id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
3400620
<reponame>ihalseide/brick-rain #!/usr/bin/env python3 import pygame import sys import random import time from base_scene import BaseScene from game_over_scene import GameOverScene from piece import Piece, SHAPES, COLORS from game_resources import IMAGES, SOUNDS from clouds import Cloud BOX_SIZE = 20 # how big each square is X_MARGIN = 15 Y_MARGIN = 115 # padding between game board and SCREEN edge BOARD_SIZE = (10, 20) # rows and columns of game board BIG_FONT = pygame.font.Font('freesansbold.ttf', 25) NORMAL_FONT = pygame.font.Font('freesansbold.ttf', 15) BG_COLOR = (0, 0, 0) BOARD_COLOR = (50, 50, 200) BORDER_COLOR = (255, 255, 255) TEXT_COLOR = (255, 255, 255) MOVEMENT_FREQ = .2 # how quickly the player can move the pieces def calculate_lvl_and_freq(score): level = int(score / 10) + 1 fall_freq = .27 - (level * .02) + .18 return level, fall_freq class GameScene(BaseScene): def __init__(self, board_size=BOARD_SIZE): super().__init__() # choose random song if False: #random.randint(0,1): I like song2 better pygame.mixer.music.load('assets/song.ogg') else: pygame.mixer.music.load('assets/song 2.ogg') pygame.mixer.music.play(-1) # this array is for the blocks on the board self.board_width, self.board_height = board_size self.board = self.get_empty_board() self.last_move_down_time = time.time() self.last_move_sideways_time = time.time() self.last_fall_time = time.time() self.moving_down = False self.moving_left = False self.moving_right = False self.score = 0 self.level, self.fall_freq = calculate_lvl_and_freq(self.score) self.next_piece = self.new_piece() self.falling_piece = self.new_piece() # visual please self.clouds = pygame.sprite.Group() self.last_cloud_time = time.time() self.cloud_wait = 0 # buttons are the same space from the game board as the game board... # ... is from the edge of the screen button_x = (X_MARGIN * 2) + (BOX_SIZE * self.board_width) self.next_rect = pygame.Rect(button_x, (Y_MARGIN + 25), 100, 100) self.pause_rect = pygame.Rect(button_x, (25 + self.next_rect.bottomleft[1]), 100, 100) self.help_rect = pygame.Rect(button_x, (25 + self.pause_rect.bottomleft[1]), 100, 100) self.paused = False self.helping = False def get_new_cloud(self): # pick random pixel x on board y = random.randint(self.to_pixel_coords(0,0)[1], self.to_pixel_coords(0,self.board_height)[1]) return Cloud((0, y), 0, pygame.display.get_surface().get_rect().width) def to_pixel_coords(self, box_x, box_y): x = X_MARGIN + (box_x * BOX_SIZE) y = Y_MARGIN + (box_y * BOX_SIZE) return x, y def get_empty_board(self): return [[None for x in range(self.board_width)] for y in range(self.board_height)] def is_on_board(self, x, y): return 0 <= x < self.board_width and y < self.board_height def new_piece(self): # must initialize shape first # take shape input shape = Piece.to_array(random.choice(list(SHAPES.values()))) color = random.choice(COLORS) p = Piece(self, int(self.board_width / 2), -2, shape, color, BOX_SIZE) for i in range(random.randint(0,3)): p.rotate() return p def process_inputs(self, events, pressed_keys): for event in events: if event.type == pygame.MOUSEBUTTONDOWN: if self.pause_rect.collidepoint(pygame.mouse.get_pos()) and not self.helping: self.paused = not self.paused elif self.help_rect.collidepoint(pygame.mouse.get_pos()): self.helping = not self.helping self.paused = self.helping elif event.type == pygame.KEYDOWN: k = event.key if k == pygame.K_p: # toggle pause self.paused = not self.paused # don't process keys if paused if self.paused or self.helping: return if k == pygame.K_UP: # rotate fp = self.falling_piece rotated = Piece(fp.parent, fp.x, fp.y, fp.shape, fp.color, fp.box_size) # make a copy of falling piece rotated.rotate() if self.is_valid_position(rotated): self.falling_piece = rotated #SOUNDS['rotate'].play() # doesn't feel right elif k == pygame.K_DOWN: # move downwards faster self.moving_down = True if self.is_valid_position(self.falling_piece, adj_y=1): self.falling_piece.y += 1 self.last_move_down_time = time.time() elif k == pygame.K_LEFT and self.is_valid_position(self.falling_piece, adj_x=-1): # move left self.falling_piece.x -= 1 self.moving_left = True self.moving_right = False self.last_move_sideways_time = time.time() elif k == pygame.K_RIGHT and self.is_valid_position(self.falling_piece, adj_x=1): # move right self.falling_piece.x += 1 self.moving_left = False self.moving_right = True self.last_move_sideways_time = time.time() elif k == pygame.K_SPACE: # drop to bottom self.moving_down = False self.moving_left = False self.moving_right = False y = 0 for i in range(1, self.board_height): if not self.is_valid_position(self.falling_piece, adj_y=i): break y = i self.falling_piece.y += y elif event.type == pygame.KEYUP: k = event.key if k == pygame.K_LEFT: self.moving_left = False elif k == pygame.K_RIGHT: self.moving_right = False elif k == pygame.K_DOWN: self.moving_down = False def generate_clouds(self): if time.time() - self.last_cloud_time >= self.cloud_wait: self.clouds.add(self.get_new_cloud()) self.last_cloud_time = time.time() self.cloud_wait = random.uniform(.5, 3) def update(self): #don't update if paused if self.paused or self.helping: pygame.mixer.music.pause() return else: pygame.mixer.music.unpause() # do updating: # no more input, now for updating # user move it sideways if (self.moving_left or self.moving_right) and time.time() - self.last_move_sideways_time > MOVEMENT_FREQ: if self.moving_left and self.is_valid_position(self.falling_piece, adj_x=-1): self.falling_piece.x -= 1 if self.moving_right and self.is_valid_position(self.falling_piece, adj_x=1): self.falling_piece.x += 1 self.last_move_sideways_time = time.time() # user move down if self.moving_down and time.time() - self.last_move_down_time > MOVEMENT_FREQ and self.is_valid_position(self.falling_piece, adj_y=1): self.falling_piece.y += 1 self.last_move_down_time = time.time() # natural fall` if time.time() - self.last_fall_time > self.fall_freq: # landed? if not self.is_valid_position(self.falling_piece, adj_y=1): self.add_to_board(self.falling_piece) # use list from removing lines to change score and animate removed_lines = self.remove_complete_lines() self.score += removed_lines self.level, self.fall_freq = calculate_lvl_and_freq(self.score) self.falling_piece = None # only play 1 sound if removed_lines: SOUNDS['break'].play() else: SOUNDS['rotate'].play() else: self.falling_piece.y += 1 self.last_fall_time = time.time() # tick falling piece or detect lose if self.falling_piece is None: self.falling_piece = self.next_piece self.next_piece = self.new_piece() self.last_fall_time = time.time() # check top blocks to determine GAME OVER if not self.is_valid_position(self.falling_piece): self.switch_to_scene(GameOverScene(self.score, self.level, GameScene( (self.board_width, self.board_height) ))) return for x in range(3, self.board_width-4): if self.board[0][x] is not None: self.switch_to_scene(GameOverScene(self.score, self.level, GameScene( (self.board_width, self.board_height) ))) return # clouds self.generate_clouds() self.clouds.update() def display(self, screen): # don't draw crucial game info if help or pause is shown screen.fill((0,0,0)) self.draw_board(screen) self.draw_space(screen) self.draw_next_piece(screen) self.draw_buttons(screen) if self.falling_piece is not None and not (self.paused or self.helping): # there might not be a current falling piece self.falling_piece.draw(screen) self.draw_status(screen) if self.helping: self.show_help(screen) elif self.paused: self.show_pause(screen) def draw_buttons(self, screen): pygame.draw.rect(screen, (0, 0, 0), self.pause_rect, 5) pygame.draw.rect(screen, (125, 255, 0), self.pause_rect) surf = NORMAL_FONT.render('Pause', True, TEXT_COLOR) surf_rect = surf.get_rect() surf_rect.center = self.pause_rect.center screen.blit(surf, surf_rect) pygame.draw.rect(screen, (0, 0, 0), self.help_rect, 5) pygame.draw.rect(screen, (255, 125, 0), self.help_rect) surf = NORMAL_FONT.render('Help', True, TEXT_COLOR) surf_rect = surf.get_rect() surf_rect.center = self.help_rect.center screen.blit(surf, surf_rect) def draw_space(self, screen): screen_rect = screen.get_rect() screen.fill(BG_COLOR, (0, 0, screen_rect.width, Y_MARGIN-2)) screen.fill(BG_COLOR, (0, self.to_pixel_coords(0,self.board_height)[1]+2, screen_rect.width, 100)) screen.fill(BG_COLOR, (0, Y_MARGIN-2, X_MARGIN-2, screen_rect.height)) x = self.to_pixel_coords(self.board_width,0)[0]+2 screen.fill(BG_COLOR, ( x, Y_MARGIN-2, 140, screen_rect.height)) screen.blit(IMAGES['title'], (0,0)) def draw_box(self, screen, box_x, box_y, color, pixel_x=None, pixel_y=None, draw_blank=False): # pixel args override box coords if pixel_x is None and pixel_y is None: pixel_x, pixel_y = self.to_pixel_coords(box_x, box_y) the_rect = (pixel_x, pixel_y, BOX_SIZE, BOX_SIZE) if color is None: if draw_blank: pygame.draw.rect(screen, BOARD_COLOR, the_rect) else: return else: screen.blit(IMAGES[color+' brick'], the_rect) def draw_board(self, screen): # draw border pygame.draw.rect(screen, BORDER_COLOR, (X_MARGIN, Y_MARGIN, self.board_width*BOX_SIZE, self.board_height*BOX_SIZE), 5) # draw background pygame.draw.rect(screen, BOARD_COLOR, (X_MARGIN, Y_MARGIN, self.board_width*BOX_SIZE, self.board_height*BOX_SIZE)) self.clouds.draw(screen) if self.paused or self.helping: return for x in range(self.board_width): for y in range(self.board_height): cell = self.board[y][x] self.draw_box(screen, x, y, cell) def add_to_board(self, piece): for x in range(piece.width): for y in range(piece.height): if piece.get_at(x, y) is not None: self.board[y + piece.y][x + piece.x] = piece.color def is_complete_line(self, y): for x in range(self.board_width): if self.board[y][x] is None: return False return True def remove_complete_lines(self): lines_removed = 0 y = self.board_height - 1 # start from bottom while y >= 0: if self.is_complete_line(y): lines_removed += 1 for pull_down_y in range(y, 0, -1): for x in range(self.board_width): self.board[pull_down_y][x] = self.board[pull_down_y-1][x] # clear top line for x in range(self.board_width): self.board[0][x] = None else: y -= 1 return lines_removed def is_valid_position(self, piece, adj_x=0, adj_y=0): for x in range(piece.width): for y in range(piece.height): is_above_board = y + piece.y + adj_y < 0 if is_above_board or piece.get_at(x, y) is None: continue if not self.is_on_board(x + piece.x + adj_x, y + piece.y + adj_y): return False if self.board[y + piece.y + adj_y][x + piece.x + adj_x] is not None: return False return True def draw_status(self, screen): score_surf = NORMAL_FONT.render("Score: %s"%self.score, True, TEXT_COLOR) score_rect = score_surf.get_rect() score_rect.bottomleft = (X_MARGIN, Y_MARGIN-5) screen.blit(score_surf, score_rect) level_surf = NORMAL_FONT.render("Level: %s"%self.level, True, TEXT_COLOR) level_rect = level_surf.get_rect() level_rect.bottomleft = (2*X_MARGIN+BOX_SIZE*self.board_width, Y_MARGIN-5) screen.blit(level_surf, level_rect) def draw_next_piece(self, screen): next_area = self.next_rect pygame.draw.rect(screen, BORDER_COLOR, next_area, 5) pygame.draw.rect(screen, BOARD_COLOR, next_area) surf = NORMAL_FONT.render("Next:", True, TEXT_COLOR) rect = surf.get_rect() rect.topleft = (next_area.topleft[0], next_area.topleft[1]-25) screen.blit(surf, rect) # dont draw next piece if not playing if self.paused or self.helping: return center_x = BOX_SIZE * self.next_piece.width / 2 center_y = BOX_SIZE * self.next_piece.height / 2 self.next_piece.draw(screen, pixel_x=next_area.center[0]-center_x, pixel_y=next_area.center[1]-center_y) def show_pause(self, screen): screen_height = screen.get_rect().height surf = BIG_FONT.render("PAUSED", True, TEXT_COLOR) surf_rect = surf.get_rect() surf_rect.center = (X_MARGIN+(BOX_SIZE*self.board_width/2), screen_height/2) screen.blit(surf, surf_rect) def show_help(self, screen): screen_height = screen.get_rect().height x = X_MARGIN + (BOX_SIZE * self.board_width / 2) y = screen_height/2 surf = BIG_FONT.render("HELP", True, TEXT_COLOR) surf_rect = surf.get_rect() surf_rect.center = (x, y) screen.blit(surf, surf_rect) for i, text in enumerate(['Move piece = Arrow keys', 'Rotate piece = Up arrow key', 'Drop piece = Space key']): surf = NORMAL_FONT.render(text, True, TEXT_COLOR) surf_rect = surf.get_rect() surf_rect.center = (x, y + (i+1)*30) screen.blit(surf, surf_rect)
StarcoderdataPython
1820397
<reponame>ollien/Screenshot-Uploader class ConfigReader(): def __init__(self,name="config.txt"): self.keys={} self.name = name #Read Keys from file def readKeys(self): keysFile=open(self.name,"r") fileLines=keysFile.readlines() keysFile.close() self.keys.clear() for item in fileLines: #If last char is \n if (item[-1]=='\n'): item=item[:-1] #If a commented line if (item[0]=='#'): continue #If a new line is the first char elif (item[0]=='\n'): continue else: #Get Position of equal sign pos=item.find('=') if pos != -1: #Name of the key is [0:pos], Value of the key is [pos+1:-1] (Stripping the \n char at the end) self.keys[item[0:pos]]=item[pos+1:] #Return the keys, read allows you to get the keys without re-reading the file. def getKeys(self,read=True): if read: self.readKeys() return self.keys
StarcoderdataPython
4808527
<filename>tests/sensor/test_bno055.py import time import unittest import pigpio from pisat.handler import PigpioI2CHandler from pisat.sensor import Bno055 from pisat.tester.sensor import SensorTestor ADDRESS_BNO055 = 0x28 class TestBNO055(unittest.TestCase): def setUp(self) -> None: pi = pigpio.pi() handler = PigpioI2CHandler(pi, ADDRESS_BNO055) self.bno055 = Bno055(handler, name="bno055") self.bno055.change_operation_mode(Bno055.OperationMode.NDOF) self.testor = SensorTestor(self.bno055) def test_bench_mark(self): result = self.testor.exec_benchmark() print(f"time to read 100 times: {result}") def test_remap(self): print("Current Axis Map") print("----------------") print(f"x: {self.bno055.axis_x}, sign: {self.bno055.sign_x}") print(f"y: {self.bno055.axis_y}, sign: {self.bno055.sign_y}") print(f"z: {self.bno055.axis_z}, sign: {self.bno055.sign_z}") print() self.bno055.remap_axis(self.bno055.Axis.Y, self.bno055.Axis.X, self.bno055.Axis.Z) self.bno055.remap_sign(x=self.bno055.AxisSign.NEGATIVE) print("Axes remapped.", end="\n\n") self.bno055._read_map_config() self.bno055._read_map_sign() print("New Axis Map") print("----------------") print(f"x: {self.bno055.axis_x}, sign: {self.bno055.sign_x}") print(f"y: {self.bno055.axis_y}, sign: {self.bno055.sign_y}") print(f"z: {self.bno055.axis_z}, sign: {self.bno055.sign_z}") print() # reset self.bno055.reset_axis() self.bno055.reset_sign() def test_calibration(self): print() print("Calibration status") print("------------------") self.bno055.load_calib_stat() print(f"sys: {self.bno055.calib_stat_sys}") print(f"acc: {self.bno055.calib_stat_acc}") print(f"mag: {self.bno055.calib_stat_mag}") print(f"gyro: {self.bno055.calib_stat_gyro}") def test_observe(self): self.bno055.remap_axis(self.bno055.Axis.Y, self.bno055.Axis.X, self.bno055.Axis.Z) self.bno055.remap_sign(z=self.bno055.AxisSign.NEGATIVE) self.testor.observe() if __name__ == "__main__": unittest.main()
StarcoderdataPython
11201182
__version__ = '0.6' from .antenna import * from .topica import TopicaResult from .digital_twin import DigitalTwin
StarcoderdataPython
8120301
<reponame>pavlanovak/Iskanje-besed-UVP <<<<<<< HEAD PRAVILNO_MESTO_IN_CRKA = 'x' NEPRAVILO_MESTO_IN_CRKA = '-' ======= >>>>>>> 80858d2af68bead28a54e3714cc7cd06b1d21285 import random import json <<<<<<< HEAD class Igra: def __init__(self, beseda, ugibanja, stanje, tocke): self.beseda = beseda self.ugibanja = [] self.stanje = ZACETEK, IGRA, ZADEL, PORAZ 'self.tocke = ' def pokazi_crke_in_dolzino(self): crke = [] for i in beseda: if i not in crke: crke.append(i) else: continue return crke ======= #VSA STANJA ZACETEK = "Z" KONEC = "K" ZMAGA = "w" PORAZ = "L" IGRANJE = 'I' ZACETNE_TOCKE = 100 PRAVILNO_MESTO_IN_CRKA = 'x' NEPRAVILO_MESTO_IN_CRKA = '-' # class Igra: def __init__(self, beseda, ugibanja=None, stanje=ZACETEK, tocke=ZACETNE_TOCKE): self.beseda = beseda self.ugibanja = ugibanja or [] self.stanje = stanje self.tocke = tocke def pokazi_crke_in_dolzino(self): crke = [] for i in self.beseda: if i not in crke: crke.append(i) return (crke, len(self.beseda)) def ugibaj(self, ugibana_beseda): ugibana_beseda = ugibana_beseda.upper() zadetki = 0 for i in range(len(self.beseda)): if ugibana_beseda[i] == self.beseda[i]: zadetki += 1 self.ugibanja.append((ugibana_beseda, zadetki)) self.tocke -= 10 if ugibana_beseda == self.beseda: self.stanje = ZMAGA return ZMAGA elif self.tocke < 0: self.stanje = PORAZ return PORAZ else: self.stanje = IGRANJE return IGRANJE >>>>>>> 80858d2af68bead28a54e3714cc7cd06b1d21285 with open('/Users/pavlanovak/Desktop/uvp 2021/Iskanje-besed-UVP/Besede.txt', 'r') as f: bazen_besed = [beseda.strip().upper() for beseda in f.readlines()] def nova_igra(): beseda = random.choice(bazen_besed) <<<<<<< HEAD return Igra(beseda, []) ======= return Igra(beseda) class Ugibanje: def __init__(self, stanje, datoteka_z_besedami): self.igre = {} self.datoteka_s_stanjem = stanje self.datoteka_z_besedami = datoteka_z_besedami def prost_id_igre(self): if self.igre == {}: return 0 else: return max(self.igre.keys()) + 1 def nova_igra(self): self.nalozi_igre_iz_datoteke() with open(self.datoteka_z_besedami, 'r') as f: bazen_besed = [beseda.strip().upper() for beseda in f.readlines()] igra = nova_igra() beseda = random.choice(bazen_besed) igra = Igra(beseda) id_igre = self.prost_id_igre() self.igre[id_igre] = (igra, ZACETEK) self.zapisi_igro_v_datoteko() return id_igre def zapisi_igro_v_datoteko(self): with open(self.datoteka_s_stanjem, 'w') as f: igre_predelano = {id_igre : ((igra.beseda, igra.ugibanja, igra.stanje, igra.tocke), stanje) for (id_igre, (igra, stanje)) in self.igre.items()} json.dump(igre_predelano, f) def nalozi_igre_iz_datoteke(self): with open(self.datoteka_s_stanjem, 'r') as f: igre_predelano = json.load(f) self.igre = { int(id_igre): (Igra(beseda, ugibanja, stanje, tocke), stanje) for (id_igre, ((beseda, ugibanja, stanje, tocke), stanje)) in igre_predelano.items()} def ugibaj(self, id_igre, beseda): self.nalozi_igre_iz_datoteke() (igra, _) = self.igre[id_igre] stanje = igra.ugibaj(beseda) self.igre[id_igre] = (igra, stanje) self.zapisi_igro_v_datoteko() >>>>>>> 80858d2af68bead28a54e3714cc7cd06b1d21285
StarcoderdataPython
5152498
"""Abstract Handler with helper methods.""" from clang.cindex import CursorKind, TypeKind from ctypeslib.codegen import typedesc from ctypeslib.codegen.util import log_entity import logging log = logging.getLogger('handler') class CursorKindException(TypeError): """When a child node of a VAR_DECL is parsed as an initialization value, when its not actually part of that initiwlization value.""" pass class InvalidDefinitionError(TypeError): """When a structure is invalid in the source code, sizeof, alignof returns negatives value. We detect it and do our best.""" pass class InvalidTranslationUnitException(TypeError): """When a translation unit is invalid""" pass class DuplicateDefinitionException(KeyError): """When we encounter a duplicate declaration/definition name.""" pass ################################################################ class ClangHandler(object): """ Abstract class for handlers. """ def __init__(self, parser): self.parser = parser self._unhandled = [] def register(self, name, obj): return self.parser.register(name, obj) def get_registered(self, name): return self.parser.get_registered(name) def is_registered(self, name): return self.parser.is_registered(name) def remove_registered(self, name): return self.parser.remove_registered(name) def set_location(self, obj, cursor): """ Location is also used for codegeneration ordering.""" if (hasattr(cursor, 'location') and cursor.location is not None and cursor.location.file is not None): obj.location = (cursor.location.file.name, cursor.location.line) return def set_comment(self, obj, cursor): """ If a comment is available, add it to the typedesc.""" if isinstance(obj, typedesc.T): obj.comment = cursor.brief_comment return def make_python_name(self, name): """Transforms an USR into a valid python name.""" # FIXME see cindex.SpellingCache for k, v in [('<', '_'), ('>', '_'), ('::', '__'), (',', ''), (' ', ''), ("$", "DOLLAR"), (".", "DOT"), ("@", "_"), (":", "_"), ('-', '_')]: if k in name: # template name = name.replace(k, v) # FIXME: test case ? I want this func to be neutral on C valid # names. if name.startswith("__"): return "_X" + name if len(name) == 0: pass elif name[0] in "01234567879": return "_" + name return name def _make_unknown_name(self, cursor): '''Creates a name for unname type''' parent = cursor.lexical_parent pname = self.get_unique_name(parent) log.debug('_make_unknown_name: Got parent get_unique_name %s',pname) # we only look at types declarations _cursor_decl = cursor.type.get_declaration() # we had the field index from the parent record, as to differenciate # between unnamed siblings of a same struct _i = 0 found = False # Look at the parent fields to find myself for m in parent.get_children(): # FIXME: make the good indices for fields log.debug('_make_unknown_name child %d %s %s %s',_i,m.kind, m.type.kind,m.location) if m.kind not in [CursorKind.STRUCT_DECL,CursorKind.UNION_DECL, CursorKind.CLASS_DECL]:#, #CursorKind.FIELD_DECL]: continue if m == _cursor_decl: found = True break _i+=1 if not found: raise NotImplementedError("_make_unknown_name BUG %s" % cursor.location) # truncate parent name to remove the first part (union or struct) _premainer = '_'.join(pname.split('_')[1:]) name = '%s_%d'%(_premainer,_i) return name def get_unique_name(self, cursor): """get the spelling or create a unique name for a cursor""" name = '' if cursor.kind in [CursorKind.UNEXPOSED_DECL]: return '' # covers most cases name = cursor.spelling if cursor.kind == CursorKind.CXX_BASE_SPECIFIER: name = cursor.type.spelling # if its a record decl or field decl and its type is unnamed if name == '': # a unnamed object at the root TU if (cursor.semantic_parent and cursor.semantic_parent.kind == CursorKind.TRANSLATION_UNIT): name = self.make_python_name(cursor.get_usr()) log.debug('get_unique_name: root unnamed type kind %s',cursor.kind) elif cursor.kind in [CursorKind.STRUCT_DECL,CursorKind.UNION_DECL, CursorKind.CLASS_DECL,CursorKind.FIELD_DECL]: name = self._make_unknown_name(cursor) log.debug('Unnamed cursor type, got name %s',name) else: log.debug('Unnamed cursor, No idea what to do') #import code #code.interact(local=locals()) return '' if cursor.kind in [CursorKind.STRUCT_DECL,CursorKind.UNION_DECL, CursorKind.CLASS_DECL, CursorKind.CXX_BASE_SPECIFIER]: names= {CursorKind.STRUCT_DECL: 'struct', CursorKind.UNION_DECL: 'union', CursorKind.CLASS_DECL: 'struct', CursorKind.TYPE_REF: '', CursorKind.CXX_BASE_SPECIFIER: 'struct' } name = '%s_%s'%(names[cursor.kind],name) log.debug('get_unique_name: name "%s"',name) return name def is_fundamental_type(self, t): return (not self.is_pointer_type(t) and t.kind in self.parser.ctypes_typename.keys()) def is_pointer_type(self, t): return t.kind == TypeKind.POINTER def is_array_type(self, t): return (t.kind == TypeKind.CONSTANTARRAY or t.kind == TypeKind.INCOMPLETEARRAY or t.kind == TypeKind.VARIABLEARRAY or t.kind == TypeKind.DEPENDENTSIZEDARRAY) def is_unexposed_type(self, t): return t.kind == TypeKind.UNEXPOSED def is_literal_cursor(self, t): return (t.kind == CursorKind.INTEGER_LITERAL or t.kind == CursorKind.FLOATING_LITERAL or t.kind == CursorKind.IMAGINARY_LITERAL or t.kind == CursorKind.STRING_LITERAL or t.kind == CursorKind.CHARACTER_LITERAL) def get_literal_kind_affinity(self, literal_kind): ''' return the list of fundamental types that are adequate for which this literal_kind is adequate''' if literal_kind == CursorKind.INTEGER_LITERAL: return [TypeKind.USHORT, TypeKind.UINT, TypeKind.ULONG, TypeKind.ULONGLONG, TypeKind.UINT128, TypeKind.SHORT, TypeKind.INT, TypeKind.LONG, TypeKind.LONGLONG, TypeKind.INT128, ] elif literal_kind == CursorKind.STRING_LITERAL: return [TypeKind.CHAR16, TypeKind.CHAR32, TypeKind.CHAR_S, TypeKind.SCHAR, TypeKind.WCHAR] # DEBUG elif literal_kind == CursorKind.CHARACTER_LITERAL: return [TypeKind.CHAR_U, TypeKind.UCHAR] elif literal_kind == CursorKind.FLOATING_LITERAL: return [TypeKind.FLOAT, TypeKind.DOUBLE, TypeKind.LONGDOUBLE] elif literal_kind == CursorKind.IMAGINARY_LITERAL: return [] return [] def get_ctypes_name(self, typekind): return self.parser.get_ctypes_name(typekind) def get_ctypes_size(self, typekind): return self.parser.get_ctypes_size(typekind) def parse_cursor(self, cursor): return self.parser.parse_cursor(cursor) def parse_cursor_type(self, _cursor_type): return self.parser.parse_cursor_type(_cursor_type) ################################ # do-nothing element handlers @log_entity def _pass_through_children(self, node, **args): for child in node.get_children(): self.parser.startElement(child) return True def _do_nothing(self, node, **args): name = self.get_unique_name(node) #import code # code.interact(local=locals()) log.warning('_do_nothing for %s/%s',node.kind.name, name) return True ########################################### # TODO FIXME: 100% cursor/type Kind coverage def __getattr__(self, name, **args): if name not in self._unhandled: log.warning('%s is not handled',name) self._unhandled.append(name) return self._do_nothing
StarcoderdataPython
4929451
<filename>tests/vendin_machine/test_vending_machine.py import pytest from vending_machine.hoge.vending_machine import VendingMachine # 自販機に金額を投入できることを確認するテスト def test_insert_money(): vending_machine = VendingMachine() vending_machine.insert(100) # 【Vending Machineの機能】10円、100円、XX ## テスト内容:指定された金額は受け入れて、それ以外はErrorを起こすテスト insert_money_list = [ (10), (50), (100), (500), (1000), ] @pytest.mark.parametrize("money", insert_money_list) def test_valid_money(money): """ 正しい金額が設定されていることを確認するテスト関数 """ # 自販機の入力金額を読み取る関数を設置 result = VendingMachine().check_insert_money(money) assert result def test_invalid_money(): """ 不正の金額が設定されていることを確認するテスト関数 """ insert_money = 200 # 自販機の入力金額を読み取る関数を設置 result = VendingMachine().check_insert_money(insert_money) assert not result def test_multi_insert_money(): """ 複数回投入 """ vending_machine = VendingMachine() money = {10: 1, 50: 0, 100: 1, 500: 0, 1000: 0} vending_machine.insert(money) assert True def test_total_money(): """ 投入金額の総計 """ vending_machine = VendingMachine() money = {10: 1, 50: 0, 100: 1, 500: 0, 1000: 0} vending_machine.insert(money) actual = vending_machine.get_total() expected = 0 assert actual == expected # 複数回投入 # 投入・投入金額の総計 # insert_money = [100,100] # def test_get_num_money(): # assert count(insert_mon) # def test_get_total_money(): # assert sum(insert_money) # 複数回メソッドを呼べるようにする。入れた回数分お金を集計できているかテスト ## # 払い戻しXX # 払い戻しができるかテスト、投入金額の数値が返ってくるかテスト
StarcoderdataPython
3585720
# Generated by Django 4.0.1 on 2022-01-19 05:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('management', '0001_initial'), ] operations = [ migrations.AlterField( model_name='employee', name='emp_id', field=models.CharField(default='emp211057', max_length=70), ), ]
StarcoderdataPython
5027374
from appversion.views import VersionAPIView from django.conf.urls import url from ifns.views import GetIfnsRequisitesByCode urlpatterns = [ url( r'^get_ifns_requisites_by_code/(?P<code>[A-Za-z0-9]+)/$', GetIfnsRequisitesByCode.as_view(), name='get_ifns_requisites_by_code' ), url(r'^version/$', VersionAPIView.as_view(), name='version'), ]
StarcoderdataPython
6549041
def diagonals_inds(dim: int, size: int) -> List[Tuple]: # e.g. if 2 dimension and size = 3 # 1,1 : 3,3 # 1,3 : 3,1 # 3,1 : 1,3 # 3,3 : 1,1 # get a list of all corners that with 0 index in first dimension corners_all = it.product([0, size - 1], repeat = dim) corners_0 = [corner for corner in corners_all if corner[0] == 0] diagonals = [] for corner in corners_0: diagonal = [] diagonal.append(corner) # add rest of diagonal for i in range(1, size): tmp = tuple(c - i for c in corner) inds = tuple(abs(t) for t in tmp) diagonal.append(inds) diagonals.append(diagonal) return diagonals def lines_inds(dim: int, size: int, flatten: bool = True) -> \ Tuple[Union[List[Tuple[int]], List[List[Tuple[int]]]], int]: lines = [] count = 0 # loop over the numbers of dimensions in which the line exists for i in range(dim): diagonals = diagonals_inds(i + 1, size) # loop over all possible combinations of i-dimensional hypercubes for j in it.combinations(range(dim), r = i + 1): for diagonal in diagonals: # the other dimensions can assume any position from a combination of all positions for position in it.product(range(size), repeat = dim - i - 1): # these are the other dimension od = set(range(dim)) - set(j) # for each cell in diagonal diag_ext = [] for c in diagonal: diag_ext.append(hp.insert_into_tuple(c, od, position)) lines.append(diag_ext) #lines.extend(diag_ext) if flatten else lines.append(diag_ext) return lines, count def get_lines_inds(lines: List[np.ndarray], dim: int) -> List[Tuple[Tuple[int]]]: # assume flat list of lines size = lines[0].size shape = [size] * dim lines_inds = [] for line in lines: line_inds = [] for j in range(size): cell_inds = np.unravel_index(line[j], shape) line_inds.append(cell_inds) lines_inds.append(tuple(line_inds)) return lines_inds def insert_into_tuple(tup: Tuple, pos: Union[int, Iterable[int]], val: Union[Any, Iterable[Any]]) -> Tuple: """ Insert values into a tuple. Parameters ---------- tup : tuple the tuple into which values are to be inserted pos : Union[int, Iterable[int]] The positions into which values are to be inserted val : Union[Any, Iterable[Any]] The values corresponding to the positions in `pos` Returns ------- Tuple: A copy of `tup` with values inserted. Raises ------ ValueError If length of `pos` is not equal to length of `val` See Also -------- list.insert Notes ----- `tup` is converted to a list and the list.insert method is used to insert values. the list is then converted to a tuple and returned. Examples -------- >>> tup = (0, 1, 2, 3) >>> pos = (5, 1) >>> val = (9, 8) >>> insert_into_tuple(tup, pos, val) (0, 8, 1, 2, 3, 9) >>> insert_into_tuple(tup, (), ()) (0, 1, 2, 3) """ tl = list(tup) try: # first assume pos and val are iterable and not single integers if len(pos) != len(val): raise ValueError("pos and val must be of the same length") if len(pos) == 0: return tup # sort pos so from low to high; sort val correspondingly stl = list(zip(*sorted(zip(pos, val)))) for p, v in zip(stl[0], stl[1]): tl.insert(p, v) except: # perhaps pos and cal are integers tl.insert(pos, val) return tuple(tl) def unique(it: Iterable[Any]) -> bool: """ check if all elements of an iterable of unqiue Parameters ---------- it : Iterable[Any] The iterable to be checked for unique elements Returns ------- bool: True if all elements of `it` of unique; False otherwise Notes ----- Iterates over every element until a match is found (or not found if all elements are unique). If the elements of `it` are hashable then code such as len(it) == len(set(it)) is more more efficient. Examples -------- >>> it = [[0, 1], [0,2], [0,1]] >>> unique(it) False >>> it = [[0, 1], [0,2], [1,2]] >>> unique(it) True """ seen = [] return not any(i in seen or seen.append(i) for i in it)
StarcoderdataPython
144317
<reponame>shivp950/InnerEye-DeepLearning # ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import os import subprocess import sys from pathlib import Path from typing import List def run_mypy(files: List[str]) -> int: """ Runs mypy on the specified files, printing whatever is sent to stdout (i.e. mypy errors). Because of an apparent bug in mypy, we run mypy in --verbose mode, so that log lines are printed to stderr. We intercept these, and assume that any files mentioned in them have been processed. We run mypy repeatedly on the files that were not mentioned until there are none remaining, or until no further files are mentioned in the logs. :param files: list of .py files to check :return: maximum return code from any of the mypy runs """ return_code = 0 iteration = 1 while files: dirs = sorted(set(os.path.dirname(file) or "." for file in files)) print(f"Iteration {iteration}: running mypy on {len(files)} files in {len(dirs)} directories") # Set of files we are hoping to see mentioned in the mypy log. files_to_do = set(files) for index, dir in enumerate(dirs, 1): # Adding "--no-site-packages" might be necessary if there are errors in site packages, # but it may stop inconsistencies with site packages being spotted. command = ["mypy", "--config=mypy.ini", "--verbose", dir] print(f"Processing directory {index:2d} of {len(dirs)}: {dir}") # We pipe stdout and then print it, otherwise lines can appear in the wrong order in builds. process = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) return_code = max(return_code, process.returncode) for line in process.stdout.split("\n"): if line and not line.startswith("Success: "): print(line) # Remove from files_to_do every Python file that's reported as processed in the log. for line in process.stderr.split("\n"): tokens = line.split() if len(tokens) == 4 and tokens[0] == "LOG:" and tokens[1] == "Parsing": name = tokens[2] elif len(tokens) == 7 and tokens[:4] == ["LOG:", "Metadata", "fresh", "for"]: name = tokens[-1] else: continue if name.endswith(".py"): if name.startswith("./") or name.startswith(".\\"): name = name[2:] files_to_do.discard(name) # If we didn't manage to discard any files, there's no point continuing. This should not occur, but if # it does, we don't want to continue indefinitely. if len(files_to_do) == len(files): print("No further files appear to have been checked! Unchecked files are:") for file in sorted(files_to_do): print(f" {file}") return_code = max(return_code, 1) break files = sorted(files_to_do) iteration += 1 return return_code def main() -> int: """ Runs mypy on the files in the argument list, or every *.py file under the current directory if there are none. """ current_dir = Path(".") if sys.argv[1:]: file_list = [Path(arg) for arg in sys.argv[1:] if arg.endswith(".py")] else: # We don't want to check the files in the submodule if any, partly because they should already have # been checked in the original repo, and partly because we don't want the module name clashes mypy would # otherwise report. submodule_name = "innereye-deeplearning" files = set(current_dir.glob('*.py')) for path in current_dir.glob('*'): if path.name != submodule_name: files.update(path.rglob('*.py')) file_list = list(files) return run_mypy(sorted(str(file) for file in file_list)) if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
8002146
<gh_stars>10-100 import concurrent import geocoder import json import s3fs import pandas as pd import urllib import logging import os from datetime import datetime from sqlalchemy import create_engine import zlib from itertools import zip_longest import time FORMAT = '%(asctime)-15s %(levelname)-6s %(message)s' DATE_FORMAT = '%b %d %H:%M:%S' formatter = logging.Formatter(fmt=FORMAT, datefmt=DATE_FORMAT) logger = logging.getLogger(__name__) handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.INFO) GOOGLE_MAPS_API_KEY = os.getenv('GOOGLE_MAPS_API_KEY') engine = create_engine(os.getenv('CRAIGGER_CONN')) def geocode(mapaddress, geo_region, post_hood, min_confidence=9, mykey=GOOGLE_MAPS_API_KEY): try: mapaddress2 = mapaddress if ' near ' not in mapaddress else mapaddress.split('near')[0] post_hood2 = post_hood.replace('(', '').replace(')', '') start = time.process_time() q = '{0} {1} {2}'.format(mapaddress2, geo_region, post_hood2) g = geocoder.google(q, key=mykey) #logger.info("processed_time: {0} || {1} || google address: {2}, confidence: {3}".format( # round(time.process_time()-start,4), q, g.address, g.confidence)) return {'mapaddress':mapaddress, 'geo.region':geo_region,'post_hood':post_hood, 'address':g.address, 'quality':g.quality, 'lat':g.lat, 'lng':g.lng, 'zip':g.postal, 'craig_address_hash':address_hash((mapaddress,geo_region,post_hood)), 'gconfidence': g.confidence} except: logger.exception(post_hood) def process_chunk(chunk): def geo_helper(x): if x is None: return try: if all(x): return geocode(x[0], x[1], x[2]) else: logger.info("None in geo input: {}".format(x)) except: logger.exception('geo ehhh') results = [] #not threaded ok. #for x in chunk: # result = geo_helper(x) # if result: # results.append(result) #logger.info('chunk done! size was: {}'.format(len(chunk))) #queue.full .... with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: for result in executor.map(geo_helper, chunk): if result: results.append(result) geo_results = pd.DataFrame(results) geo_results = geo_results.dropna() ts = time.process_time() # psycopg2 connections are thread safe but not across processes "level 2 thread safe" little_engine = create_engine(os.getenv('CRAIGGER_CONN')) geo_results.to_sql('geocoder_results', little_engine, if_exists='append', index=False) logger.info('wrote {0} geocoder results. time: {1}'.format(len(geo_results), round(time.process_time()-ts,5))) return geo_results def build_address_map(limit=5): df = pd.read_sql('SELECT mapaddress, "geo.region", post_hood, data_accuracy from cragprod WHERE "geo.region" = \'US-CA\' and data_accuracy > 9 LIMIT {}'.format(limit), engine) df = df[df['mapaddress'].notnull()] df = df.drop_duplicates() try: geo_already_done = pd.read_sql('SELECT * FROM geocoder_results', engine) except: geo_already_done = None cache_hits = 0 geo_input = set() for idx,row in df.iterrows(): try: craig_hash = address_hash((row['mapaddress'], row['geo.region'], row['post_hood'])) if geo_already_done is None or craig_hash not in geo_already_done['craig_address_hash'].values: geo_input.add((row['mapaddress'], row['geo.region'], row['post_hood'])) else: cache_hits += 1 logger.debug('cache hit: {}'.format(craig_hash)) except KeyError: logger.exception('eh') geo_chunks = chunks(geo_input, 25) logger.warning('starting google geocoder, df.shape: {0} rows: {1} cache_hits: {2}'.format(df.shape, len(geo_input), cache_hits)) results = [] with concurrent.futures.ProcessPoolExecutor(max_workers=3) as pexecutor: for result in pexecutor.map(process_chunk, geo_chunks): try: if len(result) > 0: results.append(result) except: logger.exception('??') if not results: return geo_already_done geo_results = pd.concat(results) if geo_already_done is not None: logger.info('stacking cached') geo_results = pd.concat([geo_results, geo_already_done]) print(geo_results) return geo_results def address_hash(x): try: return zlib.adler32((x[0]+x[1]+x[2]).encode('utf-8')) except: return 0 def chunks(iterable, n): """Yield successive n-sized chunks from iterable""" return zip_longest(*[iter(iterable)]*n, fillvalue=None) def main(): # this uses geocoder api but saves to my db dfgeo = build_address_map(limit=45000) print(dfgeo) # query the postprocessed db logger.info('query the postprocessed db...') dfrent = pd.read_sql('SELECT post_price, post_date, post_bedroom_count, post_sqft, price_per_sqft, netloc, housing, furnished, crawl_date, mapaddress, "geo.region", post_hood from cragprod WHERE "geo.region" = \'US-CA\' and data_accuracy > 9', engine) dfrent = dfrent.drop_duplicates() dfrent['craig_address_hash'] = dfrent[['mapaddress', 'geo.region', 'post_hood']].apply(address_hash,axis=1) logger.info('dfg = pd.merge(dfgeo,dfrent)') dfg = pd.merge(dfgeo,dfrent) print(dfg) logger.info("dfg.to_sql('joined_results', engine, if_exists='append', index=False)") dfg.to_sql('joined_results', engine, if_exists='append', index=False) return 0 if __name__ == '__main__': main()
StarcoderdataPython
89624
<gh_stars>0 import subprocess import click @click.command() def cli(): """ Stop all services. :return: Subprocess call result """ cmd = 'pkill honcho && docker-compose stop' return subprocess.call(cmd, shell=True)
StarcoderdataPython
381011
<filename>20211202/4.py # [0: icID, 1: cardType, 2:tradeType, 3: UpLine, 4: UpTime, 5: UpStation, # 6: DownLine, 7: DownTime, 8: DownStation] import time data_file = r"20211202\Subway_20180301\Subway_20180301.txt" # data_file = r"20211202\Subway_20180301\Subway_20190301_top100000.txt" # data_file = "test.txt" out_file = r"20211202\PeopleInSubwayTime.txt" timeslot = {} # remove redundant char in a line def lineProcess(l: str): lst = l.lstrip('SUB,').rstrip(',NM\n').split(',') return lst # calculate ride time, return None if data is invalid def rideTime(l: list): if (l[4][:8] != "20180301") or (l[7][:8] != "20180301"): print(l[4], l[4][:8], l[7], l[7][:8]) # print("wrong date") return None upTime = time.mktime(time.strptime(l[4],"%Y%m%d%H%M%S")) downTime = time.mktime(time.strptime(l[7],"%Y%m%d%H%M%S")) timeUsed = downTime - upTime if (timeUsed == 0) or (timeUsed <= 0): # print("wrong time") return None return timeUsed # convert second to minutes with rounding off def sec2min(s: float): return round(s / 60) # record ride time to its corresponding dictionary item def record(t: int): global timeslot if t > 120: t = 120 if t in timeslot.keys(): timeslot[t] += 1 else: timeslot[t] = 1 with open(data_file, "r") as f: line = f.readline() # Discard first line line = f.readline() # Read in second line for processing while line != '': lineLst = lineProcess(line) rtime = rideTime(lineLst) if rtime: record(sec2min(rtime)) line = f.readline() with open(out_file, "w") as f: for i in range(121): if i in timeslot.keys(): f.write("{} {}\n".format(i, timeslot[i]))
StarcoderdataPython
9776790
number = list(map(int, input().strip().split())) ss = ".|." string = "WELCOME" num2, num3 = 1, number[0] - 2 for num in range(1, number[0] + 1): if int((number[0] - 1) / 2) > num - 1: print("-" * int((number[1] - (len(ss) * num2)) / 2) + ss * (1 * num2) + "-" * int((number[1] - (len(ss) * num2)) / 2)) num2 += 2 if int((number[0] - 1) / 2) == num: print("-" * int((number[1] - (len(string) - 1)) / 2) + string + "-" * int((number[1] - (len(string) - 1)) / 2)) if int((number[0] - 1) / 2) < num + 1: print("-" * int((number[1] - (len(ss) * num3)) / 2) + ss * (1 * num3) + "-" * int((number[1] - (len(ss) * num3)) / 2)) num3 -= 2 if num3 <= 0: break
StarcoderdataPython
1645375
stages = [''' +---+ | | O | /|\ | / \ | | ========= ''', ''' +---+ | | O | /|\ | / | | ========= ''', ''' +---+ | | O | /|\ | | | ========= ''', ''' +---+ | | O | /| | | | =========''', ''' +---+ | | O | | | | | ========= ''', ''' +---+ | | O | | | | ========= ''', ''' +---+ | | | | | | ========= '''] from random import choice, gammavariate word_list = ["aardvark", "baboon", "camel"] chosen_word = choice(word_list) # Creating a display display = [] for _ in range(len(chosen_word)): display += "_" #print(display) lives = 6 game_over = False while not game_over: guess = input('Guess a letter: ') # Show the letter chosen on display for position in range(len(chosen_word)): letter = chosen_word[position] if letter == guess: display[position] = letter if guess not in chosen_word: lives -= 1 if lives == 0: game_over = True print('You Lose') #Join all the elements in the list and turn it into a String. print(f"{' '.join(display)}") # Condition of stop for the loop if "_" not in display: game_over = True print('You Win') print(stages[lives])
StarcoderdataPython
11399935
<gh_stars>1-10 from transformers import AutoTokenizer, DataCollatorWithPadding import torch import pytorch_lightning as pl from torch.utils.data import DataLoader import datasets from loguru import logger from typing import List, Union, Dict from functools import partial def _collate_fn(features, tokenizer: AutoTokenizer): encoder_features = [ { key[len("encoder_") :]: value for key, value in feat.items() if key.startswith("encoder_") } for feat in features ] decoder_features = [ { key[len("decoder_") :]: value for key, value in feat.items() if key.startswith("decoder_") } for feat in features ] encoder_features = tokenizer.pad( encoder_features, padding=True, return_tensors="pt" ) decoder_features = tokenizer.pad( decoder_features, padding=True, return_tensors="pt" ) decoder_features["input_ids"] = torch.where( decoder_features["input_ids"] == tokenizer.pad_token_id, -100, decoder_features["input_ids"], ) batch = { **{"encoder_" + key: value for key, value in encoder_features.items()}, **{"decoder_" + key: value for key, value in decoder_features.items()}, } return batch class MultiNewsLightningDataModule(pl.LightningDataModule): def __init__( self, tokenizer: AutoTokenizer, batch_size: int, num_workers: int, max_length: int, ): super().__init__() self.tokenizer = tokenizer self.batch_size = batch_size self.num_workers = num_workers self.max_length = max_length self.collate_fn = partial(_collate_fn, tokenizer=self.tokenizer) def prepare_data(self): logger.info("Multi_news dataset loading....") self.dataset = datasets.load_dataset("multi_news") logger.info("Loading of multi_news datasets completed.") self.train, self.validation, self.test = ( self.dataset["train"], self.dataset["validation"], self.dataset["test"], ) self.columns = [ "encoder_input_ids", "encoder_attention_mask", "decoder_input_ids", "decoder_attention_mask", ] self.train = self._data_processing(self.train, "Training") self.validation = self._data_processing(self.validation, "Validation") self.test = self._data_processing(self.test, "Testing") def _data_processing(self, dataset: datasets.arrow_dataset.Dataset, name: str): logger.info(f"{name} data transformation...") dataset = dataset.map(self._transform) dataset.set_format(type="torch", columns=self.columns) logger.info(f"{name} data transformation completed.") return dataset def _transform(self, item): doc, summary = item["document"], item["summary"] doc_output = self.tokenizer(doc, truncation=True) summary_output = self.tokenizer(summary, truncation=True) output = { "encoder_input_ids": doc_output["input_ids"], "encoder_attention_mask": doc_output["attention_mask"], "decoder_input_ids": summary_output["input_ids"], "decoder_attention_mask": summary_output["attention_mask"], } return output def train_dataloader( self, ) -> Union[DataLoader, List[DataLoader], Dict[str, DataLoader]]: return DataLoader( self.train, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, collate_fn=self.collate_fn, ) def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]: return DataLoader( self.validation, batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=self.collate_fn, ) def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]: return DataLoader( self.test, batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=self.collate_fn, ) class SQuADLightningDataModule(pl.LightningDataModule): def __init__( self, tokenizer: AutoTokenizer, batch_size: int, num_workers: int, max_length: int, ): super().__init__() self.tokenizer = tokenizer self.batch_size = batch_size self.num_workers = num_workers self.max_length = max_length self.collate_fn = partial(_collate_fn, tokenizer=self.tokenizer) self.prefix = "question: " def _transform(self, item): context, question, answer = ( item["context"], item["question"], item["answers"]["text"][0], ) input_text = self.prefix + answer + self.tokenizer.cls_token + context context = self.tokenizer(input_text, truncation=True) question = self.tokenizer(question, truncation=True) output = { "encoder_input_ids": context["input_ids"], "encoder_attention_mask": context["attention_mask"], "decoder_input_ids": question["input_ids"], "decoder_attention_mask": question["attention_mask"], } return output def _data_processing(self, dataset: datasets.arrow_dataset.Dataset, name: str): logger.info(f"{name} data transformation...") dataset = dataset.map(self._transform) dataset.set_format(type="torch", columns=self.columns) logger.info(f"{name} data transformation completed.") return dataset def prepare_data(self) -> None: logger.info("Loading SQuAD dataset...") self.dataset = datasets.load_dataset("squad") self.train, self.validation = self.dataset["train"], self.dataset["validation"] self.columns = [ "encoder_input_ids", "encoder_attention_mask", "decoder_input_ids", "decoder_attention_mask", ] self.train = self._data_processing(self.train, "Training") self.validation = self._data_processing(self.validation, "Validation") def train_dataloader( self, ) -> Union[DataLoader, List[DataLoader], Dict[str, DataLoader]]: return DataLoader( self.train, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, collate_fn=self.collate_fn, ) def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]: return DataLoader( self.validation, batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=self.collate_fn, ) def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]: return self.val_dataloader()
StarcoderdataPython
3292046
""" Every valid email consists of a local name and a domain name, separated by the '@' sign. Besides lowercase letters, the email may contain one or more '.' or '+' find the unique email addresses """ from typing import List class Solution: def numUniqueEmails(self, emails: List[str]) -> int: def validemail(email: str): local_name = email.split("@")[0] domain_name = email.split("@")[1] res = "" if local_name: for c in local_name: if c.isalpha(): res += c if c == "+": break return res + "@" + domain_name else: return None ans = set() for email in emails: ans.add(validemail(email)) # print(ans) return len(ans) emails = ["<EMAIL>","<EMAIL>+<EMAIL>","<EMAIL>+<EMAIL>"] emails = ["<EMAIL>","<EMAIL>","<EMAIL>"] s = Solution() print(s.numUniqueEmails(emails))
StarcoderdataPython
111234
<filename>aiida/orm/implementation/django/calculation/job/__init__.py # -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### import datetime from django.db import transaction, IntegrityError from django.db.models import Q from aiida.common.utils import str_timedelta from aiida.common.datastructures import sort_states, calc_states from aiida.common.exceptions import ModificationNotAllowed, DbContentError from aiida.backends.djsite.utils import get_automatic_user from aiida.orm.group import Group from aiida.orm.implementation.django.calculation import Calculation from aiida.orm.implementation.general.calculation.job import ( AbstractJobCalculation) from aiida.common.old_pluginloader import from_type_to_pluginclassname from aiida.utils import timezone class JobCalculation(AbstractJobCalculation, Calculation): def _set_state(self, state): """ Set the state of the calculation. Set it in the DbCalcState to have also the uniqueness check. Moreover (except for the IMPORTED state) also store in the 'state' attribute, useful to know it also after importing, and for faster querying. .. todo:: Add further checks to enforce that the states are set in order? :param state: a string with the state. This must be a valid string, from ``aiida.common.datastructures.calc_states``. :raise: ModificationNotAllowed if the given state was already set. """ from aiida.common.datastructures import sort_states from aiida.backends.djsite.db.models import DbCalcState if not self.is_stored: raise ModificationNotAllowed("Cannot set the calculation state " "before storing") if state not in calc_states: raise ValueError( "'{}' is not a valid calculation status".format(state)) old_state = self.get_state() if old_state: state_sequence = [state, old_state] # sort from new to old: if they are equal, then it is a valid # advance in state (otherwise, we are going backwards...) if sort_states(state_sequence) != state_sequence: raise ModificationNotAllowed("Cannot change the state from {} " "to {}".format(old_state, state)) try: with transaction.atomic(): new_state = DbCalcState(dbnode=self.dbnode, state=state).save() except IntegrityError: raise ModificationNotAllowed( "Calculation pk= {} already transited through " "the state {}".format(self.pk, state)) # For non-imported states, also set in the attribute (so that, if we # export, we can still see the original state the calculation had. if state != calc_states.IMPORTED: self._set_attr('state', state) def get_state(self, from_attribute=False): """ Get the state of the calculation. .. note:: this method returns the NOTFOUND state if no state is found in the DB. .. note:: the 'most recent' state is obtained using the logic in the ``aiida.common.datastructures.sort_states`` function. .. todo:: Understand if the state returned when no state entry is found in the DB is the best choice. :param from_attribute: if set to True, read it from the attributes (the attribute is also set with set_state, unless the state is set to IMPORTED; in this way we can also see the state before storing). :return: a string. If from_attribute is True and no attribute is found, return None. If from_attribute is False and no entry is found in the DB, return the "NOTFOUND" state. """ from aiida.backends.djsite.db.models import DbCalcState if from_attribute: return self.get_attr('state', None) else: if not self.is_stored: return calc_states.NEW else: this_calc_states = DbCalcState.objects.filter( dbnode=self).values_list('state', flat=True) if not this_calc_states: return None else: try: most_recent_state = sort_states(this_calc_states)[0] except ValueError as e: raise DbContentError("Error in the content of the " "DbCalcState table ({})".format( e.message)) return most_recent_state @classmethod def _list_calculations_old(cls, states=None, past_days=None, group=None, group_pk=None, all_users=False, pks=[], relative_ctime=True): """ Return a string with a description of the AiiDA calculations. .. todo:: does not support the query for the IMPORTED state (since it checks the state in the Attributes, not in the DbCalcState table). Decide which is the correct logic and implement the correct query. :param states: a list of string with states. If set, print only the calculations in the states "states", otherwise shows all. Default = None. :param past_days: If specified, show only calculations that were created in the given number of past days. :param group: If specified, show only calculations belonging to a user-defined group with the given name. Can use colons to separate the group name from the type, as specified in :py:meth:`aiida.orm.group.Group.get_from_string` method. :param group_pk: If specified, show only calculations belonging to a user-defined group with the given PK. :param pks: if specified, must be a list of integers, and only calculations within that list are shown. Otherwise, all calculations are shown. If specified, sets state to None and ignores the value of the ``past_days`` option.") :param relative_ctime: if true, prints the creation time relative from now. (like 2days ago). Default = True :param all_users: if True, list calculation belonging to all users. Default = False :return: a string with description of calculations. """ # I assume that calc_states are strings. If this changes in the future, # update the filter below from dbattributes__tval to the correct field. from aiida.backends.djsite.db.models import DbAuthInfo, DbAttribute from aiida.daemon.timestamps import get_last_daemon_timestamp if states: for state in states: if state not in calc_states: return "Invalid state provided: {}.".format(state) warnings_list = [] now = timezone.now() if pks: q_object = Q(pk__in=pks) else: q_object = Q() if group is not None: g_pk = Group.get_from_string(group).pk q_object.add(Q(dbgroups__pk=g_pk), Q.AND) if group_pk is not None: q_object.add(Q(dbgroups__pk=group_pk), Q.AND) if not all_users: q_object.add(Q(user=get_automatic_user()), Q.AND) if states is not None: q_object.add(Q(dbattributes__key='state', dbattributes__tval__in=states, ), Q.AND) if past_days is not None: now = timezone.now() n_days_ago = now - datetime.timedelta(days=past_days) q_object.add(Q(ctime__gte=n_days_ago), Q.AND) calc_list_pk = list( cls.query(q_object).distinct().values_list('pk', flat=True)) calc_list = cls.query(pk__in=calc_list_pk).order_by('ctime') scheduler_states = dict( DbAttribute.objects.filter(dbnode__pk__in=calc_list_pk, key='scheduler_state').values_list( 'dbnode__pk', 'tval')) # I do the query now, so that the list of pks gets cached calc_list_data = list( calc_list.filter( # dbcomputer__dbauthinfo__aiidauser=F('user') ).distinct().order_by('ctime').values( 'pk', 'dbcomputer__name', 'ctime', 'type', 'dbcomputer__enabled', 'dbcomputer__pk', 'user__pk')) list_comp_pk = [i['dbcomputer__pk'] for i in calc_list_data] list_aiduser_pk = [i['user__pk'] for i in calc_list_data] enabled_data = DbAuthInfo.objects.filter( dbcomputer__pk__in=list_comp_pk, aiidauser__pk__in=list_aiduser_pk ).values_list('dbcomputer__pk', 'aiidauser__pk', 'enabled') enabled_auth_dict = {(i[0], i[1]): i[2] for i in enabled_data} states = {c.pk: c._get_state_string() for c in calc_list} scheduler_lastcheck = dict(DbAttribute.objects.filter( dbnode__in=calc_list, key='scheduler_lastchecktime').values_list('dbnode__pk', 'dval')) ## Get the last daemon check try: last_daemon_check = get_last_daemon_timestamp('updater', when='stop') except ValueError: last_check_string = ("# Last daemon state_updater check: " "(Error while retrieving the information)") else: if last_daemon_check is None: last_check_string = "# Last daemon state_updater check: (Never)" else: last_check_string = ("# Last daemon state_updater check: " "{} ({})".format( str_timedelta(now - last_daemon_check, negative_to_zero=True), timezone.localtime(last_daemon_check).strftime( "at %H:%M:%S on %Y-%m-%d"))) disabled_ignorant_states = [ None, calc_states.FINISHED, calc_states.SUBMISSIONFAILED, calc_states.RETRIEVALFAILED, calc_states.PARSINGFAILED, calc_states.FAILED ] if not calc_list: return last_check_string else: # first save a matrix of results to be printed res_str_list = [last_check_string] str_matrix = [] title = ['# Pk', 'State', 'Creation', 'Sched. state', 'Computer', 'Type'] str_matrix.append(title) len_title = [len(i) for i in title] for calcdata in calc_list_data: remote_state = "None" calc_state = states[calcdata['pk']] remote_computer = calcdata['dbcomputer__name'] try: sched_state = scheduler_states.get(calcdata['pk'], None) if sched_state is None: remote_state = "(unknown)" else: remote_state = '{}'.format(sched_state) if calc_state == calc_states.WITHSCHEDULER: last_check = scheduler_lastcheck.get(calcdata['pk'], None) if last_check is not None: when_string = " {}".format( str_timedelta(now - last_check, short=True, negative_to_zero=True)) verb_string = "was " else: when_string = "" verb_string = "" remote_state = "{}{}{}".format(verb_string, sched_state, when_string) except ValueError: raise calc_module = \ from_type_to_pluginclassname(calcdata['type']).rsplit(".", 1)[0] prefix = 'calculation.job.' prefix_len = len(prefix) if calc_module.startswith(prefix): calc_module = calc_module[prefix_len:].strip() if relative_ctime: calc_ctime = str_timedelta(now - calcdata['ctime'], negative_to_zero=True, max_num_fields=1) else: calc_ctime = " ".join([timezone.localtime( calcdata['ctime']).isoformat().split('T')[0], timezone.localtime(calcdata[ 'ctime']).isoformat().split( 'T')[1].split('.')[ 0].rsplit(":", 1)[0]]) the_state = states[calcdata['pk']] # decide if it is needed to print enabled/disabled information # By default, if the computer is not configured for the # given user, assume it is user_enabled user_enabled = enabled_auth_dict.get( (calcdata['dbcomputer__pk'], calcdata['user__pk']), True) global_enabled = calcdata["dbcomputer__enabled"] enabled = "" if (user_enabled and global_enabled or the_state in disabled_ignorant_states) else " [Disabled]" str_matrix.append([calcdata['pk'], the_state, calc_ctime, remote_state, remote_computer + "{}".format(enabled), calc_module ]) # prepare a formatted text of minimal row length (to fit in terminals!) rows = [] for j in range(len(str_matrix[0])): rows.append([len(str(i[j])) for i in str_matrix]) line_lengths = [str(max(max(rows[i]), len_title[i])) for i in range(len(rows))] fmt_string = "{:<" + "}|{:<".join(line_lengths) + "}" for row in str_matrix: res_str_list.append(fmt_string.format(*[str(i) for i in row])) res_str_list += ["# {}".format(_) for _ in warnings_list] return "\n".join(res_str_list)
StarcoderdataPython
1896290
<gh_stars>1-10 a = float(input('Digite o valor da 1° reta: ')) b = float(input('Digite o 2º valor: ')) c = float(input('Digite o 3° valor: ')) # | b - c | < a < b + c # | a - c | < b < a + c # | a - b | < c < a + b if b - c < a < b + c: if a - c < b < a + c: if a - b < c < a + b: print(' As retas {} , {} e {} formam um TRIANGULO'. format(a, b, c)) else: print('As retas não formam um TRIANGULO') else: print('As retas não formam um TRIANGULO') else: print('As retas não formam um TRIANGULO') # FORMA MAIS SIMPLES print('-='*100) if a < b + c and b < c + a and c < b + a: print(" AS RETAS FOMAM UM TRIANGULO") else: print('NAO È UM TRIANGULO')
StarcoderdataPython
8045464
<gh_stars>1000+ # Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Contains common helpers for working with Android manifests.""" import hashlib import os import re import shlex import sys import xml.dom.minidom as minidom from util import build_utils from xml.etree import ElementTree ANDROID_NAMESPACE = 'http://schemas.android.com/apk/res/android' TOOLS_NAMESPACE = 'http://schemas.android.com/tools' DIST_NAMESPACE = 'http://schemas.android.com/apk/distribution' EMPTY_ANDROID_MANIFEST_PATH = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', 'AndroidManifest.xml')) # When normalizing for expectation matching, wrap these tags when they are long # or else they become very hard to read. _WRAP_CANDIDATES = ( '<manifest', '<application', '<activity', '<provider', '<receiver', '<service', ) # Don't wrap lines shorter than this. _WRAP_LINE_LENGTH = 100 _xml_namespace_initialized = False def _RegisterElementTreeNamespaces(): global _xml_namespace_initialized if _xml_namespace_initialized: return _xml_namespace_initialized = True ElementTree.register_namespace('android', ANDROID_NAMESPACE) ElementTree.register_namespace('tools', TOOLS_NAMESPACE) ElementTree.register_namespace('dist', DIST_NAMESPACE) def ParseManifest(path): """Parses an AndroidManifest.xml using ElementTree. Registers required namespaces, creates application node if missing, adds any missing namespaces for 'android', 'tools' and 'dist'. Returns tuple of: doc: Root xml document. manifest_node: the <manifest> node. app_node: the <application> node. """ _RegisterElementTreeNamespaces() doc = ElementTree.parse(path) # ElementTree.find does not work if the required tag is the root. if doc.getroot().tag == 'manifest': manifest_node = doc.getroot() else: manifest_node = doc.find('manifest') app_node = doc.find('application') if app_node is None: app_node = ElementTree.SubElement(manifest_node, 'application') return doc, manifest_node, app_node def SaveManifest(doc, path): with build_utils.AtomicOutput(path) as f: f.write(ElementTree.tostring(doc.getroot(), encoding='UTF-8')) def GetPackage(manifest_node): return manifest_node.get('package') def AssertUsesSdk(manifest_node, min_sdk_version=None, target_sdk_version=None, max_sdk_version=None, fail_if_not_exist=False): """Asserts values of attributes of <uses-sdk> element. Unless |fail_if_not_exist| is true, will only assert if both the passed value is not None and the value of attribute exist. If |fail_if_not_exist| is true will fail if passed value is not None but attribute does not exist. """ uses_sdk_node = manifest_node.find('./uses-sdk') if uses_sdk_node is None: return for prefix, sdk_version in (('min', min_sdk_version), ('target', target_sdk_version), ('max', max_sdk_version)): value = uses_sdk_node.get('{%s}%sSdkVersion' % (ANDROID_NAMESPACE, prefix)) if fail_if_not_exist and not value and sdk_version: assert False, ( '%sSdkVersion in Android manifest does not exist but we expect %s' % (prefix, sdk_version)) if not value or not sdk_version: continue assert value == sdk_version, ( '%sSdkVersion in Android manifest is %s but we expect %s' % (prefix, value, sdk_version)) def AssertPackage(manifest_node, package): """Asserts that manifest package has desired value. Will only assert if both |package| is not None and the package is set in the manifest. """ package_value = GetPackage(manifest_node) if package_value is None or package is None: return assert package_value == package, ( 'Package in Android manifest is %s but we expect %s' % (package_value, package)) def _SortAndStripElementTree(root): # Sort alphabetically with two exceptions: # 1) Put <application> node last (since it's giant). # 2) Put android:name before other attributes. def element_sort_key(node): if node.tag == 'application': return 'z' ret = ElementTree.tostring(node) # ElementTree.tostring inserts namespace attributes for any that are needed # for the node or any of its descendants. Remove them so as to prevent a # change to a child that adds/removes a namespace usage from changing sort # order. return re.sub(r' xmlns:.*?".*?"', '', ret.decode('utf8')) name_attr = '{%s}name' % ANDROID_NAMESPACE def attribute_sort_key(tup): return ('', '') if tup[0] == name_attr else tup def helper(node): for child in node: if child.text and child.text.isspace(): child.text = None helper(child) # Sort attributes (requires Python 3.8+). node.attrib = dict(sorted(node.attrib.items(), key=attribute_sort_key)) # Sort nodes node[:] = sorted(node, key=element_sort_key) helper(root) def _SplitElement(line): """Parses a one-line xml node into ('<tag', ['a="b"', ...]], '/>').""" # Shlex splits nicely, but removes quotes. Need to put them back. def restore_quotes(value): return value.replace('=', '="', 1) + '"' # Simplify restore_quotes by separating />. assert line.endswith('>'), line end_tag = '>' if line.endswith('/>'): end_tag = '/>' line = line[:-len(end_tag)] # Use shlex to avoid having to re-encode &quot;, etc. parts = shlex.split(line) start_tag = parts[0] attrs = parts[1:] return start_tag, [restore_quotes(x) for x in attrs], end_tag def _CreateNodeHash(lines): """Computes a hash (md5) for the first XML node found in |lines|. Args: lines: List of strings containing pretty-printed XML. Returns: Positive 32-bit integer hash of the node (including children). """ target_indent = lines[0].find('<') tag_closed = False for i, l in enumerate(lines[1:]): cur_indent = l.find('<') if cur_indent != -1 and cur_indent <= target_indent: tag_lines = lines[:i + 1] break if not tag_closed and 'android:name="' in l: # To reduce noise of node tags changing, use android:name as the # basis the hash since they usually unique. tag_lines = [l] break tag_closed = tag_closed or '>' in l else: assert False, 'Did not find end of node:\n' + '\n'.join(lines) # Insecure and truncated hash as it only needs to be unique vs. its neighbors. return hashlib.md5(('\n'.join(tag_lines)).encode('utf8')).hexdigest()[:8] def _IsSelfClosing(lines): """Given pretty-printed xml, returns whether first node is self-closing.""" for l in lines: idx = l.find('>') if idx != -1: return l[idx - 1] == '/' raise RuntimeError('Did not find end of tag:\n%s' % '\n'.join(lines)) def _AddDiffTags(lines): # When multiple identical tags appear sequentially, XML diffs can look like: # + </tag> # + <tag> # rather than: # + <tag> # + </tag> # To reduce confusion, add hashes to tags. # This also ensures changed tags show up with outer <tag> elements rather than # showing only changed attributes. hash_stack = [] for i, l in enumerate(lines): stripped = l.lstrip() # Ignore non-indented tags and lines that are not the start/end of a node. if l[0] != ' ' or stripped[0] != '<': continue # Ignore self-closing nodes that fit on one line. if l[-2:] == '/>': continue # Ignore <application> since diff tag changes with basically any change. if stripped.lstrip('</').startswith('application'): continue # Check for the closing tag (</foo>). if stripped[1] != '/': cur_hash = _CreateNodeHash(lines[i:]) if not _IsSelfClosing(lines[i:]): hash_stack.append(cur_hash) else: cur_hash = hash_stack.pop() lines[i] += ' # DIFF-ANCHOR: {}'.format(cur_hash) assert not hash_stack, 'hash_stack was not empty:\n' + '\n'.join(hash_stack) def NormalizeManifest(manifest_contents): _RegisterElementTreeNamespaces() # This also strips comments and sorts node attributes alphabetically. root = ElementTree.fromstring(manifest_contents) package = GetPackage(root) app_node = root.find('application') if app_node is not None: # android:debuggable is added when !is_official_build. Strip it out to avoid # expectation diffs caused by not adding is_official_build. Play store # blocks uploading apps with it set, so there's no risk of it slipping in. debuggable_name = '{%s}debuggable' % ANDROID_NAMESPACE if debuggable_name in app_node.attrib: del app_node.attrib[debuggable_name] # Trichrome's static library version number is updated daily. To avoid # frequent manifest check failures, we remove the exact version number # during normalization. for node in app_node: if (node.tag in ['uses-static-library', 'static-library'] and '{%s}version' % ANDROID_NAMESPACE in node.keys() and '{%s}name' % ANDROID_NAMESPACE in node.keys()): node.set('{%s}version' % ANDROID_NAMESPACE, '$VERSION_NUMBER') # We also remove the exact package name (except the one at the root level) # to avoid noise during manifest comparison. def blur_package_name(node): for key in node.keys(): node.set(key, node.get(key).replace(package, '$PACKAGE')) for child in node: blur_package_name(child) # We only blur the package names of non-root nodes because they generate a lot # of diffs when doing manifest checks for upstream targets. We still want to # have 1 piece of package name not blurred just in case the package name is # mistakenly changed. for child in root: blur_package_name(child) _SortAndStripElementTree(root) # Fix up whitespace/indentation. dom = minidom.parseString(ElementTree.tostring(root)) out_lines = [] for l in dom.toprettyxml(indent=' ').splitlines(): if not l or l.isspace(): continue if len(l) > _WRAP_LINE_LENGTH and any(x in l for x in _WRAP_CANDIDATES): indent = ' ' * l.find('<') start_tag, attrs, end_tag = _SplitElement(l) out_lines.append('{}{}'.format(indent, start_tag)) for attribute in attrs: out_lines.append('{} {}'.format(indent, attribute)) out_lines[-1] += '>' # Heuristic: Do not allow multi-line tags to be self-closing since these # can generally be allowed to have nested elements. When diffing, it adds # noise if the base file is self-closing and the non-base file is not # self-closing. if end_tag == '/>': out_lines.append('{}{}>'.format(indent, start_tag.replace('<', '</'))) else: out_lines.append(l) # Make output more diff-friendly. _AddDiffTags(out_lines) return '\n'.join(out_lines) + '\n'
StarcoderdataPython
3287550
<filename>ib2/settings.py<gh_stars>1-10 """ Django settings for ib2 project. Generated by 'django-admin startproject' using Django 2.2.5. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os from vitalis.max30100 import MAX30100 from vitalis import max30100 # A button is a good approximation for what we need, # a digital active-low trigger from gpiozero import Button # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = <KEY> # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [ '*', ] mx30 = None mx30_error = "" try: mx30 = MAX30100(max_buffer_len=1000) mx30.enable_spo2() # Set up a trigger to fire when the FIFO buffer (on the MAX30100) fills up. # You could also use INTERRUPT_HR to get a trigger on every measurement. mx30.enable_interrupt(max30100.INTERRUPT_HR) interrupt = Button(16) # Pick a pin interrupt.when_activated = mx30.read_sensor # Connect the interrupt print("MAX30100 configurado") except Exception as e: print(e) mx30_error = str(e) # mx30 = None # Application definition INSTALLED_APPS = [ 'vitalis.apps.VitalisConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_extensions', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ib2.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ib2.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
StarcoderdataPython
6529632
n, k = map(int,input().split()) num = list(map(int,input().split())) c = 0 for i in range(0,n): for j in range(0,n): if i!=j: if (num[i]+num[j])%k == 0: c+=1 print(c//2)
StarcoderdataPython
163045
<reponame>ShunranSasaki/furport-back # Generated by Django 3.0.8 on 2020-07-08 05:28 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ("furport", "0002_auto_20200707_1931"), ] operations = [ migrations.CreateModel( name="TagGroup", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("created_at", models.DateTimeField(auto_now_add=True)), ("updated_at", models.DateTimeField(auto_now=True)), ( "name", models.CharField( default="", max_length=255, verbose_name="タググループ名" ), ), ( "color", models.CharField(default="", max_length=255, verbose_name="タグ色"), ), ("priority", models.IntegerField(default=0, verbose_name="優先度")), ( "description", models.TextField(blank=True, default="", verbose_name="詳細"), ), ], options={"ordering": ("name",)}, ), migrations.RemoveField(model_name="event", name="image_url"), migrations.AddField( model_name="event", name="stared_by", field=models.ManyToManyField( blank=True, related_name="stared_by", to=settings.AUTH_USER_MODEL ), ), migrations.AddField( model_name="event", name="twitter_id", field=models.CharField( blank=True, default="", max_length=255, verbose_name="TwitterId" ), ), migrations.AlterField( model_name="event", name="created_by", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="created_by", to=settings.AUTH_USER_MODEL, ), ), migrations.AlterField( model_name="tag", name="group", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="furport.TagGroup" ), ), ]
StarcoderdataPython
6415414
<reponame>xpsurgery/customer-base<gh_stars>1-10 class CustomerBase: def __init__(self): self.customers = [] def add(self, customer): self.customers.append(customer) def findByLastName(self, lastName): result = [] for customer in self.customers: if customer.lastName == lastName: result.append(customer) return result def findByFirstAndLastName(self, firstName, lastName): result = [] for customer in self.customers: if customer.firstName == firstName and customer.lastName == lastName: result.append(customer) return result def findByCreditGreaterThan(self, credit): result = [] for customer in self.customers: if customer.credit > credit: result.append(customer) return result
StarcoderdataPython
1710057
<gh_stars>0 # -*- coding: utf-8 -*- # Copyright 2019 Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name,line-too-long bash_rpm_info = """Name : bash Version : 4.2.46 Release : 21.el7_3 Architecture: x86_64 Install Date: Thu 11 Jan 2018 12:32:51 PM EET Group : System Environment/Shells Size : 3663714 License : GPLv3+ Signature : RSA/SHA256, Wed 07 Dec 2016 02:11:28 AM EET, Key ID <KEY> Source RPM : bash-4.2.46-21.el7_3.src.rpm Build Date : Wed 07 Dec 2016 01:21:54 AM EET Build Host : c1bm.rdu2.centos.org Relocations : (not relocatable) Packager : CentOS BuildSystem <http://bugs.centos.org> Vendor : CentOS URL : http://www.gnu.org/software/bash Summary : The GNU Bourne Again shell Description : The GNU Bourne Again shell (Bash) is a shell or command language interpreter that is compatible with the Bourne shell (sh). Bash incorporates useful features from the Korn shell (ksh) and the C shell (csh). Most sh scripts can be run by bash without modification. """ basesystem_rpm_info = """Name : basesystem Version : 10.0 Release : 7.el7.centos Architecture: noarch Install Date: Fri 01 Apr 2016 11:47:25 AM EEST Group : System Environment/Base Size : 0 License : Public Domain Signature : RSA/SHA256, Fri 04 Jul 2014 03:46:57 AM EEST, Key ID <KEY> Source RPM : basesystem-10.0-7.el7.centos.src.rpm Build Date : Fri 27 Jun 2014 01:37:10 PM EEST Build Host : worker1.bsys.centos.org Relocations : (not relocatable) Packager : CentOS BuildSystem <http://bugs.centos.org> Vendor : CentOS Summary : The skeleton package which defines a simple CentOS Linux system Description : Basesystem defines the components of a basic CentOS Linux system (for example, the package installation order to use during bootstrapping). Basesystem should be in every installation of a system, and it should never be removed. """ centos_logos_rpm_info = u"""Name : centos-logos Version : 70.0.6 Release : 3.el7.centos Architecture: noarch License : Copyright © 2014 The CentOS Project. All rights reserved. """ conntrack_tools_rpm_info = """Name : conntrack-tools Version : 1.4.4 Release : 3.el7_3 Architecture: x86_64 Install Date: Thu 11 Jan 2018 12:39:20 PM EET Group : System Environment/Base Size : 562826 License : GPLv2 Signature : RSA/SHA256, Thu 29 Jun 2017 03:36:05 PM EEST, Key ID <KEY> Source RPM : conntrack-tools-1.4.4-3.el7_3.src.rpm Build Date : Thu 29 Jun 2017 03:18:42 AM EEST Build Host : c1bm.rdu2.centos.org Relocations : (not relocatable) Packager : CentOS BuildSystem <http://bugs.centos.org> Vendor : CentOS URL : http://netfilter.org Summary : Manipulate netfilter connection tracking table and run High Availability Description : With conntrack-tools you can setup a High Availability cluster and synchronize conntrack state between multiple firewalls. The conntrack-tools package contains two programs: - conntrack: the command line interface to interact with the connection tracking system. - conntrackd: the connection tracking userspace daemon that can be used to deploy highly available GNU/Linux firewalls and collect statistics of the firewall use. conntrack is used to search, list, inspect and maintain the netfilter connection tracking subsystem of the Linux kernel. Using conntrack, you can dump a list of all (or a filtered selection of) currently tracked connections, delete connections from the state table, and even add new ones. In addition, you can also monitor connection tracking events, e.g. show an event message (one line) per newly established connection. """ cpp_rpm_info = """Name : cpp Version : 4.8.5 Release : 11.el7 Architecture: x86_64 Install Date: Thu 11 Jan 2018 12:37:55 PM EET Group : Development/Languages Size : 15632501 License : GPLv3+ and GPLv3+ with exceptions and GPLv2+ with exceptions and LGPLv2+ and BSD Signature : RSA/SHA256, Sun 20 Nov 2016 07:27:00 PM EET, Key ID <KEY> Source RPM : gcc-4.8.5-11.el7.src.rpm Build Date : Fri 04 Nov 2016 06:01:22 PM EET Build Host : worker1.bsys.centos.org Relocations : (not relocatable) Packager : CentOS BuildSystem <http://bugs.centos.org> Vendor : CentOS URL : http://gcc.gnu.org Summary : The C Preprocessor Description : Cpp is the GNU C-Compatible Compiler Preprocessor. Cpp is a macro processor which is used automatically by the C compiler to transform your program before actual compilation. It is called a macro processor because it allows you to define macros, abbreviations for longer constructs. The C preprocessor provides four separate functionalities: the inclusion of header files (files of declarations that can be substituted into your program); macro expansion (you can define macros, and the C preprocessor will replace the macros with their definitions throughout the program); conditional compilation (using special preprocessing directives, you can include or exclude parts of the program according to various conditions); and line control (if you use a program to combine or rearrange source files into an intermediate file which is then compiled, you can use line control to inform the compiler about where each source line originated). You should install this package if you are a C programmer and you use macros. """ # noqa, PEP-8 disabled because of example output has trailing spaces dejavu_fonts_common_rpm_info = """Name : dejavu-fonts-common Version : 2.33 Release : 6.el7 Architecture: noarch Install Date: Wed Feb 7 13:49:27 2018 Group : User Interface/X Size : 130455 License : Bitstream Vera and Public Domain Signature : RSA/SHA256, Fri Jul 4 01:06:50 2014, Key ID <KEY> Source RPM : dejavu-fonts-2.33-6.el7.src.rpm Build Date : Mon Jun 9 21:34:30 2014 Build Host : worker1.bsys.centos.org Relocations : (not relocatable) Packager : CentOS BuildSystem <http://bugs.centos.org> Vendor : CentOS URL : http://dejavu-fonts.org/ Summary : Common files for the Dejavu font set Description : The DejaVu font set is based on the “Bitstream Vera” fonts, release 1.10. Its purpose is to provide a wider range of characters, while maintaining the original style, using an open collaborative development process. This package consists of files used by other DejaVu packages. """ usbredir_rpm_info = """Name : usbredir Version : 0.7.1 Release : 1.el7 Architecture: x86_64 Install Date: Wed Feb 7 13:49:24 2018 Group : System Environment/Libraries Size : 108319 License : LGPLv2+ Signature : RSA/SHA256, Sun Nov 20 20:56:49 2016, Key ID <KEY> Source RPM : usbredir-0.7.1-1.el7.src.rpm Build Date : Sat Nov 5 18:33:15 2016 Build Host : worker1.bsys.centos.org Relocations : (not relocatable) Packager : CentOS BuildSystem <http://bugs.centos.org> Vendor : CentOS URL : http://spice-space.org/page/UsbRedir Summary : USB network redirection protocol libraries Description : The usbredir libraries allow USB devices to be used on remote and/or virtual hosts over TCP. The following libraries are provided: usbredirparser: A library containing the parser for the usbredir protocol usbredirhost: A library implementing the USB host side of a usbredir connection. All that an application wishing to implement a USB host needs to do is: * Provide a libusb device handle for the device * Provide write and read callbacks for the actual transport of usbredir data * Monitor for usbredir and libusb read/write events and call their handlers """ perl_compress_rpm_info = """Name : perl-Compress-Raw-Zlib Epoch : 1 Version : 2.061 Release : 4.el7 Architecture: x86_64 Install Date: Sat Jan 26 20:05:50 2019 Group : Development/Libraries Size : 139803 License : GPL+ or Artistic Signature : RSA/SHA256, Fri Jul 4 04:15:33 2014, Key ID <KEY> Source RPM : perl-Compress-Raw-Zlib-2.061-4.el7.src.rpm Build Date : Tue Jun 10 01:12:08 2014 Build Host : worker1.bsys.centos.org Relocations : (not relocatable) Packager : CentOS BuildSystem <http://bugs.centos.org> Vendor : CentOS URL : http://search.cpan.org/dist/Compress-Raw-Zlib/ Summary : Low-level interface to the zlib compression library Description : The Compress::Raw::Zlib module provides a Perl interface to the zlib compression library, which is used by IO::Compress::Zlib. Obsoletes : """ # noqa, PEP-8 disabled because of example output has trailing spaces
StarcoderdataPython
11272723
#!/usr/bin/python # Find the minimum-area bounding box of a set of 2D points # # The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates. # The first and last points points must be the same, making a closed polygon. # This program finds the rotation angles of each edge of the convex polygon, # then tests the area of a bounding box aligned with the unique angles in # 90 degrees of the 1st Quadrant. # Returns the # # Tested with Python 2.6.5 on Ubuntu 10.04.4 # Results verified using Matlab # Copyright (c) 2013, <NAME>, University of Queensland # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the <NAME>, Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from numpy import * import sys # maxint def minBoundingRect(hull_points_2d): #print("Input convex hull points: ") #print(hull_points_2d) # Compute edges (x2-x1,y2-y1) edges = zeros( (len(hull_points_2d)-1,2) ) # empty 2 column array for i in range( len(edges) ): edge_x = hull_points_2d[i+1,0] - hull_points_2d[i,0] edge_y = hull_points_2d[i+1,1] - hull_points_2d[i,1] edges[i] = [edge_x,edge_y] #print("Edges: \n", edges) # Calculate edge angles atan2(y/x) edge_angles = zeros( (len(edges)) ) # empty 1 column array for i in range( len(edge_angles) ): edge_angles[i] = math.atan2( edges[i,1], edges[i,0] ) #print("Edge angles: \n", edge_angles) # Check for angles in 1st quadrant for i in range( len(edge_angles) ): edge_angles[i] = abs( edge_angles[i] % (math.pi/2) ) # want strictly positive answers #print("Edge angles in 1st Quadrant: \n", edge_angles) # Remove duplicate angles edge_angles = unique(edge_angles) #print("Unique edge angles: \n", edge_angles) # Test each angle to find bounding box with smallest area min_bbox = (0, sys.maxsize, 0, 0, 0, 0, 0, 0) # rot_angle, area, width, height, min_x, max_x, min_y, max_y #print("Testing", len(edge_angles), "possible rotations for bounding box... \n") for i in range( len(edge_angles) ): # Create rotation matrix to shift points to baseline # R = [ cos(theta) , cos(theta-PI/2) # cos(theta+PI/2) , cos(theta) ] R = array([ [ math.cos(edge_angles[i]), math.cos(edge_angles[i]-(math.pi/2)) ], [ math.cos(edge_angles[i]+(math.pi/2)), math.cos(edge_angles[i]) ] ]) #print("Rotation matrix for ", edge_angles[i], " is \n", R) # Apply this rotation to convex hull points rot_points = dot(R, transpose(hull_points_2d) ) # 2x2 * 2xn #print("Rotated hull points are \n", rot_points) # Find min/max x,y points min_x = nanmin(rot_points[0], axis=0) max_x = nanmax(rot_points[0], axis=0) min_y = nanmin(rot_points[1], axis=0) max_y = nanmax(rot_points[1], axis=0) #print("Min x:", min_x, " Max x: ", max_x, " Min y:", min_y, " Max y: ", max_y) # Calculate height/width/area of this bounding rectangle width = max_x - min_x height = max_y - min_y area = width*height #print("Potential bounding box ", i, ": width: ", width, " height: ", height, " area: ", area ) # Store the smallest rect found first (a simple convex hull might have 2 answers with same area) if (area < min_bbox[1]): min_bbox = ( edge_angles[i], area, width, height, min_x, max_x, min_y, max_y ) # Bypass, return the last found rect #min_bbox = ( edge_angles[i], area, width, height, min_x, max_x, min_y, max_y ) # Re-create rotation matrix for smallest rect angle = min_bbox[0] R = array([ [ math.cos(angle), math.cos(angle-(math.pi/2)) ], [ math.cos(angle+(math.pi/2)), math.cos(angle) ] ]) #print("Projection matrix: \n", R) # Project convex hull points onto rotated frame proj_points = dot(R, transpose(hull_points_2d) ) # 2x2 * 2xn #print("Project hull points are \n", proj_points) # min/max x,y points are against baseline min_x = min_bbox[4] max_x = min_bbox[5] min_y = min_bbox[6] max_y = min_bbox[7] #print("Min x:", min_x, " Max x: ", max_x, " Min y:", min_y, " Max y: ", max_y) # Calculate center point and project onto rotated frame center_x = (min_x + max_x)/2 center_y = (min_y + max_y)/2 center_point = dot( [ center_x, center_y ], R ) #print("Bounding box center point: \n", center_point) # Calculate corner points and project onto rotated frame corner_points = zeros( (5,2) ) # empty 2 column array corner_points[0] = dot( [ max_x, min_y ], R ) corner_points[1] = dot( [ min_x, min_y ], R ) corner_points[2] = dot( [ min_x, max_y ], R ) corner_points[3] = dot( [ max_x, max_y ], R ) corner_points[4] = dot( [ max_x, min_y ], R ) #print("Bounding box corner points: \n", corner_points) #print("Angle of rotation: ", angle, "rad ", angle * (180/math.pi), "deg") return (angle, min_bbox[1], min_bbox[2], min_bbox[3], center_point, corner_points) # rot_angle, area, width, height, center_point, corner_points
StarcoderdataPython
315162
""" 希尔排序 2020-12-06: 11:02.30; """ from sort import validatetool def sort(data): l = len(data) gap = l // 2 while gap > 0: for i in range(gap, l): val = data[i] j = i - gap while j >= 0 and val < data[j]: data[j + gap] = data[j] j -= gap data[j + gap] = val gap //= 2 return data if __name__ == '__main__': validatetool.validate(sort)
StarcoderdataPython
8123819
from pyramid.config import Configurator from pyramid.response import Response from time import sleep from waitress import serve def see_home(request): return Response('''\ <html> <head> </head> <body> <div id="ping"></div> <div id="x"></div> <script> const eventSource = new EventSource('/echoes') eventSource.onmessage = function(event) { console.log(event) const { data } = event console.log(data) switch(data) { case '': // ping e = document.getElementById('ping') e.innerHTML += 'ping ' break case '*': // refresh location.reload() break default: // update d = JSON.parse(data) e = document.getElementById(d['#']) e.innerHTML = JSON.stringify(d['?']) } } </script> </body> </html>''') def send_echoes(request): response = Response(headerlist=[ ('Content-Type', 'text/event-stream'), ('Cache-Control', 'no-cache'), ]) response.app_iter = yield_echoes() return response def yield_echoes(): print('ping') yield 'data:\n\n'.encode() sleep(3) print('update') yield 'data: {"#": "x", "?": {"a": 1}}\n\n'.encode() sleep(3) print('refresh') yield 'data: *\n\n'.encode() with Configurator() as config: config.add_route('home', '/') config.add_route('echoes', '/echoes') config.add_view(see_home, route_name='home') config.add_view(send_echoes, route_name='echoes') app = config.make_wsgi_app() serve(app, port=8000)
StarcoderdataPython
3564636
<reponame>br-paypaldev/Donate<gh_stars>0 import re from django.conf import settings from django.conf.urls.defaults import patterns, url, include from django.core.exceptions import ImproperlyConfigured urlpatterns = [] # only serve non-fqdn URLs if settings.DEBUG: urlpatterns += patterns('', url(r'^(?P<path>.*)$', 'django.contrib.staticfiles.views.serve'), ) def staticfiles_urlpatterns(prefix=None): """ Helper function to return a URL pattern for serving static files. """ if not settings.DEBUG: return [] if prefix is None: prefix = settings.STATICFILES_URL if not prefix: raise ImproperlyConfigured( "The prefix for the 'staticfiles_urlpatterns' helper is empty. " "Make sure the STATICFILES_URL setting is set correctly.") if '://' in prefix: raise ImproperlyConfigured( "The STATICFILES_URL setting is a full URL, not a path and " "can't be used with the 'staticfiles_urlpatterns' helper.") if prefix.startswith("/"): prefix = prefix[1:] return patterns('', url(r'^%s' % re.escape(prefix), include(urlpatterns)),)
StarcoderdataPython
3520569
from datetime import datetime from django import template from handypackages.datetime_conv import fmt register = template.Library() @register.filter(name="persian_datetime") def datetime_conv(date_time, string_format="%y/%m/%d %h:%M:%s"): """ Convert datetime to persian datetime example(datetime=datetime.datetime(2019, 5, 28, 1, 10, 33)): {% load date_time_conv %} {{ datetime|datetime_conv:"%y/%m/%d %h:%M:%s" }} output => 1398/3/7 1:10:33 """ if not isinstance(date_time, datetime): raise template.TemplateSyntaxError( "datetime_conv first argument must be datetime instance.", ) return fmt(date_time, string_format)
StarcoderdataPython
4938124
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from typing import Any, Callable, Dict, Mapping, Optional, Type, Union import torch import torch.nn as nn from flash.audio.speech_recognition.backbone import SPEECH_RECOGNITION_BACKBONES from flash.audio.speech_recognition.collate import DataCollatorCTCWithPadding from flash.audio.speech_recognition.data import SpeechRecognitionBackboneState from flash.core.data.process import Serializer from flash.core.data.states import CollateFn from flash.core.model import Task from flash.core.registry import FlashRegistry from flash.core.utilities.imports import _AUDIO_AVAILABLE if _AUDIO_AVAILABLE: from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor class SpeechRecognition(Task): backbones: FlashRegistry = SPEECH_RECOGNITION_BACKBONES required_extras = "audio" def __init__( self, backbone: str = "facebook/wav2vec2-base-960h", loss_fn: Optional[Callable] = None, optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam, learning_rate: float = 1e-5, serializer: Optional[Union[Serializer, Mapping[str, Serializer]]] = None, ): os.environ["TOKENIZERS_PARALLELISM"] = "TRUE" # disable HF thousand warnings warnings.simplefilter("ignore") # set os environ variable for multiprocesses os.environ["PYTHONWARNINGS"] = "ignore" model = ( self.backbones.get(backbone)() if backbone in self.backbones else Wav2Vec2ForCTC.from_pretrained(backbone) ) super().__init__( model=model, loss_fn=loss_fn, optimizer=optimizer, learning_rate=learning_rate, serializer=serializer, ) self.save_hyperparameters() self.set_state(SpeechRecognitionBackboneState(backbone)) self.set_state(CollateFn(DataCollatorCTCWithPadding(Wav2Vec2Processor.from_pretrained(backbone)))) def forward(self, batch: Dict[str, torch.Tensor]): return self.model(batch["input_values"]) def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any: return self(batch) def step(self, batch: Any, batch_idx: int, metrics: nn.ModuleDict) -> Any: out = self.model(batch["input_values"], labels=batch["labels"]) out["logs"] = {"loss": out.loss} return out
StarcoderdataPython
6496531
<reponame>whitfin/spack<filename>var/spack/repos/builtin/packages/muster/package.py # Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Muster(CMakePackage): """The Muster library provides implementations of sequential and parallel K-Medoids clustering algorithms. It is intended as a general framework for parallel cluster analysis, particularly for performance data analysis on systems with very large numbers of processes. """ homepage = "https://github.com/llnl/muster" url = "https://github.com/llnl/muster/archive/v1.0.tar.gz" version('1.0.1', 'd709787db7e080447afb6571ac17723c') version('1.0', '2<PASSWORD>') depends_on('boost') depends_on('mpi') depends_on('[email protected]:', type='build')
StarcoderdataPython
381027
from typing import List class Solution: def peakIndexInMountainArray(self, arr: List[int]) -> int: def bin_search(low, hi): mid = low + int((hi - low)/2) if arr[mid] > arr[mid-1] and arr[mid] > arr[mid+1]: return mid elif arr[mid] > arr[mid-1]: low = mid return bin_search(low, hi) elif arr[mid] > arr[mid+1]: hi = mid return bin_search(low, hi) return bin_search(0, len(arr)) def peakIndexInMountainArray2(self, arr: List[int]) -> int: for i in range(1,len(arr) - 1): if arr[i] > arr[i-1] and arr[i] > arr[i+1]: return i arr = [0,1,0] arr = [0,2,1,0] arr = [3,4,5,1] arr = [24,69,100,99,79,78,67,36,26,19] arr = [24,69,81,100,99,79,78,67,36,26,19] s = Solution() print(s.peakIndexInMountainArray(arr))
StarcoderdataPython
8100443
# Generated by Django 2.2.1 on 2019-05-21 19:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('professors', '0007_auto_20190522_0110'), ] operations = [ migrations.AlterField( model_name='comment', name='communication', field=models.FloatField(choices=[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], default=0), ), migrations.AlterField( model_name='comment', name='marking', field=models.FloatField(choices=[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], default=0), ), migrations.AlterField( model_name='comment', name='objectivity', field=models.FloatField(choices=[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], default=0), ), migrations.AlterField( model_name='comment', name='quality', field=models.FloatField(choices=[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], default=0), ), ]
StarcoderdataPython
3351033
<filename>tests/local/test_argument.py import sys from unittest.mock import patch import pytest from mnamer.argument import ArgLoader from mnamer.setting_spec import SettingSpec from mnamer.types import SettingType pytestmark = pytest.mark.local @pytest.mark.parametrize( "settings_type", (SettingType.DIRECTIVE, SettingType.PARAMETER, SettingType.POSITIONAL), ids=("directive", "parameter", "positional"), ) def test_arg_loader__add_spec(settings_type: SettingType): arg_loader = ArgLoader() spec = SettingSpec(group=settings_type, flags=["-f"], help="foo") actions = getattr(arg_loader, f"_{settings_type.value}_group") assert len(actions._group_actions) == 0 arg_loader += spec assert len(actions._group_actions) == 1 def test_arg_loader__add_spec_other(): arg_loader = ArgLoader() spec = SettingSpec( group=SettingType.CONFIGURATION, flags=["-f"], help="foo" ) with pytest.raises(RuntimeError): arg_loader += spec def test_arg_loader__format_help(): arg_loader = ArgLoader() for spec in ( SettingSpec(SettingType.POSITIONAL, flags=["--foo1"], help="foo1"), SettingSpec(SettingType.POSITIONAL, flags=["--foo2"], help="foo2"), SettingSpec(SettingType.POSITIONAL, flags=["--foo3"], help="foo3"), SettingSpec(SettingType.PARAMETER, flags=["--bar1"], help="bar1"), SettingSpec(SettingType.PARAMETER, flags=["--bar2"], help="bar2"), SettingSpec(SettingType.PARAMETER, flags=["--bar3"], help="bar3"), SettingSpec(SettingType.DIRECTIVE, flags=["--baz1"], help="baz1"), SettingSpec(SettingType.DIRECTIVE, flags=["--baz2"], help="baz2"), SettingSpec(SettingType.DIRECTIVE, flags=["--baz3"], help="baz3"), ): arg_loader._add_spec(spec) assert ( arg_loader.format_help() == """ USAGE: mnamer [preferences] [directives] target [targets ...] POSITIONAL: foo1 foo2 foo3 PARAMETERS: The following flags can be used to customize mnamer's behaviour. Their long forms may also be set in a '.mnamer-v2.json' config file, in which case cli arguments will take precedence. bar1 bar2 bar3 DIRECTIVES: Directives are one-off arguments that are used to perform secondary tasks like overriding media detection. They can't be used in '.mnamer-v2.json'. baz1 baz2 baz3 Visit https://github.com/jkwill87/mnamer for more information. """ ) def test_arg_parser__load__valid_parameter(): spec = SettingSpec( group=SettingType.PARAMETER, flags=["-f"], help="foo", type=int ) arg_parser = ArgLoader(spec) with patch.object(sys, "argv", ["mnamer", "-f", "01"]): assert arg_parser.load() == {"f": 1} def test_arg_parser__load__valid_directive(): spec = SettingSpec( group=SettingType.DIRECTIVE, flags=["-f"], help="foo", type=int ) arg_parser = ArgLoader(spec) with patch.object(sys, "argv", ["mnamer", "-f", "01"]): assert arg_parser.load() == {"f": 1} def test_arg_parser__load__valid_positional(): spec = SettingSpec( group=SettingType.POSITIONAL, flags=["f"], help="foo", type=int, ) arg_parser = ArgLoader(spec) with patch.object(sys, "argv", ["mnamer", "01"]): assert arg_parser.load() == {"f": 1} def test_arg_parser__load__invalid_configuration(): spec = SettingSpec( group=SettingType.CONFIGURATION, flags=["-f"], help="foo" ) arg_parser = ArgLoader(spec) with patch.object(sys, "argv", ["mnamer", "-f", "1"]): with pytest.raises(RuntimeError): arg_parser.load() def test_arg_parser__missing_help(): spec = SettingSpec(group=SettingType.DIRECTIVE, flags=["-f"]) with pytest.raises(RuntimeError): ArgLoader(spec)
StarcoderdataPython
329855
<filename>pygate_grpc/client.py import grpc from pygate_grpc import buildinfo, faults, ffs, health, net, wallet from pygate_grpc.errors import ErrorHandlerMeta class PowerGateClient(object, metaclass=ErrorHandlerMeta): def __init__(self, host_name, is_secure=False): self.channel = ( grpc.secure_channel(host_name, grpc.ssl_channel_credentials()) if is_secure else grpc.insecure_channel(host_name) ) self.health = health.HealthClient(self.channel) self.faults = faults.FaultsClient(self.channel) self.buildinfo = buildinfo.BuildinfoClient(self.channel) self.ffs = ffs.FfsClient(self.channel) self.wallet = wallet.WalletClient(self.channel) self.net = net.NetClient(self.channel)
StarcoderdataPython
9753859
from unittest import TestCase import rerldo class TestYup(TestCase): def test_is_string(self): s = rerldo.yup() self.assertTrue(isinstance(s, str))
StarcoderdataPython
6564290
<filename>utils/errors.py<gh_stars>0 from typing import Any, Union from discord.ext import commands class UserInputErrors(commands.UserInputError): def __init__(self, message: str, *arg: Any): super().__init__(message=message, *arg)
StarcoderdataPython
362519
<gh_stars>0 # Generated by Django 3.0.5 on 2020-09-21 12:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('user', '0019_user_review'), ] operations = [ migrations.RemoveField( model_name='user', name='review', ), ]
StarcoderdataPython
4914111
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class DeviceInfo(object): def __init__(self): self._device_id = None self._device_type = None self._dv_sn = None self._manufacturer = None self._product_model = None @property def device_id(self): return self._device_id @device_id.setter def device_id(self, value): self._device_id = value @property def device_type(self): return self._device_type @device_type.setter def device_type(self, value): self._device_type = value @property def dv_sn(self): return self._dv_sn @dv_sn.setter def dv_sn(self, value): self._dv_sn = value @property def manufacturer(self): return self._manufacturer @manufacturer.setter def manufacturer(self, value): self._manufacturer = value @property def product_model(self): return self._product_model @product_model.setter def product_model(self, value): self._product_model = value def to_alipay_dict(self): params = dict() if self.device_id: if hasattr(self.device_id, 'to_alipay_dict'): params['device_id'] = self.device_id.to_alipay_dict() else: params['device_id'] = self.device_id if self.device_type: if hasattr(self.device_type, 'to_alipay_dict'): params['device_type'] = self.device_type.to_alipay_dict() else: params['device_type'] = self.device_type if self.dv_sn: if hasattr(self.dv_sn, 'to_alipay_dict'): params['dv_sn'] = self.dv_sn.to_alipay_dict() else: params['dv_sn'] = self.dv_sn if self.manufacturer: if hasattr(self.manufacturer, 'to_alipay_dict'): params['manufacturer'] = self.manufacturer.to_alipay_dict() else: params['manufacturer'] = self.manufacturer if self.product_model: if hasattr(self.product_model, 'to_alipay_dict'): params['product_model'] = self.product_model.to_alipay_dict() else: params['product_model'] = self.product_model return params @staticmethod def from_alipay_dict(d): if not d: return None o = DeviceInfo() if 'device_id' in d: o.device_id = d['device_id'] if 'device_type' in d: o.device_type = d['device_type'] if 'dv_sn' in d: o.dv_sn = d['dv_sn'] if 'manufacturer' in d: o.manufacturer = d['manufacturer'] if 'product_model' in d: o.product_model = d['product_model'] return o
StarcoderdataPython
11386941
# coding=utf-8 from unittest import TestCase from zeeguu.api.test.api_test_mixin import APITestMixin from zeeguu.api.api.feeds import ( STOP_FOLLOWING_FEED, FOLLOWED_FEEDS, START_FOLLOWING_FEED, INTERESTING_FEEDS, RECOMMENDED_FEEDS, ) from zeeguu.core.model import RSSFeedRegistration from zeeguu.core.content_retriever.article_downloader import download_from_feed from zeeguu.core.test.rules.rss_feed_rule import RSSFeedRule import zeeguu.core class FeedTests(APITestMixin, TestCase): def setUp(self): super().setUp() self.feed1 = RSSFeedRule().feed1 RSSFeedRegistration.find_or_create( zeeguu.core.db.session, self.user, self.feed1 ) def test_stop_following_feed(self): feed_id = self.feed1.id initial_feed_count = len(self.json_from_api_get(f"{FOLLOWED_FEEDS}")) # if we stop following one, we'll follow only one form_data = {"source_id": feed_id} assert self.api_post(f"{STOP_FOLLOWING_FEED}", form_data).data == b"OK" feeds = self.json_from_api_get(f"{FOLLOWED_FEEDS}") assert len(feeds) == initial_feed_count - 1 def test_start_following_feed(self): new_feed_id = RSSFeedRule().feed.id # When form_data = {"source_id": new_feed_id} self.api_post(f"/{START_FOLLOWING_FEED}", form_data) # Then followed_feed_ids = [ each["id"] for each in self.json_from_api_get(f"/{FOLLOWED_FEEDS}") ] assert new_feed_id in followed_feed_ids def test_get_interesting_feeds(self): lang_code = self.feed1.language.code interesting_feeds = self.json_from_api_get(f"{INTERESTING_FEEDS}/{lang_code}") assert len(interesting_feeds) > 0 def test_non_subscribed_feeds(self): lang_code = self.feed1.language.code non_subscribed_feeds = self.json_from_api_get( f"{RECOMMENDED_FEEDS}/{lang_code}" ) initial_non_subscribed_count = len(non_subscribed_feeds) self.test_stop_following_feed() non_subscribed_feeds = self.json_from_api_get( f"{RECOMMENDED_FEEDS}/{lang_code}" ) final_non_subscribed_count = len(non_subscribed_feeds) assert final_non_subscribed_count > initial_non_subscribed_count def test_multiple_stop_following_same_feed(self): feed_id = self.feed1.id form_data = {"source_id": feed_id} # if we stop following one it'll be ok assert self.api_post(f"{STOP_FOLLOWING_FEED}", form_data).data == b"OK" # if we stop following it once more, not ok assert not (self.api_post(f"{STOP_FOLLOWING_FEED}", form_data).data == b"OK") def test_get_feed_items_with_metrics(self): download_from_feed(self.feed1, zeeguu.core.db.session, 3) feed_items = self.json_from_api_get( f"get_feed_items_with_metrics/{self.feed1.id}" ) assert len(feed_items) > 0 assert feed_items[0]["title"] assert feed_items[0]["summary"] assert feed_items[0]["published"] assert feed_items[0]["metrics"]
StarcoderdataPython
29638
<reponame>Sofia190/book_store_app<gh_stars>0 from django.db import models # Create your models here. from django.conf import settings from django.db import models from django.utils import timezone # Create your models here. class SearchQuery(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, blank=True, null=True, on_delete=models.CASCADE) query = models.CharField(max_length=570) timestamp = models.DateField(auto_now=False, auto_now_add=False, default=timezone.now())
StarcoderdataPython
6688755
from .voc import VOCSegmentation, VOCSegmentationIncremental from .ade import AdeSegmentation, AdeSegmentationIncremental from .isprs import VaihingenDataset, PotsdamDataset, VaihingenIncremental, PotsdamIncremental
StarcoderdataPython
4961050
<reponame>dmakhno/contrib-python-qubell-client<filename>qubellclient/tests/base.py # Copyright (c) 2013 Qubell Inc., http://qubell.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "<NAME>" __copyright__ = "Copyright 2013, Qubell.com" __license__ = "Apache" __version__ = "1.0.1" __email__ = "<EMAIL>" import testtools import nose.plugins.attrib from qubellclient.private.platform import QubellPlatform, Context from qubellclient.private.manifest import Manifest import os from qubellclient.tools import rand import logging as log user = os.environ.get('QUBELL_USER') password = os.environ.get('QUBELL_PASSWORD') api = os.environ.get('QUBELL_API') org = os.environ.get('QUBELL_ORG') prefix = os.environ.get('QUBELL_PREFIX') if not user: log.error('No username provided. Set QUBELL_USER env') if not password: log.error('No password provided. Set QUBELL_PASSWORD env') if not api: log.error('No api url provided. Set QUBELL_API env') if not org: log.error('No organization name provided. Set QUBELL_ORG env') def attr(*args, **kwargs): """A decorator which applies the nose and testtools attr decorator """ def decorator(f): f = testtools.testcase.attr(args)(f) if not 'skip' in args: return nose.plugins.attrib.attr(*args, **kwargs)(f) # TODO: Should do something if test is skipped return decorator class BaseTestCasePrivate(testtools.TestCase): ## TODO: Main preparation should be here """ Here we prepare global env. (load config, etc) """ @classmethod def setUpClass(cls): cls.prefix = prefix or rand() cls.context = Context(user=user, password=password, api=api) # Initialize platform and check access cls.platform = QubellPlatform(context=cls.context) assert cls.platform.authenticate() # Set default manifest for app creation cls.manifest = Manifest(file=os.path.join(os.path.dirname(__file__), 'default.yml'), name='BaseTestManifest') # Initialize organization cls.organization = cls.platform.organization(name=org) # Initialize environment cls.environment = cls.organization.environment(name='default') @classmethod def tearDownClass(cls): pass def setUp(self): # Run before each test super(BaseTestCasePrivate, self).setUp() pass def tearDown(self): # Run after each test super(BaseTestCasePrivate, self).tearDown() pass
StarcoderdataPython
11325624
import json from .api_detail import APIDetail class File(APIDetail): def __init__(self, session, node=None, location=None, name=None, data=None, wb_data=None, auth=None): super().__init__(session=session, data=data) if wb_data is not None: self._update_from_wb(wb_data=wb_data, auth=auth) elif data is None: self.name = name self.location = location self.type = "file" self.node = node self.session = session def _update_from_wb(self, wb_data, auth=None): auth = auth or self.session.auth wb_attributes = wb_data['data']['attributes'] if wb_attributes['provider'] == 'osfstorage': osf_url = "{}v2/files{}".format(self.session.api_base_url, wb_attributes['path']) else: osf_url = "{}v2/nodes/{}/files/{}{}?info".format( self.session.api_base_url, wb_attributes['resource'], wb_attributes['provider'], wb_attributes['path'] ) response = self.session.get(url=osf_url, auth=auth) self._update(response=response) def get(self, url=None, query_parameters=None, auth=None): if url: self.location = url elif self.links.self: self.location = self.links.self # todo elif node, location, and name response = self.session.get( url=self.location, query_parameters=query_parameters, auth=auth) self._update(response=response) def download(self, query_parameters=None, auth=None): url = self.links.download return self.session.get(url=url, query_parameters=query_parameters, auth=auth) def upload(self, data, query_parameters=None, auth=None): url = self.links.upload query_parameters = query_parameters or {} upload_query_parameters = { 'kind': 'file', } combined_query_parameters = { **query_parameters, **upload_query_parameters} return self.session.put(url=url, query_parameters=combined_query_parameters, raw_body=data, auth=auth) def _move_or_copy(self, to_folder, action, rename=None, conflict=None, query_parameters=None, auth=None): body = { 'action': action, 'path': to_folder.path, 'resource': to_folder.relationships.node['data']['id'], 'provider': to_folder.provider, } if rename: body['rename'] = rename if conflict: body['conflict'] = conflict raw_body = json.JSONEncoder().encode(body) url = self.links.move return self.session.post(url=url, raw_body=raw_body, query_parameters=query_parameters, auth=auth) def move(self, to_folder, rename=None, conflict=None, query_parameters=None, auth=None): moved_file = self._move_or_copy(to_folder=to_folder, action='move', rename=rename, conflict=conflict, query_parameters=query_parameters, auth=auth) self._update_from_wb(wb_data=moved_file, auth=auth) def copy(self, to_folder, rename=None, conflict=None, query_parameters=None, auth=None): new_file = self._move_or_copy(to_folder=to_folder, action='copy', rename=rename, conflict=conflict, query_parameters=query_parameters, auth=auth) return File(session=self.session, wb_data=new_file, auth=auth) def delete(self, query_parameters=None, auth=None): url = self.links.delete return self.session.delete(url=url, item_type=self.type, query_parameters=query_parameters, auth=auth) def rename(self, name, query_parameters=None, auth=None): body = { 'action': 'rename', 'rename': name } raw_body = json.JSONEncoder().encode(body) url = self.links.move response = self.session.post( url=url, raw_body=raw_body, query_parameters=query_parameters, auth=auth) self._update(response=response)
StarcoderdataPython
1817187
<reponame>HIT-SCIR-xuanxuan/OpenKS #!/usr/bin/env python # encoding: utf-8 # File Name: graph_encoder.py # Author: <NAME> # Create Time: 2019/12/31 18:42 # TODO: import dgl import torch import torch.nn as nn import torch.nn.functional as F from dgl.nn.pytorch import Set2Set from ...model import TorchModel from .gat import UnsupervisedGAT from .gin import UnsupervisedGIN from .mpnn import UnsupervisedMPNN from .gcn import UnsupervisedGCN @TorchModel.register("GraphEncoder", "PyTorch") class GraphEncoder(nn.Module): """ MPNN from `Neural Message Passing for Quantum Chemistry <https://arxiv.org/abs/1704.01212>`__ Parameters ---------- node_input_dim : int Dimension of input node feature, default to be 15. edge_input_dim : int Dimension of input edge feature, default to be 15. output_dim : int Dimension of prediction, default to be 12. node_hidden_dim : int Dimension of node feature in hidden layers, default to be 64. edge_hidden_dim : int Dimension of edge feature in hidden layers, default to be 128. num_step_message_passing : int Number of message passing steps, default to be 6. num_step_set2set : int Number of set2set steps num_layer_set2set : int Number of set2set layers """ def __init__( self, positional_embedding_size=32, max_node_freq=8, max_edge_freq=8, max_degree=128, freq_embedding_size=32, degree_embedding_size=32, output_dim=32, node_hidden_dim=32, edge_hidden_dim=32, num_layers=6, num_heads=4, num_step_set2set=6, num_layer_set2set=3, norm=False, gnn_model="mpnn", degree_input=False, lstm_as_gate=False, ): super(GraphEncoder, self).__init__() if degree_input: node_input_dim = positional_embedding_size + degree_embedding_size + 1 else: node_input_dim = positional_embedding_size + 1 # node_input_dim = ( # positional_embedding_size + freq_embedding_size + degree_embedding_size + 3 # ) edge_input_dim = freq_embedding_size + 1 if gnn_model == "mpnn": self.gnn = UnsupervisedMPNN( output_dim=output_dim, node_input_dim=node_input_dim, node_hidden_dim=node_hidden_dim, edge_input_dim=edge_input_dim, edge_hidden_dim=edge_hidden_dim, num_step_message_passing=num_layers, lstm_as_gate=lstm_as_gate, ) elif gnn_model == "gat": self.gnn = UnsupervisedGAT( node_input_dim=node_input_dim, node_hidden_dim=node_hidden_dim, edge_input_dim=edge_input_dim, num_layers=num_layers, num_heads=num_heads, ) elif gnn_model == "gcn": self.gnn = UnsupervisedGCN( hidden_size=node_input_dim, num_layer=num_layers ) elif gnn_model == "gin": self.gnn = UnsupervisedGIN( num_layers=num_layers, num_mlp_layers=2, input_dim=node_input_dim, hidden_dim=node_hidden_dim, output_dim=output_dim, final_dropout=0.5, learn_eps=False, graph_pooling_type="sum", neighbor_pooling_type="sum", use_selayer=False, ) self.gnn_model = gnn_model self.max_node_freq = max_node_freq self.max_edge_freq = max_edge_freq self.max_degree = max_degree self.degree_input = degree_input # self.node_freq_embedding = nn.Embedding( # num_embeddings=max_node_freq + 1, embedding_dim=freq_embedding_size # ) if degree_input: self.degree_embedding = nn.Embedding( num_embeddings=max_degree + 1, embedding_dim=degree_embedding_size ) # self.edge_freq_embedding = nn.Embedding( # num_embeddings=max_edge_freq + 1, embedding_dim=freq_embedding_size # ) self.set2set = Set2Set(node_hidden_dim, num_step_set2set, num_layer_set2set) self.lin_readout = nn.Sequential( nn.Linear(2 * node_hidden_dim, node_hidden_dim), nn.ReLU(), nn.Linear(node_hidden_dim, output_dim), ) self.norm = norm def forward(self, g, return_all_outputs=False): """Predict molecule labels Parameters ---------- g : DGLGraph Input DGLGraph for molecule(s) n_feat : tensor of dtype float32 and shape (B1, D1) Node features. B1 for number of nodes and D1 for the node feature size. e_feat : tensor of dtype float32 and shape (B2, D2) Edge features. B2 for number of edges and D2 for the edge feature size. Returns ------- res : Predicted labels """ # nfreq = g.ndata["nfreq"] if self.degree_input: device = g.ndata["seed"].device degrees = g.in_degrees() if device != torch.device("cpu"): degrees = degrees.cuda(device) n_feat = torch.cat( ( g.ndata["pos_undirected"], self.degree_embedding(degrees.clamp(0, self.max_degree)), g.ndata["seed"].unsqueeze(1).float(), ), dim=-1, ) else: n_feat = torch.cat( ( g.ndata["pos_undirected"], # g.ndata["pos_directed"], # self.node_freq_embedding(nfreq.clamp(0, self.max_node_freq)), # self.degree_embedding(degrees.clamp(0, self.max_degree)), g.ndata["seed"].unsqueeze(1).float(), # nfreq.unsqueeze(1).float() / self.max_node_freq, # degrees.unsqueeze(1).float() / self.max_degree, ), dim=-1, ) # efreq = g.edata["efreq"] # e_feat = torch.cat( # ( # self.edge_freq_embedding(efreq.clamp(0, self.max_edge_freq)), # efreq.unsqueeze(1).float() / self.max_edge_freq, # ), # dim=-1, # ) e_feat = None if self.gnn_model == "gin": x, all_outputs = self.gnn(g, n_feat, e_feat) else: x, all_outputs = self.gnn(g, n_feat, e_feat), None x = self.set2set(g, x) x = self.lin_readout(x) if self.norm: x = F.normalize(x, p=2, dim=-1, eps=1e-5) if return_all_outputs: return x, all_outputs else: return x if __name__ == "__main__": model = GraphEncoder(gnn_model="gin") print(model) g = dgl.DGLGraph() g.add_nodes(3) g.add_edges([0, 0, 1, 2], [1, 2, 2, 1]) g.ndata["pos_directed"] = torch.rand(3, 16) g.ndata["pos_undirected"] = torch.rand(3, 16) g.ndata["seed"] = torch.zeros(3, dtype=torch.long) g.ndata["nfreq"] = torch.ones(3, dtype=torch.long) g.edata["efreq"] = torch.ones(4, dtype=torch.long) g = dgl.batch([g, g, g]) y = model(g) print(y.shape) print(y)
StarcoderdataPython
1870088
from asyncmqtt import MQTTException from asyncmqtt.packet import MQTTFixedHeader, MQTTVariableHeader, MQTTPayload, MQTTPacket, SUBACK, PacketIDVariableHeader from asyncmqtt.util import * class SubackPayload(MQTTPayload): RETURN_CODE_00 = 0x00 RETURN_CODE_01 = 0x01 RETURN_CODE_02 = 0x02 RETURN_CODE_80 = 0x80 def __init__(self, return_codes=[]): self.return_codes = return_codes def __repr__(self): return type(self).__name__ + '(return_codes={0})'.format(repr(self.return_codes)) def to_bytes(self, fixed_header: MQTTFixedHeader, variable_header: MQTTVariableHeader): out = b'' for return_code in self.return_codes: out += int_to_bytes(return_code, 1) return out @classmethod def from_bytes(cls, buffer: bytearray, fixed_header: MQTTFixedHeader, variable_header: MQTTVariableHeader): return_codes = [] length = fixed_header.remaining_length - variable_header.bytes_length for i in range(0, length): return_codes.append(buffer[i]) return cls(return_codes) class SubackPacket(MQTTPacket): VARIABLE_HEADER = PacketIDVariableHeader PAYLOAD = SubackPayload def __init__(self, fixed: MQTTFixedHeader=None, variable_header: PacketIDVariableHeader=None, payload=None): if fixed is None: header = MQTTFixedHeader(SUBACK, 0x00) else: if fixed.packet_type is not SUBACK: raise MQTTException("Invalid fixed packet type %s for SubackPacket init" % fixed.packet_type) header = fixed super().__init__(header) self.variable_header = variable_header self.payload = payload @property def return_codes(self): return self.payload.return_codes @return_codes.setter def return_codes_set(self, return_codes): self.payload.return_codes = return_codes @classmethod def build(cls, packet_id, return_codes): variable_header = cls.VARIABLE_HEADER(packet_id) payload = cls.PAYLOAD(return_codes) return cls(variable_header=variable_header, payload=payload)
StarcoderdataPython
168952
<gh_stars>0 import numpy as np import theano import theano.tensor as T from data import noteStateSingleToInputForm class OutputFormToInputFormOp(theano.Op): # Properties attribute __props__ = () def make_node(self, state, time): state = T.as_tensor_variable(state) time = T.as_tensor_variable(time) return theano.Apply(self, [state, time], [T.bmatrix()]) # Python implementation: def perform(self, node, inputs_storage, output_storage): state, time = inputs_storage output_storage[0][0] = np.array(noteStateSingleToInputForm(state, time), dtype='int8')
StarcoderdataPython
11290500
<filename>tests/test_middleware.py import django from django.core.cache import cache from django.contrib.auth.models import AnonymousUser, User, Group from django.test import TestCase from mock import Mock import mock from groups_cache.compat import is_authenticated from groups_cache.middleware import GroupsCacheMiddleware from groups_cache import signals class TestMiddleware(TestCase): def setUp(self): self.gcm = GroupsCacheMiddleware() self.request = Mock() self.user = Mock(id=123, name='bob') if django.VERSION < (1, 10): self.user.is_authenticated.return_value = True else: self.user.is_authenticated = True def test_request_should_not_cache_anonymous(self): self.request.user = Mock() if django.VERSION < (1, 10): self.request.user.is_authenticated.return_value = False else: self.request.user.is_authenticated = False self.assertEqual(self.gcm.process_request(self.request), None) self.assertIsNone(self.request.groups_cache) cache.clear() def test_request_should_cache_authenticated_user(self): self.request.user = self.user self.user.groups.all.return_value.values_list.return_value = Group.objects.none() self.assertEqual(self.gcm.process_request(self.request), None) self.assertIsInstance(self.request.groups_cache, type(Group.objects.none())) self.assertEqual(len(self.request.groups_cache), 0) cache.clear() def test_request_should_cache_one_group(self): Group.objects.create(name='revelers') self.user.groups.all.return_value.values_list.return_value = Group.objects.all() self.request.user = self.user self.assertEqual(self.gcm.process_request(self.request), None) self.assertIsInstance(self.request.groups_cache, type(Group.objects.none())) self.assertEqual(len(self.request.groups_cache), 1) def test_request_should_hit_cached_one_group(self): self.request.user = self.user self.assertEqual(self.gcm.process_request(self.request), None) self.assertIsInstance(self.request.groups_cache, type(Group.objects.none())) self.assertEqual(len(self.request.groups_cache), 1)
StarcoderdataPython
1774548
""" get/put functions that consume/produce Python lists using Pickle to serialize """ from __future__ import absolute_import from .compatibility import pickle from .encode import Encode from functools import partial def concat(lists): return sum(lists, []) Pickle = partial(Encode, partial(pickle.dumps, protocol=pickle.HIGHEST_PROTOCOL), pickle.loads, concat)
StarcoderdataPython
382817
#1. Import libraries: !pip install keras-bert !pip install bert-tensorflow import sys import codecs import numpy as np from bert import tokenization from keras_bert import load_trained_model_from_checkpoint from keras.models import Model from keras import layers from keras.layers import Input, Dense, BatchNormalization from keras_pos_embd import PositionEmbedding import OpenTextbot.src.Algebra as Algebra import OpenTextbot.src.Compressor as Compressor import OpenTextbot.src.Tokenizer as Tokenizer import OpenTextbot.src.Voronoi as Voronoi #2. Import compressed token vectors and their centroids: folder = '/content/drive/My Drive/RuBERT' Filename = folder+'/ArrayCentroids.txt' ArrayCentroidsImported = Compressor.ImportCentroids(Filename, ListClusterSize=256, SubvectorSize=4) Filename2 = folder+'/ArrayCompressedWE.txt' ArrayCompressedWEImported = Compressor.ImportCompressedWE(Filename2) #3. Method for creating word vector from token vectors for one sentence: def GetWordWE(sentence): sentence = sentence.replace(' [MASK] ','[MASK]') sentence = sentence.replace('[MASK] ','[MASK]') sentence = sentence.replace(' [MASK]','[MASK]') sentence = sentence.split('[MASK]') tokens = ['[CLS]'] for i in range(len(sentence)): if i == 0: tokens = tokens + tokenizer.tokenize(sentence[i]) else: tokens = tokens + ['[MASK]'] + tokenizer.tokenize(sentence[i]) tokens = tokens + ['[SEP]'] token_input = tokenizer.convert_tokens_to_ids(tokens) ListCompressedWE = list() for i in range(len(token_input)): ListCompressedWE.append(ArrayCompressedWEImported[token_input[i]]) ArrayCompressedWE = np.asarray(ListCompressedWE) ArrayWE = Compressor.DecompressListWE(ArrayCompressedWE, ArrayCentroidsImported, 768) ListWordWE = list() ListListWE = list() CurrentListWE = list() for t in range(0, len(tokens)): if '##' in tokens[t]: CurrentListWE.append(ArrayWE[t]) if (t == (len(tokens) - 1)): ListListWE.append(CurrentListWE) ListWordWE.append(Algebra.Mean(CurrentListWE, Type='Cluster')) else: if(len(CurrentListWE) == 0): CurrentListWE.append(ArrayWE[t]) else: ListListWE.append(CurrentListWE) ListWordWE.append(Algebra.Mean(CurrentListWE, Type='Cluster')) CurrentListWE.clear() CurrentListWE.append(ArrayWE[t]) ArrayWordWE = np.asarray(ListWordWE) Length = len(ListWordWE) Array768 = np.zeros(768) for i in range(512-len(ListWordWE)): ListWordWE.append(Array768) ArrayWordWE = np.asarray(ListWordWE) ArrayWordWE = ArrayWordWE.reshape([1, 512, 768]) return ArrayWordWE, Length #4. Create Keras-bert model for WordBERT (you can make the same with TF-2, TF-Keras or PyTorch): folder = '/content/drive/My Drive/RuBERT' config_path = folder + '/bert_config.json' checkpoint_path = folder + '/bert_model.ckpt' vocab_path = folder + '/vocab.txt' tokenizer = tokenization.FullTokenizer(vocab_file=vocab_path, do_lower_case=False) model = load_trained_model_from_checkpoint(config_path, checkpoint_path, training=True) ListLayer = list() a = Input(shape=(512,768), name='InputEmbedding') ListLayer.append(a) ListLayer.append(model.layers[5](ListLayer[len(ListLayer) - 1])) #PositionEmbedding ListLayer.append(model.layers[6](ListLayer[len(ListLayer) - 1])) #Dropout ListLayer.append(model.layers[7](ListLayer[len(ListLayer) - 1])) #LayerNormalization for i in range(0, 12): ListLayer.append(model.layers[8 + 8*i](ListLayer[len(ListLayer) - 1])) ListLayer.append(model.layers[9 + 8*i](ListLayer[len(ListLayer) - 1])) ListLayer.append(model.layers[10 + 8*i]([ListLayer[len(ListLayer) - 3], ListLayer[len(ListLayer) - 1]])) ListLayer.append(model.layers[11 + 8*i](ListLayer[len(ListLayer) - 1])) ListLayer.append(model.layers[12 + 8*i](ListLayer[len(ListLayer) - 1])) ListLayer.append(model.layers[13 + 8*i](ListLayer[len(ListLayer) - 1])) ListLayer.append(model.layers[14 + 8*i]([ListLayer[len(ListLayer) - 3], ListLayer[len(ListLayer) - 1]])) ListLayer.append(model.layers[15 + 8*i](ListLayer[len(ListLayer) - 1])) ListLayer.append(model.layers[104](ListLayer[len(ListLayer) - 1])) ListLayer.append(model.layers[105](ListLayer[len(ListLayer) - 1])) WordModel = Model(inputs=a, outputs=ListLayer[len(ListLayer) - 1]) for layer in WordModel.layers: layer.trainable = False
StarcoderdataPython
1758751
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Skills - SkillLine.dbc - SkillLineAbility.dbc (spell lookups) """ from .. import * from ..globalstrings import * class Skill(Model): @classmethod def getTypeText(self): return { self.MINOR: MINOR_GLYPH, self.MAJOR: MAJOR_GLYPH, self.PRIME: PRIME_GLYPH, }.get(self.obj.type, "") class SkillProxy(object): """ WDBC proxy for skills """ def __init__(self, cls): from pywow import wdbc self.__file = wdbc.get("SkillLine.dbc", build=-1) self.spells = wdbc.get("SkillLineAbility.dbc", build=-1) def get(self, id): return self.__file[id] def getSpells(self, row): from ..spells import Spell lookups = row.skilllineability__skill return [Spell(k._raw("spell")) for k in lookups] Skill.initProxy(SkillProxy)
StarcoderdataPython
3428574
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: UTF-8 -*- import numpy as np from ..constants import Constants from .observatory import Observatory __all__ = ["SDSS"] c = Constants.LIGHTSPEED class SDSS(Observatory): def __init__(self): super().__init__( name="Sloan Digital Sky Survey", acronym="SDSS", filterNames=["u", "g", "r", "i", "z"], filterEffectiveLambdas=np.array([ 3.543e-7, 4.770e-7, 6.231e-7, 7.625e-7, 9.134e-7, ]) )
StarcoderdataPython
3470701
<reponame>KaShing96/hackerrank-challenges # === Imports === import pytest import json import os import functions as fnc from func_timeout import func_timeout as to from func_timeout.exceptions import FunctionTimedOut from datetime import datetime from colorama import Fore from colorama import Style # === Constants === TIMEOUT = 10 TERMINAL_COL = os.get_terminal_size().columns # === Test function === __time = None def clock(reset=False): """ Clock function.""" global __time if not reset: if __time is None: __time = datetime.now() result = __time - __time else: result = datetime.now() - __time __time = datetime.now() return result else: __time = None return datetime.now() - datetime.now() def sclock(reset=False): """Clock function with return as string.""" return str(clock(reset)) def DEBUG(*args, **kwargs): """Debug print function.""" print(*args, **kwargs) def CLOCKBUG(*args, **kwargs): """Debug with clock function.""" args = list(args) args.append(sclock()) args = tuple(args) print(*args, **kwargs) def run_test(f): """Basic function to handle tests.""" # Filename DEBUG() for _ in range(TERMINAL_COL): DEBUG("-", end='') DEBUG("FILENAME:", f) # Reset clock sclock(True) # Open file with open(f, "r") as fr: tests = json.load(fr) CLOCKBUG("File loading:") # List of all exceptions all_exceptions = [] # Running tests for tx, t in enumerate(tests): exceptions = [] tx # Extracting argument and answers json_args = t['arg'].split(' ') json_ans = t['ans'] DEBUG("Arguments:", str(json_args)[:TERMINAL_COL//2]) args = json_args ans = json_ans try: result = to( TIMEOUT, fnc.commonChild, ( args[0], args[1] ) ) except FunctionTimedOut as e: exceptions.append(e) CLOCKBUG("Runtime:") # Check answer try: assert result == ans, args except Exception as e: exceptions.append(e) if len(exceptions) > 0: all_exceptions.append(exceptions) DEBUG() for ex in all_exceptions: for e in ex: assert False, e # if len(all_exceptions) > 0: # assert False, all_exceptions # errors = [] # for tx, t in enumerate(tests): # tx # args = t["arg"].split(' ') # ans = t["ans"] # __start = datetime.now() # try: # result = to( # TIMEOUT, # fnc.commonChild, # ( # args[0], # args[1] # ) # ) # except FunctionTimedOut as e: # errors.append(e, TIMEOUT) # continue # print(datetime.now() - __start) # try: # assert result == ans, args # except Exception as e: # errors.append(e, datetime.now() - __start) # for e in errors: # assert False, e # === Tests === def test_test_values(): """Tests more basic tests.""" run_test("tests.json") def test_verification_values(): run_test("verifications.json") # TODO Unit tests for functions in functions.py
StarcoderdataPython
5025458
from uia import scrape, unidata from time import sleep import pickle from os import path from datetime import datetime from dateutil.relativedelta import relativedelta PICKLE_DIR = 'pickles/' studies = unidata.studies # lazy prototyping means infinite loops instead of cronjobs while True: for study in studies: try: file_time = datetime.fromtimestamp(path.getmtime(PICKLE_DIR + study)) except FileNotFoundError: file_time = datetime.fromtimestamp(0) if file_time < datetime.now() - relativedelta(hours=6): table = {'timetable': scrape.get_timetable(studies[study]['courses']), 'title': studies[study]['title']} with open(PICKLE_DIR + study, 'wb') as f: pickle.dump(table, f) print('pickled {}!'.format(studies[study]['title'])) sleep(21600)
StarcoderdataPython
3568896
#load packages from xml.etree import cElementTree as ET import uuid import os import json import sys ''' get relevant xml attributes and convert to dictonary :param root: xml root for image :return: obs: dictionary for one annotation from the image ''' def get_attributes(root, labels): for object in root.findall('object'): #get image size for scaling size = root.find('size') image_width = size.find('width').text image_height = size.find('height').text #get_attributes label = object.find('name').text labels.add(label) bndbox = object.find('bndbox') xmin = bndbox.find('xmin').text ymin = bndbox.find('ymin').text xmax = bndbox.find('xmax').text ymax = bndbox.find('ymax').text #TODO: bulid in check and error handling for missing data obs = [{'x': float(xmin) / float(image_width), 'x2': float(xmax) / float(image_width), 'y': float(ymin) / float(image_height), 'y2': float(ymax) / float(image_height), 'id': str(uuid.uuid1()), 'label': label}] return obs ''' This funtion converts annotations information from many xml files to one json ''' def main(): # initialize variable labels = set() annotation = {} # configure version = '1.0' type = "localization" rootdir = sys.argv[1] foldername = sys.argv[2] #get annotation attrinutes for ech xml file for _, _, files in os.walk(rootdir): for file in files: if file.endswith('.xml'): path = '/'.join([rootdir, file]) root = ET.parse(path).getroot() annotation['/'.join([foldername, root.find('filename').text])] = get_attributes(root, labels) # only write/overwrite when there was some information from xmls found if annotation: #write results in json annotations = {'version': version, 'type': type, 'labels': list(labels), 'annotations': annotation} with open('/'.join([rootdir, '_annotations.json']), 'w') as outfile: json.dump(annotations, outfile) if __name__ == "__main__": main()
StarcoderdataPython
6509182
# -*- coding: utf-8 -*- from .utils import fetch_menicka, parse_menicka NAME = "<NAME>" URL = "https://www.menicka.cz/5335-spravne-misto.html" RESTAURANT_ID = "5335" def parse_menu(): menicka_html = fetch_menicka(RESTAURANT_ID) return parse_menicka(menicka_html)
StarcoderdataPython
5197328
# -*- coding: utf-8 -*- """Exception classes.""" class APISpecError(Exception): """Base class for all apispec-related errors.""" pass class PluginError(APISpecError): """Raised when a plugin cannot be found or is invalid.""" pass class SwaggerError(APISpecError): """Raised when a swagger validation fails""" pass
StarcoderdataPython
11240994
<reponame>dashhudson/go-links<filename>server/src/migrations/versions/1_11880ac0ca4a_add_lookup_key.py """Add lookup key Revision ID: 11880ac0ca4a Revises: <KEY> Create Date: 2020-08-05 22:52:17.165548 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '11880ac0ca4a' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('short_link', sa.Column('key', sa.String(length=500), nullable=False)) op.create_index(op.f('ix_short_link_key'), 'short_link', ['key'], unique=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_short_link_key'), table_name='short_link') op.drop_column('short_link', 'key') # ### end Alembic commands ###
StarcoderdataPython
3567591
from django.db.backends.postgresql.schema import DatabaseSchemaEditor class SchemaDatabaseSchemaEditor(DatabaseSchemaEditor): def _create_fk_sql(self, model, field, suffix): """Support of our hackish foo\".\"bar table names on FK. Base copy/paste of base _create_fk_sql with character replacement added """ from_table = model._meta.db_table from_column = field.column to_table = field.target_field.model._meta.db_table to_column = field.target_field.column suffix = suffix % { "to_table": to_table.replace('"."', "__"), "to_column": to_column.replace('"."', "__"), } return self.sql_create_fk % { "table": self.quote_name(from_table), "name": self.quote_name(self._create_index_name( model, [from_column], suffix=suffix)), "column": self.quote_name(from_column), "to_table": self.quote_name(to_table), "to_column": self.quote_name(to_column), "deferrable": self.connection.ops.deferrable_sql(), }
StarcoderdataPython
11365087
# coding: utf-8 # Author: <NAME> # Contact: <EMAIL> # Python modules from PyQt5 import QtWidgets, QtCore, QtGui from PyQt5.QtCore import QThread, pyqtSignal import time # Wizard modules from wizard.core import environment from wizard.core import repository from wizard.core import launch from wizard.core import image from wizard.core import assets from wizard.core import project from wizard.vars import ressources # Wizard gui modules from wizard.gui import gui_utils from wizard.gui import gui_server class locks_widget(QtWidgets.QWidget): def __init__(self, parent=None): super(locks_widget, self).__init__(parent) self.setWindowFlags(QtCore.Qt.FramelessWindowHint | QtCore.Qt.ToolTip) self.setAttribute(QtCore.Qt.WA_TranslucentBackground) self.work_env_ids = dict() self.build_ui() self.connect_functions() def connect_functions(self): self.unlock_all_button.clicked.connect(self.unlock_all) def leaveEvent(self, event): self.hide() def build_ui(self): self.setMinimumWidth(550) self.setMinimumHeight(500) self.main_widget_layout = QtWidgets.QHBoxLayout() self.main_widget_layout.setContentsMargins(12, 12, 12, 12) self.setLayout(self.main_widget_layout) self.main_widget = QtWidgets.QFrame() self.main_widget.setObjectName('round_frame') self.main_layout = QtWidgets.QVBoxLayout() self.main_layout.setContentsMargins(0,0,0,0) self.main_layout.setSpacing(6) self.main_widget.setLayout(self.main_layout) self.main_widget_layout.addWidget(self.main_widget) self.shadow = QtWidgets.QGraphicsDropShadowEffect() self.shadow.setBlurRadius(12) self.shadow.setColor(QtGui.QColor(0, 0, 0, 190)) self.shadow.setXOffset(0) self.shadow.setYOffset(0) self.main_widget.setGraphicsEffect(self.shadow) self.header_widget = QtWidgets.QWidget() self.header_widget.setObjectName('dark_widget') self.header_widget.setStyleSheet('#dark_widget{border-top-left-radius:8px;border-top-right-radius:8px;}') self.header_layout = QtWidgets.QHBoxLayout() self.header_layout.setContentsMargins(10,10,10,10) self.header_layout.setSpacing(6) self.header_widget.setLayout(self.header_layout) self.title = QtWidgets.QLabel('Locked work environments') self.header_layout.addWidget(self.title) self.header_layout.addSpacerItem(QtWidgets.QSpacerItem(0,0,QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Fixed)) self.unlock_all_button = QtWidgets.QPushButton('Unlock all') self.unlock_all_button.setStyleSheet('padding:3px;') self.unlock_all_button.setIcon(QtGui.QIcon(ressources._lock_icons_[0])) self.header_layout.addWidget(self.unlock_all_button) self.main_layout.addWidget(self.header_widget) self.info_widget = gui_utils.info_widget(transparent=1) self.info_widget.setVisible(0) self.main_layout.addWidget(self.info_widget) self.work_envs_scrollArea = QtWidgets.QScrollArea() self.work_envs_scrollArea.setObjectName('transparent_widget') self.work_envs_scrollBar = self.work_envs_scrollArea.verticalScrollBar() self.work_envs_scrollArea_widget = QtWidgets.QWidget() self.work_envs_scrollArea_widget.setObjectName('transparent_widget') self.work_envs_scrollArea_layout = QtWidgets.QVBoxLayout() self.work_envs_scrollArea_layout.setContentsMargins(10,10,10,10) self.work_envs_scrollArea_layout.setSpacing(3) self.work_envs_scrollArea_widget.setLayout(self.work_envs_scrollArea_layout) self.work_envs_scrollArea.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.work_envs_scrollArea.setWidgetResizable(True) self.work_envs_scrollArea.setWidget(self.work_envs_scrollArea_widget) self.work_envs_scrollArea_layout.addSpacerItem(QtWidgets.QSpacerItem(0,0,QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding)) self.main_layout.addWidget(self.work_envs_scrollArea) def refresh(self): user_id = repository.get_user_row_by_name(environment.get_user(), 'id') work_env_rows = project.get_user_locks(user_id) project_work_env_ids = [] for work_env_row in work_env_rows: project_work_env_ids.append(work_env_row['id']) if work_env_row['id'] not in self.work_env_ids.keys(): widget = work_env_widget(work_env_row, self) self.work_envs_scrollArea_layout.addWidget(widget) self.work_env_ids[work_env_row['id']] = widget work_env_id_list = list(self.work_env_ids.keys()) for work_env_id in work_env_id_list: if work_env_id not in project_work_env_ids: self.remove_work_env(work_env_id) self.refresh_info_widget() def unlock_all(self): project.unlock_all() gui_server.refresh_team_ui() def remove_work_env(self, work_env_id): if work_env_id in self.work_env_ids.keys(): self.work_env_ids[work_env_id].setParent(None) self.work_env_ids[work_env_id].deleteLater() del self.work_env_ids[work_env_id] def refresh_info_widget(self): if len(self.work_env_ids) == 0: self.work_envs_scrollArea.setVisible(0) self.info_widget.setVisible(1) self.info_widget.setText("No locked\nwork environments !") self.info_widget.setImage(ressources._nothing_info_) else: self.info_widget.setVisible(0) self.work_envs_scrollArea.setVisible(1) def toggle(self): if self.isVisible(): if not self.isActiveWindow(): self.show() self.raise_() gui_utils.move_ui(self) else: self.hide() else: self.show() self.raise_() gui_utils.move_ui(self) class work_env_widget(QtWidgets.QFrame): def __init__(self, work_env_row, parent=None): super(work_env_widget, self).__init__(parent) self.work_env_row = work_env_row self.build_ui() self.fill_ui() self.connect_functions() def fill_ui(self): software = project.get_software_data(self.work_env_row['software_id'], 'name') icon = ressources._sofwares_icons_dic_[software] self.software_icon.setPixmap(QtGui.QIcon(icon).pixmap(26)) work_env_label = assets.instance_to_string(('work_env', self.work_env_row['id'])) self.work_env_label.setText(work_env_label) def connect_functions(self): self.unlock_button.clicked.connect(self.unlock) def unlock(self): project.toggle_lock(self.work_env_row['id']) gui_server.refresh_team_ui() def build_ui(self): self.setObjectName('item_widget_frame') self.main_layout = QtWidgets.QHBoxLayout() self.main_layout.setContentsMargins(10, 10, 10, 10) self.main_layout.setSpacing(6) self.setLayout(self.main_layout) self.software_icon = QtWidgets.QLabel() self.software_icon.setFixedSize(26,26) self.main_layout.addWidget(self.software_icon) self.work_env_label = QtWidgets.QLabel() self.main_layout.addWidget(self.work_env_label) self.unlock_button = QtWidgets.QPushButton() self.unlock_button.setObjectName('locked_button') self.unlock_button.setFixedSize(26,26) self.unlock_button.setIcon(QtGui.QIcon(ressources._lock_icons_[1])) gui_utils.application_tooltip(self.unlock_button, "Unlock software instance") self.main_layout.addWidget(self.unlock_button)
StarcoderdataPython
1820589
<filename>exerc3_sec6.py<gh_stars>1-10 print("CONTAGEM REGRESSIVA:") n = 10 while n > 0: print(n,"!") n = n - 1 print("FIM!")
StarcoderdataPython
11384961
from .login import LoginForm # noqa
StarcoderdataPython
3586972
<gh_stars>0 import unittest from pyiron.lammps.control import LammpsControl class TestLammps(unittest.TestCase): def test_generate_seed_from_job(self): lc = LammpsControl() job_hash_dict = {'job_0_0': lc.generate_seed_from_job(job_name='job_0', seed=0), 'job_0_1': lc.generate_seed_from_job(job_name='job_0', seed=1), 'job_0_2': lc.generate_seed_from_job(job_name='job_0', seed=2), 'job_1_0': lc.generate_seed_from_job(job_name='job_1', seed=0), 'job_1_1': lc.generate_seed_from_job(job_name='job_1', seed=1), 'job_1_2': lc.generate_seed_from_job(job_name='job_1', seed=2)} self.assertEqual(job_hash_dict['job_0_0'], 94639) self.assertEqual(job_hash_dict['job_0_1'], 84051) self.assertEqual(job_hash_dict['job_0_2'], 50062) self.assertEqual(job_hash_dict['job_1_0'], 84649) self.assertEqual(job_hash_dict['job_1_1'], 99268) self.assertEqual(job_hash_dict['job_1_2'], 45752) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1799261
<reponame>RiccardoVaccari/Groovy2.0 from src.database.model import DiscordServer, Track, Radio from pony.orm import db_session, select class Server: @db_session def __init__(self, guild): self.id = str(guild.id) self.name = guild.name if not self.get(): new_server = DiscordServer( ID = self.id, name = self.name, index=0, radio_index=0 ) @db_session def get(self): return DiscordServer.get(ID=self.id) @db_session def set_value(self, value): server = self.get() server.set(**value) return server @db_session def get_queue(self): queue = select(track for track in Track if track.DiscordServerID.ID == self.id)[:] queue.sort(key=lambda track: track.position) return queue @db_session def delete_track(self, track_position): track = Track.get(position=track_position, DiscordServerID=self.get()) track.delete() @db_session def load_track(self, new_track): t = Track(**new_track) @db_session def get_track(self, position): t = Track.get(DiscordServerID = self.id, position=position) return t @db_session def load_radio(self, radio): radio = Radio.get(ID=radio.ID) self.set_value({ "radio": radio, "radio_index": radio.ID }) @property def radio_on(self): return self.get().radio
StarcoderdataPython
6652747
""" File: Runner.py License: Part of the PIRA project. Licensed under BSD 3 clause license. See LICENSE.txt file at https://github.com/jplehr/pira/LICENSE.txt Description: Module to run the target software. """ import sys sys.path.append('..') import lib.Utility as U import lib.Logging as L import lib.FunctorManagement as F import lib.Measurement as M import lib.DefaultFlags as D import lib.ProfileSink as S from lib.Configuration import PiraConfig, TargetConfig, InstrumentConfig, InvocationConfig import typing class Runner: pass class LocalBaseRunner(Runner): """ The base class for execution on the same machine. It implements the basic *run* method, which invokes the target. """ def __init__(self, configuration: PiraConfig, sink): """ Runner are initialized once with a PiraConfiguration """ self._config = configuration self._sink = sink def has_sink(self) -> bool: if self._sink is None: return False if isinstance(self._sink, S.NopSink): return False return True def get_sink(self): return self._sink def run(self, target_config: TargetConfig, instrument_config: InstrumentConfig, ) -> float: """ Implements the actual invocation """ functor_manager = F.FunctorManager() run_functor = functor_manager.get_or_load_functor(target_config.get_build(), target_config.get_target(), target_config.get_flavor(), 'run') default_provider = D.BackendDefaults() kwargs = default_provider.get_default_kwargs() kwargs['util'] = U kwargs['LD_PRELOAD'] = default_provider.get_MPI_wrap_LD_PRELOAD() runtime = .0 if run_functor.get_method()['active']: run_functor.active(target_config.get_target(), **kwargs) L.get_logger().log('For the active functor we can barely measure runtime', level='warn') runtime = 1.0 try: U.change_cwd(target_config.get_place()) invoke_arguments = target_config.get_args_for_invocation() kwargs['args'] = invoke_arguments if invoke_arguments is not None: L.get_logger().log('LocalBaseRunner::run: (args) ' + str(invoke_arguments)) command = run_functor.passive(target_config.get_target(), **kwargs) _, runtime = U.shell(command, time_invoc=True) L.get_logger().log( 'LocalBaseRunner::run::passive_invocation -> Returned runtime: ' + str(runtime), level='debug') except Exception as e: L.get_logger().log('LocalBaseRunner::run Exception\n' + str(e), level='error') raise RuntimeError('LocalBaseRunner::run caught exception. ' + str(e)) # TODO: Insert the data into the database return runtime class LocalRunner(LocalBaseRunner): """ The LocalRunner invokes the target application with the first argument string given in the config. For scalability studies, i.e., iterate over all given input sizes, use the LocalScalingRunner. """ def __init__(self, configuration: PiraConfig, sink): """ Runner are initialized once with a PiraConfiguration """ super().__init__(configuration, sink) self._num_repetitions = InvocationConfig.get_instance().get_num_repetitions() def get_num_repetitions(self) -> int: return self._num_repetitions def do_baseline_run(self, target_config: TargetConfig) -> M.RunResult: L.get_logger().log('LocalRunner::do_baseline_run') accu_runtime = .0 if not target_config.has_args_for_invocation(): L.get_logger().log('LocalRunner::do_baseline_run: BEGIN not target_config.has_args_for_invocation()') # This runner only takes into account the first argument string (if not already set) args = self._config.get_args(target_config.get_build(), target_config.get_target()) L.get_logger().log('LocalRunner::do_baseline_run: args: ' + str(args)) target_config.set_args_for_invocation(args[0]) L.get_logger().log('LocalRunner::do_baseline_run: END not target_config.has_args_for_invocation()') # TODO Better evaluation of the obtained timings. time_series = M.RunResultSeries(reps=self.get_num_repetitions()) for y in range(0, self.get_num_repetitions()): L.get_logger().log('LocalRunner::do_baseline_run: Running iteration ' + str(y), level='debug') l_runtime = self.run(target_config, InstrumentConfig()) accu_runtime += l_runtime time_series.add_values(l_runtime, self.get_num_repetitions()) run_result = M.RunResult(accu_runtime, self.get_num_repetitions()) L.get_logger().log('[Vanilla][RUNTIME] Vanilla avg: ' + str(run_result.get_average()) + '\n', level='perf') L.get_logger().log('[Vanilla][RTSeries] Average: ' + str(time_series.get_average()), level='perf') L.get_logger().log('[Vanilla][RTSeries] Median: ' + str(time_series.get_median()), level='perf') L.get_logger().log('[Vanilla][RTSeries] Stdev: ' + str(time_series.get_stdev()), level='perf') L.get_logger().log('[Vanilla][REPETITION SUM] Vanilla sum: ' + str(time_series.get_accumulated_runtime()), level='perf') return time_series def do_profile_run(self, target_config: TargetConfig, instr_iteration: int) -> M.RunResult: L.get_logger().log( 'LocalRunner::do_profile_run: Received instrumentation file: ' + target_config.get_instr_file(), level='debug') scorep_helper = M.ScorepSystemHelper(self._config) instrument_config = InstrumentConfig(True, instr_iteration) scorep_helper.set_up(target_config, instrument_config) runtime = .0 if not target_config.has_args_for_invocation(): # This runner only takes into account the first argument string (if not already set) args = self._config.get_args(target_config.get_build(), target_config.get_target()) target_config.set_args_for_invocation(args[0]) time_series = M.RunResultSeries(reps=self.get_num_repetitions()) for y in range(0, self._num_repetitions): L.get_logger().log('LocalRunner::do_profile_run: Running instrumentation iteration ' + str(y), level='debug') l_runtime = self.run(target_config, instrument_config) runtime += l_runtime time_series.add_values(l_runtime, self.get_num_repetitions()) # Enable further processing of the resulting profile self._sink.process(scorep_helper.get_exp_dir(), target_config, instrument_config) run_result = M.RunResult(runtime, self.get_num_repetitions()) L.get_logger().log( '[Instrument][RUNTIME] $' + str(instr_iteration) + '$ ' + str(run_result.get_average()), level='perf') L.get_logger().log('[Instrument][RTSeries] Average: ' + str(time_series.get_average()), level='perf') L.get_logger().log('[Instrument][RTSeries] Median: ' + str(time_series.get_median()), level='perf') L.get_logger().log('[Instrument][RTSeries] Stdev: ' + str(time_series.get_stdev()), level='perf') return time_series class LocalScalingRunner(LocalRunner): """ The LocalScalingRunner performs measurements related to Extra-P modelling. The arguments given in the configuration are treated as the different input sizes, i.e., the first string is the smallest input configuration, the second is the next larger configuration, etc. """ def __init__(self, configuration: PiraConfig, sink): super().__init__(configuration, sink) def do_profile_run(self, target_config: TargetConfig, instr_iteration: int) -> M.RunResult: L.get_logger().log('LocalScalingRunner::do_profile_run') # We run as many experiments as we have input data configs # TODO: How to handle the model parameter <-> input parameter relation, do we care? args = self._config.get_args(target_config.get_build(), target_config.get_target()) # TODO: How to handle multiple MeasurementResult items? We get a vector of these after this function. #run_result = M.RunResult() run_result = M.RunResultSeries(reps=self.get_num_repetitions(), num_data_sets=5) for arg_cfg in args: # Call the runner method with the correct arguments. target_config.set_args_for_invocation(arg_cfg) rr = super().do_profile_run(target_config, instr_iteration) run_result.add_from(rr) # At this point we have all the data we need to construct an Extra-P model return run_result def do_baseline_run(self, target_config: TargetConfig) -> M.RunResult: L.get_logger().log('LocalScalingRunner::do_baseline_run') args = self._config.get_args(target_config.get_build(), target_config.get_target()) #run_result = M.RunResult() run_result = M.RunResultSeries(reps=self.get_num_repetitions(), num_data_sets=5) for arg_cfg in args: target_config.set_args_for_invocation(arg_cfg) rr = super().do_baseline_run(target_config) run_result.add_from(rr) return run_result class SlurmRunner(Runner): """ TODO This runner executes the measurements on a slurm allocated job. """ pass
StarcoderdataPython
9668199
# Grafiek positief getest naar leeftijd door de tijd heen, per leeftijdscategorie # <NAME>, (@rcsmit) - MIT Licence # IN: tabel met positief aantal testen en totaal aantal testen per week, gecategoriseerd naar leeftijd # handmatig overgenomen uit Tabel 14 vh wekelijkse rapport van RIVM # Wekelijkse update epidemiologische situatie COVID-19 in Nederland # https://www.rivm.nl/coronavirus-covid-19/actueel/wekelijkse-update-epidemiologische-situatie-covid-19-in-nederland # Uitdagingen : Kopieren en bewerken Tabel 14. 3 verschillende leeftijdsindelingen. Tot dec. 2020 alles # cummulatief. X-as in de grafiek # TODO : - Nog enkele weken toevoegen voorafgaand het huidige begin in de datafile (waren weken met weinig besmettingen). # - integreren in het dashboard # - 'Total reported' toevoegen import pandas as pd import matplotlib.pyplot as plt import numpy as np def save_df(df,name): """ _ _ _ """ OUTPUT_DIR = 'C:\\Users\\rcxsm\\Documents\\phyton_scripts\\covid19_seir_models\\output\\' name_ = OUTPUT_DIR + name+'.csv' compression_opts = dict(method=None, archive_name=name_) df.to_csv(name_, index=False, compression=compression_opts) print ("--- Saving "+ name_ + " ---" ) def main(): #url = "C:\\Users\\rcxsm\\Documents\\phyton_scripts\\covid19_seir_models\\input\\covid19_seir_models\input\pos_test_leeftijdscat_wekelijks.csv" url= "https://raw.githubusercontent.com/rcsmit/COVIDcases/main/pos_test_leeftijdscat_wekelijks.csv" to_show_in_graph = [ "18-24", "25-29", "30-39", "40-49", "50-59", "60-69", "70+"] #id;datum;leeftijdscat;methode;mannen_pos;mannen_getest;vrouwen_pos ;vrouwen_getest ; # totaal_pos;totaal_getest;weeknr2021;van2021;tot2021 df = pd.read_csv(url, delimiter=";", low_memory=False) df["datum"]=pd.to_datetime(df["datum"], format='%d-%m-%Y') list_dates = df["datum"].unique() cat_oud = [ "0-4", "05-09", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40-44", "45-49", "50-54", "55-59", "60-64", "65-69", "70-74", "75-79", "80-84", "85-89", "90-94", "95+" ] cat_vervanging = [ "0-4", "05-09", "10-14", "15-19", "20-29", "20-29", "30-39", "30-39", "40-49", "40-49", "50-59", "50-59", "60-69", "60-69", "70+", "70+", "70+", "70+", "70+", "70+" ] cat_nieuw = [ "0-12", "13-17", "18-24", "25-29", "30-39", "40-49", "50-59", "60-69", "70+", "Niet vermeld"] cat_nieuwst_code =["A", "B", "C", "D", "E", "F" "G", "H", "I", "J", "K"] cat_nieuwst= ["0-3", "04-12", "13-17", "18-24", "25-29", "30-39", "40-49", "50-59", "60-69", "70+", "Niet vermeld"] # Deze grafieken komen uiteindelijk voort in de grafiek cat_nieuwstx= ["0-12", "0-03", "04-12", "13-17", "18-24", "25-29", "30-39", "40-49", "50-59", "60-69", "70+", "Niet vermeld"] ##################################################### df_new= pd.DataFrame({'date': [],'cat_oud': [], 'cat_nieuw': [], "positief_testen": [],"totaal_testen": [], "methode":[]}) for i in range(len(df)): d = df.loc[i, "datum"] for x in range(len(cat_oud)-1): c_o,c,p,t,m = None,None,None,None,None if df.loc[i, "methode"] == "oud": # print (df.loc[i, "leeftijdscat"]) # print (f"----{df.loc[i, 'leeftijdscat']}----{cat_oud[x]}----") if df.loc[i, "leeftijdscat"] == cat_oud[x]: c_o = cat_oud[x] c = cat_vervanging[x] # print (f"{c} - {i} - {x} ") # print (f"----{df.loc[i, 'leeftijdscat']}----{cat_oud[x]}----") p =df.loc[i, "totaal_pos"] t = df.loc[i, "totaal_getest"] m = df.loc[i, "methode"] == "oud" df_new = df_new.append({ 'date': d, 'cat_oud': c_o, 'cat_nieuw': c, "positief_testen": p,"totaal_testen":t, "methode": m}, ignore_index= True) c_o,c,p,t,m = None,None,None,None,None elif ( x <= len(cat_nieuwstx) - 1 and df.loc[i, "leeftijdscat"] == cat_nieuwstx[x] ): c_o = df.loc[i, "leeftijdscat"] c = df.loc[i, "leeftijdscat"] p =df.loc[i, "totaal_pos"] t = df.loc[i, "totaal_getest"] m = df.loc[i, "methode"] df_new = df_new.append({ 'date': d, 'cat_oud': c_o, 'cat_nieuw': c, "positief_testen": p,"totaal_testen":t, "methode": m}, ignore_index= True) c_o,c,p,t,m = None,None,None,None,None df_new = df_new.groupby(['date','cat_nieuw'], sort=True).sum().reset_index() df_new['percentage'] = round((df_new['positief_testen']/df_new['totaal_testen']*100),1) show_from = "2020-1-1" show_until = "2030-1-1" startdate = pd.to_datetime(show_from).date() enddate = pd.to_datetime(show_until).date() datumveld = 'date' mask = (df_new[datumveld].dt.date >= startdate) & (df_new[datumveld].dt.date <= enddate) df_new = df_new.loc[mask] print (f'Totaal aantal positieve testen : {df_new["positief_testen"].sum()}') print (f'Totaal aantal testen : {df_new["totaal_testen"].sum()}') print (f'Percentage positief : { round (( 100 * df_new["positief_testen"].sum() / df_new["totaal_testen"].sum() ),2) }') list_age_groups = df_new["cat_nieuw"].unique() fig1x, ax = plt.subplots(1,1) for l in to_show_in_graph: df_temp = df_new[df_new['cat_nieuw']==l] list_percentage = df_temp["percentage"].tolist() list_dates = df_temp["date"].tolist() plt.plot(list_dates, list_percentage, label = l) ax.text(1, 1.1, 'Created by <NAME> — @rcsmit', transform=ax.transAxes, fontsize='xx-small', va='top', ha='right') plt.title("Percentage Positieve testen per agegroup" , fontsize=10) plt.legend(bbox_to_anchor=(1.3, 1),loc="best") plt.tight_layout() plt.show() main()
StarcoderdataPython
9752967
<filename>metpy/calc/thermo.py<gh_stars>1-10 # Copyright (c) 2008-2015 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause from __future__ import division import numpy as np import scipy.integrate as si from ..package_tools import Exporter from ..constants import epsilon, kappa, P0, Rd, Lv, Cp_d from ..units import atleast_1d, concatenate, units exporter = Exporter(globals()) sat_pressure_0c = 6.112 * units.millibar @exporter.export def potential_temperature(pressure, temperature): r'''Calculate the potential temperature. Uses the Poisson equation to calculation the potential temperature given `pressure` and `temperature`. Parameters ---------- pressure : array_like The total atmospheric pressure temperature : array_like The temperature Returns ------- array_like The potential temperature corresponding to the the temperature and pressure. See Also -------- dry_lapse Notes ----- Formula: .. math:: \Theta = T (P_0 / P)^\kappa Examples -------- >>> from metpy.units import units >>> metpy.calc.potential_temperature(800. * units.mbar, 273. * units.kelvin) 290.9814150577374 ''' return temperature * (P0 / pressure)**kappa @exporter.export def dry_lapse(pressure, temperature): r'''Calculate the temperature at a level assuming only dry processes operating from the starting point. This function lifts a parcel starting at `temperature`, conserving potential temperature. The starting pressure should be the first item in the `pressure` array. Parameters ---------- pressure : array_like The atmospheric pressure level(s) of interest temperature : array_like The starting temperature Returns ------- array_like The resulting parcel temperature at levels given by `pressure` See Also -------- moist_lapse : Calculate parcel temperature assuming liquid saturation processes parcel_profile : Calculate complete parcel profile potential_temperature ''' return temperature * (pressure / pressure[0])**kappa @exporter.export def moist_lapse(pressure, temperature): r''' Calculate the temperature at a level assuming liquid saturation processes operating from the starting point. This function lifts a parcel starting at `temperature`. The starting pressure should be the first item in the `pressure` array. Essentially, this function is calculating moist pseudo-adiabats. Parameters ---------- pressure : array_like The atmospheric pressure level(s) of interest temperature : array_like The starting temperature Returns ------- array_like The temperature corresponding to the the starting temperature and pressure levels. See Also -------- dry_lapse : Calculate parcel temperature assuming dry adiabatic processes parcel_profile : Calculate complete parcel profile Notes ----- This function is implemented by integrating the following differential equation: .. math:: \frac{dT}{dP} = \frac{1}{P} \frac{R_d T + L_v r_s} {C_{pd} + \frac{L_v^2 r_s \epsilon}{R_d T^2}} This equation comes from [1]_. References ---------- .. [1] <NAME>. and <NAME>, 2013: Saturated Pseudoadiabats--A Noniterative Approximation. J. Appl. Meteor. Clim., 52, 5-15. ''' def dt(t, p): t = units.Quantity(t, temperature.units) p = units.Quantity(p, pressure.units) rs = mixing_ratio(saturation_vapor_pressure(t), p) return (1. / p) * ((Rd * t + Lv * rs) / (Cp_d + (Lv * Lv * rs * epsilon / (Rd * t * t)))) return units.Quantity(si.odeint(dt, atleast_1d(temperature).squeeze(), pressure.squeeze()).T.squeeze(), temperature.units) @exporter.export def lcl(pressure, temperature, dewpt, max_iters=50, eps=1e-2): r'''Calculate the lifted condensation level (LCL) using from the starting point. The starting state for the parcel is defined by `temperature`, `dewpoint`, and `pressure`. Parameters ---------- pressure : array_like The starting atmospheric pressure temperature : array_like The starting temperature dewpt : array_like The starting dew point Returns ------- array_like The LCL Other Parameters ---------------- max_iters : int, optional The maximum number of iterations to use in calculation, defaults to 50. eps : float, optional The desired absolute error in the calculated value, defaults to 1e-2. See Also -------- parcel_profile Notes ----- This function is implemented using an iterative approach to solve for the LCL. The basic algorithm is: 1. Find the dew point from the LCL pressure and starting mixing ratio 2. Find the LCL pressure from the starting temperature and dewpoint 3. Iterate until convergence The function is guaranteed to finish by virtue of the `maxIters` counter. ''' w = mixing_ratio(saturation_vapor_pressure(dewpt), pressure) p = pressure eps = units.Quantity(eps, p.units) while max_iters: td = dewpoint(vapor_pressure(p, w)) new_p = pressure * (td / temperature) ** (1. / kappa) if np.abs(new_p - p).max() < eps: break p = new_p max_iters -= 1 return new_p @exporter.export def parcel_profile(pressure, temperature, dewpt): r'''Calculate the profile a parcel takes through the atmosphere, lifting from the starting point. The parcel starts at `temperature`, and `dewpt`, lifted up dry adiabatically to the LCL, and then moist adiabatically from there. `pressure` specifies the pressure levels for the profile. Parameters ---------- pressure : array_like The atmospheric pressure level(s) of interest. The first entry should be the starting point pressure. temperature : array_like The starting temperature dewpt : array_like The starting dew point Returns ------- array_like The parcel temperatures at the specified pressure levels. See Also -------- lcl, moist_lapse, dry_lapse ''' # Find the LCL l = lcl(pressure[0], temperature, dewpt).to(pressure.units) # Find the dry adiabatic profile, *including* the LCL press_lower = concatenate((pressure[pressure > l], l)) t1 = dry_lapse(press_lower, temperature) # Find moist pseudo-adiabatic profile starting at the LCL press_upper = concatenate((l, pressure[pressure < l])) t2 = moist_lapse(press_upper, t1[-1]).to(t1.units) # Return LCL *without* the LCL point return concatenate((t1[:-1], t2[1:])) @exporter.export def vapor_pressure(pressure, mixing): r'''Calculate water vapor (partial) pressure Given total `pressure` and water vapor `mixing` ratio, calculates the partial pressure of water vapor. Parameters ---------- pressure : array_like total atmospheric pressure mixing : array_like dimensionless mass mixing ratio Returns ------- array_like The ambient water vapor (partial) pressure in the same units as `pressure`. See Also -------- saturation_vapor_pressure, dewpoint ''' return pressure * mixing / (epsilon + mixing) @exporter.export def saturation_vapor_pressure(temperature): r'''Calculate the saturation water vapor (partial) pressure Parameters ---------- temperature : array_like The temperature Returns ------- array_like The saturation water vapor (partial) pressure See Also -------- vapor_pressure, dewpoint Notes ----- Instead of temperature, dewpoint may be used in order to calculate the actual (ambient) water vapor (partial) pressure. The formula used is that from Bolton 1980 [2] for T in degrees Celsius: .. math:: 6.112 e^\frac{17.67T}{T + 243.5} References ---------- .. [2] <NAME>., 1980: The Computation of Equivalent Potential Temperature. Mon. Wea. Rev., 108, 1046-1053. ''' # Converted from original in terms of C to use kelvin. Using raw absolute values of C in # a formula plays havoc with units support. return sat_pressure_0c * np.exp(17.67 * (temperature - 273.15 * units.kelvin) / (temperature - 29.65 * units.kelvin)) @exporter.export def dewpoint_rh(temperature, rh): r'''Calculate the ambient dewpoint given air temperature and relative humidity. Parameters ---------- temperature : array_like Air temperature rh : array_like Relative humidity expressed as a ratio in the range [0, 1] Returns ------- array_like The dew point temperature See Also -------- dewpoint, saturation_vapor_pressure ''' return dewpoint(rh * saturation_vapor_pressure(temperature)) @exporter.export def dewpoint(e): r'''Calculate the ambient dewpoint given the vapor pressure. Parameters ---------- e : array_like Water vapor partial pressure Returns ------- array_like Dew point temperature See Also -------- dewpoint_rh, saturation_vapor_pressure, vapor_pressure Notes ----- This function inverts the Bolton 1980 [3] formula for saturation vapor pressure to instead calculate the temperature. This yield the following formula for dewpoint in degrees Celsius: .. math:: T = \frac{243.5 log(e / 6.112)}{17.67 - log(e / 6.112)} References ---------- .. [3] <NAME>., 1980: The Computation of Equivalent Potential Temperature. Mon. Wea. Rev., 108, 1046-1053. ''' val = np.log(e / sat_pressure_0c) return 0. * units.degC + 243.5 * units.delta_degC * val / (17.67 - val) @exporter.export def mixing_ratio(part_press, tot_press): r'''Calculates the mixing ratio of gas given its partial pressure and the total pressure of the air. There are no required units for the input arrays, other than that they have the same units. Parameters ---------- part_press : array_like Partial pressure of the constituent gas tot_press : array_like Total air pressure Returns ------- array_like The (mass) mixing ratio, dimensionless (e.g. Kg/Kg or g/g) See Also -------- vapor_pressure ''' return epsilon * part_press / (tot_press - part_press)
StarcoderdataPython
6554562
<reponame>karolyi/forum-django from django.urls.conf import path from .views.frontend import ( TopicCommentListingView, TopicExpandCommentsDownView, TopicExpandCommentsUpView, TopicExpandRepliesUpRecursive, TopicListView) urlpatterns_base = [ path(route=r'', view=TopicListView.as_view(), name='topic-listing'), path( route='topic/<slug:topic_slug>/', view=TopicCommentListingView.as_view(), name='topic-comment-listing'), path( route='topic/<slug:topic_slug>/<int:comment_pk>/', view=TopicCommentListingView.as_view(), name='topic-comment-listing'), path( route='comments-up-recursive/<slug:topic_slug>/<int:comment_pk>' '/<int:scroll_to_pk>/', view=TopicExpandRepliesUpRecursive.as_view(), name='comments-up-recursive'), path( route=( 'comments-up/<slug:topic_slug>/' '<int:comment_pk>/<int:scroll_to_pk>/'), view=TopicExpandCommentsUpView.as_view(), name='comments-up'), path( route=( 'comments-down/<slug:topic_slug>/' '<int:comment_pk>/<int:scroll_to_pk>/'), view=TopicExpandCommentsDownView.as_view(), name='comments-down'), ]
StarcoderdataPython
47260
tutor = "codi" print(tutor)
StarcoderdataPython
5078709
# Copyright (c) 2019 Works Applications Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import re from queue import PriorityQueue from . import categorytype class CharacterCategory(object): class Range(object): def __lt__(self, other): return self.high < other.high def __init__(self, low=0, high=0, categories=None): self.low = low self.high = high self.categories = categories or [] def contains(self, cp): return self.low <= cp < self.high def containing_length(self, text): for i in range(len(text)): c = ord(text[i]) if c < self.low or c > self.high: return i return len(text) def lower(self, cp): return self.high <= cp def higher(self, cp): return self.low > cp def match(self, other): return self.low == other.low and self.high == other.high def __init__(self): self.range_list = [] def _compile(self) -> None: """ _compile transforms self.range_list to non overlapped range list to apply binary search in get_category_types :return: """ self.range_list.sort(key=lambda x: x.high) self.range_list.sort(key=lambda x: x.low) new_range_list = [] left_chain = PriorityQueue() right_chain = self.range_list states = [] pivot = 0 while True: if left_chain.empty(): if not right_chain: break right = right_chain.pop(0) left_chain.put(right) pivot = right.low states.extend(right.categories) continue left = left_chain.get() right = right_chain[0] if right_chain else None left_end = left.high right_begin = right.low if right else math.inf if left_end <= right_begin: new_range_list.append(self.Range(pivot, left_end, set(states))) pivot = left_end for cat in left.categories: states.remove(cat) continue else: new_range_list.append(self.Range(pivot, right_begin, set(states))) pivot = right_begin states.extend(right.categories) left_chain.put(right) left_chain.put(left) right_chain.pop(0) self.range_list = [] _range = new_range_list[0] for irange in new_range_list[1:]: if irange.low == _range.high and irange.categories == _range.categories: _range = self.Range(_range.low, irange.high, _range.categories) else: self.range_list.append(_range) _range = irange self.range_list.append(_range) def get_category_types(self, code_point): begin = 0 n = len(self.range_list) end = n pivot = (begin + end) // 2 while 0 <= pivot < n: range_ = self.range_list[pivot] if range_.contains(code_point): return range_.categories if range_.lower(code_point): begin = pivot else: # range_.higher(code_point) end = pivot new_pivot = (begin + end) // 2 if new_pivot == pivot: break pivot = new_pivot return {categorytype.CategoryType.DEFAULT} def read_character_definition(self, char_def=None): """ :param char_def: path """ if char_def is not None: f = open(char_def, 'r', encoding="utf-8") else: f = open("char.def", 'r', encoding="utf-8") for i, line in enumerate(f.readlines()): line = line.rstrip() if re.fullmatch(r"\s*", line) or re.match("#", line): continue cols = re.split(r"\s+", line) if len(cols) < 2: f.close() raise AttributeError("invalid format at line {}".format(i)) if not re.match("0x", cols[0]): continue range_ = self.Range() r = re.split("\\.\\.", cols[0]) range_.low = int(r[0], 16) range_.high = range_.low + 1 if len(r) > 1: range_.high = int(r[1], 16) + 1 if range_.low >= range_.high: f.close() raise AttributeError("invalid range at line {}".format(i)) for j in range(1, len(cols)): if re.match("#", cols[j]) or cols[j] == '': break type_ = categorytype.CategoryType.get(cols[j]) if type_ is None: f.close() raise AttributeError("{} is invalid type at line {}".format(cols[j], i)) range_.categories.append(type_) self.range_list.append(range_) f.close() self._compile()
StarcoderdataPython
6572120
<gh_stars>0 import datetime import boto3 import botocore import os import re def find_tag(key, tags): return next((tag['Value'] for tag in tags if tag['Key'] == key), None) def ipv4_ptr_fqdn(address): return '%s.in-addr.arpa.' % ('.'.join(reversed(address.split('.')))) def ipv4_amazon_name(address): return 'ip-%s' % (address.replace('.','-')) dns_label_regexp = re.compile('\A(?!-)[a-zA-Z0-9-]{1,63}(?<!-)\Z') def is_valid_dns_label(name): return dns_label_regexp.match(name) class AwsAdapter(): def __init__(self, region, vpc_dns_name_tag='Name'): self.ec2 = boto3.client('ec2', region) self.r53 = boto3.client('route53', 'us-east-1') self.vpc_dns_name_tag = vpc_dns_name_tag self.vpcs_cache = {} self.cache_duration = 600 def prefetch_vpc_names(self,vpc_ids): now = datetime.datetime.now().replace(tzinfo=None) vpc_ids_to_fetch = [x for x in vpc_ids if self.vpcs_cache.get(x) == None or (now - self.vpcs_cache[x]['ts']).total_seconds() > self.cache_duration] if len(vpc_ids_to_fetch) == 0: return print("VPC FETCH: %s" % (vpc_ids_to_fetch)) vpcs = self.ec2.describe_vpcs(VpcIds=vpc_ids_to_fetch)['Vpcs'] for vpc in vpcs: name = find_tag(self.vpc_dns_name_tag, vpc.get('Tags', [])) if name: if not is_valid_dns_label(name): print("! Invalid VPC name: %s" % (name)) return self.vpcs_cache[vpc['VpcId']] = {'ts': now, 'name': name} def fetch_vpc_name(self, vpc_id): self.prefetch_vpc_names([vpc_id]) cache_entry = self.vpcs_cache[vpc_id] if cache_entry: return cache_entry['name'] else: return None def ec2_instances_by_name(self, name): print("ec2:DescribeInstances (name): %s" % (name)) pager = self.ec2.get_paginator('describe_instances').paginate(Filters=[{'Name': 'tag:Name','Values': [name]}]) return [i for r in pager.search('Reservations') for i in r['Instances']] def ec2_instances_by_ids(self, ids): print("ec2:DescribeInstances (IDs): %s" % (ids)) pager = self.ec2.get_paginator('describe_instances').paginate(InstanceIds=list(ids)) return [i for r in pager.search('Reservations') for i in r['Instances']] def r53_get_rrset(self, zone, name, rtype): res = self.r53.list_resource_record_sets( HostedZoneId=zone, StartRecordName=name, StartRecordType=rtype, MaxItems='1', ) if len(res['ResourceRecordSets']) == 0: return None rrset = res['ResourceRecordSets'][0] if rrset['Name'] != name: return None return rrset def r53_change_rrsets(self, zone, changes, ignore_invalid_change_batch=False): print("R53 change(%s):" % (zone)) for change in changes: rrset = change['ResourceRecordSet'] print("R53 change(%s) [%s] %s %s %s" % (zone, change['Action'], rrset['Name'], rrset['Type'], rrset['ResourceRecords'])) try: return self.r53.change_resource_record_sets(HostedZoneId=zone, ChangeBatch={'Comment': 'ec2-r53', 'Changes': changes}) except self.r53.exceptions.InvalidChangeBatch: if ignore_invalid_change_batch: return None raise class MockAdapter(): def __init__(self): self.vpc_names = {} self.ec2_instances = [] self.r53_received_change_sets = {} self.r53_error_on_rrset_deletion = False def prefetch_vpc_names(self, vpc_ids): return def fetch_vpc_name(self, vpc_id): return self.vpc_names[vpc_id] def ec2_instances_by_name(self, name): return [i for i in self.ec2_instances if find_tag('Name', i.get('Tags', [])) == name] def ec2_instances_by_ids(self, instance_ids): ids = set(instance_ids) return [i for i in self.ec2_instances if i['InstanceId'] in ids] def r53_get_rrset(self, zone, name, rtype): # FIXME: return None def r53_change_rrsets(self, zone, changes, ignore_invalid_change_batch=False): if self.r53_error_on_rrset_deletion: for x in changes: if x['Action'] == 'DELETE': if ignore_invalid_change_batch: return raise boto3.client('route53', 'us-east-1', aws_access_key_id='dummy', aws_secret_access_key='dummy').exceptions.InvalidChangeBatch({}, '') if self.r53_received_change_sets.get(zone) == None: self.r53_received_change_sets[zone] = [] self.r53_received_change_sets[zone].append(changes) return class InstanceStateProcessor(): def __init__(self, handler, instance_id, state): self.handler = handler self.engine = handler.engine self.instance_id = instance_id self.state = state self._instance = None def instance(self): if self._instance != None: return self._instance self._instance = self.engine.adapter.ec2_instances_by_ids([self.instance_id])[0] return self._instance def run(self): i = self.instance() address = i.get('PrivateIpAddress') vpc_id = i.get('VpcId') if address == None or vpc_id == None: return fqdn = "%s.%s.%s" % (ipv4_amazon_name(address), self.engine.adapter.fetch_vpc_name(vpc_id), self.engine.domain) rrset = self.engine.adapter.r53_get_rrset(self.engine.zone, fqdn, 'CNAME') if rrset == None: self.handler.change_rrset(self.engine.zone, { 'Action': 'UPSERT', 'ResourceRecordSet': { 'Name': fqdn, 'Type': 'A', 'TTL': 60, 'ResourceRecords': [ {'Value': address}, ], }, }) name = find_tag('Name', i.get('Tags', [])) if name == None: ptr_zone = self.engine.lookup_ptr_zone(address) if ptr_zone: self.handler.change_rrset(ptr_zone, { 'Action': 'UPSERT', 'ResourceRecordSet': { 'Name': ipv4_ptr_fqdn(address), 'Type': 'PTR', 'TTL': 5, 'ResourceRecords': [ {'Value': fqdn}, ], }, }) else: NameTagProcessor(self.handler, 'CreateTags', name, [self.instance()['InstanceId']]).run() class NameTagProcessor(): def __init__(self, handler, event_name, name, instance_ids): self.handler = handler self.engine = handler.engine self.event_name = event_name self.name = name self.target_instance_ids = set(instance_ids) self._named_instances = None self._target_instances = None self._upsert_instances = None self._deletions = None self._vpc_ids = None def named_instances(self): if self._named_instances != None: return self._named_instances self._named_instances = self.engine.adapter.ec2_instances_by_name(self.name) return self._named_instances def target_instances(self): if self._target_instances != None: return self._target_instances self._target_instances = self.engine.adapter.ec2_instances_by_ids(self.target_instance_ids) return self._target_instances def vpc_ids(self): if self._vpc_ids != None: return self._vpc_ids vpc_ids = set() processed = 0 for i in self.named_instances(): if i.get('VpcId') == None: continue if i['InstanceId'] in self.target_instance_ids: processed += 1 vpc_ids.add(i['VpcId']) if processed == len(self.target_instance_ids): self._target_instances = self._named_instances else: for i in self.target_instances(): if i.get('VpcId') == None: continue vpc_ids.add(i['VpcId']) self._vpc_ids = vpc_ids return vpc_ids def upsert_instances(self): if self._upsert_instances != None: return self._upsert_instances instances = {} for i in self.named_instances(): if i.get('VpcId') not in self.vpc_ids(): continue if i['State']['Name'] == 'terminated': continue instance = instances.get(i['VpcId']) if instance == None or (instance.get('LaunchTime') and i.get('LaunchTime') and instance['LaunchTime'] > i['LaunchTime']): instances[i['VpcId']] = i self._upsert_instances = instances return instances def deletions(self): if self._deletions != None: return self._deletions info = [] seen = set([i['InstanceId'] for i in self.named_instances()]) unnamed_instance_ids = set([x for x in self.target_instance_ids if x not in seen]) if len(unnamed_instance_ids) > 0: for i in self.target_instances(): if i['InstanceId'] not in unnamed_instance_ids: continue if i.get('VpcId') == None: continue delete_a = self.upsert_instances().get(i['VpcId'], None) == None info.append({'Instance': i, 'DeleteARecord': delete_a}) self._deletions = info return info def run(self): if not is_valid_dns_label(self.name): print("! Invalid name: %s" % (self.name)) return self.engine.adapter.prefetch_vpc_names(self.vpc_ids()) for i in self.target_instances(): name = find_tag('Name', i.get('Tags', [])) if self.event_name == 'CreateTags': if name != self.name: print("! Skipping because this function is launched for Name=%s but instance %s is currently Name=%s" % (self.name, i['InstanceId'], name)) return if self.event_name == 'DeleteTags': if name != None: print("! Skipping because this function is launched for Name deletion but instance %s is currently Name=%s" % (i['InstanceId'], name)) return for vpc_id,i in self.upsert_instances().items(): fqdn = "%s.%s.%s" % (self.name, self.engine.adapter.fetch_vpc_name(vpc_id), self.engine.domain) address = i.get('PrivateIpAddress') if address: self.handler.change_rrset(self.engine.zone, { 'Action': 'UPSERT', 'ResourceRecordSet': { 'Name': fqdn, 'Type': 'A', 'TTL': 60, 'ResourceRecords': [ {'Value': address}, ], }, }) ptr_zone = self.engine.lookup_ptr_zone(address) if ptr_zone: self.handler.change_rrset(ptr_zone, { 'Action': 'UPSERT', 'ResourceRecordSet': { 'Name': ipv4_ptr_fqdn(address), 'Type': 'PTR', 'TTL': 60, 'ResourceRecords': [ {'Value': fqdn}, ], }, }) else: print("! %s (%s) no PrivateIpAddress" % (fqdn, i['InstanceId'])) for deletion in self.deletions(): i = deletion['Instance'] vpc_name = self.engine.adapter.fetch_vpc_name(i['VpcId']) fqdn = "%s.%s.%s" % (self.name, vpc_name, self.engine.domain) address = i.get('PrivateIpAddress') if address: if deletion['DeleteARecord']: self.handler.change_rrset(self.engine.zone, { 'Action': 'DELETE', 'ResourceRecordSet': { 'Name': fqdn, 'Type': 'A', 'TTL': 60, 'ResourceRecords': [ {'Value': address}, ], }, }) ptr_zone = self.engine.lookup_ptr_zone(address) if ptr_zone: if self.engine.default_to_amazon_name: fqdn = "%s.%s.%s" % (ipv4_amazon_name(address), vpc_name, self.engine.domain) self.handler.change_rrset(ptr_zone, { 'Action': 'UPSERT', 'ResourceRecordSet': { 'Name': ipv4_ptr_fqdn(address), 'Type': 'PTR', 'TTL': 60, 'ResourceRecords': [ {'Value': fqdn}, ], }, }) else: self.handler.change_rrset(ptr_zone, { 'Action': 'DELETE', 'ResourceRecordSet': { 'Name': ipv4_ptr_fqdn(address), 'Type': 'PTR', 'TTL': 60, 'ResourceRecords': [ {'Value': fqdn}, ], }, }) class Handler(): def __init__(self, engine): self.engine = engine self.rrset_change_sets = {} self.rrset_deletion_sets = {} def run(self, event): if event.get('detail-type') == 'EC2 Instance State-change Notification': self.handle_instance_state(event['detail']['instance-id'], event['detail']['state']) return if event['detail'].get('eventType') == 'AwsApiCall': event_name = event['detail']['eventName'] if not (event_name == 'CreateTags' or event_name == 'DeleteTags'): print("Ignoring %s" % (event_name)) return instance_ids = [rs['resourceId'] for rs in event['detail']['requestParameters']['resourcesSet']['items'] if rs['resourceId'] and rs['resourceId'].startswith('i-')] tags = event['detail']['requestParameters']['tagSet']['items'] print("%s for instances %s (%s)" % (event_name, instance_ids, tags)) self.handle_tag_event(event_name, instance_ids, tags) return def change_rrset(self, zone, change): if change['Action'] == 'DELETE': sets = self.rrset_deletion_sets else: sets = self.rrset_change_sets if sets.get(zone) == None: sets[zone] = [] sets[zone].append(change) def lookup_ptr_zone(self, address): return self.engine.lookup_ptr_zone(address) def handle_instance_state(self, instance_id, state): if state == 'terminated': # Cannot support removing safely return print("Instance state %s: %s" % (instance_id, state)) self.ensure_records_for_instance(instance_id, state) def handle_tag_event(self, event_name, instance_ids, tags): for tag in tags: if tag['key'] == 'Alias': self.ensure_records_for_alias_tag(tag['value'], instance_ids) if tag['key'] == 'Name': self.ensure_records_for_name_tag(event_name, tag['value'], instance_ids) def ensure_records_for_instance(self, instance_id, state): return InstanceStateProcessor(self, instance_id, state).run() def ensure_records_for_name_tag(self, event_name, name, target_instance_ids): print("Ensuring records for Name=%s" % (name)) return NameTagProcessor(self, event_name, name, target_instance_ids).run() def ensure_records_for_alias_tag(self, alias): # print("Ensuring records for Alias=%s" % (name)) return class Engine(): def __init__(self, adapter, domain, zone, ptr_zones, default_to_amazon_name=False): self.adapter = adapter self.domain = domain self.zone = zone self.ptr_zones = ptr_zones self.default_to_amazon_name = default_to_amazon_name def handle(self, event): handler = Handler(self) handler.run(event) for zone_id, changes in handler.rrset_change_sets.items(): self.adapter.r53_change_rrsets(zone_id, changes) for zone_id, changes in handler.rrset_deletion_sets.items(): for change in changes: self.adapter.r53_change_rrsets(zone_id, [change], ignore_invalid_change_batch=True) def lookup_ptr_zone(self, address): for x in self.ptr_zones: if address.startswith(x['prefix']): return x['zone'] return None
StarcoderdataPython
9705508
from .progeny import *
StarcoderdataPython
9763081
#!/usr/bin/env python from __future__ import print_function import unittest from ruffus import transform, Pipeline, pipeline_run, regex, inputs import ruffus import sys """ test_inputs_with_multiple_args_raising_exception.py inputs with multiple arguments should raise an exception """ import os tempdir = os.path.relpath(os.path.abspath(os.path.splitext(__file__)[0])) + "/" # add grandparent to search path for testing grandparent_dir = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "..")) sys.path.insert(0, grandparent_dir) # module name = script name without extension module_name = os.path.splitext(os.path.basename(__file__))[0] # funky code to import by file name parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) # 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # imports # 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # Tasks # 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 try: @transform(None, regex(tempdir + "b"), inputs(tempdir + "a", tempdir + "b"), "task_1.output") def task_1(i, o): for f in o: open(f, 'w') except ruffus.ruffus_exceptions.error_task_transform_inputs_multiple_args: print("\tExpected exception thrown 1") except ruffus.ruffus_exceptions.error_inputs_multiple_args: print("\tExpected exception thrown 2") def task_2(i, o): for f in o: open(f, 'w') class Test_task_mkdir(unittest.TestCase): def setUp(self): """ """ pass def tearDown(self): """ """ pass def test_no_re_match(self): try: pipeline_run(multiprocess=10, verbose=0, pipeline="main") except: return raise Exception( "Inputs(...) with multiple arguments should have thrown an exception") def test_newstyle_no_re_match(self): try: test_pipeline = Pipeline("test") test_pipeline.transform(task_func=task_2, input=None, filter=regex(tempdir + "b"), replace_inputs=inputs( tempdir + "a", tempdir + "b"), output="task_1.output") test_pipeline.run(multiprocess=10, verbose=0) except ruffus.ruffus_exceptions.error_task_transform_inputs_multiple_args: print("\tExpected exception thrown 1") return except ruffus.ruffus_exceptions.error_inputs_multiple_args: print("\tExpected exception thrown 2") return raise Exception( "Inputs(...) with multiple arguments should have thrown an exception") if __name__ == '__main__': unittest.main()
StarcoderdataPython
3437031
from problem.models import Problem from .models import CodeforcesProblemSet def get_parent(problem): try: return CodeforcesProblemSet.objects.get(child=problem).parent except: return problem def check(problem1, problem2): return get_parent(problem1).id == get_parent(problem2).id def join(problem1, problem2): if not check(problem1, problem2): parent = get_parent(problem1) child = get_parent(problem2) CodeforcesProblemSet.objects.filter(parent=child).update(parent=parent) CodeforcesProblemSet(parent=parent, child=child).save() def get_similar_problems(problem): parent = get_parent(problem) childern = list(CodeforcesProblemSet.objects.filter(parent = parent)\ .values_list('child', flat = True)) if not childern: return [] childern.append(parent.id) problem_qs = Problem.objects.filter(id__in = childern)\ .exclude(id = problem.id) return problem_qs
StarcoderdataPython
207416
""" # Utilities that aid in the design and analysis of piping networks """ from lib.pypeflow.utils.pump_curve import PumpCurve
StarcoderdataPython
1725813
<filename>djexperience/service/admin.py from django.contrib import admin from .models import Service, TypeService, Protest @admin.register(Service) class ServiceAdmin(admin.ModelAdmin): list_display = ('__str__', ) search_fields = ('title',) @admin.register(TypeService) class TypeServiceAdmin(admin.ModelAdmin): list_display = ('__str__', 'service') search_fields = ('title',) @admin.register(Protest) class ProtestAdmin(admin.ModelAdmin): list_display = ( '__str__', 'service', 'type_service', ) search_fields = ( 'typeservice__service__title', 'typeservice__title', ) list_filter = ('typeservice__service', ) def service(self, obj): return obj.typeservice.service service.admin_order_field = 'title' service.short_description = 'Serviço' def type_service(self, obj): return obj.typeservice type_service.admin_order_field = 'title' type_service.short_description = 'Tipo de Serviço'
StarcoderdataPython
21380
#!/usr/bin/env python # -*- encoding: utf-8 -*- """Tests for utility classes.""" import datetime import sys import unittest from absl import app from absl.testing import absltest from grr_response_core.lib import rdfvalue from grr.test_lib import test_lib long_string = ( "迎欢迎\n" "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi luctus " "ex sed dictum volutpat. Integer maximus, mauris at tincidunt iaculis, " "felis magna scelerisque ex, in scelerisque est odio non nunc. " "Suspendisse et lobortis augue. Donec faucibus tempor massa, sed dapibus" " erat iaculis ut. Vestibulum eu elementum nulla. Nullam scelerisque " "hendrerit lorem. Integer vitae semper metus. Suspendisse accumsan " "dictum felis. Etiam viverra, felis sed ullamcorper vehicula, libero " "nisl tempus dui, a porta lacus erat et erat. Morbi mattis elementum " "efficitur. Pellentesque aliquam placerat mauris non accumsan.") class RDFValueTest(absltest.TestCase): """RDFValue tests.""" def testStr(self): """Test RDFValue.__str__.""" self.assertEqual(str(rdfvalue.RDFInteger(1)), "1") self.assertEqual(str(rdfvalue.RDFString(long_string)), long_string) # TODO(hanuszczak): Current implementation of `repr` for RDF values is broken # and not in line with Python guidelines. For example, `repr` should be # unambiguous whereas current implementation will trim long representations # with `...`. Moreover, the representation for most types is questionable at # best. # # The implementation should be fixed and proper tests should be written. class RDFBytesTest(absltest.TestCase): def testFromHumanReadable(self): string = u"zażółć gęślą jaźń" result = rdfvalue.RDFBytes.FromHumanReadable(string) expected = rdfvalue.RDFBytes.FromSerializedBytes(string.encode("utf-8")) self.assertEqual(result, expected) class RDFStringTest(absltest.TestCase): def testFromHumanReadable(self): string = u"pchnąć w tę łódź jeża lub ośm skrzyń fig" result = rdfvalue.RDFString.FromHumanReadable(string) self.assertEqual(str(result), string) def testEqualWithBytes(self): self.assertEqual(rdfvalue.RDFString(u"foo"), b"foo") self.assertNotEqual(rdfvalue.RDFString(u"foo"), b"\x80\x81\x82") def testLessThanWithBytes(self): self.assertLess(rdfvalue.RDFString(u"abc"), b"def") self.assertGreater(rdfvalue.RDFString(u"xyz"), b"ghi") self.assertLess(rdfvalue.RDFString(u"012"), b"\x80\x81\x81") # TODO: Python on Windows ships with UCS-2 by default, which does # not properly support unicode. @unittest.skipIf( sys.maxunicode <= 65535, "Your Python installation does not properly support Unicode (likely: " "Python with no UCS4 support on Windows.") def testLenOfEmoji(self): self.assertLen(rdfvalue.RDFString("🚀🚀"), 2) class RDFIntegerTest(absltest.TestCase): def testFromHumanReadable(self): result = rdfvalue.RDFInteger.FromHumanReadable(u"42") self.assertEqual(result, rdfvalue.RDFInteger(42)) def testFromHumanReadablePositive(self): result = rdfvalue.RDFInteger.FromHumanReadable(u"+108") self.assertEqual(result, rdfvalue.RDFInteger(108)) def testFromHumanReadableNegative(self): result = rdfvalue.RDFInteger.FromHumanReadable(u"-1337") self.assertEqual(result, rdfvalue.RDFInteger(-1337)) def testFromHumanReadableZero(self): result = rdfvalue.RDFInteger.FromHumanReadable(u"0") self.assertEqual(result, rdfvalue.RDFInteger(0)) def testFromHumanReadableRaisesOnNonInteger(self): with self.assertRaises(ValueError): rdfvalue.RDFInteger.FromHumanReadable(u"12.3") def testFromHumanReadableRaisesOnNonDecimal(self): with self.assertRaises(ValueError): rdfvalue.RDFInteger.FromHumanReadable(u"12A") class RDFDateTimeTest(absltest.TestCase): def testLerpMiddle(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2010-01-01") end_time = start_time + rdfvalue.Duration.From(10, rdfvalue.DAYS) lerped_time = rdfvalue.RDFDatetime.Lerp( 0.5, start_time=start_time, end_time=end_time) self.assertEqual(lerped_time, start_time + rdfvalue.Duration.From(5, rdfvalue.DAYS)) def testLerpZero(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2000-01-01") end_time = rdfvalue.RDFDatetime.FromHumanReadable("2020-01-01") lerped_time = rdfvalue.RDFDatetime.Lerp( 0.0, start_time=start_time, end_time=end_time) self.assertEqual(lerped_time, start_time) def testLerpOne(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2000-01-01") end_time = rdfvalue.RDFDatetime.FromHumanReadable("2020-01-01") lerped_time = rdfvalue.RDFDatetime.Lerp( 1.0, start_time=start_time, end_time=end_time) self.assertEqual(lerped_time, end_time) def testLerpQuarter(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2000-01-01") end_time = start_time + rdfvalue.Duration.From(4, rdfvalue.DAYS) lerped_time = rdfvalue.RDFDatetime.Lerp( 0.25, start_time=start_time, end_time=end_time) self.assertEqual(lerped_time, start_time + rdfvalue.Duration.From(1, rdfvalue.DAYS)) def testLerpRaisesTypeErrorIfTimesAreNotRDFDatetime(self): now = rdfvalue.RDFDatetime.Now() with self.assertRaisesRegex(TypeError, "non-datetime"): rdfvalue.RDFDatetime.Lerp(0.0, start_time=10, end_time=now) with self.assertRaisesRegex(TypeError, "non-datetime"): rdfvalue.RDFDatetime.Lerp( 0.0, start_time=now, end_time=rdfvalue.Duration.From(1, rdfvalue.DAYS)) def testLerpRaisesValueErrorIfProgressIsNotNormalized(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2010-01-01") end_time = rdfvalue.RDFDatetime.FromHumanReadable("2011-01-01") with self.assertRaises(ValueError): rdfvalue.RDFDatetime.Lerp(1.5, start_time=start_time, end_time=end_time) with self.assertRaises(ValueError): rdfvalue.RDFDatetime.Lerp(-0.5, start_time=start_time, end_time=end_time) def testFloorToMinutes(self): dt = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34:56") expected = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34") self.assertEqual( dt.Floor(rdfvalue.Duration.From(60, rdfvalue.SECONDS)), expected) def testFloorToHours(self): dt = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34") expected = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:00") self.assertEqual( dt.Floor(rdfvalue.Duration.From(1, rdfvalue.HOURS)), expected) def testFloorToDays(self): dt = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34") expected = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11") self.assertEqual( dt.Floor(rdfvalue.Duration.From(1, rdfvalue.DAYS)), expected) def testFloorExact(self): dt = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34:56") self.assertEqual(dt.Floor(rdfvalue.Duration.From(1, rdfvalue.SECONDS)), dt) class RDFDatetimeSecondsTest(absltest.TestCase): def testFromDatetime_withMicroSeconds(self): dt_with_micros = datetime.datetime(2000, 1, 1, microsecond=5000) dt = datetime.datetime(2000, 1, 1) self.assertEqual( rdfvalue.RDFDatetimeSeconds.FromDatetime(dt_with_micros), rdfvalue.RDFDatetimeSeconds.FromDatetime(dt)) def testBug122716179(self): d = rdfvalue.RDFDatetimeSeconds.FromSecondsSinceEpoch(1) self.assertEqual(d.AsMicrosecondsSinceEpoch(), 1000000) diff = rdfvalue.RDFDatetimeSeconds(10) - rdfvalue.Duration("3s") self.assertEqual(diff.AsMicrosecondsSinceEpoch(), 7000000) class DurationSecondsTest(absltest.TestCase): def testPublicAttributes(self): duration = rdfvalue.DurationSeconds.FromHumanReadable("1h") self.assertEqual(duration.ToInt(rdfvalue.SECONDS), 3600) self.assertEqual(duration.ToInt(rdfvalue.MILLISECONDS), 3600 * 1000) self.assertEqual(duration.microseconds, 3600 * 1000 * 1000) def testFromDays(self): self.assertEqual( rdfvalue.DurationSeconds.From(2, rdfvalue.DAYS), rdfvalue.DurationSeconds.FromHumanReadable("2d")) self.assertEqual( rdfvalue.DurationSeconds.From(31, rdfvalue.DAYS), rdfvalue.DurationSeconds.FromHumanReadable("31d")) def testFromHours(self): self.assertEqual( rdfvalue.DurationSeconds.From(48, rdfvalue.HOURS), rdfvalue.DurationSeconds.FromHumanReadable("48h")) self.assertEqual( rdfvalue.DurationSeconds.From(24, rdfvalue.HOURS), rdfvalue.DurationSeconds.FromHumanReadable("24h")) def testFromSeconds(self): self.assertEqual( rdfvalue.DurationSeconds.From(1337, rdfvalue.SECONDS).ToInt(rdfvalue.SECONDS), 1337) def testFromMicroseconds(self): duration = rdfvalue.DurationSeconds.From(3000000, rdfvalue.MICROSECONDS) self.assertEqual(duration.microseconds, 3000000) self.assertEqual(duration.ToInt(rdfvalue.SECONDS), 3) def testFloatConstructorRaises(self): with self.assertRaises(TypeError): rdfvalue.DurationSeconds(3.14) def testSerializeToBytes(self): self.assertEqual( b"0", rdfvalue.DurationSeconds.From(0, rdfvalue.WEEKS).SerializeToBytes()) self.assertEqual( b"1", rdfvalue.DurationSeconds.From(1, rdfvalue.SECONDS).SerializeToBytes()) self.assertEqual( b"2", rdfvalue.DurationSeconds.From(2, rdfvalue.SECONDS).SerializeToBytes()) self.assertEqual( b"999", rdfvalue.DurationSeconds.From(999, rdfvalue.SECONDS).SerializeToBytes()) self.assertEqual( b"1000", rdfvalue.DurationSeconds.From(1000, rdfvalue.SECONDS).SerializeToBytes()) def testFromWireFormat(self): for i in [0, 7, 1337]: val = rdfvalue.DurationSeconds.FromWireFormat(i) self.assertEqual(i, val.ToInt(rdfvalue.SECONDS)) val2 = rdfvalue.DurationSeconds.FromWireFormat( val.SerializeToWireFormat()) self.assertEqual(val, val2) MAX_UINT64 = 18446744073709551615 class DurationTest(absltest.TestCase): def testInitializationFromMicroseconds(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64]: val = rdfvalue.Duration.From(i, rdfvalue.MICROSECONDS) self.assertEqual(i, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} us".format(i))) self.assertEqual(val, rdfvalue.Duration(i)) def testInitializationFromMilliseconds(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 1000]: val = rdfvalue.Duration.From(i, rdfvalue.MILLISECONDS) self.assertEqual(i * 1000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} ms".format(i))) def testInitializationFromSeconds(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 1000000]: val = rdfvalue.Duration.From(i, rdfvalue.SECONDS) self.assertEqual(i * 1000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} s".format(i))) def testInitializationFromMinutes(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 60000000]: val = rdfvalue.Duration.From(i, rdfvalue.MINUTES) self.assertEqual(i * 60000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} m".format(i))) def testInitializationFromHours(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 3600000000]: val = rdfvalue.Duration.From(i, rdfvalue.HOURS) self.assertEqual(i * 3600000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} h".format(i))) def testInitializationFromDays(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 86400000000]: val = rdfvalue.Duration.From(i, rdfvalue.DAYS) self.assertEqual(i * 86400000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} d".format(i))) def testInitializationFromWeeks(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 604800000000]: val = rdfvalue.Duration.From(i, rdfvalue.WEEKS) self.assertEqual(i * 604800000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} w".format(i))) def testConversionToInt(self): for i in [0, 1, 7, 60, 1337, 12345, 123456, 1234567, MAX_UINT64]: val = rdfvalue.Duration.From(i, rdfvalue.MICROSECONDS) self.assertEqual(val.ToInt(rdfvalue.MICROSECONDS), i) self.assertEqual(val.ToInt(rdfvalue.MILLISECONDS), i // 1000) self.assertEqual(val.ToInt(rdfvalue.SECONDS), i // (1000 * 1000)) self.assertEqual(val.ToInt(rdfvalue.MINUTES), i // (60 * 1000 * 1000)) self.assertEqual(val.ToInt(rdfvalue.HOURS), i // (60 * 60 * 1000 * 1000)) self.assertEqual( val.ToInt(rdfvalue.DAYS), i // (24 * 60 * 60 * 1000 * 1000)) self.assertEqual( val.ToInt(rdfvalue.WEEKS), i // (7 * 24 * 60 * 60 * 1000 * 1000)) def testConversionToFractional(self): for i in [0, 1, 7, 60, 1337, 12345, 123456, 1234567, MAX_UINT64]: val = rdfvalue.Duration.From(i, rdfvalue.MICROSECONDS) self.assertAlmostEqual(val.ToFractional(rdfvalue.MICROSECONDS), i) self.assertAlmostEqual(val.ToFractional(rdfvalue.MILLISECONDS), i / 1000) self.assertAlmostEqual( val.ToFractional(rdfvalue.SECONDS), i / (1000 * 1000)) self.assertAlmostEqual( val.ToFractional(rdfvalue.MINUTES), i / (60 * 1000 * 1000)) self.assertAlmostEqual( val.ToFractional(rdfvalue.HOURS), i / (60 * 60 * 1000 * 1000)) self.assertAlmostEqual( val.ToFractional(rdfvalue.DAYS), i / (24 * 60 * 60 * 1000 * 1000)) self.assertAlmostEqual( val.ToFractional(rdfvalue.WEEKS), i / (7 * 24 * 60 * 60 * 1000 * 1000)) def testStringDeserialization(self): for i in [0, 1, 7, 60, 1337, 12345, 123456, 1234567, MAX_UINT64]: val = rdfvalue.Duration.From(i, rdfvalue.MICROSECONDS) self.assertEqual( rdfvalue.Duration.FromSerializedBytes(val.SerializeToBytes()), val) def testHumanReadableStringSerialization(self): self.assertEqual("0 us", str(rdfvalue.Duration.From(0, rdfvalue.WEEKS))) self.assertEqual("1 us", str(rdfvalue.Duration.From(1, rdfvalue.MICROSECONDS))) self.assertEqual("2 us", str(rdfvalue.Duration.From(2, rdfvalue.MICROSECONDS))) self.assertEqual("999 us", str(rdfvalue.Duration.From(999, rdfvalue.MICROSECONDS))) self.assertEqual("1 ms", str(rdfvalue.Duration.From(1000, rdfvalue.MICROSECONDS))) self.assertEqual("1 ms", str(rdfvalue.Duration.From(1, rdfvalue.MILLISECONDS))) self.assertEqual( "{} us".format(MAX_UINT64), str(rdfvalue.Duration.From(MAX_UINT64, rdfvalue.MICROSECONDS))) self.assertEqual("3 s", str(rdfvalue.Duration.From(3, rdfvalue.SECONDS))) self.assertEqual("3 m", str(rdfvalue.Duration.From(3, rdfvalue.MINUTES))) self.assertEqual("3 h", str(rdfvalue.Duration.From(3, rdfvalue.HOURS))) self.assertEqual("3 d", str(rdfvalue.Duration.From(3, rdfvalue.DAYS))) self.assertEqual("3 w", str(rdfvalue.Duration.From(21, rdfvalue.DAYS))) def testSerializeToBytes(self): self.assertEqual( b"0", rdfvalue.Duration.From(0, rdfvalue.WEEKS).SerializeToBytes()) self.assertEqual( b"1", rdfvalue.Duration.From(1, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( b"2", rdfvalue.Duration.From(2, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( b"999", rdfvalue.Duration.From(999, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( b"1000", rdfvalue.Duration.From(1000, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( str(MAX_UINT64).encode("utf-8"), rdfvalue.Duration.From(MAX_UINT64, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( b"3000000", rdfvalue.Duration.From(3, rdfvalue.SECONDS).SerializeToBytes()) def testAdditionOfDurationsIsEqualToIntegerAddition(self): for a in [0, 1, 7, 60, 1337, MAX_UINT64 // 2]: for b in [0, 1, 7, 60, 1337, MAX_UINT64 // 2]: self.assertEqual( rdfvalue.Duration(a) + rdfvalue.Duration(b), rdfvalue.Duration(a + b)) def testSubtractionOfDurationsIsEqualToIntegerSubtraction(self): for a in [0, 1, 7, 60, 1337, MAX_UINT64]: for b in [0, 1, 7, 60, 1337, MAX_UINT64]: self.assertEqual( rdfvalue.Duration(a) - rdfvalue.Duration(min(a, b)), rdfvalue.Duration(a - min(a, b))) def testFromWireFormat(self): for i in [0, 7, 1337, MAX_UINT64]: val = rdfvalue.Duration.FromWireFormat(i) self.assertEqual(i, val.microseconds) def testSubtractionFromDateTimeIsEqualToIntegerSubtraction(self): for a in [0, 1, 7, 60, 1337]: for b in [0, 1, 7, 60, 1337]: lhs = rdfvalue.RDFDatetime.FromMicrosecondsSinceEpoch(a) rhs = rdfvalue.Duration(min(a, b)) result = lhs - rhs self.assertEqual(result.AsMicrosecondsSinceEpoch(), a - min(a, b)) def testAdditionToDateTimeIsEqualToIntegerAddition(self): for a in [0, 1, 7, 60, 1337]: for b in [0, 1, 7, 60, 1337]: lhs = rdfvalue.RDFDatetime.FromMicrosecondsSinceEpoch(a) rhs = rdfvalue.Duration(b) result = lhs + rhs self.assertEqual(result.AsMicrosecondsSinceEpoch(), a + b) def testComparisonIsEqualToIntegerComparison(self): for a in [0, 1, 7, 60, 1337, MAX_UINT64 - 1, MAX_UINT64]: for b in [0, 1, 7, 60, 1337, MAX_UINT64 - 1, MAX_UINT64]: dur_a = rdfvalue.Duration(a) dur_b = rdfvalue.Duration(b) if a > b: self.assertGreater(dur_a, dur_b) if a >= b: self.assertGreaterEqual(dur_a, dur_b) if a == b: self.assertEqual(dur_a, dur_b) if a <= b: self.assertLessEqual(dur_a, dur_b) if a < b: self.assertLess(dur_a, dur_b) if a != b: self.assertNotEqual(dur_a, dur_b) class DocTest(test_lib.DocTest): module = rdfvalue def main(argv): test_lib.main(argv) if __name__ == "__main__": app.run(main)
StarcoderdataPython
342463
<gh_stars>0 # defines a function that takes two arguments def cheese_and_crackers(cheese_count, boxes_of_crackers): # prints a string with the first argument passed into the function inserted into the output print(f"You have {cheese_count} cheeses!") # prints a string with the second argument passed into the function inserted into the output print(f"You have {boxes_of_crackers} boxes of crackers!") # prints a string print("Man that's enough for a party!") # prints a string print("Get a blanket.\n") # prints a string print("We can just give the function numbers directly:") # calls the cheese_and_crackers function with 20 and 30 as the arguments being passed in cheese_and_crackers(20,30) # prints a string print("OR, we can use variables from our script:") # stores a value of 10 in the variable amount_of_cheese amount_of_cheese = 10 # stores a value of 50 in the variable amount_of_crackers amount_of_crackers = 50 # calls the cheese_and_crackers function, passing in the values stored in the variables amount_of_cheese and amount_of_crackers cheese_and_crackers(amount_of_cheese, amount_of_crackers) # prints a string print("We can even do math inside too:") # calls the cheese_and_crackers function with the results of 1 + 20 and 5 + 6 passed in as the arguments. cheese_and_crackers(10 + 20, 5 + 6) # prints a string print("And we can combine the two, variables and math:") # calls the cheese_and_crackers function with the results of adding 100 to the value stored in amount_of_cheese and 1000 to the value stored in amount_of_crackers as the arguments cheese_and_crackers(amount_of_cheese + 100, amount_of_crackers + 1000)
StarcoderdataPython
6563162
<reponame>Halftruth08/Game_AI<filename>demo1.py #demo 1: in command line, enter: # python3 demo1.py import codenames.model_building as cmb model = cmb.make_full_model() import codenames.game_player as cgp cgp.codemaster(model)
StarcoderdataPython
3371070
<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 9 17:02:59 2018 @author: bruce """ import pandas as pd import numpy as np from scipy import fftpack from scipy import signal import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap def correlation_matrix(corr_mx, cm_title): from matplotlib import pyplot as plt from matplotlib import cm as cm fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(corr_mx, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) #plt.title('cross correlation of test and retest') ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels #fig.colorbar(cax, ticks=[.75,.8,.85,.90,.95,1]) # show digit in matrix corr_mx_array = np.asarray(corr_mx) for i in range(22): for j in range(22): c = corr_mx_array[j,i] ax1.text(i, j, round(c,2), va='center', ha='center') plt.show() def correlation_matrix_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cs = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cs) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_rank(corr_mx, cm_title): temp = corr_mx #output = (temp == temp.max(axis=1)[:,None]) # along row output = temp.rank(axis=1, ascending=False) fig, ax1 = plt.subplots() im1 = ax1.matshow(output, cmap=plt.cm.Wistia) #cs = ax1.matshow(output) fig.colorbar(im1) ax1.grid(False) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.title(cm_title) # show digit in matrix output = np.asarray(output) for i in range(22): for j in range(22): c = output[j,i] ax1.text(i, j, int(c), va='center', ha='center') plt.show() def correlation_matrix_comb(corr_mx, cm_title): fig, (ax2, ax3) = plt.subplots(1, 2) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ''' # graph 1 grayscale im1 = ax1.matshow(corr_mx, cmap='gray') # colorbar need numpy version 1.13.1 #fig.colorbar(im1, ax=ax1) ax1.grid(False) ax1.set_title(cm_title) ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # show digit in matrix corr_mx_array = np.asarray(corr_mx) for i in range(22): for j in range(22): c = corr_mx_array[j,i] ax1.text(i, j, round(c,2), va='center', ha='center') ''' # graph 2 yellowscale corr_mx_rank = corr_mx.rank(axis=1, ascending=False) cmap_grey = LinearSegmentedColormap.from_list('mycmap', ['white', 'black']) im2 = ax2.matshow(corr_mx, cmap='viridis') # colorbar need numpy version 1.13.1 fig.colorbar(im2, ax=ax2) ax2.grid(False) ax2.set_title(cm_title) ax2.set_xticks(np.arange(len(xlabels))) ax2.set_yticks(np.arange(len(ylabels))) ax2.set_xticklabels(xlabels,fontsize=6) ax2.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels # show digit in matrix corr_mx_rank = np.asarray(corr_mx_rank) for i in range(22): for j in range(22): c = corr_mx_rank[j,i] ax2.text(i, j, int(c), va='center', ha='center') # graph 3 # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows im3 = ax3.matshow(output, cmap='gray') # colorbar need numpy version 1.13.1 #fig.colorbar(im3, ax=ax3) ax3.grid(False) ax3.set_title(cm_title) ax3.set_xticks(np.arange(len(xlabels))) ax3.set_yticks(np.arange(len(ylabels))) ax3.set_xticklabels(xlabels,fontsize=6) ax3.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_tt_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_rr_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() # shrink value for correlation matrix # in order to use colormap -> 10 scale def shrink_value_03_1(corr_in1): corr_out1 = corr_in1.copy() # here dataframe.copy() must be used, otherwise input can also be changed when changing output for i in range (22): for j in range(22): if corr_in1.iloc[i, j] < 0.3: corr_out1.iloc[i, j] = 0.3 return corr_out1 def shrink_value_05_1(corr_in2): corr_out2 = corr_in2.copy() # here dataframe.copy() must be used, otherwise input can also be changed when changing output for i2 in range (22): for j2 in range(22): if corr_in2.iloc[i2, j2] < 0.5: corr_out2.iloc[i2, j2] = 0.5 return corr_out2 # not used!!!!!!!!!!!! # normalize the complex signal series def normalize_complex_arr(a): a_oo = a - a.real.min() - 1j*a.imag.min() # origin offsetted return a_oo/np.abs(a_oo).max() # import the pkl file #pkl_file=pd.read_pickle('/Users/bruce/Documents/uOttawa/Project/audio_brainstem_response/Data_BruceSunMaster_Studies/study2/study2DataFrame.pkl') df_EFR=pd.read_pickle('/home/bruce/Dropbox/Project/4.Code for Linux/df_EFR.pkl') # remove DC offset df_EFR_detrend = pd.DataFrame() for i in range(1408): # combine next two rows later df_EFR_detrend_data = pd.DataFrame(signal.detrend(df_EFR.iloc[i: i+1, 0:1024], type='constant').reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[i, 1024:1031].values.reshape(1,7)) df_EFR_detrend = df_EFR_detrend.append(pd.concat([df_EFR_detrend_data, df_EFR_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_detrend.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_detrend = df_EFR_detrend.reset_index(drop=True) df_EFR = df_EFR_detrend # Define window function win_kaiser = signal.kaiser(1024, beta=14) win_hamming = signal.hamming(1024) # average the df_EFR df_EFR_avg = pd.DataFrame() df_EFR_avg_win = pd.DataFrame() # average test1 and test2 for i in range(704): # combine next two rows later df_EFR_avg_t = pd.DataFrame(df_EFR.iloc[2*i: 2*i+2, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows # without window function df_EFR_avg_t = pd.DataFrame(df_EFR_avg_t.iloc[0,:].values.reshape(1,1024)) # without window function # implement the window function df_EFR_avg_t_window = pd.DataFrame((df_EFR_avg_t.iloc[0,:] * win_hamming).values.reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[2*i, 1024:1031].values.reshape(1,7)) df_EFR_avg = df_EFR_avg.append(pd.concat([df_EFR_avg_t, df_EFR_label], axis=1, ignore_index=True)) df_EFR_avg_win = df_EFR_avg_win.append(pd.concat([df_EFR_avg_t_window, df_EFR_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_avg.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_avg = df_EFR_avg.sort_values(by=["Condition", "Subject"]) df_EFR_avg = df_EFR_avg.reset_index(drop=True) df_EFR_avg_win.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_avg_win = df_EFR_avg_win.sort_values(by=["Condition", "Subject"]) df_EFR_avg_win = df_EFR_avg_win.reset_index(drop=True) # average all the subjects , test and retest and keep one sound levels # filter by 'a vowel and 85Db' df_EFR_avg_sorted = df_EFR_avg.sort_values(by=["Sound Level", "Vowel","Condition", "Subject"]) df_EFR_avg_sorted = df_EFR_avg_sorted.reset_index(drop=True) df_EFR_avg_win_sorted = df_EFR_avg_win.sort_values(by=["Sound Level", "Vowel","Condition", "Subject"]) df_EFR_avg_win_sorted = df_EFR_avg_win_sorted.reset_index(drop=True) # filter55 65 75 sound levels and keep 85dB # keep vowel condition and subject df_EFR_avg_85 = pd.DataFrame(df_EFR_avg_sorted.iloc[528:, :]) df_EFR_avg_85 = df_EFR_avg_85.reset_index(drop=True) df_EFR_avg_win_85 = pd.DataFrame(df_EFR_avg_win_sorted.iloc[528:, :]) df_EFR_avg_win_85 = df_EFR_avg_win_85.reset_index(drop=True) # this part was replaced by upper part based on what I need to do ''' # average all the subjects , test and retest, different sound levels # filter by 'a vowel and 85Db' df_EFR_avg_sorted = df_EFR_avg.sort_values(by=["Vowel","Condition", "Subject", "Sound Level"]) df_EFR_avg_sorted = df_EFR_avg_sorted.reset_index(drop=True) # average sound levels and # keep vowel condition and subject df_EFR_avg_vcs = pd.DataFrame() for i in range(176): # combine next two rows later df_EFR_avg_vcs_t = pd.DataFrame(df_EFR_avg_sorted.iloc[4*i: 4*i+4, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows df_EFR_avg_vcs_label = pd.DataFrame(df_EFR_avg_sorted.iloc[4*i, 1024:1031].values.reshape(1,7)) df_EFR_avg_vcs = df_EFR_avg_vcs.append(pd.concat([df_EFR_avg_vcs_t, df_EFR_avg_vcs_label], axis=1, ignore_index=True), ignore_index=True) # set the title of columns df_EFR_avg_vcs.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) #df_EFR_avg_vcs = df_EFR_avg_vcs.sort_values(by=["Condition", "Subject"]) ''' ''' # filter by 'a vowel and 85Db' df_EFR_a_85_test1 = df_EFR[(df_EFR['Vowel'] == 'a vowel') & (df_EFR['Sound Level'] == '85')] df_EFR_a_85_test1 = df_EFR_a_85_test1.reset_index(drop=True) df_EFR_a_85_avg = pd.DataFrame() # average test1 and test2 for i in range(44): df_EFR_a_85_avg_t = pd.DataFrame(df_EFR_a_85_test1.iloc[2*i: 2*i+2, 0:1024].mean(axis=0).values.reshape(1,1024)) df_EFR_a_85_label = pd.DataFrame(df_EFR_a_85_test1.iloc[2*i, 1024:1031].values.reshape(1,7)) df_EFR_a_85_avg = df_EFR_a_85_avg.append(pd.concat([df_EFR_a_85_avg_t, df_EFR_a_85_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_a_85_avg.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_a_85_avg = df_EFR_a_85_avg.sort_values(by=["Condition", "Subject"]) df_EFR_a_85_avg = df_EFR_a_85_avg.reset_index(drop=True) ''' ################################################## # Frequency Domain # parameters sampling_rate = 9606 # fs # sampling_rate = 9596.623 n = 1024 k = np.arange(n) T = n/sampling_rate # time of signal frq = k/T freq = frq[range(int(n/2))] n2 = 96060 k2 = np.arange(n2) T2 = n2/sampling_rate frq2 = k2/T2 freq2 = frq2[range(int(n2/2))] n3 = 40960 # zero padding # for df_EFR df_EFR_data = df_EFR.iloc[:, :1024] df_EFR_label = df_EFR.iloc[:, 1024:] df_EFR_mid = pd.DataFrame(np.zeros((1408, 95036))) df_EFR_withzero = pd.concat([df_EFR_data, df_EFR_mid, df_EFR_label], axis=1) # rename columns df_EFR_withzero.columns = np.append(np.arange(96060), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) # for df_EFR_avg_85 df_EFR_avg_85_data = df_EFR_avg_85.iloc[:, :1024] df_EFR_avg_85_label = df_EFR_avg_85.iloc[:, 1024:] df_EFR_avg_85_mid = pd.DataFrame(np.zeros((176, 95036))) df_EFR_avg_85_withzero = pd.concat([df_EFR_avg_85_data, df_EFR_avg_85_mid, df_EFR_avg_85_label], axis=1) # rename columns df_EFR_avg_85_withzero.columns = np.append(np.arange(96060), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) # df_EFR_avg_win_85 df_EFR_avg_win_85_data = df_EFR_avg_win_85.iloc[:, :1024] df_EFR_avg_win_85_label = df_EFR_avg_win_85.iloc[:, 1024:] df_EFR_avg_win_85_mid = pd.DataFrame(np.zeros((176, 95036))) df_EFR_avg_win_85_withzero = pd.concat([df_EFR_avg_win_85_data, df_EFR_avg_win_85_mid, df_EFR_avg_win_85_label], axis=1) df_EFR_avg_win_85_withzero.columns = np.append(np.arange(96060), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) # concatenate AENU temp1 = pd.concat([df_EFR_avg_85.iloc[0:44, 0:1024].reset_index(drop=True),df_EFR_avg_85.iloc[44:88, 0:1024].reset_index(drop=True)], axis=1) temp2 = pd.concat([df_EFR_avg_85.iloc[88:132, 0:1024].reset_index(drop=True), df_EFR_avg_85.iloc[132:176, 0:1024].reset_index(drop=True)], axis=1) df_EFR_avg_85_aenu = pd.concat([temp1, temp2], axis=1, ignore_index=True) df_EFR_avg_85_aenu_withzero = pd.concat([df_EFR_avg_85_aenu, pd.DataFrame(np.zeros((44, 36864)))] , axis=1) ''' # test############## # test(detrend) temp_test = np.asarray(df_EFR_avg_85_data.iloc[0, 0:1024]) temp_test_detrend = signal.detrend(temp_test) plt.figure() plt.subplot(2, 1, 1) plt.plot(temp_test) plt.subplot(2, 1, 2) plt.plot(temp_test_detrend) plt.show() # the raw data is already DC removed # test(zero padding) temp_EFR_1 = df_EFR_withzero.iloc[0, 0:1024] temp_EFR_2= df_EFR_withzero.iloc[0, 0:9606] temp_amplitude_spectrum_1 = np.abs((fftpack.fft(temp_EFR_1)/n)[range(int(n/2))]) temp_amplitude_spectrum_2 = np.abs((fftpack.fft(temp_EFR_2)/n2)[range(int(n2/2))]) plt.figure() plt.subplot(2, 1, 1) markers1 = [11, 21, 32, 43, 53, 64, 75] # which corresponds to 100 200....700Hz in frequency domain plt.plot(temp_amplitude_spectrum_1, '-D', markevery=markers1) plt.xlim(0, 100) plt.title('without zero padding') plt.subplot(2, 1, 2) #markers2 = [100, 200, 300, 400, 500, 600, 700] markers2 = [99, 199, 299, 399, 499, 599, 599] # which corresponds to 100 200....700Hz in frequency domain plt.plot(temp_amplitude_spectrum_2, '-D', markevery=markers2) plt.xlim(0, 1000) # plt.xscale('linear') plt.title('with zero padding') plt.show() # ################# ''' # Calculate the Amplitude Spectrum # create a new dataframe with zero-padding amplitude spectrum ''' # for df_EFR df_as_7= pd.DataFrame() for i in range(1408): temp_EFR = df_EFR_avg_85_withzero.iloc[i, 0:96060] temp_as = np.abs((fftpack.fft(temp_EFR)/n2)[range(int(n2/2))]) #df_as_7 = pd.concat([df_as_7, temp_as_7_t], axis=0) df_as_7 = df_as_7.append(pd.DataFrame(np.array([temp_as[1000], temp_as[2000], temp_as[3000], temp_as[4000], \ temp_as[5000], temp_as[6000], temp_as[7000]]).reshape(1,7)), ignore_index = True) df_as_7 = pd.concat([df_as_7, df_EFR_label], axis=1) # add labels on it # filter by 'a vowel and 85Db' df_as_7_test1 = df_as_7[(df_as_7['Vowel'] == 'a vowel') & (df_as_7['Sound Level'] == '85')] df_as_7_test1 = df_as_7_test1.reset_index(drop=True) ''' # for df_EFR_avg_vcs_withzero df_as_85= pd.DataFrame() df_as7_85= pd.DataFrame() df_as_win_85= pd.DataFrame() df_as7_win_85= pd.DataFrame() for i in range(176): #temp_aenu_EFR = df_EFR_avg_aenu_withzero.iloc[i, 0:9606] temp_as = np.abs((fftpack.fft(df_EFR_avg_85_withzero.iloc[i, 0:96060])/n2)[range(int(n2/2))]) df_as_85 = df_as_85.append(pd.DataFrame(temp_as.reshape(1,48030)), ignore_index = True) df_as7_85 = df_as7_85.append(pd.DataFrame(np.array([temp_as[1000], temp_as[2000], temp_as[3000], temp_as[4000], \ temp_as[5000], temp_as[6000], temp_as[7000]]).reshape(1,7)), ignore_index = True) temp_as_win = np.abs((fftpack.fft(df_EFR_avg_win_85_withzero.iloc[i, 0:96060])/n2)[range(int(n2/2))]) df_as_win_85 = df_as_win_85.append(pd.DataFrame(temp_as_win.reshape(1,48030)), ignore_index = True) df_as7_win_85 = df_as7_win_85.append(pd.DataFrame(np.array([temp_as_win[1000], temp_as_win[2000], temp_as_win[3000], temp_as_win[4000], \ temp_as_win[5000], temp_as_win[6000], temp_as_win[7000]]).reshape(1,7)), ignore_index = True) df_as_85 = pd.concat([df_as_85, df_EFR_avg_85_label], axis=1) # add labels on it df_as7_85 = pd.concat([df_as7_85, df_EFR_avg_85_label], axis=1) # add labels on it df_as_win_85 = pd.concat([df_as_win_85, df_EFR_avg_win_85_label], axis=1) # add labels on it df_as7_win_85 = pd.concat([df_as7_win_85, df_EFR_avg_win_85_label], axis=1) # add labels on it # for efr_aenu df_aenu_as_85= pd.DataFrame() for i in range(44): #temp_aenu_EFR = df_EFR_avg_aenu_withzero.iloc[i, 0:9606] temp_as2 = np.abs((fftpack.fft(df_EFR_avg_85_aenu.iloc[i, 0:4096])/4096)[range(int(4096/2))]) df_aenu_as_85 = df_aenu_as_85.append(pd.DataFrame(temp_as2.reshape(1,2048)), ignore_index = True) #df_aenu_as_85 = pd.concat([df_aenu_as_85, df_EFR_avg_85_label], axis=1) # add labels on it ''' # average test1 and test2 df_as_7_avg = pd.DataFrame() for i in range(44): df_as_7_avg1 = pd.DataFrame(df_as_7_test1.iloc[2*i: 2*i+1, 0:7].mean(axis=0).values.reshape(1,7)) df_as_7_label = pd.DataFrame(df_as_7_test1.iloc[2*i, 7:14].values.reshape(1,7)) df_as_7_avg_t = pd.concat([df_as_7_avg1, df_as_7_label], axis=1, ignore_index=True) df_as_7_avg = df_as_7_avg.append(df_as_7_avg_t) # set the title of columns df_as_7_avg.columns = np.append(np.arange(7), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_as_7_avg = df_as_7_avg.sort_values(by=["Condition", "Subject"]) df_as_7_avg = df_as_7_avg.reset_index(drop=True) ''' ''' # set a normalized AS df_as_7_avg_data= pd.DataFrame(df_as_7_avg.iloc[:, 0:7].astype(float)) df_as_7_avg_sum= pd.DataFrame(df_as_7_avg.iloc[:, 0:7]).sum(axis=1) df_as_7_avg_label= pd.DataFrame(df_as_7_avg.iloc[:, 7:14]) # normalize df_as_7_avg_norm = df_as_7_avg_data.div(df_as_7_avg_sum, axis=0) # add label df_as_7_avg_norm = pd.concat([df_as_7_avg_norm, df_as_7_avg_label], axis=1, ignore_index=True) ''' # Calculate correlation # EFR corr_EFR_avg_85_a = df_EFR_avg_85.iloc[0:44, 0:1024].T.corr(method='pearson').iloc[22:44, 0:22] corr_EFR_avg_85_e = df_EFR_avg_85.iloc[44:88, 0:1024].T.corr(method='pearson').iloc[22:44, 0:22] corr_EFR_avg_85_n = df_EFR_avg_85.iloc[88:132, 0:1024].T.corr(method='pearson').iloc[22:44, 0:22] corr_EFR_avg_85_u = df_EFR_avg_85.iloc[132:176, 0:1024].T.corr(method='pearson').iloc[22:44, 0:22] corr_EFR_avg_85_aenu = df_EFR_avg_85_aenu.iloc[:, 0:4096].T.corr(method='pearson').iloc[22:44, 0:22] ''' corr_EFR_avg_85_a_t = df_EFR_avg_85.iloc[0:44, 0:1024].T.corr(method='pearson').iloc[0:22, 0:22] corr_EFR_avg_85_e_t = df_EFR_avg_85.iloc[44:88, 0:1024].T.corr(method='pearson').iloc[0:22, 0:22] corr_EFR_avg_85_n_t = df_EFR_avg_85.iloc[88:132, 0:1024].T.corr(method='pearson').iloc[0:22, 0:22] corr_EFR_avg_85_u_t = df_EFR_avg_85.iloc[132:176, 0:1024].T.corr(method='pearson').iloc[0:22, 0:22] corr_EFR_avg_85_a_re = df_EFR_avg_85.iloc[0:44, 0:1024].T.corr(method='pearson').iloc[22:44, 22:44] corr_EFR_avg_85_e_re = df_EFR_avg_85.iloc[44:88, 0:1024].T.corr(method='pearson').iloc[22:44, 22:44] corr_EFR_avg_85_n_re = df_EFR_avg_85.iloc[88:132, 0:1024].T.corr(method='pearson').iloc[22:44, 22:44] corr_EFR_avg_85_u_re = df_EFR_avg_85.iloc[132:176, 0:1024].T.corr(method='pearson').iloc[22:44, 22:44] ''' # AS corr_as_win_85_a = df_as_win_85.iloc[0:44, 0:12000].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_win_85_e = df_as_win_85.iloc[44:88, 0:12000].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_win_85_n = df_as_win_85.iloc[88:132, 0:12000].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_win_85_u = df_as_win_85.iloc[132:176, 0:12000].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_aenu = df_aenu_as_85.iloc[0:44, 0:2048].T.corr(method='pearson').iloc[22:44, 0:22] # EFR + AS df_EFR_avg_85_aenu_norm = df_EFR_avg_85_aenu.div((df_EFR_avg_85_aenu.max(axis=1) - df_EFR_avg_85_aenu.min(axis=1)), axis=0) df_aenu_as_85_norm = df_aenu_as_85.div((df_aenu_as_85.max(axis=1) - df_aenu_as_85.min(axis=1)), axis=0) df_aenu_sum_85 = pd.concat([df_EFR_avg_85_aenu_norm, df_aenu_as_85_norm.iloc[:, 0:535]], axis=1) #corr_sum_85_aenu = df_aenu_sum_85.iloc[0:44, 0:2048].T.corr(method='pearson').iloc[22:44, 0:22] ''' corr_as_85_a = df_as_85.iloc[0:44, 0:48030].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_e = df_as_85.iloc[44:88, 0:48030].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_n = df_as_85.iloc[88:132, 0:48030].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_u = df_as_85.iloc[132:176, 0:48030].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_a_t = df_as_85.iloc[0:44, 0:48030].T.corr(method='pearson').iloc[0:22, 0:22] corr_as_85_e_t = df_as_85.iloc[44:88, 0:48030].T.corr(method='pearson').iloc[0:22, 0:22] corr_as_85_n_t = df_as_85.iloc[88:132, 0:48030].T.corr(method='pearson').iloc[0:22, 0:22] corr_as_85_u_t = df_as_85.iloc[132:176, 0:48030].T.corr(method='pearson').iloc[0:22, 0:22] corr_as_85_a_re = df_as_85.iloc[0:44, 0:48030].T.corr(method='pearson').iloc[22:44, 22:44] corr_as_85_e_re = df_as_85.iloc[44:88, 0:48030].T.corr(method='pearson').iloc[22:44, 22:44] corr_as_85_n_re = df_as_85.iloc[88:132, 0:48030].T.corr(method='pearson').iloc[22:44, 22:44] corr_as_85_u_re = df_as_85.iloc[132:176, 0:48030].T.corr(method='pearson').iloc[22:44, 22:44] ''' #AS7 corr_as7_85_a = df_as7_85.iloc[0:44, 0:7].T.corr(method='pearson').iloc[22:44, 0:22] corr_as7_85_e = df_as7_85.iloc[44:88, 0:7].T.corr(method='pearson').iloc[22:44, 0:22] corr_as7_85_n = df_as7_85.iloc[88:132, 0:7].T.corr(method='pearson').iloc[22:44, 0:22] corr_as7_85_u = df_as7_85.iloc[132:176, 0:7].T.corr(method='pearson').iloc[22:44, 0:22] ''' corr_as7_85_a_t = df_as7_85.iloc[0:44, 0:7].T.corr(method='pearson').iloc[0:22, 0:22] corr_as7_85_e_t = df_as7_85.iloc[44:88, 0:7].T.corr(method='pearson').iloc[0:22, 0:22] corr_as7_85_n_t = df_as7_85.iloc[88:132, 0:7].T.corr(method='pearson').iloc[0:22, 0:22] corr_as7_85_u_t = df_as7_85.iloc[132:176, 0:7].T.corr(method='pearson').iloc[0:22, 0:22] corr_as7_85_a_re = df_as7_85.iloc[0:44, 0:7].T.corr(method='pearson').iloc[22:44, 22:44] corr_as7_85_e_re = df_as7_85.iloc[44:88, 0:7].T.corr(method='pearson').iloc[22:44, 22:44] corr_as7_85_n_re = df_as7_85.iloc[88:132, 0:7].T.corr(method='pearson').iloc[22:44, 22:44] corr_as7_85_u_re = df_as7_85.iloc[132:176, 0:7].T.corr(method='pearson').iloc[22:44, 22:44] ''' ''' # auto-correlation corr_EFR_a_85_retest = df_EFR_a_85_avg.iloc[0:22, 0:7].T.corr(method='pearson') corr_EFR_a_85_test = df_EFR_a_85_avg.iloc[22:44, 0:7].T.corr(method='pearson') # cross-correlation corr_EFR_a_85_r_t = df_EFR_a_85_avg.iloc[:, 0:7].T.corr(method='pearson') # correlation matrix of test and retest corr_EFR_a_85_r_t_part = corr_EFR_a_85_r_t.iloc[22:44, 0:22] # auto-correlation corr_as_retest = df_as_7_avg.iloc[0:22, 0:7].T.corr(method='pearson') corr_as_test = df_as_7_avg.iloc[22:44, 0:7].T.corr(method='pearson') # cross-correlation corr_as_r_t = df_as_7_avg.iloc[:, 0:7].T.corr(method='pearson') # Calculate correlation(normalized) # auto-correlation corr_as_norm_retest = df_as_7_avg_norm.iloc[0:22, 0:7].T.corr(method='pearson') corr_as_norm_test = df_as_7_avg_norm.iloc[22:44, 0:7].T.corr(method='pearson') # cross-correlation corr_as_norm_r_t = df_as_7_avg_norm.iloc[:, 0:7].T.corr(method='pearson') ''' # shrink # shrink the correlation range from 0.3 to 1 # EFR ''' corr_EFR_avg_85_a_shrink_03_1 = shrink_value_03_1(corr_EFR_avg_85_a) corr_EFR_avg_85_e_shrink_03_1 = shrink_value_03_1(corr_EFR_avg_85_e) corr_EFR_avg_85_n_shrink_03_1 = shrink_value_03_1(corr_EFR_avg_85_n) corr_EFR_avg_85_u_shrink_03_1 = shrink_value_03_1(corr_EFR_avg_85_u) ''' corr_EFR_avg_85_aenu_shrink_03_1 = shrink_value_03_1(corr_EFR_avg_85_aenu) # AS ''' corr_as_win_85_a_shrink_03_1 = shrink_value_03_1(corr_as_win_85_a) corr_as_win_85_e_shrink_03_1 = shrink_value_03_1(corr_as_win_85_e) corr_as_win_85_n_shrink_03_1 = shrink_value_03_1(corr_as_win_85_n) corr_as_win_85_u_shrink_03_1 = shrink_value_03_1(corr_as_win_85_u) ''' corr_as_85_aenu_shrink_03_1 = shrink_value_03_1(corr_as_85_aenu) # shrink the correlation range from 0.5 to 1 # EFR corr_EFR_avg_85_aenu_shrink_05_1 = shrink_value_05_1(corr_EFR_avg_85_aenu) # AS corr_as_85_aenu_shrink_05_1 = shrink_value_05_1(corr_as_85_aenu) # test # sum of time and frequency corelation matrix corr_sum_avg_85_aenu = (corr_EFR_avg_85_aenu + corr_as_85_aenu).copy() # max of time and frequency corelation matrix # corr_max_avg_85_aenu = (corr_EFR_avg_85_aenu ? corr_as_85_aenu).copy() # plot the figure # in time and freq domain df_EFR_avg_85_a = df_EFR_avg_85.iloc[0:44, 0:1024] df_EFR_avg_85_e = df_EFR_avg_85.iloc[44:88, 0:1024] df_EFR_avg_85_n = df_EFR_avg_85.iloc[88:132, 0:1024] df_EFR_avg_85_u = df_EFR_avg_85.iloc[132:176, 0:1024] r2_EFR_avg_85_aenu = pd.concat([df_EFR_avg_85_a.iloc[1, :], df_EFR_avg_85_e.iloc[1, :], df_EFR_avg_85_n.iloc[1, :], df_EFR_avg_85_u.iloc[1, :]], axis=0) t2_EFR_avg_85_aenu = pd.concat([df_EFR_avg_85_a.iloc[23, :], df_EFR_avg_85_e.iloc[23, :], df_EFR_avg_85_n.iloc[23, :], df_EFR_avg_85_u.iloc[23, :]], axis=0) r9_EFR_avg_85_aenu = pd.concat([df_EFR_avg_85_a.iloc[7, :], df_EFR_avg_85_e.iloc[7, :], df_EFR_avg_85_n.iloc[7, :], df_EFR_avg_85_u.iloc[7, :]], axis=0) t9_EFR_avg_85_aenu = pd.concat([df_EFR_avg_85_a.iloc[29, :], df_EFR_avg_85_e.iloc[29, :], df_EFR_avg_85_n.iloc[29, :], df_EFR_avg_85_u.iloc[29, :]], axis=0) # frequency domain df_as_85_a = df_as_85.iloc[0:44, 0:48030] df_as_85_e = df_as_85.iloc[44:88, 0:48030] df_as_85_n = df_as_85.iloc[88:132, 0:48030] df_as_85_u = df_as_85.iloc[132:176, 0:48030] r1_as_85_aenu = df_aenu_as_85_norm.iloc[0,:] r2_as_85_aenu = df_aenu_as_85_norm.iloc[1,:] t2_as_85_aenu = df_aenu_as_85_norm.iloc[23, :] r4_as_85_aenu = df_aenu_as_85_norm.iloc[3,:] r7_as_85_aenu = df_aenu_as_85_norm.iloc[5,:] r9_as_85_aenu = df_aenu_as_85_norm.iloc[7,:] t9_as_85_aenu = df_aenu_as_85_norm.iloc[29, :] r12_as_85_aenu = df_aenu_as_85_norm.iloc[9,:] t12_as_85_aenu = df_aenu_as_85_norm.iloc[31, :] r13_as_85_aenu = df_aenu_as_85_norm.iloc[10, :] r14_as_85_aenu = df_aenu_as_85_norm.iloc[11,:] t14_as_85_aenu = df_aenu_as_85_norm.iloc[33, :] r15_as_85_aenu = df_aenu_as_85_norm.iloc[12,:] t15_as_85_aenu = df_aenu_as_85_norm.iloc[34, :] r16_as_85_aenu = df_aenu_as_85_norm.iloc[13, :] r20_as_85_aenu = df_aenu_as_85_norm.iloc[17,:] t20_as_85_aenu = df_aenu_as_85_norm.iloc[39, :] r21_as_85_aenu = df_aenu_as_85_norm.iloc[18,:] t21_as_85_aenu = df_aenu_as_85_norm.iloc[40, :] # subject 2 # EFR # subject2 -> 1 & 23 subject_num1 = 1 subject_num2 = 23 ''' x1_label = np.arange(0, 1024, 1) x1_label_concat = np.arange(0, 4096, 1) fig1, axs1 = plt.subplots(3, 2) axs1[0,0].plot(x1_label, df_EFR_avg_85_a.iloc[subject_num1, :], label='retest') axs1[0,0].plot(x1_label, df_EFR_avg_85_a.iloc[subject_num2, :], label='test') axs1[0,0].legend(loc='upper right') axs1[0,0].set_title('s2_EFR_avg_85_a') axs1[0,1].plot(x1_label, df_EFR_avg_85_e.iloc[subject_num1, :], x1_label, df_EFR_avg_85_e.iloc[subject_num2, :]) axs1[0,1].set_title('s2_EFR_avg_85_e') axs1[1,0].plot(x1_label, df_EFR_avg_85_n.iloc[subject_num1, :], x1_label, df_EFR_avg_85_n.iloc[subject_num2, :]) axs1[1,0].set_title('s2_EFR_avg_85_n') axs1[1,1].plot(x1_label, df_EFR_avg_85_u.iloc[subject_num1, :], x1_label, df_EFR_avg_85_u.iloc[subject_num2, :]) axs1[1,1].set_title('s2_EFR_avg_85_u') axs1[2,0].plot(x1_label_concat, r2_EFR_avg_85_aenu, x1_label_concat, t2_EFR_avg_85_aenu) axs1[2,0].set_title('s2_EFR_avg_85_aenu') plt.show() ''' #AS x2_label = np.arange(0, 48030, 1) x2_label_concat = np.arange(0,2048, 1) fig2, axs2 = plt.subplots(3, 2) axs2[0,0].plot(x2_label, df_as_85_a.iloc[subject_num1, :], label='retest') axs2[0,0].plot(x2_label, df_as_85_a.iloc[subject_num2, :], label='test') axs2[0,0].set_xlim(0,13000) # 0 to 1300Hz axs2[0,0].legend(loc='upper right') axs2[0,0].set_title('s2_as_85_a') axs2[0,1].plot(x2_label, df_as_85_e.iloc[subject_num1, :], x2_label, df_as_85_e.iloc[subject_num2, :]) axs2[0,1].set_xlim(0,13000) # 0 to 1300Hz axs2[0,1].set_title('s2_as_85_e') axs2[1,0].plot(x2_label, df_as_85_n.iloc[subject_num1, :], x2_label, df_as_85_n.iloc[subject_num2, :]) axs2[1,0].set_xlim(0,13000) # 0 to 1300Hz axs2[1,0].set_title('s2_as_85_n') axs2[1,1].plot(x2_label, df_as_85_u.iloc[subject_num1, :], x2_label, df_as_85_u.iloc[subject_num2, :]) axs2[1,1].set_xlim(0,13000) # 0 to 1300Hz axs2[1,1].set_title('s2_as_85_u') axs2[2,0].plot(x2_label_concat, r2_as_85_aenu, x2_label_concat, t2_as_85_aenu) axs2[2,0].set_title('s2_as_85_aenu') axs2[2,0].set_xlim(0,535) # 0 to 1300 Hz axs2[2,1].plot(x2_label_concat, t2_as_85_aenu, label='test2') axs2[2,1].plot(x2_label_concat, r16_as_85_aenu, label='retest16') axs2[2,1].set_title('t2_as_85_aenu vs r16_as_85_aenu (rank#1 in freq domain)') axs2[2,1].set_xlim(0,535) # 0 to 1300 Hz plt.show() # subject 9 subject_num1 = 7 subject_num2 = 29 # EFR ''' x1_label = np.arange(0, 1024, 1) x1_label_concat = np.arange(0, 4096, 1) fig3, axs3 = plt.subplots(3, 2) axs3[0,0].plot(x1_label, df_EFR_avg_85_a.iloc[subject_num1, :], label='retest') axs3[0,0].plot(x1_label, df_EFR_avg_85_a.iloc[subject_num2, :], label='test') axs3[0,0].legend(loc='upper right') axs3[0,0].set_title('s9_EFR_avg_85_a') axs3[0,1].plot(x1_label, df_EFR_avg_85_e.iloc[subject_num1, :], x1_label, df_EFR_avg_85_e.iloc[subject_num2, :]) axs3[0,1].set_title('s9_EFR_avg_85_e') axs3[1,0].plot(x1_label, df_EFR_avg_85_n.iloc[subject_num1, :], x1_label, df_EFR_avg_85_n.iloc[subject_num2, :]) axs3[1,0].set_title('s9_EFR_avg_85_n') axs3[1,1].plot(x1_label, df_EFR_avg_85_u.iloc[subject_num1, :], x1_label, df_EFR_avg_85_u.iloc[subject_num2, :]) axs3[1,1].set_title('s9_EFR_avg_85_u') axs3[2,0].plot(x1_label_concat, r9_EFR_avg_85_aenu, label='retest9') axs3[2,0].plot(x1_label_concat, t9_EFR_avg_85_aenu, label='test9') axs3[2,0].legend(loc='upper right') axs3[2,0].set_title('s9_EFR_avg_85_aenu') plt.show() ''' #AS x2_label = np.arange(0, 48030, 1) x2_label_concat = np.arange(0,2048, 1) fig4, axs4 = plt.subplots(3, 2) axs4[0,0].plot(x2_label, df_as_85_a.iloc[subject_num1, :], label='retest') axs4[0,0].plot(x2_label, df_as_85_a.iloc[subject_num2, :], label='test') axs4[0,0].set_xlim(0,13000) # 0 to 1300Hz axs4[0,0].legend(loc='upper right') axs4[0,0].set_title('s9_as_85_a') axs4[0,1].plot(x2_label, df_as_85_e.iloc[subject_num1, :], x2_label, df_as_85_e.iloc[subject_num2, :]) axs4[0,1].set_xlim(0,13000) # 0 to 1300Hz axs4[0,1].set_title('s9_as_85_e') axs4[1,0].plot(x2_label, df_as_85_n.iloc[subject_num1, :], x2_label, df_as_85_n.iloc[subject_num2, :]) axs4[1,0].set_xlim(0,13000) # 0 to 1300Hz axs4[1,0].set_title('s9_as_85_n') axs4[1,1].plot(x2_label, df_as_85_u.iloc[subject_num1, :], x2_label, df_as_85_u.iloc[subject_num2, :]) axs4[1,1].set_xlim(0,13000) # 0 to 1300Hz axs4[1,1].set_title('s9_as_85_u') axs4[2,0].plot(x2_label_concat, r9_as_85_aenu, label='retest9') axs4[2,0].plot(x2_label_concat, t9_as_85_aenu, label='test9') axs4[2,0].legend(loc='upper right') axs4[2,0].set_title('s9_as_85_aenu') axs4[2,0].set_xlim(0,535) # 0 to 1300 Hz plt.show() # correlation matrix for freq domain (not #1) # Subject 2 9 12 x2_label = np.arange(0, 48030, 1) x2_label_concat = np.arange(0,2048, 1) fig5, axs5 = plt.subplots(3, 2) #T2R2 # T2R16 axs5[0,0].plot(x2_label_concat, r2_as_85_aenu, label='retest2') axs5[0,0].plot(x2_label_concat, t2_as_85_aenu, label='test2') axs5[0,0].legend(loc='upper right') axs5[0,0].set_title('s2_as_85_aenu (0.866496, rank#3)') axs5[0,0].set_xlim(0,535) # 0 to 1300 Hz axs5[0,1].plot(x2_label_concat, r16_as_85_aenu, label='retest16') axs5[0,1].plot(x2_label_concat, t2_as_85_aenu, label='test2') axs5[0,1].legend(loc='upper right') axs5[0,1].set_title('r16_as_85_aenu vs t2_as_85_aenu (0.871411, rank#1)') axs5[0,1].set_xlim(0,535) # 0 to 1300 Hz # R9T9 R13T9 axs5[1,0].plot(x2_label_concat, r9_as_85_aenu, label='retest9') axs5[1,0].plot(x2_label_concat, t9_as_85_aenu, label='test9') axs5[1,0].legend(loc='upper right') axs5[1,0].set_title('s9_as_85_aenu (0.824085, rank#4)') axs5[1,0].set_xlim(0,535) # 0 to 1300 Hz axs5[1,1].plot(x2_label_concat, r13_as_85_aenu, label='retest13') axs5[1,1].plot(x2_label_concat, t9_as_85_aenu, label='test9') axs5[1,1].legend(loc='upper right') axs5[1,1].set_title('r13_as_85_aenu vs. t9_as_85_aenu (0.838825, rank#1)') axs5[1,1].set_xlim(0,535) # 0 to 1300 Hz # T12R12 T12R4 axs5[2,0].plot(x2_label_concat, r12_as_85_aenu, label='retest12') axs5[2,0].plot(x2_label_concat, t12_as_85_aenu, label='test12') axs5[2,0].legend(loc='upper right') axs5[2,0].set_title('s12_as_85_aenu (0.868822, rank#4)') axs5[2,0].set_xlim(0,535) # 0 to 1300 Hz axs5[2,1].plot(x2_label_concat, r4_as_85_aenu, label='retest4') axs5[2,1].plot(x2_label_concat, t12_as_85_aenu, label='test12') axs5[2,1].legend(loc='upper right') axs5[2,1].set_title('r4_as_85_aenu vs. t12_as_85_aenu (0.892162, rank#1)') axs5[2,1].set_xlim(0,535) # 0 to 1300 Hz plt.show() # Subject 14 15 x2_label = np.arange(0, 48030, 1) x2_label_concat = np.arange(0,4800, 2.34375) fig6, axs6 = plt.subplots(4, 1) #T14R14 T14R9 axs6[0].plot(x2_label_concat, r14_as_85_aenu, label='retest14') axs6[0].plot(x2_label_concat, t14_as_85_aenu, label='test14') axs6[0].legend(loc='upper right') axs6[0].set_title('s14_as_85_aenu (0.832793, rank#3)') axs6[0].set_xlim(0,1300) # 0 to 1300 Hz axs6[1].plot(x2_label_concat, r9_as_85_aenu, label='retest9') axs6[1].plot(x2_label_concat, t14_as_85_aenu, label='test14') axs6[1].legend(loc='upper right') axs6[1].set_title('r9_as_85_aenu vs t14_as_85_aenu (0.835228, rank#1)') axs6[1].set_xlim(0,1300) # 0 to 1300 Hz # T15R15 T15R1 axs6[2].plot(x2_label_concat, r15_as_85_aenu, label='retest15') axs6[2].plot(x2_label_concat, t15_as_85_aenu, label='test15') axs6[2].legend(loc='upper right') axs6[2].set_title('s15_as_85_aenu (0.845387, rank#4)') axs6[2].set_xlim(0,1300) # 0 to 1300 Hz axs6[3].plot(x2_label_concat, r1_as_85_aenu, label='retest1') axs6[3].plot(x2_label_concat, t15_as_85_aenu, label='test15') axs6[3].legend(loc='upper right') axs6[3].set_title('r1_as_85_aenu vs. t15_as_85_aenu (0.89756, rank#1)') axs6[3].set_xlim(0,1300) # 0 to 1300 Hz plt.setp(axs6[0].get_xticklabels(), visible=False) plt.setp(axs6[1].get_xticklabels(), visible=False) plt.setp(axs6[2].get_xticklabels(), visible=False) plt.show() # Subject 20 21 fig7, axs7 = plt.subplots(4, 1) # T20R20 T20R1 axs7[0].plot(x2_label_concat, r20_as_85_aenu, label='retest20') axs7[0].plot(x2_label_concat, t20_as_85_aenu, label='test20') axs7[0].legend(loc='upper right') axs7[0].set_title('s20_as_85_aenu (0.844889, rank#7)') axs7[0].set_xlim(0,1300) # 0 to 1300 Hz axs7[1].plot(x2_label_concat, r1_as_85_aenu, label='retest1') axs7[1].plot(x2_label_concat, t20_as_85_aenu, label='test20') axs7[1].legend(loc='upper right') axs7[1].set_title('r1_as_85_aenu vs t20_as_85_aenu (0.905874, rank#1)') axs7[1].set_xlim(0,1300) # 0 to 1300 Hz # T21R21 T21R7 axs7[2].plot(x2_label_concat, r21_as_85_aenu, label='retest21') axs7[2].plot(x2_label_concat, t21_as_85_aenu, label='test21') axs7[2].legend(loc='upper right') axs7[2].set_title('s21_as_85_aenu (0.815956, rank#2)') axs7[2].set_xlim(0,1300) # 0 to 1300 Hz axs7[3].plot(x2_label_concat, r7_as_85_aenu, label='retest7') axs7[3].plot(x2_label_concat, t21_as_85_aenu, label='test21') axs7[3].legend(loc='upper right') axs7[3].set_title('r7_as_85_aenu vs. t21_as_85_aenu (0.820878, rank#1)') axs7[3].set_xlim(0,1300) # 0 to 1300 Hz plt.setp(axs7[0].get_xticklabels(), visible=False) plt.setp(axs7[1].get_xticklabels(), visible=False) plt.setp(axs7[2].get_xticklabels(), visible=False) plt.show() # subject ''' # Correlation Matrix # EFR correlation_matrix(corr_EFR_avg_85_a, 'cross correlation of 85dB a_vowel in time domain') correlation_matrix(corr_EFR_avg_85_e, 'cross correlation of 85dB e_vowel in time domain') correlation_matrix(corr_EFR_avg_85_n, 'cross correlation of 85dB n_vowel in time domain') correlation_matrix(corr_EFR_avg_85_u, 'cross correlation of 85dB u_vowel in time domain') # AS correlation_matrix(corr_as_85_a, 'cross correlation of 85dB a_vowel in frequency domain') correlation_matrix(corr_as_85_e, 'cross correlation of 85dB e_vowel in frequency domain') correlation_matrix(corr_as_85_n, 'cross correlation of 85dB n_vowel in frequency domain') correlation_matrix(corr_as_85_u, 'cross correlation of 85dB u_vowel in frequency domain') # AS7 correlation_matrix(corr_as7_85_a, 'cross correlation of 85dB a_vowel in frequency domain 7') correlation_matrix(corr_as7_85_e, 'cross correlation of 85dB e_vowel in frequency domain 7') correlation_matrix(corr_as7_85_n, 'cross correlation of 85dB n_vowel in frequency domain 7') correlation_matrix(corr_as7_85_u, 'cross correlation of 85dB u_vowel in frequency domain 7') # Correlation Matrix witn 0 and 1 # EFR correlation_matrix_01(corr_EFR_avg_85_a, 'cross correlation of 85dB a_vowel in time domain') #correlation_matrix_tt_01(corr_EFR_avg_85_a_t, 'cross correlation of 85dB a_vowel in time domain') #correlation_matrix_rr_01(corr_EFR_avg_85_a_re, 'cross correlation of 85dB a_vowel in time domain') correlation_matrix_01(corr_EFR_avg_85_e, 'cross correlation of 85dB e_vowel in time domain') #correlation_matrix_tt_01(corr_EFR_avg_85_e_t, 'cross correlation of 85dB e_vowel in time domain') #correlation_matrix_rr_01(corr_EFR_avg_85_e_re, 'cross correlation of 85dB e_vowel in time domain') correlation_matrix_01(corr_EFR_avg_85_n, 'cross correlation of 85dB n_vowel in time domain') #correlation_matrix_tt_01(corr_EFR_avg_85_n_t, 'cross correlation of 85dB n_vowel in time domain') #correlation_matrix_rr_01(corr_EFR_avg_85_n_re, 'cross correlation of 85dB n_vowel in time domain') correlation_matrix_01(corr_EFR_avg_85_u, 'cross correlation of 85dB u_vowel in time domain') #correlation_matrix_tt_01(corr_EFR_avg_85_u_t, 'cross correlation of 85dB u_vowel in time domain') #correlation_matrix_rr_01(corr_EFR_avg_85_u_re, 'cross correlation of 85dB u_vowel in time domain') # Amplitude Spectrum correlation_matrix_01(corr_as_85_a, 'cross correlation of 85dB a_vowel in frequency domain') #correlation_matrix_tt_01(corr_as_85_a_t, 'cross correlation of 85dB a_vowel in frequency domain') #correlation_matrix_rr_01(corr_as_85_a_re, 'cross correlation of 85dB a_vowel in frequency domain') correlation_matrix_01(corr_as_85_e, 'cross correlation of 85dB e_vowel in frequency domain') #correlation_matrix_tt_01(corr_as_85_e_t, 'cross correlation of 85dB e_vowel in frequency domain') #correlation_matrix_rr_01(corr_as_85_e_re, 'cross correlation of 85dB e_vowel in frequency domain') correlation_matrix_01(corr_as_85_n, 'cross correlation of 85dB n_vowel in frequency domain') #correlation_matrix_tt_01(corr_as_85_n_t, 'cross correlation of 85dB n_vowel in frequency domain') #correlation_matrix_rr_01(corr_as_85_n_re, 'cross correlation of 85dB n_vowel in frequency domain') correlation_matrix_01(corr_as_85_u, 'cross correlation of 85dB u_vowel in frequency domain') #correlation_matrix_tt_01(corr_as_85_u_t, 'cross correlation of 85dB u_vowel in frequency domain') #correlation_matrix_rr_01(corr_as_85_u_re, 'cross correlation of 85dB u_vowel in frequency domain') # Amplitude Spectrum 7 points correlation_matrix_01(corr_as7_85_a, 'cross correlation of 85dB a_vowel in frequency domain 7') #correlation_matrix_tt_01(corr_as7_85_a_t, 'cross correlation of 85dB a_vowel in frequency domain 7') #correlation_matrix_rr_01(corr_as7_85_a_re, 'cross correlation of 85dB a_vowel in frequency domain 7') correlation_matrix_01(corr_as7_85_e, 'cross correlation of 85dB e_vowel in frequency domain 7') #correlation_matrix_tt_01(corr_as7_85_e_t, 'cross correlation of 85dB e_vowel in frequency domain 7') #correlation_matrix_rr_01(corr_as7_85_e_re, 'cross correlation of 85dB e_vowel in frequency domain 7') correlation_matrix_01(corr_as7_85_n, 'cross correlation of 85dB n_vowel in frequency domain 7') #correlation_matrix_tt_01(corr_as7_85_n_t, 'cross correlation of 85dB n_vowel in frequency domain 7') #correlation_matrix_rr_01(corr_as7_85_n_re, 'cross correlation of 85dB n_vowel in frequency domain 7') correlation_matrix_01(corr_as7_85_u, 'cross correlation of 85dB u_vowel in frequency domain 7') #correlation_matrix_tt_01(corr_as7_85_u_t, 'cross correlation of 85dB u_vowel in frequency domain 7') #correlation_matrix_rr_01(corr_as7_85_u_re, 'cross correlation of 85dB u_vowel in frequency domain 7') ''' # Correlation Matrix_both # EFR ''' correlation_matrix_comb(corr_EFR_avg_85_a, 'cross correlation of 85dB a_vowel in time domain') correlation_matrix_comb(corr_EFR_avg_85_e, 'cross correlation of 85dB e_vowel in time domain') correlation_matrix_comb(corr_EFR_avg_85_n, 'cross correlation of 85dB n_vowel in time domain') correlation_matrix_comb(corr_EFR_avg_85_u, 'cross correlation of 85dB u_vowel in time domain') ''' # figure 1 #correlation_matrix_comb(corr_EFR_avg_85_aenu, 'cross correlation of 85dB aenu in time domain') #correlation_matrix_comb(corr_EFR_avg_85_aenu_shrink_03_1, 'cross correlation of shrinked(0.3, 1) 85dB aenu in time domain') #correlation_matrix_comb(corr_EFR_avg_85_aenu_shrink_05_1, 'cross correlation of shrinked(0.5, 1) 85dB aenu in time domain') # AS ''' correlation_matrix_comb(corr_as_win_85_a, 'cross correlation of 85dB a_vowel in frequency domain') correlation_matrix_comb(corr_as_win_85_e, 'cross correlation of 85dB e_vowel in frequency domain') correlation_matrix_comb(corr_as_win_85_n, 'cross correlation of 85dB n_vowel in frequency domain') correlation_matrix_comb(corr_as_win_85_u, 'cross correlation of 85dB u_vowel in frequency domain') ''' #correlation_matrix_comb(corr_as_85_aenu_shrink_03_1, 'cross correlation of shrinked(0.3, 1) 85dB aenu in frequency domain') #correlation_matrix_comb(corr_as_85_aenu_shrink_05_1, 'cross correlation of shrinked(0.5, 1) 85dB aenu in frequency domain') # sum of EFR and AS #correlation_matrix_comb(corr_sum_avg_85_aenu, 'cross correlation of sum 85dB aenu in time and freq domain') # AS7 ''' correlation_matrix_comb(corr_as7_85_a, 'cross correlation of 85dB a_vowel in frequency domain 7') correlation_matrix_comb(corr_as7_85_e, 'cross correlation of 85dB e_vowel in frequency domain 7') correlation_matrix_comb(corr_as7_85_n, 'cross correlation of 85dB n_vowel in frequency domain 7') correlation_matrix_comb(corr_as7_85_u, 'cross correlation of 85dB u_vowel in frequency domain 7') ''' ''' # original test fig = plt.figure() ax1 = fig.add_subplot(111) ax1.matshow(corr_EFR_a_85_r_t_part, cmap='gray') # cmap=plt.cm.gray plt.title('cross correlation of test and retest') plt.colorbar() # show the color bar on the right side of the figure ax1.grid(False) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) ''' ''' #plt.subplot(1,3,1) plt.matshow(corr_as_test)# cmap=plt.cm.gray plt.title('cross correlation of test subject') plt.colorbar() # show the color bar on the right side of the figure #plt.subplot(1,3,2) plt.matshow(corr_as_retest) # cmap=plt.cm.gray plt.title('cross correlation of retest subject') plt.colorbar() # show the color bar on the right side of the figure #plt.subplot(1,3,3) plt.matshow(corr_as_t_r) # cmap=plt.cm.gray plt.title('cross correlation of test and retest') plt.colorbar() # show the color bar on the right side of the figure plt.matshow(corr_as_norm_test)# cmap=plt.cm.gray plt.title('auto correlation of normalized test subject') plt.colorbar() # show the color bar on the right side of the figure #plt.subplot(1,3,2) plt.matshow(corr_as_norm_retest) # cmap=plt.cm.gray plt.title('auto correlation of normalized retest subject') plt.colorbar() # show the color bar on the right side of the figure #plt.subplot(1,3,3) plt.matshow(corr_as_norm_t_r) # cmap=plt.cm.gray plt.title('corss correlation of normalized test and retest') plt.colorbar() # show the color bar on the right side of the figure '''
StarcoderdataPython
4978584
image_extensions = ( '3fr', 'ari', 'arw', 'bay', 'bmp', 'cap', 'cr2', 'cr3', 'crw', 'dcr', 'dcs', 'dds', 'dib', 'dng', 'drf', 'eip', 'emf', 'erf', 'fff', 'gif', 'ico', 'ief', 'iiq', 'jfif', 'jpe', 'jpeg', 'jpg', 'jxr', 'k25', 'kdc', 'mef', 'mos', 'mrw', 'nef', 'nrw', 'orf', 'ori', 'pbm', 'pef', 'pgm', 'png', 'pnm', 'ppm', 'ptx', 'pxn', 'raf', 'ras', 'raw', 'rgb', 'rw2', 'rwl', 'sr2', 'srf', 'srw', 'svg', 'tif', 'tiff', 'wdp', 'webp', 'wmf', 'x3f', 'xbm', 'xpm', 'xwd' ) audio_extensions = ( 'aac', 'ac3', 'adt', 'adts', 'aif', 'aifc', 'aiff', 'au', 'ec3', 'flac', 'lpcm', 'm3u', 'm4a', 'mid', 'midi', 'mka', 'mp2', 'mp3', 'mpa', 'oga', 'ogg', 'opus', 'ra', 'rmi', 'snd', 'wav', 'wax', 'weba', 'wma' ) common_file_extensions = ( 'csv', 'doc', 'docm', 'docx', 'htm', 'html', 'ods', 'odt', 'pdf', 'pps', 'ppsm', 'ppsx', 'ppt', 'pptm', 'pptx', 'rtf', 'txt', 'wps', 'xlr', 'xls', 'xlsb', 'xlsm', 'xlsx', 'xlw', 'xml', 'xps' ) disallowed_file_extensions = ( 'ade', 'adp', 'apk', 'appx', 'appxbundle', 'bat', 'cab', 'chm', 'cmd', 'com', 'cpl', 'dll', 'dmg', 'ex', 'ex_', 'exe', 'hta', 'ins', 'iso', 'isp', 'jar', 'js', 'jse', 'lib', 'lnk', 'mde', 'msc', 'msi', 'msix', 'msixbundle', 'msp', 'mst', 'nsh', 'pif', 'ps1', 'scr', 'sct', 'shb', 'sys', 'vb', 'vbe', 'vbs', 'vxd', 'wsc', 'wsf', 'wsh' )
StarcoderdataPython
3255980
<filename>openbook_posts/management/commands/migrate_post_images.py from django.core.management.base import BaseCommand import logging from django.db import transaction from openbook_common.utils.model_loaders import get_post_model, get_post_media_model logger = logging.getLogger(__name__) class Command(BaseCommand): help = 'Migrates the Post.image\'s to PostMedia items' def handle(self, *args, **options): Post = get_post_model() PostMedia = get_post_media_model() posts_to_migrate = Post.objects.filter(image__isnull=False, media__isnull=True) migrated_posts = 0 for post in posts_to_migrate.iterator(): with transaction.atomic(): post_image = post.image PostMedia.create_post_media(type=PostMedia.MEDIA_TYPE_IMAGE, content_object=post_image, post_id=post.pk, order=0) post_image.save() logger.info('Migrated post with id:' + str(post.pk)) migrated_posts = migrated_posts + 1 logger.info('Migrated %d posts' % migrated_posts)
StarcoderdataPython
131400
<gh_stars>1-10 """Init file for backend App""" # pylint: disable=invalid-name import sys import logging import redis from logging.handlers import RotatingFileHandler from flask import Flask from flask_bootstrap import Bootstrap from flask_bootstrap import WebCDN from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from flask_caching import Cache from flask_mail import Mail from config import config, Config from celery import Celery from .watchdog import Watchdog from werkzeug.contrib.fixers import ProxyFix bootstrap = Bootstrap() db = SQLAlchemy() mail = Mail() cache = Cache(config={ 'CACHE_TYPE': 'redis', 'CACHE_KEY_PREFIX': 'fcache', 'CACHE_REDIS_HOST': 'redis', 'CACHE_REDIS_PORT': '6379', 'CACHE_REDIS_URL': 'redis://redis:6379'}) celery = Celery(__name__, broker=Config.CELERY_BROKER_URL) login_manager = LoginManager() login_manager.session_protection = 'basic' login_manager.login_view = 'auth.login' logger = logging.getLogger('backend INFO Logger') logger.setLevel(logging.INFO) info_file_handler = RotatingFileHandler( filename='info_log.log', maxBytes=30 * 1024 * 1024, backupCount=7) info_file_handler.setLevel(logging.INFO) info_formatter = logging.Formatter('%(asctime)s - %(name)s - ' '%(levelname)s - %(message)s ' '[in %(pathname)s: line %(lineno)d]') info_file_handler.setFormatter(info_formatter) logger.addHandler(info_file_handler) watchdog = Watchdog(timeout=10, cache=cache) def create_app(config_name): """ Creates an instance of the Backend App Args: config_name: is the configuration for the type of Backend the user wants to run Returns: Backend, which starts up the app """ app = Flask(__name__) # WARNING It is a security issue to use this middleware in a non-proxy # setup that enforces using https as it will blindly trust the incoming # headers which could be forged by a malicious client. See also the # following: http://flask.pocoo.org/docs/1.0/deploying/wsgi-standalone/ app.wsgi_app = ProxyFix(app.wsgi_app) app.config.from_object(config[config_name]) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False config[config_name].init_app(app) login_manager.init_app(app) bootstrap.init_app(app) app.extensions['bootstrap']['cdns']['jquery'] = WebCDN( '//ajax.googleapis.com/ajax/libs/jquery/3.2.1/' ) mail.init_app(app) db.init_app(app) cache.init_app(app) celery.conf.update(app.config) # Clear cache at startup, Redis defaults to clear the whole DB if that # happens. NOTE: I am doing this to create a consistent startup # state, however, any replicas if they spun back up would clear the # cache after initializing, so we may want to do this elsewhere. with app.app_context(): try: cache.clear() except redis.ConnectionError as e: print(e) sys.exit(-1) # Backend Warning/Error Logger if not app.config['TESTING']: error_file_handler = RotatingFileHandler( filename=app.config['ERROR_LOGGING_LOCATION'], maxBytes=app.config['ERROR_LOGGING_MAX_BYTES'], backupCount=['ERROR_LOGGING_BACKUP_COUNT']) formatter = logging.Formatter(app.config['LOGGING_FORMAT']) error_file_handler.setFormatter(formatter) app.logger.setLevel(app.config['ERROR_LOGGING_LEVEL']) app.logger.addHandler(error_file_handler) from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .api_0_1 import api_0_1 as api_0_1_blueprint app.register_blueprint(api_0_1_blueprint, url_prefix='/api/v0.1') from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix='/auth') return app
StarcoderdataPython
1876099
<filename>dcms/media/views.py from rest_framework import views, viewsets from rest_framework.parsers import FileUploadParser from rest_framework.permissions import IsAuthenticatedOrReadOnly from rest_framework.response import Response from rest_framework import status from config.authentication import default_authentication_classes from content.permissions import IsAuthorOrAdminOtherwiseReadOnly from .serializers import * class ImageViewSet(viewsets.ModelViewSet): queryset = Image.objects.all() serializer_class = ImageSerializer authentication_classes = default_authentication_classes class FileViewSet(viewsets.ModelViewSet): queryset = File.objects.all() serializer_class = FileSerializer authentication_classes = default_authentication_classes # alternative to the POST method in ImageViewSet/FileViewSet class ImageUploadView(views.APIView): parser_classes = (FileUploadParser,) def put(self, request, filename, format=None): file_obj = request.FILES['file'] image = Image.objects.create(path=file_obj) return Response(data=ImageSerializer(image).data, status=status.HTTP_201_CREATED) class FileUploadView(views.APIView): parser_classes = (FileUploadParser,) def put(self, request, filename, format=None): file_obj = request.FILES['file'] file = File.objects.create(path=file_obj) return Response(data=FileSerializer(file).data, status=status.HTTP_201_CREATED)
StarcoderdataPython
4818964
<filename>eit_app/test_cam.py import cv2 frameWeight = 640 frameHeight = 480 cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) cap.set(3, frameWeight) cap.set(4, frameHeight) cap.set(10, 150) while cap.isOpened(): success, img = cap.read() if success: cv2.imshow("Result", img) if cv2.waitKey(1) & 0xFF == ord("q"): break
StarcoderdataPython
3520153
<reponame>evinus/My-appproch-One<gh_stars>0 from scipy.stats.stats import mode import tensorflow.keras as keras from tensorflow.python.keras import activations #from tensorflow.python.keras import callbacks import metrics as met import cv2 import os import numpy as np from sklearn.model_selection import train_test_split from tensorflow import config from sklearn.metrics import roc_auc_score , roc_curve gpus = config.experimental.list_physical_devices('GPU') config.experimental.set_memory_growth(gpus[0], True) bilder = list() for folder in os.listdir("data//avenue//testing//frames"): path = os.path.join("data//avenue//testing//frames",folder) for img in os.listdir(path): bild = os.path.join(path,img) bilder.append(cv2.imread(bild)) bilder = np.array(bilder) bilder = bilder.reshape(bilder.shape[0],bilder.shape[1],bilder.shape[2],bilder.shape[3],1) bilder = bilder.astype('float32') / 255 labels = np.load("data/frame_labels_avenue.npy") #labels = np.reshape(labels,labels.shape[1]) X_train, X_test, Y_train, Y_test = train_test_split(bilder,labels,test_size=0.2, random_state= 100) batch_size = 16 model = keras.Sequential() model.add(keras.layers.Conv3D(input_shape =(240, 360, 3, 1),activation="relu",filters=6,kernel_size=3,padding="same")) model.add(keras.layers.SpatialDropout3D(0.5)) model.add(keras.layers.MaxPooling3D(pool_size=(2,2,1))) #model.add(keras.layers.BatchNormalization()) model.add(keras.layers.Conv3D(activation="relu",filters=6,kernel_size=3,padding="same")) model.add(keras.layers.SpatialDropout3D(0.5)) model.add(keras.layers.MaxPooling3D(pool_size=(2,2,1))) model.add(keras.layers.Conv3D(activation="relu",filters=6,kernel_size=2,padding="same")) model.add(keras.layers.SpatialDropout3D(0.5)) model.add(keras.layers.MaxPooling3D(pool_size=(2,2,1))) #model.add(keras.layers.Dense(64,activation="relu")) #model.add(keras.layers.GlobalAveragePooling3D()) model.add(keras.layers.Flatten()) #model.add(keras.layers.Dense(256,activation="relu")) model.add(keras.layers.Dense(50,activation="relu")) model.add(keras.layers.Dense(10,activation="relu")) model.add(keras.layers.Dense(1,activation="sigmoid")) metrics = [keras.metrics.categorical_crossentropy,keras.metrics.binary_accuracy,keras.metrics.Precision,met.f1_m] #model.compile(optimizer="adam",metrics=["acc",met.f1_m,met.precision_m,met.recall_m],loss="binary_crossentropy") model.compile(optimizer=keras.optimizers.Adam(),metrics=["binary_accuracy","AUC","Precision","Recall","TruePositives","TrueNegatives","FalsePositives","FalseNegatives"],loss="binary_crossentropy") model.summary() filepath = 'model3Davenue-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}' #callbacks = [keras.callbacks.EarlyStopping(monitor="val_loss", patience=3, mode="min")]#,keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')] callbacks = [keras.callbacks.EarlyStopping(monitor="val_loss", patience=3, mode="min"),keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')] model.fit(X_train,Y_train,batch_size=batch_size,verbose=1,epochs=30,callbacks=callbacks,validation_data=(X_test,Y_test)) model.save("model3Davenue2") #reconstructed_model = keras.models.load_model("model3Davenue2") #np.testing.assert_allclose(model.predict(X_test), reconstructed_model.predict(X_test)) #np.testing.assert_allclose(model.evaluate(X_test,Y_test,batch_size=batch_size), reconstructed_model.evaluate(X_test,Y_test,batch_size=batch_size)) #model.evaluate(X_test,Y_test,batch_size=batch_size) #y_score = model.predict(X_test,batch_size=batch_size) #auc = roc_auc_score(Y_test,y_score=y_score) #print('AUC: ', auc*100, '%')
StarcoderdataPython
9778183
<gh_stars>0 from __future__ import annotations from math import log, sqrt from typing import Dict, Optional, Tuple import parameters class TreeNode: player_reward = { 1: 1, 2: -1 } def __init__(self, state: Tuple[int, ...], parent: Optional[TreeNode] = None) -> None: self.state = state self.parent = parent self.children: Dict[int, TreeNode] = {} self.score = 0 self.visits = 0 self.c = -parameters.UCT_C if state[0] == 1 else parameters.UCT_C self.policy_function = max if self.state[0] == 1 else min @property def UCT(self) -> float: if self.visits == 0: return self.c * float("inf") exploitation = self.score / self.visits exploration = self.c * sqrt(2 * log(self.parent.visits) / (self.visits)) return exploitation + exploration def tree_policy(self) -> int: return self.policy_function(self.children.keys(), key=lambda key: self.children[key].UCT) @property def is_not_leaf(self) -> bool: return bool(self.children) def add_reward(self, winner: int) -> None: self.score += TreeNode.player_reward[winner] def increment_visit_count(self) -> None: self.visits += 1 def add_node(self, action: int, state: Tuple[int, ...]) -> TreeNode: child_node = TreeNode(state, self) self.children[action] = child_node return child_node def __eq__(self, o: TreeNode) -> bool: return self.state == o.state def __hash__(self) -> int: return hash(self.state)
StarcoderdataPython
9752073
import os import csv class Formatter(): DEL_COM = ',' LINE_LF = '\n' UTF_8 = 'utf-8' DBL_QUOTE = '"' def __init__(self, *args, **kwargs): """ delimiter: delimiter of column line_sep: separater of line as record """ self.delimiter = kwargs['delimiter'] if 'delimiter' in kwargs else Formatter.DEL_COM self.quotechar = kwargs['quotechar'] if 'quotechar' in kwargs else Formatter.DBL_QUOTE self.line_sep = kwargs['line_sep'] if 'line_sep' in kwargs else Formatter.LINE_LF self.charset = kwargs['charset'] if 'charset' in kwargs else Formatter.UTF_8 class Writer(): def __init__(self): """ Not Implements """ pass def write(self, formatter): pass class Reader(): def __init__(self): """ Not Implements """ pass class Csv(): def __init__(self, formatter=None): """ delimiter: delimiter of column line_sep: separater of line as record """ if formatter is None: self.form = Formatter() else: self.form = formatter def write(self, file_path, contents, headers=None): """ write file """ is_addtional = os.path.isfile(file_path) with open(file_path, 'a', newline=self.form.line_sep) as csv_file: writer = csv.writer( csv_file, delimiter=self.form.delimiter, quotechar=self.form.quotechar, quoting=csv.QUOTE_MINIMAL ) if headers is not None and not is_addtional: writer.writerow(headers) for content in contents: writer.writerow(content) return True def read(self, file_path, headers=None): """ read file """ contents = [] with open(file_path, "r", newline=self.form.line_sep) as csv_file: reader = csv.reader( csv_file, delimiter=self.form.delimiter, quotechar=self.form.quotechar, quoting=csv.QUOTE_MINIMAL ) for n, row in enumerate(reader): if headers is not None and n == 0 : continue contents.append(row) return contents
StarcoderdataPython
8079626
# -*- coding: utf-8 -*- """ Created on Tue Mar 12 07:10:48 2019 @author: gbrunkhorst """ import gbxltable
StarcoderdataPython
11332096
<filename>website_multi_company_sale/__manifest__.py # Copyright 2017-2018 <NAME> <https://it-projects.info/team/yelizariev> # Copyright 2018 <NAME> <https://it-projects.info/team/ilmir-k> # Copyright 2018 <NAME> <https://it-projects.info/team/iledarn> # Copyright 2019 <NAME> <https://it-projects.info/team/KolushovAlexandr> # License MIT (https://opensource.org/licenses/MIT). { "name": """Multi Ecommerce""", "summary": """Multi Website support in eCommerce""", "category": "eCommerce", # "live_test_url": "http://apps.it-projects.info/shop/product/website-multi-company?version=12.0", "images": ["images/website_multi_company_sale_main.png"], "version": "192.168.127.12.2", "application": False, "author": "IT-Projects LLC, <NAME>", "support": "<EMAIL>", "website": "https://it-projects.info/team/yelizariev", "license": "Other OSI approved licence", # MIT "price": 9.00, "currency": "EUR", "depends": ["website_multi_company", "website_sale", "ir_rule_website"], "external_dependencies": {"python": [], "bin": []}, "data": [ "views/product_public_category_views.xml", "views/res_config_views.xml", "views/product_template_views.xml", "views/payment_views.xml", "views/sale_views.xml", "security/website_multi_company_sale_security.xml", ], "qweb": [], "demo": [], "post_load": None, "pre_init_hook": None, "post_init_hook": None, "uninstall_hook": None, "auto_install": False, "installable": False, }
StarcoderdataPython
299815
def login(): return 'login info' a = 18 num1 = 30 num2 = 10 num2 = 20
StarcoderdataPython
3381420
<gh_stars>10-100 #!/usr/bin/env python # -*- encoding: utf-8 -*- """ $ python setup.py register sdist upload First Time register project on pypi https://pypi.org/manage/projects/ Pypi Release $ pip3 install twine $ python3 setup.py sdist $ twine upload dist/keri-0.0.1.tar.gz Create release git: $ git tag -a v0.4.2 -m "bump version" $ git push --tags $ git checkout -b release_0.4.2 $ git push --set-upstream origin release_0.4.2 $ git checkout master Best practices for setup.py and requirements.txt https://caremad.io/posts/2013/07/setup-vs-requirement/ """ from glob import glob from os.path import basename from os.path import splitext from setuptools import find_packages, setup setup( name='keri', version='0.4.7', # also change in src/keri/__init__.py license='Apache Software License 2.0', description='Key Event Receipt Infrastructure', long_description="KERI Decentralized Key Management Infrastructure", author='<NAME>', author_email='<EMAIL>', url='https://github.com/decentralized-identity/keripy', packages=find_packages('src'), package_dir={'': 'src'}, py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')], include_package_data=True, zip_safe=False, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: Unix', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: Implementation :: CPython', # uncomment if you test on these interpreters: # 'Programming Language :: Python :: Implementation :: PyPy', # 'Programming Language :: Python :: Implementation :: IronPython', # 'Programming Language :: Python :: Implementation :: Jython', # 'Programming Language :: Python :: Implementation :: Stackless', 'Topic :: Utilities', ], project_urls={ 'Documentation': 'https://keri.readthedocs.io/', 'Changelog': 'https://keri.readthedocs.io/en/latest/changelog.html', 'Issue Tracker': 'https://github.com/decentralized-identity/keripy/issues', }, keywords=[ # eg: 'keyword1', 'keyword2', 'keyword3', ], python_requires='>=3.9.5', install_requires=[ 'lmdb>=1.2.1', 'pysodium>=0.7.8', 'blake3>=0.1.8', 'msgpack>=1.0.2', 'cbor2>=5.3.0', 'multidict>=5.1.0', 'orderedset>=2.0.3', 'hio>=0.3.9', 'multicommand>=0.0.8', ], extras_require={ }, tests_require=['coverage>=5.5', 'pytest>=6.2.4'], setup_requires=[ ], entry_points={ 'console_scripts': [ 'keri_bob = keri.demo.demo_bob:main', 'keri_eve = keri.demo.demo_eve:main', 'keri_sam = keri.demo.demo_sam:main', 'kli = keri.kli.kli:main', ] }, )
StarcoderdataPython
3432589
<reponame>ciaranjordan/webex_bot import logging from abc import ABC, abstractmethod log = logging.getLogger(__name__) CALLBACK_KEYWORD_KEY = 'callback_keyword' class Command(ABC): def __init__(self, command_keyword, card, help_message=None, delete_previous_message=False): self.command_keyword = command_keyword self.help_message = help_message self.card = card self.pre_card_callback = self.execute self.card_callback = self.execute self.card_callback_keyword = None self.delete_previous_message = delete_previous_message # Now, if this card has a Action.Submit action, let's read the callback keyword, # or if it doesnt exist, add it. # Only work from the first action for now. Maybe in future support multiple actions. if card is not None: if 'actions' in card: if len(card['actions']) > 0: first_action = card['actions'][0] if 'type' in first_action and first_action['type'] == 'Action.Submit': if 'data' in first_action and len(first_action['data']) > 0: data = first_action['data'] if CALLBACK_KEYWORD_KEY in data: self.card_callback_keyword = first_action['data'][CALLBACK_KEYWORD_KEY] else: log.warning( f"card actions data but no entry for '{CALLBACK_KEYWORD_KEY}' for {command_keyword}") self.set_default_card_callback_keyword() else: log.warning( f"no card actions data so no entry for '{CALLBACK_KEYWORD_KEY}' for {command_keyword}") self.set_default_card_callback_keyword() else: log.info(f"No actions defined in this card. command_keyword={command_keyword}") def set_default_card_callback_keyword(self): if self.card_callback_keyword is None: if 'data' not in self.card['actions'][0]: self.card['actions'][0]['data'] = {} self.card_callback_keyword = f"callback___{self.command_keyword}" self.card['actions'][0]['data'][CALLBACK_KEYWORD_KEY] = self.card_callback_keyword log.info( f"Added default action for '{self.command_keyword}' {CALLBACK_KEYWORD_KEY}={self.card_callback_keyword}") def pre_card_load_reply(self, message, attachment_actions, activity): pass def pre_execute(self, message, attachment_actions, activity): pass @abstractmethod def execute(self, message, attachment_actions, activity): pass
StarcoderdataPython
229799
<gh_stars>0 # Copyright 2015 Metaswitch Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sh import ErrorReturnCode_1 from functools import partial from test_base import TestBase from docker_host import DockerHost from utils import retry_until_success class Ipv6MultiHostMainline(TestBase): def run_ipv6_multi_host(self, default_as=None, per_node_as=None): """ Run a mainline multi-host test with IPv6. Almost identical in function to the vagrant coreOS demo. """ host1 = DockerHost('host1', as_num=per_node_as) host2 = DockerHost('host2', as_num=per_node_as) if default_as: host1.calicoctl("default-node-as 12345") ip1 = "fd80:24e2:f998:72d6::1:1" ip2 = "fd80:24e2:f998:72d6::1:2" ip3 = "fd80:24e2:f998:72d6::1:3" ip4 = "fd80:24e2:f998:72d6::1:4" ip5 = "fd80:24e2:f998:72d6::1:5" # We use this image here because busybox doesn't have ping6. workload1 = host1.create_workload("workload1", ip1, image="phusion/baseimage:0.9.16") workload2 = host1.create_workload("workload2", ip2, image="phusion/baseimage:0.9.16") workload3 = host1.create_workload("workload3", ip3, image="phusion/baseimage:0.9.16") workload4 = host2.create_workload("workload4", ip4, image="phusion/baseimage:0.9.16") workload5 = host2.create_workload("workload5", ip5, image="phusion/baseimage:0.9.16") host1.calicoctl("profile add PROF_1_3_5") host1.calicoctl("profile add PROF_2") host1.calicoctl("profile add PROF_4") host1.calicoctl("profile PROF_1_3_5 member add %s" % workload1) host1.calicoctl("profile PROF_2 member add %s" % workload2) host1.calicoctl("profile PROF_1_3_5 member add %s" % workload3) host2.calicoctl("profile PROF_4 member add %s" % workload4) host2.calicoctl("profile PROF_1_3_5 member add %s" % workload5) self.assert_connectivity(pass_list=[workload1, workload3, workload5], fail_list=[workload2, workload4]) self.assert_connectivity(pass_list=[workload2], fail_list=[workload1, workload3, workload4, workload5]) self.assert_connectivity(pass_list=[workload4], fail_list=[workload1, workload2, workload3, workload5]) def test_ipv6_multi_host(self): self.run_ipv6_multi_host() def test_ipv6_multi_host_default_as(self): self.run_ipv6_multi_host(default_as=64512) def test_ipv6_multi_host_per_node_as(self): self.run_ipv6_multi_host(per_node_as=64513) def test_ipv6_multi_host_default_and_per_node_as(self): self.run_ipv6_multi_host(default_as=64514, per_node_as=64515)
StarcoderdataPython
9795093
from glowworm import gso from deap import benchmarks if __name__ == '__main__': def fitness(candidate): # return 1/(benchmarks.schwefel(candidate)[0]+1) return 1/(benchmarks.ackley(candidate)[0]+1) gso(agents_number=80, dim=10, func_obj=fitness, epochs=300, step_size=0.5, random_step =True, virtual_individual = True, dims_lim = [-15,15])
StarcoderdataPython
6472064
import pytest from adlib27.autodiff import AutoDiff as AD import numpy as np # Testing the getters and setters def test_getters(): x = AD(val=[10]) value = x.val derivative = x.der assert value == pytest.approx([10], rel=1e-4) for d in derivative: assert d == pytest.approx([1]) def test_setters(): x = AD(val=[10]) x.val[0] = 5 x.der[0][0] = 0 assert x.val == pytest.approx([5]) for d in x.der: assert d == pytest.approx([0]) # Testing the comparison operations def test_ne_const(): x = AD(val=[10]) y = 10 assert x != y def test_ne_different_AD(): x = AD(val=[10], index=0, magnitude=2) y = AD(val=[20], index=1, magnitude=2) assert x != y def test_eq_AD(): x1 = AD(val=[10]) x2 = AD(val=[10]) assert x1 == x2 def test_ne_different_AD_many_val(): x = AD(val=[10, -1, 3.2, 4], index=0, magnitude=2) y = AD(val=[-2, 0, 1, 100], index=1, magnitude=2) assert x != y def test_eq_AD_many_val(): x1 = AD(val=[10, 1, 3, 4]) x2 = AD(val=[10, 1, 3, 4]) assert x1 == x2 # Testing the Unary operations def test_neg(): x = AD(val=[10]) y = -x assert y.val == pytest.approx([-10]) for d in y.der: assert d == pytest.approx([-1]) def test_neg_different_AD(): x = AD(val=[10], index=0, magnitude=2) y = AD(val=[20], index=1, magnitude=2) z = -(x + y) assert z.val == pytest.approx([-30]) for d in z.der: assert d == pytest.approx([-1]) def test_neg_many_val(): x = AD(val=[10, 1, 3, 4]) y = -x assert y.val == pytest.approx([-10, -1, -3, -4]) for d in y.der: assert d == pytest.approx([-1, -1, -1, -1]) def test_neg_different_AD_many_val(): x = AD(val=[10, -1, 3.2, 4], index=0, magnitude=2) y = AD(val=[-2, 0, 1, 100], index=1, magnitude=2) z = -(x + y) assert z.val == pytest.approx([-8, 1, -4.2, -104]) for d in z.der: assert d == pytest.approx([-1, -1, -1, -1]) def test_pos(): x = AD(val=[-15]) y = +x assert y.val == pytest.approx([-15]) for d in y.der: assert d == pytest.approx([1]) def test_pos_different_AD(): x = AD(val=[10], index=0, magnitude=2) y = AD(val=[-20], index=1, magnitude=2) z = +(x + y) assert z.val == pytest.approx([-10]) for d in z.der: assert d == pytest.approx([1]) def test_pos_many_val(): x = AD(val=[10, 1, 3, 4]) y = +x assert y.val == pytest.approx([10, 1, 3, 4]) for d in y.der: assert d == pytest.approx([1, 1, 1, 1]) def test_pos_different_AD_many_val(): x = AD(val=[10, -1, 3.2, 4], index=0, magnitude=2) y = AD(val=[-2, 0, 1, 100], index=1, magnitude=2) z = +(x + y) assert z.val == pytest.approx([8, -1, 4.2, 104]) for d in z.der: assert d == pytest.approx([1, 1, 1, 1]) # Testing the basic operations (+, -, *, /) # Testing the add and radd def test_add_const(): x = AD(val=[10]) y = x + 22 assert y.val == pytest.approx([32]) for d in y.der: assert d == pytest.approx([1]) def test_add_const_many_val(): x = AD(val=[-1, 0, 5, 10]) y = x + 17 assert y.val == pytest.approx([16, 17, 22, 27]) for d in y.der: assert d == pytest.approx([1, 1, 1, 1]) def test_add_AD(): x = AD(val=[3]) y = x + x assert y.val == pytest.approx([6]) for d in y.der: assert d == pytest.approx([2]) def test_add_AD_many_val(): x = AD(val=[-1, 0, 5, 10]) y = x + x assert y.val == pytest.approx([-2, 0, 10, 20]) for d in y.der: assert d == pytest.approx([2, 2, 2, 2]) def test_add_different_AD(): x = AD(val=[3], index=0, magnitude=2) y = AD(val=[4], index=1, magnitude=2) z = x + y assert z.val == pytest.approx([7]) for d in z.der: assert d == pytest.approx([1]) def test_add_different_AD_many_val(): x = AD(val=[10, -1, 3.2, 4], index=0, magnitude=2) y = AD(val=[-2, 0, 1, 100], index=1, magnitude=2) z = x + y assert z.val == pytest.approx([8, -1, 4.2, 104]) for d in z.der: assert d == pytest.approx([1, 1, 1, 1]) def test_radd_const(): x = AD(val=[10]) y = 5 + x assert y.val == pytest.approx([15]) for d in y.der: assert d == pytest.approx([1]) def test_radd_const_many_val(): x = AD(val=[-1, 0, 5, 10]) y = 17 + x assert y.val == pytest.approx([16, 17, 22, 27]) for d in y.der: assert d == pytest.approx([1, 1, 1, 1]) # Testing the sub and rsub def test_sub_const(): x = AD(val=[10]) y = x - 3 assert y.val == pytest.approx([7]) for d in y.der: assert d == pytest.approx([1]) def test_sub_const_many_val(): x = AD(val=[-1, 0, 5, 10]) y = x - 3 assert y.val == pytest.approx([-4, -3, 2, 7]) for d in y.der: assert d == pytest.approx([1, 1, 1, 1]) def test_sub_AD(): x = AD(val=[14]) y = x - x assert y.val == pytest.approx([0]) for d in y.der: assert d == pytest.approx([0]) def test_sub_AD_many_val(): x = AD(val=[-1, 0, 5, 10]) y = x - x assert y.val == pytest.approx([0, 0, 0, 0]) for d in y.der: assert d == pytest.approx([0, 0, 0, 0]) def test_sub_different_AD(): x = AD(val=[3], index=0, magnitude=2) y = AD(val=[4], index=1, magnitude=2) z = x - y assert z.val == pytest.approx([-1]) assert z.der[0] == pytest.approx([1]) assert z.der[1] == pytest.approx([-1]) def test_sub_different_AD_many_val(): x = AD(val=[10, -1, 3.2, 4], index=0, magnitude=2) y = AD(val=[-2, 0, 1, 100], index=1, magnitude=2) z = x - y assert z.val == pytest.approx([12, -1, 2.2, -96]) assert z.der[0] == pytest.approx([1, 1, 1, 1]) assert z.der[1] == pytest.approx([-1, -1, -1, -1]) def test_rsub_const(): x = AD(val=[1]) y = 7 - x assert y.val == pytest.approx([6]) for d in y.der: assert d == pytest.approx([-1]) def test_rsub_const_many_val(): x = AD(val=[-1, 0, 5, 10]) y = 17 - x assert y.val == pytest.approx([18, 17, 12, 7]) for d in y.der: assert d == pytest.approx([-1, -1, -1, -1]) # Testing the mul and rmul def test_mul_const(): x = AD(val=[10]) y = x * 3 assert y.val == pytest.approx([30]) for d in y.der: assert d == pytest.approx([3]) def test_mul_const_many_val(): x = AD(val=[-1, 0, 5, 10]) y = x * 3 assert y.val == pytest.approx([-3, 0, 15, 30]) for d in y.der: assert d == pytest.approx([3, 3, 3, 3]) def test_mul_AD(): x = AD(val=[4]) y = x * x assert y.val == pytest.approx([16]) for d in y.der: assert d == pytest.approx([8]) def test_mul_AD_many_val(): x = AD(val=[-1, 0, 5, 10]) y = x * x assert y.val == pytest.approx([1, 0, 25, 100]) for d in y.der: assert d == pytest.approx([-2, 0, 10, 20]) def test_mul_different_AD(): x = AD(val=[3], index=0, magnitude=2) y = AD(val=[4], index=1, magnitude=2) z = x * y assert z.val == pytest.approx([12]) assert z.der[0] == pytest.approx([4]) assert z.der[1] == pytest.approx([3]) def test_mul_different_AD_many_val(): x = AD(val=[10, -1, 3.2, 4], index=0, magnitude=2) y = AD(val=[-2, 0, 1, 100], index=1, magnitude=2) z = x * y assert z.val == pytest.approx([-20, 0, 3.2, 400]) assert z.der[0] == pytest.approx([-2, 0, 1, 100]) assert z.der[1] == pytest.approx([10, -1, 3.2, 4]) def test_rmul_const(): x = AD(val=[1]) y = 7 * x assert y.val == pytest.approx([7]) for d in y.der: assert d == pytest.approx([7]) def test_rmul_const_many_val(): x = AD(val=[-1, 0, 5, 10]) y = 7 * x assert y.val == pytest.approx([-7, 0, 35, 70]) for d in y.der: assert d == pytest.approx([7, 7, 7, 7]) # Testing the div and rdiv def test_div_const(): x = AD(val=[20]) y = x / 4 assert y.val == pytest.approx([5]) for d in y.der: assert d == pytest.approx([0.25]) def test_div_const_many_val(): x = AD(val=[-1, 0, 5, 10]) y = x / 4 assert y.val == pytest.approx([-0.25, 0, 1.25, 2.5]) for d in y.der: assert d == pytest.approx([0.25, 0.25, 0.25, 0.25]) def test_div_AD(): x = AD(val=[4]) y = x / x assert y.val == pytest.approx([1]) for d in y.der: assert d == pytest.approx([0]) def test_div_AD_many_val(): x = AD(val=[-1, 1, 5, 10]) y = x / x assert y.val == pytest.approx([1, 1, 1, 1]) for d in y.der: assert d == pytest.approx([0, 0, 0, 0]) def test_div_different_AD(): x = AD(val=[2], index=0, magnitude=2) y = AD(val=[4], index=1, magnitude=2) z = x / y assert z.val == pytest.approx([0.5]) assert z.der[0] == pytest.approx([0.25]) assert z.der[1] == pytest.approx([-0.125]) def test_div_different_AD_many_val(): x = AD(val=[-2, 4,10, 100], index=0, magnitude=2) y = AD(val=[1, 2, 2, 4], index=1, magnitude=2) z = x / y assert z.val == pytest.approx([-2, 2, 5, 25]) assert z.der[0] == pytest.approx([1, 0.5, 0.5, 0.25]) assert z.der[1] == pytest.approx([2, -1, -2.5, -6.25]) def test_rdiv_const(): x = AD(val=[1]) y = 7 / x assert y.val == pytest.approx([7]) for d in y.der: assert d == pytest.approx([-7]) def test_rdiv_const_many_val(): x = AD(val=[-1, 1, 7, 14]) y = 7 / x assert y.val == pytest.approx([-7, 7, 1, 0.5]) for d in y.der: assert d == pytest.approx([-7, -7, -0.14285714285714285, -0.03571428571428571]) # Testing the power and rpower def test_pow_const(): x = AD(val=[5]) y = x**2 assert y.val == pytest.approx([25]) for d in y.der: assert d == pytest.approx([10]) def test_pow_const_many_val(): x = AD(val=[-1, 0, 1, 3]) y = x ** 3 assert y.val == pytest.approx([-1, 0, 1, 27]) for d in y.der: assert d == pytest.approx([3, 0, 3, 27]) def test_pow_AD(): x = AD(val=[2]) y = x ** x assert y.val == pytest.approx([4]) for d in y.der: assert d == pytest.approx([6.772588722239782]) def test_pow_AD_many_val(): x = AD(val=[1, 2, 5, 10]) y = x ** x assert y.val == pytest.approx([1, 4, 3125, 10000000000]) for d in y.der: assert d == pytest.approx([1, 6.772588722239782, 8154.493476356564, 33025850929.94046]) def test_pow_different_AD(): x = AD(val=[2], index=0, magnitude=2) y = AD(val=[3], index=1, magnitude=2) z = x ** y assert z.val == pytest.approx([8]) assert z.der[0] == pytest.approx([12]) assert z.der[1] == pytest.approx([5.545177444479562]) def test_pow_different_AD_many_val(): x = AD(val=[1, 2, 3, 4], index=0, magnitude=2) y = AD(val=[4, 3, 2, 1], index=1, magnitude=2) z = x ** y assert z.val == pytest.approx([1, 8, 9, 4]) assert z.der[0] == pytest.approx([4, 12, 6, 1]) assert z.der[1] == pytest.approx([0, 5.545177444479562, 9.887510598012987, 5.545177444479562]) def test_rpow_const(): x = AD(val=[1]) y = 2 ** x assert y.val == pytest.approx([2]) for d in y.der: assert d == pytest.approx([1.3862943611198906]) def test_rpow_const_many_val(): x = AD(val=[-1, 0, 1, 2]) y = 2 ** x assert y.val == pytest.approx([0.5, 1, 2, 4]) for d in y.der: assert d == pytest.approx([0.34657359027997264, 0.6931471805599453, 1.3862943611198906, 2.772588722239781])
StarcoderdataPython
5198883
# Generated by Django 2.2.11 on 2020-05-30 16:25 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("patients", "0011_auto_20200530_2150"), ] operations = [ migrations.RemoveField(model_name="patient", name="patient_search_id",), ]
StarcoderdataPython
237837
<filename>gui/ui/interbasin_dialog.py<gh_stars>0 # -*- coding: utf-8 -*- # Form implementation generated from reading ui file '.\interbasin_dialog.ui' # # Created by: PyQt5 UI code generator 5.15.0 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_interbasin_dialog(object): def setupUi(self, interbasin_dialog): interbasin_dialog.setObjectName("interbasin_dialog") interbasin_dialog.resize(478, 346) self.gridLayout = QtWidgets.QGridLayout(interbasin_dialog) self.gridLayout.setObjectName("gridLayout") self.int_basin_name_display = QtWidgets.QLineEdit(interbasin_dialog) self.int_basin_name_display.setEnabled(False) self.int_basin_name_display.setObjectName("int_basin_name_display") self.gridLayout.addWidget(self.int_basin_name_display, 1, 0, 1, 1) self.buttonBox = QtWidgets.QDialogButtonBox(interbasin_dialog) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setObjectName("buttonBox") self.gridLayout.addWidget(self.buttonBox, 1, 1, 1, 1) self.frame = QtWidgets.QFrame(interbasin_dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.frame.sizePolicy().hasHeightForWidth()) self.frame.setSizePolicy(sizePolicy) self.frame.setMaximumSize(QtCore.QSize(16777215, 289)) self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.formLayout = QtWidgets.QFormLayout(self.frame) self.formLayout.setFieldGrowthPolicy(QtWidgets.QFormLayout.AllNonFixedFieldsGrow) self.formLayout.setObjectName("formLayout") self.IB_description_box = QtWidgets.QGroupBox(self.frame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.IB_description_box.sizePolicy().hasHeightForWidth()) self.IB_description_box.setSizePolicy(sizePolicy) self.IB_description_box.setMaximumSize(QtCore.QSize(250, 16777215)) self.IB_description_box.setObjectName("IB_description_box") self.gridLayout_2 = QtWidgets.QGridLayout(self.IB_description_box) self.gridLayout_2.setObjectName("gridLayout_2") self.interbasin_id_display = QtWidgets.QLabel(self.IB_description_box) self.interbasin_id_display.setObjectName("interbasin_id_display") self.gridLayout_2.addWidget(self.interbasin_id_display, 0, 1, 1, 1) self.interbasin_id_label = QtWidgets.QLabel(self.IB_description_box) self.interbasin_id_label.setObjectName("interbasin_id_label") self.gridLayout_2.addWidget(self.interbasin_id_label, 0, 0, 1, 1) self.drainage_area_label = QtWidgets.QLabel(self.IB_description_box) self.drainage_area_label.setObjectName("drainage_area_label") self.gridLayout_2.addWidget(self.drainage_area_label, 2, 0, 1, 1) self.drainage_area_edit = QtWidgets.QLineEdit(self.IB_description_box) self.drainage_area_edit.setObjectName("drainage_area_edit") self.gridLayout_2.addWidget(self.drainage_area_edit, 2, 1, 1, 1) self.interbasin_name_label = QtWidgets.QLabel(self.IB_description_box) self.interbasin_name_label.setObjectName("interbasin_name_label") self.gridLayout_2.addWidget(self.interbasin_name_label, 1, 0, 1, 1) self.interbasin_name_edit = QtWidgets.QLineEdit(self.IB_description_box) self.interbasin_name_edit.setObjectName("interbasin_name_edit") self.gridLayout_2.addWidget(self.interbasin_name_edit, 1, 1, 1, 1) self.formLayout.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.IB_description_box) self.input_method_box = QtWidgets.QGroupBox(self.frame) self.input_method_box.setObjectName("input_method_box") self.formLayout_2 = QtWidgets.QFormLayout(self.input_method_box) self.formLayout_2.setObjectName("formLayout_2") self.table_radio = QtWidgets.QRadioButton(self.input_method_box) self.table_radio.setObjectName("table_radio") self.formLayout_2.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.table_radio) self.file_radio = QtWidgets.QRadioButton(self.input_method_box) self.file_radio.setObjectName("file_radio") self.formLayout_2.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.file_radio) self.formLayout.setWidget(0, QtWidgets.QFormLayout.FieldRole, self.input_method_box) self.ave_flow_box = QtWidgets.QGroupBox(self.frame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.ave_flow_box.sizePolicy().hasHeightForWidth()) self.ave_flow_box.setSizePolicy(sizePolicy) self.ave_flow_box.setMaximumSize(QtCore.QSize(16777215, 150)) self.ave_flow_box.setObjectName("ave_flow_box") self.gridLayout_3 = QtWidgets.QGridLayout(self.ave_flow_box) self.gridLayout_3.setObjectName("gridLayout_3") self.flow_file_edit = QtWidgets.QLineEdit(self.ave_flow_box) self.flow_file_edit.setEnabled(False) self.flow_file_edit.setObjectName("flow_file_edit") self.gridLayout_3.addWidget(self.flow_file_edit, 1, 1, 1, 1) self.file_button = QtWidgets.QPushButton(self.ave_flow_box) self.file_button.setObjectName("file_button") self.gridLayout_3.addWidget(self.file_button, 1, 0, 1, 1) self.ave_flows_table = QtWidgets.QTableWidget(self.ave_flow_box) self.ave_flows_table.setObjectName("ave_flows_table") self.ave_flows_table.setColumnCount(1) self.ave_flows_table.setRowCount(1) item = QtWidgets.QTableWidgetItem() self.ave_flows_table.setVerticalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.ave_flows_table.setHorizontalHeaderItem(0, item) self.gridLayout_3.addWidget(self.ave_flows_table, 0, 0, 1, 2) self.formLayout.setWidget(1, QtWidgets.QFormLayout.SpanningRole, self.ave_flow_box) self.gridLayout.addWidget(self.frame, 0, 0, 1, 2) self.drainage_area_label.setBuddy(self.drainage_area_edit) self.interbasin_name_label.setBuddy(self.interbasin_name_edit) self.retranslateUi(interbasin_dialog) self.buttonBox.accepted.connect(interbasin_dialog.accept) self.buttonBox.rejected.connect(interbasin_dialog.reject) QtCore.QMetaObject.connectSlotsByName(interbasin_dialog) interbasin_dialog.setTabOrder(self.interbasin_name_edit, self.drainage_area_edit) interbasin_dialog.setTabOrder(self.drainage_area_edit, self.ave_flows_table) interbasin_dialog.setTabOrder(self.ave_flows_table, self.int_basin_name_display) interbasin_dialog.setTabOrder(self.int_basin_name_display, self.buttonBox) def retranslateUi(self, interbasin_dialog): _translate = QtCore.QCoreApplication.translate interbasin_dialog.setWindowTitle(_translate("interbasin_dialog", "Interbasin")) self.IB_description_box.setTitle(_translate("interbasin_dialog", "Description")) self.interbasin_id_display.setText(_translate("interbasin_dialog", "1")) self.interbasin_id_label.setText(_translate("interbasin_dialog", "Interbasin ID")) self.drainage_area_label.setText(_translate("interbasin_dialog", "Drainage Area")) self.interbasin_name_label.setText(_translate("interbasin_dialog", "Interbasin Name")) self.input_method_box.setTitle(_translate("interbasin_dialog", "Input Method")) self.table_radio.setText(_translate("interbasin_dialog", "Table")) self.file_radio.setText(_translate("interbasin_dialog", "Input File")) self.ave_flow_box.setTitle(_translate("interbasin_dialog", "Average Flow")) self.file_button.setText(_translate("interbasin_dialog", "Select File")) item = self.ave_flows_table.verticalHeaderItem(0) item.setText(_translate("interbasin_dialog", "A")) item = self.ave_flows_table.horizontalHeaderItem(0) item.setText(_translate("interbasin_dialog", "1"))
StarcoderdataPython