id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
4929903
<filename>1_screen_pipeline/10_generate_ontology.py #!/usr/bin/env python # SPDX-License-Identifier: MIT # Copyright (c) 2016-2020 <NAME>, <NAME>, <NAME>, <NAME> from __future__ import print_function import gzip import os import sys import json import psycopg2 import argparse import StringIO import math from importlib import import_module sys.path.append(os.path.join(os.path.dirname(__file__), '../common/')) from dbconnect import db_connect from constants import paths from config import Config sys.path.append(os.path.join(os.path.dirname(__file__), '../../metadata/utils/')) from exp import Exp from utils import Utils, printt, printWroteNumLines, cat from db_utils import getcursor, makeIndex, makeIndexRev, makeIndexArr, makeIndexIntRange from files_and_paths import Dirs class BuildOntology: def __init__(self, assembly): self.assembly = assembly def run(self): mod = import_module("10_generate_ontology_actual") runF = getattr(mod, "run") downloadDate = '2017-10Oct-25' if 1: uberon_url = "http://ontologies.berkeleybop.org/uberon/composite-metazoan.owl" efo_url = "http://sourceforge.net/p/efo/code/HEAD/tree/trunk/src/efoinowl/InferredEFOOWLview/EFO_inferred.owl?format=raw" obi_url = "http://purl.obolibrary.org/obo/obi.owl" else: uberon_url = paths.path("ontology", downloadDate, "composite-metazoan.owl") efo_url = paths.path("ontology", downloadDate, "EFO_inferred.owl") obi_url = paths.path("ontology", downloadDate, "obi.owl") printt("running ENCODE DCC generate ontology...") terms = runF(uberon_url, efo_url, obi_url) fnp = paths.path("ontology", downloadDate, "ontology.json.gz") Utils.ensureDir(fnp) printt("done; about to write", fnp) with gzip.open(fnp, 'wb') as f: json.dump(terms, f) printWroteNumLines(fnp) def run(args, DBCONN): assemblies = ["hg19"] # Config.assemblies if args.assembly: assemblies = [args.assembly] for assembly in assemblies: if "hg19" != assembly: print("skipping...") continue printt('***********', assembly) ig = BuildOntology(assembly) ig.run() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--assembly", type=str, default="") args = parser.parse_args() return args def main(): args = parse_args() run(args, None) if __name__ == '__main__': main()
StarcoderdataPython
5145421
from .basic import Partial_Order_Models from .loss import Ranking from minder_utils.models.utils import Feature_extractor from minder_utils.dataloader import Partial_Order_Loader class Partial_Order(Feature_extractor): def __init__(self): super(Partial_Order, self).__init__() self.model = Partial_Order_Models(**self.config["model"]) self.criterion = Ranking(**self.config["loss"]) def _custom_loader(self, data): X, y = data return Partial_Order_Loader(X, y, **self.config['loader']) def step(self, data): pre_anchor, anchor, post_anchor = data loss = 0 for idx_day in range(len(post_anchor) - 1): loss += self._step(post_anchor[idx_day], post_anchor[idx_day + 1], anchor) loss += self._step(pre_anchor[idx_day], pre_anchor[idx_day + 1], anchor) return loss def _step(self, xi, xj, anchor): ris, zis = self.model(xi) rjs, zjs = self.model(xj) ras, zas = self.model(anchor) return self.criterion(zis, zjs, zas) @staticmethod def which_data(data): return data[0]
StarcoderdataPython
3347636
import re import types import os from time import time from collections import defaultdict from itertools import izip from nearpy.storage.storage import Storage from os.path import join as pjoin from nearpy.utils.utils import load_dict_from_json, save_dict_to_json class FileStorage(Storage): """ Storage using files and folders. """ def __init__(self, name, root="./"): self.root = root self.infos_filename = pjoin(root, "infos.json") #Create repository structure if not os.path.isdir(root): os.makedirs(root) if name != "": self.buckets_dir = pjoin(root, name) if not os.path.isdir(self.buckets_dir): os.makedirs(self.buckets_dir) if not os.path.isfile(self.infos_filename): save_dict_to_json(self.infos_filename, {}) def get_info(self, key): infos = load_dict_from_json(self.infos_filename) return infos.get(key, []) def set_info(self, key, value, append=False): infos = load_dict_from_json(self.infos_filename) if append: if key not in infos: infos[key] = [] infos[key].append(value) else: infos[key] = value save_dict_to_json(self.infos_filename, infos) def del_info(self, key, value=None): infos = load_dict_from_json(self.infos_filename) if value is not None: infos[key].remove(value) else: del infos[key] save_dict_to_json(self.infos_filename, infos) def store(self, bucketkeys, bucketvalues): buf = defaultdict(lambda: []) start = time() for attribute, values in bucketvalues.items(): for key, value in izip(bucketkeys, attribute.dumps(values)): filename = pjoin(self.buckets_dir, key + "_" + attribute.name + ".npy") buf[filename].append(value) print "buffering: {:.2f} ({:,} buckets)".format(time()-start, len(buf)/len(bucketvalues)) start = time() for filename, values in buf.items(): # with open(filename, 'ab') as f: # f.write("".join(values)) data = "" if os.path.isfile(filename): data = open(filename, 'rb').read() open(filename, 'wb').write(data + "".join(values)) print "writing: {:.2f}".format(time()-start) return len(bucketkeys) def retrieve(self, bucketkeys, attribute): filenames = [pjoin(self.buckets_dir, bucketkey + "_" + attribute.name + ".npy") for bucketkey in bucketkeys] results = [] for filename in filenames: if os.path.isfile(filename): results.append(open(filename).read()) else: results.append("") return [attribute.loads("".join(result)) for result in results] def clear(self, bucketkeys): """ Parameters ---------- bucket_keys: iterable of string keys of the buckets to delete prefix: string if set, clear every buckets having this prefix Return ------ count: int number of buckets cleared """ if not isinstance(bucketkeys, types.ListType) and not isinstance(bucketkeys, types.GeneratorType): bucketkeys = [bucketkeys] count = 0 for bucketkey in bucketkeys: filename = pjoin(self.buckets_dir, bucketkey + ".npy") if os.path.isfile(filename): os.remove(filename) count += 1 return count def count(self, bucketkeys): """ Parameters ---------- bucketkeys: iterable of string keys of buckets to count Return ------ counts: list of int size of each given bucket """ counts = [] suffix = "_label" for bucketkey in bucketkeys: filename = pjoin(self.buckets_dir, bucketkey + suffix + ".npy") nb_bytes = os.path.getsize(filename) counts.append(nb_bytes) # We suppose each label fits in a byte. return counts def bucketkeys(self, pattern=".*", as_generator=False): suffix = "patch" extension = ".npy" pattern = "{pattern}_{suffix}{extension}".format(pattern=pattern, suffix=suffix, extension=extension) regex = re.compile(pattern) end = -(len(suffix) + len(extension) + 1) filenames = os.listdir(self.buckets_dir) keys = (filename[:end] for filename in filenames if regex.match(filename) is not None) if not as_generator: keys = list(keys) return keys def bucketkeys_all_attributes(self, pattern=".*", as_generator=False): extension = ".npy" pattern = "{pattern}{extension}".format(pattern=pattern, extension=extension) regex = re.compile(pattern) end = -len(extension) filenames = os.listdir(self.buckets_dir) keys = (filename[:end] for filename in filenames if regex.match(filename) is not None) if not as_generator: keys = list(keys) return keys
StarcoderdataPython
26794
# (C) British Crown Copyright 2011 - 2018, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) import types import numpy as np from numpy.testing import assert_array_almost_equal as assert_arr_almost import pytest import shapely.geometry as sgeom import cartopy.crs as ccrs import cartopy.io.img_tiles as cimgt #: Maps Google tile coordinates to native mercator coordinates as defined #: by https://goo.gl/pgJi. KNOWN_EXTENTS = {(0, 0, 0): (-20037508.342789244, 20037508.342789244, -20037508.342789244, 20037508.342789244), (2, 0, 2): (0., 10018754.17139462, 10018754.17139462, 20037508.342789244), (0, 2, 2): (-20037508.342789244, -10018754.171394622, -10018754.171394622, 0), (2, 2, 2): (0, 10018754.17139462, -10018754.171394622, 0), (8, 9, 4): (0, 2504688.542848654, -5009377.085697312, -2504688.542848654), } if ccrs.PROJ4_VERSION == (5, 0, 0): KNOWN_EXTENTS = { (0, 0, 0): (-20037508.342789244, 20037508.342789244, -19994827.892149, 19994827.892149), (2, 0, 2): (0, 10018754.171395, 9997413.946075, 19994827.892149), (0, 2, 2): (-20037508.342789244, -10018754.171394622, -9997413.946075, 0), (2, 2, 2): (0, 10018754.171395, -9997413.946075, 0), (8, 9, 4): (0, 2504688.542849, -4998706.973037, -2499353.486519), } def GOOGLE_IMAGE_URL_REPLACEMENT(self, tile): url = ('https://chart.googleapis.com/chart?chst=d_text_outline&' 'chs=256x256&chf=bg,s,00000055&chld=FFFFFF|16|h|000000|b||||' 'Google:%20%20(' + str(tile[0]) + ',' + str(tile[1]) + ')' '|Zoom%20' + str(tile[2]) + '||||||______________________' '______') return url def test_google_tile_styles(): """ Tests that setting the Google Maps tile style works as expected. This is essentially just assures information is properly propagated through the class structure. """ reference_url = ("https://mts0.google.com/vt/lyrs={style}@177000000&hl=en" "&src=api&x=1&y=2&z=3&s=G") tile = ["1", "2", "3"] # Default is street. gt = cimgt.GoogleTiles() url = gt._image_url(tile) assert reference_url.format(style="m") == url # Street gt = cimgt.GoogleTiles(style="street") url = gt._image_url(tile) assert reference_url.format(style="m") == url # Satellite gt = cimgt.GoogleTiles(style="satellite") url = gt._image_url(tile) assert reference_url.format(style="s") == url # Terrain gt = cimgt.GoogleTiles(style="terrain") url = gt._image_url(tile) assert reference_url.format(style="t") == url # Streets only gt = cimgt.GoogleTiles(style="only_streets") url = gt._image_url(tile) assert reference_url.format(style="h") == url # Exception is raised if unknown style is passed. with pytest.raises(ValueError): cimgt.GoogleTiles(style="random_style") def test_google_wts(): gt = cimgt.GoogleTiles() ll_target_domain = sgeom.box(-15, 50, 0, 60) multi_poly = gt.crs.project_geometry(ll_target_domain, ccrs.PlateCarree()) target_domain = multi_poly.geoms[0] with pytest.raises(AssertionError): list(gt.find_images(target_domain, -1)) assert (tuple(gt.find_images(target_domain, 0)) == ((0, 0, 0),)) assert (tuple(gt.find_images(target_domain, 2)) == ((1, 1, 2), (2, 1, 2))) assert (list(gt.subtiles((0, 0, 0))) == [(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)]) assert (list(gt.subtiles((1, 0, 1))) == [(2, 0, 2), (2, 1, 2), (3, 0, 2), (3, 1, 2)]) with pytest.raises(AssertionError): gt.tileextent((0, 1, 0)) assert_arr_almost(gt.tileextent((0, 0, 0)), KNOWN_EXTENTS[(0, 0, 0)]) assert_arr_almost(gt.tileextent((2, 0, 2)), KNOWN_EXTENTS[(2, 0, 2)]) assert_arr_almost(gt.tileextent((0, 2, 2)), KNOWN_EXTENTS[(0, 2, 2)]) assert_arr_almost(gt.tileextent((2, 2, 2)), KNOWN_EXTENTS[(2, 2, 2)]) assert_arr_almost(gt.tileextent((8, 9, 4)), KNOWN_EXTENTS[(8, 9, 4)]) def test_tile_bbox_y0_at_south_pole(): tms = cimgt.MapQuestOpenAerial() # Check the y0_at_north_pole keywords returns the appropriate bounds. assert_arr_almost(tms.tile_bbox(8, 6, 4, y0_at_north_pole=False), np.array(KNOWN_EXTENTS[(8, 9, 4)]).reshape([2, 2])) def test_tile_find_images(): gt = cimgt.GoogleTiles() # Test the find_images method on a GoogleTiles instance. ll_target_domain = sgeom.box(-10, 50, 10, 60) multi_poly = gt.crs.project_geometry(ll_target_domain, ccrs.PlateCarree()) target_domain = multi_poly.geoms[0] assert (list(gt.find_images(target_domain, 4)) == [(7, 4, 4), (7, 5, 4), (8, 4, 4), (8, 5, 4)]) @pytest.mark.network def test_image_for_domain(): gt = cimgt.GoogleTiles() gt._image_url = types.MethodType(GOOGLE_IMAGE_URL_REPLACEMENT, gt) ll_target_domain = sgeom.box(-10, 50, 10, 60) multi_poly = gt.crs.project_geometry(ll_target_domain, ccrs.PlateCarree()) target_domain = multi_poly.geoms[0] _, extent, _ = gt.image_for_domain(target_domain, 6) ll_extent = ccrs.Geodetic().transform_points(gt.crs, np.array(extent[:2]), np.array(extent[2:])) if ccrs.PROJ4_VERSION == (5, 0, 0): assert_arr_almost(ll_extent[:, :2], [[-11.25, 49.033955], [11.25, 61.687101]]) else: assert_arr_almost(ll_extent[:, :2], [[-11.25, 48.92249926], [11.25, 61.60639637]]) def test_quadtree_wts(): qt = cimgt.QuadtreeTiles() ll_target_domain = sgeom.box(-15, 50, 0, 60) multi_poly = qt.crs.project_geometry(ll_target_domain, ccrs.PlateCarree()) target_domain = multi_poly.geoms[0] with pytest.raises(ValueError): list(qt.find_images(target_domain, 0)) assert qt.tms_to_quadkey((1, 1, 1)) == '1' assert qt.quadkey_to_tms('1') == (1, 1, 1) assert qt.tms_to_quadkey((8, 9, 4)) == '1220' assert qt.quadkey_to_tms('1220') == (8, 9, 4) assert tuple(qt.find_images(target_domain, 1)) == ('0', '1') assert tuple(qt.find_images(target_domain, 2)) == ('03', '12') assert list(qt.subtiles('0')) == ['00', '01', '02', '03'] assert list(qt.subtiles('11')) == ['110', '111', '112', '113'] with pytest.raises(ValueError): qt.tileextent('4') assert_arr_almost(qt.tileextent(''), KNOWN_EXTENTS[(0, 0, 0)]) assert_arr_almost(qt.tileextent(qt.tms_to_quadkey((2, 0, 2), google=True)), KNOWN_EXTENTS[(2, 0, 2)]) assert_arr_almost(qt.tileextent(qt.tms_to_quadkey((0, 2, 2), google=True)), KNOWN_EXTENTS[(0, 2, 2)]) assert_arr_almost(qt.tileextent(qt.tms_to_quadkey((2, 0, 2), google=True)), KNOWN_EXTENTS[(2, 0, 2)]) assert_arr_almost(qt.tileextent(qt.tms_to_quadkey((2, 2, 2), google=True)), KNOWN_EXTENTS[(2, 2, 2)]) assert_arr_almost(qt.tileextent(qt.tms_to_quadkey((8, 9, 4), google=True)), KNOWN_EXTENTS[(8, 9, 4)]) def test_mapbox_tiles_api_url(): token = 'foo' map_name = 'bar' tile = [0, 1, 2] exp_url = ('https://api.mapbox.com/v4/mapbox.bar' '/2/0/1.png?access_token=foo') mapbox_sample = cimgt.MapboxTiles(token, map_name) url_str = mapbox_sample._image_url(tile) assert url_str == exp_url def test_mapbox_style_tiles_api_url(): token = 'foo' username = 'baz' map_id = 'bar' tile = [0, 1, 2] exp_url = ('https://api.mapbox.com/styles/v1/' 'baz/bar/tiles/256/2/0/1' '?access_token=foo') mapbox_sample = cimgt.MapboxStyleTiles(token, username, map_id) url_str = mapbox_sample._image_url(tile) assert url_str == exp_url
StarcoderdataPython
4956910
<gh_stars>0 from django.shortcuts import render, redirect,get_object_or_404 from .models import Cliente from .forms import ClienteForm from django.contrib import messages from django.db.models import Q from django.core.paginator import Paginator # Create your views here. def lista_de_clientes(request): clientes = Cliente.objects.all().order_by('-id') querySet = request.GET.get('q') if (querySet): clientes = Cliente.objects.filter( Q(nome__icontains=querySet) | Q(email__icontains=querySet) | Q(cpf__icontains=querySet) ) #paginacao paginator = Paginator(clientes, 5) # mostra 5 clientes por pagina page = request.GET.get('page') clientes = paginator.get_page(page) v_template="clientes/lista_de_clientes.html" v_context_parms = {"clientes":clientes} return render(request,v_template, v_context_parms) def adicionar_cliente(request): form = ClienteForm(request.POST) if form.is_valid() : obj = form.save() obj.save() form = ClienteForm() messages.success(request, 'Cliente adicionado com sucesso') v_to = 'lista_de_clientes' return redirect(v_to) v_template="clientes/adicionar_cliente.html" v_context_parms = {"form":form} return render(request,v_template, v_context_parms) def editar_cliente(request, id=None): cliente = get_object_or_404(Cliente, id=id) form = ClienteForm(request.POST or None, instance=cliente) if form.is_valid(): obj = form.save() obj.save() form = ClienteForm() v_to = 'lista_de_clientes' messages.info(request, 'Cliente editado com sucesso') return redirect(v_to) v_template = "clientes/editar_cliente.html" v_context_parms = {"form": form} return render(request, v_template, v_context_parms) def remover_cliente(request, id=None): cliente = get_object_or_404(Cliente, id=id) if(request.method == 'POST'): cliente.delete() messages.warning(request, 'Cliente removido com sucesso') v_to = 'lista_de_clientes' return redirect(v_to) v_template = "clientes/remover_cliente.html" v_context_parms = {"cliente": cliente} return render(request, v_template, v_context_parms)
StarcoderdataPython
11233767
from resonator_tools import circuit from pathlib import Path from pandas import read_csv from numpy import float64 from pyqum.instrument.analyzer import curve import inspect pyfilename = inspect.getfile(inspect.currentframe()) # current pyscript filename (usually with path) MAIN_PATH = Path(pyfilename).parents[5] / "HODOR" / "CONFIG" # ...parents[7]... for logger PORTAL_PATH = MAIN_PATH / "PORTAL" Datafile = Path(PORTAL_PATH) / '1Dfresp[abc].csv' title = "<b>frequency(GHz)</b>" dataf = read_csv(Datafile, dtype={'I': float64}) print('I: %.8f' %dataf['I'][0]) port1 = circuit.notch_port() port1.add_fromtxt(Datafile,'realimag',1,(0,3,4),fdata_unit=1e9,delimiter=',') port1.autofit() print("Fit results:", port1.fitresults) # port1.plotall() print('z_data %s' %port1.z_data) print('z_data_sim %s' %port1.z_data_sim) print('z_data_raw %s' %port1.z_data_raw) x, y = [], [] for i in range(2): x.append(dataf[title]) y.append(abs(port1.z_data_raw)) y.append(abs(port1.z_data_sim)) curve(x,y,'Q_fit','freq','I',style=['or','.b']) I, Q = [], [] I.append(port1.z_data_raw.real) I.append(port1.z_data_sim.real) Q.append(port1.z_data_raw.imag) Q.append(port1.z_data_sim.imag) curve(I,Q,'IQ_fit','I','Q',style=['or','.b']) print("single photon limit:", port1.get_single_photon_limit(diacorr=True), "dBm") print("photons in resonator for input -140dBm:", port1.get_photons_in_resonator(-140,unit='dBm',diacorr=True), "photons")
StarcoderdataPython
5197713
<gh_stars>1-10 import jupyter print(jupyter) print('Successful.')
StarcoderdataPython
27399
<gh_stars>1-10 import MagicPanels MagicPanels.panelMove("Xp")
StarcoderdataPython
56490
<gh_stars>0 # # @lc app=leetcode id=332 lang=python3 # # [332] Reconstruct Itinerary # # @lc code=start import collections class Solution: def findItinerary(self, tickets): graph = collections.defaultdict(list) city_counter = len(tickets) + 1 for pair in tickets: graph[pair[0]].append(pair[1]) for k, v in graph.items(): v.sort(reverse = True) res = [] self.dfs(graph, "JFK", res) return res[::-1] def dfs(self, graph, frm, res): while graph[frm]: nxt = graph[frm].pop() self.dfs(graph, nxt, res) res.append(frm) # @lc code=end if __name__ == '__main__': a = Solution() b = a.findItinerary([["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]) print(b)
StarcoderdataPython
6412804
import os def find_keytxts(): file_path = 'key_emotion' try: os.mkdir(file_path) print(file_path+'文件夹已经建立,请查看当前文件路径') except Exception as e: print('文件夹已经存在,请查看当前程序路径') # 基于字典的查找 key_words_list = [{'环境','周边','风景','空气','江景','小区','景点','夜景','街','周围','景区','声音','景色'}, {'价格','房价','性价比','价位','单价','价钱'}, {'特色','装潢','布置','建筑','结构','格调','装修','设计','风格','隔音'}, {'设施','设备','条件','硬件','房间','热水','马桶','电梯','阳台','卫生间','洗手间','空调','被子','床','大厅','电话','电','摆设'}, {'餐饮','早餐','咖啡','味道','饭','菜','水果','特产','餐','美食','烧烤','宵夜','食材','饭馆','小吃'}, {'交通','车程','地段','路程','停车','机场','离','车站','地理','位置','地理','中心','海拔','码头'}, {'服务','态度','前台','服务员','老板','掌柜','店家','工作人员'}, {'体验','整体','感觉'},] i = 0 for key_words in key_words_list: find_keytxt(i,key_words) i += 1 def find_keytxt(number,key_words): key_list = {0: '环境', 1: '价格', 2: '特色', 3: '设施', 4: '餐饮', 5: '交通', 6: '服务', 7: '体验', } f = open('key/pure_cut_final.txt','r',encoding='utf-8') key_txt = open('key_list/%s.txt'%key_list[number],'w',encoding='utf-8') for sentence in f: for i in key_words: if i in sentence: key_txt.write(sentence) else:continue f.close() key_txt.close() print(key_list[number]+'已经查找完成') if __name__ == '__main__': find_keytxts()
StarcoderdataPython
4894698
# -*- coding: utf-8 -*- from hcloud.core.client import ClientEntityBase, BoundModelBase, GetEntityByNameMixin from hcloud.core.domain import add_meta_to_result from hcloud.actions.client import BoundAction from hcloud.networks.domain import Network, NetworkRoute, NetworkSubnet class BoundNetwork(BoundModelBase): model = Network def __init__(self, client, data, complete=True): subnets = data.get("subnets", []) if subnets is not None: subnets = [NetworkSubnet.from_dict(subnet) for subnet in subnets] data['subnets'] = subnets routes = data.get("routes", []) if routes is not None: routes = [NetworkRoute.from_dict(route) for route in routes] data['routes'] = routes from hcloud.servers.client import BoundServer servers = data.get("servers", []) if servers is not None: servers = [BoundServer(client._client.servers, {"id": server}, complete=False) for server in servers] data['servers'] = servers super(BoundNetwork, self).__init__(client, data, complete) def update(self, name=None, labels=None): # type: (Optional[str], Optional[Dict[str, str]]) -> BoundNetwork """Updates a network. You can update a network’s name and a networks’s labels. :param name: str (optional) New name to set :param labels: Dict[str, str] (optional) User-defined labels (key-value pairs) :return: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` """ return self._client.update(self, name, labels) def delete(self): # type: () -> BoundAction """Deletes a network. :return: boolean """ return self._client.delete(self) def get_actions_list(self, status=None, sort=None, page=None, per_page=None): # type: (Optional[List[str]], Optional[List[str]], Optional[int], Optional[int]) -> PageResults[List[BoundAction, Meta]] """Returns all action objects for a network. :param status: List[str] (optional) Response will have only actions with specified statuses. Choices: `running` `success` `error` :param sort: List[str] (optional) Specify how the results are sorted. Choices: `id` `id:asc` `id:desc` `command` `command:asc` `command:desc` `status` `status:asc` `status:desc` `progress` `progress:asc` `progress:desc` `started` `started:asc` `started:desc` `finished` `finished:asc` `finished:desc` :param page: int (optional) Specifies the page to fetch :param per_page: int (optional) Specifies how many results are returned by page :return: (List[:class:`BoundAction <hcloud.actions.client.BoundAction>`], :class:`Meta <hcloud.core.domain.Meta>`) """ return self._client.get_actions_list(self, status, sort, page, per_page) def get_actions(self, status=None, sort=None): # type: (Optional[List[str]], Optional[List[str]]) -> List[BoundAction] """Returns all action objects for a network. :param status: List[str] (optional) Response will have only actions with specified statuses. Choices: `running` `success` `error` :param sort: List[str] (optional) Specify how the results are sorted. Choices: `id` `id:asc` `id:desc` `command` `command:asc` `command:desc` `status` `status:asc` `status:desc` `progress` `progress:asc` `progress:desc` `started` `started:asc` `started:desc` `finished` `finished:asc` `finished:desc` :return: List[:class:`BoundAction <hcloud.actions.client.BoundAction>`] """ return self._client.get_actions(self, status, sort) def add_subnet(self, subnet): # type: (NetworkSubnet) -> List[BoundAction] """Adds a subnet entry to a network. :param subnet: :class:`NetworkSubnet <hcloud.networks.domain.NetworkSubnet>` The NetworkSubnet you want to add to the Network :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ return self._client.add_subnet(self, subnet=subnet) def delete_subnet(self, subnet): # type: (NetworkSubnet) -> List[BoundAction] """Removes a subnet entry from a network :param subnet: :class:`NetworkSubnet <hcloud.networks.domain.NetworkSubnet>` The NetworkSubnet you want to remove from the Network :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ return self._client.delete_subnet(self, subnet=subnet) def add_route(self, route): # type: (NetworkRoute) -> List[BoundAction] """Adds a route entry to a network. :param route: :class:`NetworkRoute <hcloud.networks.domain.NetworkRoute>` The NetworkRoute you want to add to the Network :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ return self._client.add_route(self, route=route) def delete_route(self, route): # type: (NetworkRoute) -> List[BoundAction] """Removes a route entry to a network. :param route: :class:`NetworkRoute <hcloud.networks.domain.NetworkRoute>` The NetworkRoute you want to remove from the Network :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ return self._client.delete_route(self, route=route) def change_ip_range(self, ip_range): # type: (str) -> List[BoundAction] """Changes the IP range of a network. :param ip_range: str The new prefix for the whole network. :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ return self._client.change_ip_range(self, ip_range=ip_range) def change_protection(self, delete=None): # type: (Optional[bool]) -> BoundAction """Changes the protection configuration of a network. :param delete: boolean If True, prevents the network from being deleted :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ return self._client.change_protection(self, delete=delete) class NetworksClient(ClientEntityBase, GetEntityByNameMixin): results_list_attribute_name = "networks" def get_by_id(self, id): # type: (int) -> BoundNetwork """Get a specific network :param id: int :return: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork> """ response = self._client.request( url="/networks/{network_id}".format(network_id=id), method="GET" ) return BoundNetwork(self, response["network"]) def get_list( self, name=None, # type: Optional[str] label_selector=None, # type: Optional[str] page=None, # type: Optional[int] per_page=None, # type: Optional[int] ): # type: (...) -> PageResults[List[BoundNetwork], Meta] """Get a list of networks from this account :param name: str (optional) Can be used to filter networks by their name. :param label_selector: str (optional) Can be used to filter networks by labels. The response will only contain networks matching the label selector. :param page: int (optional) Specifies the page to fetch :param per_page: int (optional) Specifies how many results are returned by page :return: (List[:class:`BoundNetwork <hcloud.networks.client.BoundNetwork>`], :class:`Meta <hcloud.core.domain.Meta>`) """ params = {} if name is not None: params["name"] = name if label_selector is not None: params["label_selector"] = label_selector if page is not None: params["page"] = page if per_page is not None: params["per_page"] = per_page response = self._client.request(url="/networks", method="GET", params=params) ass_networks = [ BoundNetwork(self, network_data) for network_data in response["networks"] ] return self._add_meta_to_result(ass_networks, response) def get_all(self, name=None, label_selector=None): # type: (Optional[str], Optional[str]) -> List[BoundNetwork] """Get all networks from this account :param name: str (optional) Can be used to filter networks by their name. :param label_selector: str (optional) Can be used to filter networks by labels. The response will only contain networks matching the label selector. :return: List[:class:`BoundNetwork <hcloud.networks.client.BoundNetwork>`] """ return super(NetworksClient, self).get_all( name=name, label_selector=label_selector ) def get_by_name(self, name): # type: (str) -> BoundNetwork """Get network by name :param name: str Used to get network by name. :return: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` """ return super(NetworksClient, self).get_by_name(name) def create( self, name, # type: str ip_range, # type: str subnets=None, # type: Optional[List[NetworkSubnet]] routes=None, # type: Optional[List[NetworkRoute]] labels=None, # type: Optional[Dict[str, str]] ): """Creates a network with range ip_range. :param name: str Name of the network :param ip_range: str IP range of the whole network which must span all included subnets and route destinations :param subnets: List[:class:`NetworkSubnet <hcloud.networks.domain.NetworkSubnet>`] Array of subnets allocated :param routes: List[:class:`NetworkRoute <hcloud.networks.domain.NetworkRoute>`] Array of routes set in this network :param labels: Dict[str, str] (optional) User-defined labels (key-value pairs) :return: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` """ data = {"name": name, "ip_range": ip_range} if subnets is not None: data["subnets"] = [{'type': subnet.type, 'ip_range': subnet.ip_range, 'network_zone': subnet.network_zone} for subnet in subnets] if routes is not None: data["routes"] = [{'destination': route.destination, 'gateway': route.gateway} for route in routes] if labels is not None: data["labels"] = labels response = self._client.request(url="/networks", method="POST", json=data) return BoundNetwork(self, response["network"]) def update(self, network, name=None, labels=None): # type:(Network, Optional[str], Optional[Dict[str, str]]) -> BoundNetwork """Updates a network. You can update a network’s name and a network’s labels. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param name: str (optional) New name to set :param labels: Dict[str, str] (optional) User-defined labels (key-value pairs) :return: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` """ data = {} if name is not None: data.update({"name": name}) if labels is not None: data.update({"labels": labels}) response = self._client.request( url="/networks/{network_id}".format(network_id=network.id), method="PUT", json=data, ) return BoundNetwork(self, response["network"]) def delete(self, network): # type: (Network) -> BoundAction """Deletes a network. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :return: boolean """ self._client.request( url="/networks/{network_id}".format(network_id=network.id), method="DELETE" ) return True def get_actions_list( self, network, status=None, sort=None, page=None, per_page=None ): # type: (Network, Optional[List[str]], Optional[List[str]], Optional[int], Optional[int]) -> PageResults[List[BoundAction], Meta] """Returns all action objects for a network. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param status: List[str] (optional) Response will have only actions with specified statuses. Choices: `running` `success` `error` :param sort: List[str] (optional) Specify how the results are sorted. Choices: `id` `id:asc` `id:desc` `command` `command:asc` `command:desc` `status` `status:asc` `status:desc` `progress` `progress:asc` `progress:desc` `started` `started:asc` `started:desc` `finished` `finished:asc` `finished:desc` :param page: int (optional) Specifies the page to fetch :param per_page: int (optional) Specifies how many results are returned by page :return: (List[:class:`BoundAction <hcloud.actions.client.BoundAction>`], :class:`Meta <hcloud.core.domain.Meta>`) """ params = {} if status is not None: params["status"] = status if sort is not None: params["sort"] = sort if page is not None: params["page"] = page if per_page is not None: params["per_page"] = per_page response = self._client.request( url="/networks/{network_id}/actions".format(network_id=network.id), method="GET", params=params, ) actions = [ BoundAction(self._client.actions, action_data) for action_data in response["actions"] ] return add_meta_to_result(actions, response, "actions") def get_actions(self, network, status=None, sort=None): # type: (Network, Optional[List[str]], Optional[List[str]]) -> List[BoundAction] """Returns all action objects for a network. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param status: List[str] (optional) Response will have only actions with specified statuses. Choices: `running` `success` `error` :param sort: List[str] (optional) Specify how the results are sorted. Choices: `id` `id:asc` `id:desc` `command` `command:asc` `command:desc` `status` `status:asc` `status:desc` `progress` `progress:asc` `progress:desc` `started` `started:asc` `started:desc` `finished` `finished:asc` `finished:desc` :return: List[:class:`BoundAction <hcloud.actions.client.BoundAction>`] """ return super(NetworksClient, self).get_actions( network, status=status, sort=sort ) def add_subnet(self, network, subnet): # type: (Union[Network, BoundNetwork], NetworkSubnet) -> List[BoundAction] """Adds a subnet entry to a network. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param subnet: :class:`NetworkSubnet <hcloud.networks.domain.NetworkSubnet>` The NetworkSubnet you want to add to the Network :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ data = { "type": subnet.type, "network_zone": subnet.network_zone, } if subnet.ip_range is not None: data["ip_range"] = subnet.ip_range response = self._client.request( url="/networks/{network_id}/actions/add_subnet".format(network_id=network.id), method="POST", json=data) return BoundAction(self._client.actions, response['action']) def delete_subnet(self, network, subnet): # type: (Union[Network, BoundNetwork], NetworkSubnet) -> List[BoundAction] """Removes a subnet entry from a network :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param subnet: :class:`NetworkSubnet <hcloud.networks.domain.NetworkSubnet>` The NetworkSubnet you want to remove from the Network :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ data = { "ip_range": subnet.ip_range, } response = self._client.request( url="/networks/{network_id}/actions/delete_subnet".format(network_id=network.id), method="POST", json=data) return BoundAction(self._client.actions, response['action']) def add_route(self, network, route): # type: (Union[Network, BoundNetwork], NetworkRoute) -> List[BoundAction] """Adds a route entry to a network. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param route: :class:`NetworkRoute <hcloud.networks.domain.NetworkRoute>` The NetworkRoute you want to add to the Network :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ data = { "destination": route.destination, "gateway": route.gateway, } response = self._client.request( url="/networks/{network_id}/actions/add_route".format(network_id=network.id), method="POST", json=data) return BoundAction(self._client.actions, response['action']) def delete_route(self, network, route): # type: (Union[Network, BoundNetwork], NetworkRoute) -> List[BoundAction] """Removes a route entry to a network. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param route: :class:`NetworkRoute <hcloud.networks.domain.NetworkRoute>` The NetworkRoute you want to remove from the Network :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ data = { "destination": route.destination, "gateway": route.gateway, } response = self._client.request( url="/networks/{network_id}/actions/delete_route".format(network_id=network.id), method="POST", json=data) return BoundAction(self._client.actions, response['action']) def change_ip_range(self, network, ip_range): # type: (Union[Network, BoundNetwork], str) -> List[BoundAction] """Changes the IP range of a network. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param ip_range: str The new prefix for the whole network. :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ data = { "ip_range": ip_range, } response = self._client.request( url="/networks/{network_id}/actions/change_ip_range".format(network_id=network.id), method="POST", json=data) return BoundAction(self._client.actions, response['action']) def change_protection(self, network, delete=None): # type: (Union[Network, BoundNetwork], Optional[bool]) -> BoundAction """Changes the protection configuration of a network. :param network: :class:`BoundNetwork <hcloud.networks.client.BoundNetwork>` or :class:`Network <hcloud.networks.domain.Network>` :param delete: boolean If True, prevents the network from being deleted :return: :class:`BoundAction <hcloud.actions.client.BoundAction>` """ data = {} if delete is not None: data.update({"delete": delete}) response = self._client.request( url="/networks/{network_id}/actions/change_protection".format(network_id=network.id), method="POST", json=data) return BoundAction(self._client.actions, response['action'])
StarcoderdataPython
11284918
<reponame>nasa/scrub<filename>scrub/scrub_cli.py import sys from scrub import scrubme from scrub.utils import diff_results from scrub.utils import scrub_utilities help_message = ('run\n' + scrubme.main.__doc__ + '\n\n' 'diff\n' + diff_results.diff.__doc__ + '\n\n' 'get-conf\n' + scrub_utilities.create_conf_file.__doc__ + '\n') def main(): """Console script for SCRUB.""" if len(sys.argv) <= 1: print(help_message) else: if 'run' in sys.argv or 'run-all' in sys.argv: # Run analysis scrubme.parse_arguments() elif 'run-tool' in sys.argv: # Get the tool name tool = sys.argv[sys.argv.index('--module') + 1].split('_')[-1] insert_index = sys.argv.index('--module') # Update the arguments sys.argv[1] = 'run' sys.argv[insert_index] = '--tool' sys.argv[insert_index + 1] = tool # Run analysis scrubme.parse_arguments() elif 'diff' in sys.argv: # Run analysis diff_results.parse_arguments() elif 'get-conf' in sys.argv: # Run analysis scrub_utilities.create_conf_file() else: print(help_message) return 0 if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
1869145
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Dec 15 09:57:21 2017 @author: dalonlobo """ from __future__ import absolute_import, division, print_function import os import os.path as ospath import sys import subprocess import argparse import pandas as pd import scipy.io.wavfile as wav from timeit import default_timer as timer from deepspeech.model import Model from pydub import AudioSegment from pydub.effects import normalize from pydub.silence import split_on_silence class AudioProcessing(): DEBUG = False # set to true for verbose MSL = 500 # minimum silence length in ms # These constants control the beam search decoder # Beam width used in the CTC decoder when building candidate transcriptions BEAM_WIDTH = 500 # The alpha hyperparameter of the CTC decoder. Language Model weight # LM_WEIGHT = 1.75 LM_WEIGHT = 1.75 # The beta hyperparameter of the CTC decoder. Word insertion weight (penalty) WORD_COUNT_WEIGHT = 1.00 # Valid word insertion weight. This is used to lessen the word insertion penalty # when the inserted word is part of the vocabulary VALID_WORD_COUNT_WEIGHT = 1.00 # These constants are tied to the shape of the graph used (changing them changes # the geometry of the first layer), so make sure you use the same constants that # were used during training # Number of MFCC features to use N_FEATURES = 26 # Size of the context window used for producing timesteps in the input vector N_CONTEXT = 9 def __init__(self, args): self.fpath = args.fpath # Input video file path self.args = args def convert_mp4_to_wav(self, fpath_in, fpath_out): """Convert to wav format with 1 channel and 16Khz freq""" cmd = "ffmpeg -i '" + fpath_in + "' -ar 16000 -ac 1 '" + fpath_out + "'" return cmd def execute_cmd_on_system(self, command): p = subprocess.Popen(command, bufsize=2048, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=(sys.platform != 'win32')) output = p.communicate() print("Executed : " + command) if self.DEBUG: print(output) def process_wav(self): # Create temporary directory, to hold the audio chunks tmp_dir = os.path.join(os.path.dirname(self.fpath), "tmp") if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) # Convert mp4 to wav output_wav_path = ospath.join(ospath.split(ospath.abspath(self.fpath))[0],\ "tmp", "output.wav") self.execute_cmd_on_system(\ self.convert_mp4_to_wav(self.fpath, output_wav_path)) # Segmenting the audio input_audio = AudioSegment.from_file(output_wav_path, format="wav") # Normalizing the audio file full_audio_wav = normalize(input_audio) print("Length of the entire audio: ", len(full_audio_wav)) # Calculating the silence threshold loudness_ms_list = [] for ms_chunk in full_audio_wav: loudness_ms_list.append(round(ms_chunk.dBFS)) # st = silence threshold st = pd.DataFrame(loudness_ms_list).mode()[0][0] print("Set the silence threshold to: ", st) st = st if st < -16 else -16 # Because -16db is default chunks = split_on_silence( full_audio_wav, # split on silences longer than 1000ms (1 sec) min_silence_len=self.MSL, # anything under -16 dBFS is considered silence silence_thresh=-36, # hardcoded for now # keep 250 ms of leading/trailing silence keep_silence=200, ) # for i, chunk in enumerate(chunks): # chunk_file_name = tmp_dir + "/chunk{0}.wav".format(i) # chunk.export(chunk_file_name, format="wav") # Loading the deepspeech module print('Loading model from file %s' % (self.args.model), file=sys.stderr) model_load_start = timer() ds = Model(self.args.model, self.N_FEATURES, self.N_CONTEXT, self.args.alphabet, self.BEAM_WIDTH) model_load_end = timer() - model_load_start print('Loaded model in %0.3fs.' % (model_load_end), file=sys.stderr) if self.args.lm and self.args.trie: print('Loading language model from files %s %s' % (self.args.lm, self.args.trie), file=sys.stderr) lm_load_start = timer() ds.enableDecoderWithLM(self.args.alphabet, self.args.lm, self.args.trie, self.LM_WEIGHT, self.WORD_COUNT_WEIGHT, self.VALID_WORD_COUNT_WEIGHT) lm_load_end = timer() - lm_load_start print('Loaded language model in %0.3fs.' % (lm_load_end), file=sys.stderr) output_text_file = tmp_dir + "/output_decoded.txt" with open(output_text_file, "w+") as output_text: for i, chunk in enumerate(chunks): chunk_file_name = tmp_dir + "/chunk{0}.wav".format(i) chunk.export(chunk_file_name, format="wav") fs, audio = wav.read(chunk_file_name) # We can assume 16kHz audio_length = len(audio) * ( 1 / 16000) print('Running inference.', file=sys.stderr) inference_start = timer() model_stt = ds.stt(audio, fs) + " " print(model_stt) output_text.write(model_stt) inference_end = timer() - inference_start print('Inference took %0.3fs for %0.3fs audio file.' % (inference_end, audio_length), file=sys.stderr) print("Processing done") def main(): # Use the following for defaults # model /home/dalonlobo/deepspeech_models/models/output_graph.pb # audio /home/dalonlobo/deepspeech_models/models/2830-3980-0043.wav # alphabet /home/dalonlobo/deepspeech_models/lm_models/alphabet.txt # lm /home/dalonlobo/deepspeech_models/lm_models/lm_o5.binary # trie /home/dalonlobo/deepspeech_models/lm_models/o5_trie # python audio_processing.py --fpath v2.mp4 parser = argparse.ArgumentParser(description="Preprocessing the audio") parser.add_argument("--fpath", type=str, help="Enter the file path to the video mp4 file") parser.add_argument('--model', type=str, nargs='?', default='/home/dalonlobo/deepspeech_models/models/output_graph.pb', help='Path to the model (protocol buffer binary file)') parser.add_argument('--audio', type=str, nargs='?', default='/home/dalonlobo/deepspeech_models/models/2830-3980-0043.wav', help='Path to the audio file to run (WAV format)') parser.add_argument('--alphabet', type=str, nargs='?', default='/home/dalonlobo/deepspeech_models/models/alphabet.txt', help='Path to the configuration file specifying the alphabet used by the network') parser.add_argument('--lm', type=str, nargs='?', default='/home/dalonlobo/deepspeech_models/models/lm.binary', help='Path to the language model binary file') parser.add_argument('--trie', type=str, nargs='?', default='/home/dalonlobo/deepspeech_models/models/trie', help='Path to the language model trie file created with native_client/generate_trie') args = parser.parse_args() audio = AudioProcessing(args) audio.process_wav() if __name__ == "__main__": main()
StarcoderdataPython
3437904
<filename>src/frr/tests/topotests/bgp_aggregator_zero/test_bgp_aggregator_zero.py #!/usr/bin/env python # # Copyright (c) 2021 by # <NAME> <<EMAIL>> # # Permission to use, copy, modify, and/or distribute this software # for any purpose with or without fee is hereby granted, provided # that the above copyright notice and this permission notice appear # in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NETDEF DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NETDEF BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # """ Test if BGP UPDATE with AGGREGATOR AS attribute with value zero (0) is continued to be processed, but AGGREGATOR attribute is discarded. """ import os import sys import json import pytest import functools CWD = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(CWD, "../")) # pylint: disable=C0413 from lib import topotest from lib.topogen import Topogen, TopoRouter, get_topogen pytestmark = [pytest.mark.bgpd] def build_topo(tgen): r1 = tgen.add_router("r1") peer1 = tgen.add_exabgp_peer("peer1", ip="10.0.0.2", defaultRoute="via 10.0.0.1") switch = tgen.add_switch("s1") switch.add_link(r1) switch.add_link(peer1) def setup_module(mod): tgen = Topogen(build_topo, mod.__name__) tgen.start_topology() router = tgen.gears["r1"] router.load_config(TopoRouter.RD_ZEBRA, os.path.join(CWD, "r1/zebra.conf")) router.load_config(TopoRouter.RD_BGP, os.path.join(CWD, "r1/bgpd.conf")) router.start() peer = tgen.gears["peer1"] peer.start(os.path.join(CWD, "peer1"), os.path.join(CWD, "exabgp.env")) def teardown_module(mod): tgen = get_topogen() tgen.stop_topology() def test_bgp_aggregator_zero(): tgen = get_topogen() if tgen.routers_have_failure(): pytest.skip(tgen.errors) def _bgp_converge(): output = json.loads( tgen.gears["r1"].vtysh_cmd("show ip bgp neighbor 10.0.0.2 json") ) expected = { "10.0.0.2": { "bgpState": "Established", "addressFamilyInfo": {"ipv4Unicast": {"acceptedPrefixCounter": 2}}, } } return topotest.json_cmp(output, expected) test_func = functools.partial(_bgp_converge) success, result = topotest.run_and_expect(test_func, None, count=60, wait=0.5) assert result is None, 'Failed bgp convergence in "{}"'.format(tgen.gears["r1"]) def _bgp_has_correct_aggregator_route_with_asn_0(): output = json.loads( tgen.gears["r1"].vtysh_cmd("show ip bgp 192.168.100.101/32 json") ) if "aggregatorAs" in output["paths"][0].keys(): return False else: return True assert ( _bgp_has_correct_aggregator_route_with_asn_0() is True ), 'Aggregator AS attribute with ASN 0 found in "{}"'.format(tgen.gears["r1"]) def _bgp_has_correct_aggregator_route_with_good_asn(): output = json.loads( tgen.gears["r1"].vtysh_cmd("show ip bgp 192.168.100.102/32 json") ) expected = {"paths": [{"aggregatorAs": 65001, "aggregatorId": "10.0.0.2"}]} return topotest.json_cmp(output, expected) test_func = functools.partial(_bgp_has_correct_aggregator_route_with_good_asn) success, result = topotest.run_and_expect(test_func, None, count=60, wait=0.5) assert result is None, 'Aggregator AS attribute not found in "{}"'.format( tgen.gears["r1"] ) def test_memory_leak(): "Run the memory leak test and report results." tgen = get_topogen() if not tgen.is_memleak_enabled(): pytest.skip("Memory leak test/report is disabled") tgen.report_memory_leaks() if __name__ == "__main__": args = ["-s"] + sys.argv[1:] sys.exit(pytest.main(args))
StarcoderdataPython
12820269
<gh_stars>0 import os from configparser import ConfigParser from .database import Database from create_databases import GuildSettings class GuildSettingsModel(Database): def __init__(self): super().__init__() async def add(self, guild_id: int, server_name: str, region: str, owner_id: int): new = GuildSettings( guild_id=guild_id, server_name=server_name, prefix=os.environ["PREFIX"], region=region, owner_id=owner_id, is_premium=False ) self.session.add(new) return self.session.commit() async def get_by_id(self, guild_id:int): return self.session.query(GuildSettings).filter_by(guild_id=guild_id).one_or_none()
StarcoderdataPython
289547
<gh_stars>0 # Made by <NAME> # June 2016 # Python 3_5 import os import sys import csv import argparse as arg from lxml import etree from io import StringIO from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.support import expected_conditions as EC def init_driver(): driver = webdriver.Firefox() driver.wait = WebDriverWait(driver,1) return driver def lookup(driver, query): driver.get("http://www.opensecrets.org/indivs/") try: button = driver.wait.until(EC.element_to_be_clickable( (By.ID, "name"))) button.click() _input = driver.wait.until(EC.element_to_be_clickable( (By.ID, "name"))) _input.send_keys(query) _id = driver.wait.until(EC.element_to_be_clickable( (By.NAME, "submit"))) _id.click() except TimeoutException: print("Box or Button not found in google.com") def updateDriver(driver,root, name): isEnd = True try: for child in root: url = child.xpath("@href") if len(url) == 1: isEnd = True text = child.text.strip() if text.strip() == "Next": isEnd = False print(url[0]) print(child.text) url = "http://www.opensecrets.org/indivs/"+url[0] try: driver.get(url) except: print ('%s Not Found' %name) driver.quit() except: print ('%s Not Found' %name) isEnd = True return isEnd def getXML(driver): parser = etree.HTMLParser() try: html = driver.execute_script("return document.documentElement.outerHTML") tree = etree.parse(StringIO(html), parser) root = tree.find("//*[@class='pageCtrl']") except NoSuchElementException: driver.quit() print("Name not found") sys.exit(0) return root def scrap(driver): driver.current_url #Getting current url data = [] #Container for table data for tr in driver.find_elements_by_xpath('//table[@id="top"]//tr'): #loop table id top tds = tr.find_elements_by_tag_name('td') if tds: data.append([td.text for td in tds]) return data def iter_scrap(driver,name): container = [] endPage = False while not endPage: root = getXML(driver) print( driver.current_url ) container.append(scrap(driver)) endPage = updateDriver(driver,root,name) print( 'Is end page? %s' %endPage) return container def flatten(xs): result = [] if isinstance(xs, (list, tuple)): for x in xs: result.extend(flatten(x)) else: result.append(xs) return result def save_file(name,data): name = name.replace(' ','_') save_root = "./save" if not os.path.exists(save_root): os.makedirs(save_root) name = name+".csv" csvfile = "./save/"+name with open(csvfile, "w") as output: for infos in data: for info in infos: info[0] = info[0].replace('\n',' ') writer = csv.writer(output, lineterminator='\n') writer.writerows(infos) print( 'Saved as'+name) def joinName(arg): len_ = len(arg) name ='' for i in range(1,len_): name = name + arg[i] name = name + ' ' return name def importCEO(fileName): with open(fileName) as csvfile: con = [] spamreader = csv.reader(csvfile, delimiter='\n') for row in spamreader: con.append(row[0]) return con if __name__ == "__main__": parser = arg.ArgumentParser() parser.add_argument('--filename', default = '', type = str, help = 'Name of excel file to read') args = parser.parse_args() con = importCEO(args.filename) for co in con: driver = init_driver() name = co lookup(driver, name) data = iter_scrap(driver,name) driver.quit() save_file(name,data)
StarcoderdataPython
309127
<reponame>weiweitoo/easy21-rl # Easy21 Environment import numpy as np class Easy21(): ''' Environment Easy21 ''' def __init__ (self): self.dealer_threshold = 17; self.min_card_value, self.max_card_value = 1, 10; self.game_lower_bound, self.game_upper_bound = 1, 21; def drawCard (self): value = np.random.randint(self.min_card_value, self.max_card_value+1) if np.random.random() <= 1/3: return -value else: return value def initGame (self): return (np.random.randint(self.min_card_value, self.max_card_value+1), np.random.randint(self.min_card_value, self.max_card_value+1)) def actionSpace(self): ''' available action for this environment, 0 stands for hit,1 stands for stick ''' return (0,1); def isBust (self,val): if(val < self.game_lower_bound or val > self.game_upper_bound): return True; return False; def dealerTakeCard(self,dealerVal): while(dealerVal < self.dealer_threshold and not self.isBust(dealerVal)): dealerVal += self.drawCard(); return dealerVal; def step (self,dealerVal,playerVal,action): ''' Take step Return next state and reward and whether the espisode is terminate ''' terminate = False; reward = 0; # Stick if (action == 0): playerVal += self.drawCard(); if (self.isBust(playerVal)): reward = -1; terminate = True; # Hit elif (action == 1): terminate = True; dealerVal = self.dealerTakeCard(dealerVal); # Check what rewards should get if (self.isBust(dealerVal)): reward = 1; elif (playerVal == dealerVal): reward = 0; else: reward = -1 if (playerVal < dealerVal) else 1; return dealerVal,playerVal,reward,terminate;
StarcoderdataPython
389005
# -*- coding: utf-8 -*- """ dicom2nifti @author: abrys """ import os import shutil import tempfile import unittest import nibabel import numpy import tests.test_data as test_data import dicom2nifti.convert_ge as convert_ge from dicom2nifti.common import read_dicom_directory from tests.test_tools import assert_compare_nifti, assert_compare_bval, assert_compare_bvec, ground_thruth_filenames class TestConversionGE(unittest.TestCase): def test_diffusion_images(self): tmp_output_dir = tempfile.mkdtemp() try: results = convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_DTI), None) self.assertTrue(results.get('NII_FILE') is None) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) self.assertTrue(results.get('BVAL_FILE') is None) self.assertTrue(isinstance(results['BVAL'], numpy.ndarray)) self.assertTrue(results.get('BVEC_FILE') is None) self.assertTrue(isinstance(results['BVEC'], numpy.ndarray)) results = convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_DTI), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.GE_DTI)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) assert_compare_bval(results['BVAL_FILE'], ground_thruth_filenames(test_data.GE_DTI)[2]) self.assertTrue(isinstance(results['BVAL'], numpy.ndarray)) assert_compare_bval(results['BVEC_FILE'], ground_thruth_filenames(test_data.GE_DTI)[3]) self.assertTrue(isinstance(results['BVEC'], numpy.ndarray)) convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_DTI_IMPLICIT), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.GE_DTI_IMPLICIT)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) assert_compare_bval(results['BVAL_FILE'], ground_thruth_filenames(test_data.GE_DTI_IMPLICIT)[2]) self.assertTrue(isinstance(results['BVAL'], numpy.ndarray)) assert_compare_bval(results['BVEC_FILE'], ground_thruth_filenames(test_data.GE_DTI_IMPLICIT)[3]) self.assertTrue(isinstance(results['BVEC'], numpy.ndarray)) finally: shutil.rmtree(tmp_output_dir) def test_diffusion_images_old(self): tmp_output_dir = tempfile.mkdtemp() try: results = convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_DTI_OLD), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.GE_DTI_OLD)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) finally: shutil.rmtree(tmp_output_dir) def test_4d(self): tmp_output_dir = tempfile.mkdtemp() try: results = convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_FMRI), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.GE_FMRI)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) results = convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_FMRI_IMPLICIT), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.GE_FMRI_IMPLICIT)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) finally: shutil.rmtree(tmp_output_dir) def test_anatomical(self): tmp_output_dir = tempfile.mkdtemp() try: results = convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_ANATOMICAL), None) self.assertTrue(results.get('NII_FILE') is None) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) results = convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_ANATOMICAL), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.GE_ANATOMICAL)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) results = convert_ge.dicom_to_nifti(read_dicom_directory(test_data.GE_ANATOMICAL_IMPLICIT), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.GE_ANATOMICAL_IMPLICIT)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) finally: shutil.rmtree(tmp_output_dir) def test_is_ge(self): assert not convert_ge.is_ge(read_dicom_directory(test_data.SIEMENS_ANATOMICAL)) assert convert_ge.is_ge(read_dicom_directory(test_data.GE_ANATOMICAL)) assert not convert_ge.is_ge(read_dicom_directory(test_data.PHILIPS_ANATOMICAL)) assert not convert_ge.is_ge(read_dicom_directory(test_data.GENERIC_ANATOMICAL)) assert not convert_ge.is_ge(read_dicom_directory(test_data.HITACHI_ANATOMICAL)) def test_is_4d(self): diffusion_group = convert_ge._get_grouped_dicoms(read_dicom_directory(test_data.GE_DTI)) _4d_group = convert_ge._get_grouped_dicoms(read_dicom_directory(test_data.GE_FMRI)) anatomical_group = convert_ge._get_grouped_dicoms(read_dicom_directory(test_data.GE_ANATOMICAL)) self.assertTrue(convert_ge._is_4d(diffusion_group)) self.assertTrue(convert_ge._is_4d(_4d_group)) self.assertFalse(convert_ge._is_4d(anatomical_group)) def test_is_diffusion_imaging(self): diffusion_group = convert_ge._get_grouped_dicoms(read_dicom_directory(test_data.GE_DTI)) _4d_group = convert_ge._get_grouped_dicoms(read_dicom_directory(test_data.GE_FMRI)) anatomical_group = convert_ge._get_grouped_dicoms(read_dicom_directory(test_data.GE_ANATOMICAL)) assert convert_ge._is_diffusion_imaging(diffusion_group) assert not convert_ge._is_diffusion_imaging(_4d_group) assert not convert_ge._is_diffusion_imaging(anatomical_group) if __name__ == '__main__': unittest.main()
StarcoderdataPython
9682406
<gh_stars>0 from losoto.h5parm import h5parm import numpy as np if __name__ == '__main__': filename = 'debug_losoto.h5' solset = 'testSolset' H = h5parm(filename, readonly=False) pols = ['xx','yy'] dirs = ['a','b'] ants = ['c','d'] times = np.array([0.,1.]) vals = np.ones((2,2,2,2)) H.makeSolset(solsetName=solset, addTables=True) solset = H.getSolset(solset) solset.makeSoltab('testSoltab', axesNames=['pol', 'dir', 'ant', 'time'], axesVals=[pols, dirs, ants, times], vals=vals, weights=np.ones_like(vals), weightDtype='f64') soltab = solset.getSoltab('testSoltab') print(soltab)
StarcoderdataPython
19345
<gh_stars>0 # -*- coding: utf-8 -*- """ Demo for 2D Optimal transport between empirical distributions @author: rflamary """ import numpy as np import matplotlib.pylab as pl import ot #%% parameters and data generation n=20 # nb samples mu_s=np.array([0,0]) cov_s=np.array([[1,0],[0,1]]) mu_t=np.array([4,4]) cov_t=np.array([[1,-.8],[-.8,1]]) xs=ot.datasets.get_2D_samples_gauss(n,mu_s,cov_s) xt=ot.datasets.get_2D_samples_gauss(n,mu_t,cov_t) a,b = ot.unif(n),ot.unif(n) # uniform distribution on samples # loss matrix M=ot.dist(xs,xt) M/=M.max() #%% plot samples pl.figure(1) pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples') pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples') pl.legend(loc=0) pl.title('Source and traget distributions') pl.figure(2) pl.imshow(M,interpolation='nearest') pl.title('Cost matrix M') #%% EMD G0=ot.emd(a,b,M) pl.figure(3) pl.imshow(G0,interpolation='nearest') pl.title('OT matrix G0') pl.figure(4) ot.plot.plot2D_samples_mat(xs,xt,G0,c=[.5,.5,1]) pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples') pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples') pl.legend(loc=0) pl.title('OT matrix with samples') #%% sinkhorn # reg term lambd=5e-3 Gs=ot.sinkhorn(a,b,M,lambd) pl.figure(5) pl.imshow(Gs,interpolation='nearest') pl.title('OT matrix sinkhorn') pl.figure(6) ot.plot.plot2D_samples_mat(xs,xt,Gs,color=[.5,.5,1]) pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples') pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples') pl.legend(loc=0) pl.title('OT matrix Sinkhorn with samples')
StarcoderdataPython
46404
<reponame>vishalnalwa/DAT210x-master---Old # -*- coding: utf-8 -*- """ Created on Mon Jun 19 17:14:36 2017 @author: m037382 """ import pandas as pd df = pd.read_html('http://www.espn.com/nhl/statistics/player/_/stat/points/sort/points/year/2015/seasontype/2') df1 = pd.concat(df) df1.columns = ['RK', 'PLAYER', 'TEAM', 'GP','G','A','PTS','+/-',' PIM','PTS/G','SOG','PCT','GWG','PP-G','PP-A','SH-G','SH-A'] df1= df1[df1.RK != "RK"] df1= df1.drop('RK',axis=1) df1=df1.dropna() df1=df1.reset_index(drop=True) print df1 print len(df1.PCT.unique()) print add( df1.loc[15, 'GP'] , df1.loc[16, 'GP'])????
StarcoderdataPython
8125511
<filename>userbot/plugins/clock.py # (c) @UniBorg # Original written by @UniBorg edit by @INF1N17Y from telethon import events import asyncio from collections import deque from userbot.utils import admin_cmd @borg.on(admin_cmd(pattern=r"clock")) async def _(event): if event.fwd_from: return deq = deque(list("🕛🕐🕑🕒🕓🕔🕕🕖🕗🕘🕙🕚")) for _ in range(60): await asyncio.sleep(0.1) await event.edit("".join(deq)) deq.rotate(1)
StarcoderdataPython
8054206
<gh_stars>0 def other_angle(a, b): return abs(a + b - 180)
StarcoderdataPython
3275875
<reponame>utkarshdeorah/sympy<gh_stars>1-10 from sympy.core.numbers import E from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import log from sympy.functions.elementary.miscellaneous import sqrt from sympy.geometry.curve import Curve from sympy.integrals.integrals import line_integrate s, t, x, y, z = symbols('s,t,x,y,z') def test_lineintegral(): c = Curve([E**t + 1, E**t - 1], (t, 0, log(2))) assert line_integrate(x + y, c, [x, y]) == 3*sqrt(2)
StarcoderdataPython
4880143
""" Build file for cython extensions """ from distutils.core import Extension import numpy from Cython.Build import cythonize _EXTENSIONS = [ Extension("deepgrp.mss", sources=["deepgrp/_mss/pymss.pyx", "./deepgrp/_mss/mss.c"], include_dirs=[numpy.get_include()] + ["./deepgrp"]), Extension("deepgrp.sequence", sources=["deepgrp/sequence.pyx","deepgrp/maxcalc.c"], include_dirs=[numpy.get_include()] + ["./deepgrp"]), ] def build(setup_kwargs): """ This function is mandatory in order to build the extensions. """ setup_kwargs.update({'ext_modules': cythonize(_EXTENSIONS)})
StarcoderdataPython
12859433
# generate data from bag images from PIL import Image from pathlib import Path import os, glob # manipulate file or directory import numpy as np class DataArrangement(object): def __init__(self): self.path = Path(__file__).parent self.current_directories = ['not_traking', 'traking'] self.X_not_traking = [] self.Y_not_traking = [] self.X_traking = [] self.Y_traking = [] def load_data(self): for current_directory in self.current_directories: print(current_directory) # not traking or traking self.path /= '../../video_to_image/{}'.format(current_directory) directories = os.listdir(self.path) for i, directory in enumerate(directories): print('{}, {}'.format(i, directory)) files = glob.glob(str(self.path.resolve()) + '/{}/*.jpg'.format(directory)) for j, file in enumerate(files): image = Image.open(file) image = image.convert('RGB') # image = image.resize(50, 50) data = np.asarray(image) print('{} - {}'.format(i, j)) if current_directory == 'not_traking': # section off files by directory name self.X_not_traking.append(data) self.Y_not_traking.append(i) else: self.X_traking.append(data) self.Y_traking.append(i) return np.array(self.X_not_traking), np.array(self.Y_not_traking), \ np.array(self.X_traking), np.array(self.Y_traking) if __name__ == '__main__': DA = DataArrangement() X_not_traking, Y_not_traking, X_traking, Y_traking = DA.load_data()
StarcoderdataPython
12853229
''' Test deleting SG with 2 attached NICs. @author: Youyk ''' import zstackwoodpecker.test_util as test_util import zstackwoodpecker.test_lib as test_lib import zstackwoodpecker.test_state as test_state import zstackwoodpecker.zstack_test.zstack_test_security_group as test_sg_header import zstackwoodpecker.zstack_test.zstack_test_sg_vm as test_sg_vm_header import apibinding.inventory as inventory test_stub = test_lib.lib_get_test_stub() test_obj_dict = test_state.TestStateDict() Port = test_state.Port def test(): ''' Test image requirements: 1. have nc to check the network port 2. have "nc" to open any port 3. it doesn't include a default firewall VR image is a good candiate to be the guest image. ''' test_util.test_dsc("Create 3 VMs with vlan VR L3 network and using VR image.") vm1 = test_stub.create_sg_vm() test_obj_dict.add_vm(vm1) vm2 = test_stub.create_sg_vm() test_obj_dict.add_vm(vm2) vm1.check() vm2.check() test_util.test_dsc("Create security groups.") sg1 = test_stub.create_sg() sg_vm = test_sg_vm_header.ZstackTestSgVm() test_obj_dict.set_sg_vm(sg_vm) l3_uuid = vm1.vm.vmNics[0].l3NetworkUuid vr_vm = test_lib.lib_find_vr_by_vm(vm1.vm)[0] vm2_ip = test_lib.lib_get_vm_nic_by_l3(vm2.vm, l3_uuid).ip rule1 = test_lib.lib_gen_sg_rule(Port.rule1_ports, inventory.TCP, inventory.INGRESS, vm2_ip) rule2 = test_lib.lib_gen_sg_rule(Port.rule2_ports, inventory.TCP, inventory.INGRESS, vm2_ip) rule3 = test_lib.lib_gen_sg_rule(Port.rule3_ports, inventory.TCP, inventory.INGRESS, vm2_ip) sg1.add_rule([rule1]) sg1.add_rule([rule2]) sg1.add_rule([rule3]) sg_vm.check() nic_uuid1 = vm1.vm.vmNics[0].uuid nic_uuid2 = vm2.vm.vmNics[0].uuid # nic_uuid3 = vm2.vm.vmNics[0].uuid vm1_nics = (nic_uuid1, vm1) vm2_nics = (nic_uuid2, vm2) # vm3_nics = (nic_uuid3, vm3) #test_stub.lib_add_sg_rules(sg1.uuid, [rule0, rule1]) test_util.test_dsc("Add nic to security group 1.") test_util.test_dsc("Allowed ingress ports: %s" % test_stub.rule1_ports) #sg_vm.attach(sg1, [vm1_nics, vm2_nics, vm3_nics]) sg_vm.attach(sg1, [vm1_nics, vm2_nics]) sg_vm.check() sg_vm.delete_sg(sg1) sg_vm.check() vm1.destroy() test_obj_dict.rm_vm(vm1) vm2.destroy() test_obj_dict.rm_vm(vm2) test_util.test_pass('Delete Security Group with 2 attached NICs Success') #Will be called only if exception happens in test(). def error_cleanup(): test_lib.lib_error_cleanup(test_obj_dict)
StarcoderdataPython
1902591
<filename>backend/apps/system/models.py from datetime import datetime from sqlalchemy import ( Table, Column, Integer, String, DateTime, ForeignKey, JSON ) from utils.database import metadata settings = Table( "system_settings", metadata, Column("id", Integer, primary_key=True), Column("label", String(length=100), nullable=False), Column("key", String(length=60), nullable=False, unique=True), # This is the difference of this version from its previous one, for the same `text_id` and `locale` Column("value", JSON, nullable=False), Column("user_id", Integer, ForeignKey("user_user.id"), nullable=True), Column("created_at", DateTime, nullable=False, default=datetime.utcnow), ) """ locale = Table( "system_locale", metadata, Column("id", Integer, primary_key=True), Column("label", String(length=100), nullable=False), Column("locale", String(length=40), nullable=False), Column("user_id", Integer, ForeignKey("user_user.id"), nullable=True), Column("created_at", DateTime, nullable=False, default=datetime.utcnow), ) """
StarcoderdataPython
6578828
<reponame>farhadinima75/FireHR<gh_stars>10-100 # AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02_models.ipynb (unless otherwise specified). __all__ = ['expand_filter', 'ChLin', 'FireHR', 'download_model_weights', 'load_pretrained_model'] # Cell import os, sys import requests from fastai.vision.all import * import FireHR # Cell def expand_filter(x, ks=3): with torch.no_grad(): k5 = nn.Conv2d(1, 1, kernel_size=ks, padding=ks//2, padding_mode='reflect', bias=False) k5.weight.data = torch.ones(1, 1, ks, ks)/(ks*ks) xbuffer = k5(x[:,-1].unsqueeze(1)) x = torch.cat([x[:,:-1], xbuffer], dim=1) return x class ChLin(Module): def __init__(self, ni, nf): self.chlin = nn.Sequential( nn.Linear(ni, nf, bias=False), nn.BatchNorm1d(nf), nn.ReLU(inplace=True)) def forward(self, x): sh = x.shape x = x.permute(0,2,3,1).contiguous().view(sh[0]*sh[2]*sh[3], sh[1]) x = self.chlin(x).view(sh[0],sh[2],sh[3], -1).permute(0,3,1,2).contiguous() return x class FireHR(Module): def __init__(self, ni, nc): self.conv = ConvLayer(1, 8) self.chlin = nn.Sequential(ChLin(ni+8, 128), ChLin(128, 64)) self.middleconv = nn.Sequential(ConvLayer(64, 128), ConvLayer(128, 64)) self.finalconv = nn.Conv2d(64, nc, kernel_size=1, bias=True) def forward(self, x): x = torch.cat([x[:,:-1], self.conv(x[:,-1].unsqueeze(1))], dim=1) x = self.chlin(x) x = self.middleconv(x) return self.finalconv(x) # Cell def download_model_weights(weight_file='model512.pth'): """Download model weights if they don't exist yet on ~/.firehr.""" path_save = Path(os.path.expandvars('$HOME'))/'.firehr' path_save.mkdir(exist_ok=True) file_save = path_save/weight_file if not file_save.is_file(): print(f'Downloading model weights {weight_file}.') url = 'https://github.com/mnpinto/FireHR_weights/raw/main/model512.pth' file = requests.get(url) open(str(file_save), 'wb').write(file.content) else: print(f'Using local model weights {file_save}') # Cell _WEIGHTS = Path(os.path.expandvars('$HOME'))/'.firehr/model512.pth' def load_pretrained_model(weights=_WEIGHTS, ni=6, nc=1, half_precision=True, gpu=True): download_model_weights() model = FireHR(ni,nc) st = torch.load(weights, map_location=torch.device('cpu')) model.load_state_dict(st['model']) if gpu: if half_precision: model = model.half() if torch.cuda.is_available(): model = model.cuda() else: warnings.warn('GPU is not available. torch.cuda.is_available() returned False.') return model
StarcoderdataPython
4854721
from __future__ import absolute_import from __future__ import print_function import veriloggen import dataflow_lut expected_verilog = """ module test ( ); reg CLK; reg RST; reg [32-1:0] xdata; reg xvalid; wire xready; reg [32-1:0] ydata; reg yvalid; wire yready; wire [32-1:0] zdata; wire zvalid; reg zready; main uut ( .CLK(CLK), .RST(RST), .xdata(xdata), .xvalid(xvalid), .xready(xready), .ydata(ydata), .yvalid(yvalid), .yready(yready), .zdata(zdata), .zvalid(zvalid), .zready(zready) ); reg reset_done; initial begin $dumpfile("uut.vcd"); $dumpvars(0, uut); end initial begin CLK = 0; forever begin #5 CLK = !CLK; end end initial begin RST = 0; reset_done = 0; xdata = 0; xvalid = 0; ydata = 0; yvalid = 0; zready = 0; #100; RST = 1; #100; RST = 0; #1000; reset_done = 1; @(posedge CLK); #1; #10000; $finish; end reg [32-1:0] xfsm; localparam xfsm_init = 0; reg [32-1:0] _tmp_0; localparam xfsm_1 = 1; localparam xfsm_2 = 2; localparam xfsm_3 = 3; localparam xfsm_4 = 4; localparam xfsm_5 = 5; localparam xfsm_6 = 6; localparam xfsm_7 = 7; localparam xfsm_8 = 8; localparam xfsm_9 = 9; localparam xfsm_10 = 10; localparam xfsm_11 = 11; localparam xfsm_12 = 12; localparam xfsm_13 = 13; localparam xfsm_14 = 14; localparam xfsm_15 = 15; localparam xfsm_16 = 16; localparam xfsm_17 = 17; localparam xfsm_18 = 18; localparam xfsm_19 = 19; localparam xfsm_20 = 20; localparam xfsm_21 = 21; localparam xfsm_22 = 22; localparam xfsm_23 = 23; localparam xfsm_24 = 24; always @(posedge CLK) begin if(RST) begin xfsm <= xfsm_init; _tmp_0 <= 0; end else begin case(xfsm) xfsm_init: begin xvalid <= 0; if(reset_done) begin xfsm <= xfsm_1; end end xfsm_1: begin xfsm <= xfsm_2; end xfsm_2: begin xfsm <= xfsm_3; end xfsm_3: begin xfsm <= xfsm_4; end xfsm_4: begin xfsm <= xfsm_5; end xfsm_5: begin xfsm <= xfsm_6; end xfsm_6: begin xfsm <= xfsm_7; end xfsm_7: begin xfsm <= xfsm_8; end xfsm_8: begin xfsm <= xfsm_9; end xfsm_9: begin xfsm <= xfsm_10; end xfsm_10: begin xfsm <= xfsm_11; end xfsm_11: begin xvalid <= 1; xfsm <= xfsm_12; end xfsm_12: begin if(xready) begin xdata <= xdata + 1; end if(xready) begin _tmp_0 <= _tmp_0 + 1; end if((_tmp_0 == 5) && xready) begin xvalid <= 0; end if((_tmp_0 == 5) && xready) begin xfsm <= xfsm_13; end end xfsm_13: begin xfsm <= xfsm_14; end xfsm_14: begin xfsm <= xfsm_15; end xfsm_15: begin xfsm <= xfsm_16; end xfsm_16: begin xfsm <= xfsm_17; end xfsm_17: begin xfsm <= xfsm_18; end xfsm_18: begin xfsm <= xfsm_19; end xfsm_19: begin xfsm <= xfsm_20; end xfsm_20: begin xfsm <= xfsm_21; end xfsm_21: begin xfsm <= xfsm_22; end xfsm_22: begin xfsm <= xfsm_23; end xfsm_23: begin xvalid <= 1; if(xready) begin xdata <= xdata + 1; end if(xready) begin _tmp_0 <= _tmp_0 + 1; end if((_tmp_0 == 10) && xready) begin xvalid <= 0; end if((_tmp_0 == 10) && xready) begin xfsm <= xfsm_24; end end endcase end end reg [32-1:0] yfsm; localparam yfsm_init = 0; reg [32-1:0] _tmp_1; localparam yfsm_1 = 1; localparam yfsm_2 = 2; localparam yfsm_3 = 3; localparam yfsm_4 = 4; localparam yfsm_5 = 5; localparam yfsm_6 = 6; localparam yfsm_7 = 7; localparam yfsm_8 = 8; localparam yfsm_9 = 9; localparam yfsm_10 = 10; localparam yfsm_11 = 11; localparam yfsm_12 = 12; localparam yfsm_13 = 13; localparam yfsm_14 = 14; localparam yfsm_15 = 15; localparam yfsm_16 = 16; localparam yfsm_17 = 17; localparam yfsm_18 = 18; localparam yfsm_19 = 19; localparam yfsm_20 = 20; localparam yfsm_21 = 21; localparam yfsm_22 = 22; localparam yfsm_23 = 23; localparam yfsm_24 = 24; localparam yfsm_25 = 25; localparam yfsm_26 = 26; localparam yfsm_27 = 27; localparam yfsm_28 = 28; localparam yfsm_29 = 29; localparam yfsm_30 = 30; localparam yfsm_31 = 31; localparam yfsm_32 = 32; localparam yfsm_33 = 33; localparam yfsm_34 = 34; localparam yfsm_35 = 35; localparam yfsm_36 = 36; localparam yfsm_37 = 37; localparam yfsm_38 = 38; localparam yfsm_39 = 39; localparam yfsm_40 = 40; localparam yfsm_41 = 41; localparam yfsm_42 = 42; localparam yfsm_43 = 43; localparam yfsm_44 = 44; always @(posedge CLK) begin if(RST) begin yfsm <= yfsm_init; _tmp_1 <= 0; end else begin case(yfsm) yfsm_init: begin yvalid <= 0; if(reset_done) begin yfsm <= yfsm_1; end end yfsm_1: begin yfsm <= yfsm_2; end yfsm_2: begin yfsm <= yfsm_3; end yfsm_3: begin yfsm <= yfsm_4; end yfsm_4: begin yfsm <= yfsm_5; end yfsm_5: begin yfsm <= yfsm_6; end yfsm_6: begin yfsm <= yfsm_7; end yfsm_7: begin yfsm <= yfsm_8; end yfsm_8: begin yfsm <= yfsm_9; end yfsm_9: begin yfsm <= yfsm_10; end yfsm_10: begin yfsm <= yfsm_11; end yfsm_11: begin yfsm <= yfsm_12; end yfsm_12: begin yfsm <= yfsm_13; end yfsm_13: begin yfsm <= yfsm_14; end yfsm_14: begin yfsm <= yfsm_15; end yfsm_15: begin yfsm <= yfsm_16; end yfsm_16: begin yfsm <= yfsm_17; end yfsm_17: begin yfsm <= yfsm_18; end yfsm_18: begin yfsm <= yfsm_19; end yfsm_19: begin yfsm <= yfsm_20; end yfsm_20: begin yfsm <= yfsm_21; end yfsm_21: begin yvalid <= 1; yfsm <= yfsm_22; end yfsm_22: begin if(yready) begin ydata <= ydata + 2; end if(yready) begin _tmp_1 <= _tmp_1 + 1; end if((_tmp_1 == 5) && yready) begin yvalid <= 0; end if((_tmp_1 == 5) && yready) begin yfsm <= yfsm_23; end end yfsm_23: begin yfsm <= yfsm_24; end yfsm_24: begin yfsm <= yfsm_25; end yfsm_25: begin yfsm <= yfsm_26; end yfsm_26: begin yfsm <= yfsm_27; end yfsm_27: begin yfsm <= yfsm_28; end yfsm_28: begin yfsm <= yfsm_29; end yfsm_29: begin yfsm <= yfsm_30; end yfsm_30: begin yfsm <= yfsm_31; end yfsm_31: begin yfsm <= yfsm_32; end yfsm_32: begin yfsm <= yfsm_33; end yfsm_33: begin yfsm <= yfsm_34; end yfsm_34: begin yfsm <= yfsm_35; end yfsm_35: begin yfsm <= yfsm_36; end yfsm_36: begin yfsm <= yfsm_37; end yfsm_37: begin yfsm <= yfsm_38; end yfsm_38: begin yfsm <= yfsm_39; end yfsm_39: begin yfsm <= yfsm_40; end yfsm_40: begin yfsm <= yfsm_41; end yfsm_41: begin yfsm <= yfsm_42; end yfsm_42: begin yfsm <= yfsm_43; end yfsm_43: begin yvalid <= 1; if(yready) begin ydata <= ydata + 2; end if(yready) begin _tmp_1 <= _tmp_1 + 1; end if((_tmp_1 == 10) && yready) begin yvalid <= 0; end if((_tmp_1 == 10) && yready) begin yfsm <= yfsm_44; end end endcase end end reg [32-1:0] zfsm; localparam zfsm_init = 0; localparam zfsm_1 = 1; localparam zfsm_2 = 2; localparam zfsm_3 = 3; localparam zfsm_4 = 4; localparam zfsm_5 = 5; localparam zfsm_6 = 6; localparam zfsm_7 = 7; localparam zfsm_8 = 8; always @(posedge CLK) begin if(RST) begin zfsm <= zfsm_init; end else begin case(zfsm) zfsm_init: begin zready <= 0; if(reset_done) begin zfsm <= zfsm_1; end end zfsm_1: begin zfsm <= zfsm_2; end zfsm_2: begin if(zvalid) begin zready <= 1; end if(zvalid) begin zfsm <= zfsm_3; end end zfsm_3: begin zready <= 0; zfsm <= zfsm_4; end zfsm_4: begin zready <= 0; zfsm <= zfsm_5; end zfsm_5: begin zready <= 0; zfsm <= zfsm_6; end zfsm_6: begin zready <= 0; zfsm <= zfsm_7; end zfsm_7: begin zready <= 0; zfsm <= zfsm_8; end zfsm_8: begin zfsm <= zfsm_2; end endcase end end always @(posedge CLK) begin if(reset_done) begin if(xvalid && xready) begin $display("xdata=%d", xdata); end if(yvalid && yready) begin $display("ydata=%d", ydata); end if(zvalid && zready) begin $display("zdata=%d", zdata); end end end endmodule module main ( input CLK, input RST, input [32-1:0] xdata, input xvalid, output xready, input [32-1:0] ydata, input yvalid, output yready, output [32-1:0] zdata, output zvalid, input zready ); wire [32-1:0] _dataflow_lut_data_2; reg _dataflow_lut_valid_2; wire _dataflow_lut_ready_2; wire [8-1:0] _dataflow_lut_lut_address_2; assign _dataflow_lut_lut_address_2 = xdata; _dataflow_lut_LUT_ROM_2 _dataflow_lut_lut_2 ( .CLK(CLK), .addr(_dataflow_lut_lut_address_2), .enable((_dataflow_lut_ready_2 || !_dataflow_lut_valid_2) && xready && xvalid), .val(_dataflow_lut_data_2) ); assign xready = (_dataflow_lut_ready_2 || !_dataflow_lut_valid_2) && xvalid; reg [32-1:0] _dataflow__delay_data_4; reg _dataflow__delay_valid_4; wire _dataflow__delay_ready_4; assign yready = (_dataflow__delay_ready_4 || !_dataflow__delay_valid_4) && yvalid; reg [32-1:0] _dataflow_plus_data_3; reg _dataflow_plus_valid_3; wire _dataflow_plus_ready_3; assign _dataflow_lut_ready_2 = (_dataflow_plus_ready_3 || !_dataflow_plus_valid_3) && (_dataflow_lut_valid_2 && _dataflow__delay_valid_4); assign _dataflow__delay_ready_4 = (_dataflow_plus_ready_3 || !_dataflow_plus_valid_3) && (_dataflow_lut_valid_2 && _dataflow__delay_valid_4); assign zdata = _dataflow_plus_data_3; assign zvalid = _dataflow_plus_valid_3; assign _dataflow_plus_ready_3 = zready; always @(posedge CLK) begin if(RST) begin _dataflow_lut_valid_2 <= 0; _dataflow__delay_data_4 <= 0; _dataflow__delay_valid_4 <= 0; _dataflow_plus_data_3 <= 0; _dataflow_plus_valid_3 <= 0; end else begin if(_dataflow_lut_valid_2 && _dataflow_lut_ready_2) begin _dataflow_lut_valid_2 <= 0; end if((_dataflow_lut_ready_2 || !_dataflow_lut_valid_2) && xready) begin _dataflow_lut_valid_2 <= xvalid; end if((_dataflow__delay_ready_4 || !_dataflow__delay_valid_4) && yready && yvalid) begin _dataflow__delay_data_4 <= ydata; end if(_dataflow__delay_valid_4 && _dataflow__delay_ready_4) begin _dataflow__delay_valid_4 <= 0; end if((_dataflow__delay_ready_4 || !_dataflow__delay_valid_4) && yready) begin _dataflow__delay_valid_4 <= yvalid; end if((_dataflow_plus_ready_3 || !_dataflow_plus_valid_3) && (_dataflow_lut_ready_2 && _dataflow__delay_ready_4) && (_dataflow_lut_valid_2 && _dataflow__delay_valid_4)) begin _dataflow_plus_data_3 <= _dataflow_lut_data_2 + _dataflow__delay_data_4; end if(_dataflow_plus_valid_3 && _dataflow_plus_ready_3) begin _dataflow_plus_valid_3 <= 0; end if((_dataflow_plus_ready_3 || !_dataflow_plus_valid_3) && (_dataflow_lut_ready_2 && _dataflow__delay_ready_4)) begin _dataflow_plus_valid_3 <= _dataflow_lut_valid_2 && _dataflow__delay_valid_4; end end end endmodule module _dataflow_lut_LUT_ROM_2 ( input CLK, input [8-1:0] addr, input enable, output reg [32-1:0] val ); always @(posedge CLK) begin if(enable) begin case(addr) 0: begin val <= 0; end 1: begin val <= 1; end 2: begin val <= 4; end 3: begin val <= 9; end 4: begin val <= 16; end 5: begin val <= 25; end 6: begin val <= 36; end 7: begin val <= 49; end 8: begin val <= 64; end 9: begin val <= 81; end 10: begin val <= 100; end 11: begin val <= 121; end 12: begin val <= 144; end 13: begin val <= 169; end 14: begin val <= 196; end 15: begin val <= 225; end 16: begin val <= 256; end 17: begin val <= 289; end 18: begin val <= 324; end 19: begin val <= 361; end 20: begin val <= 400; end 21: begin val <= 441; end 22: begin val <= 484; end 23: begin val <= 529; end 24: begin val <= 576; end 25: begin val <= 625; end 26: begin val <= 676; end 27: begin val <= 729; end 28: begin val <= 784; end 29: begin val <= 841; end 30: begin val <= 900; end 31: begin val <= 961; end 32: begin val <= 1024; end 33: begin val <= 1089; end 34: begin val <= 1156; end 35: begin val <= 1225; end 36: begin val <= 1296; end 37: begin val <= 1369; end 38: begin val <= 1444; end 39: begin val <= 1521; end 40: begin val <= 1600; end 41: begin val <= 1681; end 42: begin val <= 1764; end 43: begin val <= 1849; end 44: begin val <= 1936; end 45: begin val <= 2025; end 46: begin val <= 2116; end 47: begin val <= 2209; end 48: begin val <= 2304; end 49: begin val <= 2401; end 50: begin val <= 2500; end 51: begin val <= 2601; end 52: begin val <= 2704; end 53: begin val <= 2809; end 54: begin val <= 2916; end 55: begin val <= 3025; end 56: begin val <= 3136; end 57: begin val <= 3249; end 58: begin val <= 3364; end 59: begin val <= 3481; end 60: begin val <= 3600; end 61: begin val <= 3721; end 62: begin val <= 3844; end 63: begin val <= 3969; end 64: begin val <= 4096; end 65: begin val <= 4225; end 66: begin val <= 4356; end 67: begin val <= 4489; end 68: begin val <= 4624; end 69: begin val <= 4761; end 70: begin val <= 4900; end 71: begin val <= 5041; end 72: begin val <= 5184; end 73: begin val <= 5329; end 74: begin val <= 5476; end 75: begin val <= 5625; end 76: begin val <= 5776; end 77: begin val <= 5929; end 78: begin val <= 6084; end 79: begin val <= 6241; end 80: begin val <= 6400; end 81: begin val <= 6561; end 82: begin val <= 6724; end 83: begin val <= 6889; end 84: begin val <= 7056; end 85: begin val <= 7225; end 86: begin val <= 7396; end 87: begin val <= 7569; end 88: begin val <= 7744; end 89: begin val <= 7921; end 90: begin val <= 8100; end 91: begin val <= 8281; end 92: begin val <= 8464; end 93: begin val <= 8649; end 94: begin val <= 8836; end 95: begin val <= 9025; end 96: begin val <= 9216; end 97: begin val <= 9409; end 98: begin val <= 9604; end 99: begin val <= 9801; end 100: begin val <= 10000; end 101: begin val <= 10201; end 102: begin val <= 10404; end 103: begin val <= 10609; end 104: begin val <= 10816; end 105: begin val <= 11025; end 106: begin val <= 11236; end 107: begin val <= 11449; end 108: begin val <= 11664; end 109: begin val <= 11881; end 110: begin val <= 12100; end 111: begin val <= 12321; end 112: begin val <= 12544; end 113: begin val <= 12769; end 114: begin val <= 12996; end 115: begin val <= 13225; end 116: begin val <= 13456; end 117: begin val <= 13689; end 118: begin val <= 13924; end 119: begin val <= 14161; end 120: begin val <= 14400; end 121: begin val <= 14641; end 122: begin val <= 14884; end 123: begin val <= 15129; end 124: begin val <= 15376; end 125: begin val <= 15625; end 126: begin val <= 15876; end 127: begin val <= 16129; end 128: begin val <= 16384; end 129: begin val <= 16641; end 130: begin val <= 16900; end 131: begin val <= 17161; end 132: begin val <= 17424; end 133: begin val <= 17689; end 134: begin val <= 17956; end 135: begin val <= 18225; end 136: begin val <= 18496; end 137: begin val <= 18769; end 138: begin val <= 19044; end 139: begin val <= 19321; end 140: begin val <= 19600; end 141: begin val <= 19881; end 142: begin val <= 20164; end 143: begin val <= 20449; end 144: begin val <= 20736; end 145: begin val <= 21025; end 146: begin val <= 21316; end 147: begin val <= 21609; end 148: begin val <= 21904; end 149: begin val <= 22201; end 150: begin val <= 22500; end 151: begin val <= 22801; end 152: begin val <= 23104; end 153: begin val <= 23409; end 154: begin val <= 23716; end 155: begin val <= 24025; end 156: begin val <= 24336; end 157: begin val <= 24649; end 158: begin val <= 24964; end 159: begin val <= 25281; end 160: begin val <= 25600; end 161: begin val <= 25921; end 162: begin val <= 26244; end 163: begin val <= 26569; end 164: begin val <= 26896; end 165: begin val <= 27225; end 166: begin val <= 27556; end 167: begin val <= 27889; end 168: begin val <= 28224; end 169: begin val <= 28561; end 170: begin val <= 28900; end 171: begin val <= 29241; end 172: begin val <= 29584; end 173: begin val <= 29929; end 174: begin val <= 30276; end 175: begin val <= 30625; end 176: begin val <= 30976; end 177: begin val <= 31329; end 178: begin val <= 31684; end 179: begin val <= 32041; end 180: begin val <= 32400; end 181: begin val <= 32761; end 182: begin val <= 33124; end 183: begin val <= 33489; end 184: begin val <= 33856; end 185: begin val <= 34225; end 186: begin val <= 34596; end 187: begin val <= 34969; end 188: begin val <= 35344; end 189: begin val <= 35721; end 190: begin val <= 36100; end 191: begin val <= 36481; end 192: begin val <= 36864; end 193: begin val <= 37249; end 194: begin val <= 37636; end 195: begin val <= 38025; end 196: begin val <= 38416; end 197: begin val <= 38809; end 198: begin val <= 39204; end 199: begin val <= 39601; end 200: begin val <= 40000; end 201: begin val <= 40401; end 202: begin val <= 40804; end 203: begin val <= 41209; end 204: begin val <= 41616; end 205: begin val <= 42025; end 206: begin val <= 42436; end 207: begin val <= 42849; end 208: begin val <= 43264; end 209: begin val <= 43681; end 210: begin val <= 44100; end 211: begin val <= 44521; end 212: begin val <= 44944; end 213: begin val <= 45369; end 214: begin val <= 45796; end 215: begin val <= 46225; end 216: begin val <= 46656; end 217: begin val <= 47089; end 218: begin val <= 47524; end 219: begin val <= 47961; end 220: begin val <= 48400; end 221: begin val <= 48841; end 222: begin val <= 49284; end 223: begin val <= 49729; end 224: begin val <= 50176; end 225: begin val <= 50625; end 226: begin val <= 51076; end 227: begin val <= 51529; end 228: begin val <= 51984; end 229: begin val <= 52441; end 230: begin val <= 52900; end 231: begin val <= 53361; end 232: begin val <= 53824; end 233: begin val <= 54289; end 234: begin val <= 54756; end 235: begin val <= 55225; end 236: begin val <= 55696; end 237: begin val <= 56169; end 238: begin val <= 56644; end 239: begin val <= 57121; end 240: begin val <= 57600; end 241: begin val <= 58081; end 242: begin val <= 58564; end 243: begin val <= 59049; end 244: begin val <= 59536; end 245: begin val <= 60025; end 246: begin val <= 60516; end 247: begin val <= 61009; end 248: begin val <= 61504; end 249: begin val <= 62001; end 250: begin val <= 62500; end 251: begin val <= 63001; end 252: begin val <= 63504; end 253: begin val <= 64009; end 254: begin val <= 64516; end 255: begin val <= 65025; end endcase end end endmodule """ def test(): veriloggen.reset() test_module = dataflow_lut.mkTest() code = test_module.to_verilog() from pyverilog.vparser.parser import VerilogParser from pyverilog.ast_code_generator.codegen import ASTCodeGenerator parser = VerilogParser() expected_ast = parser.parse(expected_verilog) codegen = ASTCodeGenerator() expected_code = codegen.visit(expected_ast) assert(expected_code == code)
StarcoderdataPython
5041883
<reponame>rafaeldias98/python-customer-api<filename>api/migrations/0001_initial.py # Generated by Django 2.2.5 on 2019-10-06 20:45 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Customer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('email', models.EmailField(max_length=200, unique=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'customer', 'ordering': ['id'], }, ), migrations.CreateModel( name='CustomerFavoriteProduct', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('product_id', models.CharField(max_length=200)), ('product_title', models.CharField(max_length=200)), ('product_price', models.FloatField()), ('product_image', models.URLField()), ('review_score', models.FloatField(default=None, null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('customer', models.ForeignKey(db_column='customer_id', on_delete=django.db.models.deletion.CASCADE, to='api.Customer')), ], options={ 'db_table': 'customer_favorite_product', 'ordering': ['id'], 'unique_together': {('customer', 'product_id')}, }, ), ]
StarcoderdataPython
12824480
<reponame>cued-ia-computing/flood-jw2190-lk476 """tests geo.rivers_with_station function and station_by_river function""" from floodsystem.geo import rivers_with_station from floodsystem.geo import station_by_river from floodsystem.stationdata import build_station_list def run(): """Requirements for Task 1D""" # build list of stations stations = build_station_list() # print number of rivers with stations print("Number of rivers: {}".format(len(rivers_with_station(stations)))) # print the first rivers in alphabetical order print(rivers_with_station(stations)[:10]) # print names of stations located on the different rivers in alphabetical order station = station_by_river(stations) print("Stations on the River Aire: {}".format(sorted(station['River Aire']))) print("Stations on the River Cam: {}".format(sorted(station['River Cam']))) print("Stations on the River Thames: {}".format(sorted(station['River Thames']))) if __name__ == "__main__": print("*** Task 1D: CUED Part 1A Flood Warning System ***") run()
StarcoderdataPython
9624826
from inflection import camelize from twiml_generator.specificity.common import Language, rename_attr, to_bytes class Python(Language): _classes = {} @classmethod def clean(cls, generator) -> None: """Python library specificities which requires to change the TwiML IR. """ for verb, event in generator.twimlir: if verb.name == 'break': verb.name = 'break_' rename_attr(verb, 'from', 'from_') rename_attr(verb, 'for', 'for_') cls.verb_processing(verb, generator.specific_imports) @classmethod def verb_processing(cls, verb, imports): super().verb_processing(verb, imports) for name, value in verb.attributes.items(): if value in ['true', 'false']: verb.attributes[name] = camelize(value) to_bytes(verb, name) @Python.register class Play: @classmethod def process(cls, verb, imports): if not verb.text: verb.text = ' '
StarcoderdataPython
5045871
# Copyright 2021 The sunds Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data specification of features of scene understanding datasets.""" from typing import Tuple from sunds.core import spec_dict from sunds.typing import Dim, FeatureSpecs, FeaturesOrBool, LabelOrFeaturesOrBool # pylint: disable=g-multiple-import import tensorflow as tf import tensorflow_datasets as tfds def scene_spec( frames: FeatureSpecs, # pylint: disable=redefined-outer-name *, point_cloud: FeaturesOrBool = False, ) -> FeatureSpecs: """Scene spec definitions.""" frames = dict(frames) frames.pop('scene_name') # Clear the scene field specs = spec_dict.SpecDict({ # A unique name 🔑 that identifies the scene. 'scene_name': tfds.features.Text(), # A scene has several frames. This stores a lightweight information of all # frames (without sensor data) in the scene. This can be used for random # lookup of a particular frame from the `frame` store. 'frames': tfds.features.Sequence(frames), # Scene bounding box 📦. This axis aligned bounding box can be used to # represent the extent of the scene in its local coordinate frame. 'scene_box': aligned_box_3d_spec(), # Nominal time ⏰ of the scene encoded as `RFC3339_full` format datetime # string e.g. `1970-01-01 00:00:00.0 +0000`. All timestamps in `frame` # level data are expected to be relative (elapsed time in seconds) to this # nominal time. This field can be left unspecified for most datasets # unless there is a need to explicitly get the absolute time point. 'nominal_time': tfds.features.Text(), }) # LiDAR point cloud. specs.maybe_set('point_cloud', point_cloud) return specs def frame_spec(cameras: FeatureSpecs) -> FeatureSpecs: """Frame specification used for storing frame data in `frame` stores. A `frame` is typically used to group sensor measurements taken during a small timespan with a shared sensor rig or rosette. For example `frame` may be used to group all cameras and lidar sensor information and observations captured at a particular timespan during a run of an autonomous driving vehicle. So each frame can have multiple cameras (e.g. stereo setups) and lidars ( e.g. autonomous cars with multiple lidar sensors). However in this simple synthetic dataset, each frame has only one camera. See `frame_info_spec()` for a lightweight version (without sensor data) of `frame` which is used to store information about all frames in a scene. Args: cameras: A dict[camera_name, sunds.specs.camera_spec()] Returns: A composite `tfds` feature defining the specification of `frame` data. """ return { # A unique name 🔑 that identifies the sequence the frame is from. 'scene_name': tfds.features.Text(), # A unique name 🔑 that identifies this particular frame. 'frame_name': tfds.features.Text(), # Frame pose w.r.t scene: X_{scene} = R * X_{frame} + t. 'pose': pose_spec(), # Frame timestamp ⏰. This is expected to be the timestamp when frame # `pose` was recorded. We expect this timestamp to be relative to the # nominal timestamp of the scene this frame belongs to. 'timestamp': tf.float32, # Camera sensor data. Each frame can have multiple cameras (e.g. stereo # setups, autonomous cars with multiple cameras). See `camera_spec` for # more details about the contents of each camera. 'cameras': cameras, } def camera_spec( *, color_image: FeaturesOrBool = False, category_image: LabelOrFeaturesOrBool = False, instance_image: LabelOrFeaturesOrBool = False, depth_image: FeaturesOrBool = False, camera_rays: FeaturesOrBool = False, img_shape: Tuple[Dim, Dim] = (None, None), ) -> FeatureSpecs: """Feature specification of camera sensor 📷. This functions returns the specification of camera sensor data like intrinsics and extrinsics of the camera, and optionally the images caputured by the camera and image level annotations. Note that the camera extrinsics stored here are w.r.t frame. To get the pose of a camera w.r.t to scene, we have to also use the pose of the frame w.r.t scene. Args: color_image: Rgb color image is stored. category_image: Category segmentation label image. instance_image: Object instance ids. depth_image: depth image is stored. camera_rays: The given camera specs. img_shape: The (h, w) image shape. Returns: A composite `tfds` feature defining the specification of camera data. """ spec = spec_dict.SpecDict({ # Camera intrinsics. 'intrinsics': camera_intrinsics_spec(), # Camera extrinsics w.r.t frame (frame to camera transform): # X_{camera} = R * X_{frame} + t. # If a camera is not posed, this can be left to `Identity`. 'extrinsics': pose_spec(), }) # Color image data. spec.maybe_set( 'color_image', color_image, tfds.features.Image(shape=(*img_shape, 3)), ) # Category segmentation data. spec.maybe_set( 'category_image', category_image, spec_dict.labeled_image(shape=(*img_shape, 1)), ) # Object instance id data. spec.maybe_set( 'instance_image', instance_image, spec_dict.labeled_image(shape=(*img_shape, 1)), ) # Depth image. spec.maybe_set( 'depth_image', depth_image, tfds.features.Image(shape=(*img_shape, 1), dtype=tf.float32), ) # Camera rays spec.maybe_update( camera_rays, camera_rays_spec(img_shape=img_shape), ) return spec def camera_intrinsics_spec() -> FeatureSpecs: """Specification of camera intrinsics. The camera instrisics model is identical to the `opencv` and `vision::sfm` camera calibration model. This is used in `camera_spec` which has other camera data like extrinsics of the camera and image data. Returns: A composite `tfds` feature defining the specification of camera intrinsics. """ return { # Image width of the camera sensor. 'image_width': tf.int32, # Image height of the camera sensor. 'image_height': tf.int32, # Camera intrinsics matrix K (3x3 matrix). # [fx skew cx] # K = [ O fy cy] # [ 0 0 1] 'K': tfds.features.Tensor(shape=(3, 3), dtype=tf.float32), # Camera projection type. Should be either 'PERSPECTIVE' | 'FISHEYE'. For # the `nerf_synthetic` data this is always `PERSPECTIVE` (pinhole). 'type': tfds.features.Text(), # Camera distortion coefficients. Since cameras in this dataset does not # have any distortions, these will have zero values and can be ignored. 'distortion': { # Radial distortion coefficients [k1, k2, k3]. 'radial': tfds.features.Tensor(shape=(3,), dtype=tf.float32), # Tangential distortion coefficients [p1, p2]. 'tangential': tfds.features.Tensor(shape=(2,), dtype=tf.float32), } } def pose_spec() -> FeatureSpecs: """Specification of pose represented by 3D Isometric transformation. Returns: A composite `tfds` feature defining the specification of SE(3) pose data. """ return { # 3x3 rotation matrix. 'R': tfds.features.Tensor(shape=(3, 3), dtype=tf.float32), # 3D translation vector. 't': tfds.features.Tensor(shape=(3,), dtype=tf.float32), } def camera_rays_spec( *, img_shape: Tuple[Dim, Dim] = (None, None), encoding: tfds.features.Encoding = tfds.features.Encoding.ZLIB, ) -> FeatureSpecs: """Specification for explicit camera rays.""" return { 'ray_directions': tfds.features.Tensor( shape=(*img_shape, 3), dtype=tf.float32, encoding=encoding, ), 'ray_origins': tfds.features.Tensor( shape=(*img_shape, 3), dtype=tf.float32, encoding=encoding, ), } def aligned_box_3d_spec() -> tfds.features.FeaturesDict: """Specification of an Axis aligned bounding box 📦.""" return { # A box is considered null (empty) if any(min > max). # Minimum extent of an axis aligned box. 'min_corner': tfds.features.Tensor(shape=(3,), dtype=tf.float32), # Maximum extent of an axis aligned box. 'max_corner': tfds.features.Tensor(shape=(3,), dtype=tf.float32), # pytype: disable=bad-return-type # gen-stub-imports } def point_cloud_spec( *, category_labels: FeaturesOrBool = False, ) -> FeatureSpecs: """Specification of a LiDAR point cloud.""" # TODO(epot): Rather than using "None" for the first dimension of each Tensor, # use tfds.features.Sequence(per_point_feature). Also consider using # tfds.features.ClassLabel instead of int32 for semantic category. result = spec_dict.SpecDict({ 'positions': tfds.features.Tensor(shape=(None, 3), dtype=tf.float32), 'point_identifiers': tfds.features.Tensor(shape=(None, 1), dtype=tf.int64), 'timestamps': tfds.features.Tensor(shape=(None, 1), dtype=tf.float32), }) # TODO(epot): Replace by ClassLabel result.maybe_set( 'category_labels', category_labels, tfds.features.Tensor(shape=(None, 1), dtype=tf.int32), ) return result
StarcoderdataPython
12813350
''' Descripttion: Automatically generated file comment version: Author: Wesley Date: 2021-07-27 09:53:43 LastEditors: Wesley LastEditTime: 2021-08-13 15:34:36 ''' from ctypes import cdll, CFUNCTYPE, c_char_p, c_void_p, c_bool, POINTER, c_uint64, c_uint32 from wtpy.WtCoreDefs import BarList, TickList, WTSBarStruct, WTSTickStruct from wtpy.wrapper.PlatformHelper import PlatformHelper as ph from wtpy.WtUtilDefs import singleton import os CB_GET_BAR = CFUNCTYPE(c_void_p, POINTER(WTSBarStruct), c_uint32, c_bool) CB_GET_TICK = CFUNCTYPE(c_void_p, POINTER(WTSTickStruct), c_uint32, c_bool) @singleton class WtDtServoApi: ''' Wt平台数据组件C接口底层对接模块 ''' # api可以作为公共变量 api = None ver = "Unknown" # 构造函数,传入动态库名 def __init__(self): paths = os.path.split(__file__) dllname = ph.getModule("WtDtServo") a = (paths[:-1] + (dllname,)) _path = os.path.join(*a) self.api = cdll.LoadLibrary(_path) self.api.get_version.restype = c_char_p self.ver = bytes.decode(self.api.get_version()) self.api.get_bars_by_range.argtypes = [c_char_p, c_char_p, c_uint64, c_uint64, CB_GET_BAR] self.api.get_ticks_by_range.argtypes = [c_char_p, c_uint64, c_uint64, CB_GET_TICK] self.api.get_bars_by_count.argtypes = [c_char_p, c_char_p, c_uint32, c_uint64, CB_GET_BAR] self.api.get_ticks_by_count.argtypes = [c_char_p, c_uint32, c_uint64, CB_GET_TICK] def initialize(self, cfgfile:str, isFile:bool): self.api.initialize(bytes(cfgfile, encoding = "utf8"), isFile) def get_bars(self, stdCode:str, period:str, fromTime:int = None, dataCount:int = None, endTime:int = 0) -> BarList: ''' 重采样K线\n @stdCode 标准合约代码\n @period 基础K线周期,m1/m5/d\n @fromTime 开始时间,日线数据格式yyyymmdd,分钟线数据为格式为yyyymmddHHMM\n @endTime 结束时间,日线数据格式yyyymmdd,分钟线数据为格式为yyyymmddHHMM,为0则读取到最后一条 ''' bar_cache = BarList() if fromTime is not None: ret = self.api.get_bars_by_range(bytes(stdCode, encoding="utf8"), bytes(period,'utf8'), fromTime, endTime, CB_GET_BAR(bar_cache.on_read_bar)) else: ret = self.api.get_bars_by_count(bytes(stdCode, encoding="utf8"), bytes(period,'utf8'), dataCount, endTime, CB_GET_BAR(bar_cache.on_read_bar)) if ret == 0: return None else: return bar_cache def get_ticks(self, stdCode:str, fromTime:int = None, dataCount:int = None, endTime:int = 0) -> TickList: ''' 重采样K线\n @stdCode 标准合约代码\n @fromTime 开始时间,格式为yyyymmddHHMM\n @endTime 结束时间,格式为yyyymmddHHMM,为0则读取到最后一条 ''' tick_cache = TickList() if fromTime is not None: ret = self.api.get_ticks_by_range(bytes(stdCode, encoding="utf8"), fromTime, endTime, CB_GET_TICK(tick_cache.on_read_tick)) else: ret = self.api.get_ticks_by_count(bytes(stdCode, encoding="utf8"), dataCount, endTime, CB_GET_TICK(tick_cache.on_read_tick)) if ret == 0: return None else: return tick_cache
StarcoderdataPython
11353690
import io import time import threading import queue import picamera class ImageProcessor(threading.Thread): def __init__(self, owner): super(ImageProcessor, self).__init__() self.terminated = False self.owner = owner self.start() def run(self): # This method runs in a separate thread while not self.terminated: # Get a buffer from the owner's outgoing queue try: stream = self.owner.outgoing.get(timeout=1) except queue.Empty: pass else: stream.seek(0) # Read the image and do some processing on it #Image.open(stream) #... #... # Set done to True if you want the script to terminate # at some point #self.owner.done=True stream.seek(0) stream.truncate() self.owner.incoming.put(stream) class ProcessOutput(object): def __init__(self, threads): self.done = False # Construct a pool of image processors, a queue of incoming buffers, # and a (currently empty) queue of outgoing buffers. Prime the incoming # queue with proc+1 buffers (+1 to permit output to be written while # all procs are busy with existing buffers) self.incoming = queue.Queue(threads) self.outgoing = queue.Queue(threads) self.pool = [ImageProcessor(self) for i in range(threads)] buffers = (io.BytesIO() for i in range(threads + 1)) for buf in buffers: self.incoming.put(buf) self.buffer = None def write(self, buf): if buf.startswith(b'\xff\xd8'): # New frame; push current buffer to the outgoing queue and attempt # to get a buffer from the incoming queue if self.buffer is not None: self.outgoing.put(self.buffer) try: self.buffer = self.incoming.get_nowait() except queue.Empty: # No buffers available (means all threads are busy); skip # this frame self.buffer = None if self.buffer is not None: self.buffer.write(buf) def flush(self): # When told to flush (this indicates end of recording), shut # down in an orderly fashion. Tell all the processor's they're # terminated and wait for them to quit for proc in self.pool: proc.terminated = True for proc in self.pool: proc.join() with picamera.PiCamera(resolution='VGA') as camera: camera.start_preview() time.sleep(2) output = ProcessOutput(4) camera.start_recording(output, format='mjpeg') while not output.done: camera.wait_recording(1) camera.stop_recording()
StarcoderdataPython
1898881
""" # Phase Noise JSON format :frequency (float): VCO/PLL frequency in Hz :offset (list of floats): phase noise offset frequency points :phase_noise (list of floats): phase noise points :tune_ppm_per_volt (float): tuning sensitivity in ppm per volt (optional) :tune_Hz_per_volt (float): tuning sensitivity in Hz per volt (optional) """ import json import numpy as np def load_pn_json(fname): """ """ with open(fname, 'r') as f: data = json.load(f) return data def load_pn_files_directory(mydir): """ """ pass def translate_phase_noise(in_dict, freq_Hz): """ return the frequency offset and translated phase noise to the target frequency """ base_freq_Hz = in_dict['frequency'] pn_factor = 20*np.log10(freq_Hz/base_freq_Hz) freq_ar = [] pn_ar = [] for i in range(len(in_dict['offset'])): freq_ar.append(in_dict['offset'][i]) pn_ar.append(in_dict['phase_noise'][i] + pn_factor) return freq_ar, pn_ar
StarcoderdataPython
6507498
<filename>LearnGUI.py<gh_stars>1-10 from tkinter import * from tkinter import messagebox, filedialog from Modules import PublicModules as libs from Modules import LSTM_Config as cf import cv2 import threading from PIL import Image from PIL import ImageTk from Modules.MyThreading import MyThreadingVideo WINDOWS_WIDTH = int(1280 * 0.6) WINDOWS_HEIGHT = int(720 * 0.6) URL_VIDEO = 'FileInput/006.avi' IS_USING_WEBCAM = False CURSOR_DF = 'hand2' CURSOR_NO = 'spider' class EntryWithPlaceholder(Entry): def __init__(self, master=None, placeholder="PLACEHOLDER", color='grey'): super().__init__(master) self.placeholder = placeholder self.placeholder_color = color self.default_fg_color = self['fg'] self.bind("<FocusIn>", self.foc_in) self.bind("<FocusOut>", self.foc_out) self.put_placeholder() def put_placeholder(self): self.insert(0, self.placeholder) self['fg'] = self.placeholder_color def foc_in(self, *args): if self['fg'] == self.placeholder_color: self.delete('0', 'end') self['fg'] = self.default_fg_color def foc_out(self, *args): if not self.get(): self.put_placeholder() class ChoseSourceWindow: def __init__(self, master): self.isUsingIpWebcam = IntVar() self.valSource = StringVar() self.master = master self.master.minsize(500, 100) self.frame = Frame(self.master) # self.master.grab_set() libs.fun_makeCenter(self.master) self.DIALOG_OK = False self.RETURN_RESULT = 'NULL' self.iconCheck= PhotoImage(file='FileInput/Icons/ic_check2.png').subsample(3, 3) self.iconMp4 = PhotoImage(file='FileInput/Icons/ic_check2.png').subsample(3, 3) # goi sau cung nhe self.fun_initComponent() def fun_initComponent(self): self.frame.grid(row=0, column=0, sticky='nsew') self.master.grid_columnconfigure(0, weight=1) self.master.grid_rowconfigure(0, weight=1) # frame 1 self.frame1 = Frame(self.frame, bg='#95deff', padx=10, pady=10) self.frame2 = Frame(self.frame, bg='#c1ffe5', padx=10, pady=10) self.frame3 = Frame(self.frame, bg='#f7b5c7', padx=10, pady=10) self.frame1.grid(row=0, column=0, sticky='nsew') self.frame2.grid(row=1, column=0, sticky='nsew') self.frame3.grid(row=2, column=0, sticky='nsew') self.frame.grid_columnconfigure(0, weight=1) self.frame.grid_rowconfigure(0, weight=1) self.frame.grid_rowconfigure(1, weight=1) self.frame.grid_rowconfigure(2, weight=1) self.checkDir = Checkbutton(self.frame1, text='VIDEO FROM DISK...', variable=self.isUsingIpWebcam, command=self.fun_CheckIsUsingCamChange, padx=10, pady=10, font=('Helvetica', 18, 'bold'), cursor=CURSOR_DF ) self.checkDir.grid(row=0, column=0, sticky='nsew') self.frame1.grid_rowconfigure(0, weight=1) self.frame1.grid_columnconfigure(0, weight=1) self.tbSource = EntryWithPlaceholder(self.frame2, 'IP WEBCAM EXAMPLE: 192.168.1.1') self.tbSource.grid(row=0, column=0, sticky='nsew') self.btnSource = Button(self.frame2, command=self.btnGetPathFromSourceClicked, cursor=CURSOR_DF, image= self.iconCheck, compound= CENTER, bg='#c1ffe5' ) self.btnSource.grid(row=0, column=1, sticky='nsew') self.frame2.grid_columnconfigure(0, weight=9) self.frame2.grid_columnconfigure(1, weight=1) self.frame2.grid_rowconfigure(0, weight=1) self.btnOk = Button(self.frame3, padx=10, pady=10, text='Load Video Clip' , command=self.btnLoadVideoClicked, state='disable', cursor=CURSOR_NO ) self.btnOk.grid(row=0, column=0, sticky='nsew') self.frame3.grid_columnconfigure(0, weight=1) self.frame3.grid_rowconfigure(0, weight=1) def fun_CheckIsUsingCamChange(self): if self.isUsingIpWebcam.get() == 0: self.btnSource.config(image= self.iconCheck) holder = 'IP WEBCAM EXAMPLE: 192.168.1.1' self.checkDir.config(bg= 'white') else: self.btnSource.config(image= self.iconMp4) holder = 'EXAMPLE: C:/VIDEO/DETECTION.MP4' self.checkDir.config(bg= '#c1ffe5') self.fun_reloadHolderSource(source=holder) def fun_reloadHolderSource(self, source: str): self.tbSource.delete('0', 'end') self.tbSource.placeholder = source self.tbSource.put_placeholder() def fun_checkVideoFromSource(self, source: str): try: frames = libs.fun_getFramesOfVideo(path=source, count=20) messagebox.showinfo('Thong Bao', 'Check Video Load OK, Video Size: {0}'.format(frames[0].shape)) return True except: messagebox.showerror('Thong Bao', 'Yeu Cau khong duoc chap nhan!') return False def fun_getURL_IPCam(self, ip: str): return '{0}{1}{2}'.format('http://', ip, ':8080/video') def btnLoadVideoClicked(self): if self.isUsingIpWebcam.get() == 0: self.RETURN_RESULT = self.fun_getURL_IPCam(ip=self.tbSource.get()) self.DIALOG_OK = True self.master.destroy() def btnGetPathFromSourceClicked(self): if self.isUsingIpWebcam.get() == 0: url = self.fun_getURL_IPCam(ip=self.tbSource.get()) else: self.RETURN_RESULT = filedialog.askopenfilename(initialdir="/", title="Select file", filetypes=(("AVI files", "*.AVI"), ("MP4 files", "*.MP4"), ("ALL files", "*.*"))) self.fun_reloadHolderSource(source=self.RETURN_RESULT) url = self.RETURN_RESULT isCheck = self.fun_checkVideoFromSource(source=url) if isCheck: self.btnOk.config(state='normal', cursor=CURSOR_DF) else: self.btnOk.config(state='disable', cursor=CURSOR_NO) def close_windows(self): self.master.destroy() class MyApp: def __init__(self, title: str = 'GUI HUMAN''S VIOLENCE DETECTIONS'): self.URL_VIDEO = URL_VIDEO self.videoCap = None self.title = title self.root = Tk() self.root.title(string=title) self.arrACTION = [] self.stopEvent = None self.IS_PAUSE = False self.containerTrai = None self.containerPhai = None self.root.minsize(width=WINDOWS_WIDTH, height=WINDOWS_HEIGHT) # libs.fun_makeCenter(self.root) libs.fun_makeMaximumSize(self.root) # Load model VGG16 self.vgg16_model = None # self.vgg16_model.summary() # Load model LSTM self.lstm_model = None # self.lstm_model.summary() self.initComponent() def initComponent(self): # self.containerTrai = Frame(self.root, bg='white', padx=10, pady=10) self.containerPhai = Frame(self.root, bg='white', padx=10, pady=10) self.containerTrai.grid(row=0, column=0, sticky='nsew') self.containerPhai.grid(row=0, column=1, sticky='nsew') self.root.grid_columnconfigure(0, weight=1) self.root.grid_columnconfigure(1, weight=1) self.root.grid_rowconfigure(0, weight=1) # Container con cua trai self.containerChonNguonDuLieu = Frame(self.containerTrai, bg='#95deff', padx=10, pady=10) self.containerVideoCamera = Frame(self.containerTrai, bg='#c1ffe5', padx=10, pady=10) self.containerChucNang = Frame(self.containerTrai, bg='#f7b5c7', padx=10, pady=10) self.containerChonNguonDuLieu.grid(row=0, column=0, sticky='nsew') self.containerVideoCamera.grid(row=1, column=0, sticky='nsew') self.containerChucNang.grid(row=2, column=0, sticky='nsew') self.containerTrai.grid_columnconfigure(0, weight=1) self.containerTrai.grid_rowconfigure(0, weight=1) self.containerTrai.grid_rowconfigure(1, weight=8) self.containerTrai.grid_rowconfigure(2, weight=1) # giao dien cho button chon nguon du lieu iconChonNguonDuLieu = PhotoImage(file='FileInput/Icons/ic_dir.png') # Resizing image to fit on button iconChonNguonDuLieu = iconChonNguonDuLieu.subsample(1, 1) self.btnChonNguonDuLieu = Button(self.containerChonNguonDuLieu, padx=10, pady=10, text='INSERT VIDEO FROM SOURCE...', command=self.fun_chonNguonDuLieu, # bg='green', cursor=CURSOR_DF, font=('Helvetica', 18, 'bold'), image=iconChonNguonDuLieu, compound=LEFT ) self.btnChonNguonDuLieu.image=iconChonNguonDuLieu self.btnChonNguonDuLieu.grid(row=0, column=0, sticky='nsew') # Giao dien cho nut load lai video iconTaiLaiVideo = PhotoImage(file='FileInput/Icons/ic_process.png') # Resizing image to fit on button iconTaiLaiVideo = iconTaiLaiVideo.subsample(1, 1) self.btnRefresh = Button(self.containerChonNguonDuLieu, padx=10, pady=10, # bg='green', # text='Tai lai video', command=self.fun_taiLaiVideo, state='disable', cursor=CURSOR_NO, image=iconTaiLaiVideo, compound=CENTER ) self.btnRefresh.image= iconTaiLaiVideo self.btnRefresh.grid(row=0, column=1, sticky='nsew') # Giao dien cho nut ngat ket noi iconNgatKetNoi = PhotoImage(file='FileInput/Icons/ic_powerof.png') iconNgatKetNoi = iconNgatKetNoi.subsample(1, 1) self.btnDisconection = Button(self.containerChonNguonDuLieu, padx=10, pady=10, # bg='green', # text='Ngat Ke Noi', image=iconNgatKetNoi, command=self.fun_ngatKetNoi, cursor=CURSOR_DF, compound=CENTER ) self.btnDisconection.imgage=iconNgatKetNoi self.btnDisconection.grid(row=0, column=2, sticky='nsew') self.containerChonNguonDuLieu.grid_columnconfigure(0, weight=8) self.containerChonNguonDuLieu.grid_columnconfigure(1, weight=1) self.containerChonNguonDuLieu.grid_columnconfigure(2, weight=1) self.containerChonNguonDuLieu.grid_rowconfigure(0, weight=1) # Container con cua phai self.containerPhanDoanBaoLuc = Frame(self.containerPhai, bg='#95deff', padx=10, pady=10) self.containerTongHopMoTaPhanDoanDanh = Frame(self.containerPhai, bg='#c1ffe5', padx=10, pady=10) self.containerPhanDoanBaoLuc.grid(row=0, column=0, sticky='nsew') self.containerTongHopMoTaPhanDoanDanh.grid(row=1, column=0, sticky='nsew') # Label hien thi loai bao luc gi self.lbKetQuaBaoLuc = Label(self.containerTongHopMoTaPhanDoanDanh, text='<NAME>', padx=10, pady=10, bg='white', font=('Helvetica', 18, 'bold') ) self.lbKetQuaBaoLuc.grid(row=0, column=0, sticky='nsew') self.containerTongHopMoTaPhanDoanDanh.grid_rowconfigure(0, weight=1) self.containerTongHopMoTaPhanDoanDanh.grid_columnconfigure(0, weight=1) self.containerPhai.grid_rowconfigure(0, weight=9) self.containerPhai.grid_rowconfigure(1, weight=1) self.containerPhai.grid_columnconfigure(0, weight=1) # Container con cua ContainerVideoFrames self.lbVideoFrames = Label(self.containerVideoCamera, bg='white', padx=10, pady=10) self.lbVideoFrames.grid(row=0, column=0, sticky='nsew') self.containerVideoCamera.grid_rowconfigure(0, weight=1) self.containerVideoCamera.grid_columnconfigure(0, weight=1) self.makePhanDoanBaoLucGUI6() # self.videoLoadingThreading() self.root.wm_protocol('VM_DELETE_WINDOW', self.onClose) self.fun_initGUI() self.fun_taiGiaoDien17CapDo() def fun_initGUI(self): img = cv2.imread(filename= 'FileInput/Imgs/ImgNotFound2.jpg') img1 = cv2.imread(filename= 'FileInput/Imgs/ImgNotFound.jpg') size = libs.fun_getSizeOfFrame(frame= img) size1 = libs.fun_getSizeOfFrame(frame= img1) self.imgNotFound = libs.fun_cv2_imageArrayToImage(containerFather= self.containerVideoCamera, frame= img, reSize= size) self.imgNotFound1 = libs.fun_cv2_imageArrayToImage(containerFather= self.containerVideoCamera, frame= img1, reSize= (int(size[0] * 0.2), int(size[1] * 0.2))) self.lbVideoFrames.config(image= self.imgNotFound) self.lbVideoFrames1.config(image= self.imgNotFound1) self.lbVideoFrames2.config(image= self.imgNotFound1) self.lbVideoFrames3.config(image= self.imgNotFound1) self.lbVideoFrames4.config(image= self.imgNotFound1) def fun_ngatKetNoi(self): if self.stopEvent is None: return self.stopEvent.set() self.fun_initGUI() def fun_taiLaiVideo(self): self.btnRefresh.config(state='disable', cursor=CURSOR_NO) self.videoLoadingThreading() def fun_taiGiaoDien17CapDo(self): # Giao dien cho container 17 Cap do self.arrACTION.clear() actionNames = cf.VIDEO_NAMES.copy() actionNames.insert(0, 'no') for i in range(0, len(actionNames)): action = Label(self.containerChucNang, bg='#ffffff', padx=10, pady=10, text=actionNames[i], font=('Helvetica', 18, 'bold') ) action.grid(row=0, column=i, sticky='nsew') self.arrACTION.append(action) self.containerChucNang.grid_rowconfigure(0, weight=1) for i in range(0, len(actionNames)): self.containerChucNang.grid_columnconfigure(i, weight=1) # event cho button chon nguon du lieu def fun_chonNguonDuLieu(self): self.newWindow = Toplevel(self.root) self.app = ChoseSourceWindow(self.newWindow) self.app.master.grab_set() self.root.wait_window(self.app.master) # Hanh dong khong duoc xac thuc tu nguoi dung -> ket thuc if not self.app.DIALOG_OK: messagebox.showwarning('Thong Bao', 'Chon nguon video that bai') return # Hang dong duoc xac thuc tu phai nguoi dung self.URL_VIDEO = self.app.RETURN_RESULT self.fun_taiGiaoDien17CapDo() self.videoLoadingThreading() def makePhanDoanBaoLucGUI6(self): self.frameVideo1 = Frame(self.containerPhanDoanBaoLuc, padx=10, pady=10, bg='white') self.frameVideo2 = Frame(self.containerPhanDoanBaoLuc, padx=10, pady=10, bg='#c1ffe5') self.frameVideo3 = Frame(self.containerPhanDoanBaoLuc, padx=10, pady=10, bg='#c1ffe5') self.frameVideo4 = Frame(self.containerPhanDoanBaoLuc, padx=10, pady=10, bg='white') self.frameVideo1.grid(row=0, column=0, sticky='nsew') self.frameVideo2.grid(row=0, column=1, sticky='nsew') self.frameVideo3.grid(row=1, column=0, sticky='nsew') self.frameVideo4.grid(row=1, column=1, sticky='nsew') self.containerPhanDoanBaoLuc.grid_rowconfigure(0, weight=1) self.containerPhanDoanBaoLuc.grid_rowconfigure(1, weight=1) self.containerPhanDoanBaoLuc.grid_columnconfigure(0, weight=1) self.containerPhanDoanBaoLuc.grid_columnconfigure(1, weight=1) # phan doan 1 self.lbVideoFrames1 = Label(self.frameVideo1, padx=10, pady=10, bg='white') self.lbVideoFrames1.grid(row=0, column=0, sticky='nsew') self.frameVideo1.grid_rowconfigure(0, weight=1) self.frameVideo1.grid_columnconfigure(0, weight=1) # phan doan 2 self.lbVideoFrames2 = Label(self.frameVideo2, padx=10, pady=10, bg='white') self.lbVideoFrames2.grid(row=0, column=0, sticky='nsew') self.frameVideo2.grid_rowconfigure(0, weight=1) self.frameVideo2.grid_columnconfigure(0, weight=1) # phan doan 3 self.lbVideoFrames3 = Label(self.frameVideo3, padx=10, pady=10, bg='white') self.lbVideoFrames3.grid(row=0, column=0, sticky='nsew') self.frameVideo3.grid_rowconfigure(0, weight=1) self.frameVideo3.grid_columnconfigure(0, weight=1) # phan doan 4 self.lbVideoFrames4 = Label(self.frameVideo4, padx=10, pady=10, bg='white') self.lbVideoFrames4.grid(row=0, column=0, sticky='nsew') self.frameVideo4.grid_rowconfigure(0, weight=1) self.frameVideo4.grid_columnconfigure(0, weight=1) self.arrThread = [] thread1 = MyThreadingVideo(lbShow=self.lbVideoFrames1, lbFather=self.frameVideo1, lbShowKetQua= self.lbKetQuaBaoLuc, vgg16_model= self.vgg16_model, lstm_model= self.lstm_model, treeAction=None) thread2 = MyThreadingVideo(lbShow=self.lbVideoFrames2, lbFather=self.frameVideo2, lbShowKetQua= self.lbKetQuaBaoLuc, vgg16_model= self.vgg16_model, lstm_model= self.lstm_model, treeAction=None) thread3 = MyThreadingVideo(lbShow=self.lbVideoFrames3, lbFather=self.frameVideo3, lbShowKetQua= self.lbKetQuaBaoLuc, vgg16_model= self.vgg16_model, lstm_model= self.lstm_model, treeAction=None) thread4 = MyThreadingVideo(lbShow=self.lbVideoFrames4, lbFather=self.frameVideo4, lbShowKetQua= self.lbKetQuaBaoLuc, vgg16_model= self.vgg16_model, lstm_model= self.lstm_model, treeAction=None) self.arrThread.append(thread1) self.arrThread.append(thread3) self.arrThread.append(thread4) self.arrThread.append(thread2) def runMyApp(self): self.root.mainloop() def videoLoadingThreading(self): self.stopEvent = threading.Event() self.loadVideoThread = threading.Thread(target=self.updateVideoFrames, args=()) self.loadVideoThread.setDaemon(True) self.loadVideoThread.start() def updateVideoFrames(self): self.videoCap = cv2.VideoCapture(self.URL_VIDEO) self.isContinue, self.frame = self.videoCap.read() count = 0 xoayVong = 0 frames = [] while not self.stopEvent.is_set() and self.isContinue: image = libs.fun_cv2_imageArrayToImage(containerFather= self.containerVideoCamera, frame= self.frame.copy()) self.lbVideoFrames.config(image=image) self.lbVideoFrames.image = image isContinue, self.frame = self.videoCap.read() # Doc khong duoc la het video -> nho thoat ra if not isContinue: break frames.append(self.frame.copy()) cv2.waitKey(5) if count == 19: self.arrThread[xoayVong].setFrames(frames) self.arrThread[xoayVong].startShowVideo() xoayVong += 1 if xoayVong == 4: xoayVong = 0 frames = [] count = 0 continue count += 1 self.btnRefresh.config(state='normal', cursor=CURSOR_DF) if not self.IS_PAUSE: self.videoCap.release() def onClose(self): libs.fun_print(name='Violence Detect App', value='Closing') self.videoCap.release() self.root.destroy() sys.exit(0) if __name__ == '__main__': if IS_USING_WEBCAM: URL_VIDEO = 0 videoCap = cv2.VideoCapture(URL_VIDEO) app = MyApp() app.runMyApp()
StarcoderdataPython
8142376
<filename>zooniverse/settings/test.py """ Distributed under the MIT License. See LICENSE.txt for more info. """ from .development import * DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', }, } TEST_OUTPUT_DIR = os.path.join(BASE_DIR, '..', 'test_output')
StarcoderdataPython
3271468
<filename>leetcode/1228_missing_number_in_arithmetic_progression.py<gh_stars>1-10 # -*- coding: utf-8 -*- class Solution: def missingNumber(self, arr): return ((arr[-1] + arr[0]) * (len(arr) + 1)) // 2 - sum(arr) if __name__ == '__main__': solution = Solution() assert 9 == solution.missingNumber([5, 7, 11, 13]) assert 14 == solution.missingNumber([15, 13, 12]) assert 0 == solution.missingNumber([0, 0, 0, 0, 0])
StarcoderdataPython
6418562
# Copyright 2020-2021 OpenDR European Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from filterpy.kalman import KalmanFilter from opendr.engine.target import BoundingBox3D, TrackingAnnotation3D class KalmanTracker3D(): def __init__( self, boundingBox3D: BoundingBox3D, id, frame, state_dimensions=10, # x, y, z, rotation_y, l, w, h, speed_x, speed_z, angular_speed measurement_dimensions=7, # x, y, z, rotation_y, l, w, h state_transition_matrix=None, measurement_function_matrix=None, covariance_matrix=None, process_uncertainty_matrix=None, ): super().__init__() self.start_frame = frame self.last_update_frame = frame self.id = id self.kalman_filter = KalmanFilter(dim_x=state_dimensions, dim_z=measurement_dimensions) self.predictions = [] self.updates = 0 if state_transition_matrix is None: state_transition_matrix = np.eye(state_dimensions, dtype=np.float32) state_transition_matrix[0, -3] = 1 state_transition_matrix[1, -2] = 1 state_transition_matrix[2, -1] = 1 if measurement_function_matrix is None: measurement_function_matrix = np.eye( measurement_dimensions, state_dimensions, dtype=np.float32 ) if covariance_matrix is None: covariance_matrix = np.eye( state_dimensions, state_dimensions, dtype=np.float32 ) * 10 covariance_matrix[7:, 7:] *= 1000 if process_uncertainty_matrix is None: process_uncertainty_matrix = np.eye( state_dimensions, state_dimensions, dtype=np.float32 ) process_uncertainty_matrix[7:, 7:] *= 0.01 self.kalman_filter.F = state_transition_matrix self.kalman_filter.H = measurement_function_matrix self.kalman_filter.P = covariance_matrix self.kalman_filter.Q = process_uncertainty_matrix location = boundingBox3D.data["location"] dimensions = boundingBox3D.data["dimensions"] rotation_y = boundingBox3D.data["rotation_y"] # [x, y, z, rotation_y, l, w, h] self.kalman_filter.x[:measurement_dimensions] = np.array([ *location, rotation_y, *dimensions ]).reshape(-1, 1) self.name = boundingBox3D.name self.bbox2d = boundingBox3D.bbox2d self.action = boundingBox3D.action self.alpha = boundingBox3D.alpha self.truncated = boundingBox3D.truncated self.occluded = boundingBox3D.occluded self.confidence = boundingBox3D.confidence def update(self, boundingBox3D: BoundingBox3D, frame): self.last_update_frame = frame self.updates += 1 location = boundingBox3D.data["location"] dimensions = boundingBox3D.data["dimensions"] rotation_y = boundingBox3D.data["rotation_y"] self.name = boundingBox3D.name self.bbox2d = boundingBox3D.bbox2d self.action = boundingBox3D.action self.alpha = boundingBox3D.alpha self.truncated = boundingBox3D.truncated self.occluded = boundingBox3D.occluded self.confidence = boundingBox3D.confidence rotation_y = normalize_angle(rotation_y) predicted_rotation_y = self.kalman_filter.x[3] if ( abs(rotation_y - predicted_rotation_y) >= np.pi / 2 and abs(rotation_y - predicted_rotation_y) <= np.pi * 1.5 ): predicted_rotation_y = normalize_angle(predicted_rotation_y + np.pi) if abs(rotation_y - predicted_rotation_y) >= np.pi * 1.5: if rotation_y > 0: predicted_rotation_y += np.pi * 2 else: predicted_rotation_y -= np.pi * 2 self.kalman_filter.x[3] = predicted_rotation_y self.kalman_filter.update(np.array([ *location, rotation_y, *dimensions ])) def predict(self) -> np.ndarray: self.kalman_filter.predict() self.kalman_filter.x[3] = normalize_angle(self.kalman_filter.x[3]) self.predictions.append(self.kalman_filter.x) return self.kalman_filter.x def tracking_bounding_box_3d(self, frame): return TrackingAnnotation3D( self.name, self.truncated, self.occluded, self.alpha, self.bbox2d, self.kalman_filter.x[4:].reshape(-1), self.kalman_filter.x[:3].reshape(-1), float(self.kalman_filter.x[3]), self.id, self.confidence, frame, ) def age(self, frame): return frame - self.start_frame def staleness(self, frame): return frame - self.last_update_frame def normalize_angle(angle): if angle >= np.pi: angle -= np.pi * 2 if angle < -np.pi: angle += np.pi * 2 return angle
StarcoderdataPython
12821861
from collections import Counter n = int(input()) a = list(map(int, input().split())) Q = int(input()) queries = [list(map(int, input().split())) for _ in range(Q)] ans = sum(a) A = Counter(a) for q in queries: ans += (q[1] - q[0]) * A[q[0]] A[q[1]] += A[q[0]] A[q[0]] = 0 print(ans)
StarcoderdataPython
11315778
<gh_stars>1-10 # throw.py # The CIL throw instruction # Copyright 2010 <NAME> - see LICENSE for details from Instruction import Instruction import unittest from Instructions.Instruction import register class throw(Instruction): def __init__(self, arguments): self.name = 'throw' self.target = '' def execute(self, vm): pass register('throw', throw) class throwTest(unittest.TestCase): def test_throw_no_arguments_throws_exception(self): from VM import VM vm = VM() x = throw('asdf') # fixme optional parameters x.execute(vm) index = vm.get_instruction_pointer() self.assertEqual(3, index); def test_throw_object(self): from VM import VM vm = VM() x = throw() x.execute(vm) index = vm.get_instruction_pointer() self.assertEqual(3, index);
StarcoderdataPython
8090267
<gh_stars>1-10 #!/usr/bin/python from datetime import * import csv import sys import time log_file = open(sys.argv[1], 'rb') log_iter = csv.reader(log_file, delimiter=':') now = datetime.now() now = datetime.strptime(''.join([str(now.year), ' ', str(now.month), ' ', str(now.day), ' ', str(now.hour), ':', str(now.minute), ':', str(now.second), ' GMT']), '%Y %m %d %H:%M:%S %Z').strftime('%s') #now = time.localtime() f = '%Y %b %d %H:%M:%S %Z' for i, row in enumerate(log_iter): row[2] = row[2][:2] s = ''.join(['2012 ', row[0], ':', row[1], ':', row[2], ' GMT']) t = datetime.strptime(s, f) #t = time.strptime(s, f) n = t.strftime('%s') if (n > now): s = ''.join(['2011 ', row[0], ':', row[1], ':', row[2], ' GMT']) t = datetime.strptime(s, f) #t = time.strptime(s, f) n = time.strftime('%s') #print(s) print(n)
StarcoderdataPython
4903423
<filename>xskillscore/tests/test_accessor_deterministic.py import pytest import xarray as xr from xarray.tests import assert_allclose from xskillscore.core.deterministic import ( effective_sample_size, mae, mape, me, median_absolute_error, mse, pearson_r, pearson_r_eff_p_value, pearson_r_p_value, r2, rmse, smape, spearman_r, spearman_r_eff_p_value, spearman_r_p_value, ) correlation_metrics = [ pearson_r, r2, pearson_r_p_value, spearman_r, spearman_r_p_value, effective_sample_size, pearson_r_eff_p_value, spearman_r_eff_p_value, ] temporal_only_metrics = [ pearson_r_eff_p_value, spearman_r_eff_p_value, effective_sample_size, ] distance_metrics = [ me, mse, rmse, mae, median_absolute_error, mape, smape, ] AXES = ("time", "lat", "lon", ["lat", "lon"], ["time", "lat", "lon"]) def _ds(a, b, skipna_bool): ds = xr.Dataset() ds["a"] = a ds["b"] = b if skipna_bool is True: ds["b"] = b.where(b < 0.5) return ds def adjust_weights(dim, weight_bool, weights): """ Adjust the weights test data to only span the core dimension that the function is being applied over. """ if weight_bool: drop_dims = [i for i in weights.dims if i not in dim] drop_dims = {k: 0 for k in drop_dims} return weights.isel(drop_dims) else: return None @pytest.mark.parametrize("outer_bool", [False, True]) @pytest.mark.parametrize("metric", correlation_metrics + distance_metrics) @pytest.mark.parametrize("dim", AXES) @pytest.mark.parametrize("weight_bool", [False, True]) @pytest.mark.parametrize("skipna_bool", [False, True]) def test_deterministic_metrics_accessor( a, b, dim, skipna_bool, weight_bool, weights, metric, outer_bool ): # Update dim to time if testing temporal only metrics if (dim != "time") and (metric in temporal_only_metrics): dim = "time" _weights = adjust_weights(dim, weight_bool, weights) ds = _ds(a, b, skipna_bool) b = ds["b"] # Update if populated with nans if outer_bool: ds = ds.drop_vars("b") accessor_func = getattr(ds.xs, metric.__name__) if metric in temporal_only_metrics or metric == median_absolute_error: actual = metric(a, b, dim=dim, skipna=skipna_bool) if outer_bool: expected = accessor_func("a", b, dim=dim, skipna=skipna_bool) else: expected = accessor_func("a", "b", dim=dim, skipna=skipna_bool) else: actual = metric(a, b, dim=dim, weights=_weights, skipna=skipna_bool) if outer_bool: expected = accessor_func( "a", b, dim=dim, weights=_weights, skipna=skipna_bool ) else: expected = accessor_func( "a", "b", dim=dim, weights=_weights, skipna=skipna_bool ) assert_allclose(actual, expected)
StarcoderdataPython
3314037
""" Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param: A: an integer array @return: A tree node """ def sortedArrayToBST(self, A): return self.buildTree(A,0,len(A)-1) def buildTree(self,A,start,end): if(start>end): return None mid = (start+end) >> 1 node = TreeNode(A[mid]) node.left = self.buildTree(A,start,mid-1) node.right = self.buildTree(A,mid+1,end) return node
StarcoderdataPython
11376645
import os checkpoints_path = '/homedtic/lperez/parsing-as-pretraining/runs_constituency_parsing/run1/output' model_partial_name = 'pytorch_model' for (root, dirs, files) in os.walk(checkpoints_path): for file in files: if file.startswith(model_partial_name): model_path = root + '/' + file print('Evaluating %s' % model_path) checkpoint_path = '/'.join(model_path.split('/')[0:-1]) print('checkpoint_path = %s' % checkpoint_path)
StarcoderdataPython
8099817
import sys import time from dpa.app.server import AppServer from dpa.cli.action import CommandLineAction # ------------------------------------------------------------------------------ class ClApp(CommandLineAction): name = "clapp" # -------------------------------------------------------------------------- @classmethod def setup_cl_args(cls, parser): parser.add_argument( "port", type=int, help="Port number to serve." ) # -------------------------------------------------------------------------- def __init__(self, port): super(ClApp, self).__init__(port) self._port = port self._server = None self._shutdown = False # -------------------------------------------------------------------------- def execute(self): self._server = AppServer( self.port, shutdown_callback=self._shutdown_server, ) self._server.start() while not self._shutdown: time.sleep(1) sys.exit(0) # -------------------------------------------------------------------------- def undo(self): pass # -------------------------------------------------------------------------- @property def port(self): return self._port # -------------------------------------------------------------------------- @property def server(self): return self._server # -------------------------------------------------------------------------- def _shutdown_server(self): self._shutdown = True
StarcoderdataPython
6503206
from __future__ import absolute_import import io import os import sys import uuid import warnings import nbformat from dagster_graphql.implementation.context import ( DagsterGraphQLContext, DagsterSnapshotGraphQLContext, ) from dagster_graphql.implementation.pipeline_execution_manager import ( QueueingSubprocessExecutionManager, SubprocessExecutionManager, ) from dagster_graphql.implementation.reloader import Reloader from dagster_graphql.schema import create_schema from dagster_graphql.version import __version__ as dagster_graphql_version from flask import Flask, jsonify, request, send_file from flask_cors import CORS from flask_graphql import GraphQLView from flask_sockets import Sockets from graphql.execution.executors.gevent import GeventExecutor as Executor from nbconvert import HTMLExporter from dagster import ExecutionTargetHandle from dagster import __version__ as dagster_version from dagster import check, seven from dagster.core.execution.compute_logs import warn_if_compute_logs_disabled from dagster.core.instance import DagsterInstance from dagster.core.snap.repository_snapshot import RepositorySnapshot from dagster.core.storage.compute_log_manager import ComputeIOType from .format_error import format_error_with_stack_trace from .subscription_server import DagsterSubscriptionServer from .templates.playground import TEMPLATE as PLAYGROUND_TEMPLATE from .version import __version__ MISSING_SCHEDULER_WARNING = ( 'You have defined ScheduleDefinitions for this repository, but have ' 'not defined a scheduler on the instance' ) class DagsterGraphQLView(GraphQLView): def __init__(self, context, **kwargs): super(DagsterGraphQLView, self).__init__(**kwargs) self.context = check.inst_param(context, 'context', DagsterGraphQLContext) def get_context(self): return self.context format_error = staticmethod(format_error_with_stack_trace) def dagster_graphql_subscription_view(subscription_server, context): context = check.inst_param( context, 'context', (DagsterGraphQLContext, DagsterSnapshotGraphQLContext) ) def view(ws): subscription_server.handle(ws, request_context=context) return [] return view def info_view(): return ( jsonify( dagit_version=__version__, dagster_graphql_version=dagster_graphql_version, dagster_version=dagster_version, ), 200, ) def index_view(_path): try: return send_file(os.path.join(os.path.dirname(__file__), './webapp/build/index.html')) except seven.FileNotFoundError: text = '''<p>Can't find webapp files. Probably webapp isn't built. If you are using dagit, then probably it's a corrupted installation or a bug. However, if you are developing dagit locally, your problem can be fixed as follows:</p> <pre>cd ./python_modules/ make rebuild_dagit</pre>''' return text, 500 def notebook_view(request_args): check.dict_param(request_args, 'request_args') # This currently provides open access to your file system - the very least we can # do is limit it to notebook files until we create a more permanent solution. path = request_args['path'] if not path.endswith('.ipynb'): return 'Invalid Path', 400 with open(os.path.abspath(path)) as f: read_data = f.read() notebook = nbformat.reads(read_data, as_version=4) html_exporter = HTMLExporter() html_exporter.template_file = 'basic' (body, resources) = html_exporter.from_notebook_node(notebook) return '<style>' + resources['inlining']['css'][0] + '</style>' + body, 200 def download_view(context): context = check.inst_param( context, 'context', (DagsterGraphQLContext, DagsterSnapshotGraphQLContext) ) def view(run_id, step_key, file_type): run_id = str(uuid.UUID(run_id)) # raises if not valid run_id step_key = step_key.split('/')[-1] # make sure we're not diving deep into out_name = '{}_{}.{}'.format(run_id, step_key, file_type) manager = context.instance.compute_log_manager try: io_type = ComputeIOType(file_type) result = manager.get_local_path(run_id, step_key, io_type) if not os.path.exists(result): result = io.BytesIO() timeout = None if manager.is_watch_completed(run_id, step_key) else 0 except ValueError: result = io.BytesIO() timeout = 0 if not result: result = io.BytesIO() return send_file( result, as_attachment=True, attachment_filename=out_name, cache_timeout=timeout ) return view def instantiate_app_with_views(context): app = Flask( 'dagster-ui', static_url_path='', static_folder=os.path.join(os.path.dirname(__file__), './webapp/build'), ) sockets = Sockets(app) app.app_protocol = lambda environ_path_info: 'graphql-ws' schema = create_schema() subscription_server = DagsterSubscriptionServer(schema=schema) app.add_url_rule( '/graphql', 'graphql', DagsterGraphQLView.as_view( 'graphql', schema=schema, graphiql=True, # XXX(freiksenet): Pass proper ws url graphiql_template=PLAYGROUND_TEMPLATE, executor=Executor(), context=context, ), ) sockets.add_url_rule( '/graphql', 'graphql', dagster_graphql_subscription_view(subscription_server, context) ) app.add_url_rule( # should match the `build_local_download_url` '/download/<string:run_id>/<string:step_key>/<string:file_type>', 'download_view', download_view(context), ) # these routes are specifically for the Dagit UI and are not part of the graphql # API that we want other people to consume, so they're separate for now. # Also grabbing the magic global request args dict so that notebook_view is testable app.add_url_rule('/dagit/notebook', 'notebook', lambda: notebook_view(request.args)) app.add_url_rule('/dagit_info', 'sanity_view', info_view) app.register_error_handler(404, index_view) CORS(app) return app def get_execution_manager(instance): execution_manager_settings = instance.dagit_settings.get('execution_manager') if execution_manager_settings and execution_manager_settings.get('max_concurrent_runs'): return QueueingSubprocessExecutionManager( instance, execution_manager_settings.get('max_concurrent_runs') ) return SubprocessExecutionManager(instance) def create_app_with_snapshot(repository_snapshot, instance): check.inst_param(repository_snapshot, 'snapshot', RepositorySnapshot) check.inst_param(instance, 'instance', DagsterInstance) execution_manager = get_execution_manager(instance) warn_if_compute_logs_disabled() print('Loading repository...') context = DagsterSnapshotGraphQLContext( repository_snapshot=repository_snapshot, instance=instance, execution_manager=execution_manager, version=__version__, ) return instantiate_app_with_views(context) def create_app_with_execution_handle(handle, instance, reloader=None): check.inst_param(handle, 'handle', ExecutionTargetHandle) check.inst_param(instance, 'instance', DagsterInstance) check.opt_inst_param(reloader, 'reloader', Reloader) execution_manager = get_execution_manager(instance) warn_if_compute_logs_disabled() print('Loading repository...') context = DagsterGraphQLContext( handle=handle, instance=instance, execution_manager=execution_manager, reloader=reloader, version=__version__, ) # Automatically initialize scheduler everytime Dagit loads scheduler_handle = context.scheduler_handle scheduler = instance.scheduler if scheduler_handle: if scheduler: handle = context.get_handle() python_path = sys.executable repository_path = handle.data.repository_yaml repository = context.get_repository() scheduler_handle.up( python_path, repository_path, repository=repository, instance=instance ) else: warnings.warn(MISSING_SCHEDULER_WARNING) return instantiate_app_with_views(context)
StarcoderdataPython
1883104
<filename>ipfs_lod.py # -*- coding: utf-8 -*- """Publishes LOD datasets over IPFS based on their W3C VoID descriptions. Assumptions (maybe not completely reasonable) ============================================= - Datasets are described in VoID documents. - Versioning can be discovered by looking at the dcterms:modified property. - Actual data can be accessed via void:dataDump properties. - Both the VoID description and the dataset are sent to IPFS. - The VoID description is modified to include the addresses of the dumps over IPFS. """ import ipfsapi import logging from lodataset import LODatasetDescription import os import wget import shutil class IPFSLODPublisher(object): def __init__(self, dataset, client='127.0.0.1', port = 5001): """ Build the publisher from a LODataset. """ self.dataset = dataset self.dataset_id = dataset.id self.last_modified = dataset["modified"] self.api = ipfsapi.connect(client, port) self.was_updated = True logging.getLogger().setLevel(logging.INFO) logging.info("Dataset " + dataset.id) logging.info("Last modified " + self.last_modified.toPython().strftime("%Y-%m-%d %H:%M:%S")) def update(self): """ Reload the dataset and its description. If it was modified since last update, flags it for next publish. """ lod = LODatasetDescription(self.dataset.desc.uri, self.dataset.desc.well_known) self.dataset = lod[self.dataset_id] newtime = self.dataset["modified"].toPython() # Check if the new last modification is more recent: if newtime > self.last_modified.toPython(): self.was_updated = True logging.info("Dataset updated.") else: logging.info("Dataset remains the same.") self.last_modified = self.dataset["modified"] def publish(self, style="folder"): """Publish the Dataset to IPFS. Styles ====== "folder" : the VOID file and dump files go in a common folder. "ipfsld" : a VOID file is augmented with IPFSLD links (not implemented) """ if self.was_updated: self.was_updated = False if style=="folder": # Create the folder: folder = self.dataset.id.replace("/", "_") folder = folder + self.last_modified.toPython().strftime("%Y_%m_%d_%H:%M:%S") print(folder) if not os.path.exists(folder): os.mkdir(folder) os.chdir(folder) # Serialize the VOID: #TODO: Include only the descriptions of the dataset, not all of them. self.dataset.desc.g.serialize(destination='void.ttl', format='turtle') # Get the dumps: dumps = self.dataset["dataDump"] # check if it is single dump: if not isinstance(dumps, list): dumps = [dumps] for dump in dumps: wget.download(dump) os.chdir("..") # Add to IPFS: res = self.api.add(folder, recursive=False) for r in res: if r["Name"] == folder: self.ipfs_addr = r["Hash"] logging.info(res) # cleanup shutil.rmtree(folder) else: raise ValueError("Publishing style " + style + "not supported." )
StarcoderdataPython
4874652
<reponame>master-fufu/OpenATC<gh_stars>1-10 import timeit import requests import re from multiprocessing.dummy import Pool as ThreadPool from bs4 import BeautifulSoup as bs from getconf import * # TO DO: early link capability # Constants base_url = 'http://www.supremenewyork.com' # Inputs keywords_category = ['accessories'] # Demo stuff, feel free to change keywords_model = ['Mendini', 'Tray', 'Ceramic'] keywords_style = ['Multi'] use_early_link = True early_link = '' # Functions def product_page(url): session = requests.Session() response = session.get(base_url + url) soup = bs(response.text, 'html.parser') h1 = soup.find('h1', {'itemprop': 'name'}) p = soup.find('p', {'itemprop': 'model'}) if not h1 is None: name = h1.getText() if not p is None: style = p.getText() for keyword in keywords_model: if keyword in name: for keyword in keywords_style: if keyword in style: print('FOUND: ' + name + ' AT ' + base_url + url) form = soup.find('form', {'action': re.compile('(?<=/shop/)(.*)(?=/add)')}) if form is not None: payload = { 'utf8': '✓', 'authenticity_token': form.find('input', {'name': 'authenticity_token'})['value'], 'size': form.find('input', {'name': 'size'})['value'], 'commit': 'add to cart' } response1 = session.post(base_url + form['action'], data=payload) print('Added to cart!') time.sleep(3) return session def format_phone(n): return '({}) {}-{}'.format(n[:3], n[3:6], n[6:]) def format_cc(n): return '{} {} {} {}'.format(n[:4], n[4:8], n[8:12], n[12:]) def checkout(session): print('Filling out checkout info...') response = session.get('https://www.supremenewyork.com/checkout') soup = bs(response.text, 'html.parser') form = soup.find('form', {'action': '/checkout'}) payload = { 'utf8': '✓', 'authenticity_token': form.find('input', {'name': 'authenticity_token'})['value'], 'order[billing_name]': first_name + ' ' + last_name, 'order[email]': email, 'order[tel]': format_phone(phone_number), 'order[billing_address]': shipping_address_1, 'order[billing_address_2]': shipping_apt_suite, 'order[billing_zip]': shipping_zip, 'order[billing_city]': shipping_city, 'order[billing_state]': shipping_state, 'order[billing_country]': shipping_country_abbrv, 'same_as_billing_address': '1', 'store_credit_id': '', 'credit_card[type]': card_type, 'credit_card[cnb]': format_cc(card_number), 'credit_card[month]': card_exp_month, 'credit_card[year]': card_exp_year, 'credit_card[vval]': card_cvv, 'order[terms]': '1', 'hpcvv': '', 'cnt': '2' } response = session.get('https://www.supremenewyork.com/checkout.js', data=payload) payload = { 'utf8': '✓', 'authenticity_token': form.find('input', {'name': 'authenticity_token'})['value'], 'order[billing_name]': first_name + ' ' + last_name, 'order[email]': email, 'order[tel]': format_phone(phone_number), 'order[billing_address]': shipping_address_1, 'order[billing_address_2]': shipping_apt_suite, 'order[billing_zip]': shipping_zip, 'order[billing_city]': shipping_city, 'order[billing_state]': shipping_state_abbrv, 'order[billing_country]': shipping_country_abbrv, 'same_as_billing_address': '1', 'store_credit_id': '', 'credit_card[type]': card_type, 'credit_card[cnb]': format_cc(card_number), 'credit_card[month]': card_exp_month, 'credit_card[year]': card_exp_year, 'credit_card[vval]': card_cvv, 'order[terms]': '1', 'hpcvv': '' } response = session.post('https://www.supremenewyork.com/checkout', data=payload) if 'Your order has been submitted' in response.text: print('Checkout was successful!') else: print('Oops! There was an error.') # Main start = timeit.default_timer() session1 = requests.Session() response1 = session1.get('http://www.supremenewyork.com/shop/all') soup1 = bs(response1.text, 'html.parser') links1 = soup1.find_all('a', href=True) links_by_keyword1 = [] for link in links1: for keyword in keywords_category: if keyword in link['href']: links_by_keyword1.append(link['href']) pool1 = ThreadPool(len(links_by_keyword1)) nosession = True while nosession: print('Finding matching products...') result1 = pool1.map(product_page, links_by_keyword1) for session in result1: if not session is None: nosession = False checkout(session) break stop = timeit.default_timer() print(stop - start) # Get the runtime
StarcoderdataPython
5067769
<reponame>compstorylab/covid19ngrams<gh_stars>0 import matplotlib.font_manager as fm fm._rebuild() noto = [f.name for f in fm.fontManager.ttflist if 'Noto Sans' in f.name] fonts = { 'Default': fm.FontProperties(family=["sans-serif"]), 'Korean': fm.FontProperties(family=["Noto Sans CJK KR", "Noto Sans CJK", "sans-serif"]), 'Tamil': fm.FontProperties(family=["Noto Sans Tamil", "sans-serif"]), } at_color = 'k' ot_color = 'C0' rt_color = 'C1' tags = 'A B C D E F G H I J K L M N O P Q R S T U V W X Y Z'.split(' ') contagiograms = { 'virus_12': [ ('virus', 'en'), ('virus', 'es'), ('vírus', 'pt'), ('فيروس', 'ar'), ('바이러스', 'ko'), ('virus', 'fr'), ('virus', 'id'), ('virüs', 'tr'), ('Virus', 'de'), ('virus', 'it'), ('вирус', 'ru'), ('virus', 'tl'), ], 'virus_24': [ ('virus', 'hi'), ('ویروس', 'fa'), ('وائرس', 'ur'), ('wirus', 'pl'), ('virus', 'ca'), ('virus', 'nl'), ('virus', 'ta'), ('ιός', 'el'), ('virus', 'sv'), ('вирус', 'sr'), ('virus', 'fi'), ('вірус', 'uk'), ], 'samples_1grams_12': [ ('coronavirus', 'en'), ('cuarentena', 'es'), ('corona', 'pt'), ('كورونا', 'ar'), ('바이러스', 'ko'), ('quarantaine', 'fr'), ('virus', 'id'), ('virüs', 'tr'), ('Quarantäne', 'de'), ('quarantena', 'it'), ('карантин', 'ru'), ('virus', 'tl'), ], 'samples_1grams_24': [ ('virus', 'hi'), ('قرنطینه', 'fa'), ('مرضی', 'ur'), ('testów', 'pl'), ('confinament', 'ca'), ('virus', 'nl'), ('ரஜ', 'ta'), ('σύνορα', 'el'), ('Italien', 'sv'), ('mere', 'sr'), ('manaa', 'fi'), ('BARK', 'uk'), ], 'samples_2grams': [ ('social distancing', 'en'), ('public health', 'en'), ('the lockdown', 'en'), ('health workers', 'en'), ('small businesses', 'en'), ('stimulus check', 'en'), ('during quarantine', 'en'), ('<NAME>', 'en'), ('laid off', 'en'), ('panic buying', 'en'), ('stay home', 'en'), ('cultural reset', 'en'), ], } words_by_country = { 'United States': [ ('coronavirus', 'en'), ('pandemic', 'en'), ('virus', 'en'), ('lockdown', 'en'), ('quarantine', 'en'), ('deaths', 'en'), ('masks', 'en'), ('cases', 'en'), ('distancing', 'en'), ('China', 'en'), ], 'Brazil': [ ('quarentena', 'pt'), ('coronavírus', 'pt'), ('vírus', 'pt'), ('paredão', 'pt'), ('isolamento', 'pt'), ('corona', 'pt'), ('governadores', 'pt'), ('China', 'pt'), ('máscara', 'pt'), ('casos', 'pt'), ], 'India': [ ('तरजन', 'hi'), ('Lockdown', 'hi'), ('Corona', 'hi'), ('शट', 'hi'), ('PPE', 'hi'), ('ऊन', 'hi'), ('Sadhna', 'hi'), ('आपद', 'hi'), ('Tvईश', 'hi'), ('WHO', 'hi'), ], 'Russia': [ ('коронавируса', 'ru'), ('коронавирусом', 'ru'), ('карантина', 'ru'), ('самоизоляции', 'ru'), ('карантин', 'ru'), ('коронавирус', 'ru'), ('пандемии', 'ru'), ('карантине', 'ru'), ('маски', 'ru'), ('эпидемии', 'ru'), ], 'Mexico': [ ('cuarentena', 'es'), ('pandemia', 'es'), ('coronavirus', 'es'), ('virus', 'es'), ('confinamiento', 'es'), ('mascarillas', 'es'), ('casos', 'es'), ('salud', 'es'), ('sanitaria', 'es'), ('fallecidos', 'es'), ], 'Iran': [ ('کرونا', 'fa'), ('ویروس', 'fa'), ('قرنطینه', 'fa'), ('ماسک', 'fa'), ('چین', 'fa'), ('شیوع', 'fa'), ('بهداشت', 'fa'), ('مبتلا', 'fa'), ('ساعات', 'fa'), ('بیماری', 'fa'), ], 'Korea, South': [ ('바이러스', 'ko'), ('코로나', 'ko'), ('코로나19', 'ko'), ('마스크', 'ko'), ('온라인', 'ko'), ('사회적', 'ko'), ('확진자', 'ko'), ('신상공개', 'ko'), ('커버', 'ko'), ('모집', 'ko'), ], 'Italy': [ ('Coronavirus', 'it'), ('quarantena', 'it'), ('virus', 'it'), ('mascherine', 'it'), ('pandemia', 'it'), ('Conte', 'it'), ('contagi', 'it'), ('mascherina', 'it'), ('Covid', 'it'), ('lockdown', 'it'), ], 'France': [ ('confinement', 'fr'), ('masques', 'fr'), ('Coronavirus', 'fr'), ('virus', 'fr'), ('masque', 'fr'), ('pandémie', 'fr'), ('sanitaire', 'fr'), ('crise', 'fr'), ('tests', 'fr'), ('soignants', 'fr'), ], 'Germany': [ ('Corona', 'de'), ('Masken', 'de'), ('Virus', 'de'), ('Krise', 'de'), ('Coronavirus', 'de'), ('Pandemie', 'de'), ('Maske', 'de'), ('Abstand', 'de'), ('Quarantäne', 'de'), ('Lockdown', 'de'), ], 'Sweden': [ ('Corona', 'sv'), ('smittade', 'sv'), ('viruset', 'sv'), ('coronakrisen', 'sv'), ('äldreboenden', 'sv'), ('skyddsutrustning', 'sv'), ('dödsfall', 'sv'), ('krisen', 'sv'), ('munskydd', 'sv'), ('döda', 'sv'), ], 'Turkey': [ ('maske', 'tr'), ('virüs', 'tr'), ('çıkma', 'tr'), ('sağlık', 'tr'), ('koronavirüs', 'tr'), ('vaka', 'tr'), ('evde', 'tr'), ('yardım', 'tr'), ('yasağı', 'tr'), ('Korona', 'tr'), ], }
StarcoderdataPython
1654666
<reponame>saripirala/file_compare<filename>setup.py<gh_stars>10-100 #!/usr/bin/env python3 import setuptools setuptools.setup()
StarcoderdataPython
8179652
""" Copyright (C) 2020-2021 <NAME> <...> """ import warnings from contextlib import contextmanager from typing import Any, Generator, List, Optional, Type, Union def _warns_repr(warns: List[warnings.WarningMessage]) -> List[Union[Warning, str]]: return [w.message for w in warns] @contextmanager def no_warning_call(warning_type: Optional[Type[Warning]] = None, match: Optional[str] = None) -> Generator: """ Args: warning_type: specify catching warning, if None catching all match: match message, containing following string, if None catches all Raises: AssertionError: if specified warning was called """ with warnings.catch_warnings(record=True) as called: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. yield # no warning raised if not called: return if not warning_type: raise AssertionError(f'While catching all warnings, these were found: {_warns_repr(called)}') # filter warnings by type warns = [w for w in called if issubclass(w.category, warning_type)] # Verify some things if not warns: return if not match: raise AssertionError( f'While catching `{warning_type.__name__}` warnings, these were found: {_warns_repr(warns)}' ) found = [w for w in warns if match in w.message.__str__()] if found: raise AssertionError( f'While catching `{warning_type.__name__}` warnings with "{match}",' f' these were found: {_warns_repr(found)}' ) def void(*args: Any, **kwrgs: Any) -> Any: """Empty function which does nothing, just let your IDE stop complaining about unused arguments.""" _, _ = args, kwrgs
StarcoderdataPython
5198903
<filename>app.py #----------------------------------------------------------------------------# # Imports #----------------------------------------------------------------------------# from flask import Flask, render_template, request, flash, redirect, url_for # from flask.ext.sqlalchemy import SQLAlchemy import logging from logging import Formatter, FileHandler from forms import * import os import numpy as np # import io # import csv # from werkzeug.utils import secure_filename # from flask_sqlalchemy import SQLAlchemy import pandas as pd # from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.cluster import KMeans from flask import jsonify #----------------------------------------------------------------------------# # App Config. #----------------------------------------------------------------------------# app = Flask(__name__) # app.config.from_object('config') # app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///example.sqlite" # db = SQLAlchemy(app) # db.init_app(app) # class Csv(db.Model): # __tablename__ = "csvs" # id = db.Column(db.Integer, primary_key=True) # filename = db.Column(db.String, nullable=False) # # db.create_all() # UPLOAD_FOLDER = 'static/csv' # ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif', 'csv'} # app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER #db = SQLAlchemy(app) # Automatically tear down SQLAlchemy. ''' @app.teardown_request def shutdown_session(exception=None): db_session.remove() ''' # Login required decorator. ''' def login_required(test): @wraps(test) def wrap(*args, **kwargs): if 'logged_in' in session: return test(*args, **kwargs) else: flash('You need to login first.') return redirect(url_for('login')) return wrap ''' #----------------------------------------------------------------------------# # Controllers. #----------------------------------------------------------------------------# @app.route('/') def home(): return render_template('pages/placeholder.home.html') @app.route('/about') def about(): return render_template('pages/placeholder.about.html') @app.route('/login') def login(): form = LoginForm(request.form) return render_template('forms/login.html', form=form) @app.route('/register') def register(): form = RegisterForm(request.form) return render_template('forms/register.html', form=form) @app.route('/forgot') def forgot(): form = ForgotForm(request.form) return render_template('forms/forgot.html', form=form) # def allowed_file(filename): # return '.' in filename and \ # filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/upload', methods=['POST']) def upload_file(): global data global path_to_file global m_labels if request.method == 'POST': f = request.files['file'] path_to_file = os.path.join(app.config['UPLOAD_FOLDER'], '1.csv') f.save(os.path.join(app.config['UPLOAD_FOLDER'], '1.csv')) # csvfile = Csv(filename=secure_filename(f.filename)) # db.session.add(csv) # db.session.commit() data = pd.read_csv(path_to_file) head_data = np.array(data.head(10)) m_size = np.shape(head_data) m_labels = list(data) #------------------------------------------------------ m_str = '<div class="limiter"><div><div><div><table>' for m in range(len(m_labels)): if m == 0: m_str +='<thead><tr class="table100-head">' m_str += '<th class="columns">' +m_labels[m]+"</th>" if m == len(m_labels)-1: m_str +='</tr></thead>' # ------------------------------------------------------ m_str+='<tbody>' for n in range(m_size[0]): for m in range(len(m_labels)): if m == 0: m_str += '<tr>' m_str += '<td class="columns">' +str( head_data[n][m] )+ "</td>" if m == len(m_labels) - 1: m_str += '</tr>' m_str +="</tbody></table></div></div></div></div>" # res = {} return m_str # Error handlers. @app.route('/result', methods=['POST']) def get_result(): global labels global data if request.method == 'POST': cluster_n = np.int16(request.values['cohorts']) le = LabelEncoder() m_str = "" if len(data)==0: return m_str data1 = pd.DataFrame.copy(data) categroy_ind = [2,4] for n in categroy_ind: m_category_name = m_labels[n] le.fit(data1[m_category_name].values) data1[m_category_name] = le.transform(data1[m_category_name].values) # Initializing KMeans kmeans = KMeans(n_clusters=cluster_n) # Fitting with inputs kmeans = kmeans.fit(data1) # Predicting the clusters labels = kmeans.predict(data1) # Getting the cluster centers C = kmeans.cluster_centers_ # ------------------------------------------------------ m_str = '<div class="limiter"><div><div><div><table>' for m in range(len(m_labels)): if m == 0: m_str += '<thead><tr class="table100-head"><th class="columns">Cohort</th>' m_str += '<th class="columns">' + m_labels[m] + "</th>" if m == len(m_labels) - 1: m_str += '</tr></thead>' # ------------------------------------------------------ m_str += '<tbody>' json_string = '{' for n in range(len(C)): json_string += '"' + str(n) + '": ['; for m in range(len(m_labels)): if m == 0: m_str += '<tr data-toggle="modal" data-target="#myModal" class="cluster-row" id="' + str(n) + '" onclick="getCluster(' + str(n) + ')">' m_str +='<td class="columns">' + str(n+1) + "</td>" json_string += str(C[n][m]) else: json_string += ',' + str(C[n][m]) m_str += '<td class="columns">' + str(np.round(C[n][m], 3)) + "</td>" if m == len(m_labels) - 1: m_str += '</tr>' if n == len(C) - 1: json_string += ']' else: json_string += '],' m_str += "</tbody></table></div></div></div></div>" json_string += '}' m_str += ";" + json_string return m_str @app.route('/cluster', methods=['POST']) def get_cluster(): if request.method == 'POST': clusterID = np.int16(request.values['clusterID']) data2 =np.array(data[labels==clusterID]) # ------------------------------------------------------ m_str = '<div class="limiter"><div><div><div><table>' for m in range(len(m_labels)): if m == 0: m_str += '<thead><tr class="table100-head"><th class="columns">No</th>' m_str += '<th class="columns">' + m_labels[m] + "</th>" if m == len(m_labels) - 1: m_str += '</tr></thead>' # ------------------------------------------------------ m_str += '<tbody>' for n in range(len(data2)): for m in range(len(m_labels)): if m == 0: m_str += '<tr data-toggle="modal" data-target="#myModal" >' m_str +='<td class="columns">' + str(n+1) + "</td>" if m==2 or m==4: m_str += '<td class="columns">' + str(data2[n, m]) + "</td>" else: m_str += '<td class="columns">' + str(np.round(data2[n, m], 3)) + "</td>" if m == len(m_labels) - 1: m_str += '</tr>' m_str += "</tbody></table></div></div></div></div>" return m_str @app.errorhandler(500) def internal_error(error): #db_session.rollback() return ""#render_template('errors/500.html'), 500 @app.errorhandler(404) def not_found_error(error): return ""#render_template('errors/404.html'), 404 if not app.debug: file_handler = FileHandler('error.log') file_handler.setFormatter( Formatter('%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]') ) app.logger.setLevel(logging.INFO) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.info('errors') #----------------------------------------------------------------------------# # Launch. #----------------------------------------------------------------------------# # Default port: if __name__ == '__main__': port = int(os.environ.get('PORT', 5000)) app.run(host='localhost', port=port) # app.run() # Or specify port manually: ''' if __name__ == '__main__': port = int(os.environ.get('PORT', 5000)) app.run(host='0.0.0.0', port=port) '''
StarcoderdataPython
1684811
<reponame>lindenmp/neurodev_long #!/usr/bin/env python # coding: utf-8 # # Preamble # In[1]: # Essentials import os, sys, glob import pandas as pd import numpy as np import nibabel as nib # Stats import scipy as sp from scipy import stats import statsmodels.api as sm import pingouin as pg # Plotting import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['svg.fonttype'] = 'none' # In[2]: sys.path.append('/Users/lindenmp/Dropbox/Work/ResProjects/neurodev_long/code/func/') from proj_environment import set_proj_env from func import get_cmap # In[3]: exclude_str = 't1Exclude' parcel_names, parcel_loc, drop_parcels, num_parcels, yeo_idx, yeo_labels = set_proj_env(exclude_str = exclude_str) # ### Setup output directory # In[4]: print(os.environ['MODELDIR']) if not os.path.exists(os.environ['MODELDIR']): os.makedirs(os.environ['MODELDIR']) # # Load in metadata # In[5]: # Protocol prot = pd.read_csv(os.path.join(os.environ['DERIVSDIR'], 'pncDataFreeze20170905/n2416_dataFreeze/neuroimaging/n2416_pnc_protocol_validation_params_status_20170103.csv')) # T1 QA t1_qa = pd.read_csv(os.path.join(os.environ['DERIVSDIR'], 'pncDataFreeze20170905/n2416_dataFreeze/neuroimaging/t1struct/n2416_t1QaData_20170516.csv')) # DTI QA dti_qa = pd.read_csv(os.path.join(os.environ['DERIVSDIR'], 'pncDataFreeze20170905/n2416_dataFreeze/neuroimaging/dti/n2416_DTI64/n2416_dti_qa_20170301.csv')) # REST QA rest_qa = pd.read_csv(os.path.join(os.environ['DERIVSDIR'], 'pncDataFreeze20170905/n2416_dataFreeze/neuroimaging/rest/n2416_RestQAData_20170714.csv')) # Demographics demog = pd.read_csv(os.path.join(os.environ['DERIVSDIR'], 'pncDataFreeze20170905/n2416_dataFreeze/clinical/n2416_demographics_20170310.csv')) # Brain volume brain_vol = pd.read_csv(os.path.join(os.environ['DERIVSDIR'], 'pncDataFreeze20170905/n2416_dataFreeze/neuroimaging/t1struct/n2416_antsCtVol_20170412.csv')) # incidental findings inc_find = pd.read_csv(os.path.join(os.environ['DERIVSDIR'], 'pncDataFreeze20170905/n9498_dataFreeze/health/n9498_health_20170405.csv')) # GOASSESS Bifactor scores goassess = pd.read_csv(os.path.join(os.environ['DERIVSDIR'], 'GO_Longitudinal_clinical_factor_scores_psychosis_split_BIFACTOR.csv')) goassess.set_index(['bblid'], inplace = True) # merge df = prot df = pd.merge(df, t1_qa, on=['scanid', 'bblid']) # t1_qa df = pd.merge(df, dti_qa, on=['scanid', 'bblid']) # dti_qa df = pd.merge(df, rest_qa, on=['scanid', 'bblid']) # rest_qa df = pd.merge(df, demog, on=['scanid', 'bblid']) # demog df = pd.merge(df, brain_vol, on=['scanid', 'bblid']) # brain_vol print(df.shape[0]) df.set_index(['bblid', 'scanid'], inplace = True) df = df.sort_index(axis = 0, level = 0) # In[6]: df['scanageYears'] = np.round(df.scanageMonths/12, decimals=1) # In[7]: df_tmp = pd.merge(df, inc_find, on=['bblid']) # goassess # In[8]: df.loc[:,'incidentalFindingExclude'] = df_tmp.loc[:,'incidentalFindingExclude'].copy().values # # Filter subjects # Filter out subjects using the QA procedures generated by BBL. # In[9]: # 0) incidental findings df = df[df['incidentalFindingExclude'] == 0] print('N after incidentalFindingExclude:', df.shape[0]) # 2) T1 exclusion df = df[df[exclude_str] == 0] df = df[df['t1PostProcessExclude'] == 0] print('N after T1 exclusion:', df.shape[0]) # ## Load in data # In[10]: metrics = ('ct', 'vol') # In[11]: # output dataframe ct_labels = ['ct_' + str(i) for i in range(num_parcels)] vol_labels = ['vol_' + str(i) for i in range(num_parcels)] df_node = pd.DataFrame(index = df.index, columns = ct_labels + vol_labels) print(df_node.shape) # ### Thickness # In[12]: # subject filter subj_filt = np.zeros((df.shape[0],)).astype(bool) # In[13]: CT = np.zeros((df.shape[0], num_parcels)) for (i, (index, row)) in enumerate(df.iterrows()): file_name = os.environ['CT_NAME_TMP'].replace("bblid", str(index[0])) file_name = file_name.replace("scanid", str(index[1])) full_path = glob.glob(os.path.join(os.environ['CTDIR'], file_name)) if i == 0: print(full_path) if len(full_path) > 0: ct = np.loadtxt(full_path[0]) CT[i,:] = ct elif len(full_path) == 0: subj_filt[i] = True df_node.loc[:,ct_labels] = CT # In[14]: np.sum(subj_filt) # In[15]: if any(subj_filt): df = df.loc[~subj_filt] df_node = df_node.loc[~subj_filt] # In[16]: print('N after excluding missing subjects:', df.shape[0]) # ### Volume # In[17]: # subject filter subj_filt = np.zeros((df.shape[0],)).astype(bool) # In[18]: VOL = np.zeros((df.shape[0], num_parcels)) for (i, (index, row)) in enumerate(df.iterrows()): file_name = os.environ['VOL_NAME_TMP'].replace("bblid", str(index[0])) file_name = file_name.replace("scanid", str(index[1])) full_path = glob.glob(os.path.join(os.environ['VOLDIR'], file_name)) if i == 0: print(full_path) if len(full_path) > 0: img = nib.load(full_path[0]) v = np.array(img.dataobj) v = v[v != 0] unique_elements, counts_elements = np.unique(v, return_counts=True) if len(unique_elements) == num_parcels: VOL[i,:] = counts_elements else: print(str(index) + '. Warning: not all parcels present') subj_filt[i] = True elif len(full_path) == 0: subj_filt[i] = True df_node.loc[:,vol_labels] = VOL # In[19]: np.sum(subj_filt) # In[20]: if any(subj_filt): df = df.loc[~subj_filt] df_node = df_node.loc[~subj_filt] # In[21]: print('N after excluding missing subjects:', df.shape[0]) # ### Multiple scans # Screen out people who, due to the QA screening above, have non-continuous scans. For example, if an individual's T2 scan doesn't pass QA, but T1 and T3 do. # # Also, I retain those participants who have only single timepoints of data even if those timepoints aren't T1. # In[22]: keep_me = ([1],[2],[3],[1,2],[1,2,3]) idx_keep = [] idx_drop = [] for idx, data in df.groupby('bblid'): my_list = list(data['timepoint'].values) if my_list == keep_me[0] or my_list == keep_me[1] or my_list == keep_me[2] or my_list == keep_me[3] or my_list == keep_me[4]: idx_keep.append(idx) else: idx_drop.append(idx) # In[23]: df = df.loc[idx_keep,:] df_node = df_node.loc[idx_keep,:] # In[24]: print('N after exclusion non-continuous scans:', df.shape[0]) # ### Create new total time points column # The above filtering steps creates a mismatch between the number of timepoints each participant has according to BBL recruitment and how many I retain for analysis. # # I create a new variable that counts the number of timpeoints each participant has after my filtering. # In[25]: for idx, data in df.groupby('bblid'): df.loc[idx,'TotalNtimepoints_new'] = int(data.shape[0]) df.loc[:,'TotalNtimepoints_new'] = df.loc[:,'TotalNtimepoints_new'].astype(int) # In[26]: print('N w/ 1 timepoint:', df.loc[df['TotalNtimepoints_new'] == 1,:].shape[0]) print('N w/ >=2 timepoints:', int(df.loc[df['TotalNtimepoints_new'] == 2,:].shape[0]/2 + df.loc[df['TotalNtimepoints_new'] == 3,:].shape[0]/3)) print('N w/ 3 timepoints:', int(df.loc[df['TotalNtimepoints_new'] == 3,:].shape[0]/3)) # ### Concat clinical data # Note, this will fill missing phenotype data with NaNs. I prioritise retaining the full imaging sample for now. # In[27]: df.reset_index(inplace = True) df.set_index(['bblid', 'timepoint'], inplace = True) goassess.reset_index(inplace = True) goassess.set_index(['bblid', 'timepoint'], inplace = True) # In[28]: goassess.loc[:,'scanid'] = np.float('nan') # In[29]: for idx, data in df.iterrows(): goassess.loc[idx,'scanid'] = data['scanid'] # In[30]: df_out = pd.merge(df, goassess, on=['bblid', 'scanid', 'timepoint']).reset_index() df_out.set_index(['bblid', 'scanid', 'timepoint'], inplace = True) # In[31]: header = ['TotalNtimepoints', 'TotalNtimepoints_new', 'sex', 'race', 'ethnicity', 'scanageMonths', 'scanageYears', 'mprage_antsCT_vol_TBV', 'averageManualRating', 'dti32MeanRelRMS', 'Overall_Psychopathology', 'Mania', 'Depression', 'Psychosis_Positive', 'Psychosis_NegativeDisorg',] df_out = df_out.loc[:,header] # Designate the individuals with only 1 timepoint as 'train' (False) and individuals with longitudinal data as 'test' (True) # In[32]: df_out.loc[:,'train_test'] = df_out.loc[:,'TotalNtimepoints_new'] != 1 # In[33]: df_out.head() # ### Final numbers # In[34]: print('N w/ 1 timepoint:', df_out.loc[df_out['TotalNtimepoints_new'] == 1,:].shape[0]) print('N w/ >=2 timepoints:', int(df_out.loc[df_out['TotalNtimepoints_new'] == 2,:].shape[0]/2 + df_out.loc[df_out['TotalNtimepoints_new'] == 3,:].shape[0]/3)) print('N w/ 3 timepoints:', int(df_out.loc[df_out['TotalNtimepoints_new'] == 3,:].shape[0]/3)) # ### Export # In[35]: if np.all(df_out.index.get_level_values(0) == df_node.index.get_level_values(0)) and np.all(df_out.index.get_level_values(1) == df_node.index.get_level_values(1)): df_node.index = df_out.index # In[36]: df_out.to_csv(os.path.join(os.environ['MODELDIR'], 'df_pheno.csv')) df_node.to_csv(os.path.join(os.environ['MODELDIR'], 'df_node_base.csv')) # In[37]: # find unique ages age_unique = np.unique(df_out['scanageYears']) print('There are', age_unique.shape[0], 'unique age points') # Check if train and test represent the full unique age space train_diff = np.setdiff1d(df_out.loc[~df_out.loc[:,'train_test'],'scanageYears'],age_unique) test_diff = np.setdiff1d(df_out.loc[df_out.loc[:,'train_test'],'scanageYears'],age_unique) if train_diff.size == 0: print('All unique age points are represented in the training set') elif train_diff.size != 0: print('All unique age points ARE NOT represented in the training set') if test_diff.size == 0: print('All unique age points are represented in the testing set') elif test_diff.size != 0: print('All unique age points ARE NOT represented in the testing set') # # Plots # In[38]: labels = ['Train', 'Test'] if not os.path.exists(os.environ['FIGDIR']): os.makedirs(os.environ['FIGDIR']) os.chdir(os.environ['FIGDIR']) sns.set(style='white', context = 'paper', font_scale = 1) cmap = get_cmap('pair') # ## Age # In[39]: df_out.loc[:,'sex'].unique() # Predictably the test set has more data in the upper tail of the age distribution. This is because I define the test set based on individuals with multiple time points. This will limit the capacity for the normative model to generate deviations in the upper age range. # In[40]: f, axes = plt.subplots(1,2) f.set_figwidth(6.5) f.set_figheight(2.5) colormap = sns.color_palette("pastel", 2) sns.distplot(df_out.loc[~df_out.loc[:,'train_test'],'scanageYears'], bins=20, hist=True, kde=False, rug=False, label = labels[0], hist_kws={"histtype": "step", "linewidth": 2, "alpha": 1}, color=list(cmap[0]), ax = axes[0]); sns.distplot(df_out.loc[df_out.loc[:,'train_test'],'scanageYears'], bins=20, hist=True, kde=False, rug=False, label = labels[1], hist_kws={"histtype": "step", "linewidth": 2, "alpha": 1}, color=list(cmap[1]), ax = axes[0]); axes[0].legend(prop={'size': 8}); axes[0].set_xlabel('Age (years)'); axes[0].set_ylabel('Number of participants'); axes[0].set_xticks(np.arange(np.min(np.round(age_unique,0)), np.max(np.round(age_unique,0)), 2)) # set width of bar barWidth = 0.25 # Sex y_train = [np.sum(df_out.loc[~df_out.loc[:,'train_test'],'sex'] == 1), np.sum(df_out.loc[~df_out.loc[:,'train_test'],'sex'] == 2)] y_test = [np.sum(df_out.loc[df_out.loc[:,'train_test'],'sex'] == 1), np.sum(df_out.loc[df_out.loc[:,'train_test'],'sex'] == 2)] r1 = np.arange(len(y_train))+barWidth/2 r2 = [x + barWidth for x in r1] axes[1].bar(r1, y_train, width = barWidth, color = cmap[0], label = labels[0]) axes[1].bar(r2, y_test, width = barWidth, color = cmap[1], label = labels[1]) axes[1].set_xlabel('Sex') axes[1].set_xticks([r + barWidth for r in range(len(y_train))]) axes[1].set_xticklabels(['Male', 'Female']) f.savefig('age_distributions.svg', dpi = 150, bbox_inches = 'tight', pad_inches = 0)
StarcoderdataPython
5178344
<reponame>Shadowalker1995/Tutorial-Resource import torch from torch import nn class AE(nn.Module): def __init__(self): super(AE, self).__init__() # [b, 784] => [b, 20] self.encoder = nn.Sequential( nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 64), nn.ReLU(), nn.Linear(64, 20), nn.ReLU() ) # [b, 20] => [b, 784] self.decoder = nn.Sequential( nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 256), nn.ReLU(), nn.Linear(256, 784), nn.Sigmoid() ) def forward(self, x): """ :param x: [b, 1, 28, 28] :return: """ batchsz = x.size(0) # flatten x = x.view(batchsz, 784) # encoder x = self.encoder(x) # decoder x = self.decoder(x) # reshape x = x.view(batchsz, 1, 28, 28) return x, None
StarcoderdataPython
1780843
""" Metadata """ from typing import Union, Dict Metadata = Union[str, Dict]
StarcoderdataPython
11269365
from flask_restx import Api from flask import Blueprint from .user.controller import api as user_ns # Import controller APIs as namespaces. api_bp = Blueprint("api", __name__) api = Api(api_bp, title="API", description="Main routes.") # API namespaces api.add_namespace(user_ns)
StarcoderdataPython
240597
<filename>auth/tests/test_generate_token.py from sage_utils.amqp.clients import RpcAmqpClient from sage_utils.constants import NOT_FOUND_ERROR, VALIDATION_ERROR from sage_utils.wrappers import Response from app.token.api.workers.generate_token import GenerateTokenWorker from app.users.documents import User REQUEST_QUEUE = GenerateTokenWorker.QUEUE_NAME REQUEST_EXCHANGE = GenerateTokenWorker.REQUEST_EXCHANGE_NAME RESPONSE_EXCHANGE = GenerateTokenWorker.RESPONSE_EXCHANGE_NAME async def test_generate_token_returns_a_new_token_pair(sanic_server): await User.collection.delete_many({}) user = User(**{"username": "user", "password": "<PASSWORD>"}) await user.commit() payload = { "username": "user", "password": "<PASSWORD>" } client = RpcAmqpClient( sanic_server.app, routing_key=REQUEST_QUEUE, request_exchange=REQUEST_EXCHANGE, response_queue='', response_exchange=RESPONSE_EXCHANGE ) response = await client.send(payload=payload) assert Response.EVENT_FIELD_NAME in response.keys() assert Response.CONTENT_FIELD_NAME in response.keys() content = response[Response.CONTENT_FIELD_NAME] assert len(content.keys()) == 2 assert sanic_server.app.config['JWT_ACCESS_TOKEN_FIELD_NAME'] in content.keys() assert sanic_server.app.config['JWT_REFRESH_TOKEN_FIELD_NAME'] in content.keys() await User.collection.delete_many({}) async def test_generate_token_returns_error_for_an_invalid_username(sanic_server): await User.collection.delete_many({}) await User(**{"username": "user", "password": "<PASSWORD>"}).commit() payload = { "username": "NON_EXISTING_USER", "password": "<PASSWORD>" } client = RpcAmqpClient( sanic_server.app, routing_key=REQUEST_QUEUE, request_exchange=REQUEST_EXCHANGE, response_queue='', response_exchange=RESPONSE_EXCHANGE ) response = await client.send(payload=payload) assert Response.ERROR_FIELD_NAME in response.keys() assert Response.EVENT_FIELD_NAME in response.keys() error = response[Response.ERROR_FIELD_NAME] assert len(error.keys()) == 2 assert Response.ERROR_TYPE_FIELD_NAME in error.keys() assert error[Response.ERROR_TYPE_FIELD_NAME] == NOT_FOUND_ERROR assert Response.ERROR_DETAILS_FIELD_NAME in error.keys() assert error[Response.ERROR_DETAILS_FIELD_NAME] == "User wasn't found or " \ "specified an invalid password." await User.collection.delete_many({}) async def test_generate_token_returns_error_for_an_invalid_password(sanic_server): await User.collection.delete_many({}) await User(**{"username": "user", "password": "<PASSWORD>"}).commit() payload = { "username": "user", "password": "<PASSWORD>" } client = RpcAmqpClient( sanic_server.app, routing_key=REQUEST_QUEUE, request_exchange=REQUEST_EXCHANGE, response_queue='', response_exchange=RESPONSE_EXCHANGE ) response = await client.send(payload=payload) assert Response.ERROR_FIELD_NAME in response.keys() assert Response.EVENT_FIELD_NAME in response.keys() error = response[Response.ERROR_FIELD_NAME] assert len(error.keys()) == 2 assert Response.ERROR_TYPE_FIELD_NAME in error.keys() assert error[Response.ERROR_TYPE_FIELD_NAME] == NOT_FOUND_ERROR assert Response.ERROR_DETAILS_FIELD_NAME in error.keys() assert error[Response.ERROR_DETAILS_FIELD_NAME] == "User wasn't found or " \ "specified an invalid password." await User.collection.delete_many({}) async def test_generate_token_returns_validation_error_for_empty_body(sanic_server): client = RpcAmqpClient( sanic_server.app, routing_key=REQUEST_QUEUE, request_exchange=REQUEST_EXCHANGE, response_queue='', response_exchange=RESPONSE_EXCHANGE ) response = await client.send(payload={}) assert Response.ERROR_FIELD_NAME in response.keys() assert Response.EVENT_FIELD_NAME in response.keys() error = response[Response.ERROR_FIELD_NAME] assert Response.ERROR_TYPE_FIELD_NAME in error.keys() assert error[Response.ERROR_TYPE_FIELD_NAME] == VALIDATION_ERROR assert Response.ERROR_DETAILS_FIELD_NAME in error.keys() assert len(error[Response.ERROR_DETAILS_FIELD_NAME].keys()) == 2 assert 'username' in error[Response.ERROR_DETAILS_FIELD_NAME].keys() assert len(error[Response.ERROR_DETAILS_FIELD_NAME]['username']) == 1 assert error[Response.ERROR_DETAILS_FIELD_NAME]['username'][0] == 'Missing data for ' \ 'required field.' assert 'password' in error[Response.ERROR_DETAILS_FIELD_NAME].keys() assert len(error[Response.ERROR_DETAILS_FIELD_NAME]['password']) == 1 assert error[Response.ERROR_DETAILS_FIELD_NAME]['password'][0] == 'Missing data for ' \ 'required field.'
StarcoderdataPython
8136004
<reponame>chrisfilo/NiMARE<filename>nimare/meta/ibma/base.py """ Image-based meta-analysis estimators """ from __future__ import division import numpy as np from sklearn.preprocessing import normalize from scipy import stats from ..base import MetaEstimator class IBMAEstimator(MetaEstimator): """Base class for image-based meta-analysis methods. """ pass
StarcoderdataPython
4956394
<gh_stars>0 # Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from torch.utils.data import DataLoader from ssd.utils import dboxes_coco, COCODetection from ssd.utils import SSDTransformer from pycocotools.coco import COCO #DALI import from ssd.coco_pipeline import COCOPipeline, DALICOCOIterator def get_train_loader(args, local_seed): train_annotate = os.path.join(args.data, "annotations/instances_train2017.json") train_coco_root = os.path.join(args.data, "train2017") train_pipe = COCOPipeline(batch_size=args.batch_size, file_root=train_coco_root, annotations_file=train_annotate, default_boxes=dboxes_coco(args.figsize), device_id=args.local_rank, num_shards=args.N_gpu, output_fp16=args.amp, output_nhwc=False, pad_output=False, num_threads=args.num_workers, seed=local_seed, figsize=args.figsize) train_pipe.build() test_run = train_pipe.schedule_run(), train_pipe.share_outputs(), train_pipe.release_outputs() train_loader = DALICOCOIterator(train_pipe, 118287 / args.N_gpu) return train_loader def get_val_dataset(args): dboxes = dboxes_coco(args.figsize) val_trans = SSDTransformer(dboxes, (args.figsize, args.figsize), val=True) val_annotate = os.path.join(args.data, "annotations/instances_val2017.json") val_coco_root = os.path.join(args.data, "val2017") val_coco = COCODetection(val_coco_root, val_annotate, val_trans) return val_coco def get_val_dataloader(dataset, args): if args.distributed: val_sampler = torch.utils.data.distributed.DistributedSampler(dataset) else: val_sampler = None val_dataloader = DataLoader(dataset, batch_size=args.eval_batch_size, shuffle=False, # Note: distributed sampler is shuffled :( sampler=val_sampler, num_workers=args.num_workers) return val_dataloader def get_coco_ground_truth(args): val_annotate = os.path.join(args.data, "annotations/instances_val2017.json") cocoGt = COCO(annotation_file=val_annotate, use_ext=True) return cocoGt
StarcoderdataPython
11200293
from django.http import HttpResponse from django.shortcuts import render_to_response from monitor.util import preload from django.core.cache import cache from monitor.util import getResource as rs from dwebsocket.decorators import accept_websocket import os, time preload.loading() @accept_websocket def echo_log(request): if not request.is_websocket(): # 判断是不是websocket连接 try: # 如果是普通的http方法 message = request.GET['message'] return HttpResponse(message) except: return HttpResponse('error') else: if not os.path.exists('logs/system.log'): time.sleep(1) with open('logs/system.log', encoding='utf-8') as f: f.seek(0, 2) while True: line = f.readline() if line: request.websocket.send(line.strip().encode('utf-8')) time.sleep(0.1) def sms_send(request): from monitor.alarm.sms import SMS SMS().send_sms( **{'time': '2018/05/27 18:27:42', 'alarmlevel': '01', 'alarmid': 'A3', 'maindata': 'AlarmID=A3', 'alarmcontent': '总线 BPM 通道使用率大于70%,警告!', 'ipaddress': '', 'alarmcount': '3', 'firsttime': '2018/05/27 18:27:01', 'alarmstatus': '01', 'policy': 'S3-12-1', 'areacode': '0300', 'alarmtype': '01', 'originalid': 'S3-12-1', 'alarmcate': '08', 'endtime': '2018/05/27 18:27:41'}) return HttpResponse(1) def task_start(request): task_no = request.POST.get('no') result = rs.task_start(task_no) return HttpResponse(result) def functions(request): pass def deletetable(request): code = request.GET.get('code') # 获取sysmenu表的code值 data = request.body.decode() status = rs.del_tabledata(code, data) return HttpResponse(status) def updatetable(request): code = request.GET.get('code') # 获取sysmenu表的code值 data = request.body.decode() # 获取要修改的数据内容,获取页面传到后台的json数据要用request.body.decode() # print(code, data) status = rs.set_tabledata(code, data) return HttpResponse(status) def tabledata(request): code = request.GET.get('code') # 必须字段 code_dict = rs.get_menutitle(code) # print(code_dict) page = request.POST.get('page') limit = request.POST.get('limit') if code_dict['type'] == '1': condition = request.POST.get('condition', '') # 条件,也可以作为搜索条件 columns = request.POST.get('columns', '') # 关键字搜索的字段逗号分隔 keyword = request.POST.get('keyword', '') # 关键字 table_data = rs.get_tabledata(code_dict['table'], page, limit, condition, columns, keyword, code_dict['code_class']) return HttpResponse(table_data) elif code_dict['type'] == '2': param_dict = request.POST.get('param') # 必要条件 # print(param_dict) table_data = rs.get_tabledata_sql(page, limit, code_dict['table'], param_dict, code_dict['code_class']) return HttpResponse(table_data) def manager(request): code = request.GET.get('code') code_dict = rs.get_menutitle(code) menu_name = code_dict['code_name'] up_menu_name = rs.get_menutitle_up(code) return render_to_response(code_dict['file_path'], {'menu_name': menu_name, 'up_menu_name': up_menu_name}) def file(request): import json id = request.GET.get('id') a = [{'name': '常用文件夹', 'id': 1, 'alias': 'changyong', 'children': [{ 'name': '所有未读', 'id': 11, 'href': 'http://www.layui.com/', 'alias': 'weidu' }, { 'name': '置顶邮件', 'id': 12 }, { 'name': '标签邮件', 'id': 13 }] }, { 'name': '我的邮箱', 'id': 2, 'spread': 'true', 'children': [{ 'name': 'QQ邮箱', 'id': 21, 'spread': 'true', 'children': [{ 'name': '收件箱', 'id': 211, 'children': [{ 'name': '所有未读', 'id': 2111 }, { 'name': '置顶邮件', 'id': 2112 }, { 'name': '标签邮件', 'id': 2113 }] }, { 'name': '已发出的邮件', 'id': 212 }, { 'name': '垃圾邮件', 'id': 213 }] }, { 'name': '阿里云邮', 'id': 22, 'children': [{ 'name': '收件箱', 'id': 221 }, { 'name': '已发出的邮件', 'id': 222 }, { 'name': '垃圾邮件', 'id': 223 }] }] }] return HttpResponse(json.dumps(a)) def login(request): return render_to_response('login.html') def index(request): return render_to_response('index.html', {'menutitle': '信息集成平台管理工具', 'leftmenu': cache.get('leftmenu')}) def welcome(request): return render_to_response('welcome.html')
StarcoderdataPython
1926031
<gh_stars>10-100 # Copyright (c) 2021, Xilinx, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION). HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from pynq.lib.video import * from time import sleep import cv2 from _thread import * import threading __author__ = "<NAME>" __copyright__ = "Copyright 2021, Xilinx" __email__ = "<EMAIL>" """Collection of classes to manage different video sources""" # Threaded class Webcam: """Wrapper for a webcam video pipeline""" def __init__(self, filename: int=0, mode=VideoMode(1280,720,24,30)): """ Returns a Webcam object Parameters ---------- filename : int webcam filename, by default this is 0 mode : VideoMode webcam configuration """ self._dev = filename self._videoIn = None self.mode = mode self._width = mode.width self._height = mode.height self._thread = threading.Lock() self._running = None def _configure(self): self._videoIn = cv2.VideoCapture(self._dev) self._videoIn.set(cv2.CAP_PROP_FRAME_WIDTH, self.mode.width); self._videoIn.set(cv2.CAP_PROP_FRAME_HEIGHT, self.mode.height); self._videoIn.set(cv2.CAP_PROP_FPS, self.mode.fps) def start(self): """Start webcam by configuring it""" self._configure() def stop(self): """Stop the pipeline""" if self._videoIn: self._running = False while self._thread.locked(): sleep(0.05) self._videoIn.release() self._videoIn = None def pause(self): """Pause tie""" if not self._videoIn: raise SystemError("The Webcam is not started") if self._running: self._running = False def close(self): """Uninitialise the drivers, stopping the pipeline beforehand""" self.stop() def readframe(self): """Read an image from the webcam""" ret, frame = self._videoIn.read() return frame def tie(self, output): """Mirror the webcam input to an output channel Parameters ---------- output : HDMIOut The output to mirror on to """ if not self._videoIn: raise SystemError("The Webcam is not started") self._output = output self._outframe = self._output.newframe() self._thread.acquire() self._running = True try: start_new_thread(self._tie, ()) except: import traceback print (traceback.format_exc()) def _tie(self): """Threaded method to implement tie""" while self._running: self._outframe[:] = self.readframe() self._output.writeframe(self._outframe) self._thread.release()
StarcoderdataPython
6988
# -*- coding: utf-8 -*- def ordered_set(iter): """Creates an ordered set @param iter: list or tuple @return: list with unique values """ final = [] for i in iter: if i not in final: final.append(i) return final def class_slots(ob): """Get object attributes from child class attributes @param ob: Defaults object @type ob: Defaults @return: Tuple of slots """ current_class = type(ob).__mro__[0] if not getattr(current_class, 'allslots', None) \ and current_class != object: _allslots = [list(getattr(cls, '__slots__', [])) for cls in type(ob).__mro__] _fslots = [] for slot in _allslots: _fslots = _fslots + slot current_class.allslots = tuple(ordered_set(_fslots)) return current_class.allslots def use_if_none_cls(alternative_attr): def use_if_none(original_attr, ob, kwargs): """ Try and get a value from kwargs for original_attr. If there is no original_attr in kwargs use the alternative_attr value in the object ob @param alternative_attr: the alternative attribute @param original_attr: the original attribute @param ob: the object with the attributes @param kwargs: key values @return: final value """ return kwargs.get(original_attr, getattr(ob, alternative_attr, None)) return use_if_none def usef(attr): """Use another value as default @param attr: the name of the attribute to use as alternative value @return: value of alternative attribute """ return use_if_none_cls(attr) use_name_if_none = usef('Name') def choose_alt(attr, ob, kwargs): """If the declared class attribute of ob is callable then use that callable to get a default ob instance value if a value is not available in kwargs. @param attr: ob class attribute name @param ob: the object instance whose default value needs to be set @param kwargs: the kwargs values passed to the ob __init__ method @return: value to be used to set ob instance """ result = ob.__class__.__dict__.get(attr, None) if type(result).__name__ == "member_descriptor": result = None elif callable(result): result = result(attr, ob, kwargs) return result class Defaults(object): """A base class which allows using slots to define attributes and the ability to set object instance defaults at the child class level""" def __init__(self, **kwargs): """Assign kwargs to attributes and defaults to attributes""" allslots = class_slots(self) for attr in allslots: setattr(self, attr, kwargs.get( attr, choose_alt(attr, self, kwargs))) def to_dict(self): """Returns attributes with values as dict @return: dictionary of attributes with values """ allslots = class_slots(self) return { item: getattr(self, item, None) for item in allslots } def to_dict_clean(self): """Return a dict where there values of None are not included @return: dict of the object properties with values """ attribs = self.to_dict() return { k: v for k, v in attribs.items() if v }
StarcoderdataPython
3556674
<reponame>Gdls/CapsDecE2S import tensorflow as tf from tensorflow.python.ops import rnn #import my_rnn import pdb eps = 1e-6 def batch_norm(x, is_training=False): return tf.layers.batch_normalization(x, momentum=0.8, training=is_training) def sense_Global_Local_att(sense = None, context_repres = None, context_mask = None, window_size = 8): ''' Args: sense: A 3-D tensor with shape (batch, mp, dim), corresonding to the each sense. context_repres: A 3-D tensor with shape (batch, L, dim), the lstm encoding context representation. context_mask: A 3-D tensor with shape (batch, L, 1), the index mask of the target word to extract the local context from context_repres. window_size: integer, size for the local context. Returns: Two 3-D tensor with shape (batch, mp, dim), one is sense based on global context, the other is sense based on local context. ''' def singel_instance(x): s = x[0] # mp, dim, 4, 3 c = x[1] # L, dim, 5, 3 m = x[2] # L, 1 -> L #print c #local context generation c_shape = tf.shape(c) idx = tf.argmax(m, 0, output_type="int32") left_idx = tf.math.maximum(0, idx-window_size) right_idx = tf.math.minimum(idx+window_size, c_shape[0]) indice = tf.range(left_idx[0], right_idx[0]) local_c = tf.gather(c, indice, axis = 0)# L'', dim _s_c = tf.nn.softmax(tf.matmul(s, c, transpose_b=True), axis = 1) # mp, L _s_local_c = tf.nn.softmax(tf.matmul(s, local_c, transpose_b=True), axis = 1) # mp, L'' #print "Global",_s_c, c # 4,5 5,3 #print "Local",_s_local_c, local_c # 4,? ?,3 g_c = tf.matmul(_s_c, c) #mp, dim= mp, L * L, dim l_c = tf.matmul(_s_local_c, local_c) #mp, dim = mp, L'' * L'', dim #print "matmul",g_c, l_c global_s = s + g_c local_s = s + l_c return (global_s, local_s) elems = (sense, context_repres, context_mask) output = tf.map_fn(singel_instance, elems, dtype=(tf.float32,tf.float32)) return output # For version compatibility def reduce_sum(input_tensor, axis=None, keepdims=False): try: return tf.reduce_sum(input_tensor, axis=axis, keepdims=keepdims) except: return tf.reduce_sum(input_tensor, axis=axis, keep_dims=keepdims) # For version compatibility def softmax(logits, axis=None): try: return tf.nn.softmax(logits, axis=axis) except: return tf.nn.softmax(logits, dim=axis) def get_shape(inputs, name=None): name = "shape" if name is None else name with tf.name_scope(name): static_shape = inputs.get_shape().as_list() dynamic_shape = tf.shape(inputs) shape = [] for i, dim in enumerate(static_shape): dim = dim if dim is not None else dynamic_shape[i] shape.append(dim) return(shape) def routing(input, b_IJ, num_outputs=10, num_dims=16, iter_routing = 3): ''' The routing algorithm. Args: input: A Tensor with [batch_size, num_caps_l=1152, 1, length(u_i)=8, 1] shape, num_caps_l meaning the number of capsule in the layer l. num_outputs: the number of output capsules. num_dims: the number of dimensions for output capsule. Returns: A Tensor of shape [batch_size, num_caps_l_plus_1, length(v_j)=16, 1] representing the vector output `v_j` in the layer l+1 Notes: u_i represents the vector output of capsule i in the layer l, and v_j the vector output of capsule j in the layer l+1. ''' # W: [1, num_caps_i, num_caps_j * len_v_j, len_u_j, 1] (1, 10, 1000, 100, 1) input_shape = get_shape(input)#batch_size, Mp, dim, 1 W = tf.get_variable('Weight', shape=[1, input_shape[1], num_dims * num_outputs] + input_shape[-2:], dtype=tf.float32, initializer=tf.random_normal_initializer(stddev=0.01)) #print (W.shape) biases = tf.get_variable('bias', shape=(1, 1, num_outputs, num_dims, 1)) # Eq.2, calc u_hat # Since tf.matmul is a time-consuming op, # A better solution is using element-wise multiply, reduce_sum and reshape # ops instead. Matmul [a, b] x [b, c] is equal to a series ops as # element-wise multiply [a*c, b] * [a*c, b], reduce_sum at axis=1 and # reshape to [a, c] input = tf.tile(input, [1, 1, num_dims * num_outputs, 1, 1]) # assert input.get_shape() == [batch_size, 1152, 160, 8, 1] u_hat = reduce_sum(W * input, axis=3, keepdims=True) u_hat = tf.reshape(u_hat, shape=[-1, input_shape[1], num_outputs, num_dims, 1]) # assert u_hat.get_shape() == [batch_size, 1152, 10, 16, 1] # In forward, u_hat_stopped = u_hat; in backward, no gradient passed back from u_hat_stopped to u_hat u_hat_stopped = tf.stop_gradient(u_hat, name='stop_gradient') # line 3,for r iterations do for r_iter in range(iter_routing): with tf.variable_scope('iter_' + str(r_iter)): # line 4: # => [batch_size, 1152, 10, 1, 1] c_IJ = softmax(b_IJ, axis=2) # At last iteration, use `u_hat` in order to receive gradients from the following graph if r_iter == iter_routing - 1: # line 5: # weighting u_hat with c_IJ, element-wise in the last two dims # => [batch_size, 1152, 10, 16, 1] s_J = tf.multiply(c_IJ, u_hat) # then sum in the second dim, resulting in [batch_size, 1, 10, 16, 1] s_J = reduce_sum(s_J, axis=1, keepdims=True) + biases # assert s_J.get_shape() == [batch_size, 1, num_outputs, num_dims, 1] # line 6: # squash using Eq.1, v_J = squash(s_J) # assert v_J.get_shape() == [batch_size, 1, 10, 16, 1] elif r_iter < iter_routing - 1: # Inner iterations, do not apply backpropagation s_J = tf.multiply(c_IJ, u_hat_stopped) s_J = reduce_sum(s_J, axis=1, keepdims=True) + biases v_J = squash(s_J) # line 7: # reshape & tile v_j from [batch_size ,1, 10, 16, 1] to [batch_size, 1152, 10, 16, 1] # then matmul in the last tow dim: [16, 1].T x [16, 1] => [1, 1], reduce mean in the # batch_size dim, resulting in [1, 1152, 10, 1, 1] v_J_tiled = tf.tile(v_J, [1, input_shape[1], 1, 1, 1]) u_produce_v = reduce_sum(u_hat_stopped * v_J_tiled, axis=3, keepdims=True) # assert u_produce_v.get_shape() == [batch_size, 1152, 10, 1, 1] # b_IJ += tf.reduce_sum(u_produce_v, axis=0, keep_dims=True) b_IJ += u_produce_v return(v_J) def squash(vector): '''Squashing function corresponding to Eq. 1 Args: vector: A tensor with shape [batch_size, 1, num_caps, vec_len, 1] or [batch_size, num_caps, vec_len, 1]. Returns: A tensor with the same shape as vector but squashed in 'vec_len' dimension. ''' vec_squared_norm = reduce_sum(tf.square(vector), -2, keepdims=True) scalar_factor = vec_squared_norm / (1 + vec_squared_norm) / tf.sqrt(vec_squared_norm + eps) vec_squashed = scalar_factor * vector # element-wise return(vec_squashed) ''' def sense_selection(gloss, context, W_parameter): batch_size = gloss.get_shape().as_list()[0] memory_size = gloss.get_shape().as_list()[-1] Cin = Ain = gloss# * sense_mask # [batch_size, max_n_sense, 2*n_units] #Bin = tf.reshape(context, [batch_size, memory_size, 1]) # [batch_size, 2*n_units, 1] Bin = tf.expand_dims(context, axis =2) Aout = tf.matmul(Ain, Bin) # [batch_size, max_n_sense, 1] #Aout_exp = tf.exp(Aout) #* sense_mask[:, :, :1] #p = Aout_exp / tf.reduce_sum(Aout_exp, axis=1, keepdims=True) # [batch_size, max_n_sense, 1] p = tf.nn.softmax(Aout) #memory_p.append(tf.squeeze(p)) Mout = tf.squeeze(tf.matmul(Cin, p, transpose_a=True), axis = 2) # [batch_size, 2*n_units] state = tf.nn.relu(tf.add(Mout, tf.matmul(context, W_parameter))) # [batch_size, 2*n_units] return Mout, state, tf.squeeze(Aout), tf.squeeze(p) ''' def sense_selection(senses, context, W_parameter): senses = batch_norm(senses) context = batch_norm(context) batch_size = senses.get_shape().as_list()[0] sense_size = senses.get_shape().as_list()[-1] #print "senses",senses #print "context",context #pdb.set_trace() Cin = Ain = senses # [batch_size, mp_dim, shared_dim] Bin = tf.expand_dims(context, axis =2) # [batch_size, shared_dim, 1] #print "Bin",Bin #pdb.set_trace() Aout = tf.matmul(Ain, Bin) # [batch_size, mp_dim, 1] #Aout_exp = tf.exp(Aout) #p = Aout_exp / tf.reduce_sum(Aout_exp, axis=1, keepdims=True) # [batch_size, mp_dim, 1] p = tf.nn.softmax(Aout, axis = 1) #print "p",p #pdb.set_trace() #memory_p.append(tf.squeeze(p)) #[batch_size, mp_dim] #print "Cin",Cin #pdb.set_trace() Sout = tf.squeeze(tf.matmul(Cin, p, transpose_a=True), axis = 2) # [batch_size, shared_dim] #print "Sout",Sout #print "matmul",tf.matmul(context, W_parameter) #pdb.set_trace() state = tf.nn.relu(batch_norm(tf.add(Sout, tf.matmul(context, W_parameter)))) # [batch_size, shared_dim] #print "state",state #pdb.set_trace() #if memory_update_type == 'concat': # state = tf.concat((Mout, context), 1) # [batch_size, 4*n_units] # state = tf.nn.relu(batch_norm(tf.matmul(state, W_memory))) #else: # linear # state = batch_norm(tf.add(Mout, tf.matmul(context, U_memory))) # [batch_size, 2*n_units] return Sout, state, tf.squeeze(Aout), p def soft_gate_for_f_b_context(f_context_representation, #diff part b_context_representation,#sentence part output_size, scope=None): #pre_context_representation from single BiLSTM with shape (batch, dim); match_representation from BiLSTM in BiMPM with shape (batch, dim); #the module aims to make a selection between sentence part by BiMPM matching and diff part by BiLSTM; #two representations help to generate a "gate" in order to make a selection between the sentence part and diff part; #The formular of calculating Gate is "sentence*gate+diff*(1-gate)"; If gate tends to be 1, then common part is conclusive, or diff part is conclusive with tf.variable_scope(scope or "gate_selection_layer"): highway_1 = tf.get_variable("highway_1", [output_size, output_size], dtype=tf.float32) highway_2 = tf.get_variable("highway_2", [output_size, output_size], dtype=tf.float32) highway_b = tf.get_variable("highway_b", [output_size], dtype=tf.float32) full_w = tf.get_variable("full_w", [output_size, output_size], dtype=tf.float32) full_b = tf.get_variable("full_b", [output_size], dtype=tf.float32) gate = tf.nn.sigmoid(tf.nn.xw_plus_b(f_context_representation, highway_1, highway_b)+tf.nn.xw_plus_b(b_context_representation, highway_2, highway_b)) representation_f = tf.nn.tanh(tf.nn.xw_plus_b(f_context_representation, full_w, full_b))#common representation_b = tf.nn.tanh(tf.nn.xw_plus_b(b_context_representation, full_w, full_b)) outputs = tf.add(tf.multiply(representation_b, gate),tf.multiply(representation_f,tf.subtract(1.0, gate)),"representation") return outputs def semantic_under_condition(word_embedding_multiperspective, word_Representatioin_multiperspective, w_list): w_1, b_1, w_2, b_2, w_attention = w_list #w_1 = tf.get_variable("mapping_w_1", [1,MP_dim], dtype=tf.float32) #1*P #b_1 = tf.get_variable("mapping_b_1", [shared_dim], dtype=tf.float32) #w_2 = tf.get_variable("mapping_w_2", [shared_dim, shared_dim], dtype=tf.float32) # D*D #b_2 = tf.get_variable("mapping_b_2", [shared_dim], dtype=tf.float32) #w_attention = tf.get_variable("attention_w", [context_lstm_dim*2, 1], dtype=tf.float32) # D*1 #pdb.set_trace() def singel_instance(x): return tf.matmul(w_1, x)+b_1 semantic_embedding = tf.map_fn(singel_instance, word_embedding_multiperspective, dtype=tf.float32) #batch * 1 * D #batch * P * D def singel_instance_condition(x): return tf.matmul(x,w_2)+b_2 #semantic_Representation = tf.matmul(word_embedding_multiperspective, w_2)+b_2 semantic_Representation = tf.map_fn(singel_instance_condition, word_Representatioin_multiperspective, dtype=tf.float32) def singel_instance_attention(x): return tf.matmul(x,w_attention) weights_attention = tf.nn.softmax(tf.map_fn(singel_instance_attention, semantic_Representation, dtype=tf.float32), axis = 1) #batch, P, 1 #weights_attention = tf.nn.softmax(tf.matmul(semantic_Representation, w_attention), axis = 1) #batch, P, 1 attention_R = tf.reduce_sum(tf.multiply(semantic_Representation, weights_attention), axis = 1) # batch, P, D-->batch, 1, D embedding_based_Representation = tf.reduce_sum(semantic_embedding,axis = 1, keepdims = False)+attention_R # batch, 1, D #print semantic_embedding # batch*1*D #print semantic_Representation # batch*P*D #print weights_attention #print attention_R #print embedding_based_Representation #pdb.set_trace() return embedding_based_Representation def cosine_distance(y1,y2): # y1 [....,a, 1, d] # y2 [....,1, b, d] # cosine_numerator = T.sum(y1*y2, axis=-1) cosine_numerator = tf.reduce_sum(tf.multiply(y1, y2), axis=-1) # y1_norm = T.sqrt(T.maximum(T.sum(T.sqr(y1), axis=-1), eps)) #be careful while using T.sqrt(), like in the cases of Euclidean distance, cosine similarity, for the gradient of T.sqrt() at 0 is undefined, we should add an Eps or use T.maximum(original, eps) in the sqrt. y1_norm = tf.sqrt(tf.maximum(tf.reduce_sum(tf.square(y1), axis=-1), eps)) y2_norm = tf.sqrt(tf.maximum(tf.reduce_sum(tf.square(y2), axis=-1), eps)) return cosine_numerator / y1_norm / y2_norm def cal_relevancy_matrix(in_question_repres, in_passage_repres): in_question_repres_tmp = tf.expand_dims(in_question_repres, 1) # [batch_size, 1, question_len, dim] in_passage_repres_tmp = tf.expand_dims(in_passage_repres, 2) # [batch_size, passage_len, 1, dim] relevancy_matrix = cosine_distance(in_question_repres_tmp,in_passage_repres_tmp) # [batch_size, passage_len, question_len] return relevancy_matrix def mask_relevancy_matrix(relevancy_matrix, question_mask, passage_mask): # relevancy_matrix: [batch_size, passage_len, question_len] # question_mask: [batch_size, question_len] # passage_mask: [batch_size, passsage_len] relevancy_matrix = tf.multiply(relevancy_matrix, tf.expand_dims(question_mask, 1)) relevancy_matrix = tf.multiply(relevancy_matrix, tf.expand_dims(passage_mask, 2)) return relevancy_matrix def cal_cosine_weighted_question_representation(question_representation, cosine_matrix, normalize=False): # question_representation: [batch_size, question_len, dim] # cosine_matrix: [batch_size, passage_len, question_len] if normalize: cosine_matrix = tf.nn.softmax(cosine_matrix) expanded_cosine_matrix = tf.expand_dims(cosine_matrix, axis=-1) # [batch_size, passage_len, question_len, 'x'] weighted_question_words = tf.expand_dims(question_representation, axis=1) # [batch_size, 'x', question_len, dim] weighted_question_words = tf.reduce_sum(tf.multiply(weighted_question_words, expanded_cosine_matrix), axis=2)# [batch_size, passage_len, dim] if not normalize: weighted_question_words = tf.div(weighted_question_words, tf.expand_dims(tf.add(tf.reduce_sum(cosine_matrix, axis=-1),eps),axis=-1)) return weighted_question_words # [batch_size, passage_len, dim] def multi_perspective_expand_for_3D(in_tensor, decompose_params): in_tensor = tf.expand_dims(in_tensor, axis=2) #[batch_size, passage_len, 'x', dim] decompose_params = tf.expand_dims(tf.expand_dims(decompose_params, axis=0), axis=0) # [1, 1, decompse_dim, dim] return tf.multiply(in_tensor, decompose_params)#[batch_size, passage_len, decompse_dim, dim] def multi_perspective_expand_for_2D(in_tensor, decompose_params): in_tensor = tf.expand_dims(in_tensor, axis=1) #[batch_size, 'x', dim] decompose_params = tf.expand_dims(decompose_params, axis=0) # [1, decompse_dim, dim] return tf.multiply(in_tensor, decompose_params) # [batch_size, decompse_dim, dim] def multi_perspective_expand_for_1D(in_tensor, decompose_params): in_tensor = tf.expand_dims(in_tensor, axis=0) #['x', dim] return tf.multiply(in_tensor, decompose_params) # [decompse_dim, dim] def cal_full_matching_bak(passage_representation, full_question_representation, decompose_params): # passage_representation: [batch_size, passage_len, dim] # full_question_representation: [batch_size, dim] # decompose_params: [decompose_dim, dim] mp_passage_rep = multi_perspective_expand_for_3D(passage_representation, decompose_params) # [batch_size, passage_len, decompse_dim, dim] mp_full_question_rep = multi_perspective_expand_for_2D(full_question_representation, decompose_params) # [batch_size, decompse_dim, dim] return cosine_distance(mp_passage_rep, tf.expand_dims(mp_full_question_rep, axis=1)) #[batch_size, passage_len, decompse_dim] def cal_full_matching(passage_representation, full_question_representation, decompose_params): # passage_representation: [batch_size, passage_len, dim] # full_question_representation: [batch_size, dim] # decompose_params: [decompose_dim, dim] def singel_instance(x): p = x[0] q = x[1] # p: [pasasge_len, dim], q: [dim] p = multi_perspective_expand_for_2D(p, decompose_params) # [pasasge_len, decompose_dim, dim] q = multi_perspective_expand_for_1D(q, decompose_params) # [decompose_dim, dim] q = tf.expand_dims(q, 0) # [1, decompose_dim, dim] return cosine_distance(p, q) # [passage_len, decompose] elems = (passage_representation, full_question_representation) return tf.map_fn(singel_instance, elems, dtype=tf.float32) # [batch_size, passage_len, decompse_dim] def cal_maxpooling_matching_bak(passage_rep, question_rep, decompose_params): # passage_representation: [batch_size, passage_len, dim] # qusetion_representation: [batch_size, question_len, dim] # decompose_params: [decompose_dim, dim] passage_rep = multi_perspective_expand_for_3D(passage_rep, decompose_params) # [batch_size, passage_len, decompse_dim, dim] question_rep = multi_perspective_expand_for_3D(question_rep, decompose_params) # [batch_size, question_len, decompse_dim, dim] passage_rep = tf.expand_dims(passage_rep, 2) # [batch_size, passage_len, 1, decompse_dim, dim] question_rep = tf.expand_dims(question_rep, 1) # [batch_size, 1, question_len, decompse_dim, dim] matching_matrix = cosine_distance(passage_rep,question_rep) # [batch_size, passage_len, question_len, decompse_dim] return tf.concat( axis = 2, values = [tf.reduce_max(matching_matrix, axis=2), tf.reduce_mean(matching_matrix, axis=2)])# [batch_size, passage_len, 2*decompse_dim] def cal_maxpooling_matching(passage_rep, question_rep, decompose_params): # passage_representation: [batch_size, passage_len, dim] # qusetion_representation: [batch_size, question_len, dim] # decompose_params: [decompose_dim, dim] def singel_instance(x): p = x[0] q = x[1] # p: [pasasge_len, dim], q: [question_len, dim] p = multi_perspective_expand_for_2D(p, decompose_params) # [pasasge_len, decompose_dim, dim] q = multi_perspective_expand_for_2D(q, decompose_params) # [question_len, decompose_dim, dim] p = tf.expand_dims(p, 1) # [pasasge_len, 1, decompose_dim, dim] q = tf.expand_dims(q, 0) # [1, question_len, decompose_dim, dim] return cosine_distance(p, q) # [passage_len, question_len, decompose] elems = (passage_rep, question_rep) matching_matrix = tf.map_fn(singel_instance, elems, dtype=tf.float32) # [batch_size, passage_len, question_len, decompse_dim] return tf.concat( axis = 2, values = [tf.reduce_max(matching_matrix, axis=2), tf.reduce_mean(matching_matrix, axis=2)])# [batch_size, passage_len, 2*decompse_dim] def cal_maxpooling_matching_for_word(passage_rep, question_rep, decompose_params): # passage_representation: [batch_size, passage_len, dim] # qusetion_representation: [batch_size, question_len, dim] # decompose_params: [decompose_dim, dim] def singel_instance(x): p = x[0] q = x[1] q = multi_perspective_expand_for_2D(q, decompose_params) # [question_len, decompose_dim, dim] # p: [pasasge_len, dim], q: [question_len, dim] def single_instance_2(y): # y: [dim] y = multi_perspective_expand_for_1D(y, decompose_params) #[decompose_dim, dim] y = tf.expand_dims(y, 0) # [1, decompose_dim, dim] matching_matrix = cosine_distance(y, q)#[question_len, decompose_dim] return tf.concat( axis = 0, values = [tf.reduce_max(matching_matrix, axis=0), tf.reduce_mean(matching_matrix, axis=0)]) #[2*decompose_dim] return tf.map_fn(single_instance_2, p, dtype=tf.float32) # [passage_len, 2*decompse_dim] elems = (passage_rep, question_rep) return tf.map_fn(singel_instance, elems, dtype=tf.float32) # [batch_size, passage_len, 2*decompse_dim] def cal_attentive_matching(passage_rep, att_question_rep, decompose_params): # passage_rep: [batch_size, passage_len, dim] # att_question_rep: [batch_size, passage_len, dim] def singel_instance(x): p = x[0] q = x[1] # p: [pasasge_len, dim], q: [pasasge_len, dim] p = multi_perspective_expand_for_2D(p, decompose_params) # [pasasge_len, decompose_dim, dim] q = multi_perspective_expand_for_2D(q, decompose_params) # [pasasge_len, decompose_dim, dim] return cosine_distance(p, q) # [pasasge_len, decompose_dim] elems = (passage_rep, att_question_rep) return tf.map_fn(singel_instance, elems, dtype=tf.float32) # [batch_size, passage_len, decompse_dim] def cross_entropy(logits, truth, mask): # logits: [batch_size, passage_len] # truth: [batch_size, passage_len] # mask: [batch_size, passage_len] # xdev = x - x.max() # return xdev - T.log(T.sum(T.exp(xdev))) logits = tf.multiply(logits, mask) xdev = tf.sub(logits, tf.expand_dims(tf.reduce_max(logits, 1), -1)) log_predictions = tf.sub(xdev, tf.expand_dims(tf.log(tf.reduce_sum(tf.exp(xdev),-1)),-1)) # return -T.sum(targets * log_predictions) result = tf.multiply(tf.multiply(truth, log_predictions), mask) # [batch_size, passage_len] return tf.multiply(-1.0,tf.reduce_sum(result, -1)) # [batch_size] def highway_layer(in_val, output_size, scope=None): # in_val: [batch_size, passage_len, dim] input_shape = tf.shape(in_val) batch_size = input_shape[0] passage_len = input_shape[1] # feat_dim = input_shape[2] in_val = tf.reshape(in_val, [batch_size * passage_len, output_size]) with tf.variable_scope(scope or "highway_layer"): highway_w = tf.get_variable("highway_w", [output_size, output_size], dtype=tf.float32) highway_b = tf.get_variable("highway_b", [output_size], dtype=tf.float32) full_w = tf.get_variable("full_w", [output_size, output_size], dtype=tf.float32) full_b = tf.get_variable("full_b", [output_size], dtype=tf.float32) trans = tf.nn.tanh(tf.nn.xw_plus_b(in_val, full_w, full_b)) gate = tf.nn.sigmoid(tf.nn.xw_plus_b(in_val, highway_w, highway_b)) outputs = tf.add(tf.multiply(trans, gate), tf.multiply(in_val, tf.sub(1.0, gate)), "y") outputs = tf.reshape(outputs, [batch_size, passage_len, output_size]) return outputs def multi_highway_layer(in_val, output_size, num_layers, scope=None): scope_name = 'highway_layer' if scope is not None: scope_name = scope for i in xrange(num_layers): cur_scope_name = scope_name + "-{}".format(i) in_val = highway_layer(in_val, output_size, scope=cur_scope_name) return in_val def cal_max_question_representation(question_representation, cosine_matrix): # question_representation: [batch_size, question_len, dim] # cosine_matrix: [batch_size, passage_len, question_len] question_index = tf.argmax(cosine_matrix, 2) # [batch_size, passage_len] def singel_instance(x): q = x[0] c = x[1] return tf.gather(q, c) elems = (question_representation, question_index) return tf.map_fn(singel_instance, elems, dtype=tf.float32) # [batch_size, passage_len, dim] def cal_linear_decomposition_representation(passage_representation, passage_lengths, cosine_matrix,is_training, lex_decompsition_dim, dropout_rate): # passage_representation: [batch_size, passage_len, dim] # cosine_matrix: [batch_size, passage_len, question_len] passage_similarity = tf.reduce_max(cosine_matrix, 2)# [batch_size, passage_len] similar_weights = tf.expand_dims(passage_similarity, -1) # [batch_size, passage_len, 1] dissimilar_weights = tf.subtract(1.0, similar_weights) similar_component = tf.multiply(passage_representation, similar_weights) dissimilar_component = tf.multiply(passage_representation, dissimilar_weights) all_component = tf.concat( axis =2, values = [similar_component, dissimilar_component]) if lex_decompsition_dim==-1: return all_component with tf.variable_scope('lex_decomposition'): lex_lstm_cell_fw = tf.nn.rnn_cell.BasicLSTMCell(lex_decompsition_dim) lex_lstm_cell_bw = tf.nn.rnn_cell.BasicLSTMCell(lex_decompsition_dim) if is_training: lex_lstm_cell_fw = tf.nn.rnn_cell.DropoutWrapper(lex_lstm_cell_fw, output_keep_prob=(1 - dropout_rate)) lex_lstm_cell_bw = tf.nn.rnn_cell.DropoutWrapper(lex_lstm_cell_bw, output_keep_prob=(1 - dropout_rate)) lex_lstm_cell_fw = tf.nn.rnn_cell.MultiRNNCell([lex_lstm_cell_fw]) lex_lstm_cell_bw = tf.nn.rnn_cell.MultiRNNCell([lex_lstm_cell_bw]) (lex_features_fw, lex_features_bw), _ = rnn.bidirectional_dynamic_rnn( lex_lstm_cell_fw, lex_lstm_cell_bw, all_component, dtype=tf.float32, sequence_length=passage_lengths) lex_features = tf.concat( axis =2, values = [lex_features_fw, lex_features_bw]) return lex_features def match_passage_with_question(passage_context_representation_fw, passage_context_representation_bw, mask, question_context_representation_fw, question_context_representation_bw,question_mask, MP_dim, context_lstm_dim, scope=None, with_full_match=True, with_maxpool_match=True, with_attentive_match=True, with_max_attentive_match=True): all_question_aware_representatins = [] dim = 0 with tf.variable_scope(scope or "match_passage_with_question"): fw_question_full_rep = question_context_representation_fw[:,-1,:] bw_question_full_rep = question_context_representation_bw[:,0,:] question_context_representation_fw = tf.multiply(question_context_representation_fw, tf.expand_dims(question_mask,-1)) question_context_representation_bw = tf.multiply(question_context_representation_bw, tf.expand_dims(question_mask,-1)) passage_context_representation_fw = tf.multiply(passage_context_representation_fw, tf.expand_dims(mask,-1)) passage_context_representation_bw = tf.multiply(passage_context_representation_bw, tf.expand_dims(mask,-1)) forward_relevancy_matrix = cal_relevancy_matrix(question_context_representation_fw, passage_context_representation_fw) forward_relevancy_matrix = mask_relevancy_matrix(forward_relevancy_matrix, question_mask, mask) backward_relevancy_matrix = cal_relevancy_matrix(question_context_representation_bw, passage_context_representation_bw) backward_relevancy_matrix = mask_relevancy_matrix(backward_relevancy_matrix, question_mask, mask) if MP_dim > 0: if with_full_match: # forward Full-Matching: passage_context_representation_fw vs question_context_representation_fw[-1] fw_full_decomp_params = tf.get_variable("forward_full_matching_decomp", shape=[MP_dim, context_lstm_dim], dtype=tf.float32) fw_full_match_rep = cal_full_matching(passage_context_representation_fw, fw_question_full_rep, fw_full_decomp_params) all_question_aware_representatins.append(fw_full_match_rep) dim += MP_dim # backward Full-Matching: passage_context_representation_bw vs question_context_representation_bw[0] bw_full_decomp_params = tf.get_variable("backward_full_matching_decomp", shape=[MP_dim, context_lstm_dim], dtype=tf.float32) bw_full_match_rep = cal_full_matching(passage_context_representation_bw, bw_question_full_rep, bw_full_decomp_params) all_question_aware_representatins.append(bw_full_match_rep) dim += MP_dim if with_maxpool_match: # forward Maxpooling-Matching fw_maxpooling_decomp_params = tf.get_variable("forward_maxpooling_matching_decomp", shape=[MP_dim, context_lstm_dim], dtype=tf.float32) fw_maxpooling_rep = cal_maxpooling_matching(passage_context_representation_fw, question_context_representation_fw, fw_maxpooling_decomp_params) all_question_aware_representatins.append(fw_maxpooling_rep) dim += 2*MP_dim # backward Maxpooling-Matching bw_maxpooling_decomp_params = tf.get_variable("backward_maxpooling_matching_decomp", shape=[MP_dim, context_lstm_dim], dtype=tf.float32) bw_maxpooling_rep = cal_maxpooling_matching(passage_context_representation_bw, question_context_representation_bw, bw_maxpooling_decomp_params) all_question_aware_representatins.append(bw_maxpooling_rep) dim += 2*MP_dim if with_attentive_match: # forward attentive-matching # forward weighted question representation: [batch_size, question_len, passage_len] [batch_size, question_len, context_lstm_dim] att_question_fw_contexts = cal_cosine_weighted_question_representation(question_context_representation_fw, forward_relevancy_matrix) fw_attentive_decomp_params = tf.get_variable("forward_attentive_matching_decomp", shape=[MP_dim, context_lstm_dim], dtype=tf.float32) fw_attentive_rep = cal_attentive_matching(passage_context_representation_fw, att_question_fw_contexts, fw_attentive_decomp_params) all_question_aware_representatins.append(fw_attentive_rep) dim += MP_dim # backward attentive-matching # backward weighted question representation att_question_bw_contexts = cal_cosine_weighted_question_representation(question_context_representation_bw, backward_relevancy_matrix) bw_attentive_decomp_params = tf.get_variable("backward_attentive_matching_decomp", shape=[MP_dim, context_lstm_dim], dtype=tf.float32) bw_attentive_rep = cal_attentive_matching(passage_context_representation_bw, att_question_bw_contexts, bw_attentive_decomp_params) all_question_aware_representatins.append(bw_attentive_rep) dim += MP_dim if with_max_attentive_match: # forward max attentive-matching max_att_fw = cal_max_question_representation(question_context_representation_fw, forward_relevancy_matrix) fw_max_att_decomp_params = tf.get_variable("fw_max_att_decomp_params", shape=[MP_dim, context_lstm_dim], dtype=tf.float32) fw_max_attentive_rep = cal_attentive_matching(passage_context_representation_fw, max_att_fw, fw_max_att_decomp_params) all_question_aware_representatins.append(fw_max_attentive_rep) dim += MP_dim # backward max attentive-matching max_att_bw = cal_max_question_representation(question_context_representation_bw, backward_relevancy_matrix) bw_max_att_decomp_params = tf.get_variable("bw_max_att_decomp_params", shape=[MP_dim, context_lstm_dim], dtype=tf.float32) bw_max_attentive_rep = cal_attentive_matching(passage_context_representation_bw, max_att_bw, bw_max_att_decomp_params) all_question_aware_representatins.append(bw_max_attentive_rep) dim += MP_dim all_question_aware_representatins.append(tf.reduce_max(forward_relevancy_matrix, axis=2,keepdims=True)) all_question_aware_representatins.append(tf.reduce_mean(forward_relevancy_matrix, axis=2,keepdims=True)) all_question_aware_representatins.append(tf.reduce_max(backward_relevancy_matrix, axis=2,keepdims=True)) all_question_aware_representatins.append(tf.reduce_mean(backward_relevancy_matrix, axis=2,keepdims=True)) dim += 4 return (all_question_aware_representatins, dim) def unidirectional_matching(in_question_repres, in_passage_repres,question_lengths, passage_lengths, question_mask, mask, MP_dim, input_dim, with_filter_layer, context_layer_num, context_lstm_dim,is_training,dropout_rate,with_match_highway,aggregation_layer_num, aggregation_lstm_dim,highway_layer_num,with_aggregation_highway,with_lex_decomposition, lex_decompsition_dim, with_full_match=True, with_maxpool_match=True, with_attentive_match=True, with_max_attentive_match=True): # ======Filter layer====== cosine_matrix = cal_relevancy_matrix(in_question_repres, in_passage_repres) cosine_matrix = mask_relevancy_matrix(cosine_matrix, question_mask, mask) raw_in_passage_repres = in_passage_repres if with_filter_layer: relevancy_matrix = cosine_matrix # [batch_size, passage_len, question_len] relevancy_degrees = tf.reduce_max(relevancy_matrix, axis=2) # [batch_size, passage_len] relevancy_degrees = tf.expand_dims(relevancy_degrees,axis=-1) # [batch_size, passage_len, 'x'] in_passage_repres = tf.multiply(in_passage_repres, relevancy_degrees) # =======Context Representation Layer & Multi-Perspective matching layer===== all_question_aware_representatins = [] # max and mean pooling at word level all_question_aware_representatins.append(tf.reduce_max(cosine_matrix, axis=2,keepdims=True)) all_question_aware_representatins.append(tf.reduce_mean(cosine_matrix, axis=2,keepdims=True)) question_aware_dim = 2 if MP_dim>0: if with_max_attentive_match: # max_att word level max_att = cal_max_question_representation(in_question_repres, cosine_matrix) max_att_decomp_params = tf.get_variable("max_att_decomp_params", shape=[MP_dim, input_dim], dtype=tf.float32) max_attentive_rep = cal_attentive_matching(raw_in_passage_repres, max_att, max_att_decomp_params) all_question_aware_representatins.append(max_attentive_rep) question_aware_dim += MP_dim # lex decomposition if with_lex_decomposition: lex_decomposition = cal_linear_decomposition_representation(raw_in_passage_repres, passage_lengths, cosine_matrix,is_training, lex_decompsition_dim, dropout_rate) all_question_aware_representatins.append(lex_decomposition) if lex_decompsition_dim== -1: question_aware_dim += 2 * input_dim else: question_aware_dim += 2* lex_decompsition_dim with tf.variable_scope('context_MP_matching'): for i in xrange(context_layer_num): with tf.variable_scope('layer-{}'.format(i)): with tf.variable_scope('context_represent'): # parameters context_lstm_cell_fw = tf.nn.rnn_cell.BasicLSTMCell(context_lstm_dim) context_lstm_cell_bw = tf.nn.rnn_cell.BasicLSTMCell(context_lstm_dim) if is_training: context_lstm_cell_fw = tf.nn.rnn_cell.DropoutWrapper(context_lstm_cell_fw, output_keep_prob=(1 - dropout_rate)) context_lstm_cell_bw = tf.nn.rnn_cell.DropoutWrapper(context_lstm_cell_bw, output_keep_prob=(1 - dropout_rate)) context_lstm_cell_fw = tf.nn.rnn_cell.MultiRNNCell([context_lstm_cell_fw]) context_lstm_cell_bw = tf.nn.rnn_cell.MultiRNNCell([context_lstm_cell_bw]) # question representation (question_context_representation_fw, question_context_representation_bw), _ = my_rnn.bidirectional_dynamic_rnn( context_lstm_cell_fw, context_lstm_cell_bw, in_question_repres, dtype=tf.float32, sequence_length=question_lengths) # [batch_size, question_len, context_lstm_dim] in_question_repres = tf.concat( axis =2, values = [question_context_representation_fw, question_context_representation_bw]) # passage representation tf.get_variable_scope().reuse_variables() (passage_context_representation_fw, passage_context_representation_bw), _ = my_rnn.bidirectional_dynamic_rnn( context_lstm_cell_fw, context_lstm_cell_bw, in_passage_repres, dtype=tf.float32, sequence_length=passage_lengths) # [batch_size, passage_len, context_lstm_dim] in_passage_repres = tf.concat( axis =2, values = [passage_context_representation_fw, passage_context_representation_bw]) # Multi-perspective matching with tf.variable_scope('MP_matching'): (matching_vectors, matching_dim) = match_passage_with_question(passage_context_representation_fw, passage_context_representation_bw, mask, question_context_representation_fw, question_context_representation_bw,question_mask, MP_dim, context_lstm_dim, scope=None, with_full_match=with_full_match, with_maxpool_match=with_maxpool_match, with_attentive_match=with_attentive_match, with_max_attentive_match=with_max_attentive_match) all_question_aware_representatins.extend(matching_vectors) question_aware_dim += matching_dim all_question_aware_representatins = tf.concat( axis =2, values = all_question_aware_representatins) # [batch_size, passage_len, dim] if is_training: all_question_aware_representatins = tf.nn.dropout(all_question_aware_representatins, (1 - dropout_rate)) else: all_question_aware_representatins = tf.multiply(all_question_aware_representatins, (1 - dropout_rate)) # ======Highway layer====== if with_match_highway: with tf.variable_scope("matching_highway"): all_question_aware_representatins = multi_highway_layer(all_question_aware_representatins, question_aware_dim,highway_layer_num) #========Aggregation Layer====== aggregation_representation = [] aggregation_dim = 0 aggregation_input = all_question_aware_representatins with tf.variable_scope('aggregation_layer'): for i in xrange(aggregation_layer_num): with tf.variable_scope('layer-{}'.format(i)): aggregation_lstm_cell_fw = tf.nn.rnn_cell.BasicLSTMCell(aggregation_lstm_dim) aggregation_lstm_cell_bw = tf.nn.rnn_cell.BasicLSTMCell(aggregation_lstm_dim) if is_training: aggregation_lstm_cell_fw = tf.nn.rnn_cell.DropoutWrapper(aggregation_lstm_cell_fw, output_keep_prob=(1 - dropout_rate)) aggregation_lstm_cell_bw = tf.nn.rnn_cell.DropoutWrapper(aggregation_lstm_cell_bw, output_keep_prob=(1 - dropout_rate)) aggregation_lstm_cell_fw = tf.nn.rnn_cell.MultiRNNCell([aggregation_lstm_cell_fw]) aggregation_lstm_cell_bw = tf.nn.rnn_cell.MultiRNNCell([aggregation_lstm_cell_bw]) cur_aggregation_representation, _ = my_rnn.bidirectional_dynamic_rnn( aggregation_lstm_cell_fw, aggregation_lstm_cell_bw, aggregation_input, dtype=tf.float32, sequence_length=passage_lengths) fw_rep = cur_aggregation_representation[0][:,-1,:] bw_rep = cur_aggregation_representation[1][:,0,:] aggregation_representation.append(fw_rep) aggregation_representation.append(bw_rep) aggregation_dim += 2* aggregation_lstm_dim aggregation_input = tf.concat( axis =2, values = cur_aggregation_representation)# [batch_size, passage_len, 2*aggregation_lstm_dim] # aggregation_representation = tf.concat( axis =1, values = aggregation_representation) # [batch_size, aggregation_dim] # ======Highway layer====== if with_aggregation_highway: with tf.variable_scope("aggregation_highway"): agg_shape = tf.shape(aggregation_representation) batch_size = agg_shape[0] aggregation_representation = tf.reshape(aggregation_representation, [1, batch_size, aggregation_dim]) aggregation_representation = multi_highway_layer(aggregation_representation, aggregation_dim, highway_layer_num) aggregation_representation = tf.reshape(aggregation_representation, [batch_size, aggregation_dim]) return (aggregation_representation, aggregation_dim) def bilateral_match_func1(in_question_repres, in_passage_repres, question_lengths, passage_lengths, question_mask, mask, MP_dim, input_dim, with_filter_layer, context_layer_num, context_lstm_dim,is_training,dropout_rate, with_match_highway,aggregation_layer_num, aggregation_lstm_dim,highway_layer_num, with_aggregation_highway,with_lex_decomposition,lex_decompsition_dim, with_full_match=True, with_maxpool_match=True, with_attentive_match=True, with_max_attentive_match=True, with_left_match=True, with_right_match=True): init_scale = 0.01 initializer = tf.random_uniform_initializer(-init_scale, init_scale) match_representation = [] match_dim = 0 reuse_match_params = None if with_left_match: reuse_match_params = True with tf.name_scope("match_passsage"): with tf.variable_scope("MP-Match", reuse=None, initializer=initializer): (passage_match_representation, passage_match_dim) = unidirectional_matching(in_question_repres, in_passage_repres, question_lengths, passage_lengths, question_mask, mask, MP_dim, input_dim, with_filter_layer, context_layer_num, context_lstm_dim,is_training,dropout_rate, with_match_highway,aggregation_layer_num, aggregation_lstm_dim,highway_layer_num, with_aggregation_highway,with_lex_decomposition,lex_decompsition_dim, with_full_match=with_full_match, with_maxpool_match=with_maxpool_match, with_attentive_match=with_attentive_match, with_max_attentive_match=with_max_attentive_match) match_representation.append(passage_match_representation) match_dim += passage_match_dim if with_right_match: with tf.name_scope("match_question"): with tf.variable_scope("MP-Match", reuse=reuse_match_params, initializer=initializer): (question_match_representation, question_match_dim) = unidirectional_matching(in_passage_repres, in_question_repres, passage_lengths, question_lengths, mask, question_mask, MP_dim, input_dim, with_filter_layer, context_layer_num, context_lstm_dim,is_training,dropout_rate, with_match_highway,aggregation_layer_num, aggregation_lstm_dim,highway_layer_num, with_aggregation_highway, with_lex_decomposition,lex_decompsition_dim, with_full_match=with_full_match, with_maxpool_match=with_maxpool_match, with_attentive_match=with_attentive_match, with_max_attentive_match=with_max_attentive_match) match_representation.append(question_match_representation) match_dim += question_match_dim match_representation = tf.concat( axis =1, values = match_representation) return (match_representation, match_dim) def bilateral_match_func2(in_question_repres, in_passage_repres, question_lengths, passage_lengths, question_mask, mask, MP_dim, input_dim, with_filter_layer, context_layer_num, context_lstm_dim,is_training,dropout_rate, with_match_highway,aggregation_layer_num, aggregation_lstm_dim,highway_layer_num, with_aggregation_highway,with_lex_decomposition,lex_decompsition_dim, with_full_match=True, with_maxpool_match=True, with_attentive_match=True, with_max_attentive_match=True, with_left_match=True, with_right_match=True, with_mean_aggregation=True): cosine_matrix = cal_relevancy_matrix(in_question_repres, in_passage_repres) # [batch_size, passage_len, question_len] cosine_matrix = mask_relevancy_matrix(cosine_matrix, question_mask, mask) cosine_matrix_transpose = tf.transpose(cosine_matrix, perm=[0,2,1])# [batch_size, question_len, passage_len] # ====word level matching====== question_aware_representatins = [] question_aware_dim = 0 passage_aware_representatins = [] passage_aware_dim = 0 # max and mean pooling at word level question_aware_representatins.append(tf.reduce_max(cosine_matrix, axis=2,keepdims=True)) # [batch_size, passage_length, 1] question_aware_representatins.append(tf.reduce_mean(cosine_matrix, axis=2,keepdims=True))# [batch_size, passage_length, 1] question_aware_dim += 2 passage_aware_representatins.append(tf.reduce_max(cosine_matrix_transpose, axis=2,keepdims=True))# [batch_size, question_len, 1] passage_aware_representatins.append(tf.reduce_mean(cosine_matrix_transpose, axis=2,keepdims=True))# [batch_size, question_len, 1] passage_aware_dim += 2 if MP_dim>0: if with_max_attentive_match: # max_att word level qa_max_att = cal_max_question_representation(in_question_repres, cosine_matrix)# [batch_size, passage_len, dim] qa_max_att_decomp_params = tf.get_variable("qa_word_max_att_decomp_params", shape=[MP_dim, input_dim], dtype=tf.float32) qa_max_attentive_rep = cal_attentive_matching(in_passage_repres, qa_max_att, qa_max_att_decomp_params)# [batch_size, passage_len, decompse_dim] question_aware_representatins.append(qa_max_attentive_rep) question_aware_dim += MP_dim pa_max_att = cal_max_question_representation(in_passage_repres, cosine_matrix_transpose)# [batch_size, question_len, dim] pa_max_att_decomp_params = tf.get_variable("pa_word_max_att_decomp_params", shape=[MP_dim, input_dim], dtype=tf.float32) pa_max_attentive_rep = cal_attentive_matching(in_question_repres, pa_max_att, pa_max_att_decomp_params)# [batch_size, question_len, decompse_dim] passage_aware_representatins.append(pa_max_attentive_rep) passage_aware_dim += MP_dim with tf.variable_scope('context_MP_matching'): for i in xrange(context_layer_num): # support multiple context layer with tf.variable_scope('layer-{}'.format(i)): with tf.variable_scope('context_represent'): # parameters context_lstm_cell_fw = tf.nn.rnn_cell.BasicLSTMCell(context_lstm_dim) context_lstm_cell_bw = tf.nn.rnn_cell.BasicLSTMCell(context_lstm_dim) if is_training: context_lstm_cell_fw = tf.nn.rnn_cell.DropoutWrapper(context_lstm_cell_fw, output_keep_prob=(1 - dropout_rate)) context_lstm_cell_bw = tf.nn.rnn_cell.DropoutWrapper(context_lstm_cell_bw, output_keep_prob=(1 - dropout_rate)) context_lstm_cell_fw = tf.nn.rnn_cell.MultiRNNCell([context_lstm_cell_fw]) context_lstm_cell_bw = tf.nn.rnn_cell.MultiRNNCell([context_lstm_cell_bw]) # question representation (question_context_representation_fw, question_context_representation_bw), _ = my_rnn.bidirectional_dynamic_rnn( context_lstm_cell_fw, context_lstm_cell_bw, in_question_repres, dtype=tf.float32, sequence_length=question_lengths) # [batch_size, question_len, context_lstm_dim] in_question_repres = tf.concat( axis =2, values = [question_context_representation_fw, question_context_representation_bw]) # passage representation tf.get_variable_scope().reuse_variables() (passage_context_representation_fw, passage_context_representation_bw), _ = my_rnn.bidirectional_dynamic_rnn( context_lstm_cell_fw, context_lstm_cell_bw, in_passage_repres, dtype=tf.float32, sequence_length=passage_lengths) # [batch_size, passage_len, context_lstm_dim] in_passage_repres = tf.concat( axis =2, values = [passage_context_representation_fw, passage_context_representation_bw]) # Multi-perspective matching with tf.variable_scope('left_MP_matching'): (matching_vectors, matching_dim) = match_passage_with_question(passage_context_representation_fw, passage_context_representation_bw, mask, question_context_representation_fw, question_context_representation_bw,question_mask, MP_dim, context_lstm_dim, scope=None, with_full_match=with_full_match, with_maxpool_match=with_maxpool_match, with_attentive_match=with_attentive_match, with_max_attentive_match=with_max_attentive_match) question_aware_representatins.extend(matching_vectors) question_aware_dim += matching_dim with tf.variable_scope('right_MP_matching'): (matching_vectors, matching_dim) = match_passage_with_question(question_context_representation_fw, question_context_representation_bw, question_mask, passage_context_representation_fw, passage_context_representation_bw,mask, MP_dim, context_lstm_dim, scope=None, with_full_match=with_full_match, with_maxpool_match=with_maxpool_match, with_attentive_match=with_attentive_match, with_max_attentive_match=with_max_attentive_match) passage_aware_representatins.extend(matching_vectors) passage_aware_dim += matching_dim question_aware_representatins = tf.concat( axis =2, values = question_aware_representatins) # [batch_size, passage_len, question_aware_dim] passage_aware_representatins = tf.concat( axis =2, values = passage_aware_representatins) # [batch_size, question_len, question_aware_dim] if is_training: question_aware_representatins = tf.nn.dropout(question_aware_representatins, (1 - dropout_rate)) passage_aware_representatins = tf.nn.dropout(passage_aware_representatins, (1 - dropout_rate)) else: question_aware_representatins = tf.multiply(question_aware_representatins, (1 - dropout_rate)) passage_aware_representatins = tf.multiply(passage_aware_representatins, (1 - dropout_rate)) # ======Highway layer====== if with_match_highway: with tf.variable_scope("left_matching_highway"): question_aware_representatins = multi_highway_layer(question_aware_representatins, question_aware_dim,highway_layer_num) with tf.variable_scope("right_matching_highway"): passage_aware_representatins = multi_highway_layer(passage_aware_representatins, passage_aware_dim,highway_layer_num) aggregation_representation = tf.concat([tf.reduce_max(question_aware_representatins,1),tf.reduce_max(passage_aware_representatins,1)],1) aggregation_dim = question_aware_dim+passage_aware_dim # ======Highway layer====== if with_aggregation_highway: with tf.variable_scope("aggregation_highway"): agg_shape = tf.shape(aggregation_representation) batch_size = agg_shape[0] aggregation_representation = tf.reshape(aggregation_representation, [1, batch_size, aggregation_dim]) aggregation_representation = multi_highway_layer(aggregation_representation, aggregation_dim, highway_layer_num) aggregation_representation = tf.reshape(aggregation_representation, [batch_size, aggregation_dim]) return (aggregation_representation, aggregation_dim)
StarcoderdataPython
9713364
<gh_stars>0 import math import time import torch from codebase.engine.train_supernet import SpeedTester from codebase.engine.train_supernet_with_teacher import validate, set_running_statistics from codebase.third_party.spos_ofa.ofa.nas.efficiency_predictor import \ PreResNetFLOPsModel, Mbv3FLOPsModel from codebase.torchutils import logger from codebase.torchutils.distributed import world_size from codebase.torchutils.metrics import ( AccuracyMetric, AverageMetric, EstimatedTimeArrival, ) from codebase.torchutils.common import unwarp_module def train( epoch, network, controller, model, loader, criterion, optimizer, scheduler, loss_lambda, report_freq, num_classes_per_superclass, loss_type="mse" ): controller.train() model.eval() n_superclass = unwarp_module(controller).n_superclass superclass_loader_len = len(loader[0]) loader_len = n_superclass * superclass_loader_len loss_metric = AverageMetric() cross_entropy_metric = AverageMetric() mse_metric = AverageMetric() accuracy_metric = AccuracyMetric(topk=(1, 5)) ETA = EstimatedTimeArrival(loader_len) speed_tester = SpeedTester() logger.info( f"Train start, epoch={epoch:04d}, lr={optimizer.param_groups[0]['lr']:.6f}" ) permutation = torch.randperm(loader_len) for iter_ in range(loader_len): superclass_id = int(permutation[iter_] / superclass_loader_len) data_idx = int(permutation[iter_] % superclass_loader_len) inputs, targets = loader[superclass_id][data_idx] inputs, targets = inputs.cuda(), targets.cuda() superclass_id = inputs.new_tensor([superclass_id], dtype=torch.long) constraint = unwarp_module(controller).sample_constraint() if network == "preresnet20": _, cum_indicators = controller([constraint], superclass_id) logits = model(inputs, cum_indicators) flops = unwarp_module(model).get_flops( cum_indicators, num_class_per_superclass=num_classes_per_superclass ) / 1e6 elif "mobilenetv3" in network: _, _, _, depth_cum_indicators, ratio_cum_indicators, kernel_cum_size_indicators = controller([constraint], superclass_id) logits = model(inputs, depth_cum_indicators, ratio_cum_indicators, kernel_cum_size_indicators) flops = unwarp_module(model).get_flops( depth_cum_indicators, ratio_cum_indicators, kernel_cum_size_indicators, num_class_per_superclass=num_classes_per_superclass ) / 1e6 if loss_type == "mse": mse_loss = (flops - constraint) * (flops - constraint) elif loss_type == "mse_half": if flops <= constraint: mse_loss = 0 else: mse_loss = (flops - constraint) * (flops - constraint) else: raise NotImplementedError cross_entropy = criterion(logits, targets) loss = cross_entropy + loss_lambda * mse_loss optimizer.zero_grad() loss.backward() optimizer.step() loss_metric.update(loss) cross_entropy_metric.update(cross_entropy) mse_metric.update(mse_loss) accuracy_metric.update(logits, targets) ETA.step() speed_tester.update(inputs) if iter_ % report_freq == 0 or iter_ == loader_len - 1: logger.info( ", ".join( [ "Train", f"epoch={epoch:04d}", f"iter={iter_:05d}/{loader_len:05d}", f"speed={speed_tester.compute() * world_size():.2f} images/s", f"loss={loss_metric.compute():.4f}", f"ce_loss={cross_entropy_metric.compute():.4f}", f"mse_loss={mse_metric.compute():.4f}", f"top1-accuracy={accuracy_metric.at(1).rate * 100:.2f}%", f"top5-accuracy={accuracy_metric.at(5).rate * 100:.2f}%", f"ETA={ETA.remaining_time}", f"cost={ETA.cost_time}" if iter_ == loader_len - 1 else "", ] ) ) speed_tester.reset() if scheduler is not None: scheduler.step() return ( loss_metric.compute(), cross_entropy_metric.compute(), mse_metric.compute(), (accuracy_metric.at(1).rate, accuracy_metric.at(5).rate), ) def test_time( network, controller, model, constraint, constraint_num, num_superclass ): controller.eval() model.eval() # latency_constraints = list(range(15, 36, 5)) st = time.time() repeat_num = 100 superclass_id = list(range(num_superclass)) * constraint_num superclass_id = torch.tensor(superclass_id, dtype=torch.long) # print(superclass_id.shape) for i in range(repeat_num): if network == "preresnet20": width_mults, cum_indicators = controller([constraint] * num_superclass * constraint_num, superclass_id) elif "mobilenetv3" in network: depths, ratios, ks, depth_cum_indicators, ratio_cum_indicators, kernel_cum_size_indicators = controller( [constraint] * num_superclass * constraint_num, superclass_id ) ed = time.time() logger.info(f"Search in {(ed - st) / repeat_num:.6f} seconds") def compute_tau(initial_tau, decay_factor, epoch): return initial_tau * math.exp(-decay_factor * epoch) def test_flops( network, controller, model, test_model, num_superclass, num_classes_per_superclass, image_size ): controller.eval() model.eval() test_model.eval() latency_constraints = list(range(150, 550, 50)) for superclass_id in range(num_superclass): superclass_id = torch.tensor([superclass_id], dtype=torch.long).cuda() for constraint in latency_constraints: if network == "preresnet20": width_mults, cum_indicators = controller([constraint], superclass_id) model_flops = unwarp_module(model).get_flops( cum_indicators, num_class_per_superclass=num_classes_per_superclass) / 1e6 unwarp_module(model).set_active_subnet(d=[1, 1, 1], w=width_mults) arch_dict = { 'd': [1, 1, 1], 'w': width_mults, 'image_size': image_size, 'superclass_id': superclass_id } efficiency_predictor = PreResNetFLOPsModel( model, num_classes_per_superclass=num_classes_per_superclass ) elif "mobilenetv3" in network: depths, ratios, ks, depth_cum_indicators, ratio_cum_indicators, kernel_cum_size_indicators = controller( [constraint], superclass_id) model_flops = unwarp_module(model).get_flops( depth_cum_indicators, ratio_cum_indicators, kernel_cum_size_indicators, num_class_per_superclass=num_classes_per_superclass ) / 1e6 unwarp_module(model).set_active_subnet(ks, ratios, depths) arch_dict = { 'ks': ks, 'e': ratios, 'd': depths, 'image_size': image_size, 'superclass_id': superclass_id } efficiency_predictor = Mbv3FLOPsModel( model, num_classes_per_superclass=num_classes_per_superclass ) flops = efficiency_predictor.get_efficiency(arch_dict) logger.info(f"FLOPs 1: {model_flops.item()}M, FLOPs 2: {flops}M") # assert False def sample_arch( network, controller, model, num_superclass, num_classes_per_superclass, constraint_low, constraint_high, interval, image_size ): controller.eval() model.eval() if network == "preresnet20": latency_constraints = list(range(15, 36, 5)) elif "mobilenetv3" in network: latency_constraints = list(range(constraint_low, constraint_high + 1, interval)) # for superclass_id in range(num_superclass): superclass_id = 0 superclass_id = torch.tensor([superclass_id], dtype=torch.long).cuda() # for constraint in latency_constraints: constraint = latency_constraints[0] flops_list = [] i = 0 for i in range(10000): if network == "preresnet20": width_mults, cum_indicators = controller([constraint], superclass_id) # model_flops = model.get_flops(cum_indicators) / 1e6 unwarp_module(model).set_active_subnet(d=[1, 1, 1], w=width_mults) arch_dict = { 'd': [1, 1, 1], 'w': width_mults, 'image_size': image_size, 'superclass_id': superclass_id } efficiency_predictor = PreResNetFLOPsModel( model, num_classes_per_superclass=num_classes_per_superclass ) elif "mobilenetv3" in network: depths, ratios, ks, depth_cum_indicators, ratio_cum_indicators, kernel_cum_size_indicators = controller( [constraint], superclass_id) # model_flops = model.get_flops(depth_cum_indicators, ratio_cum_indicators, # kernel_cum_size_indicators) / 1e6 unwarp_module(model).set_active_subnet(ks, ratios, depths) arch_dict = { 'ks': ks, 'e': ratios, 'd': depths, 'image_size': image_size, 'superclass_id': superclass_id } efficiency_predictor = Mbv3FLOPsModel( model, num_classes_per_superclass=num_classes_per_superclass ) flops = efficiency_predictor.get_efficiency(arch_dict) flops_list.append(flops) return flops_list def test( network, controller, model, loader, bn_subset_loader, num_superclass, num_classes_per_superclass, constraint_low, constraint_high, interval, image_size ): controller.eval() model.eval() if network == "preresnet20": latency_constraints = list(range(15, 36, 5)) elif "mobilenetv3" in network: latency_constraints = list(range(int(constraint_low), int(constraint_high) + 1, int(interval))) superclass_acc_list = [] superclass_flops_list = [] superclass_arch_dict_list = [] acc_metric = AverageMetric() acc5_metric = AverageMetric() mse_metric = AverageMetric() for superclass_id in range(num_superclass): # superclass_id = 0 superclass_id = torch.tensor([superclass_id], dtype=torch.long).cuda() acc_list = [] flops_list = [] arch_list = [] for constraint in latency_constraints: acc_sub_list = [] flops_sub_list = [] arch_dict_sub_list = [] i = 0 while len(acc_sub_list) < 10: # for i in range(10): if network == "preresnet20": width_mults, cum_indicators = controller([constraint], superclass_id) # model_flops = model.get_flops(cum_indicators) / 1e6 unwarp_module(model).set_active_subnet(d=[1, 1, 1], w=width_mults) arch_dict = { 'd': [1, 1, 1], 'w': width_mults, 'image_size': image_size, 'superclass_id': superclass_id } efficiency_predictor = PreResNetFLOPsModel( model, num_classes_per_superclass=num_classes_per_superclass ) elif "mobilenetv3" in network: depths, ratios, ks, depth_cum_indicators, ratio_cum_indicators, kernel_cum_size_indicators = controller( [constraint], superclass_id) # model_flops = model.get_flops(depth_cum_indicators, ratio_cum_indicators, # kernel_cum_size_indicators) / 1e6 unwarp_module(model).set_active_subnet(ks, ratios, depths) arch_dict = { 'ks': ks, 'e': ratios, 'd': depths, 'image_size': image_size, 'superclass_id': superclass_id } efficiency_predictor = Mbv3FLOPsModel( model, num_classes_per_superclass=num_classes_per_superclass ) flops = efficiency_predictor.get_efficiency(arch_dict) if flops > constraint: continue mse_loss = (flops - constraint) * (flops - constraint) set_running_statistics(model, bn_subset_loader) test_loss_list, test_masked_total_acc1, test_masked_total_acc5, test_masked_acc1, test_masked_acc5 = validate( model, loader, num_superclass) superclass_acc1 = test_masked_acc1[superclass_id.item()].rate superclass_acc5 = test_masked_acc5[superclass_id.item()].rate mse_metric.update(mse_loss) acc_metric.update(superclass_acc1) acc5_metric.update(superclass_acc5) # logger.info( # f"Superclass id: {superclass_id}, Constraint: {constraint}, FLOPs 1: {model_flops}, FLOPs 2: {flops}") logger.info(f"Superclass id: {superclass_id.item()}, Constraint: {constraint}, FLOPs: {flops}, {i}-th") acc_sub_list.append(superclass_acc1 * 100) flops_sub_list.append(flops) arch_dict_sub_list.append(arch_dict) i += 1 max_acc = max(acc_sub_list) max_index = acc_sub_list.index(max_acc) acc_list.append(max_acc) flops_list.append(flops_sub_list[max_index]) arch_list.append(arch_dict_sub_list[max_index]) logger.info(f"Acc list: {acc_list}") logger.info(f"FLOPs list: {flops_list}") superclass_acc_list.append(acc_list) superclass_flops_list.append(flops_list) superclass_arch_dict_list.append(arch_list) return mse_metric.compute(), acc_metric.compute(), acc5_metric.compute(), superclass_acc_list, superclass_flops_list, superclass_arch_dict_list
StarcoderdataPython
9648278
<reponame>zarif007/Exp-Dashboard from django.urls import path from django.views.decorators.csrf import csrf_exempt from .views import RegistrationView, UsernameValidation, EmailValidation, \ PasswordValidation, VerificationView, LoginView, LogoutView urlpatterns = [ path('register', RegistrationView.as_view(), name='register'), path('login', LoginView.as_view(), name='login'), path('logout', LogoutView.as_view(), name='logout'), path('validate-username', csrf_exempt(UsernameValidation.as_view()), name='validate_username'), path('validate-email', csrf_exempt(EmailValidation.as_view()), name='validate_email'), path('validate-password', csrf_exempt(PasswordValidation.as_view()), name='validate_password'), path('active/<uidb64>/<token>', csrf_exempt(VerificationView.as_view()), name='activate'), ]
StarcoderdataPython
11274880
<reponame>Kreidl/pymailtojira<gh_stars>0 import jira from jira import JIRA #Authentication Method def authenticate(username, password): basic_auth=(username, password) return basic_auth #Create a JIRA Object which can be used later on def createJIRAObject(jiraURL, username, password): jira = JIRA(server=jiraURL, basic_auth=authenticate(username, password)) return jira #Creates a JIRA Issues and returns it def createjiraIssue(jiraURL, username, password, projectKey, summary, description, issueTypeName): jira = createJIRAObject(jiraURL, username, password) issue_dict = { 'project': {'key': projectKey}, 'summary': summary, 'description': description, 'issuetype': {'name': issueTypeName}, 'assignee': {'name': username} } new_issue = jira.create_issue(fields=issue_dict) return new_issue def add_attachment(jiraURL, username, password, issue, URL): jira = createJIRAObject(jiraURL, username, password) return jira.add_attachment(issue=issue, attachment=URL)
StarcoderdataPython
8189261
<reponame>Erernaen/ecchat<filename>urwidext.py<gh_stars>0 #!/usr/bin/env python3 # coding: UTF-8 import urwid ################################################################################ ## urwid extension classes ##################################################### ################################################################################ class GridFlowPlus(urwid.GridFlow): def keypress(self, size, key): if isinstance(key, str): if key in ('tab', ): if self.focus_position == len(self.contents) - 1: self.focus_position = 0 else: self.focus_position += 1 return if key in ('Y', 'y', 'O', 'o'): # Yes / OK self.focus_position = 0 return super().keypress(size, 'enter') if key in ('esc', 'N', 'n', 'C', 'c'): # ESCAPE / No / Cancel self.focus_position = 1 return super().keypress(size, 'enter') return super().keypress(size, key) ################################################################################ class YesNoDialog(urwid.WidgetWrap): signals = ['commit'] def __init__(self, text, loop): self.loop = loop self.parent = self.loop.widget self.body = urwid.Filler(urwid.Text(text)) self.frame = urwid.Frame(self.body, focus_part = 'body') self.view = urwid.Padding(self.frame, ('fixed left', 2), ('fixed right' , 2)) self.view = urwid.Filler (self.view, ('fixed top' , 1), ('fixed bottom', 1)) self.view = urwid.LineBox(self.view) self.view = urwid.Overlay(self.view, self.parent, 'center', len(text) + 6, 'middle', 7) self.frame.footer = GridFlowPlus([urwid.AttrMap(urwid.Button('Yes', self.on_yes), 'btn_nm', 'btn_hl'), urwid.AttrMap(urwid.Button('No' , self.on_no ), 'btn_nm', 'btn_hl')], 7, 3, 1, 'center') self.frame.focus_position = 'footer' super().__init__(self.view) ############################################################################ def on_yes(self, *args, **kwargs): self.loop.widget = self.parent urwid.emit_signal(self, 'commit') ############################################################################ def on_no(self, *args, **kwargs): self.loop.widget = self.parent ############################################################################ def show(self): self.loop.widget = self.view ################################################################################ class PassphraseEdit(urwid.Edit): def __init__(self, on_enter, on_cancel, on_tab, **kwargs): self.on_enter = on_enter self.on_cancel = on_cancel self.on_tab = on_tab super().__init__(**kwargs) ############################################################################ def keypress(self, size, key): if isinstance(key, str): if key in ('enter', ): self.on_enter() return if key in ('esc', ): self.on_cancel() return if key in ('tab', ): self.on_tab() return return super().keypress(size, key) ################################################################################ class PassphraseDialog(urwid.WidgetWrap): signals = ['commit'] def __init__(self, text, loop): self.text = text self.loop = loop self.parent = self.loop.widget self.label = urwid.Text(self.text) self.input = PassphraseEdit(self.on_ok, self.on_cancel, self.on_tab, multiline=False, wrap = 'clip', allow_tab = False, mask='*') self.body = urwid.Pile([urwid.Filler(self.label), urwid.Filler(urwid.AttrMap(self.input, 'header'))], 1) self.frame = urwid.Frame(self.body, focus_part = 'body') self.view = urwid.Padding(self.frame, ('fixed left', 2), ('fixed right' , 2)) self.view = urwid.Filler (self.view, ('fixed top' , 1), ('fixed bottom', 1)) self.view = urwid.LineBox(self.view) self.view = urwid.Overlay(self.view, self.parent, 'center', len(text) + 6, 'middle', 9) self.frame.footer = GridFlowPlus([urwid.AttrMap(urwid.Button(' OK ', self.on_ok), 'btn_nm', 'btn_hl'), urwid.AttrMap(urwid.Button('Cancel' , self.on_cancel), 'btn_nm', 'btn_hl')], 10, 3, 1, 'center') self.frame.focus_position = 'body' super().__init__(self.view) ############################################################################ def on_ok(self, *args, **kwargs): self.loop.widget = self.parent urwid.emit_signal(self, 'commit', True, self.input.get_edit_text()) ############################################################################ def on_cancel(self, *args, **kwargs): self.loop.widget = self.parent urwid.emit_signal(self, 'commit', False, '') ############################################################################ def on_tab(self, *args, **kwargs): self.frame.focus_position = 'footer' ############################################################################ def show(self): self.loop.widget = self.view ################################################################################ class MessageListBox(urwid.ListBox): def __init__(self, body): super().__init__(body) ############################################################################ def render(self, size, *args, **kwargs): self.last_render_size = size return super().render(size, *args, **kwargs) ############################################################################ def key(self, key): super().keypress(self.last_render_size, key) ############################################################################ def mouse_event(self, size, event, button, col, row, focus): if button in (4, 5): # mouse wheel self.key({4 : 'up', 5 : 'down'} [button]) ################################################################################ class FrameFocus(urwid.Frame): def __init__(self, body, header=None, footer=None, focus_part='body'): self.focus_part = focus_part super().__init__(body, header, footer, focus_part) ############################################################################ def mouse_event(self, size, event, button, col, row, focus): if button in (4, 5): # mouse wheel super().mouse_event(size, event, button, col, row, focus) self.set_focus(self.focus_part) ################################################################################ class MessageWalker(urwid.SimpleListWalker): def __init__(self): self.qual = [] self.text = [] self.uuid = [] self.recallOffset = 0 self.uuidAtOffset = '' super().__init__([]) ############################################################################ def append(self, qual, text, uuid): self.qual.append(qual) self.text.append(text) self.uuid.append(uuid) self.recallOffset = 0 self.uuidAtOffset = '' super().append(urwid.Text(text)) ############################################################################ def replace(self, qual, text, uuid): self.recallOffset = 0 self.uuidAtOffset = '' for index, _uuid in enumerate(self.uuid): if uuid == _uuid: assert self.qual[index] == qual self[index].set_text(text) self.text[index] = text break ############################################################################ def set_markup_style(self, uuid, element, style): for index, _uuid in enumerate(self.uuid): if uuid == _uuid: markup = self.text[index] (old_style, text) = markup[element] markup[element] = (style, text) self[index].set_text(markup) self.text[index] = markup break ############################################################################ def recall(self, qual, element, direction): text = '' self.recallOffset = min(0, self.recallOffset + direction) if self.recallOffset < 0: scan_index = len(self) - 1 qual_found = 0 while scan_index >= 0: if self.qual[scan_index] == qual: self.uuidAtOffset = self.uuid[scan_index] markup = self.text[scan_index] (style, text) = markup[element] qual_found += 1 if qual_found + self.recallOffset == 0: self.set_focus(scan_index) break scan_index -= 1 if qual_found + self.recallOffset < 0: self.recallOffset += 1 return text ############################################################################ def recall_uuid(self): return self.uuidAtOffset ################################################################################
StarcoderdataPython
8019149
<filename>fhir/resources/DSTU2/namingsystem.py #!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 1.0.2.7202 (http://hl7.org/fhir/StructureDefinition/NamingSystem) on 2019-05-14. # 2019, SMART Health IT. from . import (backboneelement, codeableconcept, contactpoint, domainresource, fhirdate, fhirreference, period) class NamingSystem(domainresource.DomainResource): """ System of unique identification. A curated namespace that issues unique symbols within that namespace for the identification of concepts, people, devices, etc. Represents a "System" used within the Identifier and Coding data types. """ resource_name = "NamingSystem" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.contact = None """ Contact details of the publisher. List of `NamingSystemContact` items (represented as `dict` in JSON). """ self.date = None """ Publication Date(/time). Type `FHIRDate` (represented as `str` in JSON). """ self.description = None """ What does naming system identify?. Type `str`. """ self.kind = None """ codesystem | identifier | root. Type `str`. """ self.name = None """ Human-readable label. Type `str`. """ self.publisher = None """ Name of the publisher (Organization or individual). Type `str`. """ self.replacedBy = None """ Use this instead. Type `FHIRReference` referencing `NamingSystem` (represented as `dict` in JSON). """ self.responsible = None """ Who maintains system namespace?. Type `str`. """ self.status = None """ draft | active | retired. Type `str`. """ self.type = None """ e.g. driver, provider, patient, bank etc.. Type `CodeableConcept` (represented as `dict` in JSON). """ self.uniqueId = None """ Unique identifiers used for system. List of `NamingSystemUniqueId` items (represented as `dict` in JSON). """ self.usage = None """ How/where is it used. Type `str`. """ self.useContext = None """ Content intends to support these contexts. List of `CodeableConcept` items (represented as `dict` in JSON). """ super(NamingSystem, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(NamingSystem, self).elementProperties() js.extend( [ ("contact", "contact", NamingSystemContact, True, None, False), ("date", "date", fhirdate.FHIRDate, False, None, True), ("description", "description", str, False, None, False), ("kind", "kind", str, False, None, True), ("name", "name", str, False, None, True), ("publisher", "publisher", str, False, None, False), ( "replacedBy", "replacedBy", fhirreference.FHIRReference, False, None, False, ), ("responsible", "responsible", str, False, None, False), ("status", "status", str, False, None, True), ("type", "type", codeableconcept.CodeableConcept, False, None, False), ("uniqueId", "uniqueId", NamingSystemUniqueId, True, None, True), ("usage", "usage", str, False, None, False), ( "useContext", "useContext", codeableconcept.CodeableConcept, True, None, False, ), ] ) return js class NamingSystemContact(backboneelement.BackboneElement): """ Contact details of the publisher. Contacts to assist a user in finding and communicating with the publisher. """ resource_name = "NamingSystemContact" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.name = None """ Name of a individual to contact. Type `str`. """ self.telecom = None """ Contact details for individual or publisher. List of `ContactPoint` items (represented as `dict` in JSON). """ super(NamingSystemContact, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(NamingSystemContact, self).elementProperties() js.extend( [ ("name", "name", str, False, None, False), ("telecom", "telecom", contactpoint.ContactPoint, True, None, False), ] ) return js class NamingSystemUniqueId(backboneelement.BackboneElement): """ Unique identifiers used for system. Indicates how the system may be identified when referenced in electronic exchange. """ resource_name = "NamingSystemUniqueId" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.period = None """ When is identifier valid?. Type `Period` (represented as `dict` in JSON). """ self.preferred = None """ Is this the id that should be used for this type. Type `bool`. """ self.type = None """ oid | uuid | uri | other. Type `str`. """ self.value = None """ The unique identifier. Type `str`. """ super(NamingSystemUniqueId, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(NamingSystemUniqueId, self).elementProperties() js.extend( [ ("period", "period", period.Period, False, None, False), ("preferred", "preferred", bool, False, None, False), ("type", "type", str, False, None, True), ("value", "value", str, False, None, True), ] ) return js
StarcoderdataPython
328675
#!/usr/bin/env python """ Takes a cifti map ('dscalar.nii') and outputs a csv of results Usage: ciftify_statclust_report [options] <func.dscalar.nii> Arguments: <func.dscalar.nii> Input map. Options: --min-threshold MIN the largest value [default: -2.85] to consider for being a minimum --max-threshold MAX the smallest value [default: 2.85] to consider for being a maximum --area-threshold MIN threshold [default: 20] for surface cluster area, in mm^2 --surface-distance MM minimum distance in mm [default: 20] between extrema of the same type. --volume-distance MM minimum distance in mm [default: 20] between extrema of the same type. --outputbase prefix Output prefix (with path) to output documents --no-cluster-dlabel Do not output a dlabel map of the clusters --output-peaks Also output an additional output of peak locations --left-surface GII Left surface file (default is HCP S1200 Group Average) --right-surface GII Right surface file (default is HCP S1200 Group Average) --left-surf-area GII Left surface vertex areas file (default is HCP S1200 Group Average) --right-surf-area GII Right surface vertex areas file (default is HCP S1200 Group Average) --debug Debug logging -n,--dry-run Dry run -h, --help Prints this message DETAILS Note: at the moment generates separate outputs for surface. Uses -cifti-separate in combination with FSL's clusterize to get information from the subcortical space. Outputs a cluster report csv with the following headings: + clusterID: Integer for the cluster this peak is from (corresponds to dlabel.nii) + cluster_name: the cluster label + by default this will be "LABEL_<clusterID>" but this be changed in the .dlabel.nii file using connectome-workbench + mean_value: the average value for this cluster within the input dscalar.nii map + area: the surface area of the cluster (on the specified surface) + DKT_overlap: a list of DKT freesurfer anatomical atlas (aparc) atlas labels that overlap with this cluster and the percent overlap of each label + Yeo7_overlap: a list of the Yeo et al 2011 7 network labels that overlap with this cluster and the percent overlap of each label + MMP_overlap: The labels from the Glasser et al (2016) Multi-Modal Parcellation that overlap with this cluster and the percent overlap of each label If the "--output-peaks" flag is indicated, an addtional table will be output with several headings: + clusterID: Integer for the cluster this peak is from (corresponds to dlabel.nii) + hemisphere: Hemisphere the peak is in (L or R) + vertex: The vertex id + x,y,z: The nearest x,y,z coordinates to the vertex + value: The intensity (value) at that vertex in the func.dscalar.nii + DKT: The label from the freesurfer anatomical atlas (aparc) at the vertex + DKT_overlap: The proportion of the cluster (clusterID) that overlaps with the DKT atlas label + Yeo7: The label from the Yeo et al 2011 7 network atlas at this peak vertex + Yeo7_overlap: The proportion of the cluster (clusterID) that overlaps with this Yeo7 network label + MMP: The label from the Glasser et al (2016) Multi-Modal Parcellation + MMP_overlap: The proportion of the cluster (clusterID) that overlaps with the MMP atlas label If no surfaces of surface area files are given. The midthickness surfaces from the HCP S1200 Group Mean will be used, as well as it's vertex-wise surface area infomation. Default name for the output csv taken from the input file. i.e. func.dscalar.nii --> func_peaks.csv Unless the '--no-cluster-dlabel' flag is given, a map of the clusters with be be written to the same folder as the outputcsv to aid in visualication of the results. This dlable map with have a name ending in '_clust.dlabel.nii'. (i.e. func_peaks.csv & func_clust.dlabel.nii) Atlas References: Yeo, BT. et al. 2011. 'The Organization of the Human Cerebral Cortex Estimated by Intrinsic Functional Connectivity.' Journal of Neurophysiology 106 (3): 1125-65. Desikan, RS.et al. 2006. 'An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest.' NeuroImage 31 (3): 968-80. Glasser, MF. et al. 2016. 'A Multi-Modal Parcellation of Human Cerebral Cortex.' Nature 536 (7615): 171-78. Written by <NAME>, Last updated August 27, 2017 """ from docopt import docopt import os, sys import numpy as np import pandas as pd import logging import logging.config import ciftify.io import ciftify.report import ciftify.utils from ciftify.meants import NibInput config_path = os.path.join(os.path.dirname(ciftify.config.find_ciftify_global()), 'bin', "logging.conf") logging.config.fileConfig(config_path, disable_existing_loggers=False) logger = logging.getLogger(os.path.basename(__file__)) def load_LR_vertex_areas(surf_settings): ''' loads the vertex areas and stacks the dataframes''' surf_va_L = ciftify.io.load_gii_data(surf_settings.L.vertex_areas) surf_va_R = ciftify.io.load_gii_data(surf_settings.R.vertex_areas) surf_va_LR = np.vstack((surf_va_L, surf_va_R)) return(surf_va_LR) def report_atlas_overlap(df, label_data, atlas, surf_va_LR, min_percent_overlap = 5): # read the atlas atlas_data, atlas_dict = ciftify.io.load_LR_label(atlas['path'], int(atlas['map_number'])) # write an overlap report to the outputfile o_col = '{}_overlap'.format(atlas['name']) df[o_col] = "" for pd_idx in df.index.get_values(): df.loc[pd_idx, o_col] = ciftify.report.get_label_overlap_summary( pd_idx, label_data, atlas_data, atlas_dict, surf_va_LR, min_percent_overlap = min_percent_overlap) return(df) def run_ciftify_dlabel_report(arguments, tmpdir): dscalar_in = NibInput(arguments['<func.dscalar.nii>']) surf_distance = arguments['--surface-distance'] outputbase = arguments['--outputbase'] dont_output_clusters = arguments['--no-cluster-dlabel'] output_peaktable = arguments['--output-peaks'] surf_settings = ciftify.report.CombinedSurfaceSettings(arguments, tmpdir) atlas_settings = ciftify.report.define_atlas_settings() ## if not outputname is given, create it from the input dscalar map if not outputbase: outputbase = os.path.join(os.path.dirname(dscalar_in.path), dscalar_in.base) ciftify.utils.check_output_writable(outputbase, exit_on_error = True) clusters_dscalar = clusterise_dscalar_input(dscalar_in.path, arguments, surf_settings, tmpdir) if dont_output_clusters: cluster_dlabel = os.path.join(tmpdir, 'clust.dlabel.nii') else: cluster_dlabel = '{}_clust.dlabel.nii'.format(outputbase) empty_labels = os.path.join(tmpdir, 'empty_labels.txt') ciftify.utils.run('touch {}'.format(empty_labels)) ciftify.utils.run(['wb_command', '-cifti-label-import', clusters_dscalar, empty_labels, cluster_dlabel]) ## load the data label_data, label_dict = ciftify.io.load_LR_label(cluster_dlabel, map_number = 1) ## define the outputcsv outputcsv = '{}_statclust_report.csv'.format(outputbase) logger.info('Output table: {}'.format(outputcsv)) ## load the vertex areas surf_va_LR = load_LR_vertex_areas(surf_settings) ## assert that the dimensions match if not (label_data.shape[0] == surf_va_LR.shape[0]): logger.error('label file vertices {} not equal to vertex areas {}' ''.format(label_data.shape[0], surf_va_LR.shape[0])) sys.exit(1) ## use the label dict to start the report dataframe df = pd.DataFrame.from_dict(label_dict, orient = "index") df['label_idx'] = df.index df = df.rename(index=str, columns={0: "label_name"}) # calculate a column of the surface area for row ROIs df['area'] = -999 for pd_idx in df.index.get_values(): df.loc[pd_idx, 'area'] = ciftify.report.calc_cluster_area(pd_idx, label_data, surf_va_LR) for atlas in atlas_settings.values(): df = report_atlas_overlap(df, label_data, atlas, surf_va_LR, min_percent_overlap = 5) df.to_csv(outputcsv) if output_peaktable: write_statclust_peaktable(dscalar_in.path, clusters_dscalar, outputbase, arguments, surf_settings, atlas_settings) class ThresholdArgs(object): '''little class that holds the user aguments about thresholds''' def __init__(self, arguments): self.max = arguments([]) area_threshold = arguments['--area-threshold'] self.volume_distance = arguments['--volume-distance'] min_threshold = arguments['--min-threshold'] max_threshold = arguments['--max-threshold'] area_threshold = arguments['--area-thratlas_settingseshold'] def clusterise_dscalar_input(data_file, arguments, surf_settings, tmpdir): '''runs wb_command -cifti-find-clusters twice returns the path to the output ''' ## also run clusterize with the same settings to get clusters pcluster_dscalar = os.path.join(tmpdir,'pclusters.dscalar.nii') wb_cifti_clusters(data_file, pcluster_dscalar, surf_settings, arguments['--max-threshold'], arguments['--area-threshold'], less_than = False, starting_label=1) ## load both cluster files to determine the max value pos_clust_data = ciftify.io.load_concat_cifti_surfaces(pcluster_dscalar) max_pos = int(np.max(pos_clust_data)) ## now get the negative clusters ncluster_dscalar = os.path.join(tmpdir,'nclusters.dscalar.nii') wb_cifti_clusters(data_file, ncluster_dscalar, surf_settings, arguments['--min-threshold'], arguments['--area-threshold'], less_than = True, starting_label=max_pos + 1) ## add the positive and negative together to make one cluster map clusters_out = os.path.join(tmpdir,'clusters.dscalar.nii') ciftify.utils.run(['wb_command', '-cifti-math "(x+y)"', clusters_out, '-var','x',pcluster_dscalar, '-var','y',ncluster_dscalar]) return clusters_out def wb_cifti_clusters(input_cifti, output_cifti, surf_settings, value_threshold, minimun_size,less_than, starting_label=1): '''runs wb_command -cifti-find-clusters''' wb_arglist = ['wb_command', '-cifti-find-clusters', input_cifti, str(value_threshold), str(minimun_size), str(value_threshold), str(minimun_size), 'COLUMN', output_cifti, '-left-surface', surf_settings.L.surface, '-corrected-areas', surf_settings.L.vertex_areas, '-right-surface', surf_settings.R.surface, '-corrected-areas', surf_settings.R.vertex_areas, '-start', str(starting_label)] if less_than : wb_arglist.append('-less-than') cinfo = ciftify.io.cifti_info(input_cifti) if cinfo['maps_to_volume']: wb_arglist.append('-merged-volume') ciftify.utils.run(wb_arglist) def write_statclust_peaktable(data_file, clusters_dscalar, outputbase, arguments, surf_settings, atlas_settings): '''runs the old peak table functionality Parameters ---------- data_file : filepath path to the dscalar map input clusters_dscalar : filepath path to the cluster file created with same settings outputbase : the prefix for the outputfile arguments : dict the user args dictionary to pull the thresholds from surf_settings : dict the dictionary of paths to the surface files, created by ciftify.report.CombinedSurfaceSettings altas_settings : dict dictionary of paths and settings related to the atlases to use for overlaps comparison. Created by ciftify.report.define_atlas_settings() Outputs ------- writes a csv to <outputbase>_cortex_peaks.csv ''' with ciftify.utils.TempDir() as ex_tmpdir: ## run FSL's cluster on the subcortical bits ## now to run FSL's cluster on the subcortical bits cinfo = ciftify.io.cifti_info(data_file) if cinfo['maps_to_volume']: subcortical_vol = os.path.join(ex_tmpdir, 'subcortical.nii.gz') ciftify.utils.run(['wb_command', '-cifti-separate', data_file, 'COLUMN', '-volume-all', subcortical_vol]) fslcluster_cmd = ['cluster', '--in={}'.format(subcortical_vol), '--thresh={}'.format(arguments['--max-threshold']), '--peakdist={}'.format(arguments['--volume-distance'])] peak_table = ciftify.utils.get_stdout(fslcluster_cmd) with open("{}_subcortical_peaks.csv".format(outputbase), "w") as text_file: text_file.write(peak_table.replace('/t',',')) else: logger.info('No subcortical volume data in {}'.format(data_file)) ## run wb_command -cifti-extrema to find the peak locations extrema_dscalar = os.path.join(ex_tmpdir,'extrema.dscalar.nii') ciftify.utils.run(['wb_command','-cifti-extrema', data_file, str(arguments['--surface-distance']), str(arguments['--volume-distance']), 'COLUMN', extrema_dscalar, '-left-surface', surf_settings.L.surface, '-right-surface', surf_settings.R.surface, '-threshold', str(arguments['--min-threshold']), str(arguments['--max-threshold'])]) ## multiply the cluster labels by the extrema to get the labeled exteama lab_extrema_dscalar = os.path.join(ex_tmpdir,'lab_extrema.dscalar.nii') ciftify.utils.run(['wb_command', '-cifti-math "(abs(x*y))"', lab_extrema_dscalar, '-var','x',clusters_dscalar, '-var','y',extrema_dscalar]) ## run left and right dfs... then concatenate them dfL = build_hemi_results_df(surf_settings.L, atlas_settings, data_file, lab_extrema_dscalar, clusters_dscalar) dfR = build_hemi_results_df(surf_settings.R, atlas_settings, data_file, lab_extrema_dscalar, clusters_dscalar) df = dfL.append(dfR, ignore_index = True) ## write the table out to the outputcsv output_columns = ['clusterID','hemisphere','vertex', 'peak_value', 'area'] decimals_out = {"clusterID":0, 'peak_value':3, 'area':0} for atlas in atlas_settings.keys(): atlas_name = atlas_settings[atlas]['name'] output_columns.append(atlas_name) output_columns.append('{}_overlap'.format(atlas_name)) decimals_out['{}_overlap'.format(atlas_name)] = 3 df = df.round(decimals_out) df.to_csv("{}_cortex_peaks.csv".format(outputbase), columns = output_columns,index=False) def build_hemi_results_df(surf_settings, atlas_settings, input_dscalar, extreama_dscalar, clusters_dscalar): ## read in the extrema file from above extrema_array = ciftify.io.load_hemisphere_data(extreama_dscalar, surf_settings.wb_structure) vertices = np.nonzero(extrema_array)[0] # indices - vertex id for peaks in hemisphere ## read in the original data for the value column input_data_array = ciftify.io.load_hemisphere_data(input_dscalar, surf_settings.wb_structure) ## load both cluster indices clust_array = ciftify.io.load_hemisphere_data(clusters_dscalar, surf_settings.wb_structure) ## load the coordinates coords = ciftify.io.load_surf_coords(surf_settings.surface) surf_va = ciftify.io.load_gii_data(surf_settings.vertex_areas) ## put all this info together into one pandas dataframe df = pd.DataFrame({"clusterID": np.reshape(extrema_array[vertices],(len(vertices),)), "hemisphere": surf_settings.hemi, "vertex": vertices, 'peak_value': [round(x,3) for x in np.reshape(input_data_array[vertices],(len(vertices),))]}) ## look at atlas overlap for atlas in atlas_settings.keys(): df = calc_atlas_overlap(df, surf_settings.wb_structure, clust_array, surf_va, atlas_settings[atlas]) return(df) def calc_atlas_overlap(df, wb_structure, clust_label_array, surf_va, atlas_settings): ''' calculates the surface area column of the peaks table needs hemisphere specific inputs ''' ## load atlas atlas_label_array, atlas_dict = ciftify.io.load_hemisphere_labels(atlas_settings['path'], wb_structure, map_number = atlas_settings['map_number']) atlas_prefix = atlas_settings['name'] ## create new cols to hold the data df[atlas_prefix] = pd.Series('not_calculated', index = df.index) overlap_col = '{}_overlap'.format(atlas_prefix) df[overlap_col] = pd.Series(-99.0, index = df.index) for pd_idx in df.index.tolist(): ## atlas interger label is the integer at the vertex atlas_label = atlas_label_array[df.loc[pd_idx, 'vertex']] ## the atlas column holds the labelname for this label df.loc[pd_idx, atlas_prefix] = atlas_dict[atlas_label] overlap_area = ciftify.report.calc_overlapping_area( df.loc[pd_idx, 'clusterID'], clust_label_array, atlas_label, atlas_label_array, surf_va) ## overlap area is the area of the overlaping region over the total cluster area clust_area = ciftify.report.calc_cluster_area( df.loc[pd_idx, 'clusterID'], clust_label_array, surf_va) df.loc[pd_idx, overlap_col] = overlap_area/clust_area return(df) def main(): arguments = docopt(__doc__) logger.setLevel(logging.WARNING) if arguments['--debug']: logger.setLevel(logging.DEBUG) logging.getLogger('ciftify').setLevel(logging.DEBUG) ## set up the top of the log logger.info('{}{}'.format(ciftify.utils.ciftify_logo(), ciftify.utils.section_header('Starting ciftify_statclust_report'))) ciftify.utils.log_arguments(arguments) with ciftify.utils.TempDir() as tmpdir: logger.info('Creating tempdir:{} on host:{}'.format(tmpdir, os.uname()[1])) ret = run_ciftify_dlabel_report(arguments, tmpdir) if __name__ == '__main__': main()
StarcoderdataPython
5184344
""" Question Source: https://leetcode.com/problems/maximum-depth-of-binary-tree/ Level: Easy Topic: Tree Solver: Tayyrov Date: 14.02.2022 """ from typing import Optional class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def maxDepth(root: Optional[TreeNode]) -> int: # if not root: # return 0 # q = deque([(root, 1)]) # while q: # curr_node, curr_level = q.popleft() # ans = curr_level # if curr_node.left: # q.append((curr_node.left, curr_level+1)) # if curr_node.right: # q.append((curr_node.right, curr_level+1)) # return ans if not root: return 0 return max(maxDepth(root.left), maxDepth(root.right)) + 1 """ Time : O(N) Space: O(h) where h is the height of the tree, in theory h can be equal to the N """
StarcoderdataPython
5138955
<filename>SimTracker/SiStripDigitizer/python/SiStripDigi_APVModePeak_cff.py raise RuntimeError("Do not import obsolete file SiStripDigi_APVModePeak_cff.py. Use 'SimGeneral.MixingModule.stripDigitizer_APVModePeak_cff.py_cff'")
StarcoderdataPython
4890208
#!/usr/bin/python3 import re import csv def perf_callback_factory(event_name, data_keys, remap=None): """ Return a specialized callback for perf event in bcc. TODO: add time offset to d['ts'] """ def decorator(func): # handle remapped guid key (inverse lookup) if remap is not None: for oldkey, newkey in remap.items(): if newkey == 'guid': guid = oldkey else: guid = 'guid' def generic_print(self, cpu, data, size): event = self.b[event_name].event(data) d = {field:getattr(event, field) for field in data_keys} # a data point in sofa d['layer'] = event_name d['ts'] = d['ts'] / 1e9 d[guid] = get_guid_str(d[guid]) for k, v in d.items(): try: if type(v) == bytes: d[k] = d[k].decode('utf-8') except UnicodeDecodeError as ude: d[k] = '' # apply any modification to d func(self, d) self.log.print(d, remap=remap) return generic_print return decorator def get_guid_str(guid_array): """ Convert a guid array into string. """ prefix = guid_array[:12] entity = guid_array[12:16] prefix_str = '.'.join('{:x}'.format(c) for c in prefix) entity_str = '.'.join('{:x}'.format(c) for c in entity) return '|'.join([prefix_str, entity_str]) class Log: """ sofa_ros2 logging system """ def __init__(self, fields, fmtstr, cvsfilename=None, print_raw=False): self.fields = fields self.fmtstr = fmtstr if cvsfilename is not None: self.f = open(cvsfilename, 'w') self.cvslog = csv.DictWriter(self.f, fields) self.cvslog.writeheader() if print_raw: self.print = self.print_raw else: fieldfmts = re.split(r'\ +', self.fmtstr) self.fieldfmts = dict(zip(fields, fieldfmts)) # extract only width in standard format specifier hdrfmt = self.clear_specifiers(fmtstr) hdrfmts = re.split(r'\ +', hdrfmt) print(' '.join(hdrfmts).format(*fields)) def close(self): if hasattr(self, 'f'): self.f.close() def clear_specifiers(self, str): return re.sub(r'#|[a-zA-Z]|\.\d+', '', str) def print(self, data, remap=None): """ Write log on console and a csv file. data is of type dictionary """ fieldfmts = self.fieldfmts.copy() # remap keys if remap is not None: for oldkey, newkey in remap.items(): data[newkey] = data.pop(oldkey) # assign default value to each key for field in self.fields: if not field in data or data[field] is None: data[field] = '' fieldfmts[field] = self.clear_specifiers(fieldfmts[field]) # don't print empty guid try: if data['guid'] == '0.0.0.0.0.0.0.0.0.0.0.0|0.0.0.0': data['guid'] = '' except KeyError as e: pass fmtstr = ' '.join(fieldfmts[field] for field in self.fields) interested_data = [data[field] for field in self.fields] print(fmtstr.format(*interested_data)) if hasattr(self, 'f'): self.cvslog.writerow(dict(zip(self.fields, interested_data))) def print_raw(self, data, remap=None): # remap keys if remap is not None: for oldkey, newkey in remap.items(): data[newkey] = data.pop(oldkey) interested_data = {k:data[k] for k in self.fields if k in data.keys()} # don't print empty guid try: if interested_data['guid'] == '0.0.0.0.0.0.0.0.0.0.0.0|0.0.0.0': interested_data['guid'] = '' except KeyError as e: pass print(interested_data) if hasattr(self, 'f'): self.cvslog.writerow(interested_data) if __name__ == "__main__": log = Log(['ts', 'comm', 'pid', 'topic_name', 'guid', 'seqnum'], '{:<14.4f} {:<11} {:<#18x} {:<20} {:<40} {:3d}', 'send_log') data = {'func':'rcl_publish', 'ts':324874.41122, 'comm':'talker', 'pid':0x55601bc0f550, 'topic_name':'/chatter', 'ep_guid':'1.f.e7.13.3.77.0.0.1.0.0.0|0.0.10.3'} log.print(data, remap={'ep_guid':'guid'}) log.close()
StarcoderdataPython
3531914
#!/usr/bin/env python # -*- coding: utf-8 -*- # -*- Python -*- import sys import argparse import subprocess import logging import distutils.spawn class RtmdockerCleaner: ''' Utility class to operate OpenRTM on Docker This is utility class to operate OpenRTM on Docker. ''' def __init__(self): # Set parser self._args = self.parser() # Set logger logging.basicConfig(format='%(asctime)s:%(levelname)s: %(message)s', level=logging.INFO) # Check docker command exsting if not distutils.spawn.find_executable('docker'): logging.error( "Docker is not installed. Please install Docker first.") sys.exit(1) def parser(self): argparser = argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter) argparser.add_argument( '-v', '--version', action='version', version='%(prog)s 1.0.0') argparser.add_argument('-i', '--images', action='store_true', help='remove all docker images') argparser.add_argument('-c', '--containers', action='store_true', help='stop & remove all docker containers') argparser.add_argument('-a', '--all', action='store_true', help='remove all docker containers & images') argparser.add_argument('--dryrun', action='store_true', help='dry run for debug') return argparser.parse_args() def start(self): # stop & remove all docker images logging.info("Start cleanup all images...") if self._args.containers or self._args.all: self.remove_containers() if self._args.images or self._args.all: self.remove_images() logging.info("Completed") def remove_containers(self): # check all docker containers ps = "" try: cmd = "docker ps -a -q" ps = subprocess.check_output(cmd, shell=True).replace("\n", "") except subprocess.CalledProcessError: logging.info("No containers...") # stop & remove all docker containers if exist if ps: logging.info("containers: " + ps) cmd = "docker stop " + str(ps) logging.info("command: " + cmd) subprocess.call(cmd.split(" ")) cmd = "docker rm -f " + str(ps) logging.info("command: " + cmd) if not self._args.dryrun: subprocess.call(cmd.split(" ")) return def remove_images(self): # check all docker images images = "" try: cmd = "docker images -a -q" images = subprocess.check_output(cmd, shell=True).replace("\n", "") except subprocess.CalledProcessError: logging.info("No images...") # remove all docker images if exist if images: cmd = "docker rmi -f " + str(images) logging.info("command: " + cmd) if not self._args.dryrun: subprocess.call(cmd.split(" ")) return def main(): cleaner = RtmdockerCleaner() cleaner.start() return if __name__ == "__main__": main()
StarcoderdataPython
6577741
<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 27 07:36:29 2020 @author: szekely """ from codes.helpers import load_wav, list_filenames import librosa import numpy as np import soundfile #%% in_folder = './mtm/mtm_split/' out_folder = './mtm/mtm/' files = list(list_filenames(in_folder, ['.wav'], add_ext=False)) #with open('./trim_list.txt', 'r') as f: # files = list(f) files = [f.rstrip() for f in files] files.sort() sr = 22050 #files[0] = 'sn0801_sent051' margin = 0.01 # seconds marginr = 0.01 # use 0.27 for k s t at end of utterance (before breath) #%% dur = np.zeros((len(files),4)) #for i in range(100): for i in range(len(files)): y = load_wav(in_folder + files[i] + '.wav', sr=sr) dur[i,0] = len(y[1])/sr y_out = librosa.effects.trim(y[1], top_db=18) if y_out[1][0] > margin*sr: start = int( y_out[1][0] - margin*sr ) else: start = 0 if y_out[1][1] < y[2] - marginr*sr: stop = int( y_out[1][1] + marginr*sr ) else: stop = int( y[2] ) # use this by definition for no end trim #stop = int( y[2] ) # use this by definition for no end trim soundfile.write(out_folder + files[i] + '.wav', y[1][start:stop], sr, subtype='PCM_16') dur[i,1] = start/sr dur[i,2] = stop/sr dur[i,3] = (stop - start)/sr #%% with open('./mtm/mtm_extreme_trimmed.txt', 'w') as f: for item in zip(files, dur): f.write("%s %s\n" % item) #%% copy files over with open('./copy_list.txt', 'r') as f: files = list(f) files = [f.rstrip() for f in files] from shutil import copyfile in_folder = 'train_input/wavs/M01_trim/' out_folder = 'train/wavs/M01/' for file in files: copyfile(in_folder + file, out_folder + file)
StarcoderdataPython
8114114
from tkinter import Label , Button , Frame , StringVar , Radiobutton from tkinter.constants import TOP , RIGHT , YES from typing import Any import webbrowser as wb from random import randint as rd from typing import TypedDict class State(TypedDict): text: str error : str class Home(): ''' initial theme from app ''' def __init__(self,props): self.props=props self.root=props['root'] self.back= props['Info'].Design['Color']['Background'] self.TextColor : str = props['Info'].Design['Color']['Text'] self.ButtonColor : str = props['Info'].Design['Color']['Button'] self.ButtonTextColor: str = props['Info'].Design['Color']['ButtonText'] self.ButtonHoverColor: str = props['Info'].Design['Color']['ButtonHover'] self.BackgroundColor : str = props['Info'].Design['Color']['Background'] self.EntryColor : str = props['Info'].Design['Color']['Entry'] self.EntryTextColor : str = props['Info'].Design['Color']['EntryText'] self.MainFrame : Frame = Frame(self.root,bg=self.back) self.TitleFrame : Frame = Frame(self.root,bg=self.back) self.ChoiseFrame : Frame = Frame(self.root,bg=self.back) self.BodyFrame : Frame = Frame(self.root,bg=self.back) self.choix : StringVar = StringVar() self.choix.set("Serie") self.rech : StringVar = StringVar() self.rech.set("") self.source_file : str = "s.url" self.State : State = { "text":"Serie", "error":"" } self.monted() def Main(self) -> bool : self.view() return 0 def monted(self)->bool: """ monted all frame """ self.MainFrame.pack(expand=YES) self.TitleFrame.pack(side=TOP) self.ChoiseFrame.pack(side=RIGHT) self.BodyFrame.pack(expand=YES) return 0 def Button (self,text : str ,command , padx : int = 0 , pady : int = 0 ) -> bool : """ create button keyword arguments: text -- the text of the button command -- the command of the button padx -- the padx of the button (default 0) pady -- the pady of the button (default 0) """ haz=Button(self.BodyFrame,highlightbackground=self.TextColor,text=text,width=30,border=0,relief="flat",font=("Courrier",9),bg=self.ButtonColor,fg=self.ButtonTextColor,command=command) haz.pack(padx=padx,pady=pady) return 0 def openWebBrowser(self,url : str) -> bool : """ open web browser keyword arguments: url -- the url of the site """ wb.open_new_tab(url) def RadioButton(self, text : str, anchor : str ="w") -> bool : """ create radio button keyword arguments: text -- the text of the button anchor -- the anchor of the button (default "w") """ b1=Radiobutton(self.ChoiseFrame,text=text,variable=self.choix,value=text,font=("Courrier",9),bg=self.back,fg=self.TextColor,anchor=anchor) b1.pack(anchor = anchor) return 0 def site (self) -> bool : """ open the site """ val = self.choix.get() dir : str = 'config/url/' stateFull : str = ["Serie","Film","Manga","Torrent"] for i in stateFull: if i == val: self.State["text"] = i self.source_file = dir + i + ".url" break try: with open(self.source_file,"r") as f: urls = f.readlines() urlsLength=len(urls) self.openWebBrowser(urls[rd(0,urlsLength-2)]) self.State["error"]=" correctement rendu" except FileNotFoundError : self.State["error"]=" un probleme est survenu !" return 0 def Title(self) -> bool : """ create the title of the app """ Titre=Label(self.TitleFrame,text="Best Of Web",font=("Courrier",20),bg=self.BackgroundColor,fg=self.TextColor) Titre.pack() SousTitre=Label(self.TitleFrame,text="Le Meilleur Du Web En Un Clique",font=("Courrier",9),bg=self.BackgroundColor,fg=self.TextColor) SousTitre.pack() return 0 def Label(self,text : str) -> bool : """ create a label Keyword arguments: text -- the text of the label """ label=Label(self.ChoiseFrame,text=text,font=("Italic",13),bg=self.BackgroundColor,fg=self.TextColor) label.pack() return 0 def view (self): """ design the interface """ self.Title() self.Label("Categorie de site") self.RadioButton("Serie","w") self.RadioButton("Film","w") self.RadioButton("Manga","w") self.RadioButton("Torrent","w") self.Button("Lancer un site au hazard" ,self.site)
StarcoderdataPython
1632310
'''This module is used to define collector to collect data that need to be analyzed.''' class Collector(object): def __init__(self, conf): self._conf = conf def __del__(self): return def __enter__(self): return self def __exit__(self, *exe_info): return def open(self): raise NotImplementedError def get_data(self): raise NotImplementedError
StarcoderdataPython
200696
<filename>src/models/Function.py from enum import Enum from type_replacement import normalize_type from typing import List import numpy as np import re from models.CallingConvention import CallingConvention import ArgsExtract name_re = re.compile(r'(?:::|__)(~?\w+)') def extract_name_from_demangled(demangled_name : str): name = demangled_name.replace('__', '::') return name_re.search(name).group(1) class FunctionType(Enum): METHOD = 0 STATIC = 1 VIRTUAL = 2 CTOR = 3 DTOR = 4 DTOR_VIRTUAL = 5 class Function: cls: str # Class this function belongs to name: str # Name without class prefix address: str # Address in hex form (Eg.: 0xBEEF) ret_type: str # Ctors and dtors have a return type equal to the type of `this` vt_index: np.int16 # Index in VMT cc: CallingConvention arg_types : List[str] # Argument types arg_names : List[str] # Argument names type: FunctionType # Type of the function is_overloaded : bool # Is this function overloaded def __init__(self, class_name : str, address : str, demangled_name : str, cc : str, ret_type : str, arg_types : str, arg_names : str, vt_index : np.int16, is_overloaded : bool, **kwargs): self.cls = class_name self.name = extract_name_from_demangled(demangled_name) self.address = address self.ret_type = normalize_type(ret_type) self.vt_index = vt_index self.cc = CallingConvention(cc) self.arg_names, self.arg_types = ArgsExtract.extract(arg_types, arg_names, demangled_name, self.cc) self.is_overloaded = is_overloaded # Figure out type if self.name == self.cls: self.type = FunctionType.CTOR self.ret_type = self.cls + '*' elif self.name == '~' + self.cls: self.type = FunctionType.DTOR if self.vt_index == -1 else FunctionType.DTOR_VIRTUAL self.ret_type = self.cls + '*' elif self.cc.is_static: self.type = FunctionType.STATIC else: self.type = FunctionType.METHOD if self.vt_index == -1 else FunctionType.VIRTUAL @property def full_name(self): # Name with class namespace prefix. Eg.: Class::Function return f'{self.cls}::{self.name}' @property def param_names(self) -> str: return ', '.join(self.arg_names) @property def param_types(self) -> str: return ', '.join(self.arg_types) @property def param_name_types(self) -> str: return ', '.join([' '.join(a) for a in zip(self.arg_types, self.arg_names)]) @property def is_virtual(self) -> bool: return self.type in (FunctionType.VIRTUAL, FunctionType.DTOR_VIRTUAL) @property def is_dtor(self) -> bool: return self.type in (FunctionType.DTOR_VIRTUAL, FunctionType.DTOR) @property def is_ctor(self) -> bool: return self.type == FunctionType.CTOR @property def is_static(self) -> bool: return self.cc.is_static @property def is_method(self) -> bool: return self.cc.is_method @property def plugin_call_src(self): # C++ source code for the plugin call stuff template = [] args = [] plugin_func = self.cc.plugin_fn if self.ret_type != 'void': plugin_func += 'AndReturn' template.append(self.ret_type) template.append(self.address) if self.cc in ('thiscall', 'fastcall'): # Check is method call template.append(self.cls + '*') args.append('this') template += self.arg_types args += self.arg_names return f'{"" if self.ret_type == "void" else "return "}plugin::{plugin_func}<{", ".join(template)}>({", ".join(args)})'
StarcoderdataPython
6535255
from sys import stdin def isHan(n): bHan = False numList = list() while n: numList.insert(0, n % 10) n //= 10 if len(numList) == 1 or len(numList) == 2: bHan = True elif len(numList) == 3 and numList[2] - numList[1] == numList[1] - numList[0]: bHan = True return bHan def main(): count = 0 for i in range(1, int(stdin.readline().strip()) + 1): if isHan(i) == True: count += 1 print(count) if __name__ == "__main__": main()
StarcoderdataPython
9777731
from abc import abstractmethod from collections import namedtuple ThermalConfig = namedtuple('ThermalConfig', ['cpu', 'gpu', 'mem', 'bat', 'ambient']) class HardwareBase: @staticmethod def get_cmdline(): with open('/proc/cmdline') as f: cmdline = f.read() return {kv[0]: kv[1] for kv in [s.split('=') for s in cmdline.split(' ')] if len(kv) == 2} @staticmethod def read_param_file(path, parser, default=0): try: with open(path) as f: return parser(f.read()) except Exception: return default @abstractmethod def reboot(self, reason=None): pass @abstractmethod def uninstall(self): pass @abstractmethod def get_os_version(self): pass @abstractmethod def get_device_type(self): pass @abstractmethod def get_sound_card_online(self): pass @abstractmethod def get_imei(self, slot): pass @abstractmethod def get_serial(self): pass @abstractmethod def get_subscriber_info(self): pass @abstractmethod def get_network_info(self): pass @abstractmethod def get_network_type(self): pass @abstractmethod def get_sim_info(self): pass @abstractmethod def get_network_strength(self, network_type): pass @abstractmethod def get_battery_capacity(self): pass @abstractmethod def get_battery_status(self): pass @abstractmethod def get_battery_current(self): pass @abstractmethod def get_battery_voltage(self): pass @abstractmethod def get_battery_charging(self): pass @abstractmethod def set_battery_charging(self, on): pass @abstractmethod def get_usb_present(self): pass @abstractmethod def get_current_power_draw(self): pass @abstractmethod def shutdown(self): pass @abstractmethod def get_thermal_config(self): pass @abstractmethod def set_screen_brightness(self, percentage): pass @abstractmethod def set_power_save(self, powersave_enabled): pass @abstractmethod def get_gpu_usage_percent(self): pass @abstractmethod def get_modem_version(self): pass @abstractmethod def initialize_hardware(self): pass @abstractmethod def get_networks(self): pass
StarcoderdataPython
3564424
<filename>microbuild/__init__.py """ Lightweight Python Build Tool """ __author__ = "<NAME>" __license__ = "MIT License" __contact__ = "https://github.com/CalumJEadie/microbuild"
StarcoderdataPython
1667647
bl_info = { "name": "Pivot Menu: Key: '.'", "description": "Pivot Modes", "blender": (2, 78, 0), "category": "3d View" } import bpy from bpy.types import (Menu, Operator) class VIEW3D_PIE_pivot_of(Menu): bl_label = "Pivot" bl_idname = "view3d.pivot_of" def draw(self, context): layout = self.layout pie = layout.menu_pie() pie.prop(context.space_data, "pivot_point", expand = True) if context.active_object.mode == 'OBJECT': pie.prop(context.space_data, "use_pivot_point_align", text = "Center Points") classes = [VIEW3D_PIE_pivot_of] addon_keymaps = [] def register(): for cls in classes: bpy.utils.register_class(cls) wm = bpy.context.window_manager if wm.keyconfigs.addon: km = wm.keyconfigs.addon.keymaps.new(name = 'Object Non-modal') kmi = km.keymap_items.new('wm.call_menu_pie', 'PERIOD', 'PRESS') kmi.properties.name = "view3d.pivot_of" addon_keymaps.append((km, kmi)) def unregister(): for cls in classes: bpy.utils.unregister_class(cls) wm = bpy.context.window_manager kc = wm.keyconfigs.addon if kc: for km, kmi in addon_keymaps: km.keymap_items.remove(kmi) addon_keymaps.clear() if __name__ == "__main__": register()
StarcoderdataPython
8174035
<filename>numpy/distutils/intelccompiler.py<gh_stars>1-10 from __future__ import division, absolute_import, print_function import sys from distutils.unixccompiler import UnixCCompiler from numpy.distutils.exec_command import find_executable from numpy.distutils.ccompiler import simple_version_match class IntelCCompiler(UnixCCompiler): """A modified Intel compiler compatible with a GCC-built Python.""" compiler_type = 'intel' cc_exe = 'icc' cc_args = 'fPIC' def __init__(self, verbose=0, dry_run=0, force=0): UnixCCompiler.__init__(self, verbose, dry_run, force) self.cc_exe = 'icc -fPIC' compiler = self.cc_exe self.set_executables(compiler=compiler, compiler_so=compiler, compiler_cxx=compiler, archiver='xiar' + ' cru', linker_exe=compiler, linker_so=compiler + ' -shared') class IntelItaniumCCompiler(IntelCCompiler): compiler_type = 'intele' # On Itanium, the Intel Compiler used to be called ecc, let's search for # it (now it's also icc, so ecc is last in the search). for cc_exe in map(find_executable, ['icc', 'ecc']): if cc_exe: break class IntelEM64TCCompiler(UnixCCompiler): """ A modified Intel x86_64 compiler compatible with a 64bit GCC-built Python. """ compiler_type = 'intelem' cc_exe = 'icc -m64 -fPIC' cc_args = "-fPIC" def __init__(self, verbose=0, dry_run=0, force=0): UnixCCompiler.__init__(self, verbose, dry_run, force) self.cc_exe = 'icc -m64 -fPIC' compiler = self.cc_exe self.set_executables(compiler=compiler, compiler_so=compiler, compiler_cxx=compiler, archiver='xiar' + ' cru', linker_exe=compiler, linker_so=compiler + ' -shared') if sys.platform == 'win32': from distutils.msvc9compiler import MSVCCompiler class IntelCCompilerW(MSVCCompiler): """ A modified Intel compiler compatible with an MSVC-built Python. """ compiler_type = 'intelw' compiler_cxx = 'icl' def __init__(self, verbose=0, dry_run=0, force=0): MSVCCompiler.__init__(self, verbose, dry_run, force) version_match = simple_version_match(start='Intel\(R\).*?32,') self.__version = version_match def initialize(self, plat_name=None): MSVCCompiler.initialize(self, plat_name) self.cc = self.find_exe("icl.exe") self.lib = self.find_exe("xilib") self.linker = self.find_exe("xilink") self.compile_options = ['/nologo', '/O3', '/MD', '/W3', '/Qstd=c99'] self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3', '/Qstd=c99', '/Z7', '/D_DEBUG'] class IntelEM64TCCompilerW(IntelCCompilerW): """ A modified Intel x86_64 compiler compatible with a 64bit MSVC-built Python. """ compiler_type = 'intelemw' def __init__(self, verbose=0, dry_run=0, force=0): MSVCCompiler.__init__(self, verbose, dry_run, force) version_match = simple_version_match(start='Intel\(R\).*?64,') self.__version = version_match
StarcoderdataPython
26093
<reponame>dan7267/1a-flood-risk-project-93 from floodsystem.stationdata import MonitoringStation from floodsystem.geo import rivers_by_station_number def run(): """Requirements for Task1E""" rivers_station_number = rivers_by_station_number(MonitoringStation, 9) print(rivers_station_number) if __name__ == "__main__": print("*** Task 1E: CUED Part IA Flood Warning System ***") run()
StarcoderdataPython
363540
import os class Object(): def __init__(self, objLines) -> None: labelLine = objLines[3] #always 'PASperson', saving it anyways self.label = labelLine.split(':')[0].split('"')[1] #always 'UprightPerson', saving it anyways self.labelPose = labelLine.split(':')[1].split('"')[1] centerLine = objLines[4] self.centerX = int(centerLine.split(':')[1].split(',')[0][2:]) self.centerY = int(centerLine.split(':')[1].split(',')[1][1:-2]) bboxLine = objLines[5].split(':') xMinYMin = bboxLine[1].split('-')[0] xMaxYMax = bboxLine[1].split('-')[1] self.xMin = int(xMinYMin.split(',')[0][2:]) self.yMin = int(xMinYMin.split(',')[1][1:-2]) self.xMax = int(xMaxYMax.split(',')[0][2:]) self.yMax = int(xMaxYMax.split(',')[1][1:-2]) self.BboxShape = (self.xMax-self.xMin, self.yMax-self.yMin) class Image(): def __init__(self, fileName, imgShape,) -> None: self.fileName = fileName self.imageShape = imgShape self.objects = list() def addObject(self, object): self.objects.append(object) def parseDataset(folder='INRIAPerson/Train/'): INRIA_FOLDER = os.path.join(os.getcwd(), 'INRIAPerson') TRAIN_FOLDER = os.path.join(os.getcwd(), folder) ANNOTATION_FOLDER = os.path.join(TRAIN_FOLDER, 'annotations') POS_FOLDER = os.path.join(TRAIN_FOLDER, 'pos') annotation_list = open(TRAIN_FOLDER + 'annotations.lst', 'r') pos_list = open(TRAIN_FOLDER + 'pos.lst', 'r') neg_list = open(TRAIN_FOLDER + 'neg.lst', 'r') neg_image_filenames = neg_list.readlines() neg_image_paths = [] for neg in neg_image_filenames: if neg == '': continue neg_image_paths.append(os.path.join(INRIA_FOLDER, neg[:-1])) neg_list.close() imgs = [] for annotation_file in annotation_list.readlines(): annotation_file = annotation_file[:-1] pos_img_path = pos_list.readline()[:-2] if annotation_file is None or pos_img_path is None: print("threw up") exit(-1) with open(os.path.join(INRIA_FOLDER,annotation_file),'r', encoding='iso-8859-1') as annotation: lines = annotation.readlines() img_file = lines[2].split(':')[1][2:-2] size_line = lines[3].split(':')[1] sizes = size_line.split('x') x = int(sizes[0]) y = int(sizes[1]) c = int(sizes[2]) imageShape = (x,y,c) img = Image(os.path.join(INRIA_FOLDER, img_file), imageShape) objectNum = int((len(lines)-12) / 7) for i in range(objectNum): start = 12 + i*7 end = 12 + (i+1)*7 obj_lines = lines[start:end] img.addObject(Object(obj_lines)) imgs.append(img) annotation_list.close() pos_list.close() return imgs, neg_image_paths if __name__ == '__main__': imgs, neg_image_filenames = parseDataset() numObjects = 0 for img in imgs: numObjects += len(img.objects) print('Total images: ', len(imgs), ' with a total of ', numObjects, ' objects')
StarcoderdataPython
220134
from .Attention import Attention from .PositionalEncoding import PositionalEncoding from .ScaledDotProductAttention import ScaledDotProductAttention from .LayerNormalization import LayerNormalization from .MultiHeadAttention import MultiHeadAttention
StarcoderdataPython
9673554
# -*- coding: utf-8 -*- from django.conf import settings from cms.tests.base import CMSTestCase from cms.utils.plugins import get_placeholders from cms.exceptions import DuplicatePlaceholderWarning import sys import warnings class _Warning(object): def __init__(self, message, category, filename, lineno): self.message = message self.category = category self.filename = filename self.lineno = lineno def _collectWarnings(observeWarning, f, *args, **kwargs): def showWarning(message, category, filename, lineno, file=None, line=None): assert isinstance(message, Warning) observeWarning(_Warning( message.args[0], category, filename, lineno)) # Disable the per-module cache for every module otherwise if the warning # which the caller is expecting us to collect was already emitted it won't # be re-emitted by the call to f which happens below. for v in sys.modules.itervalues(): if v is not None: try: v.__warningregistry__ = None except: # Don't specify a particular exception type to handle in case # some wacky object raises some wacky exception in response to # the setattr attempt. pass origFilters = warnings.filters[:] origShow = warnings.showwarning warnings.simplefilter('always') try: warnings.showwarning = showWarning result = f(*args, **kwargs) finally: warnings.filters[:] = origFilters warnings.showwarning = origShow return result class PlaceholderTestCase(CMSTestCase): def test_01_placeholder_scanning_extend(self): placeholders = get_placeholders('placeholder_tests/test_one.html') self.assertEqual(sorted(placeholders), sorted([u'new_one', u'two', u'three'])) def test_02_placeholder_scanning_include(self): placeholders = get_placeholders('placeholder_tests/test_two.html') self.assertEqual(sorted(placeholders), sorted([u'child', u'three'])) def test_03_placeholder_scanning_double_extend(self): placeholders = get_placeholders('placeholder_tests/test_three.html') self.assertEqual(sorted(placeholders), sorted([u'new_one', u'two', u'new_three'])) def test_04_placeholder_scanning_complex(self): placeholders = get_placeholders('placeholder_tests/test_four.html') self.assertEqual(sorted(placeholders), sorted([u'new_one', u'child', u'four'])) def test_05_placeholder_scanning_super(self): placeholders = get_placeholders('placeholder_tests/test_five.html') self.assertEqual(sorted(placeholders), sorted([u'one', u'extra_one', u'two', u'three'])) def test_06_placeholder_scanning_nested(self): placeholders = get_placeholders('placeholder_tests/test_six.html') self.assertEqual(sorted(placeholders), sorted([u'new_one', u'new_two', u'new_three'])) def test_07_placeholder_scanning_duplicate(self): placeholders = self.assertWarns(DuplicatePlaceholderWarning, "Duplicate placeholder found: `one`", get_placeholders, 'placeholder_tests/test_seven.html') self.assertEqual(sorted(placeholders), sorted([u'one'])) def failUnlessWarns(self, category, message, f, *args, **kwargs): warningsShown = [] result = _collectWarnings(warningsShown.append, f, *args, **kwargs) if not warningsShown: self.fail("No warnings emitted") first = warningsShown[0] for other in warningsShown[1:]: if ((other.message, other.category) != (first.message, first.category)): self.fail("Can't handle different warnings") self.assertEqual(first.message, message) self.assertTrue(first.category is category) return result assertWarns = failUnlessWarns
StarcoderdataPython
1972566
# Autogenerated by configen, do not edit. # If encountering an error, please file an issue @ # https://github.com/romesco/hydra-lightning # fmt: off # isort: skip_file # flake8: noqa # Hydra + Lightning from dataclasses import dataclass, field from omegaconf import MISSING from typing import Any from typing import Dict from typing import Optional @dataclass class CometLoggerConf: _target_: str = "pytorch_lightning.loggers.CometLogger" api_key: Optional[str] = None save_dir: Optional[str] = None project_name: Optional[str] = None rest_api_key: Optional[str] = None experiment_name: Optional[str] = None experiment_key: Optional[str] = None offline: bool = False prefix: str = "" kwargs: Any = MISSING @dataclass class MLFlowLoggerConf: _target_: str = "pytorch_lightning.loggers.MLFlowLogger" experiment_name: str = "default" tracking_uri: Optional[str] = None tags: Optional[Dict[str, Any]] = None save_dir: Optional[str] = "./mlruns" prefix: str = "" @dataclass class NeptuneLoggerConf: _target_: str = "pytorch_lightning.loggers.NeptuneLogger" api_key: Optional[str] = None project_name: Optional[str] = None close_after_fit: Optional[bool] = True offline_mode: bool = False experiment_name: Optional[str] = None experiment_id: Optional[str] = None prefix: str = "" kwargs: Any = MISSING @dataclass class TestTubeLoggerConf: _target_: str = "pytorch_lightning.loggers.TestTubeLogger" save_dir: str = MISSING name: str = "default" description: Optional[str] = None debug: bool = False version: Optional[int] = None create_git_tag: bool = False log_graph: bool = False prefix: str = "" @dataclass class WandbLoggerConf: _target_: str = "pytorch_lightning.loggers.WandbLogger" name: Optional[str] = None save_dir: Optional[str] = None offline: bool = False id: Optional[str] = None anonymous: bool = False version: Optional[str] = None project: Optional[str] = None log_model: bool = False experiment: Any = None prefix: str = "" kwargs: Any = MISSING
StarcoderdataPython
1979736
<reponame>tklijnsma/toscript #!/usr/bin/env python import sys from get_toscript import ToGoer class Completer(object): """docstring for Completer""" def __init__(self): super(Completer, self).__init__() self.goer = ToGoer() def completion_hook(self, cmd, curr_word, prev_word): if not self.goer.exists_toscriptdir(): print('\nNo directory \'{0}\'\n'.format(self.goer.toscriptdir)) return [] elif not self.goer.has_scripts_toscriptdir(): print('\nNo scripts found in \'{0}\'\n'.format(self.goer.toscriptdir)) return [] elif prev_word == 'to' or prev_word == '--test': potential_matches = self.goer.toscripts_basenames else: potential_matches = [] matches = [k for k in potential_matches if k.startswith(curr_word)] return matches def main(): completer = Completer() results = completer.completion_hook(*sys.argv[1:]) if len(results): print('\n'.join(results)) if __name__ == "__main__": main()
StarcoderdataPython
11200902
import argparse def get_params(): parser = argparse.ArgumentParser( description="Variable parameters based on the configuration of the machine or user's choice") parser.add_argument("--mem_size", default=100000, type=int, help="The memory size.") parser.add_argument("--env_name", default="MountainCar-v0", type=str, help="Name of the environment.") parser.add_argument("--interval", default=10, type=int, help="The interval specifies how often different parameters should be saved and printed," " counted by episodes.") parser.add_argument("--do_train", default=True, help="The flag determines whether to train the agent or play with it.") parser.add_argument("--train_from_scratch", default=True, type=bool, help="The flag determines whether to train from scratch or continue previous tries.") parser.add_argument("--do_intro_env", action="store_true", help="Only introduce the environment then close the program.") parser_params = parser.parse_args() # Parameters based on the Discrete SAC paper. # region default parameters default_params = {"lr": 3e-4, "batch_size": 64, "state_shape": (4, 84, 84), "max_steps": int(1e+8), "gamma": 0.99, "initial_random_steps": 20000, "train_period": 4, "fixed_network_update_freq": 8000 } # endregion total_params = {**vars(parser_params), **default_params} print("params:", total_params) return total_params
StarcoderdataPython
8071455
from products.test.infrastructure import FakeUnitOfWorkManager from products.handlers import CreateProductCommand, CreateProductCommandHandler class When_creating_a_product: """ Now that we have a repository pattern and command handlers it becomes trivial to write unit tests that check that we perform the correct actions against our domain. These tests should all operate against cmd handlers and verify that a) We create and commit a transaction b) We have persisted any state changes that we make c) We have raised any domain events on a message bus for further processing """ def given(self): self._uow = FakeUnitOfWorkManager() self._handler = CreateProductCommandHandler(self._uow) def when_we_raise_a_create_product_command(self): self._handler(CreateProductCommand("foo")) def it_should_add_the_product_to_the_repository(self): assert any(p.name == "foo" for p in self._uow.products) def it_should_raise_product_created(self): pass def it_should_have_committed_the_unit_of_work(self): pass
StarcoderdataPython
5181802
<filename>appengine/findit/common/rotations.py # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Utilities to get the sheriff(s) on duty. Currently only supports the Chrome Build Sheriff rotation.""" import json from common.findit_http_client import FinditHttpClient from libs import time_util from model.wf_config import FinditConfig _ROTATIONS_URL = ('https://chrome-ops-rotation-proxy.appspot.com/current/' 'oncallator:chrome-build-sheriff') _HTTP_CLIENT = FinditHttpClient() def current_sheriffs(): status_code, content, _headers = _HTTP_CLIENT.Get(_ROTATIONS_URL) if status_code == 200: content = json.loads(content) if 'emails' not in content: raise Exception('Malformed sheriff json at %s' % _ROTATIONS_URL) return content['emails'] else: raise Exception('Could not retrieve sheriff list from %s, got code %d' % (_ROTATIONS_URL, status_code))
StarcoderdataPython
1843097
<gh_stars>0 # Copyright 2020 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import grpc import six from runtime.feature.column import JSONDecoderWithFeatureColumn from runtime.model.modelzooserver_pb2 import ReleaseModelRequest from runtime.model.modelzooserver_pb2_grpc import ModelZooServerStub def load_model_from_model_zoo(address, model, tag, meta_only=False): stub = None meta = None channel = grpc.insecure_channel(address) try: stub = ModelZooServerStub(channel) meta_req = ReleaseModelRequest(name=model, tag=tag) meta_resp = stub.GetModelMeta(meta_req) meta = json.loads(meta_resp.meta, cls=JSONDecoderWithFeatureColumn) except: # noqa: E722 # make sure that the channel is closed when exception raises channel.close() six.reraise(*sys.exc_info()) if meta_only: channel.close() return None, meta def reader(): try: tar_req = ReleaseModelRequest(name=model, tag=tag) tar_resp = stub.DownloadModel(tar_req) for each_resp in tar_resp: yield each_resp.content_tar finally: reader.close() def close(): if not reader.is_closed: channel.close() reader.is_closed = True reader.is_closed = False reader.close = close return reader, meta
StarcoderdataPython
3551938
<reponame>anwarchk/quay<gh_stars>1-10 import json import pytest from jsonschema import validate from buildtrigger.customhandler import custom_trigger_payload from buildtrigger.basehandler import METADATA_SCHEMA from buildtrigger.bitbuckethandler import get_transformed_webhook_payload as bb_webhook from buildtrigger.bitbuckethandler import get_transformed_commit_info as bb_commit from buildtrigger.githubhandler import get_transformed_webhook_payload as gh_webhook from buildtrigger.gitlabhandler import get_transformed_webhook_payload as gl_webhook from buildtrigger.triggerutil import SkipRequestException def assertSkipped(filename, processor, *args, **kwargs): with open('buildtrigger/test/triggerjson/%s.json' % filename) as f: payload = json.loads(f.read()) nargs = [payload] nargs.extend(args) with pytest.raises(SkipRequestException): processor(*nargs, **kwargs) def assertSchema(filename, expected, processor, *args, **kwargs): with open('buildtrigger/test/triggerjson/%s.json' % filename) as f: payload = json.loads(f.read()) nargs = [payload] nargs.extend(args) created = processor(*nargs, **kwargs) assert created == expected validate(created, METADATA_SCHEMA) def test_custom_custom(): expected = { u'commit':u'1c002dd', u'commit_info': { u'url': u'gitsoftware.com/repository/commits/1234567', u'date': u'timestamp', u'message': u'initial commit', u'committer': { u'username': u'user', u'url': u'gitsoftware.com/users/user', u'avatar_url': u'gravatar.com/user.png' }, u'author': { u'username': u'user', u'url': u'gitsoftware.com/users/user', u'avatar_url': u'gravatar.com/user.png' } }, u'ref': u'refs/heads/master', u'default_branch': u'master', u'git_url': u'foobar', } assertSchema('custom_webhook', expected, custom_trigger_payload, git_url='foobar') def test_custom_gitlab(): expected = { 'commit': u'<PASSWORD>', 'ref': u'refs/heads/master', 'git_url': u'<EMAIL>:jsmith/somerepo.git', 'commit_info': { 'url': u'https://gitlab.com/jsmith/somerepo/commit/fb88379ee4<PASSWORD>28a<PASSWORD>fddcbd8eff8b36026e', 'date': u'2015-08-13T19:33:18+00:00', 'message': u'Fix link\n', }, } assertSchema('gitlab_webhook', expected, custom_trigger_payload, git_url='<EMAIL>:jsmith/somerepo.git') def test_custom_github(): expected = { 'commit': u'410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'ref': u'refs/heads/master', 'default_branch': u'master', 'git_url': u'<EMAIL>:jsmith/anothertest.git', 'commit_info': { 'url': u'https://github.com/jsmith/anothertest/commit/410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'date': u'2015-09-11T14:26:16-04:00', 'message': u'Update Dockerfile', 'committer': { 'username': u'jsmith', }, 'author': { 'username': u'jsmith', }, }, } assertSchema('github_webhook', expected, custom_trigger_payload, git_url='<EMAIL>:jsmith/anothertest.git') def test_custom_bitbucket(): expected = { "commit": u"af64ae7188685f8424040b4735ad1<PASSWORD>1<PASSWORD>", "ref": u"refs/heads/master", "git_url": u"<EMAIL>:jsmith/another-repo.git", "commit_info": { "url": u"https://bitbucket.org/jsmith/another-repo/commits/af64ae7188685f8424040b4735ad12941b980d75", "date": u"2015-09-10T20:40:54+00:00", "message": u"Dockerfile edited online with Bitbucket", "author": { "username": u"<NAME>", "avatar_url": u"https://bitbucket.org/account/jsmith/avatar/32/", }, "committer": { "username": u"John Smith", "avatar_url": u"https://bitbucket.org/account/jsmith/avatar/32/", }, }, } assertSchema('bitbucket_webhook', expected, custom_trigger_payload, git_url='<EMAIL>:jsmith/another-repo.git') def test_bitbucket_customer_payload_noauthor(): expected = { "commit": "a0ec139843b2bb281ab21a433266ddc498e605dc", "ref": "refs/heads/master", "git_url": "<EMAIL>:somecoollabs/svc-identity.git", "commit_info": { "url": "https://bitbucket.org/somecoollabs/svc-identity/commits/a0ec139843b2bb281ab21a433<PASSWORD>", "date": "2015-09-25T00:55:08+00:00", "message": "Update version.py to 0.1.2 [skip ci]\n\n(by utilitybelt/scripts/autotag_version.py)\n", "committer": { "username": "CodeShip Tagging", "avatar_url": "https://bitbucket.org/account/SomeCoolLabs_CodeShip/avatar/32/", }, }, } assertSchema('bitbucket_customer_example_noauthor', expected, bb_webhook) def test_bitbucket_customer_payload_tag(): expected = { "commit": "<PASSWORD>", "ref": "refs/tags/0.1.2", "git_url": "<EMAIL>:somecoollabs/svc-identity.git", "commit_info": { "url": "https://bitbucket.org/somecoollabs/svc-identity/commits/<PASSWORD>", "date": "2015-09-25T00:55:08+00:00", "message": "Update version.py to 0.1.2 [skip ci]\n\n(by utilitybelt/scripts/autotag_version.py)\n", "committer": { "username": "CodeShip Tagging", "avatar_url": "https://bitbucket.org/account/SomeCoolLabs_CodeShip/avatar/32/", }, }, } assertSchema('bitbucket_customer_example_tag', expected, bb_webhook) def test_bitbucket_commit(): ref = 'refs/heads/somebranch' default_branch = 'somebranch' repository_name = 'foo/bar' def lookup_author(_): return { 'user': { 'display_name': 'cooluser', 'avatar': 'http://some/avatar/url' } } expected = { "commit": u"abdeaf1b2b4a6b9ddf742c1e1754236380435a62", "ref": u"refs/heads/somebranch", "git_url": u"<EMAIL>:foo/bar.git", "default_branch": u"somebranch", "commit_info": { "url": u"https://bitbucket.org/foo/bar/commits/abdeaf1b2b4a6b9ddf742c1e1754236380435a62", "date": u"2012-07-24 00:26:36", "message": u"making some changes\n", "author": { "avatar_url": u"http://some/avatar/url", "username": u"cooluser", } } } assertSchema('bitbucket_commit', expected, bb_commit, ref, default_branch, repository_name, lookup_author) def test_bitbucket_webhook_payload(): expected = { "commit": u"af64ae7188685f8424040b4735ad12941b980d75", "ref": u"refs/heads/master", "git_url": u"<EMAIL>:jsmith/another-repo.git", "commit_info": { "url": u"https://bitbucket.org/jsmith/another-repo/commits/af64ae7188685f8424040b4735ad12941b980d75", "date": u"2015-09-10T20:40:54+00:00", "message": u"Dockerfile edited online with Bitbucket", "author": { "username": u"<NAME>", "avatar_url": u"https://bitbucket.org/account/jsmith/avatar/32/", }, "committer": { "username": u"John Smith", "avatar_url": u"https://bitbucket.org/account/jsmith/avatar/32/", }, }, } assertSchema('bitbucket_webhook', expected, bb_webhook) def test_github_webhook_payload_slash_branch(): expected = { 'commit': u'410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'ref': u'refs/heads/slash/branch', 'default_branch': u'master', 'git_url': u'<EMAIL>:jsmith/anothertest.git', 'commit_info': { 'url': u'https://github.com/jsmith/anothertest/commit/410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'date': u'2015-09-11T14:26:16-04:00', 'message': u'Update Dockerfile', 'committer': { 'username': u'jsmith', }, 'author': { 'username': u'jsmith', }, }, } assertSchema('github_webhook_slash_branch', expected, gh_webhook) def test_github_webhook_payload(): expected = { 'commit': u'410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'ref': u'refs/heads/master', 'default_branch': u'master', 'git_url': u'<EMAIL>:jsmith/anothertest.git', 'commit_info': { 'url': u'https://github.com/jsmith/anothertest/commit/410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'date': u'2015-09-11T14:26:16-04:00', 'message': u'Update Dockerfile', 'committer': { 'username': u'jsmith', }, 'author': { 'username': u'jsmith', }, }, } assertSchema('github_webhook', expected, gh_webhook) def test_github_webhook_payload_with_lookup(): expected = { 'commit': u'410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'ref': u'refs/heads/master', 'default_branch': u'master', 'git_url': u'<EMAIL>:jsmith/anothertest.git', 'commit_info': { 'url': u'https://github.com/jsmith/anothertest/commit/410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'date': u'2015-09-11T14:26:16-04:00', 'message': u'Update Dockerfile', 'committer': { 'username': u'jsmith', 'url': u'http://github.com/jsmith', 'avatar_url': u'http://some/avatar/url', }, 'author': { 'username': u'jsmith', 'url': u'http://github.com/jsmith', 'avatar_url': u'http://some/avatar/url', }, }, } def lookup_user(_): return { 'html_url': 'http://github.com/jsmith', 'avatar_url': 'http://some/avatar/url' } assertSchema('github_webhook', expected, gh_webhook, lookup_user=lookup_user) def test_github_webhook_payload_missing_fields_with_lookup(): expected = { 'commit': u'<PASSWORD>', 'ref': u'refs/heads/master', 'default_branch': u'master', 'git_url': u'<EMAIL>:jsmith/anothertest.git', 'commit_info': { 'url': u'https://github.com/jsmith/anothertest/commit/4<PASSWORD>a4c', 'date': u'2015-09-11T14:26:16-04:00', 'message': u'Update Dockerfile' }, } def lookup_user(username): if not username: raise Exception('Fail!') return { 'html_url': 'http://github.com/jsmith', 'avatar_url': 'http://some/avatar/url' } assertSchema('github_webhook_missing', expected, gh_webhook, lookup_user=lookup_user) def test_gitlab_webhook_payload(): expected = { 'commit': u'fb88379ee45de28a0a4590fddcbd8eff8b36026e', 'ref': u'refs/heads/master', 'git_url': u'<EMAIL>:jsmith/somerepo.git', 'commit_info': { 'url': u'https://gitlab.com/jsmith/somerepo/commit/fb88379ee45de28a0a4590fddcbd8eff8b36026e', 'date': u'2015-08-13T19:33:18+00:00', 'message': u'Fix link\n', }, } assertSchema('gitlab_webhook', expected, gl_webhook) def test_github_webhook_payload_known_issue(): expected = { "commit": "118b07121695d9f2e40a5ff264fdcc2917680870", "ref": "refs/heads/master", "default_branch": "master", "git_url": "<EMAIL>:jsmith/docker-test.git", "commit_info": { "url": "https://github.com/jsmith/docker-test/commit/118b07121695d9f2e40a5ff264fdcc2917680870", "date": "2015-09-25T14:55:11-04:00", "message": "Fail", }, } assertSchema('github_webhook_noname', expected, gh_webhook) def test_github_webhook_payload_missing_fields(): expected = { 'commit': u'410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'ref': u'refs/heads/master', 'default_branch': u'master', 'git_url': u'<EMAIL>:jsmith/anothertest.git', 'commit_info': { 'url': u'https://github.com/jsmith/anothertest/commit/410f4cdf8ff09b87f245b13845e8497f90b90a4c', 'date': u'2015-09-11T14:26:16-04:00', 'message': u'Update Dockerfile' }, } assertSchema('github_webhook_missing', expected, gh_webhook) def test_gitlab_webhook_nocommit_payload(): assertSkipped('gitlab_webhook_nocommit', gl_webhook) def test_gitlab_webhook_multiple_commits(): expected = { 'commit': u'9a052a0b2fbe01d4a1a88638dd9fe31c1c56ef53', 'ref': u'refs/heads/master', 'git_url': u'<EMAIL>:jsmith/some-test-project.git', 'commit_info': { 'url': u'https://gitlab.com/jsmith/some-test-project/commit/9a052a0b2fbe01d4a1a88638dd9fe31c1c56ef53', 'date': u'2016-09-29T15:02:41+00:00', 'message': u"Merge branch 'foobar' into 'master'\r\n\r\nAdd changelog\r\n\r\nSome merge thing\r\n\r\nSee merge request !1", 'author': { 'username': 'jsmith', 'url': 'http://gitlab.com/jsmith', 'avatar_url': 'http://some/avatar/url' }, }, } def lookup_user(_): return { 'username': 'jsmith', 'html_url': 'http://gitlab.com/jsmith', 'avatar_url': 'http://some/avatar/url', } assertSchema('gitlab_webhook_multicommit', expected, gl_webhook, lookup_user=lookup_user) def test_gitlab_webhook_for_tag(): expected = { 'commit': u'82b3d5ae55f7080f1e6022629cdb57bfae7cccc7', 'commit_info': { 'author': { 'avatar_url': 'http://some/avatar/url', 'url': 'http://gitlab.com/jsmith', 'username': 'jsmith' }, 'date': '2015-08-13T19:33:18+00:00', 'message': 'Fix link\n', 'url': 'https://some/url', }, 'git_url': u'<EMAIL>:jsmith/example.git', 'ref': u'refs/tags/v1.0.0', } def lookup_user(_): return { 'username': 'jsmith', 'html_url': 'http://gitlab.com/jsmith', 'avatar_url': 'http://some/avatar/url', } def lookup_commit(repo_id, commit_sha): if commit_sha == '82b3d5ae55f7080f1e6022629cdb57bfae7cccc7': return { "id": "82b3d5ae55f7080f1e6022629cdb57bfae7cccc7", "message": "Fix link\n", "timestamp": "2015-08-13T19:33:18+00:00", "url": "https://some/url", "author_name": "<NAME>", "author_email": "<EMAIL>", } return None assertSchema('gitlab_webhook_tag', expected, gl_webhook, lookup_user=lookup_user, lookup_commit=lookup_commit) def test_gitlab_webhook_for_tag_nocommit(): assertSkipped('gitlab_webhook_tag', gl_webhook) def test_gitlab_webhook_for_tag_commit_sha_null(): assertSkipped('gitlab_webhook_tag_commit_sha_null', gl_webhook) def test_gitlab_webhook_for_tag_known_issue(): expected = { 'commit': u'770830e7ca132856991e6db4f7fc0f4dbe20bd5f', 'ref': u'refs/tags/thirdtag', 'git_url': u'<EMAIL>:someuser/some-test-project.git', 'commit_info': { 'url': u'https://gitlab.com/someuser/some-test-project/commit/770830e7ca132856991e6db4f7fc0f4dbe20bd5f', 'date': u'2019-10-17T18:07:48Z', 'message': u'Update Dockerfile', 'author': { 'username': 'someuser', 'url': 'http://gitlab.com/someuser', 'avatar_url': 'http://some/avatar/url', }, }, } def lookup_user(_): return { 'username': 'someuser', 'html_url': 'http://gitlab.com/someuser', 'avatar_url': 'http://some/avatar/url', } assertSchema('gitlab_webhook_tag_commit_issue', expected, gl_webhook, lookup_user=lookup_user) def test_gitlab_webhook_payload_known_issue(): expected = { 'commit': u'770830e7ca132856991e6db4f7fc0f4dbe20bd5f', 'ref': u'refs/tags/fourthtag', 'git_url': u'[email protected]:someuser/some-test-project.git', 'commit_info': { 'url': u'https://gitlab.com/someuser/some-test-project/commit/770830e7ca132856991e6db4f7fc0f4dbe20bd5f', 'date': u'2019-10-17T18:07:48Z', 'message': u'Update Dockerfile', }, } def lookup_commit(repo_id, commit_sha): if commit_sha == '770830e7ca132856991e6db4f7fc0f4dbe20bd5f': return { "added": [], "author": { "name": "Some User", "email": "<EMAIL>" }, "url": "https://gitlab.com/someuser/some-test-project/commit/770830e7ca132856991e6db4f7fc0f4dbe20bd5f", "message": "Update Dockerfile", "removed": [], "modified": [ "Dockerfile" ], "id": "770830e7ca132856991e6db4f7fc0f4dbe20bd5f" } return None assertSchema('gitlab_webhook_known_issue', expected, gl_webhook, lookup_commit=lookup_commit) def test_gitlab_webhook_for_other(): assertSkipped('gitlab_webhook_other', gl_webhook) def test_gitlab_webhook_payload_with_lookup(): expected = { 'commit': u'fb88379ee45de28a0a4590fddcbd8eff8b36026e', 'ref': u'refs/heads/master', 'git_url': u'<EMAIL>:jsmith/somerepo.git', 'commit_info': { 'url': u'https://gitlab.com/jsmith/somerepo/commit/fb88379ee45de28a0a4590fddcbd8eff8b36026e', 'date': u'2015-08-13T19:33:18+00:00', 'message': u'Fix link\n', 'author': { 'username': 'jsmith', 'url': 'http://gitlab.com/jsmith', 'avatar_url': 'http://some/avatar/url', }, }, } def lookup_user(_): return { 'username': 'jsmith', 'html_url': 'http://gitlab.com/jsmith', 'avatar_url': 'http://some/avatar/url', } assertSchema('gitlab_webhook', expected, gl_webhook, lookup_user=lookup_user) def test_github_webhook_payload_deleted_commit(): expected = { 'commit': u'456806b662cb903a<PASSWORD>', 'commit_info': { 'author': { 'username': u'jsmith' }, 'committer': { 'username': u'jsmith' }, 'date': u'2015-12-08T18:07:03-05:00', 'message': (u'Merge pull request #1044 from jsmith/errerror\n\n' + 'Assign the exception to a variable to log it'), 'url': u'https://github.com/jsmith/somerepo/commit/456806b662cb903<PASSWORD>bab' }, 'git_url': u'<EMAIL>:jsmith/somerepo.git', 'ref': u'refs/heads/master', 'default_branch': u'master', } def lookup_user(_): return None assertSchema('github_webhook_deletedcommit', expected, gh_webhook, lookup_user=lookup_user) def test_github_webhook_known_issue(): def lookup_user(_): return None assertSkipped('github_webhook_knownissue', gh_webhook, lookup_user=lookup_user) def test_bitbucket_webhook_known_issue(): assertSkipped('bitbucket_knownissue', bb_webhook)
StarcoderdataPython
8075403
"""The london_underground component."""
StarcoderdataPython
45867
<gh_stars>0 #!/usr/bin/env python3 # imports go here import pika import multiprocessing import time import random import json import logging import datetime # # Free Coding session for 2015-03-12 # Written by <NAME> # logger = logging.getLogger(__name__) def get_temperatures(): return {'celcius': [random.randint(10, 20) for i in range(100)], 'key': '<KEY>', 'taken': str(datetime.datetime.now())} def start_measuring(): connection = pika.BlockingConnection() channel = connection.channel() while True: measurement = get_temperatures() channel.basic_publish(exchange='', routing_key='test', body=json.dumps(measurement)) time.sleep(1) connection.close() def producer(): # start thread to read temperatures p = multiprocessing.Process(target=start_measuring) p.start() time.sleep(1) def consumer(): # on main thread read from message queue and process them connection = pika.BlockingConnection() channel = connection.channel() channel.queue_declare(queue='test') # in case it's not yet created for method_frame, properties, body in channel.consume('test'): print(str(body)) try: data = json.loads(body.decode('utf-8')) print(data) channel.basic_ack(method_frame.delivery_tag) except ValueError as e: logger.exception('parsing error', e) logger.warn('parsing error') if method_frame.delivery_tag == 100: break channel.cancel() connection.close() if __name__ == "__main__": producer() consumer()
StarcoderdataPython
6422769
from setuptools import setup, find_packages NAME = 'jewelry' URL = 'https://github.com/mgsosna/jewelry' REQUIRES_PYTHON = '>=3.7.0' REQUIREMENTS_FN = 'requirements.txt' def list_requirements(file_name=REQUIREMENTS_FN): with open(file_name) as f: return f.read().splitlines() setup( name=NAME, version="0.1.0", include_package_data=True, python_requires=REQUIRES_PYTHON, url=URL, package_dir={'': 'jewelry'}, packages=find_packages(where="jewelry"), install_requires=list_requirements() )
StarcoderdataPython
11352707
import unittest import numpy as np from src.viewpointdiversitydetection.model_evaluation_utilities import generate_markdown_table class ModelEvaluationUtilitiesTest(unittest.TestCase): def test_generate_markdown_table(self): parameters = {'C': 5, 'gamma': .0001, 'class w': 'balanced', 'IAA': 0.2} answers = np.array(['b', 'b', 'b', 'b', 'a', 'b', 'a']) predictions = np.array(['a', 'a', 'b', 'b', 'a', 'a', 'a']) probabilities_list = [[.9, .1], [.4, .6], [.2, .8], [.3, .7], [.8, .2], [.55, .45], [.95, .05]] probabilities = np.array([np.array(i) for i in probabilities_list]) top_number = 3 label_a = 'a' label_b = 'b' corpus_name = 'Testing' search_terms = ['term 1', 'term 2'] t = generate_markdown_table(corpus_name, search_terms, parameters, answers, predictions, probabilities, top_number, label_a, label_b) print(t) self.assertTrue(t) if __name__ == '__main__': unittest.main()
StarcoderdataPython