id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
1830256
<gh_stars>1-10 #matrix_builder.py #builds ecludian distance matrixes from __future__ import division from custom import build_distance_matrix import numpy import pickle import time import sys if __name__ == "__main__": try: size = int(sys.argv[1]) except IndexError: print("no size given, defaulting to 10") size = 10 t_start = time.time() distance_matrix = build_distance_matrix(size) with open("data/matrix"+str(size)+".p", "wb") as matrix_file: pickle.dump(distance_matrix, matrix_file) print("Matrix built\ntime taken "+str(round(time.time()-t_start,1))+"s")
StarcoderdataPython
11346957
<reponame>swkim01/gps #!/usr/bin/python3 from flask import Flask, render_template import json app = Flask(__name__, template_folder=".", static_url_path='') try: import gps except ImportError: has_gps_module = False if has_gps_module: import gpsreceiver gpsr = gpsreceiver.GpsReceiver() gpsr.daemon = True gpsr.start() else: gLocation={"lat":35.180, "lon":129.076, "alt":0.0, "speed":0.0} #respone json for gps location @app.route('/getLocation') def get_location(): if has_gps_module: return json.dumps(gpsr.getLocation()) else: global gLocation return json.dumps(gLocation) @app.route('/') def do_route(): return render_template("index.html") @app.route('/<filename>') def do_file(filename): return render_template(filename) @app.route('/javascript/<filename>') def do_js(filename): return render_template("./javascript/"+filename) if __name__ == '__main__': app.run(host='<host IP>', port=8008) #app.run(host='localhost', port=8008)
StarcoderdataPython
12837809
import urllib, json import urllib.request,os import socket import random import re socket.setdefaulttimeout(50) #https://www.hide-my-ip.com/fr/proxylist.shtml # .*(\[\{.*\]).* KEY="A00239D3-45F6-4A0A-810C-54A347F144C2" KEY="<KEY>" KEY="35d28185-0ca1-47f0-8caf-edc457802c9d" KEY="B36714DE794D0080A183B5A12BEAF8B4" KEYS=["B36714DE794D0080A183B5A12BEAF8B4","35d28185-0ca1-47f0-8caf-edc457802c9d","A00239D3-45F6-4A0A-810C-54A347F144C2","<KEY>","A00239D3-45F6-4A0A-810C-54A347F144C2"]#,"9b0610b4-cc4e-455a-b64d-e2fd01b5b086"] SERIES="1" IDSEASON="118" urlProxys=["http://192.168.127.12:80","http://192.168.3.11:80"] with urllib.request.urlopen('https://www.hide-my-ip.com/fr/proxylist.shtml') as response: print("load list") html = str(response.read()) #p = re.compile('.*(\[\{"i".*\}\])\;.*') #line=p.match(html).group(0) print ("parse1") p = re.compile('.*\[\{"i"') print ("parse2") liner=p.sub( '[{"i"', html, count=1) print ("parse3") p = re.compile('\}\];.*') print ("parse4") line2=p.sub( '}]', liner, count=1) print ("parse5") line3=line2.replace("\\n","") line4=line3.replace("\\","") line=line4.replace("}, n {","},{").replace(" n ","") #line = re.sub(p, "%s", html) f = open("jjj.json", 'w') f.write(line) f.close() json_object = json.loads(line) print ("mount node") for jsone in json_object: urlProxys.append("http://"+jsone["i"]+":"+jsone["p"]) proxy = urllib.request.FancyURLopener({"http":"http://172.16.58.3:3128"}) #proxy = urllib.request.URLopener() def is_json(myjson): try: json_object = json.loads(myjson) except ValueError : return False return True def is_file_json(myjson): if ( os.path.exists(myjson)) : f = open(myjson, 'r') return is_json(f.read()) return False def loadAndWrite(myjson,filie): proxyMi=True counter=0 while proxyMi: proxyurl = random.choice (urlProxys) try: proxy = urllib.request.FancyURLopener({"http":random.choice (urlProxys)}) with proxy.open(myjson, data=None ) as url: response = url.read().decode('utf-8') data = json.loads(response) f = open(filie, 'w') f.write(response) f.close() print ("nice:"+filie) proxyMi=False except ValueError : print ('error '+str(counter)+':'+myjson+":"+filie+":"+proxyurl) if counter>15 : proxyMi=False counter=counter+1 except OSError : print ('retry:'+myjson+":"+filie+":"+proxyurl) if( not os.path.exists("currenseason")): os.mkdir("currenseason") if( not os.path.exists("currenseason/"+SERIES)): os.mkdir("currenseason/"+SERIES) if( not is_file_json("currenseason/"+SERIES+"/currentseason.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/series/"+SERIES+"/currentseason.json" loadAndWrite(url,"currenseason/"+SERIES+"/currentseason.json") f = open('currenseason/'+SERIES+'/currentseason.json', 'r') data=json.loads(f.read()) f.close() IDSEASON=str(data["current_season"]["id"]) IDSEASON="116" if( not os.path.exists("conferences")): os.mkdir("conferences") if( not os.path.exists("conferences/conferences.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/conferences.json?userkey="+random.choice (KEYS) loadAndWrite(url,"conferences/conferences.json") if( not os.path.exists("ladder")): os.mkdir("ladder") if( not os.path.exists("ladder/"+SERIES)): os.mkdir("ladder/"+SERIES) if( not os.path.exists("ladder/"+SERIES+"/"+IDSEASON)): os.mkdir("ladder/"+SERIES+"/"+IDSEASON) if( not is_file_json("ladder/"+SERIES+"/"+IDSEASON+"/lader.json") ): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/series/"+SERIES+"/seasons/"+IDSEASON+"/ladder.json?userkey="+random.choice (KEYS) loadAndWrite(url,"ladder/"+SERIES+"/"+IDSEASON+"/lader.json") f = open("ladder/"+SERIES+"/"+IDSEASON+"/lader.json", 'r') dataTeam=json.loads(f.read()) f.close() countyx=0 for teamm in dataTeam['teams']: countyx=countyx+1 print("TT "+str(countyx)+"/"+str(len(dataTeam['teams']))) TEAM=str(teamm['id']) if( not os.path.exists("fixturesandresultswithbyes")): os.mkdir("fixturesandresultswithbyes") if( not os.path.exists("fixturesandresultswithbyes/"+SERIES)): os.mkdir("fixturesandresultswithbyes/"+SERIES) if( not os.path.exists("fixturesandresultswithbyes/"+SERIES+"/"+IDSEASON)): os.mkdir("fixturesandresultswithbyes/"+SERIES+"/"+IDSEASON) if( not os.path.exists("fixturesandresultswithbyes/"+SERIES+"/"+IDSEASON+"/"+TEAM)): os.mkdir("fixturesandresultswithbyes/"+SERIES+"/"+IDSEASON+"/"+TEAM) if( not is_file_json("fixturesandresultswithbyes/"+SERIES+"/"+IDSEASON+"/"+TEAM+"/fixturesandresultswithbyes.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/series/"+SERIES+"/seasons/"+IDSEASON+"/teams/"+TEAM+"/fixturesandresultswithbyes.json?userkey="+random.choice (KEYS) loadAndWrite(url,"fixturesandresultswithbyes/"+SERIES+"/"+IDSEASON+"/"+TEAM+"/fixturesandresultswithbyes.json") if( not os.path.exists("summary")): os.mkdir("summary") if( not os.path.exists("summary/"+SERIES)): os.mkdir("summary/"+SERIES) if( not os.path.exists("summary/"+SERIES+"/"+IDSEASON)): os.mkdir("summary/"+SERIES+"/"+IDSEASON) if( not os.path.exists("summary/"+SERIES+"/"+IDSEASON+"/"+TEAM)): os.mkdir("summary/"+SERIES+"/"+IDSEASON+"/"+TEAM) if( not is_file_json("summary/"+SERIES+"/"+IDSEASON+"/"+TEAM+"/summary.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/series/"+SERIES+"/seasons/"+IDSEASON+"/teams/"+TEAM+"/summary.json?userkey="+random.choice (KEYS) loadAndWrite(url,"summary/"+SERIES+"/"+IDSEASON+"/"+TEAM+"/summary.json") try: f = open("fixturesandresultswithbyes/"+SERIES+"/"+IDSEASON+"/"+TEAM+"/fixturesandresultswithbyes.json", 'r') dataMatchId=json.loads(f.read()) f.close() except: print ("err:fixturesandresultswithbyes/"+SERIES+"/"+IDSEASON+"/"+TEAM+"/fixturesandresultswithbyes.json") dataMatchId=[] county = 0 for macth in dataMatchId: county=county+1 print ("NB "+str(county)+"/"+str(len(dataMatchId))) MATCHID=macth['match_id'] if MATCHID is not None: if( not os.path.exists("scoreboard")): os.mkdir("scoreboard") if( not os.path.exists("scoreboard/"+MATCHID)): os.mkdir("scoreboard/"+MATCHID) if( not is_file_json("scoreboard/"+MATCHID+"/scoreboard.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/matches/"+MATCHID+"/scoreboard.json?userkey="+random.choice (KEYS) loadAndWrite(url,"scoreboard/"+MATCHID+"/scoreboard.json") if( not os.path.exists("breakdown")): os.mkdir("breakdown") if( not os.path.exists("breakdown/"+MATCHID)): os.mkdir("breakdown/"+MATCHID) if( not is_file_json("breakdown/"+MATCHID+"/breakdown.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/matches/"+MATCHID+"/breakdown.json?userkey="+random.choice (KEYS) loadAndWrite(url,"breakdown/"+MATCHID+"/breakdown.json") if( not os.path.exists("teamstats")): os.mkdir("teamstats") if( not os.path.exists("teamstats/"+MATCHID)): os.mkdir("teamstats/"+MATCHID) if( not is_file_json("teamstats/"+MATCHID+"/teamstats.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/matches/"+MATCHID+"/teamstats.json?userkey="+random.choice (KEYS) loadAndWrite(url,"teamstats/"+MATCHID+"/teamstats.json") if( not os.path.exists("commentary")): os.mkdir("commentary") if( not os.path.exists("commentary/"+MATCHID)): os.mkdir("commentary/"+MATCHID) if( not is_file_json("commentary/"+MATCHID+"/commentary.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/matches/"+MATCHID+"/commentary.json?userkey="+random.choice (KEYS) loadAndWrite(url,"commentary/"+MATCHID+"/commentary.json") if( not os.path.exists("players")): os.mkdir("players") if( not os.path.exists("players/"+MATCHID)): os.mkdir("players/"+MATCHID) if( not is_file_json("players/"+MATCHID+"/players.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/matches/"+MATCHID+"/players.json?userkey="+random.choice (KEYS) loadAndWrite(url,"players/"+MATCHID+"/players.json") if (is_file_json("players/"+MATCHID+"/players.json")): f = open("players/"+MATCHID+"/players.json", 'r') dataPlayers=json.loads(f.read()) f.close() playerss=dataPlayers['team_A']['players'] for player in playerss: PLAYERID=str(player['id']) if( not os.path.exists("players")): os.mkdir("players") if( not os.path.exists("players/"+MATCHID)): os.mkdir("players/"+MATCHID) if( not os.path.exists("players/"+MATCHID+"/"+PLAYERID)): os.mkdir("players/"+MATCHID+"/"+PLAYERID) if( not is_file_json("players/"+MATCHID+"/"+PLAYERID+"/stats.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/matches/"+MATCHID+"/players/"+PLAYERID+"/stats.json?userkey="+random.choice (KEYS) loadAndWrite(url,"players/"+MATCHID+"/"+PLAYERID+"/stats.json") if( not os.path.exists("playersAll")): os.mkdir("playersAll") if( not os.path.exists("playersAll/"+IDSEASON)): os.mkdir("playersAll/"+IDSEASON) if( not os.path.exists("playersAll/"+IDSEASON+"/"+PLAYERID)): os.mkdir("playersAll/"+IDSEASON+"/"+PLAYERID) if( not is_file_json("playersAll/"+IDSEASON+"/"+PLAYERID+"/stats.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/series/"+SERIES+"/seasons/"+IDSEASON+"/players/"+PLAYERID+"/stats.json?userkey="+random.choice (KEYS) loadAndWrite(url,"playersAll/"+IDSEASON+"/"+PLAYERID+"/stats.json") if( not os.path.exists("biography")): os.mkdir("biography") if( not os.path.exists("biography/"+PLAYERID)): os.mkdir("biography/"+PLAYERID) if( not is_file_json("biography/"+PLAYERID+"/biography.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/players/"+PLAYERID+"/biography.json?userkey="+random.choice (KEYS) loadAndWrite(url,"biography/"+PLAYERID+"/biography.json") playerss=dataPlayers['team_B']['players'] for player in playerss: PLAYERID=str(player['id']) if( not os.path.exists("players")): os.mkdir("players") if( not os.path.exists("players/"+MATCHID)): os.mkdir("players/"+MATCHID) if( not os.path.exists("players/"+MATCHID+"/"+PLAYERID)): os.mkdir("players/"+MATCHID+"/"+PLAYERID) if( not is_file_json("players/"+MATCHID+"/"+PLAYERID+"/stats.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/matches/"+MATCHID+"/players/"+PLAYERID+"/stats.json?userkey="+random.choice (KEYS) loadAndWrite(url,"players/"+MATCHID+"/"+PLAYERID+"/stats.json") if( not os.path.exists("playersAll")): os.mkdir("playersAll") if( not os.path.exists("playersAll/"+IDSEASON)): os.mkdir("playersAll/"+IDSEASON) if( not os.path.exists("playersAll/"+IDSEASON+"/"+PLAYERID)): os.mkdir("playersAll/"+IDSEASON+"/"+PLAYERID) if( not is_file_json("playersAll/"+IDSEASON+"/"+PLAYERID+"/stats.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/series/"+SERIES+"/seasons/"+IDSEASON+"/players/"+PLAYERID+"/stats.json?userkey="+random.choice (KEYS) loadAndWrite(url,"playersAll/"+IDSEASON+"/"+PLAYERID+"/stats.json") if( not os.path.exists("biography")): os.mkdir("biography") if( not os.path.exists("biography/"+PLAYERID)): os.mkdir("biography/"+PLAYERID) if( not is_file_json("biography/"+PLAYERID+"/biography.json")): url = "http://api.stats.foxsports.com.au/3.0/api/sports/rugby/players/"+PLAYERID+"/biography.json?userkey="+random.choice (KEYS) loadAndWrite(url,"biography/"+PLAYERID+"/biography.json")
StarcoderdataPython
9766899
<filename>pmapper/pmap.py """Several specialized implementations of the PMAP super-resolution algorithm.""" from .backend import np, ft_fwd, ft_rev, ndimage from .bayer import decomposite_bayer, demosaic_malvar # If you wish to understand how PMAP works from this code, it is recommended # that you read :class:PMAP first. MFPMAP is just PMAP that cycles through the # frames, and Bayer implementations are the same, but with inner iterations per # step for the color planes. # Refs: # [1] "Multiframe restoration methods for image synthesis and recovery", # <NAME>, PhD thesis, University of Arizona, 2000 # # [2] Super-Resolution In a Synthetic Aperture Imaging System # <NAME> and <NAME>, # Proceedings of International Conference on Image Processing, # 26-29 Oct. 1997, DOI 10.1109/ICIP.1997.648103 # implementation notes: # A version which used matrix DFTs was tried, but proved (slightly) slower for # 512x512 -- 5.2 ms/iter vs 4.6 ms/iter. FFT has better asymptotic time # complexity than MDFT, and image resolution is only increasing. Therefore, the # FFT version is preferred. # # A slightly different implementation would replace the prefilter init argument # with an actual function to be used to perform up/downsampling. This would be # a bit more flexible, but require a bit more work on the user and likely need # functools.partial to get everything down to one interface. What is here # forces a particular resizing algorithm, but it is as good as can be done to # the author's knowledge anyway. def pmap_core(fHat, g, H, Hstar, bufup=None, bufdown=None, prefilter=False, zoomfactor=1): """Core routine of PMAP, produce a new object estimate. Parameters ---------- fHat : `numpy.ndarray` Nth object estimate, ndarray of shape (m, n) g : `numpy.ndarray` source image, ndarray of shape (a, b) H : `numpy.ndarray` OTF, complex ndarray of shape (m, n) Hstar : `numpy.ndarray` complex conjugate of H, ndarray of shape (m, n) bufup : `numpy.ndarray`, optional real-valued buffer for upsampled data, of shape (m, n) bufdown : `numpy.ndarray`, optional real-valued buffer for downsampled data, of shape (a, b) prefilter : `bool`, optional if True, use spline prefiltering False is generally better at getting realistic image chain aliasing correct zoomfactor : `float`, optional ratio m/a Returns ------- fHat : `numpy.ndarray` N+1th object estimate, ndarray of shape (m, n) """ if zoomfactor == 1 and fHat.shape[0] != H.shape[0]: raise ValueError(f'PMAP: zoom factor was given as 1, but fHat and OTF have unequal shapes {fHat.shape} and {H.shape}') # NOQA Fhat = ft_fwd(fHat) denom = ft_rev(Fhat * H).real # denom may be supre-resolved, i.e. have more pixels than g # zoomfactor is the ratio of their sampling, the below does # inline up and down scaling as denoted in Ref [1] Eq. 2.26 # re-assign denom and kernel, non-allocating invocation of zoom if zoomfactor != 1: denom = ndimage.zoom(denom, 1/zoomfactor, prefilter=prefilter, output=bufdown) kernel = (g / denom) - 1 kernel = ndimage.zoom(kernel, zoomfactor, prefilter=prefilter, output=bufup) else: # kernel is the expression { g/(f_n conv h) - 1 } from 2.16, J. J. Green's thesis kernel = (g / denom) - 1 R = ft_fwd(kernel) grad = ft_rev(R * Hstar).real fHat = fHat * np.exp(grad) return fHat class PMAP: """Classical PMAP algorithm. Suitable for panchromatic restoration. Implements Ref [1], Eq. 2.16. """ def __init__(self, img, psf, fHat=None, prefilter=False): """Initialize a new PMAP problem. Parameters ---------- img : `numpy.ndarray` image from the camera, ndarray of shape (m, n) psf : `numpy.ndarray` psf corresponding to img, ndarray of shape (a, b) fhat : `numpy.ndarray`, optional initial object estimate, ndarray of shape (a, b) if None, taken to be the img, rescaled if necessary to match PSF sampling prefilter : `bool`, optional if True, uses input stage filters when performing spline-based resampling, else no input filter is used. No pre-filtering is generally a best fit for image chain modeling and allows aliasing into the problem that would be present in a hardware system. """ self.img = img self.psf = psf otf = ft_fwd(psf) center = tuple(s // 2 for s in otf.shape) otf /= otf[center] # definition of OTF, normalize by DC self.otf = otf self.otfconj = np.conj(otf) self.zoomfactor = self.psf.shape[0] / self.img.shape[0] self.prefilter = prefilter if fHat is None: fHat = ndimage.zoom(img, self.zoomfactor, prefilter=prefilter) self.fHat = fHat self.bufup = np.empty(self.psf.shape, dtype=self.psf.dtype) self.bufdown = np.empty(self.img.shape, dtype=self.img.dtype) self.iter = 0 def step(self): """Iterate the algorithm one step. Returns ------- fhat : `numpy.ndarray` updated object estimate, of shape (a, b) """ self.fHat = pmap_core(self.fHat, self.img, self.otf, self.otfconj, self.bufup, self.bufdown, self.prefilter, self.zoomfactor) self.iter += 1 return self.fHat class MFPMAP: """Multi-Frame PMAP algorithm. Suitable for panchromatic restoration. Implements Ref [1], Eq. 2.26. """ def __init__(self, imgs, psfs, fHat=None, prefilter=False): """Initialize a new PMAP problem. Parameters ---------- imgs : `numpy.ndarray` images from the camera, sequence of ndarray of shape (m, n). The images must be fully co-registered before input to the algorithm. A (k, m, n) shaped array iterates correctly, as does a list or other iterable of (m, n) arrays psfs : `iterable` of `numpy.ndarray` psfs corresponding to imgs, sequence of ndarray of shape (a, b) fhat : `numpy.ndarray` initial object estimate, ndarray of shape (a, b) if None, taken to be the first img rescaled if necessary to match PSF sampling prefilter : `bool`, optional if True, uses input stage filters when performing spline-based resampling, else no input filter is used. No pre-filtering is generally a best fit for image chain modeling and allows aliasing into the problem that would be present in a hardware system. Notes ----- This implementation is optimized for performance on hardware with a large amount of memory. The OTFs can be computed during each step to use less memory overall, in exchange for slower iterations. """ imgs = np.array(imgs) psfs = np.array(psfs) self.imgs = imgs self.psfs = psfs otfs = [ft_fwd(psf) for psf in psfs] center = tuple(s // 2 for s in otfs[0].shape) for otf in otfs: otf /= otf[center] # definition of OTF, normalize by DC self.otfs = otfs self.otfsconj = [np.conj(otf) for otf in otfs] self.zoomfactor = self.psfs[0].shape[0] / self.imgs[0].shape[0] self.prefilter = prefilter if fHat is None: fHat = ndimage.zoom(imgs[0], self.zoomfactor, prefilter=prefilter) self.fHat = fHat self.bufup = np.empty(self.psfs[0].shape, dtype=self.psfs[0].dtype) self.bufdown = np.empty(self.imgs[0].shape, dtype=self.imgs[0].dtype) self.iter = 0 def step(self): """Iterate the algorithm one step. Because this implementation cycles through the images, the steps can be thought of as mini-batches. Intuitively, you may wish to make len(imgs) steps at a time. Returns ------- fhat : `numpy.ndarray` updated object estimate, of shape (a, b) """ i = self.iter % len(self.otfs) otf = self.otfs[i] img = self.imgs[i] otfconj = self.otfsconj[i] self.fHat = pmap_core(self.fHat, img, otf, otfconj, self.bufup, self.bufdown, self.prefilter, self.zoomfactor) self.iter += 1 return self.fHat
StarcoderdataPython
1667943
import lxml.etree def parse_xml(xml): if not len(xml): return {xml.tag: xml.text} result = {} for child in xml: child_result = parse_xml(child) if child.tag != 'object': result[child.tag] = child_result[child.tag] else: if child.tag not in result: result[child.tag] = [] result[child.tag].append(child_result[child.tag]) return {xml.tag: result} def read_xml(path): annotation_xml = lxml.etree.fromstring(open(path).read()) annotation = parse_xml(annotation_xml)['annotation'] return annotation
StarcoderdataPython
283374
class Solution(object): def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ def binarySearch (arr, l, r, x): if r >= l: mid = l + (r - l) // 2 if arr[mid] == x: return mid elif arr[mid] > x: return binarySearch(arr, l, mid-1, x) else: return binarySearch(arr, mid + 1, r, x) else: return -1 return binarySearch(nums, 0, len(nums)-1, target)
StarcoderdataPython
1903615
# coding=utf-8 """ The Fax API endpoint send Documentation: https://voip.ms/m/apidocs.php """ from voipms.baseapi import BaseApi from voipms.helpers import validate_email, convert_bool class FaxSend(BaseApi): """ Send for the Fax endpoint. """ def __init__(self, *args, **kwargs): """ Initialize the endpoint """ super(FaxSend, self).__init__(*args, **kwargs) self.endpoint = 'fax' def fax_message(self, to_number, from_name, from_number, file, **kwargs): """ Send a Fax message to a Destination Number :param to_number: [Required] Destination DID Number (Example: 5552341234) :type to_number: :py:class:`int` :param from_name: [Required] Name of the sender :type from_name: :py:class:`str` :param from_number: [Required] DID number of the Fax sender (Example: 5552341234) :type from_number: :py:class:`int` :param file: [Required] The file must be encoded in Base64 and in one of the following formats: pdf, txt, jpg, gif, png, tif :type file: :py:class:`str` :param send_email_enabled: Flag to enable the send of a copy of your Fax via email (True/False default False) :type send_email_enabled: :py:class:`bool` :param send_email: Email address where you want send a copy of your Fax. :type send_email: :py:class:`str` :param station_id: A word to identify a equipment or department sending the Fax :type station_id: :py:class:`str` :param test: Set to true if testing how cancel a Fax Folder (True/False) :type test: :py:class:`bool` :returns: :py:class:`dict` """ method = "sendFaxMessage" if not isinstance(to_number, int): raise ValueError("Destination DID Number needs to be an int (Example: 5552341234)") if not isinstance(from_name, str): raise ValueError("Name of the sender needs to be a str") if not isinstance(from_number, int): raise ValueError("DID number of the Fax sender needs to be an int (Example: 5552341234)") if not isinstance(file, str): raise ValueError("The file must be encoded in Base64 and in one of the following formats: pdf, txt, jpg, gif, png, tif and needs to be a str") parameters = { "to_number": to_number, "from_name": from_name, "from_number": from_number, "file": file, } if "send_email_enabled" in kwargs: if not isinstance(kwargs["send_email_enabled"], bool): raise ValueError("Flag to enable the send of a copy of your Fax via email needs to be a bool (True/False default False)") parameters["send_email_enabled"] = convert_bool(kwargs.pop("send_email_enabled")) if "send_email" in kwargs: send_email = kwargs.pop("send_email") if not isinstance(send_email, str): raise ValueError("Email address where you want send a copy of your Fax needs to be a str (Example: <EMAIL>)") elif not validate_email(send_email): raise ValueError("Email address where you want send a copy of your Fax is not a correct email syntax") parameters["send_email"] = send_email if "station_id" in kwargs: if not isinstance(kwargs["station_id"], str): raise ValueError("A word to identify a equipment or department sending the Fax needs to be a str") parameters["station_id"] = kwargs.pop("station_id") if "test" in kwargs: if not isinstance(kwargs["test"], bool): raise ValueError("Set to true if testing how cancel a Fax Folder needs to be a bool (True/False)") else: parameters["test"] = convert_bool(kwargs.pop("test")) if len(kwargs) > 0: not_allowed_parameters = "" for key, value in kwargs.items(): not_allowed_parameters += key + " " raise ValueError("Parameters not allowed: {}".format(not_allowed_parameters)) return self._voipms_client._get(method, parameters)
StarcoderdataPython
193772
#!/usr/bin/python3 # Additionally format C++ code for further entropy reduction # Assumes clang-format already run # Does not work for all possible C++ programs # Test carefully before reusing in other projects! import argparse import os import re parser = argparse.ArgumentParser(description="Additionally format C++ code") parser.add_argument("files", nargs="+") args = parser.parse_args() def read_lines(filename): with open(filename) as f: return [s.rstrip("\n") for s in f] def write_lines(filename, lines): with open(filename, "w") as f: for s in lines: f.write(s + "\n") def flatten(xss): r = [] for xs in xss: for x in xs: r.append(x) return r ######################################## # format comments def bare_comment(s): s = s.strip() assert s.startswith("//") s = s[2:] return s.strip() def special(s): s = bare_comment(s) if len(s) == 1: return 1 if s in ("namespace", "SORT", "NO_SORT"): return 1 if s.startswith("clang-format off") or s.startswith("clang-format on"): return 1 if s.startswith("http"): return 1 if s.lower().startswith("todo:"): return 1 def is_sentence_end(s): if s.endswith("e.g.") or s.endswith("i.e."): return 0 if s.endswith(".") or s.endswith(".)"): return 1 if s.endswith("?"): return 1 if s.endswith(":"): return 1 def capitalize(s): for c in s: if c.isupper(): return s if len(s) == 1: return s if not s[1].isalpha(): return s return s.capitalize() def comment_block(i): m = re.match(r"(\s*)//", lines[i]) dent = m[1] j = i words = [] while j < len(lines) and re.match(r"\s*//", lines[j]) and not special(lines[j]): s = bare_comment(lines[j]) xs = s.split() words.extend(xs) j += 1 if i == j: return 1 k = 0 words[k] = capitalize(words[k]) for k in range(1, len(words)): if is_sentence_end(words[k - 1]): words[k] = capitalize(words[k]) k = len(words) - 1 if not is_sentence_end(words[k]): words[k] += "." width = 132 - len(dent) * 4 - 3 xs = [] s = "" for w in words: if len(s) + 1 + len(w) > width: xs.append(s) s = w else: if s: s += " " s += w assert s xs.append(s) for k in range(len(xs)): xs[k] = dent + "// " + xs[k] lines[i:j] = xs return len(xs) def comments(): i = 0 while i < len(lines): m = re.match(r"(\s*)//", lines[i]) if m: if re.match(r"\s*//SORT$", lines[i]): lines[i] = m[1] + "// SORT" i += 1 continue if re.match(r"\s*//NO_SORT$", lines[i]): lines[i] = m[1] + "// NO_SORT" i += 1 continue s = bare_comment(lines[i]) if s.lower().startswith("todo:"): s = s[5:] s = s.strip() lines[i] = m[1] + "// TODO: " + s i += 1 continue i += comment_block(i) else: i += 1 ######################################## # sort case blocks def case(i, dent): case_mark = dent + "(case .*|default):$" while 1: if not re.match(case_mark, lines[i]): raise ValueError(filename + ":" + str(i + 1) + ": case not found") while re.match(case_mark, lines[i]): i += 1 if dent + "{" == lines[i]: i += 1 while dent + "}" != lines[i]: if re.match(case_mark, lines[i]): raise ValueError( filename + ":" + str(i + 1) + ": another case in the middle of block" ) i += 1 i += 1 return i else: while not re.match(case_mark, lines[i]) and dent + "}" != lines[i]: i += 1 if not re.match(r"\s*\[\[fallthrough\]\];", lines[i - 1]): return i def cases(i, dent): r = [] while dent + "}" != lines[i]: j = case(i, dent) r.append(lines[i:j]) i = j return i, r def sort_case(c): i = 0 while re.match(r"\s*(case .*|default):$", c[i]): i += 1 c[:i] = sorted(c[:i], key=lambda s: (s.lower(), s)) def sort_cases(i, dent): j, cs = cases(i, dent) for c in cs: sort_case(c) cs = sorted(cs, key=lambda xs: (xs[0].lower(), xs[0])) lines[i:j] = flatten(cs) def sort_case_blocks(): for i in range(len(lines)): m = re.match(r"(\s*)switch \(.*\) {", lines[i]) if m: m1 = re.match(r"\s*// NO_SORT", lines[i - 1]) if m1: continue sort_cases(i + 1, m[1]) ######################################## # sort single-line elements def var_key(x): m = re.match(r".* (\w+) = ", x) if m: x = m[1] else: m = re.match(r".* (\w+)\(", x) if m: x = m[1] else: m = re.match(r".* (\w+);", x) if m: x = m[1] return x.lower(), x def sort_single(): for i in range(len(lines)): if re.match(r"\s*// SORT$", lines[i]): if lines[i + 1].endswith("{"): continue j = i + 1 while not re.match(r"\s*///$", lines[j]): j += 1 lines[i + 1 : j] = sorted(lines[i + 1 : j], key=var_key) ######################################## # sort multi-line elements def get_multi_element(dent, i, j): i0 = i while re.match(r"\s*//", lines[i]): i += 1 m = re.match(r"(\s*).*{$", lines[i]) if not m: raise ValueError(filename + ":" + str(i + 1) + ": inconsistent syntax") if m[1] != dent: raise ValueError(filename + ":" + str(i + 1) + ": inconsistent indent") while lines[i] != dent + "}": i += 1 if i > j: raise ValueError(filename + ":" + str(i + 1) + ": inconsistent syntax") i += 1 return lines[i0:i], i def get_multi_elements(i, j): m = re.match(r"(\s*).*", lines[i]) dent = m[1] xss = [] while i < j: xs, i = get_multi_element(dent, i, j) xss.append(xs) while not lines[i]: i += 1 return xss def fn_key(xs): i = 0 while re.match(r"\s*//", xs[i]): i += 1 x = xs[i] m = re.match(r".* (\w+)\(", x) if m: x = m[1] return x.lower(), x, xs[i] def sort_multi_block(i, j): xss = get_multi_elements(i, j) xss = sorted(xss, key=fn_key) for k in range(len(xss) - 1): xss[k].append("") xs = flatten(xss) lines[i:j] = xs def sort_multi(): i = 0 while i < len(lines): if re.match(r"\s*// SORT$", lines[i]): i += 1 if lines[i] == "": raise ValueError( filename + ":" + str(i + 1) + ": blank line after SORT directive" ) if not lines[i].endswith("{") and not re.match(r"\s*//", lines[i]): continue j = i while not re.match(r"\s*///$", lines[j]): j += 1 sort_multi_block(i, j) else: i += 1 ######################################## # blank lines before comments def comment_blank_lines(): i = 1 while i < len(lines): m = re.match(r"(\s*)//", lines[i]) if m: if special(lines[i]): i += 1 continue if not lines[i - 1]: i += 1 continue if re.match(r"\s*//", lines[i - 1]): i += 1 continue if re.match(r"\s*#", lines[i - 1]): i += 1 continue if lines[i - 1].endswith("{"): i += 1 continue if lines[i - 1].endswith(":"): i += 1 continue lines[i:i] = [""] i += 2 else: i += 1 ######################################## # top level def act(): global lines lines = read_lines(filename) old = lines[:] comments() sort_case_blocks() sort_single() sort_multi() comment_blank_lines() if lines == old: return print(filename) write_lines(filename, lines) for arg in args.files: if os.path.isfile(arg): filename = arg act() continue for root, dirs, files in os.walk(arg): for filename in files: ext = os.path.splitext(filename)[1] if ext not in (".cc", ".cpp", ".h"): continue filename = os.path.join(root, filename) act()
StarcoderdataPython
133619
"""This file contains code used in "Think Bayes", by <NAME>, available from greenteapress.com Copyright 2012 <NAME> License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import matplotlib.pyplot as pyplot import thinkplot import numpy import csv import random import shelve import sys import time import thinkbayes2 import warnings warnings.simplefilter('error', RuntimeWarning) FORMATS = ['pdf', 'eps', 'png'] class Locker(object): """Encapsulates a shelf for storing key-value pairs.""" def __init__(self, shelf_file): self.shelf = shelve.open(shelf_file) def Close(self): """Closes the shelf. """ self.shelf.close() def Add(self, key, value): """Adds a key-value pair.""" self.shelf[str(key)] = value def Lookup(self, key): """Looks up a key.""" return self.shelf.get(str(key)) def Keys(self): """Returns an iterator of keys.""" return self.shelf.iterkeys() def Read(self): """Returns the contents of the shelf as a map.""" return dict(self.shelf) class Subject(object): """Represents a subject from the belly button study.""" def __init__(self, code): """ code: string ID species: sequence of (int count, string species) pairs """ self.code = code self.species = [] self.suite = None self.num_reads = None self.num_species = None self.total_reads = None self.total_species = None self.prev_unseen = None self.pmf_n = None self.pmf_q = None self.pmf_l = None def Add(self, species, count): """Add a species-count pair. It is up to the caller to ensure that species names are unique. species: string species/genus name count: int number of individuals """ self.species.append((count, species)) def Done(self, reverse=False, clean_param=0): """Called when we are done adding species counts. reverse: which order to sort in """ if clean_param: self.Clean(clean_param) self.species.sort(reverse=reverse) counts = self.GetCounts() self.num_species = len(counts) self.num_reads = sum(counts) def Clean(self, clean_param=50): """Identifies and removes bogus data. clean_param: parameter that controls the number of legit species """ def prob_bogus(k, r): """Compute the probability that a species is bogus.""" q = clean_param / r p = (1-q) ** k return p print(self.code, clean_param) counts = self.GetCounts() r = 1.0 * sum(counts) species_seq = [] for k, species in sorted(self.species): if random.random() < prob_bogus(k, r): continue species_seq.append((k, species)) self.species = species_seq def GetM(self): """Gets number of observed species.""" return len(self.species) def GetCounts(self): """Gets the list of species counts Should be in increasing order, if Sort() has been invoked. """ return [count for count, _ in self.species] def MakeCdf(self): """Makes a CDF of total prevalence vs rank.""" counts = self.GetCounts() counts.sort(reverse=True) cdf = thinkbayes2.Cdf(dict(enumerate(counts))) return cdf def GetNames(self): """Gets the names of the seen species.""" return [name for _, name in self.species] def PrintCounts(self): """Prints the counts and species names.""" for count, name in reversed(self.species): print(count, name) def GetSpecies(self, index): """Gets the count and name of the indicated species. Returns: count-species pair """ return self.species[index] def GetCdf(self): """Returns cumulative prevalence vs number of species. """ counts = self.GetCounts() items = enumerate(counts) cdf = thinkbayes2.Cdf(items) return cdf def GetPrevalences(self): """Returns a sequence of prevalences (normalized counts). """ counts = self.GetCounts() total = sum(counts) prevalences = numpy.array(counts, dtype=numpy.float) / total return prevalences def Process(self, low=None, high=500, conc=1, iters=100): """Computes the posterior distribution of n and the prevalences. Sets attribute: self.suite low: minimum number of species high: maximum number of species conc: concentration parameter iters: number of iterations to use in the estimator """ counts = self.GetCounts() m = len(counts) if low is None: low = max(m, 2) ns = range(low, high+1) #start = time.time() self.suite = Species5(ns, conc=conc, iters=iters) self.suite.Update(counts) #end = time.time() #print 'Processing time' end-start def MakePrediction(self, num_sims=100): """Make predictions for the given subject. Precondition: Process has run num_sims: how many simulations to run for predictions Adds attributes pmf_l: predictive distribution of additional species """ add_reads = self.total_reads - self.num_reads curves = self.RunSimulations(num_sims, add_reads) self.pmf_l = self.MakePredictive(curves) def MakeQuickPrediction(self, num_sims=100): """Make predictions for the given subject. Precondition: Process has run num_sims: how many simulations to run for predictions Adds attribute: pmf_l: predictive distribution of additional species """ add_reads = self.total_reads - self.num_reads pmf = thinkbayes2.Pmf() _, seen = self.GetSeenSpecies() for _ in range(num_sims): _, observations = self.GenerateObservations(add_reads) all_seen = seen.union(observations) l = len(all_seen) - len(seen) pmf.Incr(l) pmf.Normalize() self.pmf_l = pmf def DistL(self): """Returns the distribution of additional species, l. """ return self.pmf_l def MakeFigures(self): """Makes figures showing distribution of n and the prevalences.""" self.PlotDistN() self.PlotPrevalences() def PlotDistN(self): """Plots distribution of n.""" pmf = self.suite.DistN() print('90% CI for N:', pmf.CredibleInterval(90)) pmf.label = self.code thinkplot.Clf() thinkplot.PrePlot(num=1) thinkplot.Pmf(pmf) root = 'species-ndist-%s' % self.code thinkplot.Save(root=root, xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def PlotPrevalences(self, num=5): """Plots dist of prevalence for several species. num: how many species (starting with the highest prevalence) """ thinkplot.Clf() thinkplot.PrePlot(num=5) for rank in range(1, num+1): self.PlotPrevalence(rank) root = 'species-prev-%s' % self.code thinkplot.Save(root=root, xlabel='Prevalence', ylabel='Prob', formats=FORMATS, axis=[0, 0.3, 0, 1], ) def PlotPrevalence(self, rank=1, cdf_flag=True): """Plots dist of prevalence for one species. rank: rank order of the species to plot. cdf_flag: whether to plot the CDF """ # convert rank to index index = self.GetM() - rank _, mix = self.suite.DistOfPrevalence(index) count, _ = self.GetSpecies(index) mix.label = '%d (%d)' % (rank, count) print('90%% CI for prevalence of species %d:' % rank, end=' ') print(mix.CredibleInterval(90)) if cdf_flag: cdf = mix.MakeCdf() thinkplot.Cdf(cdf) else: thinkplot.Pmf(mix) def PlotMixture(self, rank=1): """Plots dist of prevalence for all n, and the mix. rank: rank order of the species to plot """ # convert rank to index index = self.GetM() - rank print(self.GetSpecies(index)) print(self.GetCounts()[index]) metapmf, mix = self.suite.DistOfPrevalence(index) thinkplot.Clf() for pmf in metapmf.Values(): thinkplot.Pmf(pmf, color='blue', alpha=0.2, linewidth=0.5) thinkplot.Pmf(mix, color='blue', alpha=0.9, linewidth=2) root = 'species-mix-%s' % self.code thinkplot.Save(root=root, xlabel='Prevalence', ylabel='Prob', formats=FORMATS, axis=[0, 0.3, 0, 0.3], legend=False) def GetSeenSpecies(self): """Makes a set of the names of seen species. Returns: number of species, set of string species names """ names = self.GetNames() m = len(names) seen = set(SpeciesGenerator(names, m)) return m, seen def GenerateObservations(self, num_reads): """Generates a series of random observations. num_reads: number of reads to generate Returns: number of species, sequence of string species names """ n, prevalences = self.suite.SamplePosterior() names = self.GetNames() name_iter = SpeciesGenerator(names, n) items = zip(name_iter, prevalences) cdf = thinkbayes2.Cdf(dict(items)) observations = cdf.Sample(num_reads) #for ob in observations: # print ob return n, observations def Resample(self, num_reads): """Choose a random subset of the data (without replacement). num_reads: number of reads in the subset """ t = [] for count, species in self.species: t.extend([species]*count) random.shuffle(t) reads = t[:num_reads] subject = Subject(self.code) hist = thinkbayes2.Hist(reads) for species, count in hist.Items(): subject.Add(species, count) subject.Done() return subject def Match(self, match): """Match up a rarefied subject with a complete subject. match: complete Subject Assigns attributes: total_reads: total_species: prev_unseen: """ self.total_reads = match.num_reads self.total_species = match.num_species # compute the prevalence of unseen species (at least approximately, # based on all species counts in match _, seen = self.GetSeenSpecies() seen_total = 0.0 unseen_total = 0.0 for count, species in match.species: if species in seen: seen_total += count else: unseen_total += count self.prev_unseen = unseen_total / (seen_total + unseen_total) def RunSimulation(self, num_reads, frac_flag=False, jitter=0.01): """Simulates additional observations and returns a rarefaction curve. k is the number of additional observations num_new is the number of new species seen num_reads: how many new reads to simulate frac_flag: whether to convert to fraction of species seen jitter: size of jitter added if frac_flag is true Returns: list of (k, num_new) pairs """ m, seen = self.GetSeenSpecies() n, observations = self.GenerateObservations(num_reads) curve = [] for i, obs in enumerate(observations): seen.add(obs) if frac_flag: frac_seen = len(seen) / float(n) frac_seen += random.uniform(-jitter, jitter) curve.append((i+1, frac_seen)) else: num_new = len(seen) - m curve.append((i+1, num_new)) return curve def RunSimulations(self, num_sims, num_reads, frac_flag=False): """Runs simulations and returns a list of curves. Each curve is a sequence of (k, num_new) pairs. num_sims: how many simulations to run num_reads: how many samples to generate in each simulation frac_flag: whether to convert num_new to fraction of total """ curves = [self.RunSimulation(num_reads, frac_flag) for _ in range(num_sims)] return curves def MakePredictive(self, curves): """Makes a predictive distribution of additional species. curves: list of (k, num_new) curves Returns: Pmf of num_new """ pred = thinkbayes2.Pmf(label=self.code) for curve in curves: _, last_num_new = curve[-1] pred.Incr(last_num_new) pred.Normalize() return pred def MakeConditionals(curves, ks): """Makes Cdfs of the distribution of num_new conditioned on k. curves: list of (k, num_new) curves ks: list of values of k Returns: list of Cdfs """ joint = MakeJointPredictive(curves) cdfs = [] for k in ks: pmf = joint.Conditional(1, 0, k) pmf.label = 'k=%d' % k cdf = pmf.MakeCdf() cdfs.append(cdf) print('90%% credible interval for %d' % k, end=' ') print(cdf.CredibleInterval(90)) return cdfs def MakeJointPredictive(curves): """Makes a joint distribution of k and num_new. curves: list of (k, num_new) curves Returns: joint Pmf of (k, num_new) """ joint = thinkbayes2.Joint() for curve in curves: for k, num_new in curve: joint.Incr((k, num_new)) joint.Normalize() return joint def MakeFracCdfs(curves, ks): """Makes Cdfs of the fraction of species seen. curves: list of (k, num_new) curves Returns: list of Cdfs """ d = {} for curve in curves: for k, frac in curve: if k in ks: d.setdefault(k, []).append(frac) cdfs = {} for k, fracs in d.items(): cdf = thinkbayes2.Cdf(fracs) cdfs[k] = cdf return cdfs def SpeciesGenerator(names, num): """Generates a series of names, starting with the given names. Additional names are 'unseen' plus a serial number. names: list of strings num: total number of species names to generate Returns: string iterator """ i = 0 for name in names: yield name i += 1 while i < num: yield 'unseen-%d' % i i += 1 def ReadRarefactedData(filename='journal.pone.0047712.s001.csv', clean_param=0): """Reads a data file and returns a list of Subjects. Data from http://www.plosone.org/article/ info%3Adoi%2F10.1371%2Fjournal.pone.0047712#s4 filename: string filename to read clean_param: parameter passed to Clean Returns: map from code to Subject """ fp = open(filename) reader = csv.reader(fp) #_ = reader.next() _ = next(reader) subject = Subject('') subject_map = {} i = 0 for t in reader: code = t[0] if code != subject.code: # start a new subject subject = Subject(code) subject_map[code] = subject # append a number to the species names so they're unique species = t[1] species = '%s-%d' % (species, i) i += 1 count = int(t[2]) subject.Add(species, count) for code, subject in subject_map.items(): subject.Done(clean_param=clean_param) return subject_map def ReadCompleteDataset(filename='BBB_data_from_Rob.csv', clean_param=0): """Reads a data file and returns a list of Subjects. Data from personal correspondence with <NAME>, received 2-7-13. Converted from xlsx to csv. filename: string filename to read clean_param: parameter passed to Clean Returns: map from code to Subject """ fp = open(filename) reader = csv.reader(fp) header = next(reader) header = next(reader) subject_codes = header[1:-1] subject_codes = ['B'+code for code in subject_codes] # create the subject map uber_subject = Subject('uber') subject_map = {} for code in subject_codes: subject_map[code] = Subject(code) # read lines i = 0 for t in reader: otu_code = t[0] if otu_code == '': continue # pull out a species name and give it a number otu_names = t[-1] taxons = otu_names.split(';') species = taxons[-1] species = '%s-%d' % (species, i) i += 1 counts = [int(x) for x in t[1:-1]] # print otu_code, species for code, count in zip(subject_codes, counts): if count > 0: subject_map[code].Add(species, count) uber_subject.Add(species, count) uber_subject.Done(clean_param=clean_param) for code, subject in subject_map.items(): subject.Done(clean_param=clean_param) return subject_map, uber_subject def JoinSubjects(): """Reads both datasets and computers their inner join. Finds all subjects that appear in both datasets. For subjects in the rarefacted dataset, looks up the total number of reads and stores it as total_reads. num_reads is normally 400. Returns: map from code to Subject """ # read the rarefacted dataset sampled_subjects = ReadRarefactedData() # read the complete dataset all_subjects, _ = ReadCompleteDataset() for code, subject in sampled_subjects.items(): if code in all_subjects: match = all_subjects[code] subject.Match(match) return sampled_subjects def JitterCurve(curve, dx=0.2, dy=0.3): """Adds random noise to the pairs in a curve. dx and dy control the amplitude of the noise in each dimension. """ curve = [(x+random.uniform(-dx, dx), y+random.uniform(-dy, dy)) for x, y in curve] return curve def OffsetCurve(curve, i, n, dx=0.3, dy=0.3): """Adds random noise to the pairs in a curve. i is the index of the curve n is the number of curves dx and dy control the amplitude of the noise in each dimension. """ xoff = -dx + 2 * dx * i / (n-1) yoff = -dy + 2 * dy * i / (n-1) curve = [(x+xoff, y+yoff) for x, y in curve] return curve def PlotCurves(curves, root='species-rare'): """Plots a set of curves. curves is a list of curves; each curve is a list of (x, y) pairs. """ thinkplot.Clf() color = '#225EA8' n = len(curves) for i, curve in enumerate(curves): curve = OffsetCurve(curve, i, n) xs, ys = zip(*curve) thinkplot.Plot(xs, ys, color=color, alpha=0.3, linewidth=0.5) thinkplot.Save(root=root, xlabel='# samples', ylabel='# species', formats=FORMATS, legend=False) def PlotConditionals(cdfs, root='species-cond'): """Plots cdfs of num_new conditioned on k. cdfs: list of Cdf root: string filename root """ thinkplot.Clf() thinkplot.PrePlot(num=len(cdfs)) thinkplot.Cdfs(cdfs) thinkplot.Save(root=root, xlabel='# new species', ylabel='Prob', formats=FORMATS) def PlotFracCdfs(cdfs, root='species-frac'): """Plots CDFs of the fraction of species seen. cdfs: map from k to CDF of fraction of species seen after k samples """ thinkplot.Clf() color = '#225EA8' for k, cdf in cdfs.items(): xs, ys = cdf.Render() ys = [1-y for y in ys] thinkplot.Plot(xs, ys, color=color, linewidth=1) x = 0.9 y = 1 - cdf.Prob(x) pyplot.text(x, y, str(k), fontsize=9, color=color, horizontalalignment='center', verticalalignment='center', bbox=dict(facecolor='white', edgecolor='none')) thinkplot.Save(root=root, xlabel='Fraction of species seen', ylabel='Probability', formats=FORMATS, legend=False) class Species(thinkbayes2.Suite): """Represents hypotheses about the number of species.""" def __init__(self, ns, conc=1, iters=1000): hypos = [thinkbayes2.Dirichlet(n, conc) for n in ns] thinkbayes2.Suite.__init__(self, hypos) self.iters = iters def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies """ # call Update in the parent class, which calls Likelihood thinkbayes2.Suite.Update(self, data) # update the next level of the hierarchy for hypo in self.Values(): hypo.Update(data) def Likelihood(self, data, hypo): """Computes the likelihood of the data under this hypothesis. hypo: Dirichlet object data: list of observed frequencies """ dirichlet = hypo # draw sample Likelihoods from the hypothetical Dirichlet dist # and add them up like = 0 for _ in range(self.iters): like += dirichlet.Likelihood(data) # correct for the number of ways the observed species # might have been chosen from all species m = len(data) like *= thinkbayes2.BinomialCoef(dirichlet.n, m) return like def DistN(self): """Computes the distribution of n.""" pmf = thinkbayes2.Pmf() for hypo, prob in self.Items(): pmf.Set(hypo.n, prob) return pmf class Species2(object): """Represents hypotheses about the number of species. Combines two layers of the hierarchy into one object. ns and probs represent the distribution of N params represents the parameters of the Dirichlet distributions """ def __init__(self, ns, conc=1, iters=1000): self.ns = ns self.conc = conc self.probs = numpy.ones(len(ns), dtype=numpy.float) self.params = numpy.ones(self.ns[-1], dtype=numpy.float) * conc self.iters = iters self.num_reads = 0 self.m = 0 def Preload(self, data): """Change the initial parameters to fit the data better. Just an experiment. Doesn't work. """ m = len(data) singletons = data.count(1) num = m - singletons print(m, singletons, num) addend = numpy.ones(num, dtype=numpy.float) * 1 print(len(addend)) print(len(self.params[singletons:m])) self.params[singletons:m] += addend print('Preload', num) def Update(self, data): """Updates the distribution based on data. data: numpy array of counts """ self.num_reads += sum(data) like = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): like += self.SampleLikelihood(data) self.probs *= like self.probs /= self.probs.sum() self.m = len(data) #self.params[:self.m] += data * self.conc self.params[:self.m] += data def SampleLikelihood(self, data): """Computes the likelihood of the data for all values of n. Draws one sample from the distribution of prevalences. data: sequence of observed counts Returns: numpy array of m likelihoods """ gammas = numpy.random.gamma(self.params) m = len(data) row = gammas[:m] col = numpy.cumsum(gammas) log_likes = [] for n in self.ns: ps = row / col[n-1] terms = numpy.log(ps) * data log_like = terms.sum() log_likes.append(log_like) log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) coefs = [thinkbayes2.BinomialCoef(n, m) for n in self.ns] likes *= coefs return likes def DistN(self): """Computes the distribution of n. Returns: new Pmf object """ pmf = thinkbayes2.Pmf(dict(zip(self.ns, self.probs))) return pmf def RandomN(self): """Returns a random value of n.""" return self.DistN().Random() def DistQ(self, iters=100): """Computes the distribution of q based on distribution of n. Returns: pmf of q """ cdf_n = self.DistN().MakeCdf() sample_n = cdf_n.Sample(iters) pmf = thinkbayes2.Pmf() for n in sample_n: q = self.RandomQ(n) pmf.Incr(q) pmf.Normalize() return pmf def RandomQ(self, n): """Returns a random value of q. Based on n, self.num_reads and self.conc. n: number of species Returns: q """ # generate random prevalences dirichlet = thinkbayes2.Dirichlet(n, conc=self.conc) prevalences = dirichlet.Random() # generate a simulated sample pmf = thinkbayes2.Pmf(dict(enumerate(prevalences))) cdf = pmf.MakeCdf() sample = cdf.Sample(self.num_reads) seen = set(sample) # add up the prevalence of unseen species q = 0 for species, prev in enumerate(prevalences): if species not in seen: q += prev return q def MarginalBeta(self, n, index): """Computes the conditional distribution of the indicated species. n: conditional number of species index: which species Returns: Beta object representing a distribution of prevalence. """ alpha0 = self.params[:n].sum() alpha = self.params[index] return thinkbayes2.Beta(alpha, alpha0-alpha) def DistOfPrevalence(self, index): """Computes the distribution of prevalence for the indicated species. index: which species Returns: (metapmf, mix) where metapmf is a MetaPmf and mix is a Pmf """ metapmf = thinkbayes2.Pmf() for n, prob in zip(self.ns, self.probs): beta = self.MarginalBeta(n, index) pmf = beta.MakePmf() metapmf.Set(pmf, prob) mix = thinkbayes2.MakeMixture(metapmf) return metapmf, mix def SamplePosterior(self): """Draws random n and prevalences. Returns: (n, prevalences) """ n = self.RandomN() prevalences = self.SamplePrevalences(n) #print 'Peeking at n_cheat' #n = n_cheat return n, prevalences def SamplePrevalences(self, n): """Draws a sample of prevalences given n. n: the number of species assumed in the conditional Returns: numpy array of n prevalences """ if n == 1: return [1.0] q_desired = self.RandomQ(n) q_desired = max(q_desired, 1e-6) params = self.Unbias(n, self.m, q_desired) gammas = numpy.random.gamma(params) gammas /= gammas.sum() return gammas def Unbias(self, n, m, q_desired): """Adjusts the parameters to achieve desired prev_unseen (q). n: number of species m: seen species q_desired: prevalence of unseen species """ params = self.params[:n].copy() if n == m: return params x = sum(params[:m]) y = sum(params[m:]) a = x + y #print x, y, a, x/a, y/a g = q_desired * a / y f = (a - g * y) / x params[:m] *= f params[m:] *= g return params class Species3(Species2): """Represents hypotheses about the number of species.""" def Update(self, data): """Updates the suite based on the data. data: list of observations """ # sample the likelihoods and add them up like = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): like += self.SampleLikelihood(data) self.probs *= like self.probs /= self.probs.sum() m = len(data) self.params[:m] += data def SampleLikelihood(self, data): """Computes the likelihood of the data under all hypotheses. data: list of observations """ # get a random sample gammas = numpy.random.gamma(self.params) # row is just the first m elements of gammas m = len(data) row = gammas[:m] # col is the cumulative sum of gammas col = numpy.cumsum(gammas)[self.ns[0]-1:] # each row of the array is a set of ps, normalized # for each hypothetical value of n array = row / col[:, numpy.newaxis] # computing the multinomial PDF under a log transform # take the log of the ps and multiply by the data terms = numpy.log(array) * data # add up the rows log_likes = terms.sum(axis=1) # before exponentiating, scale into a reasonable range log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) # correct for the number of ways we could see m species # out of a possible n coefs = [thinkbayes2.BinomialCoef(n, m) for n in self.ns] likes *= coefs return likes class Species4(Species): """Represents hypotheses about the number of species.""" def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies """ m = len(data) # loop through the species and update one at a time for i in range(m): one = numpy.zeros(i+1) one[i] = data[i] # call the parent class Species.Update(self, one) def Likelihood(self, data, hypo): """Computes the likelihood of the data under this hypothesis. Note: this only works correctly if we update one species at a time. hypo: Dirichlet object data: list of observed frequencies """ dirichlet = hypo like = 0 for _ in range(self.iters): like += dirichlet.Likelihood(data) # correct for the number of unseen species the new one # could have been m = len(data) num_unseen = dirichlet.n - m + 1 like *= num_unseen return like class Species5(Species2): """Represents hypotheses about the number of species. Combines two laters of the hierarchy into one object. ns and probs represent the distribution of N params represents the parameters of the Dirichlet distributions """ def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies in increasing order """ # loop through the species and update one at a time m = len(data) for i in range(m): self.UpdateOne(i+1, data[i]) self.params[i] += data[i] def UpdateOne(self, i, count): """Updates the suite based on the data. Evaluates the likelihood for all values of n. i: which species was observed (1..n) count: how many were observed """ # how many species have we seen so far self.m = i # how many reads have we seen self.num_reads += count if self.iters == 0: return # sample the likelihoods and add them up likes = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): likes += self.SampleLikelihood(i, count) # correct for the number of unseen species the new one # could have been unseen_species = [n-i+1 for n in self.ns] likes *= unseen_species # multiply the priors by the likelihoods and renormalize self.probs *= likes self.probs /= self.probs.sum() def SampleLikelihood(self, i, count): """Computes the likelihood of the data under all hypotheses. i: which species was observed count: how many were observed """ # get a random sample of p gammas = numpy.random.gamma(self.params) # sums is the cumulative sum of p, for each value of n sums = numpy.cumsum(gammas)[self.ns[0]-1:] # get p for the mth species, for each value of n ps = gammas[i-1] / sums log_likes = numpy.log(ps) * count # before exponentiating, scale into a reasonable range log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) return likes def MakePosterior(constructor, data, ns, conc=1, iters=1000): """Makes a suite, updates it and returns the posterior suite. Prints the elapsed time. data: observed species and their counts ns: sequence of hypothetical ns conc: concentration parameter iters: how many samples to draw Returns: posterior suite of the given type """ suite = constructor(ns, conc=conc, iters=iters) # print constructor.__name__ start = time.time() suite.Update(data) end = time.time() print('Processing time', end-start) return suite def PlotAllVersions(): """Makes a graph of posterior distributions of N.""" data = [1, 2, 3] m = len(data) n = 20 ns = range(m, n) for constructor in [Species, Species2, Species3, Species4, Species5]: suite = MakePosterior(constructor, data, ns) pmf = suite.DistN() pmf.label = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Save(root='species3', xlabel='Number of species', ylabel='Prob') def PlotMedium(): """Makes a graph of posterior distributions of N.""" data = [1, 1, 1, 1, 2, 3, 5, 9] m = len(data) n = 20 ns = range(m, n) for constructor in [Species, Species2, Species3, Species4, Species5]: suite = MakePosterior(constructor, data, ns) pmf = suite.DistN() pmf.label = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Show() def SimpleDirichletExample(): """Makes a plot showing posterior distributions for three species. This is the case where we know there are exactly three species. """ thinkplot.Clf() thinkplot.PrePlot(3) names = ['lions', 'tigers', 'bears'] data = [3, 2, 1] dirichlet = thinkbayes2.Dirichlet(3) for i in range(3): beta = dirichlet.MarginalBeta(i) print('mean', names[i], beta.Mean()) dirichlet.Update(data) for i in range(3): beta = dirichlet.MarginalBeta(i) print('mean', names[i], beta.Mean()) pmf = beta.MakePmf(label=names[i]) thinkplot.Pmf(pmf) thinkplot.Save(root='species1', xlabel='Prevalence', ylabel='Prob', formats=FORMATS, ) def HierarchicalExample(): """Shows the posterior distribution of n for lions, tigers and bears. """ ns = range(3, 30) suite = Species(ns, iters=8000) data = [3, 2, 1] suite.Update(data) thinkplot.Clf() thinkplot.PrePlot(num=1) pmf = suite.DistN() thinkplot.Pdf(pmf) thinkplot.Save(root='species2', xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def CompareHierarchicalExample(): """Makes a graph of posterior distributions of N.""" data = [3, 2, 1] m = len(data) n = 30 ns = range(m, n) constructors = [Species, Species5] iters = [1000, 100] for constructor, iters in zip(constructors, iters): suite = MakePosterior(constructor, data, ns, iters) pmf = suite.DistN() pmf.label = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Show() def ProcessSubjects(codes): """Process subjects with the given codes and plot their posteriors. code: sequence of string codes """ thinkplot.Clf() thinkplot.PrePlot(len(codes)) subjects = ReadRarefactedData() pmfs = [] for code in codes: subject = subjects[code] subject.Process() pmf = subject.suite.DistN() pmf.label = subject.code thinkplot.Pmf(pmf) pmfs.append(pmf) print('ProbGreater', thinkbayes2.PmfProbGreater(pmfs[0], pmfs[1])) print('ProbLess', thinkbayes2.PmfProbLess(pmfs[0], pmfs[1])) thinkplot.Save(root='species4', xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def RunSubject(code, conc=1, high=500): """Run the analysis for the subject with the given code. code: string code """ subjects = JoinSubjects() subject = subjects[code] subject.Process(conc=conc, high=high, iters=300) subject.MakeQuickPrediction() PrintSummary(subject) actual_l = subject.total_species - subject.num_species cdf_l = subject.DistL().MakeCdf() PrintPrediction(cdf_l, actual_l) subject.MakeFigures() num_reads = 400 curves = subject.RunSimulations(100, num_reads) root = 'species-rare-%s' % subject.code PlotCurves(curves, root=root) num_reads = 800 curves = subject.RunSimulations(500, num_reads) ks = [100, 200, 400, 800] cdfs = MakeConditionals(curves, ks) root = 'species-cond-%s' % subject.code PlotConditionals(cdfs, root=root) num_reads = 1000 curves = subject.RunSimulations(500, num_reads, frac_flag=True) ks = [10, 100, 200, 400, 600, 800, 1000] cdfs = MakeFracCdfs(curves, ks) root = 'species-frac-%s' % subject.code PlotFracCdfs(cdfs, root=root) def PrintSummary(subject): """Print a summary of a subject. subject: Subject """ print(subject.code) print('found %d species in %d reads' % (subject.num_species, subject.num_reads)) print('total %d species in %d reads' % (subject.total_species, subject.total_reads)) cdf = subject.suite.DistN().MakeCdf() print('n') PrintPrediction(cdf, 'unknown') def PrintPrediction(cdf, actual): """Print a summary of a prediction. cdf: predictive distribution actual: actual value """ median = cdf.Percentile(50) low, high = cdf.CredibleInterval(75) print('predicted %0.2f (%0.2f %0.2f)' % (median, low, high)) print('actual', actual) def RandomSeed(x): """Initialize random.random and numpy.random. x: int seed """ random.seed(x) numpy.random.seed(x) def GenerateFakeSample(n, r, tr, conc=1): """Generates fake data with the given parameters. n: number of species r: number of reads in subsample tr: total number of reads conc: concentration parameter Returns: hist of all reads, hist of subsample, prev_unseen """ # generate random prevalences dirichlet = thinkbayes2.Dirichlet(n, conc=conc) prevalences = dirichlet.Random() prevalences.sort() # generate a simulated sample pmf = thinkbayes2.Pmf(dict(enumerate(prevalences))) cdf = pmf.MakeCdf() sample = cdf.Sample(tr) # collect the species counts hist = thinkbayes2.Hist(sample) # extract a subset of the data if tr > r: random.shuffle(sample) subsample = sample[:r] subhist = thinkbayes2.Hist(subsample) else: subhist = hist # add up the prevalence of unseen species prev_unseen = 0 for species, prev in enumerate(prevalences): if species not in subhist: prev_unseen += prev return hist, subhist, prev_unseen def PlotActualPrevalences(): """Makes a plot comparing actual prevalences with a model. """ # read data subject_map, _ = ReadCompleteDataset() # for subjects with more than 50 species, # PMF of max prevalence, and PMF of max prevalence # generated by a simulation pmf_actual = thinkbayes2.Pmf() pmf_sim = thinkbayes2.Pmf() # concentration parameter used in the simulation conc = 0.06 for code, subject in subject_map.items(): prevalences = subject.GetPrevalences() m = len(prevalences) if m < 2: continue actual_max = max(prevalences) print(code, m, actual_max) # incr the PMFs if m > 50: pmf_actual.Incr(actual_max) pmf_sim.Incr(SimulateMaxPrev(m, conc)) # plot CDFs for the actual and simulated max prevalence cdf_actual = pmf_actual.MakeCdf(label='actual') cdf_sim = pmf_sim.MakeCdf(label='sim') thinkplot.Cdfs([cdf_actual, cdf_sim]) thinkplot.Show() def ScatterPrevalences(ms, actual): """Make a scatter plot of actual prevalences and expected values. ms: sorted sequence of in m (number of species) actual: sequence of actual max prevalence """ for conc in [1, 0.5, 0.2, 0.1]: expected = [ExpectedMaxPrev(m, conc) for m in ms] thinkplot.Plot(ms, expected) thinkplot.Scatter(ms, actual) thinkplot.Show(xscale='log') def SimulateMaxPrev(m, conc=1): """Returns random max prevalence from a Dirichlet distribution. m: int number of species conc: concentration parameter of the Dirichlet distribution Returns: float max of m prevalences """ dirichlet = thinkbayes2.Dirichlet(m, conc) prevalences = dirichlet.Random() return max(prevalences) def ExpectedMaxPrev(m, conc=1, iters=100): """Estimate expected max prevalence. m: number of species conc: concentration parameter iters: how many iterations to run Returns: expected max prevalence """ dirichlet = thinkbayes2.Dirichlet(m, conc) t = [] for _ in range(iters): prevalences = dirichlet.Random() t.append(max(prevalences)) return numpy.mean(t) class Calibrator(object): """Encapsulates the calibration process.""" def __init__(self, conc=0.1): """ """ self.conc = conc self.ps = range(10, 100, 10) self.total_n = numpy.zeros(len(self.ps)) self.total_q = numpy.zeros(len(self.ps)) self.total_l = numpy.zeros(len(self.ps)) self.n_seq = [] self.q_seq = [] self.l_seq = [] def Calibrate(self, num_runs=100, n_low=30, n_high=400, r=400, tr=1200): """Runs calibrations. num_runs: how many runs """ for seed in range(num_runs): self.RunCalibration(seed, n_low, n_high, r, tr) self.total_n *= 100.0 / num_runs self.total_q *= 100.0 / num_runs self.total_l *= 100.0 / num_runs def Validate(self, num_runs=100, clean_param=0): """Runs validations. num_runs: how many runs """ subject_map, _ = ReadCompleteDataset(clean_param=clean_param) i = 0 for match in subject_map.itervalues(): if match.num_reads < 400: continue num_reads = 100 print('Validate', match.code) subject = match.Resample(num_reads) subject.Match(match) n_actual = None q_actual = subject.prev_unseen l_actual = subject.total_species - subject.num_species self.RunSubject(subject, n_actual, q_actual, l_actual) i += 1 if i == num_runs: break self.total_n *= 100.0 / num_runs self.total_q *= 100.0 / num_runs self.total_l *= 100.0 / num_runs def PlotN(self, root='species-n'): """Makes a scatter plot of simulated vs actual prev_unseen (q). """ xs, ys = zip(*self.n_seq) if None in xs: return high = max(xs+ys) thinkplot.Plot([0, high], [0, high], color='gray') thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual n', ylabel='Predicted') def PlotQ(self, root='species-q'): """Makes a scatter plot of simulated vs actual prev_unseen (q). """ thinkplot.Plot([0, 0.2], [0, 0.2], color='gray') xs, ys = zip(*self.q_seq) thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual q', ylabel='Predicted') def PlotL(self, root='species-n'): """Makes a scatter plot of simulated vs actual l. """ thinkplot.Plot([0, 20], [0, 20], color='gray') xs, ys = zip(*self.l_seq) thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual l', ylabel='Predicted') def PlotCalibrationCurves(self, root='species5'): """Plots calibration curves""" print(self.total_n) print(self.total_q) print(self.total_l) thinkplot.Plot([0, 100], [0, 100], color='gray', alpha=0.2) if self.total_n[0] >= 0: thinkplot.Plot(self.ps, self.total_n, label='n') thinkplot.Plot(self.ps, self.total_q, label='q') thinkplot.Plot(self.ps, self.total_l, label='l') thinkplot.Save(root=root, axis=[0, 100, 0, 100], xlabel='Ideal percentages', ylabel='Predictive distributions', formats=FORMATS, ) def RunCalibration(self, seed, n_low, n_high, r, tr): """Runs a single calibration run. Generates N and prevalences from a Dirichlet distribution, then generates simulated data. Runs analysis to get the posterior distributions. Generates calibration curves for each posterior distribution. seed: int random seed """ # generate a random number of species and their prevalences # (from a Dirichlet distribution with alpha_i = conc for all i) RandomSeed(seed) n_actual = random.randrange(n_low, n_high+1) hist, subhist, q_actual = GenerateFakeSample( n_actual, r, tr, self.conc) l_actual = len(hist) - len(subhist) print('Run low, high, conc', n_low, n_high, self.conc) print('Run r, tr', r, tr) print('Run n, q, l', n_actual, q_actual, l_actual) # extract the data data = [count for species, count in subhist.Items()] data.sort() print('data', data) # make a Subject and process subject = Subject('simulated') subject.num_reads = r subject.total_reads = tr for species, count in subhist.Items(): subject.Add(species, count) subject.Done() self.RunSubject(subject, n_actual, q_actual, l_actual) def RunSubject(self, subject, n_actual, q_actual, l_actual): """Runs the analysis for a subject. subject: Subject n_actual: number of species q_actual: prevalence of unseen species l_actual: number of new species """ # process and make prediction subject.Process(conc=self.conc, iters=100) subject.MakeQuickPrediction() # extract the posterior suite suite = subject.suite # check the distribution of n pmf_n = suite.DistN() print('n') self.total_n += self.CheckDistribution(pmf_n, n_actual, self.n_seq) # check the distribution of q pmf_q = suite.DistQ() print('q') self.total_q += self.CheckDistribution(pmf_q, q_actual, self.q_seq) # check the distribution of additional species pmf_l = subject.DistL() print('l') self.total_l += self.CheckDistribution(pmf_l, l_actual, self.l_seq) def CheckDistribution(self, pmf, actual, seq): """Checks a predictive distribution and returns a score vector. pmf: predictive distribution actual: actual value seq: which sequence to append (actual, mean) onto """ mean = pmf.Mean() seq.append((actual, mean)) cdf = pmf.MakeCdf() PrintPrediction(cdf, actual) sv = ScoreVector(cdf, self.ps, actual) return sv def ScoreVector(cdf, ps, actual): """Checks whether the actual value falls in each credible interval. cdf: predictive distribution ps: percentages to check (0-100) actual: actual value Returns: numpy array of 0, 0.5, or 1 """ scores = [] for p in ps: low, high = cdf.CredibleInterval(p) score = Score(low, high, actual) scores.append(score) return numpy.array(scores) def Score(low, high, n): """Score whether the actual value falls in the range. Hitting the posts counts as 0.5, -1 is invalid. low: low end of range high: high end of range n: actual value Returns: -1, 0, 0.5 or 1 """ if n is None: return -1 if low < n < high: return 1 if n == low or n == high: return 0.5 else: return 0 def FakeSubject(n=300, conc=0.1, num_reads=400, prevalences=None): """Makes a fake Subject. If prevalences is provided, n and conc are ignored. n: number of species conc: concentration parameter num_reads: number of reads prevalences: numpy array of prevalences (overrides n and conc) """ # generate random prevalences if prevalences is None: dirichlet = thinkbayes2.Dirichlet(n, conc=conc) prevalences = dirichlet.Random() prevalences.sort() # generate a simulated sample pmf = thinkbayes2.Pmf(dict(enumerate(prevalences))) cdf = pmf.MakeCdf() sample = cdf.Sample(num_reads) # collect the species counts hist = thinkbayes2.Hist(sample) # extract the data data = [count for species, count in hist.Items()] data.sort() # make a Subject and process subject = Subject('simulated') for species, count in hist.Items(): subject.Add(species, count) subject.Done() return subject def PlotSubjectCdf(code=None, clean_param=0): """Checks whether the Dirichlet model can replicate the data. """ subject_map, uber_subject = ReadCompleteDataset(clean_param=clean_param) if code is None: subjects = subject_map.values() subject = random.choice(subjects) code = subject.code elif code == 'uber': subject = uber_subject else: subject = subject_map[code] print(subject.code) m = subject.GetM() subject.Process(high=m, conc=0.1, iters=0) print(subject.suite.params[:m]) # plot the cdf options = dict(linewidth=3, color='blue', alpha=0.5) cdf = subject.MakeCdf() thinkplot.Cdf(cdf, **options) options = dict(linewidth=1, color='green', alpha=0.5) # generate fake subjects and plot their CDFs for _ in range(10): prevalences = subject.suite.SamplePrevalences(m) fake = FakeSubject(prevalences=prevalences) cdf = fake.MakeCdf() thinkplot.Cdf(cdf, **options) root = 'species-cdf-%s' % code thinkplot.Save(root=root, xlabel='rank', ylabel='CDF', xscale='log', formats=FORMATS, ) def RunCalibration(flag='cal', num_runs=100, clean_param=50): """Runs either the calibration or validation process. flag: string 'cal' or 'val' num_runs: how many runs clean_param: parameter used for data cleaning """ cal = Calibrator(conc=0.1) if flag == 'val': cal.Validate(num_runs=num_runs, clean_param=clean_param) else: cal.Calibrate(num_runs=num_runs) cal.PlotN(root='species-n-%s' % flag) cal.PlotQ(root='species-q-%s' % flag) cal.PlotL(root='species-l-%s' % flag) cal.PlotCalibrationCurves(root='species5-%s' % flag) def RunTests(): """Runs calibration code and generates some figures.""" RunCalibration(flag='val') RunCalibration(flag='cal') PlotSubjectCdf('B1558.G', clean_param=50) PlotSubjectCdf(None) def main(script): RandomSeed(17) RunSubject('B1242', conc=1, high=100) RandomSeed(17) SimpleDirichletExample() RandomSeed(17) HierarchicalExample() if __name__ == '__main__': main(*sys.argv)
StarcoderdataPython
6586687
from re import M from kivymd.uix.button import MDRectangleFlatIconButton from kivymd.uix.boxlayout import MDBoxLayout class ButtonGeneric(MDBoxLayout): def __init__(self, widget, *args, **kwargs): super(ButtonGeneric, self).__init__(*args, **kwargs) self.md_bg_color = widget['cores']['background'] self.widget = widget self.size_hint = widget['size'] self.pos_hint = widget['pos'] def __call__(self): btn = MDRectangleFlatIconButton(text=self.widget['tag'], icon=self.widget['icon'], theme_text_color='Custom', text_color=self.widget['cores']['line'], icon_color = self.widget['cores']['line'], line_color = self.widget['cores']['line']) self.add_widget(btn) return self def metodo(self,*args): print('Button generic: ', args)
StarcoderdataPython
6659631
#!/usr/bin/python3 import os import time import pickle import configparser import shutil from time import localtime, strftime from subprocess import call from optparse import OptionParser parser = OptionParser() parser.add_option("--config_file", dest="config_file") (options, args) = parser.parse_args() config_file = options.config_file config_parser = configparser.ConfigParser() config_parser.read(config_file) model_name = config_parser['MODEL']['ModelName'] basename = config_parser['PATHS']['BaseName'] nb_iterations = int(config_parser['MODEL']['NumberOfIterations']) if os.path.exists(basename): basename = basename config_file = os.path.join(basename, config_file) else: basename = strftime("%Y_%m_%d_%H%M%S_", localtime()) + model_name os.makedirs(basename) # copy configuration file shutil.copyfile(config_file, os.path.join(basename, config_file)) config_file = os.path.join(basename, config_file) weight_file_path = os.path.join(basename, "weights.h5") history_file_path = os.path.join(basename, "history.pkl") tmp_history_file_path = os.path.join(basename, "history_tmp.pkl") lock_file = os.path.join(basename, "file.lock") # This was designed to run in a queue system. If this is not what you want to do # simply comment out the five first elements in the qsub_args list, and just run # the script directly on the GPU/CPU. qsub_args = [ # "qsub", # "-cwd", # "-l", "gpu=1", # "-e", os.path.join(basename, "stderr.error"), # "-o", os.path.join(basename, "stdout.log"), "./run_job.sh", weight_file_path, tmp_history_file_path, lock_file, config_file ] def train(): print("#############################") print("# Training Settings") print("#############################") print("Model : ", model_name) print("Weight path : ", weight_file_path) print("History path : ", history_file_path) train_loss = [] valid_loss = [] train_acc = [] valid_acc = [] # if exists means we are restarting a crashed training if os.path.isfile(history_file_path): print("Loading previous history data...") with open(history_file_path, 'rb') as input: train_loss = pickle.load(input) valid_loss = pickle.load(input) train_acc = pickle.load(input) valid_acc = pickle.load(input) for i in range(nb_iterations): # create lock file print("Creating lock file: ", lock_file) open(lock_file, 'a').close() # submit job, train once print("Submitting Job ", str(i), "/", str(nb_iterations)) if not i == 0: call(qsub_args + ['False']) else: call(qsub_args + ['True']) # block until job is finished while os.path.exists(lock_file): time.sleep(5) print("Job " + str(i) + " is done.") # load all history data and append print("Loading temporary history data...") with open(tmp_history_file_path, 'rb') as input: train_loss = train_loss + pickle.load(input) valid_loss = valid_loss + pickle.load(input) train_acc = train_acc + pickle.load(input) valid_acc = valid_acc + pickle.load(input) # save all collected history data print("Save all collected history data...") with open(history_file_path, 'wb') as output: pickle.dump(train_loss, output, pickle.HIGHEST_PROTOCOL) pickle.dump(valid_loss, output, pickle.HIGHEST_PROTOCOL) pickle.dump(train_acc, output, pickle.HIGHEST_PROTOCOL) pickle.dump(valid_acc, output, pickle.HIGHEST_PROTOCOL) train()
StarcoderdataPython
6583059
<filename>tools/nrtest-swmm/nrtest_swmm/output_reader.py # -*- coding: utf-8 -*- # # output_reader.py # # Date Created: 11/14/2017 # # Author: <NAME> # US EPA - ORD/NRMRL # ''' The module output_reader provides the class used to implement the output generator. ''' import sys # project import import swmm_output as oapi def output_generator(path_ref): ''' The output_generator is designed to iterate over a swmm binary file and yield element results. It is useful for comparing contents of binary files for numerical regression testing. The generator yields a numpy array containing the SWMM element result. Arguments: path_ref - path to result file Raises: SWMM_OutputReaderError() ... ''' with OutputReader(path_ref) as sor: for period_index in range(0, sor.report_periods()): for element_type in oapi.ElementType: for element_index in range(0, sor.element_count(element_type)): yield (sor.element_result(element_type, period_index, element_index), (element_type, period_index, element_index)) class OutputReader(): ''' Provides minimal interface needed to implement the SWMM output generator. ''' def __init__(self, filename): self.filepath = filename self.handle = None self.count = None self.get_element_result = {oapi.ElementType.SUBCATCH: oapi.smo_get_subcatch_result, oapi.ElementType.NODE: oapi.smo_get_node_result, oapi.ElementType.LINK: oapi.smo_get_link_result, oapi.ElementType.SYSTEM: oapi.smo_get_system_result} def __enter__(self): self.handle = oapi.smo_init() if sys.version_info < (3,0): file_path = self.filepath.encode() else: file_path = self.filepath oapi.smo_open(self.handle, file_path) self.count = oapi.smo_get_project_size(self.handle) return self def __exit__(self, type, value, traceback): self.handle = oapi.smo_close() def report_periods(self): return oapi.smo_get_times(self.handle, oapi.Time.NUM_PERIODS) def element_count(self, element_type): return self.count[element_type.value] def element_result(self, element_type, time_index, element_index): return self.get_element_result[element_type](self.handle, time_index, element_index)
StarcoderdataPython
5009437
<reponame>contradict/Stomp import serial import sys from binascii import hexlify import threading def monitor(portname, outfile=sys.stdout, stop_evt=None): data = b"" extra = b"" with serial.Serial(portname, 115200, timeout=0.01) as sp: while True if stop_evt is None else not stop_evt.wait(0): data += sp.read() while len(data) > 8: if(data[0] == 0x24 and data[1] == 0x43 and data[5] == 0x23): if len(extra): outfile.write("extra: %s " % hexlify(extra)) extra = b"" outfile.write( "cmd: 0x%02x = 0x%04x\n" % (data[2], (data[3] << 8) + data[4])) data = data[8:] elif (data[0] == 0x2b and data[3] == 0x23): if len(extra): outfile.write("extra: %s" % hexlify(extra)) extra = b"" outfile.write("rsp: 0x%04x\n" % ((data[1] << 8) + data[2])) data = data[6:] else: extra += data[0:1] data = data[1:] def monitorfile(portname, filename, stop): with open(filename, "w") as f: monitor(portname, f, stop) def monitorall(portnames=["/dev/ttyUSB0", "/dev/ttyUSB1", "/dev/ttyUSB2"], filenames=["curl.txt", "lift.txt", "swing.txt"]): ts = [] stop = threading.Event() for pn, fn in zip(portnames, filenames): ts.append(threading.Thread(target=monitorfile, args=(pn, fn, stop))) for t in ts: t.start() def stopfn(): stop.set() for t in ts: t.join() return stopfn
StarcoderdataPython
12830824
import datetime as _dt from lib2to3.pgen2.token import OP import pydantic as pydantic from pydantic import Field from uuid import UUID from typing import List, Optional from validators import email from bigfastapi.schemas.organisation_schemas import _OrganizationBase import bigfastapi.schemas.users_schemas as UserSchema from datetime import date from pydantic import BaseModel class SettingsBase(BaseModel): email: str location : str phone_number : Optional[str] = None organization_size : Optional[str] = None organization_type : Optional[str] = None country : Optional[str] = None state : Optional[str] = None city : Optional[str] = None zip_code : Optional[int] = None class SettingsUpdate(SettingsBase): pass class Settings(SettingsBase): pass class Config: orm_mode = True
StarcoderdataPython
5016318
<filename>Python/PythonExercicios/ex082.py # Exercício Python 082: # Crie um programa que vai ler vários números e colocar em uma lista. # Depois disso, crie duas listas extras que vão conter apenas os valores pares e os valores ímpares digitados, respectivamente. # Ao final, mostre o conteúdo das três listas geradas. print('\033[1;33m====== EX 082 ======\033[m') lista = list() listapar = list() listaimpar = list() while True: n = lista.append(int(input('Digite um valor: '))) op = str(input('Quer continuar? [S/N] ')).upper().strip() if 'N' in op: break for c in lista: if c % 2 == 0: listapar.append(c) else: listaimpar.append(c) print(f'A lista completa é {lista}') print(f'A lista dos pares é {listapar}') print(f'A lista dos ímpares é {listaimpar}')
StarcoderdataPython
1888774
# stdlib import ast from collections import OrderedDict import copy import inspect from itertools import islice import os from pathlib import Path import sys from typing import Any from typing import Callable from typing import Dict from typing import Iterator from typing import List from typing import Optional from typing import Tuple from typing import Union # third party import torch # syft absolute import syft as sy from syft.core.node.common.action.save_object_action import SaveObjectAction from syft.core.plan.plan_builder import ROOT_CLIENT from syft.core.plan.plan_builder import make_plan from syft.lib.python import _SyNone # syft relative from ...core.pointer.pointer import Pointer from ...generate_wrapper import GenerateWrapper from ...lib.util import full_name_with_qualname from ...logger import critical from ...logger import info from ...logger import traceback_and_raise from ...proto.lib.torch.module_pb2 import Module as Module_PB from ..python.collections import OrderedDict as SyOrderedDict from ..python.util import downcast # from ...core.node.common.service.auth import AuthorizationException def repr_to_kwargs(repr_str: str) -> Tuple[List[Any], Dict[Any, Any]]: # for example: repr_str = Conv2d(...).extra_repr() # produces: > str("1, 32, kernel_size=(3, 3), stride=(1, 1)") # then we just have to split it into args and kwargs # using ast.literal_eval we can use python to give us the real primitive types # from the strings in a safe way # str("1 ") becomes int(1) # str("(1, 2) ") becomes tuple(1, 2) args: List[Any] = [] kwargs: Dict[Any, Any] = {} parts = repr_str.split(",") # tuples are split by commas as well, so we will keep a tab on open parentheses # then concat with "," until we find a close parentheses # TODO: make work nested with a count and add tests para_open = False buffer = "" for part in parts: try: if "(" in part: para_open = True buffer = "" if para_open is True: buffer += part + "," if ")" in part: # remove trailing , part = buffer[:-1] buffer = "" para_open = False else: continue string = part.strip() if "=" not in string: # its an arg arg = ast.literal_eval(string) args.append(arg) else: # its a kwarg kv = string.split("=") key = str(kv[0]) string = kv[1].strip() value = ast.literal_eval(string) kwargs[key.strip()] = value except Exception as e: info(f"ast.literal_eval failed to parse part: {string}. {e}") return (args, kwargs) class Module: """ This is our equivalent of torch.nn.Module and aims to have the same external interface. We will need to support both torch Modules and Module Pointers. """ def __init__(self, torch_ref: Any) -> None: self.setup(torch_ref=torch_ref) def setup(self, torch_ref: Any) -> None: # the remote torch means the model is remote self.remote_model: Optional["Module"] = None self.local_model: Optional["Module"] = None self.duet = None if "syft" in full_name_with_qualname(klass=type(torch_ref)): info("> Creating remote model") self.is_local = False else: # otherwise we have a local model info("> Creating local model") self.is_local = True self.torch_ref = torch_ref self.training = False self._modules: OrderedDict[str, Module] = OrderedDict() real_module = torch_ref.nn.Module() self.__dict__["real_module"] = real_module # bypass getattr/setattr # if issubclass(type(real_module), Pointer): # try: # # TODO: this needs fixing but should be on by default for now # # https://github.com/OpenMined/PySyft/issues/5242 # real_module.searchable = True # except AuthorizationException as e: # print(f"Cant make real_module searchable. {e}") def __setattr__(self, name: str, value: Union[Any, "Module"]) -> None: # this is how we catch the modules being set during subclass init # bug where torch.nn.modules isn't the full name on some imports # TODO: fix this properly # third party import torch if "torch.nn" in full_name_with_qualname(klass=type(value)) or isinstance( value, torch.nn.Module ): modules = self.__dict__.get("_modules") if modules is not None: modules[name] = value # attach all the sub modules to a real module so that we can have a # remote module pointer that acts like a real model real_module: Optional[OrderedDict] = self.__dict__.get("real_module") if real_module is not None: real_module.add_module(name, value) # type: ignore else: object.__setattr__(self, name, value) def __getattr__(self, name: str) -> Union[Any, "Module"]: modules: Optional[OrderedDict] = self.__dict__.get("_modules") if modules is not None: if name in modules: return modules[name] return object.__getattribute__(self, name) def train(self, mode: bool = True) -> "Module": self.training = mode for _, module in self.modules.items(): module.train(mode) return self def eval(self) -> "Module": return self.train(False) def __call__( self, *args: Union[List[Any], Tuple[Any, ...]], **kwargs: Dict[Any, Any] ) -> Any: return self.forward(*args, **kwargs) @property def modules(self) -> OrderedDict: modules = self.__dict__.get("_modules") if modules is not None: return modules return OrderedDict() # local list of remote ListPointers of TensorPointers def parameters(self, recurse: bool = True) -> Optional[List[Any]]: params_list: Optional[List[Any]] = None if self.is_local is True: # we are local so use normal torch params params_list = [] for _, module in self.modules.items(): params = module.parameters(recurse) if params_list is None: # only on remote create a remote list so we can concat the param list # pointers without having to actually get them self.duet = params.client params_list = self.duet.syft.lib.python.List() # type: ignore # either way lets concat them until we have a big list of parameters params_list += params return params_list def cuda(self, device: Any) -> "Module": for _, module in self.modules.items(): module.cuda(device) return self def cpu(self) -> "Module": for _, module in self.modules.items(): module.cpu() return self def load_state_dict(self, input: Union[str, os.PathLike, Dict[str, Any]]) -> None: if not self.is_local: info("> This model is remote so try calling .get()") return None state_dict = {} if isinstance(input, (str, os.PathLike)): with open(Path(input), "rb") as f: state_dict = torch.load(f) else: state_dict = dict(input) if not issubclass(type(state_dict), dict): traceback_and_raise( f" Invalid input: {type(input)}. " + "Try inputting a state_dict or .pth file." ) info("> Loading model weights") layers: Dict[str, Any] = {} for save_key, values in state_dict.items(): parts = save_key.split(".") if len(parts) < 2: info(f" state dict key is too short: {save_key}") continue layer = parts[0] attr = parts[1] if layer not in layers: layers[layer] = {} layers[layer][attr] = values for layer, sd in layers.items(): local_layer = getattr(self, layer, None) if local_layer is not None and hasattr(local_layer, "load_state_dict"): d = local_layer.load_state_dict(sd) info(f" {layer} state dict loaded with: {d}") else: info(f" Model doesnt have layer {layer}") info("> Finished loading weights") return None def state_dict(self) -> Optional[Dict[str, Any]]: if not self.is_local: info("> This model is remote so try calling .get()") return None info("> Saving model weights") model_state_dict = OrderedDict() for name, module in self.modules.items(): if hasattr(module, "state_dict"): for k, v in module.state_dict().items(): save_key = f"{name}.{k}" model_state_dict[save_key] = v info("> Finished saving weights") return model_state_dict def save(self, path: Union[str, bytes, os.PathLike]) -> None: if not self.is_local: info("> This model is remote so try calling .get()") return state_dict = self.state_dict() torch.save(state_dict, path) def load(self, path: Union[str, os.PathLike]) -> None: if not self.is_local: info("> This model is remote so try calling .get()") return self.load_state_dict(input=path) def send(self, client: Any, send_parameters: bool = True) -> Any: if not self.is_local: info("> This model is remote so try calling .get()") return info("> Sending local model") remote_model = copy.copy(self) remote_model.setup(torch_ref=client.torch) remote_model.duet = client for name, module in self.modules.items(): fqn = full_name_with_qualname(klass=type(module)) klass = client.lib_ast.query(fqn, obj_type=type(module)) module_repr = module.extra_repr() args, kwargs = repr_to_kwargs(repr_str=module_repr) remote_module_ptr = klass(*args, **kwargs) remote_model.__setattr__(name, remote_module_ptr) # if the remote module has state_dict lets get it if ( send_parameters and hasattr(module, "state_dict") and hasattr(remote_module_ptr, "load_state_dict") ): local_state_ord_dict = module.state_dict() # cast to dict because OrderedDict is not supported # get a blocking copy of the state_dict info(f" Sending local layer: {name}") # cant import Dict / PrimitiveFactory due to circular imports remote_state_dict_ptr = client.syft.lib.python.Dict( dict(local_state_ord_dict) ) # iterate through the key, values # weights and biases should be in there remote_module_ptr.load_state_dict(remote_state_dict_ptr) info("\n> Finished sending local model <\n\n") self.remote_model = remote_model return self.remote_model def get( self, request_block: bool = False, timeout_secs: int = 20, reason: str = "", delete_obj: bool = False, ) -> Optional["Module"]: if self.is_local: info("> This model is local. Maybe you meant to call .send()?") return None info("> Downloading remote model") local_model = copy.copy(self) local_model.setup(torch_ref=torch) local_model.duet = self.duet for layer_name, module in self.modules.items(): module_parts = module.path_and_name.split(".") klass_name = module_parts.pop() klass = getattr(sys.modules[".".join(module_parts)], klass_name) repr_ptr = module.extra_repr() module_repr = repr_ptr.get( request_block=request_block, reason=reason, timeout_secs=timeout_secs, ) if module_repr is None: info(f" Request for {reason} extra_repr failed, skipping layer") continue args, kwargs = repr_to_kwargs(repr_str=module_repr.upcast()) local_module = klass(*args, **kwargs) # the local real module has been set on the sy module local_model.__setattr__(layer_name, local_module) try: # if the remote module has state_dict lets get it if hasattr(module, "state_dict") and hasattr( local_module, "load_state_dict" ): info("loading remote state dict") sd_ptr = module.state_dict() # get a blocking copy of the state_dict info(f" Downloading remote layer: {layer_name}") state_dict = sd_ptr.get( request_block=request_block, reason=reason, timeout_secs=timeout_secs, delete_obj=delete_obj, ) # We have to recreate the OrderedDict for load_state_dict to work ordered_state_dict = OrderedDict() for elem, item in state_dict.items(): ordered_state_dict[str(elem)] = item # iterate through the key, values # weights and biases should be in there if state_dict is not None: # TODO: support torch.nn.modules.module._IncompatibleKeys local_module.load_state_dict(ordered_state_dict) else: info( f" Failed to get {layer_name} state_dict, skipping layer." ) except Exception as e: critical(f" Failed to download remote state for {layer_name}.") traceback_and_raise(e) info("\n> Finished downloading remote model <\n\n") self.local_model = local_model return self.local_model # zero them so we know they are copied def zero_layers(self) -> None: for m in self.modules.values(): if hasattr(m, "weight"): m.weight.requires_grad_(False).zero_() if hasattr(m, "bias"): m.bias.requires_grad_(False).zero_() # easy way to check the weights have changed def debug_sum_layers(self) -> None: info("> Summing layers for debugging: ") for n, m in self.modules.items(): if hasattr(m, "state_dict"): if self.is_local: state_dict = m.state_dict() else: state_dict = m.state_dict().get() for k, v in state_dict.items(): if hasattr(v, "sum"): s = v.sum().item() info(f" Layer {n} sum({k}): {s}") def object2proto(obj: torch.nn.Module, is_child: bool = False) -> Module_PB: proto = Module_PB() if "torch.nn." in type(obj).__module__: proto.module_type = type(obj).__name__ else: proto.module_type = f"_USER_DEFINED_MODULE_{type(obj).__name__}" proto.forward.CopyFrom(sy.serialize(obj._forward_plan)) proto.module_repr = obj.extra_repr() if hasattr(obj, "_uid2attr"): proto._uid2attr.CopyFrom(sy.serialize(SyOrderedDict(obj._uid2attr))) proto.parameters.CopyFrom(sy.serialize(SyOrderedDict(obj._parameters))) for n, m in obj.named_children(): child_proto = object2proto(m, is_child=True) child_proto.module_name = n proto.children.append(child_proto) return proto def proto2object(proto: Module_PB) -> torch.nn.Module: is_userdefined = proto.module_type.startswith("_USER_DEFINED_MODULE_") if is_userdefined: obj_type = type( proto.module_type.replace("_USER_DEFINED_MODULE_", ""), (torch.nn.Module,), {}, ) else: obj_type = getattr(torch.nn, proto.module_type) args, kwargs = repr_to_kwargs(repr_str=proto.module_repr) obj = obj_type(*args, **kwargs) for name, param in sy.deserialize(proto.parameters).items(): # if we don't do this check, some torch.nn layers fail ( e.g. Conv2D with bias=False) if not isinstance(param, _SyNone): setattr(obj, str(name), param) if proto.HasField("forward"): forward_plan = sy.deserialize(proto.forward) obj._forward_plan = forward_plan compile_and_forward = create_compile_and_forward_fn(obj) obj.__call__ = compile_and_forward obj.forward = compile_and_forward # obj.__call__ = forward_plan # obj.forward = forward_plan for child_proto in proto.children: setattr(obj, str(child_proto.module_name), sy.deserialize(child_proto)) if proto.HasField("_uid2attr"): obj._uid2attr = sy.deserialize(proto._uid2attr) if is_userdefined: recompile(obj) return obj def create_compile_and_forward_fn(obj: "SyModule") -> Callable: """Wraps a forward plan in a function that first recompiles the plan, and then executes the plan Args: obj (SyModule): the SyModule """ def _compile_and_forward(*args, **kwargs): # type: ignore recompile(obj) return obj._forward_plan(*args, **kwargs) return _compile_and_forward def recompile(sy_module: "SyModule") -> None: """Recompiles the forward plan, if the object state has changed since the forward plan was created, we update the plan here Args: sy_module (SyModule): the module to compile """ if hasattr(sy_module, "_forward_plan"): for action in sy_module._forward_plan.actions: # type: ignore if ( isinstance(action, SaveObjectAction) and action.obj.id in sy_module._uid2attr ): action.obj.data = getattr( sy_module, str(sy_module._uid2attr[action.obj.id]) ) GenerateWrapper( wrapped_type=torch.nn.Module, import_path="torch.nn.Module", protobuf_scheme=Module_PB, type_object2proto=object2proto, type_proto2object=proto2object, ) class ForwardToPlanConverter(type): """This metaclass ensures that: 1) the object is initialized when calling Object() 2) obj._make_forward_plan() is called after initialization """ def __call__(cls: Any, *args, **kwargs) -> Any: # type: ignore # TODO: check if contains input_size obj = type.__call__(cls, *args, **kwargs) obj._make_forward_plan() return obj class SyModule(torch.nn.Module, metaclass=ForwardToPlanConverter): """A `SyModule` is the pointable equivalent of a torch.nn.Module. In order to make SyModule remotely executable, its `.forward` method is converted into a `Plan` object when initializing a `SyModule` object. This object has two "modes", in which it behaves differently. During the "forward plan building stage" it transforms parameters and submodules into pointer when the user retrieves them. After plan building the model behaves more like a regular torch.nn.Module, but instead of running a forward method, the user executes a `Plan`. As the user does not need to understand the building stage, and the .forward API is fairly similar to a regular torch.nn.Module, there is no need to understand all internals to use this module. """ def __init__(self, *args, input_size: Optional[Tuple[int]] = None, **kwargs) -> None: # type: ignore """Initializes an empty SyModule Args: input_size (Tuple[Int], optional): input_size of the Module, needs to be defined or inferrable. Defaults to None. """ super().__init__(*args, **kwargs) self.building_forward = False self._parameter_pointers: Dict[str, Pointer] = dict() self.input_size = input_size def _make_forward_plan(self) -> None: """Convert forward function into a `Plan` object Raises: ValueError: `.forward` method must be defined """ if getattr(self.forward, __name__, None) == "_forward_unimplemented": # type: ignore raise ValueError("Missing .forward() method for Module") inputs = self._get_forward_inputs() self.building_forward = True plan = make_plan(self.forward, inputs=inputs) # type: ignore self.forward = self._local_forward self._forward_plan = plan self.__call__ = plan self._create_uid2attr() self.building_forward = False self._remove_plan_action_data() def _remove_plan_action_data(self) -> None: """ Sets `action.obj.data` for each symodule action in `self._forward_plan` to `None`. This greatly reduces the proto memory footprint; The whole state of `self` is saved in the action, which will be recompiled anyway. """ # Remove module action data for action in self._forward_plan.actions: if isinstance(action, SaveObjectAction) and action.obj.id in self._uid2attr: action.obj.data = downcast(None) def _local_forward(self, *args, **kwargs): # type: ignore recompile(self) return self._forward_plan(*args, **kwargs) def _create_uid2attr(self) -> None: self._uid2attr = { param.id_at_location: attr_name for attr_name, param in self._parameter_pointers.items() } def __getattr__(self, name: str) -> Any: """A custom getattr method. When retrieving a torch.nn.Module or a torch.nn.Parameter *during forward plan building*, SyModule instead returns a Pointer to this attribute. The first time an attribute is retrieved, we send it to the plan builder VM, and store it in self._parameters_pointers, which will be used for plan Recompilation during *deserialization*. If an attribute is requested again, we return the pointer from `_parameters_pointers` Args: name (str): name of the attr Returns: Any: Attribute value or Pointer to it """ # this is __getattr__ instead of __getattribute__ because of the structure of torch.nn.Module if name in self._parameter_pointers and self.building_forward: return self._parameter_pointers[name] res = super().__getattr__(name) if ( isinstance(res, (torch.nn.Module, torch.nn.Parameter)) and self.building_forward ): res_ptr = res.send(ROOT_CLIENT) self._parameter_pointers[name] = res_ptr return res_ptr else: return res def _get_inp_key(self) -> str: """Get key for the `.forward` argument Returns: str: input key """ forward_signature = inspect.signature(self.forward) args = list(forward_signature.parameters.items()) if len(args) == 0 or len(args) > 1: raise ValueError( "SyModules accept only *precisely 1* argument and no kwargs" ) k, v = args[0] if v.default is not inspect.Parameter.empty: raise ValueError("SyModules accept only args, not kwargs") inp_key = k return inp_key def _get_inp_size(self) -> Tuple[int]: """Get input size for this module Returns: Tuple[Int]: input size for `.forward` """ if not hasattr(self, "input_size") or not isinstance( self.input_size, (tuple, list) ): raise ValueError( "SyModule needs `input_size`: Tuple(Int) as kwarg to trace the forward plan." "Also, make sure to call **super().__init__(**kwargs)** in ALL your SyModules" "" ) return self.input_size def _get_forward_inputs(self) -> Dict[str, Pointer]: """Get the dummy inputs for generating the .forward `Plan` Returns: Dict[str: Any]: inputs for .forward """ input_size = self._get_inp_size() inp_key = self._get_inp_key() if isinstance(self, SySequential): inp_key = "x" inputs = {inp_key: torch.randn(input_size).send(ROOT_CLIENT)} return inputs class SySequential(SyModule): """The Syft equivalent of torch.nn.Sequential""" def __init__(self, *args, input_size: Optional[Tuple[int]] = None): # type: ignore """initializes SySequential and stores the submodules input_size (Tuple[Int], optional): input_size of the Module, needs to be defined or inferrable. Defaults to None. """ super().__init__(input_size=input_size) for idx, module in enumerate(args): setattr(self, str(idx), module) self.n_modules = len(args) def __iter__(self): # type: ignore if self.building_forward: return iter([getattr(self, str(i)) for i in range(self.n_modules)]) else: return iter(self._modules.values()) def _get_item_by_idx(self, iterator: Iterator, idx: int) -> SyModule: """Get the idx-th item of the iterator""" size = self.n_modules if not -size <= idx < size: raise IndexError(f"index {idx} is out of range") return next(islice(iterator, idx, None)) def __getitem__(self, idx: int) -> SyModule: if isinstance(idx, slice): # type: ignore raise ValueError("SySequential does not support slices") else: return self._get_item_by_idx(self._modules.values(), idx) def __setitem__(self, idx: int, module: Module) -> None: key = self._get_item_by_idx(self._modules.keys(), idx) return setattr(self, key, module) def __delitem__(self, idx: Union[slice, int]) -> None: if isinstance(idx, slice): raise ValueError("SySequential does not support slices") else: key = self._get_item_by_idx(self._modules.keys(), idx) delattr(self, key) def forward(self, x: Any = None) -> Any: # type: ignore """Sequentially call submodule.forward Args: x (Any, optional): input. Defaults to None. Returns: Any: Module output """ out = x for i, module in enumerate(self): # handle indexing in the block, or in the sequential? if module.__class__.__name__ == "ModulePointer": # user defined module out = module.forward(x=out)[0] else: # AST module out = module(out) return out def _get_inp_key(self) -> str: """Get key for the `.forward` argument, allways x for this module Returns: str: "x" """ return "x" def _get_inp_size(self) -> Tuple[int]: """Get input size for this module Returns: Tuple[Int]: input size for `.forward` """ if hasattr(getattr(self, "0"), "input_size"): return getattr(self, "0").input_size elif hasattr(self, "input_size"): return self.input_size # type: ignore else: raise ValueError( "SySequential needs either 1) `input_size`: Tuple(Int) as a kwargs for on of its children \ OR 2) `input_size`: Tuple(Int) as kwarg for itself \ to trace the forward plan" )
StarcoderdataPython
6606472
class Entries(object): def __init__(self, http_client): self.http_client = http_client def list(self, **kwargs): return self.http_client.get('v1/entries/', params=kwargs) def delete(self, id): return self.http_client.delete('v1/entries/{}/'.format(id)) def stats_idxid(self, idxid): return self.http_client.get('v1/entries/stats/idxid/{}/'.format(idxid)) def stats_sources(self, **kwargs): return self.http_client.get('v1/entries/stats/sources/', params=kwargs)
StarcoderdataPython
11310894
<filename>src/pi/lib/state.py<gh_stars>1-10 from lib.position import RobotPosition from math import pi class RobotState: def __init__(self, position, facing): self.position = position self.facing = facing.normalise() self.forward_distance = 0 def forward(self, distance): self.forward_distance = distance def turn(self, angle): self.facing = RobotPosition.from_angle(self.facing.to_angle() + angle * pi / 180.0) def success(self): self.position = self.position.add_scaled(self.facing, self.forward_distance) def collision(self, distance): self.position = self.position.add_scaled(self.facing, distance) def clone(self): return RobotState(self.position, self.facing)
StarcoderdataPython
1719799
from collections import namedtuple def get_row_col(text): text = list(text) convert = [] row = text[1] column = text[0] if row == "1": convert.append(0) elif row == "2": convert.append(1) elif row == "3": convert.append(2) if column == "A": convert.append(0) elif column == "B": convert.append(1) elif column == "C": convert.append(2) convert = tuple(convert) return convert
StarcoderdataPython
3200775
#!/usr/bin/python3 """Quantum Computer Module. .. moduleauthor:: <NAME> <<EMAIL>> """ from abc import ABC, abstractmethod import math import psi4 import numpy from .ciwavefunction import HF_CIWavefunction, CIS_CIWavefunction from ..project_2.cis import CIS from ..psithon.util import rearrange_eigenpairs, check_sim __all__ = ["Computer"] class Computer(ABC): def __init__(self, molecule): ABC.__init__(self) self.restart_wfn = None # self.molecule = molecule self.nuclear_repulsion_energy = molecule.nuclear_repulsion_energy() # self.ciwfn = None self.nstates = None self.forces = None @classmethod def create(cls, method, molecule, nstates=1): m = method.lower() if m == "psi4scf": return psi4SCF_Computer(molecule) elif m == "mycis": return myCIS_Computer(molecule, nstates) else: raise ValueError("Wrong method chosen for computer") def update(self, xyz): self.molecule.set_geometry(xyz) self.nuclear_repulsion_energy = self.molecule.nuclear_repulsion_energy() def compute(self): self.ciwfn = self._compute_energy() self.restart_wfn = self.ciwfn.ref_wfn self.forces = self._compute_forces() @abstractmethod def _compute_energy(self): pass @abstractmethod def _compute_forces(self): pass class psi4SCF_Computer(Computer): def __init__(self, molecule): Computer.__init__(self, molecule) self.nstates = 1 def _compute_energy(self):#TODO def _compute_forces(self):#TODO class ExcitedState_Computer(Computer): def __init__(self, molecule, nstates): Computer.__init__(self, molecule) self.nstates = nstates def _compute_forces(self):#TODO class CIS_Computer(ExcitedState_Computer): def __init__(self, molecule, nstates): ExcitedState_Computer.__init__(self, molecule, nstates) class myCIS_Computer(CIS_Computer): def __init__(self, molecule, nstates): CIS_Computer.__init__(self, molecule, nstates) def _compute_energy(self):#TODO
StarcoderdataPython
1613506
#!/usr/bin/env python3 """ Este é um bot renovador de livros para o sistema Pergamum da UFBA. Para usar basta executar o script (de preferencia todos os dias) com as variáveis de ambiente PERGAMUM_LOGIN e PERGAMUM_PASS setadas com seu RM e senha da biblioteca. Além disso, você pode receber um email sempre que algum evento importante ocorre, como a renovação de um livro, a chegada do limite de renovações, e até mesmo se ocorrer algum erro no script. Para isso, informe nas variáveis de ambinete BIB_EMAIL_TO_ADDR seu endereço de email. É necessário também informar BIB_EMAIL_FROM_ADDR e BIB_EMAIL_FROM_PASS, que são as credências de algum email qualquer do Gmail para ser o remedente do seu email. Yes, this is Portuguese mate. Copyright (c) 2018 <NAME> Licensed under the MIT License (https://opensource.org/licenses/MIT) """ import os import re import sys import asyncio import datetime import logging from collections import namedtuple from email.mime.text import MIMEText from pathlib import Path import aiohttp import aiosmtplib import parsel PERGAMUM_LOGIN = os.environ['BIB_PERGAMUM_LOGIN'] PERGAMUM_PASS = os.environ['BIB_PERGAMUM_PASS'] BIB_EMAIL_TO_ADDR = os.environ.get('BIB_EMAIL_TO_ADDR') if BIB_EMAIL_TO_ADDR is not None: BIB_EMAIL_FROM_ADDR = os.environ['BIB_EMAIL_FROM_ADDR'] BIB_EMAIL_FROM_PASS = os.environ['BIB_EMAIL_FROM_PASS'] logger = logging.getLogger(__name__) logging.basicConfig(stream=sys.stderr, level=logging.INFO, format=('[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - ' f'{PERGAMUM_LOGIN} - %(message)s')) SENTRY_DSN = os.environ.get('SENTRY_DSN') if SENTRY_DSN is not None: import sentry_sdk sentry_sdk.init(SENTRY_DSN) BIB_URL = 'http://www.pergamum.bib.ufba.br' BIB_MAX_RENEW = 7 DEFAULT_HEADERS = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0', } Book = namedtuple('Book', 'name return_date renew_count cod_acervo cod_exemplar') def list_books(books): """Creates a string that, on each line, informs about a book.""" return '\n'.join([f'+ {book.name}: {book.renew_count}: {book.return_date}' for book in books]) def extract_books(html): """Yields a sequence of all books in the HTML.""" selector = parsel.Selector(html) for li in selector.xpath('/html/body/div[1]/div[2]/ul/li'): if li.xpath('./@data-role').extract_first() == 'list-divider': continue if li.xpath('count(./*)').extract_first() == '0.0': continue a = li.xpath('.//a') ahref = a.xpath('./@href').extract_first() h2 = a.xpath('normalize-space(./h2)').extract_first() p1 = a.xpath('normalize-space(./p[1])').extract_first() p2 = a.xpath('normalize-space(./p[2])').extract_first() book_name = h2.strip() return_date = p1.split(':', maxsplit=1)[1].strip() return_date = datetime.datetime.strptime(return_date, '%d/%m/%Y').date() renew_count = p2.split(':', maxsplit=1)[1].strip() renew_count = int(renew_count) cod_acervo = int(re.search(r'cod_acervo=(\d+)', ahref).group(1)) cod_exemplar = int(re.search(r'cod_exemplar=(\d+)', ahref).group(1)) yield Book(book_name, return_date, renew_count, cod_acervo, cod_exemplar) async def pergamum_login(session): """Logins the web session into the pergamum system.""" login_url = '/'.join([BIB_URL, 'pergamum/mobile/login.php']) data = { 'flag': 'renovacao.php', 'login': PERGAMUM_LOGIN, 'password': <PASSWORD>, 'button': 'Acessar' } headers = { 'Referer': f'{login_url}?flag=renovacao.php' } return await session.post(login_url, headers=headers, data=data) async def pergamum_renovacao_page(session): renovacao_url = '/'.join([BIB_URL, 'pergamum/mobile/renovacao.php']) return await session.get(renovacao_url) async def pergamum_renew(session, book): """Renews a book in the specified web session.""" params = {'cod_acervo': book.cod_acervo, 'cod_exemplar': book.cod_exemplar} renovar_url = '/'.join([BIB_URL, 'pergamum/mobile/confirmar_renovacao.php']) return await session.get(renovar_url, params=params) async def email_send(subject, text): """Sends an email with the specified subject and text. The email is sent from an email specified in environ and into a email also specified in environment variables. If the environment variables are missing, no email is sent.""" if BIB_EMAIL_TO_ADDR is None: return smtp = aiosmtplib.SMTP(hostname='smtp.gmail.com', port=587) await smtp.connect() try: await smtp.starttls() await smtp.login(BIB_EMAIL_FROM_ADDR, BIB_EMAIL_FROM_PASS) message = MIMEText(text) message['From'] = BIB_EMAIL_FROM_ADDR message['To'] = BIB_EMAIL_TO_ADDR message['Subject'] = subject await smtp.send_message(message) finally: await smtp.quit() async def main(): async with aiohttp.ClientSession(headers=DEFAULT_HEADERS) as session: # For some reason anything but portuguese works correctly. session.cookie_jar.update_cookies({'idioma_mobile_pessoal': 6}) renew_books = [] due_books = [] email_tasks = [] today = datetime.datetime.now().date() response = await pergamum_login(session) books = list(extract_books(await response.text())) for book in books: if book.return_date == today: renew_books.append(book) elif book.return_date < today: due_books.append(book) renewed_books = [] failed_books = [] completed = await asyncio.gather(*[pergamum_renew(session, book) for book in renew_books], return_exceptions=True) response = await pergamum_renovacao_page(session) current_books = list(extract_books(await response.text())) for book, result in zip(renew_books, completed): if isinstance(result, Exception): logging.error(f"Falhar ao renovar livro {book.name}: {str(result)}") failed_books.append(book) elif book in current_books: logging.error(f"Falha ao renovar livro {book.name}: Estado do livro não foi alterado!") failed_books.append(book) try: logpath = f"~/bibnew-{book.cod_acervo}-{book.cod_exemplar}.html" Path(logpath).expanduser().write_text(await result.text()) except: logger.exception("failed to save HTML dump") else: renewed_books.append(book) if len(due_books) > 0: logging.info(f'Há {len(due_books)} livros vencidos, enviando email.') msg = 'Os seguintes livros passaram da data de renovação:\n' msg += list_books(due_books) coro = email_send('Livros vencidos!', msg) email_tasks.append(coro) if len(failed_books) > 0: logging.info(f'Há {len(failed_books)} livros falhados, enviando email.') msg = 'Os seguintes livros falharam a ser renovados:\n' msg += list_books(failed_books) msg += '\n\nPor favor informe ao administrador do bot.' coro = email_send('Livros falharam!', msg) email_tasks.append(coro) if len(renewed_books) > 0: logging.info(f'Um total de {len(renewed_books)} livros foram' f' renovados com sucesso.') on_limit = [b for b in renewed_books if b.renew_count+1 == BIB_MAX_RENEW] subject = ('Livros renovados, mas cuidado!' if on_limit else 'Livros renovados com sucesso.') msg = 'Os seguintes livros foram renovados:\n' msg += list_books(renewed_books) if on_limit: msg += ('\nNo entanto os seguintes livros não poderão ser renovados na' ' próxima semana! É necessário intervenção pessoal.\n') msg += list_books(on_limit) coro = email_send(subject, msg) email_tasks.append(coro) if len(email_tasks) == 0: logging.info(f'Foram encontrados {len(books)} livros mas nenhuma ação' f' precisa ser tomada.') await asyncio.gather(*email_tasks) if __name__ == '__main__': loop = asyncio.get_event_loop() try: loop.run_until_complete(main()) except Exception: logger.exception("Erro fatal") coro = email_send('Erro fatal no renovador de livros!', f'Por favor, informe ao administrador, um erro fatal ocorreu durante' f' o processo de verificação e renovação automatica de livros.') loop.run_until_complete(coro) finally: loop.close()
StarcoderdataPython
5034166
<reponame>harvard-nrg/mrverify<filename>mrverify/scanner/siemens/prisma.py import logging from mrverify.scanner.siemens import Siemens logger = logging.getLogger(__name__) class Prisma(Siemens): def __init__(self, config): super().__init__(config['Siemens']['Prisma']) @classmethod def check_model(cls, model): if model in ['Prisma', 'Prisma_fit']: return True return False
StarcoderdataPython
1979881
from selenium.webdriver import Chrome from bs4 import BeautifulSoup import csv from time import sleep import json driver = Chrome("chromedriver") allcatlist = ["https://www.noon.com/uae-en/electronics", "https://www.noon.com/uae-en/beauty", "https://www.noon.com/uae-en/fashion", "https://www.noon.com/uae-en/home-kitchen", "https://www.noon.com/uae-en/sports-outdoors", "https://www.noon.com/uae-en/toys", "https://www.noon.com/uae-en/baby", "https://www.noon.com/uae-en/grocery", "https://www.noon.com/uae-en/automotive-store", "https://www.noon.com/uae-en/tools-and-home-improvement-store", "https://www.noon.com/uae-en/book-store", "https://www.noon.com/uae-en/pet-store", "https://www.noon.com/uae-en/stationery", "https://www.noon.com/uae-en/music-movies-and-tv-shows-store"] urls_all = ["https://www.noon.com/uae-en/electronics-and-mobiles/mobiles-and-accessories/mobiles-20905", "https://www.noon.com/uae-en/electronics-and-mobiles/mobiles-and-accessories/accessories-16176", "https://www.noon.com/uae-en/electronics-and-mobiles/computers-and-accessories/tablets", "https://www.noon.com/uae-en/electronics-and-mobiles/computers-and-accessories/routers", "https://www.noon.com/uae-en/electronics-and-mobiles/computers-and-accessories/data-storage", "https://www.noon.com/uae-en/inputdevices", "https://www.noon.com/uae-en/electronics-and-mobiles/software-10182", "https://www.noon.com/uae-en/electronics-and-mobiles/computers-and-accessories/laptop-accessories/bags-and-cases-16607/sleeves-and-slipcases-23672", "https://www.noon.com/uae-en/laptops-best-selling-ae", "https://www.noon.com/uae-en/electronics-and-mobiles/portable-audio-and-video/headphones-24056", "https://www.noon.com/uae-en/all-speakers", "https://www.noon.com/uae-en/home-and-kitchen/home-appliances-31235", "https://www.noon.com/uae-en/electronics-and-mobiles/wearable-technology", "https://www.noon.com/uae-en/electronics-and-mobiles/camera-and-photo-16165", "https://www.noon.com/uae-en/electronics-and-mobiles/television-and-video/televisions", "https://www.noon.com/uae-en/electronics-and-mobiles/television-and-video/home-theater-systems-19095", "https://www.noon.com/uae-en/electronics-and-mobiles/television-and-video/projectors", "https://www.noon.com/uae-en/electronics-and-mobiles/accessories-and-supplies/audio-and-video-accessories-16161", "https://www.noon.com/uae-en/electronics-and-mobiles/video-games-10181/gaming-console", "https://www.noon.com/uae-en/electronics-and-mobiles/video-games-10181/games-34004", "https://www.noon.com/uae-en/electronics-and-mobiles/wearable-technology/virtual-reality-headsets/gaminghub", "https://www.noon.com/uae-en/electronics-and-mobiles/video-games-10181/gaming-accessories", "https://www.noon.com/uae-en/electronics-and-mobiles/portable-audio-and-video", "https://www.noon.com/uae-en/beauty-and-health/beauty/fragrance", "https://www.noon.com/uae-en/beauty-and-health/beauty/makeup-16142", "https://www.noon.com/uae-en/nails-20024", "https://www.noon.com/uae-en/beauty-and-health/beauty/hair-care", "https://www.noon.com/uae-en/beauty-and-health/beauty/skin-care-16813", "https://www.noon.com/uae-en/beauty-tools-and-accessories", "https://www.noon.com/uae-en/beauty-and-health/beauty/personal-care-16343", "https://www.noon.com/uae-en/mens-grooming", "https://www.noon.com/uae-en/beauty-and-health/health", "https://www.noon.com/uae-en/toys-and-games", "https://www.noon.com/uae-en/sports-and-outdoors/outdoor-recreation/camping-and-hiking-16354", "https://www.noon.com/uae-en/sports-and-outdoors/cycling-16009", "https://www.noon.com/uae-en/sports-and-outdoors/other-sports", "https://www.noon.com/uae-en/sports-and-outdoors/exercise-and-fitness/yoga-16328", "https://www.noon.com/uae-en/sports-and-outdoors/boating-and-water-sports", "https://www.noon.com/uae-en/sports-and-outdoors/racquet-sports-16542", "https://www.noon.com/uae-en/build-your-own-gym", "https://www.noon.com/uae-en/sports-and-outdoors/team-sports", "https://www.noon.com/uae-en/sports-and-outdoors/leisure-sports-and-games", "https://www.noon.com/uae-en/beauty-and-health/health/sports-nutrition", "https://www.noon.com/uae-en/automotive", "https://www.noon.com/uae-en/tools-and-home-improvement", "https://www.noon.com/uae-en/office-supplies", "https://www.noon.com/uae-en/books", "https://www.noon.com/uae-en/fashion/men-31225", "https://www.noon.com/uae-en/fashion/women-31229", "https://www.noon.com/uae-en/view-all-kids-clothing", "https://www.noon.com/uae-en/fashion/luggage-and-bags", "https://www.noon.com/uae-en/jewellery-store", "https://www.noon.com/uae-en/bau-watches-eyewear", "https://www.noon.com/uae-en/pet-supplies", "https://www.noon.com/uae-en/grocery-store?limit=150", "https://www.noon.com/uae-en/home-and-kitchen/bath-16182", "https://www.noon.com/uae-en/home-and-kitchen/bedding-16171", "https://www.noon.com/uae-en/home-and-kitchen/furniture-10180", "https://www.noon.com/uae-en/home-appliances", "https://www.noon.com/uae-en/home-and-kitchen/home-decor", "https://www.noon.com/uae-en/home-and-kitchen/household-supplies" "https://www.noon.com/uae-en/home-and-kitchen/kids-home-store", "https://www.noon.com/uae-en/home-and-kitchen/patio-lawn-and-garden", "https://www.noon.com/uae-en/home-and-kitchen/storage-and-organisation", "https://www.noon.com/uae-en/tools-and-home-improvement", "https://www.noon.com/uae-en/home-and-kitchen/kitchen-and-dining", "https://www.noon.com/uae-en/kitchenappliances", "https://www.noon.com/uae-en/baby-products" ] def GetAllValidProductUrl(): return urls_all def GetProductLinks(url, start, end): driver.get(url) Links = [] prev = '' for x in range(start, end): try: driver.get(url+'?page='+str(x)) if driver.current_url == prev: break else: prev = driver.current_url except: break soup = BeautifulSoup(driver.page_source, "html.parser") prodContainer = soup.find_all( 'div', attrs={'class': 'jsx-3152181095 productContainer'}) for x in prodContainer: link = 'https://www.noon.com'+x.find('a')['href'] Links.append(link) driver.close() return Links
StarcoderdataPython
8115670
# # @lc app=leetcode id=169 lang=python3 # # [169] Majority Element # # https://leetcode.com/problems/majority-element/description/ # # algorithms # Easy (55.16%) # Likes: 2284 # Dislikes: 192 # Total Accepted: 481.8K # Total Submissions: 871.2K # Testcase Example: '[3,2,3]' # # Given an array of size n, find the majority element. The majority element is # the element that appears more than ⌊ n/2 ⌋ times. # # You may assume that the array is non-empty and the majority element always # exist in the array. # # Example 1: # # # Input: [3,2,3] # Output: 3 # # Example 2: # # # Input: [2,2,1,1,1,2,2] # Output: 2 # # # # @lc code=start from typing import List class Solution: def majorityElement(self, nums: List[int]) -> int: return self.boyer_moore_voting_soln(nums) def boyer_moore_voting_soln(self, nums: List[int]) -> int: """ Boyer-Moore Voting solution Idea: Set candidate as +1, non-candidate as -1. Whenever count becomes 0, switch candidate greedily """ candidate = nums[0] count = 1 for i in range(1, len(nums)): if nums[i] == candidate: count += 1 else: count -= 1 if count == 0: candidate = nums[i] count = 1 return candidate def divide_conquer_soln(self, nums: List[int]) -> int: """ Divide and Conquer solution Runtime: O(nlogn) Space: O(logn) """ def helper(left: int, right: int) -> int: if left == right: return nums[left] mid = (right - left) // 2 + left left_maj = helper(left, mid) right_maj = helper(mid + 1, right) if left_maj == right_maj: return left_maj left_count = sum([1 for i in range(left, right + 1) if nums[i] == left_maj]) right_count = sum([1 for i in range(left, right + 1) if nums[i] == right_maj]) if left_count > right_count: return left_maj else: return right_maj return helper(0, len(nums) - 1) def randomized_soln(self, nums: List[int]) -> int: """ Randomized solution Runtime: O(INF) # average runtime O(1) Space: O(1) """ import random majority_count = len(nums)//2 while True: candidate = random.choice(nums) count = 0 for num in nums: if num == candidate: count += 1 if count > majority_count: return candidate def sort_soln(self, nums: List[int]) -> int: """ Sorting solution Runtime: O(nlogn) Space: O(1) """ sorted_nums = sorted(nums) majority_count = len(nums) // 2 for i in range(1, len(sorted_nums)): if sorted_nums[i] != sorted_nums[i - 1]: curr_count = 0 else: curr_count += 1 if curr_count > majority_count: return sorted_nums[i] return -1 def hashmap_soln(self, nums: List[int]) -> int: """ Hashmap solution Runtime: O(n) Space: O(n) """ majority_count = len(nums) // 2 counts = dict() for num in nums: if num not in counts: counts[num] = 1 else: counts[num] += 1 for num, count in counts.items(): if count > majority_count: return num # @lc code=end if __name__ == "__main__": print(Solution().majorityElement([3, 2, 3]), 3) print(Solution().majorityElement([2, 2, 1, 1, 1, 2, 2]), 2)
StarcoderdataPython
11268298
import json import re import subprocess import os from urllib.request import Request from urllib.request import urlopen from itertools import repeat def mock_log_handler(line): print(line) class DockerHelper: @staticmethod def pushed_tags(registry, repo): response = urlopen(f"https://{registry}/v1/repositories/{repo}/tags") raw = response.read().decode() data = json.loads(raw) return list(map(lambda x: str(x["name"]), data)) @staticmethod def decompose_image_id(image_id): print(image_id) project, tag = image_id.split(":") version = re.match(r'.+(\d+\.\d+\.\d+).+', tag).groups()[0] return (project, tag, version) @staticmethod def push_image(image): print(f"Pushing: {image}") for i in repeat(None, 3): if not subprocess.call(["docker", "push", image]): return 0 return -1 @staticmethod def rmi(image): subprocess.call(["docker", "rmi", "-f", image]) @staticmethod def tag(old, *new): for n in new: subprocess.call(["docker", "tag", old, n]) return @staticmethod def compile_image(source_folder, tag, args, log_file, no_cache = False, log_handler = None): args = args or {} log_handler = log_handler or mock_log_handler with open(log_file, "w") as f: cmd = ["docker", "build"] cmd += ["--no-cache"] if no_cache else [] cmd += ["-t", tag] cmd += [f"--build-arg={k}={v}" for k, v in args.items()] cmd += [source_folder] p = subprocess.Popen(cmd, stdout=subprocess.PIPE) while 42 < 1337: l = p.stdout.readline() if not l: break l = l.decode() f.write(l) f.flush() log_handler(l) p.communicate() return p.returncode return -1 class DockerRegistry: def __init__(self): pass def login(self): # usefull to access some Docker Hub functionality r = Request("https://hub.docker.com/v2/users/login/", json.dumps({ "username" : os.environ["DOCKER_HUB_USERNAME"], "password" : os.environ["DOCKER_HUB_PASSWORD"] }).encode(), {'Content-Type': 'application/json'} ) data = urlopen(r).read() data = data.decode() try: self.access_token = json.loads(data)["token"] print("Logged in!") except Exception as e: print("Wrong docker login data.", e) def update_description(self, repository, short_description, full_description): r = Request(f"https://hub.docker.com/v2/repositories/{repository}/", json.dumps({ "full_description" : full_description, "description" : short_description, }).encode(), headers=self.add_authorization_header({ 'Content-Type': 'application/json' }) ) r.get_method = lambda: "PATCH" data = urlopen(r).read() def get_auth_header(self, repository, headers=None): headers = headers if headers else {} r = Request(f"https://auth.docker.io/token?service=registry.docker.io&scope=repository:{repository}:pull") data = urlopen(r).read() headers["Authorization"] = "Bearer " + json.loads(data)["token"] return headers def get_manifest(self, repository, reference): r = Request( f"https://index.docker.io/v2/{repository}/manifests/{reference}", headers=self.get_auth_header(repository, { "Accept" : "application/vnd.docker.distribution.manifest.v2+json" }) ) data = None try: data = json.loads(urlopen(r).read()) except Exception as e: pass return data def get_digest(self, repository, reference): manifest = self.get_manifest(repository, reference) return manifest["config"]["digest"] if manifest else None def add_authorization_header(self, headers): headers["Authorization"] = "JWT " + self.access_token return headers def authorized(self): return self.access_token is not None
StarcoderdataPython
81379
<filename>scripts/convertDiagnoseTargets2Table.py __author__ = 'dan' import sys import argparse import csv import vcf import pybedtools import tabix from collections import defaultdict #Arguments and commenad line parsing parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', help="Input vcf file") parser.add_argument('-o', '--output', help="Output text file") parser.add_argument('-d', '--dict', help="Dictionary of Ensembl to Gene Names") parser.add_argument('-b', '--bed', help='BED file used with DiagnoseTargets') parser.add_argument('-s', '--samples', help='Samples to consider. Defaults to all samples, comma-separated list') args = parser.parse_args() #Set up sample details samples = args.samples.split(',') sample_header_list = "\t".join(samples) sys.stdout.write("Reading DiagnoseTargets file: %s\n" % args.input) targets_reader = vcf.Reader(open(args.input, 'r')) regions = defaultdict(lambda: defaultdict(lambda : defaultdict(str))) sys.stdout.write("Reading BED file: %s\n" % args.bed) with open(args.bed, 'rU') as csvfile: reader = csv.reader(csvfile, dialect='excel-tab') for row in reader: regions[row[0]][row[1]][row[2]] = row[3] sys.stdout.write("Reading Dictionary file: %s\n" % args.dict) gene_dict = dict() with open(args.dict, 'rU') as csvfile: reader = csv.reader(csvfile, dialect='excel-tab') for row in reader: gene_dict[row[0]] = row[1] with open(args.output, 'w') as out: for record in targets_reader: format_fields = record.FORMAT.split(':') info_fields = record.INFO.split(';') #If no Filter Type definition than all samples passed DiagnoseTargets #Filtering criteria, nothing to do if format_fields[0] == 'FT': #Format sample genotypes in to string genotypes = [] sample_coverage = dict() for sample in samples: sample_coverage[sample] = record.genotype(sample)['FT'] #Retrieve CCDS name info from CCDS BED file and format try: region_record = regions[record.CHROM][int(record.POS - 1)][int(record.INFO['END'])] except: sys.stderr.write("ERROR: Could not find match in regions dictionary for chrom %s, start %s, end %s\n" % (record.CHROM, record.POS, record.INFO['END'])) region_record = "NA"
StarcoderdataPython
6555148
#!/usr/bin/python # -*- coding: utf-8 -*- # DATE: 2021/8/17 # Author: <EMAIL> from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Optional, Type, NoReturn, Union, Callable Number: Type = Union[str, int] class Validator(ABC): def __set_name__(self, owner: object, name: str) -> NoReturn: self.private_name: str = '_' + name def __get__(self, obj: object, obj_type: Type = None) -> Any: return getattr(obj, self.private_name) def __set__(self, obj: object, value: Any) -> NoReturn: validate_value: Any = self.validate(value) value = value if validate_value is None else validate_value setattr(obj, self.private_name, value) @abstractmethod def validate(self, value: Any) -> Any: """ Validate method. """ class NumberValidate(Validator): def __init__(self, minvalue: Number = None, maxvalue: Number = None) -> None: self.minvalue: Number = minvalue self.maxvalue: Number = maxvalue def validate(self, value) -> NoReturn: if not isinstance(value, (int, float)): raise TypeError(f'Expected {value!r} to be an int or float') if self.minvalue is not None and value < self.minvalue: raise ValueError( f'Expected {value!r} to be at least {self.minvalue!r}' ) if self.maxvalue is not None and value > self.maxvalue: raise ValueError( f'Expected {value!r} to be no more than {self.maxvalue!r}' ) class StringValidate(Validator): def __init__( self, minsize: int = None, maxsize: int = None, predicate: Optional[Callable] = None ) -> None: self.minsize: int = minsize self.maxsize: int = maxsize self.predicate: Optional[Callable] = predicate def validate(self, value: str) -> NoReturn: if not isinstance(value, str): raise TypeError(f'Expected {value!r} to be an str') if self.minsize is not None and len(value) < self.minsize: raise ValueError( f'Expected {value!r} to be no smaller than {self.minsize!r}' ) if self.maxsize is not None and len(value) > self.maxsize: raise ValueError( f'Expected {value!r} to be no bigger than {self.maxsize!r}' ) if self.predicate is not None and not self.predicate(value): raise ValueError( f'Expected {self.predicate} to be true for {value!r}' ) class EnumerateValidate(Validator): def __init__(self, *options: str) -> None: self.options: set = set(options) def validate(self, value: Any) -> NoReturn: if value not in self.options: raise ValueError(f'Expected {value!r} to be one of {self.options!r}') class DirectoryValidate(Validator): def validate(self, directory: Any) -> Optional[Path]: if not isinstance(directory, (str, Path)): raise ValueError(f'Expected {directory!r} to be a like-path object') path: Path = Path(directory).expanduser().absolute() if not path.exists(): path.mkdir() return path return path
StarcoderdataPython
38548
# -*- coding: utf-8 -*- import sys import time import json import pickle import hashlib import requests from urlparse import urljoin from config import * from spiders.common import * from spiders.html_parser import * from logs.log import logger reload(sys) sys.setdefaultencoding('utf8') class Spider(object): def __init__(self, user_name=None, password=<PASSWORD>): self.session = requests.Session() self.uid = None self.user_name = user_name self.password = password def get_hash(self, string): m = hashlib.md5() m.update(string) return m.hexdigest() def _request(self, url, params={}): # 应该使用统一的request函数去请求,此处待重构 try: response = self.session.get(url, headers=FOLLOWER_HEADER, params=params, timeout=10) return response except requests.ConnectionError, requests.ConnectTimeout: logger.error('%s请求超时') def visit_index(self): self.session.get(BASE_URL, headers=BASE_HEADER) def login(self): url = urljoin(BASE_URL, LOGIN_URL) if self.check_login(): logger.info('已经登录') return data = { 'areacode': 86, 'remember_me': 'on', 'username': self.user_name, 'password': self.get_<PASSWORD>(self.password), } if if_int(self.user_name): data['telephone'] = data.pop('username') response = self.session.post(url, headers=BASE_HEADER, data=data) logger.debug(response.content) if self.check_login(): logger.info('登录成功') self.get_people_id('8276760920') self.save_cookies() return raise ValueError('登录失败') def save_cookies(self): result = self.load_data() with open('spiders/.session', 'wb') as f: cookies = requests.utils.dict_from_cookiejar(self.session.cookies) data = { 'cookies': cookies, 'uid': self.uid, 'user_name': self.user_name, } result[self.user_name] = data pickle.dump(result, f) @classmethod def clear_cookies(cls): with open('spiders/.session', 'wb') as f: pickle.dump({}, f) def load_data(self): with open('spiders/.session') as f: try: return pickle.load(f) except EOFError: return {} def load_cookies(self): with open('spiders/.session') as f: try: data = pickle.load(f) except EOFError: return {} result = data.get(self.user_name) if not result: logger.info("账户未登录") return {} self.uid = result['uid'] cookies = result['cookies'] return cookies def check_login(self, load_cookie=True): if load_cookie: cookies = self.load_cookies() response = self.session.get(BASE_URL, headers=BASE_HEADER, cookies=cookies, allow_redirects=False) else: response = self.session.get(BASE_URL, headers=BASE_HEADER, allow_redirects=False) if response.status_code == 302: if self.uid is not None: return True location = response.headers['Location'] uid = get_uid_from_url(location) if uid: self.uid = uid return True else: logger.error(u"从跳转链接解析uid出错了") return False def get_people(self): url = urljoin(BASE_URL, PEOPLE_URL) respond = self.session.get(url, headers=BASE_HEADER) result = get_people(respond.content) logger.info('抓取了%s个大V' % len(result)) return result def get_people_id(self, path): url = urljoin(BASE_URL, path) respond = self.session.get(url, headers=BASE_HEADER) if respond.status_code == 200: uid = get_people_id(respond.content) return uid else: logger.error(u'抓取’%s‘用户的id失败' % path) def get_followers(self, uid): size = 1000 url = urljoin(BASE_URL, FOLLOWERS_URL) params = { 'size': size, 'pageNo': 1, 'uid': uid, '_': int(time.time() * 1000) } respond = self._request(url, params=params) if not respond: return [] data = respond.json() max_page = data.get('maxPage') if not max_page: logger.error("获取粉丝失败") logger.error(data) raise ValueError("获取粉丝失败") result = data['followers'] for page in range(1, max_page): time.sleep(FOLLOWER_PAGE_INTEVAL) logger.info('开始抓取第%s页的粉丝' % page) params['pageNo'] = page params['_'] = int(time.time() * 1000) respond = self._request(url, params=params) if not respond: continue data = respond.json() result += data['followers'] return self.handle_followers(result) def handle_followers(self, data): return [(_['id'], _['screen_name']) for _ in data] def get_chat_sequence_id(self, uid): url = CHAT_HISTORY_URL % uid params = { 'user_id': self.uid, 'limit': 30, '_': int(time.time() * 1000) } cookies = self.load_cookies() respond = self.session.get(url, headers=CHAT_HEADER, params=params, cookies=cookies) if respond.status_code == 200: data = respond.json() if len(data) > 1: return data[-1]['sequenceId'] else: return 96878141 logger.error('获得聊天id失败') logger.error(respond.content) return False def chat(self, uid, msg): sequenceId = self.get_chat_sequence_id(uid) if not sequenceId: return False data = { 'plain': msg, 'to_group': False, 'toId': uid, 'sequenceId': sequenceId + 1 } params = {'user_id': self.uid} cookies = self.load_cookies() respond = self.session.post(CHAT_URL, headers=CHAT_HEADER, cookies=cookies, params=params, data=json.dumps(data)) if respond.status_code == 200: result = respond.json() error = result.get('error') if error: print '发送消息出错了' logger.debug(respond.content) raise ValueError(error.encode('utf8')) return True logger.debug(respond.status_code) logger.debug(respond.content) return False def post(self, msg, audience=[]): p = {"api": "/statuses/update.json", "_": int(time.time() * 1000)} cookie = self.load_cookies() url = urljoin(BASE_URL, TOKEN_URL) r = self.session.get(url, params=p, cookies=cookie, headers=BASE_HEADER) try: token = r.json()['token'] except (IndexError, TypeError, ValueError): logger.error("MLGB 出错了!") logger.error("\n%s\n", r.text) return audience = ' @'.join(audience) audience = ' @' + audience.strip() msg = '%s %s' % (msg, audience) logger.info('发送的内容是: %s' % msg) msg = msg.encode().decode() data = {"status": "<p>%s</p>" % msg, "session_token": token} url = urljoin(BASE_URL, POST_URL) r = self.session.post(url, data=data, cookies=cookie, headers=BASE_HEADER) if r.status_code == 200: data = r.json() if not data.get('error_code') > -1: logger.debug("完事儿了.") return logger.error("MLGB 又出错了!") logger.error("\n%s\n", r.text) raise ValueError('发广播出错了') def if_int(item): try: int(item) except ValueError: return False return True
StarcoderdataPython
3257412
#!/usr/bin/python3 # SPDX-License-Identifier: Unlicense import os.path import sys import inspect import datetime template_cfg=None replacements={} filters={} shortline=0 shortname='<file>' fullname='<file>' activeoutname='<Out>' activeoutline=0 activedatetime=str(datetime.datetime.now().timestamp()) iserr=False def get_active_input_file(): return fullname def get_active_output_file(): return activeoutname def get_active_output_line(): return activeoutline def get_active_timestamp(): return activedatetime replacements['__INPUT__'] = get_active_input_file replacements['__FILE__'] = get_active_output_file replacements['__LINE__'] = get_active_output_line replacements['__DATE__'] = get_active_timestamp def filter_identifier_only(s): out = '' for ch in s: if ch.isalnum() or ch == '_': out += ch return out def filter_spaceline(s): out = '' for ch in s: if ch.isalnum(): out += ch elif ch.isspace() or ch == '_': out += '_' return out def filter_alnum_only(s): out = '' for ch in s: if ch.isalnum(): out += ch return out def filter_alnumspace_only(s): out = '' for ch in s: if ch.isalnum() or ch.isspace(): out += ch return out def filter_pathslash(s): return os.path.join(s,'') def filter_splitext_0(s): return os.path.splitext(s)[0] def filter_splitext_1(s): return os.path.splitext(s)[1] def filter_repr(s): """Use repr(...) on the given string.""" return repr(s) def filter_replace(s,old=None,new=None,count=None): xcount = None if count: try: xcount = int(count) except ValueError as e: xcount = None return s.replace(old,new,xcount) def filter_slice(s,start=None,stop=None,step=None): """slice(s,start=0,stop=-1,step=1) -> str Extract a slice of the given string, from start to stop, taking every step characters.""" xstart = None xstop = None xstep = None if start: try: xstart = int(start) except ValueError as e: xstart = 0 if stop: try: xstop = int(stop) except ValueError as e: xstop = -1 if step: try: xstep = int(step) except ValueError as e: xstep = 1 return s[slice(xstart,xstop,xstep)] def filter_dropchars(s,chars=None): xchars = str(chars) out = '' for x in s: if x in xchars: continue else: out += x return out def filter_onlychars(s,chars=None): xchars = str(chars) out = '' for x in s: if x in xchars: out += x else: continue return out def filter_insertchars(s,chars=None,space=' '): """insertchars(s,chars=None,space=' ') -> str Insert space before each occurence of a character in chars.""" xchars = str(chars) out = '' for x in s: if x in xchars: out += space out += x return out def filter_upper_only(s): out = '' for x in s: if x.isupper(): out += x return out def filter_lower_only(s): out = '' for x in s: if x.islower(): out += x return out def filter_help(s): """Get help on the filter of the given name.""" global filters if s in filters: out = inspect.getdoc(filters[s]) elif len(s) == 0: out = str('\n').join(filters.keys()) else: out = None return str(out) if out else '' def filter_date(s, f=None): """date(s, f=None) -> str Generate a strftime-style string based on the given timestamp number (use `__DATE__` for "today and now"), using `f` as the format.""" ts = datetime.datetime.fromtimestamp(float(s)) return ts.strftime(f if f else '%c') filters['date'] = filter_date filters['help'] = filter_help filters['onlychars'] = filter_onlychars filters['lower_only'] = filter_lower_only filters['upper_only'] = filter_upper_only filters['insertchars'] = filter_insertchars filters['dropchars'] = filter_dropchars filters['slice'] = filter_slice filters['replace'] = filter_replace filters['pathslash'] = filter_pathslash filters['basename'] = os.path.basename filters['abspath'] = os.path.abspath filters['dirname'] = os.path.dirname filters['expanduser'] = os.path.expanduser filters['expandvars'] = os.path.expandvars filters['normcase'] = os.path.normcase filters['normpath'] = os.path.normpath filters['realpath'] = os.path.realpath filters['splitext_0'] = filter_splitext_0 filters['splitext_1'] = filter_splitext_1 filters['identifier_only'] = filter_identifier_only filters['spaceline'] = filter_spaceline filters['alnum_only'] = filter_alnum_only filters['alnumspace_only'] = filter_alnumspace_only filters['repr'] = filter_repr filters['lower'] = str.lower filters['upper'] = str.upper filters['strip'] = str.strip filters['capitalize'] = str.capitalize filters['casefold'] = str.casefold filters['lstrip'] = str.lstrip filters['rstrip'] = str.rstrip filters['swapcase'] = str.swapcase filters['title'] = str.title def warn(message): print('%s:%i: warning: %s'%(shortname,shortline,message),file=sys.stderr) return def err(message): global iserr iserr=True print('%s:%i: error: %s'%(shortname,shortline,message),file=sys.stderr) return class FilterRef: def __init__(self, name, kwvals=None): self.name = name self.kwargs = kwvals if kwvals else {} def string_subst(s): global replacements global filters global current_line out = '' l = len(s) mode = 0 varname = None varfilter = None nextfilter = None nextkwlist = None nextkw = '' nextkwval = '' parencount = 0 j = 0 def lookup_var(varname): if varname and (varname in replacements): varx = replacements[varname] if hasattr(varx,'__call__'): varvalue = str(varx()) else: varvalue = str(varx) elif varname: warn('unknown variable %s'%repr(varname)) varvalue = '' else: warn('substitution without variable name') varvalue = '' return varvalue def post_to_out(): # https://stackoverflow.com/a/11987499 nonlocal varname, varfilter, nextfilter, out, nextkwlist varvalue = lookup_var(varname) if varfilter: for f in varfilter: if f.name in filters: try: varvalue = filters[f.name](varvalue, **f.kwargs) except TypeError as e: warn(e) warn('...while using filter %s'%repr(f.name)) except ValueError as e: warn(e) warn('...while using filter %s'%repr(f.name)) elif f.name: warn('skipping unknown filter %s'%repr(f.name)) else: warn('skipping empty filter expression') out += varvalue varname = None varfilter = None nextfilter = None nextkwlist = None return for ch in s: if mode == 0: #normal copy if (ch == '$'): mode = 1 else: out += ch elif mode == 1: #substitute? if (ch == '{'): #substitute! mode = 3 varname = '' elif (ch == '$'): #literal $ mode = 0 out += '$' elif (ch == '#'): #comment mode = 2 else: mode = 0 warn('unexpected char %s after "$"'%(repr(ch))) elif mode == 2: #comment if (ch == '#'): #end comment mode = 0 else: pass elif mode == 3: #varname if (ch == ':'): #on to filters mode = 4 varfilter = [] nextfilter = '' elif ch == '}': mode = 0 post_to_out() else: varname += ch elif mode == 4 or mode == 5: #filter if (ch == ':'): #on to next filter varfilter.append(FilterRef(nextfilter,nextkwlist)) mode = 4 nextfilter = '' nextkwlist = None elif ch == '}': varfilter.append(FilterRef(nextfilter,nextkwlist)) mode = 0 post_to_out() elif mode == 4 and ch == '(': mode = 6 #start the arglist nextkwlist = {} nextkw = '' elif mode == 5: warn('unexpected char %s after ")"'%(repr(ch))) else: nextfilter += ch elif mode == 6: #keyword argument name if parencount == 0 and ch == ')' or ch == ',': #pack up the keyword if nextkw: nextkwlist[nextkw] = None if ch == ')': mode = 5 else: nextkw = '' elif ch == '=': nextkwval = '' mode = 7 else: if ch == '(': parencount += 1 elif ch == ')': parencount -= 1 nextkw += ch elif mode == 7: #keyword argument value if parencount == 0 and ch == ')' or ch == ',': #parse the keyword value if len(nextkwval) > 0 and nextkwval[0].isdigit(): try: nextkwlist[nextkw] = str(int(nextkwval,0)) except ValueError as e: warn(str(e)) nextkwlist[nextkw] = str(0) else: #assert a variable name nextkwlist[nextkw] = lookup_var(nextkwval) #pack up the keyword if ch == ')': mode = 5 else: mode = 6 nextkw = '' else: if ch == '(': parencount += 1 elif ch == ')': parencount -= 1 nextkwval += ch else: warn('unexpected subst machine state %s'%repr(mode)) break if mode != 0: if (mode in [3,4]): warn('unterminated replacement') elif (mode == 2): warn('unterminated comment') return out class FileHeader: def __init__(self,s=None): if s: self.parse(s) else: self.fname = None self.stoptoken = None return def parse(self,s): mode = 0 fname = None token = None stoptoken = None if s[0] != '>': raise ValueError('mktemplate.FileHeader.parse') for ch in s[1:]: if mode == 0: if ch == '"': #filename mode = 1 fname = '' elif ch == '<': token = ch mode = 3 elif ch.isspace(): continue else: warn("unexpected file header character %s"%repr(ch)) elif mode == 1: if ch == '\\': #escape mode = 2 elif ch == '"': #next part mode = 0 else: fname += ch elif mode == 2: fname += ch mode = 1 elif mode == 3: if ch.isspace(): #inspect if token == '<<<': #stop token next mode = 4 stoptoken = '' elif len(token) > 3 and token[0:3] == '<<<': mode = 0 stoptoken = token[3:] else: warn("unexpected file header token %s"%repr(token)) token = None mode = 0 else: token += ch elif mode == 4: if ch.isspace(): if len(stoptoken): mode = 0 else: stoptoken += ch else: warn('unexpected file header machine state %s'%repr(mode)) break self.fname = string_subst(fname) if fname else fname self.stoptoken = stoptoken self.cmnt = False return class VarHeader: def __init__(self,s=None): if s: self.parse(s) else: self.varname = None self.rtext = None return def parse(self,s): mode = 0 rtext = None varname = None isreq = False if s[0] not in '!=': raise ValueError('mktemplate.VarHeader.parse') elif s[0] == '!': isreq = True for ch in s[1:]: if mode == 0: if ch == '"': #text mode = 1 rtext = '' elif ch.isalnum() or ch == '_': varname = ch mode = 3 elif ch.isspace(): continue else: warn("unexpected variable header character %s"%repr(ch)) elif mode == 1: if ch == '\\': #escape mode = 2 elif ch == '"': #next part mode = 0 else: rtext += ch elif mode == 2: rtext += ch mode = 1 elif mode == 3: if ch.isspace(): mode = 0 elif ch.isalnum() or ch == '_': varname += ch else: warn("unexpected variable header token %s"%repr(token)) mode = 0 else: warn('unexpected variable header machine state %s'%repr(mode)) break self.varname = varname self.rtext = string_subst(rtext) if rtext else rtext self.isreq = isreq return if __name__ == '__main__': def main(argc, argv): # parse args global replacements argi = 1 want_help = False fname = None while argi < argc: if argv[argi] == '-?': want_help = True break elif argv[argi] == '-D': argi += 1 if argi < argc: varname = argv[argi] argi += 1 if argi < argc: replacements[varname] = argv[argi] else: err('incomplete "-D" option') else: fname = argv[argi] argi += 1 if want_help or not fname: print('''mktemplate.py: generate files from template usage: python3 mktemplate.py [options] (template_file) options: -D (name) (value) Add a variable named (name) with string (value) to the list of replacement variables. syntax (outside of string): # ... comment =var "...string..." assign a (possibly expanded) string to a variable name !var request a variable from the user >"filename" <<<END_MARKER begin a string of output to a file (or to `stdout` if filename is missing). output ends with the END_MARKER on a line by itself. (note that filename is also a string.) syntax (inside a string): text...text literal text output ${var} output the latest string stored in `var` ${var:filter1:filter2:...} output the string of `var` with filters applied to it ${var:filter(key=value):...} give a key-value argument to a filter. value can be either an integer or a variable name. (to pass a string as a key-value argument, use a variable.) use the `help` filter to get information on the available filters: =filter_name "upper" =empty "" > <<<EOF Help text for the "upper" filter: ${filter_name:help} List of all filters: ${empty:help} EOF ''',file=sys.stderr) return 1 if fname != '-': try: f = open(fname,'rt') except IOError as e: print(e, file=sys.stderr) return 1 else: f = sys.stdin global fullname, shortname, shortline, activeoutline, activeoutname global iserr fullname=fname shortname=os.path.basename(fname) activeoutname='' activeoutline=0 shortline=0 shortstop=None mode=0 g_to_close = False g = None g_usable = False done = False while not done: ln = f.readline() shortline += 1 activeoutline += 1 if not ln: done = True break elif mode == 0: if ln[0] == '#': #comment pass elif ln[0] in '=!': #require a variable vh = VarHeader(ln) if not vh.varname: err('variable line missing variable name') elif vh.isreq: if vh.varname not in replacements: err('missing definition for required variable %s'%repr(vh.varname)) break elif vh.rtext is not None: replacements[vh.varname] = vh.rtext else: del replacements[vh.varname] elif ln[0] == '>': #output file fh = FileHeader(ln) if fh.fname: try: g = open(fh.fname, 'wt') g_usable = True g_to_close = True except IOError as e: print(e, file=sys.stderr) warn('skipping file %s'%repr(fh.fname)) g_usable = False g_to_close = False activeoutname = fh.fname else: g = sys.stdout g_usable = True g_to_close = False activeoutname = '<stdout>' shortstop = fh.stoptoken mode = 1 activeoutline = 0 elif mode == 1: #in a file if shortstop and len(ln) <= len(shortstop)+2 \ and ln.rstrip() == shortstop: mode = 0 if g_to_close: g.close() g = None g_usable = False g_to_close = False elif g_usable: g.write(string_subst(ln)) else: pass f.close() return 1 if iserr else 0 res = main(len(sys.argv), sys.argv) exit(int(res))
StarcoderdataPython
3221798
# # Author: <NAME> (<EMAIL>) 2017 # #__author__ = "<NAME>" #__copyright__ = "Copyright 2017, <NAME>" #__credits__ = ["<NAME>"] #__license__ = "Apache" #__version__ = "1.0.0" #__maintainer__ = "<NAME>" #__email__ = "<EMAIL>" #__status__ = "Production" from __future__ import division #import direct.directbase.DirectStart from pandac.PandaModules import * import sys, os # Three Axis Coordinate Plane Grid Class (ThreeAxisGrid) # <NAME> AKA 'Forklift', August 2008 # '<EMAIL>' # # The grid can be created with any number of axis planes in mind. # Simply set size values for the planes you wish to use. Sizes of # zero will be ignored. By default, you can create single and three # plane setups. Use plane visibility to disable any planes you don't # need to acheive a 2 plane setup. # # To create a grid, first create an instance of this class. Then call # its 'create' method to create the grid based on the class member # variables. 'create' will return a NodePath instance that must be # parented to 'render' in order to acheive visibility. Once the grid # is created, its settings cannot be changed as the 'create' method # generates the geometry procedurally using Panda's LineSeg class. # If another grid or a different grid is needed, create a new # instance of the ThreeAxisGrid class and setup as described above. # # A 'refresh' method is planned for a future version. This method # would allow you to change a ThreeAxisGrid instance's settings, # then recreate the geometry without changing the # parentNodePath of the instance. # # ThreeAxisGrid class member variables are as follows: # 'xsize' is the x axis length in units of the grid # 'ysize' is the y axis length in units of the grid # 'zsize' is the z axis lenght in units of the grid # 'gridstep' is the spacing in units at which primary grid lines # will be drawn # 'subdiv' is the number used to subdivide the main (gridstep based) # grid lines for drawing secondary grid lines example: if the # primary grid lines are drawn every 10 units, and subdivision # is set at 4, then secondary grid lines will be drawn # every 2.5 units # 'XYPlaneShow' and so forth: used to disable a plane with the # creation of 2 plane grids in mind. 1 is on, 0 is off. # 'endCapLinesShow' is used to turn grid border edges on or off. # 1 is on, 0 is off. # 'xaxiscolor' and so forth: axis colors are defaulted to the # Maya standard axis colors # 'gridcolor' is the RGB color of the primary grid lines, # defaulted to black # 'subdivcolor' is the RGB color of the secondary grid lines, # defaulted to dark gray # 'axisThickness' and so forth: sets the thickness of the # respective component's lines # 'parentNode' and 'parentNodePath' are used to contain # the three LineSeg instance nodes and paths class ThreeAxisGrid: def __init__(self, xsize=50, ysize=50, zsize=50, gridstep=10, subdiv=10): # Init passed variables self.XSize = xsize self.YSize = ysize self.ZSize = zsize self.gridStep = gridstep self.subdiv = subdiv # Init default variables # Plane and end cap line visibility (1 is show, 0 is hide) self.XYPlaneShow = 1 self.XZPlaneShow = 1 self.YZPlaneShow = 1 self.endCapLinesShow = 1 # Alpha variables for each plane #self.XYPlaneAlpha = 0.1 #self.XZPlaneAlpha = 0.1 #self.YZPlaneAlpha = 0.1 # Colors (RGBA passed as a VBase4 object) self.XAxisColor = VBase4(1, 0, 0, 1) self.YAxisColor = VBase4(0, 1, 0, 1) self.ZAxisColor = VBase4(0, 0, 1, 1) self.gridColor = (1, 1, 1, 0.3) self.subdivColor = VBase4(.35, .35, .35, 0.1) # Line thicknesses (in pixels) self.axisThickness = 1 self.gridThickness = 1 self.subdivThickness = 1 # Axis, grid, and subdiv lines must be seperate LineSeg # objects in order to allow different thicknesses. # The parentNode groups them together for convenience. # All may be accessed individually if necessary. self.parentNode = None self.parentNodePath = None self.axisLinesNode = None self.axisLinesNodePath = None self.gridLinesNode = None self.gridLinesNodePath = None self.subdivLinesNode = None self.subdivLinesNodePath = None # Create line objects self.axisLines = LineSegs() self.subdivLines = LineSegs() self.gridLinesXYTop = LineSegs() self.gridLinesXYBottom = LineSegs() self.gridLinesXZFront = LineSegs() self.gridLinesXZBack = LineSegs() self.gridLinesYZLeft = LineSegs() self.gridLinesYZRight = LineSegs() self.gridLinesNodePathXYTop = None self.gridLinesNodePathXYBottom = None self.gridLinesNodePathXZFront = None self.gridLinesNodePathXZBack = None self.gridLinesNodePathYZLeft = None self.gridLinesNodePathYZRight = None self.gridLines = [self.gridLinesXYTop, self.gridLinesXYBottom, self.gridLinesXZFront, self.gridLinesXZBack, self.gridLinesYZLeft, self.gridLinesYZRight] def create(self): # Set line thicknesses self.axisLines.setThickness(self.axisThickness) self.subdivLines.setThickness(self.subdivThickness) self.gridLinesXYTop.setThickness(self.gridThickness) self.gridLinesXYBottom.setThickness(self.gridThickness) self.gridLinesXZFront.setThickness(self.gridThickness) self.gridLinesXZBack.setThickness(self.gridThickness) self.gridLinesYZLeft.setThickness(self.gridThickness) self.gridLinesYZRight.setThickness(self.gridThickness) if (self.XSize != 0): # Draw X axis line self.axisLines.setColor(self.XAxisColor) self.axisLines.moveTo(-(self.XSize), -self.YSize, -self.ZSize) self.axisLines.drawTo(self.XSize, -self.YSize, -self.ZSize) if (self.YSize != 0): # Draw Y axis line self.axisLines.setColor(self.YAxisColor) self.axisLines.moveTo(-self.XSize, -self.YSize, -self.ZSize) self.axisLines.drawTo(-self.XSize, self.YSize, -self.ZSize) if (self.ZSize != 0): # Draw Z axis line self.axisLines.setColor(self.ZAxisColor) self.axisLines.moveTo(-self.XSize, -self.YSize, -self.ZSize) self.axisLines.drawTo(-self.XSize, -self.YSize, self.ZSize) # Check to see if primary grid lines should be drawn at all if (self.gridStep != 0): # Draw primary grid lines self.gridLinesXYTop.setColor(self.gridColor) self.gridLinesXYBottom.setColor(self.gridColor) self.gridLinesXZFront.setColor(self.gridColor) self.gridLinesXZBack.setColor(self.gridColor) self.gridLinesYZLeft.setColor(self.gridColor) self.gridLinesYZRight.setColor(self.gridColor) # Draw primary grid lines metering x axis if any x-length if (self.XSize != 0): if ((self.YSize != 0) and (self.XYPlaneShow != 0)): # Draw y lines across x axis starting from center moving out # XY Plane for x in self.myfrange(0, self.XSize, self.gridStep): self.gridLinesXYBottom.moveTo(x, -self.YSize, -self.ZSize) self.gridLinesXYBottom.drawTo(x, self.YSize, -self.ZSize) self.gridLinesXYBottom.moveTo(-x, -self.YSize, -self.ZSize) self.gridLinesXYBottom.drawTo(-x, self.YSize, -self.ZSize) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesXYBottom.moveTo(self.XSize, -self.YSize, -self.ZSize) self.gridLinesXYBottom.drawTo(self.XSize, self.YSize, -self.ZSize) self.gridLinesXYBottom.moveTo(-self.XSize, -self.YSize, -self.ZSize) self.gridLinesXYBottom.drawTo(-self.XSize, self.YSize, -self.ZSize) # Draw y lines across x axis starting from center moving out # XY Plane (TOP) for x in self.myfrange(0, self.XSize, self.gridStep): self.gridLinesXYTop.moveTo(x, -self.YSize, self.ZSize) self.gridLinesXYTop.drawTo(x, self.YSize, self.ZSize) self.gridLinesXYTop.moveTo(-x, -self.YSize, self.ZSize) self.gridLinesXYTop.drawTo(-x, self.YSize, self.ZSize) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesXYTop.moveTo(self.XSize, -self.YSize, self.ZSize) self.gridLinesXYTop.drawTo(self.XSize, self.YSize, self.ZSize) self.gridLinesXYTop.moveTo(-self.XSize, -self.YSize, self.ZSize) self.gridLinesXYTop.drawTo(-self.XSize, self.YSize, self.ZSize) if ((self.ZSize != 0) and (self.XZPlaneShow != 0)): # Draw z lines across x axis starting from center moving out # XZ Plane for x in self.myfrange(0, self.XSize, self.gridStep): self.gridLinesXZBack.moveTo(x, self.YSize, -(self.ZSize)) self.gridLinesXZBack.drawTo(x, self.YSize, self.ZSize) self.gridLinesXZBack.moveTo(-x, self.YSize, -(self.ZSize)) self.gridLinesXZBack.drawTo(-x, self.YSize, self.ZSize) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesXZBack.moveTo(self.XSize, self.YSize, -self.ZSize) self.gridLinesXZBack.drawTo(self.XSize, self.YSize, self.ZSize) self.gridLinesXZBack.moveTo(-self.XSize, self.YSize, -self.ZSize) self.gridLinesXZBack.drawTo(-self.XSize, self.YSize, self.ZSize) # Draw z lines across x axis starting from center moving out # XZ Plane (FRONT) for x in self.myfrange(0, self.XSize, self.gridStep): self.gridLinesXZFront.moveTo(x, -self.YSize, -(self.ZSize)) self.gridLinesXZFront.drawTo(x, -self.YSize, self.ZSize) self.gridLinesXZFront.moveTo(-x, -self.YSize, -(self.ZSize)) self.gridLinesXZFront.drawTo(-x, -self.YSize, self.ZSize) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesXZFront.moveTo(self.XSize, -self.YSize, -self.ZSize) self.gridLinesXZFront.drawTo(self.XSize, -self.YSize, self.ZSize) self.gridLinesXZFront.moveTo(-self.XSize, -self.YSize, -self.ZSize) self.gridLinesXZFront.drawTo(-self.XSize, -self.YSize, self.ZSize) # Draw primary grid lines metering y axis if any y-length if (self.YSize != 0): if ((self.YSize != 0) and (self.XYPlaneShow != 0)): # Draw x lines across y axis # XY Plane for y in self.myfrange(0, self.YSize, self.gridStep): self.gridLinesXYBottom.moveTo(-self.XSize, y, -self.ZSize) self.gridLinesXYBottom.drawTo(self.XSize, y, -self.ZSize) self.gridLinesXYBottom.moveTo(-self.XSize, -y, -self.ZSize) self.gridLinesXYBottom.drawTo(self.XSize, -y, -self.ZSize) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesXYBottom.moveTo(-(self.XSize), self.YSize, -self.ZSize) self.gridLinesXYBottom.drawTo(self.XSize, self.YSize, -self.ZSize) self.gridLinesXYBottom.moveTo(-self.XSize, -(self.YSize), -self.ZSize) self.gridLinesXYBottom.drawTo(self.XSize, -(self.YSize), -self.ZSize) # Draw x lines across y axis # XY Plane (TOP) for y in self.myfrange(0, self.YSize, self.gridStep): self.gridLinesXYTop.moveTo(-self.XSize, y, self.ZSize) self.gridLinesXYTop.drawTo(self.XSize, y, self.ZSize) self.gridLinesXYTop.moveTo(-self.XSize, -y, self.ZSize) self.gridLinesXYTop.drawTo(self.XSize, -y, self.ZSize) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesXYTop.moveTo(-(self.XSize), self.YSize, self.ZSize) self.gridLinesXYTop.drawTo(self.XSize, self.YSize, self.ZSize) self.gridLinesXYTop.moveTo(-self.XSize, -(self.YSize), self.ZSize) self.gridLinesXYTop.drawTo(self.XSize, -(self.YSize), self.ZSize) if ((self.ZSize != 0) and (self.YZPlaneShow != 0)): # Draw z lines across y axis # YZ Plane for y in self.myfrange(0, self.YSize, self.gridStep): self.gridLinesYZLeft.moveTo(-self.XSize, y, -(self.ZSize)) self.gridLinesYZLeft.drawTo(-self.XSize, y, self.ZSize) self.gridLinesYZLeft.moveTo(-self.XSize, -y, -self.ZSize) self.gridLinesYZLeft.drawTo(-self.XSize, -y, self.ZSize) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesYZLeft.moveTo(-self.XSize, self.YSize, -(self.ZSize)) self.gridLinesYZLeft.drawTo(-self.XSize, self.YSize, self.ZSize) self.gridLinesYZLeft.moveTo(-self.XSize, -(self.YSize), -(self.ZSize)) self.gridLinesYZLeft.drawTo(-self.XSize, -(self.YSize), self.ZSize) # Draw z lines across y axis # YZ Plane (RIGHT) for y in self.myfrange(0, self.YSize, self.gridStep): self.gridLinesYZRight.moveTo(self.XSize, y, -self.ZSize) self.gridLinesYZRight.drawTo(self.XSize, y, self.ZSize) self.gridLinesYZRight.moveTo(self.XSize, -y, -self.ZSize) self.gridLinesYZRight.drawTo(self.XSize, -y, self.ZSize) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesYZRight.moveTo(self.XSize, self.YSize, -self.ZSize) self.gridLinesYZRight.drawTo(self.XSize, self.YSize, self.ZSize) self.gridLinesYZRight.moveTo(self.XSize, -(self.YSize), -(self.ZSize)) self.gridLinesYZRight.drawTo(self.XSize, -(self.YSize), self.ZSize) # Draw primary grid lines metering z axis if any z-length if (self.ZSize != 0): if ((self.XSize != 0) and (self.XZPlaneShow != 0)): # Draw x lines across z axis # XZ Plane for z in self.myfrange(0, self.ZSize, self.gridStep): self.gridLinesXZBack.moveTo(-(self.XSize), self.YSize, z) self.gridLinesXZBack.drawTo(self.XSize, self.YSize, z) self.gridLinesXZBack.moveTo(-(self.XSize), self.YSize, -z) self.gridLinesXZBack.drawTo(self.XSize, self.YSize, -z) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesXZBack.moveTo(-(self.XSize), self.YSize, self.ZSize) self.gridLinesXZBack.drawTo(self.XSize, self.YSize, self.ZSize) self.gridLinesXZBack.moveTo(-(self.XSize), self.YSize, -(self.ZSize)) self.gridLinesXZBack.drawTo(self.XSize, self.YSize, -(self.ZSize)) # Draw x lines across z axis # XZ Plane (FRONT) for z in self.myfrange(0, self.ZSize, self.gridStep): self.gridLinesXZFront.moveTo(-(self.XSize), -self.YSize, z) self.gridLinesXZFront.drawTo(self.XSize, -self.YSize, z) self.gridLinesXZFront.moveTo(-(self.XSize), -self.YSize, -z) self.gridLinesXZFront.drawTo(self.XSize, -self.YSize, -z) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesXZFront.moveTo(-(self.XSize), -self.YSize, self.ZSize) self.gridLinesXZFront.drawTo(self.XSize, -self.YSize, self.ZSize) self.gridLinesXZFront.moveTo(-(self.XSize), -self.YSize, -(self.ZSize)) self.gridLinesXZFront.drawTo(self.XSize, -self.YSize, -(self.ZSize)) if ((self.YSize != 0) and (self.YZPlaneShow != 0)): # Draw y lines across z axis # YZ Plane for z in self.myfrange(0, self.ZSize, self.gridStep): self.gridLinesYZLeft.moveTo(-self.XSize, -(self.YSize), z) self.gridLinesYZLeft.drawTo(-self.XSize, self.YSize, z) self.gridLinesYZLeft.moveTo(-self.XSize, -(self.YSize), -z) self.gridLinesYZLeft.drawTo(-self.XSize, self.YSize, -z) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesYZLeft.moveTo(-self.XSize, -(self.YSize), self.ZSize) self.gridLinesYZLeft.drawTo(-self.XSize, self.YSize, self.ZSize) self.gridLinesYZLeft.moveTo(-self.XSize, -(self.YSize), -(self.ZSize)) self.gridLinesYZLeft.drawTo(-self.XSize, self.YSize, -(self.ZSize)) # Draw y lines across z axis # YZ Plane (RIGHT) for z in self.myfrange(0, self.ZSize, self.gridStep): self.gridLinesYZRight.moveTo(self.XSize, -self.YSize, z) self.gridLinesYZRight.drawTo(self.XSize, self.YSize, z) self.gridLinesYZRight.moveTo(self.XSize, -self.YSize, -z) self.gridLinesYZRight.drawTo(self.XSize, self.YSize, -z) if (self.endCapLinesShow != 0): # Draw endcap lines self.gridLinesYZRight.moveTo(self.XSize, -self.YSize, self.ZSize) self.gridLinesYZRight.drawTo(self.XSize, self.YSize, self.ZSize) self.gridLinesYZRight.moveTo(self.XSize, -self.YSize, -self.ZSize) self.gridLinesYZRight.drawTo(self.XSize, self.YSize, -self.ZSize) # Check to see if secondary grid lines should be drawn if (self.subdiv != 0): # Draw secondary grid lines self.subdivLines.setColor(self.subdivColor) if (self.XSize != 0): adjustedstep = self.gridStep / self.subdiv print(self.gridStep) print(self.subdiv) print(adjustedstep) print(self.gridStep / self.subdiv) if ((self.YSize != 0) and (self.XYPlaneShow != 0)): # Draw y lines across x axis starting from center moving out # XY for x in self.myfrange(0, self.XSize, adjustedstep): self.subdivLines.moveTo(x, -(self.YSize), -self.ZSize) self.subdivLines.drawTo(x, self.YSize, -self.ZSize) self.subdivLines.moveTo(-x, -(self.YSize), -self.ZSize) self.subdivLines.drawTo(-x, self.YSize, -self.ZSize) if ((self.ZSize != 0) and (self.XZPlaneShow != 0)): # Draw z lines across x axis starting from center moving out # XZ for x in self.myfrange(0, self.XSize, adjustedstep): self.subdivLines.moveTo(x, 0, -(self.ZSize)) self.subdivLines.drawTo(x, 0, self.ZSize) self.subdivLines.moveTo(-x, 0, -(self.ZSize)) self.subdivLines.drawTo(-x, 0, self.ZSize) if (self.YSize != 0): if ((self.YSize != 0) and (self.XYPlaneShow != 0)): # Draw x lines across y axis # XY for y in self.myfrange(0, self.YSize, adjustedstep): self.subdivLines.moveTo(-(self.XSize), y, -self.ZSize) self.subdivLines.drawTo(self.XSize, y, -self.ZSize) self.subdivLines.moveTo(-(self.XSize), -y, -self.ZSize) self.subdivLines.drawTo(self.XSize, -y, -self.ZSize) if ((self.ZSize != 0) and (self.YZPlaneShow != 0)): # Draw z lines across y axis # YZ for y in self.myfrange(0, self.YSize, adjustedstep): self.subdivLines.moveTo(-self.XSize, y, -(self.ZSize)) self.subdivLines.drawTo(-self.XSize, y, self.ZSize) self.subdivLines.moveTo(-self.XSize, -y, -(self.ZSize)) self.subdivLines.drawTo(-self.XSize, -y, self.ZSize) if (self.ZSize != 0): if ((self.XSize != 0) and (self.XZPlaneShow != 0)): # Draw x lines across z axis # XZ for z in self.myfrange(0, self.ZSize, adjustedstep): self.subdivLines.moveTo(-self.XSize, self.YSize, z) self.subdivLines.drawTo(self.XSize, self.YSize, z) self.subdivLines.moveTo(-self.XSize, self.YSize, -z) self.subdivLines.drawTo(self.XSize, self.YSize, -z) if ((self.YSize != 0) and (self.YZPlaneShow != 0)): # Draw y lines across z axis # YZ for z in self.myfrange(0, self.ZSize, adjustedstep): self.subdivLines.moveTo(-self.XSize, -(self.YSize), z) self.subdivLines.drawTo(-self.XSize, self.YSize, z) self.subdivLines.moveTo(-self.XSize, -(self.YSize), -z) self.subdivLines.drawTo(-self.XSize, self.YSize, -z) # Create ThreeAxisGrid nodes and nodepaths # Create parent node and path self.parentNode = PandaNode('threeaxisgrid-parentnode') self.parentNodePath = NodePath(self.parentNode) # Create axis lines node and path, then reparent self.axisLinesNode = self.axisLines.create() self.axisLinesNodePath = NodePath(self.axisLinesNode) self.axisLinesNodePath.reparentTo(self.parentNodePath) # Create grid lines node and path, then reparent #self.gridLinesNode = self.gridLines.create() #self.gridLinesNodePath = NodePath(self.gridLinesNode) #self.gridLinesNodePath.reparentTo(self.parentNodePath) gridLinesNode = self.gridLinesXYTop.create() self.gridLinesNodePathXYTop = NodePath(gridLinesNode) self.gridLinesNodePathXYTop.reparentTo(self.parentNodePath) gridLinesNode = self.gridLinesXYBottom.create() self.gridLinesNodePathXYBottom = NodePath(gridLinesNode) self.gridLinesNodePathXYBottom.reparentTo(self.parentNodePath) gridLinesNode = self.gridLinesXZFront.create() self.gridLinesNodePathXZFront = NodePath(gridLinesNode) self.gridLinesNodePathXZFront.reparentTo(self.parentNodePath) gridLinesNode = self.gridLinesXZBack.create() self.gridLinesNodePathXZBack = NodePath(gridLinesNode) self.gridLinesNodePathXZBack.reparentTo(self.parentNodePath) gridLinesNode = self.gridLinesYZLeft.create() self.gridLinesNodePathYZLeft = NodePath(gridLinesNode) self.gridLinesNodePathYZLeft.reparentTo(self.parentNodePath) gridLinesNode = self.gridLinesYZRight.create() self.gridLinesNodePathYZRight = NodePath(gridLinesNode) self.gridLinesNodePathYZRight.reparentTo(self.parentNodePath) # Create subdivision lines node and path then reparent self.subdivLinesNode = self.subdivLines.create() self.subdivLinesNodePath = NodePath(self.subdivLinesNode) self.subdivLinesNodePath.reparentTo(self.parentNodePath) return self.parentNodePath # Thanks to <NAME> for this float-accepting range method def myfrange(self, start, stop=None, step=None): if stop is None: stop = float(start) start = 0.0 if step is None: step = 1.0 cur = float(start) while cur < stop: yield cur cur += step def hideFrontFace(self, angleY=0, angleZ=0): self.gridLinesNodePathXZFront.show() self.gridLinesNodePathYZRight.show() self.gridLinesNodePathXZBack.show() self.gridLinesNodePathYZLeft.show() if angleY == 0 and angleZ == 0: #Front self.gridLinesNodePathXZFront.hide() return 1 if angleY == 0 and angleZ == 45: #Front + Right self.gridLinesNodePathXZFront.hide() self.gridLinesNodePathYZRight.hide() elif angleY == 0 and angleZ == 90: #Right self.gridLinesNodePathYZRight.hide() return 5 elif angleY == 0 and angleZ == 135: #Back + Right self.gridLinesNodePathXZBack.hide() self.gridLinesNodePathYZRight.hide() elif angleY == 0 and angleZ == 180: #Back self.gridLinesNodePathXZBack.hide() return 3 elif angleY == 0 and angleZ == 225: #Left + Back self.gridLinesNodePathYZLeft.hide() self.gridLinesNodePathXZBack.hide() elif angleY == 0 and angleZ == 270: #Left self.gridLinesNodePathYZLeft.hide() return 6 elif angleY == 0 and angleZ == 315: #Left + Front self.gridLinesNodePathXZFront.hide() self.gridLinesNodePathYZLeft.hide() return 0 #grid = ThreeAxisGrid() #gridnodepath = grid.create() #gridnodepath.reparentTo(render) #run()
StarcoderdataPython
11287699
<gh_stars>0 from django.forms import ModelForm from .models import Attachment class AttachmentForm(ModelForm): class Meta: model = Attachment fields = ('name', 'file')
StarcoderdataPython
9730415
<reponame>MaximDecherf/F1-21_udp_data<filename>src/F121UdpData/F1Data.py import socket from .packets.packet import Packet class F1Data: PACKET_SIZE_MAPPER = {'MOTION': 1464, 'SESSION': 625, 'LAP_DATA': 970, 'EVENT': 36, 'PARTICIPANTS': 1257, 'CAR_SETUPS': 1102, 'CAR_TELEMETRY': 1347, 'CAR_STATUS': 1058, 'FINAL_CLASSIFICATION': 839, 'LOBBY_INFO': 1191, 'CAR_DAMAGE': 882, 'SESSION_HISTORY': 1155} def __init__(self, port=20777, ip="127.0.0.1", filter_packets=None): self.udp_ip = ip self.udp_port = port self.filter_packets = filter_packets if type(filter_packets) == list: allowed_packets = [] for packet in filter_packets: allowed_packets.append(self.PACKET_SIZE_MAPPER[packet]) self.filter_packets = allowed_packets def run(self, sock): return self.incoming_data(sock) def setup_udp_con(self, ip=None, port=None): if ip == None and port == None: ip = self.udp_ip port = self.udp_port sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.bind((ip, port)) return sock def incoming_data(self, sock): data, addr = sock.recvfrom(2048) # buffer size is 2048 bytes if type(self.filter_packets) == list: if len(data) in self.filter_packets: packet = Packet(data) return packet.packet_body.body_data else: packet = Packet(data) return packet.packet_body.body_data
StarcoderdataPython
1710956
import tensorflow as tf tf.InteractiveSession() a = tf.zeros((2,2)) b = tf.ones((2,2)) print(a.eval()) print(b .eval()) print(tf.reduce_sum(b, reduction_indices=1).eval()) print(a.get_shape()) print(tf.reshape(a, (1, 4)).eval())
StarcoderdataPython
95955
import unittest from msdm.domains import GridWorld class GridWorldTestCase(unittest.TestCase): def test_feature_locations(self): gw = GridWorld([ "cacg", "sabb"]) fl = gw.feature_locations lf = gw.location_features fl2 = {} for l, f in lf.items(): fl2[f] = fl2.get(f, []) + [l,] assert all(set(fl[f]) == set(fl2[f]) for f in fl.keys()) def test_reachability(self): gw = GridWorld([ "....#...g", "....#....", "#####....", "s........", ]) assert len(gw.reachable_states()) == 22 #includes terminal
StarcoderdataPython
14753
<gh_stars>1-10 """ Query construction tests. """ from hamcrest import assert_that, is_, equal_to from influxdbnagiosplugin.query import ExplicitQueryBuilder, SingleMeasurementQueryBuilder def test_explicit_query(): query = ExplicitQueryBuilder("SHOW MEASUREMENTS") assert_that(query().query, is_(equal_to( "SHOW MEASUREMENTS" ))) def test_single_measurement_query(): query = SingleMeasurementQueryBuilder.for_hostname_and_age( measurement="disk_free", hostname="hostname", age="30s", where=[], ) assert_that(query().query, is_(equal_to( "SELECT time, value FROM disk_free" " WHERE time > now() - 30s" " AND host = 'hostname'" ))) def test_single_measurement_query_where_clause(): query = SingleMeasurementQueryBuilder.for_hostname_and_age( measurement="disk_free", hostname="hostname", age="30s", where=["path=/"], ) assert_that(query().query, is_(equal_to( "SELECT time, value FROM disk_free" " WHERE time > now() - 30s" " AND host = 'hostname'" " AND path = '/'" ))) def test_single_measurement_query_where_clause_quoted(): query = SingleMeasurementQueryBuilder.for_hostname_and_age( measurement="disk_free", hostname="hostname", age="30s", where=["path='/'"], ) assert_that(query().query, is_(equal_to( "SELECT time, value FROM disk_free" " WHERE time > now() - 30s" " AND host = 'hostname'" " AND path = '/'" )))
StarcoderdataPython
12820821
<filename>yatai/yatai/configuration/__init__.py import os def get_local_config_file(): if "YATAI_CONFIG" in os.environ: # User local config file for customizing Yatai return expand_env_var(os.environ.get("YATAI_CONFIG")) return None def inject_dependencies(): """Inject dependencis and configuration for Yatai package""" from yatai.yatai.configuration.containers import YataiConfiguration, YataiContainer config_file = get_local_config_file() if config_file and config_file.endswith('.yml'): configuration = YataiConfiguration(override_config_file=config_file) else: configuration = YataiConfiguration() YataiContainer.config.set(configuration.as_dict()) def expand_env_var(env_var): """Expands potentially nested env var by repeatedly applying `expandvars` and `expanduser` until interpolation stops having any effect. """ if not env_var: return env_var while True: interpolated = os.path.expanduser(os.path.expandvars(str(env_var))) if interpolated == env_var: return interpolated else: env_var = interpolated
StarcoderdataPython
300562
from .tsl2561 import *
StarcoderdataPython
12861986
#!/usr/bin/env python3 import yoda, sys import h5py import numpy as np def chunkIt(seq, num): avg = len(seq) / float(num) out = [] last = 0.0 while last < len(seq): out.append(seq[int(last):int(last + avg)]) last += avg # Fix size, sometimes there is spillover # TODO: replace with while if problem persists if len(out) > num: out[-2].extend(out[-1]) out = out[0:-1] if len(out) != num: raise Exception("something went wrong in chunkIt, the target size differs from the actual size") return out def createDatasets(f, binids, variations, depth=1, compression=4): """ Create data sets in the HDF5 file. """ nbins=len(binids) nvars=len(variations) # The fundamental moments/elements of yoda objecs floats = [ "sumw", "sumw2", "sumwx", "sumwx2", "sumwy", "sumwy2", "sumwxy", "numEntries", "xval", "xerr-", "xerr+", "yval", "yerr-", "yerr+", "xmin", "xmax", "ymin", "ymax" ] # The datasets have 3 axes: binid, weight variation, point in parameter space for df in floats: f.create_dataset(df, (nbins,nvars,depth), maxshape=(None,None,None), dtype='f' , chunks=True, compression=compression) # Lookups --- helps when reading data and reconstucting YODA objects f.create_group("Histo1D") f.create_group("Histo2D") f.create_group("Profile1D") f.create_group("Counter") f.create_group("Scatter1D") f.create_group("Scatter2D") # This is the one that works well with hdf5 when reading std::string in C++ dt = h5py.special_dtype(vlen=str) # We use these simple lists as lookup tables to associate the elements of the datasets ^^^ with # the actual YODA Analysis objects import numpy as np f.create_dataset("binids", data=np.array(binids, dtype=dt)) f.create_dataset("variations", data=np.array(variations, dtype=dt)) def dbn0ToArray(dbn): return np.array([dbn.sumW(), dbn.sumW2(), dbn.numEntries()]) def dbn1ToArray(dbn): """ The try except block deals with the underflow things not having xmin, xmax """ try: return np.array([dbn.sumW(), dbn.sumW2(), dbn.sumWX(), dbn.sumWX2(), dbn.numEntries(), dbn.xMin(), dbn.xMax()]) except: return np.array([dbn.sumW(), dbn.sumW2(), dbn.sumWX(), dbn.sumWX2(), dbn.numEntries(), 0, 0]) def H2dbn2ToArray(dbn): """ The try except block deals with the underflow things not having xmin, xmax """ try: return np.array([dbn.sumW(), dbn.sumW2(), dbn.sumWX(), dbn.sumWX2(), dbn.sumWY(), dbn.sumWY2(), dbn.sumWXY(), dbn.numEntries(), dbn.xMin(), dbn.xMax(), dbn.yMin(), dbn.yMax()]) except: return np.array([dbn.sumW(), dbn.sumW2(), dbn.sumWX(), dbn.sumWX2(), dbn.sumWY(), dbn.sumWY2(), dbn.sumWXY(), dbn.numEntries(), 0, 0, 0, 0]) def dbn2ToArray(dbn): try: return np.array([dbn.sumW(), dbn.sumW2(), dbn.sumWX(), dbn.sumWX2(), dbn.sumWY(), dbn.sumWY2(), dbn.numEntries(), dbn.xMin(), dbn.xMax()]) except: return np.array([dbn.sumW(), dbn.sumW2(), dbn.sumWX(), dbn.sumWX2(), dbn.sumWY(), dbn.sumWY2(), dbn.numEntries(), 0, 0]) def point2DToArray(pnt): return np.array([pnt.val(1), pnt.errMinus(1), pnt.errPlus(1), pnt.val(2), pnt.errMinus(2), pnt.errPlus(2)]) def point1DToArray(pnt): return np.array([pnt.val(1), pnt.errMinus(1), pnt.errPlus(1)]) def mkSafeHname(hname): return hname.replace("/","|") def mkBinids(hdict): binids= [] for num, hname in enumerate(sorted(list(hdict.keys()))): if hname.endswith("]"): continue ao = hdict[hname] base = ao.path().split("[")[0].replace("/","|") if ao.type()=="Scatter1D" or ao.type()=="Scatter2D": temp = ["{}#{}".format(base, i) for i in range(len(ao))] elif ao.type()=="Counter": temp = ["{}#{}".format(base, 0)] else: suffixes = ["T", "O", "U"] if ao.type() == "Counter": suffixes.append(0) else: suffixes.extend([i for i in range(len(ao))]) temp = ["{}#{}".format(base, s) for s in suffixes] binids.extend(temp) return binids def mkIndexDict(datadict, allbinids): ret = {'Histo1D':{}, 'Histo2D':{}, 'Profile1D':{}, 'Scatter1D':{}, 'Scatter2D':{}, 'Counter':{}} for hname, v in datadict.items(): _hname=mkSafeHname(hname) try: ret[datadict[hname].type()][_hname] = [num for num, binid in enumerate(allbinids) if binid.startswith("{}#".format(_hname))] except Exception as e: print("oops: ", e) return ret def createIndexDS(f, d_idx): for dtype, objects in d_idx.items(): for _hname, binIdx in objects.items(): f.create_dataset("{}/{}".format(dtype, _hname), data=binIdx , chunks=True) def fillDatasets(f, binIdx, variations, ddict, hname, depth=0): if len(binIdx) ==0: print("Warning, no matching binid for {} --- is this one of the raw ratios maybe???".format(hname)) return if ddict[hname].type()=='Histo1D': nFields=7 fdbn = dbn1ToArray elif ddict[hname].type()=='Histo2D': nFields=12 fdbn = H2dbn2ToArray elif ddict[hname].type()=='Profile1D': fdbn = dbn2ToArray nFields=9 elif ddict[hname].type()=='Scatter2D': fdbn = point2DToArray nFields=6 elif ddict[hname].type()=='Scatter1D': fdbn = point1DToArray nFields=3 elif ddict[hname].type()=='Counter': nFields=3 else: raise Exception("type {} Not implemented".format(ddict[hname].type())) # Empty array to be filled and written to datasets temp = np.zeros((len(binIdx), len(variations), nFields)) hids = [hname] for v in variations[1:]: hids.append("{}[{}]".format(hname, v)) # Iterate over variations for col, hn in enumerate(hids): # Iterate over bins H=ddict[hn] if H.type() == "Counter": temp[0][col] = np.array([H.sumW(), H.sumW2(), H.numEntries()]) # Things with under/overflow first elif H.type() not in ["Scatter1D", "Scatter2D", "Histo2D"]: temp[0][col] = fdbn(H.totalDbn()) temp[1][col] = fdbn(H.overflow()) temp[2][col] = fdbn(H.underflow()) for i in range(len(binIdx)-3): temp[3+i][col] = fdbn(H.bin(i)) elif H.type() =="Histo2D": temp[0][col] = fdbn(H.totalDbn()) temp[1][col] = 0.0 # Future proofing temp[2][col] = 0.0 # for i in range(len(binIdx)-3): temp[3+i][col] = fdbn(H.bin(i)) else: for i in range(len(binIdx)): temp[i][col] = fdbn(H.point(i)) if ddict[hname].type()=='Histo1D': f["sumw"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,0] f["sumw2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,1] f["sumwx"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,2] f["sumwx2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,3] f["numEntries"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,4] f["xmin"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,5] f["xmax"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,6] # elif ddict[hname].type()=='Histo2D': # f["sumw"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,0] # f["sumw2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,1] # f["sumwx"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,2] # f["sumwx2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,3] # f["sumwy"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,4] # f["sumwy2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,5] # f["sumwxy"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,6] # f["numEntries"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,7] # f["xmin"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,8] # f["xmax"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,9] # f["ymin"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,10] # f["ymax"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,11] # elif ddict[hname].type()=='Profile1D': # f["sumw"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,0] # f["sumw2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,1] # f["sumwx"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,2] # f["sumwx2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,3] # f["sumwy"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,4] # f["sumwy2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,5] # f["numEntries"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,6] # f["xmin"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,7] # f["xmax"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,8] # elif ddict[hname].type()=='Scatter1D': # f["xval"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,0] # f["xerr-"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,1] # f["xerr+"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,2] # elif ddict[hname].type()=='Scatter2D': # f["xval"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,0] # f["xerr-"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,1] # f["xerr+"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,2] # f["yval"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,3] # f["yerr-"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,4] # f["yerr+"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,5] # elif ddict[hname].type()=='Counter': # f["sumw"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,0] # f["sumw2"][ binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,1] # f["numEntries"][binIdx[0]:binIdx[-1]+1,:,depth] = temp[:,:,2] # else: # raise Exception("yikes") if __name__=="__main__": import sys import optparse, os, sys op = optparse.OptionParser(usage=__doc__) op.add_option("-v", "--debug", dest="DEBUG", action="store_true", default=False, help="Turn on some debug messages") op.add_option("-o", dest="OUTPUT", default="analysisobjects.h5", help="Output HDF5 file (default: %default)") opts, args = op.parse_args() YODAFILES = args from mpi4py import MPI comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() binids, VVV, aix, aix_flat, central = None, None, None, None, None if rank==0: # TODO if len(args)==1 and os.path.isdir(args[0]) --- hierarchical reading with pnames finding etc # Let's assume they are all consistent TODO add robustness DATA0 = yoda.readYODA(args[0]) L = sorted(list(DATA0.keys())) names = [x for x in L ]# if not "/RAW" in x] central = [x for x in names if not x.endswith("]")] variations = [x for x in names if x.endswith("]")] # TODO In principle one probably should check that all variations are always the # same, we assume this is the case here var = [] for c in central: var.append([x for x in variations if x.startswith(c+"[")]) ## Thats the weight and weight variation order we store the data in VVV = ["CentralWeight"] import re p=re.compile("\[(.*?)\]") for x in var[0]: try: VVV.append(p.findall(x)[0]) except Exception as e: print(x, e) binids = mkBinids(DATA0) # Hierarchical, i.e. top layer is the AnalysisObject type aix = mkIndexDict(DATA0, binids) # Object name as keys and lists of indices as values aix_flat = {} for k, v in aix.items(): aix_flat.update(v) binids = comm.bcast(binids, root=0) VVV = comm.bcast(VVV, root=0) aix = comm.bcast(aix, root=0) aix_flat = comm.bcast(aix_flat, root=0) central = comm.bcast(central, root=0) # NOTE dataset operations are collective # This require h5py to use and H5 that is build with MPI try: f = h5py.File(opts.OUTPUT, "w", driver='mpio', comm=MPI.COMM_WORLD) except: f = h5py.File(opts.OUTPUT, "w") createDatasets(f, binids, VVV, depth=len(YODAFILES)) createIndexDS(f, aix) rankwork = chunkIt([i for i in range(len(YODAFILES))], size) if rank==0 else None rankwork = comm.scatter(rankwork, root=0) # This part is MPI trivial for num, findex in enumerate(rankwork): DATA = yoda.readYODA(YODAFILES[findex]) for hname in central: _hname=mkSafeHname(hname) fillDatasets(f, aix_flat[_hname], VVV, DATA, hname, depth=findex) if rank==0: print("[{}] --- {}/{} complete".format(rank, num, len(rankwork))) sys.stdout.flush() f.close()
StarcoderdataPython
6596401
<gh_stars>1-10 import globalvars from gamestate import * from random import randint def play(): setElevatorDestination(7) #------------ bitte hier stehen lassen execfile ("functions.py")
StarcoderdataPython
264292
<filename>benchmark_client.py<gh_stars>1-10 #!/usr/bin/env python # encoding: utf-8 """ Created by <NAME> on 2013-03-12 Published under the MIT license. """ import os, sys, logging from miniredis.client import RedisClient from multiprocessing import Pool import time import random log = logging.getLogger() if __name__=='__main__': def timed(count): c = RedisClient() c.select(1) seq = range(0,count) now = time.time() for i in seq: it = str(random.choice(seq)) c.set(it, it) it = str(random.choice(seq)) c.get(it) return count/(time.time() - now) p = Pool(4) print sum(p.map(timed,[25000,25000,25000,25000])) #print timed(10000)
StarcoderdataPython
9716548
#!/usr/bin/env python3 from ast import literal_eval import time import serial as pyserial import struct from HeimdallMultiwii.constants import CTYPE_PATTERNS from HeimdallMultiwii.exeptions import MissingCodeError, ResponseParserNotImpl, MWCMessageNotSupported from HeimdallMultiwii.mspcommands import MSPMessagesEnum def validate_code(f): def __validate_code_wrapper(self, code): codes = list(map(int, MSPMessagesEnum)) if code is None or code not in codes: raise MissingCodeError("Please provide message code") return f(self, code) return __validate_code_wrapper class MultiWii: """ A class used for serial communication with an MiltiWii compatible FCB (Flight Controller Board) ... Attributes ---------- serial : serial Python serial port extension for receiv and send mesages from/to FCB Methods ------- open_connection(serport=None) Prints the animals name and what sound it makes """ def __init__(self) -> None: self.serial = pyserial.Serial(timeout=1) # self.logger = logging.getLogger('simpleExample') def __del__(self): if self.serial.isOpen(): self.close_connection() def open_connection(self, baud_rate, serport=None): """Setup and open serial communication with FCB :param serport: Serial port for multiwii connection :param baud_rate: BaudRate for multiwii connection :return: True if connection was successful established :raise: Exception if any serial port is provided """ if serport is None: raise Exception("Please provide a Serial Port...") self.serial.port = serport self.serial.baudrate = baud_rate self.serial.bytesize = pyserial.EIGHTBITS self.serial.parity = pyserial.PARITY_NONE self.serial.stopbits = pyserial.STOPBITS_ONE self.serial.write_timeout = 3 self.serial.xonxoff = False self.serial.rtscts = False self.serial.dsrdtr = False return self._connect() def _connect(self): """ Open Serial port for communications :return: True if Connection was established """ try: wait = 6 self.serial.open() # self.logger.info("Connecting with board on port: " + self.serial.port) print("Connecting with board on port: " + self.serial.port) for i in range(1, wait): # self.logger.info(wait - i) time.sleep(1) except Exception as error: # self.logger.warning("Error opening " + self.serial.port + " port. " + str(error)) return False # self.logger.info("Connection Stablished.") print("Connection Stablished.") return True def close_connection(self): """ Close Serial port """ if self.serial.isOpen(): # self.logger.info("Closing Connection...") self.serial.close() # self.logger.info("The connection was closed.") # else: # self.logger.info("Connection already closed.") @validate_code def send_simple_command(self, code=None): """ Send Single commands e.g. for calibrate MAG or ACC No return response :param code: :return: True if Evething is OK """ message = self._buildpayload(code) self._sendmessage(message) return True @validate_code def get_fcb_data(self, code=None): """ Send Request Message to the Multiwii FCB :param code: MSP Request :return: Miltiwii response dict """ message = self._buildpayload(code) self._sendmessage(message) return self.readmessage(code) def _sendmessage(self, message): self.serial.write(message) self.serial.flushOutput() def readmessage(self, code): data = self.__extract_data(code) if data: try: fmt = CTYPE_PATTERNS[code] except KeyError: self.serial.flushInput() raise ResponseParserNotImpl('El mensaje no puede ser parseado') if fmt == 'PENDING': self.serial.flushInput() raise ResponseParserNotImpl('El mensaje no puede ser parseado') msg = struct.unpack('<' + fmt, data) self.serial.flushInput() return self._process_message(code, msg) def __extract_data(self, code): data = b'' try: header = tuple(self.serial.read(3)) datalength = struct.unpack('<b', self.serial.read())[0] struct.unpack('<b', self.serial.read()) if header == (0x24, 0x4d, 0x3e) and 0x21 not in header: data = self.serial.read(datalength) elif 0x21 in header: raise MWCMessageNotSupported("The board can't response the message {0}".format(code)) return data except (pyserial.serialutil.SerialException, struct.error): return data # def _flush(self): # self.serial.flushInput() # self.serial.flushOutput() def _buildpayload(self, code: int, size: int = 0, data: list = []): payload = bytes() total_data = [ord('$'), ord('M'), ord('<'), size, code] + data payload += struct.pack('<3bBB%dH' % len(data), *total_data) data = payload[3:] checksum = code if len(data) > 0x02: # cambiar 0x02 a ord(2) checksum = 0 for byte in data: checksum ^= byte payload += struct.pack("<%s" % "H" if checksum > 0xff else "B", checksum) return payload def _process_message(self, code, msg): message = literal_eval(str(msg)) template = _MessagesFormats.TEMPLATES[code] msglist= list(zip(template, message)) return dict(msglist) def arm(self): timer = 0 start = time.time() while timer < 0.5: data = [1500, 1500, 2000, 1000] message = self._buildpayload(MSPMessagesEnum.MSP_SET_RAW_RC.value, 8, data) self._sendmessage(message) self.serial.flushOutput() time.sleep(0.05) timer = timer + (time.time() - start) start = time.time() def disarm(self): timer = 0 start = time.time() while timer < 0.5: data = [1500, 1500, 1000, 1000] message = self._buildpayload(MSPMessagesEnum.MSP_SET_RAW_RC.value, 8, data) self._sendmessage(message) self.serial.flushOutput() time.sleep(0.05) timer = timer + (time.time() - start) start = time.time() def send_rc_signal(self, data): message = self._buildpayload(MSPMessagesEnum.MSP_SET_RAW_RC.value, 8, data) self._sendmessage(message) self.serial.flushOutput() class _MessagesFormats: TEMPLATES = { 100: ('VERSION', 'MULTITYPE', 'MSP_VERSION', 'capability'), 101: ('cycleTime', 'i2c_errors_count', 'sensor', 'flag', 'global_conf.currentSet'), 102: ('accx', 'accy', 'accz', 'gyrx', 'gyry', 'gyrz', 'magx', 'magy', 'magz', 'GPS_coord[LAT]', 'GPS_coord[LON]', 'GPS_altitude'), 103: ('servo1', 'servo2', 'servo3', 'servo4', 'servo5', 'servo6', 'servo7', 'servo8'), 104: ('motor1', 'motor2', 'motor3', 'motor4', 'motor5', 'motor6', 'motor7', 'motor8'), 105: ('roll', 'pitch', 'yaw', 'throttle', 'AUX1', 'AUX2', 'AUX3AUX4'), 106: ('GPS_FIX', 'GPS_numSat', 'GPS_coord[LAT]', 'GPS_coord[LON]', 'GPS_altitude', 'GPS_speed', 'GPS_ground_course'), 107: ('GPS_distanceToHome', 'GPS_directionToHome', 'GPS_update'), 108: ('angx', 'angy', 'heading'), 109: ('EstAlt', 'vario'), 110: ('vbat', 'intPowerMeterSum', 'rssi', 'amperage'), 111: ('byteRC_RATE', 'byteRC_EXPO', 'byteRollPitchRate', 'byteYawRate', 'byteDynThrPID', 'byteThrottle_MID', 'byteThrottle_EXPO'), 112: (), # Read more 113: (), # Read more 114: ('intPowerTrigger1', 'conf.minthrottle', 'maxthrottle', 'mincommand', 'failsafe_throttle', 'plog.arm', 'plog.lifetime', 'conf.mag_declination', 'conf.vbatscale', 'conf.vbatlevel_warn1', 'conf.vbatlevel_warn2', 'conf.vbatlevel_crit'), 115: ('motorpin1', 'motorpin2', 'motorpin3', 'motorpin4', 'motorpin5', 'motorpin6', 'motorpin7', 'motorpin8'), 116: (), # Return directly 117: (), # Return directly 118: ('wp_no', 'lat', 'lon', 'AltHold', 'heading', 'time to stay', 'nav flag'), 119: (), # Return directly 200: ('roll', 'pitch', 'yaw', 'throttle', 'AUX1', 'AUX2', 'AUX3AUX4') }
StarcoderdataPython
1974217
<gh_stars>1-10 #! /usr/bin/env python # -*- coding: utf-8 -*- # # Interpreter version: python 2.7 # # Imports ===================================================================== import pytest from wa_kat.analyzers.creation_date_detector import TimeResource from wa_kat.analyzers.creation_date_detector import mementoweb_api_tags from wa_kat.analyzers.creation_date_detector import get_whois_tags from wa_kat.analyzers.creation_date_detector import get_creation_date_tags # Tests ======================================================================= def test_kitakitsune_mementoweb(): memento_tags = mementoweb_api_tags("http://kitakitsune.org") assert memento_tags def test_kitakitsune_whois(): whois_tags = get_whois_tags("kitakitsune.org") assert whois_tags[0].url == "http://whois.icann.org/en/lookup?name=kitakitsune.org" assert whois_tags[0].date == "2009-03-27T04:04:05" assert whois_tags[0].val == "2009" assert whois_tags[0].source == "Whois"
StarcoderdataPython
3499502
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 expandtab number """ Authors: qianweishuo<<EMAIL>> Date: 2019/9/29 下午6:17 """ import os import re import sys import six from kinoko.misc.log_writer import init_log def test_writing_files(mocker): mocker.spy(os.path, 'dirname') mocker.patch('os.path.isdir', return_value=True) mocker.patch('os.makedirs') mocker.patch('sys.stdout') mocker.patch('sys.stderr') # don't use `wraps=open`, or the files will get really created mocker.patch('logging.open' if six.PY3 else '__builtin__.open') logger = init_log(__name__, is_show_logger_src=True, log_path='./tmp/') assert len(logger.handlers) == 3 + 2 # file + stream logger.info('myinfo中文') assert re.match(r'^INFO:[-\d:\. ]+\[\S+@\S+.py\]\S+.py:\d+ myinfo中文\n?$', sys.stdout.write.call_args_list[0][0][0]) # first call, args, first arg if six.PY3: assert os.linesep == sys.stdout.write.call_args_list[1][0][0] mocker.patch('os.path.isdir', return_value=False) init_log(log_path='./tmp') os.makedirs.assert_called_once()
StarcoderdataPython
3400923
<gh_stars>0 """ Module for doing the training """ from __future__ import division import numpy as np import plot as plot from numpy import matrix from numpy import linalg def train (train_X, train_Y, learning_rate=1, delay=0.2, type="curve"): """ Trains the linear regression model on training data Sets the hyperparameter according to the validation data and final accuracy on test data """ Theta = np.matrix([0.0, 0.0]).T X_matrix = np.matrix(train_X).T Y_matrix = np.matrix(train_Y).T X_ones = np.ones((X_matrix.shape[0], 1)) X_matrix = np.hstack((X_ones, X_matrix)) # normalisation (approximate) X_matrix[:,1] = X_matrix[:,1] / 10 epoch = 0 eta = learning_rate costData = [] # for plotting real time data old_cost = 0 converged = None while (True): Theta = SGD(X_matrix, Y_matrix, Theta, eta, 20) cost = compute_cost(X_matrix, Y_matrix, Theta) # print ('Epoch: %d | Cost: %.8f | Theta: %f, %f' % (epoch, cost, Theta[0,0], Theta[1,0]) ) epoch = epoch + 1 # Stopping condition if (float(Theta[0]) >= 10000 or float(Theta[1]) >= 10000 or (cost is float('inf')) or (epoch > 6 and cost > 1.5 * old_cost)): # 50 iters for the purpose of plotting # Diverged print ("The model is diverging :(, please change the learning rate :)") converged = False break if (epoch > 5000): # too slow print ("The learning rate is too small :(. Stopping since taking >5000 epochs. To train faster use eta close to 1...") converged = False break if (epoch > 20 and cost < 1e-5 and abs(old_cost - cost) / old_cost < 0.0001): # Change in cost is less than 0.01% => Stop converged = True break costData.append( (float(cost), float(Theta[0, 0]), float(Theta[1,0]) / 10.0) ) old_cost = cost Theta[1,:] = Theta[1,:] / 10 X_matrix[:,1] = X_matrix[:,1] * 10 # Print result print("Theta0: %.6f | Theta1: %.6f | #Epochs: %d" % (Theta[0], Theta[1], epoch)) plot.regressionPlot(train_X, train_Y, Theta[1,0], Theta[0,0], Xlabel="Acidity", Ylabel="Density of Wine", marker="bx", fileName="Q1/plots/regression.png") animatedDesent(X_matrix, Y_matrix, np.array(costData), delay, converged=converged) return Theta def animatedDesent (X_matrix, Y_matrix, costData, delay=0.2, converged=True): """ Plots the J(Theta) curve in 3D space and contours Shows the real time gradient descent """ theta0s = np.linspace(0.3, 1.7, 100) theta1s = np.linspace(-0.080, 0.080, 105) if (not converged): theta0s = np.linspace(-2000, 2000, 100) theta1s = np.linspace(-2000, 2000, 100) costMatrix = np.zeros((len(theta1s), len(theta0s))) for i in range(len(theta1s)): for j in range(len(theta0s)): Theta = np.matrix([theta0s[j], theta1s[i]]).T # compute cost costMatrix[i][j] = compute_cost(X_matrix, Y_matrix, Theta) plot.costPlot(theta0s, theta1s, costMatrix, costData, delay=delay, Xlabel="Theta 0", Ylabel="Theta 1", Zlabel="Cost") plot.contourPlot(theta0s, theta1s, costMatrix, costData, delay=delay, converged=converged, Xlabel="Theta 0", Ylabel="Theta 1", Zlabel="Cost") def SGD (X, Y, Theta, eta, batch_size=20): """ Computes one epoch of the batch gradient decent algorithm """ Theta = Theta - eta * compute_gradient(X, Y, Theta) return Theta def compute_gradient (X, Y, Theta): """ Computes the cost gradient X = m*n Y = m*1 Theta = n*1 gradient = (1/m) * X_transpose * (X*Theta - Y) """ (m, n) = X.shape return (1.0/m) * (X.T) * (X*Theta - Y) def compute_cost (X, Y, Theta): """ Computes the J(Theta) X = m*n Y = m*1 Theta = n*1 Cost = (1/2m) * (Y-X*Theta)_tran * (Y-X*Theta) """ (m, n) = X.shape error = Y - X*Theta return (0.5 / m) * error.T * error
StarcoderdataPython
383075
<reponame>picsldev/pyerp # Librerias Django from django.db import models # Librerias de terceros from apps.base.models import PyPartner # Librerias en carpetas locales from .campaign import PyCampaign from .channel import PyChannel class MarketingPartner(PyPartner): class Meta: app_label = 'base' channel_id = models.ForeignKey(PyChannel, null=True, blank=True, on_delete=models.CASCADE) campaign_id = models.ForeignKey(PyCampaign, null=True, blank=True, on_delete=models.CASCADE)
StarcoderdataPython
1779898
########################## # Test script to check for the presence of brackets in scripted loc # By Pelmen, https://github.com/Pelmen323 ########################## import glob import os import re from ..test_classes.generic_test_class import FileOpener, ResultsReporter from ..data.scripted_localisation_functions import scripted_localisation_functions as test_data_list def test_check_localisation_scripted_brackets(test_runner: object): filepath = f'{test_runner.full_path_to_mod}localisation\\' results = {} test_data = [i.lower() for i in test_data_list] for filename in glob.iglob(filepath + '**/*.yml', recursive=True): text_file = FileOpener.open_text_file(filename) text_file_splitted = text_file.split('\n')[1:] for line in range(len(text_file_splitted)): current_line = text_file_splitted[line] for function in test_data: if function in current_line: num_of_functions_in_line = current_line.count(function) pattern = f'\\[[^\\[]*{function}[a-z]*(?:\\.getshehe)*\\]' pattern_matches = re.findall(pattern, current_line) if num_of_functions_in_line != len(pattern_matches): results[f'{function}, {os.path.basename(filename)}, line {line+2}'] = current_line ResultsReporter.report_results(results=results, message="Scripted loc syntax issues were found. Check console output")
StarcoderdataPython
3531024
<reponame>demusis/risco_fuzzy_mc<filename>Modelo 01.py<gh_stars>0 #!/usr/bin/env python # coding: utf-8 # In[1]: import sys import pandas as pd import numpy as np import arisco import seaborn as sns sns.set_style('darkgrid') # Teste # In[2]: print(sys.version) # In[3]: print(np.version.version) # É necessário a versão >1.16.2 # In[4]: df = pd.read_excel('Dados_brutos.xlsx', sheet_name='TOTAL') # Carrega a planilha com os dados df.head() # In[5]: i_01 = arisco.sistemaFuzzy(0, 100, n_variavel="Impacto") # p_01 = arisco.SF(0.5, 0.25, 0, 1, "Probabilidade") # In[6]: print(df.Km2.mean(), df.Km2.std(), 0, df.Km2.max()) print(df.Km2.quantile(q=[0.05, 0.25, 0.50, 0.75, 0.95], interpolation='linear')) sns.distplot(df.Km2) Area = arisco.variavelFTP(df.Km2, 0, df.Km2.max(), 'Area') i_01.insereVariavel(Area) # In[7]: print(df.Combustivel.mean(), df.Combustivel.std(), 0, 1) print(df.Combustivel.quantile(q=[0.05, 0.25, 0.50, 0.75, 0.95], interpolation='linear')) sns.distplot(df.Combustivel) Combustivel = arisco.variavelFTP(df.Combustivel, 0, 1, 'Combustivel') i_01.insereVariavel(Combustivel) # In[8]: print(df.Vizinhanca.mean(), df.Vizinhanca.std(), 0, df.Vizinhanca.max()) print(df.Vizinhanca.quantile(q=[0.05, 0.25, 0.50, 0.75, 0.95], interpolation='linear')) sns.distplot(df.Vizinhanca) Vizinhanca = arisco.variavelFTP(df.Vizinhanca, 0, 1, 'Vizinhanca', likert=2) i_01.insereVariavel(Vizinhanca) # In[9]: print(df.Gestao.mean(), df.Gestao.std(), 0, df.Gestao.max()) print(df.Gestao.quantile(q=[0.05, 0.25, 0.50, 0.75, 0.95], interpolation='linear')) sns.distplot(df.Gestao) Gestao = arisco.variavelFTP(df.Gestao, 0, 1, 'Gestao') i_01.insereVariavel(Gestao) # In[10]: print(df.Relevo.mean(), df.Relevo.std(), df.Relevo.min(), df.Relevo.max()) # relevo = arisco.VFGP(df.Relevo.mean(), df.Relevo.std(), df.Relevo.min(), df.Relevo.max(), 'relevo') # i_01.insere_var(relevo) # In[11]: print(df.Renda.mean(), df.Renda.std(), 0, df.Renda.max()) print(df.Renda.quantile(q=[0.05, 0.25, 0.50, 0.75, 0.95], interpolation='linear')) sns.distplot(df.Renda) Renda = arisco.variavelFTP(df.Renda, 0, 1, 'Renda') i_01.insereVariavel(Renda) # In[12]: print(df.Vento.mean(), df.Vento.std(), df.Vento.min(), df.Vento.max()) #vento = arisco.VFGP(df.Vento.mean(), df.Vento.std(), df.Vento.min(), df.Vento.max(), 'vento') #i_01.insere_var(vento) # In[13]: print(df.Precipitacao.mean(), df.Precipitacao.std(), df.Precipitacao.min(), df.Precipitacao.max()) # precipitacao = arisco.VFGP(df.Precipitacao.mean(), df.Precipitacao.std(), df.Precipitacao.min(), df.Precipitacao.max(), 'precipitacao') # i_01.insere_var(precipitacao) # In[14]: print(df.Pressao.mean(), df.Pressao.std(), df.Pressao.min(), df.Pressao.max()) Pressao = arisco.variavelFGP(df.Pressao.min(), df.Pressao.max(), 'Pressao', dados=df.Pressao) i_01.insereVariavel(Pressao) # In[15]: print(df.Evaporacao.mean(), df.Evaporacao.std(), 0, df.Evaporacao.max()) print(df.Evaporacao.quantile(q=[0.05, 0.25, 0.50, 0.75, 0.95], interpolation='linear')) sns.distplot(df.Evaporacao) Evaporacao = arisco.variavelFGP(df.Evaporacao.min(), df.Evaporacao.max(), 'Evaporacao', dados=df.Evaporacao) i_01.insereVariavel(Evaporacao) # In[16]: i_01.graficosVariaveis() # In[17]: i_01.basicoRegras() # In[18]: i_01.inicializaSimulacao() # In[19]: print('- Impacto ----') # Área, combustível, vizinhança, gestão, renda, pressão e evaporação. aux_i = np.array([[10, 0.3, 0.2, 0.2, 0.4, 992, 12]]) print(i_01.calculaSimulacao(aux_i)) print('-----') # In[20]: # MC ic_i_01 = i_01.icMCSimulacao() print(ic_i_01)
StarcoderdataPython
8117402
<gh_stars>0 # https://open.kattis.com/problems/sevenwonders import collections print((lambda c: min(c['T'], c['G'], c['C']) * 7 + sum([c[k] ** 2 for k in c]))(collections.Counter({'T': 0, 'C': 0, 'G': 0}) + collections.Counter(input())))
StarcoderdataPython
12839194
import os, sys, copy import pickle import math import time import numpy as np from typing import Dict, Any, List, Set, Tuple import torch import torch.nn.functional as F from torch import nn from torch.nn.utils.rnn import pad_sequence import torch.nn.utils.rnn as rnn_utils from agent.environment.position import Position from agent.environment import card as agent_cards from . import util from .map_transformations import pose as pose_lib from .modules import state_embedder as embedder_lib from .utilities import initialization from .helpers import state_representation from .utilities import hex_util from .utilities.hex_conv_util import HexConv def getPositionalEncoding(d_model=768, max_len=1024): # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) return pe def generate_attention_mask_from_mask_indicies_and_instruction_tensors(feature_attention_mask, instruction_tensors) -> torch.tensor: attention_mask = torch.cat([feature_attention_mask, torch.ones(instruction_tensors.shape).to(util.DEVICE).bool()], 1) return attention_mask class CNNLSTMStateEncodingModel(nn.Module): def __init__(self, config): super(CNNLSTMStateEncodingModel, self).__init__() self._d_input = 19 self._d_embed = config["d_embed"] self._d_model = config["d_model"] self._embeddings_type = config["embeddings_type"] self._breakpoint_type = config["breakpoint_type"] if self._breakpoint_type == "": pass elif self._breakpoint_type == "onehot": self._d_input += 1 else: raise ValueError("not supported breakpoint type") self._conv = [] # embedding layer self._n_depth = config["n_depth"] if self._embeddings_type == "learned": if "state_embedder_pretrained_model" in config: pretrained_model = config["state_embedder_pretrained_model"] else: pretrained_model = "" self._embedder = embedder_lib.StateEmbedder( self._d_embed, pretrained_model) self._d_input = self._embedder.embedding_size() else: if self._embeddings_type == "onehot": self._embedder = embedder_lib.StateOnehotEmbedder() self._d_input = self._embedder.embedding_size() elif self._embeddings_type == "none": self._embedder = None if self._n_depth != 0: conv_module = nn.ModuleList([]) conv_layer = nn.Conv2d(self._d_input, self._d_model, (1, 1)) conv_module.append(conv_layer) conv_module.append(nn.LeakyReLU()) if torch.cuda.is_available(): conv_module = conv_module.to(util.DEVICE) self._conv.append(conv_module) # convolutional Layer self._rcpf_size = config["rcpf_size"] self._cnn_use_norm = config["cnn_use_norm"] self._cnn_hex = config["cnn_hex"] self._cnn_actv_func = config["cnn_actv_func"] padding_size = int((self._rcpf_size-1)/2) for d in range(self._n_depth-1): conv_module = nn.ModuleList([]) if d == 0 and self._embeddings_type == "learned": conv_in_channels = self._d_input else: conv_in_channels = self._d_model if self._cnn_use_norm: norm = nn.InstanceNorm2d(conv_in_channels) conv_module.append(norm) conv_out_channels: int = self._d_model if self._cnn_hex: conv_layer = HexConv(conv_in_channels, conv_out_channels, self._rcpf_size, stride=1, padding=padding_size) else: conv_layer = nn.Conv2d(conv_in_channels, conv_out_channels, (self._rcpf_size, self._rcpf_size), padding=(padding_size, padding_size)) conv_module.append(conv_layer) if self._cnn_actv_func == "leaky_relu": conv_module.append(nn.LeakyReLU()) elif self._cnn_actv_func == "tanh": conv_module.append(nn.Tanh()) if torch.cuda.is_available(): conv_module = conv_module.to(util.DEVICE) self._conv.append(conv_module) if len(self._conv) == 0: self._d_model = self._d_input self._conv = nn.ModuleList(self._conv) self._conv_output_channel = conv_out_channels # feature translation and rotation layers self._feature_map_size = config["feature_map_size"] if "feature_map_size" in config else 3 self._feature_filter_size = config["feature_filter_size"] if "feature_filter_size" in config else self._feature_map_size self._rotate_feature_map = config["rotate_feature_map"] if "rotate_feature_map" in config else True self._feature_cnn_n_depth = config["feature_cnn_n_depth"] if "feature_cnn_n_depth" in config else 0 self._feature_merge_type = config["feature_merge_type"] if "feature_merge_type" in config else "sum" self._feature_output_dimension = config["feature_output_dimension"] if "feature_output_dimension" in config else 512 self._feature_cnn_actv_func = config["feature_cnn_actv_func"] if "feature_cnn_actv_func" in config else 0 self._feature_cnn_use_norm = config["feature_cnn_use_norm"] if "feature_cnn_use_norm" in config else True self._feature_conv = [] try: assert(self._feature_output_dimension * (self._feature_map_size)**2 // (self._feature_map_size)**2 == self._feature_output_dimension) except: raise ValueError( "Feature output dimension is not divisible by the nubmer of hexes to be clopped.") for d in range(self._feature_cnn_n_depth): conv_module = nn.ModuleList([]) if self._feature_cnn_use_norm: norm = nn.InstanceNorm2d(512) #! not adaptive conv_module.append(norm) if self._feature_merge_type == "cat": traj_output_channel = self._feature_output_dimension // (self._feature_map_size)**2 padding = (self._feature_filter_size-1)//2 if self._cnn_hex: conv_layer = HexConv(self._conv_output_channel, traj_output_channel, self._feature_filter_size, stride=1, padding=padding) else: conv_layer = nn.Conv2d(self._conv_output_channel, traj_output_channel, ( self._feature_filter_size, self._feature_filter_size), padding=(padding, padding)) self._conv_output_channel = traj_output_channel elif self._feature_merge_type == "sum": traj_output_channel = self._conv_output_channel if self._cnn_hex: conv_layer = HexConv(self._conv_output_channel, traj_output_channel, self._feature_map_size, stride=1, padding=0) else: conv_layer = nn.Conv2d(self._conv_output_channel, traj_output_channel, (self._feature_map_size, self._feature_map_size), padding=(0, 0)) conv_module.append(conv_layer) if self._cnn_actv_func == "tanh": conv_module.append(nn.Tanh()) self._feature_conv.append(conv_module) self._feature_conv = nn.ModuleList(self._feature_conv) if self._feature_merge_type == "cat": self._conv_output_channel = self._feature_output_dimension self._d_model = self._feature_output_dimension elif self._feature_merge_type == "sum": self._d_model = traj_output_channel self._rotator = hex_util.Hex_Rotator() # LSTM Layer # 0. Pose + breakpoint embedder # 1. Preprocessing linear layer (optional) # 2. LSTM layer # 2.1 Optional skip connection self._lstm_input_merge_type = config["lstm_input_merge_type"] self._lstm_output_merge_type = config["lstm_output_merge_type"] self._lstm_skip = config["lstm_skip"] if self._lstm_input_merge_type == "cat": self._traj_break_embedder = embedder_lib.TrajBreakEmbedder(config["lstm_pb_dim"]) lstm_input_dim = self._d_model + config["lstm_pb_dim"] lstm_output_dim = config["lstm_d_model"] elif self._lstm_input_merge_type == "add": self._traj_break_embedder = embedder_lib.TrajBreakEmbedder(self._d_model) lstm_input_dim = self._d_model lstm_output_dim = config["lstm_d_model"] self._lstm = nn.LSTM( input_size=lstm_input_dim, hidden_size=lstm_output_dim, num_layers=config["lstm_num_layers"], bidirectional=config["lstm_bidirectional"], dropout=config["lstm_dropout"], batch_first=True, ) if config["lstm_bidirectional"]: lstm_output_dim = lstm_output_dim * 2 else: lstm_output_dim = config["lstm_d_model"] if self._lstm_skip: if self._lstm_output_merge_type == "spatial-cat": self._d_model = lstm_output_dim + self._d_model // (self._feature_map_size)**2 else: try: assert(self._lstm_output_merge_type != "spatial-cat") except: raise ValueError( "Spaitial conceteneation option is only supported for LSTM with a skip coonection.") self._d_model = lstm_output_dim if torch.cuda.is_available(): self._lstm.to(util.DEVICE) def forward(self, x, traj=None, bkpoint=None): input = x.transpose(1, 3) # [BWHC] ==> [BCHW] input = input.transpose(2, 3) # [BCHW] ==>[BCWH] # input processing input[:, 15, :, :] = torch.clamp(input[:, 15, :, :], 0, 1) input = input.detach() input = input.contiguous() # embeddings layer if self._embedder is not None: input = self._embedder(input) # hex CNN 1 conv_outputs: List[torch.Tensor] = list() for i, layer in enumerate(self._conv): conv_in = input if i == 0 else conv_outputs[-1] x = conv_in for l in layer: x = l(x) # residual coneection (if k != 1) if (i != 0 and i != self._n_depth): x = x + conv_outputs[-1] conv_outputs.append(x) if len(self._conv) == 0: final_feature = input else: final_feature = conv_outputs[-1] # cropping features if self._feature_map_size != 1: center = (self._feature_map_size-1) // 2 # Syntax: https://discuss.pytorch.org/t/is-there-a-way-to-pad-a-tensor-instead-of-variable/10448/2 final_feature = F.pad(final_feature, (center, center, center, center)) features = [] spatial_features = [] pb_features = [] batch_idx_list = [[i for _ in range(len(t))] for i, t in enumerate(traj)] final_feature_mask_indicies = [len(t) for t in traj] batch_idx = [] for l in batch_idx_list: batch_idx += l batch_idx = torch.tensor(batch_idx).to(util.DEVICE) coords = torch.cat(traj,0) h_mask = coords[:, 0] w_mask = coords[:, 1] pose = coords[:, 2] h_mask = h_mask.detach() w_mask = w_mask.detach() if self._feature_map_size == 1: feature = final_feature[i, :, h_mask, w_mask] feature = feature.permute(1, 0) else: rows = [h_mask + (slack-center) for slack in range(self._feature_map_size)] rows = torch.stack(rows, 0).unsqueeze(1) rows = rows.repeat(1, self._feature_map_size, 1) rows = rows + center # need to add center bc of padding rows = rows.detach() cols = [w_mask + (slack-center) for slack in range(self._feature_map_size)] cols = torch.stack(cols, 0).unsqueeze(0) cols = cols.repeat(self._feature_map_size, 1, 1) cols = cols + center # need to add center bc of padding cols = cols.detach() batch_idx = batch_idx.unsqueeze(0).unsqueeze(0) batch_idx = batch_idx.repeat(self._feature_map_size, self._feature_map_size, 1) feature = final_feature[batch_idx, :, rows, cols] feature = feature.permute(2, 3, 0, 1) # TxDxHxW # rotate features if self._rotate_feature_map: mask_l = len(h_mask) # converting to offset coordinates pose_position = torch.tensor([[center+center//2, center] for _ in range(mask_l)]).to(util.DEVICE) pose_rot = (pose-1) * math.radians(60) pose_obj = pose_lib.Pose(pose_position, pose_rot) new_feature = self._rotator.translate_and_rotate(feature, pose_obj) feature = new_feature # hex CNN 2 feature = feature.contiguous() x = feature for i, layer in enumerate(self._feature_conv): for l in layer: x = l(x) spatial_feature = x.view(x.shape[0], x.shape[1], x.shape[2]*x.shape[3]) #LxDX(H*W) feature = torch.cat([spatial_feature[:, :, i] for i in range(spatial_feature.shape[2])], 1) # LxDX(H*W) # attach pose features bk_onehot = torch.zeros(pose.shape).long().to(util.DEVICE) pose_bk_raw_features = torch.stack([pose, bk_onehot], 0) pb_feature = self._traj_break_embedder(pose_bk_raw_features) if self._lstm_input_merge_type == "cat": feature = torch.cat([feature, pb_feature], 1) elif self._lstm_input_merge_type == "add": feature += pb_feature spatial_features = torch.split(spatial_feature, final_feature_mask_indicies) features = torch.split(feature, final_feature_mask_indicies) # LSTM layer # reference: https://discuss.pytorch.org/t/how-can-i-compute-seq2seq-loss-using-mask/861 lstm_input = pad_sequence(features, 1, padding_value=0) unpacked = lstm_input.permute(1, 0, 2) packed = rnn_utils.pack_padded_sequence(unpacked, final_feature_mask_indicies, enforce_sorted=False) outputs, _ = self._lstm(packed, None) unpacked, unpacked_len = rnn_utils.pad_packed_sequence(outputs) final_feature = unpacked.permute(1, 0, 2) final_feature = final_feature.contiguous() if self._lstm_skip: spatial_features = pad_sequence(spatial_features, 1, padding_value=0) final_feature = final_feature.unsqueeze(-1) final_feature = final_feature.repeat(1, 1, 1, spatial_features.shape[-1]) final_feature = torch.cat([final_feature, spatial_features], 2) final_feature = final_feature.permute(0, 1, 3, 2) final_feature = final_feature.contiguous().view( (final_feature.shape[0], final_feature.shape[1]*final_feature.shape[2], final_feature.shape[3])) final_feature = final_feature.contiguous() # generate attention mask for feature feature_attention_mask = torch.ones(final_feature.shape[:2]).to(util.DEVICE) batch_size = final_feature.shape[0] neighbor_size = spatial_features.shape[-1] for i in range(batch_size): feature_attention_mask[i, neighbor_size*final_feature_mask_indicies[i]:] = 0 feature_attention_mask = feature_attention_mask.bool() return final_feature, feature_attention_mask def get_dimension(self): return self._d_model
StarcoderdataPython
9657343
from dagster.tutorials.intro_tutorial.unittesting import ( execute_test_only_final, execute_test_a_plus_b_final_subdag, ) def test_only_final(): execute_test_only_final() def test_a_plus_b_final_subdag(): execute_test_a_plus_b_final_subdag()
StarcoderdataPython
3510325
""" Osd backfill test """ import logging import time from tasks import ceph_manager from teuthology import misc as teuthology log = logging.getLogger(__name__) def rados_start(ctx, remote, cmd): """ Run a remote rados command (currently used to only write data) """ log.info("rados %s" % ' '.join(cmd)) testdir = teuthology.get_testdir(ctx) pre = [ 'adjust-ulimits', 'ceph-coverage', '{tdir}/archive/coverage'.format(tdir=testdir), 'rados', ]; pre.extend(cmd) proc = remote.run( args=pre, wait=False, ) return proc def task(ctx, config): """ Test backfill """ if config is None: config = {} assert isinstance(config, dict), \ 'thrashosds task only accepts a dict for configuration' first_mon = teuthology.get_first_mon(ctx, config) (mon,) = ctx.cluster.only(first_mon).remotes.keys() num_osds = teuthology.num_instances_of_type(ctx.cluster, 'osd') log.info('num_osds is %s' % num_osds) assert num_osds == 3 manager = ceph_manager.CephManager( mon, ctx=ctx, logger=log.getChild('ceph_manager'), ) while len(manager.get_osd_status()['up']) < 3: time.sleep(10) manager.flush_pg_stats([0, 1, 2]) manager.wait_for_clean() # write some data p = rados_start(ctx, mon, ['-p', 'rbd', 'bench', '15', 'write', '-b', '4096', '--no-cleanup']) err = p.wait() log.info('err is %d' % err) # mark osd.0 out to trigger a rebalance/backfill manager.mark_out_osd(0) # also mark it down to it won't be included in pg_temps manager.kill_osd(0) manager.mark_down_osd(0) # wait for everything to peer and be happy... manager.flush_pg_stats([1, 2]) manager.wait_for_recovery() # write some new data p = rados_start(ctx, mon, ['-p', 'rbd', 'bench', '30', 'write', '-b', '4096', '--no-cleanup']) time.sleep(15) # blackhole + restart osd.1 # this triggers a divergent backfill target manager.blackhole_kill_osd(1) time.sleep(2) manager.revive_osd(1) # wait for our writes to complete + succeed err = p.wait() log.info('err is %d' % err) # wait for osd.1 and osd.2 to be up manager.wait_till_osd_is_up(1) manager.wait_till_osd_is_up(2) # cluster must recover manager.flush_pg_stats([1, 2]) manager.wait_for_recovery() # re-add osd.0 manager.revive_osd(0) manager.flush_pg_stats([1, 2]) manager.wait_for_clean()
StarcoderdataPython
258566
import numpy as np def sigmoidDerivada(sig): return sig * (1 - sig) def sigmoid(soma): return 1 / (1 + np.exp(-soma)) #fórmula da função Sigmoidal ''' a = sigmoid = (-1.5) # exemplo b = np.exp(0) # exemplo c = sigmoid(0.5) # exemplo d = sigmoidDerivada(c) # exemplo ''' # Cada registro possue duas entradas entradas = np.array([[0, 0], # 1º registro [0, 1], # 2º registro [1, 0], # 3º registro [1, 1]]) # 4º registro saidas = np.array([[0], [1], [1], [0]]) # Operador XOR ''' # Sinapse da Camada de Entrada para a Camada Oculta pesos0 = np.array([[-0.424, -0.740, -0.961], # Pesos da 1ª entrada [ou seja, x1] [0.358, -0.577, -0.469]]) # Pesos do 2ª entrada [ou seja, x2] # Sinapse da Camada Oculta para a Camada de Saída pesos1 = np.array([[-0.017], [-0.893], [0.148]]) ''' # Inicialização dos pesos aleatóriamente pesos0 = 2 * np.random.random((2, 3)) - 1 # dois neurônios na camada de entrada e 3 neurônios na camada oculta pesos1 = 2 * np.random.random((3, 1)) # três neurônios na camada oculta e apenas um neurônios na camada de saída epocas = 1000000 # exemplo taxaAprendizagem = 0.5 # exemplo momento = 1 # exemplo, neste caso, é neutro for j in range(epocas): camadaEntrada = entradas # cópia somaSinapse0 = np.dot(camadaEntrada, pesos0) # Entrada para Oculta camadaOculta = sigmoid(somaSinapse0) somaSinapse1 = np.dot(camadaOculta, pesos1) # Oculta para Saída camadaSaida = sigmoid(somaSinapse1) erroCamadaSaida = saidas - camadaSaida mediaAbsoluta = np.mean(np.abs(erroCamadaSaida)) # média absoluta (ou seja, não negativa) dos valores print("Erro: " + str(mediaAbsoluta)) derivadaSaida = sigmoidDerivada(camadaSaida) deltaSaida = erroCamadaSaida * derivadaSaida # fórmula do delta para a Camada de Saída pesos1Transposta = pesos1.T # '.T' -> matriz transposta para funcionar a multiplicação abaixo deltaSaidaXPeso = deltaSaida.dot(pesos1Transposta) # '.dot' é uma multiplicação escalar deltaCamadaOculta = deltaSaidaXPeso * sigmoidDerivada(camadaOculta) camadaOcultaTransposta = camadaOculta.T # matriz transposta # Backpropagation / Retropropagação pesosNovo1 = camadaOcultaTransposta.dot(deltaSaida) # atualização dos pesos pesos1 = (pesos1 * momento) + (pesosNovo1 * taxaAprendizagem) # fórmula do Back... camadaEntradaTransposta = camadaEntrada.T # matriz transposta # Backpropagation / Retropropagação pesosNovo0 = camadaEntradaTransposta.dot(deltaCamadaOculta) # atualização dos pesos pesos0 = (pesos0 * momento) + (pesosNovo0 * taxaAprendizagem) # fórmula do Back...
StarcoderdataPython
4915360
''' This module contains a tool kit for loading data in the app_model_validation.py file ''' import os import pandas as pd training_data_path = 'data/training/220128.csv' def load_train_and_validation_data(frac_ = 0.8): ''' This method loads training and testing data as pandas data frames. ''' # Read file df = pd.read_csv(training_data_path, sep=';') # Sample data train=df.sample(frac=frac_) test=df.drop(train.index) train = train.reset_index(drop=True) test = test.reset_index(drop=True) return train, test def load_txt_files(source_path): ''' This method reads all txt files from the source path and stores their content into a pandas table (pickle) inside the target path ''' sections = [] # Iterate over all files in directory filenames = [f for f in os.listdir(source_path)] for filename in filenames: file = open(source_path + filename, 'r') file_content = file.read() page_nr = 1 section_idx = 0 # Each section is indexed. The filename and the index are a composite key for a section for page in file_content.split('\n\n'): # Pages are separated with a double new line for section in page.split('\n'): # Sections are separated with a single new line sections.append([filename, section_idx, page_nr, section]) section_idx += 1 page_nr += 1 df = pd.DataFrame(sections, columns=['report_id', 'section_index', 'page_number', 'section_text']) return df
StarcoderdataPython
262711
<reponame>xiaoxiaofenyge/-<filename>wechatsogou/structuring.py<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals, print_function import re import json from lxml import etree from lxml.etree import XML import requests from wechatsogou.tools import get_elem_text, list_or_empty, replace_html, get_first_of_element from wechatsogou.five import str_to_bytes find_article_json_re = re.compile('var msgList = (.*?)}}]};') get_post_view_perm = re.compile('<script>var account_anti_url = "(.*?)";</script>') class WechatSogouStructuring(object): @staticmethod def __handle_content_url(content_url): content_url = replace_html(content_url) return ('http://mp.weixin.qq.com{}'.format( content_url) if 'http://mp.weixin.qq.com' not in content_url else content_url) if content_url else '' @staticmethod def __get_post_view_perm(text): result = get_post_view_perm.findall(text) if not result or len(result) < 1: return None r = requests.get('http://weixin.sogou.com{}'.format(result[0])) if not r.ok: return None if r.json().get('code') != 'success': return None return r.json().get('msg') @staticmethod def get_gzh_by_search(text): """从搜索公众号获得的文本 提取公众号信息 Parameters ---------- text : str or unicode 搜索公众号获得的文本 Returns ------- list[dict] { 'open_id': '', # 微信号唯一ID 'profile_url': '', # 最近10条群发页链接 'headimage': '', # 头像 'wechat_name': '', # 名称 'wechat_id': '', # 微信id 'post_perm': '', # 最近一月群发数 'view_perm': '', # 最近一月阅读量 'qrcode': '', # 二维码 'introduction': '', # 介绍 'authentication': '' # 认证 } """ post_view_perms = WechatSogouStructuring.__get_post_view_perm(text) page = etree.HTML(text) lis = page.xpath('//ul[@class="news-list2"]/li') relist = [] for li in lis: url = get_first_of_element(li, 'div/div[1]/a/@href') headimage = get_first_of_element(li, 'div/div[1]/a/img/@src') wechat_name = get_elem_text(get_first_of_element(li, 'div/div[2]/p[1]')) info = get_elem_text(get_first_of_element(li, 'div/div[2]/p[2]')) qrcode = get_first_of_element(li, 'div/div[3]/span/img[1]/@src') introduction = get_elem_text(get_first_of_element(li, 'dl[1]/dd')) authentication = get_first_of_element(li, 'dl[2]/dd/text()') relist.append({ 'open_id': headimage.split('/')[-1], 'profile_url': url, 'headimage': headimage, 'wechat_name': wechat_name.replace('red_beg', '').replace('red_end', ''), 'wechat_id': info.replace('微信号:', ''), 'qrcode': qrcode, 'introduction': introduction.replace('red_beg', '').replace('red_end', ''), 'authentication': authentication, 'post_perm': -1, 'view_perm': -1, }) if post_view_perms: for i in relist: if i['open_id'] in post_view_perms: post_view_perm = post_view_perms[i['open_id']].split(',') if len(post_view_perm) == 2: i['post_perm'] = int(post_view_perm[0]) i['view_perm'] = int(post_view_perm[1]) return relist @staticmethod def get_article_by_search_wap(keyword, wap_dict): datas = [] for i in wap_dict['items']: item = str_to_bytes(i).replace(b'\xee\x90\x8a' + str_to_bytes(keyword) + b'\xee\x90\x8b', str_to_bytes(keyword)) root = XML(item) display = root.find('.//display') datas.append({ 'gzh': { 'profile_url': display.find('encGzhUrl').text, 'open_id': display.find('openid').text, 'isv': display.find('isV').text, 'wechat_name': display.find('sourcename').text, 'wechat_id': display.find('username').text, 'headimage': display.find('headimage').text, 'qrcode': display.find('encQrcodeUrl').text, }, 'article': { 'title': display.find('title').text, 'url': display.find('url').text, # encArticleUrl 'main_img': display.find('imglink').text, 'abstract': display.find('content168').text, 'time': display.find('lastModified').text, }, }) return datas @staticmethod def get_article_by_search(text): """从搜索文章获得的文本 提取章列表信息 Parameters ---------- text : str or unicode 搜索文章获得的文本 Returns ------- list[dict] { 'article': { 'title': '', # 文章标题 'url': '', # 文章链接 'imgs': '', # 文章图片list 'abstract': '', # 文章摘要 'time': '' # 文章推送时间 }, 'gzh': { 'profile_url': '', # 公众号最近10条群发页链接 'headimage': '', # 头像 'wechat_name': '', # 名称 'isv': '', # 是否加v } } """ page = etree.HTML(text) lis = page.xpath('//ul[@class="news-list"]/li') articles = [] for li in lis: url = get_first_of_element(li, 'div[1]/a/@href') if url: title = get_first_of_element(li, 'div[2]/h3/a') imgs = li.xpath('div[1]/a/img/@src') abstract = get_first_of_element(li, 'div[2]/p') time = get_first_of_element(li, 'div[2]/div/span/script/text()') gzh_info = li.xpath('div[2]/div/a')[0] else: url = get_first_of_element(li, 'div/h3/a/@href') title = get_first_of_element(li, 'div/h3/a') imgs = [] spans = li.xpath('div/div[1]/a') for span in spans: img = span.xpath('span/img/@src') if img: imgs.append(img) abstract = get_first_of_element(li, 'div/p') time = get_first_of_element(li, 'div/div[2]/span/script/text()') gzh_info = li.xpath('div/div[2]/a')[0] if title is not None: title = get_elem_text(title).replace("red_beg", "").replace("red_end", "") if abstract is not None: abstract = get_elem_text(abstract).replace("red_beg", "").replace("red_end", "") time = re.findall('timeConvert\(\'(.*?)\'\)', time) time = list_or_empty(time, int) profile_url = get_first_of_element(gzh_info, '@href') headimage = get_first_of_element(gzh_info, '@data-headimage') wechat_name = get_first_of_element(gzh_info, 'text()') gzh_isv = get_first_of_element(gzh_info, '@data-isv', int) articles.append({ 'article': { 'title': title, 'url': url, 'imgs': imgs, 'abstract': abstract, 'time': time }, 'gzh': { 'profile_url': profile_url, 'headimage': headimage, 'wechat_name': wechat_name, 'isv': gzh_isv, } }) return articles @staticmethod def get_gzh_info_by_history(text): """从 历史消息页的文本 提取公众号信息 Parameters ---------- text : str or unicode 历史消息页的文本 Returns ------- dict { 'wechat_name': '', # 名称 'wechat_id': '', # 微信id 'introduction': '', # 描述 'authentication': '', # 认证 'headimage': '' # 头像 } """ page = etree.HTML(text) profile_area = get_first_of_element(page, '//div[@class="profile_info_area"]') profile_img = get_first_of_element(profile_area, 'div[1]/span/img/@src') profile_name = get_first_of_element(profile_area, 'div[1]/div/strong/text()') profile_wechat_id = get_first_of_element(profile_area, 'div[1]/div/p/text()') profile_desc = get_first_of_element(profile_area, 'ul/li[1]/div/text()') profile_principal = get_first_of_element(profile_area, 'ul/li[2]/div/text()') return { 'wechat_name': profile_name.strip(), 'wechat_id': profile_wechat_id.replace('微信号: ', '').strip('\n'), 'introduction': profile_desc, 'authentication': profile_principal, 'headimage': profile_img } @staticmethod def get_article_by_history_json(text, article_json=None): """从 历史消息页的文本 提取文章列表信息 Parameters ---------- text : str or unicode 历史消息页的文本 article_json : dict 历史消息页的文本 提取出来的文章json dict Returns ------- list[dict] { 'send_id': '', # 群发id,注意不唯一,因为同一次群发多个消息,而群发id一致 'datetime': '', # 群发datatime 'type': '', # 消息类型,均是49,表示图文 'main': 0, # 是否是一次群发的第一次消息 'title': '', # 文章标题 'abstract': '', # 摘要 'fileid': '', # 'content_url': '', # 文章链接 'source_url': '', # 阅读原文的链接 'cover': '', # 封面图 'author': '', # 作者 'copyright_stat': '', # 文章类型,例如:原创啊 } """ if article_json is None: article_json = find_article_json_re.findall(text) if not article_json: return [] article_json = article_json[0] + '}}]}' article_json = json.loads(article_json) items = list() for listdic in article_json['list']: if str(listdic['comm_msg_info'].get('type', '')) != '49': continue comm_msg_info = listdic['comm_msg_info'] app_msg_ext_info = listdic['app_msg_ext_info'] send_id = comm_msg_info.get('id', '') msg_datetime = comm_msg_info.get('datetime', '') msg_type = str(comm_msg_info.get('type', '')) items.append({ 'send_id': send_id, 'datetime': msg_datetime, 'type': msg_type, 'main': 1, 'title': app_msg_ext_info.get('title', ''), 'abstract': app_msg_ext_info.get('digest', ''), 'fileid': app_msg_ext_info.get('fileid', ''), 'content_url': WechatSogouStructuring.__handle_content_url(app_msg_ext_info.get('content_url')), 'source_url': app_msg_ext_info.get('source_url', ''), 'cover': app_msg_ext_info.get('cover', ''), 'author': app_msg_ext_info.get('author', ''), 'copyright_stat': app_msg_ext_info.get('copyright_stat', '') }) if app_msg_ext_info.get('is_multi', 0) == 1: for multi_dict in app_msg_ext_info['multi_app_msg_item_list']: items.append({ 'send_id': send_id, 'datetime': msg_datetime, 'type': msg_type, 'main': 0, 'title': multi_dict.get('title', ''), 'abstract': multi_dict.get('digest', ''), 'fileid': multi_dict.get('fileid', ''), 'content_url': WechatSogouStructuring.__handle_content_url(multi_dict.get('content_url')), 'source_url': multi_dict.get('source_url', ''), 'cover': multi_dict.get('cover', ''), 'author': multi_dict.get('author', ''), 'copyright_stat': multi_dict.get('copyright_stat', '') }) return list(filter(lambda x: x['content_url'], items)) # 删除搜狗本身携带的空数据 @staticmethod def get_gzh_info_and_article_by_history(text): """从 历史消息页的文本 提取公众号信息 和 文章列表信息 Parameters ---------- text : str or unicode 历史消息页的文本 Returns ------- dict { 'gzh': { 'wechat_name': '', # 名称 'wechat_id': '', # 微信id 'introduction': '', # 描述 'authentication': '', # 认证 'headimage': '' # 头像 }, 'article': [ { 'send_id': '', # 群发id,注意不唯一,因为同一次群发多个消息,而群发id一致 'datetime': '', # 群发datatime 'type': '', # 消息类型,均是49,表示图文 'main': 0, # 是否是一次群发的第一次消息 'title': '', # 文章标题 'abstract': '', # 摘要 'fileid': '', # 'content_url': '', # 文章链接 'source_url': '', # 阅读原文的链接 'cover': '', # 封面图 'author': '', # 作者 'copyright_stat': '', # 文章类型,例如:原创啊 }, ... ] } """ return { 'gzh': WechatSogouStructuring.get_gzh_info_by_history(text), 'article': WechatSogouStructuring.get_article_by_history_json(text) } @staticmethod def get_gzh_article_by_hot(text): """从 首页热门搜索 提取公众号信息 和 文章列表信息 Parameters ---------- text : str or unicode 首页热门搜索 页 中 某一页 的文本 Returns ------- list[dict] { 'gzh': { 'headimage': str, # 公众号头像 'wechat_name': str, # 公众号名称 }, 'article': { 'url': str, # 文章临时链接 'title': str, # 文章标题 'abstract': str, # 文章摘要 'time': int, # 推送时间,10位时间戳 'open_id': str, # open id 'main_img': str # 封面图片 } } """ page = etree.HTML(text) lis = page.xpath('/html/body/li') gzh_article_list = [] for li in lis: url = get_first_of_element(li, 'div[1]/h4/a/@href') title = get_first_of_element(li, 'div[1]/h4/a/div/text()') abstract = get_first_of_element(li, 'div[1]/p[1]/text()') xpath_time = get_first_of_element(li, 'div[1]/p[2]') open_id = get_first_of_element(xpath_time, 'span/@data-openid') headimage = get_first_of_element(xpath_time, 'span/@data-headimage') gzh_name = get_first_of_element(xpath_time, 'span/text()') send_time = xpath_time.xpath('a/span/@data-lastmodified') main_img = get_first_of_element(li, 'div[2]/a/img/@src') try: send_time = int(send_time[0]) except ValueError: send_time = send_time[0] gzh_article_list.append({ 'gzh': { 'headimage': headimage, 'wechat_name': gzh_name, }, 'article': { 'url': url, 'title': title, 'abstract': abstract, 'time': send_time, 'open_id': open_id, 'main_img': main_img } }) return gzh_article_list
StarcoderdataPython
3271037
<gh_stars>0 # -*- coding: utf-8 -*- from scrapy.spiders import Spider from uuid import uuid4 from ..items import ComponentItem class GarrysmodSpider(Spider): name = 'garrysmod' allowed_domains = ['wiki.garrysmod.com'] start_urls = ['https://wiki.garrysmod.com/navbar/'] state = {} def parse_nav(self, response): ''' Parse the navigation bar list for our individual API components. ''' # First yield our global component, and pass it's id on to all child requests. # *This ensures that anything can be linked to the global scope.* global_uuid = uuid4() global_item = ComponentItem( uuid=global_uuid, name='global', file='global.lua' ) yield global_item category_list = response.xpath('/html/body/ul[1]/li') for category in category_list: category_name = (category.xpath('./h1/text()').get() or '').casefold() if category_name not in self._category_parsers: continue component_list = category.xpath('./ul[1]/li') for component in component_list: link = component.xpath('./h2/a') if link.attrib.get('href'): yield response.follow(link.attrib['href'], callback=self._category_parsers[category_name], priority=self._category_priority[category_name], meta={'global': global_uuid} ) parse = parse_nav def parse_hook(self, response): ''' Handles creating a Hook definition and its attributes. ''' def parse_library(self, response): ''' Handles creating a Library definition and its subroutines. ''' def parse_class(self, response): ''' Handles creating a Class definition and its methods/attributes. ''' def parse_dpanel(self, response): ''' Hand;es creating a DPanel subclass and its methods/attributes. ''' def parse_attribute(self, response, component, last_attr=False): ''' Handles parsing a component's method or attribute page. ''' _category_parsers = { 'hooks': parse_hook, 'libraries': parse_library, 'global': parse_attribute, 'classes': parse_class, 'panels': parse_dpanel } _category_priority = { 'hooks': 1, 'libraries': 3, 'global': 5, 'classes': 7, 'panels': 9 }
StarcoderdataPython
9705266
import os from os import path import math os.environ['OPENBLAS_NUM_THREADS'] = '1' import numpy as np import sys, json, time import pandas as pd import multiprocessing as mp # TODO remove from final version from datetime import datetime, timedelta from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp import random from training import * # TODO: Handle all division exceptions CONST_INFTY = 1000000.0 # If the TSP is not solved, the time is set to this value CONST_TIMEOUT = 60 # Maximum time in seconds for solving TSP with time windows BASE_DIR = path.dirname(path.dirname(path.abspath(__file__))) # Get Directory def haversine(lat1, lng1, lat2, lng2): # distance between latitudes and longitudes in km d_lat = (lat2 - lat1) * math.pi / 180.0 d_lon = (lng2 - lng1) * math.pi / 180.0 # convert to radians lat1 = lat1 * math.pi / 180.0 lat2 = lat2 * math.pi / 180.0 # apply formulae a = (pow(math.sin(d_lat / 2), 2) + pow(math.sin(d_lon / 2), 2) * math.cos(lat1) * math.cos(lat2)) rad = 6371 c = 2 * math.asin(math.sqrt(a)) return rad * c class Route: # class constructor def __init__(self): self.index = 0 self.key = 'NULL' self.station_code = 'NULL' self.date = 'NULL' self.departure_time = 'NULL' self.executor_capacity = 0.0 self.score = 'NULL' self.stop = [] # list of stop objects self.stop_key_index_dict = {} # dict of stops ordered by what was actually traversed self.travel_time_dict = {} # travel time between stops in seconds # derived members self.num_stops = 0 # number of stops included in the route (includes depot) self.num_stops_tw = 0 # number of stops with time windows self.num_tw_violations = 0 # number of stops which violate time windows self.num_packages = 0 # number of packages to be delivered along the route self.num_packages_tw = 0 # number of packages with time windows on the route self.num_scans_delivered = 0 # based on delivered status; not available during apply self.num_scans_not_delivered = 0 # based on status; N/A for apply; compare with estimated values self.num_packages_not_delivered = 0 # estimated num of packages not delivered due to scans self.vol_packages_not_delivered = 0.0 # estimated vol of packages not delivered self.packages_per_stop = 0.0 # number of packages per stop self.travel_time = 0.0 # total time taken to travel the actual route (ignores service times) self.service_time = 0.0 # sum of service times across all stops self.total_journey_time = 0.0 # sum of travel time plus service time self.filled_capacity = 0.0 # total volume of all the packages self.filled_capacity_percent = 0.0 # percentage of truck volume occupied by the packages self.volume_seconds_traveled = 0.0 # total route volume time in cm3 seconds (uses travel time not journey time) self.vst_ratio = 0.0 # volume seconds traveled divided by travel time x filled_capacity self.total_wait_time = 0.0 # if the truck is early at a stop with time windows that are met (0 is good) self.total_end_slack = 0.0 # difference between end time window and actual end time for time windows met self.total_max_slack = 0.0 # difference between end time window and start time window + service time self.slack_ratio = 0.0 # ratio of total end slack to total max slack # package level time window metrics (assumes every package at a stop is delivered first) # this is an approx; wait time may not require waiting since they can deliver other packages self.weighted_pkg_wait_time = 0.0 # total weighted (by volume) wait time for packages self.weighted_pkg_end_slack = 0.0 # total weighted (by volume) end slack for packages self.weighted_pkg_max_slack = 0.0 # total weighted (by volume) max slack for packages self.weighted_pkg_slack_ratio = 0.0 # total weighted (by volume) slack ratios for packages self.max_segment_time = 0.0 # maximum travel time between stops (excludes to and from origin) self.var_segment_time = 0.0 # variance of segment time self.segment_time_ratio = 0.0 # ratio compared to total journey time self.max_segment_dist = 0.0 # maximum distance traveled between stops (excludes to and from origin) self.var_segment_dist = 0.0 # variance of segment distance self.segment_dist_ratio = 0.0 # ratio compared to total distance self.total_dist = 0.0 # total haversine distance of route self.average_speed = 0.0 # total haversine distance / total time self.is_sequence_feasible = True # boolean variable which records if the actual route is feasible or not self.weekday = 0 # Mon is 0 and Sun is 6 self.is_weekend = False # is set to true if weekday is Sat or Sun # zonal members self.zone_stop_dict = {} # dictionary of zones as keys and stop list as values self.num_zones = 0 # number of stop zones self.num_zone_switches = 0 # number of times we switch to a different zone along a route self.switch_stop_ratio = 0 # ratio of number of zone switches to number of stops self.switch_zone_ratio = 0 # ratio of number of zone switches to number of zones (>= 1 ideal case is num zones) # TSP related members self.tsp_solver_status = 0 # 0 Not Solved 1 Success 2 No Soln 3 Timeout 4 Infeasible self.tsp_route_time = CONST_INFTY # optimal TSP time as provided by the solver self.tsp_optimality_gap = 0.0 # between the TSP time and the actual route time as a percentage self.tsp_route_dict = {} # dictionary of stops along the TSP tour which is used for scoring self.is_tsp_feasible = True # checks if TSP is feasible or not class Stop: def __init__(self): self.key = 0 self.order = -1 self.lat = 0.0 self.lng = 0.0 self.proj_x = 0.0 # UTM projection of lat long self.proj_y = 0.0 # UTM projection of lat long self.type = 'NULL' self.zone_id = 'NULL' self.package_dict = {} # package data is stored simply as a dictionary since we may not process it further # derived members self.planned_service_time = 0.0 # total planned service time for all packages at this stop in seconds self.is_tw_present = False # indicator to check if there is a TW constraint or not self.is_tw_violated = False # indicator for violations of time windows self.start_time_window = 'NULL' # tightest start time for all packages at this stop self.end_time_window = 'NULL' # tightest end time this stop (in seconds from departure time) self.actual_start_time = 0.0 # actual start time according to travel time data in seconds from start self.actual_end_time = 0.0 # actual end time using the planned service time self.wait_time = 0.0 # positive part of difference between start time window and actual start time self.slack_time = 0.0 # difference between end time window and actual end time self.max_slack = 0.0 # difference between end time window and start time window + planned_service_time # package level time window metrics (assumes every package at the stop is delivered first) # this is an approx; wait time may not require waiting since they can deliver other packages self.weighted_pkg_wait_time = 0.0 # weighted (by volume) wait time for packages self.weighted_pkg_end_slack = 0.0 # weighted (by volume) end slack for packages self.weighted_pkg_max_slack = 0.0 # weighted (by volume) max slack for packages self.weighted_pkg_slack_ratio = 0.0 # weighted (by volume) slack ratios for packages self.num_packages = 0 # total number of packages self.num_packages_tw = 0 # number of packages with time windows at this stop self.num_scans_delivered = 0 # total number of packages delivered based on scans self.num_scans_not_delivered = 0 # total number of packages not delivered based on scans self.num_packages_not_delivered = 0 # number of packages not delivered due to time windows self.total_package_vol = 0.0 # total volume of all packages to be delivered at this stop self.vol_package_undelivered = 0.0 # volume of packages that could not be delivered # derived members related to TSP self.tsp_order = -1 # order of stops according to TSP self.actual_tsp_start_time = 0.0 self.actual_tsp_end_time = 0.0 self.is_tsp_feasible = True def __repr__(self): return "(" + str(self.key) + "," + str(self.order) + "," + str(self.zone_id) + ")" def compute_route_features(self): """This function computes several features for each route using the stop features that can be used for exploratory analysis""" self.weekday = self.date.weekday() if self.weekday >= 5: self.is_weekend = True self.num_stops = len(self.stop) self.travel_time = 0.0 self.stop[0].actual_start_time = 0.0 self.stop[0].actual_end_time = 0.0 for i in range(len(self.stop)): # add total number of packages across stops and their volume self.num_packages += self.stop[i].num_packages self.num_packages_tw += self.stop[i].num_packages_tw self.num_scans_delivered += self.stop[i].num_scans_delivered self.num_scans_not_delivered += self.stop[i].num_scans_not_delivered self.num_packages_not_delivered += self.stop[i].num_packages_not_delivered self.vol_packages_not_delivered += self.stop[i].vol_package_undelivered self.filled_capacity += self.stop[i].total_package_vol self.service_time += self.stop[i].planned_service_time self.total_wait_time += self.stop[i].wait_time self.total_end_slack += self.stop[i].slack_time self.total_max_slack += self.stop[i].max_slack self.weighted_pkg_wait_time += self.stop[i].weighted_pkg_wait_time self.weighted_pkg_end_slack += self.stop[i].weighted_pkg_end_slack self.weighted_pkg_max_slack += self.stop[i].weighted_pkg_max_slack self.weighted_pkg_slack_ratio += self.stop[i].weighted_pkg_slack_ratio self.packages_per_stop = self.num_packages / self.num_stops self.filled_capacity_percent = self.filled_capacity / self.executor_capacity current_volume = self.filled_capacity for i in range(len(self.stop) - 1): # find arrival and departure times at all stops self.travel_time += self.travel_time_dict[self.stop[i].key][self.stop[i + 1].key] self.volume_seconds_traveled += current_volume * self.travel_time_dict[self.stop[i].key][ self.stop[i + 1].key] current_volume -= self.stop[i + 1].total_package_vol self.travel_time += self.travel_time_dict[self.stop[self.num_stops - 1].key][ self.stop[0].key] # add travel time from last stop to depot segment_travel_times = [self.travel_time_dict[self.stop[i].key][self.stop[i + 1].key] for i in range(1, len(self.stop) - 1)] self.max_segment_time = max(segment_travel_times) self.var_segment_time = np.var(segment_travel_times) self.segment_time_ratio = self.max_segment_time / self.travel_time segment_distances = [haversine(self.stop[i].lat, self.stop[i].lng, self.stop[i + 1].lat, self.stop[i + 1].lng) for i in range(1, len(self.stop) - 1)] self.max_segment_dist = max(segment_distances) self.var_segment_dist = np.var(segment_distances) self.segment_dist_ratio = self.max_segment_dist / sum(segment_distances) self.total_dist = sum(segment_distances) self.total_dist += haversine(self.stop[0].lat, self.stop[0].lng, self.stop[1].lat, self.stop[1].lng) self.total_dist += haversine(self.stop[self.num_stops - 1].lat, self.stop[self.num_stops - 1].lng, self.stop[0].lat, self.stop[0].lng) self.average_speed = self.total_dist / self.travel_time self.vst_ratio = self.volume_seconds_traveled / (self.filled_capacity * self.travel_time) self.slack_ratio = self.total_end_slack / self.total_max_slack self.total_journey_time = self.travel_time + self.service_time unique_zone_list = [self.stop[i].zone_id for i in range(len(self.stop))] unique_zone_list = list(set(unique_zone_list)) self.num_zones = len(unique_zone_list) for zone in unique_zone_list: self.zone_stop_dict[zone] = [] for i in range(len(self.stop)): self.zone_stop_dict[self.stop[i].zone_id].append(self.stop[i].order) for i in range(len(self.stop) - 1): if self.stop[i].zone_id != self.stop[i + 1].zone_id: self.num_zone_switches += 1 self.num_zone_switches += 1 # to account for last switch to depot self.switch_stop_ratio = self.num_zone_switches / self.num_stops self.switch_zone_ratio = self.num_zone_switches / self.num_zones def compute_stop_package_features(self): """This function computes several features for each stop that can be used for exploratory analysis""" # Replace NaN zone IDs with zone ID of nearest stop by travel time # if nearest also has NaN, then find the next nearest stop; Exclude depot station for i in range(len(self.stop)): if self.stop[i].zone_id != self.stop[i].zone_id and self.stop[i].type != 'Station': min_dist = 100000000 nearest_zone_id = "Null" for j in range(len(self.stop)): if j != i and self.stop[j].type != 'Station': if self.travel_time_dict[self.stop[i].key][self.stop[j].key] < min_dist and self.stop[ j].zone_id == self.stop[j].zone_id: min_dist = self.travel_time_dict[self.stop[i].key][self.stop[j].key] nearest_zone_id = self.stop[j].zone_id self.stop[i].zone_id = nearest_zone_id elif self.stop[i].type == 'Station': self.stop[i].zone_id = 'Depot' self.stop[0].actual_start_time = 0.0 self.stop[0].actual_end_time = 0.0 for i in range(len(self.stop)): self.stop[i].order = i self.stop[i].num_packages = len(self.stop[i].package_dict.keys()) self.stop[i].start_time_window = datetime.combine(self.date, self.departure_time) self.stop[i].end_time_window = (self.stop[i].start_time_window + timedelta(hours=24)).strftime( '%Y-%m-%d %H:%M:%S') self.stop[i].end_time_window = datetime.strptime(self.stop[i].end_time_window, '%Y-%m-%d %H:%M:%S') self.stop[i].is_tw_present = False for package_value in self.stop[i].package_dict.values(): package_start_time = 0.0 package_end_time = 86400.0 package_value['is_tw_present'] = False if package_value['scan_status'] == "DELIVERED": self.stop[i].num_scans_delivered += 1 dimension_dict = package_value['dimensions'] temp_prod = 1.0 for value in dimension_dict.values(): temp_prod = temp_prod * value package_value['volume'] = temp_prod self.stop[i].total_package_vol += temp_prod self.stop[i].planned_service_time += package_value['planned_service_time_seconds'] # set the tightest start and end times at each stop if str(package_value['time_window']['start_time_utc']) != 'nan': self.stop[i].is_tw_present = True self.stop[i].num_packages_tw += 1 package_value['is_tw_present'] = True package_start_time = datetime.strptime(str(package_value['time_window']['start_time_utc']), '%Y-%m-%d %H:%M:%S') if package_start_time > self.stop[i].start_time_window: self.stop[i].start_time_window = package_start_time package_start_time = datetime.strptime(str(package_value['time_window']['start_time_utc']), '%Y-%m-%d %H:%M:%S') package_start_time -= datetime.combine(self.date, self.departure_time) package_start_time = package_start_time.total_seconds() if str(package_value['time_window']['end_time_utc']) != 'nan': package_end_time = datetime.strptime(str(package_value['time_window']['end_time_utc']), '%Y-%m-%d %H:%M:%S') if package_end_time < self.stop[i].end_time_window: self.stop[i].end_time_window = package_end_time package_end_time = datetime.strptime(str(package_value['time_window']['end_time_utc']), '%Y-%m-%d %H:%M:%S') package_end_time -= datetime.combine(self.date, self.departure_time) package_end_time = package_end_time.total_seconds() package_value['start_time'] = package_start_time package_value['end_time'] = package_end_time # calculate actual arrival and departure times if i > 0: self.stop[i].actual_start_time = self.stop[i - 1].actual_end_time + \ self.travel_time_dict[self.stop[i - 1].key][self.stop[i].key] self.stop[i].actual_end_time = self.stop[i].actual_start_time + self.stop[i].planned_service_time self.stop[i].num_scans_not_delivered = self.stop[i].num_packages - self.stop[i].num_scans_delivered # convert start and end time windows in seconds from departure time self.stop[i].start_time_window -= datetime.combine(self.date, self.departure_time) self.stop[i].end_time_window -= datetime.combine(self.date, self.departure_time) self.stop[i].start_time_window = self.stop[i].start_time_window.total_seconds() self.stop[i].end_time_window = self.stop[i].end_time_window.total_seconds() self.stop[0].end_time_window = 0.0 # no need to wait at the depot if i > 0: if self.stop[i].is_tw_present: self.stop[i].wait_time = max(self.stop[i].start_time_window - self.stop[i].actual_start_time, 0) self.stop[i].slack_time = max(self.stop[i].end_time_window - self.stop[i].actual_end_time, 0) self.stop[i].max_slack = self.stop[i].end_time_window - ( self.stop[i].start_time_window + self.stop[i].planned_service_time) # calculate time window metrics at a package level for package_value in self.stop[i].package_dict.values(): if package_value['is_tw_present']: package_value['wait_time'] = max(package_value['start_time'] - self.stop[i].actual_start_time, 0) package_value['end_slack'] = max(package_value['end_time'] - self.stop[i].actual_end_time, 0) package_value['max_slack'] = package_value['end_time'] - ( package_value['start_time'] + package_value['planned_service_time_seconds']) if package_value['max_slack'] > 0: # avoid div by zero package_value['slack_ratio'] = package_value['end_slack'] / package_value['max_slack'] else: package_value['slack_ratio'] = 0 # aggregate these at a stop level self.stop[i].weighted_pkg_wait_time += package_value['volume'] * package_value['wait_time'] self.stop[i].weighted_pkg_end_slack += package_value['volume'] * package_value['end_slack'] self.stop[i].weighted_pkg_max_slack += package_value['volume'] * package_value['max_slack'] self.stop[i].weighted_pkg_slack_ratio += package_value['volume'] * package_value['slack_ratio'] # check for time window violations if self.stop[i].is_tw_present: self.num_stops_tw += 1 if self.stop[i].actual_end_time > self.stop[i].end_time_window: # waiting is allowed self.stop[i].is_tw_violated = True self.num_tw_violations += 1 self.is_sequence_feasible = False # New method for checking package infeasibility for package_value in self.stop[i].package_dict.values(): if package_value['is_tw_present']: if self.stop[i].actual_start_time + package_value['planned_service_time_seconds'] > package_value[ 'end_time']: self.stop[i].num_packages_not_delivered += 1 self.stop[i].vol_package_undelivered += package_value['volume'] def display_route_data(self): """Function that prints minimal route data to check code progress. Full details are written to a CSV file.""" print(self.index, self.key, self.score, self.num_stops_tw, self.num_packages_tw, self.num_packages_not_delivered, '%.2f' % self.vol_packages_not_delivered, '%.2f' % self.total_journey_time, '%.2f' % self.tsp_route_time, self.is_tsp_feasible, ) # print(self.travel_time_dict) # if self.index == 162: # for i in range(len(self.stop)): # print(self.stop[i].key, self.stop[i].order, self.stop[i].type, # self.stop[i].zone_id, self.stop[i].num_packages, self.stop[i].num_packages_tw, # self.stop[i].num_scans_not_delivered, self.stop[i].num_packages_not_delivered, # self.stop[i].total_package_vol, self.stop[i].vol_package_undelivered, self.stop[i].start_time_window, # self.stop[i].end_time_window, self.stop[i].actual_start_time, self.stop[i].actual_end_time) # print(json.dumps(self.stop[i].package_dict, indent=4)) # prints the entire package dictionary def create_tsp_data(rt): """Stores the distance matrix for the stops on the route""" data = {} data['time_matrix'] = [] row = [] for i in range(len(rt.stop)): for j in range(len(rt.stop)): if rt.stop[i].key != rt.stop[j].key: row.append(int(math.floor( rt.travel_time_dict[rt.stop[i].key][rt.stop[j].key] * 10 + rt.stop[i].planned_service_time * 10))) else: row.append(0) # diagonal elements of the matrix are set to zeros data['time_matrix'].append(row) row = [] data['service_time'] = [] data['time_windows'] = [] for i in range(len(rt.stop)): left_end_point = math.floor(rt.stop[i].start_time_window * 10) right_end_point = math.floor(rt.stop[i].end_time_window * 10 - rt.stop[i].planned_service_time * 10) data['time_windows'].append((int(left_end_point), int(right_end_point))) data['service_time'].append(rt.stop[i].planned_service_time) data['num_vehicles'] = 1 data['depot'] = 0 return data def print_tsp_solution(manager, routing, solution): """Prints solution on console.""" print('Objective: {} seconds'.format(solution.ObjectiveValue())) index = routing.Start(0) plan_output = 'Route for vehicle 0:\n' route_distance = 0 while not routing.IsEnd(index): plan_output += ' {} ->'.format(manager.IndexToNode(index)) previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle(previous_index, index, 0) plan_output += ' {}\n'.format(manager.IndexToNode(index)) plan_output += 'OR tools TSP route time: {} seconds\n'.format(route_distance) print(plan_output) def set_tsp_dict(rt, manager, routing, solution): actual_route_dict = {} for i in range(len(rt.stop)): actual_route_dict[rt.stop[i].order] = rt.stop[i].key count = 0 index = routing.Start(0) rt.tsp_route_dict = {} rt.tsp_route_dict[actual_route_dict[index]] = count rt.stop[index].tsp_order = count while not routing.IsEnd(index): index = solution.Value(routing.NextVar(index)) if manager.IndexToNode(index) != 0: # the revisit to depot can be ignored in the dictionary count += 1 rt.tsp_route_dict[actual_route_dict[index]] = count rt.stop[index].tsp_order = count rt.tsp_route_dict = dict(sorted(rt.tsp_route_dict.items(), key=lambda item: item[1])) def compute_tsp_tour(rt, data): """OR tools function that computes the TSP. Settings can be changed for time limits and solution method""" try: # print('Solving TSP now') # Create the routing index manager. manager = pywrapcp.RoutingIndexManager(len(data['time_matrix']), data['num_vehicles'], data['depot']) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data['time_matrix'][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Setting first solution heuristic. Parameters are set to defaults. Check website for more options. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC) # Solve the problem solution = routing.SolveWithParameters(search_parameters) rt.tsp_solver_status = routing.status() if rt.tsp_solver_status == 1: rt.tsp_route_time = solution.ObjectiveValue() / 10.0 rt.tsp_optimality_gap = (rt.total_journey_time - rt.tsp_route_time) / rt.tsp_route_time # Save TSP tour in the form a dictionary for scoring set_tsp_dict(rt, manager, routing, solution) else: rt.tsp_route_time = CONST_INFTY rt.tsp_optimality_gap = (rt.total_journey_time - rt.tsp_route_time) / rt.tsp_route_time # # Print solution on console # if solution: # print_tsp_solution(manager, routing, solution) except: print('Exception found while analysing TSP for route', rt.index) rt.tsp_route_time = CONST_INFTY rt.tsp_optimality_gap = (rt.total_journey_time - rt.tsp_route_time) / rt.tsp_route_time def check_tsp_feasibility(rt): """Function that checks the time window feasibility of a route sequence TODO ordered dictionary required?""" for stop_key, order in rt.tsp_route_dict.items(): # print(stop_key, order) # print(rt.stp_dict[stop_key]) index = rt.stop_key_index_dict[stop_key] if order == 0: # origin depot rt.stop[index].actual_tsp_start_time = 0.0 rt.stop[index].actual_tsp_end_time = 0.0 prev_stop_key = stop_key prev_index = rt.stop_key_index_dict[prev_stop_key] else: rt.stop[index].actual_tsp_start_time = rt.stop[prev_index].actual_tsp_end_time + \ rt.travel_time_dict[prev_stop_key][stop_key] rt.stop[index].actual_tsp_end_time = rt.stop[index].actual_tsp_start_time + rt.stop[ index].planned_service_time prev_stop_key = stop_key prev_index = rt.stop_key_index_dict[prev_stop_key] if rt.stop[index].actual_tsp_end_time > rt.stop[index].end_time_window: rt.stop[index].is_tsp_feasible = False rt.is_tsp_feasible = False def read_route_data(): """Reads the JSON files and populates class variables""" route_list = [] temp_route = Route() training_routes_path = path.join(BASE_DIR, 'data/model_build_inputs/route_data.json') with open(training_routes_path) as f: route_data = json.load(f) training_sequence_path = path.join(BASE_DIR, 'data/model_build_inputs/actual_sequences.json') with open(training_sequence_path) as f: actual_sequences = json.load(f) training_package_path = path.join(BASE_DIR, 'data/model_build_inputs/package_data.json') with open(training_package_path) as f: package_data = json.load(f) training_traveltime_path = path.join(BASE_DIR, 'data/model_build_inputs/travel_times.json') with open(training_traveltime_path) as f: travel_time = json.load(f) count = 0 key_index_dict = {} for key in route_data.keys(): temp_route.index = count temp_route.key = key key_index_dict[key] = count temp_route.station_code = route_data[key]['station_code'] temp_route.date = datetime.strptime(route_data[key]['date_YYYY_MM_DD'], '%Y-%m-%d').date() temp_route.departure_time = datetime.strptime(route_data[key]['departure_time_utc'], '%H:%M:%S').time() temp_route.executor_capacity = route_data[key]['executor_capacity_cm3'] temp_route.score = route_data[key]['route_score'] # sort stops based on the actual order in which they have were traversed and store them in the nested class stop_dict = route_data[key]['stops'] temp_stop = temp_route.Stop() sorted_stop_dict = dict(sorted(actual_sequences[key]['actual'].items(), key=lambda item: item[1])) temp_route.stop_key_index_dict = dict(sorted_stop_dict) for stop_key in sorted_stop_dict.keys(): temp_stop.key = stop_key temp_stop.lat = stop_dict[stop_key]['lat'] temp_stop.lng = stop_dict[stop_key]['lng'] temp_stop.type = stop_dict[stop_key]['type'] temp_stop.zone_id = stop_dict[stop_key]['zone_id'] temp_stop.package_dict = package_data[key][stop_key] temp_route.stop.append(temp_stop) temp_stop = temp_route.Stop() temp_route.travel_time_dict = travel_time[key] route_list.append(temp_route) count += 1 temp_route = Route() return route_list, key_index_dict, travel_time def read_training_route_data(): """Reads the JSON files and populates class variables""" route_list = [] temp_route = Route() training_routes_path = path.join(BASE_DIR, 'data/model_build_inputs/route_data.json') with open(training_routes_path) as f: route_data = json.load(f) training_sequence_path = path.join(BASE_DIR, 'data/model_build_inputs/actual_sequences.json') with open(training_sequence_path) as f: actual_sequences = json.load(f) training_package_path = path.join(BASE_DIR, 'data/model_build_inputs/package_data.json') with open(training_package_path) as f: package_data = json.load(f) training_traveltime_path = path.join(BASE_DIR, 'data/model_build_inputs/travel_times.json') with open(training_traveltime_path) as f: travel_time = json.load(f) training_invalid_score = path.join(BASE_DIR, 'data/model_build_inputs/invalid_sequence_scores.json') with open(training_invalid_score) as f: invalid_score = json.load(f) count = 0 random.seed(17) new_route_data = {} new_package_data = {} new_travel_time = {} new_actual_sequence = {} new_invalid_sequence_score = {} key_index_dict = {} testing_keys = [] # this includes data minus a small fraction of high routes for key in route_data.keys(): temp_route.index = count temp_route.key = key key_index_dict[key] = count temp_route.station_code = route_data[key]['station_code'] temp_route.date = datetime.strptime(route_data[key]['date_YYYY_MM_DD'], '%Y-%m-%d').date() temp_route.departure_time = datetime.strptime(route_data[key]['departure_time_utc'], '%H:%M:%S').time() temp_route.executor_capacity = route_data[key]['executor_capacity_cm3'] temp_route.score = route_data[key]['route_score'] # sort stops based on the actual order in which they have were traversed and store them in the nested class stop_dict = route_data[key]['stops'] temp_stop = temp_route.Stop() sorted_stop_dict = dict(sorted(actual_sequences[key]['actual'].items(), key=lambda item: item[1])) temp_route.stop_key_index_dict = dict(sorted_stop_dict) for stop_key in sorted_stop_dict.keys(): temp_stop.key = stop_key temp_stop.lat = stop_dict[stop_key]['lat'] temp_stop.lng = stop_dict[stop_key]['lng'] temp_stop.type = stop_dict[stop_key]['type'] temp_stop.zone_id = stop_dict[stop_key]['zone_id'] temp_stop.package_dict = package_data[key][stop_key] temp_route.stop.append(temp_stop) temp_stop = temp_route.Stop() temp_route.travel_time_dict = travel_time[key] route_list.append(temp_route) count += 1 temp_route = Route() # TODO: Check if we are using this high subset of routes in the final version if route_data[key]['route_score'] == 'High' and random.uniform(0, 1) < 0.15: # testing data testing_keys.append(key) new_route_data[key] = route_data[key] new_package_data[key] = package_data[key] new_travel_time[key] = travel_time[key] new_actual_sequence[key] = actual_sequences[key] new_invalid_sequence_score[key] = invalid_score[key] # TODO: Remove this in the final version. We pull the apply data from their new routes. with open(path.join(BASE_DIR, 'data/model_apply_inputs/new_route_data.json'), "w") as outfile: json.dump(new_route_data, outfile) with open(path.join(BASE_DIR, 'data/model_apply_inputs/new_package_data.json'), "w") as outfile: json.dump(new_package_data, outfile) with open(path.join(BASE_DIR, 'data/model_apply_inputs/new_travel_times.json'), "w") as outfile: json.dump(new_travel_time, outfile) with open(path.join(BASE_DIR, 'data/model_score_inputs/new_actual_sequences.json'), "w") as outfile: json.dump(new_actual_sequence, outfile) with open(path.join(BASE_DIR, 'data/model_score_inputs/new_invalid_sequence_scores.json'), "w") as outfile: json.dump(new_invalid_sequence_score, outfile) # print(testing_keys) return route_list, key_index_dict, travel_time, testing_keys def output_route_df(route, testing_keys): """Outputs processed data to a CSV file""" row_list_training = [] row_list_testing = [] row_list_full = [] for rt in route: temp_dict = {'Index': rt.index, 'Key': rt.key, 'Station_Code': rt.station_code, 'Date': rt.date, 'Departure_Time': rt.departure_time, 'Executor_Capacity': rt.executor_capacity, 'Score': rt.score, 'Num_Stops': rt.num_stops, 'Num_Stops_TW': rt.num_stops_tw, 'Num_Stops_TW_Violations': rt.num_tw_violations, 'Num_Packages': rt.num_packages, 'Num_Packages_TW': rt.num_packages_tw, 'Num_Scans_Delivered': rt.num_scans_delivered, 'Num_Scans_Not_Delivered': rt.num_scans_not_delivered, 'Num_Packages_Not_Delivered': rt.num_packages_not_delivered, 'Vol_Packages_Not_Delivered': rt.vol_packages_not_delivered, 'Packages_Per_Stop': rt.packages_per_stop, 'Total_Travel_Time': rt.travel_time, 'Total_Service_Time': rt.service_time, 'Total_Journey_Time': rt.total_journey_time, 'Filled_Capacity': rt.filled_capacity, 'Filled_Capacity_Percent': rt.filled_capacity_percent, 'Volume_Seconds_Traveled': rt.volume_seconds_traveled, 'VST_Ratio': rt.vst_ratio, 'Total_Wait_Time': rt.total_wait_time, 'Total_End_Slack': rt.total_end_slack, 'Total_Max_Slack': rt.total_max_slack, 'Slack_Ratio': rt.slack_ratio, 'Weighted_Pkg_Wait_Time': rt.weighted_pkg_wait_time, 'Weighted_Pkg_End_Slack': rt.weighted_pkg_end_slack, 'Weighted_Pkg_Max_Slack': rt.weighted_pkg_max_slack, 'Weighted_Pkg_Slack_Ratio': rt.weighted_pkg_slack_ratio, 'Num_Zones': rt.num_zones, 'Num_Zone_Switches': rt.num_zone_switches, 'Switch_Stop_Ratio': rt.switch_stop_ratio, 'Switch_Zone_Ratio': rt.switch_zone_ratio, 'Max_Segment_Time': rt.max_segment_time, 'Variance_Segment_Time': rt.var_segment_time, 'Segment_Time_Ratio': rt.segment_time_ratio, 'Max_Segment_Dist': rt.max_segment_dist, 'Variance_Segment_Dist': rt.var_segment_dist, 'Segment_Dist_Ratio': rt.segment_dist_ratio, 'Total_Dist': rt.total_dist, 'Average_Speed': rt.average_speed, 'Is_Weekend': int(rt.is_weekend == True), 'Is_Sequence_Feasible': int(rt.is_sequence_feasible == True), 'TSP_Solver_Status': rt.tsp_solver_status, 'TSP_Route_Time': rt.tsp_route_time, 'TSP_Optimality_Gap': rt.tsp_optimality_gap, 'Is_TSP_Feasible': int(rt.is_tsp_feasible == True) } if rt.key in testing_keys: row_list_testing.append(temp_dict) else: row_list_training.append(temp_dict) row_list_full.append(temp_dict) df = pd.DataFrame(row_list_testing, columns=temp_dict.keys()) output_path = path.join(BASE_DIR, 'data/model_build_outputs/route_summary_testing_jun18.csv') df.to_csv(output_path, index=False) df = pd.DataFrame(row_list_training, columns=temp_dict.keys()) output_path = path.join(BASE_DIR, 'data/model_build_outputs/route_summary_training_jun18.csv') df.to_csv(output_path, index=False) df = pd.DataFrame(row_list_full, columns=temp_dict.keys()) output_path = path.join(BASE_DIR, 'data/model_build_outputs/route_summary_full_jun18.csv') df.to_csv(output_path, index=False) def output_stop_df(route, testing_keys): """Function to create a CSV file with lat long locations and order of nodes visited for visualization""" row_list_training = [] row_list_testing = [] for rt in route: for i in range(len(rt.stop)): temp_dict = {'Route_Index': rt.index, 'Route_Key': rt.key, 'Stop_Key': rt.stop[i].key, 'Stop_Order': rt.stop[i].order, 'Latitude': rt.stop[i].lat, 'Longitude': rt.stop[i].lng, 'X_Coordinate': '%.4f' % rt.stop[i].proj_x, 'Y_Coordinate': '%.4f' % rt.stop[i].proj_y, 'Zone_ID': rt.stop[i].zone_id, 'Planned_Service_Time': rt.stop[i].planned_service_time, 'TW_Constraint': rt.stop[i].is_tw_present, 'TW_Violated': rt.stop[i].is_tw_violated, 'Start_Time_Window': rt.stop[i].start_time_window, 'End_Time_Window': rt.stop[i].end_time_window, 'Actual_Start_Time': rt.stop[i].actual_start_time, 'Actual_End_Time': rt.stop[i].actual_end_time, 'Wait_Time': rt.stop[i].wait_time, 'Slack_Time': rt.stop[i].slack_time, 'Max_Slack': rt.stop[i].max_slack, 'Num_Packages': rt.stop[i].num_packages, 'Num_Packages_TW': rt.stop[i].num_packages_tw, 'Num_Scans_Delivered': rt.stop[i].num_scans_delivered, 'Num_Scans_Not_Delivered': rt.stop[i].num_scans_not_delivered, 'Num_Packages_Not_Delivered': rt.stop[i].num_packages_not_delivered, 'Total_Package_Volume': rt.stop[i].total_package_vol, 'Volume_Undelivered': rt.stop[i].vol_package_undelivered, 'TSP_Order': rt.stop[i].tsp_order, 'Actual_TSP_Start_Time': rt.stop[i].actual_tsp_start_time, 'Actual_TSP_End_Time': rt.stop[i].actual_tsp_end_time, 'Is_TSP_Feasible': rt.stop[i].is_tsp_feasible} if rt.key in testing_keys: row_list_testing.append(temp_dict) else: row_list_training.append(temp_dict) df = pd.DataFrame(row_list_testing, columns=temp_dict.keys()) output_path = path.join(BASE_DIR, 'data/model_build_outputs/stop_summary_testing_jun18.csv') df.to_csv(output_path, index=False) df = pd.DataFrame(row_list_training, columns=temp_dict.keys()) output_path = path.join(BASE_DIR, 'data/model_build_outputs/stop_summary_training_jun18.csv') df.to_csv(output_path, index=False) def core_block(rt): rt.compute_stop_package_features() rt.compute_route_features() tsp_data = create_tsp_data(rt) compute_tsp_tour(rt, tsp_data) check_tsp_feasibility(rt) rt.display_route_data() return rt if __name__ == '__main__': # begin = time.time() # num_cpu = int(mp.cpu_count() * 0.75) # use 75% of CPUs on the machine # route, route_key_index_dict, travel_time_json, testing_keys = read_training_route_data() # # route, route_key_index_dict, travel_time_json = read_route_data() # print("Data reading complete... in", (time.time() - begin), "seconds") # try: # """parallel code""" # begin = time.time() # print('Beginning parallel block...') # with mp.Pool(num_cpu) as pool: # results = pool.map(core_block, [rt for rt in route]) # pool.close() # pool.join() # print('Parallel block complete...') # print('Time for this block is %.2f minutes' % ((time.time() - begin) / 60)) # except: # """serial code""" # begin = time.time() # print('Beginning serial block...') # results = [core_block(rt) for rt in route] # print('Serial block complete...') # print('Time for this block is %.2f minutes' % ((time.time() - begin) / 60)) # output_route_df(results, testing_keys) # output_stop_df(results, testing_keys) print('Starting model training...') train_xgboost_classifier() print('Model build complete...')
StarcoderdataPython
6635807
<filename>pivoteer/collectors/api.py import logging import requests import json class PassiveTotal(object): base_url = "https://api.passivetotal.org" headers = { 'Content-Type': 'application/json' } api_versions = {"v2": "/v2", "current": "/current"} GET_resources = {"metadata": "/metadata", "passive": "/dns/passive", "subdomains": "/subdomains", "tags": "/user/tags", "watch_status": "/watching", "compromise_status": "/ever_compromised", "dynamic_status": "/dynamic", "sinkhole_status": "/sinkhole", "classification": "/classification", "ssl_cert_by_ip": "/ssl_certificate/ip_address", "ssl_cert_by_hash": "/ssl_certificate/hash"} POST_resources = {"set_dynamic_status": "/dynamic", "set_watch_status": "/watching", "set_compromise_status": "/ever_compromised", "add_tag": "/user/tag/add", "remove_tag": "/user/tag/remove", "set_classification": "/classification", "set_sinkhole_status": "/sinkhole"} def __init__(self, api_username, api_key, api_version=None): self.__key = api_key self.__username = api_username if api_version: try: self.api_version = self.api_versions[api_version] except KeyError: logging.warning("Unrecognized API version, defaulting to v2") self.api_version = self.api_versions["v2"] else: self.api_version = self.api_versions["v1"] def retrieve_data(self, query, resource): if self.__key: try: data = '{"query": "' + query + '"}' data_encode = data.encode('ascii') api_call = self.GET_resources[resource] url = self.base_url + self.api_version + api_call response = requests.get(url, headers=self.headers, data=data_encode, auth=(self._PassiveTotal__username, self._PassiveTotal__key)) json_response = json.loads(response.content.decode('utf-8')) records = json_response['results'] results = [] for entry in records: results.append({ 'date': entry['collected'], 'firstseen': entry['firstSeen'], 'lastseen': entry['lastSeen'], 'ip': entry['resolve'], 'domain': entry['value'], 'ip_location': {} }) return results except KeyError: logging.warning("Unrecognized API resource or malformed query") return [] def submit_data(self, query, resource): if self.__key: try: api_call = self.POST_resources[resource] url = self.base_url + self.api_version + api_call params = {"api_key": self.__key, "query": query} response = requests.post(url, params=params) json_response = json.loads(response.content) return json_response except KeyError: logging.warning("Unrecognized API resource or malformed query") return []
StarcoderdataPython
4834333
<gh_stars>0 # Write a Python program to find files and skip directories of a given directory. import os print([f for f in os.listdir('/home/oem/adi_workspace') if os.path.isfile(os.path.join('/home/oem/adi_workspace', f))])
StarcoderdataPython
3587316
__author__ = 'moshebasanchig' from hydro.topology_base import Topology class GeoWidgetTopology(Topology): def _submit(self, params): """ topology consists of several steps, defining one source stream or more, combining and transformations """ main_stream = self.query_engine.get('geo_widget', params) lookup_stream = self.query_engine.get('geo_lookup', params, cache_ttl=1) combined = self.transformers.combine(main_stream, lookup_stream, left_on=['user_id'], right_on=['user_id']) aggregated = self.transformers.aggregate(combined, group_by=['country'], operators={'revenue': 'sum', 'spend': 'sum'}) aggregated['ROI'] = aggregated.revenue/(aggregated.spend+aggregated.revenue) return aggregated
StarcoderdataPython
1795174
<reponame>AmeetR/Monocular-Depth-Estimation-DAV<filename>src/data/DIODE_pointcloud.py import open3d import pandas as pd import cv2 import numpy as np import matplotlib.pyplot as plt def plot_depth_map(dm, validity_mask): validity_mask = validity_mask > 0 MIN_DEPTH = 0. MAX_DEPTH = min(300, np.percentile(dm, 99)) dm = np.clip(dm, MIN_DEPTH, MAX_DEPTH) dm = np.log(dm, where=validity_mask) dm = np.ma.masked_where(~validity_mask, dm) cmap = plt.cm.jet cmap.set_bad(color='black') plt.imshow(dm, cmap=cmap, vmax=np.log(MAX_DEPTH)) intrinsic = open3d.camera.PinholeCameraIntrinsic() [width, height, fx, fy, cx, cy] = [1024, 768, 886.81, 927.06, 512, 384] intrinsic.set_intrinsics(width, height, fx, fy, cx, cy) idx = 255 data = pd.read_csv('C:\\Data\\DIODE\\train.csv') example = data['img_path'][idx] example_depth = (np.load(data['depth_path'][idx]) * 1000).astype('uint16') cv2.imwrite(data['depth_path'][idx].replace('.npy', '.png'), example_depth) color_raw = open3d.io.read_image(example) depth_raw = open3d.io.read_image(data['depth_path'][idx].replace('.npy', '.png')) rgbd_image = open3d.geometry.RGBDImage.create_from_color_and_depth( color_raw, depth_raw) validity_mask = np.load(data['depth_mask_path'][idx]) point_cloud = open3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic) #point_cloud = open3d.geometry.PointCloud.create_from_depth_image(depth_raw , intrinsic, depth_scale=1.0) print(point_cloud) downpcd = point_cloud.voxel_down_sample(voxel_size=0.05) open3d.visualization.draw_geometries([downpcd]) plt.subplot(1, 2, 1) plt.title('Redwood grayscale image') plt.imshow(rgbd_image.color) plt.subplot(1, 2, 2) plt.title('Redwood depth image') depth_array = np.asarray(rgbd_image.depth) MAX_DEPTH = min(300, np.percentile(depth_array, 99)) plot_depth_map(depth_array, validity_mask) plt.show()
StarcoderdataPython
12816332
from abc import abstractmethod from typing import Dict, Optional import torch import torch.nn as nn import torch.nn.functional as F import torchvision from transformers import AutoModel, AutoConfig from .layers import WordSequence class BackBone(nn.Module): def __init__(self, n_class, binary_mode=False): if binary_mode: assert n_class == 2 n_class = 1 self.n_class = n_class super(BackBone, self).__init__() self.dummy_param = nn.Parameter(torch.empty(0)) @property def device(self): return self.dummy_param.device def get_device(self): return self.dummy_param.device @abstractmethod def forward(self, batch: Dict, return_features: Optional[bool] = False): pass class BERTBackBone(BackBone): def __init__(self, n_class, model_name='bert-base-cased', fine_tune_layers=-1, binary_mode=False): super(BERTBackBone, self).__init__(n_class=n_class, binary_mode=binary_mode) self.model_name = model_name self.config = AutoConfig.from_pretrained(model_name, num_labels=self.n_class, output_hidden_states=True) self.model = AutoModel.from_pretrained(model_name, config=self.config) if fine_tune_layers >= 0: for param in self.model.base_model.embeddings.parameters(): param.requires_grad = False if fine_tune_layers > 0: n_layers = len(self.model.base_model.encoder.layer) for layer in self.model.base_model.encoder.layer[:n_layers - fine_tune_layers]: for param in layer.parameters(): param.requires_grad = False @abstractmethod def forward(self, batch: Dict, return_features: Optional[bool] = False): pass """ backbone for classification """ class LogReg(BackBone): def __init__(self, n_class, input_size, binary_mode=False, **kwargs): super(LogReg, self).__init__(n_class=n_class, binary_mode=binary_mode) self.linear = nn.Linear(input_size, self.n_class) def forward(self, batch, return_features=False): x = batch['features'].to(self.get_device()) x = self.linear(x) return x class MLP(BackBone): def __init__(self, n_class, input_size, n_hidden_layers=1, hidden_size=100, dropout=0.0, binary_mode=False, **kwargs): super(MLP, self).__init__(n_class=n_class, binary_mode=binary_mode) layers = [nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Dropout(p=dropout)] for i in range(n_hidden_layers - 1): layers.extend([nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Dropout(p=dropout)]) self.fcs = nn.Sequential(*layers) self.last_layer = nn.Linear(hidden_size, self.n_class) self.hidden_size = hidden_size def forward(self, batch, return_features=False): x = batch['features'].to(self.get_device()) h = self.fcs(x) logits = self.last_layer(h) if return_features: return logits, h else: return logits """ torchvision for image classification """ class ImageClassifier(BackBone): def __init__(self, n_class, model_name='resnet18', binary_mode=False, **kwargs): super(ImageClassifier, self).__init__(n_class=n_class, binary_mode=binary_mode) pretrained_model = getattr(torchvision.models, model_name)(pretrained=False) self.model = nn.Sequential(*list(pretrained_model.children())[:-1]) # pretrained_model = getattr(torchvision.models, model_name)(pretrained=load_pretrained) # self.model = nn.Sequential(*list(pretrained_model.children())[:-1]) # if load_pretrained and (not finetune_pretrained): # for param in self.model.parameters(): # param.requires_grad = False self.hidden_size = pretrained_model.fc.in_features self.fc = nn.Linear(self.hidden_size, n_class) def forward(self, batch, return_features=False): h = self.model(batch['image'].to(self.get_device())) h = torch.flatten(h, 1) logits = self.fc(h) if return_features: return logits, h else: return logits """ BERT for text classification """ ####################################################################################################################### class BertTextClassifier(BERTBackBone): """ Bert with a MLP on top for text classification """ def __init__(self, n_class, model_name='bert-base-cased', fine_tune_layers=-1, max_tokens=512, binary_mode=False, **kwargs): super(BertTextClassifier, self).__init__(n_class=n_class, model_name=model_name, fine_tune_layers=fine_tune_layers, binary_mode=binary_mode) self.dropout = nn.Dropout(self.config.hidden_dropout_prob) self.classifier = nn.Linear(self.config.hidden_size, self.config.num_labels) self.max_tokens = max_tokens self.hidden_size = self.config.hidden_size def forward(self, batch, return_features=False): # inputs: [batch, t] device = self.get_device() outputs = self.model(input_ids=batch["input_ids"].to(device), attention_mask=batch['mask'].to(device)) h = self.dropout(outputs.pooler_output) output = self.classifier(h) if return_features: return output, h else: return output """ BERT for relation classification """ ####################################################################################################################### class FClayer(nn.Module): def __init__(self, input_dim, hidden_size=100, dropout=0., activation=True): super(FClayer, self).__init__() self.dropout = nn.Dropout(dropout) self.linear = nn.Linear(input_dim, hidden_size) self.tanh = nn.Tanh() self.activation = activation def forward(self, x): x = self.dropout(x) x = self.linear(x) if self.activation: return self.tanh(x) else: return x class BertRelationClassifier(BERTBackBone): """ BERT with a MLP on top for relation classification """ def __init__(self, n_class, model_name='bert-base-cased', fine_tune_layers=-1, binary_mode=False, **kwargs): super(BertRelationClassifier, self).__init__(n_class=n_class, model_name=model_name, fine_tune_layers=fine_tune_layers, binary_mode=binary_mode) self.fc_cls = FClayer(self.config.hidden_size, self.config.hidden_size, dropout=self.config.hidden_dropout_prob) self.fc_e1 = FClayer(self.config.hidden_size, self.config.hidden_size, dropout=self.config.hidden_dropout_prob) self.fc_e2 = FClayer(self.config.hidden_size, self.config.hidden_size, dropout=self.config.hidden_dropout_prob) self.output = FClayer(self.config.hidden_size * 3, self.n_class, dropout=self.config.hidden_dropout_prob, activation=False) self.hidden_size = self.config.hidden_size * 3 @staticmethod def entity_average(hidden_output, e_mask): """ Average the entity hidden state vectors (H_i ~ H_j) :param hidden_output: [batch_size, j-i+1, dim] :param e_mask: [batch_size, max_seq_len] e.g. e_mask[0] == [0, 0, 0, 1, 1, 1, 0, 0, ... 0] :return: [batch_size, dim] """ e_mask_unsqueeze = e_mask.unsqueeze(1) # [b, 1, j-i+1] length_tensor = (e_mask != 0).sum(dim=1).unsqueeze(1) # [batch_size, 1] sum_vector = torch.bmm(e_mask_unsqueeze.float(), hidden_output).squeeze(1) # [b, 1, j-i+1] * [b, j-i+1, dim] = [b, 1, dim] -> [b, dim] avg_vector = sum_vector.float() / length_tensor.float() # broadcasting return avg_vector def forward(self, batch, return_features=False): device = self.get_device() outputs = self.model(input_ids=batch["input_ids"].to(device), attention_mask=batch['mask'].to(device)) bert_out = outputs.last_hidden_state cls_embs = self.fc_cls(outputs.pooler_output) ent1_avg = self.fc_e1(self.entity_average(bert_out, batch['e1_mask'].to(device))) ent2_avg = self.fc_e2(self.entity_average(bert_out, batch['e2_mask'].to(device))) h = torch.cat([cls_embs, ent1_avg, ent2_avg], dim=-1) output = self.output(h) if return_features: return output, h else: return output """ for sequence tagging """ class CRFTagger(BackBone): def __init__(self, n_class, use_crf): super(CRFTagger, self).__init__(n_class=n_class) self.use_crf = use_crf if self.use_crf: self.crf = CRF(n_class) def calculate_loss(self, batch, batch_label): device = self.get_device() outs = self.get_features(batch) mask = batch['mask'].to(device) batch_size, seq_len, _ = outs.shape batch_label = batch_label[:, :seq_len].to(device) if self.use_crf: total_loss = self.crf.neg_log_likelihood_loss(outs, mask, batch_label) total_loss = total_loss / batch_size else: outs = outs.view(batch_size * seq_len, -1) mask = mask.reshape(batch_size * seq_len).bool() batch_label = batch_label.reshape(batch_size * seq_len) score = F.log_softmax(outs, 1) total_loss = F.nll_loss(score[mask], batch_label[mask]) return total_loss def forward(self, batch): device = self.get_device() outs = self.get_features(batch) mask = batch['mask'].to(device) if self.use_crf: scores, tag_seq = self.crf(outs, mask) else: batch_size, seq_len, _ = outs.shape outs = outs.view(batch_size * seq_len, -1) _, tag = torch.max(outs, 1) tag = tag.view(batch_size, seq_len) tag_seq = [[tt for tt, mm in zip(t, m) if mm] for t, m in zip(tag.tolist(), mask.tolist())] return tag_seq @abstractmethod def get_features(self, batch): pass class LSTMSeqTagger(CRFTagger): def __init__(self, n_class, word_vocab_size, char_vocab_size, use_crf, dropout, word_embedding, word_emb_dim, word_hidden_dim, word_feature_extractor, n_word_hidden_layer, use_char, char_embedding, char_emb_dim, char_hidden_dim, char_feature_extractor, **kwargs): super(LSTMSeqTagger, self).__init__(n_class=n_class, use_crf=use_crf) if use_crf: n_class += 2 self.word_hidden = WordSequence( word_vocab_size=word_vocab_size, char_vocab_size=char_vocab_size, dropout=dropout, word_embedding=word_embedding, word_emb_dim=word_emb_dim, word_hidden_dim=word_hidden_dim, word_feature_extractor=word_feature_extractor, n_word_hidden_layer=n_word_hidden_layer, use_char=use_char, char_embedding=char_embedding, char_emb_dim=char_emb_dim, char_hidden_dim=char_hidden_dim, char_feature_extractor=char_feature_extractor ) self.classifier = nn.Linear(word_hidden_dim, n_class) def get_features(self, batch): device = self.get_device() word_inputs = batch['word'].to(device) word_seq_lengths = batch['word_length'] char_inputs = batch['char'].to(device) char_seq_lengths = batch['char_length'] char_inputs = char_inputs.flatten(0, 1) char_seq_lengths = char_seq_lengths.flatten() feature_out = self.word_hidden(word_inputs, word_seq_lengths, char_inputs, char_seq_lengths) outs = self.classifier(feature_out) return outs class BertSeqTagger(CRFTagger): """ BERT for sequence tagging """ def __init__(self, n_class, model_name='bert-base-cased', fine_tune_layers=-1, use_crf=True, **kwargs): super(BertSeqTagger, self).__init__(n_class=n_class, use_crf=use_crf) self.model_name = model_name config = AutoConfig.from_pretrained(self.model_name, output_hidden_states=True) self.model = AutoModel.from_pretrained(self.model_name, config=config) self.config = config if fine_tune_layers >= 0: for param in self.model.base_model.embeddings.parameters(): param.requires_grad = False if fine_tune_layers > 0: n_layers = len(self.model.base_model.encoder.layer) for layer in self.model.base_model.encoder.layer[:n_layers - fine_tune_layers]: for param in layer.parameters(): param.requires_grad = False self.dropout = nn.Dropout(config.hidden_dropout_prob) self.use_crf = use_crf if self.use_crf: self.classifier = nn.Linear(config.hidden_size, n_class + 2) # consider <START> and <END> token else: self.classifier = nn.Linear(config.hidden_size, n_class + 1) def get_features(self, batch): device = self.get_device() outputs = self.model(input_ids=batch["input_ids"].to(device), attention_mask=batch['attention_mask'].to(device)) outs = self.classifier(self.dropout(outputs.last_hidden_state)) if self.use_crf: return outs else: return outs[:, :, :-1] START_TAG = -2 STOP_TAG = -1 class CRF(BackBone): def __init__(self, n_class, batch_mode=True): super(CRF, self).__init__(n_class=n_class) # Matrix of transition parameters. Entry i,j is the score of transitioning from i to j. self.n_class = n_class + 2 self.batch_mode = batch_mode # # We add 2 here, because of START_TAG and STOP_TAG # # transitions (f_tag_size, t_tag_size), transition value from f_tag to t_tag init_transitions = torch.randn(self.n_class, self.n_class) self.START_TAG = -2 self.STOP_TAG = -1 init_transitions[:, self.START_TAG] = -1e5 init_transitions[self.STOP_TAG, :] = -1e5 self.transitions = nn.Parameter(init_transitions, requires_grad=True) self.start_id = nn.Parameter(torch.LongTensor([self.START_TAG]), requires_grad=False) self.stop_id = nn.Parameter(torch.LongTensor([self.STOP_TAG]), requires_grad=False) def _score_sentence_batch(self, feats, tags, mask, transitions=None): # Gives the score of a provided tag sequence # tags is ground_truth, a list of ints, length is len(sentence) # feats is a 2D tensor, len(sentence) * n_class if transitions is None: transitions = self.transitions batch_size = tags.size(0) seq_len = mask.long().sum(1) r_batch = torch.arange(batch_size) pad_start_tags = torch.cat([self.start_id.expand(batch_size, 1), tags], -1) pad_stop_tags = torch.cat([tags, self.stop_id.expand(batch_size, 1)], -1) pad_stop_tags[r_batch, seq_len] = self.stop_id t = transitions[pad_start_tags, pad_stop_tags] t_score = torch.sum(t.cumsum(1)[r_batch, seq_len]) f_score = torch.sum(torch.gather(feats, -1, tags.unsqueeze(2)).squeeze(2).masked_select(mask.bool())) score = t_score + f_score return score def _score_sentence(self, feats, tags, transitions=None): # Gives the score of a provided tag sequence # tags is ground_truth, a list of ints, length is len(sentence) # feats is a 2D tensor, len(sentence) * n_class if transitions is None: transitions = self.transitions pad_start_tags = torch.cat([self.start_id, tags]) pad_stop_tags = torch.cat([tags, self.stop_id]) r = torch.arange(feats.size(0)) score = torch.sum(transitions[pad_start_tags, pad_stop_tags]) + torch.sum(feats[r, tags]) return score def _forward_alg_batch(self, feats, mask, transitions=None): # calculate in log domain # feats is len(sentence) * n_class if transitions is None: transitions = self.transitions device = self.get_device() batch_size, max_seq_len, target_size = feats.shape alpha = torch.full((batch_size, 1, target_size), -10000.0, device=device) alpha[:, 0, self.START_TAG] = 0.0 mask = mask.bool() for i in range(max_seq_len): feat = feats[:, i, :] mask_i = mask[:, i] alpha = torch.where(mask_i.view(-1, 1, 1), torch.logsumexp(alpha.transpose(1, 2) + feat.unsqueeze(1) + transitions, dim=1, keepdim=True), alpha) last = torch.logsumexp(alpha.transpose(1, 2) + 0 + transitions[:, [self.STOP_TAG]], dim=1) score = torch.sum(last) return score def _forward_alg(self, feats, transitions=None): # calculate in log domain # feats is len(sentence) * n_class if transitions is None: transitions = self.transitions device = self.get_device() alpha = torch.full((1, self.n_class), -10000.0, device=device) alpha[0][self.START_TAG] = 0.0 for feat in feats: alpha = torch.logsumexp(alpha.T + feat.unsqueeze(0) + transitions, dim=0, keepdim=True) return torch.logsumexp(alpha.T + 0 + transitions[:, [self.STOP_TAG]], dim=0)[0] def viterbi_decode_batch(self, feats, mask, transitions=None): if transitions is None: transitions = self.transitions device = self.get_device() batch_size, max_seq_len, target_size = feats.shape backtrace = torch.zeros((batch_size, max_seq_len, target_size)).long() alpha = torch.full((batch_size, 1, target_size), -10000.0, device=device) alpha[:, 0, self.START_TAG] = 0.0 mask = mask.bool() for i in range(max_seq_len): feat = feats[:, i, :] mask_i = mask[:, i] smat = (alpha.transpose(1, 2) + feat.unsqueeze(1) + transitions) # (n_class, n_class) alpha = torch.where(mask_i.view(-1, 1, 1), torch.logsumexp(smat, dim=1, keepdim=True), alpha) backtrace[:, i, :] = smat.argmax(1) # backtrack smat = alpha.transpose(1, 2) + 0 + transitions[:, [self.STOP_TAG]] best_tag_ids = smat.argmax(1).long() seq_len = mask.long().sum(1) best_paths = [] for backtrace_i, best_tag_id, l in zip(backtrace, best_tag_ids, seq_len): best_path = [best_tag_id.item()] for bptrs_t in reversed(backtrace_i[1:l]): # ignore START_TAG best_tag_id = bptrs_t[best_tag_id].item() best_path.append(best_tag_id) best_paths.append(best_path[::-1]) return torch.logsumexp(smat, dim=1).squeeze().tolist(), best_paths def viterbi_decode(self, feats, transitions=None): if transitions is None: transitions = self.transitions device = self.get_device() backtrace = [] alpha = torch.full((1, self.n_class), -10000.0, device=device) alpha[0][self.START_TAG] = 0 for feat in feats: smat = (alpha.T + feat.unsqueeze(0) + transitions) # (n_class, n_class) backtrace.append(smat.argmax(0)) # column_max alpha = torch.logsumexp(smat, dim=0, keepdim=True) # backtrack smat = alpha.T + 0 + transitions[:, [self.STOP_TAG]] best_tag_id = smat.flatten().argmax().item() best_path = [best_tag_id] for bptrs_t in reversed(backtrace[1:]): # ignore START_TAG best_tag_id = bptrs_t[best_tag_id].item() best_path.append(best_tag_id) return torch.logsumexp(smat, dim=0).item(), best_path[::-1] def neg_log_likelihood_loss(self, feats, mask, tags, transitions=None): # sentence, tags is a list of ints # features is a 2D tensor, len(sentence) * self.n_class if self.batch_mode: nll_loss = self._forward_alg_batch(feats, mask, transitions) - self._score_sentence_batch(feats, tags, mask, transitions) else: nll_loss = 0.0 batch_size = len(feats) for i in range(batch_size): length = mask[i].long().sum() feat_i = feats[i][:length] tags_i = tags[i][:length] forward_score = self._forward_alg(feat_i, transitions) gold_score = self._score_sentence(feat_i, tags_i, transitions) nll_loss += forward_score - gold_score return nll_loss def forward(self, feats, mask): # viterbi to get tag_seq if self.batch_mode: score, tags = self.viterbi_decode_batch(feats, mask) else: tags = [] scores = [] batch_size = len(feats) for i in range(batch_size): length = mask[i].long().sum() feat_i = feats[i][:length] score, tag_seq = self.viterbi_decode(feat_i) tags.append(tag_seq) scores.append(score) return score, tags class MultiCRF(CRF): def __init__(self, n_class, n_source, batch_mode=True): super(MultiCRF, self).__init__(n_class=n_class, batch_mode=batch_mode) self.n_source = n_source init_transitions = torch.randn(n_source, self.n_class, self.n_class) init_transitions[:, :, self.START_TAG] = -1e5 init_transitions[:, self.STOP_TAG, :] = -1e5 self.transitions = nn.Parameter(init_transitions, requires_grad=True) def neg_log_likelihood_loss(self, feats, mask, tags, idx=None, attn_weight=None): if attn_weight is None: assert idx is not None transitions = self.transitions[idx] return super().neg_log_likelihood_loss(feats, mask, tags, transitions) else: assert attn_weight is not None, 'weight should not be None in Phase 2!' transitions_l = torch.tensordot(attn_weight, self.transitions, dims=([1], [0])) nll_loss = self._forward_alg_batch_w_transitions(feats, mask, transitions_l) - \ self._score_sentence_w_transitions(feats, tags, mask, transitions_l) return nll_loss def _score_sentence_w_transitions(self, feats, tags, mask, transitions): batch_size = tags.size(0) seq_len = mask.long().sum(1) r_batch = torch.arange(batch_size) pad_start_tags = torch.cat([self.start_id.expand(batch_size, 1), tags], -1) pad_stop_tags = torch.cat([tags, self.stop_id.expand(batch_size, 1)], -1) pad_stop_tags[r_batch, seq_len] = self.stop_id t = transitions[r_batch.view(-1, 1), pad_start_tags, pad_stop_tags] t_score = torch.sum(t.cumsum(1)[r_batch, seq_len]) f_score = torch.sum(torch.gather(feats, -1, tags.unsqueeze(2)).squeeze(2).masked_select(mask.bool())) score = t_score + f_score return score def _forward_alg_batch_w_transitions(self, feats, mask, transitions): device = self.get_device() batch_size, max_seq_len, target_size = feats.shape alpha = torch.full((batch_size, 1, target_size), -10000.0, device=device) alpha[:, 0, self.START_TAG] = 0.0 mask = mask.bool() for i in range(max_seq_len): feat = feats[:, i, :] mask_i = mask[:, i] alpha = torch.where(mask_i.view(-1, 1, 1), torch.logsumexp(alpha.transpose(1, 2) + feat.unsqueeze(1) + transitions, dim=1, keepdim=True), alpha) last = torch.logsumexp(alpha.transpose(1, 2) + 0 + transitions[:, :, [self.STOP_TAG]], dim=1) score = torch.sum(last) return score def viterbi_decode_w_transitions(self, feats, mask, transitions): device = self.get_device() batch_size, max_seq_len, target_size = feats.shape backtrace = torch.zeros((batch_size, max_seq_len, target_size)).long() alpha = torch.full((batch_size, 1, target_size), -10000.0, device=device) alpha[:, 0, self.START_TAG] = 0.0 mask = mask.bool() for i in range(max_seq_len): feat = feats[:, i, :] mask_i = mask[:, i] smat = (alpha.transpose(1, 2) + feat.unsqueeze(1) + transitions) # (n_class, n_class) alpha = torch.where(mask_i.view(-1, 1, 1), torch.logsumexp(smat, dim=1, keepdim=True), alpha) backtrace[:, i, :] = smat.argmax(1) # backtrack smat = alpha.transpose(1, 2) + 0 + transitions[:, :, [self.STOP_TAG]] best_tag_ids = smat.argmax(1).long() seq_len = mask.long().sum(1) best_paths = [] for backtrace_i, best_tag_id, l in zip(backtrace, best_tag_ids, seq_len): best_path = [best_tag_id.item()] for bptrs_t in reversed(backtrace_i[1:l]): # ignore START_TAG best_tag_id = bptrs_t[best_tag_id].item() best_path.append(best_tag_id) best_paths.append(best_path[::-1]) return torch.logsumexp(smat, dim=1).squeeze().tolist(), best_paths def forward(self, feats, mask, attn_weight): transitions_l = torch.tensordot(attn_weight, self.transitions, dims=([1], [0])) return self.viterbi_decode_w_transitions(feats, mask, transitions_l)
StarcoderdataPython
3532382
from collections import defaultdict # 入力 N = int(input()) A = list(map(int, input().split())) # dp[s]: A_1 + ... + A_i = s となるような i の個数 dp = defaultdict(int, {0: 1}) # 和 s = 0 # 解 ans = 0 # 各iについて、 A_1 + ... + A_i = A_1 + ... + A_j となるような 0 <= j < N の個数を求める for a in A: s += a ans += dp[s] dp[s] += 1 # 出力 print(ans)
StarcoderdataPython
8015810
from keras.layers import Dense, Input from keras.models import Model from keras.utils import np_utils from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder iris = datasets.load_iris() X, y = iris.data, iris.target # print(y_one_hot) def create_nn() -> Model: """ Create the model. """ X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=0 ) y_train_one_hot = np_utils.to_categorical(y_train) y_test_one_hot = np_utils.to_categorical(y_test) inp = Input(shape=(4,)) x = Dense(16, activation="sigmoid")(inp) out = Dense(3, activation="softmax")(x) model = Model(inputs=inp, outputs=out) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) model.fit(X_train, y_train_one_hot, epochs=100, batch_size=1, verbose=0) loss, accuracy = model.evaluate(X_test, y_test_one_hot, verbose=0) print("Accuracy = {:.2f}".format(accuracy)) return model if __name__ == "__main__": create_nn()
StarcoderdataPython
5183882
""" MIT License Copyright (c) 2021 AkshuAgarwal Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import traceback from typing import Union, Optional from discord import ( Client, AutoShardedClient, VoiceChannel, Invite, ) from discord.http import Route from discord.ext.commands import Bot, AutoShardedBot, BotMissingPermissions from .errors import ( DCActivityException, APIException, InvalidChannel, InvalidApplicationID, ) __all__ = ('DCApplication', 'DCActivity', ) log = logging.getLogger(__name__) class DCApplication: """Available Voice Channel Target Application's IDs.""" betrayal = 773336526917861400 chess = 832012586023256104 fishing = 814288819477020702 poker = 755827207812677713 youtube = 755600276941176913 class DCActivity: """Represents DCActivity Connection class. This class is used to interact with Discord API to create Voice Channel Invite Links to use Discord's Beta Voice Channel Activities features. Parameters ----------- bot: Union[:class:`.Client`, :class:`.AutoShardedClient`, :class:`.Bot`, :class:`.AutoShardedBot`] The Main Bot class of the Bot. Raises ------- :exc:`TypeError` Invalid class type passed in bot parameter. """ def __init__( self, bot: Union[Client, AutoShardedClient, Bot, AutoShardedBot] ): if isinstance(bot, (Client, AutoShardedClient, Bot, AutoShardedBot)): self.bot = bot log.info(f'Created DCActivity object with {bot} as bot instance.') else: raise TypeError( 'Invalid Client/Bot object parameter passed. ' 'Should be discord.Client/AutoShardedClient/Bot/AutoShardedBot type') self._applications: dict = { 'betrayal': DCApplication.betrayal, 'chess': DCApplication.chess, 'fishing': DCApplication.fishing, 'poker': DCApplication.poker, 'youtube': DCApplication.youtube, } @property def applications(self): return self._applications async def _create_invite_object(self, response: dict) -> Invite: """Internal Method to create a discord.Invite object from a response JSON.""" if 'errors' in response: _exc = "\n".join(f"{exc['code']}: {exc['message']}" for exc in response['errors']['_errors']) raise DCActivityException( f'Error occured while creating Invite.\n {_exc}') elif isinstance(response['code'], int) and int(response['code']) == 0: raise DCActivityException( f'Error occured while creating Invite.\n Code: {response["code"]}, Message: {response["message"]}') return Invite(state=self.bot._connection, data=response) async def create_invite( self, voice_channel: Union[VoiceChannel, int], application: Union[str, int], *, max_age: Optional[int] = 86400, max_uses: Optional[int] = 0, ) -> Invite: """|coro| Retrieves an Invite Link with Voice Channel Activities for the VoiceChannel passed. Parameters ----------- voice_channel: Union[:class:`int`, :class:`.VoiceChannel`] The Voice Channel to create Voice Channel Activity Invite Link for. application: Union[:class:`str`, :class:`int`, :class:`.DCApplication`] The Activity Type to create Invite Link for. max_age: Optional[:class:`int`] How long the invite should last in seconds. If it’s 0 then the invite doesn’t expire. Should be between 0 to 604800 seconds (7 days). Defaults to 86400 (24 Hours). max_uses: Optional[:class:`int`] How many uses the invite could be used for. If it’s 0 then there are unlimited uses. Should be between 0 to 100. Defaults to 0. Raises ------- :exc:`TypeError` Invalid class type passed in voice_channel or application. :exc:`ValueError` Any Value passed is Invalid/Not Acceptable. :exc:`.InvalidChannel` Voice Channel passed is Invalid. :exc:`.BotMissingPermissions` Bot is missing permissions to create invites. :exc:`.InvalidApplicationID` Application ID passed is Invalid. :exc:`.APIException` API is overloaded while creating Invite. :exc:`.DCActivityException` Creating Invite link falied. Returns -------- :class:`.Invite` The Invite that was Created.""" if isinstance(voice_channel, VoiceChannel): _vc_id = voice_channel.id elif isinstance(voice_channel, int): _vc_id = voice_channel else: raise TypeError( 'voice_channel parameter must be integer or ' f'discord.VoiceChannel type and not "{type(voice_channel).__name__}"' ) if isinstance(application, str): if application.lower().replace(' ', '') in self._applications: _app_id: int = self._applications[ application.lower().replace(' ', '')] else: raise ValueError('Invalid application type passed. ' f'Should be one from {"/".join(i for i in self._applications.keys())}.') elif isinstance(application, int): _app_id: int = application else: raise TypeError( 'application parameter must be string or integer ' f'and not "{type(application).__name__}"') if max_uses < 0 or max_uses > 100: raise ValueError( 'max_uses is limited in the range 0 to 100. ' 'Choose between the given range.') if max_age < 0 or max_age > 604800: raise ValueError( 'max_age is limited in the range 0 to 604800 seconds. ' 'Choose between the given range.') payload = { 'max_age': max_age, 'max_uses': max_uses, 'target_application_id': str(_app_id), 'target_type': 2, 'temporary': False, 'validate': None } try: response = await self.bot.http.request( Route('POST', f'/channels/{_vc_id}/invites'), json=payload ) log.debug(f'Create invite link for target_application_id: {payload["target_application_id"]}') except Exception as e: if '10003' in str(e): raise InvalidChannel('Invalid Channel/ID passed.') elif '50013' in str(e): raise BotMissingPermissions(['create_instant_invite']) elif 'target_application_id' in str(e): raise InvalidApplicationID(f'Invalid Application ID ({_app_id}) passed.') elif '130000' in str(e): log.warn('API Resource overloaded.') raise APIException( 'API resource is currently overloaded. ' 'Try again a little later.') else: log.debug(f'Exception occured on application: {application}; Exception: {e}') traceback.print_exc() raise DCActivityException( 'Some Exception occured while creating invite.\n' f'Exception: {e}' ) return await self._create_invite_object(response)
StarcoderdataPython
3218871
# Generated by Django 3.0.6 on 2020-07-30 20:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0008_auto_20200730_1452'), ] operations = [ migrations.AlterField( model_name='fish', name='description', field=models.CharField(blank=True, default='M', max_length=1), ), ]
StarcoderdataPython
186812
<reponame>BananaLoaf/restpass<gh_stars>1-10 from restpass.generator import Generator CHECK = ["y", "eL", "7w1", "uwYO", "1HcR8", "jbGAV4", "KrOoKrg", "gBzUnbWk", "xkFn85JHz", "Sj4WS93zPX"] if __name__ == "__main__": phrase = "Hello, World!" generator = Generator(phrase) generator.set_rules(digits=True, lowercase=True, uppercase=True) for i in range(1, 11): result = generator.generate(i) assert result == CHECK[i - 1] print(f"{i} - {result}") result = generator.generate(10) assert result == "Sj4WS93zPX" print("No salt:", result) # No salt # Sj4WS93zPX generator.set_salt(b"Some salt") result = generator.generate(10) assert result == "0mIGvFXpoH" print("Some salt:", result) # 0mIGvFXpoH generator.set_salt(b"Some other salt") result = generator.generate(10) assert result == "iOkyf1VXOJ" print("Some other salt:", result) # iOkyf1VXOJ generator.set_salt(b"Some other salt", b"And a little more salt", b"Overwatch players") result = generator.generate(10) assert result == "IqCOWdHxgo" print("Some other salt, and a little more salt:", result) # IqCOWdHxgo
StarcoderdataPython
11224668
"""A large crowd-sourced dataset for developing natural language interfaces for relational databases""" from __future__ import absolute_import, division, print_function import json import os import nlp _CITATION = """\ @article{zhongSeq2SQL2017, author = {<NAME> and <NAME> and <NAME>}, title = {Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning}, journal = {CoRR}, volume = {abs/1709.00103}, year = {2017} } """ _DESCRIPTION = """\ A large crowd-sourced dataset for developing natural language interfaces for relational databases """ _DATA_URL = "https://github.com/salesforce/WikiSQL/raw/master/data.tar.bz2" _AGG_OPS = ["", "MAX", "MIN", "COUNT", "SUM", "AVG"] _COND_OPS = ["=", ">", "<", "OP"] class WikiSQL(nlp.GeneratorBasedBuilder): """WikiSQL: A large crowd-sourced dataset for developing natural language interfaces for relational databases""" VERSION = nlp.Version("0.1.0") def _info(self): return nlp.DatasetInfo( description=_DESCRIPTION, features=nlp.Features( { "phase": nlp.Value("int32"), "question": nlp.Value("string"), "table": { "header": nlp.features.Sequence(nlp.Value("string")), "page_title": nlp.Value("string"), "page_id": nlp.Value("string"), "types": nlp.features.Sequence(nlp.Value("string")), "id": nlp.Value("string"), "section_title": nlp.Value("string"), "caption": nlp.Value("string"), "rows": nlp.features.Sequence(nlp.features.Sequence(nlp.Value("string"))), "name": nlp.Value("string"), }, "sql": { "human_readable": nlp.Value("string"), "sel": nlp.Value("int32"), "agg": nlp.Value("int32"), "conds": nlp.features.Sequence( { "column_index": nlp.Value("int32"), "operator_index": nlp.Value("int32"), "condition": nlp.Value("string"), } ), }, } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://github.com/salesforce/WikiSQL", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_dir = dl_manager.download_and_extract(_DATA_URL) dl_dir = os.path.join(dl_dir, "data") return [ nlp.SplitGenerator( name=nlp.Split.TEST, gen_kwargs={ "main_filepath": os.path.join(dl_dir, "test.jsonl"), "tables_filepath": os.path.join(dl_dir, "test.tables.jsonl"), }, ), nlp.SplitGenerator( name=nlp.Split.VALIDATION, gen_kwargs={ "main_filepath": os.path.join(dl_dir, "dev.jsonl"), "tables_filepath": os.path.join(dl_dir, "dev.tables.jsonl"), }, ), nlp.SplitGenerator( name=nlp.Split.TRAIN, gen_kwargs={ "main_filepath": os.path.join(dl_dir, "train.jsonl"), "tables_filepath": os.path.join(dl_dir, "train.tables.jsonl"), }, ), ] def _convert_to_human_readable(self, sel, agg, columns, conditions): """Make SQL query string. Based on https://github.com/salesforce/WikiSQL/blob/c2ed4f9b22db1cc2721805d53e6e76e07e2ccbdc/lib/query.py#L10""" rep = "SELECT {agg} {sel} FROM table".format( agg=_AGG_OPS[agg], sel=columns[sel] if columns is not None else "col{}".format(sel) ) if conditions: rep += " WHERE " + " AND ".join(["{} {} {}".format(columns[i], _COND_OPS[o], v) for i, o, v in conditions]) return " ".join(rep.split()) def _generate_examples(self, main_filepath, tables_filepath): """Yields examples.""" # Build dictionary to table_ids:tables with open(tables_filepath) as f: tables = [json.loads(line) for line in f] id_to_tables = {x["id"]: x for x in tables} with open(main_filepath) as f: for idx, line in enumerate(f): row = json.loads(line) row["table"] = id_to_tables[row["table_id"]] del row["table_id"] # Handle missing data row["table"]["page_title"] = row["table"].get("page_title", "") row["table"]["section_title"] = row["table"].get("section_title", "") row["table"]["caption"] = row["table"].get("caption", "") row["table"]["name"] = row["table"].get("name", "") row["table"]["page_id"] = str(row["table"].get("page_id", "")) # Fix row types row["table"]["rows"] = [[str(e) for e in r] for r in row["table"]["rows"]] # Get human-readable version row["sql"]["human_readable"] = self._convert_to_human_readable( row["sql"]["sel"], row["sql"]["agg"], row["table"]["header"], row["sql"]["conds"], ) # Restructure sql->conds # - wikiSQL provides a tuple [column_index, operator_index, condition] # as 'condition' can have 2 types (float or str) we convert to dict for i in range(len(row["sql"]["conds"])): row["sql"]["conds"][i] = { "column_index": row["sql"]["conds"][i][0], "operator_index": row["sql"]["conds"][i][1], "condition": str(row["sql"]["conds"][i][2]), } yield idx, row
StarcoderdataPython
6622892
<reponame>adborden/WeVoteBase # import_export_open_civic_data/models.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from django.db import models # https://github.com/opencivicdata/python-opencivicdata-django # There are models for the ocd data types # Other Open Civic Data identifiers that refer to the same division -- for example, those that refer to other # political divisions whose boundaries are defined to be coterminous with this one. # For example, ocd-division/country:us/state:wy will include an alias of ocd-division/country:us/state:wy/cd:1, # since Wyoming has only one Congressional district. # # Division Identifiers here: # Master CSV files with ocd-division-ids # https://github.com/opencivicdata/ocd-division-ids/tree/master/identifiers # https://raw.githubusercontent.com/opencivicdata/ocd-division-ids/master/identifiers/country-us.csv # id,name,sameAs,sameAsNote,validThrough,census_geoid,census_geoid_12,census_geoid_14,openstates_district,placeholder_id,sch_dist_stateid,state_id # ocd-division/country:us,United States,,,,,,,,,, # ocd-division/country:us/court_of_appeals:1,United States Court of Appeals for 1st Circuit,,,,,,,,,, # ocd-division/country:us/court_of_appeals:1/district_court:maine,United States District Court for District of Maine,,,,,,,,,, # TODO create importer and table to cache this data ### Pulling out geographic divisions # country / state / # cd # congressional district, uses census_geoid ex/ ocd-division/country:us/state:ca/cd:12 # circuit_court # county # council_district # school_district # precinct # parish # council_district # school_district # precinct # ward # council_district # school_district # precinct # place - uses census_geoid # sldl # State legislature district, lower # sldu # State legislature district, upper # country / territory / # municipio # sldl # State legislature district, lower # sldu # State legislature district, upper
StarcoderdataPython
8126920
<filename>trees-and-graphs/reconstruct-a-binary-tree-from-a-preorder-traversal-with-markers.py # 9.13 in Elements of Programming Interviews in Python (Sep 15, 2016) # Design an algorithm for reconstructing a binary tree from a preorder traversal # visit sequence that uses null to mark empty children. import unittest # time complexity O(len(sequence)) # space complexity O(len(sequence)) class BinaryTreeNode(): def __init__(self, data=None, left=None, right=None): self.data = data self.left = left self.right = right def reconstruct_preorder(sequence): def reconstruct_preorder_helper(sequence_iter): node = next(sequence_iter) if node == None: return None left_subtree = reconstruct_preorder_helper(sequence_iter) right_subtree = reconstruct_preorder_helper(sequence_iter) return BinaryTreeNode(node, left_subtree, right_subtree) return reconstruct_preorder_helper(iter(sequence)) class Test(unittest.TestCase): def test_reconstruct_preorder(self): sequence = ['H', 'B', 'F', None, None, 'E', 'A', None, None, None, \ 'C', None, 'D', None, 'G', 'I', None, None, None] tree = reconstruct_preorder(sequence) def preorder_w_markers(tree): sequence = [] preorder_w_markers_helper(tree, sequence) return sequence def preorder_w_markers_helper(tree, sequence): if tree: sequence.append(tree.data) if tree.left == None: sequence.append(None) else: preorder_w_markers_helper(tree.left, sequence) if tree.right == None: sequence.append(None) else: preorder_w_markers_helper(tree.right, sequence) sequence_2 = preorder_w_markers(tree) self.assertEqual(sequence, sequence_2); if __name__ == "__main__": unittest.main()
StarcoderdataPython
6703808
import datetime as dt import pytest from note_clerk import planning @pytest.mark.parametrize( "date, quarter", [ (dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 1)), (dt.datetime(2020, 1, 2), dt.datetime(2020, 1, 1)), (dt.datetime(2020, 4, 1), dt.datetime(2020, 4, 1)), (dt.datetime(2020, 4, 2), dt.datetime(2020, 4, 1)), (dt.datetime(2020, 5, 2), dt.datetime(2020, 4, 1)), (dt.datetime(2020, 6, 2), dt.datetime(2020, 4, 1)), (dt.datetime(2020, 7, 2), dt.datetime(2020, 7, 1)), (dt.datetime(2020, 8, 2), dt.datetime(2020, 7, 1)), (dt.datetime(2020, 9, 2), dt.datetime(2020, 7, 1)), (dt.datetime(2020, 10, 2), dt.datetime(2020, 10, 1)), (dt.datetime(2020, 11, 2), dt.datetime(2020, 10, 1)), (dt.datetime(2020, 12, 2), dt.datetime(2020, 10, 1)), ], ) def test_quarter_start(date: dt.datetime, quarter: dt.datetime) -> None: adjusted = planning.quarter_start(date) assert adjusted == quarter def print_with_header(header: str, text: str) -> None: line = "*" * (len(header) + 4) print(f"{line}\n* {header} *\n{line}\n{text}")
StarcoderdataPython
8121914
<reponame>vepakom/SplitLearning_Inference from algos.simba_algo import SimbaDefence class SplitInference(SimbaDefence): def __init__(self, config, utils) -> None: super(SplitInference, self).__init__(utils) self.initialize(config) def initialize(self, config): self.client_model = self.init_client_model(config) self.put_on_gpus() self.utils.register_model("client_model", self.client_model) self.optim = self.init_optim(config, self.client_model) def forward(self, items): x = items["x"] self.z = self.client_model(x) # z will be detached to prevent any grad flow from the client z = self.z.detach() z.requires_grad = True return z def backward(self, items): server_grads = items["server_grads"] self.optim.zero_grad() self.z.backward(server_grads) self.optim.step()
StarcoderdataPython
8094550
<gh_stars>10-100 # from . import core # DONT import core. this project module should be relatively independent from buildercore import utils, config from kids.cache import cache from . import files import copy import logging from functools import reduce LOG = logging.getLogger(__name__) # # project data utilities # def set_project_alt(pdata, env, altkey): "non-destructive update of given project data with the specified alternative configuration." assert env in ['vagrant', 'aws', 'gcp'], "'env' must be either 'vagrant' or 'aws'" env_key = env + '-alt' assert altkey in pdata[env_key], "project has no alternative config %r. Available: %s" % (altkey, list(pdata[env_key].keys())) pdata_copy = copy.deepcopy(pdata) # don't modify the data given to us pdata_copy[env] = pdata[env_key][altkey] return pdata_copy def find_project(project_location_triple): "given a triple of (protocol, hostname, path) returns a map of {org => project data}" plt = project_location_triple assert utils.iterable(plt), "given triple must be a collection of three values" assert len(project_location_triple) == 3, "triple must contain three values. got: %r" % project_location_triple protocol, hostname, path = plt fnmap = { # 'file': OrgFileProjects, 'file': files.projects_from_file, # 'ssh': RemoteBuilderProjects, # 'https': RemoteBuilderProjects, } if not protocol in fnmap.keys(): LOG.info("unhandled protocol %r for %r" % (protocol, plt)) return {} # OrderedDict({}) return fnmap[protocol](path, hostname) @cache def _project_map(project_locations_list=None): """returns a single map of all projects and their data""" def merge(orderedDict1, orderedDict2): orderedDict1.update(orderedDict2) return orderedDict1 project_locations_list = config.app()['project-locations'] # ll: {'dummy-project1': {'lax': {'aws': ..., 'vagrant': ..., 'salt': ...}, 'metrics': {...}}, # 'dummy-project2': {'example': {}}} data = map(find_project, project_locations_list) opm = reduce(merge, data) # ll: [{'lax': {'aws': ..., 'vagrant': ..., 'salt': ...}, 'metrics': {...}}], {'example': {}}] data = opm.values() # ll: {'lax': {...}, 'metrics': {...}, 'example': {...}} return reduce(merge, data) def project_map(project_locations_list=None): """returns a deepcopy of the cached `_project_map` results. `cfngen.build_context` is one of probably many functions that are modifying the project data, unintentionally modifying it for all subsequent accesses, including during tests. this approach should be safer, avoid the speed problems with parsing the project files at the cost of a deepcopy.""" return utils.deepcopy(_project_map(project_locations_list)) def project_list(): "returns a single list of projects, ignoring organization and project data" return list(project_map().keys()) def project_data(pname): "returns the data for a single project." data = project_map() try: return data[pname] except KeyError: raise ValueError("unknown project %r, known projects %r" % (pname, list(data.keys()))) # # # def filtered_projects(filterfn, *args, **kwargs): "returns a dict of projects filtered by given filterfn)" return utils.dictfilter(filterfn, project_map(*args, **kwargs)) def branch_deployable_projects(*args, **kwargs): "returns a pair of (defaults, dict of projects with a repo)" return filtered_projects(lambda pname, pdata: 'repo' in pdata, *args, **kwargs) def projects_with_formulas(*args, **kwargs): return filtered_projects(lambda pname, pdata: pdata.get('formula-repo'), *args, **kwargs) def aws_projects(*args, **kwargs): return filtered_projects(lambda pname, pdata: 'aws' in pdata, *args, **kwargs) def ec2_projects(*args, **kwargs): return filtered_projects(lambda pname, pdata: pdata.get('aws', {}).get('ec2'), *args, **kwargs) # # # def project_formulas(): def fn(pname, pdata): return [pdata.get('formula-repo')] + pdata.get('formula-dependencies', []) return utils.dictmap(fn, project_map()) # # # def known_formulas(): "a simple list of all known project formulas" return utils.lfilter(None, utils.unique(utils.shallow_flatten(project_formulas().values())))
StarcoderdataPython
4851098
#python import pyodbc #for mssql connection with python #connect db conn = pyodbc.connect('Driver={SQL Server};' 'Server=USBLRVDEEPAK1;' 'Database=dbTemp;' 'Trusted_Connection=yes;') #get table names def list_of_tables(conn,dbName): cursor = conn.cursor() statement = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE = 'BASE TABLE' AND TABLE_CATALOG='" + dbName +"'" tables = cursor.execute(statement) return [table[0] for table in tables] #pipe seperated def preprocess(values,flag=False): st = '' for val in values: if flag: st += str(val[0])+'|' else: st += str(val)+'|' return st[:-1] #read the rows def read(conn,table,folderName): cursor = conn.cursor() statement = "select * from "+table rows = cursor.execute(statement) filename = folderName+'/'+table+'.txt' file = open(filename,'w') file.write(preprocess(cursor.description,True)+'\n') for row in rows: file.write(preprocess(row)+'\n') file.close() #generate for all TABLES def generateForAll(conn,dbName,folderName): tables = list_of_tables(conn,dbName) #construct for table in tables: read(conn,table,folderName) #generate for one def generateForParticular(conn,TableName): read(conn,TableName,folderName) #create a folder named tables generateForAll(conn,'dbTemp','tables') ''' T = no of tables R = no of rows of each table Time complexity : O(TxR) Space complexity : O(T) '''
StarcoderdataPython
9605441
<reponame>LIIR-KULeuven/CLDR_CLNER_models<filename>CLDR/final_run/main.py<gh_stars>10-100 import json import sys import random import os import shutil import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn.modules.module import Module from torch.nn.parameter import Parameter import configparser import math from utils_ import * from loss import * from train import * parser = configparser.ConfigParser() parser.read("./../../configs/train_RE_final_run.conf") CHARACTER_BERT_PATH = parser.get("config", "characterBERT_path") sys.path.append(CHARACTER_BERT_PATH) from utils.character_cnn import CharacterIndexer from modeling.character_bert import CharacterBertModel # Read the given arguments SPLIT_NUM = parser.get("config", "split_num") EPOCHS = int(parser.get("config", "epochs")) BATCH_SIZE = int(parser.get("config", "batch_size")) NEG_SAMPLES = int(parser.get("config", "neg_samples")) PATH_OUT = parser.get("config", "path_out") PATH_OUT = PATH_OUT + 'split_' + str(SPLIT_NUM) + '/' # Create the output directory if it doesn't exist. if not os.path.exists(PATH_OUT): os.makedirs(PATH_OUT) # For the dataloader ADJ_WEIGHT = float(parser.get("config", "adj_weight")) PATH_IN_GENERAL = parser.get("config", "path_in_general") PATH_IN_GRAPH = parser.get("config", "path_in_graph") class GraphConvolution(nn.Module): # GCN layer based on https://arxiv.org/abs/1609.02907 def __init__(self, in_features, out_features, bias=True, init='xavier'): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features # Initialize a matrix for the weights self.weight = Parameter(torch.FloatTensor(in_features, out_features)) # If a bias vector will be included then initialize it. if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) # Initialization of the weights. if init == 'uniform': print('Uniform Initialization') self.reset_parameters_uniform() elif init == 'xavier': print('Xavier Initialization') self.reset_parameters_xavier() elif init == 'kaiming': print('Kaiming Initialization') self.reset_parameters_kaiming() else: raise NotImplementedError def reset_parameters_uniform(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def reset_parameters_xavier(self): # Implementation of Xavier Uniform nn.init.xavier_normal_(self.weight.data, gain=0.02) if self.bias is not None: nn.init.constant_(self.bias.data, 0.0) def reset_parameters_kaiming(self): nn.init.kaiming_normal_(self.weight.data, a=0, mode='fan_in') if self.bias is not None: nn.init.constant_(self.bias.data, 0.0) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' ->' + str(self.out_features) + ')' class Model_RE(nn.Module): def __init__(self, nfeat, nhid1, device, init_gc_weights, characterBERT_path): super(Model_RE, self).__init__() self.device = device # Graph part self.gc1 = GraphConvolution(nfeat, nhid1, init=init_gc_weights) self.activation_function = nn.ReLU() # Text encoder part self.characterBERT_path = characterBERT_path + 'pretrained-models/medical_character_bert/' self.characterBERT = CharacterBertModel.from_pretrained(self.characterBERT_path) # Freeze the first 6 encoding layers and the initial embedding layer modules = [self.characterBERT.embeddings, *self.characterBERT.encoder.layer[:6]] for module in modules: for param in module.parameters(): param.requires_grad = False def graph_forward(self, x, adj): x = x.to(self.device) adj = adj.to(self.device) x = self.gc1(x, adj) x = self.activation_function(x) x_conc = torch.flatten(x) x_conc_un = x_conc.unsqueeze(0) return x_conc_un def forward(self, x, adj, sent_id, mask, indexes_of_pairs): ''' x: the feature matrix for the GCN part for the different graphs adj: the normalized adjacency matrix sent_id: the encoded sentence (containing [CLS], [SEP] and [PAD] tokens) mask: the masking of the sentence (indication of true or padded token) ''' # Perform the forward pass on the GCN part graph_out = [] for r_id in x: tmp_r = [] for g in r_id: tmp_r.append(self.graph_forward(g, adj)) # Create one tensor for the output of the GCN layer. # It has the concatenated output of each graph. tmp_r_tensor = torch.cat(tmp_r, 0) graph_out.append(tmp_r_tensor) # Perform the forward pass on the Text Encoder part # - 1: a tensor with the embeddings of the final layer for each token # - 2: a tensor with the average embeddings (all tokens considered) of the final layer output = self.characterBERT(sent_id, attention_mask=mask) # Isolate the representations which are related to the relations in the text. sent_out = [] for r_id in indexes_of_pairs: tmp_r_sent = [] for pair in r_id: selected_tokens = output[0][0][pair] # Create one representation for each relation using concatenation. relation_representation = torch.flatten(selected_tokens) relation_representation = self.activation_function(relation_representation) relation_representation_un = relation_representation.unsqueeze(0) tmp_r_sent.append(relation_representation_un) # Create one tensor for the selection of the tokens. # It has the concatenated "relation representations" based on encoder output tokens. # The first representation is the correct one and the rest are wrong (negative). tmp_r_sent_tensor = torch.cat(tmp_r_sent, 0) sent_out.append(tmp_r_sent_tensor) return graph_out, sent_out, output[0] def prepare_dataloaders(): # Read the file with the CV splits with open('../../cv_splits.json') as json_file: cv_splits = json.load(json_file) # Find the path files for training train_files = [] for f in cv_splits['split_' + SPLIT_NUM]['train set']: #train_files.append('../../../Iteration_3/data/files/' + f + '.json') train_files.append(f + '.json') # Define the data loaders dataset_train = ADE_Dataset(filenames=train_files, path_in_general=PATH_IN_GENERAL, path_in_graphs=PATH_IN_GRAPH, number_of_negative_adj=NEG_SAMPLES, adj_weight=ADJ_WEIGHT) # Dataloaders dataloader_train = DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, collate_fn=my_collate) return dataloader_train if __name__ == "__main__": # Define the running device by checking if a GPU is available if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") # Define the model model = Model_RE(nfeat=768, nhid1=768, device=device, init_gc_weights='kaiming', characterBERT_path = CHARACTER_BERT_PATH) model.to(device) # Initialize the optimizer optimizer = optim.Adam(model.parameters(), lr=0.00001, weight_decay=0.000001) # Initialize the loss function loss_InfoNCE = InfoNCE_loss_vectorized(temperature=0.1) dataloader_train = prepare_dataloaders() # Train the model model_trained, losses_dict = train(model = model, optimizer = optimizer, loss_graph_text = loss_InfoNCE, train_loader = dataloader_train, epochs = EPOCHS, checkpoint_path = PATH_OUT, device = device) # Save the losses with open(PATH_OUT + 'losses.json', 'w') as fp: json.dump(losses_dict, fp)
StarcoderdataPython
9782142
<reponame>forsvarir/python-refactoring-exercises from enum import Enum import random import time PAUSE_PERIOD = 0 EVEN_BONUS = 10 ODD_PENALTY = 5 MINIMUM_SCORE = 0 class Player: def __init__(self, name, score = 0): self.name = name self.score = score def add_dice(score1, score2): return score1 + score2 def rolled_double(total, roller): even_score = rolled_even(total) double_score = even_score + roller() print("Amazing, you rolled a double! Your new score is", double_score) return double_score def rolled_even(total): print("You rolled an even total! You get an extra 10 points!") new_total = total + EVEN_BONUS print("Your new total is",new_total) return new_total def rolled_low_odd(total): rolled_odd(total) print("You cannot go below 0, your new total is 0") return MINIMUM_SCORE def rolled_odd(total): print("You rolled an odd total, you lose 5 points") new_total = total - ODD_PENALTY print("Your new total is", new_total) return new_total def calculate_score(score1, score2, roller = lambda : random_roller): dice_total = add_dice(score1, score2) if(score1 == score2): return rolled_double(dice_total, roller) if (dice_total % 2 == 0): return rolled_even(dice_total) if (dice_total < ODD_PENALTY): return rolled_low_odd(dice_total) return rolled_odd(dice_total) def pause(): time.sleep(PAUSE_PERIOD) def random_roller(): return random.randint(1,6) def play_round(name, roller = lambda : random_roller()): dice_1 = roller() dice_2 = roller() print(name + " has rolled " + str(dice_1) + " and " + str(dice_2)) pause() print(name + " has rolled a total of " + str(add_dice(dice_1, dice_2))) return calculate_score(dice_1, dice_2, roller) def is_valid_name(names, name): return name in names def is_invalid_name(names, name): return not is_valid_name(names, name) def read_all_lines_from_file(filename): with open(filename, 'r') as source_file: return source_file.readlines() def strip_newlines(items): return list(map(lambda s: s.rstrip('\n'), items)) def update_scores_file(players): with open("scores.txt", "a") as source_file: for player in players: source_file.write(player.name + ", " + str(player.score) + "\n") def evaluate_winner(player1, player2, roller = lambda: random_roller): winner = "" print(player1.name, "has a score of", player1.score, "and", player2.name, "has a score of", player2.score) if player1.score > player2.score: return player1 if player1.score < player2.score: return player2 while True: print("It's a draw!") p1Roll = roller() p2Roll = roller() print(player1.name, "rolled", p1Roll, "and", player2.name, "rolled", p2Roll) if p1Roll > p2Roll: return player1 if p1Roll < p2Roll: return player2 def ask_for_name(name): return input(name + ", what is your name?: ") def play_game(whitelist): players = [Player(ask_for_name("Player 1")),Player(ask_for_name("Player 2"))] if any(is_invalid_name(whitelist, player.name) for player in players): print("Incorrect names") exit() for round_number in range(1, 7): print("Round",round_number) pause() for player in players: player.score += play_round(player.name) pause() winner = evaluate_winner(players[0], players[1]) print(winner.name + " has won!") update_scores_file(players) if __name__ == "__main__": play_game(strip_newlines(read_all_lines_from_file("whitelist.txt")))
StarcoderdataPython
12843633
import ipaddress # =============================================== DEFAULT CONFIGURATION ================================================ # Default port to bind the translator's unicast server socket to. DEFAULT_UNICAST_SRV_PORT = 9001 # Default address space to pick multicast destination addresses (groups) from for the translated unicast streams. DEFAULT_MULTICAST_ADDR_SPACE = ipaddress.IPv4Network('172.16.58.3/8') # Default port to use when forwarding payload received on the translator's unicast server socket as multicast. DEFAULT_MULTICAST_PORT = 9002 # URL to use when submitting stream information to the Multicast Menu MULTICASTMENU_ADD_URL = 'https://multicastmenu.herokuapp.com/add/' # Email address to use when submitting stream information to the Multicast Menu. Lenny has OK'ed using his email address # until we have a group email. MULTICASTMENU_EMAIL = '<EMAIL>' # Number of worker threads dedicated to submitting stream information to the Multicast Menu. MULTICASTMENU_THREADS = 10 # ======================================================================================================================
StarcoderdataPython
6470148
<reponame>m2u/m2u """Commands for scene events tracking in maya. Scene tracking observes if files are opened, closed or Maya exits. That may be important for deleting and recreating callbacks automatically. When Maya exits, we will try to disconnect from the Editor and save settings. """ import logging import pymel.api as mapi import m2u _lg = logging.getLogger(__name__) def create_maya_exit_tracker(): mapi.MSceneMessage.addCallback(mapi.MSceneMessage.kMayaExiting, _on_maya_exiting) def _on_maya_exiting(data): m2u.core.editor.disconnect() m2u.core.settings.save_config() # Register the exit-tracker when loading this module: create_maya_exit_tracker()
StarcoderdataPython
3427992
<filename>muninn/muninn/settings/prod.py from .base import * DEBUG=False
StarcoderdataPython
1745685
# # Copyright (C) 2007 <NAME> # All rights reserved. # For license terms see the file COPYING.txt. # from __future__ import print_function import unittest, os, shutil, errno, sys, difflib, cgi, re from roundup.admin import AdminTool from . import db_test_base from .test_mysql import skip_mysql from .test_postgresql import skip_postgresql class AdminTest(object): backend = None def setUp(self): self.dirname = '_test_admin' def tearDown(self): try: shutil.rmtree(self.dirname) except OSError as error: if error.errno not in (errno.ENOENT, errno.ESRCH): raise def testInit(self): import sys self.admin=AdminTool() sys.argv=['main', '-i', '_test_admin', 'install', 'classic', self.backend] ret = self.admin.main() print(ret) self.assertTrue(ret == 0) self.assertTrue(os.path.isfile(self.dirname + "/config.ini")) self.assertTrue(os.path.isfile(self.dirname + "/schema.py")) def testInitWithConfig_ini(self): import sys from roundup.configuration import CoreConfig self.admin=AdminTool() sys.argv=['main', '-i', '_test_admin', 'install', 'classic', self.backend] # create a config_ini.ini file in classic template templates=self.admin.listTemplates() config_ini_content = "[mail]\n# comment\ndebug = SendMail.LOG\n" config_ini_path = templates['classic']['path'] + '/config_ini.ini' config_ini_file = open(config_ini_path, "w") config_ini_file.write(config_ini_content) config_ini_file.close() try: ret = self.admin.main() finally: try: # ignore file not found os.remove(config_ini_path) except OSError as e: # FileNotFound exception under py3 if e.errno == 2: pass else: raise print(ret) self.assertTrue(ret == 0) self.assertTrue(os.path.isfile(self.dirname + "/config.ini")) self.assertTrue(os.path.isfile(self.dirname + "/schema.py")) config=CoreConfig(self.dirname) self.assertEqual(config['MAIL_DEBUG'], self.dirname + "/SendMail.LOG") class anydbmAdminTest(AdminTest, unittest.TestCase): backend = 'anydbm' @skip_mysql class mysqlAdminTest(AdminTest, unittest.TestCase): backend = 'mysql' class sqliteAdminTest(AdminTest, unittest.TestCase): backend = 'sqlite' @skip_postgresql class postgresqlAdminTest(AdminTest, unittest.TestCase): backend = 'postgresql'
StarcoderdataPython
6557172
# Suppose you have a bunch of markdown files in a root directory called RD1, # and you list all these file links in another file called F2, now # you want to check whether all the files in RD1 are listed in F2. import os # Use this filter_list when you want to skip checking some files # filter_list = ['<file-name1.xx>','<file-name2.xx>',...] # Walks files in a given folder (e.g. RD1) and get all files' paths and filenames. for root, dirs, files in os.walk("<absolute-path-of-RD1>", topdown=True): for name in files: if '.md' in name: # Check all markdown files # if '.md' in name and name not in filter_list: # Check all .md files except those in filter_list pin = 0 # Use a marker to differentiate file names # Find if the name string is in F2 with open("<absolute-path-of-F2>",'r') as foo: for line in foo.readlines(): if name in line: pin = 1 if pin == 0: # Print the names of all files that are not in F2 print(name, "not in F2")
StarcoderdataPython
3563457
import networkx as nx from covariant_compositional_networks_tf2.CCN_Model import CCN_Model import numpy as np import tensorflow as tf from ordered_set import OrderedSet from covariant_compositional_networks_tf2.CCN_Model import CCN_Model channels_in = 5 feature_vector_shape = [1] k = 2 model = CCN_Model(optimizer= tf.keras.optimizers.Adam(lr = 0.005), loss=tf.losses.binary_crossentropy, nonlinearity=tf.nn.relu, feature_vector_shape=feature_vector_shape, num_layers=1, k=k, batch_update_size=60, l1_reg=0.004, save_every=2, channels_in=[channels_in, 40]) def randomNPGraph(n, p, diagonal=True, undirected=True): adjM = np.random.binomial(1, p, (n, n)) if diagonal: for i in range(len(adjM)): adjM[i, i] = 1 if undirected: xy = np.mgrid[0:n:1, 0:n:1].reshape(2, -1).T.reshape(n, n, 2) adjM = np.where(xy[..., 1] > xy[..., 0], adjM, adjM.T) return adjM def randomGraphColoring(n, m, max_color=None): if max_color is None: max_color = m coloring = np.zeros((n, max_color)) indices = list((np.arange(n), np.random.randint(m, size=n))) coloring[tuple(indices)] = 1 return coloring def checkGraphColoringError(adjM, coloring): neighbours = [np.where(adjM[i] == 1) for i in range(len(adjM))] errors = np.array( [[np.sum(coloring[i] * coloring[j]) if i != j and j in neighbours[i][0] else 0 for j in range(len(adjM))] for i in range(len(adjM))]) sum_of_errors = np.sum(errors) / 2 return sum_of_errors def checkIfGraphConnected(adjM): G = nx.from_numpy_matrix(adjM) return nx.is_connected(G) def generateGraphColoring(size, n_range, m_range, p_range): m_max = m_range[1]-1 graphs = [] while True: n = np.random.randint(n_range[0], n_range[1]) m = np.random.randint(m_range[0], m_range[1]) p = np.random.uniform(p_range[0], p_range[1]) # print("n: " + str(n) +", m: " +str(m)+ ", p: " + str(p)) NPGraph = randomNPGraph(n, p) connected = checkIfGraphConnected(NPGraph) if not connected: continue coloring = randomGraphColoring(n, m, max_color=m_max) coloringError = checkGraphColoringError(NPGraph, coloring) coloringError = 0.0 if coloringError ==0 else 1 parts = [OrderedSet([i]) for i in range(len(NPGraph))] graph = [NPGraph, coloring, coloringError, parts] graphs.append(graph) if len(graphs) >= size: break return graphs # n = 7 # nodes # m = 4 # colors # p = 0.4 # edge probability # NPGraph = randomNPGraph(n, p) # coloring = randomGraphColoring(n, m, max_color=None) # # connected = checkIfGraphConnected(NPGraph) # coloringError = checkGraphColoringError(NPGraph, coloring) # print(coloring) # print(connected) # print(coloringError) data_size = 600 graphs = list(zip(*generateGraphColoring(data_size, (3, 7), (channels_in, channels_in+1), (0.2, 0.5)))) graphsValid = list(zip(*generateGraphColoring(250, (3, 7), (channels_in, channels_in+1), (0.2, 0.5)))) Xval, Yval = model.createTensors(graphsValid[1], graphsValid[2]) model.add_valid(Xval, Yval, graphsValid[0], graphsValid[3]) #print(graphs) uq=np.unique(graphs[2], return_counts=True) print(np.unique(graphs[2], return_counts=True)) classW = data_size/(2 * uq[1]) classWdict = {clazz:weight for clazz, weight in zip(uq[0], classW)} model.class_weights = classWdict print(classWdict) adjM = graphs[0] X = graphs[1] Y = graphs[2] parts = graphs[3] X,Y = model.createTensors(X,Y) model.fit(X, Y, adjM, parts, 1000)
StarcoderdataPython
3309557
<gh_stars>1-10 # Author:柠檬班-木森 # E-mail:<EMAIL> import json import os import unittest import time import copy from jinja2 import Environment, FileSystemLoader from concurrent.futures.thread import ThreadPoolExecutor from apin.core.initEvn import log from apin.core.testResult import ReRunResult from apin.core.resultPush import DingTalk, WeiXin, SendEmail class TestRunner(): """unittest运行程序""" def __init__(self, suite: unittest.TestSuite, filename="reports.html", report_dir=".", title='测试报告', tester='测试员', desc="XX项目测试生成的报告", templates=1, no_report=False ): """ 初始化用例运行程序 :param suites: 测试套件 :param filename: 报告文件名 :param report_dir:报告文件的路径 :param title:测试套件标题 :param templates: 可以通过参数值1或者2,指定报告的样式模板,目前只有两个模板 :param tester:测试者 :param no_report:不生成测试报告,以json数据格式返回测试结果,默认生成,设置True则不生成报告 """ if not isinstance(suite, unittest.TestSuite): raise TypeError("suites 不是测试套件") if not isinstance(filename, str): raise TypeError("filename is not str") if not filename.endswith(".html"): filename = filename + ".html" self.suite = suite self.filename = filename self.title = title self.tester = tester self.desc = desc self.templates = templates self.report_dir = report_dir self.result = [] self.starttime = time.time() self.no_report = no_report def __classification_suite(self): """ 将测试套件中的用例,根据用例类位单位,拆分成多个测试套件,打包成列表类型 :return: list-->[suite,suite,suite.....] """ suites_list = [] def wrapper(suite): for item in suite: if isinstance(item, unittest.TestCase): suites_list.append(suite) break else: wrapper(item) wrapper(copy.deepcopy(self.suite)) return suites_list def __get_reports(self,thread_count): """ 生成报告,返回测试汇中的结果 :return: 包含测试结果的字典 """ # 汇总测试结果 test_result = { "success": 0, "all": 0, "fail": 0, "skip": 0, "error": 0, "results": [], "testClass": [], } # 整合测试结果 for res in self.result: for item in test_result: test_result[item] += res.fields[item] test_result['thread_count'] =thread_count test_result['runtime'] = '{:.2f} S'.format(time.time() - self.starttime) test_result["begin_time"] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.starttime)) test_result["title"] = self.title test_result["tester"] = self.tester test_result['desc'] = self.desc if test_result['all'] != 0: test_result['pass_rate'] = '{:.2f}'.format(test_result['success'] / test_result['all'] * 100) else: test_result['pass_rate'] = 0 log.info("用例运行完毕,结果如下:\n共运行:{}条 " "\n通过:{}条" "\n失败:{}条" "\n错误:{}条" "\n运行时间:{}".format( test_result['all'], test_result['success'], test_result['fail'], test_result['error'], test_result['runtime'] )) self.test_result = test_result # 判断是否要生产测试报告 if os.path.isdir(self.report_dir): pass else: os.mkdir(self.report_dir) if self.no_report: return self.__get_results(test_result) log.info("正在生成测试报告中......") # 获取历史执行数据 test_result['history'] = self.__handle_history_data(test_result) # 获取报告模板 template_path = os.path.join(os.path.dirname(__file__), '../templates/reports') env = Environment(loader=FileSystemLoader(template_path)) if self.templates == 2: template = env.get_template('templates2.html') elif self.templates == 3: template = env.get_template('templates3.html') else: template = env.get_template('templates1.html') file_path = os.path.join(self.report_dir, self.filename) # 渲染报告模板 res = template.render(test_result) # 输出报告到文件 with open(file_path, 'wb') as f: f.write(res.encode('utf8')) log.info("测试报告已经生成,报告路径为:{}".format(file_path)) self.email_conent = {"file": os.path.abspath(file_path), "content": env.get_template('templates03.html').render(test_result) } return {'success': test_result['success'], 'all': test_result['all'], 'fail': test_result['fail'], 'skip': test_result['skip'], 'error': test_result['error'], 'runtime': test_result['runtime'], 'begin_time': test_result['begin_time'], 'tester': test_result['tester'], 'pass_rate': test_result['pass_rate'], 'report': file_path, "thread_count":thread_count } def __handle_history_data(self, test_result): """ 处理历史数据 :return: """ try: with open(os.path.join(self.report_dir, 'history.json'), 'r', encoding='utf-8') as f: history = json.load(f) except FileNotFoundError as e: history = [] history.append({'success': test_result['success'], 'all': test_result['all'], 'fail': test_result['fail'], 'skip': test_result['skip'], 'error': test_result['error'], 'runtime': test_result['runtime'], 'begin_time': test_result['begin_time'], 'pass_rate': test_result['pass_rate'], }) with open(os.path.join(self.report_dir, 'history.json'), 'w', encoding='utf-8') as f: json.dump(history, f, ensure_ascii=True) return history def __get_notice_content(self): """获取通知的内容""" template_path = os.path.join(os.path.dirname(__file__), '../templates/reports') env = Environment(loader=FileSystemLoader(template_path)) res_text = env.get_template('dingtalk.md').render(self.test_result) return res_text def __get_results(self, test_result): """返回测试结果""" results = [] for case in test_result.get('results'): results.append({k: v for k, v in case.__dict__.items() if not k.startswith('_')}) test_result['results'] = results return test_result def run(self, thread_count=1, rerun=0, interval=2): """ 支持多线程执行 注意点:如果多个测试类共用某一个全局变量,由于资源竞争可能会出现错误 :param thread_count:线程数量,默认位1 :return:测试运行结果 """ # 将测试套件按照用例类进行拆分 suites = self.__classification_suite() with ThreadPoolExecutor(max_workers=thread_count) as ts: for i in suites: res = ReRunResult(count=rerun, interval=interval) self.result.append(res) ts.submit(i.run, result=res).add_done_callback(res.stopTestRun) ts.shutdown(wait=True) result = self.__get_reports(thread_count) return result def send_email(self, host, port, user, password, to_addrs, is_file=True): """ 发生报告为附件到邮箱 :param host: str类型,(smtp服务器地址) :param port: int类型,(smtp服务器地址端口) :param user: str类型,(邮箱账号) :param password: str类型(邮箱密码) :param to_addrs: str(单个收件人) or list(多个收件人)收件人列表, :return: """ sm = SendEmail(host=host, port=port, user=user, password=password) if is_file: filename = self.email_conent["file"] else: filename = None content = self.email_conent["content"] sm.send_email(subject=self.title, content=content, filename=filename, to_addrs=to_addrs) def get_except_info(self): """ 获取错误用例和失败用例的报错信息 :return: """ except_info = [] num = 0 for i in self.result: for texts in i.failures: t, content = texts num += 1 except_info.append("*{}、用例【{}】执行失败*,\n失败信息如下:".format(num, t._testMethodDoc)) except_info.append(content) for texts in i.errors: num += 1 t, content = texts except_info.append("*{}、用例【{}】执行错误*,\n错误信息如下:".format(num, t._testMethodDoc)) except_info.append(content) except_str = "\n".join(except_info) return except_str def dingtalk_notice(self, url, key=None, secret=None, atMobiles=None, isatall=False, except_info=False): """ 钉钉通知 :param url: 钉钉机器人的Webhook地址 :param key: (非必传:str类型)如果钉钉机器人安全设置了关键字,则需要传入对应的关键字 :param secret:(非必传:str类型)如果钉钉机器人安全设置了签名,则需要传入对应的密钥 :param atMobiles: (非必传,list类型)发送通知钉钉中要@人的手机号列表,如:[137xxx,188xxx] :param isatall: 是否@所有人,默认为False,设为True则会@所有人 :param except_info:是否发送未通过用例的详细信息,默认为False,设为True则会发送失败用例的详细信息 :return: 发送成功返回 {"errcode":0,"errmsg":"ok"} 发送失败返回 {"errcode":错误码,"errmsg":"失败原因"} """ if not url: raise ValueError("url(钉钉群机器人的Webhook地址)不能为空") res_text = self.__get_notice_content() if except_info: res_text += '\n ### 未通过用例详情:\n' res_text += self.get_except_info() data = { "msgtype": "markdown", "markdown": { "title": '{}({})'.format(self.title, key), "text": res_text }, "at": { "atMobiles": atMobiles, "isAtAll": isatall } } ding = DingTalk(url=url, data=data, secret=secret) response = ding.send_info() return response.json() def weixin_notice(self, chatid, access_token=None, corpid=None, corpsecret=None): """ 测试结果推送到企业微信群,【access_token】和【corpid,corpsecret】至少要传一种 可以传入access_token ,也可以传入(corpid,corpsecret)来代替access_token :param chatid: 企业微信群ID :param access_token: 调用企业微信API接口的凭证 :param corpid: 企业ID :param corpsecret:应用的凭证密钥 :return: """ # 获取通知结果 res_text = self.__get_notice_content() data = { "chatid": chatid, "msgtype": "markdown", "markdown": { "content": res_text } } wx = WeiXin(access_token=access_token, corpid=corpid, corpsecret=corpsecret) response = wx.send_info(data=data) return response
StarcoderdataPython
5190607
<reponame>DryptoBZX/contractsV2 #!/usr/bin/python3 import pytest from brownie import Contract, network from helpers import setupLoanPool def test_getTokens(Constants, bzx, accounts, TokenRegistry): setupLoanPool(Constants, bzx, accounts[1], accounts[2]) setupLoanPool(Constants, bzx, accounts[3], accounts[4]) setupLoanPool(Constants, bzx, accounts[3], accounts[5]) # this will overrider asset account[4] trproxy = accounts[0].deploy(TokenRegistry, bzx.address) tr = Contract.from_abi("tr", address=trproxy.address, abi=TokenRegistry.abi, owner=accounts[0]) print("accounts", accounts) print("loanPoolToUnderlying", bzx.loanPoolToUnderlying(accounts[1])) tokenList = tr.getTokens(0, 10) print(tokenList) assert(tokenList[0][0] == accounts[1]) assert(tokenList[0][1] == accounts[2]) assert(tokenList[1][0] == accounts[3]) assert(tokenList[1][1] == accounts[5]) assert (len(tokenList) == 2)
StarcoderdataPython
5049209
from asg.intermediate_lang import * from asg.entities import * from lark import Lark, Transformer import os from asg.grammar import * class SExpressionTransformer(Transformer): """ Transform the parsed tree to an SExpressionList object. Also handles strings and literals. """ def string(self, string): if len(string) > 0: return string[0].value else: return "" def literal(self, literal): return Literal(literal[0].value) def number(self, num): if "." in num[0].value: return float(num[0].value) else: return int(num[0].value) def list(self, l): return Atom(l[0], l[1:]) def symbol_to_il(symbol): name = "" pin_locations = {} inputs = [] outputs = [] properties = [] ul_corner = Point(0, 0) lr_corner = Point(0, 0) for prop in symbol.children: if type(prop) != Atom: continue if prop.name == "property": property_key = prop.children[0] property_value = prop.children[1] property_id = -1 property_location = [0, 0, 0] property_effects = [] for c in prop.children: if type(c) != Atom: continue if c.name == "id": property_id = c.children[0] if c.name == "at": property_location = c.children if c.name == "effects": property_effects = c.children properties.append( LibraryProperty( property_key, property_value, property_id, property_location, property_effects, ) ) if "Value" in prop.children: name = prop.children[1] if prop.name == "symbol": for element in prop.children: if type(element) != Atom: continue if element.name == "pin": pin_name = -1 pin_location = Point(0, 0) pin_type = element.children[0] for attr in element.children: if type(attr) != Atom: continue if attr.name == "at": pin_location = Point(attr.children[0], -attr.children[1]) if attr.name == "name": pin_name = attr.children[0] if pin_type == "input": inputs.append(pin_name) else: outputs.append(pin_name) if pin_location.x < ul_corner.x: ul_corner.x = pin_location.x if pin_location.y < ul_corner.y: ul_corner.y = pin_location.y if pin_location.x > lr_corner.x: lr_corner.x = pin_location.x if pin_location.y > lr_corner.y: lr_corner.y = pin_location.y pin_locations[pin_name] = pin_location if name == "": raise Exception(f"Invalid symbol {symbol.children[0]}") bounding_box = BoundingBox(ul_corner, lr_corner) bounding_box.expand(2, 0.1) return LibrarySymbol( name, symbol.children[0], pin_locations, inputs, outputs, symbol, properties, bounding_box, ) def s_expression_to_il(library_file): """ Convert an s-expression file to an internal representation :param library_file: A file descriptor :return: """ # Get paths relative to the location of this file, not the root of the module script_dir = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(script_dir, "s_expression.lark")) as grammar: parser = Lark( grammar.read() + "\n", parser="lalr", transformer=SExpressionTransformer(), start="list", ) parsed = parser.parse(library_file.read()) symbols = [child for child in parsed.children if child.name == "symbol"] res = LibraryIL() for symbol in symbols: symbol_il = symbol_to_il(symbol) res.symbols[symbol_il.name] = symbol_il return res
StarcoderdataPython
368972
<filename>Dragon/python/dragon/vm/onnx/frontend.py # ------------------------------------------------------------ # Copyright (c) 2017-present, SeetaTech, Co.,Ltd. # # Licensed under the BSD 2-Clause License. # You should have received a copy of the BSD 2-Clause License # along with the software. If not, See, # # <https://opensource.org/licenses/BSD-2-Clause> # # Codes are based on: # # <https://github.com/pytorch/pytorch/blob/master/caffe2/python/onnx/frontend.py> # # ------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from collections import defaultdict from onnx import (checker, mapping, numpy_helper, GraphProto, OperatorSetIdProto) from onnx.helper import make_tensor_value_info, make_model, printable_graph from dragon.vm.onnx.helper import \ (extract_initializer, extract_leaf_tensors, native_run_graph, fetch_initializer,) from dragon.vm.onnx.nodes.factory import get_nodes_def class DragonFrontend(object): """This class help dragon to convert internal protocols to ONNX protocols. """ target_opset_version = 9 @staticmethod def _extract_value_info(tensor): return make_tensor_value_info( name=tensor.name, elem_type=tensor.data_type, shape=tensor.dims) @staticmethod def _ssa_rewrite(op_def, shapes, ssa_names, ssa_outputs): inputs, outputs = [], [] for e in op_def.input: inputs.append(ssa_names[e] if e in ssa_names else e) for e in op_def.output: outputs.append(e + '/Version_{}'.format( ssa_outputs[e]) if ssa_outputs[e] > 0 else e) ssa_outputs[e] += 1 ssa_names[e] = outputs[-1] shapes[outputs[-1]] = shapes[e][:] op_def.ClearField('input') op_def.ClearField('output') op_def.input.extend(inputs) op_def.output.extend(outputs) return op_def, shapes, ssa_names, ssa_outputs @classmethod def graph_def_to_onnx_graph( cls, graph_def, init_func=None, constants=None, value_info=None, graph_name=None, verbose=True, enforce_no_running=False, ): if value_info is None: value_info = {} if not isinstance(value_info, dict): raise ValueError( 'Please pass value_info as a ' 'name -> (type, shape) dictionary') leaf_tensors = extract_leaf_tensors(graph_def) initializer = extract_initializer(graph_def) # Check whether we have got type shape info of all input missing = (leaf_tensors - set(value_info.keys()) - initializer) if missing: raise RuntimeError('Could not find value info of inputs: {}'.format( ', '.join(missing))) # Check if value_info contains the types/shapes of all the blobs, in # which case we don't need to infer them by running the net. run_native_graph = False for op in graph_def.op: for name in itertools.chain(op.input, op.output): if name not in value_info: run_native_graph = True break ws = None # Get the value info of outputs and initializer if run_native_graph and not enforce_no_running: inputs = {} for name, (elem_type, shape) in value_info.items(): inputs[name] = np.random.randn(*shape).astype( mapping.TENSOR_TYPE_TO_NP_TYPE[elem_type]) ws, outputs, initializer = native_run_graph( graph_def, inputs, initializer, init_func) if enforce_no_running: # In some cases(e.g. PyTorch), we had ran the graph # outputs had been in ``value_info`` already import dragon.core.workspace as ws initializer = fetch_initializer(initializer) # Prepare to make the graph onnx_graph = GraphProto() onnx_graph.name = graph_name if graph_name else graph_def.name # Initializer should also be included in the inputs value_info.update({ init.name: (init.data_type, init.dims) for init in initializer}) # Add initializer onnx_graph.initializer.extend(initializer) # Add inputs onnx_graph.input.extend( make_tensor_value_info( name=name, elem_type=value_info[name][0], shape=value_info[name][1]) for name in leaf_tensors) # Add outputs onnx_graph.output.extend( make_tensor_value_info( name=name, elem_type=value_info[name][0], shape=value_info[name][1]) for name in set(graph_def.output)) # Add constants if constants is not None: for k, v in constants.items(): onnx_graph.initializer.extend( [numpy_helper.from_array(v, name=k)]) # Add nodes shapes, ssa_names, ssa_outputs = {}, {}, defaultdict(int) for op in graph_def.op: # Get the shape of inputs and outputs for name in itertools.chain(op.input, op.output): if ws and ws.HasTensor(name): blob = ws.FetchTensor(name) if hasattr(blob, 'shape'): shapes[name] = blob.shape else: shapes[name] = value_info[name][1] # SSA rewritten op, shapes, ssa_names, ssa_outputs = \ cls._ssa_rewrite(op, shapes, ssa_names, ssa_outputs) # Try to translate op => nodes nodes, const_tensors = get_nodes_def(op, shapes, ws) # Directly convert outputs as const tensors if necessary if None in nodes: const_tensors = [ numpy_helper.from_array( ws.FetchTensor(name), name=name) for name in op.output] else: onnx_graph.node.extend(nodes) # Add const tensors if const_tensors is not None: onnx_graph.initializer.extend(const_tensors) onnx_graph.input.extend([ cls._extract_value_info(tensor) for tensor in const_tensors]) if verbose: print(printable_graph(onnx_graph)) return onnx_graph @classmethod def graph_def_to_onnx_model( cls, graph_def, init_func=None, constants=None, value_info=None, graph_name=None, verbose=True, enforce_no_running=False, ): opset_id = OperatorSetIdProto() opset_id.domain = '' # ONNX default domain opset_id.version = cls.target_opset_version model = make_model( cls.graph_def_to_onnx_graph( graph_def, init_func, constants, value_info, graph_name, verbose, enforce_no_running, ), opset_imports=[opset_id], # current supported opset version producer_name='onnx-dragon', # producer name ) checker.check_model(model) return model graph_def_to_onnx_graph = DragonFrontend.graph_def_to_onnx_graph graph_def_to_onnx_model = DragonFrontend.graph_def_to_onnx_model
StarcoderdataPython
8149229
import unittest from mock import patch class _Success(str): @property def failed(self): return False class TestVagrantVersion(unittest.TestCase): def test_vagrant_version_1_3_0(self): with patch('fabtools.vagrant.local') as mock_local: mock_local.return_value = _Success("Vagrant version 1.3.0\n") from fabtools.vagrant import version self.assertEqual(version(), (1, 3, 0)) def test_vagrant_version_1_3_1(self): with patch('fabtools.vagrant.local') as mock_local: mock_local.return_value = _Success("Vagrant v1.3.1\n") from fabtools.vagrant import version self.assertEqual(version(), (1, 3, 1)) def test_vagrant_version_1_4_3(self): with patch('fabtools.vagrant.local') as mock_local: mock_local.return_value = _Success("Vagrant 1.4.3\n") from fabtools.vagrant import version self.assertEqual(version(), (1, 4, 3)) def test_vagrant_version_1_5_0_dev(self): with patch('fabtools.vagrant.local') as mock_local: mock_local.return_value = _Success("Vagrant 1.5.0.dev\n") from fabtools.vagrant import version self.assertEqual(version(), (1, 5, 0, 'dev'))
StarcoderdataPython
6554665
<gh_stars>1-10 from pyopenproject.api_connection.exceptions.request_exception import RequestError from pyopenproject.api_connection.requests.post_request import PostRequest from pyopenproject.business.exception.business_error import BusinessError from pyopenproject.business.services.command.user.user_command import UserCommand from pyopenproject.model import user as u class Lock(UserCommand): def __init__(self, connection, user): super().__init__(connection) self.user = user def execute(self): try: json_obj = PostRequest(connection=self.connection, context=f"{self.CONTEXT}/{self.user.id}/lock", headers={"Content-Type": "application/hal+json"}).execute() return u.User(json_obj) except RequestError as re: raise BusinessError(f"Error locking user by id: {self.user.id}") from re
StarcoderdataPython
11251249
import math, random, sys, numpy import pygame from pygame.locals import * pygame.init() # define display surface ScrW = 1000 ScrH = 700 HW, HH = ScrW / 2, ScrH / 2 win = pygame.display.set_mode((ScrW, ScrH)) pygame.display.set_caption("BommerMan") vol = 5 FPS = 10 clock = pygame.time.Clock() # define some colors black = (0, 0, 0, 255) white = (255, 255, 255, 255) CENTER_HANDLE = 4 class spritesheet: def __init__(self, filename, cols, rows): self.sheet = pygame.image.load(filename).convert_alpha() self.cols = cols self.rows = rows self.totalCellCount = cols * rows self.rect = self.sheet.get_rect() w = self.cellWidth = self.rect.width // cols h = self.cellHeight = self.rect.height // rows hw, hh = self.cellCenter = (w // 2, h // 2) self.cells = list([(i % cols * w, i // cols * h, w, h) for i in range(self.totalCellCount)]) self.handle = list([(0, 0), (-hw, 0), (-w, 0), (0, -hh), (-hw, -hh), (-w, -hh), (0, -h), (-hw, -h), (-w, -h),]) def draw(self, surface, cellIndex, x, y, handle = 0): surface.blit(self.sheet, (x + self.handle[handle][0], y + self.handle[handle][1]), self.cells[cellIndex]) def spriteSize (self): return self.cellWidth, self.cellHeight, self.totalCellCount , self.cols , self.rows class movement: def __init__ (self, spritesheet, intx = HW, inty = HH): self.size = spritesheet.spriteSize() self.x = intx self.y = inty self.index = numpy.arange(self.size[3]*self.size[4]).reshape(self.size[4], self.size[3]) self.i = 0 self.j = 0 def xyWalk (self, spritesheet, frames): self.key = pygame.key.get_pressed() if self.key [pygame.K_LEFT]: self.i = 1 self.x -= vol elif self.key [pygame.K_RIGHT]: self.i = 3 self.x += vol elif self.key [pygame.K_UP]: self.i = 0 self.y -= vol elif self.key [pygame.K_DOWN]: self.i = 2 self.y += vol else : self.i = 2 self.j = 0 self.j += 1 if self.j == frames: self.j = 0 if self.x > ScrW - self.size[0]: self.x = ScrW - self.size[0] if self.x < ScrW : self.x = ScrW if self.y > ScrH - self.size[1]: self.y = ScrH - self.size[1] if self.y < ScrH : self.x = ScrH #if if self.x < HW: circlePosX = self.x # elif self.x > stageWidth - startScrollingPosX: circlePosX = self.x - self.size[0] + W else: circlePosX = startScrollingPosX stagePosX += - vol self.rel_x = stagePosX % 2000 spritesheet.draw(win, 0,self.rel_x - 2000,0) #DS.blit(bg, (self.rel_x - bgWidth, 0)) if self.rel_x < W: spritesheet.draw(win, 0,self.rel_x,0) #DS.blit(bg, (self.rel_x, 0)) spritesheet.draw(win, self.index [self.i] [self.j] , self.x, self.y,0) pygame.display.update() # exit the program def events(): for event in pygame.event.get(): if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): pygame.quit() sys.exit(0) def main(): #s = spritesheet(".\Movement.png", 12, 2) b = spritesheet(".\Background.jpg",1,1) s = spritesheet(".\FBI.png", 9, 4) m = movement(s) w = movement(b) while True: events() m.xyWalk(s, 9) clock.tick(FPS) if __name__ == "__main__": main()
StarcoderdataPython
4980134
<filename>dbmanage/bkrs/script/backupscripts/mysqlbackup.py<gh_stars>1-10 #!/usr/bin/python import sys import string import shutil import getopt import os import os.path import syslog import errno import logging import tempfile import datetime import subprocess import readline import json from operator import itemgetter """ ----------------------------------------------------------------------------- A script to backup mysql databases through the mysqldump utility. Use the -h or the --help flag to get a listing of options. Program: Mysql Database Backups Author: <NAME> Date: April 28, 2013 Revision: 1.0 Revision | Author | Comment ----------------------------------------------------------------------------- 20130428-1.0 <NAME> Initial creation of script. ----------------------------------------------------------------------------- """ def rlinput(prompt, prefill=''): readline.set_startup_hook(lambda: readline.insert_text(prefill)) try: return raw_input(prompt) finally: readline.set_startup_hook() def format_date(raw_date): return "%s-%s-%s %s:%s:%s" % (raw_date[0:4], raw_date[4:6], raw_date[6:8], raw_date[8:10], raw_date[10:12], raw_date[12:14]) class MysqlBackup: def __init__(self, keep=90, databases=None, store=None, user="root", password=<PASSWORD>, host=None): self.host = host self.keep = keep self.databases = databases self.store = store self.user = user self.password = password self.host = host def run_command(self, command=None, shell=False, ignore_errors=False, ignore_codes=None, get_output=False, path="."): p = subprocess.Popen([command], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, cwd=path) out, err = p.communicate() result = p.returncode if result and not ignore_errors and (not ignore_codes or result in set(ignore_codes)): raise BaseException(str(command) + " " + str(result)) def get_databases(self): if self.databases != None: return [s.strip() for s in self.databases.strip().split(",")] list_cmd = "mysql -u" + self.user if self.host != None: list_cmd += " -h " + self.host if self.password != None: list_cmd += " -p" + self.password list_cmd += " --silent -N -e 'show databases'" databases = os.popen(list_cmd).readlines() return [s.strip() for s in databases] def restore(self): dbbackup_path = self.store + os.sep backups = sorted(os.listdir(dbbackup_path), reverse=True) # show available options k = 1 options = {} prev_date = "" databases = "" filenames = "" print "Available backups to restore:" for i in range(len(backups)): data = backups[i].split(".") date = data[0] if not prev_date: prev_date = date if (date != prev_date): print "["+str(k)+"]", "(%s) %s" % (format_date(prev_date), databases) options[k] = { "date": prev_date, "databases": databases, "filenames": filenames } k += 1 prev_date = date databases = "" filenames = "" databases += ("" if databases == "" else ",") + data[1] filenames += ("" if filenames == "" else ",") + backups[i] print "["+str(k)+"]", "(%s) %s" % (format_date(prev_date), databases) options[k] = { "date": prev_date, "databases": databases, "filenames": filenames } # get the selection user_input = -1 max_option = len(options.keys()) while True: user_input = int(raw_input("\nSelect backup: ")) if (user_input < 1) or (max_option < user_input): print "Error: The value should be between 1 and", max_option else: break # get the databases to restore date = format_date(options[user_input]["date"]) filenames = options[user_input]["filenames"] selected_databases = rlinput("Databases to restore: ", options[user_input]["databases"]) databases = ",".join(filter(lambda db: db in selected_databases, self.get_databases())) if databases == "": print "Error: The selected databases doesn't match any created databases." sys.exit() # ask for confirmation print "The databases \"%s\" are going to be restored using the version dated \"%s\"" % (databases, date) confirmation = rlinput("Continue? [Y/n] ", "Y") if confirmation != "Y": print "Aborted." sys.exit() # expand the filenames of the databases databases = databases.split(",") filenames = filter(lambda fln: reduce(lambda x,y: x or y, map(lambda dbn: dbn in fln, databases)), filenames.split(",")) # restore the databases print for filename in filenames: db = filename.split(".")[1] restore_cmd = "gunzip < " + dbbackup_path + filename + \ " | mysql -u " + self.user if self.host != None: restore_cmd += " -h " + "'" + self.host + "'" if self.password != None: restore_cmd += " -p" + self.password restore_cmd += " " + db print "Restoring \"" + db + "\"...", sys.stdout.flush() logging.info("Restore db, %s from %s." % (db, dbbackup_path + filename)) self.run_command(restore_cmd) print "done" print "Restore complete!" def backup(self): padding = len(str(self.keep)) backups = [] # remove files older than keep days cutdate = datetime.datetime.now() - datetime.timedelta(days=self.keep) for backup_file in os.listdir(self.store): bparts = backup_file.split(".") if bparts[0].isdigit(): dumpdate = datetime.datetime.strptime(bparts[0], "%Y%m%d%H%M%S") if dumpdate < cutdate: os.remove(os.path.join(self.store, backup_file)) # get the current date and timestamp and the zero backup name tstamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") dbs = self.get_databases() skip = ["information_schema", "performance_schema", "test"] for db in dbs: if db in skip: continue dbbackup_name = string.join([tstamp, db, "sql"], ".") dbbackup_path = self.store + os.sep + dbbackup_name dump_cmd = "mysqldump -u " + self.user if self.host != None: dump_cmd += " -h " + "'" + self.host + "'" if self.password != None: dump_cmd += " -p" + self.password dump_cmd += " -e --opt -c " + db + " | gzip > " + dbbackup_path + ".gz" logging.info("Dump db, %s to %s." % (db, dbbackup_path)) os.popen(dump_cmd) """ Prints out the usage for the command line. """ def usage(): usage = ["mysqlbackup.py [-hkdbups]\n"] usage.append(" [-h | --help] prints this help and usage message\n") usage.append(" [-k | --keep] number of days to keep backups before deleting\n") usage.append(" [-d | --databases] a comma separated list of databases\n") usage.append(" [-t | --store] directory locally to store the backups\n") usage.append(" [-u | --user] the database user\n") usage.append(" [-p | --password] the database password\n") usage.append(" [-s | --host] the database server hostname\n") usage.append(" [-o | --options] the json file to load the options from instead of using command line\n") usage.append(" [-r | --restore] enables restore mode\n") message = string.join(usage) print message """ Main method that starts up the backup. """ def main(argv): # set the default values pid_file = tempfile.gettempdir() + os.sep + "mysqlbackup.pid" keep = 90 databases = None user = None password = None host = None store = None options = None restore = False try: # process the command line options st = "hn:k:d:t:u:p:s:o:r" lt = ["help", "keep=", "databases=", "store=", "user=", "password=", "host=", "options=", "restore"] opts, args = getopt.getopt(argv, st, lt) # if no arguments print usage if len(argv) == 0: usage() sys.exit() # detect if loading options from file and load the json vals = {} fopts = None for opt, arg in opts: vals[opt] = arg if ("-o" in vals.keys()) or ("--options" in vals.keys()): opt = "-o" if "-o" in vals.keys() else "--options" with open(vals[opt], 'r') as content_file: fopts = json.load(content_file) # merge with opts opts_keys = map(lambda val: val[0], opts) if fopts: for key in fopts.keys(): prefix = "" if key in st.split(":"): prefix = "-" elif key in map(lambda t: t[:-1] if t[-1] == "=" else t, lt): prefix = "--" else: continue if prefix+key not in opts_keys: opts.append((prefix+key, fopts[key])) # loop through all of the command line options and set the appropriate # values, overriding defaults for opt, arg in opts: if opt in ("-h", "--help"): usage() sys.exit() elif opt in ("-k", "--keep"): keep = int(arg) elif opt in ("-d", "--databases"): databases = arg elif opt in ("-t", "--store"): store = arg elif opt in ("-u", "--user"): user = arg elif opt in ("-p", "--password"): password = arg elif opt in ("-s", "--host"): host = arg elif opt in ("-r", "--restore"): restore = True except getopt.GetoptError, msg: logging.warning(msg) # if an error happens print the usage and exit with an error usage() sys.exit(errno.EIO) # check options are set correctly if user == None or store == None: logging.warning("Backup store directory (-t) and user (-u) are required") usage() sys.exit(errno.EPERM) # process backup, catch any errors, and perform cleanup try: # another backup can't already be running, if pid file doesn't exist, then # create it if os.path.exists(pid_file): logging.warning("Backup running, %s pid exists, exiting." % pid_file) sys.exit(errno.EBUSY) else: pid = str(os.getpid()) f = open(pid_file, "w") f.write("%s\n" % pid) f.close() # create the backup object and call its backup method mysql_backup = MysqlBackup(keep, databases, store, user, password, host) if restore: mysql_backup.restore() else: mysql_backup.backup() except(Exception): logging.exception("Mysql backups failed.") finally: os.remove(pid_file) # if we are running the script from the command line, run the main function if __name__ == "__main__": main(sys.argv[1:])
StarcoderdataPython
8055810
from scipy import optimize import numpy as np from matplotlib import pyplot as plt import scipy.integrate as integrate def curve(x, t): period = 2 * np.pi / x[1] if isinstance(t, float): t = np.array((t,)) y = np.ndarray((t.shape[0],)) for i in range(t.shape[0]): if t[i] < (period / 4): y[i] = x[0] * np.sin(t[i] * x[1]) elif t[i] > (period / 4) and t[i] < (1 - (period / 4)): y[i] = x[0] elif t[i] > (1 - (period / 4)) and t[i] < (1 + (period / 4)): y[i] = x[0] * np.sin((t[i] - 1 - period / 2) * x[1]) elif t[i] > (1 + (period / 4)) and t[i] < (2 - (period / 4)): y[i] = - x[0] else: y[i] = x[0] * np.sin((t[i] - 2) * x[1]) return y def curve_integral(x, t): integ = np.ndarray((t.shape[0]-1,)) for i in range(t.shape[0]-1): integ[i] = integrate.quad(lambda t: curve(x, t), 0, t[i+1])[0] return integ def generate_up_and_down_bow_target(ns, bow_speed=10, bow_acceleration=0.5): def objective_function(x, t): y = curve(x, t) integ = curve_integral(x,t) moy = (integ[int(n_points/2)-2] + integ[int(n_points/2)+2])/2 return np.array((bow_acceleration-x[0], bow_speed-x[1], y[-1], y[0], (moy-0.48)*1000)) n_points = 200 t = np.linspace(0, 2, n_points) x_opt = optimize.least_squares(lambda x: objective_function(x, t), x0=np.array((1, 8))) # x[0] = amplitude et x[1]= 2 pi/ period return t, x_opt.x if __name__ == "__main__": t, x = generate_up_and_down_bow_target(0) n_points = 200 t = np.linspace(0, 2, n_points) plt.plot(t, curve(x, t)) plt.plot(t[:-1], curve_integral(x, t), color="red") n_points = 50 t = np.linspace(0, 2, n_points) plt.plot(t, curve(x, t), 'k.') plt.plot(t[:-1], curve_integral(x, t), '.m') plt.show()
StarcoderdataPython
1978002
<reponame>OneGneissGuy/detrend-ec # -*- coding: utf-8 -*- """ Created on Thu Dec 6 12:38:52 2018 script to read in conductivity data and correct for drift due to evaporation @author: jsaracen """ import numpy as np import pandas as pd from scipy.signal import detrend input_data_file = 'sc1000_data.csv' #read the csv file into a pandas dataframe data = pd.read_csv(input_data_file, index_col=[0]) #set the index to be a datetime index for time series operations data.index = pd.to_datetime(data.index) experiment_time = data.index[0] - data.index[-1] hours = int(abs(experiment_time.total_seconds()/3600)) data.index = np.arange(1,hours+2) data.index.name = u'Hour of Experiment' #linearly detrend the data for effects of detrended = data.apply(detrend, type='linear') #save the startingin intial conductivity values (no evaporation) inital_values = data.iloc[0] # Add the intial value detrended_plus_initial = detrended + inital_values #save the output file to the same location as the input data detrended_plus_initial.to_csv(input_data_file.replace('.csv', '_detrended.csv')) #make some figures ylab = u'Conductivity in microsiemens per centimeter (µS/cm)' ax = data.plot.line(marker='o') ax.set_ylabel(ylab) ax.set_title('Raw') ax = detrended_plus_initial.plot.line(marker='o') ax.set_ylabel(ylab) ax.set_title('Detrended')
StarcoderdataPython
11143
""" shell sort tests module """ import unittest import random from sort import shell from tests import helper class ShellSortTests(unittest.TestCase): """ shell sort unit tests class """ max = 100 arr = [] def setUp(self): """ setting up for the test """ self.arr = random.sample(range(self.max), self.max) def test_null_input(self): """ should raise when input array is None """ # arrange inp = None # act with self.assertRaises(TypeError) as ex: shell.sort(inp) # assert self.assertEqual("'NoneType' object is not iterable", str(ex.exception)) def test_empty_input(self): """ should return [] when input array is empty """ # arrange inp = [] # act res = shell.sort(inp) # assert self.assertEqual(len(inp), len(res)) def test_sort_a_given_array(self): """ should sort a given array """ # act res = shell.sort(self.arr[:]) # assert self.assertTrue(helper.is_sorted(res))
StarcoderdataPython
1811223
import json from policy_storage import Policy_Storage def validate_access_policies(resource_id, user_name): mongo = Policy_Storage('mongodb') data = mongo.get_policy_from_resource_id(str(resource_id)) operations = ['AND', 'OR'] if isinstance(data, list): for i in range(0, len(data)): if data[i]['config']['resource_id'] == resource_id: for operation in operations: if operation in data[i]['config']['rules'][0].keys(): exist_operation = operation break if len(data[i]['config']['rules'][0][exist_operation]) == 1: if data[i]['config']['rules'][0][exist_operation][0]['EQUAL']['user_name'] == user_name: return True else: for j in range(0, len(data[i]['config']['rules'][0][exist_operation])): if data[i]['config']['rules'][0][exist_operation][j]['EQUAL']['user_name'] == user_name: return True return False def validate_policy_language(policy): operation = ['AND', 'OR', 'XOR', 'NOT', 'LESS', 'LESSEQUAL', 'GREATER', 'GREATEREQUAL', 'EQUAL'] for i in range(0, len(policy)): keys_dict = [] for key in policy[i].keys(): keys_dict.append(key) for key in keys_dict: if key in operation: if isinstance(policy[i][key], list): result = validate_policy_language(policy[i][key]) if result == False: return False if key == "NOT" and isinstance(policy[i][key], dict): for keys in policy[i][key]: if keys in operation: result = validate_policy_language(policy[i][key][keys]) if result == False: return False else: return False else: return False return True def validate_complete_policies(resource_id, action, dict_request_values): mongo = Policy_Storage('mongodb') data = mongo.get_policy_from_resource_id(str(resource_id)) decisions = {} if isinstance(data, list): for i in range(0, len(data)): try: if data[i]['config']['resource_id'] == resource_id and data[i]['config']['action'] == action and "delegate" not in data[i]['config']: result = validate_all_acces_policies(data[i]['config']['rules'], dict_request_values) decisions[i] = [result, None] elif "delegate" in data[i]['config']: decisions[i] = [None, data[i]['config']['delegate']] except KeyError: decisions[i] = [False, None] return decisions def validate_all_acces_policies(data, dict_request_values): policy = data aux_list = [] aux_list_result = [] for i in range(0, len(policy)): for key in policy[i].keys(): aux_list.append(key) operations = [] values_operations = [] list_values = [] values_operations = [] if isinstance(policy[i][key], list): for j in range(0, len(policy[i][key])): for k, v in policy[i][key][j].items(): aux_dict = {} aux_dict[k] = v aux = [] aux = validate_multiples_conditions(aux_dict, dict_request_values) values_operations = values_operations + aux list_values = conditions_validator(key, values_operations) aux_list_result = aux_list_result + list_values else: operations.append(key) values_operations.append(policy[i][key]) list_values = validate_operations(operations, values_operations, dict_request_values) aux_list_result = aux_list_result + list_values permit_acces = True for i in range(0, len(aux_list)): if aux_list_result[i] is False: permit_acces = False return permit_acces def validate_operations(operations, values_operations, dict_request_values): list_values = [] for i in range(0, len(operations)): for key in values_operations[i].keys(): if key in dict_request_values: if operations[i] == 'LESS': if dict_request_values[key] < values_operations[i][key]: list_values.append(True) else: list_values.append(False) elif operations[i] == 'LESSEQUAL': if dict_request_values[key] <= values_operations[i][key]: list_values.append(True) else: list_values.append(False) elif operations[i] == 'GREATER': if dict_request_values[key] > values_operations[i][key]: list_values.append(True) else: list_values.append(False) elif operations[i] == 'GREATEREQUAL': if dict_request_values[key] >= values_operations[i][key]: list_values.append(True) else: list_values.append(False) elif operations[i] == 'EQUAL': if key == 'emails' or key == 'groups': valid = False for row in range(0, len(dict_request_values[key])): if dict_request_values[key][row]['value'] == values_operations[i][key][row]['value']: valid = True break if valid is True: list_values.append(True) else: list_values.append(False) else: if dict_request_values[key] == values_operations[i][key]: list_values.append(True) else: list_values.append(False) else: a = False for k in dict_request_values: if 'User' in str(k): try: a = dict_request_values[k][key] except KeyError: pass list_values.append(a) return list_values def validate_multiples_conditions(policy_row, dict_request_values): operations = [] operations_conditions = [] values_operations = [] list_values = [] for key3 in policy_row.keys(): if ('AND' == key3) or ('NOT' == key3) or ('OR' == key3) or ('XOR' == key3): operations_conditions.append(key3) if isinstance(policy_row[key3], list): operations = [] values_operations = [] list_values = [] for i in range(0, len(policy_row[key3])): for key2 in policy_row[key3][i].keys(): if ('AND' != key2) and ('NOT' != key2) and ('OR' != key2) and ('XOR' != key2): operations.append(key2) values_operations.append(policy_row[key3][i][key2]) aux_list_result = validate_operations(operations, values_operations, dict_request_values) list_values = conditions_validator(operations_conditions[0], aux_list_result) else: operations_conditions.append(key2) list_values = validate_multiples_conditions(policy_row[key3][i][key2], dict_request_values) return list_values else: list_values = [] for key in policy_row.keys(): if ('AND' != key) and ('NOT' != key) and ('OR' != key) and ('XOR' != key): aux = [] operations.append(key) values_operations.append(policy_row[key]) aux = validate_operations(operations, values_operations, dict_request_values) list_values = list_values + aux else: aux_list_result = [] aux = [] aux_list_result = validate_multiples_conditions(policy_row[key], dict_request_values) aux = conditions_validator(operations_conditions[0], aux_list_result) list_values = list_values + aux return list_values def conditions_validator(key, values): aux_list_result = [] if key == 'AND': istrue = True for k in range(0, len(values)): if values[k] is False: istrue = False aux_list_result.append(istrue) elif key == 'OR': istrue = False for k in range(0, len(values)): if values[k] is True: istrue = True aux_list_result.append(istrue) elif key == 'XOR': count = 0 for k in range(0, len(values)): if values[k] is True: count = count + 1 if count == 1: aux_list_result.append(True) else: aux_list_result.append(False) elif key == 'NOT': for k in range(0, len(values)): if values[k] is True: aux_list_result.append(False) else: aux_list_result.append(True) return aux_list_result
StarcoderdataPython
3458730
<gh_stars>100-1000 import torch import os from im2mesh.utils.io import save_mesh import time from im2mesh.utils.onet_generator import Generator3D as Generator3DONet class Generator3D(object): ''' Generator class for Occupancy Networks 4D. It provides functions to generate the final mesh as well refining options. Args: model (nn.Module): trained Occupancy Network model device (device): pytorch device points_batch_size (int): batch size for points evaluation threshold (float): threshold value refinement_step (int): number of refinement steps resolution0 (int): start resolution for MISE upsampling steps (int): number of upsampling steps with_normals (bool): whether normals should be estimated padding (float): how much padding should be used for MISE sample (bool): whether z should be sampled simplify_nfaces (int): number of faces the mesh should be simplified to n_time_steps (int): number of time steps to generate only_ent_time_points (bool): whether to only generate end points ''' def __init__(self, model, device=None, points_batch_size=100000, threshold=0.5, refinement_step=0, resolution0=16, upsampling_steps=3, with_normals=False, padding=0.1, sample=False, simplify_nfaces=None, n_time_steps=17, only_end_time_points=False, **kwargs): self.n_time_steps = n_time_steps self.only_end_time_points = only_end_time_points self.onet_generator = Generator3DONet( model, device=device, points_batch_size=points_batch_size, threshold=threshold, refinement_step=refinement_step, resolution0=resolution0, upsampling_steps=upsampling_steps, with_normals=with_normals, padding=padding, sample=sample, simplify_nfaces=simplify_nfaces) def generate_mesh_t0(self, z=None, c_t=None, data=None, stats_dict={}): ''' Generates mesh at first time step. Args: z (tensor): latent code z c_t (tensor): latent conditioned temporal code c_t data (dict): data dictionary stats_dict (dict): statistics dictionary ''' t = torch.tensor([0.]).view(1, 1).to(self.onet_generator.device) kwargs = {'t': t} mesh = self.onet_generator.generate_from_latent( z, c_t, stats_dict=stats_dict, **kwargs) return mesh def get_time_steps(self): ''' Return time steps values. ''' n_steps = self.n_time_steps device = self.onet_generator.device if self.only_end_time_points: t = torch.tensor([0., 1.]).to(device) else: t = (torch.arange(1, n_steps).float() / (n_steps - 1)).to(device) return t def generate_meshes_t(self, z=None, c_t=None, data=None, stats_dict={}): ''' Generates meshes at time steps > 0. Args: z (tensor): latent code z c_t (tensor): latent conditioned temporal code c_t data (dict): data dictionary stats_dict (dict): statistics dictionary ''' t = self.get_time_steps() meshes = [] for i, t_v in enumerate(t): kwargs = {'t': t_v.view(1, 1)} stats_dict_i = {} mesh = self.onet_generator.generate_from_latent( z, c_t, stats_dict=stats_dict_i, **kwargs) meshes.append(mesh) for k, v in stats_dict_i.items(): stats_dict[k] += v return meshes def export_mesh(self, mesh, model_folder, modelname, start_idx=0, n_id=1): ''' Exports a mesh. Args: mesh(trimesh): mesh to export model_folder (str): model folder model_name (str): name of the model start_idx (int): start id of sequence n_id (int): number of mesh in the sequence (e.g. 1 -> start) ''' out_path = os.path.join( model_folder, '%s_%04d_%04d.off' % (modelname, start_idx, n_id)) save_mesh(mesh, out_path) return out_path def export_meshes_t(self, meshes, model_folder, modelname, start_idx=0, start_id_seq=2): ''' Exports meshes. Args: meshes (list): list of meshes to export model_folder (str): model folder model_name (str): name of the model start_idx (int): start id of sequence start_id_seq (int): start number of first mesh in the sequence ''' out_files = [] for i, m in enumerate(meshes): out_file = self.export_mesh( m, model_folder, modelname, start_idx, n_id=start_id_seq + i) out_files.append(out_file) return out_files def export(self, meshes, mesh_dir, modelname, start_idx=0, start_id_seq=1): ''' Exports a list of meshes. Args: meshes (list): list of meshes to export model_folder (str): model folder model_name (str): name of the model start_idx (int): start id of sequence start_id_seq (int): start number of first mesh in the sequence ''' model_folder = os.path.join(mesh_dir, modelname, '%05d' % start_idx) if not os.path.isdir(model_folder): os.makedirs(model_folder) return self.export_meshes_t( meshes, model_folder, modelname, start_idx=0, start_id_seq=1) def generate(self, data, return_stats=True, **kwargs): ''' Generates meshes for input data. Args: data (dict): data dictionary return_stats (bool): whether to return statistics ''' self.onet_generator.model.eval() stats_dict = {} device = self.onet_generator.device inputs = data.get('inputs', torch.empty(1, 0)).to(device) meshes = [] with torch.no_grad(): t0 = time.time() c_t = self.onet_generator.model.encode_inputs(inputs) # Only for testing z = self.onet_generator.model.get_z_from_prior( (1,), sample=self.onet_generator.sample).to(device) stats_dict['time (encode inputs)'] = time.time() - t0 # Generate and save first mesh mesh_t0 = self.generate_mesh_t0( z, c_t, data, stats_dict=stats_dict) meshes.append(mesh_t0) # Generate and save later time steps meshes_t = self.generate_meshes_t( z=z, c_t=c_t, data=data, stats_dict=stats_dict) meshes.extend(meshes_t) return meshes, stats_dict
StarcoderdataPython
11221860
<gh_stars>0 # -*- coding: utf-8 -*- import re """ Created on Tue Jun 2 11:46:18 2020 class format city @author: Rizilip """ ## landmarks # mansion tours def formatString(f,m): ## string = f.strip() name = "" method = m match = re.findall("[\w+\s+ ..\w+\s+]+", string) match = str(match) if method == "indeedCity": for character in match: if character.isalpha() : name += character if character == ", ": name += ",%2C+" if character == " ": name += "+" if method == "indeedTask": for character in match: if character.isalpha() or character.isnumeric(): name += character if character == " ": name += "+" if character == "\+": name += character if character == " ": pass# name += "+" return name """ if method == 1: for character in match: if character.isalpha() : name += character if character == ", ": name += "-" if character == " ": name += "-" if method == 2: for character in match: if character.isalpha() : name += character if character == ", ": # name += "+" pass if character == " ": name += "+" if method == 3: for character in match: if character.isalpha() : name += character if character == ",": name += ", " if character == " ": name += character name = "{:>20s}".format(name) if method == 4: for character in match: if character.isalpha() or character == " ": name += character name = str(name) chunks = name.split() name = chunks[-1] + "/" name += chunks[0] if chunks[1] != chunks[-1]: name+="_" + chunks[1] if method == "indeed": for character in match: if character.isalpha() : name += character if character == ", ": name += "%2C+" pass if character == " ": name += "+" """ #Sacramento%2C+CA
StarcoderdataPython
3560116
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- #读取Excel表格中的信息,并将信息写入json文件中 from collections import OrderedDict from pyexcel_xls import get_data from pyexcel_xls import save_data import json map_filename='editor\\地图信息.xlsx' current_sheet=1 while True: xls_data=get_data(map_filename) messages=xls_data[str(current_sheet)] save_filename='informations\\maps\\'+str(current_sheet)+'.json' with open(save_filename,'w') as f: json.dump(messages,f) current_sheet+=1 if current_sheet==7: break monster_filename='editor\怪物信息.xlsx' current_sheet=1 while True: xls_data=get_data(monster_filename) messages=xls_data[str(current_sheet)] del messages[0] save_filename='informations\\monsters\\'+str(current_sheet)+'.json' with open(save_filename,'w') as f: json.dump(messages,f) current_sheet+=1 if current_sheet==7: break print('finished')
StarcoderdataPython
1918427
import os import shutil from cement.utils import fs from cement.utils.misc import rando as _rando import pytest @pytest.fixture(scope="function") def tmp(request): t = fs.Tmp() yield t # cleanup if os.path.exists(t.dir) and t.cleanup is True: shutil.rmtree(t.dir) @pytest.fixture(scope="function") def key(request): yield _rando() @pytest.fixture(scope="function") def rando(request): yield _rando()
StarcoderdataPython
5142423
import pandas as pd import numpy as np from rdkit import Chem from scipy import stats import pubchempy as pcp df = pd.read_excel("../2_bbb_all_complete_CID_out_smiles_fixed_updated.xlsx") df = df[~df["logBB"].isna()] df["logBB"] = df["logBB"].astype(float) # remove molecules with logBB <= -9 df = df[df["logBB"] > -9] # a dictionary to host inchi keys and isomeric smiles for idx, row in df.iterrows(): mol = Chem.MolFromSmiles(row["smiles_fixed_rdkit"]) df.loc[idx, "Inchi"] = Chem.inchi.MolToInchi(mol) df.to_excel("regression_inchi.xlsx", index=None, engine="openpyxl") df = pd.read_excel("regression_inchi.xlsx") # generate a dictionary to host all the inchi and isomeric smiles (or canonical smiles if isomeric smiles is not avaliable) def append_value(dict_obj, key, value): if key in dict_obj: if not isinstance(dict_obj[key], list): dict_obj[key] = [dict_obj[key]] dict_obj[key].append(value) else: dict_obj[key] = value return dict_obj inchi_smi_dict = {inchi:[] for inchi in df["Inchi"].to_list()} for idx, row in df.iterrows(): inchi_smi_dict = append_value(inchi_smi_dict, row["Inchi"], row["smiles_fixed_rdkit"]) # exam how inchi has more than one isomeric smiles counter = 0 for key, value in inchi_smi_dict.items(): if len(value) >= 2: counter += 1 print(counter) # use non-redundant isomeric smiles for inchi_smi_dict # manually inspect inchies with more than one non-redundant smiles inchi_smi_dict = {inchi: set(smi) for inchi, smi in inchi_smi_dict.items()} counter = 0 for key, value in inchi_smi_dict.items(): if len(value) >= 2: print(key, value) # the same inchi may have more than one inchi values, 12 in total # but they are just resonance structure, so use inchi as an identifier ########################################################################### df = pd.read_excel("regression_inchi.xlsx") # smiles fixing with 02_clean_smiles_chembl_way_20210214.py ######################################################################### df_unique = df.drop_duplicates(subset="Inchi", keep="first").reset_index(drop=True) # df_duplicated = df.drop_duplicates(subset="Inchi", keep=False).reset_index(drop=True) # df_unique["logBB"] = [[] for _ in np.arange(df_unique.shape[0])] df_unique["logBB"] = "" df_unique["compound_name"] = "" df_unique["CID"] = "" df_unique["new_name"] = "" df_unique["iupac_name"] = "" df_unique["reference"] = "" df_unique["NO."] = "" df["logBB"] = df["logBB"].astype(float) # append compound_name, CID, logBB, new_name, iupac_name to the df_unique # for idx_unique, row_unique in df_unique.iterrows(): # for idx, row in df.iterrows(): # if row["Inchi"] == row_unique["Inchi"]: # # logBB # df_unique.loc[idx_unique, "logBB"] = df_unique.loc[idx_unique, "logBB"] + "|" + str(row["logBB"]) # # compound_name # df_unique.loc[idx_unique, "compound_name"] = df_unique.loc[idx_unique, "compound_name"] + "|" + str(row["compound_name"]) # # CID # df_unique.loc[idx_unique, "CID"] = df_unique.loc[idx_unique, "CID"] + "|" + str(row["CID"]) # # new_name # df_unique.loc[idx_unique, "new_name"] = df_unique.loc[idx_unique, "new_name"] + "|" + str(row["new_name"]) # # iupac_name # df_unique.loc[idx_unique, "iupac_name"] = df_unique.loc[idx_unique, "iupac_name"] + "|" + str(row["iupac_name"]) # df_unique.to_excel("tmp.xlsx", index=None, engine="openpyxl") # a more efficient way for idx_unique, row_unique in df_unique.iterrows(): inchi_unique = row_unique["Inchi"] df_inchi_matching = df[df["Inchi"] == inchi_unique].reset_index(drop=True) for _, row_matching in df_inchi_matching.iterrows(): # logBB # df_unique.loc[idx_unique, "logBB"] = df_unique.loc[idx_unique, "logBB"] + str(row_matching["logBB"]) + "|" df_unique.loc[idx_unique, "logBB"] = df_unique.loc[idx_unique, "logBB"] + str(round(row_matching["logBB"], 2)) + "|" # compound_name df_unique.loc[idx_unique, "compound_name"] = df_unique.loc[idx_unique, "compound_name"] + str(row_matching["compound_name"]) + "|" # CID df_unique.loc[idx_unique, "CID"] = df_unique.loc[idx_unique, "CID"] + str(row_matching["CID"]) + "|" # new_name df_unique.loc[idx_unique, "new_name"] = df_unique.loc[idx_unique, "new_name"] + str(row_matching["new_name"]) + "|" # iupac_name df_unique.loc[idx_unique, "iupac_name"] = df_unique.loc[idx_unique, "iupac_name"] + str(row_matching["iupac_name"]) + "|" # reference df_unique.loc[idx_unique, "reference"] = df_unique.loc[idx_unique, "reference"] + str(row_matching["reference"]) + "|" # original NO. df_unique.loc[idx_unique, "NO."] = df_unique.loc[idx_unique, "NO."] + str(row_matching["NO."]) + "|" df_unique.to_excel("regression_logBB_combined.xlsx", index=None, engine="openpyxl") ################################################## # preprocess logBB data from copy import deepcopy df = pd.read_excel("regression_logBB_combined.xlsx") # df_bak = deepcopy(df) # filter molecules with max(logBB) – min(logBB) > 1 counter = 0 for idx, row in df.iterrows(): logBB_values = [float(logBB) for logBB in row["logBB"].strip("|").split("|")] if max(logBB_values) - min(logBB_values) > 1: counter += 1 df.loc[idx, "logBB"] = np.nan df = df.dropna(subset=["logBB"]).reset_index(drop=True) df["std"] = np.nan df["group"] = "" for idx, row in df.iterrows(): # round logBB values to two decimal points as this is the most data hold for logBB_values = [logBB for logBB in row["logBB"].strip("|").split("|")] # find the minimum decimal places decimal_places = min([logBB[::-1].find('.') for logBB in logBB_values]) logBB_values = [round(float(logBB), decimal_places) for logBB in logBB_values] # set logBB values if there is only one if len(logBB_values) == 1: df.loc[idx, "logBB"] = logBB_values[0] df.loc[idx, "group"] = "A" df.loc[idx, "std"] = 0 else: mean_logBB = np.multiply(np.ones(len(logBB_values)), np.average(logBB_values)) mean_logBB = np.around(mean_logBB, decimals=decimal_places) # set logBB values if all the values are the same or within 5% difference if np.allclose(np.array(logBB_values), mean_logBB, atol=0, rtol=0.05): df.loc[idx, "logBB"] = mean_logBB[0] df.loc[idx, "group"] = "B" df.loc[idx, "std"] = np.std(logBB_values) else: # if less than 3 values, use average value if len(logBB_values) < 3: df.loc[idx, "logBB"] = mean_logBB[0] df.loc[idx, "group"] = "C" df.loc[idx, "std"] = np.std(logBB_values) # if more than 3 values, use mode else: # not using stats.mode() because it can not handel the suitation when two mode values are avaliable # stats.mode(logBB_values)[0] values, counts = np.unique(logBB_values, return_counts=True) sorted_idx = np.argsort(counts)[::-1] values_sorted = values[sorted_idx] counts_sorted = counts[sorted_idx] # when there is only one number of maximum counts if counts_sorted[0] > counts_sorted[1]: df.loc[idx, "logBB"] = values_sorted[0] df.loc[idx, "group"] = "D" df.loc[idx, "std"] = np.std(logBB_values) # when there are more than one maximum counts, they are equal else: # more than 3 unique values if len(values_sorted) >= 3: # when there are two mode numbers # counts_sorted[0] == counts_sorted[1] is a fact in such a condition as it # is sorted # the first 3 counts are the same if counts_sorted[1] == counts_sorted[2]: df.loc[idx, "logBB"] = sum(values_sorted[:3]) / 3 df.loc[idx, "group"] = "dropped_E" df.loc[idx, "std"] = np.std(logBB_values) # the first 2 counts are the same else: df.loc[idx, "logBB"] = sum(values_sorted[:2]) / 2 df.loc[idx, "group"] = "dropped_F" df.loc[idx, "std"] = np.std(logBB_values) # as counts_sorted is in descening order, counts_sorted[0] will not be less than counts_sorted[1] # counts_sorted[0] == counts_sorted[1] and counts_sorted[0] == counts_sorted[2] # when there are two unique count values else: # these two unique values are the same if counts_sorted[0] == counts_sorted[1]: df.loc[idx, "logBB"] = mean_logBB[0] df.loc[idx, "group"] = "dropped_G" df.loc[idx, "std"] = np.std(logBB_values) # the first one is greater than the second one else: df.loc[idx, "logBB"] = values_sorted[0] df.loc[idx, "group"] = "dropped_H" df.loc[idx, "std"] = np.std(logBB_values) #iupac name for idx, row in df.iterrows(): iupac_names = [name.lower() for name in row["iupac_name"].strip("|").split("|") if name != "nan" if not name.isdigit() if len(name) != 1] if len(iupac_names) >= 1: df.loc[idx, "iupac_name"] = iupac_names[0].lstrip() else: df.loc[idx, "iupac_name"] = "" # deal with compound_name, new_name df["new_compound_name"] = "" for idx, row in df.iterrows(): # new_compound_name compound_names = [name.lower() for name in row["compound_name"].strip("|").split("|") if name != "nan" if not name.isdigit() if len(name) != 1] new_names = [name.lower() for name in row["new_name"].strip("|").split("|") if name != "nan" if not name.isdigit() if len(name) != 1] # these names found in pubchem come first names = list(set(new_names + compound_names)) # when compound_names list is not empty if names != []: df.loc[idx, "new_compound_name"] = names[0].lstrip() else: df.loc[idx, "new_compound_name"] = row["iupac_name"] # deal with CID # for idx, row in df.iterrows(): # cids = list(set([int(float(cid)) for cid in row["CID"].strip("|").split("|") if cid != "nan"])) # if len(cids) != 0: # df.loc[idx, "CID"] = cids[0] # else: # df.loc[idx, "CID"] = "" # deal with smiles and CID # df["smiles_fixed_rdkit"] = df["smiles_fixed_rdkit"].astype(str) # df["CID"] = df["CID"].astype(str) # for idx, row in df.iterrows(): # # smiles_list = [smi.lower() for smi in row["smiles_fixed_rdkit"].strip("|").split("|") # # if smi != "nan" if not smi.isdigit() if len(smi) != 1] # smiles_list = [smi for smi in row["smiles_fixed_rdkit"].strip("|").split("|") # if smi != "nan" if not smi.isdigit()] # smiles_list = list(set(smiles_list)) # cids = list(set([int(float(cid)) for cid in row["CID"].strip("|").split("|") if cid != "nan"])) # if len(smiles_list) >= 1: # # df.loc[idx, "smiles_fixed_rdkit"] = smiles_list[0].lstrip() # # get new CID from the smiles if CID is none # # else: use old CID # if len(cids) == 0: # ## try to get CID until using up the smiles # # flag to indicate if we found new CID and smiles # flag = False # for smi in smiles_list: # try: # # because can get an error with # # O=[SH](O)(c1ccc2cc[nH]c2c1)N1CCCC1CCN1CCC(Oc2cccc(Cl)c2)CC1 # compound = pcp.get_compounds(identifier=smi, namespace="smiles") # cid_new = compound[0].cid # if cid_new is not None: # flag = True # break # except: # print("error found when searching pubchem") # if flag is True: # df.loc[idx, "smiles_fixed_rdkit"] = smi # df.loc[idx, "CID"] = cid_new # else: # df.loc[idx, "smiles_fixed_rdkit"] = smiles_list[0] # df.loc[idx, "CID"] = "" # else: # # use old CIDs # df.loc[idx, "smiles_fixed_rdkit"] = smiles_list[0] # if len(cids) >= 1: # df.loc[idx, "CID"] = cids[0] # else: # df.loc[idx, "CID"] = "" ########################################################### df["CID"] = df["CID"].fillna("") df["CID"] = df["CID"].astype(str) # deal with CID df["CID"] = df["CID"].astype(str) for idx, row in df.iterrows(): # no need to deal with CID for regression data again if pd.isnull(row["logBB"]): cids = list(set([int(float(cid)) for cid in row["CID"].strip("|").split("|") if cid != "nan"])) if len(cids) != 0: df.loc[idx, "CID"] = cids[0] else: df.loc[idx, "CID"] = "" # deal with SMILES df["smiles_fixed_rdkit"] = df["smiles_fixed_rdkit"].astype(str) for idx, row in df.iterrows(): smi_strings = list(set([smi for smi in row["smiles_fixed_rdkit"].strip("|").split("|") if smi != "nan"])) if len(cids) != 0: df.loc[idx, "smiles_fixed_rdkit"] = smi_strings[0] else: df.loc[idx, "smiles_fixed_rdkit"] = "" df = df.sort_values(by=["group", "logBB"]) df.to_excel("regression_clean_done.xlsx", index=None, engine="openpyxl") # clean the data manually
StarcoderdataPython
5042328
from typing import List import autofit as af import autogalaxy as ag from autogalaxy.aggregator.abstract import AbstractAgg from autolens.lens.ray_tracing import Tracer def _tracer_from(fit: af.Fit, galaxies: List[ag.Galaxy]) -> Tracer: """ Returns a `Tracer` object from a PyAutoFit database `Fit` object and an instance of galaxies from a non-linear search model-fit. This function adds the `hyper_model_image` and `hyper_galaxy_image_path_dict` to the galaxies before constructing the `Tracer`, if they were used. Parameters ---------- fit A PyAutoFit database Fit object containing the generators of the results of PyAutoGalaxy model-fits. galaxies A list of galaxies corresponding to a sample of a non-linear search and model-fit. Returns ------- Tracer The tracer computed via an instance of galaxies. """ hyper_model_image = fit.value(name="hyper_model_image") hyper_galaxy_image_path_dict = fit.value(name="hyper_galaxy_image_path_dict") galaxies_with_hyper = [] if hyper_galaxy_image_path_dict is not None: galaxy_path_list = [ gal[0] for gal in fit.instance.path_instance_tuples_for_class(ag.Galaxy) ] for (galaxy_path, galaxy) in zip(galaxy_path_list, galaxies): if galaxy_path in hyper_galaxy_image_path_dict: galaxy.hyper_model_image = hyper_model_image galaxy.hyper_galaxy_image = hyper_galaxy_image_path_dict[galaxy_path] galaxies_with_hyper.append(galaxy) return Tracer.from_galaxies(galaxies=galaxies_with_hyper) return Tracer.from_galaxies(galaxies=galaxies) class TracerAgg(AbstractAgg): """ Wraps a PyAutoFit aggregator in order to create generators of tracers corresponding to the results of a non-linear search model-fit. """ def make_object_for_gen(self, fit, galaxies) -> Tracer: """ Creates a `Tracer` object from a `ModelInstance` that contains the galaxies of a sample from a non-linear search. Parameters ---------- fit A PyAutoFit database Fit object containing the generators of the results of PyAutoGalaxy model-fits. galaxies A list of galaxies corresponding to a sample of a non-linear search and model-fit. Returns ------- Tracer A tracer whose galaxies are a sample of a PyAutoFit non-linear search. """ return _tracer_from(fit=fit, galaxies=galaxies)
StarcoderdataPython
3592514
<reponame>zhouyijiaren/commons<filename>src/python/twitter/common/log/tracer.py # ================================================================================================== # Copyright 2012 Twitter, Inc. # -------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================================== from contextlib import contextmanager import os import sys import threading import time __all__ = ('Tracer',) class Trace(object): __slots__ = ('msg', 'verbosity', 'parent', 'children', '_clock', '_start', '_stop') def __init__(self, msg, parent=None, verbosity=1, clock=time): self.msg = msg self.verbosity = verbosity self.parent = parent if parent is not None: parent.children.append(self) self.children = [] self._clock = clock self._start = self._clock.time() self._stop = None def stop(self): self._stop = self._clock.time() def duration(self): assert self._stop is not None return self._stop - self._start class Tracer(object): """ A multi-threaded tracer. """ @classmethod def env_filter(cls, env_variable): def predicate(verbosity): try: env_verbosity = int(os.environ.get(env_variable, -1)) except ValueError: env_verbosity = -1 return verbosity <= env_verbosity return predicate def __init__(self, predicate=None, output=sys.stderr, clock=time): """ If predicate specified, it should take a "verbosity" integer and determine whether or not to log, e.g. def predicate(verbosity): try: return verbosity < int(os.environ.get('APP_VERBOSITY', 0)) except ValueError: return False output defaults to sys.stderr, but can take any file-like object. """ self._predicate = predicate or (lambda verbosity: True) self._length = None self._output = output self._isatty = getattr(output, 'isatty', False) and output.isatty() self._lock = threading.RLock() self._local = threading.local() self._clock = clock def should_log(self, V): return self._predicate(V) def log(self, msg, V=0, end='\n'): if not self.should_log(V): return if not self._isatty and end == '\r': # force newlines if we're not a tty end = '\n' trailing_whitespace = '' with self._lock: if self._length and self._length > len(msg): trailing_whitespace = ' ' * (self._length - len(msg)) self._output.write(msg + trailing_whitespace + end) self._output.flush() self._length = len(msg) if end == '\r' else 0 def print_trace_snippet(self): parent = self._local.parent parent_verbosity = parent.verbosity if not self.should_log(parent_verbosity): return traces = [] while parent: if self.should_log(parent.verbosity): traces.append(parent.msg) parent = parent.parent self.log(' :: '.join(reversed(traces)), V=parent_verbosity, end='\r') def print_trace(self, indent=0, node=None): node = node or self._local.parent with self._lock: self.log(' ' * indent + ('%s: %.1fms' % (node.msg, 1000.0 * node.duration())), V=node.verbosity) for child in node.children: self.print_trace(indent=indent + 2, node=child) @contextmanager def timed(self, msg, V=0): if getattr(self._local, 'parent', None) is None: self._local.parent = Trace(msg, verbosity=V, clock=self._clock) else: parent = self._local.parent self._local.parent = Trace(msg, parent=parent, verbosity=V, clock=self._clock) self.print_trace_snippet() yield self._local.parent.stop() if self._local.parent.parent is not None: self._local.parent = self._local.parent.parent else: self.print_trace() self._local.parent = None def main(args): import random tracer = Tracer(output=open(args[0], 'w')) if len(args) > 0 else Tracer() def process(name): with tracer.timed(name): with tracer.timed('acquiring'): with tracer.timed('downloading'): time.sleep(3 * random.random()) if random.random() > 0.66: tracer.log('%s failed downloading!' % name) return with tracer.timed('unpacking'): time.sleep(1 * random.random()) with tracer.timed('configuring'): time.sleep(0.5 * random.random()) with tracer.timed('building'): time.sleep(5.0 * random.random()) if random.random() > 0.66: tracer.log('%s failed building!' % name) return with tracer.timed('installing'): time.sleep(2.0 * random.random()) workers = [threading.Thread(target=process, args=('worker %d' % k,)) for k in range(5)] for worker in workers: worker.start() for worker in workers: worker.join() if __name__ == '__main__': main(sys.argv[1:])
StarcoderdataPython