id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
6419438
from ptree.generators.tree_generator import TreeGenerator from ptree.rptree import DirectoryTree import argparse import pathlib import sys from termcolor import colored ERROR_BANNER = colored("ERROR:", "red") def parse_args(): parser = argparse.ArgumentParser( prog="ptree", description="print tree representation of dir", epilog="Thanks for using P Tree!", ) parser.add_argument( "dir", metavar="ROOT_DIR", default=".", nargs="?", help="Generate a full directory tree starting at ROOT_DIR.", ) parser.add_argument( "--max_depth", metavar="MAX_DEPTH", type=int, required=False, default=3, help="Max depth till where to show tree. Valid values > 0", ) return parser.parse_args() def print_error_message(msg): message = colored(msg, "yellow") print(f"{ERROR_BANNER} {message}") sys.exit() def main(): args = parse_args() root_dir = args.dir if not pathlib.Path(root_dir).is_dir(): print_error_message("The Specified dir doesn't exists") max_depth = args.max_depth if max_depth <= 0: print_error_message(f"invalid value of max_depth: {max_depth}") DirectoryTree(TreeGenerator(root_dir, max_depth)).generate()
StarcoderdataPython
6443717
import cv2 def change_brightness(img, value=30): hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv) v = cv2.add(v,value) v[v > 255] = 255 v[v < 0] = 0 final_hsv = cv2.merge((h, s, v)) img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR) return img for datax in range(0,1): # Opens the inbuilt camera of laptop to capture video. cap = cv2.VideoCapture(0) i = 0 while(cap.isOpened()): ret, frame = cap.read() # This condition prevents from infinite looping # incase video ends. if ret == False: break if i!=64: # Save Frame by Frame into disk using imwrite method dim = (28,28) img=cv2.resize(frame,dim) #cv2.imwrite(str(i)+'.jpg', img) #img = change_brightness(img, value=-100) #decreases cv2.imwrite("images/"+str(i)+".jpg", img) i += 1 print(i) else: break cap.release() cv2.destroyAllWindows() import os import random from PIL import Image, ImageOps import numpy as np for j in range(0,8): for i in range(0,8): # read the images img1 = cv2.imread('images/'+str(j*8+i)+".jpg") if i!=0: # vertically concatenates images # of same width im_v = cv2.hconcat([im_v, img1]) else: im_v = img1 if j!=0: im_h = cv2.vconcat([im_h, im_v]) else: im_h = im_v # show the output image cv2.imwrite('img.jpg')
StarcoderdataPython
1728331
<reponame>Anirban166/tstl<filename>tstl/replay.py from __future__ import print_function import sys import traceback import os import time # Appending current working directory to sys.path # So that user can run randomtester from the directory where sut.py is located current_working_dir = os.getcwd() sys.path.append(current_working_dir) if "--help" not in sys.argv: import sut as SUT def trace_lines(frame, event, arg): if event != 'line': return co = frame.f_code func_name = co.co_name line_no = frame.f_lineno print(' %s line %s' % (func_name, line_no)) sys.stdout.flush() def trace_calls(frame, event, arg): if event != 'call': return co = frame.f_code func_name = co.co_name if func_name == 'write': # Ignore write() calls from print statements return line_no = frame.f_lineno filename = co.co_filename print('Call to %s on line %s of %s' % (func_name, line_no, filename)) sys.stdout.flush() return trace_lines def main(): if "--help" in sys.argv: print( "Usage: tstl_replay <test file> [--noCheck] [--logging loglevel] [--verbose] [--showActions] [--coverage]" + " [--internal] [--html directory] [--delay secs] [--trace] [--afl] [--aflswarm]") print("Options:") print("--noCheck: do not run property checks") print("--logging: set the logging level for the test") print("--verbose: run with verbose action output") print("--hideOpaque: hide opaque values in verbose actions") print("--showActions: show all actions") print("--coverage: report code coverage") print("--internal: report detailed code coverage information") print("--html: produce HTML report on coverage") print("--delay: delay to inject between steps") print("--trace: trace lines executed (does not work with SUTs compiled with coverage)") print("--afl: test is in afl format") print("--aflswarm: test is in afl swarm format") sys.exit(0) sut = SUT.sut() if not (("--coverage" in sys.argv) or ("--internal" in sys.argv)): try: sut.stopCoverage() except BaseException: pass if ("--trace" in sys.argv): goodToTrace = False try: sut.stopCoverage() except BaseException: goodToTrace = True if not goodToTrace: print( "CANNOT TRACE WHEN SUT IS COMPILED WITH COVERAGE. REBUILD WITH --noCover") sys.exit(1) rout = open("replay.out", 'w') file = sys.argv[1] nocheck = "--noCheck" in sys.argv verbose = "--verbose" in sys.argv logLevel = None if "--logging" in sys.argv: lastWasLogging = False for line in sys.argv: if lastWasLogging: logLevel = int(line) if line == "--logging": lastWasLogging = True else: lastWasLogging = False delay = None if "--delay" in sys.argv: lastWasDelay = False for line in sys.argv: if lastWasDelay: delay = float(line) if line == "--delay": lastWasDelay = True else: lastWasDelay = False htmlOut = None lastWasHtml = False for f in sys.argv[1:]: if lastWasHtml: htmlOut = f lastWasHtml = False elif f == "--html": lastWasHtml = True else: lastWasHtml = False sut.restart() if logLevel is not None: sut.setLog(logLevel) i = 0 if verbose: sut.verbose(True) if "--hideOpaque" in sys.argv: sut.verboseOpaque(False) if "--afl" not in sys.argv: with open(file, 'r') as f: theTest = f.readlines() else: readTest = sut.loadTest( file, afl=True, swarm=("--aflswarm" in sys.argv)) theTest = list(map(lambda x: x[0] + "\n", readTest)) for line in theTest: name = line[:-1] if name == "<<RESTART>>": if "--showActions" in sys.argv: print("<<RESTART>>") # print "RESTART" rout.write("<<RESTART>>\n") rout.flush() sut.restart() else: if verbose: print("STEP #" + str(i) + ":", end=' ') rout.write(line) rout.flush() action = sut.playable(name) if "--showActions" in sys.argv: print(sut.prettyName(action[0])) if action[1](): # check the guard if "--trace" in sys.argv: sys.settrace(trace_calls) stepOk = sut.safely(action) if "--trace" in sys.argv: sys.settrace(None) if not stepOk: print("FAILED STEP") print(sut.failure()) traceback.print_tb(sut.failure()[2], file=sys.stdout) if "--internal" in sys.argv: sut.internalReport() if "--coverage" in sys.argv: print(sut.report("coverage.out"), "PERCENT COVERED") if htmlOut is not None: sut.htmlReport(htmlOut) sys.exit(255) if not nocheck: checkResult = sut.check() if not checkResult: print("FAILED PROPERTY") print(sut.failure()) traceback.print_tb(sut.failure()[2], file=sys.stdout) if "--internal" in sys.argv: sut.internalReport() if "--coverage" in sys.argv: print(sut.report("coverage.out"), "PERCENT COVERED") if htmlOut is not None: sut.htmlReport(htmlOut) sys.exit(255) if delay is not None: time.sleep(delay) i += 1 rout.write("TEST REPLAYED SUCCESSFULLY\n") rout.close() if "--internal" in sys.argv: sut.internalReport() if "--coverage" in sys.argv: print(sut.report("coverage.out"), "PERCENT COVERED") if htmlOut is not None: sut.htmlReport(htmlOut) sys.exit(0)
StarcoderdataPython
4960863
<reponame>radmirnovii/databend #!/usr/bin/env python3 import os import sys import signal CURDIR = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(CURDIR, '../../helpers')) from client import client log = None # uncomment the line below for debugging log = sys.stdout client1 = client(name='client1>', log=log) sqls = """ DROP DATABASE IF EXISTS db1; CREATE DATABASE db1; USE db1; CREATE TABLE IF NOT EXISTS t1(a String, b String, c String, d String, e String, f String, g String, h String) Engine = Memory; INSERT INTO t1 (a,b,c,d,e,f,g,h) VALUES('1','2','3','4','2021-08-15', '2021-09-15', '2021-08-15 10:00:00', 'string1234'), ('5','6','7','8','2021-10-15', '2021-11-15', '2021-11-15 10:00:00', 'string5678'); INSERT INTO t1(a,b,c,d,e,f,g,h) select * from t1; SELECT COUNT(1) = 4 from t1; DROP DATABASE db1; """ client1.run(sqls) stdout, stderr = client1.run_with_output("select * from system.metrics") assert stdout is not None assert stderr is None
StarcoderdataPython
166003
<gh_stars>1-10 # -*- encoding: utf-8 -*- """ Copyright (c) 2019 - present AppSeed.us License: https://github.com/app-generator/license-eula """ class COMMON: NULL = None # not set NA = -1 # not set OK = 0 # all ok ERR = 1 # not ok NOT_FOUND = 2 # file or directory not found INPUT_ERR = 3 # file or directory not found # Recover errors for COMMON class def errorinfo( aErrorCode ): if COMMON.NA == aErrorCode: return 'Not Set' if COMMON.ERR == aErrorCode: return 'Error Generic' if COMMON.OK == aErrorCode: return 'OK' if COMMON.NOT_FOUND == aErrorCode: return 'Not Found' if COMMON.INPUT_ERR == aErrorCode: return 'Input error' return 'UNKN Err ' + str( aErrorCode ) ''' Order is important - start with long paths ''' ASSETS_MAP = { '../../../assets' : '/static/assets', '../../assets' : '/static/assets', '../assets' : '/static/assets', './assets' : '/static/assets', '../../../css' : '/static/assets/css', '../../css' : '/static/assets/css', '../css' : '/static/assets/css', './css' : '/static/assets/css', '../../../vendor' : '/static/assets/vendor', '../../vendor' : '/static/assets/vendor', '../vendor' : '/static/assets/vendor', './vendor' : '/static/assets/vendor', '../../../lib' : '/static/assets/lib', '../../lib' : '/static/assets/lib', '../lib' : '/static/assets/lib', './lib' : '/static/assets/lib', 'lib/' : '/static/assets/lib/', '../../js' : '/static/assets/js', '../js' : '/static/assets/js', './js' : '/static/assets/js', '../../../img' : '/static/assets/img', '../../img' : '/static/assets/img', '../img' : '/static/assets/img', './img' : '/static/assets/img', '../../node_modules' : '/static/assets/node_modules', '../node_modules' : '/static/assets/node_modules', './node_modules' : '/static/assets/node_modules' } class BS_TAG: def __init__(self, aTag): self._tag = aTag self.href = '' self.rel = '' self.type = '' self.is_local = True self.is_link = False self.is_canonical = False self.is_css = False self.is_img = False self.is_js = False self.is_icon = False self.is_manifest = False self.path = '' self.file = '' self.ext = '' self.data = {} def printme(self): print('>>> TAG Info') if self.is_css: print(' - Type = CSS' ) if self.is_img: print(' - Type = IMAGE' ) if self.is_js: print(' - Type = JS' ) if self.is_icon: print(' - Type = ICON' ) if self.is_manifest: print(' - Type = MANIFEST' ) if self.is_local: print(' - Storage = LOCAL' ) else: print(' - Storage = REMOTE' ) print(' - HREF = ' + self.href ) print(' - PATH = ' + self.path ) print(' - FILE = ' + self.file ) print(' - EXT = ' + self.ext ) def info(self): ret = 'UNKN ' if self.is_css: ret = 'CSS ' if self.is_img: ret = 'IMAGE ' if self.is_js: ret = 'JS ' if self.is_link: ret = 'LINK ' if self.is_canonical: ret = 'CANNONICAL ' if self.is_icon: ret = 'ICON ' if self.is_manifest: ret = 'MANIFEST ' if self.is_local: ret += '(local) ' else: ret += '(www) ' if self.is_canonical or self.is_link: ret += self.href else: ret += '[' + self.file + '] ' + self.href + ' -> [' + str(self.path) + '] ' return ret class TMPL: def __init__(self, aFile=''): self.file = aFile self.title = '' self.css = [] self.js = [] self.img = [] self.links = [] self.all_files = [] # used to fix the file internal links self.err = [] # used to report missing assets self.err_links = [] # used to report missing assets def __repr__(self): errors = len( self.err) + len( self.err_links) return "" + self.file + ' | css=' + str(len( self.css )) + ' / js=' + str(len( self.js )) + ' / img=' + str(len( self.img )) + ' - ('+str(errors)+') ERRORS'
StarcoderdataPython
3583059
<filename>system_test_progress_tracking/tm_api/admin.py from django.contrib import admin from .models import ( Machine, Test, Scenario, MasterScenario, DryRunData, ) admin.site.register(Machine) admin.site.register(Test) admin.site.register(Scenario) admin.site.register(MasterScenario) admin.site.register(DryRunData)
StarcoderdataPython
3436071
<reponame>ydong08/PythonCode #!/usr/bin/python #encoding=utf-8 from SocketServer import TCPServer, ForkingMixIn, StreamRequestHandler import time class Server(ForkingMixIn, TCPServer): #自定义Server类 pass class MyHandler(StreamRequestHandler): def handle(self): #重载handle函数 addr = self.request.getpeername() print 'Get connection from', addr #打印客户端地址 time.sleep(5) #休眠5秒钟 self.wfile.write('This is a ForkingMixIn tcp socket server') #发送信息 host = '' port = 1234 server = Server((host, port), MyHandler) server.serve_forever() #开始侦听并处理连接
StarcoderdataPython
9764066
<gh_stars>1-10 import copy import torch import torch.nn as nn from others.transformers import BertModel, BertConfig from others.transformers import RobertaModel, RobertaConfig from torch.nn.init import xavier_uniform_ from models.decoder import TransformerDecoder from models.encoder import Classifier, ExtTransformerEncoder from models.optimizers import Optimizer def build_optim(args, model, checkpoint): """ Build optimizer """ #if checkpoint is not None: if False: optim = checkpoint['optim'][0] saved_optimizer_state_dict = optim.optimizer.state_dict() optim.optimizer.load_state_dict(saved_optimizer_state_dict) if args.visible_gpus != '-1': for state in optim.optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() if (optim.method == 'adam') and (len(optim.optimizer.state) < 1): raise RuntimeError( "Error: loaded Adam optimizer from existing model" + " but optimizer state is empty") else: optim = Optimizer( args.optim, args.lr, args.max_grad_norm, beta1=args.beta1, beta2=args.beta2, decay_method='noam', warmup_steps=args.warmup_steps) optim.set_parameters(list(model.named_parameters())) return optim def build_optim_bert(args, model, checkpoint): """ Build optimizer """ #if checkpoint is not None: if False: optim = checkpoint['optims'][0] saved_optimizer_state_dict = optim.optimizer.state_dict() optim.optimizer.load_state_dict(saved_optimizer_state_dict) if args.visible_gpus != '-1': for state in optim.optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() if (optim.method == 'adam') and (len(optim.optimizer.state) < 1): raise RuntimeError( "Error: loaded Adam optimizer from existing model" + " but optimizer state is empty") else: optim = Optimizer( args.optim, args.lr_bert, args.max_grad_norm, beta1=args.beta1, beta2=args.beta2, decay_method='noam', warmup_steps=args.warmup_steps_bert) params = [(n, p) for n, p in list(model.named_parameters()) if n.startswith('bert.model')] optim.set_parameters(params) return optim def build_optim_dec(args, model, checkpoint): """ Build optimizer """ #if checkpoint is not None: if False: optim = checkpoint['optims'][1] saved_optimizer_state_dict = optim.optimizer.state_dict() optim.optimizer.load_state_dict(saved_optimizer_state_dict) if args.visible_gpus != '-1': for state in optim.optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() if (optim.method == 'adam') and (len(optim.optimizer.state) < 1): raise RuntimeError( "Error: loaded Adam optimizer from existing model" + " but optimizer state is empty") else: optim = Optimizer( args.optim, args.lr_dec, args.max_grad_norm, beta1=args.beta1, beta2=args.beta2, decay_method='noam', warmup_steps=args.warmup_steps_dec) params = [(n, p) for n, p in list(model.named_parameters()) if not n.startswith('bert.model')] optim.set_parameters(params) return optim class SpanPositionalEncoding(): def __init__(self, itos, padding_idx): self.itos = itos self.padding_idx = padding_idx def __call__(self, x): # print(x.shape) seq_len, batch_size = x.shape pos_enc = torch.zeros_like(x) for b in range(batch_size): for i in range(seq_len): if '##' not in self.itos[x[i, b].item()] or i == 0: pos_enc[i, b] = 0 else: if i > 0 and x[i, b].item() != self.padding_idx and '##' in self.itos[x[i, b].item()]: pos_enc[i, b] = 1 + pos_enc[i-1, b] else: pos_enc[i, b] = 0 return pos_enc @staticmethod def decay(pos, prev, curr, decay_rate=0.1): """Copy rate decaying for current step. Arguments: pos {[type]} -- [S, B] prev {[type]} -- copy rate for last step, [T-1, B, S] curr {[type]} -- copy rate for current step, [T, B, S] Keyword Arguments: decay_rate {float} -- [description] (default: {0.1}) Returns: [type] -- new copy rate for current step, [T, B, S] """ steps = curr.size(0) print ('curr_shape: ', curr.shape) print ('prev_shape: ', prev.shape) print ('pos_shape: ', pos.shape) residual = torch.zeros_like(curr) # [T, B, S] mask = torch.zeros_like(curr) # [T, B, S] residual[1:, ..., 1:] += prev[..., :-1] * decay_rate # [T, B, S] # Only if the current step is within the same span of the last step. flag = (pos[1:] > pos[:-1]).float() # [S-1, B] mask[-1:, ..., 1:] += flag.transpose(0, 1).unsqueeze(0).repeat([1, 1, 1]) mask = (mask == 1.0) new = residual + (1 - decay_rate) * curr ans = torch.where(mask, new, curr) return torch.softmax(ans, dim=-1) def get_generator(vocab_size, dec_hidden_size, device): gen_func = nn.LogSoftmax(dim=-1) generator = nn.Sequential( nn.Linear(dec_hidden_size, vocab_size), gen_func ) generator.to(device) return generator class CopyGenerator(nn.Module): def __init__(self, vocab_size, d_model): super(CopyGenerator, self).__init__() self.vocab_size = vocab_size self.gen_proj = nn.Linear(d_model, vocab_size) self.prob_proj = nn.Linear(d_model*2, 1) self.sig_proj = nn.Sigmoid() self.gen_softmax = nn.Softmax(dim=-1) self.copy_softmax = nn.Softmax(dim=-1) def forward(self, src, decode_output, decode_attn, memory): decode_attn = torch.mean(decode_attn, dim=1) batch_size, steps, seq = decode_attn.size() src = src.unsqueeze(1).repeat([1, steps, 1]) # vocab gen_logits = self.gen_proj(decode_output) copy_logits = torch.zeros_like(gen_logits) context = torch.matmul(decode_attn, memory) copy_logits = copy_logits.scatter_add(2, src, decode_attn) prob = self.sig_proj(self.prob_proj(torch.cat([context, decode_output], -1))) gen_logits = prob * self.gen_softmax(gen_logits) copy_logits = (1 - prob) * self.copy_softmax(copy_logits) final_logits = gen_logits + copy_logits return torch.log(final_logits.squeeze(1).contiguous().view(-1, self.vocab_size)) class Bert(nn.Module): def __init__(self, large, temp_dir, model_pth=None, finetune=False): super(Bert, self).__init__() if(large): self.model = BertModel.from_pretrained(model_pth, cache_dir=temp_dir) else: self.model = BertModel.from_pretrained(model_pth, cache_dir=temp_dir) self.finetune = finetune def forward(self, x, segs, mask): if(self.finetune): top_vec, _ = self.model(x, mask) else: self.eval() with torch.no_grad(): top_vec, _ = self.model(x, mask) return top_vec class Roberta(nn.Module): def __init__(self, large, temp_dir, model_pth=None, finetune=False): super(Roberta, self).__init__() if(large): self.model = RobertaModel.from_pretrained(model_pth, cache_dir=temp_dir) else: self.model = RobertaModel.from_pretrained(model_pth, cache_dir=temp_dir) self.finetune = finetune def forward(self, x, segs, mask): if(self.finetune): top_vec, _ = self.model(x, attention_mask=mask) else: self.eval() with torch.no_grad(): top_vec, _ = self.model(x, attention_mask=mask) return top_vec class ExtSummarizer(nn.Module): def __init__(self, args, device, checkpoint): super(ExtSummarizer, self).__init__() self.args = args self.device = device self.bert = Bert(args.large, args.temp_dir, args.finetune_bert) self.ext_layer = ExtTransformerEncoder(self.bert.model.config.hidden_size, args.ext_ff_size, args.ext_heads, args.ext_dropout, args.ext_layers) if (args.encoder == 'baseline'): bert_config = BertConfig(self.bert.model.config.vocab_size, hidden_size=args.ext_hidden_size, num_hidden_layers=args.ext_layers, num_attention_heads=args.ext_heads, intermediate_size=args.ext_ff_size) self.bert.model = BertModel(bert_config) self.ext_layer = Classifier(self.bert.model.config.hidden_size) if(args.max_pos>512): my_pos_embeddings = nn.Embedding(args.max_pos, self.bert.model.config.hidden_size) my_pos_embeddings.weight.data[:512] = self.bert.model.embeddings.position_embeddings.weight.data my_pos_embeddings.weight.data[512:] = self.bert.model.embeddings.position_embeddings.weight.data[-1][None,:].repeat(args.max_pos-512,1) self.bert.model.embeddings.position_embeddings = my_pos_embeddings if checkpoint is not None: self.load_state_dict(checkpoint['model'], strict=True) else: if args.param_init != 0.0: for p in self.ext_layer.parameters(): p.data.uniform_(-args.param_init, args.param_init) if args.param_init_glorot: for p in self.ext_layer.parameters(): if p.dim() > 1: xavier_uniform_(p) self.to(device) def forward(self, src, segs, clss, mask_src, mask_cls): top_vec = self.bert(src, segs, mask_src) sents_vec = top_vec[torch.arange(top_vec.size(0)).unsqueeze(1), clss] sents_vec = sents_vec * mask_cls[:, :, None].float() sent_scores = self.ext_layer(sents_vec, mask_cls).squeeze(-1) return sent_scores, mask_cls class AbsSummarizer(nn.Module): def __init__(self, args, device, checkpoint=None, bert_from_extractive=None, ids_to_tokens=None): super(AbsSummarizer, self).__init__() self.args = args self.device = device if args.train_from == "bart": self.bert = RobertaModel(RobertaConfig("/home/lcl193798/PreRobertaSummMaro/src/config.json")) elif args.encoder == 'bert' or args.encoder == 'zh_bert': self.bert = Bert(args.large, args.temp_dir, args.model_pth, args.finetune_bert) elif args.encoder == 'roberta': self.bert = Roberta(args.large, args.temp_dir, args.model_pth, args.finetune_bert) if (args.encoder == 'baseline'): bert_config = BertConfig(self.bert.model.config.vocab_size, hidden_size=args.enc_hidden_size, num_hidden_layers=args.enc_layers, num_attention_heads=8, intermediate_size=args.enc_ff_size, hidden_dropout_prob=args.enc_dropout, attention_probs_dropout_prob=args.enc_dropout) self.bert.model = BertModel(bert_config) if(args.max_pos>512): my_pos_embeddings = nn.Embedding(args.max_pos, self.bert.model.config.hidden_size) my_pos_embeddings.weight.data[:512] = self.bert.model.embeddings.position_embeddings.weight.data my_pos_embeddings.weight.data[512:] = self.bert.model.embeddings.position_embeddings.weight.data[-1][None,:].repeat(args.max_pos-512,1) self.bert.model.embeddings.position_embeddings = my_pos_embeddings if args.train_from == "bart": self.vocab_size = self.bert.config.vocab_size else: self.vocab_size = self.bert.model.config.vocab_size if args.encoder == 'roberta': if args.train_from == "bart": tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.config.hidden_size, padding_idx=1) else: tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.model.config.hidden_size, padding_idx=1) else: tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.model.config.hidden_size, padding_idx=0) if (self.args.share_emb) and self.args.train_from != 'bart': tgt_embeddings.weight = copy.deepcopy(self.bert.model.embeddings.word_embeddings.weight) self.decoder = TransformerDecoder( self.args.dec_layers, self.args.dec_hidden_size, heads=self.args.dec_heads, d_ff=self.args.dec_ff_size, dropout=self.args.dec_dropout, embeddings=tgt_embeddings, train_from=self.args.train_from) ''' else: args_bart = checkpoint['args_bart'] tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.model.config.hidden_size, padding_idx=1) dictionary = [0]*self.vocab_size self.decoder = TransformerBartDecoder(args_bart, dictionary, tgt_embeddings) ''' if self.args.p_gen: self.generator = CopyGenerator(self.vocab_size, self.args.dec_hidden_size) #print (self.generator.gen_proj) self.generator.gen_proj.weight = self.decoder.embeddings.weight else: self.generator = get_generator(self.vocab_size, self.args.dec_hidden_size, device) #print (self.generator) #print (self.generator[0]) self.generator[0].weight = self.decoder.embeddings.weight if checkpoint is not None: self.load_state_dict(checkpoint['model'], strict=False) else: for module in self.decoder.modules(): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() for p in self.generator.parameters(): if p.dim() > 1: xavier_uniform_(p) else: p.data.zero_() if(args.use_bert_emb) and args.train_from != 'bart': if args.encoder == "roberta": tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.model.config.hidden_size, padding_idx=1) else: tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.model.config.hidden_size, padding_idx=0) tgt_embeddings.weight = copy.deepcopy(self.bert.model.embeddings.word_embeddings.weight) self.decoder.embeddings = tgt_embeddings if self.args.p_gen: self.generator.gen_proj.weight = self.decoder.embeddings.weight else: self.generator[0].weight = self.decoder.embeddings.weight if bert_from_extractive is not None: #print ([n for n, p in bert_from_extractive.items()]) self.bert.model.load_state_dict( dict([(n[5:], p) for n, p in bert_from_extractive.items() if n.startswith('bert')]), strict=True) self.to(device) def forward(self, src, tgt, mask_src, mask_tgt): top_vec = self.bert(src, None, mask_src) dec_state = self.decoder.init_decoder_state(src, top_vec) decoder_outputs, attns, state = self.decoder(tgt[:, :-1], top_vec, dec_state) return decoder_outputs, attns[-1], top_vec, None
StarcoderdataPython
4864987
<gh_stars>0 from microbit import * import utime import machine import music class Robit: PRESCALE_REG = 0xFE MODE_1_REG = 0x00 SRV_REG_BASE = 0x08 MOT_REG_BASE = 0x28 REG_OFFSET = 4 SERVO_MULTIPLIER = 226 SERVO_ZERO_OFFSET = 0x66 chipAddress = 0x40 initialised = False stepInit = False stepStage = 0 stepper1Steps = 200 stepper2Steps = 200 lineFollowLeftPin = pin13 lineFollowRightPin = pin14 Jpin = {'J1': (pin13, pin14), 'J2': (pin15, pin16), 'J3': (pin1, pin2), 'J4': (pin3, pin4)} def __init__(self): buf = bytearray(2) buf[0] = self.PRESCALE_REG buf[1] = 0x85 # 50Hz i2c.write(self.chipAddress, buf, False) for blockReg in range(0xFA, 0xFE, 1): buf[0] = blockReg buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) buf[0] = self.MODE_1_REG buf[1] = 0x01 i2c.write(self.chipAddress, buf, False) self.initialised = True def servoWrite(self, servo, degrees): if self.initialised is False: self.__init__(self) buf = bytearray(2) calcServo = self.SRV_REG_BASE + ((servo - 1) * self.REG_OFFSET) HighByte = False PWMVal = (degrees * 100 * self.SERVO_MULTIPLIER) / (10000 + self.SERVO_ZERO_OFFSET) if (PWMVal > 0xFF): HighByte = True buf[0] = calcServo buf[1] = int(PWMVal) i2c.write(self.chipAddress, buf, False) buf[0] = calcServo + 1 if (HighByte): buf[1] = 0x01 else: buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) def motorOn(self, motor, direction, speed): if self.initialised is False: self.__init__(self) buf = bytearray(2) motorReg = self.MOT_REG_BASE + (2 * (motor - 1) * self.REG_OFFSET) HighByte = False OutputVal = speed * 40 if direction == "forward": if OutputVal > 0xFF: HighByte = True HighOutputVal = int(OutputVal/256) buf[0] = motorReg buf[1] = int(OutputVal) i2c.write(self.chipAddress, buf, False) buf[0] = motorReg + 1 if HighByte: buf[1] = HighOutputVal else: buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) for offset in range(4, 6, 1): buf[0] = motorReg + offset buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) elif direction == "reverse": if OutputVal > 0xFF: HighByte = True HighOutputVal = int(OutputVal/256) buf[0] = motorReg + 4 buf[1] = int(OutputVal) i2c.write(self.chipAddress, buf, False) buf[0] = motorReg + 5 if HighByte: buf[1] = HighOutputVal else: buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) for offset2 in range(0, 2, 1): buf[0] = motorReg + offset2 buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) def motorOff(self, motor): buf = bytearray(2) motorReg = self.MOT_REG_BASE + (2 * (motor - 1) * self.REG_OFFSET) for offset3 in range(0, 2, 1): buf[0] = motorReg + offset3 buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) for offset4 in range(4, 6, 1): buf[0] = motorReg + offset4 buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) def allOff(self): buf = bytearray(2) servoOffCount = 0 servoRegCount = 0 for motors in range(1, 5, 1): self.motorOff(self, motors) while servoOffCount < 8: for offset5 in range(0, 2, 1): buf[0] = self.SRV_REG_BASE + servoRegCount + offset5 buf[1] = 0x00 i2c.write(self.chipAddress, buf, False) servoRegCount += 4 servoOffCount += 1 def Ultrasonic(self, jpin): pin = self.Jpin.get(jpin)[1] # send pulse pin.write_digital(0) utime.sleep_us(2) pin.write_digital(1) utime.sleep_us(10) pin.write_digital(0) # Get the duration, in microseconds, of a pulse high from one of the pin distance = machine.time_pulse_us(pin, 1, 23000) / 58 return distance def init_line_follow(self, jpin): self.lineFollowLeftPin = self.Jpin.get(jpin)[0] self.lineFollowRightPin = self.Jpin.get(jpin)[1] def left_line_follow(self): return self.lineFollowLeftPin.read_digital() def right_line_follow(self): return self.lineFollowRightPin.read_digital() def sound_r2d2(self): tune = ["A7:0", "G7:0", "E7:0", "C7:0", "D7:0", "B7:0", "F7:0", "C8:0", "A7:0", "G7:0", "E7:0", "C7:0", "D7:0", "B7:0", "F7:0", "C8:0"] music.play(tune) def sound_bip(self): for i in range(2): freq = 2000 while freq > 1000: music.pitch(int(freq), 10) freq *= 0.95 freq = 1000 while freq < 3000: music.pitch(int(freq), 10) freq *= 1.05 def light_level(self): level = pin10.read_analog() return level
StarcoderdataPython
3417560
print "Hello, Pyhons!"
StarcoderdataPython
371037
import json import cassandra import sys from cassandra.cluster import Cluster import os def main(): #create database connection cluster = Cluster() #use keyspace 'hash' session = cluster.connect() #!!! #CREATE KEYSPACE IF NOT EXITSTS hash WITH REPLICATION = {'class': 'SimpleStrategy', 'replication_factor':1}; session.execute(""" CREATE KEYSPACE IF NOT EXITSTS hash WITH REPLICATION = { 'class': 'SimpleStrategy', 'replication_factor': '1'} """) session.execute(''' CREATE TABLE public_recipe ( id text, name text, time int, imageurl text, ingredients list<text>, numberofserving int, flavor text, instruction text, PRIMARY KEY(id) ) ''') session.execute(''' CREATE TABLE user ( id uuid, username text, email text, password <PASSWORD>, favorite text, ingredients text, PRIMARY KEY(username) ) ''') session.execute(''' CREATE custom index fn_contains on public_recipe(name) using 'org.apache.cassandra.index.sasi.SASIIndex' with OPTIONS = { 'mode': 'CONTAINS', 'analyzer_class': 'org.apache.cassandra.index.sasi.analyzer.NonTokenizingAnalyzer', 'case_sensitive': 'false'} ''') #close database connection cluster.shutdown() if __name__ == '__main__': main()
StarcoderdataPython
3556586
from django.conf import settings as django_setting __all__ = ( 'LIKES_MODELS', 'LIKES_REST_PAGINATION_CLASS' ) LIKES_MODELS = getattr( django_setting, 'LIKES_MODELS', {} ) LIKES_REST_PAGINATION_CLASS = getattr( django_setting, 'LIKES_REST_PAGINATION_CLASS', None )
StarcoderdataPython
320175
<gh_stars>0 import easyocr import os reader = easyocr.Reader(['en']) images=os.listdir(r'NIC_Images') def get_data(data:list): Name=Father_Name=Gender=Id_Number=D_O_Birth=D_O_Issue=D_O_Expiry='-' gaurdian='Father Name' #father name if list(filter(lambda x: 'Father' in x, data)): Father_Name=data[data.index(list(filter(lambda x: 'Father' in x, data))[0])+1] elif list(filter(lambda x: 'Husband' in x, data)): Father_Name=data[data.index((list(filter(lambda x: 'Husband' in x, data)))[0])+1] gaurdian="Husband Name" Gender='F' #name if "Name" in data: Name=data[data.index("Name")+1] if Name == "-": _name=list(filter(lambda x: 'Nam' in x, data)) if _name and not bool(list(filter(lambda x: 'Father' in x, _name))): Name=data[data.index(list(filter(lambda x: 'Nam' in x, data))[0])+1] elif Father_Name != "-": Name=data[data.index(list(filter(lambda x: 'Father' in x, data))[0])-1] #gender if "F" in data: Gender='F' elif "M" in data: Gender='M' #id_number Id_Number=list(filter(lambda x: '-' in x, data))[0] #dates try: D_O_Birth,D_O_Issue,D_O_Expiry=list(filter(lambda x: '.' in x, data)) except:pass #assign data data_dic={ 'Name':Name, gaurdian:Father_Name, 'Gender':Gender, 'Identity Number':Id_Number, 'Date Of Birth':D_O_Birth, 'Date Of Issue':D_O_Issue, 'Date Of Expiry':D_O_Expiry} return data_dic if not os.path.exists("output"): os.mkdir('output') for i,j in enumerate(images): print(f"========== Image {j} Data fetching... ==========") output = reader.readtext(rf'NIC_Images/{j}') data=[] for a,b,c in output: data.append(b) # print(b) print(get_data(data)) f=open(f"output/{j.split(sep='.')[0]}.txt",'w') f.write("================data from image================\n") f.write(str(data)) f.write("\n================extracted from data================\n") for i in get_data(data).items(): f.write(str(i)) f.write('\n') f.close()
StarcoderdataPython
3398722
<reponame>realsifocopypaste333/sifo-player-binary # Generated by Django 3.0 on 2019-12-03 12:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('music', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='album', name='album_logo', ), migrations.AddField( model_name='album', name='album_image', field=models.FileField(default='', upload_to='album_logo/'), ), ]
StarcoderdataPython
6486814
<gh_stars>1000+ from cookies.resources.helpers import makeDropCookie, setNoCacheAndCORSHeaders def main(request, response): """Respond to `/cookies/resources/dropSameSiteMultiAttribute.py by dropping the cookies set by setSameSiteMultiAttribute.py""" headers = setNoCacheAndCORSHeaders(request, response) # Expire the cookies, and return a JSON-encoded success code. headers.append(makeDropCookie(b"samesite_unsupported", True)) headers.append(makeDropCookie(b"samesite_unsupported_none", True)) headers.append(makeDropCookie(b"samesite_unsupported_lax", False)) headers.append(makeDropCookie(b"samesite_unsupported_strict", False)) headers.append(makeDropCookie(b"samesite_none_unsupported", True)) headers.append(makeDropCookie(b"samesite_lax_unsupported", True)) headers.append(makeDropCookie(b"samesite_strict_unsupported", True)) headers.append(makeDropCookie(b"samesite_lax_none", True)) return headers, b'{"success": true}'
StarcoderdataPython
8141114
import numpy as np class Space: """A space is a general concept, where it can be discrete or continuous.""" def __init__(self, check): """Defines a space, by having a check lambda. :param check A lambda verifying if the element is in the space. """ self.check = np.vectorize(check) def contains(self, x): """This method checks whether the space contains the list of samples. :param x The list of points. :returns True, if all elements inside. """ if isinstance(x, set): x = list(x) elif not isinstance(x, list): x = [x] return self.check(x) def cut(self, space): """Check if the current space intersects with the passed space. :return Passes back the result as a set. """ pass class ContinuousSpace(Space): """A continuous space [a,b(.""" def __init__(self, a, b, open_brackets = True): """Defines a continuous interval, using the boundaries. :param a The left side of interval. :param b The right side of interval. :param open_brackets True if brackets shall be open. """ self.a = a self.b = b self.open_brackets = open_brackets # make check lambda fn = np.greater if open_brackets else np.greater_equal def f(x): return np.logical_and(fn(x, a), fn(b, x)) super().__init__(f) def cut(self, space): """Check if the current space intersects with the passed space. :return Passes back the result as a set. """ if isinstance(space, ContinuousSpace): if space.b < self.a or self.b < space.a: return NullSpace() term_s = np.maximum(self.a, space.a) term_e = np.minimum(self.b, space.b) return ContinuousSpace(term_s, term_e, open_brackets=self.open_brackets) # twist the plot return space.cut(self) class DiscreteSpace(Space): """A discrete space which holds a set of elements.""" def __init__(self, s, e): """Defines a discrete set. :param s Start index :param e End index """ self.s = s self.e = e # create lambda and pass to super def f(x): return np.logical_and(np.greater_equal(x, s), np.greater(e, x)) super().__init__(f) def cut(self, space): """Check if the current space intersects with the passed space. :return Passes back the result as a set. """ la = isinstance(space, DiscreteSpace) lc = isinstance(space, ContinuousSpace) # set correctly lim = None if lc: lim = [space.a, space.b] elif la: lim = [space.s, space.e] # if it is a discrete set cut if la or lc: term_s = np.maximum(self.s, lim[0]) term_e = np.minimum(self.e, lim[1]) return DiscreteSpace(term_s, term_e + 1) space.cut(self) class NullSpace(Space): """A space which holds nothing.""" def __init__(self): """Simply reject all training inputs.""" # make check lambda f = lambda x: False check = np.vectorize(f) super().__init__(check) def cut(self, space): """Empty set cut with any space is empty. :return Always the empty set. """ return self
StarcoderdataPython
11326564
<reponame>alex-oleshkevich/malanka<filename>malanka/sockets.py<gh_stars>1-10 import json import typing as t from starlette import status from starlette.concurrency import run_until_first_complete from starlette.types import Receive, Scope, Send from starlette.websockets import WebSocket from malanka.backends import Event from malanka.pubsub import PubSub class Socket: pubsub: PubSub channel_name: str websocket: WebSocket encoding: t.Optional[str] = None def __init__(self, pubsub: PubSub, channel_name: str = None) -> None: self.pubsub = pubsub self.channel_name = channel_name or self.channel_name assert self.channel_name, 'Channel name is not set.' async def connected(self, ws: WebSocket) -> None: """Called on successful connection.""" await ws.accept() async def disconnected(self, ws: WebSocket, close_code: int) -> None: """Called after disconnection.""" async def received(self, websocket: WebSocket, data: t.Any) -> None: """Called when a message from client has been received.""" async def decode(self, ws: WebSocket, data: t.Mapping) -> t.Any: if self.encoding == 'text': if 'text' not in data: await ws.close(status.WS_1003_UNSUPPORTED_DATA) raise RuntimeError("Expected text websocket messages, but got bytes.") return data['text'] elif self.encoding == 'bytes': if 'bytes' not in data: await ws.close(status.WS_1003_UNSUPPORTED_DATA) raise RuntimeError("Expected bytes websocket messages, but got text.") elif self.encoding == 'json': text = data['text'] if data.get('text') is not None else data['bytes'].decode('utf-8') try: return self.load_json(text) except json.decoder.JSONDecodeError: await ws.close(status.WS_1003_UNSUPPORTED_DATA) raise RuntimeError('Malformed JSON data received.') return self.decode_fallback(ws, data) def decode_fallback(self, ws: WebSocket, data: t.Mapping) -> t.Any: """Handle unsupported encoding by overriding this method. Override this method to support custom data encodings. Example: import msgpack class MsgpackSocket: def decode_fallback(self, ws, data): return msgpack.loads(data["text"]) """ return data["text"] if data.get("text") else data["bytes"] async def broadcast(self, data: t.Any) -> None: """Send message to all channel members including this connection.""" await self.pubsub.publish(self.get_channel_name(), data) def get_channel_name(self) -> str: """Return current name. Override this function to set a dynamic channel name. Example: def get_channel_name(self) -> str: return 'user.%s' % self.scope['user_id'] """ return self.channel_name def load_json(self, raw_data: str) -> t.Any: """Parse JSON encoded raw data. Override this method to customize JSON parsing. Example: import ujson def load_json(self, raw_data): return ujson.loads(raw_data) """ return json.loads(raw_data) @classmethod def as_asgi(cls, pubsub: PubSub, channel_name: str = None) -> t.Callable: """Create a new ASGI compatible class with stream and channel name properly set up. This is the primary way to use Socket class. Example: from starlette.routes import WebsocketRoute from malanka.streams import RedisStream routes = [ WebSocketRoute('/ws', MySocket.as_asgi(RedisStream('redis://'))), ] """ class ASGIAppWrapper: async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: instance = cls(pubsub, channel_name) await instance(scope, receive, send) return ASGIAppWrapper() async def _receive_from_client(self, ws: WebSocket) -> None: """Listens socket for client generated events.""" close_code = status.WS_1000_NORMAL_CLOSURE try: while True: message = await ws.receive() if message['type'] == 'websocket.receive': data = await self.decode(ws, message) await self.received(ws, data) elif message['type'] == 'websocket.disconnect': close_code = int(message.get('code', status.WS_1000_NORMAL_CLOSURE)) break except Exception: close_code = status.WS_1011_INTERNAL_ERROR raise finally: await self.disconnected(ws, close_code) async def _receive_from_pubsub(self, ws: WebSocket, subscriber: t.AsyncGenerator[Event, None]) -> None: """Listens stream for data generated by another members.""" async for event in subscriber: data = event.message if self.encoding == 'text': await ws.send_text(data) elif self.encoding == 'bytes': await ws.send_bytes(data.encode('utf-8')) elif self.encoding == 'json': await ws.send_json(data) async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: """ASGI application entry point.""" self.websocket = WebSocket(scope, receive, send) async with self.pubsub: async with self.pubsub.subscribe(self.get_channel_name()) as subscriber: await self.connected(self.websocket) # connection closes if at least one of these functions returns await run_until_first_complete( (self._receive_from_client, dict(ws=self.websocket)), (self._receive_from_pubsub, dict(ws=self.websocket, subscriber=subscriber)), ) class TextSocket(Socket): encoding = 'text' class BinarySocket(Socket): encoding = 'bytes' class JSONSocket(Socket): encoding = 'json'
StarcoderdataPython
6530523
# The MIT License (MIT) # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import ipywidgets as widgets import math from traitlets import Unicode, Bool, Int, Float # https://code.activestate.com/recipes/577659-decorators-for-adding-aliases-to-methods-in-a-clas/ class alias(object): def __init__(self, *aliases): self.aliases = set(aliases) def __call__(self, f): f._aliases = self.aliases return f def aliased(aliased_class): original_methods = aliased_class.__dict__.copy() for name, method in original_methods.items(): if hasattr(method, '_aliases'): for alias in method._aliases - set(original_methods): setattr(aliased_class, alias, method) return aliased_class @aliased @widgets.register class Turtle(widgets.DOMWidget): """""" _view_name = Unicode('TurtleView').tag(sync=True) _model_name = Unicode('TurtleModel').tag(sync=True) _view_module = Unicode('ipyturtle').tag(sync=True) _model_module = Unicode('ipyturtle').tag(sync=True) _view_module_version = Unicode('^0.2.4').tag(sync=True) _model_module_version = Unicode('^0.2.4').tag(sync=True) _canvas_fixed = Bool(True).tag(sync=True) _canvas_width = Int(320).tag(sync=True) _canvas_height = Int(320).tag(sync=True) _turtle_on = Bool(True).tag(sync=True) _pen_on = True _turtle_height = Int(20).tag(sync=True) _turtle_width = Int(10).tag(sync=True) _turtle_location_x = Float(0.0).tag(sync=True) _turtle_location_y = Float(0.0).tag(sync=True) _turtle_heading = Float(00.0).tag(sync=True) _turtle_heading_x = Float(1).tag(sync=True) _turtle_heading_y = Float(0).tag(sync=True) _line = Unicode('').tag(sync=True) _current_color = "Black" _current_color_rgb = None def __init__(self, width=320, height=320, fixed=True): widgets.DOMWidget.__init__(self) self._canvas_width = width self._canvas_height = height self._canvas_fixed = fixed self._reset() def _reset(self): self._turtle_on = True self._pen_on = True self._turtle_location_x = 0 self._turtle_location_y = 0 self._turtle_heading = 90.0 self._turtle_heading_x = 1.0 self._turtle_heading_y = 0.0 def position(self): return self._turtle_location_x, self._turtle_location_y def forward(self, length): precision = 4 start = "{} {}".format(round(self._turtle_location_x,precision), round(self._turtle_location_y,precision)) self._turtle_location_x += length * self._turtle_heading_x self._turtle_location_y += length * self._turtle_heading_y end = " {} {}".format(round(self._turtle_location_x, precision), round(self._turtle_location_y, precision)) #print(start, end) if self._pen_on: color = self._current_color if len(self._current_color)==0: color = "rgb({},{},{})".format(self._current_color_rgb[0], self._current_color_rgb[1], self._current_color_rgb[2]) self._line = start + end + " " + color def back(self, length): self.forward(-length) def heading(self): return self._turtle_heading @alias('seth') def setheading(self, angle): self._turtle_heading = angle % 360 self._turtle_heading_x = math.cos(math.radians(self._turtle_heading)) self._turtle_heading_y = math.sin(math.radians(self._turtle_heading)) @alias('setposition', 'setpos') def goto(self, x, y): start_heading = self._turtle_heading delta_x = x - self._turtle_location_x delta_y = y - self._turtle_location_y degrees = math.degrees(math.atan2(delta_y, delta_x)) distance = math.sqrt((delta_x)**2 + (delta_y)**2) self.setheading(degrees) self.forward(distance) self.setheading(start_heading) def circle(self, radius): steps = 45 speed = ((360/steps) / 60) * radius + 1/steps rotate = 360/steps for i in range(steps): self.forward(speed) self.left(rotate) def setpos(self, x, y=None): return self.goto(x, y) def setposition(self, x, y=None): return self.goto(x, y) def left(self, degree=None): if degree is None: degree = 90 self._turtle_heading += degree self._turtle_heading = self._turtle_heading % 360 hx = math.cos(math.radians(self._turtle_heading)) hy = math.sin(math.radians(self._turtle_heading)) self._turtle_heading_x = hx self._turtle_heading_y = hy def right(self, degree=None): if degree is None: degree = 90 self.left(-degree) def penup(self): self._pen_on = False def pendown(self): self._pen_on = True def isdown(self): return self._pen_on def hideturtle(self): self._turtle_on = False def showturtle(self): self._turtle_on = True def isvisible(self): return self._turtle_on def reset(self): self._reset() self.pencolor(0, 0, 0) self.forward(0) self._line = 'clear' def pencolor(self,r=-1,g=-1,b=-1): if r == -1: if len(self._current_color)==0: return self._current_color_rgb else: return self._current_color elif type(r) == str: self._current_color = r self._current_color_rgb = None elif type(r) == tuple: self._current_color = "" self._current_color_rgb = r else: self._current_color = "" self._current_color_rgb = (r,g,b) self.forward(0) def reset_notebook(): t.reset() t.seth(0) return t
StarcoderdataPython
3535550
<filename>Chapter_9/try_9.13.py<gh_stars>0 #Done by <NAME> in 09/07/2020 """ Make a class Die with one attribute called sides , which has a default value of 6. Write a method called roll_die() that prints a random number between 1 and the number of sides the die has. Make a 6-sided die and roll it 10 times. Make a 10-sided die and a 20-sided die. Roll each die 10 times. """ #Dice #6-sided Die. from random import randint class Die(): """A simple attempt to model a dice.""" def __init__(self, sides=6): """Initialize die attributes.""" self.sides = sides def roll_die(self): """Print a random number between 1 and 6.""" print(randint(1, self.sides)) print("6 sided Die") #Build a 6-sided Die d6 = Die(sides=6) results = '' #Make it roll 10 times for roll in range(10): result = d6.roll_die() print(results) print("\n") print("10 sided Die") #10-sided Die. from random import randint class Die(): """A simple attempt to represent a Dice.""" def __init__(self, sides=6): self.sides = sides def roll_die(self): print(randint(1, self.sides)) #Make a 10 sided die. d = Die(sides=10) result = '' #Make it roll 10 times for roll in range(10): result = d.roll_die() print(results) print("\n") print("20 sided Dice") from random import randint class Die(): """A simple attempt to model a Dice.""" def __init__(self, sides=6): self.sides = sides def roll_die(self): print(randint(1, self.sides)) #Build a 20 sided Die. d20 = Die (sides=20) #Make it roll 10 times result = '' for roll in range(10): result = d20.roll_die() print(results)
StarcoderdataPython
67280
import bisect import collections import os import queue import random import subprocess import threading import time import traceback from hydrus.core import HydrusData from hydrus.core import HydrusExceptions from hydrus.core import HydrusGlobals as HG NEXT_THREAD_CLEAROUT = 0 THREADS_TO_THREAD_INFO = {} THREAD_INFO_LOCK = threading.Lock() def CheckIfThreadShuttingDown(): if IsThreadShuttingDown(): raise HydrusExceptions.ShutdownException( 'Thread is shutting down!' ) def ClearOutDeadThreads(): with THREAD_INFO_LOCK: all_threads = list( THREADS_TO_THREAD_INFO.keys() ) for thread in all_threads: if not thread.is_alive(): del THREADS_TO_THREAD_INFO[ thread ] def GetThreadInfo( thread = None ): global NEXT_THREAD_CLEAROUT if HydrusData.TimeHasPassed( NEXT_THREAD_CLEAROUT ): ClearOutDeadThreads() NEXT_THREAD_CLEAROUT = HydrusData.GetNow() + 600 if thread is None: thread = threading.current_thread() with THREAD_INFO_LOCK: if thread not in THREADS_TO_THREAD_INFO: thread_info = {} thread_info[ 'shutting_down' ] = False THREADS_TO_THREAD_INFO[ thread ] = thread_info return THREADS_TO_THREAD_INFO[ thread ] def IsThreadShuttingDown(): if HG.controller.DoingFastExit(): return True me = threading.current_thread() if isinstance( me, DAEMON ): if HG.started_shutdown: return True else: if HG.model_shutdown: return True thread_info = GetThreadInfo() return thread_info[ 'shutting_down' ] def ShutdownThread( thread ): thread_info = GetThreadInfo( thread ) thread_info[ 'shutting_down' ] = True def SubprocessCommunicate( process: subprocess.Popen ): def do_test(): if HG.model_shutdown: try: process.kill() except: pass raise HydrusExceptions.ShutdownException( 'Application is shutting down!' ) do_test() while True: try: return process.communicate( timeout = 10 ) except subprocess.TimeoutExpired: do_test() class DAEMON( threading.Thread ): def __init__( self, controller, name ): threading.Thread.__init__( self, name = name ) self._controller = controller self._name = name self._event = threading.Event() self._controller.sub( self, 'wake', 'wake_daemons' ) self._controller.sub( self, 'shutdown', 'shutdown' ) def _DoPreCall( self ): if HG.daemon_report_mode: HydrusData.ShowText( self._name + ' doing a job.' ) def GetCurrentJobSummary( self ): return 'unknown job' def GetName( self ): return self._name def shutdown( self ): ShutdownThread( self ) self.wake() def wake( self ): self._event.set() class DAEMONWorker( DAEMON ): def __init__( self, controller, name, callable, topics = None, period = 3600, init_wait = 3, pre_call_wait = 0 ): if topics is None: topics = [] DAEMON.__init__( self, controller, name ) self._callable = callable self._topics = topics self._period = period self._init_wait = init_wait self._pre_call_wait = pre_call_wait for topic in topics: self._controller.sub( self, 'set', topic ) self.start() def _CanStart( self ): return self._ControllerIsOKWithIt() def _ControllerIsOKWithIt( self ): return True def _DoAWait( self, wait_time, event_can_wake = True ): time_to_start = HydrusData.GetNow() + wait_time while not HydrusData.TimeHasPassed( time_to_start ): if event_can_wake: event_was_set = self._event.wait( 1.0 ) if event_was_set: self._event.clear() return else: time.sleep( 1.0 ) CheckIfThreadShuttingDown() def _WaitUntilCanStart( self ): while not self._CanStart(): time.sleep( 1.0 ) CheckIfThreadShuttingDown() def GetCurrentJobSummary( self ): return self._callable def run( self ): try: self._DoAWait( self._init_wait ) while True: CheckIfThreadShuttingDown() self._DoAWait( self._pre_call_wait, event_can_wake = False ) CheckIfThreadShuttingDown() self._WaitUntilCanStart() CheckIfThreadShuttingDown() self._DoPreCall() try: self._callable( self._controller ) except HydrusExceptions.ShutdownException: return except Exception as e: HydrusData.ShowText( 'Daemon ' + self._name + ' encountered an exception:' ) HydrusData.ShowException( e ) self._DoAWait( self._period ) except HydrusExceptions.ShutdownException: return def set( self, *args, **kwargs ): self._event.set() # Big stuff like DB maintenance that we don't want to run while other important stuff is going on, like user interaction or vidya on another process class DAEMONBackgroundWorker( DAEMONWorker ): def _ControllerIsOKWithIt( self ): return self._controller.GoodTimeToStartBackgroundWork() # Big stuff that we want to run when the user sees, but not at the expense of something else, like laggy session load class DAEMONForegroundWorker( DAEMONWorker ): def _ControllerIsOKWithIt( self ): return self._controller.GoodTimeToStartForegroundWork() class THREADCallToThread( DAEMON ): def __init__( self, controller, name ): DAEMON.__init__( self, controller, name ) self._callable = None self._queue = queue.Queue() self._currently_working = True # start off true so new threads aren't used twice by two quick successive calls def CurrentlyWorking( self ): return self._currently_working def GetCurrentJobSummary( self ): return self._callable def put( self, callable, *args, **kwargs ): self._currently_working = True self._queue.put( ( callable, args, kwargs ) ) self._event.set() def run( self ): try: while True: while self._queue.empty(): CheckIfThreadShuttingDown() self._event.wait( 10.0 ) self._event.clear() CheckIfThreadShuttingDown() try: try: ( callable, args, kwargs ) = self._queue.get( 1.0 ) except queue.Empty: # https://github.com/hydrusnetwork/hydrus/issues/750 # this shouldn't happen, but... # even if we assume we'll never get this, we don't want to make a business of hanging forever on things continue self._DoPreCall() self._callable = ( callable, args, kwargs ) if HG.profile_mode: summary = 'Profiling CallTo Job: {}'.format( callable ) HydrusData.Profile( summary, 'callable( *args, **kwargs )', globals(), locals(), min_duration_ms = HG.callto_profile_min_job_time_ms ) else: callable( *args, **kwargs ) self._callable = None del callable except HydrusExceptions.ShutdownException: return except Exception as e: HydrusData.Print( traceback.format_exc() ) HydrusData.ShowException( e ) finally: self._currently_working = False time.sleep( 0.00001 ) except HydrusExceptions.ShutdownException: return class JobScheduler( threading.Thread ): def __init__( self, controller ): threading.Thread.__init__( self, name = 'Job Scheduler' ) self._controller = controller self._waiting = [] self._waiting_lock = threading.Lock() self._new_job_arrived = threading.Event() self._current_job = None self._cancel_filter_needed = threading.Event() self._sort_needed = threading.Event() self._controller.sub( self, 'shutdown', 'shutdown' ) def _FilterCancelled( self ): with self._waiting_lock: self._waiting = [ job for job in self._waiting if not job.IsCancelled() ] def _GetLoopWaitTime( self ): with self._waiting_lock: if len( self._waiting ) == 0: return 0.2 next_job = self._waiting[0] time_delta_until_due = next_job.GetTimeDeltaUntilDue() return min( 1.0, time_delta_until_due ) def _NoWorkToStart( self ): with self._waiting_lock: if len( self._waiting ) == 0: return True next_job = self._waiting[0] if next_job.IsDue(): return False else: return True def _SortWaiting( self ): # sort the waiting jobs in ascending order of expected work time with self._waiting_lock: # this uses __lt__ to sort self._waiting.sort() def _StartWork( self ): jobs_started = 0 while True: with self._waiting_lock: if len( self._waiting ) == 0: break if jobs_started >= 10: # try to avoid spikes break next_job = self._waiting[0] if not next_job.IsDue(): # front is not due, so nor is the rest of the list break next_job = self._waiting.pop( 0 ) if next_job.IsCancelled(): continue if next_job.SlotOK(): # important this happens outside of the waiting lock lmao! next_job.StartWork() jobs_started += 1 else: # delay is automatically set by SlotOK with self._waiting_lock: bisect.insort( self._waiting, next_job ) def AddJob( self, job ): with self._waiting_lock: bisect.insort( self._waiting, job ) self._new_job_arrived.set() def ClearOutDead( self ): with self._waiting_lock: self._waiting = [ job for job in self._waiting if not job.IsDead() ] def GetName( self ): return 'Job Scheduler' def GetCurrentJobSummary( self ): with self._waiting_lock: return HydrusData.ToHumanInt( len( self._waiting ) ) + ' jobs' def GetJobs( self ): with self._waiting_lock: return list( self._waiting ) def GetPrettyJobSummary( self ): with self._waiting_lock: num_jobs = len( self._waiting ) job_lines = [ repr( job ) for job in self._waiting ] lines = [ HydrusData.ToHumanInt( num_jobs ) + ' jobs:' ] + job_lines text = os.linesep.join( lines ) return text def JobCancelled( self ): self._cancel_filter_needed.set() def shutdown( self ): ShutdownThread( self ) self._new_job_arrived.set() def WorkTimesHaveChanged( self ): self._sort_needed.set() def run( self ): while True: try: while self._NoWorkToStart(): if IsThreadShuttingDown(): return # if self._cancel_filter_needed.is_set(): self._FilterCancelled() self._cancel_filter_needed.clear() if self._sort_needed.is_set(): self._SortWaiting() self._sort_needed.clear() continue # if some work is now due, let's do it! # wait_time = self._GetLoopWaitTime() self._new_job_arrived.wait( wait_time ) self._new_job_arrived.clear() self._StartWork() except HydrusExceptions.ShutdownException: return except Exception as e: HydrusData.Print( traceback.format_exc() ) HydrusData.ShowException( e ) time.sleep( 0.00001 ) class SchedulableJob( object ): PRETTY_CLASS_NAME = 'job base' def __init__( self, controller, scheduler: JobScheduler, initial_delay, work_callable ): self._controller = controller self._scheduler = scheduler self._work_callable = work_callable self._should_delay_on_wakeup = False self._next_work_time = HydrusData.GetNowFloat() + initial_delay self._thread_slot_type = None self._work_lock = threading.Lock() self._currently_working = threading.Event() self._is_cancelled = threading.Event() def __lt__( self, other ): # for the scheduler to do bisect.insort noice return self._next_work_time < other._next_work_time def __repr__( self ): return '{}: {} {}'.format( self.PRETTY_CLASS_NAME, self.GetPrettyJob(), self.GetDueString() ) def _BootWorker( self ): self._controller.CallToThread( self.Work ) def Cancel( self ): self._is_cancelled.set() self._scheduler.JobCancelled() def CurrentlyWorking( self ): return self._currently_working.is_set() def GetDueString( self ): due_delta = self._next_work_time - HydrusData.GetNowFloat() due_string = HydrusData.TimeDeltaToPrettyTimeDelta( due_delta ) if due_delta < 0: due_string = 'was due {} ago'.format( due_string ) else: due_string = 'due in {}'.format( due_string ) return due_string def GetNextWorkTime( self ): return self._next_work_time def GetPrettyJob( self ): return repr( self._work_callable ) def GetTimeDeltaUntilDue( self ): return HydrusData.GetTimeDeltaUntilTimeFloat( self._next_work_time ) def IsCancelled( self ): return self._is_cancelled.is_set() def IsDead( self ): return False def IsDue( self ): return HydrusData.TimeHasPassedFloat( self._next_work_time ) def PubSubWake( self, *args, **kwargs ): self.Wake() def SetThreadSlotType( self, thread_type ): self._thread_slot_type = thread_type def ShouldDelayOnWakeup( self, value ): self._should_delay_on_wakeup = value def SlotOK( self ): if self._thread_slot_type is not None: if HG.controller.AcquireThreadSlot( self._thread_slot_type ): return True else: self._next_work_time = HydrusData.GetNowFloat() + 10 + random.random() return False return True def StartWork( self ): if self._is_cancelled.is_set(): return self._currently_working.set() self._BootWorker() def Wake( self, next_work_time = None ): if next_work_time is None: next_work_time = HydrusData.GetNowFloat() self._next_work_time = next_work_time self._scheduler.WorkTimesHaveChanged() def WakeOnPubSub( self, topic ): HG.controller.sub( self, 'PubSubWake', topic ) def Work( self ): try: if self._should_delay_on_wakeup: while HG.controller.JustWokeFromSleep(): if IsThreadShuttingDown(): return time.sleep( 1 ) with self._work_lock: self._work_callable() finally: if self._thread_slot_type is not None: HG.controller.ReleaseThreadSlot( self._thread_slot_type ) self._currently_working.clear() class SingleJob( SchedulableJob ): PRETTY_CLASS_NAME = 'single job' def __init__( self, controller, scheduler: JobScheduler, initial_delay, work_callable ): SchedulableJob.__init__( self, controller, scheduler, initial_delay, work_callable ) self._work_complete = threading.Event() def IsWorkComplete( self ): return self._work_complete.is_set() def Work( self ): SchedulableJob.Work( self ) self._work_complete.set() class RepeatingJob( SchedulableJob ): PRETTY_CLASS_NAME = 'repeating job' def __init__( self, controller, scheduler: JobScheduler, initial_delay, period, work_callable ): SchedulableJob.__init__( self, controller, scheduler, initial_delay, work_callable ) self._period = period self._stop_repeating = threading.Event() def Cancel( self ): SchedulableJob.Cancel( self ) self._stop_repeating.set() def Delay( self, delay ): self._next_work_time = HydrusData.GetNowFloat() + delay self._scheduler.WorkTimesHaveChanged() def IsRepeatingWorkFinished( self ): return self._stop_repeating.is_set() def StartWork( self ): if self._stop_repeating.is_set(): return SchedulableJob.StartWork( self ) def Work( self ): SchedulableJob.Work( self ) if not self._stop_repeating.is_set(): self._next_work_time = HydrusData.GetNowFloat() + self._period self._scheduler.AddJob( self )
StarcoderdataPython
5056358
from django.apps import AppConfig class WagtailFaviconConfig(AppConfig): name = 'wagtail_favicon'
StarcoderdataPython
11357002
<filename>src/keyedtensor/_repr_utils.py from typing import List def format_field(kstr: str, rows: List[str], prefix: str = '') -> str: kprefix = f'{prefix}{kstr}' pad = ' ' * (len(kprefix)) tensorstr = '\n'.join(f'{pad if i > 0 else ""}{v}' for i, v in enumerate(rows)) return f'{kprefix}{tensorstr}' def keyedtensor_str(kt) -> str: prefix = f'{kt.__class__.__name__}(' str_data = [(f'{k}=', f'{t!r}'.split('\n')) for k, t in kt.items()] if all(len(t) == 1 for _, t in str_data): return f'{prefix}{", ".join(f"{k}{v[0]}" for k, v in str_data)})' return ( ',\n'.join( format_field(kstr, rows, prefix=' ' * len(prefix) if i else prefix) for i, (kstr, rows) in enumerate(str_data) ) + ')' )
StarcoderdataPython
3510987
<filename>benchmark/algorithms/puck_t1.py<gh_stars>0 #-*- coding:utf-8 -*- ################################################################################ # # Copyright (c) 2021 Baidu.com, Inc. All Rights Reserved # ################################################################################ """ @file: puck_t1.py @author: yinjie06(<EMAIL>) @date: 2021-10-06 13:44 @brief: """ from benchmark.algorithms.base import BaseANN from benchmark.algorithms.base import BaseANN from benchmark.datasets import DATASETS, download_accelerated from puck import py_puck_api import os import numpy as np import time swig_ptr = py_puck_api.swig_ptr class Puck(BaseANN): def __init__(self, metric, index_params): self._index_params = index_params self._metric = metric self._query_bs = -1 self.indexkey = index_params.get("indexkey", "NA") if 'query_bs' in index_params: self._query_bs = index_params['query_bs'] self.index = py_puck_api.PySearcher() self.topk = 10 self.n = 0 def track(self): return "T1" def fit(self, dataset): print("Puck provide the index-data and the Docker image for search. We will open Puck to open source community at the end of this year.") def index_name(self, name): return f"data/{name}.{self.indexkey}.puckindex" def index_tag_name(self, name): return f"{name}.{self.indexkey}.puckindex" def load_index(self, dataset): index_components = ["filer_data.dat","GNOIMI_coarse.dat","GNOIMI_fine.dat","index.dat","learn_assign.dat"] ############ download index && update links print(self.index_name(dataset)) if not os.path.exists(self.index_name(dataset)): if 'url' not in self._index_params: return False #5 index files will be downloaded in this lib index_dir = os.path.join(os.getcwd(), self.index_name(dataset)) print(index_dir) os.makedirs(index_dir, mode=0o777, exist_ok=True) print('Downloading index in background. This can take a while.') for component in index_components: download_accelerated(self._index_params['url']+"_"+component, self.index_name(dataset)+"/"+component, quiet=True) time.sleep(60) print("Loading index") index_tag = self.index_tag_name(dataset) cmd = " ln -s %s ./puck_index"%(self.index_name(dataset)) print(cmd) os.system(cmd) cmd = " ls -al puck_index/" os.system(cmd) self.index.init() self.index.show() ds = DATASETS[dataset]() self.n = ds.nq return True def set_query_arguments(self, query_args): query_args_list = query_args.strip().split(',') self.index.update_params(int(query_args_list[0]), int(query_args_list[1]), int(query_args_list[2]),int(query_args_list[3])) self.topk = int(query_args_list[0]) self.res = (np.empty((self.n, self.topk), dtype='float32'), np.empty((self.n, self.topk), dtype='uint32')) self.qas = query_args print(type(self.res[0]), len(self.res[0])) def query(self, X, topK): n, d = X.shape self.index.search(n, swig_ptr(X), swig_ptr(self.res[0]), swig_ptr(self.res[1])) def get_results(self): return self.res[1] def __str__(self): return f'Puck({self.qas})'
StarcoderdataPython
11335563
# file: xpand.py # vim:fileencoding=utf-8:fdm=marker:ft=python # # Copyright © 2013-2017 <NAME> <<EMAIL>>. # SPDX-License-Identifier: MIT # Created: 2013-08-13T23:13:48+0200 # Last modified: 2018-04-17T20:45:41+0200 """Function to expand filename globs.""" import glob def xpand(args): # {{{1 """Expand command line arguments for operating systems incapable of doing so. Arguments: args: String or list of strings. Returns: Expanded argument list of strings. """ if isinstance(args, str): args = [args] xa = [] for a in args: g = glob.glob(a) if g: xa += g else: xa += [a] return xa
StarcoderdataPython
6551502
<filename>kapitel-8_Funktionen_Methoden_und_Attribute/main.py wert = max([3,6,3,5,8,6,9,10]) liste = [2,5,7,2,9,8,6,7,2] var = 12 referenz.methode(var, "<NAME>!") print(wert/2) liste.sort() print(liste)
StarcoderdataPython
1967453
<reponame>lhj940825/FDA_Integration_to_INTRA_DA import numpy as np import torch import torch.nn as nn from advent.utils.loss import cross_entropy_2d def bce_loss(y_pred, y_label): y_truth_tensor = torch.FloatTensor(y_pred.size()) y_truth_tensor.fill_(y_label) y_truth_tensor = y_truth_tensor.to(y_pred.get_device()) return nn.BCEWithLogitsLoss()(y_pred, y_truth_tensor) def loss_calc(pred, label, device): """ This function returns cross entropy loss for semantic segmentation """ # out shape batch_size x channels x h x w -> batch_size x channels x h x w # label shape h x w x 1 x batch_size -> batch_size x 1 x h x w label = label.long().to(device) return cross_entropy_2d(pred, label) def lr_poly(base_lr, iter, max_iter, power): """ Poly_LR scheduler """ return base_lr * ((1 - float(iter) / max_iter) ** power) def _adjust_learning_rate(optimizer, i_iter, cfg, learning_rate): lr = lr_poly(learning_rate, i_iter, cfg.TRAIN.MAX_ITERS, cfg.TRAIN.POWER) optimizer.param_groups[0]['lr'] = lr if len(optimizer.param_groups) > 1: optimizer.param_groups[1]['lr'] = lr * 10 def adjust_learning_rate(optimizer, i_iter, cfg): """ adject learning rate for main segnet """ _adjust_learning_rate(optimizer, i_iter, cfg, cfg.TRAIN.LEARNING_RATE) def adjust_learning_rate_discriminator(optimizer, i_iter, cfg): _adjust_learning_rate(optimizer, i_iter, cfg, cfg.TRAIN.LEARNING_RATE_D) def prob_2_entropy(prob): """ convert probabilistic prediction maps to weighted self-information maps """ n, c, h, w = prob.size() return -torch.mul(prob, torch.log2(prob + 1e-30)) / np.log2(c) def fast_hist(a, b, n): k = (a >= 0) & (a < n) return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n) def per_class_iu(hist): return np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) def FDA_source_to_target(src_img, trg_img, L=0.1): # exchange magnitude # input: src_img, trg_img # get fft of both source and target fft_src = torch.rfft( src_img.clone(), signal_ndim=2, onesided=False ) fft_trg = torch.rfft( trg_img.clone(), signal_ndim=2, onesided=False ) # extract amplitude and phase of both ffts amp_src, pha_src = extract_ampl_phase( fft_src.clone()) amp_trg, pha_trg = extract_ampl_phase( fft_trg.clone()) # replace the low frequency amplitude part of source with that from target amp_src_ = low_freq_mutate( amp_src.clone(), amp_trg.clone(), L=L ) # recompose fft of source fft_src_ = torch.zeros( fft_src.size(), dtype=torch.float ) fft_src_[:,:,:,:,0] = torch.cos(pha_src.clone()) * amp_src_.clone() fft_src_[:,:,:,:,1] = torch.sin(pha_src.clone()) * amp_src_.clone() # get the recomposed image: source content, target style _, _, imgH, imgW = src_img.size() src_in_trg = torch.irfft( fft_src_, signal_ndim=2, onesided=False, signal_sizes=[imgH,imgW] ) return src_in_trg def extract_ampl_phase(fft_im): # fft_im: size should be bx3xhxwx2 fft_amp = fft_im[:,:,:,:,0]**2 + fft_im[:,:,:,:,1]**2 fft_amp = torch.sqrt(fft_amp) fft_pha = torch.atan2( fft_im[:,:,:,:,1], fft_im[:,:,:,:,0] ) return fft_amp, fft_pha def low_freq_mutate( amp_src, amp_trg, L=0.1 ): _, _, h, w = amp_src.size() b = ( np.floor(np.amin((h,w))*L) ).astype(int) # get b amp_src[:,:,0:b,0:b] = amp_trg[:,:,0:b,0:b] # top left amp_src[:,:,0:b,w-b:w] = amp_trg[:,:,0:b,w-b:w] # top right amp_src[:,:,h-b:h,0:b] = amp_trg[:,:,h-b:h,0:b] # bottom left amp_src[:,:,h-b:h,w-b:w] = amp_trg[:,:,h-b:h,w-b:w] # bottom right return amp_src def preprocess(image, mean): image = image[:,:,::-1] # change to BGR image -= mean return image.transpose((2, 0, 1))
StarcoderdataPython
396619
<gh_stars>0 #Need to import our own stuff! import constants from level_manager import * from title_screen import * from music import * import pygame # Initialize Pygame pygame.init() screen = pygame.display.set_mode([constants.SCREEN_WIDTH, constants.SCREEN_HEIGHT]) # Used to manage how fast the screen updates clock = pygame.time.Clock() level_manager = LevelManager() level_manager.load_level(TitleScreen()) pygame.display.set_caption('Quantum Leaper: LEVEL 1') done = False # -------- Main Program Loop ----------- while not done: current_level = level_manager.get_current_level() #We've left the TitleScreen - Exit the game if current_level == None: break #Needs Game Logic #Update and Draw are very common delinations in game logic #Update is involved in changing game state #Draw simply draws objects on the screen current_level.draw(screen) current_level.update() # Update the screen with what we've drawn. pygame.display.flip() # Limit to 60 frames per second clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: done = True break #Needs keyboard logic too! #Handle base keyboard event, plus any inherited from the level current_level.handle_keyboard_event(event) pygame.quit()
StarcoderdataPython
6402189
<reponame>mythus/python-designateclient from __future__ import print_function import logging from keystoneauth1.identity import generic from keystoneauth1 import session as keystone_session from designateclient import shell from designateclient.v2 import client logging.basicConfig(level='DEBUG') auth = generic.Password( auth_url=shell.env('OS_AUTH_URL'), username=shell.env('OS_USERNAME'), password=<PASSWORD>('<PASSWORD>'), project_name=shell.env('OS_PROJECT_NAME'), project_domain_id='default', user_domain_id='default') session = keystone_session.Session(auth=auth, timeout=10) client = client.Client(session=session) pages = [] fetch = 1 while fetch: kw = {'limit': 3} if pages: # marker is the latest page with the last item. kw['marker'] = pages[-1][-1]['id'] page = client.zones.list(**kw) if not page: break pages.append(page) for page in pages: print(page)
StarcoderdataPython
5064882
from datetimex import getTime from datetimex.error import WrongfulError from datetimex.formatTime import FormatTime from datetimex.formatChinese import FormatChinese from datetimex.legalizationTime import LegalizationTime def getTimeString(strTime): """ 将传入的中文时间字符串转换为包含有的数字字符串 例如:传入值:"三年之后",传出值:“3年之后” 如果其中出现异常,直接给外部抛出字符串不合法异常  """ formatStrTimeObject = FormatChinese() try: timeStr = formatStrTimeObject.format(strTime) except Exception as e: raise WrongfulError('The incoming string is illegal and cannot be converted to digital time') return timeStr def getTimeData(): """ 获取初步处理时间,传出值为tuple,传出值子项也是tuple 例如:((None, None), (None, None), ('天', -2), (None, None), (None, None), ('早上', 0), ('点', -3), ('半', 0.5), (None, None)) 其中分别为(年,月,日,周数,星期,上下午,时,分秒)的初步处理结果 如果其中所有子项都为None,抛出字符串不合法异常 """ year = getTime.GetYear().get() month = getTime.GetMonth().get() day = getTime.GetDay().get() weekNum = getTime.GetWeekNum().get() week = getTime.GetWeek().get() ampm = getTime.GetAmPm().get() hour = getTime.GetHour().get() minute = getTime.GetMinute().get() second = getTime.GetSecond().get() if (year[0] == None and year[1] == None and month[0] == None and month[1] == None and day[0] == None and day[1] == None and weekNum[0] == None and weekNum[1] == None and week[0] == None and weekNum[1] == None and ampm[0] == None and ampm[1] == None and hour[0] == None and hour[1] == None and minute[0] == None and minute[1] == None and second[0] == None and second[1] == None): raise WrongfulError('The incoming string is illegal and cannot be converted to digital time') return (year,month,day,weekNum,week,ampm,hour,minute,second) def getTimeFormatData(timeData,now): """ 获取二次处理时间结果,传入值为初步处理得到的tuple,传出值类型为string 例如:2018|12|11|X|X|AM|07|30|29 其中|为方便后续分割字符串所用,这步处理结果可能包含负数,X为没有处理到这部分数据,一般出现在周数和星期 周数和星期为X时,需要后续进一步处理 """ formatTimeObject = FormatTime(timeData,now) try: time = formatTimeObject.format() except Exception as e: raise WrongfulError('The incoming string is illegal and cannot be converted to digital time') return time def getLegalizationTime(time,timeNow): """ 获取三次处理时间结果,传入值为二次处理得到的string,传出值为string 例如:20181211492AM073029 其中,2018为处理后的年,12为处理后的月,11为处理后的日,49为当前年的第几周【00为一年中的第一周】,2为星期几【0为星期天,一周的第一天】, AM为上下午,07为时,30为分,29为秒 一般情况下,到这个方法执行完得到的结果为已经合法的结果,如果为不合法的结果,说明程序已经出现了未知bug """ LegalizationTimeObject = LegalizationTime() try: time = LegalizationTimeObject.legalization(time,timeNow) except Exception as e: raise WrongfulError('The incoming string is illegal and cannot be converted to digital time') return time def main(timeStr,now): strTime = getTimeString(timeStr) #先将传入的字符串转换其中的中文数字为阿拉伯数字 getTime.timeString = strTime getTime.now = now getFirstTimeData = getTimeData() #获取初步处理结果 formatTimeData = getTimeFormatData(getFirstTimeData,now) #获取二次处理结果 legalizationTimeData = getLegalizationTime(formatTimeData,now) #获取时间合法化后的结果 return legalizationTimeData
StarcoderdataPython
3305973
import numpy as np import matplotlib.pyplot as plt import torch from torch.utils.data import Dataset import torch.utils.data import os from os import listdir from torchvision import transforms from numpy import clip from skimage import io from skimage.color import rgb2gray from skimage.util import img_as_float, img_as_ubyte from skimage.transform import resize import pandas as pd import nibabel as nib import json import random from skimage.filters import unsharp_mask from skimage.transform import resize import albumentations as A from MGimage import detect_calcifications_whole_image def standard_image_preprocess( img, *args, new_size=None, expand_dim=False, adjust_label=False, normalize=False, img_transforms=None, **kwargs): h, w = img.shape if new_size: img_new = np.zeros(new_size) img_new[0:h,0:w]=img img = img_new.copy() h, w = img.shape del(img_new) # Expand dimensions for image if specified if expand_dim is True: if len(img.shape) == 2: img = np.expand_dims(img, axis=0) if normalize: if img.max() > 1: # Remove white color img = img*(img<=2**16-2) img = img/(2**16-1) if img_transforms is not None: img = img_transforms(img) return img def unsharp_transform(img): return unsharp_mask(img, radius=10., amount=1.5) def remove_calcs(img, file_name): save_dir = '/workspace/temp/' os.makedirs(save_dir,exist_ok=True) # Find or generate mask mask_path = os.path.join(save_dir,file_name+'.nii.gz') try: mask = nib.load(mask_path).get_data() # print('Mask loaded from file') except: if len(img.shape)==3: img2 =img.squeeze() else: img2=img h,w=img.shape mask = detect_calcifications_whole_image(img2, erosion=0, method='Ciecholwski', thr=25).astype(np.int0) nifti_mask = nib.Nifti1Image(mask, affine=np.eye(4)) nib.save(nifti_mask,mask_path) # print('Mask generated and saved') img = img*(1-mask) return img class DataProcessor(Dataset): def __init__(self, img_dir, annot_dir, csv,*args, resize =(2457, 1996), transformations=None, resize_img=False, give_annot=True, only_positive=False, get_class=False, give_actual_label=False, give_filename=False, preprocess=standard_image_preprocess, augmentations=None, **kwargs): self.img_dir = img_dir self.annot_dir = annot_dir self.df = pd.read_csv(csv) self.resize = resize self.transformations = transformations self.give_annot = give_annot self.preprocess = preprocess self.give_actual_label = give_actual_label self.augmentations=augmentations self.give_filename=give_filename if only_positive: # retain only cases where there are annotations: self._keep_positive() if get_class: self._get_class() def _augment(self,img,annot): if self.augmentations is not None: # the augmentations bbox_params = A.BboxParams(format='pascal_voc') if annot is not None else None transform = A.Compose([ A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5),# A.Rotate(p=0.5,border_mode=0,limit=20), A.OneOf([ A.RandomBrightness(p=1), A.RandomGamma(p=1),],p=0.9,), ], bbox_params=bbox_params) boxes_labels = [list(b)+[l] for b,l in zip(annot['boxes'], annot['labels'])] if len(img.shape)==3: if (img.shape[0]==1) or (img.shape[0]==3): img = img.transpose(1,2,0) img = img.astype(np.float32) data = transform(image=img, bboxes=boxes_labels) boxes, labels = [b[:-1] for b in data['bboxes']], [b[-1] for b in data['bboxes']] img, annot['boxes'], annot['labels'] = data['image'],boxes, labels if len(annot['labels'])==0: annot['boxes']=np.zeros((0,4)) annot['labels']=np.zeros((0,)) return img,annot def _to_tensor(self,img,annot): if len(img.shape)==3: if (img.shape[2]==1) or (img.shape[2]==3): img = img.transpose(2,0,1) elif len(img.shape)==2: img = img.unsqueeze(0) img = torch.as_tensor(img, dtype=torch.float32) if (annot is not None) and ('labels' in annot.keys()): if len(annot['labels'])==0: annot['boxes']=np.zeros((0,4)) annot['labels']=np.zeros((0,)) annot['boxes'] = torch.as_tensor(annot['boxes'], dtype=torch.float32) annot['labels'] = torch.as_tensor(annot['labels'], dtype=torch.int64) return img,annot def _get_image_and_annot(self,file_name): img_path = os.path.join(self.img_dir, file_name+'.nii.gz') # Load nifti image img = nib.load(os.path.join(img_path)).get_data() annot = self._get_annot(file_name) return img,annot def __getitem__(self, i): file_name = self.df.iloc[i]['file_name'] img,annot = self._get_image_and_annot(file_name) img_path = os.path.join(self.img_dir, file_name+'.nii.gz') if img.shape[0]==3: img_list = list() for i in range(3): img_list.append(self.preprocess(img[i], new_size = self.resize, expand_dim=True, adjust_label=False, normalize=True, img_transforms=self.transformations)) img = np.array(img_list).squeeze() else: img = self.preprocess(img, new_size = self.resize, expand_dim=True, adjust_label=False, normalize=True, img_transforms=self.transformations) img, annot = self._augment(img,annot) img, annot = self._to_tensor(img,annot) if self.give_annot or self.give_filename: return img, annot return img def __len__(self): return len(self.df) def _get_annot(self, file_name): if self.give_annot: annot_path = os.path.join(self.annot_dir, file_name+'.json') annot = json.load(open(annot_path,'r')) num_objs = len(annot['boxes']) # treat no boxes case if len(annot['boxes'])==0: annot['boxes']=np.zeros((0,4)) annot['labels']=np.zeros((0,)) annot['boxes'] = list(annot['boxes']) labels = [0]*num_objs if self.give_actual_label: labels = list(annot['labels']) labels = [l+1 for l in labels] # Labels should be 1 and above, 0 corresponds to background annot["labels"] = labels return annot return None def _get_class(self): print('Reading annotations') self.df['annot_exists'] = True from tqdm import tqdm for idx in tqdm(range(len(self.df))): file_name = self.df.iloc[idx]['file_name'] annot = self._get_annot(file_name) if len(annot['labels'])==0: self.df['annot_exists'].iloc[idx] = False def _keep_positive(self): self._get_class() self.df = self.df[self.df.annot_exists] self.df.reset_index(inplace=True) def threedpreprocess( img, *args, new_size=None, expand_dim=False, adjust_label=False, normalize=False, img_transforms=None, n_splits = 3, **kwargs): d,h,w = img.shape zvalues = np.linspace(0,d-1,n_splits+1).astype(int) img_splits = list() for i in range(len(zvalues)-1): z0, z1 = zvalues[i], zvalues[i+1] img_splits.append(img[z0:z1]) # Find mip img_splits = [arr.max(0) for arr in img_splits] if new_size is not None: for i in range(len(img_splits)): im = img_splits[i] h, w = im.shape img_new = np.zeros(new_size) img_new[0:h,0:w]=im img_splits[i] = img_new.copy() img = np.array(img_splits) if normalize: if img.max() > 1: img = img/(2**16-1) return img def change_slice(file_name): list_fname = file_name.split('_') slice_id = int(list_fname[-1]) # shift one of -2,-1,0,1,2 slices slice_id = slice_id+random.randint(-2,2) list_fname[-1]=str(slice_id) return '_'.join(list_fname) class ModDataProcessor(DataProcessor): def _get_image_and_annot(self,file_name): file_name = change_slice(file_name) img_path = os.path.join(self.img_dir, file_name+'.nii.gz') while not os.path.exists(img_path): file_name = self.df.iloc[i]['file_name'] file_name = change_slice(file_name) img_path = os.path.join(self.img_dir, file_name+'.nii.gz') # Load image try: img = nib.load(os.path.join(img_path)).get_data() except: file_name = self.df.iloc[i]['file_name'] img_path = os.path.join(self.img_dir, file_name+'.nii.gz') img = nib.load(os.path.join(img_path)).get_data() annot = self._get_annot(file_name) return img,annot def shift_slice(file_name,ds): list_fname = file_name.split('_') slice_id = int(list_fname[-1]) # shift one of -2,-1,0,1,2 slices slice_id = slice_id+ds list_fname[-1]=str(slice_id) return '_'.join(list_fname) class ModDataProcessor3slices(DataProcessor): def __init__(self, *args, random_slice=False, **kwargs): self.random_slice = random_slice self.give_filename = kwargs['give_filename'] if ('give_filename' \ in kwargs.keys()) else False super().__init__(*args, **kwargs) def _get_image_and_annot(self,file_name): if self.random_slice: file_name = change_slice(file_name) img_path = os.path.join(self.img_dir, file_name+'.nii.gz') while not os.path.exists(img_path): file_name = self.df.iloc[i]['file_name'] file_name = change_slice(file_name) img_path = os.path.join(self.img_dir, file_name+'.nii.gz') # Getting the other two slices behind_slice = shift_slice(file_name,-1) front_slice = shift_slice(file_name,+1) img_path_behind = os.path.join(self.img_dir, behind_slice+'.nii.gz') img_path_front = os.path.join(self.img_dir, front_slice+'.nii.gz') if os.path.exists(img_path_behind) and os.path.exists(img_path_front): slices_names = [behind_slice, file_name, front_slice] elif (not os.path.exists(img_path_behind)) and os.path.exists(img_path_front): slices_names = [file_name, front_slice, shift_slice(file_name,+2)] else: slices_names = [shift_slice(file_name,-2), behind_slice, file_name] img_list = list() for f in slices_names: img_list.append(nib.load(os.path.join(self.img_dir, f+'.nii.gz')).get_data()) img = np.array(img_list, dtype=np.float32) annot = self._get_annot(file_name) if self.give_filename: return img, {'file_name':file_name} return img, annot class ModDataProcessor3slicesNoCalcs(DataProcessor): def __init__(self, *args, random_slice=False, **kwargs): self.random_slice = random_slice self.give_filename = kwargs['give_filename'] if ('give_filename' \ in kwargs.keys()) else False super().__init__(*args, **kwargs) def _get_image_and_annot(self,file_name): if self.random_slice: file_name = change_slice(file_name) img_path = os.path.join(self.img_dir, file_name+'.nii.gz') while not os.path.exists(img_path): file_name = self.df.iloc[i]['file_name'] file_name = change_slice(file_name) img_path = os.path.join(self.img_dir, file_name+'.nii.gz') # Getting the other two slices behind_slice = shift_slice(file_name,-1) front_slice = shift_slice(file_name,+1) img_path_behind = os.path.join(self.img_dir, behind_slice+'.nii.gz') img_path_front = os.path.join(self.img_dir, front_slice+'.nii.gz') if os.path.exists(img_path_behind) and os.path.exists(img_path_front): slices_names = [behind_slice, file_name, front_slice] elif (not os.path.exists(img_path_behind)) and os.path.exists(img_path_front): slices_names = [file_name, front_slice, shift_slice(file_name,+2)] else: slices_names = [shift_slice(file_name,-2), behind_slice, file_name] img_list = list() for f in slices_names: img_list.append(nib.load(os.path.join(self.img_dir, f+'.nii.gz')).get_data()) # Remove calcs for i in range(len(slices_names)): fname = slices_names[i] img_list[i]= remove_calcs(img_list[i],fname) img = np.array(img_list, dtype=np.float32) annot = self._get_annot(file_name) if self.give_filename: return img, {'file_name':file_name} return img, annot ## SAMPLER # From https://github.com/ufoym/imbalanced-dataset-sampler/ class ImbalancedDatasetSampler(torch.utils.data.sampler.Sampler): """Samples elements randomly from a given list of indices for imbalanced dataset Arguments: indices (list, optional): a list of indices num_samples (int, optional): number of samples to draw callback_get_label func: a callback-like function which takes two arguments - dataset and index """ def __init__(self, dataset, indices=None, num_samples=None, callback_get_label=None): # if indices is not provided, # all elements in the dataset will be considered self.indices = list(range(len(dataset))) \ if indices is None else indices # define custom callback self.callback_get_label = callback_get_label # if num_samples is not provided, # draw `len(indices)` samples in each iteration self.num_samples = len(self.indices) \ if num_samples is None else num_samples # distribution of classes in the dataset label_to_count = {} for idx in self.indices: label = self._get_label(dataset, idx) if label in label_to_count: label_to_count[label] += 1 else: label_to_count[label] = 1 # weight for each sample weights = [1.0 / label_to_count[self._get_label(dataset, idx)] for idx in self.indices] self.weights = torch.DoubleTensor(weights) def _get_label(self, dataset, idx): return dataset.df.annot_exists.iloc[idx] def __iter__(self): return (self.indices[i] for i in torch.multinomial( self.weights, self.num_samples, replacement=True)) def __len__(self): return self.num_samples
StarcoderdataPython
1996788
import datetime import pytest import pytz from .....product.models import Collection, CollectionChannelListing from ....tests.utils import assert_graphql_error_with_message, get_graphql_content @pytest.fixture def collections_for_sorting_with_channels(channel_USD, channel_PLN): collections = Collection.objects.bulk_create( [ Collection(name="Collection1", slug="collection1"), Collection(name="Collection2", slug="collection2"), Collection(name="Collection3", slug="collection3"), Collection(name="Collection4", slug="collection4"), Collection(name="Collection5", slug="collection5"), ] ) CollectionChannelListing.objects.bulk_create( [ CollectionChannelListing( collection=collections[0], published_at=None, is_published=True, channel=channel_USD, ), CollectionChannelListing( collection=collections[1], published_at=None, is_published=False, channel=channel_USD, ), CollectionChannelListing( collection=collections[2], published_at=datetime.datetime(2004, 1, 1, tzinfo=pytz.UTC), is_published=False, channel=channel_USD, ), CollectionChannelListing( collection=collections[3], published_at=datetime.datetime(2003, 1, 1, tzinfo=pytz.UTC), is_published=False, channel=channel_USD, ), # second channel CollectionChannelListing( collection=collections[0], published_at=None, is_published=False, channel=channel_PLN, ), CollectionChannelListing( collection=collections[1], published_at=None, is_published=True, channel=channel_PLN, ), CollectionChannelListing( collection=collections[2], published_at=datetime.datetime(2002, 1, 1, tzinfo=pytz.UTC), is_published=False, channel=channel_PLN, ), CollectionChannelListing( collection=collections[4], published_at=datetime.datetime(2001, 1, 1, tzinfo=pytz.UTC), is_published=False, channel=channel_PLN, ), ] ) QUERY_COLLECTIONS_WITH_SORTING_AND_FILTERING = """ query ( $sortBy: CollectionSortingInput, $filter: CollectionFilterInput, $channel: String ){ collections ( first: 10, sortBy: $sortBy, filter: $filter, channel: $channel ) { edges { node { name slug } } } } """ @pytest.mark.parametrize( "sort_by", [ {"field": "AVAILABILITY", "direction": "ASC"}, {"field": "PUBLICATION_DATE", "direction": "DESC"}, ], ) def test_collections_with_sorting_and_without_channel( sort_by, staff_api_client, permission_manage_products, ): # given variables = {"sortBy": sort_by} # when response = staff_api_client.post_graphql( QUERY_COLLECTIONS_WITH_SORTING_AND_FILTERING, variables, permissions=[permission_manage_products], check_no_permissions=False, ) # then assert_graphql_error_with_message(response, "A default channel does not exist.") @pytest.mark.parametrize( "sort_by, collections_order", [ ( {"field": "PUBLICATION_DATE", "direction": "ASC"}, ["Collection4", "Collection3", "Collection1", "Collection2"], ), ( {"field": "PUBLICATION_DATE", "direction": "DESC"}, ["Collection2", "Collection1", "Collection3", "Collection4"], ), ], ) def test_collections_with_sorting_and_channel_USD( sort_by, collections_order, staff_api_client, permission_manage_products, collections_for_sorting_with_channels, channel_USD, ): # given variables = {"sortBy": sort_by, "channel": channel_USD.slug} # when response = staff_api_client.post_graphql( QUERY_COLLECTIONS_WITH_SORTING_AND_FILTERING, variables, permissions=[permission_manage_products], check_no_permissions=False, ) # then content = get_graphql_content(response) collections_nodes = content["data"]["collections"]["edges"] for index, collection_name in enumerate(collections_order): assert collection_name == collections_nodes[index]["node"]["name"] @pytest.mark.parametrize( "sort_by, collections_order", [ ( {"field": "PUBLICATION_DATE", "direction": "ASC"}, ["Collection5", "Collection3", "Collection1", "Collection2"], ), ( {"field": "PUBLICATION_DATE", "direction": "DESC"}, ["Collection2", "Collection1", "Collection3", "Collection5"], ), ], ) def test_collections_with_sorting_and_channel_PLN( sort_by, collections_order, staff_api_client, permission_manage_products, collections_for_sorting_with_channels, channel_PLN, ): # given variables = {"sortBy": sort_by, "channel": channel_PLN.slug} # when response = staff_api_client.post_graphql( QUERY_COLLECTIONS_WITH_SORTING_AND_FILTERING, variables, permissions=[permission_manage_products], check_no_permissions=False, ) # then content = get_graphql_content(response) collections_nodes = content["data"]["collections"]["edges"] for index, collection_name in enumerate(collections_order): assert collection_name == collections_nodes[index]["node"]["name"] @pytest.mark.parametrize( "sort_by", [ {"field": "AVAILABILITY", "direction": "ASC"}, {"field": "PUBLICATION_DATE", "direction": "ASC"}, ], ) def test_collections_with_sorting_and_not_existing_channel_asc( sort_by, staff_api_client, permission_manage_products, collections_for_sorting_with_channels, channel_USD, ): # given variables = {"sortBy": sort_by, "channel": "Not-existing"} # when response = staff_api_client.post_graphql( QUERY_COLLECTIONS_WITH_SORTING_AND_FILTERING, variables, permissions=[permission_manage_products], check_no_permissions=False, ) # then content = get_graphql_content(response) assert not content["data"]["collections"]["edges"] @pytest.mark.parametrize( "sort_by", [ {"field": "AVAILABILITY", "direction": "DESC"}, {"field": "PUBLICATION_DATE", "direction": "DESC"}, ], ) def test_collections_with_sorting_and_not_existing_channel_desc( sort_by, staff_api_client, permission_manage_products, collections_for_sorting_with_channels, channel_USD, ): # given variables = {"sortBy": sort_by, "channel": "Not-existing"} # when response = staff_api_client.post_graphql( QUERY_COLLECTIONS_WITH_SORTING_AND_FILTERING, variables, permissions=[permission_manage_products], check_no_permissions=False, ) # then content = get_graphql_content(response) assert not content["data"]["collections"]["edges"]
StarcoderdataPython
6503965
""" The chemml.chem module includes (please click on links adjacent to function names for more information): - Molecule: :func:`~chemml.chem.Molecule` - XYZ: :func:`~chemml.chem.XYZ` - CoulombMatrix: :func:`~chemml.chem.CoulombMatrix` - BagofBonds: :func:`~chemml.chem.BagofBonds` - RDKitFingerprint: :func:`~chemml.chem.RDKitFingerprint` - atom_features: :func:`~chemml.chem.atom_features` - bond_features: :func:`~chemml.chem.bond_features` - tensorise_molecules: :func:`~chemml.chem.tensorise_molecules` - Dragon: :func:`~chemml.chem.Dragon` """ from .molecule import Molecule from .molecule import XYZ from .CoulMat import CoulombMatrix from .CoulMat import BagofBonds from .RDKFP import RDKitFingerprint from .Dragon import Dragon from .local_features import atom_features from .local_features import bond_features from .local_features import num_atom_features from .local_features import num_bond_features from .local_features import tensorise_molecules __all__ = [ 'Molecule', 'XYZ', 'CoulombMatrix', 'BagofBonds', 'RDKitFingerprint', 'Dragon', 'atom_features', 'bond_features', 'num_atom_features', 'num_bond_features', 'tensorise_molecules' ]
StarcoderdataPython
4997189
<reponame>UKGovernmentBEIS/BRE_DigitalRegulationNavigator_Alpha from django import forms from django.contrib.auth import get_user_model from django.core.exceptions import ValidationError from crispy_forms.helper import FormHelper User = get_user_model() class RegistrationForm(forms.ModelForm): email = forms.EmailField( label="Enter your email address", max_length=254, required=True, widget=forms.EmailInput(attrs={"autocomplete": "email"}), ) class Meta: model = User fields = ["email"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_tag = False self.helper.labels_small = True # custom def save(self, commit=True): user = super().save(commit=False) user.username = self.cleaned_data["email"] user.set_unusable_password() if commit: user.save() return user class LoginForm(forms.Form): """ See: django.contrib.auth.forms.AuthenticationForm """ email = forms.EmailField( label="Enter your email address", max_length=254, required=True, widget=forms.EmailInput(attrs={"autocomplete": "email"}), ) error_messages = { "invalid_login": "Please enter a correct email address.", "inactive": "This account is inactive.", } def __init__(self, *args, **kwargs): self.user_cache = None super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_tag = False self.helper.labels_small = True # custom def clean(self): cleaned_data = super().clean() email = self.cleaned_data.get("email") if email is not None: try: self.user_cache = User.objects.get(email=email) if not self.user_cache.is_active: raise ValidationError( self.error_messages["inactive"], code="inactive", ) except User.DoesNotExist: raise ValidationError( self.error_messages["invalid_login"], code="invalid_login", ) return cleaned_data def get_user(self): return self.user_cache
StarcoderdataPython
8178673
<gh_stars>0 """ a) State Representation: (matrix, (zero_pos_row, zero_pos_col)) Initial State: (randomized matrix, random position in matrix) (matrix should have the numbers from 0 to rows*cols) Operators: (zero_pos_x >= 0) moveup -> (matrix, (zero_pos_row, zero_pos_col)) => (upt_matrix, (zero_pos_row - 1, zero_pos_col)) (zero_pos_x < rows) movedown -> (matrix, (zero_pos_row, zero_pos_col)) => (upt_matrix, (zero_pos_row + 1, zero_pos_col)) (zero_pos_y >= 0) moveleft -> (matrix, (zero_pos_row, zero_pos_col)) => (upt_matrix, (zero_pos_row, zero_pos_col - 1)) (zero_pos_y < cols) moveright -> (matrix, (zero_pos_row, zero_pos_col)) => (upt_matrix, (zero_pos_row, zero_pos_col + 1)) upt_matrix consists in the same matrix but with the element in the position of the new zero position swapped with the previous zero position All operators have a cost of 1. Objective Test: Check if the matrix is ordered and the zero is positioned in the last cell """ from algorithms import * from functools import reduce import operator import numpy as np import copy class NPuzzle: @staticmethod def flatten(matrix): return reduce(operator.concat, matrix) def __init__(self, matrix, zero_pos, previousNode=None, distance=0): all_elems_list = sorted(NPuzzle.flatten(matrix)) if (all_elems_list != list(range(len(matrix) * len(matrix[0])))): raise ValueError('Invalid Input Matrix') x, y = zero_pos if (matrix[x][y] != 0): raise ValueError('Zero position is not correct') self.matrix = matrix self.zero_pos = zero_pos self.distance = distance self.previousNode = previousNode def __eq__(self, other): if isinstance(other, self.__class__): return NPuzzle.flatten(self.matrix) == NPuzzle.flatten( other.matrix) and self.zero_pos == other.zero_pos return False def __repr__(self): matrix_repr = np.array(self.matrix) return f'\n{matrix_repr}\n' def __str__(self): matrix_repr = np.array(self.matrix) return f'\n{matrix_repr}\n' def __lt__(self, other): return self.distance < other.distance def edgeNodes(self, distance=0): edgeNodesList = [] x, y = self.zero_pos if (x - 1 >= 0): matrixcopy = copy.deepcopy(self.matrix) matrixcopy[x][y] = matrixcopy[x - 1][y] matrixcopy[x - 1][y] = 0 edgeNodesList.append( NPuzzle(matrixcopy, (x - 1, y), self, distance)) if (x + 1 < len(self.matrix)): matrixcopy = copy.deepcopy(self.matrix) matrixcopy[x][y] = matrixcopy[x + 1][y] matrixcopy[x + 1][y] = 0 edgeNodesList.append( NPuzzle(matrixcopy, (x + 1, y), self, distance)) if (y - 1 >= 0): matrixcopy = copy.deepcopy(self.matrix) matrixcopy[x][y] = matrixcopy[x][y - 1] matrixcopy[x][y - 1] = 0 edgeNodesList.append( NPuzzle(matrixcopy, (x, y - 1), self, distance)) if (y + 1 < len(self.matrix[0])): matrixcopy = copy.deepcopy(self.matrix) matrixcopy[x][y] = matrixcopy[x][y + 1] matrixcopy[x][y + 1] = 0 edgeNodesList.append( NPuzzle(matrixcopy, (x, y + 1), self, distance)) return edgeNodesList def condition(node): return NPuzzle.flatten(node.matrix) == list( range(1, len(node.matrix[0]) * len(node.matrix))) + [0] def heuristic1(node): row_length = len(node.matrix[0]) sum_h = 0 for row, row_val in enumerate(node.matrix): for col, item in enumerate(row_val): sum_h += 1 if item != row * row_length + col + 1 else 0 return sum_h def heuristic2(node): curr_pos = {} correct_pos = {} row_length = len(node.matrix) col_length = len(node.matrix[0]) for row, row_val in enumerate(node.matrix): for col, item in enumerate(row_val): curr_pos[item] = (row, col) correct_pos[row * row_length + col + 1] = (row, col) sum_manhattan = 0 for i in range(1, row_length * col_length): sum_manhattan += abs(curr_pos[i][0] - correct_pos[i][0]) + abs(curr_pos[i][0] - correct_pos[i][0]) return sum_manhattan initial = NPuzzle( [[5, 1, 3, 4], [2, 0, 7, 8], [10, 6, 11, 12], [9, 13, 14, 15]], (1, 1)) print(ucost(initial, condition)) print('-------H1----------') print(greedy(initial, condition, heuristic1)) print('-------H1----------') print(astar(initial, condition, heuristic1)) print('-------H2----------') print(greedy(initial, condition, heuristic2)) print('-------H2----------') print(astar(initial, condition, heuristic2))
StarcoderdataPython
5071328
#!/usr/bin/env python import numpy as np import cv2 import rospy from std_msgs.msg import String from sensor_msgs.msg import Image from sensor_msgs.msg import PointCloud2 from cv_bridge import CvBridge, CvBridgeError class Kinect: def __init__(self): self.bridge = CvBridge() self.image=Image() self.image_depth=Image() self.cloud=PointCloud2() self.has_image=0 self.has_depth=0 self.has_cloud=0 def set_image(self,data): try: self.image = self.bridge.imgmsg_to_cv2(data, "bgr8") self.has_image=1 except CvBridgeError as e: print(e) def set_image_depth(self,data): try: self.image = self.bridge.imgmsg_to_cv2(data, "mono16") self.has_depth=1 except CvBridgeError as e: print(e) def set_point(self,data): self.cloud.header=data.header self.cloud.height=data.height self.cloud.width=data.width self.cloud.is_bigendian=data.is_bigendian self.cloud.point_step=data.point_step self.cloud.row_step=data.row_step self.cloud.is_dense=data.is_dense self.cloud.data= data.data; self.cloud.fields = data.fields self.has_cloud=0 def show_image(self): if self.has_image == 1: cv2.imshow('image',self.image) k=cv2.waitKey(1) def show_image_depth(self): if self.has_depth == 1: cv2.imshow('image3D',self.image_depth) k=cv2.waitKey(1)
StarcoderdataPython
9648803
<gh_stars>0 #!/usr/bin/env python import sys #import math from scipy import spatial # Cosine similarity calculation #import average_vector import filter_vocab_words import string_util def getDistanceBetweenSets( arr_words1, arr_words2, model): """ Get distance between two sets of words. (1) ::, (2) subsets S1 and S2 are not empty, (3) dist(S1, S2) > dist(S1 + w, S2), (4) dist(S1, S2) > dist(S1 , S2 + w), (where "dist" is Cosine similarity between average vectors of S1 and S2 - subsets of vectors), i.e. the word w makes close any subsets S1 and S2 after adding. Parameters ---------- arr_words : array of Strings Array of source words, for example a synonym set or a sentence' words. model : object Word2Vec model. Returns ------- array of Strings Internal subset for the source list of words. Empty array if there are no such words. """ result_int_s = [] DEBUG_PRINT = False #True arr_words = filter_vocab_words.filterVocabWords( arr_words, model.vocab ) #print string_util.joinUtf8( ",", arr_words ) # after filter, now there are only words with vectors len_words = len(arr_words) #print "len_words = {}".format( len_words ) if len_words < 3: return [] # it is possible calculate IntS only when there are >= 3 words # current_synset = lib.synset.Synset() # current_synset.headword = arr_words[0] # let's first element in synset is a headword (? target word) # current_synset.line = line # syn_rank = dict() # integer # syn_centrality = dict() # float # syn_internal = dict() # boolean (true for IntS, for synonyms, which always make subsets more nearer) # let's take all subsets for every 'out' element i=0 while (i < len_words): gr = arr_words[:] # extract the element 'out' which is under consideration test_word = gr.pop(i) #test_word_counter_int = 0 #test_word_counter_float = 0 sim12_greater_sim0_always = True for j in range(0, len(gr)): for l in range(j, len(gr)-1): gr1 = gr[j:l+1] gr2 = gr[0:j]+gr[l+1:len(gr)] if DEBUG_PRINT: print u"{} | gr1={} | gr2={}".format( test_word, string_util.joinUtf8( ",", gr1 ), string_util.joinUtf8( ",", gr2 ) ) gr1_and_test_word = gr1[:] gr1_and_test_word.append( test_word ) gr2_and_test_word = gr2[:] gr2_and_test_word.append( test_word ) sim0 = model.n_similarity(gr1, gr2) sim1 = model.n_similarity(gr1_and_test_word, gr2) sim2 = model.n_similarity(gr1, gr2_and_test_word) if DEBUG_PRINT: print "sim0 = {:5.3f}".format( sim0 ) print "sim1 = {:5.3f}".format( sim1 ) print "sim2 = {:5.3f}".format( sim2 ) if sim0 > sim1 or sim0 > sim2: sim12_greater_sim0_always = False if DEBUG_PRINT: a = 1 if sim1 > sim0 else -1 b = 1 if sim2 > sim0 else -1 #test_word_counter_int += (a + b)/2 #test_word_counter_float += (sim1 - sim0) + (sim2 - sim0) #print "test_word_counter_int = {}".format( test_word_counter_int ) #print "test_word_counter_float = {}".format( test_word_counter_float ) if DEBUG_PRINT: print ("---") #syn_rank [test_word] = test_word_counter_int; #syn_centrality[test_word] = test_word_counter_float; #syn_internal [test_word] = sim12_greater_sim0_always; if sim12_greater_sim0_always: result_int_s.append( test_word ) if DEBUG_PRINT: print ("+++++++") print i += 1 return result_int_s # This function should be called if the fuction getInternalSet failed (returned empty IntS). def getInternalSetWithReducing( arr_words, target_word, model): """ Get IntS (internal, kernel) words for words in the array arr_words. If |IntS (arr_words)| == 0 then try reduce arr_words, (1) until |IntS (reduced arr_words)| > 0 (2) and set (reduced arr_words) contains target_word Parameters ---------- arr_words : array of Strings Array of source words, for example a synonym set or a sentence' words. target_word : String (1) arr_words contain target_word, (2) the result IntS should contain target_word too. model : object Word2Vec model. Returns ------- array of Strings Internal subset for the source list of words (arr_words) or for subset of arr_words. Empty array if there are no such words. """ #result_int_s = [] arr_words = filter_vocab_words.filterVocabWords( arr_words, model.vocab ) #print string_util.joinUtf8( ",", arr_words ) # after filter, now there are only words with vectors #if len(arr_words) < 3: # return [] while len(arr_words) >= 3: # it is possible calculate IntS only when there are >= 3 words int_s = getInternalSet (arr_words, model) if len( int_s ) > 0: return int_s # then now: len (int_s) == 0 # let's find word_remote (1) within arr_words, (2) the most distant word to the target word target_vector = model [ target_word ] word_remote = "" #arr_new = [] sim_min = 1.0 for word in arr_words: if word == target_word: continue # let's skip and do not delete target word itself vector = model [ word ] sim = 1 - spatial.distance.cosine( target_vector, vector ) #print u"sim({}, {}) = {}".format( target_word, word, sim ) if sim < sim_min: #print u"UPDATE: new sim {} < sim_min {}, word_remote old = {}, new = {}".format( sim, sim_min, word_remote, word ) sim_min = sim word_remote = word #print if len( word_remote ) == 0: # it is very strange that we did not find any word! return [] arr_words.remove( word_remote ) print string_util.joinUtf8( ",", arr_words ) return [] #return result_int_s
StarcoderdataPython
8073534
<filename>sympy/calculus/tests/test_singularities.py from sympy import Symbol, exp, log from sympy.calculus.singularities import (singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic) from sympy.sets import Interval from sympy import oo, S from sympy.utilities.pytest import XFAIL x = Symbol('x') def test_singularities(): x = Symbol('x', real=True) assert singularities(x**2, x) == () assert singularities(x/(x**2 + 3*x + 2), x) == (-2, -1) @XFAIL def test_singularities_non_rational(): x = Symbol('x', real=True) assert singularities(exp(1/x), x) == (0) assert singularities(log((x - 2)**2), x) == (2) def test_is_increasing(): assert is_increasing(x**3 - 3*x**2 + 4*x, S.Reals) assert is_increasing(-x**2, Interval(-oo, 0)) assert is_increasing(-x**2, Interval(0, oo)) is False assert is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) is False def test_is_strictly_increasing(): assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2)) assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo)) assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) is False assert is_strictly_increasing(-x**2, Interval(0, oo)) is False def test_is_decreasing(): assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2)) is False assert is_decreasing(-x**2, Interval(-oo, 0)) is False def test_is_strictly_decreasing(): assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2)) is False assert is_decreasing(-x**2, Interval(-oo, 0)) is False def test_is_monotonic(): assert is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals) assert is_monotonic(-x**2, S.Reals) is False
StarcoderdataPython
8190025
from genie import parsergen def show_ip_eigrp_neighbors(uut): """ Parsing show ip eigrp neigbors using parsergen sample output EIGRP-IPv4 Neighbors for AS(100) H Address Interface Hold Uptime SRTT RTO Q Seq (sec) (ms) Cnt Num 1 10.1.1.3 Tu1 10 02:51:11 26 156 0 3 0 10.1.1.4 Tu1 12 02:51:12 5 100 0 4 """ # noqa # Use connect method to initiate connection to the device under test if not uut.is_connected(): uut.connect() # collect show command output command = 'show ip eigrp neighbors' output = uut.execute(command) try: headers = ["H", "Address", "Interface", "Hold", "Uptime", "SRTT", "RTO", " Q ", "Seq"] label_fields = ["H", "Address", "Interface", "Uptime", "SRTT", "RTO", "QCnt", "SeqNum"] eigrp_dict = parsergen.oper_fill_tabular(device_output=output, device_os='iosxe', header_fields=headers, label_fields=label_fields, index=[1]) if '' in eigrp_dict.entries: del eigrp_dict.entries[''] return eigrp_dict.entries except Exception as e: pass
StarcoderdataPython
247631
class Solution: def findKthPositive(self, arr: List[int], k: int) -> int: missing = [] limit = arr[-1] nums = set(arr) for i in range(1,limit): if i not in nums: missing.append(i) if len(missing) >= k: return missing[k-1] else: return limit + k - len(missing)
StarcoderdataPython
6557993
"""CUCM AXL Device APIs.""" from .._internal_utils import flatten_signature_kwargs from .base import DeviceAXLAPI from .base import SimpleAXLAPI class CommonDeviceConfig(DeviceAXLAPI): _factory_descriptor = "common_device_config" supported_methods = ["model", "create", "add", "get", "list", "update", "remove", "apply", "reset"] def add(self, name, softkeyTemplateName=None, userLocale=None, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class CommonPhoneConfig(DeviceAXLAPI): _factory_descriptor = "common_phone_profile" supported_methods = ["model", "create", "add", "get", "list", "update", "remove", "apply", "reset"] def add(self, name, unlockPwd=None, featureControlPolicy=None, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class CtiRoutePoint(DeviceAXLAPI): _factory_descriptor = "cti_route_point" def add(self, name, devicePoolName, product="CTI Route Point", protocol="SCCP", **kwargs): if "class" not in kwargs: # workaround for restricted 'class' attribute kwargs["class"] = "CTI Route Point" add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class DefaultDeviceProfile(SimpleAXLAPI): _factory_descriptor = "default_device_profile" supported_methods = ["model", "create", "add", "get", "update", "list", "remove", "options"] def add(self, name, product, phoneButtonTemplate="Universal Device Template Button Layout", softkeyTemplate=None, protocol="SIP", protocolSide="User", **kwargs): # the name is not obvious in the UI. It appears to default to a concat of product and protocol. # it may be useful to log a warning for this... if "class" not in kwargs: # workaround for restricted 'class' attribute kwargs["class"] = "Device Profile" add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class DeviceProfile(SimpleAXLAPI): _factory_descriptor = "udp" supported_methods = ["model", "create", "add", "get", "update", "list", "remove", "options"] def add(self, name, product, phoneTemplateName, protocol="SIP", **kwargs): if "class" not in kwargs: # workaround for restricted 'class' attribute kwargs["class"] = "Device Profile" add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class FeatureControlPolicy(SimpleAXLAPI): _factory_descriptor = "feature_control_policy" def add(self, name, features=None, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class IpPhoneServices(SimpleAXLAPI): _factory_descriptor = "ip_phone_service" def add(self, serviceName, asciiServiceName, serviceUrl, secureServiceUrl=None, serviceCategory="XML Service", serviceType="Standard IP Phone Service", enabled=True, enterpriseSubscription=False, parameters=None, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class Line(DeviceAXLAPI): _factory_descriptor = "line" supported_methods = [ "model", "create", "add", "get", "update", "list", "remove", "options", "apply", "restart", "reset" ] def __init__(self, connector, object_factory): super().__init__(connector, object_factory) def add(self, pattern, routePartitionName, usage="Device", **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class NetworkAccessProfile(SimpleAXLAPI): _factory_descriptor = "network_access_profile" def add(self, name, vpnRequired="Default", proxySettings="None", proxyHostname="", **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class Phone(DeviceAXLAPI): _factory_descriptor = "phone" supported_methods = [ "model", "create", "add", "get", "list", "update", "remove", "options", "wipe", "lock", "apply", "restart", "reset", ] @staticmethod def _check_confidential_access(confidentialAccess): """Workaround for AXL defect not accepting None for 'confidentialAccessMode'""" if not confidentialAccess['confidentialAccessMode']: confidentialAccess['confidentialAccessMode'] = '' return confidentialAccess def add(self, name, product, devicePoolName, locationName="Hub_None", protocol="SIP", commonPhoneConfigName="Standard Common Phone Profile", **kwargs): if "class" not in kwargs: # workaround for restricted 'class' attribute kwargs["class"] = "Phone" add_kwargs = flatten_signature_kwargs(self.add, locals()) try: add_kwargs['confidentialAccess'] = self._check_confidential_access(add_kwargs['confidentialAccess']) except KeyError: pass return super().add(**add_kwargs) def update(self, **kwargs): try: kwargs['confidentialAccess'] = self._check_confidential_access(kwargs['confidentialAccess']) except KeyError: pass return super().update(**kwargs) def wipe(self, **kwargs): """Allows Cisco's newer Android-based devices, like the Cisco DX650, to be remotely reset to factory defaults, removing user specific settings and data. :param kwargs: phone name or uuid :return: None """ # check_identifiers(self._wsdl_objects["name_and_guid_model"], **kwargs) return self._serialize_axl_object("wipe", **kwargs) def lock(self, **kwargs): return self._serialize_axl_object("lock", **kwargs) class PhoneButtonTemplate(DeviceAXLAPI): _factory_descriptor = "phone_button_template" supported_methods = ["model", "create", "add", "get", "update", "list", "remove", "apply", "restart"] def add(self, name, basePhoneTemplateName, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class PhoneSecurityProfile(DeviceAXLAPI): _factory_descriptor = "phone_security_profile" supported_methods = ["model", "create", "add", "get", "update", "list", "remove", "apply", "restart"] def add(self, name, phoneType="Universal Device Template", protocol="Protocol Not Specified", deviceSecurityMode=None, authenticationMode="By Null String", keySize=1024, transportType="TCP+UDP", sipPhonePort=5060, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class RecordingProfile(SimpleAXLAPI): _factory_descriptor = "recording_profile" def add(self, name, recorderDestination, recordingCssName=None, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class RemoteDestination(SimpleAXLAPI): _factory_descriptor = "remote_destination" def add(self, destination, ownerUserId, name=None, enableUnifiedMobility=True, enableMobileConnect=True, isMobilePhone=True, remoteDestinationProfileName=None, dualModeDeviceName=None, lineAssociations=None, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class RemoteDestinationProfile(SimpleAXLAPI): _factory_descriptor = "rdp" def add(self, name, devicePoolName, userId, rerouteCallingSearchSpaceName=None, callingSearchSpaceName=None, lines=None, product="Remote Destination Profile", protocol="Remote Destination", protocolSide="User", **kwargs): if "class" not in kwargs: # workaround for restricted 'class' attribute kwargs["class"] = "Remote Destination Profile" add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class SdpTransparencyProfile(SimpleAXLAPI): _factory_descriptor = "sdp_transparency_profile" def add(self, name, attributeSet, **kwargs): if "class" not in kwargs: kwargs["class"] = "Trunk" add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class SipTrunk(DeviceAXLAPI): _factory_descriptor = "sip_trunk" def add(self, name, devicePoolName, destinations, product="SIP Trunk", locationName="Hub_None", protocol="SIP", securityProfileName="Non Secure SIP Trunk Profile", sipProfileName="Standard SIP Profile", presenceGroupName="Standard Presence Group", protocolSide="Network", **kwargs): if "class" not in kwargs: kwargs["class"] = "Trunk" add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class SipProfile(DeviceAXLAPI): _factory_descriptor = "sip_profile" supported_methods = ["model", "create", "add", "get", "update", "list", "remove", "options", "apply", "restart"] def add(self, name, sdpTransparency="Pass all unknown SDP attributes", **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class SipTrunkSecurityProfile(DeviceAXLAPI): _factory_descriptor = "sip_trunk_security_profile" supported_methods = ["model", "create", "add", "get", "update", "list", "remove", "apply", "reset"] def add(self, name, acceptPresenceSubscription=False, acceptOutOfDialogRefer=False, acceptUnsolicitedNotification=False, allowReplaceHeader=False, transmitSecurityStatus=False, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class SoftKeyTemplate(DeviceAXLAPI): _factory_descriptor = "softkey_template" supported_methods = ["model", "create", "add", "get", "update", "list", "remove", "apply", "restart"] def add(self, name, description, baseSoftkeyTemplateName="Standard User", **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class SoftKeySet(SimpleAXLAPI): _factory_descriptor = "softkey_set" supported_methods = ["get", "update"] class UniversalDeviceTemplate(SimpleAXLAPI): _factory_descriptor = "udt" def add(self, name, devicePool, directoryNumber=None, lineLabel=None, displayCallerId=None, callingSearchSpace=None, sipProfile="Standard SIP Profile", commonPhoneProfile="Standard Common Phone Profile", phoneButtonTemplate="Universal Device Template Button Layout", deviceSecurityProfile="Universal Device Template - Model-independent Security Profile", blfPresenceGroup="Standard Presence group", location="Hub_None", **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class UniversalLineTemplate(SimpleAXLAPI): _factory_descriptor = "ult" def add(self, name, routePartition=None, lineDescription=None, callingSearchSpace=None, voiceMailProfile=None, alertingName=None, rejectAnonymousCall=False, # override inconsistency between normal line add and ULT blfPresenceGroup="Standard Presence group", **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class WifiHotspot(SimpleAXLAPI): _factory_descriptor = "wifi_hotspot" def add(self, name, ssidPrefix, frequencyBand="Auto", userModifiable="Allowed", authenticationMethod="None", **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class WLANProfile(SimpleAXLAPI): _factory_descriptor = "wlan_profile" def add(self, name, ssid, frequencyBand="Auto", userModifiable="Allowed", authMethod="EAP-FAST", networkAccessProfile=None, userName="", password="", **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs) class WlanProfileGroup(SimpleAXLAPI): _factory_descriptor = "wlan_profile_group" def add(self, name, members=None, **kwargs): add_kwargs = flatten_signature_kwargs(self.add, locals()) return super().add(**add_kwargs)
StarcoderdataPython
5009176
<reponame>TrainingByPackt/Intelligent-Projects-Using-Python-eLearning<filename>Lesson06/rbm.py import numpy as np import pandas as pd import tensorflow as tf import os print(tf.__version__) import fire from elapsedtimer import ElapsedTimer class recommender: def __init__(self,mode,train_file,outdir,test_file=None, user_info_file=None,movie_info_file=None, batch_size=32,epochs=500, learning_rate=1e-3,num_hidden=50, display_step=5): self.mode = mode self.train_file = train_file self.outdir = outdir self.test_file = test_file self.batch_size = batch_size self.learning_rate = learning_rate self.num_hidden = num_hidden self.epochs = epochs self.display_step = display_step self.user_info_file = user_info_file self.movie_info_file = movie_info_file def read_data(self): if self.mode == 'train': self.train_data = np.load(self.train_file) self.num_ranks = self.train_data.shape[2] self.num_movies = self.train_data.shape[1] self.users = self.train_data.shape[0] else: self.train_df = pd.read_csv(self.train_file) self.test_data = np.load(self.test_file) self.test_df = pd.DataFrame(self.test_data,columns=['userid','movieid','rating']) if self.user_info_file != None: self.user_info_df = pd.read_csv(self.user_info_file,sep='|',header=None) self.user_info_df.columns=['userid','age','gender','occupation','zipcode'] if self.movie_info_file != None: self.movie_info_df = pd.read_csv(self.movie_info_file,sep='|',encoding='latin-1',header=None) self.movie_info_df = self.movie_info_df[[0,1]] self.movie_info_df.columns = ['movieid','movie Title'] def next_batch(self): while True: ix = np.random.choice(np.arange(self.train_data.shape[0]),self.batch_size) train_X = self.train_data[ix,:,:] yield train_X def __network(self): self.x = tf.placeholder(tf.float32, [None,self.num_movies,self.num_ranks], name="x") self.xr = tf.reshape(self.x, [-1,self.num_movies*self.num_ranks], name="xr") self.W = tf.Variable(tf.random_normal([self.num_movies*self.num_ranks,self.num_hidden], 0.01), name="W") self.b_h = tf.Variable(tf.zeros([1,self.num_hidden], tf.float32, name="b_h")) self.b_v = tf.Variable(tf.zeros([1,self.num_movies*self.num_ranks],tf.float32, name="b_v")) self.k = 2 ## Converts the probability into discrete binary states i.e. 0 and 1 def sample_hidden(probs): return tf.floor(probs + tf.random_uniform(tf.shape(probs), 0, 1)) def sample_visible(logits): logits = tf.reshape(logits,[-1,self.num_ranks]) sampled_logits = tf.multinomial(logits,1) sampled_logits = tf.one_hot(sampled_logits,depth = 5) logits = tf.reshape(logits,[-1,self.num_movies*self.num_ranks]) print(logits) return logits ## Gibbs sampling step def gibbs_step(x_k): # x_k = tf.reshape(x_k,[-1,self.num_movies*self.num_ranks]) h_k = sample_hidden(tf.sigmoid(tf.matmul(x_k,self.W) + self.b_h)) x_k = sample_visible(tf.add(tf.matmul(h_k,tf.transpose(self.W)),self.b_v)) return x_k ## Run multiple gives Sampling step starting from an initital point def gibbs_sample(k,x_k): for i in range(k): x_k = gibbs_step(x_k) # Returns the gibbs sample after k iterations return x_k # Constrastive Divergence algorithm # 1. Through Gibbs sampling locate a new visible state x_sample based on the current visible state x # 2. Based on the new x sample a new h as h_sample self.x_s = gibbs_sample(self.k,self.xr) self.h_s = sample_hidden(tf.sigmoid(tf.matmul(self.x_s,self.W) + self.b_h)) # Sample hidden states based given visible states self.h = sample_hidden(tf.sigmoid(tf.matmul(self.xr,self.W) + self.b_h)) # Sample visible states based given hidden states self.x_ = sample_visible(tf.matmul(self.h,tf.transpose(self.W)) + self.b_v) # The weight updated based on gradient descent #self.size_batch = tf.cast(tf.shape(x)[0], tf.float32) self.W_add = tf.multiply(self.learning_rate/self.batch_size,tf.subtract(tf.matmul(tf.transpose(self.xr),self.h),tf.matmul(tf.transpose(self.x_s),self.h_s))) self.bv_add = tf.multiply(self.learning_rate/self.batch_size, tf.reduce_sum(tf.subtract(self.xr,self.x_s), 0, True)) self.bh_add = tf.multiply(self.learning_rate/self.batch_size, tf.reduce_sum(tf.subtract(self.h,self.h_s), 0, True)) self.updt = [self.W.assign_add(self.W_add), self.b_v.assign_add(self.bv_add), self.b_h.assign_add(self.bh_add)] def _train(self): self.__network() # TensorFlow graph execution with tf.Session() as sess: self.saver = tf.train.Saver() #saver = tf.train.Saver(write_version=tf.train.SaverDef.V2) # Initialize the variables of the Model init = tf.global_variables_initializer() sess.run(init) total_batches = self.train_data.shape[0]//self.batch_size batch_gen = self.next_batch() # Start the training for epoch in range(self.epochs): if epoch < 150: self.k = 2 if (epoch > 150) & (epoch < 250): self.k = 3 if (epoch > 250) & (epoch < 350): self.k = 5 if (epoch > 350) & (epoch < 500): self.k = 9 # Loop over all batches for i in range(total_batches): self.X_train = next(batch_gen) # Run the weight update #batch_xs = (batch_xs > 0)*1 _ = sess.run([self.updt],feed_dict={self.x:self.X_train}) # Display the running step if epoch % self.display_step == 0: print("Epoch:", '%04d' % (epoch+1)) self.saver.save(sess,os.path.join(self.outdir,'model'), global_step=epoch) # Do the prediction for all users all items irrespective of whether they have been rated self.logits_pred = tf.reshape(self.x_,[self.users,self.num_movies,self.num_ranks]) self.probs = tf.nn.softmax(self.logits_pred,axis=2) out = sess.run(self.probs,feed_dict={self.x:self.train_data}) recs = [] for i in range(self.users): for j in range(self.num_movies): rec = [i,j,np.argmax(out[i,j,:]) +1] recs.append(rec) recs = np.array(recs) df_pred = pd.DataFrame(recs,columns=['userid','movieid','predicted_rating']) df_pred.to_csv(self.outdir + 'pred_all_recs.csv',index=False) print("RBM training Completed !") def inference(self): self.df_result = self.test_df.merge(self.train_df,on=['userid','movieid']) # in order to get the original ids we just need to add 1 self.df_result['userid'] = self.df_result['userid'] + 1 self.df_result['movieid'] = self.df_result['movieid'] + 1 if self.user_info_file != None: self.df_result = self.df_result.merge(self.user_info_df,on=['userid']) if self.movie_info_file != None: self.df_result = self.df_result.merge(self.movie_info_df,on=['movieid']) self.df_result.to_csv(self.outdir + 'test_results.csv',index=False) print(f'output written to {self.outdir}test_results.csv') test_rmse = (np.mean((self.df_result['rating'].values - self.df_result['predicted_rating'].values)**2))**0.5 print(f'test RMSE : {test_rmse}') def main_process(self): self.read_data() if self.mode == 'train': self._train() else: self.inference() if __name__ == '__main__': with ElapsedTimer('process RBM'): fire.Fire(recommender)
StarcoderdataPython
12825516
import json # file_to_read_from = "toy_data/verb_only/constrained_training_data.txt" # file_to_write_to = "toy_data/verb_only/constrained_predicate_list.txt" all_preds = set() with open(file_to_read_from, 'r') as in_file, open(file_to_write_to, "w") as out_file: for sample in in_file: row = json.loads(sample) for pred in row['fact1_pred']: all_preds.add(pred) for pred in row['fact2_pred']: all_preds.add(pred) preds_sorted = list(all_preds) preds_sorted.sort() for pred in preds_sorted: out_file.write(f"{pred.strip()}\n")
StarcoderdataPython
5068384
from checker_functions import * # check where we are running # check the license server exists # check the license server is a license server # check all the paths in the thinclient.xml check_file("./thinclient.xml","thinclient.xml") validate_xml("./thinclient.xml") # check for pit file check_file("./var/opt/Autodesk/Adlm/.config/ProductInformation.pit","pit file") # check for license.env file and sensible content check_file("./usr/autodesk/maya2018/bin/License.env","License.env") validate_file("./usr/autodesk/maya2018/bin/License.env",[["MAYA_LICENSE_METHOD",1,["network","standalone"]]])
StarcoderdataPython
11233189
import _pickle as pickle import copy import sys import numpy as np import os import timeit import torch import torch.multiprocessing as mp import shutil from collections import namedtuple from functools import partial from pprint import pprint import rl_sandbox.constants as c from rl_sandbox.envs.utils import make_env from rl_sandbox.envs.fake_env import FakeEnv from rl_sandbox.utils import DummySummaryWriter, EpochSummary from rl_sandbox.algorithms.sac_x.schedulers import RecycleScheduler from rl_sandbox.agents.hrl_agents import SACXAgent from rl_sandbox.envs.wrappers.absorbing_state import AbsorbingStateWrapper def buffer_warmup(agent, env, buffer, buffer_preprocess, transition_preprocess, experiment_settings, render=False): clip_action = experiment_settings.get( c.CLIP_ACTION, c.DEFAULT_TRAIN_PARAMS[c.CLIP_ACTION]) min_action = experiment_settings.get(c.MIN_ACTION, None) max_action = experiment_settings.get(c.MAX_ACTION, None) num_steps = experiment_settings.get(c.NUM_STEPS, 0) num_episodes = experiment_settings.get(c.NUM_EPISODES, 0) buffer_preprocess.reset() curr_obs = env.reset() curr_obs = buffer_preprocess(curr_obs) curr_h_state = agent.reset() curr_step = 0 curr_episode = 0 while True: if hasattr(env, c.RENDER) and render: env.render() action, next_h_state, act_info = agent.compute_action( obs=curr_obs, hidden_state=curr_h_state) env_action = action if clip_action: env_action = np.clip( action, a_min=min_action, a_max=max_action) next_obs, reward, done, env_info = env.step(env_action) next_obs = buffer_preprocess(next_obs) info = dict() info[c.DISCOUNTING] = env_info.get(c.DISCOUNTING, 1) info.update(act_info) buffer.push(**transition_preprocess(curr_obs, curr_h_state, action, reward, done, info, next_obs=next_obs, next_h_state=next_h_state)) curr_obs = next_obs curr_h_state = next_h_state curr_step += 1 if curr_step >= num_steps: break if done: buffer_preprocess.reset() curr_obs = env.reset() curr_obs = buffer_preprocess(curr_obs) curr_h_state = agent.reset() curr_episode += 1 if curr_episode >= num_episodes: break def train(agent, evaluation_agent, train_env, evaluation_env, buffer_preprocess, experiment_settings, auxiliary_reward=lambda reward, **kwargs: np.array([reward]), summary_writer=DummySummaryWriter(), save_path=None): if auxiliary_reward is None: auxiliary_reward = lambda reward, **kwargs: np.array([reward]) # Training Setting clip_action = experiment_settings.get( c.CLIP_ACTION, c.DEFAULT_TRAIN_PARAMS[c.CLIP_ACTION]) min_action = experiment_settings.get(c.MIN_ACTION, None) max_action = experiment_settings.get(c.MAX_ACTION, None) max_total_steps = experiment_settings.get( c.MAX_TOTAL_STEPS, c.DEFAULT_TRAIN_PARAMS[c.MAX_TOTAL_STEPS]) # Progress Tracking curr_episode = experiment_settings.get( c.CURR_EPISODE, c.DEFAULT_TRAIN_PARAMS[c.CURR_EPISODE]) num_updates = experiment_settings.get( c.NUM_UPDATES, c.DEFAULT_TRAIN_PARAMS[c.NUM_UPDATES]) returns = experiment_settings.get( c.RETURNS, c.DEFAULT_TRAIN_PARAMS[c.RETURNS]) cum_episode_lengths = experiment_settings.get( c.CUM_EPISODE_LENGTHS, c.DEFAULT_TRAIN_PARAMS[c.CUM_EPISODE_LENGTHS]) # Logging print_interval = experiment_settings.get( c.PRINT_INTERVAL, c.DEFAULT_TRAIN_PARAMS[c.PRINT_INTERVAL]) save_interval = experiment_settings.get( c.SAVE_INTERVAL, c.DEFAULT_TRAIN_PARAMS[c.SAVE_INTERVAL]) log_interval = experiment_settings.get( c.LOG_INTERVAL, c.DEFAULT_TRAIN_PARAMS[c.LOG_INTERVAL]) train_render = experiment_settings.get( c.TRAIN_RENDER, c.DEFAULT_TRAIN_PARAMS[c.TRAIN_RENDER]) # Evaluation evaluation_frequency = experiment_settings.get( c.EVALUATION_FREQUENCY, c.DEFAULT_TRAIN_PARAMS[c.EVALUATION_FREQUENCY]) evaluation_returns = experiment_settings.get( c.EVALUATION_RETURNS, c.DEFAULT_TRAIN_PARAMS[c.EVALUATION_RETURNS]) evaluation_successes_all_tasks = experiment_settings.get( c.EVALUATION_SUCCESSES_ALL_TASKS, c.DEFAULT_TRAIN_PARAMS[c.EVALUATION_SUCCESSES_ALL_TASKS]) evaluation_successes = experiment_settings.get( c.EVALUATION_SUCCESSES, c.DEFAULT_TRAIN_PARAMS[c.EVALUATION_SUCCESSES]) num_evaluation_episodes = experiment_settings.get( c.NUM_EVALUATION_EPISODES, c.DEFAULT_TRAIN_PARAMS[c.NUM_EVALUATION_EPISODES]) evaluation_render = experiment_settings.get( c.EVALUATION_RENDER, c.DEFAULT_TRAIN_PARAMS[c.EVALUATION_RENDER]) assert save_path is None or os.path.isdir(save_path) num_tasks = experiment_settings.get(c.NUM_TASKS, 1) eps_per_task = int(num_evaluation_episodes / num_tasks) multitask_returns = np.zeros([num_tasks, eps_per_task]) multitask_successes = np.zeros([num_tasks, eps_per_task]) if hasattr(evaluation_env, 'get_task_successes') and c.AUXILIARY_REWARDS in experiment_settings and \ hasattr(experiment_settings[c.AUXILIARY_REWARDS], '_aux_rewards_str'): auxiliary_success = partial( evaluation_env.get_task_successes, tasks=experiment_settings[c.AUXILIARY_REWARDS]._aux_rewards_str) elif hasattr(evaluation_env, 'get_task_successes') and hasattr(evaluation_env, 'VALID_AUX_TASKS') and \ (auxiliary_reward.__qualname__ in evaluation_env.VALID_AUX_TASKS or auxiliary_reward.__qualname__ == 'train.<locals>.<lambda>'): if auxiliary_reward.__qualname__ == 'train.<locals>.<lambda>': auxiliary_success = partial(evaluation_env.get_task_successes, tasks=['main']) else: auxiliary_success = partial(evaluation_env.get_task_successes, tasks=[auxiliary_reward.__qualname__]) else: auxiliary_success = None eval = partial(evaluate_policy, agent=evaluation_agent, env=evaluation_env, buffer_preprocess=buffer_preprocess, num_episodes=num_evaluation_episodes, clip_action=clip_action, min_action=min_action, max_action=max_action, render=evaluation_render, auxiliary_reward=auxiliary_reward, auxiliary_success=auxiliary_success) parallel_eval_process = None parallel_eval_q = mp.Queue() policy_eval_q = mp.Queue() exploration_strategy = experiment_settings.get(c.EXPLORATION_STRATEGY, None) done = False if isinstance(train_env, FakeEnv): auxiliary_reward = lambda reward, **kwargs: np.array([reward]) try: returns.append(0) cum_episode_lengths.append(cum_episode_lengths[-1]) curr_h_state = agent.reset() curr_obs = train_env.reset() buffer_preprocess.reset() curr_obs = buffer_preprocess(curr_obs) tic = timeit.default_timer() last_buf_save_path = None epoch_summary = EpochSummary() epoch_summary.new_epoch() for timestep_i in range(cum_episode_lengths[-1], max_total_steps): if hasattr(train_env, c.RENDER) and train_render: train_env.render() action, next_h_state, act_info = agent.compute_action( obs=curr_obs, hidden_state=curr_h_state) if timestep_i < experiment_settings.get(c.EXPLORATION_STEPS, 0) and exploration_strategy is not None: action, _, act_info = exploration_strategy.compute_action( obs=curr_obs, hidden_state=curr_h_state) if timestep_i % print_interval == 0: pprint(f"Action: {action}") pprint(act_info) env_action = action if clip_action: env_action = np.clip(action, a_min=min_action, a_max=max_action) next_obs, reward, done, env_info = train_env.step(env_action) next_obs = buffer_preprocess(next_obs) reward = np.atleast_1d(auxiliary_reward(observation=curr_obs, action=env_action, reward=reward, done=done, next_observation=next_obs, info=env_info)) info = dict() info[c.DISCOUNTING] = env_info.get(c.DISCOUNTING, np.array([1])) info.update(act_info) updated, update_info = agent.update(curr_obs, curr_h_state, action, reward, done, info, next_obs, next_h_state) curr_obs = next_obs curr_h_state = next_h_state returns[-1] += reward cum_episode_lengths[-1] += 1 if updated: num_updates += 1 for update_key, update_value in update_info.items(): update_value_mean = update_value if isinstance(update_value, (list, tuple, np.ndarray)): if len(update_value) == 0: continue update_value_mean = np.mean(update_value) epoch_summary.log(f"{c.UPDATE_INFO}/{update_key}", update_value, track_min_max=False) # Tensorboard is slow sometimes, use this log interval to gate amount of information if num_updates % log_interval == 0: summary_writer.add_scalar( f"{c.UPDATE_INFO}/{update_key}", update_value_mean, num_updates) else: for update_key, update_value in update_info.items(): epoch_summary.log(f"{c.UPDATE_INFO}/{update_key}", update_value, track_min_max=False) if done: curr_h_state = agent.reset() curr_obs = train_env.reset() buffer_preprocess.reset() curr_obs = buffer_preprocess(curr_obs) # Logging episode_length = cum_episode_lengths[-1] if curr_episode == 0 else cum_episode_lengths[-1] - \ cum_episode_lengths[-2] for task_i, task_i_ret in enumerate(returns[-1]): summary_writer.add_scalar( f"{c.INTERACTION_INFO}/task_{task_i}/{c.RETURNS}", task_i_ret, timestep_i) summary_writer.add_scalar( f"{c.INTERACTION_INFO}/{c.EPISODE_LENGTHS}", episode_length, curr_episode) if type(agent) == SACXAgent: summary_writer.add_text( f"{c.INTERACTION_INFO}/{c.SCHEDULER_TRAJ}", str(update_info[c.SCHEDULER_TRAJ]), curr_episode) summary_writer.add_text( f"{c.INTERACTION_INFO}/{c.SCHEDULER_TRAJ_VALUE}", str(update_info[c.SCHEDULER_TRAJ_VALUE]), curr_episode) epoch_summary.log(f"{c.INTERACTION_INFO}/{c.RETURNS}", returns[-1], axis=0) epoch_summary.log(f"{c.INTERACTION_INFO}/{c.EPISODE_LENGTHS}", episode_length) returns.append(0) cum_episode_lengths.append(cum_episode_lengths[-1]) curr_episode += 1 curr_timestep = timestep_i + 1 if evaluation_frequency > 0 and curr_timestep % evaluation_frequency == 0: if experiment_settings.get(c.EVALUATION_IN_PARALLEL, False): if parallel_eval_process is None: parallel_eval_process = mp.Process(target=parallel_evaluate_policy, args=( evaluation_agent, eval, parallel_eval_q, policy_eval_q)) parallel_eval_process.start() print("Parallel eval process started.") else: # eval process should be shorter than training, but this will make sure print("Waiting for latest eval results...") evaluation_return, evaluation_success, evaluation_success_all_tasks = parallel_eval_q.get() print("Grabbed latest eval results") evaluation_returns.append(evaluation_return) evaluation_successes.append(evaluation_success) evaluation_successes_all_tasks.append(evaluation_success_all_tasks) for task_i, task_i_ret in enumerate(evaluation_returns[-1]): rets_slice = slice(task_i * eps_per_task, task_i * eps_per_task + eps_per_task) task_i_ret = task_i_ret[rets_slice] task_i_success = evaluation_success_all_tasks[task_i, rets_slice] summary_writer.add_scalar( f"{c.EVALUATION_INFO}/task_{task_i}/{c.AVERAGE_RETURNS}", np.mean(task_i_ret), timestep_i) summary_writer.add_scalar( f"{c.EVALUATION_INFO}/task_{task_i}/{c.EVALUATION_SUCCESSES}", np.mean(task_i_success), timestep_i) multitask_returns[task_i] = task_i_ret multitask_successes[task_i] = task_i_success epoch_summary.log(f"{c.EVALUATION_INFO}/{c.AVERAGE_RETURNS}", multitask_returns, axis=(0, 2)) epoch_summary.log(f"{c.EVALUATION_INFO}/{c.EVALUATION_SUCCESSES_ALL_TASKS}", multitask_successes, axis=(0, 2)) epoch_summary.log(f"{c.EVALUATION_INFO}/{c.EVALUATION_SUCCESSES}", evaluation_success) latest_model = copy.deepcopy(agent.model) latest_model.to('cpu') latest_model.device = 'cpu' policy_eval_q.put(latest_model) else: # no parallel eval evaluation_return, evaluation_success, evaluation_success_all_tasks = eval() evaluation_returns.append(evaluation_return) evaluation_successes.append(evaluation_success) evaluation_successes_all_tasks.append(evaluation_success_all_tasks) for task_i, task_i_ret in enumerate(evaluation_returns[-1]): rets_slice = slice(task_i * eps_per_task, task_i * eps_per_task + eps_per_task) task_i_ret = task_i_ret[rets_slice] task_i_success = evaluation_success_all_tasks[task_i, rets_slice] summary_writer.add_scalar( f"{c.EVALUATION_INFO}/task_{task_i}/{c.AVERAGE_RETURNS}", np.mean(task_i_ret), timestep_i) summary_writer.add_scalar( f"{c.EVALUATION_INFO}/task_{task_i}/{c.EVALUATION_SUCCESSES}", np.mean(task_i_success), timestep_i) multitask_returns[task_i] = task_i_ret multitask_successes[task_i] = task_i_success epoch_summary.log(f"{c.EVALUATION_INFO}/{c.AVERAGE_RETURNS}", multitask_returns, axis=(0, 2)) epoch_summary.log(f"{c.EVALUATION_INFO}/{c.EVALUATION_SUCCESSES_ALL_TASKS}", multitask_successes, axis=(0, 2)) epoch_summary.log(f"{c.EVALUATION_INFO}/{c.EVALUATION_SUCCESSES}", evaluation_success) if curr_timestep % print_interval == 0: epoch_summary.print_summary() epoch_summary.new_epoch() if save_path is not None and curr_timestep % save_interval == 0: curr_save_path = f"{save_path}/{timestep_i}.pt" print(f"Saving model to {curr_save_path}") torch.save(agent.learning_algorithm.state_dict(), curr_save_path) pickle.dump({c.RETURNS: returns if done else returns[:-1], c.CUM_EPISODE_LENGTHS: cum_episode_lengths if done else cum_episode_lengths[:-1], c.EVALUATION_RETURNS: evaluation_returns, c.EVALUATION_SUCCESSES_ALL_TASKS: evaluation_successes_all_tasks, c.EVALUATION_SUCCESSES: evaluation_successes,}, open(f'{save_path}/{c.TRAIN_FILE}', 'wb')) if hasattr(agent, c.LEARNING_ALGORITHM) and hasattr(agent.learning_algorithm, c.BUFFER): buf_save_path = f"{save_path}/{timestep_i}_buffer.pkl" has_absorbing_wrapper = False for wrap_dict in experiment_settings[c.ENV_SETTING][c.ENV_WRAPPERS]: if wrap_dict[c.WRAPPER] == AbsorbingStateWrapper: has_absorbing_wrapper = True break agent.learning_algorithm.buffer.save(buf_save_path, end_with_done=not has_absorbing_wrapper) if last_buf_save_path is not None and \ os.path.isfile(last_buf_save_path) and os.path.isfile(buf_save_path): os.remove(last_buf_save_path) last_buf_save_path = buf_save_path finally: if save_path is not None: torch.save(agent.learning_algorithm.state_dict(), f"{save_path}/{c.TERMINATION_STATE_DICT_FILE}") if not done: returns = returns[:-1] cum_episode_lengths = cum_episode_lengths[:-1] pickle.dump( {c.RETURNS: returns, c.CUM_EPISODE_LENGTHS: cum_episode_lengths, c.EVALUATION_RETURNS: evaluation_returns}, open(f'{save_path}/{c.TERMINATION_TRAIN_FILE}', 'wb') ) if hasattr(agent, c.LEARNING_ALGORITHM) and hasattr(agent.learning_algorithm, c.BUFFER): if save_path is not None: agent.learning_algorithm.buffer.save(f"{save_path}/{c.TERMINATION_BUFFER_FILE}") agent.learning_algorithm.buffer.close() toc = timeit.default_timer() print(f"Training took: {toc - tic}s") def parallel_evaluate_policy(evaluation_agent, partial_eval_func, results_q, policy_q): while True: print("Eval process waiting for new policy parameters...") new_model = policy_q.get() evaluation_agent.model = new_model print("Latest policy params read, starting evaluation") evaluation_return, evaluation_success, evaluation_success_all_tasks = partial_eval_func(agent=evaluation_agent) results_q.put([evaluation_return, evaluation_success, evaluation_success_all_tasks]) print("Parallel eval iteration complete, results loaded to queue") def evaluate_policy(agent, env, buffer_preprocess, num_episodes, clip_action, min_action, max_action, render, auxiliary_reward=lambda reward, **kwargs: np.array([reward]), auxiliary_success=None, verbose=False, forced_schedule=None, stochastic_policy=False): # example forced schedule: {0: 2, 90: 0} eval_returns = [] done_successes = [] aux_successes = [] for _ in range(num_episodes): eval_returns.append(0) curr_obs = env.reset() buffer_preprocess.reset() curr_obs = buffer_preprocess(curr_obs) h_state = agent.reset() done = False done_successes.append(0) aux_successes.append([0]) ts = 0 while not done: if hasattr(env, c.RENDER) and render: env.render() if forced_schedule is not None: for t_key in forced_schedule.keys(): if ts == t_key: print(f"switching to intention {forced_schedule[ts]}") agent.high_level_model._intention_i = forced_schedule[ts] agent.curr_high_level_act = forced_schedule[ts] if stochastic_policy: action, h_state, act_info = agent.compute_action( obs=curr_obs, hidden_state=h_state) else: action, h_state, act_info = agent.deterministic_action( obs=curr_obs, hidden_state=h_state) if clip_action: action = np.clip(action, a_min=min_action, a_max=max_action) next_obs, reward, done, env_info = env.step(action) next_obs = buffer_preprocess(next_obs) if env_info.get(c.DONE_SUCCESS, False) or (env_info.get(c.INFOS, [{}])[0].get(c.DONE_SUCCESS, False)): done_successes[-1] += 1 eval_returns[-1] += np.atleast_1d(auxiliary_reward(observation=curr_obs, action=action, reward=reward, done=done, next_observation=next_obs, info=env_info)) if auxiliary_success is not None: aux_successes[-1] = np.array(auxiliary_success(observation=curr_obs, action=action, env_info=env_info['infos'][-1])).astype(int).tolist() else: aux_successes[-1] = np.zeros(eval_returns[-1].shape) curr_obs = next_obs ts += 1 if verbose: print(eval_returns[-1], done_successes[-1]) return np.array(eval_returns).T, done_successes, np.array(aux_successes).T
StarcoderdataPython
6546781
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright (c) 2015,掌阅科技 All rights reserved. 摘 要: test_key.py 创 建 者: WangLichao 创建日期: 2015-08-18 """ import sys import os sys.path.append(os.path.dirname(os.path.split(os.path.realpath(__file__))[0])) import unittest from zyredis.key import Key class TestKeyModel(unittest.TestCase): """测试key生成逻辑 """ def test_key_with_prefix(self): """测试带前缀情况 """ key = Key("prefix") # 有前缀 mykey = key["abc"]["def"]["ddd"] assert mykey == "prefix_abc_def_ddd" def test_key_no_prefix(self): """测试没有前缀的情况 """ key = Key() # 无前缀 key1 = Key("") mykey = key["abc"]["def"] mykey1 = key1["abc"]["def"] assert mykey == "abc_def" assert mykey1 == "abc_def" key2 = Key("") mykey2 = key2["ttt"]["xxx"] assert mykey2 == "ttt_xxx" if __name__ == '__main__': unittest.main()
StarcoderdataPython
8106049
<reponame>bogdancarpusor/flight-price-predictions from sqlalchemy import Column, Integer, String, TIMESTAMP, Numeric from .database import db class Flight(db.Model): __tablename__ = 'flights' id = Column(Integer, primary_key=True) city_from = Column(String(64), index=True) city_to = Column(String(64), index=True) distance = Column(Numeric) airport_from = Column(String(64)) airport_to = Column(String(64)) kiwi_flight_id = Column(String(64)) price = Column(Numeric, index=True) departure_time = Column(TIMESTAMP(timezone=True)) arrival_time = Column(TIMESTAMP(timezone=True)) flight_number = Column(String(64)) cabin_class = Column(String(64)) airline_code = Column(String(64)) def __repr__(self): return '<Flight {0} from {1} to {2}>'.format(self.flight_number, self.city_from, self.city_to) @property def serialize(self): return { 'id': self.id, 'city_from': self.city_from, 'city_to': self.city_to, 'distance': float(self.distance), 'airport_from': self.airport_from, 'airport_to': self.airport_to, 'kiwi_flight_id': self.kiwi_flight_id, 'price': float(self.price), 'departure_time': self.departure_time.isoformat(), 'arrival_time': self.arrival_time.isoformat(), 'flight_number': self.flight_number, 'cabin_class': self.cabin_class, 'airline_code': self.airline_code } class FindFlightsJob(db.Model): __tablename__ = 'find_flights_jobs' id = Column(Integer, primary_key=True) city_from = Column(String(64), index=True) city_to = Column(String(64)) departure_date = Column(TIMESTAMP(timezone=True)) status = Column(String(64)) class CronJob(db.Model): __tablename__ = 'cron_jobs' id = Column(Integer, primary_key=True) day_of_week = Column(String(64)) month = Column(String(64)) day_of_month = Column(String(64)) hour = Column(String(64)) minute = Column(String(64))
StarcoderdataPython
5089919
<gh_stars>1-10 # Copyright 2010 by <NAME>. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Code to parse BIG GenePop files. The difference between this class and the standard Bio.PopGen.GenePop.Record class is that this one does not read the whole file to memory. It provides an iterator interface, slower but consuming much mess memory. Should be used with big files (Thousands of markers and individuals). See http://wbiomed.curtin.edu.au/genepop/ , the format is documented here: http://wbiomed.curtin.edu.au/genepop/help_input.html . Classes: - FileRecord Holds GenePop data. Functions: """ from Bio.PopGen.GenePop import get_indiv def read(fname): """Parse a file containing a GenePop file. fname is a file name that contains a GenePop record. """ record = FileRecord(fname) return record class FileRecord(object): """Hold information from a GenePop record. Attributes: - marker_len The marker length (2 or 3 digit code per allele). - comment_line Comment line. - loci_list List of loci names. Methods: - get_individual Returns the next individual of the current population. - skip_population Skips the current population. skip_population skips the individuals of the current population, returns True if there are more populations. get_individual returns an individual of the current population (or None if the list ended). Each individual is a pair composed by individual name and a list of alleles (2 per marker or 1 for haploid data). Examples:: ('Ind1', [(1,2), (3,3), (200,201)] ('Ind2', [(2,None), (3,3), (None,None)] ('Other1', [(1,1), (4,3), (200,200)] """ def __init__(self, fname): """Initialize the class.""" self.comment_line = "" self.loci_list = [] self.fname = fname self.start_read() def __str__(self): """Return (reconstructs) a GenePop textual representation. This might take a lot of memory. Marker length will be 3. """ marker_len = 3 rep = [self.comment_line + '\n'] rep.append('\n'.join(self.loci_list) + '\n') current_pop = self.current_pop current_ind = self.current_ind self._handle.seek(0) self.skip_header() rep.append('Pop\n') more = True while more: res = self.get_individual() if res is True: rep.append('Pop\n') elif res is False: more = False else: name, markers = res rep.append(name) rep.append(',') for marker in markers: rep.append(' ') for al in marker: if al is None: al = '0' aStr = str(al) while len(aStr) < marker_len: aStr = "".join(['0', aStr]) rep.append(aStr) rep.append('\n') self.seek_position(current_pop, current_ind) return "".join(rep) def start_read(self): """Start parsing a file containing a GenePop file.""" self._handle = open(self.fname) self.comment_line = self._handle.readline().rstrip() # We can now have one loci per line or all loci in a single line # separated by either space or comma+space... # We will remove all commas on loci... that should not be a problem sample_loci_line = self._handle.readline().rstrip().replace(',', '') all_loci = sample_loci_line.split(' ') self.loci_list.extend(all_loci) for line in self._handle: line = line.rstrip() if line.upper() == 'POP': break self.loci_list.append(line) else: raise ValueError('No population data found, file probably not GenePop related') # self._after_pop = True self.current_pop = 0 self.current_ind = 0 def skip_header(self): """Skip the Header. To be done after a re-open.""" self.current_pop = 0 self.current_ind = 0 for line in self._handle: if line.rstrip().upper() == "POP": return def seek_position(self, pop, indiv): """Seek a certain position in the file. Arguments: - pop - pop position (0 is first) - indiv - individual in pop """ self._handle.seek(0) self.skip_header() while pop > 0: self.skip_population() pop -= 1 while indiv > 0: self.get_individual() indiv -= 1 def skip_population(self): """Skip the current population. Returns true if there is another pop.""" for line in self._handle: if line == "": return False line = line.rstrip() if line.upper() == 'POP': self.current_pop += 1 self.current_ind = 0 return True def get_individual(self): """Get the next individual. Returns individual information if there are more individuals in the current population. Returns True if there are no more individuals in the current population, but there are more populations. Next read will be of the following pop. Returns False if at end of file. """ for line in self._handle: line = line.rstrip() if line.upper() == 'POP': self.current_pop += 1 self.current_ind = 0 return True else: self.current_ind += 1 indiv_name, allele_list, ignore = get_indiv(line) return indiv_name, allele_list return False def remove_population(self, pos, fname): """Remove a population (by position). Arguments: - pos - position - fname - file to be created with population removed """ old_rec = read(self.fname) with open(fname, "w") as f: f.write(self.comment_line + "\n") for locus in old_rec.loci_list: f.write(locus + "\n") curr_pop = 0 l_parser = old_rec.get_individual() start_pop = True while l_parser: if curr_pop == pos: old_rec.skip_population() curr_pop += 1 else: if l_parser is True: curr_pop += 1 start_pop = True else: if start_pop: f.write("POP\n") start_pop = False name, markers = l_parser f.write(name + ",") for marker in markers: f.write(' ') for al in marker: if al is None: al = '0' aStr = str(al) while len(aStr) < 3: aStr = "".join(['0', aStr]) f.write(aStr) f.write('\n') l_parser = old_rec.get_individual() def remove_locus_by_position(self, pos, fname): """Remove a locus by position. Arguments: - pos - position - fname - file to be created with locus removed """ old_rec = read(self.fname) with open(fname, "w") as f: f.write(self.comment_line + "\n") loci_list = old_rec.loci_list del loci_list[pos] for locus in loci_list: f.write(locus + "\n") l_parser = old_rec.get_individual() f.write("POP\n") while l_parser: if l_parser is True: f.write("POP\n") else: name, markers = l_parser f.write(name + ",") marker_pos = 0 for marker in markers: if marker_pos == pos: marker_pos += 1 continue marker_pos += 1 f.write(' ') for al in marker: if al is None: al = '0' aStr = str(al) while len(aStr) < 3: aStr = "".join(['0', aStr]) f.write(aStr) f.write('\n') l_parser = old_rec.get_individual() def remove_loci_by_position(self, positions, fname): """Remove a set of loci by position. Arguments: - positions - positions - fname - file to be created with locus removed """ old_rec = read(self.fname) with open(fname, "w") as f: f.write(self.comment_line + "\n") loci_list = old_rec.loci_list positions.sort() positions.reverse() posSet = set() for pos in positions: del loci_list[pos] posSet.add(pos) for locus in loci_list: f.write(locus + "\n") l_parser = old_rec.get_individual() f.write("POP\n") while l_parser: if l_parser is True: f.write("POP\n") else: name, markers = l_parser f.write(name + ",") marker_pos = 0 for marker in markers: if marker_pos in posSet: marker_pos += 1 continue marker_pos += 1 f.write(' ') for al in marker: if al is None: al = '0' aStr = str(al) while len(aStr) < 3: aStr = "".join(['0', aStr]) f.write(aStr) f.write('\n') l_parser = old_rec.get_individual() def remove_locus_by_name(self, name, fname): """Remove a locus by name. Arguments: - name - name - fname - file to be created with locus removed """ for i in range(len(self.loci_list)): if self.loci_list[i] == name: self.remove_locus_by_position(i, fname) return # If here than locus not existent... Maybe raise exception? # Although it should be Ok... Just a boolean return, maybe? def remove_loci_by_name(self, names, fname): """Remove a loci list (by name). Arguments: - names - names - fname - file to be created with loci removed """ positions = [] for i in range(len(self.loci_list)): if self.loci_list[i] in names: positions.append(i) self.remove_loci_by_position(positions, fname) # If here than locus not existent... Maybe raise exception? # Although it should be Ok... Just a boolean return, maybe?
StarcoderdataPython
1639729
#!/usr/bin/python -u from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer import json, os, sys, hmac, hashlib, subprocess, time def getenv_default(env_name, default_value): if env_name in os.environ and os.environ[env_name]: return os.environ[env_name] else: return default_value class GitAutoDeploy(BaseHTTPRequestHandler): def do_POST(self): try: secret_url = self.path[1:].split("/")[-1] if secret_url == os.environ['SECRET_URL']: sig_received = self.headers.getheader('X-Hub-Signature')[5:] length = int(self.headers.getheader('content-length')) body = self.rfile.read(length) sig_calculated = hmac.new(os.environ['SECRET_KEY'], msg=body, digestmod=hashlib.sha1).hexdigest() if sig_calculated == sig_received: print("Valid hook received, rebuilding page") sys.stdout.flush() if subprocess.call(['su', '-s', '/bin/sh', '-c', '/usr/sbin/deploy_app.sh', getenv_default('DEPLOY_USER', 'app')]) == 0: retval=200 else: retval=500 else: retval=403 else: retval=403 except: retval=500 self.send_response(retval) self.send_header('Content-type', 'text/plain') self.end_headers() self.wfile.write('OHAI! STATUS: %d' % retval) def log_message(self, format, *args): return def main(): if not 'SECRET_KEY' in os.environ or not 'SECRET_URL' in os.environ: os.system("supervisorctl stop autodeploy") while True: time.sleep(1) try: server = None print('GitHub Autodeploy Service Thing v1.0.2-ultrastable started.') server = HTTPServer(('', 8888), GitAutoDeploy) server.serve_forever() except(KeyboardInterrupt, SystemExit) as e: if server: server.socket.close() if __name__ == '__main__': main()
StarcoderdataPython
173102
<reponame>alainivars/utils2devops<filename>utils2devops/aws/security_group.py import boto3 from utils2devops.aws import SecurityGroup, Gress """ Aws configuration iiles should be present: ~/.aws/credentials ~/.aws/config """ def _make_gress(ports): gress = Gress() gress.protocol = ports['IpProtocol'] if 'PortRange' in ports: gress.from_port = ports['FromPort'] gress.to_port = ports['ToPort'] else: gress.from_port = 0 gress.to_port = 0 gress.cidr_block = ports['IpRanges'][0]['CidrIp'] if len(ports['IpRanges']) else '' return gress def list_security_groups(name, state=None): """This function does something in aws security_groups. TODO DOC :param name: The name to use. :type name: str. :param state: Current state to be in. :type state: bool. :returns: int -- the return code. :raises: AttributeError, KeyError """ session = boto3.Session(profile_name='terraform') client = session.client(service_name='ec2', region_name='us-east-2') elements = client.describe_security_groups() for element in elements['SecurityGroups']: x = SecurityGroup(element['GroupId']) x.name = element['GroupName'] x.description = element['Description'] x.vpc_id = element['VpcId'] for ports in element['IpPermissions']: gress = _make_gress(ports) x.ingress.append(gress) for ports in element['IpPermissionsEgress']: gress = _make_gress(ports) x.egress.append(gress) print(x)
StarcoderdataPython
8151691
<filename>accessApp/models.py from .entities.VehicleEntity import Vehicle from .entities.AccessEntity import Access
StarcoderdataPython
11233364
from unidef.languages.common.ir_model import * from unidef.utils.typing_ext import * def walk_nodes( node: IrNode, foreach: Callable[[IrNode, List[Any], Dict[str, Any]], bool], *args, **kwargs ): stop_cond = foreach(node, *args, **kwargs) if not stop_cond: for key in node.keys(): value = node.get_field(Attribute(key=key, ty=Any)) if isinstance(value, list): for v in value: if isinstance(v, IrNode): walk_nodes(v, foreach, *args, **kwargs) elif isinstance(value, IrNode): walk_nodes(value, foreach, *args, **kwargs)
StarcoderdataPython
252027
<reponame>doyaguillo1997/Data2Gether from colour import Color from app.external_sources.csv.services.csv_service import get_load_properties from app.external_sources.idealista.services.idealista_service import get_last_info from app.external_sources.idealista.services.idealista_service import get_predictions from app.geo.services.geo_service import get_zone_childrens from app.geo.services.geo_service import get_zone_containing_point def get_geo_elements(parent_id: int): """Load web info on geo elements Args: parent_id (int): parent geo id Returns: list: list of geo zones with color info and historic info """ geo_elements = list(get_zone_childrens(parent_id)) # Load las historic for each geo zone prices = [] for geo_element in geo_elements: geo_element.historic = get_last_info(geo_element.pk) geo_element.best_moment = None if geo_element.historic: prices.append(geo_element.historic.price) if geo_element.level.id < 3: best_moment = get_predictions(geo_element.pk).order_by("-price").first() if int(best_moment.price) > geo_element.historic.price: geo_element.best_moment = best_moment # Range of colors colors = list( Color("#b6d148").range_to(Color("green"), int(len(geo_elements) * 100)) ) min_price = min(prices) max_price = max(prices) # Unit of color for each increase in price unit_color = (len(colors) - 1) / (max_price - min_price) for geo_element in geo_elements: if geo_element.historic: # There are zones without historic geo_element.color = str( colors[int((geo_element.historic.price - min_price) * unit_color)] ) return geo_elements def get_wallet(load_id: int): properties = list() geo_resume = {"neighborhoods": {}, "districts": {}} # Get Properties dirty_properties = list(get_load_properties(load_id)) future_predicions_dates = list(get_predictions(1).values("date")) # Prepare data structure future_estimation_resume = { "date": [date["date"] for date in future_predicions_dates], "price": [0] * len(future_predicions_dates), "conf_up": [0] * len(future_predicions_dates), "conf_low": [0] * len(future_predicions_dates), } wallet = { "account_id": dirty_properties[0].load.account.id, "load": { "id": dirty_properties[0].load.id, "name": dirty_properties[0].load.name, }, } for dirty_property in dirty_properties: property = {} property["cadastre"] = { "builded_surface": dirty_property.property.cadastre.private_builded_surface, "year_built": dirty_property.property.cadastre.year_built, "cadastral_reference": dirty_property.property.cadastre.cadastral_reference, } property["buyed_price"] = dirty_property.property.buyed_price property["estimated_price"] = dirty_property.property.estimated_price neighborhood = get_zone_containing_point( dirty_property.property.cadastre.location, 3 ) property["geo"] = { "neighborhood": {"id": neighborhood.id, "name": neighborhood.name}, "district": { "id": neighborhood.parent.id, "name": neighborhood.parent.name, }, "location": { "latitude": dirty_property.property.cadastre.latitude, "longitude": dirty_property.property.cadastre.longitude, }, } # Get Idealista historic info district_historic = get_predictions(neighborhood.parent.id) actual_district_price = get_last_info(neighborhood.parent.id).price index = 0 for historic in list(district_historic): future_estimation_resume["price"][index] = ( future_estimation_resume["price"][index] + (historic.price / actual_district_price) * dirty_property.property.estimated_price ) future_estimation_resume["conf_up"][index] = ( future_estimation_resume["conf_up"][index] + (historic.conf_up / actual_district_price) * dirty_property.property.estimated_price ) future_estimation_resume["conf_low"][index] = ( future_estimation_resume["conf_low"][index] + (historic.conf_low / actual_district_price) * dirty_property.property.estimated_price ) index = index + 1 # Check best moment to sell best_moment = district_historic.order_by("-price").first() if ( (best_moment.price / actual_district_price) * dirty_property.property.estimated_price > dirty_property.property.estimated_price ): property["best_moment"] = { "date": best_moment.date, "estimated_price": (best_moment.price / actual_district_price) * dirty_property.property.estimated_price, } properties.append(property) addPropertyGeoResume( geo_resume, dirty_property.property, neighborhood.name, "neighborhoods" ) addPropertyGeoResume( geo_resume, dirty_property.property, neighborhood.parent.name, "districts" ) wallet["properties"] = properties wallet["future_estimations"] = future_estimation_resume geo_resume["neighborhoods"] = { k: v for k, v in sorted( geo_resume["neighborhoods"].items(), key=lambda item: item[1]["total_estimated"], reverse=True, ) } geo_resume["districts"] = { k: v for k, v in sorted( geo_resume["districts"].items(), key=lambda item: item[1]["total_estimated"], reverse=True, ) } wallet["geo_resume"] = geo_resume return wallet def addPropertyGeoResume(geo_resume, property, geo_name, key): """Add Geo Resume Args: geo_resume ([type]): Datastructure to append new info property ([type]): Property geo_name ([type]): Name of zone key ([type]): Districts or neighborhoods """ if geo_name in geo_resume[key]: geo_resume[key][geo_name]["total_estimated"] = ( geo_resume[key][geo_name]["total_estimated"] + property.estimated_price ) geo_resume[key][geo_name]["total_buyed"] = ( geo_resume[key][geo_name]["total_buyed"] + property.buyed_price ) geo_resume[key][geo_name]["total_properties"] = ( geo_resume[key][geo_name]["total_properties"] + 1 ) else: geo_resume[key][geo_name] = { "total_estimated": property.estimated_price, "total_buyed": property.buyed_price, "total_properties": 1, }
StarcoderdataPython
6466256
# automatically generated by the FlatBuffers compiler, do not modify # namespace: apemodefb class EInterpolationModeFb(object): Const = 0 Linear = 1 Cubic = 2
StarcoderdataPython
6450227
<gh_stars>100-1000 #!/usr/bin/env python import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) README = open(os.path.join(here, 'README.rst')).read() VERSION = open(os.path.join(here, 'lwp/version')).read() setup( name='lwp', version=VERSION, description='LXC Web Panel', long_description=README, author='<NAME>', author_email='<EMAIL>', url='https://github.com/claudyus/LXC-Web-Panel', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=[ 'flask>=0.10', 'jinja2>=2.7.2', 'python-ldap', 'PyOpenSSL', ], scripts=['bin/lwp'], )
StarcoderdataPython
11372712
def add(a, b): return a + b def sub(a, b): return a - b def prod(a, b): return a * b def div(a, b): return a / b def file_add(file_name): f = open(file_name) s = 0 for l in f: s += int(l) f.close() return s def file_prod(file_name): f = open(file_name) s = 1 for l in f: s *= int(l) f.close() return s
StarcoderdataPython
3423386
<reponame>jbjjbjjbj/eittek651 # Copyright 2021 <NAME> <<EMAIL>>, <NAME>, <NAME>, <NAME>, <NAME> <<EMAIL>> # # SPDX-License-Identifier: Beerware OR MIT import numpy as np import pandas as pd import ad_path import antenna_diversity as ad ad_path.nop() nr_packets = 2000 snrs_db = np.arange(-5, 25, 1) x_crc_error_ratios = [] z_crc_error_ratios = [] a_crc_error_ratios = [] bers = [] nr_undetected_errors = [] for snr in snrs_db: print(f"Starting run for SNR {snr}") packets = [ad.protocols.dect.Full.with_random_payload() for _ in range(nr_packets)] packets_bytes = [p.to_bytes() for p in packets] modulator = ad.modulation.GFSK() encoder = ad.encoding.SymbolEncoder(2) symbols = [encoder.encode_msb(pb) for pb in packets_bytes] modulated = [modulator.modulate(s) for s in symbols] some_channel = ad.channel.channel_models.RayleighAWGNChannel(2, snr) rs_and_hss = [] for i, m in enumerate(modulated): rs_and_hss.append(some_channel.run(m)) some_channel.frame_sent() # god forsaken return tuples demodulated = [ modulator.demodulate( ad.diversity_technique.selection_from_power(r)[0]) for r, hs in rs_and_hss] received_packets = [ ad.protocols.dect.Full.from_bytes( encoder.decode_msb(d)) for d in demodulated] received_packets_bytes = [rp.to_bytes() for rp in received_packets] a_crc_detecteds = [rp.a_field_crc_error_detected() for rp in received_packets] a_crc_error_ratios.append(sum(a_crc_detecteds) / len(a_crc_detecteds)) x_crc_detecteds = [rp.x_crc_error_detected() for rp in received_packets] x_crc_error_ratios.append(sum(x_crc_detecteds) / len(x_crc_detecteds)) z_crc_error_detecteds = [rp.z_crc_error_detected() for rp in received_packets] z_crc_error_ratios.append( sum(z_crc_error_detecteds) / len(z_crc_error_detecteds)) nr_undetected_error = 0 packet_bers = [] for i in range( ad.common.shared_length( packets_bytes, received_packets_bytes)): faults, total = ad.common.count_bit_errors(packets_bytes[i], received_packets_bytes[i]) packet_bers.append(faults / total) if ((not received_packets[i].any_crc_error_detected()) and packets_bytes[i] != received_packets_bytes[i]): nr_undetected_error += 1 nr_undetected_errors.append(nr_undetected_error / nr_packets) mean_ber = sum(packet_bers) / len(packet_bers) bers.append(mean_ber) df = pd.DataFrame( index=snrs_db, data={"Ratio of Packets with X-CRC Error Detected": x_crc_error_ratios, "Ratio of Packets with R-CRC Error Detected": a_crc_error_ratios, f"Mean Bit Error Rate ({nr_packets} packets)": bers, "Ratio of Undetected Packet Errors": nr_undetected_errors, "Ratio of Packets with Z-CRC Error Detected": z_crc_error_ratios, } ) df.plot(ylabel="Ratio [-]", xlabel="SNR [dB]", figsize=(8.0, 4.8), grid=True).get_figure().savefig("lol2.pdf")
StarcoderdataPython
144654
<filename>jigls/jeditor/jdantic.py from os import name from typing import Any, Callable, List, Dict, Optional from pydantic import BaseModel, create_model, ValidationError, validator from uuid import UUID from pprint import pprint from pydantic import BaseModel as PydanticBaseModel # from pydantic.types import UUID4 class JBaseModel(PydanticBaseModel): __slots__ = "__weakref__" # class Config: # json_ecoders = {UUID4: lambda v: v.hex} class JSocketModel(JBaseModel): name: str uid: str type: int multiConnect: bool dataType: str default: Optional[Any] exec: bool execOnChange: bool execOnConnect: bool monitorOnChange: bool traceback: bool dirty: bool = True class JNodeModel(JBaseModel): name: str uid: str socketList: List[JSocketModel] class JGraphNodeModel(JBaseModel): # node: JNodeModel nodeType: str posX: float posY: float node: JNodeModel dataContent: Dict class JGraphEdgeModel(JBaseModel): uid: str startSocket: str destnSocket: str pathType: int # class JGrEdgeModel(JBaseModel): # edge: JEdgeModel class JGraphModel(BaseModel): nodes: List[Optional[JGraphNodeModel]] edges: List[Optional[JGraphEdgeModel]]
StarcoderdataPython
3454745
from .base import Attr, Context, Load, AST, ACO, Expression, CC from syn.base_utils import quote_string, setitem from syn.type.a import List from syn.five import PY2, STR #------------------------------------------------------------------------------- # Base Class class Literal(Expression): _opts = dict(max_len = 0) #------------------------------------------------------------------------------- # Num if PY2: n_type = (int, long, float, complex) else: n_type = (int, float, complex) class Num(Literal): _opts = dict(args = ('n',)) _attrs = dict(n = Attr(n_type, doc='The numerical value', group=AST)) def emit(self, **kwargs): ret = self._indent(**kwargs) ret += str(self.n) return ret #------------------------------------------------------------------------------- # Str class Str(Literal): _opts = dict(args = ('s',)) _attrs = dict(s = Attr(STR, doc='The string contents', group=AST)) def emit(self, **kwargs): ret = self._indent(**kwargs) ret += quote_string(self.s) return ret #------------------------------------------------------------------------------- # Bytes class Bytes(Literal): minver = '3' _opts = dict(args = ('s',)) _attrs = dict(s = Attr(bytes, group=AST)) def emit(self, **kwargs): ret = self._indent(**kwargs) if PY2: ret += quote_string(self.s) else: ret += str(self.s) return ret #------------------------------------------------------------------------------- # Sequence class Sequence(Literal): bounds = ('[', ']') delim = ', ' _opts = dict(args = ('elts',)) _attrs = dict(elts = Attr(List(Expression), groups=(AST, ACO, CC))) def emit(self, **kwargs): with setitem(kwargs, 'indent_level', 0): cs = [c.emit(**kwargs) for c in self.elts] ret = self.delim.join(cs) if len(cs) == 1 and isinstance(self, Tuple): ret += ',' ret = self.bounds[0] + ret + self.bounds[1] ret = self._indent(**kwargs) + ret return ret #------------------------------------------------------------------------------- # List class List(Sequence): _attrs = dict(ctx = Attr(Context, Load(), groups=(AST, ACO))) #------------------------------------------------------------------------------- # Tuple class Tuple(List): bounds = ('(', ')') #------------------------------------------------------------------------------- # Set class Set(Sequence): bounds = ('{', '}') #------------------------------------------------------------------------------- # NameConstant class NameConstant(Literal): minver = '3.4' _opts = dict(args = ('value',)) _attrs = dict(value = Attr([True, False, None], group=AST)) def emit(self, **kwargs): ret = self._indent(**kwargs) ret += str(self.value) return ret #------------------------------------------------------------------------------- # __all__ __all__ = ('Literal', 'Num', 'Str', 'Bytes', 'Sequence', 'List', 'Tuple', 'Set', 'NameConstant') #-------------------------------------------------------------------------------
StarcoderdataPython
6557445
from .source import get_source, source_info, read_sources as sources
StarcoderdataPython
3487847
<gh_stars>1-10 # Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: MIT # # ---------------------------------------------------------------------------- # # spack install py-tpot # # You can edit this file again by typing: # # spack edit py-tpot # # See the Spack documentation for more information on packaging. # ---------------------------------------------------------------------------- from spack import * class PyTpot(PythonPackage): """A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.""" homepage = "http://epistasislab.github.io/tpot/" url = "https://github.com/EpistasisLab/tpot/archive/v0.10.2.tar.gz" version('0.10.2', sha256='a35c4b7ff1927168a440327004f71d7dd09b6540ab38a951dc0748df5aa91b30') depends_on('py-deap', type=('build', 'run')) depends_on('py-nose', type=('build', 'run')) depends_on('py-numpy', type=('build', 'run')) depends_on('py-scikit-learn', type=('build', 'run')) depends_on('py-scipy', type=('build', 'run')) depends_on('py-tqdm', type=('build', 'run')) depends_on('py-stopit', type=('build', 'run')) depends_on('py-pandas', type=('build', 'run')) depends_on('py-joblib', type=('build', 'run'))
StarcoderdataPython
190906
def multiply(a,b): return a*b def divide(a,b): return a/b
StarcoderdataPython
5134831
import asyncio _EVENTS = {} def get(name): if name not in _EVENTS: _EVENTS[name] = asyncio.Event() return _EVENTS[name] def clear(): _EVENTS.clear()
StarcoderdataPython
3370596
<filename>neurofire/inference/blending.py import numpy as np # Blending similar to what is done in # 'Superhuman accuracy on SNEMI' # However, the function in there probably contains a # typo and doesn't make sense # -> for now we use a linear ramp # TODO more blending modes ?! # -> this would be the sub-class `LinearBlending` # -> if so make a top class and inherit from it for each mode class Blending(object): epsilon = 0.001 def __init__(self, dim, ramp_size): assert dim in (2, 3), str(dim) self.dim = dim assert isinstance(ramp_size, (int, list, tuple)) if isinstance(ramp_size, int): self.ramp_size = [ramp_size] * self.dim else: self.ramp_size = list(ramp_size) assert len(self.ramp_size) == self.dim @staticmethod def blending_profile_1d(x, dim_size, ramp_size): # In 1-D case, x must resemble an arange ramp = np.logical_and(x >= ramp_size, x < (dim_size - ramp_size)) ramp = np.where(ramp, 1., 0.) ramp_up = np.where(x < ramp_size, 1., 0.) ramp_down = np.where(x >= (dim_size - ramp_size), 1., 0.) profile = (ramp + (1 - ramp) * ramp_up * (x / ramp_size) + (1 - ramp) * ramp_down * ((dim_size - x - 1) / ramp_size)) return profile def _get_blending_mask_2d(self, shape): yy, xx = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij') profile_x = self.blending_profile_1d(xx, shape[0], self.ramp_size[0]) profile_y = self.blending_profile_1d(yy, shape[1], self.ramp_size[1]) return 0.5 * (profile_x + profile_y) def _get_blending_mask_3d(self, shape): zz, yy, xx = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]), indexing='ij') profile_z = self.blending_profile_1d(zz, shape[0], self.ramp_size[0]) profile_y = self.blending_profile_1d(yy, shape[1], self.ramp_size[1]) profile_x = self.blending_profile_1d(xx, shape[2], self.ramp_size[2]) return (profile_x + profile_y + profile_z) / 3. def get_blending_mask(self, shape): blend_mask = self._get_blending_mask_2d(shape) if self.dim == 2 else \ self._get_blending_mask_3d(shape) # we clip to avoid division by zero later return np.clip(blend_mask, self.epsilon, 1.) def __call__(self, input_): assert input_.ndim in (self.dim, self.dim + 1), '%i, %i' % (input_.ndim, self.dim) shape = input_.shape if input_.ndim == self.dim else input_.shape[1:] blend_mask = self.get_blending_mask(shape) return (blend_mask * input_).astype(input_.dtype), blend_mask
StarcoderdataPython
1927536
<filename>task3/merge_sort.py """ Merge Sort Contains two procedure: 1. half hte sequence until each sequence only has 1 element, which means each sequence has already been sorted; 2. merge those sequences, keep there original order. """ def merge(left, right): """Merge two sorted list to one sorted list""" res = [] p1, p2 = 0, 0 while True: if p1 == len(left): res.extend(right[p2:]) break elif p2 == len(right): res.extend(left[p1:]) break elif left[p1] < right[p2]: res.append(left[p1]) p1 += 1 else: res.append(right[p2]) p2 += 1 return res def merge_sort(l): if len(l) == 1: return l mid = len(l) // 2 left = merge_sort(l[:mid]) right = merge_sort(l[mid:]) return merge(left, right) if __name__ == '__main__': a = [1, 5, 2, 8, 0, 2, 10, 9, 20] print(merge_sort(a))
StarcoderdataPython
3468920
<filename>examples/demo.py from opencage.geocoder import OpenCageGeocode key = 'your-key-here' geocoder = OpenCageGeocode(key) query = '182 Clerkenwell Road, London' ret = geocoder.geocode(query) print(ret._content)
StarcoderdataPython
1991351
import gym env = gym.make('CartPole-v0') for i_episode in range(20): # one episode is everytime cartpole falls observation = env.reset() for timestep in range(1000): env.render() # render for every timestep print(observation) # prints array of velocities on where cartpole is action = env.action_space.sample() # ML - random action observation, reward, done, info = env.step(action) # step function completes an action and return four variables # observation - what it sees # reward - set of velocities # done - boolean ; info - diagnostics if done: print("episode finished") break
StarcoderdataPython
1762975
<reponame>juaoantonio/curso_video_python n = int(input('Digite um número inteiro para saber seu antecessor e sucessor: ')) print(f'O antecessor de {n} é {n-1} e seu sucessor é {n+1}')
StarcoderdataPython
4900214
<reponame>whart222/cctbx_project<filename>xfel/merging/command_line/dev_cxi_mpi_merge_refltable.py from __future__ import absolute_import, division, print_function # -*- mode: python; coding: utf-8; indent-tabs-mode: nil; python-indent: 2 -*- # # LIBTBX_SET_DISPATCHER_NAME dev.cxi.mpi_merge_refltable # # $Id$ from xfel.merging.command_line.dev_mpi_cluster_two_merge import scaling_manager_mpi, Script from xfel.merging.command_line.dev_cxi_merge_refltable import refltable_scaling_manager class refltable_scaling_manager_mpi(scaling_manager_mpi, refltable_scaling_manager): pass if (__name__ == "__main__"): from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() script = Script(refltable_scaling_manager_mpi) result = script.run(comm=comm,timing=False) if rank == 0: script.show_plot(result) print("DONE")
StarcoderdataPython
6685353
<filename>__scraping__/cnbc.com - requests/main.py # # https://stackoverflow.com/a/47744797/1832058 # from bs4 import BeautifulSoup import requests html = requests.get("https://www.cnbc.com/2017/12/07/pinterest-hires-former-facebook-exec-gary-johnson-to-run-corporate-dev.html").text soup = BeautifulSoup(html, 'html5lib') all_paragraphs = soup.find_all('p') for p in all_paragraphs: #print(p) # all HTML print(p.get_text()) # p.get_text(strip=True) # or print(p.text)
StarcoderdataPython
11257745
<filename>iwant/__init__.py<gh_stars>100-1000 __version__ = '1.0.14' # version number
StarcoderdataPython
6675126
<reponame>Programming-The-Next-Step-2021/RecipesProject import unittest from Recipe_Finder import find_recipes, recipe_link class TestRecipeFinder(unittest.TestCase): def test_find_recipes(self): recipes = find_recipes('eggs,bacon,cheese') self.assertIsNotNone(recipes,'no recipes') def test_recipe_link(self): link = recipe_link('716429') self.assertIn('html', link) if __name__ == '__main__': unittest.main()
StarcoderdataPython
11353361
<gh_stars>1-10 from libsim.models import ( SimulationStep ) from libsim.features import ( PausedBy, ) from libsim.util import ( latest_sample, ) from tests.helpers import ( create_flip_flop_model ) def never(*args): return False def id(x): return x model = create_flip_flop_model(start=0, flip=0, flop=1) def test_process_interface(): """ Should behave like a variable """ var = model & PausedBy(never) step = SimulationStep(x0=1, inputs=(0,), duration=1) assert var.name == model.name assert var.start == model.start assert latest_sample(var(step)) == 0 def test_pauses(): """ Should not flip when paused """ var = model & PausedBy(id) step = SimulationStep(x0=1, inputs=(1,), duration=1) assert latest_sample(var(step)) == 1 def test_should_pass_down_input_tail(): def assert_inputs(sim_step): v1, v2 = sim_step.inputs assert v1 == 1 assert v2 == 2 var = PausedBy(never)(assert_inputs) step = SimulationStep(x0=1, inputs=(0, 1, 2), duration=1) var(step) def test_should_pass_first_input_var_to_predicate(): def pred(x): assert x == 0 return False var = model & PausedBy(pred) step = SimulationStep(x0=1, inputs=(0, 1, 2), duration=1) var(step)
StarcoderdataPython
4858455
<reponame>rupenp/lin-train __author__ = '<NAME>' """ A multiprocessor version of the trainer that distributes potential feature sets to processes. Each process then performs the linear regression across the k-folds. Note that this can be very memory intensive as each process must have a copy of the data. """ from trainer import Trainer
StarcoderdataPython
6567694
<gh_stars>1-10 from argparse import ArgumentParser from os.path import join from .constants import (CFG_TEMP_FILE, MD_TEMP_DIR, MD_CURRENT_FILES, FMT, LATEX_FORMATS, LATEX, EPUB, HTML, OUTPUT_FILE) from .utils import yaml_load, yaml_dump class FlightScript: def __init__(self, func, flight_type): setattr(self, "fligh_script", func.__get__(self)) parser = ArgumentParser(description="") parser.add_argument('--cfg', nargs='?', default="", help='The cfg from pandoc_styles') args = parser.parse_args() self.cfg = yaml_load(args.cfg) self.fmt = self.cfg[FMT] self.real_fmt = self.fmt if self.fmt in LATEX_FORMATS: self.fmt = LATEX elif self.fmt == EPUB: self.fmt = HTML if flight_type == "preflight": self.files = self.cfg[MD_CURRENT_FILES] else: self.file = self.cfg[OUTPUT_FILE] def fligh_script(self): pass def save_cfg(self): yaml_dump(self.cfg, join(self.cfg.get(MD_TEMP_DIR), CFG_TEMP_FILE)) def run_preflight_script(func): script = FlightScript(func, "preflight") script.fligh_script() def run_postflight_script(func): script = FlightScript(func, "postflight") script.fligh_script()
StarcoderdataPython
9730690
<reponame>diberry/AzureStorageSnippets<filename>blobs/quickstarts/python/V12/app_framework.py import os, uuid from azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient, __version__ try: print("Azure Blob Storage v" + __version__ + " - Python quickstart sample") # Quick start code goes here except Exception as ex: print('Exception:') print(ex)
StarcoderdataPython
1695580
#!/usr/bin/env python3 import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import dash_table import plotly.graph_objs as go import pandas as pd import numpy as np import os import math from scipy.stats import mannwhitneyu, ttest_ind from nutris import nutris BASEPATH = "/data" app = dash.Dash(__name__) app.config['suppress_callback_exceptions']=True def combine_all_data(): print("getting new data") survey_df = pd.DataFrame() #tracking_files = {} machineLayouts = pd.DataFrame() timings = pd.DataFrame() for filename in os.listdir(BASEPATH): if ".csv" in filename: if "machineLayout" in filename: user_id = filename.split("_")[0] task = filename.split("_")[1] #the machinelayout is the same for all tasks no need to store it multiple times #extract the machine layout machinelayout_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), sep=';') machinelayout_df_tmp["user_id"] = user_id machinelayout_df_tmp["task"] = task machineLayouts = machineLayouts.append(machinelayout_df_tmp, ignore_index=True) if "_trackings_" in filename: user_id = filename.split("_")[0] task = filename.split("_")[1] timings_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), sep=',') timings = timings.append({"user_id":user_id, "task":task, "time":timings_df_tmp.iloc[-1]["timestamp"] / 1000}, ignore_index=True) for filename in os.listdir(BASEPATH): if ".csv" in filename and not "BAK" in filename: if "_evaluation_" in filename: survey_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), index_col="user_id", sep=';') survey_df = survey_df_tmp.combine_first(survey_df) elif "_basic_" in filename: survey_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), index_col="user_id", sep=';') survey_df = survey_df_tmp.combine_first(survey_df) elif "_guess_" in filename: survey_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), index_col="user_id", sep=';') survey_df = survey_df_tmp.combine_first(survey_df) elif "_task_" in filename: #extract the nutriscore & label from machine layout if available survey_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), index_col="user_id", sep=';') user_id = str(survey_df_tmp.index[0]) #assuming there is only one row in the survey_task.csv, which is fine if data from typeform for taskNr in range(1,5): try: product = machineLayouts[ (machineLayouts["user_id"] == user_id) & \ (machineLayouts["BoxNr"] == int(survey_df_tmp["t_{}".format(taskNr)].iloc[0])) ].iloc[0] survey_df_tmp["nutri_label_{}".format(taskNr)] = product["ProductNutriLabel"] survey_df_tmp["nutri_score_{}".format(taskNr)] = product["ProductNutriScore"] survey_df_tmp["energy_{}".format(taskNr)] = nutris[product["ProductId"]]["energy"] survey_df_tmp["sugar_{}".format(taskNr)] = nutris[product["ProductId"]]["sugar"] survey_df_tmp["sat_fat_{}".format(taskNr)] = nutris[product["ProductId"]]["sat_fat"] survey_df_tmp["natrium_{}".format(taskNr)] = nutris[product["ProductId"]]["natrium"] survey_df_tmp["protein_{}".format(taskNr)] = nutris[product["ProductId"]]["protein"] survey_df_tmp["fiber_{}".format(taskNr)]= nutris[product["ProductId"]]["fiber"] survey_df_tmp["health_percentage_{}".format(taskNr)] = nutris[product["ProductId"]]["health_percentage"] survey_df_tmp["time_{}".format(taskNr)] = timings.loc[(timings["user_id"]==user_id) & (timings["task"]==str(taskNr)),"time"].iloc[0] except: survey_df_tmp["nutri_label_{}".format(taskNr)] = None survey_df_tmp["nutri_score_{}".format(taskNr)] = None survey_df_tmp["energy_{}".format(taskNr)] = None survey_df_tmp["sugar_{}".format(taskNr)] = None survey_df_tmp["sat_fat_{}".format(taskNr)] = None survey_df_tmp["natrium_{}".format(taskNr)] = None survey_df_tmp["protein_{}".format(taskNr)] = None survey_df_tmp["fiber_{}".format(taskNr)]= None survey_df_tmp["health_percentage_{}".format(taskNr)] = None survey_df_tmp["time_{}".format(taskNr)] = None survey_df = survey_df_tmp.combine_first(survey_df) age_classes = { 0: "0.) < 19yrs", 1: "1.) 20 - 29 yrs", 2: "2.) 30 - 49 yrs", 3: "2.) 30 - 49 yrs", 4: "3.) 50 - 65 yrs", 5: "4.) > 65 yrs", 6: "4.) > 65 yrs"} survey_df["age_class"] = survey_df["age"].apply(lambda x: safe_dict(x, age_classes)) ages = { 0: 18, 1: 25, 2: 35, 2: 45, 3: 57, 4: 72, 5: 85 } survey_df["age"] = survey_df["age"].apply(lambda x: safe_dict(x, ages)) weights = { "39-": 35, "40-49": 45, "50-59": 55, "60-69": 65, "70-79": 75, "80-89": 85, "90-99": 95, "100-109": 105, "110-119": 115, "120-129": 125, "130-139": 135, "140-149": 145, "150+": 155 } survey_df["weight"] = survey_df["weight"].apply(lambda x: safe_dict(x, weights, False)) heights = { "139-": 1.35, "140-149": 1.45, "150-159": 1.55, "160-169": 1.65, "170-179": 1.75, "180-189": 1.85, "190-199": 1.95, "200-209": 2.05, "210+": 2.15 } survey_df["height"] = survey_df["height"].apply(lambda x: safe_dict(x, heights, False)) genders = { "male": "0.) Male", "female": "1.)Female" } survey_df["gender"] = survey_df["gender"].apply(lambda x: safe_dict(x, genders, False)) survey_df["bmi"] = survey_df["weight"] / (survey_df["height"] * survey_df["height"]) survey_df["bmi_class"] = survey_df["bmi"].apply(bmi_class) diets = { "No I don't follow a certain diet": "None", "Nein, ich folge keiner bestimmten Diät": "None", "I avoid certain foods because of an allergy or food intolerance": "Allergy / Intolerance", "Ich vermeide bestimmte Lebensmittel wegen Allergie oder Unverträglichkeit": "Allergy / Intolerance", "I eat vegetarian": "Vegiatrian / Vegan", "Ich esse vegetarisch (ovo-lacto-vegetarisch, lacto-vegetarisch)": "Vegiatrian / Vegan", "I eat vegan": "Vegiatrian / Vegan", "Ich esse vegan": "Vegiatrian / Vegan", "I avoid certain foods for ethical/cultural/religious reasons": "Cultural / Ethnical", "Ich vermeide bestimmte Lebensmittel aus ethischen, kulturellen oder religiösen Gründen": "Cultural / Ethnical", "I follow a high carbohydrate diet": "High Carb", "Ich esse kohlenhydratreich": "High Carb", "I follow a diet low in carbohydrates": "Low Carb", "Ich esse kohlenhydrat-arm": "Low Carb", "I follow a low fat or cholosterol diet": "Low Fat", "Ich esse fettarm oder cholesterin-arm": "Low Fat", "I follow a diet with reduced salt consumption": "Low Salt", "Ich esse salz-reduziert": "Low Salt", "I follow a diet low in protein": "Low Protein", "Ich esse protein-arm": "Low Protein", "I follow a diet rich in protein": "High Protein", "Ich esse protein-reich": "High Protein", "I follow an environmentally friendly / sustainable diet": "Sustainable", "Ich ernähre mich umweltreundlich und nachhaltig": "Sustainable", } survey_df["diet"] = survey_df["diet"].apply(lambda x: safe_dict(x, diets, False)) educations = { "Manditory School": "0:) primary education", "Middle school": "0:) primary education", "High school": "1.) secondary education", "Vocational school": "1.) secondary education", "master's diploma": "2.) tertiary education", "College / University": "2.) tertiary education", "Obligatorische Schule": "0:) primary education", "Weiterführende Schule": "0:) primary education", "Matura": "1.) secondary education", "Berufsschule": "1.) secondary education", "Meister- / eidg. Diplom": "2.) tertiary education", "Studium": "2.) tertiary education", } survey_df["education"] = survey_df["education"].apply(lambda x: safe_dict(x, educations, False)) snack_frequencies = { "sehr selten bis nie": "0.) never", "never":"0.) never", "once or twice per year":"0.) never", "ca. monatlich":"1.) monthly", "monthly":"1.) monthly", "ca. wöchentlich":"2.) weekly", "weekly":"2.) weekly", "ca. 2-3 mal pro Woche":"2.) weekly", "ca. 4-5 mal pro Woche":"3.) almost daily", "daily":"3.) almost daily", "ca. täglich":"3.) almost daily", } snack_frequencies_int = { "sehr selten bis nie": 0, "never":0, "once or twice per year":0, "ca. monatlich":1, "monthly":1, "ca. wöchentlich":4, "weekly":4, "ca. 2-3 mal pro Woche":10, "ca. 4-5 mal pro Woche":20, "daily":31, "ca. täglich":31, } survey_df["snack_frequency_int"] = survey_df["snack_frequency"].apply(lambda x: safe_dict(x, snack_frequencies_int, False)) survey_df["snack_frequency"] = survey_df["snack_frequency"].apply(lambda x: safe_dict(x, snack_frequencies, False)) ar_frequencies = { "Never used":"0.) Never", "Noch nie benutz":"0.) Never", "Tried once or twice":"1.) Few Times", "Schon ein oder zwei Mal benutzt":"1.) Few Times", "I use it sometimes":"2.) Sometimes", "Ich benutze es hin und wieder privat":"2.) Sometimes", "I worked with it on a project":"3.) Regularly", "Ich habe an einem Projekt damit gearbeitet":"3.) Regularly", "I use it regularly for private purpose":"3.) Regularly", "Ich benutze es regelmäßig privat":"3.) Regularly", "It is part of my job on a regular basis":"3.) Regularly", "Ich komme auf der Arbeit regelmäßig damit in Kontakt":"3.) Regularly", "I am an expert / developer in the field":"4.) Expert", "Ich bin ein Experte / Entwickler auf dem Feld":"4.) Expert", } ar_frequencies_int = { "Never used":0, "Noch nie benutz":0, "Tried once or twice":1, "Schon ein oder zwei Mal benutzt":1, "I use it sometimes":2, "Ich benutze es hin und wieder privat":2, "I worked with it on a project":3, "Ich habe an einem Projekt damit gearbeitet":3, "I use it regularly for private purpose":3, "Ich benutze es regelmäßig privat":3, "It is part of my job on a regular basis":3, "Ich komme auf der Arbeit regelmäßig damit in Kontakt":3, "I am an expert / developer in the field":4, "Ich bin ein Experte / Entwickler auf dem Feld":4, } survey_df["ar_frequency_int"] = survey_df["ar_frequency"].apply(lambda x: safe_dict(x, ar_frequencies_int, False)) survey_df["ar_frequency"] = survey_df["ar_frequency"].apply(lambda x: safe_dict(x, ar_frequencies, False)) survey_df["BI_avg"] = survey_df[["BI1", "BI2","BI3"]].mean(axis=1, numeric_only=True) survey_df["EE_avg"] = survey_df[["EE1", "EE2","EE3"]].mean(axis=1, numeric_only=True) survey_df["FL_avg"] = survey_df[["FL2","FL3"]].mean(axis=1, numeric_only=True) survey_df["HM_avg"] = survey_df[["HM1", "HM2"]].mean(axis=1, numeric_only=True) survey_df["IE_avg"] = survey_df[["IE1", "IE2"]].mean(axis=1, numeric_only=True) survey_df["PE_avg"] = survey_df[["PE1", "PE2","PE3"]].mean(axis=1, numeric_only=True) survey_df["PI_avg"] = survey_df[["PI1", "PI2","PI3"]].mean(axis=1, numeric_only=True) survey_df["SI_avg"] = survey_df[["SI1", "SI2","SI3"]].mean(axis=1, numeric_only=True) survey_df.fillna(value=pd.np.nan, inplace=True) return survey_df def render_box_per_col(col, survey_df): is_test = survey_df["group"] == "Test" is_control = survey_df["group"] == "Control" data = [] data.append(go.Box( x = survey_df[col][is_test], name="test", marker = dict( color = 'rgb(7,40,89)'), line = dict( color = 'rgb(7,40,89)') )) data.append(go.Box( x = survey_df[col][is_control], name="control", marker = dict( color = 'rgb(107,174,214)'), line = dict( color = 'rgb(107,174,214)') )) graph = dcc.Graph( figure = go.Figure( data = data, layout = go.Layout( showlegend=True, legend=go.layout.Legend( x=0, y=1.0 ), margin=go.layout.Margin(l=40, r=0, t=40, b=30) ) ), style={'height': 150}, id='box_{}'.format(col) ) graph_div = html.Div([graph], style={'padding-top': '20', 'padding-bottom': '20'}) return graph_div def data_per_col(col, survey_df): is_test = survey_df["group"] == "Test" is_control = survey_df["group"] == "Control" data = [ go.Histogram( x = survey_df[col][is_test].sort_values(), name="test", opacity=0.75, marker = dict( color = 'rgb(7,40,89)'), ), go.Histogram( x = survey_df[col][is_control].sort_values(), name="control", opacity=0.75, marker = dict( color = 'rgb(107,174,214)'), ) ] return data def render_hist_per_col(col, survey_df): data = data_per_col(col, survey_df) graph = dcc.Graph( figure = go.Figure( data = data, layout = go.Layout( showlegend=True, legend=go.layout.Legend( x=0, y=1.0 ), margin=go.layout.Margin(l=40, r=0, t=40, b=30) ) ), style={'height': 300} ) graph_div = html.Div([graph], style={'padding-top': '20', 'padding-bottom': '20'}) return graph_div def render_table(survey_df): table = dash_table.DataTable( id='table', columns=[{"name": i, "id": i} for i in survey_df.columns], data=survey_df.to_dict("rows"), ) return table #def load_user_tracking(user_id, task_id): # filename = tracking_files[user_id][task_id] def calc_p_whitney(col, s, ns): Rg = col.rank() nt = col[s].count() nc = col[ns].count() if (Rg == Rg.iloc[0]).all(): return Rg[s].sum() - nt * (nt + 1) / 2, 0.5, nt, nc u, p = stats.mannwhitneyu(Rg[s], Rg[ns]) return p # def calc_p_whitney(colname, survey_df): # col = survey_df[colname] # istest = survey_df["group"]=="Test" # iscontrol = survey_df["group"]=="Control" # Rg = col.rank() # # nt = col[istest].count() # nc = col[iscontrol].count() # # if (Rg == Rg.iloc[0]).all(): # return Rg[istest].sum() - nt * (nt + 1) / 2, 0.5, nt, nc # # u, p = mannwhitneyu(Rg[istest], Rg[iscontrol]) # return u, p, nt, nc def calc_p_t(colname, survey_df): col = survey_df[colname] istest = survey_df["group"]=="Test" iscontrol = survey_df["group"]=="Control" t, p = ttest_ind(col[istest].values, col[iscontrol].values, axis=0, nan_policy='omit') return t, p def table_group(task_nr, survey_df, header): istest = survey_df["group"] == "Test" iscontrol = survey_df["group"] == "Control" isoverweight = survey_df["bmi"] > 25 isnormal = survey_df["bmi"] <= 25 iseducated = survey_df["bmi"] > 25 isliterate = survey_df["FL_avg"] > 4.5 isilliterate = survey_df["FL_avg"] <= 4.5 cols = ["nutri_score", "energy", "sat_fat", "sugar", "natrium", "protein", "fiber", "health_percentage", "time"] data = pd.DataFrame() for col in cols: col_name = "{}_{}".format(col, task_nr) data.loc[col, "N Total"] = "[{}]".format(int(data.loc[col, "N Test"] + data.loc[col, "N Control"])) data.loc[col, "mean Total"] = "{:.2f}".format(survey_df[col_name].mean()) data.loc[col, "SD Total"] = "({:.2f})".format(survey_df[col_name].std()) p = calc_p_whitney(survey_df["group"], istest, iscontrol) data.loc[col, "p group"] = "{:.4f}".format(p) data.loc[col, "N Test"] = "[{}]".format(int(len(survey_df[istest]))) data.loc[col, "mean Test"] = "{:.2f}".format(survey_df[col_name][istest].mean()) data.loc[col, "SD Test"] = "({:.2f})".format(survey_df[col_name][istest].std()) data.loc[col, "N Control"] = "[{}]".format(int(len(survey_df[iscontrol]))) data.loc[col, "mean Control"] = "{:.2f}".format(survey_df[col_name][iscontrol].mean()) data.loc[col, "SD Control"] = "({:.2f})".format(survey_df[col_name][iscontrol].std()) p = calc_p_whitney(survey_df["FL_avg"], isliterate, isilliterate) data.loc[col, "p FL"] = "{:.4f}".format(p) data.loc[col, "N FL>4.5"] = "[{}]".format(int(len(survey_df[isliterate]))) data.loc[col, "mean FL>4.5"] = "{:.2f}".format(survey_df[col_name][isliterate].mean()) data.loc[col, "SD FL>4.5"] = "({:.2f})".format(survey_df[col_name][isliterate].std()) data.loc[col, "N FL<=4.5"] = "[{}]".format(int(len(survey_df[isilliterate]))) data.loc[col, "mean FL<=4.5"] = "{:.2f}".format(survey_df[col_name][isilliterate].mean()) data.loc[col, "SD FL<=4.5"] = "({:.2f})".format(survey_df[col_name][isilliterate].std()) p = calc_p_whitney(survey_df["FL_avg"], isliterate, isilliterate) data.loc[col, "p FL"] = "{:.4f}".format(p) data.loc[col, "N FL>4.5"] = "[{}]".format(int(len(survey_df[isliterate]))) data.loc[col, "mean FL>4.5"] = "{:.2f}".format(survey_df[col_name][isliterate].mean()) data.loc[col, "SD FL>4.5"] = "({:.2f})".format(survey_df[col_name][isliterate].std()) data.loc[col, "N FL<=4.5"] = "[{}]".format(int(len(survey_df[isilliterate]))) data.loc[col, "mean FL<=4.5"] = "{:.2f}".format(survey_df[col_name][isilliterate].mean()) data.loc[col, "SD FL<=4.5"] = "({:.2f})".format(survey_df[col_name][isilliterate].std()) data["index"] = data.index data_dict = data.to_dict("rows") table = dash_table.DataTable( id='table', columns=[ {"name": "", "id": "index"}, {"name": "u", "id": "u"}, {"name": "p", "id": "p"}, {"name": "Total mean", "id": "mean Total"}, {"name": "(SD)", "id": "SD Total"}, {"name": "[N]", "id": "Total N"}, {"name": "Test mean", "id": "mean Test"}, {"name": "(SD)", "id": "SD Test"}, {"name": "[N]", "id": "Test N"}, {"name": "Control mean", "id": "mean Control"}, {"name": "(SD)", "id": "SD Control"}, {"name": "[N]", "id": "Control N"}], data=data_dict, style_as_list_view=True, style_cell={'padding': '5px'}, style_header={ 'backgroundColor': 'white', 'fontWeight': 'bold' }, style_cell_conditional=[ { 'if': {'column_id': c}, 'textAlign': 'left' } for c in ['index','SD Total', 'SD Test', 'SD Control', 'Total N', 'Test N', 'Control N'] ], ) ret_div = html.Div([ html.H1("Task {}".format(task_nr)), html.H2(header), html.Div( [table], style={ 'padding-top': '10', 'padding-bottom': '30', 'padding-left': '30', 'padding-right': '5'}), render_box_per_col("nutri_score_{}".format(task_nr), survey_df), render_hist_per_col("nutri_label_{}".format(task_nr), survey_df.sort_values(by="nutri_label_{}".format(task_nr))) ]) return ret_div def creat_mean_desc(col, survey_df, header = None): data = pd.DataFrame() istest = survey_df["group"] == "Test" iscontrol = survey_df["group"] == "Control" if isinstance(header, str): title = html.H3(header) else: title = html.H3(col) ret_div = html.Div([title, html.P("Total mean (SD) \t\t {:.2f} ({:.2f})".format(survey_df[col].mean(), survey_df[col].std())), html.P("Test mean (SD) \t\t {:.2f} ({:.2f})".format(survey_df[col][istest].mean(), survey_df[col][istest].std())), html.P("Control mean (SD) \t\t {:.2f} ({:.2f})".format(survey_df[col][iscontrol].mean(), survey_df[col][iscontrol].std())), render_box_per_col(col, survey_df)]) return ret_div def create_count_desc(col, survey_df, header=None): data = pd.DataFrame() istest = survey_df["group"] == "Test" iscontrol = survey_df["group"] == "Control" survey_df.loc[survey_df[col].isna(),col] = "Missing" data["count Total"] = survey_df[col].value_counts() data["% Total"] = (data["count Total"] / data["count Total"].sum() * 100).apply(lambda x : "({:.1f}%)".format(x)) data.loc["Total", "count Total"] = data["count Total"].sum() data["count Test"] = survey_df[col][istest].value_counts() data["% Test"] = (data["count Test"] / data["count Test"].sum() * 100).apply(lambda x : "({:.1f}%)".format(x)) data.loc["Total", "count Test"] = data["count Test"].sum() data["count Control"] = survey_df[col][iscontrol].value_counts() data["% Control"] = (data["count Control"] / data["count Control"].sum() * 100).apply(lambda x : "({:.1f}%)".format(x)) data.loc["Total", "count Control"] = data["count Control"].sum() data.loc["Total", ["% Total","% Test","% Control"]] = "" data["index"] = data.index data = data.sort_index() data_dict = data.to_dict("rows") table = dash_table.DataTable( id='table', columns=[ {"name": "", "id": "index"}, {"name": "Total N", "id": "count Total"}, {"name": "(%)", "id": "% Total"}, {"name": "Test N", "id": "count Test"}, {"name": "(%)", "id": "% Test"}, {"name": "Control N", "id": "count Control"}, {"name": "(%)", "id": "% Control"},], data=data_dict, style_as_list_view=True, style_cell={'padding': '5px'}, style_header={ 'backgroundColor': 'white', 'fontWeight': 'bold' }, style_cell_conditional=[ { 'if': {'column_id': c}, 'textAlign': 'left' } for c in ['index', '% Total', '% Test', '% Control'] ], ) if isinstance(header, str): title = html.H3(header) else: title = html.H3(col) ret_div = html.Div([title, html.Div( [table], style={ 'padding-top': '10', 'padding-bottom': '30', 'padding-left': '30', 'padding-right': '5'}), render_hist_per_col(col, survey_df), ]) return ret_div def get_question_text_save(col, questions_df, question_ids): try: question_text = questions_df[" question.text,"][question_ids[col]] except: question_text = "Error: Question wasn't found" return question_text def create_survey(cols, survey_df, header): questionsfile = os.path.join(BASEPATH, "questionlayout-evaluation.csv") questions_df = pd.read_csv(questionsfile, sep=";", index_col="question.id") questions_df["time_1"] = "task 1" questions_df["time_2"] = "task 2" questions_df["time_3"] = "task 3" questions_df["time_4"] = "task 4" question_ids = { "IE1":"jcruLQD1jtsb", "IE2":"eaTgLd8mTqIl", "PE1":"q0mA3PRRFjx7", "PE2":"sBItcnzLbeab", "PE3":"HNBvOMYBB0aG", "EE1":"MEMNKBeL1Yx1", "EE2":"erPaRi4mPyPG", "EE3":"QVMeswBQSWAi", "SI1":"xdCMMXgxnem1", "SI2":"wfA9uqPz8cRt", "SI3":"xUlfUW6JGEav", "HM1":"JYEh0RF8Fm8b", "HM2":"DuGG9VdyhxCd", "PI1":"Y4v77TAeZzKs", "PI2":"QVzNIkgWgGxB", "PI3":"BQXqCdJgdxle", "BI1":"b4YNQSqEHFaE", "BI2":"GfV0SwI2TmuK", "BI3":"PEWOeMEEayNA", "FL1":"Wiq2wP97n7RO", "FL2":"zDVqi1Ti9Nwq", "FL3":"WeELc4DWjE6P", "time_1":"time_1", "time_2":"time_2", "time_3":"time_3", "time_4":"time_4", } question_texts = {col: get_question_text_save(col, questions_df, question_ids) for col in cols} question_texts["Average"] = "--- Average ---" survey_df_tmp = survey_df.loc[:,cols] survey_df_tmp.loc[:,"Average"] = survey_df_tmp.mean(axis=1,numeric_only=True) survey_df_tmp.loc[:,"group"] = survey_df.loc[:,"group"] cols.append("Average") data = pd.DataFrame() istest = survey_df["group"] == "Test" iscontrol = survey_df["group"] == "Control" data["mean Total"] = survey_df_tmp[cols].mean().apply(lambda x : "{:.2f}".format(x)) data["SD Total"] = survey_df_tmp[cols].std().apply(lambda x : "({:.2f})".format(x)) data["mean Test"] = survey_df_tmp[cols][istest].mean().apply(lambda x : "{:.2f}".format(x)) data["SD Test"] = survey_df_tmp[cols][istest].std().apply(lambda x : "({:.2f})".format(x)) data["mean Control"] = survey_df_tmp[cols][iscontrol].mean().apply(lambda x : "{:.2f}".format(x)) data["SD Control"] = survey_df_tmp[cols][iscontrol].std().apply(lambda x : "({:.2f})".format(x)) data["question"] = pd.Series(question_texts) for col in cols: _, data.loc[col, "p (rank)"], _, _ = calc_p_whitney(col, survey_df_tmp) _, data.loc[col, "p (t)"] = calc_p_t(col, survey_df_tmp) data["p (rank)"] = data["p (rank)"].apply(lambda x : "{:.4f}".format(x)) data["p (t)"] = data["p (t)"].apply(lambda x : "{:.4f}".format(x)) data_dict = data.to_dict("rows") table = dash_table.DataTable( id='table', columns=[ {"name": "", "id": "question"}, {"name": "Total mean", "id": "mean Total"}, {"name": "(SD)", "id": "SD Total"}, {"name": "Test mean", "id": "mean Test"}, {"name": "(SD)", "id": "SD Test"}, {"name": "Control mean", "id": "mean Control"}, {"name": "(SD)", "id": "SD Control"}, {"name": "p (rank)", "id": "p (rank)"}, {"name": "p (t)", "id": "p (t)"}], data=data_dict, style_as_list_view=True, style_cell={'padding': '5px'}, style_header={ 'backgroundColor': 'white', 'fontWeight': 'bold' }, style_cell_conditional=[ { 'if': {'column_id': c}, 'textAlign': 'left' } for c in ['question', 'SD Total', 'SD Test', 'SD Control', "u"] ], ) ret_div = html.Div([html.H3(header), html.Div( [table], style={ 'padding-top': '10', 'padding-bottom': '30', 'padding-left': '30', 'padding-right': '5'})]) return ret_div def bmi_class(bmi): if bmi < 18.5: return "0:) Underweight (BMI < 18.5)" elif bmi < 25: return "1.) Normal (18.5 ≤ BMI < 25)" elif bmi < 30: return "2.) Overweight (25 ≤ BMI < 30)" else: return "3.) Obese (30 ≤ BMI" def safe_dict(_key, _dict, _int=True): try: if _int: val = _dict[int(_key)] else: val = _dict[_key] except: val = None return val app.layout = html.Div([ html.Button("Refresh", id="refresh"), html.Div([], id="graphs", style={'width':'70%', 'padding-top': '40', 'padding-bottom': '10', 'padding-left': '50', 'padding-right': '50'}), ]) @app.callback(Output("graphs", "children"), [Input("refresh", "n_clicks")]) def update_survey(_): survey_df = combine_all_data() print("printing new data") return [creat_mean_desc("age", survey_df, "Age"), create_count_desc("age_class", survey_df, "Age"), creat_mean_desc("bmi", survey_df, "Body Mass Index"), create_count_desc("bmi_class", survey_df, "Weight"), create_count_desc("gender", survey_df, "Gender"), create_count_desc("education", survey_df, "Education"), create_count_desc("snack_frequency", survey_df, "Machine Usage Frequency"), creat_mean_desc("snack_frequency_int", survey_df, "Machine Usage Frequency"), create_count_desc("ar_frequency", survey_df, "AR Usage Frequency"), create_survey(["ar_frequency_int"], survey_df, "AR Frequency"), html.Hr(), table_group(1, survey_df, "Choose a snack of your choice"), html.Hr(), table_group(2, survey_df,"Choose a drink of your choice"), html.Hr(), table_group(3, survey_df,"Choose the healthiest snack"), html.Hr(), table_group(4, survey_df,"Choose the healthiest drink"), html.Hr(), create_survey(["time_1", "time_2","time_3","time_4"], survey_df, "Time Taken per Task"), html.Hr(), create_survey(["IE1", "IE2"], survey_df, "Intervention Effect"), create_survey(["PE1", "PE2", "PE3"], survey_df, "Performance Expectancy"), create_survey(["EE1", "EE2", "EE3"], survey_df, "Effort Expectancy"), create_survey(["SI2", "SI3"], survey_df, "Social Influence"), create_survey(["HM1", "HM2"], survey_df, "Hedonic Motivations"), create_survey(["PI1", "PI2", "PI3"], survey_df, "Personal Innovativeness"), create_survey(["BI1", "BI2", "BI3"], survey_df, "Behavioural Intention"), create_survey(["FL2", "FL3"], survey_df, "Food Literacy (ohne FL1)"), create_survey(["FL1", "FL2", "FL3"], survey_df, "Food Literacy"), create_survey(["SI1"], survey_df, "Observation Bias"), #render_table(survey_df) ] if __name__ == '__main__': app.run_server(debug=True, host="0.0.0.0", port=80)
StarcoderdataPython
1699690
<filename>webapp/utils/request_params.py def param2type(request, method, param, data_type, defval=None): """ get http request paramter Args: request: HttpRequest instance method: string of HTTP method param: string of parameter data_type: type of parameter defval: default value if parameter do not exist in request method Returns: val: parameter value """ method = method.upper() try: val = data_type(getattr(request, method).get(param, defval)) except ValueError: val = defval except Exception as e: val = defval return val def param2int(request, method, param, defval=0): return param2type(request, method, param, int, defval=defval) def param2str(request, method, param, defval=""): return param2type(request, method, param, str, defval=defval)
StarcoderdataPython
6421381
<filename>test/test_ami_line_tool.py import unittest import context from pyamiimage.ami_plot import POLYGON, POLYLINE, AmiLine, AmiLineTool, X, Y class TestAmiLineTool: """test AmilineTool""" def test_empty_polyline(self): line_tool = AmiLineTool() assert line_tool.line_points_list == [] assert line_tool.polygons == [] assert line_tool.mode == POLYLINE def test_single_segment(self): # creates fresh polyline line_tool = AmiLineTool() line_tool.add_segment([[1, 2], [2, 3]]) assert line_tool.line_points_list == [ [[1, 2], [2, 3]] ], f"found {line_tool.line_points_list}" def test_multiple_segments(self): line_tool = AmiLineTool(xy_flag=X) segments = [[[1, 2], [2, 3]], [[2, 3], [5, 7]]] line_tool.add_segments(segments) assert line_tool.line_points_list == [ [[1, 2], [2, 3], [5, 7]] ], f"found {line_tool.line_points_list}" def test_multiple_non_overlapping_segments(self): line_tool = AmiLineTool(xy_flag=X) # already sorted line_tool.add_segments([[[1, 2], [2, 3]], [[5, 8], [5, 7]]]) assert line_tool.line_points_list == [[[1, 2], [2, 3]], [[5, 8], [5, 7]]] # not sorted line_tool = AmiLineTool(xy_flag=X) line_tool.add_segments([[[5, 8], [5, 7]], [[1, 2], [2, 3]]]) assert line_tool.line_points_list == [[[5, 8], [5, 7]], [[1, 2], [2, 3]]] def test_add_right_segment(self): line_tool = AmiLineTool(xy_flag=X) line_tool.add_segments([[[1, 2], [2, 3]], [[2, 3], [5, 7]]]) assert line_tool.line_points_list == [[[1, 2], [2, 3], [5, 7]]] line_tool.add_segment([[5, 7], [9, 5]]) assert line_tool.line_points_list == [[[1, 2], [2, 3], [5, 7], [9, 5]]] def test_fail_right_segment(self): line_tool = AmiLineTool(xy_flag=X) line_tool.add_segments([[[1, 2], [2, 3]], [[2, 3], [5, 7]]]) try: line_tool.add_segment([[15, 7], [9, 5]]) raise ValueError("should raise error as points don't overlap") except ValueError: pass def test_make_unclosed_box_and_close(self): line_tool = AmiLineTool(xy_flag=X, mode=POLYGON) line_tool.add_segments( [[[10, 20], [10, 30]], [[10, 30], [40, 30]], [[40, 30], [40, 20]]] ) assert line_tool.line_points_list == [[[10, 20], [10, 30], [40, 30], [40, 20]]] # close box line_tool.add_segments([[[10, 20], [40, 20]]]) assert line_tool.polygons == [[[10, 20], [10, 30], [40, 30], [40, 20]]] def test_make_closed_box(self): line_tool = AmiLineTool(xy_flag=X, mode=POLYGON) line_tool.add_merge_polyline_to_poly_list( [[10, 20], [10, 30], [40, 30], [40, 20]] ) assert line_tool.line_points_list == [[[10, 20], [10, 30], [40, 30], [40, 20]]] line_tool.add_segments([[[10, 20], [40, 20]]]) assert line_tool.polygons == [[[10, 20], [10, 30], [40, 30], [40, 20]]] def test_joining_lines_head_tail(self): """head-tail""" line_tool = AmiLineTool() polyline0 = [[0, 10], [0, 20], [10, 20]] line_tool.add_merge_polyline_to_poly_list(polyline0) polyline1 = [[10, 20], [10, 30], [20, 30]] line_tool.add_merge_polyline_to_poly_list(polyline1) assert line_tool.line_points_list == [ [[0, 10], [0, 20], [10, 20], [10, 30], [20, 30]] ] def test_joining_lines_head_head(self): """head-head""" line_tool = AmiLineTool() polyline0 = [[0, 10], [0, 20], [10, 20]] line_tool.add_merge_polyline_to_poly_list(polyline0) polyline1 = [[20, 30], [10, 30], [10, 20]] line_tool.add_merge_polyline_to_poly_list(polyline1) assert line_tool.line_points_list == [ [[0, 10], [0, 20], [10, 20], [10, 30], [20, 30]] ] def test_joining_lines_tail_tail(self): """tail-tail""" line_tool = AmiLineTool() polyline0 = [[10, 20], [0, 20], [0, 10]] line_tool.add_merge_polyline_to_poly_list(polyline0) polyline1 = [[10, 20], [10, 30], [20, 30]] line_tool.add_merge_polyline_to_poly_list(polyline1) assert line_tool.line_points_list == [ [[20, 30], [10, 30], [10, 20], [0, 20], [0, 10]] ] def test_joining_lines_tail_head(self): """tail-head""" line_tool = AmiLineTool() polyline0 = [[10, 20], [0, 20], [0, 10]] line_tool.add_merge_polyline_to_poly_list(polyline0) polyline1 = [[20, 30], [10, 30], [10, 20]] line_tool.add_merge_polyline_to_poly_list(polyline1) assert line_tool.line_points_list == [ [[20, 30], [10, 30], [10, 20], [0, 20], [0, 10]] ]
StarcoderdataPython
6445049
# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod import numpy as np import os import subprocess from finn.custom_op import CustomOp from finn.util.basic import ( CppBuilder, make_build_dir, roundup_to_integer_multiple, get_rtlsim_trace_depth, ) from finn.util.fpgadataflow import ( IPGenBuilder, pyverilate_get_liveness_threshold_cycles, rtlsim_multi_io, ) from . import templates try: from pyverilator import PyVerilator except ModuleNotFoundError: PyVerilator = None class HLSCustomOp(CustomOp): """HLSCustomOp class all custom ops that correspond to a finn-hlslib function are based on. Contains different functions every fpgadataflow custom node should have. Some as abstract methods, these have to be filled when writing a new fpgadataflow custom op node.""" def __init__(self, onnx_node): super().__init__(onnx_node) self.code_gen_dict = {} # getting templates from templates.py # template for single node execution self.docompute_template = templates.docompute_template # templates for single node ip generation # cpp file self.ipgen_template = templates.ipgen_template # tcl script self.ipgentcl_template = templates.ipgentcl_template def get_nodeattr_types(self): return { "backend": ("s", True, "fpgadataflow"), "code_gen_dir_cppsim": ("s", False, ""), "code_gen_dir_ipgen": ("s", False, ""), "executable_path": ("s", False, ""), "ipgen_path": ("s", False, ""), "ip_path": ("s", False, ""), "ip_vlnv": ("s", False, ""), "exec_mode": ("s", False, ""), "cycles_rtlsim": ("i", False, 0), "cycles_estimate": ("i", False, 0), "rtlsim_trace": ("s", False, ""), "res_estimate": ("s", False, ""), "res_hls": ("s", False, ""), "res_synth": ("s", False, ""), "rtlsim_so": ("s", False, ""), # partitioning info "partition_id": ("i", False, 0), # input and output FIFO depths "inFIFODepth": ("i", False, 2), "outFIFODepth": ("i", False, 2), } def get_verilog_top_module_name(self): "Return the Verilog top module name for this node." node = self.onnx_node prefixed_top_name = "%s_%s" % (node.name, node.name) return prefixed_top_name def get_verilog_top_module_intf_names(self): """Return a dict of names of input and output interfaces. The keys reflect the protocols each interface implements: 'clk', 'rst', 'm_axis', 's_axis', 'aximm', 'axilite'. Values are lists of names: 's_axis' names correspond to the list of node inputs in order, 'm_axis' names correspond to the list of node outputs in order' Each block must have at most one aximm and one axilite.""" intf_names = {} intf_names["clk"] = ["ap_clk"] intf_names["rst"] = ["ap_rst_n"] intf_names["s_axis"] = ["in0_V_V"] intf_names["m_axis"] = ["out_V_V"] intf_names["aximm"] = [] intf_names["axilite"] = [] return intf_names def get_verilog_top_filename(self): "Return the Verilog top module filename for this node." verilog_file = "{}/project_{}/sol1/impl/verilog/{}.v".format( self.get_nodeattr("code_gen_dir_ipgen"), self.onnx_node.name, self.get_verilog_top_module_name(), ) return verilog_file def get_all_verilog_paths(self): "Return list of all folders containing Verilog code for this node." code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") assert ( code_gen_dir != "" ), """Node attribute "code_gen_dir_ipgen" is not set. Please run HLSSynthIP first.""" verilog_path = "{}/project_{}/sol1/impl/verilog/".format( code_gen_dir, self.onnx_node.name ) # default impl only returns the HLS verilog codegen dir return [verilog_path] def get_all_verilog_filenames(self): "Return list of all Verilog files used for this node." verilog_files = [] verilog_paths = self.get_all_verilog_paths() for verilog_path in verilog_paths: for f in os.listdir(verilog_path): if f.endswith(".v"): verilog_files += [f] return verilog_files def prepare_rtlsim(self): """Creates a Verilator emulation library for the RTL code generated for this node, sets the rtlsim_so attribute to its path and returns a PyVerilator wrapper around it.""" if PyVerilator is None: raise ImportError("Installation of PyVerilator is required.") verilog_paths = self.get_all_verilog_paths() verilog_files = self.get_all_verilog_filenames() # build the Verilator emu library sim = PyVerilator.build( verilog_files, build_dir=make_build_dir("pyverilator_" + self.onnx_node.name + "_"), verilog_path=verilog_paths, trace_depth=get_rtlsim_trace_depth(), top_module_name=self.get_verilog_top_module_name(), ) # save generated lib filename in attribute self.set_nodeattr("rtlsim_so", sim.lib._name) return sim def get_rtlsim(self): """Return a PyVerilator wrapper for the Verilator emulation library for this node.""" rtlsim_so = self.get_nodeattr("rtlsim_so") assert os.path.isfile(rtlsim_so), "Cannot find rtlsim library." # create PyVerilator wrapper sim = PyVerilator(rtlsim_so) return sim def node_res_estimation(self): """Returns summarized resource estimation of BRAMs and LUTs of the node as a dictionary.""" ret = dict() ret["BRAM_18K"] = self.bram_estimation() ret["BRAM_efficiency"] = self.bram_efficiency_estimation() ret["LUT"] = self.lut_estimation() return ret def bram_efficiency_estimation(self): """Function for BRAM efficiency estimation: actual parameter storage needed divided by the allocated BRAM storage (from estimation)""" return 1 def bram_estimation(self): """Function for BRAM resource estimation, is member function of HLSCustomOp class but has to be filled by every node""" return 0 def lut_estimation(self): """Function for LUT resource estimation, is member function of HLSCustomOp class but has to be filled by every node""" return 0 def get_exp_cycles(self): """Function for estimation of expected cycles for set folding, is member function of HLSCustomOp class but has to be filled by every node""" return 0 def code_generation_ipgen(self, model, fpgapart, clk): """Generates c++ code and tcl script for ip generation.""" node = self.onnx_node # generate top cpp file for ip generation path = self.get_nodeattr("code_gen_dir_ipgen") self.code_gen_dict["$AP_INT_MAX_W$"] = [str(self.get_ap_int_max_w())] self.generate_params(model, path) self.global_includes() self.defines("ipgen") self.blackboxfunction() self.pragmas() self.docompute() template = self.ipgen_template for key in self.code_gen_dict: # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") f = open(os.path.join(code_gen_dir, "top_{}.cpp".format(node.name)), "w") f.write(template) f.close() self.code_gen_dict.clear() # generate tcl script for ip generation self.code_gen_dict["$PROJECTNAME$"] = ["project_{}".format(node.name)] self.code_gen_dict["$HWSRCDIR$"] = [code_gen_dir] self.code_gen_dict["$FPGAPART$"] = [fpgapart] self.code_gen_dict["$FINNHLSLIBDIR$"] = ["/workspace/finn-hlslib"] self.code_gen_dict["$TOPFXN$"] = [node.name] self.code_gen_dict["$CLKPERIOD$"] = [str(clk)] self.code_gen_dict["$EXTRA_DIRECTIVES$"] = self.ipgen_extra_directives() template = self.ipgentcl_template for key in self.code_gen_dict: # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") f = open(os.path.join(code_gen_dir, "hls_syn_{}.tcl".format(node.name)), "w") f.write(template) f.close() self.code_gen_dict.clear() def ipgen_extra_directives(self): "Return a list of extra tcl directives for HLS synthesis." return [] def ipgen_singlenode_code(self): """Builds the bash script for ip generation using the IPGenBuilder from finn.util.fpgadataflow.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") builder = IPGenBuilder() builder.append_tcl(code_gen_dir + "/hls_syn_{}.tcl".format(node.name)) builder.set_ipgen_path(code_gen_dir + "/project_{}".format(node.name)) builder.build(code_gen_dir) self.set_nodeattr("ipgen_path", builder.ipgen_path) self.set_nodeattr("ip_path", builder.ipgen_path + "/sol1/impl/ip") vlnv = "xilinx.com:hls:%s:1.0" % node.name self.set_nodeattr("ip_vlnv", vlnv) def code_generation_cppsim(self, model): """Generates c++ code for simulation (cppsim).""" node = self.onnx_node path = self.get_nodeattr("code_gen_dir_cppsim") self.code_gen_dict["$AP_INT_MAX_W$"] = [str(self.get_ap_int_max_w())] self.generate_params(model, path) self.global_includes() self.defines("cppsim") self.read_npy_data() self.strm_decl() self.pragmas() self.docompute() self.dataoutstrm() self.save_as_npy() template = self.docompute_template for key in self.code_gen_dict: # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") f = open(os.path.join(code_gen_dir, "execute_{}.cpp".format(node.op_type)), "w") f.write(template) f.close() self.code_gen_dict.clear() def code_generation_ipi(self): """Constructs and returns the TCL for node instantiation in Vivado IPI.""" vlnv = self.get_nodeattr("ip_vlnv") cmd = ["create_bd_cell -type ip -vlnv %s %s" % (vlnv, self.onnx_node.name)] return cmd def compile_singlenode_code(self): """Builds the bash script for compilation using the CppBuilder from finn.util.basic and executes the script to produce the executable.""" code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") builder = CppBuilder() # to enable additional debug features please uncommand the next line # builder.append_includes("-DDEBUG") builder.append_includes("-I/workspace/finn/src/finn/data/cpp") builder.append_includes("-I/workspace/cnpy/") builder.append_includes("-I/workspace/finn-hlslib") builder.append_includes("-I{}/include".format(os.environ["VIVADO_PATH"])) builder.append_includes("--std=c++11") builder.append_includes("-O3") builder.append_sources(code_gen_dir + "/*.cpp") builder.append_sources("/workspace/cnpy/cnpy.cpp") builder.append_includes("-lz") builder.set_executable_path(code_gen_dir + "/node_model") builder.build(code_gen_dir) self.set_nodeattr("executable_path", builder.executable_path) def dynamic_input_to_npy(self, context, count): """Saves input (given context) into .npy files. Count indicates the number of inputs that have to be saved.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") if code_gen_dir == "": raise Exception( """ Found no codegen dir for this node, did you run the prepare_cppsim transformation? """ ) # create a npy file for each input of the node (in_ind is input index) # assuming dynamic inputs start from 0 for in_ind in range(count): current_input_name = node.input[in_ind] # make copy before saving array input_array = context[current_input_name].copy() np.save( os.path.join(code_gen_dir, "input_{}.npy".format(in_ind)), input_array ) def npy_to_dynamic_output(self, context): """Reads the output from an output.npy file generated from cppsim and places its content into the context dictionary.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") output = np.load("{}/output.npy".format(code_gen_dir)) context[node.output[0]] = output def npy_to_dynamic_outputs(self, context, npy_list): """Reads the output from .npy files generated from cppsim and places their content into the context dictionary. npy_list is a list specifying which files to read, and its order must match the order of node outputs.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") for i in range(len(npy_list)): output = np.load("{}/{}".format(code_gen_dir, npy_list[i])) context[node.output[i]] = output def exec_precompiled_singlenode_model(self): """Executes precompiled executable.""" executable_path = self.get_nodeattr("executable_path") if executable_path == "": raise Exception( """ Found no executable for this node, did you run the codegen and compilation transformations? """ ) process_execute = subprocess.Popen(executable_path, stdout=subprocess.PIPE) process_execute.communicate() def reset_rtlsim(self, sim): """Sets reset input in pyverilator to zero, toggles the clock and set it back to one""" sim.io.ap_rst_n = 0 sim.io.ap_clk = 1 sim.io.ap_clk = 0 sim.io.ap_rst_n = 1 def toggle_clk(self, sim): """Toggles the clock input in pyverilator once.""" sim.io.ap_clk = 1 sim.io.ap_clk = 0 def rtlsim(self, sim, inp, inp2=None): """Runs the pyverilator simulation by passing the input values to the simulation, toggle the clock and observing the execution time. Function contains also an observation loop that can abort the simulation if no output value is produced after 100 cycles.""" trace_file = self.get_nodeattr("rtlsim_trace") if trace_file != "": if trace_file == "default": trace_file = self.onnx_node.name + ".vcd" sim.start_vcd_trace(trace_file) inputs = inp outputs = [] sim.io.out_V_V_TREADY = 1 # observe if output is completely calculated # observation_count will contain the number of cycles the calculation ran num_out_values = self.get_number_output_values() output_observed = False observation_count = 0 # avoid infinite looping of simulation by aborting when there is no change in # output values after 100 cycles no_change_count = 0 old_outputs = outputs liveness_threshold = pyverilate_get_liveness_threshold_cycles() while not (output_observed): sim.io.in0_V_V_TVALID = 1 if len(inputs) > 0 else 0 sim.io.in0_V_V_TDATA = inputs[0] if len(inputs) > 0 else 0 if sim.io.in0_V_V_TREADY == 1 and sim.io.in0_V_V_TVALID == 1: inputs = inputs[1:] if inp2 is not None: sim.io.in1_V_V_TVALID = 1 if len(inp2) > 0 else 0 sim.io.in1_V_V_TDATA = inp2[0] if len(inp2) > 0 else 0 if sim.io.in1_V_V_TREADY == 1 and sim.io.in1_V_V_TVALID == 1: inp2 = inp2[1:] if sim.io.out_V_V_TVALID == 1 and sim.io.out_V_V_TREADY == 1: outputs = outputs + [sim.io.out_V_V_TDATA] sim.io.ap_clk = 1 sim.io.ap_clk = 0 observation_count = observation_count + 1 no_change_count = no_change_count + 1 if len(outputs) == num_out_values: self.set_nodeattr("cycles_rtlsim", observation_count) output_observed = True if no_change_count == liveness_threshold: if old_outputs == outputs: if trace_file != "": sim.flush_vcd_trace() sim.stop_vcd_trace() raise Exception( "Error in simulation! Takes too long to produce output. " "Consider setting the LIVENESS_THRESHOLD env.var. to a " "larger value." ) else: no_change_count = 0 old_outputs = outputs if trace_file != "": sim.flush_vcd_trace() sim.stop_vcd_trace() return outputs def rtlsim_multi_io(self, sim, io_dict): "Run rtlsim for this node, supports multiple i/o streams." trace_file = self.get_nodeattr("rtlsim_trace") if trace_file == "default": trace_file = self.onnx_node.name + ".vcd" num_out_values = self.get_number_output_values() total_cycle_count = rtlsim_multi_io(sim, io_dict, num_out_values, trace_file) self.set_nodeattr("cycles_rtlsim", total_cycle_count) def execute_node(self, context, graph): """Executes single node using cppsim or rtlsim.""" mode = self.get_nodeattr("exec_mode") if mode == "cppsim": # save input(s) self.dynamic_input_to_npy(context, 1) # execute the precompiled model self.exec_precompiled_singlenode_model() # load output npy file self.npy_to_dynamic_output(context) elif mode == "rtlsim": pass else: raise Exception( """Invalid value for attribute exec_mode! Is currently set to: {} has to be set to one of the following value ("cppsim", "rtlsim")""".format( mode ) ) def generate_params(self, model, path): """Function to generate parameters (i.e. weights and thresholds), is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def get_number_output_values(self): """Function to get the number of expected output values, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def global_includes(self): """Function to set the global includes for c++ code that has to be generated for cppsim or rtlsim, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def defines(self, var): """Function to set the define commands for c++ code that has to be generated for cppsim or rtlsim, is member function of HLSCustomOp class but has to be filled by every node. var: makes it possible to reuse the function for different c++ code generation. I.e. if set to "ipgen" in StreamingFCLayer_Batch additional PRAGMA defines are added.""" pass @abstractmethod def read_npy_data(self): """Function to generate the commands for reading data from .npy file in c++, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def strm_decl(self): """Function to generate the commands for the stream declaration in c++, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def docompute(self): """Function to generate the commands for the computational part of the c++ code, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def dataoutstrm(self): """Function to generate the commands for reading out data from c++ and convert into npy format, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def save_as_npy(self): """Function to generate the commands for saving data in .npy file in c++, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def blackboxfunction(self): """Function to generate a blackbock function in c++ from which an IP block will be generated, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def pragmas(self): """Function to generate the pragma commands in c++, is member function of HLSCustomOp class but has to be filled by every node.""" pass def get_normal_input_shape(self): """Returns normal input shape if implemented.""" raise Exception("get_normal_input_shape not implemented for this op") def get_normal_output_shape(self): """Returns folded output shape if implemented.""" raise Exception("get_normal_output_shape not implemented for this op") def get_folded_input_shape(self): """Returns folded input shape (according to synapse folding), if implemented.""" raise Exception("get_folded_input_shape not implemented for this op") def get_folded_output_shape(self): """Returns folded output shape (according to neuron folding), if implemented.""" raise Exception("get_folded_output_shape not implemented for this op") def get_instream_width(self): """Returns input stream width, if implemented.""" raise Exception("get_instream_width not implemented for this op") def get_outstream_width(self): """Returns output stream width, if implemented.""" raise Exception("get_outstream_width not implemented for this op") def get_instream_width_padded(self): """Returns input stream width padded to a multiple of 8. This is required by the AXI Stream spec.""" in_width = self.get_instream_width() return roundup_to_integer_multiple(in_width, 8) def get_outstream_width_padded(self): """Returns output stream width padded to a multiple of 8. This is required by the AXI Stream spec.""" out_width = self.get_outstream_width() return roundup_to_integer_multiple(out_width, 8) def get_ap_int_max_w(self): "Return the maximum width of any ap_int used in this module." instream = self.get_instream_width() outstream = self.get_outstream_width() return max([instream, outstream])
StarcoderdataPython
36726
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2019 Lorenzo Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .abc import BaseObject from .common import Effect, Name, NamedAPIObject, VerboseEffect __all__ = ( "Ability", "AbilityEffectChange", "AbilityPokemon", "AbilityFlavorText", ) class Ability(BaseObject): """Represents an ability object from the API. .. versionadded:: 0.1.2a .. container:: operations .. describe:: str(x) Returns the Pokémon's name. .. describe:: x[y] Returns a Pokémon's y attribute. .. describe:: x == y Check if two Pokémons are the same. .. describe:: x != y Check if two Pokémons are *not* the same. Attributes ---------- id: :class:`int` The identifier for the ability. name: :class:`str` The name for the ability. is_main_series: :class:`bool` Whether or not the ability originated in the main series of the video games. generation: :class:`NamedAPIObject` The generation the ability originated in. names: List[:class:`Name`] The name of the ability listed in different languages. effect_entries: List[:class:`VerboseEffect`] The effect of the ability listed in different languages. effect_changes: List[:class:`AbilityEffectChange`] The list of previous effects the ability has had across version groups. flavor_text_entries: List[:class:`AbilityFlavorText`] The flavor text of the ability listed in different languages. pokemon: List[:class:`AbilityPokemon`] A list of Pokémon that could potentially have the ability.""" __slots__ = ( "is_main_series", "generation", "names", "effect_entries", "effect_changes", "flavor_text_entries", "pokemon" ) def __init__(self, data: dict): super().__init__(data) self.is_main_series = data["is_main_series"] self.generation = NamedAPIObject(data["generation"]) self.names = [Name(d) for d in data["names"]] self.effect_entries = [VerboseEffect(d) for d in data["effect_entries"]] self.effect_changes = [AbilityEffectChange(d) for d in data["effect_changes"]] self.flavor_text_entries = [AbilityFlavorText(d) for d in data["flavor_text_entries"]] self.pokemon = [AbilityPokemon(d) for d in data["pokemon"]] class AbilityEffectChange: """Represents a past change of the effect of a move in a version group. .. versionadded:: 0.1.2a Attributes ---------- effect_entries: List[:class:`Effect`] The previous effect of the ability listed in different languages. version_group: :class:`NamedAPIObject` The version group in which the previous effect of the ability originated.""" __slots__ = ("effect_entries", "version_group") def __init__(self, data: dict): self.effect_entries = [Effect(d) for d in data["effect_entries"]] self.version_group = NamedAPIObject(data["version_group"]) def __repr__(self) -> str: return "<AbilityEffectChange version_group='{0.version_group}'>".format(self) class AbilityPokemon: """Reppresents an Pokémon of an :class:`Ability`. Attributes ---------- is_hidden: :class:`bool` Whether or not this a hidden ability for the Pokémon. slot: :class:`int` The slot of the ability for the pokemon. pokemon: :class:`NamedAPIObject` The Pokémon this ability could belong to.""" __slots__ = ("is_hidden", "slot", "pokemon") def __init__(self, data: dict): self.is_hidden = data["is_hidden"] self.slot = data["slot"] self.pokemon = NamedAPIObject(data["pokemon"]) def __repr__(self) -> str: return "<AbilityPokemon is_hidden={0.is_hidden} slot={0.slot} pokemon='{0.pokemon}'>".format(self) class AbilityFlavorText: """Represents the flavor text for a move, with a language and a version group. . container:: operations .. describe:: str(x) Returns the actual flavor text. Attributes ---------- flavor_text: :class:`str` The actual text. language: :class:`NamedAPIObject` The language in which the text is in. version_group: :class:`NamedAPIObject` The version group that uses this text.""" __slots__ = ("flavor_text", "language", "version_group") def __init__(self, data: dict): self.flavor_text = data["flavor_text"] self.language = NamedAPIObject(data["language"]) self.version_group = NamedAPIObject(data["version_group"]) def __str__(self) -> str: return self.flavor_text def __repr__(self) -> str: return "<AbilityFlavorText language='{0.language}' version_group='{0.version_group}'>".format(self)
StarcoderdataPython
9681057
<reponame>63Shivani/Python-BootCamp age1 = int(input("enter age\n")) age2 = int(input("enter age\n")) age3 = int(input("enter age\n")) age4 = int(input("enter age\n")) if(age1>age2 and age1>age3 and age1>age4): print(age1,"year old is oldest") elif(age2>age1 and age2>age3 and age2>age4): print(age2,"year old is oldest") elif(age3>age1 and age3>age2 and age3>age4): print(age3,"year old is oldest") else: print(age4,"year old is oldest")
StarcoderdataPython
157415
#!/usr/bin/python3 import re import nltk from nltk import pos_tag,word_tokenize,sent_tokenize from textblob import TextBlob import pandas as pd def remove_punc(sentence): return re.sub(r'[^\w\s]',' ',sentence).lower() def get_sentiment(sentence): a = TextBlob(sentence) return round(a.sentiment[0],4) def get_diversity(sentence): t = remove_punc(sentence) tt = pos_tag(word_tokenize(t)) tags = [t[1] for t in tt] sent_len = len(tags) uniques = list(set(tags)) if len(uniques) / sent_len > 0.45: return 'high' else: return 'low' def get_typology(sentence): """ takes word tokens as input returns a dictionary object with useful nlp data """ def index_sent_tokens(sent): t = remove_punc(sentence) tt = pos_tag(word_tokenize(t)) index_list = [tt.index(item) for item in tt] tag_list = [tag[1] for tag in tt] return zip(index_list,tag_list) sent_idx = list(index_sent_tokens(sentence)) verb_tags = ['VB','VBD','VBZ','VBG','VBN'] noun_tags = ['NN','NNS','PRP','NNP','PRP'] typology = "low" try: subject_ = [item[0] for item in sent_idx if item[1] in noun_tags][0] object_ = [item[0] for item in sent_idx if item[1] in noun_tags][-1] verb_ = [item[0] for item in sent_idx if item[1] in verb_tags][0] if subject_ < verb_: typology = "high" else: typology = "low" # if subject_ < object_: # if object_ < verb_: # typology = "SOV" except: typology = "low" return typology def categorize_length(word_count): if 0 < word_count < 14: return "low" if word_count >= 16: return "high" else: return "low" def categorize_verbs(verb_count): if verb_count <= 3: return "low" else: return "high" def categorize_nouns(noun_count): if noun_count <= 4: return "low" else: return "high" class ProcessedText(): def __init__(self): pass def get_word_tokens(self,g): return word_tokenize(g) def get_noun_count(self,g): nn = ['NN','NNS','PRP','NNP','PRP'] c = [item[1] for item in g if item[1] in nn] return len(c) def get_verb_count(self,g): vb = ['VB','VBD','VBZ','VBG','VBN'] v = [item[1] for item in g if item[1] in vb] return len(v) def result(self,text): grammar = pos_tag(word_tokenize(remove_punc(text))) words = self.get_word_tokens(remove_punc(text)) op = {} attributes = [] att1 = categorize_length(len(words)) attributes.append(att1) op['Word Count'] = att1 att2 = categorize_nouns(self.get_noun_count(grammar)) attributes.append(att2) op['Noun Count'] = att2 att3 = categorize_verbs(self.get_verb_count(grammar)) attributes.append(att3) op["Verb Count"] = att3 att4 = get_typology(text) attributes.append(att4) op["SVO Chance"] = att4 att5 = get_diversity(text) attributes.append(att5) op["Diversity"] = att5 label = 'bad' high_count = [att for att in attributes if att=='high'] if len(high_count) >= 3: label = 'good' op["Label"] = label #op["Sentiment"] = get_sentiment(text) return op def create_dataset(file_path,output_name="summary"): with open(file_path, "r") as file: text = file.read() sentences = sent_tokenize(text) s_length = len(sentences) rows = [] count = 0 sut = ProcessedText() for s in sentences: print ("processing row {}".format(count)) count += 1 rows.append(sut.result(s)) pass df = pd.DataFrame(rows) df.to_csv('csvs/{}-nlp-data.csv'.format(output_name), index=False, header=True) print (df.head(10)) return print(create_dataset('summary.txt'))
StarcoderdataPython
212256
<filename>secedgar/utils/__init__.py import datetime import errno import os def sanitize_date(date): """Sanitizes date to be in acceptable format for EDGAR. Args: date (Union[datetime.datetime, str]): Date to be sanitized for request. Returns: date (str): Properly formatted date in 'YYYYMMDD' format. Raises: TypeError: If date is not in format YYYYMMDD as str or int. """ if isinstance(date, datetime.datetime): return date.strftime("%Y%m%d") elif isinstance(date, str): if len(date) != 8: raise TypeError('Date must be of the form YYYYMMDD') elif isinstance(date, int): if date < 10 ** 7 or date > 10 ** 8: raise TypeError('Date must be of the form YYYYMMDD') return date def make_path(path, **kwargs): """Make directory based on filing info. Args: path (str): Path to be made if it doesn't exist. Raises: OSError: If there is a problem making the path. Returns: None """ if not os.path.exists(path): try: os.makedirs(path, **kwargs) except OSError as e: if e.errno != errno.EEXIST: raise OSError
StarcoderdataPython
3499840
""" The Application's Entry Point""" import os from code import create_app app = create_app() if __name__ == '__main__': app.run(debug=True)
StarcoderdataPython
3328717
<filename>face_tracking.py<gh_stars>1-10 # coding: utf-8 import picamera import picamera.array import cv2 import pigpio import time xsv = 25 #X軸サーボのPort番号 ysv = 24 #y軸サーボのPort番号 span = 300 #サーボのセンターからの可動範囲duty値 xct = 1550 #X軸サーボのセンターduty値 yct = 1490 #X軸サーボのセンターduty値 dly = 0.01 #サーボ駆動時のウェイト時間 stp = 2 #サーボ駆動時のdutyステップ値 xsize = 320 #RGB 水平サイズ ysize = 240 #RGB 垂直サイズ #サーボの駆動範囲 xmin = xct - span xmax = xct + span ymin = yct - span ymax = yct + span #グローバル変数 xpos = xct ypos = yct xpos0 = xpos ypos0 = ypos sv = pigpio.pi() def move(svn,in0,in1,step): if in1 > in0: for duty in range(in0,in1,step): sv.set_servo_pulsewidth(svn,duty) time.sleep(dly) if in1 < in0: for duty in range(in0,in1,-step): sv.set_servo_pulsewidth(svn,duty) time.sleep(dly) #カメラをセンターに移動 move(xsv,sv.get_servo_pulsewidth(xsv),xpos,stp) move(ysv,sv.get_servo_pulsewidth(ysv),ypos,stp) cascade_file = "./haarcascade_frontalface_default.xml" with picamera.PiCamera() as camera: with picamera.array.PiRGBArray(camera) as stream: camera.resolution = (xsize, ysize) camera.vflip = True camera.hflip = True while True: # stream.arrayにRGBの順で映像データを格納 camera.capture(stream, 'bgr', use_video_port=True) # グレースケールに変換 gray = cv2.cvtColor(stream.array, cv2.COLOR_BGR2GRAY) # カスケードファイルを利用して顔の位置を見つける cascade = cv2.CascadeClassifier(cascade_file) face_list = cascade.detectMultiScale(gray, minSize=(100, 100)) if len(face_list): for (x, y, w, h) in face_list: print("face_position:",x, y, w, h) color = (0, 0, 255) pen_w = 5 cv2.rectangle(stream.array, (x, y), (x+w, y+h), color, thickness = pen_w) # カメラ移動 xdf = (x + w/2) - xsize/2 ydf = (y + h/2) - ysize/2 xpos = int(xpos0 - xdf*0.2) ypos = int(ypos0 + ydf*0.2) if xpos > xmax: xpos = xmax if xpos < xmin: xpos = xmin if ypos > ymax: ypos = ymax if ypos < ymin: ypos = ymin move(xsv,xpos0,xpos,stp) move(ysv,ypos0,ypos,stp) xpos0 = xpos ypos0 = ypos # system.arrayをウィンドウに表示 cv2.imshow('frame', stream.array) # "q"でウィンドウを閉じる if cv2.waitKey(1) & 0xFF == ord("q"): break # streamをリセット stream.seek(0) stream.truncate() cv2.destroyAllWindows()
StarcoderdataPython
5122799
""" Class for managing our data. """ import csv import numpy as np import os.path import random import threading from keras.utils import to_categorical from keras.preprocessing.image import ImageDataGenerator import cv2 class DataSet(): def __init__(self, class_limit=None, image_shape=(224, 224), original_image_shape=(341, 256), batch_size=16): """Constructor. opt_flow_len = (int) the number of optical flow frames to consider class_limit = (int) number of classes to limit the data to. None = no limit. """ self.class_limit = class_limit self.image_shape = image_shape self.original_image_shape = original_image_shape self.batch_size = batch_size self.static_frame_path = os.path.join('./data','test') self.opt_flow_path = os.path.join('./data', 'opt_flow') self.pose_path = os.path.join('./data', 'pose') # Get the data. self.data_list = self.get_data_list() # Get the classes. self.classes = self.get_classes() # Now do some minor data cleaning self.data_list = self.clean_data_list() # number of batches in 1 epoch self.n_batch_train = len(train) // self.batch_size self.n_batch_test = len(test) // self.batch_size @staticmethod def get_data_list(): """Load our data list from file.""" with open(os.path.join('./data', 'data_list.csv'), 'r') as fin: reader = csv.reader(fin) data_list = list(reader) return data_list def clean_data_list(self): data_list_clean = [] for item in self.data_list: if item[1] in self.classes: data_list_clean.append(item) return data_list_clean def get_classes(self): """Extract the classes from our data, '\n'. If we want to limit them, only return the classes we need.""" classes = [] for item in self.data_list: if item[1] not in classes: classes.append(item[1]) # Sort them. classes = sorted(classes) # Return. if self.class_limit is not None: return classes[:self.class_limit] else: return classes def format_gen_outputs(gen1,gen2,gen3): x1 = gen1[0] x2 = gen2[0] x3 = gen3[0] y1 = gen1[1] return [x1, x2, x3], y1 def get_generators(self): train_datagen = ImageDataGenerator( preprocessing_function=self.normalize, rotation_range=30, rescale=1./255, shear_range=0.2, horizontal_flip=True # width_shift_range=0.2, # height_shift_range=0.2) ) valid_datagen = ImageDataGenerator(rescale=1./255, preprocessing_function=self.normalize) valid_dir1=os.path.join('./data', 'valid') valid_dir2=os.path.join('./data/opt_flow', 'valid') valid_dir3=os.path.join('./data/pose', 'valid') train_dir1=os.path.join('./data', 'train') train_dir2=os.path.join('./data/opt_flow', 'train') train_dir3=os.path.join('./data/pose', 'train') seed = random.randint(1,1001) valid_genX1 = valid_datagen.flow_from_directory(valid_dir1, target_size=self.image_shape, batch_size=self.batch_size, #classes=data.classes, class_mode='categorical', shuffle=True, seed=seed) valid_genX2 = valid_datagen.flow_from_directory(valid_dir2, target_size=self.image_shape, batch_size=self.batch_size, #classes=data.classes, class_mode='categorical', shuffle=True, seed=seed) valid_genX3 = valid_datagen.flow_from_directory(valid_dir3, target_size=self.image_shape, batch_size=self.batch_size, #classes=data.classes, class_mode='categorical', shuffle=True, seed=seed) validation_generator = map(self.format_gen_outputs, valid_genX1, valid_genX2, valid_genX3) seed = random.randint(1,1001) train_genX1 = train_datagen.flow_from_directory(train_dir1, target_size=self.image_shape, batch_size=self.batch_size, #classes=data.classes, class_mode='categorical', shuffle=True, seed=seed) train_genX2 = train_datagen.flow_from_directory(train_dir2, target_size=self.image_shape, batch_size=self.batch_size, #classes=data.classes, class_mode='categorical', shuffle=True, seed=seed) train_genX3 = train_datagen.flow_from_directory(train_dir3, target_size=self.image_shape, batch_size=self.batch_size, #classes=data.classes, class_mode='categorical', shuffle=True, seed=seed) train_generator = map(self.format_gen_outputs, train_genX1, train_genX2, train_genX3) return train_generator, validation_generator def normalize(self, x): x[1] = (x[1]-0.458)/0.229 x[2] = (x[2]-0.456)/0.224 x[3] = (x[3]-0.406)/0.225 return x
StarcoderdataPython
3426256
import pandas as pd import numpy as np import copy as cp import sys import pickle import hashlib as hs import base64 as b64 import os import random as rd import datetime as dt import threading import time from difflib import SequenceMatcher from darc_core.metrics import Metrics from darc_core.preprocessing import round1_preprocessing from darc_core.utils import check_format_trans_file def partition(df,y,m,u): return df[(df["id_user"]==u) & (df["month"]==m) & (df["year"]==y)]["id_item"] def extractListForMonth(df,y,m): users = df[(df["month"]==m) & (df["year"]==y)]["id_user"].unique().tolist() months = list(range(1,13)) key = [] hashed = [] for u in users: key=[] partitioned = partition(df,y,m,u) key=partitioned.unique().tolist() hashed.append([u,key,len(key)]) hashed=sorted(hashed, key = lambda x:x[2]) return hashed def generateLists(df): lists_all=[] lists_all.append(extractListForMonth(df,2010,12)) for m in range(1,13): lists_all.append(extractListForMonth(df,2011,m)) return lists_all if __name__ == "__main__": df = pd.read_csv("./ground_truth.csv", parse_dates=["date"]) df["id_user"]=df["id_user"].astype(str) df["month"]=df["date"].dt.month df["year"]=df["date"].dt.year dx = pd.read_csv("./atxf.csv", parse_dates=["date"]) dx["month"]=dx["date"].dt.month dx["year"]=dx["date"].dt.year all_anon = generateLists(dx) with open('all_clear', 'wb') as fp: pickle.dump(all_clear, fp)
StarcoderdataPython
238098
#!/usr/bin/env python import argparse import logging import sys from autoscale import MesosReporter, MesosDecider, AwsAsgScaler def main(): parser = argparse.ArgumentParser() parser.add_argument('-l', '--log-level', default="warn", help='Log level (debug, [default] info, warn, error)') parser.add_argument('-u', '--mesos-url', help='Mesos cluster URL', required=True) parser.add_argument('-c', '--cpus', help='Comma-delimited CPU thresholds (lower,upper)') parser.add_argument('-d', '--disk', help='Comma-delimited disk thresholds (lower,upper)') parser.add_argument('-m', '--mem', help='Comma-delimited memory thresholds (lower,upper)') parser.add_argument('-r', '--region', help='AWS region', required=True) parser.add_argument('-a', '--asg', help='AWS auto scaling group name', required=True) args = parser.parse_args() logger = logging.getLogger(__name__) logging.basicConfig(stream=sys.stderr, level=getattr(logging, args.log_level.upper())) thresholds = {} if args.cpus: lower, upper = args.cpus.split(',') thresholds['cpus'] = dict(lower=int(lower), upper=int(upper)) if args.disk: lower, upper = args.disk.split(',') thresholds['disk'] = dict(lower=int(lower), upper=int(upper)) if args.mem: lower, upper = args.mem.split(',') thresholds['mem'] = dict(lower=int(lower), upper=int(upper)) reporter = MesosReporter(args.mesos_url) decider = MesosDecider(thresholds) scaler = AwsAsgScaler(args.region, args.asg) delta = decider.should_scale(reporter) if delta: print('Scaling {asg} in {region} by {delta}'.format(asg=args.asg, region=args.region, delta=delta)) scaler.scale(delta) else: print('No change needed for {asg} in {region}'.format(asg=args.asg, region=args.region)) if __name__ == '__main__': main()
StarcoderdataPython
3328235
a=[11,6,4,5,9,2,7,0,1,-1,-9] n=len(a) for i in range(1,n): temp=a[i] j=i-1 while j>=0: if temp>=a[j]: break a[j+1]=a[j] j-=1 a[j+1]=temp print(a)
StarcoderdataPython
4851594
from starling_sim.basemodel.trace.events import * from starling_sim.basemodel.agent.requests import UserStop, StopPoint, StationRequest from starling_sim.utils.constants import PUBLIC_TRANSPORT_TYPE class KPI: """ Generic structure of a KPI class Its sub-classes compute and update specific indicator from given events """ #: **agentId**: id of the agent KEY_ID = "agentId" def __init__(self): """ The indicator_dict associates values to the indicators names The keys attribute correspond to the keys of the indicator_dict """ self.indicator_dict = None self.keys = [] self.new_indicator_dict() def setup(self, simulation_model): """ Setup method called during simulation setup. :param simulation_model: :return: """ pass def new_indicator_dict(self): """ Reset the indicator_dict, when computing the indicator for a new target :return: None, resets directly the indicator_dict attribute """ pass def update(self, event, agent): """ Update the kpi values according to the event content and the agent. :param event: processed event :param agent: subject of the event :return: """ if isinstance(event, InputEvent): self.indicator_dict[self.KEY_ID] = agent.id class MoveKPI(KPI): """ This KPI evaluates the distance and spent time for each one of the simulation modes """ #: **{mode}Distance**: distance travelled in <mode> [meters] SUFFIX_KEY_DISTANCE = "{mode}Distance" #: **{mode}Time**: time travelled in <mode> [seconds] SUFFIX_KEY_TIME = "{mode}Time" def __init__(self): self.modes = [] # init of indicator dict super().__init__() def setup(self, simulation_model): self.modes = list(simulation_model.environment.topologies.keys()) self.new_indicator_dict() def new_indicator_dict(self): """ Initialize the time and distance values at 0 for the considered modes :return: """ base_dict = {} for mode in self.modes: key = self.SUFFIX_KEY_DISTANCE.format(mode=mode) base_dict[key] = 0 self.keys += [key] key = self.SUFFIX_KEY_TIME.format(mode=mode) base_dict[key] = 0 self.keys += [key] self.indicator_dict = base_dict def update(self, event, agent): """ Add travelled distances and durations :param agent: :param event: :return: """ super().update(event, agent) if isinstance(event, MoveEvent): self.indicator_dict[self.SUFFIX_KEY_DISTANCE.format(mode=event.mode)] += event.distance self.indicator_dict[self.SUFFIX_KEY_TIME.format(mode=event.mode)] += event.duration class WaitKPI(KPI): """ This KPI evaluates the time spent waiting """ #: **waitTime**: total traced wait time [seconds] KEY_WAIT = "waitTime" def __init__(self): super().__init__() self.keys = [self.KEY_WAIT] def new_indicator_dict(self): self.indicator_dict = {self.KEY_WAIT: 0} def update(self, event, agent): """ Add total wait duration of the request :param agent: :param event: :return: """ super().update(event, agent) if isinstance(event, RequestEvent): self.indicator_dict[self.KEY_WAIT] += sum(event.request.waitSequence) if isinstance(event, WaitEvent): self.indicator_dict[self.KEY_WAIT] += event.waiting_time class OdtWaitsKPI(KPI): """ This KPI evaluates the lateness in ODT requests. """ #: **odtPickupWait**: series of wait times at ODT pickups [seconds] KEY_PICKUP_WAIT = "odtPickupWait" #: **odtDetour**: series of ODT detour times [seconds] KEY_DETOUR = "odtDetour" #: **odtDirectTrip**: series of ODT direct trip times [seconds] KEY_DIRECT_TRIP = "odtDirectTrip" def __init__(self): super().__init__() self.keys = [self.KEY_PICKUP_WAIT, self.KEY_DETOUR, self.KEY_DIRECT_TRIP] def new_indicator_dict(self): self.indicator_dict = {self.KEY_PICKUP_WAIT: "", self.KEY_DETOUR: "", self.KEY_DIRECT_TRIP: ""} def update(self, event, agent): """ Add wait durations of ODT requests to KPIs. :param event: :param agent: :return: """ # TODO : find a better condition if isinstance(event, StopEvent) and event.serviceVehicle.type != PUBLIC_TRANSPORT_TYPE: dropoff_agents = [request.agent.id for request in event.dropoffs] pickup_agents = [request.agent.id for request in event.pickups] if agent.id in dropoff_agents: request = event.dropoffs[dropoff_agents.index(agent.id)] if len(request.waitSequence) > 1: if self.indicator_dict[self.KEY_DETOUR] != "": self.indicator_dict[self.KEY_DETOUR] += "-" self.indicator_dict[self.KEY_DIRECT_TRIP] += "-" self.indicator_dict[self.KEY_DETOUR] += str(request.waitSequence[1]) self.indicator_dict[self.KEY_DIRECT_TRIP] += str(request.directTravelTime) elif agent.id in pickup_agents: request = event.pickups[pickup_agents.index(agent.id)] if len(request.waitSequence) > 0: if self.indicator_dict[self.KEY_PICKUP_WAIT] != "": self.indicator_dict[self.KEY_PICKUP_WAIT] += "-" self.indicator_dict[self.KEY_PICKUP_WAIT] += str(request.waitSequence[0]) class GetVehicleKPI(KPI): """ This KPI evaluates the number of vehicle uses """ #: **nbGetVehicle**: number of uses of the vehicle KEY_GET_VEHICLE = "nbGetVehicle" def __init__(self): super().__init__() self.keys = [self.KEY_GET_VEHICLE] def new_indicator_dict(self): self.indicator_dict = {self.KEY_GET_VEHICLE: 0} def update(self, event, agent): """ Add a new use for each GetVehicleEvent :param agent: :param event: :return: """ super().update(event, agent) if isinstance(event, GetVehicleEvent): self.indicator_dict[self.KEY_GET_VEHICLE] += 1 class SuccessKPI(KPI): """ This KPI evaluates the number of failed/successful requests """ #: **nbFailedGet**: number of failed get requests KEY_FAILED_GET = "nbFailedGet" #: **nbSuccessGet**: number successful get requests KEY_SUCCESS_GET = "nbSuccessGet" #: **nbFailedPut**: number of failed put requests KEY_FAILED_PUT = "nbFailedPut" #: **nbSuccessPut**: number of successful put requests KEY_SUCCESS_PUT = "nbSuccessPut" #: **nbFailedRequest**: number of failed requests KEY_FAILED_REQUEST = "nbFailedRequest" #: **nbSuccessRequest**: number of successful requests KEY_SUCCESS_REQUEST = "nbSuccessRequest" def __init__(self, indicator_selection): super().__init__() self.keys = indicator_selection def new_indicator_dict(self): base_dict = {self.KEY_FAILED_GET: 0, self.KEY_SUCCESS_GET: 0, self.KEY_FAILED_PUT: 0, self.KEY_SUCCESS_PUT: 0, self.KEY_FAILED_REQUEST: 0, self.KEY_SUCCESS_REQUEST: 0} self.indicator_dict = base_dict def update(self, event, agent): """ Add request events according to their success :param agent: :param event: :return: """ super().update(event, agent) if isinstance(event, RequestEvent): if event.request.success: self.indicator_dict[self.KEY_SUCCESS_REQUEST] += 1 if event.request.type == StationRequest.GET_REQUEST: self.indicator_dict[self.KEY_SUCCESS_GET] += 1 else: self.indicator_dict[self.KEY_SUCCESS_PUT] += 1 else: self.indicator_dict[self.KEY_FAILED_REQUEST] += 1 if event.request.type == StationRequest.GET_REQUEST: self.indicator_dict[self.KEY_FAILED_GET] += 1 else: self.indicator_dict[self.KEY_FAILED_PUT] += 1 class StaffOperationKPI(KPI): """ This KPI evaluates the number of staff operations """ #: **nbFailedGetStaff**: number of failed gets by staff KEY_FAILED_GET_STAFF = "nbFailedGetStaff" #: **nbSuccessGetStaff**: number of successful gets by staff KEY_SUCCESS_GET_STAFF = "nbSuccessGetStaff" #: **nbFailedPutStaff**: number of failed puts by staff KEY_FAILED_PUT_STAFF = "nbFailedPutStaff" #: **nbSuccessPutStaff**: number of successful puts by staff KEY_SUCCESS_PUT_STAFF = "nbSuccessPutStaff" def __init__(self): super().__init__() self.keys = [self.KEY_FAILED_GET_STAFF, self.KEY_SUCCESS_GET_STAFF, self.KEY_FAILED_PUT_STAFF, self.KEY_SUCCESS_PUT_STAFF] def new_indicator_dict(self): self.indicator_dict = {self.KEY_FAILED_GET_STAFF: 0, self.KEY_SUCCESS_GET_STAFF: 0, self.KEY_FAILED_PUT_STAFF: 0, self.KEY_SUCCESS_PUT_STAFF: 0} def update(self, event, agent): """ Add operations to the total :param agent: :param event: :return: """ super().update(event, agent) if isinstance(event, StaffOperationEvent): goal = event.goal total = event.total if goal < 0: self.indicator_dict[self.KEY_SUCCESS_GET_STAFF] += abs(total) self.indicator_dict[self.KEY_FAILED_GET_STAFF] += total - goal elif goal > 0: self.indicator_dict[self.KEY_SUCCESS_PUT_STAFF] += total self.indicator_dict[self.KEY_FAILED_PUT_STAFF] += goal - total class OccupationKPI(KPI): """ This KPI evaluates the empty and full time and distance and the stock relative time/distance """ def __init__(self): #: **emptyTime**: time spent empty [seconds] self.KEY_EMPTY_TIME = "emptyTime" #: **emptyDistance**: distance travelled empty [meters] self.KEY_EMPTY_DISTANCE = "emptyDistance" #: **fullTime**: time spent full [seconds] self.KEY_FULL_TIME = "fullTime" #: **fullDistance**: distance travelled full [meters] self.KEY_FULL_DISTANCE = "fullDistance" #: **stockTime**: stock relative time (stock*time) [seconds] self.KEY_STOCK_TIME = "stockTime" #: **stockDistance**: stock relative distance (stock*distance) [meters] self.KEY_STOCK_DISTANCE = "stockDistance" #: **maxStock**: maximum stock self.KEY_MAX_STOCK = "maxStock" super().__init__() self.keys = [self.KEY_EMPTY_TIME, self.KEY_EMPTY_DISTANCE, self.KEY_FULL_TIME, self.KEY_FULL_DISTANCE, self.KEY_STOCK_TIME, self.KEY_STOCK_DISTANCE, self.KEY_MAX_STOCK] self.capacity = None self.currentStock = None self.previousTime = 0 self.currentDistance = None def new_indicator_dict(self): """ Initialize the time and distance counts to 0. """ self.indicator_dict = {self.KEY_EMPTY_TIME: 0, self.KEY_EMPTY_DISTANCE: 0, self.KEY_FULL_TIME: 0, self.KEY_FULL_DISTANCE: 0, self.KEY_STOCK_TIME: 0, self.KEY_STOCK_DISTANCE: 0, self.KEY_MAX_STOCK: 0} self.capacity = None self.currentStock = None self.previousTime = 0 self.currentDistance = None def get_capacity(self, element): """ Get the capacity of the agent, according to its type. :param element: :return: agent's capacity """ return self.capacity def get_initial_stock(self, element): """ Get the initial stock of the agent, according to its type. :param element: :return: agent's initial stock """ return self.currentStock def add_to_stock(self, value, timestamp): """ Update the full and empty time and distance counts, according to the previous stock value, then updates the stock and time. :param value: stock change (negative for stock loss) :param timestamp: timestamp of the stock change event """ # compute time spent with last stock duration = timestamp - self.previousTime # add time to relevant time count if self.currentStock == 0: self.indicator_dict[self.KEY_EMPTY_TIME] += duration if self.currentDistance is not None: self.indicator_dict[self.KEY_EMPTY_DISTANCE] += self.currentDistance elif self.currentStock == self.capacity: self.indicator_dict[self.KEY_FULL_TIME] += duration if self.currentDistance is not None: self.indicator_dict[self.KEY_FULL_DISTANCE] += self.currentDistance # add stock relative time and distance self.indicator_dict[self.KEY_STOCK_TIME] += duration * self.currentStock if self.currentDistance is not None: self.indicator_dict[self.KEY_STOCK_DISTANCE] += self.currentDistance * self.currentStock # update stock and current time self.currentStock += value self.previousTime = timestamp if self.currentStock > self.indicator_dict[self.KEY_MAX_STOCK]: self.indicator_dict[self.KEY_MAX_STOCK] = self.currentStock # reset distance count if self.currentDistance is not None: self.currentDistance = 0 def update(self, event, agent): """ Update the stock and time counts from traced events :param agent: :param event: """ super().update(event, agent) if isinstance(event, InputEvent): self.capacity = self.get_capacity(event.element) self.currentStock = self.get_initial_stock(event.element) self.indicator_dict[self.KEY_MAX_STOCK] = self.currentStock if isinstance(event, LeaveSimulationEvent): self.add_to_stock(0, event.timestamp) class StationOccupationKPI(OccupationKPI): """ This KPI evaluates the time spent in the empty and full states (of a station), and the stock relative time spent in the station """ def __init__(self): super().__init__() self.keys = [self.KEY_EMPTY_TIME, self.KEY_FULL_TIME, self.KEY_STOCK_TIME] def get_capacity(self, element): return element.capacity def get_initial_stock(self, element): return element.initial_stock def update(self, event, agent): """ Update the stock and time counts from request events :param agent: :param event: """ super().update(event, agent) if isinstance(event, RequestEvent) and event.request.success: request = event.request # update time counts and current time if request.type == StationRequest.GET_REQUEST: self.add_to_stock(-1, request.timestamp) elif request.type == StationRequest.PUT_REQUEST: self.add_to_stock(1, request.timestamp) if isinstance(event, StaffOperationEvent): if event.total != 0: self.add_to_stock(event.total, event.timestamp) class VehicleOccupationKPI(OccupationKPI): """ This KPI evaluates the time and distance in the empty and full states (of vehicle), and a passenger relative distance and time. """ def __init__(self): super().__init__() self.currentDistance = 0 def new_indicator_dict(self): super().new_indicator_dict() self.currentDistance = 0 def get_capacity(self, element): return element.seats def get_initial_stock(self, element): # for now, initial stock is always 0 in our simulation return 0 def update(self, event, agent): """ Update the stock and time/distance counts from get/leave vehicle and move events :param agent: :param event: """ super().update(event, agent) if isinstance(event, GetVehicleEvent): self.add_to_stock(1, event.timestamp) elif isinstance(event, LeaveVehicleEvent): self.add_to_stock(-1, event.timestamp) if isinstance(event, MoveEvent): self.currentDistance += event.distance class ChargeKPI(KPI): """ This KPI evaluates the trips's boards and un-boards """ #: **routeId**: gtfs route id KEY_ROUTE_ID = "routeId" #: **tripId**: gtfs trip id KEY_TRIP_ID = "tripId" #: **tripDirection**: gtfs trip direction KEY_TRIP_DIRECTION = "tripDirection" #: **time**: simulation timestamp of board/un-board KEY_TIME = "time" #: **stopId**: stop id of board/un-board KEY_STOP_ID = "stopId" #: **boardType**: (+1) for boards, (-1) for un-boards KEY_BOARD_TYPE = "boardType" #: **value**: numeric value of the charge change KEY_VALUE = "value" def __init__(self, non_empty_only=True, public_transport=True): super().__init__() # boolean indicating if only non empty pickups and dropoffs should be traced self.non_empty_only = non_empty_only # boolean indicating if the simulated system is public transports (with gtfs tables) self.public_transport = public_transport self.trips = None self.routes = None self.keys = [self.KEY_TRIP_ID, self.KEY_TIME, self.KEY_STOP_ID, self.KEY_BOARD_TYPE, self.KEY_VALUE] if self.public_transport: self.keys = [self.KEY_ROUTE_ID, self.KEY_TRIP_DIRECTION] + self.keys self.new_indicator_dict() def setup(self, simulation_model): if self.public_transport: self.trips = simulation_model.gtfs.trips self.routes = simulation_model.gtfs.routes def new_indicator_dict(self): self.indicator_dict = dict() for key in [self.KEY_ID] + self.keys: self.indicator_dict[key] = [] def update(self, event, agent): """ Add stop information to the list :param agent: :param event: :return: """ if isinstance(event, StopEvent): if event.dropoffs: self.update_stop_information(event, agent) self.indicator_dict[self.KEY_TIME].append(event.dropoff_time) self.indicator_dict[self.KEY_BOARD_TYPE].append(-1) self.indicator_dict[self.KEY_VALUE].append(len(event.dropoffs)) if event.pickups: self.update_stop_information(event, agent) self.indicator_dict[self.KEY_TIME].append(event.pickup_time) self.indicator_dict[self.KEY_BOARD_TYPE].append(1) self.indicator_dict[self.KEY_VALUE].append(len(event.pickups)) if not event.pickups and not event.dropoffs and not self.non_empty_only: self.update_stop_information(event, agent) self.indicator_dict[self.KEY_TIME].append(event.timestamp) self.indicator_dict[self.KEY_BOARD_TYPE].append(0) self.indicator_dict[self.KEY_VALUE].append(0) def update_stop_information(self, event, agent): """ Update the indicator with the information common to dropoffs and pickups. :param event: :param agent: """ self.indicator_dict[self.KEY_ID].append(agent.id) trip_id = event.trip self.indicator_dict[self.KEY_TRIP_ID].append(trip_id) self.indicator_dict[self.KEY_STOP_ID].append(get_stop_id_of_event(event)) if self.public_transport: self.indicator_dict[self.KEY_ROUTE_ID].append(get_route_id_of_trip(self.trips, trip_id, event)) self.indicator_dict[self.KEY_TRIP_DIRECTION].append(get_direction_of_trip(self.trips, trip_id)) class TransferKPI(KPI): """ This KPI lists the transfers realised by a user, with additional information such as walk distance and duration, wait duration, from/to trip/stop """ #: **walkDistance**: walk distance of transfer [meters] KEY_WALK_DIST = "walkDistance" #: **walkTime**: walk time of transfer [seconds] KEY_WALK_DURATION = "walkDuration" #: **waitTime**: wait time of transfer [seconds] KEY_WAIT_TIME = "waitTime" #: **fromRoute**: origin route of transfer KEY_FROM_ROUTE = "fromRoute" #: **fromTrip**: origin trip of transfer KEY_FROM_TRIP = "fromTrip" #: **fromStop**: origin stop point of transfer KEY_FROM_STOP = "fromStop" #: **toRoute**: destination route of transfer KEY_TO_ROUTE = "toRoute" #: **toTrip**: destination trip of transfer KEY_TO_TRIP = "toTrip" #: **toStop**: destination stop of transfer KEY_TO_STOP = "toStop" def __init__(self): super().__init__() self.trips = None self.routes = None self.keys = [self.KEY_WALK_DIST, self.KEY_WALK_DURATION, self.KEY_WAIT_TIME, self.KEY_FROM_ROUTE, self.KEY_FROM_TRIP, self.KEY_FROM_STOP, self.KEY_TO_ROUTE, self.KEY_TO_TRIP, self.KEY_TO_STOP] # transfer variables self.current_walk_distance = 0 self.current_walk_duration = 0 self.current_wait_time = 0 self.from_route = None self.from_trip = None self.from_stop = None self.to_route = None self.to_trip = None self.to_stop = None def setup(self, simulation_model): self.trips = simulation_model.gtfs.trips self.routes = simulation_model.gtfs.routes def new_indicator_dict(self): self.indicator_dict = {self.KEY_ID: [], self.KEY_WALK_DIST: [], self.KEY_WALK_DURATION: [], self.KEY_WAIT_TIME: [], self.KEY_FROM_ROUTE: [], self.KEY_FROM_TRIP: [], self.KEY_FROM_STOP: [], self.KEY_TO_ROUTE: [], self.KEY_TO_TRIP: [], self.KEY_TO_STOP: []} def update(self, event, agent): if isinstance(event, InputEvent): self.reset_variables() if isinstance(event, WaitEvent): self.current_wait_time += event.waiting_time elif isinstance(event, MoveEvent) and event.mode == "walk": self.current_walk_distance += event.distance self.current_walk_duration += event.duration elif isinstance(event, RequestEvent): self.current_wait_time += sum(event.request.waitSequence) elif isinstance(event, StopEvent): if isinstance(event.stop, StopPoint): stop_id = event.stop.id elif isinstance(event.stop, UserStop): stop_id = event.stop.stopPoint else: stop_id = None dropoff_agents = [request.agent.id for request in event.dropoffs] pickup_agents = [request.agent.id for request in event.pickups] if agent.id in dropoff_agents: self.from_trip = event.trip self.from_stop = stop_id elif agent.id in pickup_agents: self.to_trip = event.trip self.to_stop = stop_id self.write_variables(agent) self.reset_variables() elif isinstance(event, DestinationReachedEvent): self.write_variables(agent) self.reset_variables() def reset_variables(self): self.current_walk_distance = 0 self.current_walk_duration = 0 self.current_wait_time = 0 self.from_trip = None self.from_stop = None self.to_trip = None self.to_stop = None def write_variables(self, agent): self.indicator_dict[self.KEY_ID].append(agent.id) self.indicator_dict[self.KEY_WALK_DIST].append(self.current_walk_distance) self.indicator_dict[self.KEY_WALK_DURATION].append(self.current_walk_duration) self.indicator_dict[self.KEY_WAIT_TIME].append(self.current_wait_time) self.indicator_dict[self.KEY_FROM_ROUTE].append(get_route_short_name_of_trip(self.trips, self.routes, self.from_trip)) self.indicator_dict[self.KEY_FROM_TRIP].append(self.from_trip) self.indicator_dict[self.KEY_FROM_STOP].append(self.from_stop) self.indicator_dict[self.KEY_TO_ROUTE].append(get_route_short_name_of_trip(self.trips, self.routes, self.to_trip)) self.indicator_dict[self.KEY_TO_TRIP].append(self.to_trip) self.indicator_dict[self.KEY_TO_STOP].append(self.to_stop) # TODO : remove ? useless with TransferKPI # class JourneyKPI(KPI): # """ # This KPI evaluates the sequence of lines that compose a user journey # """ # # #: **journeySequence**: sequence of trip ids of the journey # KEY_JOURNEY_SEQUENCE = "journeySequence" # # def __init__(self): # # super().__init__() # # self.keys = [self.KEY_JOURNEY_SEQUENCE] # # self.trips_table = None # self.routes_table = None # # def setup(self, simulation_model): # # operator = simulation_model.agentPopulation["operators"]["OPR"] # # feed = operator.service_info # # self.trips_table = feed.trips # self.routes_table = feed.routes # # def new_indicator_dict(self): # # self.indicator_dict = {self.KEY_JOURNEY_SEQUENCE: ""} # # def update(self, event, agent): # """ # Add a new route for each PickupEvent # :param agent: # :param event: # :return: # """ # # super().update(event, agent) # # if isinstance(event, PickupEvent): # # route_id = self.trips_table.loc[self.trips_table["trip_id"] == event.trip, "route_id"].iloc[0] # # route_name = self.routes_table.loc[self.routes_table["route_id"] == route_id, "route_short_name"].iloc[0] # # self.indicator_dict[self.KEY_JOURNEY_SEQUENCE] += route_name + "-" # # if isinstance(event, DestinationReachedEvent): # # self.indicator_dict[self.KEY_JOURNEY_SEQUENCE] = self.indicator_dict[self.KEY_JOURNEY_SEQUENCE][:-1] # class DestinationReachedKPI(KPI): """ This KPI evaluates the destination reach time """ #: **destinationReachedTime**: time when destination is reached, "NA" otherwise [seconds or NA] KEY_DESTINATION_REACHED = "destinationReachedTime" def __init__(self): super().__init__() self.keys = [self.KEY_DESTINATION_REACHED] def new_indicator_dict(self): self.indicator_dict = {self.KEY_DESTINATION_REACHED: "NA"} def update(self, event, agent): """ Add total wait duration of the request :param agent: :param event: :return: """ super().update(event, agent) if isinstance(event, DestinationReachedEvent): self.indicator_dict[self.KEY_DESTINATION_REACHED] = event.timestamp class LeaveSimulationKPI(KPI): """ This KPI evaluates the cause of the simulation leave. """ #: **leaveSimulation**: code used when leaving the simulation (see model doc) KEY_LEAVE_SIMULATION = "leaveSimulation" def __init__(self): super().__init__() self.keys = [self.KEY_LEAVE_SIMULATION] def new_indicator_dict(self): self.indicator_dict = {self.KEY_LEAVE_SIMULATION: None} def update(self, event, agent): """ Add the cause of the LeaveSimulationEvent. :param event: :param agent: """ super().update(event, agent) if isinstance(event, LeaveSimulationEvent): self.indicator_dict[self.KEY_LEAVE_SIMULATION] = event.cause def get_route_id_of_trip(trips, trip_id, event): if trips is None: return event.serviceVehicle.operator trip_table = trips.loc[trips["trip_id"] == trip_id, "route_id"] # if trips is not in the gtfs (on-demand trips for instance) # try to get operator id if trip_table.empty: return event.serviceVehicle.operator return trip_table.iloc[0] def get_direction_of_trip(trips, trip_id): if trips is None: return "" trip_table = trips.loc[trips["trip_id"] == trip_id, "direction_id"] # ignore trips that are not in the gtfs (on-demand trips for instance) if trip_table.empty: return "" return trip_table.iloc[0] def get_route_short_name_of_trip(trips, routes, trip_id): if trip_id is None: return None trip_table = trips.loc[trips["trip_id"] == trip_id, "route_id"] # ignore trips that are not in the gtfs (on-demand trips for instance) if trip_table.empty: return "" route_id = trip_table.iloc[0] route_short_name = routes.loc[routes["route_id"] == route_id, "route_short_name"].iloc[0] return route_short_name def get_stop_id_of_event(event): stop_id = None if isinstance(event.stop, StopPoint): stop_id = event.stop.id elif isinstance(event.stop, UserStop): stop_id = event.stop.stopPoint if stop_id is None: stop_id = "" return stop_id
StarcoderdataPython
108488
<gh_stars>0 # -*- coding: utf-8 -*- ''' * @Author : jiangtao * @Date : 2021-12-13 14:18:45 * @Email : <EMAIL> * @LastEditTime : 2022-03-02 14:11:31 * @Description : ''' import argparse import cv2 import json import os import os.path as osp import sys import time import warnings from argparse import ArgumentParser from tqdm import tqdm from xtcocotools.coco import COCO from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result) from mmpose.datasets import DatasetInfo dirpath = osp.dirname(osp.abspath(__file__)).replace('\\','/') dirpath = osp.dirname(dirpath) def parse_args(): parser = argparse.ArgumentParser( description='Convert MMDetection models to ONNX') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') args = parser.parse_args() return args class handAlignment(): def __init__(self, pose_config = '{}/configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/dms/res50_dms_256x256.py'.format(dirpath), pose_checkpoint = '{}/work_dirs/res50_dms_256x256/best_NME_epoch_42.pth'.format(dirpath), device = 'cuda:0'): self.pose_config = pose_config self.pose_checkpoint = pose_checkpoint self.device = device print('self.pose_checkpoint:',self.pose_checkpoint) self.pose_model = init_pose_model( self.pose_config, self.pose_checkpoint, device=self.device.lower()) self.dataset = self.pose_model.cfg.data['test']['type'] self.dataset_info = self.pose_model.cfg.data['test'].get('dataset_info', None) # dataset is a str,dataset_info is a dict if self.dataset_info is None: warnings.warn( 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) else: self.dataset_info = DatasetInfo(self.dataset_info) # dataset_info is a instance of DatasetInfo def alignment(self,img,box): ''' box:[x,y,w,h] ''' person = {} person['bbox'] = box person_results = [] person_results.append(person) # test a single image, with a list of bboxes pose_results, returned_outputs = inference_top_down_pose_model( self.pose_model, img, person_results, bbox_thr=None, format='xywh', dataset=self.dataset, dataset_info=self.dataset_info, return_heatmap=True, outputs=None) return pose_results,returned_outputs def save(self, img, outfile, pose_results,returned_outputs): img = vis_pose_result( self.pose_model, img, pose_results, dataset=self.dataset, dataset_info=self.dataset_info, kpt_score_thr=0.3, radius=4, thickness=1, show=False, out_file=outfile) return img handAlign = handAlignment() if __name__ == '__main__': args = parse_args() handAlign = handAlignment(pose_config=args.config, pose_checkpoint=args.checkpoint) filename = './demo/images/face.jpg' img = cv2.imread(filename,1) # input box is w y w h format # pose_results is a list of dict for every box, keys are bbox and keypoints # returned_outputs is a list of dict for every box, keys are heatmap pose_results, returned_outputs = handAlign.alignment(img,[495,221,400,400]) print(returned_outputs[0]['heatmap'].shape) print(returned_outputs[0]['heatmap'][0][0][0][0]) print(returned_outputs[0]['heatmap'][-1][-1][-1][-1]) img = handAlign.save(img, filename.replace('.jpg','_res.jpg'), pose_results, returned_outputs) print(img.shape) cv2.imwrite(filename.replace('.jpg','_res1.jpg'),img)
StarcoderdataPython
1692837
from .AutomatonGenerators import generate_random_dfa, generate_random_mealy_machine, generate_random_moore_machine, generate_random_markov_chain from .AutomatonGenerators import generate_random_mdp, generate_random_ONFSM from .FileHandler import save_automaton_to_file, load_automaton_from_file, visualize_automaton from .ModelChecking import model_check_experiment, mdp_2_prism_format, model_check_properties, get_properties_file, get_correct_prop_values, compare_automata from ..automata.StochasticMealyMachine import smm_to_mdp_conversion from .BenchmarkSULs import * from .DataHandler import *
StarcoderdataPython
1752993
<reponame>juanelenter/basepairmodels """ This module containins training functions that are common to the CLI & the API Functions: train_and_validate: Train and validate on a single train and validation set train_and_validate_ksplits: Train and validate on one or more train/val splits specified via a json file License: MIT License Copyright (c) 2020 Kundaje Lab Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import copy import datetime import json import logging import multiprocessing as mp import os import pandas as pd import sys import tensorflow.keras.backend as kb import time import warnings from basepairmodels.common import model_archs from basepairmodels.cli.bpnetutils import * from basepairmodels.cli.losses import MultichannelMultinomialNLL, NegativePearsonCorrelation from basepairmodels.cli import experiments from basepairmodels.cli import logger from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.optimizers import Adam from mseqgen import generators def early_stopping_check(losses, patience=5, min_delta=1e-3): """ Function to check if early stopping criteria are met Args: losses (list): list of all losses in order of the epochs, these could be training or validation losses patience (int): the number of epochs with no improvement greater than `min_delta` min_delta (float): The smallest amount that signals sufficienct decrease in validation loss to justify continuation of training for a further #patience epochs Returns: bool: True, if early stopping criteria are satisfied, False otherwise """ # if sufficient number of epochs have not elapsed yet if len(losses) <= patience: return False # the loss value upon which the patience check will be performed anchor_loss = losses[-(patience+1)] for i in range(patience): if (anchor_loss - losses[i-patience]) > min_delta: return False return True def reduce_lr_on_plateau(losses, current_lr, factor=0.5, patience=2, min_lr=1e-4): """ Function to compute the new learning rate if loss is plateauing Args: losses (list): list of all losses in order of the epochs, these could be training or validation losses current_lr (float): current learning rate factor (float): the factor by which the learning rate is to be reduced in case the plateau criteria is met patience (int): number of epochs with no improvement after which learning rate will be reduced. min_lr (float): lower bound on the learning rate Returns: float: new learning rate """ # if sufficient number of epochs have not elapsed yet if len(losses) <= patience: return current_lr # the loss value upon which the patience check will be performed anchor_loss = losses[-(patience+1)] for i in range(patience): # improvement found if losses[i-patience] < anchor_loss: # no change in learning rate return current_lr # new learning rate new_lr = current_lr * factor # check if it's below lower bound if new_lr < min_lr: return current_lr return new_lr def train_and_validate(input_params, output_params, genome_params, batch_gen_params, hyper_params, parallelization_params, network_params, use_attribution_prior, attribution_prior_params, train_chroms, val_chroms, model_dir, suffix_tag=None): """ Train and validate on a single train and validation set Note: the list & description for each of the required keys in all of the json parameter files passed to this fucntion can be found here: http:// Args: input_params (dict): dictionary containing input parameters output_params (dict): dictionary containing output parameters genome_params (dict): dictionary containing genome parameters batch_gen_params (dict): dictionary containing batch generation parameters hyper_params (dict): dictionary containing containing training & validation hyper parameters parallelization_params (dict): dictionary containing parameters for parallelization options network_params (dict): dictionary containing parameters specific to the deep learning architecture use_attribution_prior (bool): indicate whether attribution prior loss model should be used attribution_prior_params (dict): dictionary containing attribution prior parameters train_chroms (list): list of training chromosomes val_chroms (list): list of validation chromosomes model_dir (str): the path to the output directory suffix_tag (str): optional tag to add as a suffix to files (model, log, history & config params files) created in the model directory Returns: keras.models.Model """ # filename to write debug logs if suffix_tag is not None: logfname = '{}/trainer_{}.log'.format(model_dir, suffix_tag) else: logfname = '{}/trainer.log'.format(model_dir) # we need to initialize the logger for each process logger.init_logger(logfname) # parameters that are specific to the training batch generation # process train_batch_gen_params = batch_gen_params train_batch_gen_params['mode'] = 'train' # parameters that are specific to the validation batch generation # process. For validation we dont use jitter, reverse complement # augmentation and negative sampling val_batch_gen_params = copy.deepcopy(batch_gen_params) val_batch_gen_params['max_jitter'] = 0 val_batch_gen_params['rev_comp_aug'] = False val_batch_gen_params['negative_sampling_rate'] = 0.0 val_batch_gen_params['mode'] = 'val' # get the corresponding batch generator class for this model sequence_generator_class_name = generators.find_generator_by_name( batch_gen_params['sequence_generator_name']) logging.info("SEQGEN Class Name: {}".format(sequence_generator_class_name)) BatchGenerator = getattr(generators, sequence_generator_class_name) # instantiate the batch generator class for training train_gen = BatchGenerator(input_params, train_batch_gen_params, genome_params['reference_genome'], genome_params['chrom_sizes'], train_chroms, num_threads=parallelization_params['threads'], epochs=hyper_params['epochs'], batch_size=hyper_params['batch_size'], **network_params) # instantiate the batch generator class for validation val_gen = BatchGenerator(input_params, val_batch_gen_params, genome_params['reference_genome'], genome_params['chrom_sizes'], val_chroms, num_threads=parallelization_params['threads'], epochs=hyper_params['epochs'], batch_size=hyper_params['batch_size'], **network_params) # lets make sure the sizes look reasonable logging.info("TRAINING SIZE - {}".format(train_gen._samples.shape)) logging.info("VALIDATION SIZE - {}".format(val_gen._samples.shape)) # we need to calculate the number of training steps and # validation steps in each epoch, fit/evaluate requires this # to determine the end of an epoch train_steps = train_gen.len() val_steps = val_gen.len() # we may have to reduce the --threads sometimes # if the peak file has very few peaks, so we need to # check if these numbers will be 0 logging.info("TRAINING STEPS - {}".format(train_steps)) logging.info("VALIDATION STEPS - {}".format(val_steps)) # get an instance of the model logging.debug("New {} model".format(network_params['name'])) get_model = getattr(model_archs, network_params['name']) model = get_model(train_batch_gen_params['input_seq_len'], train_batch_gen_params['output_len'], len(network_params['control_smoothing']) + 1, filters=network_params['filters'], num_tasks=train_gen._num_tasks, use_attribution_prior=use_attribution_prior, attribution_prior_params=attribution_prior_params) # print out the model summary model.summary() # # if running in multi gpu mode # if parallelization_params['gpus'] > 1: # logging.debug("Multi GPU model") # model = multi_gpu_model(model, gpus=parallelization_params['gpus']) # compile the model logging.debug("Compiling model") logging.info("counts_loss_weight - {}".format( network_params['counts_loss_weight'])) if network_params['pearson_count_loss']: model.compile(Adam(learning_rate=hyper_params['learning_rate']), loss=[MultichannelMultinomialNLL( train_gen._num_tasks), NegativePearsonCorrelation()], loss_weights=[1, network_params['counts_loss_weight']]) else: model.compile(Adam(learning_rate=hyper_params['learning_rate']), loss=[MultichannelMultinomialNLL( train_gen._num_tasks), 'mse'], loss_weights=[1, network_params['counts_loss_weight']]) # begin time for training t1 = time.time() # track training losses, validation losses and start & end # times custom_history = { 'learning_rate': {}, 'loss': {}, 'profile_predictions_loss': {}, 'logcount_predictions_loss': {}, 'attribution_prior_loss': {}, 'val_loss': {}, 'val_profile_predictions_loss': {}, 'val_logcount_predictions_loss': {}, 'val_attribution_prior_loss': {}, 'start_time': {}, 'end_time': {}, 'elapsed': {} } # we maintain a separate list to track validation losses to make it # easier for early stopping & learning rate updates val_losses = [] # track best loss so we can restore weights best_loss = 1e6 # keep a copy of the best weights best_weights = None # the epoch with the best validation loss best_epoch = 1 # start training logging.debug("Training started ...") for epoch in range(hyper_params['epochs']): # First, let's train for one epoch logging.info("Training Epoch {}".format(epoch + 1)) train_start_time = time.time() custom_history['learning_rate'][str(epoch + 1)] = \ model.optimizer.learning_rate.numpy() custom_history['start_time'][str(epoch + 1)] = \ time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(train_start_time)) # training generator function that will be passed to fit train_generator = train_gen.gen(epoch) history = model.fit( train_generator, epochs=1, steps_per_epoch=train_steps) train_end_time = time.time() # record the losses custom_history['loss'][str(epoch + 1)] = history.history['loss'][0] custom_history['profile_predictions_loss'][str(epoch + 1)] = \ history.history['profile_predictions_loss'][0] custom_history['logcount_predictions_loss'][str(epoch + 1)] = \ history.history['logcount_predictions_loss'][0] if use_attribution_prior: custom_history['attribution_prior_loss'][str(epoch + 1)] = \ history.history['attribution_prior_loss'][0] # Then, we evaluate on the validation set logging.info("Validation Epoch {}".format(epoch + 1)) val_start_time = time.time() # validation generator function that will be passed to evaluate val_generator = val_gen.gen(epoch) val_loss = model.evaluate( val_generator, steps=val_steps, return_dict=True) val_losses.append(val_loss['loss']) val_end_time = time.time() custom_history['end_time'][str(epoch + 1)] = \ time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(val_end_time)) custom_history['elapsed'][str(epoch + 1)] = \ val_end_time - train_start_time # record the losses custom_history['val_loss'][str(epoch + 1)] = val_loss['loss'] custom_history['val_profile_predictions_loss'][str(epoch + 1)] = \ val_loss['profile_predictions_loss'] custom_history['val_logcount_predictions_loss'][str(epoch + 1)] = \ val_loss['logcount_predictions_loss'] if use_attribution_prior: custom_history['val_attribution_prior_loss'][str(epoch + 1)] = \ val_loss['attribution_prior_loss'] # update best weights and loss if val_loss['loss'] < best_loss: best_weights = model.get_weights() best_loss = val_loss['loss'] best_epoch = epoch + 1 # check if early stopping criteria are satisfied if early_stopping_check( val_losses, patience=hyper_params['early_stopping_patience'], min_delta=hyper_params['early_stopping_min_delta']): # restore best weights logging.info("Restoring best weights from epoch {}".format( best_epoch)) model.set_weights(best_weights) break # lower learning rate if criteria are satisfied new_lr = reduce_lr_on_plateau( val_losses, model.optimizer.learning_rate.numpy(), factor=hyper_params['lr_reduction_factor'], patience=hyper_params['reduce_lr_on_plateau_patience'], min_lr=hyper_params['min_learning_rate']) # set the new learning rate model.optimizer.learning_rate.assign(new_lr) # display current learning rate and training status logging.info("Current learning rate - {:5f}, Stop Training - {}".format( model.optimizer.learning_rate.numpy(), model.stop_training)) # end time for training t2 = time.time() logging.info("Total Elapsed Time: {}".format(t2-t1)) # base model filename if output_params['automate_filenames']: # get random alphanumeric tag for model model_tag = getAlphaNumericTag(output_params['tag_length']) model_fname = "{}/{}".format(model_dir, model_tag) elif output_params['model_output_filename'] is not None: model_fname = "{}/{}".format(model_dir, output_params['model_output_filename']) else: model_fname = "{}/model".format(model_dir) # add suffix tag to model name if suffix_tag is not None: model_fname += "_{}".format(suffix_tag) # extension model_fname += ".h5" # save HDF5 model file model.save(model_fname) logging.info("Finished saving model: {}".format(model_fname)) # save history to json: # Step 1. convert the custom history dict to a pandas DataFrame: hist_df = pd.DataFrame(custom_history) # file name for json file hist_json = model_fname.replace('.h5', '.history.json') # Step 2. write the dataframe to json with open(hist_json, mode='w') as f: hist_df.to_json(f) logging.info("Finished saving training and validation history: {}".format( hist_json)) # write all the command line arguments to a json file # & include the number of epochs the training lasted for, and the # validation and testchroms config_file = '{}/config'.format(model_dir) # add suffix tag to model name if suffix_tag is not None: config_file += "_{}".format(suffix_tag) # extension config_file += ".json" with open(config_file, 'w') as fp: config = {} config['input_params'] = input_params config['output_params'] = output_params config['genome_params'] = genome_params config['batch_gen_params'] = batch_gen_params config['hyper_params'] = hyper_params config['parallelization_params'] = parallelization_params config['network_params'] = network_params # the number of epochs the training lasted config['training_epochs'] = epoch + 1 # the epoch with best validation loss config['best_epoch'] = best_epoch config['train_chroms'] = train_chroms config['val_chroms'] = val_chroms config['model_filename'] = model_fname json.dump(config, fp) return model def train_and_validate_ksplits( input_params, output_params, genome_params, batch_gen_params, hyper_params, parallelization_params, network_params, use_attribution_prior, attribution_prior_params, splits): """ Train and validate on one or more train/val splits Args: input_params (dict): dictionary containing input parameters output_params (dict): dictionary containing output parameters genome_params (dict): dictionary containing genome parameters batch_gen_params (dict): dictionary containing batch generation parameters hyper_params (dict): dictionary containing containing training & validation hyper parameters parallelization_params (dict): dictionary containing parameters for parallelization options network_params (dict): dictionary containing parameters specific to the deep learning architecture use_attribution_prior (bool): indicate whether attribution prior loss model should be used attribution_prior_params (dict): dictionary containing attribution prior parameters splits (str): path to the json file containing train & validation splits """ # list of chromosomes after removing the excluded chromosomes chroms = set(genome_params['chroms']).difference( set(genome_params['exclude_chroms'])) # list of models from all of the splits models = [] # run training for each validation/test split num_splits = len(list(splits.keys())) for i in range(num_splits): if output_params['automate_filenames']: # create a new directory using current date/time to store the # model, the loss history and logs date_time_str = local_datetime_str(output_params['time_zone']) model_dir = '{}/{}_split{:03d}'.format( output_params['output_dir'], date_time_str, i) os.mkdir(model_dir) split_tag = None elif os.path.isdir(output_params['output_dir']): model_dir = output_params['output_dir'] split_tag = "split{:03d}".format(i) else: logging.error("Directory does not exist {}.".format( output_params['output_dir'])) return # filename to write debug logs logfname = '{}/trainer.log'.format(model_dir) # set up logger for main procecss logger.init_logger(logfname) # train & validation chromosome split if 'val' not in splits[str(i)]: logging.error("KeyError: 'val' required for split {}".format(i)) return val_chroms = splits[str(i)]['val'] # if 'train' key is present if 'train' in splits[str(i)]: train_chroms = splits[str(i)]['train'] # if 'test' key is present but train is not elif 'test' in splits[str(i)]: test_chroms = splits[str(i)]['test'] # take the set difference of the whole list of # chroms with the union of val and test train_chroms = list(chroms.difference( set(val_chroms + test_chroms))) else: # take the set difference of the whole list of # chroms with val train_chroms = list(chroms.difference(val_chroms)) logging.info("Split #{}".format(i)) logging.info("Train: {}".format(train_chroms)) logging.info("Val: {}".format(val_chroms)) # Start training for the split in a separate process # This ensures that all resources are freed, when the # process terminates, & available for training the next split # Mitigates the problem where training subsequent splits # is considerably slow logging.debug("Split {}: Creating training process".format(i)) p = mp.Process( target=train_and_validate, args=[input_params, output_params, genome_params, batch_gen_params, hyper_params, parallelization_params, network_params, use_attribution_prior, attribution_prior_params, train_chroms, val_chroms, model_dir, split_tag]) p.start() # wait for the process to finish p.join()
StarcoderdataPython
6543218
<filename>infoset/api/__init__.py<gh_stars>0 """Initialize the API module.""" # Import PIP3 libraries from flask import Flask from flask_caching import Cache ############################################################################# # Import configuration. # This has to be done before all other infoset imports. ############################################################################# from infoset.utils import configuration CONFIG = configuration.Config() ############################################################################# ############################################################################# # Configure the cache CACHE = Cache(config={ 'CACHE_TYPE': 'memcached', 'CACHE_DEFAULT_TIMEOUT': CONFIG.interval()}) # Define the global URL prefix from infoset.constants import API_PREFIX # Import API Blueprints from infoset.api.post import POST from infoset.api.status import STATUS from infoset.api.resources.agents import AGENTS from infoset.api.resources.datapoints import DATAPOINTS from infoset.api.resources.lastcontacts import LASTCONTACTS from infoset.api.resources.devices import DEVICES from infoset.api.resources.deviceagents import DEVICEAGENTS # Setup API and intialize the cache API = Flask(__name__) CACHE.init_app(API) # Register Blueprints API.register_blueprint(POST, url_prefix=API_PREFIX) API.register_blueprint(STATUS, url_prefix=API_PREFIX) API.register_blueprint(DATAPOINTS, url_prefix=API_PREFIX) API.register_blueprint(AGENTS, url_prefix=API_PREFIX) API.register_blueprint(LASTCONTACTS, url_prefix=API_PREFIX) API.register_blueprint(DEVICES, url_prefix=API_PREFIX) API.register_blueprint(DEVICEAGENTS, url_prefix=API_PREFIX)
StarcoderdataPython
6426918
<reponame>qychen13/ClusterAlignReID<filename>utils/evaluation.py<gh_stars>10-100 import time from tqdm import tqdm from collections import defaultdict import torch import torch.nn as nn import torch.nn.functional as functional import scipy.io import numpy as np from .distance import compute_distance_matrix from .rank import evaluate_rank from .rerank import re_ranking def test(feature_extractor, query_iterator, gallary_iterator, gpu_ids, store_fs=False, method='euclidean', flips=False, reranking=False): print('==> extracting query features...') qfets, qtargets = extract_features( feature_extractor, query_iterator, gpu_ids, is_test=True, flips=flips) print('==> extracting gallary features...') gfets, gtargets = extract_features( feature_extractor, gallary_iterator, gpu_ids, is_test=True, flips=flips) print('==> compute test metrics...') if store_fs: # used for external test print('==> save features and labels...') qnorm = torch.norm(qfets, p=2, dim=1, keepdim=True) qfets_n = qfets.div(qnorm.expand_as(qfets)) gnorm = torch.norm(gfets, p=2, dim=1, keepdim=True) gfets_n = gfets.div(gnorm.expand_as(gfets)) features = {'gallery_f': gfets_n.cpu().numpy(), 'gallery_label': gtargets['pid'].cpu().numpy(), 'gallery_cam': gtargets['camid'].cpu().numpy(), 'query_f': qfets_n.cpu().numpy(), 'query_label': qtargets['pid'].cpu().numpy(), 'query_cam': qtargets['camid'].cpu().numpy()} scipy.io.savemat('pytorch_result.mat', features) if method == 'external': if reranking: raise NotImplementedError result = evaluate_gpu(qfets, gfets, qtargets, gtargets, normalize=True) else: result = compute_test_metrics( qfets, gfets, qtargets, gtargets, metric=method, reranking=reranking) return dict(Top1=result['all_cmc'][0], Top5=result['all_cmc'][4], mAP=result['mAP']) def test_external(result_file): result = scipy.io.loadmat(result_file) query_feature = torch.FloatTensor(result['query_f']) query_cam = torch.IntTensor(result['query_cam'][0]) query_label = torch.IntTensor(result['query_label'][0]) gallery_feature = torch.FloatTensor(result['gallery_f']) gallery_cam = torch.IntTensor(result['gallery_cam'][0]) gallery_label = torch.IntTensor(result['gallery_label'][0]) qtargets = dict(pid=query_label, camid=query_cam) gtargets = dict(pid=gallery_label, camid=gallery_cam) good_index = (gtargets['pid'] != -1) gallery_feature = gallery_feature[good_index] gtargets = {key: gtargets[key][good_index] for key in gtargets} # result = compute_test_metrics(query_feature, gallery_feature, qtargets, gtargets, metric='cosine-non-normal') result = evaluate_gpu(query_feature, gallery_feature, qtargets, gtargets) return dict(Top1=result['all_cmc'][0], Top5=result['all_cmc'][4], mAP=result['mAP']) def fliplr(img): '''flip horizontal''' inv_idx = torch.arange(img.size(3)-1, -1, - 1).long() # N x C x H x W if img.is_cuda: inv_idx = inv_idx.cuda() img_flip = img.index_select(3, inv_idx) return img_flip def extract_features(feature_extractor, data_iterator, gpu_ids, is_test, flips=False): feature_extractor.eval() fets = [] targets = defaultdict(list) if gpu_ids is not None: feature_extractor.cuda(gpu_ids[0]) with torch.no_grad(): for ipt, target in tqdm(data_iterator): if gpu_ids is not None: if len(gpu_ids) == 1: ipt = ipt.cuda(gpu_ids[0], non_blocking=True) for key in target: if isinstance(target[key], list): continue target[key] = target[key].cuda( gpu_ids[0], non_blocking=True) if gpu_ids is not None: fet = nn.parallel.data_parallel( feature_extractor, ipt, gpu_ids) fet1 = nn.parallel.data_parallel( feature_extractor, fliplr(ipt), gpu_ids) else: fet = feature_extractor(ipt) fet1 = feature_extractor(fliplr(ipt)) if isinstance(fet, dict): if 'features_test' in fet and is_test: #print('==> use features_test') key = 'features_test' else: key = 'features' fet = fet[key] fet1 = fet1[key] if flips: fet += fet1 fet /= 2 fets.append(fet) for key in target: targets[key].append(target[key]) fets = torch.cat(fets, 0) for key in targets: if isinstance(targets[key][0], list): temp = [] for i in targets[key]: temp += i targets[key] = temp else: targets[key] = torch.cat(targets[key], 0) return fets, targets def compute_test_metrics(qfets, gfets, qtargets, gtargets, metric='euclidean', reranking=False): distmat = compute_distance_matrix(qfets, gfets, metric=metric) if reranking: print('==> reranking the distance matrix at {} ...'.format( time.strftime('%c'))) distmat = distmat.cpu() q_q_distmat = compute_distance_matrix( qfets, qfets, metric=metric).cpu() g_g_distmat = compute_distance_matrix( gfets, gfets, metric=metric).cpu() distmat = re_ranking(distmat, q_q_distmat, g_g_distmat) distmat = torch.from_numpy(distmat) print('==> done at {} ...'.format(time.strftime('%c'))) q_pids = qtargets['pid'] g_pids = gtargets['pid'] q_camids = qtargets['camid'] g_camids = gtargets['camid'] return evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, use_cython=True) ################ copy from person-reid-baseline #################### def evaluate_gpu(qfets, gfets, qtargets, gtargets, normalize=False): # TODO: support reranking if normalize: qnorm = torch.norm(qfets, p=2, dim=1, keepdim=True) qfets = qfets.div(qnorm.expand_as(qfets)) gnorm = torch.norm(gfets, p=2, dim=1, keepdim=True) gfets = gfets.div(gnorm.expand_as(gfets)) if len(qfets.shape) != 2: qfets = qfets.view(qfets.shape[0], -1) gfets = gfets.view(gfets.shape[0], -1) query_feature = qfets query_cam = qtargets['camid'].cpu() query_label = qtargets['pid'].cpu() gallery_feature = gfets gallery_cam = gtargets['camid'].cpu() gallery_label = gtargets['pid'].cpu() query_feature = query_feature.cuda() gallery_feature = gallery_feature.cuda() CMC = torch.IntTensor(len(gallery_label)).zero_() ap = 0.0 # print(query_label) for i in range(len(query_label)): ap_tmp, CMC_tmp = evaluate( query_feature[i], query_label[i], query_cam[i], gallery_feature, gallery_label, gallery_cam) if CMC_tmp[0] == -1: continue CMC = CMC + CMC_tmp ap += ap_tmp # print(i, CMC_tmp[0]) CMC = CMC.float() CMC = CMC/len(query_label) return dict(all_cmc=CMC, mAP=ap/len(query_label)) # Evaluate def evaluate(qf, ql, qc, gf, gl, gc): query = qf.view(-1, 1) # print(query.shape) score = torch.mm(gf, query) score = score.squeeze(1).cpu() score = score.numpy() # predict index index = np.argsort(score) # from small to large index = index[::-1] # index = index[0:2000] # good index query_index = np.argwhere(gl == ql) camera_index = np.argwhere(gc == qc) good_index = np.setdiff1d(query_index, camera_index, assume_unique=True) junk_index1 = np.argwhere(gl == -1) junk_index2 = np.intersect1d(query_index, camera_index) junk_index = np.append(junk_index2, junk_index1) # .flatten()) CMC_tmp = compute_mAP(index, good_index, junk_index) return CMC_tmp def compute_mAP(index, good_index, junk_index): ap = 0 cmc = torch.IntTensor(len(index)).zero_() if good_index.size == 0: # if empty cmc[0] = -1 return ap, cmc # remove junk_index mask = np.in1d(index, junk_index, invert=True) index = index[mask] # find good_index index ngood = len(good_index) mask = np.in1d(index, good_index) rows_good = np.argwhere(mask == True) rows_good = rows_good.flatten() cmc[rows_good[0]:] = 1 for i in range(ngood): d_recall = 1.0/ngood precision = (i+1)*1.0/(rows_good[i]+1) if rows_good[i] != 0: old_precision = i*1.0/rows_good[i] else: old_precision = 1.0 ap = ap + d_recall*(old_precision + precision)/2 return ap, cmc
StarcoderdataPython
1996043
import json import sys import payabbhi import responses import unittest2 from .helpers import (assert_invoice, assert_list_of_invoice_items, assert_list_of_invoices, assert_list_of_payments, mock_file) class TestInvoice(unittest2.TestCase): def setUp(self): self.client = payabbhi.Client( access_id='access_id', secret_key='secret_key') payabbhi.api_base = 'https://payabbhi.com' self.invoice_id = 'dummy_invoice_id' self.invoice_url = payabbhi.api_base + '/api/v1/invoices' @responses.activate def test_invoice_all(self): result = mock_file('dummy_invoice_collection') responses.add(responses.GET, self.invoice_url, status=200, body=result, match_querystring=True) response = self.client.invoice.all() resp = json.loads(result) assert_list_of_invoices(self, response, resp) @responses.activate def test_invoice_with_options(self): result = mock_file('dummy_invoice_collection_filters') count = 3 skip = 2 url = '{0}?count={1}&skip={2}'.format(self.invoice_url, count, skip) responses.add(responses.GET, url, status=200, body=result, match_querystring=True) response = self.client.invoice.all(data={'count': count, 'skip': skip}) resp = json.loads(result) assert_list_of_invoices(self, response, resp) @responses.activate def test_invoice_retrieve(self): result = mock_file('dummy_invoice') url = '{0}/{1}'.format(self.invoice_url, self.invoice_id) responses.add(responses.GET, url, status=200, body=result, match_querystring=True) response = self.client.invoice.retrieve(self.invoice_id) resp = json.loads(result) assert_invoice(self, response, resp) @responses.activate def test_invoice_create(self): result = mock_file('dummy_invoice') url = self.invoice_url responses.add(responses.POST, url, status=200, body=result, match_querystring=True) response = self.client.invoice.create(data={'customer_id': 'dummy_customer_id', 'invoice_no': '123123123123', 'due_date': 1549176945, 'currency': 'INR', 'description': 'TestInvoice', 'notes': {"mode": "test"}, 'line_items': [{"id": "dummy_item_id"}]}) resp = json.loads(result) assert_invoice(self, response, resp) @responses.activate def test_invoice_void(self): result = mock_file('dummy_invoice_void') url = '{0}/{1}/void'.format(self.invoice_url, self.invoice_id) responses.add(responses.POST, url, status=200, body=result, match_querystring=True) response = self.client.invoice.void(self.invoice_id) resp = json.loads(result) assert_invoice(self, response, resp) @responses.activate def test_invoice_retrieve_lineitems(self): result = mock_file('dummy_invoice_lineitems') url = '{0}/{1}/line_items'.format(self.invoice_url, self.invoice_id) responses.add(responses.GET, url, status=200, body=result, match_querystring=True) response = self.client.invoice.line_items(self.invoice_id) resp = json.loads(result) assert_list_of_invoice_items(self, response, resp) @responses.activate def test_invoice_retrieve_payments(self): result = mock_file('dummy_invoice_payments') url = '{0}/{1}/payments'.format(self.invoice_url, self.invoice_id) responses.add(responses.GET, url, status=200, body=result, match_querystring=True) response = self.client.invoice.payments(self.invoice_id) resp = json.loads(result) assert_list_of_payments(self, response, resp)
StarcoderdataPython
6609046
<reponame>yhat/digit-recognizer import numpy as np import pandas as pd from PIL import Image from StringIO import StringIO import base64 import os from sklearn.decomposition import RandomizedPCA from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.cross_validation import train_test_split wd = "../numbers/" files = [f for f in os.listdir(wd)] files = [wd + f for f in files] STANDARD_SIZE = (50, 50) def get_image_data(filename): img = Image.open(filename) img = img.getdata() img = img.resize(STANDARD_SIZE) img = map(list, img) img = np.array(img) s = img.shape[0] * img.shape[1] img_wide = img.reshape(1, s) return img_wide[0] data = [] labels = [] print "extracting features..." for i, f in enumerate(files): print i, "of", len(files) data.append(get_image_data(f)) labels.append(int(f.split(".")[-2][-1])) print "done." pca = RandomizedPCA(n_components=10) std_scaler = StandardScaler() X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.1) print "scaling data..." X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) print "done." print "transforming data..." X_train = std_scaler.fit_transform(X_train) X_test = std_scaler.transform(X_test) print "done." print "training model..." clf = KNeighborsClassifier(n_neighbors=33) clf.fit(X_train, y_train) print "done" print "="*20 print clf print "Confusion Matrix" print "="*40 print confusion_matrix(y_test, clf.predict(X_test)) from yhat import BaseModel, Yhat class DigitModel(BaseModel): def require(self): from PIL import Image from StringIO import StringIO import base64 def transform(self, data): image_string = data["image_string"] STANDARD_SIZE = (50, 50) f = StringIO(base64.decodestring(image_string)) img = Image.open(f) img = img.getdata() img = img.resize(STANDARD_SIZE) img = map(list, img) img = np.array(img) s = img.shape[0] * img.shape[1] img_wide = img.reshape(1, s) return img_wide[0] def predict(self, img): x = self.pca.transform([img]) x = self.std_scaler.transform(x) results = {"label": self.clf.predict(x)[0]} probs = {"prob_" + str(i) : prob for i, prob in enumerate(self.clf.predict_proba(x)[0])} results['probs'] = probs return results digit_model = DigitModel(clf=clf, std_scaler=std_scaler, pca=pca) # yh = Yhat("greg", "abcd1234", "http://starphleet-aa02a554-1981699582.us-west-1.elb.amazonaws.com/deployer/") # yh.deploy("digitRecognizer", digit_model)
StarcoderdataPython
6562426
import scipy,pickle,numpy import numpy as np try: import matplotlib.pyplot as plt except: import pylab as plt import special_functions as sf from scipy import ndimage STANDARD = None class IDSpectrum: """ IDSpectrum class for identification of spectral lines starting with an initial model of the spectrum. """ def __init__(self, data,sky,wave,wave2,skymodel): """ Plot data """ self.data = plt.plot(wave,data,c='b')[0] self.sky = plt.plot(wave2,sky,c='gray')[0] self.canvas = self.data.get_figure().canvas self.ax = self.data.get_axes() self.xdata = self.data.get_xdata().copy() self.start = [data.copy(),sky.copy(),wave.copy(),wave2.copy(),skymodel] self.skymodel = skymodel """ Get metadata (ie line locations) for arcs """ data = self.data.get_ydata() self.datapeaks = ndimage.maximum_filter(data,9) tmp = scipy.sort(data) thresh = tmp[tmp.size*0.95] cond = (data==self.datapeaks)&(data>thresh) self.datapeaks = scipy.where(cond)[0] self.datasel = self.datapeaks*0 self.datalines = [] for peak in self.datapeaks: l = plt.axvline(self.xdata[peak],c='k') self.datalines.append(l) self.spec = self.data self.peaks = self.datapeaks self.selected = self.datasel self.lines = self.datalines """ Set useful flags """ self.domotion = False self.origx = None self.soln = None self.pick = False self.fitlines = None self.keyid = self.canvas.mpl_connect('key_press_event',self.key_press) self.connect() print """ Mouse Controls: - left button drags single lines (rescales spectrum!) - middle button drags all lines (or exits from pan/zoom modes) - right button selects/deselects lines Keyboard Commands: a - add new line (use mouse to select the line) m - fit a polynomial to the blue `solution' d - optimize the blue fit to the gray model (like m, but optimizes too) w - write the current state to disk r - read a saved state n - reset to the initial state q - quit (performs an `m' fit if no fit has been applied yet) """ plt.show() def connect(self): """ Connect the mouse to the plot """ self.pressid = self.canvas.mpl_connect('button_press_event', self.on_press) self.moveid = self.canvas.mpl_connect('motion_notify_event', self.on_motion) self.offid = self.canvas.mpl_connect('button_release_event', self.on_release) def on_press(self,event): """ Deal with mouse button presses, including stretching, shifting, and line identification. """ """ Turn off plot tools """ if self.canvas.toolbar.mode!='': if event.button==2: self.canvas.toolbar.zoom() self.canvas.toolbar.pan() self.canvas.toolbar.pan() return self.xdata = self.spec.get_xdata().copy() if event.xdata==None or event.ydata==None: # Not in axes return ind = abs(self.xdata-event.xdata).argmin() indx = abs(self.peaks-ind).argmin() if abs(self.peaks-ind).min()>4.: # Not near any peaks return """ Select/unselect lines """ if event.button==3: if self.selected[indx]==1: self.selected[indx] = 0 self.lines[indx].set_color('k') else: self.selected[indx] = 1 self.lines[indx].set_color('r') plt.draw() return self.origx = self.xdata[self.peaks[indx]] self.lbound = self.xdata[0] self.lindx = 0 for i in range(indx): if self.xdata[self.peaks[i]]>self.origx: break if self.selected[i]==1: self.lbound = self.xdata[self.peaks[i]] self.lindx = self.peaks[i] self.rbound = self.xdata[-1] self.rindx = -1 for i in range(indx+1,self.peaks.size): if self.xdata[self.peaks[i]]<self.origx: continue if self.selected[i]==1: self.rbound = self.xdata[self.peaks[i]] self.rindx = self.peaks[i] break self.rbound = 1e6 self.lbound = 1 self.selected[indx] = 1 self.indx = self.peaks[indx] self.domotion = True self.lines[indx].set_color('r') self.pick = False def on_motion(self, event): """ Controls the sliding/stretching of the spectra """ """ Ignore this if we aren't in slide/stretch mode (ie pressing the mouse button """ if self.domotion is False: return xdata = self.xdata.copy() """ Left mouse button is for stretching """ if event.button==1 and (event.xdata is not None) \ and (event.ydata is not None) and event.xdata>self.lbound \ and event.xdata<self.rbound: leftpts = self.xdata[self.lindx+1:self.indx+1].copy() left = scipy.linspace(leftpts[0],event.xdata,leftpts.size) rightpts = self.xdata[self.indx:self.rindx].copy() right = scipy.linspace(event.xdata,rightpts[-1],rightpts.size)[1:] xd = scipy.concatenate((left,right)) xdata[self.lindx+1:self.rindx] = xd.copy() self.data.set_xdata(xdata) """ Middle mouse button is for sliding """ if event.button==2: offset = event.xdata-self.origx xdata = xdata + offset self.data.set_xdata(xdata) for i in range(self.datapeaks.size): x = xdata[self.datapeaks[i]] l = self.datalines[i] l.set_xdata([x,x]) plt.draw() def on_release(self, event): """ If the mouse button is released, reset! """ if self.domotion: self.domotion = False self.xdata = self.spec.get_xdata().copy() plt.draw() def key_press(self,event): """ m is for fitting, p is for selecting new lines (or leaving select mode) """ if type(event.key)!=type('m'): return if event.key.lower()=='m': self.do_fit() elif event.key.lower()=='d': self.do_fit(True) elif event.key.lower()=='a': if self.pick: self.pick = False self.canvas.mpl_disconnect(self.addid) self.connect() self.pick = False else: self.pick = True self.disconnect() print "Choose the line to add (a to exit)" self.addid = self.canvas.mpl_connect('button_press_event', self.add_line) elif event.key.lower()=='w': self.write() elif event.key.lower()=='r': self.read() elif event.key.lower()=='n': self.data.remove() self.sky.remove() for i in self.lines: i.remove() a,b,c,d,e = self.start self.disconnect() self.canvas.mpl_disconnect(self.keyid) self.__init__(a,b,c,d,e) plt.draw() elif event.key.lower()=='q': if self.soln is None: self.do_fit() plt.close(self.data.get_figure()) def do_fit(self,fullFit=False): p = self.peaks[self.selected==1] fitdata = scipy.empty((self.xdata.size,2)) fitdata[:,0] = scipy.arange(fitdata.shape[0]) fitdata[:,1] = self.spec.get_xdata() fitdata = fitdata[(fitdata[:,0]>p[0]-20)&(fitdata[:,0]<p[-1]+20)] ord = int(raw_input('Enter order of fit: ')) fit = sf.lsqfit(fitdata,'polynomial',ord) self.soln = fit if fullFit==True: from scipy import interpolate,optimize spec = self.spec.get_ydata() xvals = numpy.arange(spec.size).astype(numpy.float32) def opt(p): p = numpy.array(p) n = p[-1] coeff = numpy.atleast_2d(p[:-1]).T m = {'coeff':coeff,'type':'polynomial'} w = sf.genfunc(xvals,0.,m) mod = n*interpolate.splev(w,self.skymodel) return (spec-mod)/abs(spec)**0.5 pars = fit['coeff'].flatten().tolist() pars.append(1.) coeff,ier = optimize.leastsq(opt,pars,maxfev=10000,epsfcn=1e-5) fit['coeff'] = numpy.atleast_2d(coeff[:-1]).T self.soln = fit print "pixel fit complete" else: print "Fit Complete" xdata = sf.genfunc(scipy.arange(self.xdata.size),0.,fit) # self.sky.set_xdata(xdata) self.data.set_xdata(xdata) for i in range(self.datapeaks.size): x = xdata[self.datapeaks[i]] l = self.datalines[i] l.set_xdata([x,x]) plt.draw() def add_line(self,event): if self.canvas.toolbar.mode!='': if event.button==2: self.canvas.toolbar.zoom() self.canvas.toolbar.pan() self.canvas.toolbar.pan() return if event.xdata==None or event.ydata==None: print 'Invalid data' return xpos = event.xdata xdata = self.spec.get_xdata() ydata = self.spec.get_ydata() p = ndimage.maximum_filter(ydata,9) ind = abs(xdata-xpos).argmin() p = scipy.where((p==ydata))[0] if abs(p-ind).min()>5: print 'Not a line' return indx = p[abs(p-ind).argmin()] for i in self.peaks: if abs(indx-i)<9: print 'Too close to another line.' return if indx<5. or indx>xdata.size-6: print 'Too close to edge.' return peaks = scipy.arange(self.peaks.size+1) n = self.peaks[self.peaks<indx].size peaks[:n] = self.peaks[:n].copy() peaks[n] = indx peaks[n+1:] = self.peaks[n:].copy() sel = scipy.arange(peaks.size) sel[:n] = self.selected[:n].copy() sel[n] = 0 sel[n+1:] = self.selected[n:].copy() self.peaks = peaks.copy() self.selected = sel.copy() xlim = self.ax.get_xlim() ylim = self.ax.get_ylim() if self.spec==self.data: l = plt.axvline(xdata[indx],c='k') self.lines.insert(n,l) self.datapeaks = self.peaks self.datasel = self.selected self.datalines = self.lines else: l = plt.axvline(xdata[indx],c='k',ls=':') self.lines.insert(n,l) self.skypeaks = self.peaks self.skysel = self.selected self.skylines = self.lines self.ax.set_xlim(xlim) self.ax.set_ylim(ylim) plt.draw() self.canvas.mpl_disconnect(self.addid) self.connect() self.pick = False def disconnect(self): self.canvas.mpl_disconnect(self.pressid) self.canvas.mpl_disconnect(self.moveid) self.canvas.mpl_disconnect(self.offid) def write(self): oname = raw_input('Name of output file: ') f = open(oname,'w') xdata = self.spec.get_xdata() selected = self.datasel peaks = self.datapeaks soln = self.soln pickle.dump([xdata,selected,peaks,soln],f) f.close() print "Writing Complete" def read(self): oname = raw_input('Name of input file: ') try: f = open(oname,'r') xdata,selected,peaks,soln = pickle.load(f) f.close() except: print "Could not read file: %s"%oname return self.data.set_xdata(xdata) self.spec.set_xdata(xdata) self.datapeaks = peaks self.datasel = selected self.soln = soln for i in self.lines: i.remove() for i in range(len(self.lines)): del self.lines[0] for i in range(len(peaks)): c = 'k' if selected[i]==1: c = 'r' l = plt.axvline(xdata[peaks[i]],c=c) self.datalines.append(l) self.lines = self.datalines self.peaks = self.datapeaks self.selected = self.datasel plt.draw() def id_spec(spec,model): fig = plt.figure() ax = fig.add_subplot(111) ax.fmt_xdata = plt.FormatStrFormatter('%4.2f') ax.fmt_ydata = plt.FormatStrFormatter('%4.2f') from scipy import ndimage,interpolate skymodel = model['model'] data = spec.copy() blue,red,scale = model['blue'],model['red'],model['scale'] while (red-blue)/scale<data.size: red += scale blue -= scale wave = scipy.arange(blue,red,scale) blue,red = model['blue'],model['red'] sky = interpolate.splev(wave,skymodel) sky /= sky.mean()/data.mean() plt.plot(wave,sky,c='gray') from scipy import optimize,signal corr = signal.correlate(sky,data,mode='valid') w0 = wave[corr.argmax()] p = [w0,scale,0.,0.,1.] xvals = numpy.arange(data.size).astype(numpy.float32) def opt(p): p = numpy.array(p) n = p[-1] coeff = numpy.atleast_2d(p[:-1]).T m = {'coeff':coeff,'type':'polynomial'} w = sf.genfunc(xvals,0.,m) mod = n*interpolate.splev(w,skymodel) return (data-mod)/abs(data)**0.5 #coeff,ier = optimize.leastsq(opt,p,maxfev=10000,epsfcn=1e-5) #fit = {'coeff':numpy.atleast_2d(coeff[:-1]).T,'type':'polynomial'} #dwave = sf.genfunc(xvals,0.,fit) dwave = numpy.linspace(blue,red,data.size) dr = IDSpectrum(data,sky,dwave,wave,skymodel) x = numpy.arange(sky.size) w = sf.genfunc(x,0.,dr.soln) if dr.soln is None: dr.do_fit() xdata = dr.data.get_xdata() ydata = dr.data.get_ydata() return dr.soln
StarcoderdataPython
11296788
#!/usr/bin/env python # -*- coding: iso-8859-15 -*- ######################## -*- coding: utf-8 -*- # simple script to generate p-coordinate specific input from standard experiment import numpy as np import matplotlib.pyplot as plt import sys, os # requires that the path contains utils/python/MITgcmutils or that the utils # are installed via pip or similar: import MITgcmutils as mit # some helper routines def sqinf(a): """ replace zeros by Inf """ b = np.copy(np.squeeze(a)) b[b==0] = np.Inf return b def readfield(fname,dims,datatype): """Call signatures:: readfield(filename, dims, numpy.datatype) Read unblocked binary data with dimentions "dims". """ try: fid = open(fname,"rb") except: sys.exit( fname+": no such file or directory") v = np.fromfile(fid, datatype) fid.close() if sys.byteorder == 'little': v.byteswap(True) if len(v) == np.prod(dims): v = v.reshape(dims) elif len(v) == np.prod(dims[1:]): v = v.reshape(dims[1:]) else: errstr = ( "dimensions do not match: \n len(data) = " + str(len(v)) + ", but prod(dims) = " + str(np.prod(dims)) ) raise RuntimeError(errstr) return v def writefield(fname,data): """Call signatures:: writefield(filename, numpy.ndarray) Write unblocked binary data. """ if False: pass else: if sys.byteorder == 'little': data.byteswap(True) fid = open(fname,"wb") data.tofile(fid) fid.close() # switch back to machine format if sys.byteorder == 'little': data.byteswap(True) def calc_hydrostatic_pressure(s,t,p0,dz,gravity=9.81,rhoConst=1035.): from MITgcmutils import jmd95 mskz = np.copy(t) mskz[mskz!=0]=1. dp = np.copy(p0) dims=np.asarray(t.shape) dims[0]=dims[0]+1 pf = np.zeros(dims) grho = gravity*rhoConst rhoInSitu0 = jmd95.dens(s,t,p0/grho)*mskz # integration of non-linear hydrostatic equation requires iteration: resid = 1 while resid>1e-15: rhoInSitu = jmd95.dens(s,t,p0/grho)*mskz # save old pressure dp = np.copy(p0) # compute new pressure pf[0,...] = 0. for k in range(nr): dpk = dz[k,...]*gravity*rhoInSitu[k,...] p0[k,...] = (pf[k,...] + 0.5*dpk)*mskz[k,...] pf[k+1,...] = (p0[k,...] + 0.5*dpk)*mskz[k,...] # check convergence dp = dp-p0 resid = np.sqrt((dp**2).sum()) print('hydrostatic pressure: resdiual = %e, '%np.sqrt((dp**2).sum())) print() return p0, pf, rhoInSitu gravity = 9.81 rhoConst= 1035. grho=gravity*rhoConst nr=15 nn=32 ny=nn nx=6*nn # from now on we assume that ./testreport has been run for this experiment # and that we have output available in ../tr_run.seaice # bathymetry prec = 'float64' #b=readfield('../input/bathy_Hmin50.bin',[nn,nn*6],prec) b= - mit.rdmds('../tr_run.seaice/Depth') writefield('bathy_Hmin50.bin',-b*grho) # hydrography t=readfield('../input/lev_T_cs_15k.bin',[nr,nn,nn*6],prec) s=readfield('../input/lev_S_cs_15k.bin',[nr,nn,nn*6],prec) writefield('lev_T_cs_15k.bin',t[::-1,:,:]) writefield('lev_S_cs_15k.bin',s[::-1,:,:]) hfz = mit.rdmds('../tr_run.seaice/hFacC') rac = mit.rdmds('../tr_run.seaice/RAC') xg = mit.rdmds('../tr_run.seaice/XG') yg = mit.rdmds('../tr_run.seaice/YG') mskz = np.copy(hfz) mskz[mskz!=0] = 1. # create geopotential anomaly file: delz = np.asarray([50., 70., 100., 140., 190., 240., 290., 340., 390., 440., 490., 540., 590., 640., 690.]) delp = delz*grho # # this is from "data", but it is unclear where these numbers come from # delp = np.asarray([7103300.720021, 6570548.440790, 6041670.010249, # 5516436.666057, 4994602.034410, 4475903.435290, # 3960063.245801, 3446790.312651, 2935781.405664, # 2426722.705046, 1919291.315988, 1413156.804970, # 1008846.750166, 705919.025481, 504089.693499])[::-1] # integrate initial fields vertically minus reference potential pf0 = np.hstack([0,np.cumsum(delp)]) pc0 = 0.5*(pf0[:-1]+pf0[1:]) pc3d = np.tile(pc0.reshape((nr,1,1)),(1,ny,nx))*mskz dz3d = np.tile(delz.reshape((nr,1,1)),(1,ny,nx)) # first guess of hydrostatic pressure at center-points based on delp # pf is the hydrostatic pressure at interfaces (w-points) pc = np.copy(pc3d) pc,pf,rhoInSitu = calc_hydrostatic_pressure(s,t,pc,dz3d) # the new pressure also implies different delp, here computed as an average # over the model domain pm = np.zeros((nr,)) tm = np.zeros((nr,)) sm = np.zeros((nr,)) rhom = np.zeros((nr,)) for k in range(nr): racz = rac*mskz[k,:,:] pm[k] = (pc[k,:,:]*racz).sum()/racz.sum() tm[k] = (t[k,:,:]*racz).sum()/racz.sum() sm[k] = (s[k,:,:]*racz).sum()/racz.sum() rhom[k] = (rhoInSitu[k,:,:]*racz).sum()/racz.sum() # hydrostatic pressure from averaged temperatuer and salinity profiles pmm = np.copy(pm) pmm,pff,rr = calc_hydrostatic_pressure(sm,tm,pmm,delz) # this is very similar to diff(pfm), see below dp = np.diff(pff) print('hydrostatic pressure layer thickness from averaged hydrography:') print(' delR = %14f, %14f, %14f,'%(dp[-1],dp[-2],dp[-3])) for k in range(nr-4,0,-3): print(' %14f, %14f, %14f,'%(dp[k],dp[k-1],dp[k-2])) # averaged pressure at interfaces to compute delP pfm = np.zeros((nr+1,)) for k in range(nr): racz = rac*mskz[k,:,:] pfm[k] = (pf[k,:,:]*racz).sum()/racz.sum() pfm[nr] = (pf[nr,:,:]*racz).sum()/racz.sum() dp = np.diff(pfm) print('hydrostatic pressure layer thickness from averaged pressure:') print(' delR = %14f, %14f, %14f,'%(dp[-1],dp[-2],dp[-3])) for k in range(nr-4,0,-3): print(' %14f, %14f, %14f,'%(dp[k],dp[k-1],dp[k-2])) # now we would like to compute delRc (distance between c-points) dp = np.zeros((nr,)) dp[0] = pm[0] # assuming zero surface pressure dp[1:] = pm[1:]-pm[:-1] print(' delRc = %14f, %14f, %14f,'%(dp[-1],dp[-2],dp[-3])) for k in range(nr-4,0,-3): print(' %14f, %14f, %14f,'%(dp[k],dp[k-1],dp[k-2])) dp3d = np.tile(dp.reshape((nr,1,1)),(1,ny,nx)) # this is the correct way of computing the geopotential anomaly # (if integr_geoPot = 1) recip_rho = 1./sqinf(rhoInSitu) geopotanom = -((recip_rho - 1/rhoConst)*hfz*dp3d).sum(axis=0) # this is equivalent geopotanom1= b/rhoConst-(recip_rho*hfz*dp3d).sum(axis=0) # these are approximation that are not quite accurate geopotanom2= ((rhoInSitu - rhoConst)*hfz*dz3d).sum(axis=0)*gravity/rhoConst geopotanom3= -((recip_rho - 1/rhoConst)*grho*hfz*dz3d).sum(axis=0) # the correct version writefield('geopotanom.bin',geopotanom) # # pickup (this is tricky) # p = readfield('../input/pickup.0000072000',[nr*8+3,nn,nn*6],prec) # nflds=8 # p3d = np.copy(p[:nflds*nr,:,:]) # for k in range(nflds): # pp = p3d[(k-1)*nr:k*nr,:,:] # p[(k-1)*nr:k*nr] = pp[::-1,:,:] # writefield('pickup.0000072000',p) # plot field #plt.clf() #mit.cs.pcol(xg,yg,geopotanom) #plt.colorbar(orientation='horizontal') #plt.show()
StarcoderdataPython
1686666
from rest_framework.permissions import BasePermission class SubjectPermission(BasePermission): def has_permission(self, request, view): if view.action == 'list': return request.user.is_authenticated() else: return False
StarcoderdataPython