: n2=function("Ceros: ") a2=function("Primer valor A: ") b2=function("Segundo valor B: ") if a2<=b2 : print("A no puede ser menor que B ") continue if a2<=0 or b2<=0 or n2<1: print("Valores negativos no aceptados") continue else: break def trial(a,b,n): jota= math.log(a/b,10) ka = math.floor(jota) if n-ka < 0 : enemenoska = 0 else: enemenoska = n-ka alfa = math.floor(ka / jota) if n/jota>=1: beta=1 else: beta=0 counta=0 countb=0 n=int(n) for i in range (n+1): val1=a*(10**i) for j in range(n+1): val2=b*(10**j) if val1> val2: counta = counta+1 elif val1 < val2: countb = countb + 1 primero= (enemenoska*(enemenoska+1))/2 segundo1 = (n+1)**2 segundo2 = (enemenoska+1)*alfa*beta segundo = segundo1 - segundo2 print("-----------------------") print("j ->", jota) print("k ->", ka) print("n-k ->", enemenoska) print("alfa ->", alfa) print("---------------------") print("countb", countb) print("counta+b",counta+countb) print("-------------") print("primero",primero) print("Segundo",segundo) print("-------------------") print("probability",primero,"/",segundo) if primero == countb and segundo == (counta + countb): print("WIII") trial(a2,b2,n2)
StarcoderdataPython
5047584
from . import Population from .genotype import Genome import math import logging class Experiment(object): """Peforms experiment using NEAT. Executes NEAT on a given set of data and a fitness method. Fitness method must be a python method named evaluate wrapped in a string. It will have one parameter that will be the neural network being evaluated. The method will need to return a 2-tuple, containing the fitness value and whether it is a solution, respectfully. e.g. def evaluate(net): # Data passed to run method data = ((0.0, 0.0, 1.0), (1.0, 0.0, 1.0), (0.0, 1.0, 1.0), (1.0, 1.0, 1.0)) res = [] winner = False for d in data: res.append(net.activate(d)) error = math.fabs(res[0]+(1-res[1])+(1-res[2])+res[3]) fitness = math.pow(4-error, 2) if res[0] < 0.5 and res[1] >= 0.5 and res[2] >= 0.5 and res[3] < 0.5: winner = True return fitness, winner Attributes: name: Name of experiment. log: Logger for experiment class. """ def __init__(self): self.log = logging.getLogger('experiment') def run(self, name, conf, observer=None): """Runs experiment. Creates a population where each organism evaluates the given data. The results are passed to a fitness method the result is assigned to that organism. At the end of each generation the populations epoch occurs, creating the next generation. Args: num_input: Number of input neurons. num_output: Number of output neurons. conf: Instance of Conf class. data: N sized array containing num_input-tuples that will be evaluated by the population. fitness_func: Fitness method. See class description. runs: Number of runs to perform. Defautlts to 1. """ genome = Genome.minimal_fully_connected(0, (conf.num_input, conf.num_output)) ns = {'math': math} exec conf.fitness_func in ns if observer: observer.notify_experiment(name, conf) step, max_step = 1, conf.runs*conf.generations for r in xrange(conf.runs): if observer: observer.notify_population(r+1) pop = Population(conf) pop.spawn(genome) for g in xrange(conf.generations): for o in pop.organisms: winner = False net = o.genome.genesis() o.fitness, o.winner = ns['evaluate'](net) if o.winner: if observer: observer.notify_generation(pop.generation, pop.species) observer.notify_experiment_end() self.log.info('Winner!!') return pop.epoch(observer) progress = round(float(step)*100/float(max_step), 2) if observer: observer.notify_progress(progress=progress) step += 1 if observer: observer.notify_experiment_end()
StarcoderdataPython
6569780
<filename>LSTM/ModelProcessing.py<gh_stars>0 def Run(): import os.path import json results={} # if model doesn't exist,then train model if not os.path.exists('./LSTM/model_info.txt'): import numpy from pandas import read_csv import math from keras.models import Sequential from keras.layers import Dense, LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error # convert an array of values into a dataset matrix def create_dataset(dataset, nn_look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-nn_look_back-1): a = dataset[i:(i+nn_look_back), 0] dataX.append(a) dataY.append(dataset[i + nn_look_back, 0]) return numpy.array(dataX), numpy.array(dataY) numpy.random.seed(7) # load the dataset dataframe = read_csv('./LSTM/airline.csv', usecols=[1], engine='python', skipfooter=3) dataset = dataframe.values dataset = dataset.astype('float32') # normalize the dataset scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset) # split into train and test sets train_size = int(len(dataset) * 0.80) test_size = len(dataset) - train_size train, test = dataset[0:train_size], dataset[train_size:len(dataset)] # reshape into X=t and Y=t+1 nn_look_back = 20 trainX, trainY = create_dataset(train, nn_look_back) testX, testY = create_dataset(test, nn_look_back) # reshape input to be [samples, time steps, features] #The LSTM network expects the input data (X) to be provided with a #specific array structure in the form of: [samples, time steps, features]. trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1)) testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1], 1)) # create and fit the LSTM network model = Sequential() model.add(LSTM(50, input_shape=(nn_look_back, 1))) model.add(Dense(units=10)) model.add(Dense(units=20)) model.add(Dense(units=1)) nn_epochs=100 nn_batch_size=4 model.compile(loss='mean_squared_error', optimizer='Nadam') model.fit(trainX, trainY, epochs=nn_epochs, batch_size=nn_batch_size, verbose=2) # make predictions trainPredict = model.predict(trainX) testPredict = model.predict(testX) # invert predictions trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # calculate root mean squared error trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) results["train_score"]=trainScore results["test_score"]=testScore results["epochs"]=nn_epochs results["look_back"]=nn_look_back # save model info json.dump(results, open("./LSTM/model_info.txt",'w')) else: # load data results=json.load(open("./LSTM/model_info.txt")) return results
StarcoderdataPython
3255961
<reponame>coherentsolutionsinc/issoft-insights-2019-sdc-carla-ros from math import atan2, sin class Stanley(object): def __init__(self, max_angle, k): self.max_angle = max_angle self.k = k self.int_val = self.last_error = 0. def reset(self): self.int_val = 0.0 def step(self, yaw, v, e): val = yaw + atan2(self.k * e, v) val = max(min(val, self.max_angle), -self.max_angle) self.last_error = e return val
StarcoderdataPython
297491
<reponame>Austinstevesk/leetcode-solutions """ Given an array of strings strs, group the anagrams together. You can return the answer in any order. An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. Example 1: Input: strs = ["eat","tea","tan","ate","nat","bat"] Output: [["bat"],["nat","tan"],["ate","eat","tea"]] Example 2: Input: strs = [""] Output: [[""]] Example 3: Input: strs = ["a"] Output: [["a"]] Constraints: 1 <= strs.length <= 104 0 <= strs[i].length <= 100 strs[i] consists of lowercase English letters. """ class Solution(object): def groupAnagrams(self, strs): """ :type strs: List[str] :rtype: List[List[str]] """ result = {} for i in strs: x = "".join(sorted(i)) print(x) if x in result: result[x].append(i) else: result[x] = [i] print(result) return list(result.values()) # another solution from collections import defaultdict def group_anagrams(strs): res = defaultdict(list) for s in strs: count = [0] * 26 # from a....z for c in s: count[ord(c) - ord("a")] += 1 res[tuple(count)].append(s) # lists can never be keys so we convert this to tuple return res.values() print(group_anagrams(['ann', 'nan', 'jack', 'man', 'job', 'dull', 'ludl']))
StarcoderdataPython
123416
<reponame>PawanRamaMali/Family_Tree-Meet_The_Family<gh_stars>0 from src.family.processFileHandler import ProcessFileHandler from src.family.clan import Clan import pathlib import os import sys def main(): clan = Clan() file_name = 'input/initInput.txt' dir = pathlib.Path().absolute() fileProcessor = ProcessFileHandler() fullPath = os.path.join(dir, file_name) fileProcessor.processFile(clan, fullPath, True) fullPath = os.path.join(dir, sys.argv[1]) fileProcessor.processFile(clan, fullPath, False) if __name__ == '__main__': main()
StarcoderdataPython
8151711
<reponame>interhui/ovs-api # coding=utf-8 import os import logging from subprocess import Popen, PIPE enable_log_command = True enable_log_result = False enable_log_error = True enable_raise = False fmt = '%(asctime)s - %(name)s [%(process)d] : %(message)s' handler = logging.StreamHandler() handler.setFormatter(logging.Formatter(fmt)) logger = logging.getLogger('execute') logger.addHandler(handler) logger.setLevel(logging.DEBUG) def exec_cmd(cmd): if not cmd.strip(): raise ValueError('Command is Empty') if cmd and isinstance(cmd, basestring): cmd = cmd.strip() if enable_log_command : logger.debug(cmd) result, error = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True).communicate() if not error and enable_log_result: logger.debug(result) if error and enable_log_error: logger.error(error) if enable_raise: raise IOError(error) return result, error raise IOError('Command is None or Command is not string') def check_cmd(cmd): cmd += ' >/dev/null 2>/dev/null' return os.system(cmd) == 0
StarcoderdataPython
12854036
<filename>autohandshake/src/Pages/LoginPage.py from autohandshake.src.Pages.Page import Page from autohandshake.src.HandshakeBrowser import HandshakeBrowser from autohandshake.src.exceptions import InvalidURLError, NoSuchElementError, \ InvalidEmailError, InvalidPasswordError import re class LoginPage(Page): """ The old Handshake login page """ def __init__(self, url: str, browser: HandshakeBrowser): """ :param url: the url of the school's Handshake login page :type url: str :param browser: a HandshakeBrowser that has not logged in yet :type browser: HandshakeBrowser """ super().__init__(url, browser) self.validate_url_school() def _wait_until_page_is_loaded(self): """Wait until the page has finished loading. Return immediately since there are no complex load conditions """ return def _validate_url(self, url): """ Ensure that the given URL is a valid login URL :param url: the url to validate :type url: str """ try: re.match(r'^https://[a-zA-Z]+\.joinhandshake\.com(/login)?$', url) \ .group(0) except AttributeError: raise InvalidURLError() def validate_url_school(self): """Ensure that the current URL leads to a valid school's login page""" if self._browser.element_exists_by_xpath('//span[text()=\'Please ' 'select your school to ' 'sign in.\']'): raise InvalidURLError("The school specified in the URL is not valid") @Page.require_user_type(None) # requires the user to be logged out, i.e. no user type def login(self, email, password): """ Log into Handshake using the given credentials :param email: the username with which to log in :type email: str :param password: the password with which to log in :type password: str """ self._enter_email_address(email) self._enter_password(password) self._browser.wait_until_element_exists_by_xpath('//div[@class="Select-placeholder"]') def _enter_email_address(self, email): """Enter email address into input field""" EMAIL_INPUT_XPATH = "//input[@name='identifier']" try: # if you get the old login page EMAIL_LINK_XPATH = "//div[@class='sign-with-email-address']//a" self._browser.click_element_by_xpath(EMAIL_LINK_XPATH) self._browser.send_text_to_element_by_xpath(EMAIL_INPUT_XPATH, email) EMAIL_BTN_XPATH = "//div[@class='login-main__email-box']/button" self._browser.click_element_by_xpath(EMAIL_BTN_XPATH) if self._browser.element_exists_by_xpath("//div[text()='Please enter a valid email address']"): raise InvalidEmailError(f"No account found for email {email}") except NoSuchElementError: # if you get the new login page EMAIL_LINK_XPATH = "//div[@class='sign-in-with-email-address']//a" self._browser.click_element_by_xpath(EMAIL_LINK_XPATH) self._browser.send_text_to_element_by_xpath(EMAIL_INPUT_XPATH, email) EMAIL_BTN_XPATH = "//div[@class='actions']/button" self._browser.click_element_by_xpath(EMAIL_BTN_XPATH) if 'known_error_message_present=true' in self._browser.current_url: raise InvalidEmailError(f"No account found for email {email}") def _enter_password(self, password): """Enter password into input field after having successfully entered email""" try: # if you get the old login page self._browser.click_element_by_xpath("//a[@class='no-underline']") self._browser.send_text_to_element_by_xpath("//input[@name='password']", password) self._browser.click_element_by_xpath("//input[@name='commit']") if self._browser.element_exists_by_xpath("//div[contains(text(), " "'You entered an invalid password.')]"): raise InvalidPasswordError("Invalid password") except NoSuchElementError: # if you get the new login page self._browser.click_element_by_xpath("//a[@class='alternate-login-link']") self._browser.send_text_to_element_by_xpath("//input[@name='password']", password) self._browser.click_element_by_xpath("//button") if self._browser.element_exists_by_xpath("//div[contains(text(), " "'You entered an invalid password.')]"): raise InvalidPasswordError("Invalid password")
StarcoderdataPython
1820465
from django.db import models from django.contrib.auth.models import User class UserProfile(models.Model): """ Extension of User model """ user = models.OneToOneField(User, on_delete=models.CASCADE, primary_key=True) # if vacation mode is set to true, task streaks will not be reset vacation = models.BooleanField(default=False)
StarcoderdataPython
79849
<gh_stars>1-10 #batch!/usr/bin/env python3 from __future__ import absolute_import, division, print_function, unicode_literals #DISTRIBUTED STRATEGY IN KERAS import tensorflow as tf # This file creates the trained models for a given neural network configuration from keras.models import Sequential from keras.layers import Dense from keras import optimizers from keras.models import model_from_json, load_model import keras from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error import pandas as pd import numpy as np import sys import os import os.path import json import optparse import time #import matplotlib #matplotlib.use('agg') #import matplotlib.pyplot as plt #from matplotlib import style from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K #chrome tracing from tensorflow.python.client import timeline strategy = tf.distribute.experimental.CentralStorageStrategy() print('Number of devices: {}'.format(strategy.num_replicas_in_sync)) numberPunctos = 50 sensor_data = pd.DataFrame({ "GHI AP1": [17, 31], "GHI AP4": [41, 22], "GHI AP5": [25,12], "GHI AP6": [41,0], "GHI AP7": [49,45], "GHI DH1": [0,49], "GHI DH2": [9,43], "GHI DH3": [13,29], "GHI DH4": [11,33], "GHI DH5": [15,37], "GHI DH6": [2,25], "GHI DH7": [1,41], "GHI DH8": [2,15], "GHI DH9": [1,31], "GHI DH10": [8,25], "GHI DH11": [10,15] }, index = ["latitude", "longitude"]) latlon = sensor_data.values.transpose() gridx = np.arange(0.0, numberPunctos, 1) gridy = np.arange(0.0, numberPunctos, 1) def addOptions(parser): parser.add_option("--NNfile", default="", help="Config json file for the data to pass to the model") parser = optparse.OptionParser() addOptions(parser) (options, args) = parser.parse_args() if not options.NNfile: print(sys.stderr, "No configuration file specified\n") sys.exit(1) # with open('config.json', 'r') as cfg_file: with open(options.NNfile, 'r') as cfg_file: cfg_data = json.load(cfg_file) orig_folder = cfg_data['orig_folder'] dest_folder = cfg_data['dest_folder'] train_size = cfg_data['train_size'] # [1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 7/7] hor_pred = cfg_data['hor_pred'] # folder_names days_info_file = cfg_data['days_info'] days_info = pd.read_csv(days_info_file) day_length = days_info['length_day'][0] days = days_info['number_train_days'][0] tg = cfg_data['time_granularity'] seed = cfg_data['seed'] station = cfg_data['station'] batch_size = cfg_data['batch_size'] num_classes = cfg_data['num_classes'] epochs = cfg_data['epochs'] img_rows = cfg_data['img_rows'] img_cols = cfg_data['img_cols'] device = cfg_data['device'] device_name = cfg_data['device_name'] print('Loading dataframes...\n') load_start = time.time() x_original = np.load("../x_train.npy") print(x_original.shape) print(len(x_original)) y_original = pd.read_csv(orig_folder + '/Y_tr_val.csv') load_end = time.time() load_time = load_end - load_start load_min = int(load_time / 60) load_sec = load_time % 60 print('Dataframes loaded in {} minutes {} seconds! Splitting for train and validation...\n'.format(load_min, load_sec)) forecast_prediction = [] # Since we configured our matrices with an offset we have to adjust to "jump" to the sample we want to actually predict for hp in hor_pred: if hp.endswith("min"): hor_pred_indices = int(int(hp.replace('min', '')) * 60 / tg) if hp.endswith("s"): hor_pred_indices = int(int(hp.replace('s', '')) / tg) forecast_prediction.append(hp) y_t = y_original # y_train y son iquals y_t_index = y_t.index # devulve una array de index y_t_index_valid = y_t_index[(y_t_index % day_length) < (day_length - hor_pred_indices)] # so we don't get values for the previous or next day y_t_indices_lost = len(y_t_index) - len(y_t_index_valid) print('Indices computed. {} indices lost \n.'.format(y_t_indices_lost)) print('Building randomized y matrix with valid indices...\n') y_t = np.ravel(y_original.iloc[y_t_index_valid + hor_pred_indices]) print('Building y matrix removing invalid indices for persistence model...\n') y_pred_persistence = np.ravel(y_original.iloc[y_t_index_valid]) # una row de dataFram combia por numpy array print('Building X matrix...Same thing as before...\n') x_t = x_original[y_t_index_valid] # like our randomization, just picking the same indices x_t = x_t.reshape(x_t.shape[0], img_rows, img_cols, 1) #x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) #SPLIT TRAIN AND TEST SETS #Can split 3dimensional arrays ;) like this cut = int(0.9*len(x_t)) x_train, x_test = x_t[:cut,:], x_t[cut:,:] y_train, y_test = y_t[:cut], y_t[cut:] input_shape = (img_rows, img_cols, 1) #When training a model with multiple GPUs, you can use the extra computing power effectively by increasing the batch size. #In general, use the largest batch size that fits the GPU memory, and tune the learning rate accordingly. #BUFFER_SIZE = 10000 BATCH_SIZE_PER_REPLICA = cfg_data['batch_size'] bs = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync with strategy.scope(): nn_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=input_shape), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(num_classes, activation='softmax') ]) #COMPILE THE MODEL nn_model.compile(loss='mean_squared_error', optimizer='Adam', metrics=['MAE', 'mse']) output_text = 'metrics_' + 'CNN_' + str(device_name) + '_b_' + str(bs) nn_model.summary() #TENSORBOARD LOGS log_dir = 'logs_' + str(device_name) + '_b_' + str(bs) tb = tf.keras.callbacks.TensorBoard(log_dir = log_dir, batch_size=bs, profile_batch = bs) print('Fitting...\n' + output_text + '\n') fit_start = time.time() history=nn_model.fit(x_test,y_test, batch_size=bs, epochs=epochs, verbose=1, callbacks = [tb] ) fit_end = time.time() fit_time = fit_end - fit_start fit_min = int(fit_time / 60) fit_sec = fit_time % 60 print('Fitting completed in {} minutes {} seconds. Saving model to .h5 file \n'.format(fit_min, fit_sec)) #SAVE THE MODEL model_filename = 'CNNmodel_' + device + '_' + device_name + '_b' + str(bs) + '.h5' nn_model.save(model_filename) print("Saved model to disk") #INFERENCE print('INFERENCE') eval_start = time.time() loss_inf = nn_model.evaluate(x_test, y_test) eval_end = time.time() eval_time = eval_end - eval_start eval_min = int(eval_time / 60) eval_sec = eval_time % 60 loss_df = pd.DataFrame(history.history['loss']) fit_time_df = pd.DataFrame([fit_time]) eval_time_df = pd.DataFrame([eval_time]) loss_inf_df = pd.DataFrame([loss_inf[0]]) #mse_inf_df = pd.DataFrame([mse_inf]) batch_size_df = pd.DataFrame([BATCH_SIZE_PER_REPLICA]) epochs_df = pd.DataFrame([epochs]) num_classes_df = pd.DataFrame([num_classes]) img_rows_df = pd.DataFrame([img_rows]) img_cols_df = pd.DataFrame([img_cols]) device_df = pd.DataFrame([device]) device_name_df = pd.DataFrame([device_name]) epoch_time = fit_time/epochs epoch_time_df = pd.DataFrame([epoch_time]) #GENERATE METRICS FILE df_alphascores = pd.concat([loss_df, loss_inf_df, fit_time_df, epoch_time_df, eval_time_df, batch_size_df, epochs_df, num_classes_df, img_rows_df, img_cols_df, device_df, device_name_df], axis=1, ignore_index=True) df_alphascores.columns = ['mse_train', 'mse_inf', 'total_time', 'epoch_time', 'inference_time', 'batch_size', 'epochs', 'num_classes', 'img_X', 'img_Y', 'device', 'device_name'] df_alphascores.to_csv(output_text + '.csv', header=True, index=False) print('Model and metrics generated!\n')
StarcoderdataPython
9786425
<gh_stars>0 from __future__ import annotations import copy import inspect import pathlib import typing from collections import Counter from io import StringIO from operator import eq import matplotlib.pyplot as plt import networkx as nx import networkx.algorithms.isomorphism as iso import numpy as np from chemicaldiagram.utils import color_scheme, all_elements _edges_color_in_drawing = { 0: ("yellow", "unknown"), 1: ("black", "single"), 2: ("red", "double"), 3: ("blue", "triple"), 4: ("green", "quadruple"), 5: ("pink", "aromatic"), 7: ("brown", "delocalized"), 9: ("purple", "pi"), } class ChemicalDiagram: def __init__(self, graph: nx.Graph, identifier: str = None): self.graph = graph self.identifier = identifier self.symbols = nx.get_node_attributes(self.graph, "symbol") @property def local_graph(self): # this is the graph where all nodes are "in the box" return self.graph.subgraph(self.get_nodes_not_all_poly()).copy() @property def local_nodes(self): return list(self.local_graph.nodes) def __eq__(self, other): """edge properties are not considered in determining equality""" return hash(self) == hash(other) def __len__(self): return len(self.local_graph) @property def graph_hash(self) -> str: return nx.weisfeiler_lehman_graph_hash(self.graph, node_attr="symbol", iterations=5, digest_size=64) def __hash__(self): return hash(self.graph_hash) def as_dict(self) -> dict: graph = nx.node_link_data(self.graph) d = { "graph": graph, "identifier": self.identifier, } return d @classmethod def from_dict(cls, d) -> ChemicalDiagram: g = nx.node_link_graph(d["graph"]) i = d["identifier"] return cls(g, i) def get_nodes_not_all_poly(self) -> [int]: """nodes that connected to at least one non-polymeric bond""" ns = [] for n in self.graph.nodes: edge_poly = [] for edgedata in self.graph.edges(n, data=True): n1, n2, eprop = edgedata edge_poly.append(eprop["polymeric"]) if not all(edge_poly): ns.append(n) elif len(self.graph.edges(n)) == 0: ns.append(n) return ns def get_element_list(self) -> [str]: """element list of the local graph""" lst = [] for n in self.local_graph: lst.append(self.symbols[n]) return sorted(lst) def get_element_list_all(self) -> [str]: lst = [] for n in self.graph: lst.append(self.symbols[n]) return sorted(lst) def get_formula(self): local_symbols = [] for n in self.local_nodes: local_symbols.append(self.symbols[n]) c = dict(Counter(local_symbols)) s = "" for k in sorted(c.keys()): s += "{}{}".format(k, c[k]) s += " " return s def __repr__(self): return "{}: {}; charge: {}.".format(self.__class__.__name__, self.get_formula(), self.total_charge) def get_components(self) -> [ChemicalDiagram]: components = [] for c in nx.connected_components(self.graph): subgraph = self.graph.subgraph(c).copy() components.append(ChemicalDiagram(subgraph, identifier=self.identifier)) return components @property def total_charge(self) -> int: c = 0 for n in self.local_graph.nodes(data=True): c += n[1]["charge"] return c def get_env_dict(self, local_nodes_only=True) -> dict: """ a lookup table for the elements of a node's neighbors, by default all keys are local nodes""" env_dict = {} if local_nodes_only: nodes = self.local_graph.nodes else: nodes = self.graph.nodes for n in nodes: nb_nodes = [] nb_elements = [] for nb in self.graph.neighbors(n): nb_nodes.append(nb) nb_elements.append(self.symbols[nb]) env_dict[n] = { "nb_nodes": sorted(nb_nodes), "nb_elements": sorted(nb_elements), } return env_dict def contains_subgraph(self, subgraph) -> bool: matcher = iso.GraphMatcher(self.graph, subgraph, node_match=iso.generic_node_match('symbol', None, eq)) return matcher.subgraph_is_isomorphic() def contains_diagram(self, other) -> bool: return self.contains_subgraph(other.graph) def check_symbols(self): if set(self.symbols.keys()).issubset(set(all_elements)): return True return False def draw_svgdata(self, title: str = "", urltxt: str = None, url: str = None): f = plt.figure() ax = plt.gca() ax.set_title(title) cdg = self.graph posx = nx.get_node_attributes(cdg, 'x') posy = nx.get_node_attributes(cdg, 'y') cdg_labels = nx.get_node_attributes(cdg, 'show_label') cdg_symbols = nx.get_node_attributes(cdg, 'symbol') pltgraph = copy.deepcopy(self.graph) coords = {} subset_symbols = {} show_lables = {} missingxy = [] for k in pltgraph.nodes: x = posx[k] y = posy[k] if x is None or y is None: missingxy.append(k) continue coords[k] = (posx[k], posy[k]) show_lables[k] = cdg_labels[k] subset_symbols[k] = cdg_symbols[k] for k in missingxy: pltgraph.remove_node(k) jmolcolors = [] for n in pltgraph.nodes: symb = subset_symbols[n] if symb == "D": symb = "H" jmolcolors.append('#{:02x}{:02x}{:02x}'.format(*color_scheme['Jmol'][symb])) nx.draw_networkx_labels(pltgraph, pos=coords, labels=show_lables, ax=ax) nx.draw_networkx_nodes(pltgraph, pos=coords, node_color=jmolcolors, ax=ax) edge_colors = [] edge_list = [] for edge in pltgraph.edges(data=True): edge_list.append(edge[:2]) bt = edge[2]["bondtype"] color = _edges_color_in_drawing[bt][0] if edge[2]["polymeric"]: color = "gray" edge_colors.append(color) nx.draw_networkx_edges(pltgraph, coords, edge_list, edge_color=edge_colors, ax=ax) # nx.draw(pltgraph, with_labels=True, labels=show_lables, pos=coords, ax=ax, node_color=jmolcolors) if urltxt and url: xycoords_array = [np.array(list(xy)) for xy in coords.values()] center = np.mean(xycoords_array, axis=0) x, y = center plt.text(x, y, urltxt, url=url, bbox=dict(alpha=0.4, url=url, facecolor="red")) imgdata = StringIO() f.savefig(imgdata, format='svg') imgdata.seek(0) # rewind the data svg_dta = imgdata.read() # this is svg data plt.close(f) return svg_dta def draw_svg(self, title="", urltxt=None, url=None, fn: str = None): if fn is None: fn = "{}.svg".format(self.identifier) data = self.draw_svgdata(title, urltxt, url) with open(fn, "w") as f: f.write(data) class BuildingUnitDiagram(ChemicalDiagram): _allowed_centers = ( "Si", "B", "C", "N", "P", "S", "Cl", "As", "Se", "Br", "I", "Li", "Be", "Na", "Mg", "Al", "K", "Ca", "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn", "Ga", "Rb", "Sr", "Y", "Zr", "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn", "Cs", "Ba", "La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg", "Tl", "Pb", "Bi", "Po", "Fr", "Ra", "Ac", "Th", "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm", "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt", "Ds", "Rg", "Cn", "Nh", "Fl", "Mc", "Lv", "Si", "Te", "Sb", "Ge" ) def __init__(self, g: nx.Graph, identifier=None): super().__init__(g, identifier=identifier) @property def local_graph(self): # no node is excluded for building units return self.graph @staticmethod def get_pbus_from_diagram(diagram: ChemicalDiagram, allowed_centers=_allowed_centers): """ 1. get a list of allowed center nodes 2. connected components now are chosen as BuildingUnitCores 3. extend each BuildingUnitCore to its first order neighbours (we can limit such neighbours to be oxygen or hydrogen) Resulting subgraph is the BuildingUnit, one for each BuildingUnitCore. This is suitable when PBUs share at least one node, such as oxides. """ graph = diagram.graph.copy() reduced_graph = diagram.local_graph.copy() toberemoved = [] symbol_dict = diagram.symbols for node in reduced_graph.nodes: if symbol_dict[node] not in allowed_centers: toberemoved.append(node) for node in toberemoved: reduced_graph.remove_node(node) building_units_cores = [reduced_graph.subgraph(c).copy() for c in nx.connected_components(reduced_graph)] bus = [] for buc in building_units_cores: building_unit = [] for buc_node in buc.nodes: building_unit.append(buc_node) building_unit = building_unit + list(graph.neighbors(buc_node)) building_unit = list(set(building_unit)) building_unit_graph = graph.subgraph(building_unit).copy() this_bu = BuildingUnitDiagram(building_unit_graph, identifier=diagram.identifier) bus.append(this_bu) bus = sorted(bus, key=lambda x: len(x), reverse=True) return bus class ExportedEntry: def __init__( self, diagram: ChemicalDiagram, cif_string: str, formula: str, has_disorder: bool, chemical_name: str, identifier: str, publications: [dict], smiles: str, ): self.smiles = smiles self.publications = publications self.diagram = diagram self.cif_string = cif_string self.formula = formula self.has_disorder = has_disorder self.chemical_name = chemical_name self.identifier = identifier def __repr__(self): return "Entry: {}\n\tformula: {}\n\tdiagram: {}".format(self.identifier, self.formula, self.diagram) def __hash__(self): return hash(self.identifier) def __eq__(self, other): return self.identifier == other.identifier @classmethod def from_exported_dict(cls, d): diagram = ChemicalDiagram.from_dict(d["diagram"]) entry_data = d["entry_data"] init_dict = {"diagram": diagram} signature = inspect.signature(ExportedEntry) for p in signature.parameters: if p in init_dict: continue init_dict[p] = entry_data[p] return cls(**init_dict) def write_cif(self, path: typing.Union[str, pathlib.Path]): with open(path, "w") as f: f.write(self.cif_string) def to_dict(self): d = {"diagram": self.diagram.as_dict()} signature = inspect.signature(ExportedEntry) for p in signature.parameters: if p in d: continue d[p] = getattr(self, p) return d @classmethod def from_dict(cls, d): try: diagram = ChemicalDiagram.from_dict(d["diagram"]) except KeyError: diagram = None init_dict = {"diagram": diagram} signature = inspect.signature(ExportedEntry) for p in signature.parameters: if p in init_dict: continue init_dict[p] = d[p] return cls(**init_dict)
StarcoderdataPython
191822
import parl from parl import layers class Model(parl.Model): def __init__(self, act_dim): self.conv1 = layers.conv2d(num_filters=32, filter_size=3, stride=2, padding=1, act='relu') self.conv2 = layers.conv2d(num_filters=32, filter_size=3, stride=2, padding=1, act='relu') self.conv3 = layers.conv2d(num_filters=32, filter_size=3, stride=2, padding=1, act='relu') self.conv4 = layers.conv2d(num_filters=32, filter_size=3, stride=2, padding=1, act='relu') self.fc = layers.fc(size=512, act='relu') self.policy_fc = layers.fc(size=act_dim) self.value_fc = layers.fc(size=1) def policy(self, obs): """ Args: obs: 输入的图像,shape为[N, C, H, W] Returns: policy_logits: N * ACTION_DIM """ conv1 = self.conv1(obs) conv2 = self.conv2(conv1) conv3 = self.conv3(conv2) conv4 = self.conv4(conv3) flatten = layers.flatten(conv4, axis=1) fc_output = self.fc(flatten) policy_logits = self.policy_fc(fc_output) return policy_logits def value(self, obs): """ Args: obs: 输入的图像,shape为[N, C, H, W] Returns: values: N """ conv1 = self.conv1(obs) conv2 = self.conv2(conv1) conv3 = self.conv3(conv2) conv4 = self.conv4(conv3) flatten = layers.flatten(conv4, axis=1) fc_output = self.fc(flatten) values = self.value_fc(fc_output) values = layers.squeeze(values, axes=[1]) return values def policy_and_value(self, obs): """ Args: obs: 输入的图像,shape为[N, C, H, W] Returns: policy_logits: N * ACTION_DIM values: N """ conv1 = self.conv1(obs) conv2 = self.conv2(conv1) conv3 = self.conv3(conv2) conv4 = self.conv4(conv3) flatten = layers.flatten(conv4, axis=1) fc_output = self.fc(flatten) policy_logits = self.policy_fc(fc_output) values = self.value_fc(fc_output) values = layers.squeeze(values, axes=[1]) return policy_logits, values
StarcoderdataPython
3526576
<gh_stars>0 import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QMenu, QHBoxLayout, QVBoxLayout, QMessageBox, QWidget, QGroupBox, QAction, QFileDialog, qApp from PyQt5.QtWidgets import QLabel from PyQt5.QtGui import QPixmap, QImage, QIcon from PyQt5.QtCore import Qt, QFile import numpy as np import cv2 class App(QMainWindow): def __init__(self): super(App, self).__init__() self.title = 'Filtering & Geometric Transformation' self.left = 10 self.top = 10 self.width = 1000 self.height = 600 self.imageOpen = False self.initUI() def openImage(self): # ******** place image into qlabel object ********************* imagePath, _ = QFileDialog.getOpenFileName() self.inputImg = cv2.imread(imagePath) pixmap_label = self.qlabel1 height, width, channel = self.inputImg.shape bytesPerLine = 3 * width qImg = QImage(self.inputImg.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped() pixmap = QPixmap(qImg) pixmap_label.setPixmap(pixmap) self.imageOpen = True # ************************************************************** def saveImage(self): self.pixmap.save("modifiedImage.png"); def placeImage(self, height, width, image): # place the image to the qlabel pixmap_label = self.qlabel1 bytesPerLine = 3 * width qImg = QImage(image.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped() self.pixmap = QPixmap(qImg) pixmap_label.setPixmap(self.pixmap) def padding(self, padding_size, img): # fill the outer border pixels according to kernel size height, width, channel = img.shape new_img = np.zeros((height + padding_size*2, width + padding_size*2, 3), dtype=np.uint8) new_img[padding_size:(height+padding_size), padding_size:(width+padding_size), :] = img return new_img def avg_filter(self, kernel_size): # create average kernel kernel = (1 / (kernel_size*kernel_size))*np.ones((kernel_size, kernel_size), np.float32) return kernel def conv(self, kernel, img, height, width, padding): height2, width2, channel = self.inputImg.shape temp_image = np.zeros((height2, width2, 3), dtype=np.uint8) for i in range(padding, height+padding): for j in range(padding, width+padding): roi = img[i - padding:i + padding + 1, j - padding:j + padding + 1, 0] # take the part of image for convolution operation conv_value = (roi * kernel).sum() temp_image[i - padding, j - padding, 0] = int(conv_value) roi = img[i - padding:i + padding + 1, j - padding:j + padding + 1, 1] # take the part of image for convolution operation conv_value = (roi * kernel).sum() temp_image[i - padding, j - padding, 1] = int(conv_value) roi = img[i - padding:i + padding + 1, j - padding:j + padding + 1, 2] # take the part of image for convolution operation conv_value = (roi * kernel).sum() temp_image[i - padding, j - padding, 2] = int(conv_value) self.placeImage(height2, width2, temp_image) def average_3(self): # average filter 3x3 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(1, self.inputImg) # add padding to the image avg_kernel = self.avg_filter(3) # create average kernel self.conv(avg_kernel, image, height, width, padding=1) # apply convolution def average_5(self): # average filter 5x5 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(2, self.inputImg) # add padding to the image avg_kernel = self.avg_filter(5) # create average kernel self.conv(avg_kernel, image, height, width, padding=2) # apply convolution def average_7(self): # average filter 7x7 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(3, self.inputImg) # add padding to the image avg_kernel = self.avg_filter(7) # create average kernel self.conv(avg_kernel, image, height, width, padding=3) # apply convolution def average_9(self): # average filter 9x9 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(4, self.inputImg) # add padding to the image avg_kernel = self.avg_filter(9) # create average kernel self.conv(avg_kernel, image, height, width, padding=4) # apply convolution def average_11(self): # average filter 11x11 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(5, self.inputImg) # add padding to the image avg_kernel = self.avg_filter(11) # create average kernel self.conv(avg_kernel, image, height, width, padding=5) # apply convolution def average_13(self): # average filter 13x13 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(6, self.inputImg) # add padding to the image avg_kernel = self.avg_filter(13) # create average kernel self.conv(avg_kernel, image, height, width, padding=6) # apply convolution def average_15(self): # average filter 15x15 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(7, self.inputImg) # add padding to the image avg_kernel = self.avg_filter(15) # create average kernel self.conv(avg_kernel, image, height, width, padding=7) # apply convolution def median_operation(self, img, height, width, padding): height2, width2, channel = self.inputImg.shape temp_image = np.zeros((height2, width2, 3), dtype=np.uint8) for i in range(padding, height+padding): for j in range(padding, width+padding): roi = img[i - padding:i + padding + 1, j - padding:j + padding + 1, 0] # take the part of image for median operation median = np.median(roi) temp_image[i - padding, j - padding, 0] = median roi = img[i - padding:i + padding + 1, j - padding:j + padding + 1, 1] # take the part of image for median operation median = np.median(roi) temp_image[i - padding, j - padding, 1] = median roi = img[i - padding:i + padding + 1, j - padding:j + padding + 1, 2] # take the part of image for median operation median = np.median(roi) temp_image[i - padding, j - padding, 2] = median self.placeImage(height2, width2, temp_image) def median_3(self): # median filter 3x3 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(1, self.inputImg) # add padding to the image self.median_operation(image, height, width, padding=1) def median_5(self): # median filter 5x5 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(2, self.inputImg) # add padding to the image self.median_operation(image, height, width, padding=2) def median_7(self): # median filter 7x7 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(3, self.inputImg) # add padding to the image self.median_operation(image, height, width, padding=3) def median_9(self): # median filter 9x9 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(4, self.inputImg) # add padding to the image self.median_operation(image, height, width, padding=4) def median_11(self): # median filter 11x11 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(5, self.inputImg) # add padding to the image self.median_operation(image, height, width, padding=5) def median_13(self): # median filter 13x13 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(6, self.inputImg) # add padding to the image self.median_operation(image, height, width, padding=6) def median_15(self): # median filter 15x15 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(7, self.inputImg) # add padding to the image self.median_operation(image, height, width, padding=7) def gaussian_filter(self, sigma, size): x, y = np.mgrid[-size // 2 + 1:size // 2 + 1, -size // 2 + 1:size // 2 + 1] g = np.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2))) return g / g.sum() def gaussian_3(self): # gaussian filter 3x3 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(1, self.inputImg) # add padding to the image gaussian_kernel = self.gaussian_filter(sigma=5, size=3) # create average kernel self.conv(gaussian_kernel, image, height, width, padding=1) # apply convolution def gaussian_5(self): # gaussian filter 5x5 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(2, self.inputImg) # add padding to the image gaussian_kernel = self.gaussian_filter(sigma=5, size=5) # create average kernel self.conv(gaussian_kernel, image, height, width, padding=2) # apply convolution def gaussian_7(self): # gaussian filter 7x7 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(3, self.inputImg) # add padding to the image gaussian_kernel = self.gaussian_filter(sigma=5, size=7) # create average kernel self.conv(gaussian_kernel, image, height, width, padding=3) # apply convolution def gaussian_9(self): # gaussian filter 9x9 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(4, self.inputImg) # add padding to the image gaussian_kernel = self.gaussian_filter(sigma=5, size=9) # create average kernel self.conv(gaussian_kernel, image, height, width, padding=4) # apply convolution def gaussian_11(self): # gaussian filter 11x11 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(5, self.inputImg) # add padding to the image gaussian_kernel = self.gaussian_filter(sigma=5, size=11) # create average kernel self.conv(gaussian_kernel, image, height, width, padding=5) # apply convolution def gaussian_13(self): # gaussian filter 9x9 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(6, self.inputImg) # add padding to the image gaussian_kernel = self.gaussian_filter(sigma=5, size=13) # create average kernel self.conv(gaussian_kernel, image, height, width, padding=6) # apply convolution def gaussian_15(self): # gaussian filter 15x15 if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape image = self.padding(7, self.inputImg) # add padding to the image gaussian_kernel = self.gaussian_filter(sigma=5, size=15) # create average kernel self.conv(gaussian_kernel, image, height, width, padding=7) # apply convolution def rotate_right(self): if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape center_y = height//2 center_x = width//2 result_image = np.zeros((height, width, 3), dtype=np.uint8) angle = np.pi/18 for j in range(0, height): for k in range(0, width): try: coord = [k - center_x, j - center_y, 1] rot_mat = np.asarray([[np.cos(angle), -1*np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) inv_rot_mat = np.linalg.inv(rot_mat) new_coord = np.matmul(inv_rot_mat, coord) new_coord[1] += center_y new_coord[0] += center_x pixel_value = self.inputImg[int(new_coord[1]), int(new_coord[0]), :] result_image[j, k, :] = pixel_value except Exception: pass self.placeImage(height, width, result_image) def rotate_left(self): if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape center_y = height//2 center_x = width//2 result_image = np.zeros((height, width, 3), dtype=np.uint8) angle = np.pi/18 for j in range(0, height): for k in range(0, width): try: coord = [k-center_x, j-center_y, 1] rot_mat = np.asarray([[np.cos(angle), np.sin(angle), 0], [-1*np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) inv_rot_mat = np.linalg.inv(rot_mat) new_coord = np.matmul(inv_rot_mat, coord) new_coord[1] += center_y new_coord[0] += center_x pixel_value = self.inputImg[int(new_coord[1]), int(new_coord[0]), :] result_image[j, k, :] = pixel_value except Exception: pass self.placeImage(height, width, result_image) def scale_twox(self): if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape result_image = np.zeros((height*2, width*2, 3), dtype=np.uint8) for j in range(0, height*2): for k in range(0, width*2): try: coord = [j, k, 1] rot_mat = np.asarray([[2, 0, 0], [0, 2, 0], [0, 0, 1]]) inv_rot_mat = np.linalg.inv(rot_mat) new_coord = np.matmul(inv_rot_mat, coord) pixel_value = self.inputImg[int(new_coord[0]), int(new_coord[1]), :] result_image[j, k, :] = pixel_value except Exception: pass self.placeImage(height*2, width*2, result_image) def scale_oneovertwox(self): if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape center_y = height // 2 center_x = width // 2 result_image = np.zeros((height, width, 3), dtype=np.uint8) for j in range(0, height): for k in range(0, width): coord = [j, k, 1] new_coord = np.matmul(np.asarray([[1 / 2, 0, 0], [0, 1 / 2, 0], [0, 0, 1]]), coord) pixel_value = self.inputImg[j, k, :] result_image[int(new_coord[0] + (center_y / 2)), int(new_coord[1] + (center_x / 2)), :] = pixel_value self.placeImage(height, width, result_image) def trans_right(self): if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape result_image = np.zeros((height, width, 3), dtype=np.uint8) for j in range(0, height): for k in range(0, width): try: coord = [k, j, 1] new_coord = np.matmul(np.asarray([[1, 0, 50], [0, 1, 0], [0, 0, 1]]), coord) pixel_value = self.inputImg[j, k, :] result_image[int(new_coord[1]), int(new_coord[0]), :] = pixel_value except Exception: pass self.placeImage(height, width, result_image) def trans_left(self): if (self.imageOpen == False): return QMessageBox.question(self, 'Error Message', "Please, load the image", QMessageBox.Ok, QMessageBox.Ok) height, width, channel = self.inputImg.shape result_image = np.zeros((height, width, 3), dtype=np.uint8) for j in range(0, height): for k in range(0, width): try: coord = [k, j, 1] rot_mat = np.asarray([[1, 0, -50], [0, 1, 0], [0, 0, 1]]) inv_rot_mat = np.linalg.inv(rot_mat) new_coord = np.matmul(inv_rot_mat, coord) pixel_value = self.inputImg[int(new_coord[1]), int(new_coord[0]), :] result_image[j, k, :] = pixel_value except Exception: pass self.placeImage(height, width, result_image) def initUI(self): # Write GUI initialization code self.setGeometry(self.left, self.top, self.width, self.height) self.setWindowTitle(self.title) # ****************add the label for image********************* wid = QWidget(self) self.setCentralWidget(wid) self.groupBox = QGroupBox() self.hBoxlayout = QHBoxLayout() self.qlabel1 = QLabel('Image', self) self.qlabel1.setStyleSheet("border: 1px inset grey; min-height: 200px; ") self.qlabel1.setAlignment(Qt.AlignCenter) self.hBoxlayout.addWidget(self.qlabel1) self.groupBox.setLayout(self.hBoxlayout) vBox = QVBoxLayout() vBox.addWidget(self.groupBox) wid.setLayout(vBox) # ****************menu bar*********** menubar = self.menuBar() fileMenu = menubar.addMenu('File') filters = menubar.addMenu('Filters') geometric_transform = menubar.addMenu('Geometric Transform') openAction = QAction('Open Image', self) openAction.triggered.connect(self.openImage) fileMenu.addAction(openAction) openAction2 = QAction('Save Image', self) openAction2.triggered.connect(self.saveImage) fileMenu.addAction(openAction2) exitAct = QAction(QIcon('exit.png'), '&Exit', self) exitAct.setShortcut('Ctrl+Q') exitAct.setStatusTip('Exit application') exitAct.triggered.connect(qApp.quit) fileMenu.addAction(exitAct) ## ************ AVERAGE FILTERS ************ ## average_filters = QMenu('Average Filters', self) three_avg = QAction('3x3', self) five_avg = QAction('5x5', self) seven_avg = QAction('7x7', self) nine_avg = QAction('9x9', self) eleven_avg = QAction('11x11', self) thirteen_avg = QAction('13x13', self) fifteen_avg = QAction('15x15', self) three_avg.triggered.connect(self.average_3) five_avg.triggered.connect(self.average_5) seven_avg.triggered.connect(self.average_7) nine_avg.triggered.connect(self.average_9) eleven_avg.triggered.connect(self.average_11) thirteen_avg.triggered.connect(self.average_13) fifteen_avg.triggered.connect(self.average_15) average_filters.addAction(three_avg) average_filters.addAction(five_avg) average_filters.addAction(seven_avg) average_filters.addAction(nine_avg) average_filters.addAction(eleven_avg) average_filters.addAction(thirteen_avg) average_filters.addAction(fifteen_avg) filters.addMenu(average_filters) ## **************************************** ## ## ************ GAUSSIAN FILTERS ************ ## gaussian_filters = QMenu('Gaussian Filters', self) three_gaus = QAction('3x3', self) five_gaus = QAction('5x5', self) seven_gaus = QAction('7x7', self) nine_gaus = QAction('9x9', self) eleven_gaus = QAction('11x11', self) thirteen_gaus = QAction('13x13', self) fifteen_gaus = QAction('15x15', self) three_gaus.triggered.connect(self.gaussian_3) five_gaus.triggered.connect(self.gaussian_5) seven_gaus.triggered.connect(self.gaussian_7) nine_gaus.triggered.connect(self.gaussian_9) eleven_gaus.triggered.connect(self.gaussian_11) thirteen_gaus.triggered.connect(self.gaussian_13) fifteen_gaus.triggered.connect(self.gaussian_15) gaussian_filters.addAction(three_gaus) gaussian_filters.addAction(five_gaus) gaussian_filters.addAction(seven_gaus) gaussian_filters.addAction(nine_gaus) gaussian_filters.addAction(eleven_gaus) gaussian_filters.addAction(thirteen_gaus) gaussian_filters.addAction(fifteen_gaus) filters.addMenu(gaussian_filters) ## **************************************** ## ## ************ MEDIAN FILTERS ************ ## median_filters = QMenu('Median Filters', self) three_med = QAction('3x3', self) five_med = QAction('5x5', self) seven_med = QAction('7x7', self) nine_med = QAction('9x9', self) eleven_med = QAction('11x11', self) thirteen_med = QAction('13x13', self) fifteen_med = QAction('15x15', self) three_med.triggered.connect(self.median_3) five_med.triggered.connect(self.median_5) seven_med.triggered.connect(self.median_7) nine_med.triggered.connect(self.median_9) eleven_med.triggered.connect(self.median_11) thirteen_med.triggered.connect(self.median_13) fifteen_med.triggered.connect(self.median_15) median_filters.addAction(three_med) median_filters.addAction(five_med) median_filters.addAction(seven_med) median_filters.addAction(nine_med) median_filters.addAction(eleven_med) median_filters.addAction(thirteen_med) median_filters.addAction(fifteen_med) filters.addMenu(median_filters) ## **************************************** ## ### 5. create rotate, scale and translate menu ### rotate = QMenu('Rotate', self) scale = QMenu('Scale', self) translate = QMenu('Translate', self) rotate_right = QAction('Rotate 10 Degree Right', self) rotate_left = QAction('Rotate 10 Degree Left', self) twox = QAction('2x', self) oneovertwox = QAction('1/2x', self) right = QAction('Right', self) left = QAction('Left', self) ### add function when the action is triggered ### rotate_right.triggered.connect(self.rotate_right) rotate_left.triggered.connect(self.rotate_left) twox.triggered.connect(self.scale_twox) oneovertwox.triggered.connect(self.scale_oneovertwox) right.triggered.connect(self.trans_right) left.triggered.connect(self.trans_left) ### add action ### rotate.addAction(rotate_right) rotate.addAction(rotate_left) scale.addAction(twox) scale.addAction(oneovertwox) translate.addAction(right) translate.addAction(left) geometric_transform.addMenu(rotate) geometric_transform.addMenu(scale) geometric_transform.addMenu(translate) # ------------------------------------ self.show() if __name__ == '__main__': app = QApplication(sys.argv) ex = App() sys.exit(app.exec_())
StarcoderdataPython
4839784
#!/usr/bin/env python import os import glob as gl import lxml.etree as etree import argparse as ap def Main(): path = ParseArguments().path FormatXmlsInPath(path) def ParseArguments(): parser = ap.ArgumentParser(description = 'Indents the xml in given path') parser.add_argument('path', help = 'path to files to be processed') return parser.parse_args() def Indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " for e in elem: Indent(e, level+1) if not e.tail or not e.tail.strip(): e.tail = i + " " if not e.tail or not e.tail.strip(): e.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i def FormatXmlsInPath(pathname): for xml_fname in gl.glob(pathname + '*.xml'): xml = etree.parse(xml_fname) Indent(xml.getroot()) xml.write(xml_fname, encoding="utf-8", pretty_print=True, xml_declaration=True) if __name__ == '__main__': Main()
StarcoderdataPython
83776
<reponame>Dreem-Organization/bender-api """bender URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from bender_service.social_login import FacebookLogin, GoogleLogin from django.views.generic import TemplateView from django.views.generic import RedirectView urlpatterns = [ url(r'^admin/', admin.site.urls), # Rest auth (login signup etc.) url(r'^', include('rest_auth.urls')), # This is not meant to be used, it just allows allauth to send email of reset url(r'^password/reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', TemplateView.as_view(), name='password_reset_confirm'), # https://github.com/Tivix/django-rest-auth/issues/63 # Registration url(r'^registration/', include('rest_auth.registration.urls')), url(r'^facebook/', FacebookLogin.as_view(), name='facebook_login'), url(r'^google/', GoogleLogin.as_view(), name='google_login'), # Necessary imports (profile seems useless for now.) url(r'^accounts/profile/$', RedirectView.as_view(url='/', permanent=True), name='profile-redirect'), url(r'^account/', include('allauth.urls')), # Bender import url(r'^api/', include('bender.urls')), ]
StarcoderdataPython
11272133
# -*- coding: utf-8 -*- u"""Run all experiments defined on a json file, storing results on database. Usage: run_experiments.py <configs.json> <dbname> [--dbserver=<dbserver>] Options: -h --help Show this screen. --version Show Version. --dbserver=<dbserver> URI of the mongodb server for storing results. Typically "ip:port" [default: localhost] """ from __future__ import division from copy import copy import json import logging import sys from docopt import docopt from progress.bar import Bar from featureforge.experimentation.stats_manager import StatsManager from featureforge.experimentation.utils import get_git_info # Measured in seconds BOOKING_DURATION = 10 * 60 # just a default def main(single_runner, conf_extender=None, booking_duration=BOOKING_DURATION, use_git_info_from_path=None, version=u'Run experiments 0.1', stop_on_first_error=False): command_name = sys.argv[0] custom__doc__ = __doc__.replace(u'run_experiments.py', command_name) logging.basicConfig(level=logging.DEBUG, format=u"%(asctime)s - %(name)s - %(levelname)s - %(message)s") opts = docopt(custom__doc__, version=version) stats = StatsManager(db_name=opts[u"<dbname>"], booking_duration=booking_duration, db_uri=opts[u"--dbserver"]) experiment_configurations = json.load(open(opts[u"<configs.json>"])) bar = Bar(u'Processing', max=len(experiment_configurations)) if use_git_info_from_path is not None: GIT_INFO = get_git_info(use_git_info_from_path) else: GIT_INFO = None for config in experiment_configurations: # Extend individual experiment config with the dynamic extender, if any config = copy(config) if conf_extender is not None: config = conf_extender(config) # Adding GIT info to the config if computed and not present if GIT_INFO is not None and u'git_info' not in config: config[u'git_info'] = GIT_INFO # Book experiment ticket = stats.book_if_available(config) if ticket is None: bar.next() continue # Run experiment try: result = single_runner(config) except KeyboardInterrupt: logging.error(u"Interrupted by keyboard, terminating...") break except Exception as e: bar.next() logging.error(u"Experiment failed because of {} {}, " u"skipping...".format(type(e).__name__, e)) if stop_on_first_error: raise continue else: # Store result bar.next() if not stats.store_results(ticket, result): logging.error(u"Experiment successful but could not stored! " "Skipping... ") bar.finish()
StarcoderdataPython
6662549
<filename>metagraph/plugins/numpy/types.py from typing import Set, Dict, Any import numpy as np from metagraph import dtypes, Wrapper, ConcreteType from ..core.types import Vector, Matrix, NodeSet, NodeMap from ..core.wrappers import NodeSetWrapper, NodeMapWrapper class NumpyVectorType(ConcreteType, abstract=Vector): @classmethod def is_typeclass_of(cls, obj): """Is obj described by this type class?""" return isinstance(obj, np.ndarray) and len(obj.shape) == 1 @classmethod def _compute_abstract_properties( cls, obj, props: Set[str], known_props: Dict[str, Any] ) -> Dict[str, Any]: ret = known_props.copy() # fast properties for prop in {"dtype"} - ret.keys(): if prop == "dtype": ret[prop] = dtypes.dtypes_simplified[obj.dtype] return ret @classmethod def assert_equal( cls, obj1, obj2, aprops1, aprops2, cprops1, cprops2, *, rel_tol=1e-9, abs_tol=0.0, ): assert obj1.shape == obj2.shape, f"shape mismatch {obj1.shape} != {obj2.shape}" assert aprops1 == aprops2, f"property mismatch: {aprops1} != {aprops2}" # Compare if issubclass(obj1.dtype.type, np.floating): assert np.isclose(obj1, obj2, rtol=rel_tol, atol=abs_tol).all() else: assert (obj1 == obj2).all() class NumpyNodeSet(NodeSetWrapper, abstract=NodeSet): def __init__(self, nodes, *, aprops=None): super().__init__(aprops=aprops) self._assert_instance(nodes, (np.ndarray, list, tuple, set)) if not isinstance(nodes, np.ndarray): if isinstance(nodes, set): nodes = tuple(nodes) # np.array doesn't accept sets nodes = np.array(nodes) if len(nodes.shape) != 1: raise TypeError(f"Invalid number of dimensions: {len(nodes.shape)}") if not issubclass(nodes.dtype.type, np.integer): raise TypeError(f"Invalid dtype for NodeSet: {nodes.dtype}") # Ensure sorted nodes.sort() # Ensure no duplicates unique = np.diff(nodes) > 0 if not unique.all(): tmp = np.empty((unique.sum() + 1,), dtype=nodes.dtype) tmp[0] = nodes[0] tmp[1:] = nodes[1:][unique] nodes = tmp self.value = nodes @classmethod def from_mask(cls, mask, *, aprops=None): """ The mask must be a boolean numpy array. NodeIds are based on position within the mask. """ cls._assert_instance(mask, np.ndarray) cls._assert(mask.dtype == bool, "Only boolean masks are allowed") node_ids = np.flatnonzero(mask) return NumpyNodeSet(node_ids, aprops=aprops) def __len__(self): return len(self.value) # def copy(self): # aprops = NumpyNodeSet.Type.compute_abstract_properties(self, {}) # return NumpyNodeSet(self.value.copy(), aprops=aprops) def __iter__(self): return iter(self.value) def __contains__(self, key): index = np.searchsorted(self.value, key) if hasattr(index, "__len__"): return (self.value[index] == key).all() else: return self.value[index] == key class TypeMixin: @classmethod def assert_equal( cls, obj1, obj2, aprops1, aprops2, cprops1, cprops2, *, rel_tol=None, abs_tol=None, ): assert aprops1 == aprops2, f"property mismatch: {aprops1} != {aprops2}" assert len(obj1) == len(obj2), f"size mismatch: {len(obj1)} != {len(obj2)}" assert (obj1.value == obj2.value).all(), f"node sets do not match" class NumpyNodeMap(NodeMapWrapper, abstract=NodeMap): """ NumpyNodeMap stores data using numpy arrays. A mask of present values or a compact representation can be used. """ def __init__(self, data, nodes=None, *, aprops=None): """ data: values for each node nodes: array of node_ids corresponding to elements in data If there are no missing nodes, nodes are not required. It will be assumed that node ids are sequential and the same size as `data`. """ super().__init__(aprops=aprops) self._assert_instance(data, (np.ndarray, list, tuple)) if not isinstance(data, np.ndarray): data = np.array(data) if len(data.shape) != 1: raise TypeError(f"Invalid number of dimensions: {len(data.shape)}") if nodes is None: nodes = np.arange(len(data)) else: self._assert_instance(nodes, (np.ndarray, list, tuple)) if not isinstance(nodes, np.ndarray): nodes = np.array(nodes) if nodes.shape != data.shape: raise TypeError( f"Nodes must be same shape and size as data: {nodes.shape} != {data.shape}" ) if not issubclass(nodes.dtype.type, np.integer): raise TypeError(f"Invalid dtype for nodes: {nodes.dtype}") # Ensure sorted if not np.all(np.diff(nodes) > 0): sorter = np.argsort(nodes) nodes = nodes[sorter] data = data[sorter] # Ensure no duplicates unique = np.diff(nodes) > 0 if not unique.all(): raise TypeError(f"Duplicate node ids found: {set(nodes[1:][~unique])}") self.value = data self.nodes = nodes @classmethod def from_mask(cls, data, mask, *, aprops=None): """ Values in data are kept where mask is True. The mask must be a boolean numpy array. NodeIds are based on position within the mask. """ cls._assert_instance(mask, np.ndarray) cls._assert(mask.dtype == bool, "Only boolean masks are allowed") data = data[mask] nodes = np.flatnonzero(mask) return NumpyNodeMap(data, nodes, aprops=aprops) def __len__(self): return len(self.value) # def copy(self): # aprops = NumpyNodeMap.Type.compute_abstract_properties(self, {}) # return NumpyNodeMap(self.value.copy(), nodes=self.nodes.copy(), aprops=aprops) def __contains__(self, key): index = np.searchsorted(self.nodes, key) if hasattr(index, "__len__"): return (self.nodes[index] == key).all() else: return self.nodes[index] == key def __getitem__(self, key): index = np.searchsorted(self.nodes, key) if hasattr(index, "__len__"): if not (self.nodes[index] == key).all(): raise KeyError(f"nodes {key} are not all in the NodeMap") else: if self.nodes[index] != key: raise KeyError(f"node {key} is not in the NodeMap") return self.value[index] class TypeMixin: @classmethod def _compute_abstract_properties( cls, obj, props: Set[str], known_props: Dict[str, Any] ) -> Dict[str, Any]: ret = known_props.copy() # fast properties for prop in {"dtype"} - ret.keys(): if prop == "dtype": ret[prop] = dtypes.dtypes_simplified[obj.value.dtype] return ret @classmethod def assert_equal( cls, obj1, obj2, aprops1, aprops2, cprops1, cprops2, *, rel_tol=1e-9, abs_tol=0.0, ): assert len(obj1) == len( obj2 ), f"length mismatch: {len(obj1)} != {len(obj2)}" assert aprops1 == aprops2, f"property mismatch: {aprops1} != {aprops2}" nodes1, vals1 = obj1.nodes, obj1.value nodes2, vals2 = obj2.nodes, obj2.value # Compare assert (nodes1 == nodes2).all(), f"node id mismatch: {nodes1} != {nodes2}" if issubclass(vals1.dtype.type, np.floating): assert np.isclose(vals1, vals2, rtol=rel_tol, atol=abs_tol).all() else: assert (vals1 == vals2).all() class NumpyMatrixType(ConcreteType, abstract=Matrix): @classmethod def is_typeclass_of(cls, obj): """Is obj described by this type class?""" return isinstance(obj, np.ndarray) and len(obj.shape) == 2 @classmethod def _compute_abstract_properties( cls, obj, props: Set[str], known_props: Dict[str, Any] ) -> Dict[str, Any]: ret = known_props.copy() # fast properties for prop in {"is_dense", "is_square", "dtype"} - ret.keys(): if prop == "dtype": ret[prop] = dtypes.dtypes_simplified[obj.dtype] return ret @classmethod def assert_equal( cls, obj1, obj2, aprops1, aprops2, cprops1, cprops2, *, rel_tol=1e-9, abs_tol=0.0, ): assert obj1.shape == obj2.shape, f"shape mismatch: {obj1.shape} != {obj2.shape}" assert aprops1 == aprops2, f"property mismatch: {aprops1} != {aprops2}" assert obj1.shape == obj2.shape, f"{obj1.shape} != {obj2.shape}" # Compare if issubclass(obj1.dtype.type, np.floating): assert np.isclose(obj1, obj2, rtol=rel_tol, atol=abs_tol).all().all() else: assert (obj1 == obj2).all().all()
StarcoderdataPython
82102
import numpy as np def B_to_b(B): x_indices = [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5] y_indices = [0, 0, 3, 1, 3, 1, 3, 2, 3, 2, 3] return np.array(B[x_indices, y_indices]) def b_to_B(b): B = np.zeros((6, 4)) x_indices = [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5] y_indices = [0, 0, -1, 1, -1, 1, -1, 2, -1, 2, -1] B[x_indices, y_indices] = b return B def Bchain_to_bchain(B_chain): chain_length = B_chain.shape[0] x_indices = [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5] y_indices = [0, 0, 3, 1, 3, 1, 3, 2, 3, 2, 3] b_chain = np.zeros((chain_length, 11)) for sample in range(chain_length): b_chain[sample] = B_chain[sample, x_indices, y_indices] return b_chain def Lambdachain_to_lambdachain(Lambda_chain): chain_length = Lambda_chain.shape[0] x_indices = [0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8] y_indices = [0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5] # lambda_chain = np.zeros((chain_length, 12)) # for sample in range(chain_length): # lambda_chain[sample] = Lambda_chain[sample, x_indices, y_indices] lambda_chain = Lambda_chain[:, x_indices, y_indices] return lambda_chain def Tauchain_to_tauchain(Tau_chain): chain_length = Tau_chain.shape[0] x_indices = [0, 0, 1, 1, 2, 2] y_indices = [0, 1, 2, 3, 4, 5] # tau_chain = np.zeros((chain_length, 3, 2)) # for sample in range(chain_length): # tau_chain[sample] = Tau_chain[sample, x_indices, y_indices].reshape((3, 2)) tau_chain = Tau_chain[:, x_indices, y_indices].reshape(chain_length, 3, 2) return tau_chain def Tau_to_tau(Tau): x_indices = [0, 0, 1, 1, 2, 2] y_indices = [0, 1, 2, 3, 4, 5] tau = Tau[x_indices, y_indices].reshape((3, 2)) return tau def w_to_W(w): row_indices = [0,1,1,2,2,3,3,4,4,5,5] col_indices = [0,1,2,3,4,5,6,7,8,9,10] N = w.shape[0] W = np.zeros((N, 6, 11)) for n in range(N): li = w[n, [0,0,3,1,3,1,3,2,3,2,3]] W[n, row_indices, col_indices] = li return W def lambda_to_Lambda(lambda_): Lambda = np.zeros((9, 6)) li = lambda_[[0, 1, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7]] row_indices = [0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8] col_indices = [0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5] Lambda[row_indices, col_indices] = li return Lambda def Lambda_to_lambda(Lambda): row_indices = [0,0,1,2,3,3,4,5,6,6,7,8] col_indices = [0,1,0,1,2,3,2,3,4,5,4,5] return Lambda[row_indices, col_indices]
StarcoderdataPython
3385030
<reponame>philip-shen/note_python<gh_stars>0 from concurrent import futures import sys import tkinter import tkinter.scrolledtext import os, os.path import datetime import glob from PIL import Image, ImageTk from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) from matplotlib.figure import Figure import matplotlib.animation as animation import numpy as np import random import importlib from telloedu.status import * from telloedu.streaming import * from telloedu.tellostart import * from telloedu.command import * import ugoki def _quit(): end() #root.quit() root.destroy() def init_tof(): global x_tof, y_tof x_tof = np.arange(-50, 0, 0.5) y_tof = np.zeros(100) line_tof.set_ydata(y_tof) line_tof.set_xdata(x_tof) return line_tof, def animate_tof(n): global t_tof,x_tof,y_tof if get_drone_flg(): y_tof = np.append(y_tof, get_tof()) y_tof = np.delete(y_tof, 0) t_tof = t_tof + 1 x_tof = np.append(x_tof, t_tof) x_tof = np.delete(x_tof, 0) plt_tof.set_ylim(0, 200) plt_tof.set_xlim(min(x_tof), max(x_tof)) line_tof.set_ydata(y_tof) line_tof.set_xdata(x_tof) return line_tof, def init_h(): global x_h, y_h x_h = np.arange(-50, 0, 0.5) y_h = np.zeros(100) line_h.set_ydata(y_h) line_h.set_xdata(x_h) return line_h, def animate_h(n): global t_h,x_h,y_h if get_drone_flg(): y_h = np.append(y_h, get_height()) y_h = np.delete(y_h, 0) t_h = t_h + 1 x_h = np.append(x_h, t_h) x_h = np.delete(x_h, 0) plt_h.set_ylim(0, 200) plt_h.set_xlim(min(x_h), max(x_h)) line_h.set_ydata(y_h) line_h.set_xdata(x_h) return line_h, def init_temp(): global x_temp, y_temp x_temp = np.arange(-50, 0, 0.5) y_temp = np.zeros(100) line_h.set_ydata(y_temp) line_h.set_xdata(x_temp) return line_temp, def animate_temp(n): global t_temp,x_temp,y_temp if get_drone_flg(): y_temp = np.append(y_temp, get_temph()) y_temp = np.delete(y_temp, 0) t_temp = t_temp + 1 x_temp = np.append(x_temp, t_temp) x_temp = np.delete(x_temp, 0) plt_temp.set_ylim(0, 100) plt_temp.set_xlim(min(x_temp), max(x_temp)) line_temp.set_ydata(y_temp) line_temp.set_xdata(x_temp) return line_temp, def init_bat(): global x_bat, y_bat x_bat = np.arange(-50, 0, 0.5) y_bat = np.zeros(100) line_bat.set_ydata(y_bat) line_bat.set_xdata(x_bat) return line_bat, def animate_bat(n): global t_bat,x_bat,y_bat if get_drone_flg(): y_bat = np.append(y_bat, get_bat()) y_bat = np.delete(y_bat, 0) t_bat = t_bat + 1 x_bat = np.append(x_bat, t_bat) x_bat = np.delete(x_bat, 0) plt_bat.set_ylim(0, 100) plt_bat.set_xlim(min(x_bat), max(x_bat)) line_bat.set_ydata(y_bat) line_bat.set_xdata(x_bat) return line_bat, def _godrone(): global drone_flg textbox1.delete('1.0','end') importlib.reload(ugoki) set_drone_flg(True) def _droneEmergency(): emergency() def _thumbnail(): qr_image_path = './img/qrcode-*.png' qr_files = glob.glob(qr_image_path) #print(qr_files) qr_files.sort(key = os.path.getmtime, reverse = True) #print(qr_files) if qr_files: qr_image = Image.open(qr_files[0]) qr_image = qr_image.resize((184, 144)) m1_image = ImageTk.PhotoImage(qr_image) dt = datetime.datetime.fromtimestamp(os.stat(qr_files[0]).st_mtime) ''' python中time.strftime不支持中文,报错UnicodeEncodeError: 'locale' codec can't encode character '\u5e74' in position 2: encoding error https://www.cnblogs.com/feiquan/p/11217534.html ''' #qr_image_label = tkinter.Label(canvas2, image = m1_image, text = 'QR Code 撮影日\n'+ dt.strftime( # '%Y年%m月%d日 %H:%M:%S'), compound='top') qr_image_label = tkinter.Label(canvas2, image = m1_image, text = 'QR Code 撮影日\n'+ dt.strftime( '%YY%mM%dD %H:%M:%S'), compound='top') qr_image_label.grid(column = 1, row = 2) qr_image_label.image = m1_image pic_image_path = './img/photo-*.png' pic_files = glob.glob(pic_image_path) #print(pic_files) pic_files.sort(key = os.path.getmtime, reverse = True) #print(pic_files) if pic_files: pic_image = Image.open(pic_files[0]) pic_image = pic_image.resize((184, 144)) m2_image = ImageTk.PhotoImage(pic_image) dt = datetime.datetime.fromtimestamp(os.stat(pic_files[0]).st_mtime) #pic_image_label = tkinter.Label(canvas2, image = m2_image, text = 'Photo 撮影日\n'+ dt.strftime( # '%Y年%m月%d日 %H:%M:%S'), compound='top') pic_image_label = tkinter.Label(canvas2, image = m2_image, text = 'Photo 撮影日\n'+ dt.strftime( '%YY%mM%dD %H:%M:%S'), compound='top') pic_image_label.grid(column = 2, row = 2) pic_image_label.image = m2_image def redirector(inputStr): textbox1.insert(tkinter.INSERT, inputStr) if __name__ == "__main__": root = tkinter.Tk() root.wm_title("ドローン・プログラミング支援システム") frame1 = tkinter.Frame(root, width = 1200, height = 400, borderwidth = 4) frame1.pack(padx = 5, pady = 5) fig = Figure(figsize = (10, 7)) fig.suptitle('Drone flight status') canvas = FigureCanvasTkAgg(fig, master = frame1) # A tk.DrawingArea. # ToF t_tof = 1 x_tof = np.arange(-50, 0, 0.5) y_tof = np.zeros(100) plt_tof = fig.add_subplot(221) plt_tof.set_title('ToF') plt_tof.set_xlabel("time[s]") plt_tof.set_ylabel("Height[cm]") line_tof, = plt_tof.plot(x_tof, y_tof) ani_tof = animation.FuncAnimation(fig, animate_tof, init_func = init_tof, interval = 500, blit = False) # Height t_h = 1 x_h = np.arange(-50, 0, 0.5) y_h = np.zeros(100) plt_h = fig.add_subplot(222) plt_h.set_title('Height') plt_h.set_xlabel("time[s]") plt_h.set_ylabel("Height[cm]") line_h, = plt_h.plot(x_h, y_h) ani_h = animation.FuncAnimation(fig, animate_h, init_func = init_h, interval = 500, blit = False) # Temperature t_temp = 1 x_temp = np.arange(-50, 0, 0.5) y_temp = np.zeros(100) plt_temp = fig.add_subplot(223) plt_temp.set_title('Temperature') plt_temp.set_xlabel("time[s]") plt_temp.set_ylabel("Temperature[c]") line_temp, = plt_temp.plot(x_temp, y_temp) ani_temp = animation.FuncAnimation(fig, animate_temp, init_func = init_temp, interval = 500, blit = False) # battery t_bat = 1 x_bat = np.arange(-50, 0, 0.5) y_bat = np.zeros(100) plt_bat = fig.add_subplot(224) plt_bat.set_title('Battery') plt_bat.set_xlabel("time[s]") plt_bat.set_ylabel("battery[%]") line_bat, = plt_bat.plot(x_bat, y_bat) ani_bat = animation.FuncAnimation(fig, animate_bat, init_func = init_bat, interval = 500, blit = False) fig.subplots_adjust(wspace = 0.5, hspace = 0.5) toolbar = NavigationToolbar2Tk(canvas, root) canvas.get_tk_widget().pack(side = 'left') frame2 = tkinter.Frame(frame1, borderwidth = 4) frame2.pack(padx = 5, pady = 20) m1_text_label = tkinter.Label(frame2, text = '送信コマンド・ログ',font = ("",18)) m1_text_label.pack(side = 'top', fill = 'both') #textbox1 = tkinter.Text(frame2) textbox1 = tkinter.scrolledtext.ScrolledText(frame2) textbox1.configure(bd=1, highlightbackground='gray') textbox1.pack(side = 'top', fill = 'both', padx=10) sys.stdout.write = redirector m2_text_label = tkinter.Label(frame2, text = '\n\n\n撮影した写真データ', font = ("",18)) m2_text_label.pack(side = 'top', fill = 'both', padx = 10) canvas2 = tkinter.Canvas(frame2, width = 400) canvas2.pack(side = 'top', fill = 'both') _thumbnail() frame = tkinter.Frame(root, width = 60, height = 40, borderwidth = 4, bg = 'gray') frame.pack(padx = 5, pady = 5) button1 = tkinter.Button(master = frame, text = "プログラム実行", command = _godrone, width = 20, fg = '#0000ff') button1.pack(fill = 'x', padx = 30, side = 'left') button2 = tkinter.Button(master = frame, text = "撮影した写真表示", command = _thumbnail, width = 20) button2.pack(fill = 'x', padx = 30, side = 'left') button3 = tkinter.Button(master = frame, text = "終了", command = _quit, width = 20) button3.pack(fill = 'x', padx = 30, side = 'left') button4 = tkinter.Button(master = frame, text = "ドローン緊急停止", command = _droneEmergency, width = 20, fg = '#ff0000') button4.pack(fill = 'x', padx = 30, side = 'left') with futures.ThreadPoolExecutor(max_workers = 10) as executor: executor.submit(tello_status_thread) executor.submit(video_recording_thread) executor.submit(start_thread) set_drone_flg(False) tkinter.mainloop()
StarcoderdataPython
1630401
<gh_stars>1-10 from os import listdir, getcwd from os.path import isfile, join from math import sin, cos from setting_utils import timeLimit, heightLimit, input_stream files = [f for f in listdir(join(getcwd(), 'uploads')) if isfile(join(getcwd(), 'uploads', f))] files = [f for f in files if f.endswith(".txt")] rgbColor = ['255, 0, 0','51, 204, 51','0, 153, 255','255, 255, 0','204, 0, 153','51, 51, 0','255, 0, 102','200, 200, 200','0, 51, 102','255, 153, 255'] czml = '$(document).ready(function(){\n' colorIndex = 0; fileIndex = 0; for file in files : FILE_PATH = join(getcwd(), 'uploads', str(file)) data = [] with open(FILE_PATH, 'r') as input_stream : lines = input_stream.readlines() words = lines[4].split(' ') words = [x for x in words if len(x) > 0] lat = float(words[11]) lon = float(words[12]) _hieght = 0 data.append([lon, lat, _hieght]) for i in range( 4, len(lines)) : #avoid head text words = lines[i].split(' ') words = [x for x in words if len(x) > 0] #---Setting--- minutes = float(words[0]) + float(words[1])/60 height = float(words[3]) if(minutes > timeLimit): break if(height > heightLimit): break #------------- if (len(words)>15) : #avoid crash data dir_degree = 3.1415926*(float(words[8])+180)/180 speed = float(words[9]) u = cos(dir_degree)*speed v = sin(dir_degree)*speed lat += u/110736 lon += v/102189 data.append([lon, lat, _hieght]) input_stream.close() czml += ( 'var line_points_%d = [\n' ) %fileIndex for j in range(0, len(data)) : czml += ('[%f,%f]' %(float(data[j][1]), float(data[j][0]))) #lat lon if(j!=len(data)-1): czml +=(',\n') else: czml +=('\n') czml += ( '];\n' 'var polyline_options_%d = {\n' ' color: "rgb(%s)"\n' '};\n' 'var polyline = L.polyline(line_points_%d, polyline_options_%d).addTo(map);\n' ) % (fileIndex, rgbColor[colorIndex%10], fileIndex, fileIndex) colorIndex += 1 fileIndex += 1 czml += ( 'map.fitBounds(line_points_0);\n' '})' ) fout = open(join(getcwd(), 'balloon', 'data', '2dpath.js'), 'w') fout.write(czml) fout.close()
StarcoderdataPython
11398894
<filename>Algo-DS/10_Sorting/bubble.py<gh_stars>1-10 ''' Bubble Sort ''' def bubble_sort(arr): for n in range(len(arr)-1, 0, -1): print('loops: ', n) for k in range(n): print('bubble: ', k) if arr[k] < arr[k+1]: arr[k], arr[k+1] = arr[k+1], arr[k] print('arr: ', arr) return arr if __name__ == '__main__': arr = [10, 9, 33, 0, -1, 5] print(bubble_sort(arr))
StarcoderdataPython
1677375
import os import stat import shutil import filecmp from dvc.main import main from dvc.command.repro import CmdRepro from dvc.project import ReproductionError from dvc.utils import file_md5 from tests.basic_env import TestDvc class TestRepro(TestDvc): def setUp(self): super(TestRepro, self).setUp() self.foo_stage = self.dvc.add(self.FOO) self.file1 = 'file1' self.file1_stage = self.file1 + '.dvc' self.dvc.run(fname=self.file1_stage, outs=[self.file1], deps=[self.FOO, self.CODE], cmd='python {} {} {}'.format(self.CODE, self.FOO, self.file1)) class TestReproChangedCode(TestRepro): def test(self): self.swap_code() stages = self.dvc.reproduce(self.file1_stage) self.assertTrue(filecmp.cmp(self.file1, self.BAR)) self.assertEqual(len(stages), 1) def swap_code(self): os.unlink(self.CODE) new_contents = self.CODE_CONTENTS new_contents += "\nshutil.copyfile('{}', sys.argv[2])\n".format(self.BAR) self.create(self.CODE, new_contents) class TestReproChangedData(TestRepro): def test(self): self.swap_foo_with_bar() stages = self.dvc.reproduce(self.file1_stage) self.assertTrue(filecmp.cmp(self.file1, self.BAR)) self.assertEqual(len(stages), 2) def swap_foo_with_bar(self): os.unlink(self.FOO) shutil.copyfile(self.BAR, self.FOO) class TestReproChangedDeepData(TestReproChangedData): def test(self): file2 = 'file2' file2_stage = file2 + '.dvc' self.dvc.run(fname=file2_stage, outs=[file2], deps=[self.file1, self.CODE], cmd='python {} {} {}'.format(self.CODE, self.file1, file2)) self.swap_foo_with_bar() stages = self.dvc.reproduce(file2_stage) self.assertTrue(filecmp.cmp(self.file1, self.BAR)) self.assertTrue(filecmp.cmp(file2, self.BAR)) self.assertEqual(len(stages), 3) class TestReproPhony(TestReproChangedData): def test(self): stage = self.dvc.run(deps=[self.file1]) self.swap_foo_with_bar() self.dvc.reproduce(stage.path) self.assertTrue(filecmp.cmp(self.file1, self.BAR)) class TestNonExistingOutput(TestRepro): def test(self): os.unlink(self.FOO) with self.assertRaises(ReproductionError) as cx: self.dvc.reproduce(self.file1_stage) class TestReproDataSource(TestReproChangedData): def test(self): self.swap_foo_with_bar() stages = self.dvc.reproduce(self.foo_stage.path) self.assertTrue(filecmp.cmp(self.FOO, self.BAR)) self.assertEqual(stages[0].outs[0].md5, file_md5(self.BAR)[0]) class TestReproChangedDir(TestDvc): def test(self): file_name = 'file' shutil.copyfile(self.FOO, file_name) stage_name = 'dir.dvc' dir_name = 'dir' dir_code = 'dir.py' with open(dir_code, 'w+') as fd: fd.write("import os; import shutil; os.mkdir(\"{}\"); shutil.copyfile(\"{}\", os.path.join(\"{}\", \"{}\"))".format(dir_name, file_name, dir_name, file_name)) self.dvc.run(fname=stage_name, outs=[dir_name], deps=[file_name, dir_code], cmd="python {}".format(dir_code)) stages = self.dvc.reproduce(stage_name) self.assertEqual(len(stages), 0) os.unlink(file_name) shutil.copyfile(self.BAR, file_name) stages = self.dvc.reproduce(stage_name) self.assertEqual(len(stages), 1) class TestCmdRepro(TestRepro): def test(self): ret = main(['repro', self.file1_stage]) self.assertEqual(ret, 0) ret = main(['repro', 'non-existing-file']) self.assertNotEqual(ret, 0)
StarcoderdataPython
9700706
from PIL import Image from pywebio.input import * from pywebio.output import * from pywebio.session import * from pywebio import start_server import io from datetime import datetime import time now = datetime.now() # loading spin def loading(): with put_loading(shape='border', color='primary').style('width:4rem; height:4rem'): time.sleep(2) # validate form data def check_form(data): # input group validation: return (input name, error msg) when validation fail for k, v in data.items(): if v is None or len(str(v)) < 0: return k, 'Requierd!' def main(): try: func = select('Which function you want?', ['Resize image', 'Transparency image']) if func == 'Resize image': resize() else: tspncy() except Exception as e: put_text(f'Error : {e}').style('color: red;') def resize(): put_text('Home').style('color: blue;text-decoration: underline;').onclick( lambda: run_js('window.location.reload()')) data = input_group("Image info", [ input('width new image', name='w', type=NUMBER), input('high new image', name='h', type=NUMBER) ], validate=check_form) img = file_upload("Select a image:", accept="image/*") if img is not None: w = data['w'] h = data['h'] image = Image.open(io.BytesIO(img['content'])) new_image = image.resize((w, h)) dt_string = now.strftime("%d%m%Y%H%M%S") new_name = f'{dt_string}_{w}_{h}.{image.format}' loading() out_image = new_image.convert('RGB') put_image(out_image) # File Output img_byte_arr = io.BytesIO() new_image.save(img_byte_arr, format=image.format) put_file(new_name, img_byte_arr.getvalue()) put_table([ ['format', image.format], ['mode', image.mode], ['orginal size', image.size], ['palette', image.palette], ['new size', new_image.size], ]) def tspncy(): put_text('Home').style('color: blue;text-decoration: underline;').onclick( lambda: run_js('window.location.reload()')) img = file_upload("Select a image:", accept="image/*") if img is not None: image = Image.open(io.BytesIO(img['content'])) image = image.convert("RGBA") datas = image.getdata() new_data = [] with put_loading(shape='border', color='warning').style('width:4rem; height:4rem'): for item in datas: if item[0] == 255 and item[1] == 255 and item[2] == 255: new_data.append((255, 255, 255, 0)) else: if item[0] > 150: new_data.append((255, 255, 255, 0)) else: new_data.append(item) image.putdata(new_data) dt_string = now.strftime("%d%m%Y%H%M%S") new_name = f'{dt_string}_transparency.png' loading() # # File Output img_byte_arr = io.BytesIO() image.save(img_byte_arr, format='PNG') put_image(image.convert('RGB')) put_file(new_name, img_byte_arr.getvalue()) if __name__ == '__main__': start_server(main, debug=True, port=8080, cdn=False)
StarcoderdataPython
1663755
import cv2 as cv img = cv.imread("Lenna.png") cv.namedWindow("BRISK", cv.WINDOW_NORMAL) def f(x): return # Initiate BRISK detector cv.createTrackbar("Threshold", "BRISK", 30, 128, f) cv.createTrackbar("Octaves", "BRISK", 3, 9, f) cv.createTrackbar("Pattern Scale", "BRISK", 3, 9, f) while True: current_threshold = cv.getTrackbarPos("Threshold", "BRISK") current_octaves = cv.getTrackbarPos("Octaves", "BRISK") current_scale = (cv.getTrackbarPos("Pattern Scale", "BRISK") + 1) / 3 # Additional parameters for customization: # radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for keypoint scale 1). # numberList defines the number of sampling points on the sampling circle. Must be the same size as radiusList.. # dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint scale 1). # dMin threshold for the long pairings used for orientation determination (in pixels for keypoint scale 1). # indexChange index remapping of the bits. brisk = cv.BRISK_create( thresh=current_threshold, octaves=current_octaves, patternScale=current_scale ) # find the keypoints with BRISK kp = brisk.detect(img, None) # draw only keypoints location,not size and orientation img2 = cv.drawKeypoints(img, kp, None, color=(0, 255, 0)) cv.imshow("BRISK", img2) if cv.waitKey(10) & 0xFF == 27: break cv.destroyAllWindows()
StarcoderdataPython
3525545
<reponame>wcsodw1/Computer-Vision-with-Artificial-intelligence # python David_1_1_detect_face.py -i "../../../CV_PyImageSearch/Dataset/data/basketball.jpg" # Summary : # 1.Detect image # 2.save(imwrite) bondingbox_image to File # API : 1.cv2.waitKey(0) # Visualize the image until 設定手動關閉Visualize Image # 1. import the necessary packages import cv2 import argparse ap = argparse.ArgumentParser() ap.add_argument("-i","--image", required = True, help = "The Path to image") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) # Resize image = cv2.resize(image, (500, 400), interpolation=cv2.INTER_CUBIC) ## visualize cv2.imshow("Faces", image) cv2.waitKey(0) # 2. load our image and convert it to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ## visualize cv2.imshow("Faces", gray) cv2.waitKey(0) # 3. Draw the Bondingbox # 3.1 load the face detector detector = cv2.CascadeClassifier("../../../detector/haarcascade.xml") print(detector) # 3.2 detect faces in the image rects = detector.detectMultiScale(gray, scaleFactor = 1.3, minNeighbors = 9, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) # loop over the faces and draw a rectangle surrounding each for (x, y, w, h) in rects: cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 3) #做一個有bonding box的灰階圖 for (x, y, w, h) in rects: cv2.rectangle(gray, (x, y), (x + w, y + h), (0, 255, 0), 3) # visualize cv2.imshow("Faces", image) cv2.waitKey(0) cv2.imshow("Faces", gray) cv2.waitKey(0) # Visualize the image until手動把它關閉 # imwrite : Save the converted image cv2.imwrite("../../data/imwrite/chp1_1/basketball_box.jpg", image) cv2.imwrite("../../data/imwrite/chp1_1/basketball_gray_box.jpg", gray)
StarcoderdataPython
6486675
from sklearn import mixture import sklearn.datasets import matplotlib.pyplot as plt import numpy as np import generator as g; from sklearn import preprocessing def em(input_array,no_of_clusters): model = sklearn.mixture.GaussianMixture(n_components=no_of_clusters,covariance_type='diag') a = model.fit(X) print a.means_ print a.weights_ em = model.predict(X) l1=em[:59]; l1.sort(); print l1; l = [len(list(group)) for key, group in groupby(l1)] print l; l1=em[59:130]; l1.sort(); print l1; l = [len(list(group)) for key, group in groupby(l1)] print l; l1=em[130:178]; l1.sort(); print l1; l = [len(list(group)) for key, group in groupby(l1)] print l; try: input_data = np.genfromtxt("C:\\Users\\<NAME>\\Desktop\\Deep Learning\\Datasets\\wine_sort.csv",delimiter=','); except: print("Could not open file"); input_data = input_data[:,:13]; print input_data.shape; em(input_data,3); print("Completed");
StarcoderdataPython
1612110
from django.shortcuts import redirect from django.views.generic.base import TemplateView from django.http import Http404, HttpResponse from django.urls import reverse from scorecard.profiles import get_profile from scorecard.models import Geography, LocationNotFound from infrastructure.models import Project from household.models import HouseholdServiceTotal, HouseholdBillTotal from household.chart import stack_chart, chart_data, percent_increase, yearly_percent import json from . import models import municipal_finance from . import serializers from rest_framework import viewsets import subprocess from django.conf import settings class GeographyViewSet(viewsets.ReadOnlyModelViewSet): queryset = models.Geography.objects.all() serializer_class = serializers.GeographySerializer class MunicipalityProfileViewSet(viewsets.ReadOnlyModelViewSet): queryset = municipal_finance.models.MunicipalityProfile.objects.all() serializer_class = serializers.MunicipalityProfileSerializer def infra_dict(project): return { "description": project.project_description, "expenditure_amount": project.expenditure.first().amount, "url": reverse('project-detail-view', args=[project.id]), } class LocateView(TemplateView): template_name = "webflow/locate.html" def get(self, request, *args, **kwargs): self.lat = self.request.GET.get("lat", None) self.lon = self.request.GET.get("lon", None) self.nope = False if self.lat and self.lon: place = None places = Geography.get_locations_from_coords( latitude=self.lat, longitude=self.lon ) if places: place = places[0] # if multiple, prefer the metro/local municipality if available if len(places) > 1: places = [p for p in places if p.geo_level == "municipality"] if places: place = places[0] return redirect( reverse("geography_detail", kwargs={"geography_id": place.geoid}) ) self.nope = True return super(LocateView, self).get(request, *args, **kwargs) def get_context_data(self, *args, **kwargs): return { "page_data_json": json.dumps( {"nope": self.nope}, cls=serializers.JSONEncoder, sort_keys=True, indent=4 if settings.DEBUG else None ), } class GeographyDetailView(TemplateView): template_name = "webflow/muni-profile.html" def dispatch(self, *args, **kwargs): self.geo_id = self.kwargs.get("geography_id", None) try: self.geo_level, self.geo_code = self.geo_id.split("-", 1) self.geo = Geography.find(self.geo_code, self.geo_level) except (ValueError, LocationNotFound): raise Http404 # check slug if kwargs.get("slug") or self.geo.slug: if kwargs["slug"] != self.geo.slug: kwargs["slug"] = self.geo.slug url = "/profiles/%s-%s-%s/" % ( self.geo_level, self.geo_code, self.geo.slug, ) return redirect(url, permanent=True) return super(GeographyDetailView, self).dispatch(*args, **kwargs) def pdf_url(self): return "/profiles/%s-%s-%s.pdf" % ( self.geo_level, self.geo_code, self.geo.slug, ) def get_context_data(self, *args, **kwargs): page_json = {} profile = get_profile(self.geo) page_json.update(profile) profile["geography"] = self.geo.as_dict() page_json["geography"] = self.geo page_json["pdf_url"] = self.pdf_url() profile["demarcation"]["disestablished_to_geos"] = [ Geography.objects.filter(geo_code=code).first().as_dict() for code in profile["demarcation"].get("disestablished_to", []) ] profile["demarcation"]["established_from_geos"] = [ Geography.objects.filter(geo_code=code).first().as_dict() for code in profile["demarcation"].get("established_from", []) ] for date in profile["demarcation"]["land_gained"]: for change in date["changes"]: change["geo"] = ( Geography.objects.filter(geo_code=change["demarcation_code"]) .first() .as_dict() ) for date in profile["demarcation"]["land_lost"]: for change in date["changes"]: change["geo"] = ( Geography.objects.filter(geo_code=change["demarcation_code"]) .first() .as_dict() ) infrastructure_financial_year = "2019/2020" infrastructure = ( Project.objects.prefetch_related( "geography", "expenditure__budget_phase", "expenditure__financial_year", "expenditure", ) .filter( geography__geo_code=self.geo_code, expenditure__budget_phase__name="Budget year", expenditure__financial_year__budget_year=infrastructure_financial_year, ) .order_by("-expenditure__amount") ) page_json["infrastructure_summary"] = { "projects": [infra_dict(p) for p in infrastructure[:5]], "project_count": infrastructure.count(), "financial_year": infrastructure_financial_year[5:9] } households = HouseholdBillTotal.summary.bill_totals(self.geo_code) page_json["household_percent"] = percent_increase(households) page_json["yearly_percent"] = yearly_percent(households) chart = chart_data(households) page_json["household_chart_overall"] = chart service_middle = ( HouseholdServiceTotal.summary.active(self.geo_code) .middle() .order_by("financial_year__budget_year") ) service_affordable = ( HouseholdServiceTotal.summary.active(self.geo_code) .affordable() .order_by("financial_year__budget_year") ) service_indigent = ( HouseholdServiceTotal.summary.active(self.geo_code) .indigent() .order_by("financial_year__budget_year") ) chart_middle = stack_chart(service_middle, households) chart_affordable = stack_chart(service_affordable, households) chart_indigent = stack_chart(service_indigent, households) page_json["household_chart_middle"] = chart_middle page_json["household_chart_affordable"] = chart_affordable page_json["household_chart_indigent"] = chart_indigent page_context = { "page_data_json": json.dumps( page_json, cls=serializers.JSONEncoder, sort_keys=True, indent=4 if settings.DEBUG else None ), "page_title": f"{ self.geo.name} - Municipal Money", "page_description": f"Financial Performance for { self.geo.name }, and other information.", } return page_context class GeographyPDFView(GeographyDetailView): def get(self, request, *args, **kwargs): # render as pdf path = "/profiles/%s-%s-%s?print=1" % ( self.geo_level, self.geo_code, self.geo.slug, ) url = request.build_absolute_uri(path) # !!! This relies on GeographyDetailView validating the user-provided # input to the path to avoid arbitraty command execution command = ["node", "makepdf.js", url] try: completed_process = subprocess.run( command, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) except subprocess.CalledProcessError as e: print(e.output) raise e filename = "%s-%s-%s.pdf" % (self.geo_level, self.geo_code, self.geo.slug) response = HttpResponse(completed_process.stdout, content_type='application/pdf') response['Content-Disposition'] = f'attachment; filename="{ filename }"' return response class SitemapView(TemplateView): template_name = "sitemap.txt" content_type = "text/plain" def get_context_data(self): return {"geos": Geography.objects.all()}
StarcoderdataPython
4918812
<filename>ecommercejockey/main/serializers.py from rest_framework.serializers import Serializer class ProductOrderCreateSerializer(Serializer): def update(self, instance, validated_data): print(validated_data) x = { 'id': 820982911946154508, 'email': '<EMAIL>', 'closed_at': None, 'created_at': '2019-11-07T13:19:14-07:00', 'updated_at': '2019-11-07T13:19:14-07:00', 'number': 234, 'note': None, 'token': '<KEY>', 'gateway': None, 'test': True, 'total_price': '493.18', 'subtotal_price': '483.18', 'total_weight': 0, 'total_tax': '0.00', 'taxes_included': False, 'currency': 'CAD', 'financial_status': 'voided', 'confirmed': False, 'total_discounts': '5.00', 'total_line_items_price': '488.18', 'cart_token': None, 'buyer_accepts_marketing': True, 'name': '#9999', 'referring_site': None, 'landing_site': None, 'cancelled_at': '2019-11-07T13:19:14-07:00', 'cancel_reason': 'customer', 'total_price_usd': None, 'checkout_token': None, 'reference': None, 'user_id': None, 'location_id': None, 'source_identifier': None, 'source_url': None, 'processed_at': None, 'device_id': None, 'phone': None, 'customer_locale': 'en', 'app_id': None, 'browser_ip': None, 'landing_site_ref': None, 'order_number': 1234, 'discount_applications': [ { 'type': 'manual', 'value': '5.0', 'value_type': 'fixed_amount', 'allocation_method': 'one', 'target_selection': 'explicit', 'target_type': 'line_item', 'description': 'Discount', 'title': 'Discount' } ], 'discount_codes': [], 'note_attributes': [], 'payment_gateway_names': [ 'visa', 'bogus' ], 'processing_method': '', 'checkout_id': None, 'source_name': 'web', 'fulfillment_status': 'pending', 'tax_lines': [], 'tags': '', 'contact_email': '<EMAIL>', 'order_status_url': 'https://diesler-corp.myshopify.com/8018133082/orders/123456abcd/authenticate?key=abcdefg', 'presentment_currency': 'CAD', 'total_line_items_price_set': { 'shop_money': { 'amount': '488.18', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '488.18', 'currency_code': 'CAD' } }, 'total_discounts_set': { 'shop_money': { 'amount': '5.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '5.00', 'currency_code': 'CAD' } }, 'total_shipping_price_set': { 'shop_money': { 'amount': '10.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '10.00', 'currency_code': 'CAD' } }, 'subtotal_price_set': { 'shop_money': { 'amount': '483.18', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '483.18', 'currency_code': 'CAD' } }, 'total_price_set': { 'shop_money': { 'amount': '493.18', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '493.18', 'currency_code': 'CAD' } }, 'total_tax_set': { 'shop_money': { 'amount': '0.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '0.00', 'currency_code': 'CAD' } }, 'total_tip_received': '0.0', 'admin_graphql_api_id': 'gid://shopify/Order/820982911946154508', 'line_items': [ { 'id': 866550311766439020, 'variant_id': 18052577198170, 'title': 'Short sleeve t-shirt', 'quantity': 1, 'sku': 'aefasfasfsdd-1', 'variant_title': None, 'vendor': None, 'fulfillment_service': 'manual', 'product_id': 1995182735450, 'requires_shipping': True, 'taxable': True, 'gift_card': False, 'name': 'Short sleeve t-shirt', 'variant_inventory_management': 'shopify', 'properties': [], 'product_exists': True, 'fulfillable_quantity': 1, 'grams': 1000, 'price': '20.00', 'total_discount': '0.00', 'fulfillment_status': None, 'price_set': { 'shop_money': { 'amount': '20.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '20.00', 'currency_code': 'CAD' } }, 'total_discount_set': { 'shop_money': { 'amount': '0.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '0.00', 'currency_code': 'CAD' } }, 'discount_allocations': [], 'admin_graphql_api_id': 'gid://shopify/LineItem/866550311766439020', 'tax_lines': [] }, { 'id': 141249953214522974, 'variant_id': 31154156109914, 'title': 'External Oil FIlter', 'quantity': 1, 'sku': 'SINSDEOF5906', 'variant_title': None, 'vendor': None, 'fulfillment_service': 'manual', 'product_id': 4353136066650, 'requires_shipping': True, 'taxable': True, 'gift_card': False, 'name': 'External Oil FIlter', 'variant_inventory_management': None, 'properties': [], 'product_exists': True, 'fulfillable_quantity': 1, 'grams': 3629, 'price': '468.18', 'total_discount': '5.00', 'fulfillment_status': None, 'price_set': { 'shop_money': { 'amount': '468.18', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '468.18', 'currency_code': 'CAD' } }, 'total_discount_set': { 'shop_money': { 'amount': '5.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '5.00', 'currency_code': 'CAD' } }, 'discount_allocations': [ { 'amount': '5.00', 'discount_application_index': 0, 'amount_set': { 'shop_money': { 'amount': '5.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '5.00', 'currency_code': 'CAD' } } } ], 'admin_graphql_api_id': 'gid://shopify/LineItem/141249953214522974', 'tax_lines': [] } ], 'shipping_lines': [ { 'id': 271878346596884015, 'title': 'Generic Shipping', 'price': '10.00', 'code': None, 'source': 'shopify', 'phone': None, 'requested_fulfillment_service_id': None, 'delivery_category': None, 'carrier_identifier': None, 'discounted_price': '10.00', 'price_set': { 'shop_money': { 'amount': '10.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '10.00', 'currency_code': 'CAD' } }, 'discounted_price_set': { 'shop_money': { 'amount': '10.00', 'currency_code': 'CAD' }, 'presentment_money': { 'amount': '10.00', 'currency_code': 'CAD' } }, 'discount_allocations': [], 'tax_lines': []}], 'billing_address': { 'first_name': 'Bob', 'address1': '123 Billing Street', 'phone': '555-555-BILL', 'city': 'Billtown', 'zip': 'K2P0B0', 'province': 'Kentucky', 'country': 'United States', 'last_name': 'Biller', 'address2': None, 'company': 'My Company', 'latitude': None, 'longitude': None, 'name': '<NAME>', 'country_code': 'US', 'province_code': 'KY' }, 'shipping_address': { 'first_name': 'Steve', 'address1': '123 Shipping Street', 'phone': '555-555-SHIP', 'city': 'Shippington', 'zip': '40003', 'province': 'Kentucky', 'country': 'United States', 'last_name': 'Shipper', 'address2': None, 'company': 'Shipping Company', 'latitude': None, 'longitude': None, 'name': '<NAME>', 'country_code': 'US', 'province_code': 'KY' }, 'fulfillments': [], 'refunds': [], 'customer': { 'id': 115310627314723954, 'email': '<EMAIL>', 'accepts_marketing': False, 'created_at': None, 'updated_at': None, 'first_name': 'John', 'last_name': 'Smith', 'orders_count': 0, 'state': 'disabled', 'total_spent': '0.00', 'last_order_id': None, 'note': None, 'verified_email': True, 'multipass_identifier': None, 'tax_exempt': False, 'phone': None, 'tags': '', 'last_order_name': None, 'currency': 'CAD', 'accepts_marketing_updated_at': None, 'marketing_opt_in_level': None, 'admin_graphql_api_id': 'gid://shopify/Customer/115310627314723954', 'default_address': { 'id': 715243470612851245, 'customer_id': 115310627314723954, 'first_name': None, 'last_name': None, 'company': None, 'address1': '123 Elm St.', 'address2': None, 'city': 'Ottawa', 'province': 'Ontario', 'country': 'Canada', 'zip': 'K2H7A8', 'phone': '123-123-1234', 'name': '', 'province_code': 'ON', 'country_code': 'CA', 'country_name': 'Canada', 'default': True } } } def create(self, validated_data): print('hello') return { 'hello': 'hello' } def save(self, **kwargs): print('hi')
StarcoderdataPython
1959816
from rpi_inky_layout import Layout, Rotation from PIL import Image, ImageDraw # Uncomment if you want to test on your Pi/Inky combo. # from inky.auto import auto topLayout = Layout((400, 100), packingMode='h', border=(1, 2)) # Uncomment if you want to test on your Pi/Inky combo. # board = auto() # topLayout = Layout(board.resolution, 'h', (0, 0)) sublayout1 = topLayout.addLayer() sublayout2 = topLayout.addLayer() sublayout3 = topLayout.addLayer() sublayout31 = sublayout3.addLayer() sublayout32 = sublayout3.addLayer() mode = "P" bgColour = 0 image31 = Image.new(mode, sublayout31.size, bgColour) draw = ImageDraw.Draw(image31) draw.text(tuple(s/2 for s in sublayout31.size), "Hello", 1) sublayout31.setImage(image31) image32 = Image.new(mode, sublayout32.size, bgColour) draw = ImageDraw.Draw(image32) draw.text(tuple(s/2 for s in sublayout32.size), "World!", 1) sublayout32.setImage(image32) topLayout.draw() topLayout.write("hello-world.png") # Uncomment if you want to test on your Pi/Inky combo. # inky_image = Image.open("hello-world.png") # board.set_image(inky_image)
StarcoderdataPython
1944359
import mock import numpy as np from emukit.core import ContinuousParameter, ParameterSpace from emukit.core.acquisition import Acquisition from emukit.core.interfaces import IModel from emukit.core.loop import (FixedIntervalUpdater, FixedIterationsStoppingCondition, LoopState, SequentialPointCalculator, UserFunctionWrapper, RandomSampling) from emukit.core.optimization import GradientAcquisitionOptimizer def test_fixed_iteration_stopping_condition(): stopping_condition = FixedIterationsStoppingCondition(5) loop_state_mock = mock.create_autospec(LoopState) loop_state_mock.iteration = 0 assert(stopping_condition.should_stop(loop_state_mock) is False) loop_state_mock = mock.create_autospec(LoopState) loop_state_mock.iteration = 5 assert(stopping_condition.should_stop(loop_state_mock) is True) def test_every_iteration_model_updater(): mock_model = mock.create_autospec(IModel) mock_model.optimize.return_value(None) updater = FixedIntervalUpdater(mock_model, 1) loop_state_mock = mock.create_autospec(LoopState) loop_state_mock.iteration = 1 loop_state_mock.X.return_value(np.random.rand(5, 1)) loop_state_mock.Y.return_value(np.random.rand(5, 1)) updater.update(loop_state_mock) mock_model.optimize.assert_called_once() def test_every_iteration_model_updater_with_cost(): """ Tests that the model updater can use a different attribute from loop_state as the training targets """ class MockModel(IModel): def optimize(self): pass def set_data(self, X: np.ndarray, Y: np.ndarray): self._X = X self._Y = Y @property def X(self): return self._X @property def Y(self): return self._Y mock_model = MockModel() updater = FixedIntervalUpdater(mock_model, 1, lambda loop_state: loop_state.cost) loop_state_mock = mock.create_autospec(LoopState) loop_state_mock.iteration = 1 loop_state_mock.X.return_value(np.random.rand(5, 1)) loop_state_mock.cost = np.random.rand(5, 1) cost = np.random.rand(5, 1) loop_state_mock.cost = cost updater.update(loop_state_mock) assert np.array_equiv(mock_model.X, cost) def test_sequential_evaluator(): # SequentialPointCalculator should just return result of the acquisition optimizer mock_acquisition = mock.create_autospec(Acquisition) mock_acquisition_optimizer = mock.create_autospec(GradientAcquisitionOptimizer) mock_acquisition_optimizer.optimize.return_value = (np.array([[0.]]), None) loop_state_mock = mock.create_autospec(LoopState) seq = SequentialPointCalculator(mock_acquisition, mock_acquisition_optimizer) next_points = seq.compute_next_points(loop_state_mock) # "SequentialPointCalculator" should only ever return 1 value assert(len(next_points) == 1) # Value should be result of acquisition optimization assert(np.equal(np.array([[0.]]), next_points[0])) def test_sequential_with_context(): mock_acquisition = mock.create_autospec(Acquisition) mock_acquisition.has_gradients = False mock_acquisition.evaluate = lambda x: np.sum(x**2, axis=1)[:, None] space = ParameterSpace([ContinuousParameter('x', 0, 1), ContinuousParameter('y', 0, 1)]) acquisition_optimizer = GradientAcquisitionOptimizer(space) loop_state_mock = mock.create_autospec(LoopState) seq = SequentialPointCalculator(mock_acquisition, acquisition_optimizer) next_points = seq.compute_next_points(loop_state_mock, context={'x': 0.25}) # "SequentialPointCalculator" should only ever return 1 value assert(len(next_points) == 1) # Context value should be what we set assert np.isclose(next_points[0, 0], 0.25) def test_sequential_with_all_parameters_fixed(): mock_acquisition = mock.create_autospec(Acquisition) mock_acquisition.has_gradients = False mock_acquisition.evaluate = lambda x: np.sum(x**2, axis=1)[:, None] space = ParameterSpace([ContinuousParameter('x', 0, 1), ContinuousParameter('y', 0, 1)]) acquisition_optimizer = GradientAcquisitionOptimizer(space) loop_state_mock = mock.create_autospec(LoopState) seq = SequentialPointCalculator(mock_acquisition, acquisition_optimizer) next_points = seq.compute_next_points(loop_state_mock, context={'x': 0.25, 'y': 0.25}) assert np.array_equiv(next_points, np.array([0.25, 0.25])) def test_random_sampling_without_context(): space = ParameterSpace([ContinuousParameter('x', 0, 1), ContinuousParameter('y', 0, 1)]) rs = RandomSampling(space) loop_state_mock = mock.create_autospec(LoopState) next_points = rs.compute_next_points(loop_state_mock) assert(len(next_points) == 1) def test_random_sampling_with_context(): space = ParameterSpace([ContinuousParameter('x', 0, 1), ContinuousParameter('y', 0, 1)]) rs = RandomSampling(space) loop_state_mock = mock.create_autospec(LoopState) next_points = rs.compute_next_points(loop_state_mock, context={'x': 0.25}) assert(len(next_points) == 1) # Context value should be what we set assert np.isclose(next_points[0, 0], 0.25) def test_user_function_wrapper(): def function_test(x): return x[:, 0:1]**2 + x[:, 1:2]**2 user_function = UserFunctionWrapper(function_test) results = user_function.evaluate(np.random.rand(10, 2)) assert len(results) == 10, "A different number of results were expected" for res in results: assert res.X.ndim == 1, "X results are expected to be 1 dimensional" assert res.Y.ndim == 1, "Y results are expected to be 1 dimensional"
StarcoderdataPython
6473629
# coding:utf-8 # @Time : 2019/5/15 # @Author : xuyouze # @File Name : __init__.py import importlib from config.base_config import BaseConfig from models.base_model import BaseModel from models.build import build_model __all__ = ["create_model"] # # def find_model_using_name(model_name: str): # model_filename = "models." + model_name + "_model" # modellib = importlib.import_module(model_filename) # # model = None # target_model_name = model_name.replace("_", "") + "model" # target_model_name = target_model_name.replace("-", "") # for name, cls in modellib.__dict__.items(): # if name.lower() == target_model_name.lower() and issubclass(cls, BaseModel): # model = cls # break # # if not model: # raise NotImplementedError( # "In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % ( # model_filename, target_model_name)) # return model def create_model(config: BaseConfig): # model = find_model_using_name(config.model_name) model = build_model(config.model_name) instance = model(config) config.logger.info("{0} model has been created".format(config.model_name)) return instance
StarcoderdataPython
6489267
<filename>sender.py import smtplib from config import SMTP_USER, SMTP_PWD def notify(recipients, subject, body): # build smtp message message = """From: %s\nTo: %s\nSubject: %s\n\n%s""" % \ (SMTP_USER, ", ".join(recipients), subject, body) # send email try: server = smtplib.SMTP("smtp.gmail.com", 587) server.ehlo() server.starttls() server.login(SMTP_USER, SMTP_PWD) server.sendmail(SMTP_USER, recipients, message) server.close() print 'Email sent' except: print "Failed to send mail"
StarcoderdataPython
5053733
# -*- coding: utf-8 -*- """ Created on Mon Nov 12 08:59:32 2018 @author: ymamo """ import NetAgent as N import ResourceScape as R def form_connection(model): for agent in model.ml.agents_by_type[N.NetAgent].values(): meta = [] meta.append(agent) meta.append(model.ml.agents_by_type[R.resource][agent.pos]) yield meta def reassess(meta): resource = list(meta.subs_by_type[R.resource].values()) agent = list(meta.subs_by_type[N.NetAgent].values()) if resource[0].pos != agent[0].pos: return [resource[0], agent[0]]
StarcoderdataPython
3385412
import setuptools def long_description(): with open('README.md', 'r') as file: return file.read() setuptools.setup( name='stream-unzip', version='0.0.69', author='Department for International Trade', author_email='<EMAIL>', description='Python function to stream unzip all the files in a ZIP archive, without loading the entire ZIP file into memory or any of its uncompressed files', long_description=long_description(), long_description_content_type='text/markdown', url='https://github.com/uktrade/stream-unzip', classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Topic :: System :: Archiving :: Compression', ], python_requires='>=3.5.0', install_requires=[ 'pycryptodome>=3.10.1', 'stream-inflate>=0.0.12', ], py_modules=[ 'stream_unzip', ], )
StarcoderdataPython
8032148
#-*- coding:utf-8 -*- from core_backend import context from core_backend import conf from core_backend.rpc.amqp import AMQPRpc from functools import wraps from contextlib import contextmanager from core_backend.libs.exception import Error import sys import traceback import logging import plugin import settings import pprint import tempfile logger = logging.getLogger(__name__) @contextmanager def service_handler(instance): """ 标准服务调用""" if not isinstance(instance, handler): raise Exception("instance is not a service handler") logger.debug("begin to dispatch service: %s", instance._service) service_prepare(instance) instance._state = 'PREPARE' try: yield instance instance._state = 'SUCCESS' logger.debug("service instance %s has bee dispatched", instance._service) instance.response(0, u"处理成功") except Error, e: logger.error('error to dispatch service %s, %s', e.code, e.msg) instance.response(e.code, e.msg) except: logger.error('error to dispatch service %s', instance._service) instance._state = 'FAIL' exc_type, exc_value, exc_traceback = sys.exc_info() err_stack = traceback.format_exception( exc_type, exc_value, exc_traceback) for line in err_stack: logger.error(line.strip()) instance.response(-1, u"调用服务[%s]失败:%s" % (instance._service, ','.join(exc_value))) finally: service_post(instance) instance._state = 'TERMINATE' def service_decorator(callback): """ 服务步骤decorator """ @wraps(callback) def wrapper(*args, **kwargs): instance = args[0] result = callback(*args, **kwargs) logger.debug("service %s:%s has being dispathced", instance._service, callback.func_name) return result return wrapper @service_decorator def service_prepare(instance): # 新的配置方式 if hasattr(settings, 'DB_URL'): context.connect(settings.DB_URL) else: context.connect() with context.session_scope() as session: return instance.prepare_request(session) @service_decorator def service_post(instance): with context.session_scope() as session: return instance.post_request(session) @service_decorator def service_dispatch(instance): with context.session_scope(instance=instance) as session: logger.debug( u"**************** SERVICE 【%s】 START ******************" % (instance._service)) logger.debug(u"请求报文: %s", instance.context.request) instance.context.session = session # plugin 的session和dispatch一致 plg_handler = plugin.PluginHandler(instance, session) plg_handler.load_plugins(settings.PLUGINS) plg_handler.run_plugins() result = instance.dispatch(session) plg_handler.run_post_plugins() logger.debug( u"++++++++++++++++ SERVICE 【%s】 END ++++++++++++++++++" % (instance._service)) return result class handler(object): xa = False _record_jrnl = True """ service_code 服务名 channel RabbitMQ Channel, 用于自行分发对应的消息 deliver 消息分发属性 properties 消息属性 body 消息体/json报文 """ def __init__(self, service, request): """ @param _service servce code or name @param _request RabbitMQ information @param body request body packet _respond check whether current service is respond _responable check whether service need to response """ self._service = service self._request = request self.body = request.body self.context = context.Context(request.body, _request=self._request) self._respond = False self._responable = True if self._get_reply_queue() is not None else False self._state = 'INIT' # 是否记录日志 """ call user' s init """ self.init() def init(self): pass def post(self, session): raise Error(-1, 'method POST undefined.') def get(self, session): raise Error(-1, 'method GET undefined.') def delete(self, session): raise Error(-1, 'method DELETE undefined.') def put(self, session): raise Error(-1, 'method PUT undefined.') def _get_reply_queue(self): """ 根据rabbitmq信息获取响应队列""" properties = self._request.properties if properties.reply_to is not None: res = properties.reply_to logger.debug("response queue is :%s", res) return res else: return None def _get_dlq(self): """ 取死信队列""" properties = self._request.properties basic_deliver = self._request.basic_deliver if properties.headers.has_key('dlq'): dlq = properties.headers.get('dlq') logger.error("Reply queue not defined, using dlq:%s", dlq) return dlq else: logger.debug('MQ properties:%s' % (properties)) dlq = basic_deliver.routing_key + ".dlq" logger.error("Reply queue and DLQ not defined, using dlq:%s", dlq) return dlq def allow_anonymous(self): ''' 默认是不允许 匿名访问 如果服务需要支持匿名访问,请重载该函数 ''' return False def dlq_declare(self, frame): logger.debug('DLQ Queue [%s] Declared.' % (self._dlq)) def response(self, code, msg): """ 用于返回失败或错误信息 """ if self._responable is False and code is 0: """ FIXME responable 需要使用其它参数定义,而非reply_to?""" return if self._respond is True: logger.warning(u"当前服务[%s]已回复", self._service) return reply_queue = self._get_reply_queue() if reply_queue is None: # FIXME DLQ的消息是需要处理的,该处需要重构 # 至少应包含以下几种信息:1、原请求报文,2、出错原因 3、原服务 # 可以不分服务么?还是统一至一个DLQ,而不是一个服务一个DLQ,则处理服务需要定制一个即可? DLQ = self._get_dlq() logger.error( "serice [%s] error:[%s,%s], put message to DLQ [%s]", self._service, code, msg, DLQ) self._dlq = DLQ self._request.channel.queue_declare( queue=DLQ, durable=True, callback=self.dlq_declare) self._request.channel.basic_publish( exchange='', routing_key=DLQ, properties=self._request.properties, mandatory=1, body=self.body) else: if code is not 0: logger.error("%s,%s", code, msg) else: logger.info("service %s dispatched ok:%s,%s", self._service, code, msg) self.context.error(code, msg) logger.debug(u"响应报文: %s", self.context.response) payload = self.context.jsonify() # 避免body过大时导致请求响应缓慢 logger.debug("service response:%s", payload[:2048]) self._request.channel.basic_publish( exchange='', routing_key=reply_queue, properties=self._request.properties, mandatory=1, body=payload) self._respond = True def dispatch(self, session): ''' 如果服务不关心 请求方法, 则直接重载该方法即可 否则,请实现对应方法 ''' callback_func = { "POST": self.post, "GET": self.get, "DELETE": self.delete, "PUT": self.put } req_method = self.context.request.header.method if req_method not in callback_func.keys(): raise Error(-1, "method: %s not supported." % (req_method,)) return callback_func[req_method](session) def new_file(self, filename): """ 创建一个临时文件,该文件将做为内容发往客户端 """ resp_header = self.context.response.header resp_header.send_file_name = filename resp_header.tmp_file_name = tempfile.mktemp() return open(resp_header.tmp_file_name, 'w') def prepare_request(self, session): """ 服务前准备""" logger.debug("default prepare for service...") def post_request(self, session): """ 服务后处理""" logger.debug("default post for service...")
StarcoderdataPython
54750
from CreatureRogue.data_layer.species import Species class Encounter: def __init__(self, species: Species, min_level: int, max_level: int, rarity): self.species = species self.min_level = min_level self.max_level = max_level self.rarity = rarity def __str__(self): return "Encounter: {0} ({1},{2})".format(self.species, self.min_level, self.max_level)
StarcoderdataPython
11225023
<gh_stars>0 from google.appengine.api import urlfetch from django.shortcuts import render from mock_data import EGFR_GBM_LGG as FAKE_PLOT_DATA from maf_api_mock_data import EGFR_BLCA_BRCA as FAKE_MAF_DATA from django.conf import settings ############################################# # this is file is an abstraction for all visualizations to access for gathering data. ############################################# # static endpoints MAF_ENDPOINT_URI_TEMPLATE = settings.BASE_API_URL + '/_ah/api/maf_api/v1/maf_search?gene={gene}&{tumor_parameters}' BQ_ENDPOINT_URL = settings.BASE_API_URL + '/_ah/api/bq_api/v1' INTERPRO_BQ_ENDPOINT_URI_TEMPLATE = settings.BASE_API_URL + '/_ah/api/bq_api/v1/bq_interpro?uniprot_id={uniprot_id}' # Static definitions SEQPEEK_VIEW_DEBUG_MODE = False SAMPLE_ID_FIELD_NAME = 'tumor_sample_barcode' TUMOR_TYPE_FIELD = "tumor" COORDINATE_FIELD_NAME = 'amino_acid_position' PROTEIN_DOMAIN_DB = 'PFAM' # Static definitions friendly_name_map = { 'disease_code':'Disease Code', 'gender':'Gender', 'mirnPlatform':'microRNA expression platform', 'gexpPlatform':'gene (mRNA) expression platform', 'methPlatform':'DNA methylation platform', 'rppaPlatform':'protein quantification platform', 'cnvrPlatform':'copy-number platform', 'age_at_initial_pathologic_diagnosis':'age at diagnosis', 'hsa_miR_146a_5p':'hsa-miR-146a-5p expression (log2[normalized_counts+1])', 'hsa_miR_7_7p':'hsa-miR-7-5p expression (log2[normalized_counts+1])', 'CNVR_EGFR':'EGFR copy-number (log2[CN/2])', 'EGFR_chr7_55086714_55324313':'EGFR expression (log2[normalized_counts+1])', 'EGFR_chr7_55086714_55324313_EGFR':'EGFR protein quantification', 'EGFR_chr7_55086288_cg03860890_TSS1500_Island':'EGFR methylation (TSS1500, CpG island)', 'EGFR_chr7_55086890_cg14094960_5pUTR_Island':"EGFR methylation (5' UTR, CpG island)", 'EGFR_chr7_55089770_cg10002850_Body_SShore':'EGFR methylation (first intron, cg10002850)', 'EGFR_chr7_55177623_cg18809076_Body':'EGFR methylation (first intron, cg18809076)' } numerical_attributes = [ 'age_at_initial_pathologic_diagnosis', 'hsa_miR_146a_5p', 'hsa_miR_7_7p', 'CNVR_EGFR', 'EGFR_chr7_55086714_55324313', 'EGFR_chr7_55086714_55324313_EGFR', 'EGFR_chr7_55086288_cg03860890_TSS1500_Island', 'EGFR_chr7_55086890_cg14094960_5pUTR_Island', 'EGFR_chr7_55089770_cg10002850_Body_SShore', 'EGFR_chr7_55177623_cg18809076_Body' ] categorical_attributes = [ 'disease_code', 'gender', 'mirnPlatform', 'gexpPlatform', 'methPlatform', 'rppaPlatform', 'cnvrPlatform' ] fm_friendly_name_map = { 'percent_lymphocyte_infiltration':'Percent Lymphocyte Infiltration', 'percent_monocyte_infiltration':'Percent Monocyte Infiltration', 'percent_necrosis':'Percent Necrosis', 'percent_neutrophil_infiltration':'Percent Neutrophil Infiltration', 'percent_normal_cells':'Percent Normal Cells', 'percent_stromal_cells':'Percent Stromal Cells', 'percent_tumor_cells':'Percent Tumor Cells', 'percent_tumor_nuclei':'Percent Tumor Nuclei', 'age_at_initial_pathologic_diagnosis':'Age at Diagnosis', 'days_to_birth':'Days to Birth', 'days_to_initial_pathologic_diagnosis':'Days to Diagnosis', 'year_of_initial_pathologic_diagnosis':'Year of Diagnosis', 'days_to_last_known_alive':'Days to Last Known Alive', 'tumor_necrosis_percent':'Tumor Necrosis Percent', 'tumor_nuclei_percent':'Tumor Nuclei Percent', 'tumor_weight':'Tumor Weight', 'days_to_last_followup':'Days to Last Followup', 'gender':'Gender', 'history_of_neoadjuvant_treatment':'History of Neoadjuvant Treatment', 'icd_o_3_histology':'ICD-O-3 Code', 'prior_dx':'Prior Diagnosis', 'vital_status':'Vital Status', 'country':'Country', 'disease_code':'Disease Code', 'histological_type':'Histological Type', 'icd_10':'ICD-10 Category', 'icd_o_3_site':'ICD-O-3 Site', 'tumor_tissue_site':'Tumor Tissue Site', 'tumor_type':'Tumor Type', 'person_neoplasm_cancer_status':'Neoplasm Cancer Status', 'pathologic_N':'Pathologic N Stage', 'radiation_therapy':'Radiation Therapy', 'pathologic_T':'Pathologic T Stage', 'race':'Race', 'ethnicity':'Ethnicity', 'sampleType':'Sample Type', 'DNAseq_data':'DNA Sequencing Data', 'mirnPlatform':'microRNA expression platform', 'gexpPlatform':'gene (mRNA) expression platform', 'methPlatform':'DNA methylation platform', 'rppaPlatform':'protein quantification platform', 'cnvrPlatform':'copy-number platform', } fm_numerical_attributes = [ 'percent_lymphocyte_infiltration', 'percent_monocyte_infiltration', 'percent_necrosis', 'percent_neutrophil_infiltration', 'percent_normal_cells', 'percent_stromal_cells', 'percent_tumor_cells', 'percent_tumor_nuclei', 'age_at_initial_pathologic_diagnosis', 'days_to_birth', 'days_to_initial_pathologic_diagnosis', 'year_of_initial_pathologic_diagnosis', 'days_to_last_known_alive', 'tumor_necrosis_percent', 'tumor_nuclei_percent', 'tumor_weight', 'days_to_last_followup' ] fm_categorical_attributes = [ 'gender', 'history_of_neoadjuvant_treatment', 'icd_o_3_histology', 'prior_dx', 'vital_status', 'country', 'disease_code', 'histological_type', 'icd_10', 'icd_o_3_site', 'tumor_tissue_site', 'tumor_type', 'person_neoplasm_cancer_status', 'pathologic_N', 'radiation_therapy', 'pathologic_T', 'race', 'ethnicity', 'sampleType', 'DNAseq_data', 'mirnPlatform', 'cnvrPlatform', 'methPlatform', 'gexpPlatform', 'rppaPlatform' ]
StarcoderdataPython
5194356
import sys puctuation_removal = [".", ",", "'", "!", "%", "$", "@", "#", "^", "&", "*", "(", ")", "-", "_", "+", "=", "{", "}", "[", "]", "|", ";", ":", "<", ">", "?"] def remove_punction(text_list): """ This Function removes any puctuation from provided text Punctuations, listed in puctuation_removal, will be removed """ for i in range(len(text_list)): for punc in puctuation_removal: text_list[i] = text_list[i].replace(punc, "") print(text_list) return text_list def split_space_text(text_list): """ This Function splits text to words """ temp_text_list = [] for i in range(len(text_list)): if " " in text_list[i]: temp_text_list.extend(text_list[i].split()) text_list[i] = "" print(temp_text_list) print(text_list) text_list.extend(temp_text_list) return(text_list) def find_word_length_frequency(text_list): """ This function calculates the frequency of word length """ text_list = split_space_text(text_list) text_length_list = [len(txt) for txt in remove_punction(text_list) if len(txt) > 0] freq_dict = {} unique_length_set = set(text_length_list) for i in unique_length_set: freq_dict[i] = text_length_list.count(i) return(freq_dict) if __name__ == '__main__': if len(sys.argv) < 2: print("Please specify a text") else: freq_dict = find_word_length_frequency(sys.argv[1:]) print(freq_dict)
StarcoderdataPython
5091495
<filename>tensorflow_datasets/core/registered.py # coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Access registered datasets.""" import abc import collections import contextlib import inspect from typing import ClassVar, Iterator from tensorflow_datasets.core import naming from tensorflow_datasets.core.utils import py_utils # Internal registry containing <str registered_name, DatasetBuilder subclass> _DATASET_REGISTRY = {} # Internal registry containing: # <str snake_cased_name, abstract DatasetBuilder subclass> _ABSTRACT_DATASET_REGISTRY = {} # Datasets that are under active development and which we can't therefore load. # <str snake_cased_name, in development DatasetBuilder subclass> _IN_DEVELOPMENT_REGISTRY = {} # Keep track of Dict[str (module name), List[DatasetBuilder]] # This is directly accessed by `tfds.community.builder_cls_from_module` when # importing community packages. _MODULE_TO_DATASETS = collections.defaultdict(list) _skip_registration = False @contextlib.contextmanager def skip_registration() -> Iterator[None]: """Context manager within which dataset builders are not registered.""" global _skip_registration try: _skip_registration = True yield finally: _skip_registration = False class RegisteredDataset(abc.ABC): """Subclasses will be registered and given a `name` property.""" # Name of the dataset, automatically filled. name: ClassVar[str] # Set to True for datasets that are under active development and should not # be available through tfds.{load, builder} or documented in overview.md. IN_DEVELOPMENT: ClassVar[bool] = False def __init_subclass__(cls, skip_registration=False, **kwargs): # pylint: disable=redefined-outer-name super().__init_subclass__(**kwargs) # Set the name if the dataset does not define it. # Use __dict__ rather than getattr so subclasses are not affected. if not cls.__dict__.get('name'): cls.name = naming.camelcase_to_snakecase(cls.__name__) is_abstract = inspect.isabstract(cls) # Capture all concrete datasets, including when skip registration is True. # This ensure that `builder_cls_from_module` can load the datasets # even when the module has been imported inside a `skip_registration` # context. if not is_abstract: _MODULE_TO_DATASETS[cls.__module__].append(cls) # Skip dataset registration within contextmanager, or if skip_registration # is passed as meta argument. if skip_registration or _skip_registration: return # Check for name collisions if py_utils.is_notebook(): # On Colab/Jupyter, we allow overwriting pass elif cls.name in _DATASET_REGISTRY: raise ValueError(f'Dataset with name {cls.name} already registered.') elif cls.name in _IN_DEVELOPMENT_REGISTRY: raise ValueError( f'Dataset with name {cls.name} already registered as in development.' ) elif cls.name in _ABSTRACT_DATASET_REGISTRY: raise ValueError( f'Dataset with name {cls.name} already registered as abstract.' ) # Add the dataset to the registers if is_abstract: _ABSTRACT_DATASET_REGISTRY[cls.name] = cls elif cls.IN_DEVELOPMENT: _IN_DEVELOPMENT_REGISTRY[cls.name] = cls else: _DATASET_REGISTRY[cls.name] = cls
StarcoderdataPython
5085983
# pyOCD debugger # Copyright (c) 2006-2021 Arm Limited # Copyright (c) 2020 <NAME> # Copyright (c) 2021 mentha # Copyright (c) <NAME> # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import threading import six from time import sleep import platform import errno from .interface import Interface from .common import ( USB_CLASS_HID, filter_device_by_class, is_known_cmsis_dap_vid_pid, check_ep, generate_device_unique_id, ) from ..dap_access_api import DAPAccessIntf LOG = logging.getLogger(__name__) try: import usb.core import usb.util except: IS_AVAILABLE = False else: IS_AVAILABLE = True class PyUSB(Interface): """! @brief CMSIS-DAP USB interface class using pyusb for the backend. """ isAvailable = IS_AVAILABLE did_show_no_libusb_warning = False def __init__(self): super(PyUSB, self).__init__() self.ep_out = None self.ep_in = None self.dev = None self.intf_number = None self.serial_number = None self.kernel_driver_was_attached = False self.closed = True self.thread = None self.rcv_data = [] self.read_sem = threading.Semaphore(0) self.packet_size = 64 def open(self): assert self.closed is True # Get device handle dev = usb.core.find(custom_match=FindDap(self.serial_number)) if dev is None: raise DAPAccessIntf.DeviceError("Device %s not found" % self.serial_number) # get active config config = dev.get_active_configuration() # Get count of HID interfaces and create the matcher object hid_interface_count = len(list(usb.util.find_descriptor(config, find_all=True, bInterfaceClass=USB_CLASS_HID))) matcher = MatchCmsisDapv1Interface(hid_interface_count) # Get CMSIS-DAPv1 interface interface = usb.util.find_descriptor(config, custom_match=matcher) if interface is None: raise DAPAccessIntf.DeviceError("Device %s has no CMSIS-DAPv1 interface" % self.serial_number) interface_number = interface.bInterfaceNumber # Find endpoints ep_in, ep_out = None, None for endpoint in interface: if endpoint.bEndpointAddress & usb.util.ENDPOINT_IN: ep_in = endpoint else: ep_out = endpoint # Detach kernel driver self.kernel_driver_was_attached = False try: if dev.is_kernel_driver_active(interface_number): LOG.debug("Detaching Kernel Driver of Interface %d from USB device (VID=%04x PID=%04x).", interface_number, dev.idVendor, dev.idProduct) dev.detach_kernel_driver(interface_number) self.kernel_driver_was_attached = True except (NotImplementedError, usb.core.USBError) as e: # Some implementations don't don't have kernel attach/detach LOG.warning("USB Kernel Driver Detach Failed ([%s] %s). Attached driver may interfere with pyOCD operations.", e.errno, e.strerror) # Explicitly claim the interface try: usb.util.claim_interface(dev, interface_number) except usb.core.USBError as exc: raise six.raise_from(DAPAccessIntf.DeviceError("Unable to open device"), exc) # Update all class variables if we made it here self.ep_out = ep_out self.ep_in = ep_in self.dev = dev self.intf_number = interface_number # Start RX thread as the last step self.closed = False self.start_rx() def start_rx(self): # Flush the RX buffers by reading until timeout exception try: while True: self.ep_in.read(self.ep_in.wMaxPacketSize, 1) except usb.core.USBError: # USB timeout expected pass # Start RX thread self.thread = threading.Thread(target=self.rx_task) self.thread.daemon = True self.thread.start() def rx_task(self): try: while not self.closed: self.read_sem.acquire() if not self.closed: self.rcv_data.append(self.ep_in.read(self.ep_in.wMaxPacketSize, 10 * 1000)) finally: # Set last element of rcv_data to None on exit self.rcv_data.append(None) @staticmethod def get_all_connected_interfaces(): """! @brief Returns all the connected CMSIS-DAP devices. returns an array of PyUSB (Interface) objects """ # find all cmsis-dap devices try: all_devices = usb.core.find(find_all=True, custom_match=FindDap()) except usb.core.NoBackendError: if not PyUSB.did_show_no_libusb_warning: LOG.warning("CMSIS-DAPv1 probes may not be detected because no libusb library was found.") PyUSB.did_show_no_libusb_warning = True return [] # iterate on all devices found boards = [] for board in all_devices: new_board = PyUSB() new_board.vid = board.idVendor new_board.pid = board.idProduct new_board.product_name = board.product or f"{board.idProduct:#06x}" new_board.vendor_name = board.manufacturer or f"{board.idVendor:#06x}" new_board.serial_number = board.serial_number \ or generate_device_unique_id(board.idProduct, board.idVendor, board.bus, board.address) boards.append(new_board) return boards def write(self, data): """! @brief Write data on the OUT endpoint associated to the HID interface """ report_size = self.packet_size if self.ep_out: report_size = self.ep_out.wMaxPacketSize for _ in range(report_size - len(data)): data.append(0) self.read_sem.release() if not self.ep_out: bmRequestType = 0x21 #Host to device request of type Class of Recipient Interface bmRequest = 0x09 #Set_REPORT (HID class-specific request for transferring data over EP0) wValue = 0x200 #Issuing an OUT report wIndex = self.intf_number #mBed Board interface number for HID self.dev.ctrl_transfer(bmRequestType, bmRequest, wValue, wIndex, data) return self.ep_out.write(data) def read(self): """! @brief Read data on the IN endpoint associated to the HID interface """ while len(self.rcv_data) == 0: sleep(0) if self.rcv_data[0] is None: raise DAPAccessIntf.DeviceError("Device %s read thread exited" % self.serial_number) return self.rcv_data.pop(0) def close(self): """! @brief Close the interface """ assert self.closed is False LOG.debug("closing interface") self.closed = True self.read_sem.release() self.thread.join() assert self.rcv_data[-1] is None self.rcv_data = [] usb.util.release_interface(self.dev, self.intf_number) if self.kernel_driver_was_attached: try: self.dev.attach_kernel_driver(self.intf_number) except Exception as exception: LOG.warning('Exception attaching kernel driver: %s', str(exception)) usb.util.dispose_resources(self.dev) self.ep_out = None self.ep_in = None self.dev = None self.intf_number = None self.kernel_driver_was_attached = False self.thread = None class MatchCmsisDapv1Interface(object): """! @brief Match class for finding CMSIS-DAPv1 interface. This match class performs several tests on the provided USB interface descriptor, to determine whether it is a CMSIS-DAPv1 interface. These requirements must be met by the interface: 1. If there is more than one HID interface on the device, the interface must have an interface name string containing "CMSIS-DAP". 2. bInterfaceClass must be 0x03 (HID). 3. bInterfaceSubClass must be 0. 4. Must have interrupt in endpoint, with an optional interrupt out endpoint, in that order. """ def __init__(self, hid_interface_count): """! @brief Constructor.""" self._hid_count = hid_interface_count def __call__(self, interface): """! @brief Return True if this is a CMSIS-DAPv1 interface.""" try: if self._hid_count > 1: interface_name = usb.util.get_string(interface.device, interface.iInterface) # This tells us whether the interface is CMSIS-DAP, but not whether it's v1 or v2. if (interface_name is None) or ("CMSIS-DAP" not in interface_name): return False # Now check the interface class to distinguish v1 from v2. if (interface.bInterfaceClass != USB_CLASS_HID) \ or (interface.bInterfaceSubClass != 0): return False # Must have either 1 or 2 endpoints. if interface.bNumEndpoints not in (1, 2): return False endpoint_attrs = [ (usb.util.endpoint_direction(ep.bEndpointAddress), usb.util.endpoint_type(ep.bmAttributes)) for ep in interface ] # Possible combinations of endpoints ENDPOINT_ATTRS_ALLOWED = [ # One interrupt endpoint IN [(usb.util.ENDPOINT_IN, usb.util.ENDPOINT_TYPE_INTR)], # Two interrupt endpoints, first one IN, second one OUT [(usb.util.ENDPOINT_IN, usb.util.ENDPOINT_TYPE_INTR), (usb.util.ENDPOINT_OUT, usb.util.ENDPOINT_TYPE_INTR)], # Two interrupt endpoints, first one OUT, second one IN [(usb.util.ENDPOINT_OUT, usb.util.ENDPOINT_TYPE_INTR), (usb.util.ENDPOINT_IN, usb.util.ENDPOINT_TYPE_INTR)], ] if endpoint_attrs not in ENDPOINT_ATTRS_ALLOWED: return False # All checks passed, this is a CMSIS-DAPv2 interface! return True except (UnicodeDecodeError, IndexError): # UnicodeDecodeError exception can be raised if the device has a corrupted interface name. # Certain versions of STLinkV2 are known to have this problem. If we can't read the # interface name, there's no way to tell if it's a CMSIS-DAPv2 interface. # # IndexError can be raised if an endpoint is missing. return False class FindDap(object): """! @brief CMSIS-DAP match class to be used with usb.core.find""" def __init__(self, serial=None): """! @brief Create a new FindDap object with an optional serial number""" self._serial = serial def __call__(self, dev): """! @brief Return True if this is a DAP device, False otherwise""" # Check if the device class is a valid one for CMSIS-DAP. if filter_device_by_class(dev.idVendor, dev.idProduct, dev.bDeviceClass): return False try: # First attempt to get the active config. This produces a more direct error # when you don't have device permissions on Linux config = dev.get_active_configuration() # Now read the product name string. device_string = dev.product if (device_string is None) or ("CMSIS-DAP" not in device_string): return False # Get count of HID interfaces. hid_interface_count = len(list(usb.util.find_descriptor(config, find_all=True, bInterfaceClass=USB_CLASS_HID))) # Find the CMSIS-DAPv1 interface. matcher = MatchCmsisDapv1Interface(hid_interface_count) cmsis_dap_interface = usb.util.find_descriptor(config, custom_match=matcher) except usb.core.USBError as error: if error.errno == errno.EACCES and platform.system() == "Linux": msg = ("%s while trying to interrogate a USB device " "(VID=%04x PID=%04x). This can probably be remedied with a udev rule. " "See <https://github.com/pyocd/pyOCD/tree/master/udev> for help." % (error, dev.idVendor, dev.idProduct)) # If we recognize this device as one that should be CMSIS-DAP, we can raise # the level of the log message since it's almost certainly a permissions issue. if is_known_cmsis_dap_vid_pid(dev.idVendor, dev.idProduct): LOG.warning(msg) else: LOG.debug(msg) else: LOG.debug("Error accessing USB device (VID=%04x PID=%04x): %s", dev.idVendor, dev.idProduct, error) return False except (IndexError, NotImplementedError, ValueError, UnicodeDecodeError) as error: LOG.debug("Error accessing USB device (VID=%04x PID=%04x): %s", dev.idVendor, dev.idProduct, error) return False if cmsis_dap_interface is None: return False if self._serial is not None: if self._serial == "" and dev.serial_number is None: return True if self._serial != dev.serial_number: return False return True
StarcoderdataPython
6518741
#!/usr/bin/python #coding=utf-8 def plot(): import numpy as np import matplotlib.pyplot as plt plt.figure(1) # 创建图表1 plt.figure(2) # 创建图表2 ax1 = plt.subplot(211) # 在图表2中创建子图1 ax2 = plt.subplot(212) # 在图表2中创建子图2 x = np.linspace(0, 3, 100) for i in xrange(5): plt.figure(1) # ① # 选择图表1 plt.plot(x, np.exp(i * x / 3)) plt.sca(ax1) # ② # 选择图表2的子图1 plt.plot(x, np.sin(i * x)) plt.sca(ax2) # 选择图表2的子图2 plt.plot(x, np.cos(i * x)) plt.show() class StackIntern: def __init__(self): self.items = [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def clear(self): del self.items[:] def size(self): return len(self.items) def isEmpty(self): return self.size() == 0 def top(self): return self.items[self.size()-1] def dec2bin(dec_num): #十进制转二进制 采用“除2取余" rem_stack = StackIntern() while dec_num > 0: rem = dec_num % 2 rem_stack.push(rem) dec_num = dec_num //2 bin_string = "" i = 0 while not rem_stack.isEmpty(): bin_string = bin_string + str(rem_stack.pop()) return bin_string class Stack(): def __init__(self,top=None): self.ll = LinkedList(top) def push(self, new_element): "Push (add) a new element onto the top of the stack" self.ll.insert_first(new_element) def pop(self): "Pop (remove) the first element off the top of the stack and return it" return self.ll.delete_first() def testStack(): # Test cases # Set up some Elements e1 = Element(1) e2 = Element(2) e3 = Element(3) e4 = Element(4) # Start setting up a Stack stack = Stack(e1) # Test stack functionality stack.push(e2) stack.push(e3) print stack.pop().value print stack.pop().value print stack.pop().value print stack.pop() stack.push(e4) print stack.pop().value class Queue: def __init__(self): self.items = [] def enqueue(self, item): self.items.append(item) def dequeue(self): return self.items.pop(0) def clear(self): del self.items[:] def size(self): return len(self.items) def isEmpty(self): return self.size() == 0 def __str__(self): str_item ="/" num = 0 for item in self.items: print("item" + str(num) +" "+ item) str_item = str_item +item +"/" num = num +1 return str_item def josephus(namelist, num): #著名的 约瑟夫斯问题(Josephus Problem)是应用队列(确切地说,是循环队列)的典型案例。 #在 约瑟夫斯问题 中,参与者围成一个圆圈,从某个人(队首)开始报数,报数到n+1的人退出圆圈,然后从退出人的下一位重新开始报数; #重复以上动作,直到只剩下一个人为止。 sim_queue = Queue() for name in namelist: sim_queue.enqueue(name) while sim_queue.size() > 1: for i in xrange(num): print("num-->" + str(i)) sim_queue.enqueue(sim_queue.dequeue()) print(sim_queue) print(sim_queue.dequeue()) return sim_queue.dequeue() class Node: def __init__(self, initdata): self.__data = initdata self.__next = None def getData(self): return self.__data def getNext(self): return self.__next def setData(self, newdata): self.__data = newdata def setNext(self, newnext): self.__next = newnext class SinCycLinkedlist: def __init__(self): self.head = Node(None) self.head.setNext(self.head) def add(self, item): temp = Node(item) temp.setNext(self.head.getNext()) self.head.setNext(temp) def remove(self, item): prev = self.head while prev.getNext() != self.head: cur = prev.getNext() if cur.getData() == item: prev.setNext(cur.getNext()) prev = prev.getNext() def search(self, item): cur = self.head.getNext() while cur != self.head: if cur.getData() == item: return True cur = cur.getNext() return False def empty(self): return self.head.getNext() == self.head def size(self): count = 0 cur = self.head.getNext() while cur != self.head: count += 1 cur = cur.getNext() return count def SinCycLinkedlistTest(): s = SinCycLinkedlist() print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size())) s.add(19) s.add(86) s.remove(19) print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size())) print('86 is%s in s' % ('' if s.search(86) else ' not',)) print('4 is%s in s' % ('' if s.search(4) else ' not',)) print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size())) s.remove(19) print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size())) class vportIdList: def __init__(self, vport_index): self.header = Node(None) self.index = vport_index def add(self, data): temp = Node(data) temp.setNext(self.header.getNext()) self.header.setNext(temp) def clear(self): prev = self.header.getNext() while prev is not None: print(str(prev) + str(prev.getData())) prev = prev.getNext() self.header.setNext(prev) def __str__(self): cur = self.header.getNext() str_list = "" while cur is not None: str_list = str_list + " / " + str(cur.getData()) cur = cur.getNext() return str_list def vportIdListTest(): vlist = vportIdList(2001) vlist.add(1) vlist.add(2) vlist.add(3) vlist.add(4) vlist.add(5) vlist.add(6) vlist.add(7) vlist.add(8) vlist.add(9) vlist.add(10) print(vlist) vlist.clear() print(vlist) """The LinkedList code from before is provided below. Add three functions to the LinkedList. "get_position" returns the element at a certain position. The "insert" function will add an element to a particular spot in the list. "delete" will delete the first element with that particular value. Then, use "Test Run" and "Submit" to run the test cases at the bottom.""" class Element(object): def __init__(self, value): self.value = value self.next = None class LinkedList(object): def __init__(self, head=None): self.head = head def append(self, new_element): current = self.head if self.head: while current.next: current = current.next current.next = new_element else: self.head = new_element def get_position(self, position): """Get an element from a particular position. Assume the first position is "1". Return "None" if position is not in the list.""" counter = 1 current = self.head if position < 1: return None while current and counter <= position: if counter == position: return current current = current.next counter += 1 return None def insert(self, new_element, position): """Insert a new node at the given position. Assume the first position is "1". Inserting at position 3 means between the 2nd and 3rd elements.""" counter = 1 current = self.head if position > 1: while current and counter < position: if counter == position - 1: new_element.next = current.next current.next = new_element current = current.next counter += 1 elif position == 1: new_element.next = self.head self.head = new_element def delete(self, value): """Delete the first node with a given value.""" current = self.head previous = None while current.value != value and current.next: previous = current current = current.next if current.value == value: if previous: previous.next = current.next else: self.head = current.next def insert_first(self, new_element): new_element.next = self.head self.head = new_element def delete_first(self): if self.head: deleted_element = self.head temp = deleted_element.next self.head = temp return deleted_element else: return None def testLinkedList(): # Test cases # Set up some Elements e1 = Element(1) e2 = Element(2) e3 = Element(3) e4 = Element(4) # Start setting up a LinkedList ll = LinkedList(e1) ll.append(e2) ll.append(e3) # Test get_position # Should print 3 print ll.head.next.next.value # Should also print 3 print ll.get_position(3).value # Test insert ll.insert(e4,3) # Should print 4 now print ll.get_position(3).value # Test delete ll.delete(1) # Should print 2 now print ll.get_position(1).value # Should print 4 now print ll.get_position(2).value # Should print 3 now print ll.get_position(3).value def binarySearch(listData, value): low = 0 high = len(listData)-1 while low <= high: mid = (low + high)/2 if listData[mid] == value: return mid elif listData[mid] < value: low = mid + 1 else: high = mid - 1 return -1 def testBinarySearch(): list_data = [1,2,3,4,5,6,7,8,9] index = binarySearch(list_data,9) print("ist_data[%s] = %s"%(str(index),str(9))) if __name__ == '__main__': # print("main") # print(josephus(["A", "B", "C", "D", "E", "F"], 3)) # SinCycLinkedlistTest() # vportIdListTest() # testLinkedList() # testStack() testBinarySearch()
StarcoderdataPython
4978487
from . import schema, verify, apply import os, platform import pytest import jsonschema root = { 'username':'root', 'uid': 0, 'gid': 0, } non_existant_user = { 'username':'nonexistantuser333' } def test_schema(): jsonschema.validate(root, schema()) jsonschema.validate(non_existant_user, schema()) def test_verify(): result = verify([root, non_existant_user]) assert len(result) == 1 assert result[0] == non_existant_user def integration_test_apply(): result = verify([root, non_existant_user]) apply_result = apply(result, "") assert len(apply_result) == 0
StarcoderdataPython
3389359
<filename>controller/controller.py<gh_stars>10-100 #!/usr/bin/env python2 import json import sys import threading import time from app.ipsec import IPsecS2SApplication from cli import start_cli import switch_controller # Load configuration with open('config/topology.json', 'r') as f: config = json.load(f) # Setup base controller and switch connections base_controller = switch_controller.BaseController(config['controller_config']['p4info'], config['controller_config']['bmv2_json']) for switch in config["switches"]: base_controller.add_switch_connection(switch['name'], address=switch['address'], device_id=switch['device_id']) base_controller.startup() # Insert table entries for forwarding base_controller.install_table_entries_from_json("config/forwarding.json") ipsec_app = IPsecS2SApplication(base_controller) ipsec_app.setup_tunnel("config/tunnel_s1_s2_null.json") # Setup CLI cli_t = threading.Thread(target=start_cli, args=(base_controller,)) cli_t.daemon = True cli_t.start() # Exit CLI when CTRL-C ist pressed or when the CLI is stopped by entering 'exit' try: while cli_t.is_alive(): time.sleep(1) except KeyboardInterrupt: print('shutting down') sys.exit(0)
StarcoderdataPython
264303
from datetime import datetime from fms_core.template_importer.row_handlers._generic import GenericRowHandler from fms_core.services.container import get_container, move_container class ContainerRowHandler(GenericRowHandler): def __init__(self): super().__init__() def process_row_inner(self, container, destination_container): # Container related section container_obj, self.errors['container'], self.warnings['container'] = get_container(barcode=container['barcode']) if not self.errors['container']: #Update _, self.errors['container_move'], self.warnings['container_move'] = move_container( container_to_move=container_obj, destination_barcode=destination_container['destination_barcode'], destination_coordinates=destination_container['destination_coordinates'], update_comment=destination_container['comment'], )
StarcoderdataPython
11388305
import json import re import glob from pathlib import Path from typing import List, Optional from rate import ClipRater from scripts.helper import render DEVICE = "auto" INIT_SCRIPT = """ epochs: 20 optimizer: rmsprob learnrate: 2 init: mean: 0.33 std: 0.03 resolution: 10 targets: - name: full scale batch_size: 10 features: - text: {{text}} transforms: - pad: size: 32 mode: edge - random_rotate: degree: -30 30 center: 0 1 - mul: 1/2 - mean: 0.5 - noise: 1/5 constraints: - blur: kernel_size: 11 weight: .4 """ DETAIL_SCRIPT = """ epochs: 300 optimizer: rmsprob init: image: {{image}} mean: 0 std: 1 targets: - name: full scale batch_size: 10 features: - text: {{text}} transforms: - pad: size: 32 mode: edge - random_rotate: degree: -20 20 center: 0 1 - random_crop: 224 - mul: 1/3 - mean: 0.5 - bwnoise: 1/5*ti constraints: - blur: kernel_size: 11 start: 70% - saturation: below: 0.005 """ RESO_ONE_PASS_SCRIPT = """ epochs: 300 resolution: - '{0: 8, 1: 8, 2: 16, 3: 32, 4: 64, 5: 128}.get(int(t*16), 224)' optimizer: rmsprob init: mean: 0.3 std: .01 targets: - name: full scale batch_size: 10 features: - text: {{text}} transforms: - resize: 224 - pad: size: 32 mode: edge - random_rotate: degree: -20 20 center: 0 1 - random_crop: 224 - mul: 1/3 - mean: 0.5 - bwnoise: 1/5*ti constraints: - blur: kernel_size: 11 start: 50% - saturation: below: 0.005 """ RESO_INIT_SCRIPT = """ epochs: 20 resolution: - 8 if t < .4 else 16 optimizer: rmsprob learnrate: .8 init: mean: 0.3 std: .01 targets: - name: full scale batch_size: 10 features: - text: {{text}} transforms: - resize: 224 - pad: size: 32 mode: edge - random_rotate: degree: -20 20 center: 0 1 - random_crop: 224 - mul: 1/3 - mean: 0.5 - bwnoise: 1/5 constraints: - saturation: below: 0.005 """ RESO_DETAIL_SCRIPT = """ epochs: 300 resolution: - max(8,min(224, int(t*448/8)*8 )) optimizer: rmsprob init: image: {{image}} mean: 0 std: 1 targets: - name: full scale batch_size: 10 features: - text: {{text}} transforms: - resize: 224 - pad: size: 32 mode: edge - random_rotate: degree: -20 20 center: 0 1 - random_crop: 224 - mul: 1/3 - mean: 0.5 - bwnoise: 1/5*ti constraints: - blur: kernel_size: 11 start: 45% - saturation: below: 0.005 """ def get_prompts() -> List[dict]: with open(Path(__file__).resolve().parent / "dall-e-samples.json") as fp: data = json.load(fp) def _repl(m): return m.groups()[0] prompts = [] for info in data["completion_info"]: text = info["text"] text = re.sub(r"{\d:([^}]+)}", _repl, text) keys = info["variable_assignments"] ascii_keys = [ "".join(c if c.isalpha() else "-" for c in key) for key in keys ] prompts.append({ "text": text, "keys": ascii_keys, "orig_keys": keys, "filename": f"{ascii_keys[0]}-of-{ascii_keys[1]}", }) prompts.sort(key=lambda p: p["keys"]) return prompts def get_own_prompts() -> List[dict]: animals = [ "macgyver", "h.p. lovecraft", "cthulhu", "bob dobbs", "<NAME>", "a skull", "an evil teddy bear", "a friendly teddy bear", ] things = [ "bits and bytes", "a bloody mess", "led zeppelin", "microbes", "furry dwarfs", "voxel graphics", "flowers in harmony", "philosophic contemplation", "fractal", "spiderweb", ] prompts = [] for animal in sorted(animals): for thing in sorted(things): keys = [animal, thing] ascii_keys = [ "".join(c if c.isalpha() else "-" for c in key) for key in keys ] prompts.append({ "text": f"{animal} made of {thing}. {animal} with the texture of {thing}", "keys": ascii_keys, "orig_keys": keys, "filename": f"{ascii_keys[0]}-of-{ascii_keys[1]}", }) return prompts class Renderer: def __init__( self, out_dir: str, init_out_dir: Optional[str] = None, one_pass_script: Optional[str] = None, init_script: Optional[str] = None, detail_script: Optional[str] = None, prompts: Optional[List[dict]] = None ): self.prompts = prompts or get_prompts() self.output_path_base = ( Path(__file__).resolve().parent.parent / "images" / "dalle" ) self.output_path = self.output_path_base / out_dir self.init_output_path = None if init_out_dir is None else self.output_path_base / init_out_dir self.one_pass_script = one_pass_script self.init_script = init_script self.detail_script = detail_script def prompt(self, *keys: str) -> Optional[dict]: keys = list(keys) for p in self.prompts: if p["keys"] == keys: return p def render_one_pass(self, prompt: dict): output_name = self.output_path / f"{prompt['filename']}.png" if not output_name.exists(): render( device=DEVICE, source=self.one_pass_script, output_name=output_name, template_context={"text": prompt["text"].split(".")[0] + "."} ) def render_init(self, prompt: dict, count: int = 20): for i in range(count): output_name = ( self.init_output_path / prompt['filename'] / f"{prompt['filename']}-{i}.png" ) if not output_name.exists(): break count = count - 1 if not output_name.exists(): render( device=DEVICE, source=self.init_script, output_name=output_name, template_context={"text": prompt["text"]}, extra_args=["--repeat", str(count)] ) def render_detail(self, prompt: dict, init_filename: str, suffix: str = ""): output_name = ( self.output_path / prompt['filename'] / f"{prompt['filename']}{suffix}.png" ) if not output_name.exists(): render( device=DEVICE, source=self.detail_script, output_name=output_name, template_context={ "text": prompt["text"], "image": init_filename, }, snapshot_interval=60., ) def render_all_one_pass(self): for p in self.prompts: self.render_one_pass(p) def render_all_init(self, count: int = 20): for p in self.prompts: self.render_init(p, count=count) def render_all_detail(self, num_best: int = 1, num_worst: int = 0, keys: Optional[List[str]] = None): for prompt in self.prompts: if keys and prompt["keys"] != keys: continue input_path = self.init_output_path / prompt['filename'] filenames = sorted(glob.glob(str(input_path / "*.png"))) if not filenames: continue rater = ClipRater( filenames=filenames, texts=[prompt["text"]], device="cpu", caching=True, ) similarities = rater.rate() similarities = similarities.sort_values(by=similarities.columns[0], ascending=False) input_names = list(similarities.index[:num_best]) if num_worst: input_names += list(similarities.index[-num_worst:]) for i, input_name in enumerate(input_names): number = input_name[:-4].split("-")[-1] self.render_detail( prompt, init_filename=input_name, suffix=f"-from-{number}", ) def dump_prompts_json(self): things = dict() for p in self.prompts: animal, thing = p["orig_keys"] if thing not in things: things[thing] = dict() things[thing][animal] = p["filename"] print(json.dumps(things, indent=4)) def dump_dalle_image_urls(): with open(Path(__file__).resolve().parent / "dall-e-samples.json") as fp: data = json.load(fp) urls = [] for i in data["completion_info"]: if i["variable_assignments"] in ( ["snail", "harp"], ["penguin", "piano"], ): url = i["completions"][0]["image_url_prefix"] for n in range(30): urls.append(f"{data['base_image_url']}/{url}_{n}.png") print("\n".join(urls)) if __name__ == "__main__": # dump_dalle_image_urls(); exit() if 0: renderer = Renderer( out_dir="own-onepass", one_pass_script=RESO_ONE_PASS_SCRIPT, prompts=get_own_prompts(), ) renderer.render_all_one_pass() if 1: renderer = Renderer( out_dir="detail", init_out_dir="init", init_script=INIT_SCRIPT, detail_script=DETAIL_SCRIPT, ) #renderer.render_init(renderer.prompt("penguin", "piano"), 512) #renderer.render_all_init(20) #renderer.render_all_detail(num_best=6, num_worst=2, keys=["penguin", "piano"]) renderer.render_all_detail(num_best=6, num_worst=2, keys=["snail", "harp"]) if 0: renderer = Renderer( out_dir="reso-detail", init_out_dir="reso-init", # init_script=INIT_SCRIPT, #init_script=RESO_INIT_SCRIPT, detail_script=RESO_DETAIL_SCRIPT, ) #renderer.render_init(renderer.prompt("penguin", "piano"), 512) #renderer.render_all_init(20) renderer.render_all_detail(num_best=6, num_worst=2, keys=["penguin", "piano"])
StarcoderdataPython
248439
<gh_stars>0 # (c) 2021 <NAME> <<EMAIL>> import os,sys import numpy as np import imageio from ccvtools import rawio import random import string import mutagen import json def fill(full_times_file,ccv_file,ccv_times_file): ccv_out_file = ccv_file[0:-4]+'_filled'+ccv_file[-4:] ccv_times = np.loadtxt(ccv_times_file) full_times = np.loadtxt(full_times_file) assert ccv_times[0] > full_times[0] - 0.001 doesnotexist = np.zeros(full_times.size,dtype=np.bool) ccv_times_idx = 0 for i,t in enumerate(full_times): if len(ccv_times) <= ccv_times_idx: doesnotexist[i:] = True break if not np.abs(ccv_times[ccv_times_idx]-t) < 0.001: doesnotexist[i] = True else: ccv_times_idx = ccv_times_idx+1 reader = imageio.get_reader(ccv_file) camera_type_len = reader.header.camera_type.length+5 image_type_len = reader.header.image_type.length+5 frcount_offset = int((8*32 + 64 +8)/8 + camera_type_len + image_type_len) blackframe = np.zeros(reader.header.frame_bytes_on_disk,dtype=np.uint8) with open(ccv_file,'rb') as sourcefile: with open(ccv_out_file,'wb') as targetfile: targetfile.write(sourcefile.read(frcount_offset)) targetfile.write(np.uint32(len(full_times))) sourcefile.seek(frcount_offset+4,os.SEEK_SET) targetfile.write(sourcefile.read(reader.header.header_size - 4 - frcount_offset)) for writeblack in tqdm(doesnotexist): if writeblack: targetfile.write(blackframe) else: targetfile.write(sourcefile.read(reader.header.frame_bytes_on_disk)) def truncate(ccv_file,idx_range,ccv_out_file=None): reader = imageio.get_reader(ccv_file) camera_type_len = reader.header.camera_type.length+5 image_type_len = reader.header.image_type.length+5 frcount_offset = int((8*32 + 64 +8)/8 + camera_type_len + image_type_len) if ccv_out_file is None: ccv_tmp_file = f'.{ccv_file[0:-4]}_{"".join(random.choices(string.ascii_uppercase + string.digits, k=5))}_truncate.tmp' else: ccv_tmp_file = f'.{ccv_out_file[0:-4]}_{"".join(random.choices(string.ascii_uppercase + string.digits, k=5))}_truncate.tmp' with open(ccv_file,'rb') as sourcefile: with open(ccv_tmp_file,'wb') as targetfile: # Copy header targetfile.write(sourcefile.read(reader.header.header_size)) # Write frame number to header targetfile.seek(frcount_offset,os.SEEK_SET) targetfile.write(np.uint32(len(idx_range))) targetfile.seek(reader.header.header_size,os.SEEK_SET) # Copy desired frames prev_fr_idx = None for (i,fr_idx) in enumerate(idx_range): # Save first frame from iterator if i==0: start_frame = fr_idx # Set point in case iterator is not consecutive if prev_fr_idx is None or not fr_idx-prev_fr_idx==1: sourcefile.seek(reader.header.header_size+reader.header.frame_bytes_on_disk*fr_idx,os.SEEK_SET) targetfile.write(sourcefile.read(reader.header.frame_bytes_on_disk)) prev_fr_idx = fr_idx # Save last frame from iterator end_frame = fr_idx # Rename tmp file to final file name if ccv_out_file is None: ccv_out_file = "{ccv_file[0:-4]}_truncated_{start_frame}-{end_frame}.ccv".format(ccv_file=ccv_file,start_frame=start_frame,end_frame=end_frame) os.rename(ccv_tmp_file,ccv_out_file) def convert(ccv_file,video_file,idx_range,fps=25,codec="libx264",quality=10,min_contrast=0,max_contrast=None,out_type=np.uint8): reader = imageio.get_reader(ccv_file) writer = imageio.get_writer(video_file, fps=fps, codec=codec, quality=quality) prev_fr_idx=None indices = np.zeros(shape=len(idx_range),dtype=int) timestamps = np.zeros(shape=len(idx_range),dtype=np.float) for (i,fr_idx) in enumerate(idx_range): # Set point in case iterator is not consecutive if prev_fr_idx is None or not fr_idx-prev_fr_idx==1: im = reader.get_data(fr_idx) else: im = reader.get_next_data() meta = reader.get_meta_data(fr_idx); indices[i] = meta["index"]; timestamps[i] = meta["timestamp"]; # Get max value of movie if not specified if i==0 and max_contrast is None: max_contrast = np.iinfo(np.asarray(im).dtype).max # Adjust contrast / Reduce to 8 bit im = np.uint64(im) im = (im-min_contrast)*np.iinfo(out_type).max/(max_contrast-min_contrast) im[im<0] = 0 im[im>max_contrast] = np.iinfo(out_type).max writer.append_data(out_type(im)) prev_fr_idx = fr_idx writer.close() headerdict = dict(reader.header) del headerdict['_io'] headerdict['camera_type'] = headerdict['camera_type'].data.decode("ascii") headerdict['image_type'] = headerdict['image_type'].data.decode("ascii") headerdict['sensor'] = {'offset': list(headerdict['sensor'].offset), 'size': list(headerdict['sensor'].size), 'clock': headerdict['sensor'].clock, 'exposure': headerdict['sensor'].exposure, 'gain': headerdict['sensor'].gain } headerdict['indices'] = [int(val) for val in indices] print(timestamps) headerdict['timestamps'] = [float(val) for val in timestamps] print(headerdict['timestamps']) if len(headerdict['sensor']['offset'])==1: headerdict['sensor']['offset'].append(headerdict['sensor']['offset'][0]) if len(headerdict['sensor']['size'])==1: headerdict['sensor']['size'].append(headerdict['sensor']['size'][0]) with open(video_file, 'r+b') as file: media_file = mutagen.File(file, easy=True) media_file['description'] = json.dumps(headerdict) media_file.save(file)
StarcoderdataPython
1758521
import typing as T class BaseView: def __init__(self, screen: T.Any) -> None: self.screen = screen def start(self) -> None: pass def stop(self) -> None: pass def idle(self) -> None: pass def keypress(self, key: int) -> None: pass
StarcoderdataPython
9688774
<reponame>corinneherzog/tea-lang import pandas as pd import tea import os from tea.logging import TeaLoggerConfiguration, TeaLogger import logging configuration = TeaLoggerConfiguration() configuration.logging_level = logging.DEBUG TeaLogger.initialize_logger(configuration) # This example is adapted from http://www.real-statistics.com/non-parametric-tests/wilcoxon-rank-sum-test/wilcoxon-rank-sum-exact-test/ def test_mann_whitney_0(): tea.data('./tests/data/real_stats_3.csv') variables = [ { 'name': 'Treatment', 'data type': 'nominal', 'categories': ['Control', 'Drug'] }, { 'name': 'Score', 'data type': 'ratio' } ] experimental_design = { 'study type': 'experiment', 'independent variables': 'Treatment', 'dependent variables': 'Score' } assumptions = { 'Type I (False Positive) Error Rate': 0.05 } tea.define_variables(variables) # Allows for using multiple study designs for the same dataset (could lead to phishing but also practical for saving analyses and reusing as many parts of analyses as possible) tea.define_study_design(experimental_design) tea.assume(assumptions) tea.hypothesize(['Treatment', 'Score'], ['Treatment:Control != Drug'])
StarcoderdataPython
2279
<gh_stars>100-1000 import numpy as np import unittest from pydlm.modeler.trends import trend from pydlm.modeler.seasonality import seasonality from pydlm.modeler.builder import builder from pydlm.base.kalmanFilter import kalmanFilter class testKalmanFilter(unittest.TestCase): def setUp(self): self.kf1 = kalmanFilter(discount=[1]) self.kf0 = kalmanFilter(discount=[1e-10]) self.kf11 = kalmanFilter(discount=[1, 1]) self.trend0 = trend(degree=0, discount=1, w=1.0) self.trend0_90 = trend(degree=0, discount=0.9, w=1.0) self.trend0_98 = trend(degree=0, discount=0.98, w=1.0, name='a') self.trend1 = trend(degree=1, discount=1, w=1.0) def testForwardFilter(self): dlm = builder() dlm.add(self.trend0) dlm.initialize() self.kf1.predict(dlm.model) self.assertAlmostEqual(dlm.model.prediction.obs, 0) # the prior on the mean is zero, but observe 1, with # discount = 1, one should expect the filterd mean to be 0.5 self.kf1.forwardFilter(dlm.model, 1) self.assertAlmostEqual(dlm.model.obs, 0.5) self.assertAlmostEqual(dlm.model.prediction.obs, 0) self.assertAlmostEqual(dlm.model.sysVar, 0.375) self.kf1.predict(dlm.model) self.assertAlmostEqual(dlm.model.obs, 0.5) self.assertAlmostEqual(dlm.model.prediction.obs, 0.5) dlm.initialize() self.kf0.predict(dlm.model) self.assertAlmostEqual(dlm.model.prediction.obs, 0) # the prior on the mean is zero, but observe 1, with discount = 0 # one should expect the filtered mean close to 1 self.kf0.forwardFilter(dlm.model, 1) self.assertAlmostEqual(dlm.model.obs[0, 0], 1) self.assertAlmostEqual(dlm.model.prediction.obs[0, 0], 0) self.assertAlmostEqual(dlm.model.sysVar[0, 0], 0.5) self.kf0.predict(dlm.model) self.assertAlmostEqual(dlm.model.obs[0, 0], 1) self.assertAlmostEqual(dlm.model.prediction.obs[0, 0], 1) def testForwardFilterMultiDim(self): dlm = builder() dlm.add(seasonality(period=2, discount=1, w=1.0)) dlm.initialize() self.kf11.forwardFilter(dlm.model, 1) self.assertAlmostEqual(dlm.model.state[0][0, 0], 0.33333333333) self.assertAlmostEqual(dlm.model.state[1][0, 0], -0.33333333333) self.kf11.forwardFilter(dlm.model, -1) self.assertAlmostEqual(dlm.model.state[0][0, 0], -0.5) self.assertAlmostEqual(dlm.model.state[1][0, 0], 0.5) def testBackwardSmoother(self): dlm = builder() dlm.add(self.trend0) dlm.initialize() # with mean being 0 and observe 1 and 0 consectively, one shall # expect the smoothed mean at 1 will be 1/3, for discount = 1 self.kf1.forwardFilter(dlm.model, 1) self.kf1.forwardFilter(dlm.model, 0) self.kf1.backwardSmoother(dlm.model, \ np.matrix([[0.5]]), \ np.matrix([[0.375]])) self.assertAlmostEqual(dlm.model.obs[0, 0], 1.0/3) self.assertAlmostEqual(dlm.model.sysVar[0, 0], 0.18518519) # second order trend with discount = 1. The smoothed result should be # equal to a direct fit on the three data points, 0, 1, -1. Thus, the # smoothed observation should be 0.0 def testBackwardSmootherMultiDim(self): dlm = builder() dlm.add(self.trend1) dlm.initialize() self.kf11.forwardFilter(dlm.model, 1) state1 = dlm.model.state cov1 = dlm.model.sysVar self.kf11.forwardFilter(dlm.model, -1) self.kf11.backwardSmoother(dlm.model, \ rawState = state1, \ rawSysVar = cov1) self.assertAlmostEqual(dlm.model.obs[0, 0], 0.0) def testMissingData(self): dlm = builder() dlm.add(self.trend0) dlm.initialize() self.kf0.forwardFilter(dlm.model, 1) self.assertAlmostEqual(dlm.model.obs[0, 0], 1.0) self.assertAlmostEqual(dlm.model.obsVar[0, 0], 1.0) self.kf0.forwardFilter(dlm.model, None) self.assertAlmostEqual(dlm.model.obs[0, 0], 1.0) self.assertAlmostEqual(dlm.model.obsVar[0, 0]/1e10, 0.5) self.kf0.forwardFilter(dlm.model, None) self.assertAlmostEqual(dlm.model.obs[0, 0], 1.0) self.assertAlmostEqual(dlm.model.obsVar[0, 0]/1e10, 0.5) self.kf0.forwardFilter(dlm.model, 0) self.assertAlmostEqual(dlm.model.obs[0, 0], 0.0) def testMissingEvaluation(self): dlm = builder() dlm.add(self.trend0) dlm.initialize() dlm.model.evaluation = np.matrix([[None]]) self.kf1.forwardFilter(dlm.model, 1.0, dealWithMissingEvaluation = True) self.assertAlmostEqual(dlm.model.obs, 0.0) self.assertAlmostEqual(dlm.model.transition, 1.0) def testEvolveMode(self): dlm = builder() dlm.add(self.trend0_90) dlm.add(self.trend0_98) dlm.initialize() kf2 = kalmanFilter(discount=[0.9, 0.98], updateInnovation='component', index=dlm.componentIndex) kf2.forwardFilter(dlm.model, 1.0) self.assertAlmostEqual(dlm.model.innovation[0, 1], 0.0) self.assertAlmostEqual(dlm.model.innovation[1, 0], 0.0) if __name__ == '__main__': unittest.main()
StarcoderdataPython