id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
1879061
""" Utility dialogs for starcheat itself """ import os import sys import hashlib import webbrowser from PyQt5.QtWidgets import QDialog from PyQt5.QtWidgets import QFileDialog from PyQt5.QtWidgets import QMessageBox from PyQt5.QtWidgets import QProgressDialog from PyQt5 import QtCore from urllib.request import urlopen from urllib.error import URLError import logging import config import qt_options import qt_about import qt_mods from config import Config from assets.core import Assets def make_pak_hash(): vanilla = os.path.join(Config().read("assets_folder"), "packed.pak") mods = Config().read("mods_folder") pak_list = [vanilla] timestamps = [] for root, dirs, files in os.walk(mods): for f in files: if f.endswith(".pak"): pak_list.append(os.path.join(root, f)) for pak in pak_list: timestamps.append(str(os.stat(pak).st_mtime)) final_hash = hashlib.md5() final_hash.update("_".join(timestamps).encode()) return final_hash.hexdigest() def build_assets_db(parent): assets_db_file = Config().read("assets_db") starbound_folder = Config().read("starbound_folder") assets_db = Assets(assets_db_file, starbound_folder) def bad_asset_dialog(): dialog = QMessageBox(parent) dialog.setWindowTitle("No Assets Found") dialog.setText("Unable to index Starbound assets.") dialog.setInformativeText("Check that the Starbound folder was set correctly.") dialog.setIcon(QMessageBox.Critical) dialog.exec() assets_db.db.close() assets_db.init_db() asset_files = assets_db.find_assets() total = 0 progress = QProgressDialog("Indexing Starbound assets...", "Abort", 0, len(asset_files), parent) progress.setWindowTitle("Indexing...") progress.setWindowModality(QtCore.Qt.ApplicationModal) progress.forceShow() progress.setValue(total) for i in assets_db.create_index(): total += 1 progress.setValue(total) if progress.wasCanceled(): assets_db.db.close() return False progress.hide() if total == 0: bad_asset_dialog() return False else: Config().set("pak_hash", make_pak_hash()) return True def check_index_valid(parent): old_hash = Config().read("pak_hash") new_hash = make_pak_hash() if old_hash != new_hash: logging.info("Hashes don't match, updating index") dialog = QMessageBox(parent) dialog.setWindowTitle("Assets Out-of-date") dialog.setText("Starbound assets have been changed.") dialog.setInformativeText("Rebuild the starcheat assets index?") dialog.setIcon(QMessageBox.Question) dialog.setStandardButtons(QMessageBox.Yes | QMessageBox.No) answer = dialog.exec() if answer == QMessageBox.Yes: return build_assets_db(parent) else: return True else: return True def save_modified_dialog(parent): """Display a prompt asking user what to do about a modified file. Return button clicked.""" dialog = QMessageBox(parent) dialog.setWindowTitle("Save Changes?") dialog.setText("This player has been modified.") dialog.setInformativeText("Do you want to save your changes?") dialog.setStandardButtons(QMessageBox.Save | QMessageBox.Cancel | QMessageBox.Discard) dialog.setDefaultButton(QMessageBox.Save) dialog.setIcon(QMessageBox.Question) return dialog.exec() def select_starbound_folder_dialog(parent): folder = QFileDialog.getExistingDirectory(caption="Select Starbound Folder") while not os.path.isfile(os.path.join(folder, "assets", "packed.pak")): dialog = QMessageBox(parent) dialog.setWindowTitle("Wrong Starbound Folder") dialog.setText("This is not your Starbound folder!") dialog.setInformativeText("Please try again and select your Starbound folder, which should contain the assets folder.") dialog.setIcon(QMessageBox.Warning) dialog.setStandardButtons(QMessageBox.Ok | QMessageBox.Cancel) answer = dialog.exec() if answer == QMessageBox.Cancel: dialog = QMessageBox(parent) dialog.setWindowTitle("Starbound Not Installed") dialog.setIcon(QMessageBox.Critical) dialog.setText("starcheat needs Starbound installed to work.") dialog.exec() Config().remove_config() sys.exit() folder = QFileDialog.getExistingDirectory(caption="Select Starbound Folder") return os.path.normpath(folder) def new_setup_dialog(parent): """Run through an initial setup dialog for starcheat if it's required.""" logging.info("First setup dialog") if os.path.isfile(Config().ini_file): config_valid = (Config().has_key("config_version") and int(Config().read("config_version")) == Config().CONFIG_VERSION) if not config_valid: logging.info("rebuild config and assets_db (config_version mismatch)") dialog = QMessageBox(parent) dialog.setWindowModality(QtCore.Qt.WindowModal) dialog.setWindowTitle("Config Out-of-date") dialog.setText("Your starcheat settings are outdated.") dialog.setInformativeText("A new config file and assets index will be created...") dialog.setIcon(QMessageBox.Warning) dialog.exec() else: vanilla_pak = os.path.join(Config().read("starbound_folder"), "assets", "packed.pak") if os.path.isfile(vanilla_pak): return True else: logging.error("No vanilla pak, Starbound folder may be wrong") os.remove(Config().ini_file) # Starbound folder settings starbound_folder = Config().detect_starbound_folder() if starbound_folder == "": dialog = QMessageBox(parent) dialog.setWindowModality(QtCore.Qt.WindowModal) dialog.setWindowTitle("Starbound Not Found") dialog.setText("Unable to detect the main Starbound folder.") dialog.setInformativeText("Please select it in the next dialog.") dialog.setIcon(QMessageBox.Warning) dialog.exec() starbound_folder = select_starbound_folder_dialog(parent) else: dialog = QMessageBox(parent) dialog.setWindowModality(QtCore.Qt.WindowModal) dialog.setWindowTitle("Starbound Folder Found") dialog.setText("Detected the following folder as the location of Starbound. Is this correct?") dialog.setInformativeText(starbound_folder) dialog.setStandardButtons(QMessageBox.No | QMessageBox.Yes) dialog.setIcon(QMessageBox.Question) answer = dialog.exec() if answer == QMessageBox.No: starbound_folder = select_starbound_folder_dialog(parent) # looks okay enough, let's go Config().create_config(starbound_folder) if not build_assets_db(parent): os.remove(Config().ini_file) return False else: return True def update_check_worker(result): if Config().has_key("check_updates"): check_updates = Config().read("check_updates") == "yes" else: check_updates = True if not check_updates: logging.info("Skipping update check") return logging.info("Checking for updates") try: latest_tag = urlopen("https://github.com/wizzomafizzo/starcheat/releases/latest").geturl() if latest_tag.find("github.com/wizzomafizzo/starcheat/releases") >= 0: if not latest_tag.endswith("tag/" + config.STARCHEAT_VERSION_TAG): result[0] = latest_tag logging.info("update check: found new starcheat version") return else: logging.info("update check: skipping update check because of failed redirect") except URLError: logging.info("update check: skipping update check because of no internet connection") result[0] = False def update_check_dialog(parent, latest_tag): dialog = QMessageBox(parent) dialog.setWindowModality(QtCore.Qt.WindowModal) dialog.setWindowTitle("Outdated starcheat Version") dialog.setText("A new version of starcheat is available! Do you want to update now?") dialog.setStandardButtons(QMessageBox.Yes | QMessageBox.No) dialog.setDefaultButton(QMessageBox.Yes) dialog.setIcon(QMessageBox.Question) if dialog.exec() == QMessageBox.Yes: webbrowser.open(latest_tag, 2) sys.exit(0) class AboutDialog(): def __init__(self, parent): self.dialog = QDialog(parent) self.ui = qt_about.Ui_Dialog() self.ui.setupUi(self.dialog) set_ver = self.ui.header_info.text().replace("STARCHEAT_VERSION", config.STARCHEAT_VERSION) self.ui.header_info.setText(set_ver) class OptionsDialog(): def __init__(self, parent): self.dialog = QDialog(parent) self.ui = qt_options.Ui_Dialog() self.ui.setupUi(self.dialog) assets_db_file = Config().read("assets_db") starbound_folder = Config().read("starbound_folder") self.db = Assets(assets_db_file, starbound_folder) self.config = Config() self.current_folder = self.config.read("starbound_folder") # read the current config and prefill everything self.ui.starbound_folder.setText(self.config.read("starbound_folder")) self.ui.total_indexed.setText(str(self.db.total_indexed()) + " indexed") self.ui.update_checkbox.setChecked(self.config.read("check_updates") == "yes") self.ui.starbound_folder_button.clicked.connect(self.open_starbound) self.ui.rebuild_button.clicked.connect(self.rebuild_db) self.ui.update_checkbox.toggled.connect(self.write_update_check) def write(self): starbound_folder = self.ui.starbound_folder.text() if self.current_folder != starbound_folder: self.config.create_config(starbound_folder) def write_update_check(self): do_check = self.ui.update_checkbox.isChecked() # configparser has a getbool method but it's not much smarter than this # and will complicate the config class. move this to a separate method # if we need more bools if do_check: conf_val = "yes" else: conf_val = "no" self.config.set("check_updates", conf_val) def open_starbound(self): filename = QFileDialog.getExistingDirectory(self.dialog, "Select Starbound Folder", self.config.read("starbound_folder")) if filename != "": self.ui.starbound_folder.setText(filename) def rebuild_db(self): self.write() def bad_asset_dialog(): dialog = QMessageBox(self.dialog) dialog.setWindowTitle("No Starbound Assets") dialog.setText("No Starbound assets could be found.") dialog.setInformativeText("The Starbound folder option might be set wrong.") dialog.setIcon(QMessageBox.Critical) dialog.exec() try: rebuild = build_assets_db(self.dialog) except FileNotFoundError: rebuild = False assets_db_file = Config().read("assets_db") starbound_folder = Config().read("starbound_folder") self.db = Assets(assets_db_file, starbound_folder) total = str(self.db.total_indexed()) if not rebuild or total == 0: bad_asset_dialog() else: dialog = QMessageBox(self.dialog) dialog.setWindowTitle("Finished Indexing") dialog.setText("Finished indexing Starbound assets.") dialog.setInformativeText("Found %s assets." % total) dialog.setIcon(QMessageBox.Information) dialog.exec() self.ui.total_indexed.setText(total + " indexed") class ModsDialog(): def __init__(self, parent): self.dialog = QDialog(parent) self.ui = qt_mods.Ui_Dialog() self.ui.setupUi(self.dialog) starbound_folder = Config().read("starbound_folder") self.assets = Assets(Config().read("assets_db"), starbound_folder) mods = self.assets.get_mods() self.ui.mods_total.setText(str(len(mods))+" total") for mod in mods: self.ui.mods_list.addItem(mod) self.ui.export_button.clicked.connect(self.export_list) def export_list(self): data = "" for mod in self.assets.get_mods(): data += mod + "\n" filename = QFileDialog.getSaveFileName(self.dialog, "Export Mod List As", filter="Text (*.txt);;All Files (*)") if filename[0] != "": json_file = open(filename[0], "w") json_file.write(data) json_file.close()
StarcoderdataPython
12835713
<filename>interface/__init__.py from PySimpleGUI import PySimpleGUI as sg from sys import exit sg.theme('DarkGray14') # sg.theme_previewer() def layout(): layout = [ [sg.Text('Recomeçar:'), sg.Radio('Sim', 'recomecar', key='rSim', default=True, enable_events=True), sg.Radio('Não', 'recomecar', key='rNao', enable_events=True)], [sg.Text('Usuário:', size=(8, 1), key='usuarioTxt', visible=True)], [sg.Input(key='usuario', size=(20, 1), visible=True)], [sg.Text('Senha:', size=(8, 1), key='senhaTxt')], [sg.Input(key='senha', password_char='*', size=(20, 1))], [sg.Text('Frase:', size=(8, 1), key='fraseTxt')], [sg.Input(key='frase', size=(20, 1))], [sg.Text('Link do Post:', key='linkTxt', visible=True)], [sg.Input(key='link', size=(40, 1), visible=True)], [sg.Text('Número de seguidores:', size=(33, 1), key='qtSeguiTxt', visible=True)], [sg.Input(key='qtSegui', size=(15, 1), visible=True)], [sg.Text('Buscar:', visible=True, key='buscaTxt')], [sg.Radio('Seguidores', 'busca', key='bSeguidor', visible=True, default=True, enable_events=True)], [sg.Radio('Seguindo', 'busca', key='bSeguindo', visible=True, enable_events=True)], [sg.Text('Navegador:'), sg.Radio('Opera', 'navegador', key='opera', default=True), sg.Radio('Google Chrome', 'navegador', key='chrome')], [sg.Text('Marcações:')], [sg.Slider(range=(1, 5), default_value=3, size=(20, 15), orientation='h', key='marcar')], [sg.Text('Quantidade de comentarios:')], [sg.Slider(range=(1, 300), default_value=20, size=(40, 15), orientation='h', key='comQuant')], [sg.Button('Iniciar')] #[sg.Output(size=(40, 20), key='output')] ] return layout def janela(): window = sg.Window('Bot de comentários', layout()) while True: eventos, valores = window.read() #window['output'].update(value=f'{"Informações":-^60}') if eventos == sg.WINDOW_CLOSED: exit() break if eventos == 'rSim': window['link'].update(disabled=False) window['qtSegui'].update(disabled=False) window['usuario'].update(disabled=False) window['senha'].update(disabled=False) window['frase'].update(disabled=False) window['bSeguidor'].update(disabled=False) window['bSeguindo'].update(disabled=False) elif eventos == 'rNao': window['link'].update(disabled=True) window['qtSegui'].update(disabled=True) window['usuario'].update(disabled=True) window['senha'].update(disabled=True) window['frase'].update(disabled=True) window['bSeguidor'].update(disabled=True) window['bSeguindo'].update(disabled=True) if eventos == 'Iniciar': try: valores['marcar'] = int(valores['marcar']) valores['comQuant'] = int(valores['comQuant']) if valores['rSim']: valores['qtSegui'] = int(valores['qtSegui']) return valores except: print('Erro! Digite os valores inteiros válidos!') janela()
StarcoderdataPython
4908581
#### REST FRAMEWORK ##### from rest_framework import generics from rest_framework import permissions from rest_framework.response import Response ##### SERIALIZERS ##### from users.serializers import UserSerializer from users.serializers import BuyerProfileSerializer from users.serializers import SellerProfileSerializer ##### MODELS ##### from django.contrib.auth.models import User from users.models import BuyerProfile from users.models import SellerProfile # Get User API class UserAPI(generics.RetrieveAPIView): permission_classes = [permissions.IsAuthenticated,] serializer_class = UserSerializer def get_object(self): return self.request.user class BuyerProfileAPI(generics.RetrieveAPIView): permission_classes = [permissions.IsAuthenticated,] serializer_class = BuyerProfileSerializer def get_object(self): user__ = self.request.user return BuyerProfile.objects.get(user = user__) class SellerProfileAPI(generics.RetrieveAPIView): permission_classes = [permissions.IsAuthenticated,] serializer_class = SellerProfileSerializer def get_object(self): user__ = self.request.user return SellerProfile.objects.get(user = user__)
StarcoderdataPython
3364128
#!/usr/bin/env python3 def test(i): print("coroutine starts") while True: value = yield i i += value b = test(5) # just created; main fn in control; next(b) # now corutine in control # execute print statement and then # yield val `i` to main fn # yield control back to caller # waiting to be fed again in pending mode b.send(3) # main fn feeds this coroutin with val `3`, # brought back to life, again in control, # execute i+= value, and then yield to main fn with val updated `i` b.send(5) # main fn feeds this coroutin with val `5`, # brought back to life, again in control, # execute i+= value, and then yield to main fn with val updated `i`
StarcoderdataPython
5022187
<reponame>raymondyeh07/chirality_nets """Test for chiral batch_norm1d layer.""" import unittest import torch import torch.nn.functional as F from tests.test_chiral_base import TestChiralBase from chiral_layers.chiral_batch_norm1d import ChiralBatchNorm1d class TestChiralBatchNorm1d(TestChiralBase): """Implements unittests for chiral conv1d layers.""" def test_single_layer_running_mean_var_updates(self): print('Tests batchnorm running mean and var updates.') batch_size = 2 time_size = 5 num_joints = 5 in_dim = 2 out_dim = 2 neg_dim_in = 1 neg_dim_out = 1 sym_groupings = ([2, 2, 1], [2, 2, 1]) # Generate chiral pairs. x, x_chiral = self._get_input_pairs(batch_size, time_size, num_joints, in_dim, neg_dim_in, sym_groupings) # Reshape to joints and dim to a column vector. x = x.view(x.shape[0], -1, x.shape[-1]) x_chiral = x_chiral.view(x.shape[0], -1, x.shape[-1]) bn_layer = ChiralBatchNorm1d(num_joints*in_dim, sym_groupings=sym_groupings, neg_dim_in=neg_dim_in, neg_dim_out=neg_dim_out) # Checks mean is initialize bn_mean = bn_layer.running_mean_neg1.mean() assert(torch.eq(bn_mean, torch.zeros_like(bn_mean))) # Checks variance is initialized. bn_var = bn_layer.running_var_neg1.mean() assert(torch.eq(bn_var, torch.ones_like(bn_var))) bn_layer.train() for k in range(5): xx, _ = self._get_input_pairs(batch_size, time_size, num_joints, in_dim, neg_dim_in, sym_groupings) bn_layer(x) # Checks mean is updated, thus not zero. bn_mean = bn_layer.running_mean_neg1.mean() assert(not torch.eq(bn_mean, torch.zeros_like(bn_mean))) # Checks variance is updated, thus not one. bn_var = bn_layer.running_var_neg1.mean() assert(not torch.eq(bn_var, torch.ones_like(bn_var))) def test_single_layer_equi_at_test(self): """Performs unittest for equivariance on toy example""" print('Tests batchnorm equivariance at test time.') batch_size = 2 time_size = 5 num_joints = 5 in_dim = 2 out_dim = 2 neg_dim_in = 1 neg_dim_out = 1 sym_groupings = ([2, 2, 1], [2, 2, 1]) # Generate chiral pairs. x, x_chiral = self._get_input_pairs(batch_size, time_size, num_joints, in_dim, neg_dim_in, sym_groupings) # Reshape to joints and dim to a column vector. x = x.view(x.shape[0], -1, x.shape[-1]) x_chiral = x_chiral.view(x.shape[0], -1, x.shape[-1]) bn_layer = ChiralBatchNorm1d(num_joints*in_dim, sym_groupings=sym_groupings, neg_dim_in=neg_dim_in, neg_dim_out=neg_dim_out) # Perform training to update running stats. bn_layer.train() for k in range(5): xx, _ = self._get_input_pairs(batch_size, time_size, num_joints, in_dim, neg_dim_in, sym_groupings) bn_layer(x) # Perform forward pass at test time. bn_layer.eval() y = bn_layer(x) y_chiral = bn_layer(x_chiral) # Reshape back to joints, dim representation. y = y.view(y.shape[0], num_joints, -1, y.shape[-1]) y_chiral = y_chiral.view(y.shape[0], num_joints, -1, y.shape[-1]) # Compare output. self._checks_chiral_equivariant(y, y_chiral, num_joints, out_dim, neg_dim_out, sym_groupings[1]) if __name__ == '__main__': unittest.main()
StarcoderdataPython
44180
''' Etapas do logger ''' import logging # Instancia do objeto getLogger() logger = logging.getLogger() # Definindo o level do logger logger.setLevel(logging.DEBUG) # formatador do log formatter = logging.Formatter( 'Data/Hora: %(asctime)s | level: %(levelname)s | file: %(filename)s | mensagem: %(message)s', # Padrão de data: dia/mes/ano # Padrão de hora: hora/minuto/segundos # Sistema (am/pm) datefmt='%d/%m/%Y %H:%M:%S %p' ) # definido handler ''' logging.FileHandler() -> Salva em arquivo logging.StreamHandler() -> Mostra no console logging.NullHandler -> Manipulador nulo ''' fh = logging.StreamHandler() fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) # Definindo handler logger.addHandler(fh) logger.debug('Olá.')
StarcoderdataPython
246872
<filename>odac_idp/__init__.py import os from flask import Flask # setup configs env = os.environ.get('FLASK_ENV', 'development') app = Flask(__name__) app.config['DEBUG'] = (env != 'production') import odac_idp.views
StarcoderdataPython
11242923
import random, lists, logging # Security levels levels = { '1' : {'length': 0, 'complex': False}, '2' : {'length': 8, 'complex': False}, '3' : {'length': 8, 'complex': True} } # Gen passwords class password: def gen_passwd(wordCount=3, separator='-', words=lists.words): passwd = '' for current in range(wordCount): logging.info('Getting a random word...') randWord = random.choice(words) if current == wordCount-1: logging.info('Finishing...') passwd = passwd + str(randWord) else: logging.info('Adding word...') passwd = passwd + str(randWord) + str(separator) return(passwd) def gen_char_passwd(charCount=20, separator='', chars=lists.complex): passwd = '' for current in range(charCount): randWord = random.choice(chars) if current == charCount-1: passwd = passwd + str(randWord) else: passwd = passwd + str(randWord) + str(separator) return(passwd) def gen_complex_passwd(wordCount=3, charCount=3, separator='-', words=lists.words, chars=lists.complex): passwd = '' for current in range(wordCount): randWord = random.choice(words) if current == wordCount-1: passwd = passwd + str(randWord) else: passwd = passwd + str(randWord) + str(separator) for current in range(charCount): randChar = random.choice(chars) passwd = passwd + str(randChar) return(passwd)
StarcoderdataPython
3569185
<gh_stars>0 import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText class Mail: """ ShareNews class by default need the next instances: -mail = senders_mail -mail_to = who will receive the mail -password = <PASSWORD> -smtp_server = The server of you mail provider -port = Default 465 Mail Instances: self.message = MIMEMultipart("alternative") self.message["Subject"] = "News" self.message["From"] = self.mail self.message["To"] = self.destination """ def __init__(self, mail, destination, password, smtp_server, port='465', subject='News'): # Connection Instances self.mail = mail self.destination = destination self.password = password self.smtp_server = smtp_server self.port = port # two parts of message-> plain text and html content # change to message content self.subject = subject self.html = '' self.text = '' def create_message(self): # create message from mimemultipart obj # Mail / Message Instances self.content = MIMEMultipart("alternative") self.content["Subject"] = self.subject self.content["From"] = self.mail self.content["To"] = self.destination # create message # Turn these into plain/html MIMEText objects part1 = MIMEText(self.text, "plain") part2 = MIMEText(self.html, "html") # Add HTML/plain-text parts to MIMEMultipart message # The email client will try to render the last part first self.content.attach(part1) self.content.attach(part2) def send(self): # creating message self.create_message() # connecting to the mail client to send an email with smtplib.SMTP_SSL(self.smtp_server, self.port) as server: # login server.login(self.mail, self.password) # send server.sendmail(self.mail, self.destination, self.content.as_string()) def send_to_many(): pass
StarcoderdataPython
198375
<filename>examples/flask/htdocs/main.py """ # Python Flask # http://flask.pocoo.org/docs/1.0/quickstart/#quickstart # Code from # @see Rapid Flask [Video], PacktLib # --- # @see Learning Flask Framework # @see ... # run app server with "python routes.py" # open browser at "localhost:5000" # open browser at "localhost:5000/hello" # open browser at "localhost:5000/goodbye/<your-name>" """ # ----------------------------------------- from flask import Flask from flask import render_template from flask import make_response from flask import request import datetime import os import json import time import urllib2 # ----------------------------------------- app = Flask(__name__) # ----------------------------------------- def get_weather(city): url = "http://api.openweathermap.org/data/2.5/forecast/daily?q={}&cnt=10&mode=json&units=metric".format(city) response = urllib2.urlopen(url).read() return response # ----------------------------------------- @app.route("/") def index(): searchcity = request.args.get("searchcity") if not searchcity: searchcity = request.cookies.get("last_city") if not searchcity: searchcity = "London" data = json.loads(get_weather(searchcity)) try: city = data['city']['name'] except KeyError: return render_template("invalid_city.html") country = data['city']['country'] forecast_list = [] for d in data.get("list"): day = time.strftime('%d %B', time.localtime(d.get('dt'))) mini = d.get("temp").get("min") maxi = d.get("temp").get("max") description = d.get("weather")[0].get("description") forecast_list.append((day,mini,maxi,description)) response = make_response(render_template("index.html", forecast_list=forecast_list, city=city, country=country)) if request.args.get("remember"): response.set_cookie("last_city","{},{}".format(city, country), expires=datetime.datetime.today() + datetime.timedelta(days=365)) return response # ----------------------------------------- if __name__ == '__main__': port = int(os.environ.get('PORT', 5000)) app.run(host='0.0.0.0', port=port, debug=True)
StarcoderdataPython
1871560
import pytest # noqa from django.test import TestCase import ensure_footer import json import os import django os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'website.settings.dev') django.setup() import common.models # noqa class VariableValuesTest(TestCase): def test_migrate_html(self): """ Tests the footer html """ actual_footer = ensure_footer.migrate(dry=True) html = '''<div class='col-md-4' ><div class="block-rich_text"> <div class="rich-text"><h4>About</h4><p>The Center for Open Science fosters openness, integrity, and reproducibility of scientific research</p></div> </div></div> <div class='col-md-4' ><div class="block-rich_text"><div class="rich-text"> <h4>Contact Us</h4><p>Center for Open Science</p><p>210 Ridge McIntire Road </p><p>Suite 500</p><p>Charlottesville, VA 22903-5083</p><p>Email: <EMAIL></p><p><br/></p></div></div> <div class="block-photo_stream"><h2>Photo Stream</h2> <div class="blog-photo-stream margin-bottom-30"> <ul id="cbox" class="list-unstyled thumbs"> </ul> </div> </div></div> <div class='col-md-4' ><div class="block-twitter"><div id="twitterbox"> <h2>Twitter Feed</h2> <a class="twitter-timeline" href="https://twitter.com/OSFramework" data-widget-id="456100099907547136" data-theme="dark" data-related= "twitterapi,twitter" data-aria-polite="assertive" height="400" lang="EN" data-chrome="nofooter transparent noheader noscrollbar noborders" data-tweet-limit="3">Tweets by @OSFramework</a> <script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0], p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){ js=d.createElement(s);js.id=id; js.src=p+"://platform.twitter.com/widgets.js"; fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); </script> </div> </div></div> ''' raw_json = json.dumps([{'type': 'raw_html', 'value': html}]) footer = common.models.Footer(title='Main') footer.content = raw_json test_footer = print('Dry run, aborting with footer: {} and content: {}'.format(footer, footer.content)) self.assertEqual(actual_footer, test_footer, 'The html does not match')
StarcoderdataPython
1918542
<filename>pkg/005_custom_application/cstraining.web/cstraining/web/__init__.py #!/usr/bin/env powerscript # -*- mode: python; coding: utf-8 -*- import datetime from cdb import auth from cdb import util from cdb.objects.core import Object from cdb.platform.gui import PythonColumnProvider class Ticket(Object): __classname__ = "cst_ticket" __maps_to__ = "cst_ticket" def set_raised_by(self, ctx): ctx.set('raised_by', auth.persno) def make_number(self, ctx): self.id = "T%09d" % (util.nextval("CST_TICKET_NR")) def set_description_mandatory(self, ctx): if ctx.dialog.priority == 'urgent': ctx.set_mandatory('cst_ticket_description_txt') else: ctx.set_optional('cst_ticket_description_txt') event_map = { (('create', 'copy'), 'pre'): ('make_number'), (('create', 'copy'), 'pre_mask'): ('set_raised_by'), (('create', 'copy', 'modify'), ('dialogitem_change', 'pre_mask')): ('set_description_mandatory') } class TicketLog(Object): __classname__ = "cst_ticket_log" __maps_to__ = "cst_ticket_log" def set_current_date(self, ctx): ctx.set('cdate', datetime.datetime.now().isoformat()) event_map = { (('create', 'copy'), 'pre_mask'): ('set_current_date') } class TicketLogDescriptionProvider(PythonColumnProvider): @staticmethod def getColumnDefinitions(classname, query_args): return [ { 'column_id': 'cst_ticket_log_notes_txt', 'label': util.get_label('cst_ticket_log_notes_txt'), 'data_type': 'text', 'width': 40, } ] @staticmethod def getColumnData(classname, table_data): log_ids = [log.get('cdb_object_id') for log in table_data] logs = TicketLog.KeywordQuery(cdb_object_id=log_ids) text_cache = {log.cdb_object_id: log.GetText('cst_ticket_log_notes_txt') for log in logs} return [ {'cst_ticket_log_notes_txt': text_cache.get(log_id, '')} for log_id in log_ids ] @staticmethod def getRequiredColumns(classname, available_columns): return ['cdb_object_id']
StarcoderdataPython
9602176
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== import os, threading, json, time, socket from http.server import BaseHTTPRequestHandler, HTTPServer import urllib from socketserver import ThreadingMixIn from datetime import datetime from base64 import b64encode, b64decode from evaluator import get_results def log(msg): return "[%s] %s" % (datetime.now(), str(msg)) class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" class Server(BaseHTTPRequestHandler): def _set_headers(self): self.send_response(200) self.send_header('Access-Control-Allow-Origin', "*") self.send_header("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-Type, Accept") self.send_header('Content-type', 'application/json') self.end_headers() def _set_img_headers(self): self.send_response(200) self.send_header('Access-Control-Allow-Origin', "*") self.send_header("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-Type, Accept") self.send_header('Content-type', 'image/png') self.end_headers() def do_OPTIONS(self): self.send_response(200, "ok") self.send_header('Access-Control-Allow-Origin', "*") self.send_header('Access-Control-Allow-Methods', 'POST, OPTIONS') self.send_header("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-Type, Accept") self.end_headers() def do_HEAD(self): self._set_headers() def do_POST(self): results = {'status':False, 'results':[], 'verbose':None} received = str(int(time.time()*1000)) self._set_img_headers() content_length = int(self.headers['Content-Length']) # <--- Gets the size of data content_type = 'png' if ('png' in self.headers['Content-Type']) else 'jpg' try: raw_data = self.rfile.read(content_length) # <--- Gets the data itself data = json.loads(raw_data.decode('utf8'))["input_df"][0]['image base64 string'] except Exception as err: print("[ERROR]", err) return results["results"] = get_results(self.evaluator, data, self.cfg) results["status"] = True results["verbose"] = { 'received': received, 'resloved': str(int(time.time()*1000)), 'host': socket.gethostname() } self.wfile.write(bytes(json.dumps(results), "utf8")) @classmethod def bind_evaluator(self, _evaluator, _cfg): self.evaluator = _evaluator self.cfg = _cfg
StarcoderdataPython
3363355
<reponame>chubbymaggie/LibRadar import libradar import json import glob apks = glob.glob("/Volumes/banana/apks/*") i = -1 total = 10 while i < total: try: i += 1 print "Progress %d" % i apk_path = apks[i] lrd = libradar.LibRadar(apk_path) res = lrd.compare() print(json.dumps(res, indent=4, sort_keys=True)) #for item in res: # if item["Library"] != "Unknown" and "Standard Package" in item and "Package" in item and item["Standard Package"] != item["Package"]: # print "NOT_MATCH_PACKAGE_NAME" # print item["Standard Package"] # print item["Package"] except Exception, e: total += 1 print Exception,":", e
StarcoderdataPython
172723
<reponame>FaceandControl/genshin-parser from src import api from src.resources.main import Main from src.resources.character import Сharacter from src.resources.characters import Сharacters # # Declarations of app routes in type of rest web-architecture # # routes api.add_resource(Main, '/', strict_slashes=False) api.add_resource(Сharacter, '/<ln>/character/<name>', strict_slashes=False) api.add_resource(Сharacters, '/<ln>/characters', strict_slashes=False)
StarcoderdataPython
11258635
<reponame>redsnic/WGA-LP # --- default imports --- import os import multiprocessing # --- load utils --- from WGALP.utils.commandLauncher import run_sp from WGALP.utils.genericUtils import * from WGALP.step import Step description = """ Run merqury to asses WGA quality """ input_description = """ the original fastq files and an assembly """ output_description = """ quality reports and plots that will be available in the output folder """ ### Wrapper # a kmer size is fine for genomes of 3Mpb (use $MERQURY/best_k.sh <genome_size>) def merqury(name, rootpath, reference, fastq1, fastq2, kmer=16, execution_mode = "on_demand"): step = Step(name, rootpath, execution_mode=execution_mode) step.set_command(merqury_runner) step_args = { "assembly": reference, "fastq1" : fastq1, "fastq2" : fastq2, "kmer" : kmer } step.run(step_args) step.set_description(description, input_description, output_description) return step ### Runner def merqury_runner(step, args): """ input: assembly : path (.fasta) fastq1 : path fastq2 : path kmer : number (kmer length used by the assembler) output: merqury_output_dir : just a link to the output folder """ assembly = os.path.abspath(args["assembly"]) f1 = os.path.abspath(args["fastq1"]) f2 = os.path.abspath(args["fastq2"]) k = str(args["kmer"]) # running merqury requires to run meryl command = "cd " + step.outpath + " && " command += "meryl k=" + k + " count output FWD.maryl " + f1 + " && " command += "meryl k=" + k + " count output REV.maryl " + f2 + " && " command += "meryl union-sum output UNION.maryl FWD.maryl REV.maryl && " command += "$MERQURY/merqury.sh UNION.maryl " + assembly + " " + os.path.splitext(os.path.basename(assembly))[0] + " ; " if step.execution_mode != "read": run_sp(step, command) print(command) # organize output step.outputs = { "merqury_output_dir" : "" } return step
StarcoderdataPython
291615
<gh_stars>1-10 """ Definition of urls for djangoapp. """ from datetime import datetime from django.conf.urls import url import django.contrib.auth.views from django.urls import path,include from . import views # Uncomment the next lines to enable the admin: # from django.conf.urls import include # from django.contrib import admin # admin.autodiscover() urlpatterns = [ # Examples: #url('',app.views.index), path('', include('landing.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: # url(r'^admin/', include(admin.site.urls)), ]
StarcoderdataPython
9639230
from rest_framework import viewsets from .models import Category from .serializers import CategorySerializer # Create your views here. class CategoryViewSet(viewsets.ModelViewSet): # Operations to be performed queryset = Category.objects.all().order_by('-created_at') # Class responsible for serializing the data serializer_class = CategorySerializer
StarcoderdataPython
1842934
<filename>ori/slow_down_cdf.py import numpy as np import pickle import matplotlib.pyplot as plt import environment import parameters import pg_network import other_agents from cycler import cycler def discount(x, gamma): """ Given vector x, computes a vector y such that y[i] = x[i] + gamma * x[i+1] + gamma^2 x[i+2] + ... """ out = np.zeros(len(x)) out[-1] = x[-1] for i in reversed(range(len(x)-1)): out[i] = x[i] + gamma*out[i+1] assert x.ndim >= 1 # More efficient version: # scipy.signal.lfilter([1],[1,-gamma],x[::-1], axis=0)[::-1] return out def categorical_sample(prob_n): """ Sample from categorical distribution, specified by a vector of class probabilities """ prob_n = np.asarray(prob_n) csprob_n = np.cumsum(prob_n) return (csprob_n > np.random.rand()).argmax() def get_traj(test_type, pa, env, episode_max_length, pg_resume=None, render=False): """ Run agent-environment loop for one whole episode (trajectory) Return dictionary of results """ if test_type == 'PG': # load trained parameters pg_learner = pg_network.PGLearner(pa) net_handle = open(pg_resume, 'rb') net_params = pickle.load(net_handle) pg_learner.set_net_params(net_params) env.reset() rews = [] ob = env.observe() for _ in range(episode_max_length): if test_type == 'PG': a = pg_learner.choose_action(ob) elif test_type == 'Tetris': a = other_agents.get_packer_action(env.machine, env.job_slot) elif test_type == 'SJF': a = other_agents.get_sjf_action(env.machine, env.job_slot) elif test_type == 'Random': a = other_agents.get_random_action(env.job_slot) ob, rew, done, info = env.step(a, repeat=True) rews.append(rew) if done: break if render: env.render() # env.render() return np.array(rews), info def launch(pa, pg_resume=None, render=False, plot=False, repre='image', end='no_new_job'): # ---- Parameters ---- test_types = ['Tetris', 'SJF', 'Random'] if pg_resume is not None: test_types = ['PG'] + test_types env = environment.Env(pa, render, repre=repre, end=end) all_discount_rews = {} jobs_slow_down = {} work_complete = {} work_remain = {} job_len_remain = {} num_job_remain = {} job_remain_delay = {} for test_type in test_types: all_discount_rews[test_type] = [] jobs_slow_down[test_type] = [] work_complete[test_type] = [] work_remain[test_type] = [] job_len_remain[test_type] = [] num_job_remain[test_type] = [] job_remain_delay[test_type] = [] for seq_idx in range(pa.num_ex): print('\n\n') print("=============== " + str(seq_idx) + " ===============") for test_type in test_types: rews, info = get_traj(test_type, pa, env, pa.episode_max_length, pg_resume) print ("---------- " + test_type + " -----------") print ("total discount reward : \t %s" % (discount(rews, pa.discount)[0])) all_discount_rews[test_type].append( discount(rews, pa.discount)[0] ) # ------------------------ # ---- per job stat ---- # ------------------------ enter_time = np.array([info.record[i].enter_time for i in range(len(info.record))]) finish_time = np.array([info.record[i].finish_time for i in range(len(info.record))]) job_len = np.array([info.record[i].len for i in range(len(info.record))]) job_total_size = np.array([np.sum(info.record[i].res_vec) for i in range(len(info.record))]) finished_idx = (finish_time >= 0) unfinished_idx = (finish_time < 0) jobs_slow_down[test_type].append( (finish_time[finished_idx] - enter_time[finished_idx]) / job_len[finished_idx] ) work_complete[test_type].append( np.sum(job_len[finished_idx] * job_total_size[finished_idx]) ) work_remain[test_type].append( np.sum(job_len[unfinished_idx] * job_total_size[unfinished_idx]) ) job_len_remain[test_type].append( np.sum(job_len[unfinished_idx]) ) num_job_remain[test_type].append( len(job_len[unfinished_idx]) ) job_remain_delay[test_type].append( np.sum(pa.episode_max_length - enter_time[unfinished_idx]) ) env.seq_no = (env.seq_no + 1) % env.pa.num_ex # -- matplotlib colormap no overlap -- if plot: num_colors = len(test_types) cm = plt.get_cmap('gist_rainbow') fig = plt.figure() ax = fig.add_subplot(111) colors = [cm(1. * i / num_colors) for i in range(num_colors)] ax.set_prop_cycle(cycler('color', colors)) for test_type in test_types: slow_down_cdf = np.sort(np.concatenate(jobs_slow_down[test_type])) slow_down_yvals = np.arange(len(slow_down_cdf))/float(len(slow_down_cdf)) ax.plot(slow_down_cdf, slow_down_yvals, linewidth=2, label=test_type) plt.legend(loc=4) plt.xlabel("job slowdown", fontsize=20) plt.ylabel("CDF", fontsize=20) # plt.show() if pg_resume is not None: plt.savefig(pg_resume + "_slowdown_fig" + ".pdf") else: plt.savefig("missing" + "_slowdown_fig" + ".pdf") env.plot_state() return all_discount_rews, jobs_slow_down def main(): pa = parameters.Parameters() pa.simu_len = 200 # 5000 # 1000 pa.num_ex = 10 # 100 pa.num_nw = 10 pa.num_seq_per_batch = 20 # pa.max_nw_size = 5 # pa.job_len = 5 pa.new_job_rate = 0.3 pa.discount = 1 pa.episode_max_length = 20000 # 2000 pa.compute_dependent_parameters() render = False plot = True # plot slowdown cdf pg_resume = None # pg_resume = 'data/pg_re_discount_1_rate_0.3_simu_len_200_num_seq_per_batch_20_ex_10_nw_10_1450.pkl' # pg_resume = 'data/pg_re_1000_discount_1_5990.pkl' pa.unseen = True launch(pa, pg_resume, render, plot, repre='image', end='all_done') if __name__ == '__main__': main()
StarcoderdataPython
1656975
import json with open('data/classes.json') as f: data = json.load(f) list_of_classes = [] for book_class in data['classes']: name = book_class['Name'] list_of_classes.append(name) def get_key_ability(PC_class): if PC_class in list_of_classes: index = list_of_classes.index(PC_class) return data['classes'][index]['Key Ability'] if __name__ == "__main__": print(list_of_classes) get_key_ability('Alchemist')
StarcoderdataPython
11256140
"""Module for handling commands which may be attached to BinarySensor class.""" import logging from typing import TYPE_CHECKING, Any, Awaitable, Callable, Optional if TYPE_CHECKING: from xknx.xknx import XKNX logger = logging.getLogger("xknx.log") class ActionBase: """Base Class for handling commands.""" def __init__(self, xknx: "XKNX", hook: str = "on", counter: Optional[int] = 1): """Initialize Action_Base class.""" self.xknx = xknx self.hook = hook self.counter = counter def test_counter(self, counter: Optional[int]) -> bool: """Test if action filters for specific counter.""" if self.counter is None: # no specific counter_filter -> always true return True if counter is None: return True return counter == self.counter def test_if_applicable(self, state: bool, counter: Optional[int] = None) -> bool: """Test if should be executed for this state and this counter number.""" if state and (self.hook == "on"): return self.test_counter(counter) if not state and (self.hook == "off"): return self.test_counter(counter) return False async def execute(self) -> None: """Execute action. To be overwritten in derived classes.""" logger.info("Execute not implemented for %s", self.__class__.__name__) def __str__(self) -> str: """Return object as readable string.""" return f'<ActionBase hook="{self.hook}" counter="{self.counter}"/>' def __eq__(self, other: object) -> bool: """Equal operator.""" return self.__dict__ == other.__dict__ class Action(ActionBase): """Class for handling commands.""" def __init__( self, xknx: "XKNX", hook: str = "on", target: Optional[str] = None, method: Optional[str] = None, counter: int = 1, ): """Initialize Action class.""" # pylint: disable=too-many-arguments super().__init__(xknx, hook, counter) self.target = target self.method = method @classmethod def from_config(cls, xknx: "XKNX", config: Any) -> "Action": """Initialize object from configuration structure.""" hook = config.get("hook", "on") target = config.get("target") method = config.get("method") counter = config.get("counter", 1) return cls(xknx, hook=hook, target=target, method=method, counter=counter) async def execute(self) -> None: """Execute action.""" if self.target is not None and self.method is not None: if self.target not in self.xknx.devices: logger.warning("Unknown device %s witin action %s.", self.target, self) return await self.xknx.devices[self.target].do(self.method) def __str__(self) -> str: """Return object as readable string.""" return '<Action target="{}" method="{}" {}/>'.format( self.target, self.method, super().__str__() ) class ActionCallback(ActionBase): """Class for handling commands via callbacks.""" def __init__( self, xknx: "XKNX", callback: Callable[[], Awaitable[None]], hook: str = "on", counter: int = 1, ): """Initialize Action class.""" # pylint: disable=too-many-arguments super().__init__(xknx, hook, counter) self.callback = callback async def execute(self) -> None: """Execute callback.""" await self.callback() def __str__(self) -> str: """Return object as readable string.""" return '<ActionCallback callback="{}" {}/>'.format( self.callback.__name__, super().__str__() )
StarcoderdataPython
6594342
""" Module for categorical kernels Please refer to the following papers and theses for more details: - <NAME>, <NAME>. "An investigation into new kernels for categorical variables." Master's thesis, Universitat Politècnica de Catalunya, 2013. """ import numpy as np from kernelmethods.base import BaseKernelFunction from kernelmethods.utils import check_input_arrays from kernelmethods import config as cfg class MatchCountKernel(BaseKernelFunction): """ Categorical kernel measuring similarity via the number of matching categorical dimensions. Parameters ---------- return_perc : bool If True, the return value would be normalized by the number of dimensions. References ---------- <NAME>, <NAME>., "An investigation into new kernels for categorical variables." Master's thesis, Universitat Politècnica de Catalunya, 2013. """ def __init__(self, return_perc=True, skip_input_checks=False): """Constructor.""" self.return_perc = return_perc if self.return_perc: super().__init__('MatchPerc') else: super().__init__('MatchCount') self.skip_input_checks = skip_input_checks def __call__(self, vec_c, vec_d): """ Actual implementation of the kernel func. Parameters ---------- vec_c, vec_d : array of equal-sized categorical variables """ vec_c, vec_d = _check_categorical_arrays(vec_c, vec_d) if not np.issubdtype(vec_c.dtype, cfg.dtype_categorical) or \ not np.issubdtype(vec_d.dtype, cfg.dtype_categorical): raise TypeError('Categorical kernels require str or unicode dtype') match_count = np.sum(vec_c==vec_d) if self.return_perc: return match_count / len(vec_d) else: return match_count def __str__(self): """human readable repr""" return self.name def _check_categorical_arrays(x, y): """ Ensures the inputs are 1) 1D arrays (not matrices) 2) with compatible size 3) of categorical data type and hence are safe to operate on. This is a variation of utils.check_input_arrays() to accommodate the special needs for categorical dtype, where we do not have lists of originally numbers/bool data to be converted to strings, and assume they are categorical. Parameters ---------- x : iterable y : iterable Returns ------- x : ndarray y : ndarray """ x = _ensure_type_size(x, ensure_num_dim=1) y = _ensure_type_size(y, ensure_num_dim=1) if x.size != y.size: raise ValueError('x (n={}) and y (n={}) differ in size! ' 'They must be of same length'.format(x.size, y.size)) return x, y def _ensure_type_size(array, ensure_num_dim=1): """Checking type and size of arrays""" if not isinstance(array, np.ndarray): array = np.squeeze(np.asarray(array)) if array.ndim != ensure_num_dim: raise ValueError('array must be {}-dimensional! ' 'It has {} dims with shape {} ' ''.format(ensure_num_dim, array.ndim, array.shape)) return array
StarcoderdataPython
5145715
from docker import DockerClient from aavm.utils.progress_bar import ProgressBar from cpk.types import Machine, DockerImageName ALL_STATUSES = [ "created", "restarting", "running", "removing", "paused", "exited", "dead" ] STOPPED_STATUSES = [ "created", "exited", "dead" ] UNSTABLE_STATUSES = [ "restarting", "removing" ] RUNNING_STATUSES = [ "running", "paused" ] # noinspection DuplicatedCode def pull_image(machine: Machine, image: str, progress: bool = True): client: DockerClient = machine.get_client() layers = set() pulled = set() pbar = ProgressBar() if progress else None for line in client.api.pull(image, stream=True, decode=True): if "id" not in line or "status" not in line: continue layer_id = line["id"] layers.add(layer_id) if line["status"] in ["Already exists", "Pull complete"]: pulled.add(layer_id) # update progress bar if progress: percentage = max(0.0, min(1.0, len(pulled) / max(1.0, len(layers)))) * 100.0 pbar.update(percentage) if progress: pbar.done() def remove_image(machine: Machine, image: str): client: DockerClient = machine.get_client() client.images.remove(image) def merge_container_configs(*args) -> dict: out = {} for arg in args: assert isinstance(arg, dict) for k, v in arg.items(): if k not in out: out[k] = v else: if not isinstance(arg[k], type(out[k])): raise ValueError(f"Type clash '{type(out[k])}' !== '{type(arg[k])}' " f"for key '{k}'.") if isinstance(out[k], list): out[k].extend(arg[k]) elif isinstance(out[k], dict): out[k].update(arg[k]) else: out[k] = arg[k] return out def sanitize_image_name(image: str) -> str: return DockerImageName.from_image_name(image).compile(allow_defaults=True)
StarcoderdataPython
1947887
<reponame>giaccone/the_kirchhoff_bot from util.decorators import restricted @restricted def execute(update, context): """ 'kick' kick user out from the group :param update: bot update :param context: CallbackContext :return: None """ user_id = update.message.reply_to_message.from_user.id context.bot.kickChatMember(chat_id=update.message.chat_id, user_id=user_id) context.bot.unbanChatMember(chat_id=update.message.chat_id, user_id=user_id) # remove command context.bot.delete_message(chat_id=update.message.chat_id, message_id=update.message.message_id)
StarcoderdataPython
4960838
<reponame>ADACS-Australia/SS2021B-DBrown from tempfile import TemporaryDirectory from unittest import mock from finorch.config.config import _ClientConfigManager, WrapperConfigManager from finorch.utils.cd import cd def test_client_get_port(): with TemporaryDirectory() as tmp: with mock.patch('appdirs.user_config_dir', lambda *args: tmp): mgr = _ClientConfigManager() assert mgr.get_port() is None mgr.set_port(1234) assert int(mgr.get_port()) == 1234 def test_wrapper_get_port(): with TemporaryDirectory() as tmp: with cd(tmp): mgr = WrapperConfigManager() assert mgr.get_port() is None mgr.set_port(1234) assert int(mgr.get_port()) == 1234
StarcoderdataPython
3513007
''' Created on 29 de out de 2017 @author: gustavosaquetta ''' from src.model.cadastro.pessoa import Pessoa from src.controller.lib.ssqt import SSQt class PessoaController: def formata_cpf_cnpj(self, view): if view: #SSQt().pdb() if hasattr(view, 'tipo_1'): if view.tipo_1.isChecked(): view.cpf.setInputMask('999.999.99-99') if view.tipo_2.isChecked(): view.cpf.setInputMask('99.999.999/9999-99') if view.cpf.text(): if not Cpf(view.cpf.text()).validate(): view.cpf.setText('') def get_data_finderdialog(self, filtro=None): C = Pessoa campo = None clausula = None if filtro and filtro.get('valor'): if filtro.get('cb_campo') == 0: campo = 'nome' elif filtro.get('cb_campo') == 1: campo = 'codigo' if filtro.get('cb_clausula') == 0: clausula = 'ilike' filtro['valor'] = filtro['valor']+'%%' elif filtro.get('cb_clausula') == 1: clausula = '==' elif filtro.get('cb_clausula')==2: clausula = 'ilike' filtro['valor'] = '%%'+filtro['valor']+'%%' if campo and clausula: sql = "select * from pessoa where %s::text %s '%s' order by codigo limit %s" % (campo, clausula, filtro['valor'], filtro['limit']) return C.raw(sql).dicts() elif filtro.get('valor'): sql = "select * from pessoa where %s::text %s '%s' limit 1" % (filtro['campo'], filtro['clausula'], filtro['valor']) return C.raw(sql).dicts() return C.select().dicts() class Cnpj(object): def __init__(self, cnpj): """ Class to interact with cnpj brazilian numbers """ self.cnpj = cnpj def calculating_digit(self, result): result = result % 11 if result < 2: digit = 0 else: digit = 11 - result return str(digit) def calculating_first_digit(self): one_validation_list = [5, 4, 3, 2, 9, 8, 7, 6, 5, 4 , 3, 2] result = 0 pos = 0 for number in self.cnpj: try: one_validation_list[pos] except IndexError: break result += int(number) * int(one_validation_list[pos]) pos += 1 return self.calculating_digit(result) def calculating_second_digit(self): two_validation_list = [6, 5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2] result = 0 pos = 0 for number in self.cnpj: try: two_validation_list[pos] except IndexError: break result += int(number) * int(two_validation_list[pos]) pos += 1 return self.calculating_digit(result) def validate(self): """ Method to validate brazilian cnpjs """ self.cnpj = self.cleaning() if len(self.cnpj) != 14: return False checkers = self.cnpj[-2:] digit_one = self.calculating_first_digit() digit_two = self.calculating_second_digit() return bool(checkers == digit_one + digit_two) def cleaning(self): return self.cnpj.replace('-', '').replace('.', '').replace('/', '') def format(self): """ Method to format cnpj numbers. """ return '%s.%s.%s/%s-%s' % (self.cnpj[0:2], self.cnpj[2:5], self.cnpj[5:8], self.cnpj[8:12], self.cnpj[12:14]) class Cpf(object): def __init__(self, cpf): self.cpf = cpf def validate_size(self): cpf = self.cleaning() if len(cpf) > 11 or len(cpf) < 11: return False return True def validate(self): if self.validate_size(): digit_1 = 0 digit_2 = 0 i = 0 cpf = self.cleaning() while i < 10: digit_1 = ((digit_1 + (int(cpf[i]) * (11-i-1))) % 11 if i < 9 else digit_1) digit_2 = (digit_2 + (int(cpf[i]) * (11-i))) % 11 i += 1 return ((int(cpf[9]) == (11 - digit_1 if digit_1 > 1 else 0)) and (int(cpf[10]) == (11 - digit_2 if digit_2 > 1 else 0))) return False def cleaning(self): return self.cpf.replace('.', '').replace('-', '') def format(self): return '%s.%s.%s-%s' % ( self.cpf[0:3], self.cpf[3:6], self.cpf[6:9], self.cpf[9:11])
StarcoderdataPython
9629636
import unittest from logging import Logger, getLogger from numpy import ndarray, array, arange, allclose from freq_used.logging_utils import set_logging_basic_config from optmlstat.linalg.basic_operators.matrix_multiplication_operator import MatrixMultiplicationOperator logger: Logger = getLogger() class TestMatrixMultiplicationOperator(unittest.TestCase): @classmethod def setUpClass(cls) -> None: set_logging_basic_config(__file__) def test_matrix_multiplication_operator(self): array_2d: ndarray = array(arange(4), float).reshape((2, 2)) array_1d: ndarray = array([1, 10], float) logger.info(array_2d) matrix_multiplication_operator: MatrixMultiplicationOperator = MatrixMultiplicationOperator(array_2d) logger.info(allclose(matrix_multiplication_operator.transform(array_1d), [10, 32])) self.assertTrue(allclose(matrix_multiplication_operator.transform(array_1d), [10, 32])) if __name__ == "__main__": unittest.main()
StarcoderdataPython
1653713
<reponame>GameDungeon/DocStats<gh_stars>1-10 """Generate Callgraphs for documentation.""" import os import subprocess from typing import List from docutils.nodes import Node from docutils.parsers.rst import Directive from sphinx.ext.graphviz import graphviz from sphinx.util.typing import OptionSpec callgraph_count = 0 class CallGraphException(Exception): """Exception for callgraph class.""" class call_graph(graphviz): """A docutils node to use as a placeholder for the call graph.""" class CallGraph(Directive): """Generate a callgraph.""" has_content = False required_arguments = 0 optional_arguments = 0 final_argument_whitespace = True option_spec: OptionSpec = {} def run(self) -> List[Node]: """Run the directive.""" global callgraph_count if not os.path.exists("source/graphs"): os.makedirs("source/graphs") subprocess.run( [ "ls", "../", ] ) subprocess.run( [ "code2flow", "../docstats", "-o", f"source/graphs/callgraph_{callgraph_count}.dot", "--language", "py", # "--quiet", ] ) with open( f"source/graphs/callgraph_{callgraph_count}.dot", encoding="utf-8" ) as fp: dotcode = fp.read() callgraph_count += 1 node = graphviz() node["code"] = dotcode node["options"] = {} return [node]
StarcoderdataPython
1631923
<reponame>OLC-LOC-Bioinformatics/AzureStorage<filename>tests/test_azure_7_delete.py from azure_storage.methods import client_prep, delete_container, delete_file, delete_folder, extract_account_name from azure_storage.azure_delete import AzureDelete, cli, container_delete, file_delete, \ folder_delete from unittest.mock import patch import argparse import pytest import azure import os @pytest.fixture(name='variables', scope='module') def setup(): class Variables: def __init__(self): self.passphrase = '<PASSWORD>' self.container_name = '000000container' self.account_name = extract_account_name(passphrase=self.passphrase) return Variables() def test_client_prep(variables): variables.container_name, variables.connect_str, variables.blob_service_client, variables.container_client = \ client_prep(container_name=variables.container_name, passphrase=variables.passphrase, account_name=variables.account_name) assert variables.connect_str.startswith('DefaultEndpointsProtocol') @pytest.mark.parametrize('file_name', ['file_1.txt', 'container_integration/file_2.txt', 'nested_container/nested_folder/nested_folder_2/nested_folder_test_1.txt', 'ABC/123/nested_folder_test_1.txt']) def test_delete_file(variables, file_name): delete_file(container_client=variables.container_client, object_name=file_name, blob_service_client=variables.blob_service_client, container_name=variables.container_name) blobs = variables.container_client.list_blobs() assert file_name not in [blob.name for blob in blobs] @pytest.mark.parametrize('file_name', ['file_3.txt', 'container_integration/file_2.txt', 'nested_container/nested_folder/nested_folder_2/nested_folder_test_1.txt', 'ABC/123/nested_folder_test_1.txt']) def test_delete_file_missing(variables, file_name): with pytest.raises(SystemExit): delete_file(container_client=variables.container_client, object_name=file_name, blob_service_client=variables.blob_service_client, container_name=variables.container_name) def test_delete_file_invalid_category(variables): with pytest.raises(SystemExit): del_file = AzureDelete(object_name='file_1.txt', container_name=variables.container_name, account_name=variables.account_name, passphrase=variables.passphrase, retention_time=8, category='container') del_file.main() @patch('argparse.ArgumentParser.parse_args') def test_delete_file_integration(mock_args, variables): file_name = 'nested/file_2.txt' mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', file=file_name, retention_time=1) arguments = cli() file_delete(arguments) blobs = variables.container_client.list_blobs() assert os.path.basename(file_name) not in [blob.name for blob in blobs] @pytest.mark.parametrize('retention_time', [0, 1000]) @patch('argparse.ArgumentParser.parse_args') def test_delete_file_integration_invalid_retention_time(mock_args, variables, retention_time): file_name = 'nested/file_2.txt' with pytest.raises(SystemExit): mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', file=file_name, retention_time=retention_time) arguments = cli() file_delete(arguments) @patch('argparse.ArgumentParser.parse_args') def test_delete_file_integration_missing(mock_args, variables): file_name = 'nested/file_2.txt' with pytest.raises(SystemExit): mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', file=file_name, retention_time=1) arguments = cli() file_delete(arguments) @pytest.mark.parametrize('folder_name,check_file', [('container_integration/', 'nested_folder_test_1.txt'), ('nested_container/nested_folder/', 'nested_file_2.txt'), ('ABC/', 'nested_folder_test_1.txt')]) def test_delete_folder(variables, folder_name, check_file): delete_folder(container_client=variables.container_client, object_name=folder_name, blob_service_client=variables.blob_service_client, container_name=variables.container_name, account_name=variables.account_name) blobs = variables.container_client.list_blobs() assert os.path.join(folder_name, check_file) not in [blob.name for blob in blobs] @pytest.mark.parametrize('folder_name,check_file', [('container_integration/', 'nested_folder_test_1.txt'), ('nested_container/nested_folder/', 'nested_file_2.txt'), ('ABC/', 'nested_folder_test_1.txt')]) def test_delete_folder_missing(variables, folder_name, check_file): with pytest.raises(SystemExit): delete_folder(container_client=variables.container_client, object_name=folder_name, blob_service_client=variables.blob_service_client, container_name=variables.container_name, account_name=variables.account_name) @patch('argparse.ArgumentParser.parse_args') def test_delete_folder_integration(mock_args, variables): folder_name = 'nested_folder_3' mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', folder=folder_name, retention_time=1) arguments = cli() folder_delete(arguments) blobs = variables.container_client.list_blobs() assert os.path.join(folder_name, 'nested_folder_test_1.txt') not in [blob.name for blob in blobs] @patch('argparse.ArgumentParser.parse_args') def test_delete_folder_integration_missing(mock_args, variables): folder_name = 'nested_folder_3' with pytest.raises(SystemExit): mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', folder=folder_name, retention_time=1) arguments = cli() folder_delete(arguments) def test_delete_container_missing(variables): with pytest.raises(SystemExit): delete_container(blob_service_client=variables.blob_service_client, container_name='000000000container', account_name=variables.account_name) @patch('argparse.ArgumentParser.parse_args') def test_delete_container_integration(mock_args, variables): mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info') arguments = cli() container_delete(arguments) with pytest.raises(azure.core.exceptions.ResourceExistsError): variables.blob_service_client.create_container(variables.container_name)
StarcoderdataPython
3216999
<reponame>ridi/django-shard-library from django.db import connections, transaction from shard.exceptions import QueryExecuteFailureException from shard.services.execute_query_service import ExecuteQueryService from shard.utils.database import get_master_databases_by_shard_group class QueryExecutor: """ 해당 클래스는 DDL 같은 Master 샤드들에 일괄적으로 실행될 필요가 있는 쿼리들을 실행하는 유틸입니다. """ def __init__(self, shard_group: str): self._shard_group = shard_group self._shards = get_master_databases_by_shard_group(shard_group=shard_group) def run_query(self, query: str): executed = [] try: for shard in self._shards: with transaction.atomic(shard): cursor = connections[shard].cursor() ExecuteQueryService.execute_query(cursor, query) executed.append(shard) except Exception as e: raise QueryExecuteFailureException(shard_group=self._shard_group, executed=executed, exception=e) return executed def get_shards(self): return self._shards
StarcoderdataPython
3224347
import traceback import training_code_metric_processing import os import subprocess import argparse import json import sys from timeit import default_timer as timer import running_utils def main(): # read the parameter argument parsing parser = argparse.ArgumentParser( description='Modify the training code') parser.add_argument('nas_dir', help="the path of the shared folder") parser.add_argument('done_filename', help="the done filename") parser.add_argument('json_filename', help="the json filename") args = parser.parse_args() nas_dir = args.nas_dir done_filename = args.done_filename json_filename = args.json_filename with open(json_filename) as config_file: configs = json.load(config_file) run_set, done_f = running_utils.setup_done_file(nas_dir, done_filename, ["training_type", "dataset", "random_seed"]) for config in configs: conf = (config['training_type'], config['dataset'], config['random_seed'], config['network']) # Check if this config has been done before if conf in run_set: continue source_dir = '%s/%s' % (config['shared_dir'], config['source_dir']) if "modified_target_dir" in config: modified_dir = '%s/%s/%s_%s_%s_%s' % (config['modified_target_dir'], "modified_training_files", config['network'], config['training_type'], config['dataset'], config['random_seed']) else: modified_dir = '%s/%s/%s_%s_%s_%s' % (config['shared_dir'], "modified_training_files", config['network'], config['training_type'], config['dataset'], config['random_seed']) filename = '%s/%s' % (source_dir, config['main_file']) outfilename = '%s/%s' % (modified_dir, config['main_file']) logfilename = '%s/DLVarLog.csv' % modified_dir try: #subprocess.call('rm -rf %s' % modified_dir, shell=True) #os.makedirs(modified_dir, exist_ok=True) #subprocess.call('cp -a %s/. %s/' % (source_dir, modified_dir), shell=True) subprocess.call('rsync -a %s/. %s/' % (source_dir, modified_dir), shell=True) begin = timer() ''' # modify the training code print("Begin loops dectetion") sys.stdout.flush() # loops = training_code_metric_processing.extract_metric(filename) print("End loops dectetion and begin modification") sys.stdout.flush() subprocess.call('python 0_1_0_single_file_modify.py ' + filename + ' ' + outfilename + ' ' + logfilename + ' loops', stdout=sys.stdout, stderr=sys.stderr, shell=True) # training_code_metric_processing.modify_file(filename, None, outfilename, logfilename) print("End modification") sys.stdout.flush() print('Done: ' + outfilename) # modify evaluation code # TODO: check config['eval_file'] is a list or not for evalfile in config['eval_file']: evalfilename = '%s/%s' % (source_dir, evalfile) evaloutfilename = '%s/%s' % (modified_dir, evalfile) evallogfilename = '%s/DLVarLogNoLoop.csv' % modified_dir print("Begin metrics dectetion") sys.stdout.flush() # funcs = training_code_metric_processing.extract_metric_without_main_loop(filename) print("End metrics dectetion and begin modification") sys.stdout.flush() subprocess.call('python 0_1_0_single_file_modify.py ' + evalfilename + ' ' + evaloutfilename + ' ' + evallogfilename + ' metrics', stdout=sys.stdout, stderr=sys.stderr, shell=True) # training_code_metric_processing.modify_file_with_metrics(evalfilename, None, evaloutfilename, evallogfilename) print("End modification") sys.stdout.flush() print('Done: ' + evaloutfilename) ''' subprocess.call('cp ' + 'dl_logging_helper.py ' + os.path.dirname(outfilename), shell=True) #subprocess.call('cp ' + 'dl_logging_helper_no_loop.py ' + os.path.dirname(evaloutfilename), shell=True) subprocess.call('cp ' + '1_0_execute_single_run.sh ' + modified_dir, shell=True) subprocess.call('cp ' + '1_0_1_execute_single_run_no_conda.sh ' + modified_dir, shell=True) end = timer() done_f.write('%s,%s,%s,%s,%.5f\n' % (config['network'], config['training_type'], config['dataset'], config['random_seed'], (end - begin))) done_f.flush() # del loops except Exception: print(filename) print(traceback.format_exc()) done_f.close() if __name__ == "__main__": main()
StarcoderdataPython
11270325
<reponame>GeorgeDavis-TM/aws-cloudwatch-logs-retention<filename>handler.py from distutils.command.config import config import os import json import boto3 def getLogGroupsDict(logsClient): describeLogGroupsResponse = logsClient.describe_log_groups() logGroupsDict = {} for logGroup in describeLogGroupsResponse["logGroups"]: logGroupsDict.update({logGroup["logGroupName"]:logGroup["arn"]}) return logGroupsDict def getRetentionPolicyDays(configDict, logGroupName): for logGroupType in configDict["logGroupRetentionConfig"].keys(): if logGroupType in logGroupName: return configDict["logGroupRetentionConfig"][logGroupType] return configDict["default"] def setLogGroupRetentionPolicy(logsClient, logGroupName, retentionPolicyDays): putLogGroupRetentionPolicyResponse = logsClient.put_retention_policy( logGroupName=logGroupName, retentionInDays=retentionPolicyDays ) print(str(putLogGroupRetentionPolicyResponse)) def main(event, context): regionList = str(os.environ.get("regionList")) exceptionLogGroups = str(os.environ.get("exceptionLogGroups")) f = open('config.json', 'r') configDict = json.loads(f.read()) f.close() if regionList[-1] == ",": regionList = regionList[:-1].replace(" ", "").split(",") else: regionList = regionList.replace(" ", "").split(",") if exceptionLogGroups[-1] == ",": exceptionLogGroups = exceptionLogGroups[:-1].replace(" ", "").split(",") else: exceptionLogGroups = exceptionLogGroups.replace(" ", "").split(",") for regionName in regionList: print("Starting in Region ", str(regionName), "...") logsClient = boto3.client('logs', region_name=regionName) logGroupsDict = getLogGroupsDict(logsClient) for logGroupName in logGroupsDict.keys(): retentionPolicyDays = getRetentionPolicyDays(configDict, logGroupName) setLogGroupRetentionPolicy(logsClient, logGroupName, retentionPolicyDays) body = { "message": "Go Serverless v3.0! Your function executed successfully!", "input": event, } return {"statusCode": 200, "body": json.dumps(body)}
StarcoderdataPython
11305592
""" Settings for slackbot """ import os TRUE_VALUES = ('true', 'yes', 1) def is_true(arg): if str(arg).lower() in TRUE_VALUES: return True return False ##### SLACK ##### # SlackのAPIトークン # https://my.slack.com/services/new/bot で生成 API_TOKEN = os.environ['SLACK_API_TOKEN'] # 読み込むpluginのリスト PLUGINS = [ 'haro.plugins', ] # コマンドの接頭語 ALIASES = '$' # コマンド失敗時のエラー通知 if os.getenv('SLACK_ERRORS_TO'): ERRORS_TO = os.environ['SLACK_ERRORS_TO'] # Slack ファイルアップロードAPI FILE_UPLOAD_URL = 'https://slack.com/api/files.upload' # Redmine チケットAPI REDMINE_URL = os.environ['REDMINE_URL'] REDMINE_API_KEY = os.environ['REDMINE_API_KEY'] ##### HARO ##### # デバッグモードにするとログが出るので、開発時には便利 DEBUG = is_true(os.environ['HARO_DEBUG']) if DEBUG: import logging logging.basicConfig(level=logging.DEBUG) # haroのプロジェクトルート PROJECT_ROOT = os.environ['PROJECT_ROOT'] ##### DB ##### SQLALCHEMY_URL = os.environ['SQLALCHEMY_URL'] SQLALCHEMY_ECHO = os.environ['SQLALCHEMY_ECHO'] SQLALCHEMY_POOL_SIZE = os.environ.get('SQLALCHEMY_POOL_SIZE') # Waterコマンドメンション先 WATER_EMPTY_TO = os.environ.get('WATER_EMPTY_TO') WATER_ORDER_NUM = os.environ.get('WATER_ORDER_NUM', 2)
StarcoderdataPython
11315138
<reponame>zyedidia/boolector #!/usr/bin/env python import sys, getopt QUEENS_MODE = 0 QUEENS_MODE_NP1 = 1 QUEENS_MODE_GTN = 2 NO_THREE_IN_LINE_MODE = 3 NO_THREE_IN_LINE_MODE_2NP1 = 4 NO_THREE_IN_LINE_MODE_GT2N = 5 SEQ_ADDER_ENCODING = 0 PAR_ADDER_ENCODING = 1 ITE_ENCODING = 2 LOOKUP_ENCODING = 3 SHIFTER_ENCODING = 4 def usage(): print ("usage: queensbv [-h] [-s <size>] [-m <mode>] [-e <encoding>]") print ("") print (" available modes: ") print (" 0: regular queens mode (default)") print (" 1: try to place n + 1 queens on an n x n board") print (" 2: try to place m queens on an n x n board with m > n") print (" 3: regular no-3-in-line mode") print (" 4: no-3-in-line mode with 2 * n + 1 queens on an n x n board") print (" 5: no-3-in-line mode with m queens on an n x n board with m > 2n") print ("") print (" available encodings: ") print (" 0: simple adder encoding (default)") print (" 1: parallel adder encoding") print (" 2: if-then-else encoding") print (" 3: lookup encoding") print (" 4: shifter encoding") print ("") sys.exit(0) def die(msg): assert msg != None print (msg) sys.exit(1) def is_power_of_2 (x): assert x > 0 return (x & (x - 1)) == 0 def next_power_of_2 (x): assert x > 0 x -= 1 i = 1 while i < 32: x = x | (x >> i) i *= 2 return x + 1 def log2 (x): result = 0 assert x > 0 assert is_power_of_2 (x) while x > 1: x >>= 1 result += 1 assert result >= 0 return result def board_field (x, y): assert x >= 0 assert y >= 0 return "board" + str(x) + "_" + str(y) mode = QUEENS_MODE encoding = SEQ_ADDER_ENCODING size = 8 id = 1 constraints = [] num_bits_size = 0 num_bits_fields = 0 shiftvarslistmap = {} shiftvarscounter = 0 logsize = -1 def add_seq (list, ext): global id assert list != None assert len (list) >= 2 assert ext >= 0 print ("(let (?e" + str(id) + " (zero_extend[" + str(ext) + \ "] " + list[0] + "))") last = "?e" + str(id) id += 1 for i in range(1, len(list)): print ("(let (?e" + str(id) + " (bvadd " + last + " (zero_extend[" + \ str(ext) + "] " + list[i] + ")))") last = "?e" + str(id) id += 1 return last, ext + 1 def add_par (list, bw): global id assert list != None assert len (list) >= 2 assert bw > 0 while len(list) != 1: i = 0 next = [] while i < len(list): if i != len(list) - 1: print ("(let (?e" + str(id) + " (bvadd (zero_extend[1] " + \ list[i] + ") (zero_extend[1] " + list[i + 1] + ")))") else: print ("(let (?e" + str(id) + " (zero_extend[1] " + list[i] + "))") last = "?e" + str(id) next.append(last) id += 1 i += 2 list = next bw += 1 return last, bw def or_par (list, bw): global id assert list != None assert len (list) >= 2 assert bw > 0 while len(list) != 1: i = 0 next = [] while i < len(list): if i != len(list) - 1: print ("(let (?e" + str(id) + " (bvor " + list[i] + " " + list[i + 1] + \ "))") else: print ("(let (?e" + str(id) + " (bvor " + list[i] + " " + \ "bv0[" + str(bw) + "]))") last = "?e" + str(id) next.append(last) id += 1 i += 2 list = next return last def and_par (list, bw): global id assert list != None assert len (list) >= 2 assert bw > 0 bits = "" for i in range(bw): bits += "1" while len(list) != 1: i = 0 next = [] while i < len(list): if i != len(list) - 1: print ("(let (?e" + str(id) + " (bvand " + list[i] + " " + \ list[i + 1] + "))") else: print ("(let (?e" + str(id) + " (bvand " + list[i] + " " + \ "bv" + str(int(bits, 2)) + "[" + str(bw) + "]))") last = "?e" + str(id) next.append(last) id += 1 i += 2 list = next return last def add_lookup_8_4 (list): global id global lookup assert list != None assert len(list) != 1 addlist = [] numloops = len(list) / 8 if (len(list) % 8) > 0: numloops += 1 for i in range(numloops): concatlist = [] for j in range(8): if i * 8 + j < len(list): concatlist.append (list[i * 8 + j]) else: concatlist.append ("bv0[1]") last = concat_list (concatlist) print ("(let (?e" + str(id) + " (select " + lookup + " " + last + "))") last = "?e" + str(id) id += 1 addlist.append (last) assert len(addlist) > 0 if len(addlist) == 1: return addlist[0], 4 else: return add_par (addlist, 4) def ite_encode_eq_rec (list, pos, k): assert list != None assert pos >= 0 if pos == len(list): if k == 0: return "true" return "false" if len(list) - pos < k or k < 0: return "false" result = "(if_then_else (= " + list[pos] + " bv1[1]) " result += ite_encode_eq_rec (list, pos + 1, k - 1) + " " result += ite_encode_eq_rec (list, pos + 1, k) + ")" return result def ite_encode_eq (list, k): global id assert list != None assert len(list) >= 2 assert k > 0 result = ite_encode_eq_rec (list, 0, k) sys.stdout.write("(flet ($e" + str(id) + " " + result +")\n") def ite_encode_lt_rec (list, pos, counter, k): assert list != None assert pos >= 0 assert counter >= 0 if len(list) - pos + counter < k: return "true" if counter >= k: return "false" result = "(if_then_else (= " + list[pos] + " bv1[1]) " result += ite_encode_lt_rec (list, pos + 1, counter + 1, k) + " " result += ite_encode_lt_rec (list, pos + 1, counter, k) + ")" return result def ite_encode_lt (list, k): global id assert list != None assert len(list) >= 2 assert k > 0 result = ite_encode_lt_rec (list, 0, 0, k) sys.stdout.write("(flet ($e" + str(id) + " " + result +")\n") def ite_encode_ge (list, k): global id assert list != None assert len(list) >= 2 assert k > 0 result = ite_encode_lt_rec (list, 0, 0, k) sys.stdout.write("(flet ($e" + str(id) + " (not " + result +"))\n") def concat_list (list): global id assert list != None assert len(list) >= 2 while len(list) != 1: i = 0 next = [] while i < len(list): if i != len(list) - 1: print ("(let (?e" + str(id) + " (concat " + list[i] + " " + \ list[i + 1] + "))") else: next.pop() print ("(let (?e" + str(id) + " (concat " + last + " " + list[i] + "))") last = "?e" + str(id) next.append(last) id += 1 i += 2 list = next return last def shift_encode_eq_1 (list, shiftvarlist): global id global logsize assert list != None assert len(list) >= 2 assert shiftvarlist != None assert len(shiftvarlist) >= 1 listlen = len(list) print ("(let (?e" + str(id) + " (bvshl bv1[" + str(listlen) + "] " + \ "(zero_extend[" + str(listlen - logsize) + "] " + \ shiftvarlist.pop() + ")))") last = "?e" + str(id) id += 1 vec = concat_list (list) print ("(flet ($e" + str(id) + " (= " + last + " " + vec + "))") def shift_encode_eq_2 (list, shiftvarlist): global id global logsize assert list != None assert len(list) >= 2 assert shiftvarlist != None assert len(shiftvarlist) >= 1 listlen = len(list) print ("(let (?e" + str(id) + " (bvshl bv1[" + str(listlen) + "] " + \ "(zero_extend[" + str(listlen - logsize) + "] " + \ shiftvarlist.pop() + ")))") shift1 = "?e" + str(id) id += 1 print ("(let (?e" + str(id) + " (bvshl bv1[" + str(listlen) + "] " + \ "(zero_extend[" + str(listlen - logsize) + "] " + \ shiftvarlist.pop() + ")))") shift2 = "?e" + str(id) id += 1 print ("(let (?e" + str(id) + " (bvor " + shift1 + " " + shift2 + "))") orshift = "?e" + str(id) id += 1 vec = concat_list (list) print ("(flet ($e" + str(id) + " (= " + orshift + " " + vec + "))") and1 = "$e" + str(id) id += 1 print ("(flet ($e" + str(id) + " (not (= " + shift1 + " " + shift2 + ")))") and2 = "$e" + str(id) id += 1 print ("(flet ($e" + str(id) + " (and " + and1 + " " + and2 + "))") def shift_encode_eq_k (list, shiftvarlist, k): global id assert list != None assert len(list) >= 2 assert shiftvarlist != None assert k > 2 assert len(shiftvarlist) >= k listlen = len(list) log2listlen = log2(listlen) orlist = [] for i in range (k): print ("(let (?e" + str(id) + " (bvshl bv1[" + str(listlen) + "] " + \ "(zero_extend[" + str(listlen - log2listlen) + "] " + \ shiftvarlist.pop() + ")))") last = "?e" + str(id) id += 1 orlist.append (last) orshift = or_par (orlist, listlen) vec = concat_list (list) print ("(flet ($e" + str(id) + " (= " + orshift + " " + vec + "))") and1 = "$e" + str(id) id += 1 print ("(flet ($e" + str(id) + " (distinct") for i in range(len(orlist)): print (orlist[i]) print ("))") and2 = "$e" + str(id) id += 1 print ("(flet ($e" + str(id) + " (and " + and1 + " " + and2 + "))") def shift_encode_gt_k (list, shiftvarlist, shiftvarlistone, k): global id assert list != None assert len(list) >= 2 assert shiftvarlist != None assert shiftvarlistone != None assert len(shiftvarlistone) > 0 assert k > 2 assert len(shiftvarlist) >= len(list) - k - 1 - 1 listlen = len(list) log2listlen = log2(listlen) andlist = [] bits = "10" for i in range(2, listlen): bits += "1" print ("(let (?e" + str(id) + " (concat " + shiftvarlistone.pop() + " bv" + \ str(2 ** (listlen - 2)) + "[" + str(listlen - 1) + "]))") last = "?e" + str(id) id += 1 andlist.append (last) for i in range (1, len(list) - k - 1): print ("(let (?e" + str(id) + " (bvashr bv" + str(int(bits, 2)) + "[" + \ str(listlen) + "] " + shiftvarlist.pop() + "))") last = "?e" + str(id) id += 1 andlist.append (last) andshift = and_par (andlist, listlen) vec = concat_list (list) print ("(flet ($e" + str(id) + " (= " + andshift + " " + vec + "))") def shift_encode_le_1 (list, shiftvarlist): global id assert list != None assert len(list) >= 2 assert shiftvarlist != None assert len(shiftvarlist) >= 1 listlen = len(list) print ("(let (?e" + str(id) + " (bvshl bv1[" + str(listlen) + "] " + \ shiftvarlist.pop() + "))") last = "?e" + str(id) id += 1 vec = concat_list (list) print ("(flet ($e" + str(id) + " (= " + last + " " + vec + "))") def shift_encode_le_2 (list, shiftvarlist): global id assert list != None assert len(list) >= 2 assert shiftvarlist != None assert len(shiftvarlist) >= 1 listlen = len(list) print ("(let (?e" + str(id) + " (bvshl bv1[" + str(listlen) + "] " + \ shiftvarlist.pop() + "))") shift1 = "?e" + str(id) id += 1 print ("(let (?e" + str(id) + " (bvshl bv1[" + str(listlen) + "] " + \ shiftvarlist.pop() + "))") shift2 = "?e" + str(id) id += 1 print ("(let (?e" + str(id) + " (bvor " + shift1 + " " + shift2 + "))" ) orshift = "?e" + str(id) id += 1 vec = concat_list (list) print ("(flet ($e" + str(id) + " (= " + orshift + " " + vec + "))") and1 = "$e" + str(id) id += 1 print ("(flet ($e" + str(id) + " (not (= " + shift1 + " " + shift2 + ")))") and2 = "$e" + str(id) id += 1 print ("(flet ($e" + str(id) + " (and " + and1 + " " + and2 + "))") try: opts, args = getopt.getopt(sys.argv[1:], "hm:s:e:") except getopt.GetoptError as err: print (str(err)) usage() for o, a in opts: if o in ("-h"): usage() elif o in ("-m"): if a == "0": mode = QUEENS_MODE elif a == "1": mode = QUEENS_MODE_NP1 elif a == "2": mode = QUEENS_MODE_GTN elif a == "3": mode = NO_THREE_IN_LINE_MODE elif a == "4": mode = NO_THREE_IN_LINE_MODE_2NP1 elif a == "5": mode = NO_THREE_IN_LINE_MODE_GT2N else: die ("mode must be >= 0 and <= 5") elif o in ("-e"): if a == "0": encoding = SEQ_ADDER_ENCODING elif a == "1": encoding = PAR_ADDER_ENCODING elif a == "2": encoding = ITE_ENCODING elif a == "3": encoding = LOOKUP_ENCODING elif a == "4": encoding = SHIFTER_ENCODING else: die ("encoding must be >= 0 and <= 4") elif o in ("-s"): size = int (a) if size < 4: die ("size must be >= 4") if encoding == SHIFTER_ENCODING: if not is_power_of_2 (size): die ("shifter encoding needs that the board size is a power of two") logsize = log2(size) sizesqr = size * size num_bits_size = log2 (next_power_of_2 (size + 1)) num_bits_fields = log2 (next_power_of_2 (sizesqr + 1)) if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: print ("(benchmark queensNoThreeInLine" + str(size) + "x" + str(size) ) else: print ("(benchmark queens" + str(size) + "x" + str(size)) print (":source {") if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: print ("BV encoding of no three-in-line problem") else: print ("BV encoding of n-queens problem") if mode == QUEENS_MODE: print ("We try to place " + str(size) + \ " queens on a " + str(size) + " x " + str(size) + " board") elif mode == QUEENS_MODE_NP1: print ("We try to place n + 1 queens on an n x n board") elif mode == QUEENS_MODE_GTN: print ("We try to place m queens on an n x n board with m > n") elif mode == NO_THREE_IN_LINE_MODE: print ("We try to place " + str(2 * size) + \ " queens on a " + str(size) + " x " + str(size) + " board") elif mode == NO_THREE_IN_LINE_MODE_2NP1: print ("We try to place " + str(2 * size + 1) + \ " queens on a " + str(size) + " x " + str(size) + " board") elif mode == NO_THREE_IN_LINE_MODE_GT2N: print ("We try to place m queens on an n x n board with m > 2n") if encoding == SEQ_ADDER_ENCODING: print ("Cardinality constraints are encoded by simple adder circuits") elif encoding == PAR_ADDER_ENCODING: print ("Cardinality constraints are encoded by parallel adder circuits") elif encoding == ITE_ENCODING: print ("Cardinality constraints are encoded by ITEs") elif encoding == SHIFTER_ENCODING: print ("Cardinality constraints are encoded by shifters") else: assert encoding == LOOKUP_ENCODING print ("Cardinality constraints are encoded by lookups and parallel adders") print ("Contributed by <NAME> (<EMAIL>)") print ("}") if mode == QUEENS_MODE: print (":status sat") elif mode == NO_THREE_IN_LINE_MODE: print (":status unknown") else: print (":status unsat") if encoding == LOOKUP_ENCODING: print (":logic QF_AUFBV") print (":extrafuns ((lookup Array[8:4]))") else: print (":logic QF_BV") for i in range(size): for j in range(size): print (":extrafuns ((" + board_field(i, j) + " BitVec[1]))") #generate additional variables for shifters if encoding == SHIFTER_ENCODING: varlist = [] assert is_power_of_2 (size) if mode == QUEENS_MODE or mode == QUEENS_MODE_NP1 or \ mode == QUEENS_MODE_GTN: #generate variables for rows and cols for i in range(2 * size): var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[" + str(logsize) + "]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap[str(logsize)] = varlist for i in range (2, size + 1): istring = str(i) if shiftvarslistmap.has_key (istring): varlist = shiftvarslistmap[istring] else: varlist = [] if i == size: limit = 2 else: limit = 4 for j in range(limit): var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[" + istring + "]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap[istring] = varlist if mode == QUEENS_MODE_NP1: log2sizesqr = log2 (sizesqr) if shiftvarslistmap.has_key (str(log2sizesqr)): varlist = shiftvarslistmap[str(log2sizesqr)] else: varlist = [] for i in range(size + 1): var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[" + str(log2sizesqr) + "]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap[str(log2sizesqr)] = varlist elif mode == QUEENS_MODE_GTN: if shiftvarslistmap.has_key ("1"): varlist = shiftvarslistmap["1"] else: varlist = [] var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[1]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap["1"] = varlist if shiftvarslistmap.has_key (str(sizesqr)): varlist = shiftvarslistmap[str(sizesqr)] else: varlist = [] for i in range(1, sizesqr - size - 1): var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[" + str(sizesqr) + "]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap[str(sizesqr)] = varlist else: assert mode == NO_THREE_IN_LINE_MODE or \ mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N #generate variables for rows and cols for i in range(4 * size): var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[" + str(logsize) + "]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap[str(logsize)] = varlist for i in range (3, size + 1): istring = str(i) if shiftvarslistmap.has_key (istring): varlist = shiftvarslistmap[istring] else: varlist = [] if i == size: limit = 4 else: limit = 8 for j in range(limit): var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[" + istring + "]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap[istring] = varlist if mode == NO_THREE_IN_LINE_MODE_2NP1: log2sizesqr = log2 (sizesqr) if shiftvarslistmap.has_key (str(log2sizesqr)): varlist = shiftvarslistmap[str(log2sizesqr)] else: varlist = [] for i in range(2 * size + 1): var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[" + str(log2sizesqr) + "]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap[str(log2sizesqr)] = varlist elif mode == NO_THREE_IN_LINE_MODE_GT2N: if shiftvarslistmap.has_key ("1"): varlist = shiftvarslistmap["1"] else: varlist = [] var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[1]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap["1"] = varlist if shiftvarslistmap.has_key (str(sizesqr)): varlist = shiftvarslistmap[str(sizesqr)] else: varlist = [] for i in range(1, sizesqr - 2 * size - 1): var = "v" + str(shiftvarscounter) print (":extrafuns ((" + var + " BitVec[" + str(sizesqr) + "]))") shiftvarscounter += 1 varlist.append(var) shiftvarslistmap[str(sizesqr)] = varlist print (":formula") #generate lookup table if encoding == LOOKUP_ENCODING: last = "lookup" for i in range(2): for j in range(2): for k in range(2): for l in range(2): for m in range(2): for n in range(2): for o in range(2): for p in range(2): index = str(i) + str(j) + str(k) + str(l) + str(m) + \ str(n) + str(o) + str(p) sum = 0 for bit in index: if bit == '1': sum += 1 print ("(let (?e" + str(id) + " (store " + last + " bv" + \ str(int(index, 2)) + "[8]" + " bv" + str(sum) + \ "[4]))") last = "?e" + str(id) id += 1 lookup = last # generate row constraints for i in range(size): list = [] for j in range(size): list.append(board_field(i, j)) if encoding == ITE_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: ite_encode_eq (list, 2); else: ite_encode_eq (list, 1); elif encoding == SHIFTER_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: shift_encode_eq_2 (list, shiftvarslistmap[str(logsize)]); else: shift_encode_eq_1 (list, shiftvarslistmap[str(logsize)]); else: if encoding == SEQ_ADDER_ENCODING: last, bw_adder = add_seq (list, num_bits_size - 1) elif encoding == LOOKUP_ENCODING: last, bw_adder = add_lookup_8_4 (list) else: assert encoding == PAR_ADDER_ENCODING last, bw_adder = add_par (list, 1) if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: print ("(flet ($e" + str(id) + " (= " + last + " bv2[" + \ str(bw_adder) + "]))") else: print ("(flet ($e" + str(id) + " (= " + last + " bv1[" + \ str(bw_adder) + "]))") constraints.append ("$e" + str(id)) id += 1 # generate col constraints for i in range(size): list = [] for j in range(size): list.append(board_field(j, i)) if encoding == ITE_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: ite_encode_eq (list, 2) else: ite_encode_eq (list, 1) elif encoding == SHIFTER_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: shift_encode_eq_2 (list, shiftvarslistmap[str(logsize)]); else: shift_encode_eq_1 (list, shiftvarslistmap[str(logsize)]); else: if encoding == SEQ_ADDER_ENCODING: last, bw_adder = add_seq (list, num_bits_size - 1) elif encoding == LOOKUP_ENCODING: last, bw_adder = add_lookup_8_4 (list) else: assert encoding == PAR_ADDER_ENCODING last, bw_adder = add_par (list, 1) if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: print ("(flet ($e" + str(id) + " (= " + last + " bv2[" + \ str(bw_adder) + "]))") else: print ("(flet ($e" + str(id) + " (= " + last + " bv1[" + \ str(bw_adder) + "]))") constraints.append ("$e" + str(id)) id += 1 #generate diagonal constraints for i in range(1, size): list = [] list.append (board_field(i, 0)) row = i - 1 col = 1 assert row >= 0 and col < size while row >= 0 and col < size: list.append(board_field(row, col)) row -= 1 col += 1 if (mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N) and len(list) < 3: continue if encoding == ITE_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: ite_encode_lt (list, 3) else: ite_encode_lt (list, 2) elif encoding == SHIFTER_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: shift_encode_le_2 (list, shiftvarslistmap[str(len(list))]) else: shift_encode_le_1 (list, shiftvarslistmap[str(len(list))]) else: if encoding == SEQ_ADDER_ENCODING: last, bw_adder = add_seq (list, num_bits_size - 1) elif encoding == LOOKUP_ENCODING: last, bw_adder = add_lookup_8_4 (list) else: assert encoding == PAR_ADDER_ENCODING last, bw_adder = add_par (list, 1) if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: print ("(flet ($e" + str(id) + " (bvult " + last + " bv3[" + \ str(bw_adder) + "]))") else: print ("(flet ($e" + str(id) + " (bvule " + last + " bv1[" + \ str(bw_adder) + "]))") constraints.append ("$e" + str(id)) id += 1 for i in range(1, size - 1): list = [] list.append(board_field(size - 1, i)) row = size - 1 - 1 col = i + 1 assert row >= 0 and col < size while row >= 0 and col < size: list.append(board_field(row, col)) row -= 1 col += 1 if (mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N) and len(list) < 3: continue if encoding == ITE_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: ite_encode_lt (list, 3) else: ite_encode_lt (list, 2) elif encoding == SHIFTER_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: shift_encode_le_2 (list, shiftvarslistmap[str(len(list))]) else: shift_encode_le_1 (list, shiftvarslistmap[str(len(list))]) else: if encoding == SEQ_ADDER_ENCODING: last, bw_adder = add_seq (list, num_bits_size - 1) elif encoding == LOOKUP_ENCODING: last, bw_adder = add_lookup_8_4 (list) else: assert encoding == PAR_ADDER_ENCODING last, bw_adder = add_par (list, 1) if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: print ("(flet ($e" + str(id) + " (bvult " + last + " bv3[" + \ str(bw_adder) + "]))") else: print ("(flet ($e" + str(id) + " (bvule " + last + " bv1[" + \ str(bw_adder) + "]))") constraints.append ("$e" + str(id)) id += 1 for i in range(1, size): list = [] list.append (board_field(i, size - 1)) row = i - 1 col = size - 1 - 1 assert row >= 0 and col >= 0 while row >= 0 and col >= 0: list.append (board_field(row, col)) row -= 1 col -= 1 if (mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N) and len(list) < 3: continue if encoding == ITE_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: ite_encode_lt (list, 3) else: ite_encode_lt (list, 2) elif encoding == SHIFTER_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: shift_encode_le_2 (list, shiftvarslistmap[str(len(list))]) else: shift_encode_le_1 (list, shiftvarslistmap[str(len(list))]) else: if encoding == SEQ_ADDER_ENCODING: last, bw_adder = add_seq (list, num_bits_size - 1) elif encoding == LOOKUP_ENCODING: last, bw_adder = add_lookup_8_4 (list) else: assert encoding == PAR_ADDER_ENCODING last, bw_adder = add_par (list, 1) if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: print ("(flet ($e" + str(id) + " (bvult " + last + " bv3[" + \ str(bw_adder) + "]))") else: print ("(flet ($e" + str(id) + " (bvule " + last + " bv1[" + \ str(bw_adder) + "]))") constraints.append ("$e" + str(id)) id += 1 for i in range(1, size - 1): list = [] list.append (board_field(size - 1, size - 1 - i)) row = size - 1 - 1 col = size - 1 - i - 1 assert row >= 0 and col >= 0 while row >= 0 and col >= 0: list.append (board_field(row, col)) row -= 1 col -= 1 if (mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N) and len(list) < 3: continue if encoding == ITE_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: ite_encode_lt (list, 3) else: ite_encode_lt (list, 2) elif encoding == SHIFTER_ENCODING: if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: shift_encode_le_2 (list, shiftvarslistmap[str(len(list))]) else: shift_encode_le_1 (list, shiftvarslistmap[str(len(list))]) else: if encoding == SEQ_ADDER_ENCODING: last, bw_adder = add_seq (list, num_bits_size - 1) elif encoding == LOOKUP_ENCODING: last, bw_adder = add_lookup_8_4 (list) else: assert encoding == PAR_ADDER_ENCODING last, bw_adder = add_par (list, 1) if mode == NO_THREE_IN_LINE_MODE or mode == NO_THREE_IN_LINE_MODE_2NP1 or \ mode == NO_THREE_IN_LINE_MODE_GT2N: print ("(flet ($e" + str(id) + " (bvult " + last + " bv3[" + \ str(bw_adder) + "]))") else: print ("(flet ($e" + str(id) + " (bvule " + last + " bv1[" + \ str(bw_adder) + "]))") constraints.append ("$e" + str(id)) id += 1 # generate additional constraints if mode == QUEENS_MODE_NP1 or mode == QUEENS_MODE_GTN or \ mode == NO_THREE_IN_LINE_MODE_2NP1 or mode == NO_THREE_IN_LINE_MODE_GT2N: list = [] for i in range(size): for j in range(size): list.append (board_field(i, j)) if encoding == ITE_ENCODING: if mode == QUEENS_MODE_NP1: ite_encode_eq (list, size + 1) elif mode == QUEENS_MODE_GTN: ite_encode_ge (list, size + 1) elif mode == NO_THREE_IN_LINE_MODE_2NP1: ite_encode_eq (list, 2 * size + 1) else: ite_encode_ge (list, 2 * size + 1) assert mode == NO_THREE_IN_LINE_MODE_GT2N elif encoding == SHIFTER_ENCODING: if mode == QUEENS_MODE_NP1: shift_encode_eq_k (list, shiftvarslistmap[str(log2(sizesqr))], size + 1) elif mode == QUEENS_MODE_GTN: shift_encode_gt_k (list, shiftvarslistmap[str(sizesqr)], \ shiftvarslistmap["1"], size) elif mode == NO_THREE_IN_LINE_MODE_2NP1: shift_encode_eq_k (list, shiftvarslistmap[str(log2(sizesqr))], \ 2 *size + 1) else: assert mode == NO_THREE_IN_LINE_MODE_GT2N shift_encode_gt_k (list, shiftvarslistmap[str(sizesqr)], \ shiftvarslistmap["1"], 2 * size) else: if encoding == SEQ_ADDER_ENCODING: last, bw_adder = add_seq (list, num_bits_fields - 1) elif encoding == LOOKUP_ENCODING: last, bw_adder = add_lookup_8_4 (list) else: assert encoding == PAR_ADDER_ENCODING last, bw_adder = add_par (list, 1) if mode == QUEENS_MODE_NP1: print ("(flet ($e" + str(id) + " (= " + last + " bv" + str(size + 1) + \ "[" + str(bw_adder) + "]))") elif mode == QUEENS_MODE_GTN: print ("(flet ($e" + str(id) + " (bvugt " + last + " bv" + str(size) + \ "[" + str(bw_adder) + "]))") elif mode == NO_THREE_IN_LINE_MODE_2NP1: print ("(flet ($e" + str(id) + " (= " + last + " bv" + \ str(2 * size + 1) + "[" + str(bw_adder) + "]))") else: assert mode == NO_THREE_IN_LINE_MODE_GT2N print ("(flet ($e" + str(id) + " (bvugt " + last + " bv" + \ str(2 * size) + "[" + str(bw_adder) + "]))") constraints.append ("$e" + str(id)) id += 1 # combine all constraints by AND assert len(constraints) >= 2 last = constraints[0] for i in range(1, len(constraints)): print ("(flet ($e" + str(id) + " (and " + last + " " + constraints[i] + "))") last = "$e" + str(id) id += 1 print (last) pars = "" for i in range(id): pars = pars + ")" print (pars) if encoding == SHIFTER_ENCODING: assert shiftvarslistmap != None for list in shiftvarslistmap.values(): assert len(list) == 0
StarcoderdataPython
8189313
from registry.extensions import db from registry.list.models import DonationCenter, Medals from registry.utils import capitalize, format_postal_code class Batch(db.Model): __tablename__ = "batches" id = db.Column(db.Integer, primary_key=True) donation_center_id = db.Column(db.ForeignKey(DonationCenter.id)) donation_center = db.relationship("DonationCenter") imported_at = db.Column(db.DateTime, nullable=False) def __repr__(self): return f"<Batch({self.id}) from {self.imported_at}>" class Record(db.Model): __tablename__ = "records" id = db.Column(db.Integer, primary_key=True) batch_id = db.Column(db.ForeignKey(Batch.id, ondelete="CASCADE"), nullable=False) batch = db.relationship("Batch") rodne_cislo = db.Column(db.String(10), index=True, nullable=False) first_name = db.Column(db.String, nullable=False) last_name = db.Column(db.String, nullable=False) address = db.Column(db.String, nullable=False) city = db.Column(db.String, nullable=False) postal_code = db.Column(db.String(5), nullable=False) kod_pojistovny = db.Column(db.String(3), nullable=False) donation_count = db.Column(db.Integer, nullable=False) def __repr__(self): return f"<Record({self.id}) {self.rodne_cislo} from Batch {self.batch}>" @classmethod def from_list(cls, list): return cls( batch_id=list[0], rodne_cislo=list[1], first_name=list[2], last_name=list[3], address=list[4], city=list[5], postal_code=list[6], kod_pojistovny=list[7], donation_count=list[8], ) def as_original(self, donation_count=None): fields = [ "rodne_cislo", "first_name", "last_name", "address", "city", "postal_code", "kod_pojistovny", "donation_count", ] values = [str(getattr(self, field)) for field in fields] if donation_count: values[-1] = donation_count line = ";".join(values) line += "\r\n" return line class IgnoredDonors(db.Model): __tablename__ = "ignored_donors" rodne_cislo = db.Column(db.String(10), primary_key=True) reason = db.Column(db.String, nullable=False) ignored_since = db.Column(db.DateTime, nullable=False) class AwardedMedals(db.Model): __tablename__ = "awarded_medals" rodne_cislo = db.Column(db.String(10), index=True, nullable=False) medal_id = db.Column(db.ForeignKey(Medals.id)) medal = db.relationship("Medals") # NULL means unknown data - imported from the old system awarded_at = db.Column(db.DateTime, nullable=True) __tableargs__ = (db.PrimaryKeyConstraint(rodne_cislo, medal_id),) class DonorsOverview(db.Model): __tablename__ = "donors_overview" rodne_cislo = db.Column(db.String(10), primary_key=True) first_name = db.Column(db.String, nullable=False) last_name = db.Column(db.String, nullable=False) address = db.Column(db.String, nullable=False) city = db.Column(db.String, nullable=False) postal_code = db.Column(db.String(5), nullable=False) kod_pojistovny = db.Column(db.String(3), nullable=False) donation_count_fm = db.Column(db.Integer, nullable=False) donation_count_fm_bubenik = db.Column(db.Integer, nullable=False) donation_count_trinec = db.Column(db.Integer, nullable=False) donation_count_mp = db.Column(db.Integer, nullable=False) donation_count_manual = db.Column(db.Integer, nullable=False) donation_count_total = db.Column(db.Integer, nullable=False) awarded_medal_br = db.Column(db.Boolean, nullable=False) awarded_medal_st = db.Column(db.Boolean, nullable=False) awarded_medal_zl = db.Column(db.Boolean, nullable=False) awarded_medal_kr3 = db.Column(db.Boolean, nullable=False) awarded_medal_kr2 = db.Column(db.Boolean, nullable=False) awarded_medal_kr1 = db.Column(db.Boolean, nullable=False) awarded_medal_plk = db.Column(db.Boolean, nullable=False) note = db.relationship( "Note", uselist=False, primaryjoin="foreign(DonorsOverview.rodne_cislo) == Note.rodne_cislo", ) frontend_column_names = { "rodne_cislo": "Rodné číslo", "first_name": "Jméno", "last_name": "Příjmení", "address": "Adresa", "city": "Město", "postal_code": "PSČ", "kod_pojistovny": "Pojišťovna", "donations": "Darování Celkem", "last_award": "Ocenění", "note": "Pozn.", } # Fields for frontend not calculated from multiple columns basic_fields = [ c for c in frontend_column_names.keys() if c not in ("donations", "last_award", "note") ] def __repr__(self): return f"<DonorsOverview ({self.rodne_cislo})>" @classmethod def get_filter_for_search(cls, search_str): conditions_all = [] for part in search_str.split(): conditions_all.append([]) for column_name in cls.frontend_column_names.keys(): if hasattr(cls, column_name): if column_name == "note": column = Note.note else: column = getattr(cls, column_name) contains = getattr(column, "contains") conditions_all[-1].append(contains(part, autoescape=True)) return db.and_(*[db.or_(*conditions) for conditions in conditions_all]) @classmethod def get_order_by_for_column_id(cls, column_id, direction): column_name = list(cls.frontend_column_names.keys())[column_id] if hasattr(cls, column_name): column = getattr(cls, column_name) return (getattr(column, direction)(),) elif column_name == "donations": column_name = "donation_count_total" column = getattr(cls, column_name) return (getattr(column, direction)(),) elif column_name == "last_award": order_by = [] for medal in Medals.query.order_by(Medals.id.asc()).all(): column = getattr(cls, "awarded_medal_" + medal.slug) order_by.append(getattr(column, direction)()) return order_by def dict_for_frontend(self): # All standard attributes donor_dict = {} for name in self.frontend_column_names.keys(): donor_dict[name] = getattr(self, name, None) # Note is special because note column contains # Note object but we need to get its text which # is in Note.note attr. if donor_dict[name] is not None and name == "note": donor_dict[name] = donor_dict[name].note elif donor_dict[name] is not None and name in ( "first_name", "last_name", "address", "city", ): donor_dict[name] = capitalize(donor_dict[name]) # Highest awarded medal for medal in Medals.query.order_by(Medals.id.desc()).all(): if getattr(self, "awarded_medal_" + medal.slug): donor_dict["last_award"] = medal.title break else: donor_dict["last_award"] = "Žádné" # Dict with all donations which we use on frontend # to generate tooltip donor_dict["donations"] = { dc.slug: { "count": getattr(self, "donation_count_" + dc.slug), "name": dc.title, } for dc in DonationCenter.query.all() } donor_dict["donations"]["total"] = self.donation_count_total # Format the donor's postal code donor_dict["postal_code"] = format_postal_code(self.postal_code) return donor_dict @classmethod def refresh_overview(cls, rodne_cislo=None): if rodne_cislo: row = cls.query.get(rodne_cislo) if row is not None: db.session.delete(row) record = Record.query.filter( Record.rodne_cislo == rodne_cislo ).first_or_404() # Thanks to the lines above, we know that it's safe to create this small # part of the SQL query manually. Usually it's a bad idea due to possible # SQL injection, but, we know that rodne_cislo is valid and exists in # other parts of this database so it should be fine to use it like this. sql_condition = "records.rodne_cislo = :rodne_cislo AND " params = {"rodne_cislo": record.rodne_cislo} else: cls.query.delete() sql_condition = "" params = {} db.session.commit() full_query = f"""INSERT INTO "donors_overview" ( "rodne_cislo", "first_name", "last_name", "address", "city", "postal_code", "kod_pojistovny", "donation_count_fm", "donation_count_fm_bubenik", "donation_count_trinec", "donation_count_mp", "donation_count_manual", "donation_count_total", "awarded_medal_br", "awarded_medal_st", "awarded_medal_zl", "awarded_medal_kr3", "awarded_medal_kr2", "awarded_medal_kr1", "awarded_medal_plk" ) SELECT -- "rodne_cislo" uniquely identifies a person. "records"."rodne_cislo", -- Personal data from the person’s most recent batch -- or from manual overrides. COALESCE( "donors_override"."first_name", "records"."first_name" ), COALESCE( "donors_override"."last_name", "records"."last_name" ), COALESCE( "donors_override"."address", "records"."address" ), COALESCE( "donors_override"."city", "records"."city" ), COALESCE( "donors_override"."postal_code", "records"."postal_code" ), COALESCE( "donors_override"."kod_pojistovny", "records"."kod_pojistovny" ), -- Total donation counts for each donation center. The value in -- a record is incremental. Thus retrieving the one from the most -- recent batch that belongs to the donation center. Coalescing to -- 0 for cases when there is no record from the donation center. COALESCE( ( SELECT "records"."donation_count" FROM "records" JOIN "batches" ON "batches"."id" = "records"."batch_id" JOIN "donation_centers" ON "donation_centers"."id" = "batches"."donation_center_id" WHERE "records"."rodne_cislo" = "recent_records"."rodne_cislo" AND "donation_centers"."slug" = 'fm' ORDER BY "batches"."imported_at" DESC, "records"."donation_count" DESC LIMIT 1 ), 0 ) AS "donation_count_fm", COALESCE( ( SELECT "records"."donation_count" FROM "records" JOIN "batches" ON "batches"."id" = "records"."batch_id" JOIN "donation_centers" ON "donation_centers"."id" = "batches"."donation_center_id" WHERE "records"."rodne_cislo" = "recent_records"."rodne_cislo" AND "donation_centers"."slug" = 'fm_bubenik' ORDER BY "batches"."imported_at" DESC, "records"."donation_count" DESC LIMIT 1 ), 0 ) AS "donation_count_fm_bubenik", COALESCE( ( SELECT "records"."donation_count" FROM "records" JOIN "batches" ON "batches"."id" = "records"."batch_id" JOIN "donation_centers" ON "donation_centers"."id" = "batches"."donation_center_id" WHERE "records"."rodne_cislo" = "recent_records"."rodne_cislo" AND "donation_centers"."slug" = 'trinec' ORDER BY "batches"."imported_at" DESC, "records"."donation_count" DESC LIMIT 1 ), 0 ) AS "donation_count_trinec", COALESCE( ( SELECT "records"."donation_count" FROM "records" JOIN "batches" ON "batches"."id" = "records"."batch_id" JOIN "donation_centers" ON "donation_centers"."id" = "batches"."donation_center_id" WHERE "records"."rodne_cislo" = "recent_records"."rodne_cislo" AND "donation_centers"."slug" = 'mp' ORDER BY "batches"."imported_at" DESC, "records"."donation_count" DESC LIMIT 1 ), 0 ) AS "donation_count_mp", COALESCE( ( SELECT "records"."donation_count" FROM "records" JOIN "batches" ON "batches"."id" = "records"."batch_id" WHERE "records"."rodne_cislo" = "recent_records"."rodne_cislo" AND "batches"."donation_center_id" IS NULL ORDER BY "batches"."imported_at" DESC, "records"."donation_count" DESC LIMIT 1 ), 0 ) AS "donation_count_manual", -- The grand total of the donation counts. Sums the most recent -- counts from all the donation centers and the most recent manual -- donation count without a donation center. Not coalescing this -- one, because it is not possible for a person not no have any -- donation record at all. ( -- Sum all the respective donation counts including manual -- entries. SELECT SUM("donation_count"."donation_count") FROM ( SELECT ( -- Loads the most recent donation count for the -- donation center. SELECT "records"."donation_count" FROM "records" JOIN "batches" ON "batches"."id" = "records"."batch_id" WHERE "records"."rodne_cislo" = "recent_records"."rodne_cislo" AND ( -- NULL values represent manual entries and -- cannot be compared by =. "batches"."donation_center_id" = "donation_center_null"."donation_center_id" OR ( "batches"."donation_center_id" IS NULL AND "donation_center_null"."donation_center_id" IS NULL ) ) ORDER BY "batches"."imported_at" DESC, "records"."donation_count" DESC LIMIT 1 ) AS "donation_count" FROM ( -- All possible donation centers including NULL -- for manual entries. SELECT "donation_centers"."id" AS "donation_center_id" FROM "donation_centers" UNION SELECT NULL AS "donation_centers" ) AS "donation_center_null" -- Removes donation centers from which the person does -- not have any records. This removes the need for -- coalescing the value to 0 before summing. WHERE "donation_count" IS NOT NULL ) AS "donation_count" ) AS "donation_count_total", -- Awarded medals checks. Just simply query whether there is a -- record for the given combination of "rodne_cislo" and "medal". EXISTS( SELECT 1 FROM "awarded_medals" JOIN "medals" ON "medals"."id" = "awarded_medals"."medal_id" WHERE "awarded_medals"."rodne_cislo" = "records"."rodne_cislo" AND "medals"."slug" = 'br' ) AS "awarded_medal_br", EXISTS( SELECT 1 FROM "awarded_medals" JOIN "medals" ON "medals"."id" = "awarded_medals"."medal_id" WHERE "awarded_medals"."rodne_cislo" = "records"."rodne_cislo" AND "medals"."slug" = 'st' ) AS "awarded_medal_st", EXISTS( SELECT 1 FROM "awarded_medals" JOIN "medals" ON "medals"."id" = "awarded_medals"."medal_id" WHERE "awarded_medals"."rodne_cislo" = "records"."rodne_cislo" AND "medals"."slug" = 'zl' ) AS "awarded_medal_zl", EXISTS( SELECT 1 FROM "awarded_medals" JOIN "medals" ON "medals"."id" = "awarded_medals"."medal_id" WHERE "awarded_medals"."rodne_cislo" = "records"."rodne_cislo" AND "medals"."slug" = 'kr3' ) AS "awarded_medal_kr3", EXISTS( SELECT 1 FROM "awarded_medals" JOIN "medals" ON "medals"."id" = "awarded_medals"."medal_id" WHERE "awarded_medals"."rodne_cislo" = "records"."rodne_cislo" AND "medals"."slug" = 'kr2' ) AS "awarded_medal_kr2", EXISTS( SELECT 1 FROM "awarded_medals" JOIN "medals" ON "medals"."id" = "awarded_medals"."medal_id" WHERE "awarded_medals"."rodne_cislo" = "records"."rodne_cislo" AND "medals"."slug" = 'kr1' ) AS "awarded_medal_kr1", EXISTS( SELECT 1 FROM "awarded_medals" JOIN "medals" ON "medals"."id" = "awarded_medals"."medal_id" WHERE "awarded_medals"."rodne_cislo" = "records"."rodne_cislo" AND "medals"."slug" = 'plk' ) AS "awarded_medal_plk" FROM ( SELECT "rodna_cisla"."rodne_cislo", ( -- Looks up the most recently imported batch for a given -- person, regardless of the donation center. This is used -- only to link the most recent personal data as the -- combination of "rodne_cislo" and "batch" is unique. SELECT "records"."id" FROM "records" JOIN "batches" ON "batches"."id" = "records"."batch_id" WHERE "records"."rodne_cislo" = "rodna_cisla"."rodne_cislo" ORDER BY "batches"."imported_at" DESC, "records"."donation_count" DESC LIMIT 1 ) AS "record_id" FROM ( -- The ultimate core. We need all people, not records or -- batches. People are uniquely identified by their -- "rodne_cislo". SELECT DISTINCT "rodne_cislo" FROM "records" WHERE {sql_condition} "records"."rodne_cislo" NOT IN ( SELECT "rodne_cislo" FROM "ignored_donors" ) ) AS "rodna_cisla" ) AS "recent_records" JOIN "records" ON "records"."id" = "recent_records"."record_id" LEFT JOIN "donors_override" ON "donors_override"."rodne_cislo" = "records"."rodne_cislo"; """ # nosec - see above db.session.execute(full_query, params) db.session.commit() class Note(db.Model): __tablename__ = "notes" rodne_cislo = db.Column(db.String(10), primary_key=True) note = db.Column(db.Text) class DonorsOverride(db.Model): __tablename__ = "donors_override" rodne_cislo = db.Column(db.String(10), primary_key=True) first_name = db.Column(db.String) last_name = db.Column(db.String) address = db.Column(db.String) city = db.Column(db.String) postal_code = db.Column(db.String(5)) kod_pojistovny = db.Column(db.String(3)) def to_dict(self): result = {} for field in DonorsOverview.basic_fields: if getattr(self, field) is not None: result[field] = str(getattr(self, field)) else: result[field] = None return result
StarcoderdataPython
5117973
<reponame>TadeasPilar/KiKit from pcbnewTransition import pcbnew, isV6 import tempfile import re from dataclasses import dataclass, field from kikit.drc_ui import ReportLevel import os @dataclass class Violation: type: str description: str rule: str severity: str objects: list = field(default_factory=list) def __str__(self): head = f"[{self.type}]: {self.description} Severity: {self.severity}\n {self.rule}" tail = "\n".join([" " + x for x in self.objects]) return "\n".join([head] + [tail]) def readViolations(reportFile): violations = [] line = reportFile.readline() while True: headerMatch = re.match(r'\[(.*)\]: (.*)\n', line) if headerMatch is None: break line = reportFile.readline() bodyMatch = re.match(r'\s*(.*); Severity: (.*)', line) if bodyMatch is None: break v = Violation( type = headerMatch.group(1), description = headerMatch.group(2), rule = bodyMatch.group(1), severity = bodyMatch.group(2)) line = reportFile.readline() while line.startswith(" "): v.objects.append(line.strip()) line = reportFile.readline() violations.append(v) return line, violations def readReport(reportFile): report = {} line = reportFile.readline() while True: if len(line) == 0: break if re.match(r'\*\* Found \d+ DRC violations \*\*', line): line, v = readViolations(reportFile) report["drc"] = v continue if re.match(r'\*\* Found \d+ unconnected pads \*\*', line): line, v = readViolations(reportFile) report["unconnected"] = v continue if re.match(r'\*\* Found \d+ Footprint errors \*\*', line): line, v = readViolations(reportFile) report["footprint"] = v line = reportFile.readline() return report def runImpl(board, useMm, strict, level, yieldViolation): units = pcbnew.EDA_UNITS_MILLIMETRES if useMm else EDA_UNITS_INCHES with tempfile.NamedTemporaryFile(mode="w+", delete=False) as tmpFile: try: tmpFile.close() result = pcbnew.WriteDRCReport(board, tmpFile.name, units, strict) if not result: raise RuntimeError("Cannot run DRC: Unspecified KiCAD error") with open(tmpFile.name) as f: report = readReport(f) finally: tmpFile.close() os.unlink(tmpFile.name) failed = False errorName = { "drc": "DRC violations", "unconnected": "unconnected pads", "footprint": "footprints errors" } for k, v in report.items(): if len(v) == 0: continue failed = False failedCases = [] for x in v: thisFailed = False if level == ReportLevel.warning and x.severity == "warning": thisFailed = True if x.severity == "error": thisFailed = True if thisFailed: failedCases.append(x) failed = failed or thisFailed if failedCases: msg = f"** Found {len(failedCases)} {errorName[k]}: **\n" msg += "\n".join([str(x) for x in failedCases]) yieldViolation(msg) return failed
StarcoderdataPython
3255703
<reponame>danoliveiradev/PythonExercicios<filename>ex096.py def area(l, c): a = l * c print(f'A área de um terreno {l}x{c} é de {a:.1f}m².') # Programa Principal print(f'{"CONTROLE DE TERRENO":^30}') print('-'*30) largura = float(input('Largura (m): ')) comprimento = float(input('Comprimento (m): ')) area(largura, comprimento)
StarcoderdataPython
9765413
from django.conf.urls import patterns, url from views import * urlpatterns = patterns('', url(r'factura/lista_ventas/$', ListaVentas.as_view(), name = 'lista_ventas'), url(r'^factura/venta$', 'apps.factura.views.facturaCrear', name="factura_venta"), url(r'^factura/buscar_cliente$', 'apps.factura.views.buscarCliente'), url(r'^factura/buscar_producto$', 'apps.factura.views.buscarProducto'), url(r'^factura/consultar$', 'apps.factura.views.consultarFactura', name="consultar_factura"), url (r'factura/generar_reporte_factura/$', generar_pdf, name = 'generar_reporte_factura'), url(r'factura/reporte_ventas/(?P<pk>\d+)/$', 'apps.factura.views.reporteventas', name='reporte_ventas'), )
StarcoderdataPython
1622625
<reponame>vinthedark/snet-marketplace-service import json import uuid from enum import Enum import web3 from eth_account.messages import defunct_hash_message from web3 import Web3 from common.logger import get_logger logger = get_logger(__name__) class ContractType(Enum): REGISTRY = "REGISTRY" MPE = "MPE" RFAI = "RFAI" class BlockChainUtil(object): def __init__(self, provider_type, provider): if provider_type == "HTTP_PROVIDER": self.provider = Web3.HTTPProvider(provider) elif provider_type == "WS_PROVIDER": self.provider = web3.providers.WebsocketProvider(provider) else: raise Exception("Only HTTP_PROVIDER and WS_PROVIDER provider type are supported.") self.web3_object = Web3(self.provider) def load_contract(self, path): with open(path) as f: contract = json.load(f) return contract def read_contract_address(self, net_id, path, key): contract = self.load_contract(path) return Web3.toChecksumAddress(contract[str(net_id)][key]) def contract_instance(self, contract_abi, address): return self.web3_object.eth.contract(abi=contract_abi, address=address) def get_contract_instance(self, base_path, contract_name, net_id): contract_network_path, contract_abi_path = self.get_contract_file_paths(base_path, contract_name) contract_address = self.read_contract_address(net_id=net_id, path=contract_network_path, key='address') contract_abi = self.load_contract(contract_abi_path) logger.debug(f"contract address is {contract_address}") contract_instance = self.contract_instance(contract_abi=contract_abi, address=contract_address) return contract_instance def generate_signature(self, data_types, values, signer_key): signer_key = "0x" + signer_key if not signer_key.startswith("0x") else signer_key message = web3.Web3.soliditySha3(data_types, values) signature = self.web3_object.eth.account.signHash(defunct_hash_message(message), signer_key) return signature.signature.hex() def generate_signature_bytes(self, data_types, values, signer_key): signer_key = "0x" + signer_key if not signer_key.startswith("0x") else signer_key message = web3.Web3.soliditySha3(data_types, values) signature = self.web3_object.eth.account.signHash(defunct_hash_message(message), signer_key) return bytes(signature.signature) def get_nonce(self, address): """ transaction count includes pending transaction also. """ nonce = self.web3_object.eth.getTransactionCount(address) return nonce def sign_transaction_with_private_key(self, private_key, transaction_object): return self.web3_object.eth.account.signTransaction(transaction_object, private_key).rawTransaction def create_transaction_object(self, *positional_inputs, method_name, address, contract_path, contract_address_path, net_id): nonce = self.get_nonce(address=address) self.contract = self.load_contract(path=contract_path) self.contract_address = self.read_contract_address(net_id=net_id, path=contract_address_path, key='address') self.contract_instance = self.contract_instance(contract_abi=self.contract, address=self.contract_address) print("gas_price == ", self.web3_object.eth.gasPrice) print("nonce == ", nonce) gas_price = 3 * (self.web3_object.eth.gasPrice) transaction_object = getattr(self.contract_instance.functions, method_name)( *positional_inputs).buildTransaction({ "from": address, "nonce": nonce, "gasPrice": gas_price, "chainId": net_id }) return transaction_object def process_raw_transaction(self, raw_transaction): return self.web3_object.eth.sendRawTransaction(raw_transaction).hex() def create_account(self): account = self.web3_object.eth.account.create(uuid.uuid4().hex) return account.address, account.privateKey.hex() def get_current_block_no(self): return self.web3_object.eth.blockNumber def get_transaction_receipt_from_blockchain(self, transaction_hash): return self.web3_object.eth.getTransactionReceipt(transaction_hash) def get_contract_file_paths(self, base_path, contract_name): if contract_name == ContractType.REGISTRY.value: json_file = "Registry.json" elif contract_name == ContractType.MPE.value: json_file = "MultiPartyEscrow.json" elif contract_name == ContractType.RFAI.value: json_file = "ServiceRequest.json" else: raise Exception("Invalid contract Type {}".format(contract_name)) contract_network_path = base_path + "/{}/{}".format("networks", json_file) contract_abi_path = base_path + "/{}/{}".format("abi", json_file) return contract_network_path, contract_abi_path
StarcoderdataPython
1826219
# flake8: noqa E501 from dataclasses import dataclass, field from enum import Enum from typing import Any, Dict, List, Literal, Optional, Union import pytest from robotcode.language_server.common.lsp_types import ( CallHierarchyClientCapabilities, ClientCapabilities, ClientCapabilitiesWindow, ClientCapabilitiesWorkspace, ClientCapabilitiesWorkspaceFileOperationsWorkspaceClientCapabilities, ClientInfo, CodeActionClientCapabilities, CodeActionClientCapabilitiesCodeActionLiteralSupport, CodeActionClientCapabilitiesCodeActionLiteralSupportCodeActionKind, CodeActionClientCapabilitiesResolveSupport, CodeLensClientCapabilities, CodeLensWorkspaceClientCapabilities, CompletionClientCapabilities, CompletionClientCapabilitiesCompletionItem, CompletionClientCapabilitiesCompletionItemInsertTextModeSupport, CompletionClientCapabilitiesCompletionItemKind, CompletionClientCapabilitiesCompletionItemResolveSupport, CompletionClientCapabilitiesCompletionItemTagSupport, CompletionItemKind, CompletionItemTag, DeclarationClientCapabilities, DefinitionClientCapabilities, DiagnosticTag, DidChangeConfigurationClientCapabilities, DidChangeWatchedFilesClientCapabilities, DocumentColorClientCapabilities, DocumentFormattingClientCapabilities, DocumentHighlightClientCapabilities, DocumentLinkClientCapabilities, DocumentOnTypeFormattingClientCapabilities, DocumentRangeFormattingClientCapabilities, DocumentSymbolClientCapabilities, DocumentSymbolClientCapabilitiesSymbolKind, DocumentSymbolClientCapabilitiesTagSupport, ExecuteCommandClientCapabilities, FailureHandlingKind, FoldingRangeClientCapabilities, HoverClientCapabilities, ImplementationClientCapabilities, InitializeParams, InsertTextMode, LinkedEditingRangeClientCapabilities, MarkupKind, PrepareSupportDefaultBehavior, PublishDiagnosticsClientCapabilities, PublishDiagnosticsClientCapabilitiesTagSupport, ReferenceClientCapabilities, RenameClientCapabilities, ResourceOperationKind, SelectionRangeClientCapabilities, SemanticTokensClientCapabilities, SemanticTokensClientCapabilitiesRequests, SemanticTokensClientCapabilitiesRequestsFull, SemanticTokensWorkspaceClientCapabilities, ShowMessageRequestClientCapabilities, ShowMessageRequestClientCapabilitiesMessageActionItem, SignatureHelpClientCapabilities, SignatureHelpClientCapabilitiesSignatureInformation, SignatureHelpClientCapabilitiesSignatureInformationParameterInformation, SymbolKind, SymbolTag, TextDocumentClientCapabilities, TextDocumentSyncClientCapabilities, TokenFormat, TraceValue, TypeDefinitionClientCapabilities, WorkspaceEditClientCapabilities, WorkspaceEditClientCapabilitiesChangeAnnotationSupport, WorkspaceFolder, WorkspaceSymbolClientCapabilities, WorkspaceSymbolClientCapabilitiesSymbolKind, WorkspaceSymbolClientCapabilitiesTagSupport, ) from robotcode.utils.dataclasses import as_json, from_json, to_camel_case, to_snake_case class EnumData(Enum): FIRST = "first" SECOND = "second" @pytest.mark.parametrize( ("expr", "expected", "indent", "compact"), [ (1, "1", None, None), (True, "true", None, None), (False, "false", None, None), ("Test", '"Test"', None, None), ([], "[]", None, None), (["Test"], '["Test"]', None, None), (["Test", 1], '["Test", 1]', None, None), ({}, "{}", None, None), ({"a": 1}, '{"a": 1}', None, None), ({"a": 1}, '{\n "a": 1\n}', True, None), ({"a": 1, "b": True}, '{\n "a": 1,\n "b": true\n}', True, None), ({"a": 1, "b": True}, '{"a":1,"b":true}', None, True), ((), "[]", None, None), ((1, 2, 3), "[1, 2, 3]", None, None), (set(), "[]", None, None), ({1, 2}, "[1, 2]", None, None), ([EnumData.FIRST, EnumData.SECOND], '["first", "second"]', None, None), ], ) def test_encode_simple(expr: Any, expected: str, indent: Optional[bool], compact: Optional[bool]) -> None: assert as_json(expr, indent, compact) == expected @dataclass class SimpleItem: a: int b: int def test_encode_simple_dataclass() -> None: assert as_json(SimpleItem(1, 2)) == '{"a": 1, "b": 2}' @dataclass class ComplexItem: list_field: List[Any] dict_field: Dict[Any, Any] @pytest.mark.parametrize( ("expr", "expected"), [ (ComplexItem([], {}), '{"list_field": [], "dict_field": {}}'), ( ComplexItem([1, "2", 3], {"a": "hello", 1: True}), '{"list_field": [1, "2", 3], "dict_field": {"a": "hello", "1": true}}', ), ], ) def test_encode_complex_dataclass(expr: Any, expected: str) -> None: assert as_json(expr) == expected @dataclass class ComplexItemWithConfigEncodeCase(ComplexItem): @classmethod def _encode_case(cls, s: str) -> str: return to_camel_case(s) @classmethod def _decode_case(cls, s: str) -> str: return to_snake_case(s) @pytest.mark.parametrize( ("expr", "expected"), [ (ComplexItemWithConfigEncodeCase([], {}), '{"listField": [], "dictField": {}}'), ( ComplexItemWithConfigEncodeCase([1, "2", 3], {"a": "hello", 1: True}), '{"listField": [1, "2", 3], "dictField": {"a": "hello", "1": true}}', ), ], ) def test_encode_complex_dataclass_with_config_encode_case(expr: Any, expected: str) -> None: assert as_json(expr) == expected @dataclass class SimpleItemWithOptionalField: a: Optional[int] def test_encode_with_optional_field() -> None: assert as_json(SimpleItemWithOptionalField(1)) == '{"a": 1}' assert as_json(SimpleItemWithOptionalField(None)) == '{"a": null}' @dataclass class SimpleItemWithOptionalFieldAndNoneAsDefaultValue: a: Optional[int] = None def test_encode_with_optional_field_and_none_as_default_value() -> None: assert as_json(SimpleItemWithOptionalFieldAndNoneAsDefaultValue(1)) == '{"a": 1}' assert as_json(SimpleItemWithOptionalFieldAndNoneAsDefaultValue(None)) == "{}" @pytest.mark.parametrize( ("expr", "type", "expected"), [ ("1", int, 1), ('"str"', str, "str"), ("1.0", float, 1.0), ("true", bool, True), ("false", bool, False), ('"str"', (str, int), "str"), ("1", (int, str), 1), ("[]", (int, str, List[int]), []), ("[1]", (int, List[int]), [1]), ("1", Any, 1), ("[]", Union[int, str, List[int]], []), ('"first"', EnumData, EnumData.FIRST), ('"second"', EnumData, EnumData.SECOND), ('["first", "second"]', List[EnumData], [EnumData.FIRST, EnumData.SECOND]), ], ) def test_decode_simple(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected @pytest.mark.parametrize( ("expr", "type", "expected"), [ ("{}", dict, {}), ('{"a": 1}', dict, {"a": 1}), ('{"a": 1}', Dict[str, int], {"a": 1}), ('{"a": 1, "b": 2}', Dict[str, int], {"a": 1, "b": 2}), ('{"a": 1, "b": null}', Dict[str, Union[int, str, None]], {"a": 1, "b": None}), ('{"a": {}, "b": {"a": 2}}', Dict[str, Dict[str, Any]], {"a": {}, "b": {"a": 2}}), ], ) def test_decode_dict(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected @pytest.mark.parametrize( ("expr", "type", "expected"), [ ('{"a": 1, "b": 2}', SimpleItem, SimpleItem(1, 2)), ('{"b": 2, "a": 1}', SimpleItem, SimpleItem(1, 2)), ('{"b": 2, "a": 1}', Optional[SimpleItem], SimpleItem(1, 2)), ], ) def test_decode_simple_class(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected def test_decode_optional_simple_class() -> None: assert from_json("null", Optional[SimpleItem]) is None # type: ignore with pytest.raises(TypeError): assert from_json("null", SimpleItem) is None @dataclass class SimpleItemWithNoFields: pass def test_decode_with_no_fields() -> None: assert from_json("{}", SimpleItemWithNoFields) == SimpleItemWithNoFields() @dataclass class SimpleItemWithOnlyOptionalFields: a: int = 1 b: int = 2 def test_decode_with_only_optional_fields() -> None: assert from_json("{}", SimpleItemWithOnlyOptionalFields) == SimpleItemWithOnlyOptionalFields() @pytest.mark.parametrize( ("expr", "type", "expected"), [ ( '{"listField": [], "dictField": {}}', ComplexItemWithConfigEncodeCase, ComplexItemWithConfigEncodeCase([], {}), ), ( '{"listField": [1,2], "dictField": {"a": 1, "b": "2"}}', ComplexItemWithConfigEncodeCase, ComplexItemWithConfigEncodeCase([1, 2], {"a": 1, "b": "2"}), ), ], ) def test_decode_complex_class_with_encoding(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected @dataclass class SimpleItemWithOptionalFields: first: int second: bool = True third: Optional[str] = None forth: Optional[float] = None @pytest.mark.parametrize( ("expr", "type", "expected"), [ ('{"first": 1}', SimpleItemWithOptionalFields, SimpleItemWithOptionalFields(first=1)), ( '{"first": 1, "third": "Hello"}', SimpleItemWithOptionalFields, SimpleItemWithOptionalFields(first=1, third="Hello"), ), ('{"first": 1, "forth": 1.0}', SimpleItemWithOptionalFields, SimpleItemWithOptionalFields(first=1, forth=1.0)), ], ) def test_decode_simple_item_with_optional_field(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected @dataclass class SimpleItem1: d: int e: int f: int = 1 @dataclass class ComplexItemWithUnionType: a_union_field: Union[SimpleItem, SimpleItem1] @pytest.mark.parametrize( ("expr", "type", "expected"), [ ('{"a_union_field":{"a":1, "b":2}}', ComplexItemWithUnionType, ComplexItemWithUnionType(SimpleItem(1, 2))), ('{"a_union_field":{"d":1, "e":2}}', ComplexItemWithUnionType, ComplexItemWithUnionType(SimpleItem1(1, 2))), ( '{"a_union_field":{"d":1, "e":2, "f": 3}}', ComplexItemWithUnionType, ComplexItemWithUnionType(SimpleItem1(1, 2, 3)), ), ], ) def test_decode_with_union_and_different_keys(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected @dataclass class SimpleItem2: a: int b: int c: int = 1 @dataclass class ComplexItemWithUnionTypeWithSameProperties: a_union_field: Union[SimpleItem, SimpleItem2] def test_decode_with_union_and_some_same_keys() -> None: assert from_json( '{"a_union_field": {"a": 1, "b":2, "c":3}}', ComplexItemWithUnionTypeWithSameProperties ) == ComplexItemWithUnionTypeWithSameProperties(SimpleItem2(1, 2, 3)) def test_decode_with_union_and_same_keys_should_raise_typeerror() -> None: with pytest.raises(TypeError): from_json('{"a_union_field": {"a": 1, "b":2}}', ComplexItemWithUnionTypeWithSameProperties) def test_decode_with_union_and_no_keys_should_raise_typeerror() -> None: with pytest.raises(TypeError): from_json('{"a_union_field": {}}', ComplexItemWithUnionTypeWithSameProperties) def test_decode_with_union_and_no_match_should_raise_typeerror() -> None: with pytest.raises(TypeError): from_json('{"a_union_field": {"x": 1, "y":2}}', ComplexItemWithUnionTypeWithSameProperties) @dataclass class SimpleItem3: a: int b: int c: int @pytest.mark.parametrize( ("expr", "type", "expected"), [ ('{"a":1, "b": 2}', (SimpleItem, SimpleItem3), SimpleItem(1, 2)), ('{"a":1, "b": 2, "c": 3}', (SimpleItem, SimpleItem3), SimpleItem3(1, 2, 3)), ], ) def test_decode_with_some_same_fields(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected def test_decode_with_some_unambigous_fields_should_raise_typeerror() -> None: with pytest.raises(TypeError): from_json('{"a":1, "b": 2}', (SimpleItem, SimpleItem2)) # type: ignore @dataclass class ComplexItemWithUnionTypeWithSimpleAndComplexTypes: a_union_field: Union[bool, SimpleItem, SimpleItem1] @pytest.mark.parametrize( ("expr", "type", "expected"), [ ( '{"a_union_field": true}', ComplexItemWithUnionTypeWithSimpleAndComplexTypes, ComplexItemWithUnionTypeWithSimpleAndComplexTypes(True), ), ( '{"a_union_field": {"a":1, "b":2}}', ComplexItemWithUnionTypeWithSimpleAndComplexTypes, ComplexItemWithUnionTypeWithSimpleAndComplexTypes(SimpleItem(1, 2)), ), ], ) def test_decode_union_with_simple_and_complex_types(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected def test_decode_union_with_unknown_keys_should_raise_typeerror() -> None: with pytest.raises(TypeError): from_json( '{"a_union_field": {"d":1, "ef":2}}', ComplexItemWithUnionTypeWithSimpleAndComplexTypes ) == ComplexItemWithUnionTypeWithSimpleAndComplexTypes(SimpleItem(1, 2)) @pytest.mark.parametrize( ("expr", "type", "expected"), [ ('{"a":1, "b":2, "c":3}', SimpleItem, SimpleItem(1, 2)), ('{"a":1, "b":2, "c":3}', SimpleItemWithOnlyOptionalFields, SimpleItemWithOnlyOptionalFields(1, 2)), ('{"a":1}', SimpleItemWithOnlyOptionalFields, SimpleItemWithOnlyOptionalFields(1)), ("{}", SimpleItemWithOnlyOptionalFields, SimpleItemWithOnlyOptionalFields()), ("{}", SimpleItemWithNoFields, SimpleItemWithNoFields()), ('{"a": 1}', SimpleItemWithNoFields, SimpleItemWithNoFields()), ('{"a":1, "b":2, "c": 3}', (SimpleItemWithNoFields, SimpleItem), SimpleItem(1, 2)), ], ) def test_decode_non_strict_should_work(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected @pytest.mark.parametrize( ("expr", "type", "expected"), [ ('{"a":1, "b":2}', SimpleItem, SimpleItem(1, 2)), ('{"a":1, "b":2}', SimpleItemWithOnlyOptionalFields, SimpleItemWithOnlyOptionalFields(1, 2)), ('{"a":1}', SimpleItemWithOnlyOptionalFields, SimpleItemWithOnlyOptionalFields(1)), ("{}", SimpleItemWithOnlyOptionalFields, SimpleItemWithOnlyOptionalFields()), ("{}", SimpleItemWithNoFields, SimpleItemWithNoFields()), ("{}", (SimpleItemWithNoFields, SimpleItem), SimpleItemWithNoFields()), ('{"a":1, "b":2}', (SimpleItemWithNoFields, SimpleItem), SimpleItem(1, 2)), ], ) def test_decode_strict_should_work(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type, strict=True) == expected @pytest.mark.parametrize( ("expr", "type"), [ ('{"a":1, "b": 2, "c": 3}', SimpleItem), ('{"a":1, "b": 2, "c": 3}', SimpleItemWithOnlyOptionalFields), ('{"a":1, "c": 3}', SimpleItemWithOnlyOptionalFields), ('{"c": 3}', SimpleItemWithOnlyOptionalFields), ('{"c": 3}', SimpleItemWithNoFields), ], ) def test_decode_strict_with_invalid_data_should_raise_typeerror(expr: Any, type: Any) -> None: with pytest.raises(TypeError): from_json(expr, type, strict=True) @pytest.mark.parametrize( ("expr", "type", "expected"), [ ('"test"', Literal["test", "blah", "bluff"], "test"), ('"bluff"', Literal["test", "blah", "bluff"], "bluff"), ('"dada"', (Literal["test", "blah", "bluff"], str), "dada"), ("1", (Literal["test", "blah", "bluff"], int), 1), ], ) def test_literal_should_work(expr: Any, type: Any, expected: str) -> None: assert from_json(expr, type) == expected @pytest.mark.parametrize( ("expr", "type"), [ ('"dada"', Literal["test", "blah", "bluff"]), ('"dada"', (Literal["test", "blah", "bluff"], int)), ], ) def test_literal_with_invalid_args_should_raise_typerror(expr: Any, type: Any) -> None: with pytest.raises(TypeError): from_json(expr, type) @dataclass class SimpleItemWithAlias: a: int = field(metadata={"alias": "a_test"}) def test_encode_decode_with_field_alias_should_work() -> None: assert from_json('{"a_test": 2}', SimpleItemWithAlias) == SimpleItemWithAlias(2) assert as_json(SimpleItemWithAlias(2)) == '{"a_test": 2}' def test_really_complex_data() -> None: data = """\ { "processId": 17800, "clientInfo": { "name": "Visual Studio Code - Insiders", "version": "1.62.0-insider" }, "locale": "de", "rootPath": "c:\\\\tmp\\\\robottest\\\\dummy\\\\testprj", "rootUri": "file:///c%3A/tmp/robottest/dummy/testprj", "capabilities": { "workspace": { "applyEdit": true, "workspaceEdit": { "documentChanges": true, "resourceOperations": [ "create", "rename", "delete" ], "failureHandling": "textOnlyTransactional", "normalizesLineEndings": true, "changeAnnotationSupport": { "groupsOnLabel": true } }, "didChangeConfiguration": { "dynamicRegistration": true }, "didChangeWatchedFiles": { "dynamicRegistration": true }, "symbol": { "dynamicRegistration": true, "symbolKind": { "valueSet": [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ] }, "tagSupport": { "valueSet": [ 1 ] } }, "codeLens": { "refreshSupport": true }, "executeCommand": { "dynamicRegistration": true }, "configuration": true, "workspaceFolders": true, "semanticTokens": { "refreshSupport": true }, "fileOperations": { "dynamicRegistration": true, "didCreate": true, "didRename": true, "didDelete": true, "willCreate": true, "willRename": true, "willDelete": true } }, "textDocument": { "publishDiagnostics": { "relatedInformation": true, "versionSupport": false, "tagSupport": { "valueSet": [ 1, 2 ] }, "codeDescriptionSupport": true, "dataSupport": true }, "synchronization": { "dynamicRegistration": true, "willSave": true, "willSaveWaitUntil": true, "didSave": true }, "completion": { "dynamicRegistration": true, "contextSupport": true, "completionItem": { "snippetSupport": true, "commitCharactersSupport": true, "documentationFormat": [ "markdown", "plaintext" ], "deprecatedSupport": true, "preselectSupport": true, "tagSupport": { "valueSet": [ 1 ] }, "insertReplaceSupport": true, "resolveSupport": { "properties": [ "documentation", "detail", "additionalTextEdits" ] }, "insertTextModeSupport": { "valueSet": [ 1, 2 ] } }, "completionItemKind": { "valueSet": [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 ] } }, "hover": { "dynamicRegistration": true, "contentFormat": [ "markdown", "plaintext" ] }, "signatureHelp": { "dynamicRegistration": true, "signatureInformation": { "documentationFormat": [ "markdown", "plaintext" ], "parameterInformation": { "labelOffsetSupport": true }, "activeParameterSupport": true }, "contextSupport": true }, "definition": { "dynamicRegistration": true, "linkSupport": true }, "references": { "dynamicRegistration": true }, "documentHighlight": { "dynamicRegistration": true }, "documentSymbol": { "dynamicRegistration": true, "symbolKind": { "valueSet": [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ] }, "hierarchicalDocumentSymbolSupport": true, "tagSupport": { "valueSet": [ 1 ] }, "labelSupport": true }, "codeAction": { "dynamicRegistration": true, "isPreferredSupport": true, "disabledSupport": true, "dataSupport": true, "resolveSupport": { "properties": [ "edit" ] }, "codeActionLiteralSupport": { "codeActionKind": { "valueSet": [ "", "quickfix", "refactor", "refactor.extract", "refactor.inline", "refactor.rewrite", "source", "source.organizeImports" ] } }, "honorsChangeAnnotations": false }, "codeLens": { "dynamicRegistration": true }, "formatting": { "dynamicRegistration": true }, "rangeFormatting": { "dynamicRegistration": true }, "onTypeFormatting": { "dynamicRegistration": true }, "rename": { "dynamicRegistration": true, "prepareSupport": true, "prepareSupportDefaultBehavior": 1, "honorsChangeAnnotations": true }, "documentLink": { "dynamicRegistration": true, "tooltipSupport": true }, "typeDefinition": { "dynamicRegistration": true, "linkSupport": true }, "implementation": { "dynamicRegistration": true, "linkSupport": true }, "colorProvider": { "dynamicRegistration": true }, "foldingRange": { "dynamicRegistration": true, "rangeLimit": 5000, "lineFoldingOnly": true }, "declaration": { "dynamicRegistration": true, "linkSupport": true }, "selectionRange": { "dynamicRegistration": true }, "callHierarchy": { "dynamicRegistration": true }, "semanticTokens": { "dynamicRegistration": true, "tokenTypes": [ "namespace", "type", "class", "enum", "interface", "struct", "typeParameter", "parameter", "variable", "property", "enumMember", "event", "function", "method", "macro", "keyword", "modifier", "comment", "string", "number", "regexp", "operator" ], "tokenModifiers": [ "declaration", "definition", "readonly", "static", "deprecated", "abstract", "async", "modification", "documentation", "defaultLibrary" ], "formats": [ "relative" ], "requests": { "range": true, "full": { "delta": true } }, "multilineTokenSupport": false, "overlappingTokenSupport": false }, "linkedEditingRange": { "dynamicRegistration": true } }, "window": { "showMessage": { "messageActionItem": { "additionalPropertiesSupport": true } } } }, "initializationOptions": { "storageUri": "file:///c%3A/Users/daniel/AppData/Roaming/Code%20-%20Insiders/User/workspaceStorage/1ab0e3033b053a024fb7cbf9068380d1/d-biehl.robotcode", "globalStorageUri": "file:///c%3A/Users/daniel/AppData/Roaming/Code%20-%20Insiders/User/globalStorage/d-biehl.robotcode" }, "trace": "off", "workspaceFolders": [ { "uri": "file:///c%3A/tmp/robottest/dummy/testprj", "name": "testprj" } ], "workDoneToken": "7<PASSWORD>" } """ assert from_json(data, InitializeParams) == InitializeParams( capabilities=ClientCapabilities( workspace=ClientCapabilitiesWorkspace( apply_edit=True, workspace_edit=WorkspaceEditClientCapabilities( document_changes=True, resource_operations=[ ResourceOperationKind.CREATE, ResourceOperationKind.RENAME, ResourceOperationKind.DELETE, ], failure_handling=FailureHandlingKind.TEXT_ONLY_TRANSACTIONAL, normalizes_line_endings=True, change_annotation_support=WorkspaceEditClientCapabilitiesChangeAnnotationSupport( groups_on_label=True ), ), did_change_configuration=DidChangeConfigurationClientCapabilities(dynamic_registration=True), did_change_watched_files=DidChangeWatchedFilesClientCapabilities(dynamic_registration=True), symbol=WorkspaceSymbolClientCapabilities( dynamic_registration=True, symbol_kind=WorkspaceSymbolClientCapabilitiesSymbolKind( value_set=[ SymbolKind.FILE, SymbolKind.MODULE, SymbolKind.NAMESPACE, SymbolKind.PACKAGE, SymbolKind.CLASS, SymbolKind.METHOD, SymbolKind.PROPERTY, SymbolKind.FIELD, SymbolKind.CONSTRUCTOR, SymbolKind.ENUM, SymbolKind.INTERFACE, SymbolKind.FUNCTION, SymbolKind.VARIABLE, SymbolKind.CONSTANT, SymbolKind.STRING, SymbolKind.NUMBER, SymbolKind.BOOLEAN, SymbolKind.ARRAY, SymbolKind.OBJECT, SymbolKind.KEY, SymbolKind.NULL, SymbolKind.ENUMMEMBER, SymbolKind.STRUCT, SymbolKind.EVENT, SymbolKind.OPERATOR, SymbolKind.TYPEPARAMETER, ] ), tag_support=WorkspaceSymbolClientCapabilitiesTagSupport(value_set=[SymbolTag.Deprecated]), ), execute_command=ExecuteCommandClientCapabilities(dynamic_registration=True), workspace_folders=True, configuration=True, semantic_tokens=SemanticTokensWorkspaceClientCapabilities(refresh_support=True), code_lens=CodeLensWorkspaceClientCapabilities(refresh_support=True), file_operations=ClientCapabilitiesWorkspaceFileOperationsWorkspaceClientCapabilities( dynamic_registration=True, did_create=True, will_create=True, did_rename=True, will_rename=True, did_delete=True, will_delete=True, ), ), text_document=TextDocumentClientCapabilities( synchronization=TextDocumentSyncClientCapabilities( dynamic_registration=True, will_save=True, will_save_wait_until=True, did_save=True ), completion=CompletionClientCapabilities( dynamic_registration=True, completion_item=CompletionClientCapabilitiesCompletionItem( snippet_support=True, commit_characters_support=True, documentation_format=[MarkupKind.MARKDOWN, MarkupKind.PLAINTEXT], deprecated_support=True, preselect_support=True, tag_support=CompletionClientCapabilitiesCompletionItemTagSupport( value_set=[CompletionItemTag.Deprecated] ), insert_replace_support=True, resolve_support=CompletionClientCapabilitiesCompletionItemResolveSupport( properties=["documentation", "detail", "additionalTextEdits"] ), insert_text_mode_support=CompletionClientCapabilitiesCompletionItemInsertTextModeSupport( value_set=[InsertTextMode.AS_IS, InsertTextMode.ADJUST_INDENTATION] ), ), completion_item_kind=CompletionClientCapabilitiesCompletionItemKind( value_set=[ CompletionItemKind.TEXT, CompletionItemKind.METHOD, CompletionItemKind.FUNCTION, CompletionItemKind.CONSTRUCTOR, CompletionItemKind.FIELD, CompletionItemKind.VARIABLE, CompletionItemKind.CLASS, CompletionItemKind.INTERFACE, CompletionItemKind.MODULE, CompletionItemKind.PROPERTY, CompletionItemKind.UNIT, CompletionItemKind.VALUE, CompletionItemKind.ENUM, CompletionItemKind.KEYWORD, CompletionItemKind.SNIPPET, CompletionItemKind.COLOR, CompletionItemKind.FILE, CompletionItemKind.REFERENCE, CompletionItemKind.FOLDER, CompletionItemKind.ENUM_MEMBER, CompletionItemKind.CONSTANT, CompletionItemKind.STRUCT, CompletionItemKind.EVENT, CompletionItemKind.OPERATOR, CompletionItemKind.TYPE_PARAMETER, ] ), context_support=True, ), hover=HoverClientCapabilities( dynamic_registration=True, content_format=[MarkupKind.MARKDOWN, MarkupKind.PLAINTEXT] ), signature_help=SignatureHelpClientCapabilities( dynamic_registration=True, signature_information=SignatureHelpClientCapabilitiesSignatureInformation( documentation_format=[MarkupKind.MARKDOWN, MarkupKind.PLAINTEXT], parameter_information=SignatureHelpClientCapabilitiesSignatureInformationParameterInformation( label_offset_support=True ), active_parameter_support=True, ), context_support=True, ), declaration=DeclarationClientCapabilities(dynamic_registration=True, link_support=True), definition=DefinitionClientCapabilities(dynamic_registration=True, link_support=True), type_definition=TypeDefinitionClientCapabilities(dynamic_registration=True, link_support=True), implementation=ImplementationClientCapabilities(dynamic_registration=True, link_support=True), references=ReferenceClientCapabilities(dynamic_registration=True), document_highlight=DocumentHighlightClientCapabilities(dynamic_registration=True), document_symbol=DocumentSymbolClientCapabilities( dynamic_registration=True, symbol_kind=DocumentSymbolClientCapabilitiesSymbolKind( value_set=[ SymbolKind.FILE, SymbolKind.MODULE, SymbolKind.NAMESPACE, SymbolKind.PACKAGE, SymbolKind.CLASS, SymbolKind.METHOD, SymbolKind.PROPERTY, SymbolKind.FIELD, SymbolKind.CONSTRUCTOR, SymbolKind.ENUM, SymbolKind.INTERFACE, SymbolKind.FUNCTION, SymbolKind.VARIABLE, SymbolKind.CONSTANT, SymbolKind.STRING, SymbolKind.NUMBER, SymbolKind.BOOLEAN, SymbolKind.ARRAY, SymbolKind.OBJECT, SymbolKind.KEY, SymbolKind.NULL, SymbolKind.ENUMMEMBER, SymbolKind.STRUCT, SymbolKind.EVENT, SymbolKind.OPERATOR, SymbolKind.TYPEPARAMETER, ] ), hierarchical_document_symbol_support=True, tag_support=DocumentSymbolClientCapabilitiesTagSupport(value_set=[SymbolTag.Deprecated]), label_support=True, ), code_action=CodeActionClientCapabilities( dynamic_registration=True, code_action_literal_support=CodeActionClientCapabilitiesCodeActionLiteralSupport( code_action_kind=CodeActionClientCapabilitiesCodeActionLiteralSupportCodeActionKind( value_set=[ "", "quickfix", "refactor", "refactor.extract", "refactor.inline", "refactor.rewrite", "source", "source.organizeImports", ] ) ), is_preferred_support=True, disabled_support=True, data_support=True, resolve_support=CodeActionClientCapabilitiesResolveSupport(properties=["edit"]), honors_change_annotations=False, ), code_lens=CodeLensClientCapabilities(dynamic_registration=True), document_link=DocumentLinkClientCapabilities(dynamic_registration=True, tooltip_support=True), color_provider=DocumentColorClientCapabilities(dynamic_registration=True), formatting=DocumentFormattingClientCapabilities(dynamic_registration=True), range_formatting=DocumentRangeFormattingClientCapabilities(dynamic_registration=True), on_type_formatting=DocumentOnTypeFormattingClientCapabilities(dynamic_registration=True), rename=RenameClientCapabilities( dynamic_registration=True, prepare_support=True, prepare_support_default_behavior=PrepareSupportDefaultBehavior.Identifier, honors_change_annotations=True, ), publish_diagnostics=PublishDiagnosticsClientCapabilities( related_information=True, tag_support=PublishDiagnosticsClientCapabilitiesTagSupport( value_set=[DiagnosticTag.Unnecessary, DiagnosticTag.Deprecated] ), version_support=False, code_description_support=True, data_support=True, ), folding_range=FoldingRangeClientCapabilities( dynamic_registration=True, range_limit=5000, line_folding_only=True ), selection_range=SelectionRangeClientCapabilities(dynamic_registration=True), linked_editing_range=LinkedEditingRangeClientCapabilities(dynamic_registration=True), call_hierarchy=CallHierarchyClientCapabilities(dynamic_registration=True), semantic_tokens=SemanticTokensClientCapabilities( requests=SemanticTokensClientCapabilitiesRequests( range=True, full=SemanticTokensClientCapabilitiesRequestsFull(delta=True) ), token_types=[ "namespace", "type", "class", "enum", "interface", "struct", "typeParameter", "parameter", "variable", "property", "enumMember", "event", "function", "method", "macro", "keyword", "modifier", "comment", "string", "number", "regexp", "operator", ], token_modifiers=[ "declaration", "definition", "readonly", "static", "deprecated", "abstract", "async", "modification", "documentation", "defaultLibrary", ], formats=[TokenFormat.Relative], overlapping_token_support=False, multiline_token_support=False, dynamic_registration=True, ), moniker=None, ), window=ClientCapabilitiesWindow( work_done_progress=None, show_message=ShowMessageRequestClientCapabilities( message_action_item=ShowMessageRequestClientCapabilitiesMessageActionItem( additional_properties_support=True ) ), show_document=None, ), general=None, experimental=None, ), process_id=17800, client_info=ClientInfo(name="Visual Studio Code - Insiders", version="1.62.0-insider"), locale="de", root_path="c:\\tmp\\robottest\\dummy\\testprj", root_uri="file:///c%3A/tmp/robottest/dummy/testprj", initialization_options={ "storageUri": "file:///c%3A/Users/daniel/AppData/Roaming/Code%20-%20Insiders/User/workspaceStorage/1ab0e3033b053a024fb7cbf9068380d1/d-biehl.robotcode", "globalStorageUri": "file:///c%3A/Users/daniel/AppData/Roaming/Code%20-%20Insiders/User/globalStorage/d-biehl.robotcode", }, trace=TraceValue.OFF, workspace_folders=[WorkspaceFolder(uri="file:///c%3A/tmp/robottest/dummy/testprj", name="testprj")], work_done_token="<PASSWORD>", )
StarcoderdataPython
1807692
from django.urls import path from .views import ( DashboardView, CandidateListView, CandidateCreateView, CandidateDeleteView, CandidateUpdateView, CandidateLikeView ) app_name = 'customer' urlpatterns = [ path('', DashboardView.as_view(), name='dashboard'), path('job/', CandidateListView.as_view(), name='application-list'), path('job/<int:pk>/apply/', CandidateCreateView.as_view(), name='application-apply'), path('job/<int:pk>/like/', CandidateLikeView.as_view(), name='job-like'), path('job/application/<int:pk>/update/', CandidateUpdateView.as_view(), name='application-update'), path('job/application/<int:pk>/delete/', CandidateDeleteView.as_view(), name='application-delete'), ]
StarcoderdataPython
3374582
<filename>files2.py #!/usr/bin/env python # coding: utf-8 """ Simple program to iterate thru all files, fetch 1st digit from the file size and plot the distribution of the different values as an animated graph. This version will trigger a repaint not with frame rate, as a game, but when a certain amount of files have been processed. """ # Created: 17.11.20 import pygame import sys import os import random from pathlib import Path from time import perf_counter from collections import defaultdict # decorator to support static variables in functions def static_vars(**kwargs): def decorate(func): for k in kwargs: setattr(func, k, kwargs[k]) return func return decorate @static_vars(_paths=None, _last_parent=None) def next() -> int: """ Digit producer. May raise StopIteration when done. :return: another digit, value 0..9 """ if not next._paths: next._paths = Path(os.environ["HOME"]).glob('**/*') while True: p = next._paths.__next__() parent = p.parent if parent != next._last_parent: next._last_parent = parent # print(parent) s = str(p) # directories have 96 bytes -> systematic "fraud" if not p.is_file(): continue # # many files with lengths like 2* # if ".Office/Outlook/" in s: # continue # if not "/.git/" in s: # continue break n = p.stat().st_size s = str(n) r = int(s[0]) # if r == 2 and graph.cnt > 200000 and graph.values[2] > graph.values[1]: # print(n, p) return r """ without outlook and git files: n = 9240 0 - 2 = 0.000 1 - 2884 = 0.312 2 - 1557 = 0.169 3 - 990 = 0.107 4 - 1303 = 0.141 5 - 1110 = 0.120 6 - 379 = 0.041 7 - 430 = 0.047 8 - 347 = 0.038 9 - 238 = 0.026 all files: n = 992493 0 - 7351 = 0.007 1 - 265084 = 0.267 2 - 242976 = 0.245 3 - 120200 = 0.121 4 - 90655 = 0.091 5 - 79231 = 0.080 6 - 63066 = 0.064 7 - 46323 = 0.047 8 - 42172 = 0.042 9 - 35435 = 0.036 """ def color(n): # https://www.pygame.org/docs/ref/color.html#pygame.Color return f"0x{n:06x}" def random_color() -> pygame.Color: """ Generate a random (but bright) color. :return: the Color """ return pygame.Color(random.randint(128, 255), random.randint(128, 255), random.randint(128, 255)) WIDTH = 1000 BARWIDTH = 100 # 10 bars 0..9 HEIGHT = 600 class Graph: """ Simple class to maintaion and pait a bar chart with 10 columns. """ def __init__(self): self.cnt = 0 self.values = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.pc0 = perf_counter() def count(self, x: int) -> None: """ Count an occurence of a digit. :param x: the digit """ self.cnt += 1 self.values[x] += 1 def paint(self) -> pygame.Surface: """ Paint this Graph. :return: a Surface with the painted graph on black background """ surface = pygame.Surface((WIDTH, HEIGHT)) surface.fill(pygame.Color(0,0,0)) if self.cnt == 0: return for x in range(0, 10): h = self.values[x] / self.cnt top = round(HEIGHT * (1 - h), 0) bar = pygame.Rect(BARWIDTH * x, top, BARWIDTH, 5) # pygame.draw.rect(surface, pygame.Color(255,255,255), bar) pygame.draw.rect(surface, random_color(), bar) return surface def stat(self): print() print("n =", self.cnt) for i, v in enumerate(self.values): print(f"{i} - {v:10d} = {v/self.cnt:.3f}") dpc = perf_counter() - self.pc0 print(f"elapsed ~ {dpc:.1f} s") class Timer: def __init__(self): self.timers = defaultdict(float) self.counters = defaultdict(int) def log(self, k, dt): self.timers[k] += dt self.counters[k] += 1 # if self.counters[k] == 1: # print(f"{k} .. {dt}") def stat(self): for k in self.timers: print(f"{k} - {self.timers[k]:.3f} ({self.counters[k]})") def update(graph, n) -> None: """ Process many values into a Graph. :param graph: the Graph :param n: process that number of values """ pc0 = perf_counter() for i in range(0, n): graph.count(next()) TIMER.log("calc", perf_counter() - pc0) # print(".", end="", flush=True) if __name__ == "__main__": pygame.init() DISPLAYSURF = pygame.display.set_mode((WIDTH, HEIGHT)) FPS = 1 FramePerSec = pygame.time.Clock() INCREMENT = 1000 # iterate that man times per painting of the Graph pc0 = perf_counter() GRAPH = Graph() TIMER = Timer() done = False cnt = 0 while not done: try: update(GRAPH, INCREMENT) except StopIteration: done = True except KeyboardInterrupt: done = True cnt += 1 # print(cnt, end=" ", flush=True) # print(graph.cnt, end=" ", flush=True) # because it's so tedious to print in a Surface pc_paint = perf_counter() surf = GRAPH.paint() DISPLAYSURF.blit(surf, (0,0)) pygame.display.update() TIMER.log("paint", perf_counter() - pc_paint) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() GRAPH.stat() TIMER.stat() sys.exit() # FramePerSec.tick(FPS) # when done pygame.quit() GRAPH.stat() TIMER.stat() sys.exit()
StarcoderdataPython
12864934
<reponame>zenranda/proj5-map<filename>flask_map.py import flask from flask import render_template from flask import request from flask import url_for import json import logging ### # Globals ### app = flask.Flask(__name__) import CONFIG ### # Pages ### @app.route("/") @app.route("/index") @app.route("/map") def index(): app.logger.debug("Main page entry") if 'map' not in flask.session: app.logger.debug("Sending map file") app.logger.debug("Sending keys...") with open('SECRETS.py') as key: #sends access token to the page ent = "" #in theory, sensitive information for line in key: while ent == "": ent = line flask.session['confidental'] = ent app.logger.debug("Sending loc data...") with open('POI.txt') as points: data = [] #reads the list of points for line in points: item = [] line = line.strip() k = line.split("|") item.append(k[0]) #puts each part of the point (name, lat, long) into a list item.append(k[1]) item.append(k[2]) data.append(item) #adds the list with the data to another list flask.session['points'] = data #sends that list to jinja return flask.render_template('map.html') @app.errorhandler(404) def page_not_found(error): app.logger.debug("Page not found") flask.session['linkback'] = flask.url_for("index") return flask.render_template('page_not_found.html'), 404 ############# # # Set up to run from cgi-bin script, from # gunicorn, or stand-alone. # app.secret_key = CONFIG.secret_key app.debug=CONFIG.DEBUG app.logger.setLevel(logging.DEBUG) if __name__ == "__main__": print("Opening for global access on port {}".format(CONFIG.PORT)) app.run(port=CONFIG.PORT, host="0.0.0.0")
StarcoderdataPython
3507162
from ReferenceManual import createReferenceManual from ReferenceManual import printReferenceManual import ColorPair_test_data as td if __name__ == '__main__': td.test_functionalities() print('Reference Manual') printReferenceManual(createReferenceManual()) print('Done :)')
StarcoderdataPython
388572
<reponame>shingarov/cle """ CLE is an extensible binary loader. Its main goal is to take an executable program and any libraries it depends on and produce an address space where that program is loaded and ready to run. The primary interface to CLE is the Loader class. """ __version__ = (8, 20, 1, 7) if bytes is str: raise Exception("This module is designed for python 3 only. Please install an older version to use python 2.") import logging logging.getLogger(name=__name__).addHandler(logging.NullHandler()) # pylint: disable=wildcard-import from . import utils from .loader import * from .memory import * from .errors import * from .backends import * from .backends.tls import * from .backends.externs import * from .patched_stream import * from .gdb import *
StarcoderdataPython
8017080
''' Bet365 D_ Token Fetcher Author: @ElJaviLuki ''' import subprocess import re PATH = './deobfuscator365/' def fetch_D_token(bootjs_code: str): filename = PATH + 'd_fetcher.js' file = open(filename, "w") file.write( """try { const jsdom = require("jsdom"); const { JSDOM } = jsdom; const { window: bootjs } = new JSDOM('', { url: "https://www.bet365.com", runScripts: "outside-only" }); """ # Fetch D_ token """ function fetchHandshakeD_token(bootjsCode){ bootjs.eval(bootjsCode); var fetchComposedToken = function(window) { finalQ = ''; var tags = [ "Anchor", "Audio", "Body", "Button", "Canvas", "Div", "Form", "Heading", "IFrame", "Image", "Input", "Label", "Link", "Media", "Option", "Paragraph", "Pre", "Select", "Span", "Style", "TableCell", "TableCol", "Table", "TableRow", "TableSection", "TextArea", "Video" ]; for (var index = 0; index < tags.length; index++) { var thisTag = tags[index] , winElement = window["HTML" + thisTag + "Element"] , theCaught = winElement.prototype.Caught; if (!theCaught) continue; var ownPropNames = Object.getOwnPropertyNames(Object.getPrototypeOf(theCaught)); for (var propIndex in ownPropNames) { var thisPropName = ownPropNames[propIndex] , protoFromThisCaught = Object.getPrototypeOf(theCaught[thisPropName]) , subOPNs = Object.getOwnPropertyNames(protoFromThisCaught); for (var subOPNindex in subOPNs) { var thisSubOPN = subOPNs[subOPNindex]; if (thisSubOPN in Object) continue; if (protoFromThisCaught[thisSubOPN] && protoFromThisCaught[thisSubOPN]()) { var composedToken = protoFromThisCaught[thisSubOPN](); finalQ = composedToken[0], initialN = composedToken[1]; break; } } if (finalQ) break; } delete winElement.prototype.Caught; if (finalQ) break; } return finalQ; } var transformNtoken = function(bootjs, URIComponent) { decURI = decodeURIComponent(URIComponent); var b64decodedSc = -bootjs.atob(initialN) % 0x40; finalN = ''; for (var chIndex = 0; chIndex < decURI.length; chIndex++) { var charCode = decURI.charCodeAt(chIndex); var fromChar = String.fromCharCode((charCode+b64decodedSc) % 0x100); finalN += fromChar; } return finalN; } var initialN = '' var finalQ = fetchComposedToken(bootjs); var HandJ = finalQ.split('.'); """ # NOTE: N Token can be also fetched by Base-64 encoding the evaluated value in the expression # 'ns_weblib_util.WebsiteConfig.SERVER_TIME+300' """ var finalN = transformNtoken(bootjs, HandJ[0]); var finalJ = HandJ[1]; var D_token = [finalN, '.', finalJ].join(''); return D_token; } """ # String.raw`···`: avoids string escaping problems. """ d_token = fetchHandshakeD_token(String.raw ` """ # Cancel some unneeded built-in functions that cause bugs during evaluation. # Note: if you happen to find another bug that can be fixed by modifying a dependency, override # that dependency here: """ overrideFunction = function() {} XMLHttpRequest.prototype.open = overrideFunction; XMLHttpRequest.prototype.send = overrideFunction; """ + str(bootjs_code) + """ ` ) console.log("<D_TOKEN>" + d_token + "</D_TOKEN>"); } catch (error) { console.error(error); } finally { process.exit(); }""" ) file.close() result = subprocess.run( ['node', filename], text=True, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) if result.returncode == 0: delimitedToken = re.search("<D_TOKEN>(.*?)</D_TOKEN>", result.stdout).group() D_token = delimitedToken[len("<D_TOKEN>"):-len("</D_TOKEN>")] else: raise Exception('Error during token generation script evaluation or execution: ' + result.stderr) return D_token
StarcoderdataPython
12828890
from django.contrib.auth.models import ( AbstractBaseUser, BaseUserManager, PermissionsMixin, ) from django.db import models from django.utils import timezone class AdvancedUserManager(BaseUserManager): def create_user(self, email, username, password=<PASSWORD>, **extra_fields): if not email: raise ValueError("User must have an email") email = self.normalize_email(email) user = self.model(email=email, username=username, **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, username, email, password=<PASSWORD>, **extra_fields): user = self.create_user( username, email, password=password, **extra_fields ) user.is_active = True user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class AdvancedUser(AbstractBaseUser, PermissionsMixin): email = models.EmailField( max_length=255, unique=True, blank=False, verbose_name="Электронная почта", ) username = models.CharField( max_length=255, unique=True, verbose_name="Имя пользователя" ) first_name = models.CharField(max_length=255, verbose_name="Имя") last_name = models.CharField(max_length=255, verbose_name="Фамилия") is_active = models.BooleanField( default=True, verbose_name="Статус активности" ) is_staff = models.BooleanField( default=False, verbose_name="Статус администратора" ) is_superuser = models.BooleanField( default=False, verbose_name="Статус суперпользователя" ) date_joined = models.DateTimeField( default=timezone.now, verbose_name="Дата регистрации" ) last_login = models.DateTimeField( null=True, verbose_name="Последнее посещение" ) objects = AdvancedUserManager() USERNAME_FIELD = "email" REQUIRED_FIELDS = ["username", "first_name", "last_name"] class Meta: verbose_name = "Пользователь" verbose_name_plural = "Пользователи" def get_full_name(self): return f"{self.first_name} - {self.last_name}" def get_short_name(self): return self.username def has_perm(self, perm, obj=None): return True def has_module_perms(self, app_label): return True def __str__(self): return self.email
StarcoderdataPython
3229185
import os import duckdb import pandas as pd from dagster import Field, check, io_manager from dagster.seven.temp_dir import get_system_temp_directory from .parquet_io_manager import PartitionedParquetIOManager class DuckDBPartitionedParquetIOManager(PartitionedParquetIOManager): """Stores data in parquet files and creates duckdb views over those files.""" def handle_output(self, context, obj): if obj is not None: # if this is a dbt output, then the value will be None yield from super().handle_output(context, obj) con = self._connect_duckdb(context) path = self._get_path(context) if context.has_asset_partitions: to_scan = os.path.join(os.path.dirname(path), "*.pq", "*.parquet") else: to_scan = path con.execute("create schema if not exists hackernews;") con.execute( f"create or replace view {self._table_path(context)} as " f"select * from parquet_scan('{to_scan}');" ) def load_input(self, context): check.invariant(not context.has_asset_partitions, "Can't load partitioned inputs") if context.dagster_type.typing_type == pd.DataFrame: con = self._connect_duckdb(context) return con.execute(f"SELECT * FROM {self._table_path(context)}").fetchdf() check.failed( f"Inputs of type {context.dagster_type} not supported. Please specify a valid type " "for this input either on the argument of the @asset-decorated function." ) def _table_path(self, context): return f"hackernews.{context.asset_key.path[-1]}" def _connect_duckdb(self, context): return duckdb.connect(database=context.resource_config["duckdb_path"], read_only=False) @io_manager( config_schema={"base_path": Field(str, is_required=False), "duckdb_path": str}, required_resource_keys={"pyspark"}, ) def duckdb_partitioned_parquet_io_manager(init_context): return DuckDBPartitionedParquetIOManager( base_path=init_context.resource_config.get("base_path", get_system_temp_directory()) )
StarcoderdataPython
381440
<gh_stars>0 from data import * import numpy as np import matplotlib.pyplot as plt from sklearn.learning_curve import learning_curve from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline pipe_lr = Pipeline([ ('scl', StandardScaler()), ('clf', LogisticRegression(penalty='l2', random_state=0)) ]) train_sizes, train_scores, test_scores = \ learning_curve( estimator=pipe_lr, X = X_train, y = y_train, train_sizes=np.linspace(0.1, 1.0, 10), cv = 10, n_jobs=1 ) train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) plt.plot(train_sizes, train_mean, color='blue', marker='o', markersize=5, label='training accuracy') plt.fill_between(train_sizes, train_mean + train_std, train_mean - train_std, alpha=0.15, color='blue') plt.plot(train_sizes, test_mean, color='green', linestyle='--', marker='s', markersize=5, label='validation accuracy') plt.fill_between(train_sizes, test_mean + test_std, test_mean - test_std, alpha=0.15, color='green') plt.grid() plt.xlabel('Number of training samples') plt.ylabel('Accuracy') plt.legend(loc='lower right') plt.ylim([0.8, 1.0]) plt.title('learning curve') plt.show() from sklearn.learning_curve import validation_curve param_range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0] train_scores, test_scores = validation_curve( estimator=pipe_lr, X = X_train, y = y_train, param_name='clf__C', param_range = param_range, cv = 10 ) train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) plt.plot(param_range, train_mean, color='blue', marker='o', markersize=5, label='training accuracy') plt.fill_between( param_range, train_mean + train_std, train_mean - train_std, alpha=0.15, color = 'blue' ) plt.plot( param_range, test_mean, color='green', linestyle='--', marker='s', markersize=5, label='validation accuracy' ) plt.fill_between( param_range, test_mean + test_std, test_mean - test_std, alpha=0.15, color='green' ) plt.grid() plt.xscale('log') plt.title('validation curve') plt.legend(loc='lower right') plt.xlabel('Parameter C') plt.ylabel('Accuracy') plt.ylim([0.8, 1.0]) plt.show()
StarcoderdataPython
170567
import numpy as np class RolloutWorker: def __init__(self, env, policy, cfg, env_params, language_conditioned=False): self.env = env self.policy = policy self.cfg = cfg self.env_params = env_params self.language_conditioned = language_conditioned self.timestep_counter = 0 def generate_rollout(self, train_mode=False, animated=False): episodes = [] for _ in range(self.cfg.num_rollouts_per_mpi): ep_obs, ep_actions, ep_success, ep_rewards = [], [], [], [] observation = self.env.reset() obs = observation['observation'] if self.language_conditioned: instruction = observation['instruction'] ep_instructions, ep_hinsight_instruction = [], [] else: ag = observation['achieved_goal'] g = observation['desired_goal'] ep_ag, ep_g = [], [] for _ in range(self.env_params['max_timesteps']): if self.language_conditioned: action = self.policy.act(obs.copy(), instruction.copy(), train_mode) else: action = self.policy.act(obs.copy(), ag.copy(), g.copy(), train_mode) if animated: self.env.render() observation_new, reward, _, info = self.env.step(action) self.timestep_counter += 1 obs_new = observation_new['observation'] if self.language_conditioned: instruction_new = observation_new['instruction'] hindsight_instr = info['hindsight_instruction'] if 'hindsight_instruction' in info.keys( ) else np.zeros_like(instruction_new) else: ag_new = observation_new['achieved_goal'] ep_obs.append(obs.copy()) ep_actions.append(action.copy()) ep_rewards.append([reward]) if self.language_conditioned: ep_instructions.append(instruction.copy()) ep_hinsight_instruction.append(hindsight_instr.copy()) else: ep_ag.append(ag.copy()) ep_g.append(g.copy()) obs = obs_new if self.language_conditioned: instruction = instruction_new else: ag = ag_new ep_success.append(info['is_success']) ep_obs.append(obs.copy()) if not self.language_conditioned: ep_ag.append(ag.copy()) episode_data = dict(obs=np.array(ep_obs).copy(), action=np.array(ep_actions).copy(), reward=np.array(ep_rewards).copy(), success=np.array(ep_success).copy(), timesteps=self.timestep_counter) if self.language_conditioned: episode_data['instruction'] = np.array(ep_instructions).copy() episode_data['hindsight_instruction'] = np.array(ep_hinsight_instruction).copy() else: episode_data['g'] = np.array(ep_g).copy() episode_data['ag'] = np.array(ep_ag).copy() episodes.append(episode_data) return episodes def generate_test_rollout(self, animated=False): rollout_data = [] for _ in range(self.cfg.n_test_rollouts): rollout = self.generate_rollout(train_mode=False, animated=animated) rollout_data.append(rollout) # only take the last step to calculate success rate success_rate = np.mean([_rd['success'][-1] for rd in rollout_data for _rd in rd]) rewards = np.sum([_rd['reward'] for rd in rollout_data for _rd in rd], 1).mean() return success_rate, rewards
StarcoderdataPython
8063075
<reponame>atpaino/stocktradinganalysis<gh_stars>1-10 #Contains functions that compute a statistic for a single HistoricData item from time #offset+n through time offset. import scipy.stats as sts def variation_wrapper(hd, n=20, offset=0): """ Calculates the variation on the closing price of hd from offset:offset+n """ return sts.variation(hd.close[offset:offset+n]) def gain(hd, n=20, offset=0): """ Calculates the gain over offset:offset+n in hd's closing prices """ return ((hd.close[offset] - hd.close[offset+n]) / hd.close[offset+n]) def gain_vs_avg(hd, n=20, offset=0): """ Calculates the gain of the closing price at offset vs the moving avg. """ return ((hd.close[offset] - sma(hd, offset=offset)) / sma(hd, offset=offset)) def sma(hd, time_period=90, offset=0): """ Returns the simple moving average for the stock over the specified period of time. Note: time_period is used instead of n since typically the time period here being used is greater than n. """ if len(hd.close) >= offset+time_period: return sts.tmean(hd.close[offset:offset+time_period]) else: return sts.tmean(hd.close[offset:])
StarcoderdataPython
4826152
<filename>test/optimization/test_slsqp.py # This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test SLSQP Optimizer """ import unittest from test.optimization.optimization_test_case import QiskitOptimizationTestCase import numpy as np from qiskit.optimization import INFINITY from qiskit.optimization.algorithms import SlsqpOptimizer from qiskit.optimization.problems import QuadraticProgram class TestSlsqpOptimizer(QiskitOptimizationTestCase): """SLSQP Optimizer Tests. """ def test_slsqp_optimizer(self): """ Generic SLSQP Optimizer Test. """ problem = QuadraticProgram() problem.continuous_var(upperbound=4) problem.continuous_var(upperbound=4) problem.linear_constraint(linear=[1, 1], sense='=', rhs=2) problem.minimize(linear=[2, 2], quadratic=[[2, 0.25], [0.25, 0.5]]) # solve problem with SLSQP slsqp = SlsqpOptimizer(trials=3) result = slsqp.solve(problem) self.assertAlmostEqual(result.fval, 5.8750) def test_slsqp_optimizer_full_output(self): """ Generic SLSQP Optimizer Test. """ problem = QuadraticProgram() problem.continuous_var(upperbound=4) problem.continuous_var(upperbound=4) problem.linear_constraint(linear=[1, 1], sense='=', rhs=2) problem.minimize(linear=[2, 2], quadratic=[[2, 0.25], [0.25, 0.5]]) # solve problem with SLSQP slsqp = SlsqpOptimizer(trials=3, full_output=True) result = slsqp.solve(problem) self.assertAlmostEqual(result.fval, 5.8750) self.assertAlmostEqual(result.fx, 5.8750) self.assertGreaterEqual(result.its, 1) self.assertEqual(result.imode, 0) self.assertIsNotNone(result.smode) def test_slsqp_unbounded(self): """Unbounded test for optimization""" problem = QuadraticProgram() problem.continuous_var(name="x") problem.continuous_var(name="y") problem.maximize(linear=[2, 0], quadratic=[[-1, 2], [0, -2]]) slsqp = SlsqpOptimizer() solution = slsqp.solve(problem) self.assertIsNotNone(solution) self.assertIsNotNone(solution.x) np.testing.assert_almost_equal([2., 1.], solution.x, 3) self.assertIsNotNone(solution.fval) np.testing.assert_almost_equal(2., solution.fval, 3) def test_slsqp_unbounded_with_trials(self): """Unbounded test for optimization""" problem = QuadraticProgram() problem.continuous_var(name="x", lowerbound=-INFINITY, upperbound=INFINITY) problem.continuous_var(name="y", lowerbound=-INFINITY, upperbound=INFINITY) problem.maximize(linear=[2, 0], quadratic=[[-1, 2], [0, -2]]) slsqp = SlsqpOptimizer(trials=3) solution = slsqp.solve(problem) self.assertIsNotNone(solution) self.assertIsNotNone(solution.x) np.testing.assert_almost_equal([2., 1.], solution.x, 3) self.assertIsNotNone(solution.fval) np.testing.assert_almost_equal(2., solution.fval, 3) def test_slsqp_bounded(self): """Same as above, but a bounded test""" problem = QuadraticProgram() problem.continuous_var(name="x", lowerbound=2.5) problem.continuous_var(name="y", upperbound=0.5) problem.maximize(linear=[2, 0], quadratic=[[-1, 2], [0, -2]]) slsqp = SlsqpOptimizer() solution = slsqp.solve(problem) self.assertIsNotNone(solution) self.assertIsNotNone(solution.x) np.testing.assert_almost_equal([2.5, 0.5], solution.x, 3) self.assertIsNotNone(solution.fval) np.testing.assert_almost_equal(0.75, solution.fval, 3) def test_slsqp_equality(self): """A test with equality constraint""" problem = QuadraticProgram() problem.continuous_var(name="x") problem.continuous_var(name="y") problem.linear_constraint(linear=[1, -1], sense='=', rhs=0) problem.maximize(linear=[2, 0], quadratic=[[-1, 2], [0, -2]]) slsqp = SlsqpOptimizer() solution = slsqp.solve(problem) self.assertIsNotNone(solution) self.assertIsNotNone(solution.x) np.testing.assert_almost_equal([1., 1.], solution.x, 3) self.assertIsNotNone(solution.fval) np.testing.assert_almost_equal(1., solution.fval, 3) def test_slsqp_inequality(self): """A test with inequality constraint""" problem = QuadraticProgram() problem.continuous_var(name="x") problem.continuous_var(name="y") problem.linear_constraint(linear=[1, -1], sense='>=', rhs=1) problem.maximize(linear=[2, 0], quadratic=[[-1, 2], [0, -2]]) slsqp = SlsqpOptimizer() solution = slsqp.solve(problem) self.assertIsNotNone(solution) self.assertIsNotNone(solution.x) np.testing.assert_almost_equal([2., 1.], solution.x, 3) self.assertIsNotNone(solution.fval) np.testing.assert_almost_equal(2., solution.fval, 3) def test_slsqp_optimizer_with_quadratic_constraint(self): """A test with equality constraint""" problem = QuadraticProgram() problem.continuous_var(upperbound=1) problem.continuous_var(upperbound=1) problem.minimize(linear=[1, 1]) linear = [-1, -1] quadratic = [[1, 0], [0, 1]] problem.quadratic_constraint(linear=linear, quadratic=quadratic, rhs=-1/2) slsqp = SlsqpOptimizer() solution = slsqp.solve(problem) self.assertIsNotNone(solution) self.assertIsNotNone(solution.x) np.testing.assert_almost_equal([0.5, 0.5], solution.x, 3) self.assertIsNotNone(solution.fval) np.testing.assert_almost_equal(1., solution.fval, 3) def test_multistart_properties(self): """ Tests properties of MultiStartOptimizer. Since it is an abstract class, the test is here. """ trials = 5 clip = 200. slsqp = SlsqpOptimizer(trials=trials, clip=clip) self.assertEqual(trials, slsqp.trials) self.assertAlmostEqual(clip, slsqp.clip) trials = 6 clip = 300. slsqp.trials = trials slsqp.clip = clip self.assertEqual(trials, slsqp.trials) self.assertAlmostEqual(clip, slsqp.clip) if __name__ == '__main__': unittest.main()
StarcoderdataPython
4926745
<filename>qdef2d/defects/calc_Eform_corr.py import os import argparse import pandas as pd def calc(dir_def,xlfile): """ Evaluate corrected defect formation energy. dir_def (str): path to the defect directory containing the excel file xlfile (str): excel filename to read/save the dataframe from/to """ ## load list of dataframes from sheets from excel file df = pd.read_excel(os.path.join(dir_def,xlfile),sheet_name=None) for q in [qi for qi in df.keys() if qi != 'charge_0']: ## Finally, we can compute the corrected defect formation energy: ## Eform = Eform_uncorr + E_correction df[q]["E_form_corr"] = df[q].loc[:,'E_form_uncorr'] + df[q].loc[:,'E_corr'] ## write the updated excel file writer = pd.ExcelWriter(os.path.join(dir_def,xlfile)) for q in df.keys(): df[q].to_excel(writer, q, index=False) writer.save() if __name__ == '__main__': ## this script can also be run directly from the command line parser = argparse.ArgumentParser(description='Evaluate corrected defect formation energy.') parser.add_argument('dir_def',help='path to the defect directory containing the excel file') parser.add_argument('xlfile',help='excel filename to read/save the dataframe from/to') ## read in the above arguments from command line args = parser.parse_args() calc(args.dir_def, args.xlfile)
StarcoderdataPython
5024110
<filename>delfin/drivers/ibm/storwize_svc/ssh_handler.py # Copyright 2020 The SODA Authors. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import re import time from itertools import islice import paramiko import six from oslo_log import log as logging from oslo_utils import units from delfin import exception, utils from delfin.common import constants, alert_util from delfin.drivers.ibm.storwize_svc import consts from delfin.drivers.utils.ssh_client import SSHPool from delfin.drivers.utils.tools import Tools LOG = logging.getLogger(__name__) class SSHHandler(object): OID_ERR_ID = '1.3.6.1.4.192.168.127.12.4.3' OID_SEQ_NUMBER = '1.3.6.1.4.192.168.127.12.4.9' OID_LAST_TIME = '1.3.6.1.4.1.2.6.190.4.10' OID_OBJ_TYPE = '1.3.6.1.4.1.2.6.190.4.11' OID_OBJ_NAME = '1.3.6.1.4.192.168.127.12.4.17' OID_SEVERITY = '1.3.6.1.6.3.1.1.4.1.0' TRAP_SEVERITY_MAP = { '1.3.6.1.4.1.2.6.190.1': constants.Severity.CRITICAL, '1.3.6.1.4.192.168.127.12.2': constants.Severity.WARNING, '1.3.6.1.4.192.168.127.12.3': constants.Severity.INFORMATIONAL, } SEVERITY_MAP = {"warning": "Warning", "informational": "Informational", "error": "Major" } CONTRL_STATUS_MAP = {"online": constants.ControllerStatus.NORMAL, "offline": constants.ControllerStatus.OFFLINE, "service": constants.ControllerStatus.NORMAL, "flushing": constants.ControllerStatus.UNKNOWN, "pending": constants.ControllerStatus.UNKNOWN, "adding": constants.ControllerStatus.UNKNOWN, "deleting": constants.ControllerStatus.UNKNOWN } DISK_PHYSICAL_TYPE = { 'fc': constants.DiskPhysicalType.FC, 'sas_direct': constants.DiskPhysicalType.SAS } VOLUME_PERF_METRICS = { 'readIops': 'ro', 'writeIops': 'wo', 'readThroughput': 'rb', 'writeThroughput': 'wb', 'readIoSize': 'rb', 'writeIoSize': 'wb', 'responseTime': 'res_time', 'throughput': 'tb', 'iops': 'to', 'ioSize': 'tb', 'cacheHitRatio': 'hrt', 'readCacheHitRatio': 'rhr', 'writeCacheHitRatio': 'whr' } DISK_PERF_METRICS = { 'readIops': 'ro', 'writeIops': 'wo', 'readThroughput': 'rb', 'writeThroughput': 'wb', 'responseTime': 'res_time', 'throughput': 'tb', 'iops': 'to' } CONTROLLER_PERF_METRICS = { 'readIops': 'ro', 'writeIops': 'wo', 'readThroughput': 'rb', 'writeThroughput': 'wb', 'responseTime': 'res_time', 'throughput': 'tb', 'iops': 'to' } PORT_PERF_METRICS = { 'readIops': 'ro', 'writeIops': 'wo', 'readThroughput': 'rb', 'writeThroughput': 'wb', 'throughput': 'tb', 'responseTime': 'res_time', 'iops': 'to' } TARGET_RESOURCE_RELATION = { constants.ResourceType.DISK: 'mdsk', constants.ResourceType.VOLUME: 'vdsk', constants.ResourceType.PORT: 'port', constants.ResourceType.CONTROLLER: 'node' } RESOURCE_PERF_MAP = { constants.ResourceType.DISK: DISK_PERF_METRICS, constants.ResourceType.VOLUME: VOLUME_PERF_METRICS, constants.ResourceType.PORT: PORT_PERF_METRICS, constants.ResourceType.CONTROLLER: CONTROLLER_PERF_METRICS } SECONDS_TO_MS = 1000 ALERT_NOT_FOUND_CODE = 'CMMVC8275E' BLOCK_SIZE = 512 BYTES_TO_BIT = 8 def __init__(self, **kwargs): self.ssh_pool = SSHPool(**kwargs) @staticmethod def handle_split(split_str, split_char, arr_number): split_value = '' if split_str is not None and split_str != '': tmp_value = split_str.split(split_char, 1) if arr_number == 1 and len(tmp_value) > 1: split_value = tmp_value[arr_number].strip() elif arr_number == 0: split_value = tmp_value[arr_number].strip() return split_value @staticmethod def parse_alert(alert): try: alert_model = dict() alert_name = SSHHandler.handle_split(alert.get( SSHHandler.OID_ERR_ID), ':', 1) error_info = SSHHandler.handle_split(alert.get( SSHHandler.OID_ERR_ID), ':', 0) alert_id = SSHHandler.handle_split(error_info, '=', 1) severity = SSHHandler.TRAP_SEVERITY_MAP.get( alert.get(SSHHandler.OID_SEVERITY), constants.Severity.INFORMATIONAL ) alert_model['alert_id'] = str(alert_id) alert_model['alert_name'] = alert_name alert_model['severity'] = severity alert_model['category'] = constants.Category.FAULT alert_model['type'] = constants.EventType.EQUIPMENT_ALARM alert_model['sequence_number'] = SSHHandler. \ handle_split(alert.get(SSHHandler.OID_SEQ_NUMBER), '=', 1) timestamp = SSHHandler. \ handle_split(alert.get(SSHHandler.OID_LAST_TIME), '=', 1) time_type = '%a %b %d %H:%M:%S %Y' occur_time = int(time.mktime(time.strptime( timestamp, time_type))) alert_model['occur_time'] = int(occur_time * SSHHandler. SECONDS_TO_MS) alert_model['description'] = alert_name alert_model['resource_type'] = SSHHandler.handle_split( alert.get(SSHHandler.OID_OBJ_TYPE), '=', 1) alert_model['location'] = SSHHandler.handle_split(alert.get( SSHHandler.OID_OBJ_NAME), '=', 1) return alert_model except Exception as e: LOG.error(e) msg = ("Failed to build alert model as some attributes missing " "in alert message:%s.") % (six.text_type(e)) raise exception.InvalidResults(msg) def login(self): try: with self.ssh_pool.item() as ssh: result = SSHHandler.do_exec('lssystem', ssh) if 'is not a recognized command' in result: raise exception.InvalidIpOrPort() except Exception as e: LOG.error("Failed to login ibm storwize_svc %s" % (six.text_type(e))) raise e @staticmethod def do_exec(command_str, ssh): """Execute command""" try: utils.check_ssh_injection(command_str.split()) if command_str is not None and ssh is not None: stdin, stdout, stderr = ssh.exec_command(command_str) res, err = stdout.read(), stderr.read() re = res if res else err result = re.decode() except paramiko.AuthenticationException as ae: LOG.error('doexec Authentication error:{}'.format(ae)) raise exception.InvalidUsernameOrPassword() except Exception as e: err = six.text_type(e) LOG.error('doexec InvalidUsernameOrPassword error') if 'timed out' in err: raise exception.SSHConnectTimeout() elif 'No authentication methods available' in err \ or 'Authentication failed' in err: raise exception.InvalidUsernameOrPassword() elif 'not a valid RSA private key file' in err: raise exception.InvalidPrivateKey() else: raise exception.SSHException(err) return result def exec_ssh_command(self, command): try: with self.ssh_pool.item() as ssh: ssh_info = SSHHandler.do_exec(command, ssh) return ssh_info except Exception as e: msg = "Failed to ssh ibm storwize_svc %s: %s" % \ (command, six.text_type(e)) raise exception.SSHException(msg) def change_capacity_to_bytes(self, unit): unit = unit.upper() if unit == 'TB': result = units.Ti elif unit == 'GB': result = units.Gi elif unit == 'MB': result = units.Mi elif unit == 'KB': result = units.Ki else: result = 1 return int(result) def parse_string(self, value): capacity = 0 if value: if value.isdigit(): capacity = float(value) else: unit = value[-2:] capacity = float(value[:-2]) * int( self.change_capacity_to_bytes(unit)) return capacity def get_storage(self): try: system_info = self.exec_ssh_command('lssystem') storage_map = {} self.handle_detail(system_info, storage_map, split=' ') serial_number = storage_map.get('id') status = 'normal' if storage_map.get('statistics_status') == 'on' \ else 'offline' location = storage_map.get('location') free_capacity = self.parse_string(storage_map.get( 'total_free_space')) used_capacity = self.parse_string(storage_map.get( 'total_used_capacity')) raw_capacity = self.parse_string(storage_map.get( 'total_mdisk_capacity')) subscribed_capacity = self.parse_string(storage_map.get( 'virtual_capacity')) firmware_version = '' if storage_map.get('code_level') is not None: firmware_version = storage_map.get('code_level').split(' ')[0] s = { 'name': storage_map.get('name'), 'vendor': 'IBM', 'model': storage_map.get('product_name'), 'status': status, 'serial_number': serial_number, 'firmware_version': firmware_version, 'location': location, 'total_capacity': int(free_capacity + used_capacity), 'raw_capacity': int(raw_capacity), 'subscribed_capacity': int(subscribed_capacity), 'used_capacity': int(used_capacity), 'free_capacity': int(free_capacity) } return s except exception.DelfinException as e: err_msg = "Failed to get storage: %s" % (six.text_type(e.msg)) LOG.error(err_msg) raise e except Exception as err: err_msg = "Failed to get storage: %s" % (six.text_type(err)) LOG.error(err_msg) raise exception.InvalidResults(err_msg) def handle_detail(self, deltail_info, detail_map, split): detail_arr = deltail_info.split('\n') for detail in detail_arr: if detail is not None and detail != '': strinfo = detail.split(split, 1) key = strinfo[0] value = '' if len(strinfo) > 1: value = strinfo[1] detail_map[key] = value def list_storage_pools(self, storage_id): try: pool_list = [] pool_info = self.exec_ssh_command('lsmdiskgrp') pool_res = pool_info.split('\n') for i in range(1, len(pool_res)): if pool_res[i] is None or pool_res[i] == '': continue pool_str = ' '.join(pool_res[i].split()) strinfo = pool_str.split(' ') detail_command = 'lsmdiskgrp %s' % strinfo[0] deltail_info = self.exec_ssh_command(detail_command) pool_map = {} self.handle_detail(deltail_info, pool_map, split=' ') status = 'normal' if pool_map.get('status') == 'online' \ else 'offline' total_cap = self.parse_string(pool_map.get('capacity')) free_cap = self.parse_string(pool_map.get('free_capacity')) used_cap = self.parse_string(pool_map.get('used_capacity')) subscribed_capacity = self.parse_string(pool_map.get( 'virtual_capacity')) p = { 'name': pool_map.get('name'), 'storage_id': storage_id, 'native_storage_pool_id': pool_map.get('id'), 'description': '', 'status': status, 'storage_type': constants.StorageType.BLOCK, 'subscribed_capacity': int(subscribed_capacity), 'total_capacity': int(total_cap), 'used_capacity': int(used_cap), 'free_capacity': int(free_cap) } pool_list.append(p) return pool_list except exception.DelfinException as e: err_msg = "Failed to get storage pool: %s" % (six.text_type(e)) LOG.error(err_msg) raise e except Exception as err: err_msg = "Failed to get storage pool: %s" % (six.text_type(err)) LOG.error(err_msg) raise exception.InvalidResults(err_msg) def list_volumes(self, storage_id): try: volume_list = [] volume_info = self.exec_ssh_command('lsvdisk') volume_res = volume_info.split('\n') for i in range(1, len(volume_res)): if volume_res[i] is None or volume_res[i] == '': continue volume_str = ' '.join(volume_res[i].split()) strinfo = volume_str.split(' ') volume_id = strinfo[0] detail_command = 'lsvdisk -delim : %s' % volume_id deltail_info = self.exec_ssh_command(detail_command) volume_map = {} self.handle_detail(deltail_info, volume_map, split=':') status = 'normal' if volume_map.get('status') == 'online' \ else 'offline' volume_type = 'thin' if volume_map.get('se_copy') == 'yes' \ else 'thick' total_capacity = self.parse_string(volume_map.get('capacity')) free_capacity = self.parse_string(volume_map. get('free_capacity')) used_capacity = self.parse_string(volume_map. get('used_capacity')) compressed = True deduplicated = True if volume_map.get('compressed_copy') == 'no': compressed = False if volume_map.get('deduplicated_copy') == 'no': deduplicated = False v = { 'name': volume_map.get('name'), 'storage_id': storage_id, 'description': '', 'status': status, 'native_volume_id': str(volume_map.get('id')), 'native_storage_pool_id': volume_map.get('mdisk_grp_id'), 'wwn': str(volume_map.get('vdisk_UID')), 'type': volume_type, 'total_capacity': int(total_capacity), 'used_capacity': int(used_capacity), 'free_capacity': int(free_capacity), 'compressed': compressed, 'deduplicated': deduplicated } volume_list.append(v) return volume_list except exception.DelfinException as e: err_msg = "Failed to get storage volume: %s" % (six.text_type(e)) LOG.error(err_msg) raise e except Exception as err: err_msg = "Failed to get storage volume: %s" % (six.text_type(err)) LOG.error(err_msg) raise exception.InvalidResults(err_msg) def list_alerts(self, query_para): try: alert_list = [] alert_info = self.exec_ssh_command('lseventlog -monitoring yes ' '-message no') alert_res = alert_info.split('\n') for i in range(1, len(alert_res)): if alert_res[i] is None or alert_res[i] == '': continue alert_str = ' '.join(alert_res[i].split()) strinfo = alert_str.split(' ', 1) detail_command = 'lseventlog %s' % strinfo[0] deltail_info = self.exec_ssh_command(detail_command) alert_map = {} self.handle_detail(deltail_info, alert_map, split=' ') occur_time = int(alert_map.get('last_timestamp_epoch')) * \ self.SECONDS_TO_MS if not alert_util.is_alert_in_time_range(query_para, occur_time): continue alert_name = alert_map.get('event_id_text', '') event_id = alert_map.get('event_id') location = alert_map.get('object_name', '') resource_type = alert_map.get('object_type', '') severity = self.SEVERITY_MAP.get(alert_map. get('notification_type')) if severity == 'Informational' or severity is None: continue alert_model = { 'alert_id': event_id, 'alert_name': alert_name, 'severity': severity, 'category': constants.Category.FAULT, 'type': 'EquipmentAlarm', 'sequence_number': alert_map.get('sequence_number'), 'occur_time': occur_time, 'description': alert_name, 'resource_type': resource_type, 'location': location } alert_list.append(alert_model) return alert_list except exception.DelfinException as e: err_msg = "Failed to get storage alert: %s" % (six.text_type(e)) LOG.error(err_msg) raise e except Exception as err: err_msg = "Failed to get storage alert: %s" % (six.text_type(err)) LOG.error(err_msg) raise exception.InvalidResults(err_msg) def fix_alert(self, alert): command_line = 'cheventlog -fix %s' % alert result = self.exec_ssh_command(command_line) if result: if self.ALERT_NOT_FOUND_CODE not in result: raise exception.InvalidResults(six.text_type(result)) LOG.warning("Alert %s doesn't exist.", alert) def list_controllers(self, storage_id): try: controller_list = [] controller_cmd = 'lsnode' control_info = self.exec_ssh_command(controller_cmd) if 'command not found' in control_info: controller_cmd = 'lsnodecanister' control_info = self.exec_ssh_command(controller_cmd) control_res = control_info.split('\n') for i in range(1, len(control_res)): if control_res[i] is None or control_res[i] == '': continue control_str = ' '.join(control_res[i].split()) str_info = control_str.split(' ') control_id = str_info[0] detail_command = '%s %s' % (controller_cmd, control_id) deltail_info = self.exec_ssh_command(detail_command) control_map = {} self.handle_detail(deltail_info, control_map, split=' ') status = SSHHandler.CONTRL_STATUS_MAP.get( control_map.get('status'), constants.ControllerStatus.UNKNOWN) controller_result = { 'name': control_map.get('name'), 'storage_id': storage_id, 'native_controller_id': control_map.get('id'), 'status': status, 'soft_version': control_map.get('code_level', '').split(' ')[0], 'location': control_map.get('name') } controller_list.append(controller_result) return controller_list except Exception as err: err_msg = "Failed to get controller attributes from Storwize: %s"\ % (six.text_type(err)) LOG.error(err_msg) raise exception.InvalidResults(err_msg) def list_disks(self, storage_id): try: disk_list = [] disk_info = self.exec_ssh_command('lsmdisk') disk_res = disk_info.split('\n') for i in range(1, len(disk_res)): if disk_res[i] is None or disk_res[i] == '': continue control_str = ' '.join(disk_res[i].split()) str_info = control_str.split(' ') disk_id = str_info[0] detail_command = 'lsmdisk %s' % disk_id deltail_info = self.exec_ssh_command(detail_command) disk_map = {} self.handle_detail(deltail_info, disk_map, split=' ') status = constants.DiskStatus.NORMAL if disk_map.get('status') == 'offline': status = constants.DiskStatus.OFFLINE physical_type = SSHHandler.DISK_PHYSICAL_TYPE.get( disk_map.get('fabric_type'), constants.DiskPhysicalType.UNKNOWN) location = '%s_%s' % (disk_map.get('controller_name'), disk_map.get('name')) disk_result = { 'name': disk_map.get('name'), 'storage_id': storage_id, 'native_disk_id': disk_map.get('id'), 'capacity': int(self.parse_string( disk_map.get('capacity'))), 'status': status, 'physical_type': physical_type, 'native_disk_group_id': disk_map.get('mdisk_grp_name'), 'location': location } disk_list.append(disk_result) return disk_list except Exception as err: err_msg = "Failed to get disk attributes from Storwize: %s" % \ (six.text_type(err)) raise exception.InvalidResults(err_msg) def get_fc_port(self, storage_id): port_list = [] fc_info = self.exec_ssh_command('lsportfc') fc_res = fc_info.split('\n') for i in range(1, len(fc_res)): if fc_res[i] is None or fc_res[i] == '': continue control_str = ' '.join(fc_res[i].split()) str_info = control_str.split(' ') port_id = str_info[0] detail_command = 'lsportfc %s' % port_id deltail_info = self.exec_ssh_command(detail_command) port_map = {} self.handle_detail(deltail_info, port_map, split=' ') status = constants.PortHealthStatus.NORMAL conn_status = constants.PortConnectionStatus.CONNECTED if port_map.get('status') != 'active': status = constants.PortHealthStatus.ABNORMAL conn_status = constants.PortConnectionStatus.DISCONNECTED port_type = constants.PortType.FC if port_map.get('type') == 'ethernet': port_type = constants.PortType.ETH location = '%s_%s' % (port_map.get('node_name'), port_map.get('id')) speed = None if port_map.get('port_speed')[:-2].isdigit(): speed = int(self.handle_port_bps( port_map.get('port_speed'), 'fc')) port_result = { 'name': location, 'storage_id': storage_id, 'native_port_id': port_map.get('id'), 'location': location, 'connection_status': conn_status, 'health_status': status, 'type': port_type, 'speed': speed, 'native_parent_id': port_map.get('node_name'), 'wwn': port_map.get('WWPN') } port_list.append(port_result) return port_list def get_iscsi_port(self, storage_id): port_list = [] for i in range(1, 3): port_array = [] port_command = 'lsportip %s' % i port_info = self.exec_ssh_command(port_command) port_arr = port_info.split('\n') port_map = {} for detail in port_arr: if detail is not None and detail != '': strinfo = detail.split(' ', 1) key = strinfo[0] value = '' if len(strinfo) > 1: value = strinfo[1] port_map[key] = value else: if len(port_map) > 1: port_array.append(port_map) port_map = {} continue for port in port_array: if port.get('failover') == 'yes': continue status = constants.PortHealthStatus.ABNORMAL if port.get('state') == 'online': status = constants.PortHealthStatus.NORMAL conn_status = constants.PortConnectionStatus.DISCONNECTED if port.get('link_state') == 'active': conn_status = constants.PortConnectionStatus.CONNECTED port_type = constants.PortType.ETH location = '%s_%s' % (port.get('node_name'), port.get('id')) port_result = { 'name': location, 'storage_id': storage_id, 'native_port_id': location, 'location': location, 'connection_status': conn_status, 'health_status': status, 'type': port_type, 'speed': int(self.handle_port_bps( port.get('speed'), 'eth')), 'native_parent_id': port.get('node_name'), 'mac_address': port.get('MAC'), 'ipv4': port.get('IP_address'), 'ipv4_mask': port.get('mask'), 'ipv6': port.get('IP_address_6') } port_list.append(port_result) return port_list @staticmethod def change_speed_to_bytes(unit): unit = unit.upper() if unit == 'TB': result = units.T elif unit == 'GB': result = units.G elif unit == 'MB': result = units.M elif unit == 'KB': result = units.k else: result = 1 return int(result) def handle_port_bps(self, value, port_type): speed = 0 if value: if value.isdigit(): speed = float(value) else: if port_type == 'fc': unit = value[-2:] speed = float(value[:-2]) * int( self.change_speed_to_bytes(unit)) else: unit = value[-4:-2] speed = float(value[:-4]) * int( self.change_speed_to_bytes(unit)) return speed def list_ports(self, storage_id): try: port_list = [] port_list.extend(self.get_fc_port(storage_id)) port_list.extend(self.get_iscsi_port(storage_id)) return port_list except Exception as err: err_msg = "Failed to get ports attributes from Storwize: %s" % \ (six.text_type(err)) raise exception.InvalidResults(err_msg) @staticmethod def handle_stats_filename(file_name, file_map): name_arr = file_name.split('_') file_type = '%s_%s_%s' % (name_arr[0], name_arr[1], name_arr[2]) file_time = '20%s%s' % (name_arr[3], name_arr[4]) time_pattern = '%Y%m%d%H%M%S' tools = Tools() occur_time = tools.time_str_to_timestamp(file_time, time_pattern) if file_map.get(file_type): file_map[file_type][occur_time] = file_name else: file_map[file_type] = {occur_time: file_name} def get_stats_filelist(self, file_map): stats_file_command = 'lsdumps -prefix /dumps/iostats' file_list = self.exec_ssh_command(stats_file_command) file_line = file_list.split('\n') for file in islice(file_line, 1, None): if file: file_arr = ' '.join(file.split()).split(' ') if len(file_arr) > 1: file_name = file_arr[1] SSHHandler.handle_stats_filename(file_name, file_map) for file_stats in file_map: file_map[file_stats] = sorted(file_map.get(file_stats).items(), key=lambda x: x[0], reverse=False) def packege_data(self, storage_id, resource_type, metrics, metric_map): resource_id = None resource_name = None unit = None for resource_info in metric_map: if resource_type == constants.ResourceType.PORT: port_info = self.get_fc_port(storage_id) if port_info: for fc_port in port_info: if resource_info.strip('0x').upper() == fc_port.get( 'wwn').upper(): resource_id = fc_port.get('native_port_id') resource_name = fc_port.get('name') break else: resource_arr = resource_info.split('_') resource_id = resource_arr[0] resource_name = resource_arr[1] for target in metric_map.get(resource_info): if resource_type == constants.ResourceType.PORT: unit = consts.PORT_CAP[target]['unit'] elif resource_type == constants.ResourceType.VOLUME: unit = consts.VOLUME_CAP[target]['unit'] elif resource_type == constants.ResourceType.DISK: unit = consts.DISK_CAP[target]['unit'] elif resource_type == constants.ResourceType.CONTROLLER: unit = consts.CONTROLLER_CAP[target]['unit'] if 'responseTime' == target: for res_time in metric_map.get(resource_info).get(target): for iops_time in metric_map.get(resource_info).get( 'iops'): if res_time == iops_time: res_value = metric_map.get(resource_info).get( target).get(res_time) iops_value = metric_map.get( resource_info).get('iops').get(iops_time) res_value = \ res_value / iops_value if iops_value else 0 res_value = round(res_value, 3) metric_map[resource_info][target][res_time] = \ res_value break labels = { 'storage_id': storage_id, 'resource_type': resource_type, 'resource_id': resource_id, 'resource_name': resource_name, 'type': 'RAW', 'unit': unit } metric_value = constants.metric_struct(name=target, labels=labels, values=metric_map.get( resource_info).get( target)) metrics.append(metric_value) @staticmethod def count_metric_data(last_data, now_data, interval, target, metric_type, metric_map, res_id): if not target: return if 'CACHEHITRATIO' not in metric_type.upper(): value = SSHHandler.count_difference(now_data.get(target), last_data.get(target)) else: value = now_data.get( SSHHandler.VOLUME_PERF_METRICS.get(metric_type)) if 'THROUGHPUT' in metric_type.upper(): value = value / interval / units.Mi elif 'IOSIZE' in metric_type.upper(): value = value / units.Ki elif 'IOPS' in metric_type.upper() or 'RESPONSETIME' \ in metric_type.upper(): value = value / interval value = round(value, 3) if metric_map.get(res_id): if metric_map.get(res_id).get(metric_type): if metric_map.get(res_id).get(metric_type).get( now_data.get('time')): metric_map[res_id][metric_type][now_data.get('time')] \ += value else: metric_map[res_id][metric_type][now_data.get('time')] \ = value else: metric_map[res_id][metric_type] = {now_data.get('time'): value} else: metric_map[res_id] = {metric_type: {now_data.get('time'): value}} @staticmethod def count_difference(now_value, last_value): value = 0 if now_value >= last_value: value = now_value - last_value else: value = now_value return value @staticmethod def handle_volume_cach_hit(now_data, last_data): rh = SSHHandler.count_difference(now_data.get('rh'), last_data.get('rh')) wh = SSHHandler.count_difference(now_data.get('wh'), last_data.get('wh')) rht = SSHHandler.count_difference(now_data.get('rht'), last_data.get('rht')) wht = SSHHandler.count_difference(now_data.get('wht'), last_data.get('wht')) rhr = rh * 100 / rht if rht > 0 else 0 whr = wh * 100 / wht if wht > 0 else 0 hrt = rhr + whr now_data['rhr'] = rhr now_data['whr'] = whr now_data['hrt'] = hrt def get_date_from_each_file(self, file, metric_map, target_list, resource_type, last_data): with self.ssh_pool.item() as ssh: local_path = '%s/%s' % ( os.path.abspath(os.path.join(os.getcwd())), consts.LOCAL_FILE_PATH) file_xml = Tools.get_remote_file_to_xml( ssh, file[1], local_path, consts.REMOTE_FILE_PATH) if not file_xml: return for data in file_xml: if re.sub(u"\\{.*?}", "", data.tag) == \ SSHHandler.TARGET_RESOURCE_RELATION.get( resource_type): if resource_type == constants.ResourceType.PORT: if data.attrib.get('fc_wwpn'): resource_info = data.attrib.get('fc_wwpn') else: continue elif resource_type == constants. \ ResourceType.CONTROLLER: resource_info = '%s_%s' % ( int(data.attrib.get('node_id'), 16), data.attrib.get('id')) else: resource_info = '%s_%s' % (data.attrib.get('idx'), data.attrib.get('id')) now_data = SSHHandler.package_xml_data(data.attrib, file[0], resource_type) if last_data.get(resource_info): interval = (int(file[0]) - last_data.get( resource_info).get('time')) / units.k if interval <= 0: break if resource_type == constants.ResourceType.VOLUME: SSHHandler.handle_volume_cach_hit( now_data, last_data.get(resource_info)) for target in target_list: device_target = SSHHandler. \ RESOURCE_PERF_MAP.get(resource_type) SSHHandler.count_metric_data( last_data.get(resource_info), now_data, interval, device_target.get(target), target, metric_map, resource_info) last_data[resource_info] = now_data else: last_data[resource_info] = now_data def get_stats_from_file(self, file_list, metric_map, target_list, resource_type, start_time, end_time): if not file_list: return find_first_file = False recent_file = None last_data = {} for file in file_list: if file[0] >= start_time and file[0] <= end_time: if find_first_file is False: if recent_file: self.get_date_from_each_file(recent_file, metric_map, target_list, resource_type, last_data) self.get_date_from_each_file(file, metric_map, target_list, resource_type, last_data) find_first_file = True else: self.get_date_from_each_file(file, metric_map, target_list, resource_type, last_data) recent_file = file @staticmethod def package_xml_data(file_data, file_time, resource_type): rb = 0 wb = 0 res_time = 0 rh = 0 wh = 0 rht = 0 wht = 0 if resource_type == constants.ResourceType.PORT: rb = int(file_data.get('cbr')) + int(file_data.get('hbr')) + int( file_data.get('lnbr')) + int( file_data.get('rmbr')) * SSHHandler.BYTES_TO_BIT wb = int(file_data.get('cbt')) + int(file_data.get('hbt')) + int( file_data.get('lnbt')) + int( file_data.get('rmbt')) * SSHHandler.BYTES_TO_BIT ro = int(file_data.get('cer')) + int(file_data.get('her')) + int( file_data.get('lner')) + int(file_data.get('rmer')) wo = int(file_data.get('cet')) + int(file_data.get('het')) + int( file_data.get('lnet')) + int(file_data.get('rmet')) res_time = int(file_data.get('dtdt', 0)) / units.Ki else: if resource_type == constants.ResourceType.VOLUME: rb = int(file_data.get('rb')) * SSHHandler.BLOCK_SIZE wb = int(file_data.get('wb')) * SSHHandler.BLOCK_SIZE rh = int(file_data.get('ctrhs')) wh = int(file_data.get('ctwhs')) rht = int(file_data.get('ctrs')) wht = int(file_data.get('ctws')) res_time = int(file_data.get('xl')) elif resource_type == constants.ResourceType.DISK: rb = int(file_data.get('rb')) * SSHHandler.BLOCK_SIZE wb = int(file_data.get('wb')) * SSHHandler.BLOCK_SIZE res_time = int(file_data.get('rq')) + int(file_data.get('wq')) elif resource_type == constants.ResourceType.CONTROLLER: rb = int(file_data.get('rb')) * SSHHandler.BYTES_TO_BIT wb = int(file_data.get('wb')) * SSHHandler.BYTES_TO_BIT res_time = int(file_data.get('rq')) + int(file_data.get('wq')) ro = int(file_data.get('ro')) wo = int(file_data.get('wo')) now_data = { 'rb': rb, 'wb': wb, 'ro': ro, 'wo': wo, 'tb': rb + wb, 'to': ro + wo, 'rh': rh, 'wh': wh, 'rht': rht, 'wht': wht, 'res_time': res_time, 'time': int(file_time) } return now_data def get_stats_file_data(self, file_map, res_type, metrics, storage_id, target_list, start_time, end_time): metric_map = {} for file_tye in file_map: file_list = file_map.get(file_tye) if 'Nv' in file_tye and res_type == constants.ResourceType.VOLUME: self.get_stats_from_file(file_list, metric_map, target_list, constants.ResourceType.VOLUME, start_time, end_time) elif 'Nm' in file_tye and res_type == constants.ResourceType.DISK: self.get_stats_from_file(file_list, metric_map, target_list, constants.ResourceType.DISK, start_time, end_time) elif 'Nn' in file_tye and res_type == constants.ResourceType.PORT: self.get_stats_from_file(file_list, metric_map, target_list, constants.ResourceType.PORT, start_time, end_time) elif 'Nn' in file_tye and res_type == \ constants.ResourceType.CONTROLLER: self.get_stats_from_file(file_list, metric_map, target_list, constants.ResourceType.CONTROLLER, start_time, end_time) self.packege_data(storage_id, res_type, metrics, metric_map) def collect_perf_metrics(self, storage_id, resource_metrics, start_time, end_time): metrics = [] file_map = {} try: self.get_stats_filelist(file_map) if resource_metrics.get(constants.ResourceType.VOLUME): self.get_stats_file_data( file_map, constants.ResourceType.VOLUME, metrics, storage_id, resource_metrics.get(constants.ResourceType.VOLUME), start_time, end_time) if resource_metrics.get(constants.ResourceType.DISK): self.get_stats_file_data( file_map, constants.ResourceType.DISK, metrics, storage_id, resource_metrics.get(constants.ResourceType.DISK), start_time, end_time) if resource_metrics.get(constants.ResourceType.PORT): self.get_stats_file_data( file_map, constants.ResourceType.PORT, metrics, storage_id, resource_metrics.get(constants.ResourceType.PORT), start_time, end_time) if resource_metrics.get(constants.ResourceType.CONTROLLER): self.get_stats_file_data( file_map, constants.ResourceType.CONTROLLER, metrics, storage_id, resource_metrics.get(constants.ResourceType.CONTROLLER), start_time, end_time) except Exception as err: err_msg = "Failed to collect metrics from svc: %s" % \ (six.text_type(err)) LOG.error(err_msg) raise exception.InvalidResults(err_msg) return metrics def get_latest_perf_timestamp(self): latest_time = 0 stats_file_command = 'lsdumps -prefix /dumps/iostats' file_list = self.exec_ssh_command(stats_file_command) file_line = file_list.split('\n') for file in islice(file_line, 1, None): if file: file_arr = ' '.join(file.split()).split(' ') if len(file_arr) > 1: file_name = file_arr[1] name_arr = file_name.split('_') file_time = '20%s%s' % (name_arr[3], name_arr[4]) time_pattern = '%Y%m%d%H%M%S' tools = Tools() occur_time = tools.time_str_to_timestamp( file_time, time_pattern) if latest_time < occur_time: latest_time = occur_time return latest_time
StarcoderdataPython
3340234
<filename>SUAVE/SUAVE-2.5.0/regression/scripts/cnbeta/cnbeta.py # test_cnbeta.py # Created: Apr 2014 <NAME> # Modified: Feb 2017, <NAME> # Reference: Aircraft Dynamics: from Modeling to Simulation, by <NAME> import SUAVE import numpy as np from SUAVE.Core import Units from SUAVE.Methods.Flight_Dynamics.Static_Stability.Approximations.Tube_Wing.taw_cnbeta import taw_cnbeta from SUAVE.Core import ( Data, Container, ) import sys sys.path.append('../Vehicles') def main(): #only do calculation for 747 from Boeing_747 import vehicle_setup, configs_setup vehicle = vehicle_setup() configs = configs_setup(vehicle) Mach = np.array([0.198]) segment = SUAVE.Analyses.Mission.Segments.Segment() segment.freestream = Data() segment.freestream.mach_number = Mach segment.atmosphere = SUAVE.Analyses.Atmospheric.US_Standard_1976() altitude = 0.0 * Units.feet conditions = segment.atmosphere.compute_values(altitude / Units.km) segment.a = conditions.speed_of_sound segment.freestream.density = conditions.density segment.freestream.dynamic_viscosity = conditions.dynamic_viscosity segment.freestream.velocity = segment.freestream.mach_number * segment.a #Method Test cn_b = taw_cnbeta(vehicle,segment,configs.base) expected = 0.09596976 # Should be 0.184 error = Data() error.cn_b_747 = (cn_b-expected)/expected print(error) for k,v in list(error.items()): assert(np.abs(v)<1e-6) return # ---------------------------------------------------------------------- # Call Main # ---------------------------------------------------------------------- if __name__ == '__main__': main()
StarcoderdataPython
6512322
<reponame>dliess/capnzero<filename>scripts/capnp_file.py import global_types import subprocess from common import * def create_capnp_file_content_str(data, file_we): the_id = subprocess.check_output(['capnp', 'id']).decode('utf-8').rstrip() outStr = """\ {}; using Cxx = import "/capnp/c++.capnp"; $Cxx.namespace("capnzero::{}"); """.format(the_id, file_we) if "capnp-inline" in data: outStr += data["capnp-inline"] # Create capnp enum for ServiceId service_enum_str = "enum ServiceId {\n" for idx, service_name in enumerate(data["services"]): service_enum_str += "\t" + create_rpc_service_id_capnp_enum(service_name) + " @" + str(idx) + ";\n" service_enum_str += "}\n" outStr += service_enum_str #create user defined enumerations schema_enum_str = "" for enum_name in global_types.enumerations: schema_enum_str += "enum {} {{\n".format(enum_name) for enum_element_name, enum_element_number in global_types.enumerations[enum_name].items(): schema_enum_str += "\t{} @{};\n".format(lowerfirst(enum_element_name), enum_element_number) schema_enum_str +="}\n" outStr += schema_enum_str # Create capnp enum for rpc Ids # convention for enum name: <service_name> + "RpcIds rpc_enum_strings = [] for service_name in data["services"]: if "rpc" in data["services"][service_name]: rpc_enum_string = "enum " + create_rpc_id_enum(service_name) + "{\n" for idx, rpc_name in enumerate(data["services"][service_name]["rpc"]): rpc_enum_string += "\t" + rpc_name + " @" + str(idx) + ";\n" rpc_enum_string += "}\n" rpc_enum_strings.append(rpc_enum_string) for rpc_enum in rpc_enum_strings: outStr += rpc_enum outStr += "struct RpcCoord {\n" outStr += "\tserviceId @0 :UInt16;\n" outStr += "\trpcId @1 :UInt16;\n" outStr += "}\n" # Create capnp type for parameter and return types for service_name in data["services"]: if "rpc" in data["services"][service_name]: for rpc_name in data["services"][service_name]["rpc"]: rpc_info = data["services"][service_name]["rpc"][rpc_name] if "parameter" in rpc_info and isinstance(rpc_info["parameter"], dict): parameter_struct_str = "struct {}{{\n".format(create_capnp_rpc_parameter_type_str(service_name, rpc_name)) params = rpc_info["parameter"] for idx, key in enumerate(params.keys()): parameter_struct_str += "\t" + key + " @" + str(idx) + " :" + map_descr_type_to_capnp_type(params[key]) + ";\n" parameter_struct_str += "}\n" outStr += parameter_struct_str return_type = rpc_return_type(rpc_info) if return_type == RPCType.Void: pass elif return_type == RPCType.Dict: return_struct_str = "struct " + create_capnp_rpc_return_type_str(service_name, rpc_name) + " {\n" members = rpc_info["returns"] for idx, key in enumerate(members.keys()): return_struct_str += "\t" + key + " @" + str(idx) + " :" + map_descr_type_to_capnp_type(members[key]) + ";\n" return_struct_str += "}\n" outStr += return_struct_str elif return_type == RPCType.CapnpNative: pass elif return_type == RPCType.DirectType: return_struct_str = "struct " + create_capnp_rpc_return_type_str(service_name, rpc_name) + " {\n" return_struct_str += "\tretParam @0 :" + map_descr_type_to_capnp_type(rpc_info["returns"]) + ";\n" return_struct_str += "}\n" outStr += return_struct_str if "signal" in data["services"][service_name]: for signal_name in data["services"][service_name]["signal"]: signal_info = data["services"][service_name]["signal"][signal_name] if "parameter" in signal_info and isinstance(signal_info["parameter"], dict): params = signal_info["parameter"] parameter_struct_str = "struct {}{{\n".format(create_capnp_signal_param_type_str(service_name, signal_name)) for idx, key in enumerate(params.keys()): parameter_struct_str += "\t" + key + " @" + str(idx) + " :" + map_descr_type_to_capnp_type(params[key]) + ";\n" parameter_struct_str += "}\n" outStr += parameter_struct_str return outStr
StarcoderdataPython
1623022
<reponame>nukui-s/mlens """ML-ENSEMBLE :author: <NAME> :copyright: 2017-2018 :licence: MIT Blend Ensemble class. Fully integrable with Scikit-learn. """ from __future__ import division from .base import BaseEnsemble from ..index import BlendIndex, FullIndex class BlendEnsemble(BaseEnsemble): r"""Blend Ensemble class. The Blend Ensemble is a supervised ensemble closely related to the :class:`SuperLearner`. It differs in that to estimate the prediction matrix Z used by the meta learner, it uses a subset of the data to predict its complement, and the meta learner is fitted on those predictions. By only fitting every base learner once on a subset of the full training data, :class:`BlendEnsemble` is a fast ensemble that can handle very large datasets simply by only using portion of it at each stage. The cost of this approach is that information is thrown out at each stage, as one layer will not see the training data used by the previous layer. With large data that can be expected to satisfy an i.i.d. assumption, the :class:`BlendEnsemble` can achieve similar performance to more sophisticated ensembles at a fraction of the training time. However, with data data is not uniformly distributed or exhibits high variance the :class:`BlendEnsemble` can be a poor choice as information is lost at each stage of fitting. See Also -------- :class:`SuperLearner`, :class:`Subsemble` .. note :: All parameters can be overriden in the :attr:`add` method unless otherwise specified. Notably, the ``backend`` and ``n_jobs`` cannot be altered in the :attr:`add` method. Parameters ---------- test_size : int, float (default = 0.5) the size of the test set for each layer. This parameter can be overridden in the :attr:`add` method if different test sizes is desired for each layer. If a ``float`` is specified, it is presumed to be the fraction of the available data to be used for training, and so ``0. < test_size < 1.``. shuffle : bool (default = False) whether to shuffle data before before processing each layer. This parameter can be overridden in the :attr:`add` method if different test sizes is desired for each layer. random_state : int (default = None) random seed for shuffling inputs. Note that the seed here is used to generate a unique seed for each layer. Can be overridden in the :attr:`add` method. scorer : object (default = None) scoring function. If a function is provided, base estimators will be scored on the prediction made. The scorer should be a function that accepts an array of true values and an array of predictions: ``score = f(y_true, y_pred)``. Can be overridden in the :attr:`add` method. raise_on_exception : bool (default = True) whether to issue warnings on soft exceptions or raise error. Examples include lack of layers, bad inputs, and failed fit of an estimator in a layer. If set to ``False``, warnings are issued instead but estimation continues unless exception is fatal. Note that this can result in unexpected behavior unless the exception is anticipated. array_check : int (default = 2) level of strictness in checking input arrays. - ``array_check = 0`` will not check ``X`` or ``y`` - ``array_check = 1`` will check ``X`` and ``y`` for inconsistencies and warn when format looks suspicious, but retain original format. - ``array_check = 2`` will impose Scikit-learn array checks, which converts ``X`` and ``y`` to numpy arrays and raises an error if conversion fails. verbose : int or bool (default = False) level of verbosity. * ``verbose = 0`` silent (same as ``verbose = False``) * ``verbose = 1`` messages at start and finish (same as ``verbose = True``) * ``verbose = 2`` messages for each layer If ``verbose >= 50`` prints to ``sys.stdout``, else ``sys.stderr``. For verbosity in the layers themselves, use ``fit_params``. n_jobs : int (default = -1) Degree of parallel processing. Set to -1 for maximum parallelism and 1 for sequential processing. Cannot be overriden in the :attr:`add` method. backend : str or object (default = 'threading') backend infrastructure to use during call to :class:`mlens.externals.joblib.Parallel`. See Joblib for further documentation. To set global backend, set ``mlens.config._BACKEND``. Cannot be overriden in the :attr:`add` method. model_selection: bool (default=False) Whether to use the ensemble in model selection mode. If ``True``, this will alter the ``transform`` method. When calling ``transform`` on new data, the ensemble will call ``predict``, while calling ``transform`` with the training data reproduces predictions from the ``fit`` call. Hence the ensemble can be used as a pure transformer in a preprocessing pipeline passed to the :class:`Evaluator`, as training folds are faithfully reproduced as during a ``fit``call and test folds are transformed with the ``predict`` method. sample_size: int (default=20) size of training set sample (``[min(sample_size, X.size[0]), min(X.size[1], sample_size)]``) Examples -------- Instantiate ensembles with no preprocessing: use list of estimators >>> from mlens.ensemble import BlendEnsemble >>> from mlens.metrics.metrics import rmse >>> from sklearn.datasets import load_boston >>> from sklearn.linear_model import Lasso >>> from sklearn.svm import SVR >>> >>> X, y = load_boston(True) >>> >>> ensemble = BlendEnsemble() >>> ensemble.add([SVR(), ('can name some or all est', Lasso())]) >>> ensemble.add_meta(SVR()) >>> >>> ensemble.fit(X, y) >>> preds = ensemble.predict(X) >>> rmse(y, preds) 7.3337... Instantiate ensembles with different preprocessing pipelines through dicts. >>> from mlens.ensemble import BlendEnsemble >>> from mlens.metrics.metrics import rmse >>> from sklearn.datasets import load_boston >>> from sklearn. preprocessing import MinMaxScaler, StandardScaler >>> from sklearn.linear_model import Lasso >>> from sklearn.svm import SVR >>> >>> X, y = load_boston(True) >>> >>> preprocessing_cases = {'mm': [MinMaxScaler()], ... 'sc': [StandardScaler()]} >>> >>> estimators_per_case = {'mm': [SVR()], ... 'sc': [('can name some or all ests', Lasso())]} >>> >>> ensemble = BlendEnsemble() >>> ensemble.add(estimators_per_case, preprocessing_cases).add(SVR(), ... meta=True) >>> >>> ensemble.fit(X, y) >>> preds = ensemble.predict(X) >>> rmse(y, preds) 8.249013 """ def __init__( self, test_size=0.5, shuffle=False, random_state=None, scorer=None, raise_on_exception=True, array_check=2, verbose=False, n_jobs=-1, backend=None, model_selection=False, sample_size=20, layers=None): super(BlendEnsemble, self).__init__( shuffle=shuffle, random_state=random_state, scorer=scorer, raise_on_exception=raise_on_exception, array_check=array_check, verbose=verbose, n_jobs=n_jobs, model_selection=model_selection, sample_size=sample_size, layers=layers, backend=backend) self.__initialized__ = 0 # Unlock parameter setting self.test_size = test_size self.__initialized__ = 1 # Protect against param resets def add_meta(self, estimator, **kwargs): """Meta Learner. Compatibility method for adding a meta learner to be used for final predictions. Parameters ---------- estimator : instance estimator instance. **kwargs : optional optional keyword arguments. """ return self.add(estimators=estimator, meta=True, **kwargs) def add(self, estimators, preprocessing=None, proba=False, meta=False, propagate_features=None, **kwargs): """Add layer to ensemble. Parameters ---------- preprocessing: dict of lists or list, optional (default = None) preprocessing pipelines for given layer. If the same preprocessing applies to all estimators, ``preprocessing`` should be a list of transformer instances. The list can contain the instances directly, named tuples of transformers, or a combination of both. :: option_1 = [transformer_1, transformer_2] option_2 = [("trans-1", transformer_1), ("trans-2", transformer_2)] option_3 = [transformer_1, ("trans-2", transformer_2)] If different preprocessing pipelines are desired, a dictionary that maps preprocessing pipelines must be passed. The names of the preprocessing dictionary must correspond to the names of the estimator dictionary. :: preprocessing_cases = {"case-1": [trans_1, trans_2], "case-2": [alt_trans_1, alt_trans_2]} estimators = {"case-1": [est_a, est_b], "case-2": [est_c, est_d]} The lists for each dictionary entry can be any of ``option_1``, ``option_2`` and ``option_3``. estimators: dict of lists or list or instance estimators constituting the layer. If preprocessing is none and the layer is meant to be the meta estimator, it is permissible to pass a single instantiated estimator. If ``preprocessing`` is ``None`` or ``list``, ``estimators`` should be a ``list``. The list can either contain estimator instances, named tuples of estimator instances, or a combination of both. :: option_1 = [estimator_1, estimator_2] option_2 = [("est-1", estimator_1), ("est-2", estimator_2)] option_3 = [estimator_1, ("est-2", estimator_2)] If different preprocessing pipelines are desired, a dictionary that maps estimators to preprocessing pipelines must be passed. The names of the estimator dictionary must correspond to the names of the estimator dictionary. :: preprocessing_cases = {"case-1": [trans_1, trans_2], "case-2": [alt_trans_1, alt_trans_2]} estimators = {"case-1": [est_a, est_b], "case-2": [est_c, est_d]} The lists for each dictionary entry can be any of ``option_1``, ``option_2`` and ``option_3``. proba : bool (default = False) Whether to call ``predict_proba`` on base learners. propagate_features : list, optional List of column indexes to propagate from the input of the layer to the output of the layer. Propagated features are concatenated and stored in the leftmost columns of the output matrix. The ``propagate_features`` list should define a slice of the numpy array containing the input data, e.g. ``[0, 1]`` to propagate the first two columns of the input matrix to the output matrix. meta : bool (default = False) Whether the layer should be treated as the final meta estimator. **kwargs : optional optional keyword arguments to instantiate layer with. Returns ------- self : instance ensemble instance with layer instantiated. """ if meta: idx = FullIndex() else: c = kwargs.pop('test_size', self.test_size) idx = BlendIndex(c, raise_on_exception=self.raise_on_exception) return super(BlendEnsemble, self).add( estimators=estimators, preprocessing=preprocessing, indexer=idx, proba=proba, propagate_features=propagate_features, **kwargs)
StarcoderdataPython
3273655
from typing import Any, List from fastapi import APIRouter, Depends, HTTPException from sqlalchemy.orm import Session from app import crud, schemas from app.api import depends router = APIRouter() @router.get("/", response_model=List[schemas.CourseTimeslotInDB]) def get_list_of_timeslots( db: Session = Depends(depends.get_db), skip: int = 0, limit: int = 100 ) -> List[Any]: """ Get all information of all c_timeslots""" timeslots = crud.course_timeslot.get_multi(db) return timeslots @router.get("/{timeslot_id}", response_model=schemas.CourseTimeslotInDB) def read_timeslot_information( *, db: Session = Depends(depends.get_db), timeslot_id: int, ) -> Any: """ read timeslot info """ timeslot = crud.course_timeslot.get(db, id=timeslot_id) if not timeslot: raise HTTPException( status_code=404, detail="The timeslot with this id does not exist in the system", ) return timeslot
StarcoderdataPython
18091
# -*- coding: utf-8 -*- """ This module defines a connexion app object and configures the API endpoints based the swagger.yml configuration file. copyright: © 2019 by <NAME>. license: MIT, see LICENSE for more details. """ import connexion app = connexion.App(__name__, specification_dir="./") app.app.url_map.strict_slashes = False app.add_api("swagger.yml") if __name__ == "__main__": # FLASK_ENV=development & FLASK_DEBUG=1 w/ Docker don't seem to enable debug mode. app.run(debug=True)
StarcoderdataPython
3450163
<filename>jobbing/models_remote/org.py # coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from jobbing.models.base_model_ import Model from jobbing import util class Org(Model): def __init__(self, org_id:int = None, org_name:str = None, org_media_id:int = None): # noqa: E501 self.swagger_types = { 'org_id': int, 'org_name': str, 'org_media_id': int } self.attribute_map = { 'org_id': 'org_id', 'org_name': 'org_name', 'org_media_id': 'org_media_id' } self._org_id = org_id self._org_name = org_name self._org_media_id = org_media_id @classmethod def from_dict(cls, dikt) -> 'Org': return util.deserialize_model(dikt, cls) @property def org_id(self) -> int: return self._org_id @org_id.setter def org_id(self, param): if param is None: raise ValueError("Invalid value for `org_id`, must not be `None`") # noqa: E501 self._org_id = param @property def org_name(self) -> str: return self._org_name @org_name.setter def org_name(self, param): if param is None: raise ValueError("Invalid value for `org_name`, must not be `None`") # noqa: E501 self._org_name = param @property def org_media_id(self) -> int: return self._org_media_id @org_media_id.setter def org_media_id(self, param): if param is None: raise ValueError("Invalid value for `org_media_id`, must not be `None`") # noqa: E501 self._org_media_id = param
StarcoderdataPython
9677327
import time import os import torch import math import sys import matplotlib.pyplot as plt from torch.utils.tensorboard import SummaryWriter # import numpy as np from matplotlib.patches import Circle, Polygon, Ellipse from matplotlib.collections import PatchCollection def calc_linear_covariance(x): peds = {} # find all peds and their poses for step in range(len(x)): for ped in x[step]: if ped[0] not in peds: peds[ped[0]] = {"pose": [], "start_step": step} peds[ped[0]]["pose"].append(ped[1:]) peds[ped[0]].update({"end_step": step}) # rm peds with only 1 pose for ped in peds: if len(peds[ped]["pose"])<2: del peds[ped] # find vel for ped in peds: peds[ped]["pose"] = np.array(peds[ped]["pose"]) peds[ped]["vel"] = peds[ped]["pose"][1] - peds[ped]["pose"][0] # create linear aproximation for ped in peds: peds[ped]["linear"] = peds[ped]["pose"].copy() print(peds[ped]["vel"]) if peds[ped]["vel"][0]<-0.1: print("breakpoint") for step in range(peds[ped]["end_step"]+1-peds[ped]["start_step"]): peds[ped]["linear"][step] =peds[ped]["pose"][0]+peds[ped]["vel"]*step peds[ped]["cov"] = np.abs(peds[ped]["pose"] - peds[ped]["linear"]) return peds def plot_cov(ped_cov, isok=3): colors = ["b", "r", "g", "y"]*3 i = 0 fig, ax = plt.subplots(1, 1) ax.set_xlim(-10, 10) ax.set_ylim(-10, 10) ax.set_xlabel('distance, m') ax.set_ylabel('distance, m') ax.set_title("gt covariance") ax.grid(True) for ped in ped_cov: ax.plot(ped_cov[ped]["pose"][:, 0], ped_cov[ped]["pose"][:, 1], colors[i]+"o", label="input ped "+str(ped)) ax.plot(ped_cov[ped]["linear"][:, 0], ped_cov[ped]["linear"][:, 1], colors[i]+"*", label="linear ped "+str(ped)) for n in range(len(ped_cov[ped]["pose"])): ax.add_patch(Ellipse(xy=(ped_cov[ped]["pose"][n][0], ped_cov[ped]["pose"][n][1]), width=ped_cov[ped]["cov"][n][0]*isok, height=ped_cov[ped]["cov"][n][1]*isok, alpha=0.1, edgecolor=colors[i], facecolor=colors[i])) i+=1 ax.legend(loc='best', frameon=False) plt.pause(2) plt.close(fig) class Validator(): def __init__(self, validation_param, sfm, dataloader, do_vis=False): self.dataloader = dataloader self.sfm = sfm self.vp = validation_param self.dataloader.reset_batch_pointer(valid=True) plt.ion() self.norms = [] self.do_vis = do_vis self.save_data = [] def validate(self): self.save_data = [] self.dataloader.reset_batch_pointer(valid=True) log_folder = 1 while os.path.isdir('log/'+str(log_folder)): log_folder += 1 os.mkdir('log/'+str(log_folder)) w = SummaryWriter('log/'+str(log_folder)) for batch in range(0, 300): self.dataloader.reset_batch_pointer(valid=True) x, y, d, numPedsList, PedsList, target_ids = self.dataloader.next_batch() if np.linalg.norm(x[0][0][0] - x[0][19][0])<1.0: continue starting_pose = self.dataloader.get_starting_pose( PedsList[0][0:1], x[0][0:1]) goals_ = self.dataloader.get_ped_goals(PedsList[0], x[0]) starting_time = self.dataloader.get_starting_time( PedsList[0], x[0]) ped_cov = calc_linear_covariance(x[0]) plot_cov(ped_cov) self.vp.update_num_ped(len(starting_pose)) ped_poses = [] # print (x[0][0]) for i, key in enumerate(x[0][0]): ped_poses.append([x[0][0][i][1], x[0][0][i][2], 0, 0]) self.vp.index_to_id[i] = x[0][0][i][0] # print (ped_poses) # print (v.index_to_id) goals = [] for idx in range(0, len(ped_poses)): goals.append(goals_[self.vp.index_to_id[idx]]) self.vp.param.input_state = torch.tensor(ped_poses) self.vp.param.goal = torch.tensor(goals) stacked_trajectories_for_visualizer = self.vp.param.input_state.clone() if self.do_vis: fig, ax = plt.subplots(1, 1) ax.set_xlim(-10, 10) ax.set_ylim(-10, 10) plt.pause(0.01) ax.set_xlabel('distance, m') ax.set_ylabel('distance, m') ax.set_title("prediction visualsiation") cur_delta_pred = 0 self.save_data.append("new set!") for i in range(1, 13): # ADD A PERSON (stack to bottom) if PedsList[0][i] != list(self.vp.index_to_id.values()): for ped_id in PedsList[0][i]: if ped_id not in list(self.vp.index_to_id.values()): pose = self.dataloader.get_starting_pose( PedsList[0][i:i+1], x[0][i:i+1])[ped_id] self.vp.param.input_state = torch.cat( (self.vp.param.input_state, torch.tensor([[pose[0], pose[1], 0, 0], ]))) self.vp.param.num_ped += 1 self.vp.param.generateMatrices() ped_goal = goals_[ped_id] self.vp.param.goal = torch.cat((self.vp.param.goal, torch.tensor( [[ped_goal[0], ped_goal[1]], ], dtype=self.vp.param.goal.dtype))) self.vp.index_to_id[self.vp.param.goal.shape[0]-1] = ped_id # REMOVE PERSONS rows_to_remove = [] for key in self.vp.index_to_id.keys(): if self.vp.index_to_id[key] not in PedsList[0][i]: rows_to_remove.append(key) rows_to_remove.sort(reverse=True) new_index_to_id = {} del_counter = len(rows_to_remove) for j in range(self.vp.param.input_state.shape[0]-1, -1, -1): if j in rows_to_remove: self.vp.param.input_state = torch.cat( (self.vp.param.input_state[0:j, :], self.vp.param.input_state[1+j:, :])) self.vp.param.goal = torch.cat( (self.vp.param.goal[0:j, :], self.vp.param.goal[1+j:, :])) del_counter -= 1 self.vp.param.num_ped -= 1 else: new_index_to_id[j-del_counter] = self.vp.index_to_id[j] self.vp.index_to_id = new_index_to_id.copy() self.vp.param.generateMatrices() # REMOVE PERSONS END if self.do_vis: ax.plot(self.vp.param.input_state[:, 0:1].tolist(), self.vp.param.input_state[:, 1:2].tolist( ), "g*", markersize=3, label="predicted") ax.plot(torch.tensor(x[0][i-1])[:, 1:2].tolist(), torch.tensor( x[0][i-1])[:, 2:3].tolist(), "r*", markersize=3, label="GT") ax.grid(True) if i == 1: ax.legend(loc='best', frameon=False) ax.set_title( "prediction visualsiation\n cur_delta_pred" + str(cur_delta_pred)) plt.draw() plt.show() plt.pause(0.1) rf, af = self.sfm.calc_forces(self.vp.param.input_state, self.vp.param.goal, self.vp.param.pedestrians_speed, self.vp.param.robot_speed, self.vp.param.k, self.vp.param.alpha, self.vp.param.ped_radius, self.vp.param.ped_mass, self.vp.param.betta) F = rf + af self.vp.param.input_state = self.sfm.pose_propagation( F, self.vp.param.input_state.clone(), self.vp.DT, self.vp.param.pedestrians_speed, self.vp.param.robot_speed) stacked_trajectories_for_visualizer = torch.cat( (stacked_trajectories_for_visualizer, self.vp.param.input_state.clone())) cur_delta_pred = torch.norm( self.vp.param.input_state[:, 0:2] - torch.tensor(x[0][i])[:, 1:3], dim=1) mean_cur_delta_pred = torch.mean(cur_delta_pred) w.add_scalar("cur_averaged_delta", mean_cur_delta_pred, batch*100+i) stroka = "\ncur_delta_pred " + str(cur_delta_pred.tolist()) # print(stroka, end="\r") self.save_data.append(stroka) self.norms.append(mean_cur_delta_pred) if self.do_vis: plt.close() w.add_scalar("mean_averaged_delta", torch.mean( torch.tensor((self.norms))), 0) w.add_scalar("mean_averaged_delta", torch.mean( torch.tensor((self.norms))), 1) def print_result(self): print(torch.mean(torch.tensor((self.norms)))) def get_result(self): return torch.mean(torch.tensor((self.norms))) def save_result(self, filename=None, data=None): from contextlib import redirect_stdout if filename is None: self.dir = os.path.dirname(os.path.abspath(__file__)) filename = self.dir + "/result.txt" with open(filename, 'w') as file, redirect_stdout(file): print(self.save_data) print(torch.mean(torch.tensor((self.norms))))
StarcoderdataPython
9712042
''' @author: <NAME> @version: 1.0 ======================= This script creates an oracle module for the training of the parser. ''' ''' ******* ********* ********* ******* imports ********* ******* ********* ********* ''' from collections import deque from classes import * ''' ******* ********* ********* ******* functions ********* ******* ********* ********* ''' def can_left_arc(current_state, gold_arcs): result = False # check if buffer_front -> stack_top arc is in the gold set if (current_state.queue[0], current_state.stack[-1]) in gold_arcs: result = True return result def can_right_arc(current_state, gold_arcs): result = False # check if stack_top -> buffer_front arc is in the gold set if (current_state.stack[-1], current_state.queue[0]) in gold_arcs: result = True return result def can_reduce(current_state, gold_arcs): stack_top = current_state.stack[-1] # extract the number of heads assigned to stack_top from the predicted arc set head_count = len([tup[0] for tup in current_state.arcs if tup[1] == stack_top]) # if no head is assigned return false if head_count < 1: return False has_all_children = False # extract list of children for stack_top from the gold arc set gold_depedants = [tup[1] for tup in gold_arcs if tup[0] == stack_top] #check if stack_top has children if gold_depedants: # extract list of children for stack_top from the predicted arc set depedants = [tup[1] for tup in current_state.arcs if tup[0] == stack_top] # get count of missing children missing_children_count = len([child for child in gold_depedants+depedants if (child in gold_depedants) and (child not in depedants)]) if missing_children_count == 0: has_all_children = True else: has_all_children = True # if has a head and all children return true (if no head, we would have exited the function already) return has_all_children def get_oracle_transition(current_state, gold_arcs): #find the next possible transition from the gold arc set if can_left_arc(current_state, gold_arcs): return Transition (1) elif can_right_arc(current_state, gold_arcs): return Transition (2) elif can_reduce(current_state, gold_arcs): return Transition (3) else: return Transition (0)
StarcoderdataPython
1696788
<filename>Python/minimum-average-difference.py<gh_stars>1-10 # Time: O(n) # Space: O(1) # prefix sum class Solution(object): def minimumAverageDifference(self, nums): """ :type nums: List[int] :rtype: int """ total = sum(nums) mn, idx = float("inf"), -1 prefix = 0 for i, x in enumerate(nums): prefix += x a = prefix//(i+1) b = (total-prefix)//(len(nums)-(i+1)) if i+1 < len(nums) else 0 diff = abs(a-b) if diff < mn: mn, idx = diff, i return idx
StarcoderdataPython
3586359
<filename>maskrcnn_benchmark/modeling/roi_heads/attribute_head/loss.py<gh_stars>10-100 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch.nn import functional as F from maskrcnn_benchmark.layers import smooth_l1_loss from maskrcnn_benchmark.modeling.box_coder import BoxCoder from maskrcnn_benchmark.modeling.matcher import Matcher from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from maskrcnn_benchmark.modeling.utils import cat class AttributeHeadLossComputation(object): """ Computes the loss for attribute head """ def __init__( self, loss_weight=0.1, num_attri_cat=201, max_num_attri=10, attribute_sampling=True, attribute_bgfg_ratio=5, use_binary_loss=True, pos_weight=1, ): self.loss_weight = loss_weight self.num_attri_cat = num_attri_cat self.max_num_attri = max_num_attri self.attribute_sampling = attribute_sampling self.attribute_bgfg_ratio = attribute_bgfg_ratio self.use_binary_loss = use_binary_loss self.pos_weight = pos_weight def __call__(self, proposals, attri_logits): """ Calculcate attribute loss """ attributes = cat([proposal.get_field("attributes") for proposal in proposals], dim=0) assert attributes.shape[0] == attri_logits.shape[0] # generate attribute targets attribute_targets, selected_idxs = self.generate_attributes_target(attributes) attri_logits = attri_logits[selected_idxs] attribute_targets = attribute_targets[selected_idxs] attribute_loss = self.attribute_loss(attri_logits, attribute_targets) return attribute_loss * self.loss_weight def generate_attributes_target(self, attributes): """ from list of attribute indexs to [1,0,1,0,0,1] form """ assert self.max_num_attri == attributes.shape[1] num_obj = attributes.shape[0] with_attri_idx = (attributes.sum(-1) > 0).long() without_attri_idx = 1 - with_attri_idx num_pos = int(with_attri_idx.sum()) num_neg = int(without_attri_idx.sum()) assert num_pos + num_neg == num_obj if self.attribute_sampling: num_neg = min(num_neg, num_pos * self.attribute_bgfg_ratio) if num_pos > 0 else 1 attribute_targets = torch.zeros((num_obj, self.num_attri_cat), device=attributes.device).float() if not self.use_binary_loss: attribute_targets[without_attri_idx > 0, 0] = 1.0 pos_idxs = torch.nonzero(with_attri_idx).squeeze(1) perm = torch.randperm(num_obj - num_pos, device=attributes.device)[:num_neg] neg_idxs = torch.nonzero(without_attri_idx).squeeze(1)[perm] selected_idxs = torch.cat((pos_idxs, neg_idxs), dim=0) assert selected_idxs.shape[0] == num_neg + num_pos for idx in torch.nonzero(with_attri_idx).squeeze(1).tolist(): for k in range(self.max_num_attri): att_id = int(attributes[idx, k]) if att_id == 0: break else: attribute_targets[idx, att_id] = 1 return attribute_targets, selected_idxs def attribute_loss(self, logits, labels): if self.use_binary_loss: all_loss = F.binary_cross_entropy_with_logits(logits, labels, pos_weight=torch.FloatTensor([self.pos_weight] * self.num_attri_cat).cuda()) return all_loss else: # soft cross entropy # cross entropy attribute deteriorate the box head, even with 0.1 weight (although buttom-up top-down use cross entropy attribute) all_loss = -F.softmax(logits, dim=-1).log() all_loss = (all_loss * labels).sum(-1) / labels.sum(-1) return all_loss.mean() def make_roi_attribute_loss_evaluator(cfg): loss_evaluator = AttributeHeadLossComputation( cfg.MODEL.ROI_ATTRIBUTE_HEAD.ATTRIBUTE_LOSS_WEIGHT, cfg.MODEL.ROI_ATTRIBUTE_HEAD.NUM_ATTRIBUTES, cfg.MODEL.ROI_ATTRIBUTE_HEAD.MAX_ATTRIBUTES, cfg.MODEL.ROI_ATTRIBUTE_HEAD.ATTRIBUTE_BGFG_SAMPLE, cfg.MODEL.ROI_ATTRIBUTE_HEAD.ATTRIBUTE_BGFG_RATIO, cfg.MODEL.ROI_ATTRIBUTE_HEAD.USE_BINARY_LOSS, cfg.MODEL.ROI_ATTRIBUTE_HEAD.POS_WEIGHT, ) return loss_evaluator
StarcoderdataPython
6585187
# Copyright 2018 SpiderOak, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import click from ..util import format_json, format_python, close_kernel def displayhook(value): if value is None: return __builtins__['_'] = None formatted = None if isinstance(value, dict) or isinstance(value, list): try: formatted = format_json(value) except Exception: pass if formatted is None: formatted = format_python(value) click.echo(formatted, nl=False) __builtins__['_'] = value def cli(): from ..main import pass_env from .client import ApiClient from .cache import Cache from .cache_synchronizer import CacheSynchronizer @click.command() @pass_env def cli(env): '''Start a Python REPL with a Kubernetes API client object.''' try: import readline except Exception: pass import code old_displayhook = sys.displayhook sys.displayhook = displayhook try: with ApiClient(env) as api: context = { 'api': api, 'Cache': Cache, 'CacheSynchronizer': CacheSynchronizer, } shell = code.InteractiveConsole(context) shell.interact() finally: sys.displayhook = old_displayhook close_kernel() return cli
StarcoderdataPython
9766747
<gh_stars>0 # this file came from https://www.caktusgroup.com/blog/2013/06/26/media-root-and-django-tests/ # used to delete all the media files created after a test run import os import shutil from django.conf import settings from django.test.runner import DiscoverRunner class TempMediaMixin(object): """ Mixin to create MEDIA_ROOT in temp and tear down when complete. """ def setup_test_environment(self): """ Create temp directory and update MEDIA_ROOT and default storage. """ super(TempMediaMixin, self).setup_test_environment() def teardown_test_environment(self): """ Delete temp storage. """ super(TempMediaMixin, self).teardown_test_environment() if os.path.isdir(settings.MEDIA_ROOT): shutil.rmtree(settings.MEDIA_ROOT) class TemporaryMediaTestSuiteRunner(TempMediaMixin, DiscoverRunner): """ Local test suite runner. """
StarcoderdataPython
1756096
<filename>main/py-set-symmetric-difference-operation/py-set-symmetric-difference-operation.py<gh_stars>0 def input_set(): raw_input() # ignore n return set(map(int, raw_input().split())) print len(input_set() ^ input_set())
StarcoderdataPython
11315081
<reponame>kzborisov/Juliany-Pizza from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from juliany_pizza.menu.models import Category, Ingredient, Product, Stock UserModel = get_user_model() class TestCartViews(TestCase): def setUp(self): UserModel.objects.create(username='admin') category = Category.objects.create(name='django') Ingredient.objects.create(name='test-ingredient') product = Product.objects.create( name='test-product', active=True, category=category, ) product_2 = Product.objects.create( name='test-product-2', active=True, category=category, ) Stock.objects.create( size='L', price=10, product=product, ) Stock.objects.create( size='Xl', price=2, product=product_2, ) # Add data to the session self.client.post( reverse('cart add'), { 'itemId': 1, 'action': 'post' }, xhr=True, ) self.client.post( reverse('cart add'), { 'itemId': 2, 'action': 'post' }, xhr=True, ) def test_cart_url(self): """ Test cart summary url. """ response = self.client.get( reverse('cart summary'), ) self.assertEqual(response.status_code, 200) def test_cart_add(self): """ Test add to cart. """ response = self.client.post( reverse('cart add'), { 'itemId': 1, 'action': 'post' }, xhr=True, ) self.assertEqual( response.json(), { 'qty': 3, 'subtotal': '22.00', } ) response = self.client.post( reverse('cart add'), { 'itemId': 2, 'action': 'post' }, xhr=True, ) self.assertEqual( response.json(), { 'qty': 4, 'subtotal': '24.00', } ) def test_cart_delete(self): response = self.client.post( reverse('cart delete'), { 'itemId': 2, 'action': 'post' }, xhr=True, ) self.assertEqual( response.json(), { 'subtotal': '10.00', 'qty': 1, 'final_price': '12.00', } ) def test_cart_update(self): response = self.client.post( reverse('cart update'), { 'itemId': 2, 'itemQty': 3, 'action': 'post' }, xhr=True, ) self.assertEqual( response.json(), { 'subtotal': '16.00', 'qty': 4, 'final_price': '18.00', 'item_total_price': '6.00', } )
StarcoderdataPython
6542217
# coding=utf-8 """ The MIT License Copyright (c) 2013 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ Test to meausure the performance of merging and sorting trends with two different code. """ from collections import defaultdict import time def mergeAndSortTrends(trends): mergedList = [] for t in trends: found = False for m in mergedList: if t.name == m.name: m.time += t.time found = True break if not found: mergedList.append(t) mergedList = sorted(mergedList, key=lambda trend: trend.time, reverse=True) results = [] for t in mergedList: results.append({"name": t.name, "value": t.time}) return results def groupSumAndSortTrends(trends): totals = defaultdict(int) for trend in trends: totals[trend.name] += trend.time trends = [{'name': key, 'value': value} for key, value in totals.items()] return sorted(trends, key=lambda x: x['value'], reverse=True) class Trend: def __init__(self, name, time): self.name = name self.time = time # Test starts trends = [] for i in range(1000000): trends.append(Trend(str(i % 100), i)) start_time = time.time() # Method 1 trends = groupSumAndSortTrends(trends) # Method 2 #trends = mergeAndSortTrends(trends) print("--- %s seconds ---" % (time.time() - start_time)) print trends
StarcoderdataPython
9696609
<filename>test_f_strings.py import datetime import decimal import unittest from f_strings import f class TestFStrings(unittest.TestCase): def test_fred(self): name = 'Fred' age = 50 anniversary = datetime.date(1991, 10, 12) self.assertEqual( f('My name is {name}, my age next year is {age+1}, ' 'my anniversary is {anniversary:%A, %B %d, %Y}.'), 'My name is Fred, my age next year is 51, ' 'my anniversary is Saturday, October 12, 1991.') self.assertEqual( f('He said his name is {name!r}.'), "He said his name is 'Fred'.") def test_decimal(self): width = 10 precision = 4 value = decimal.Decimal('12.34567') self.assertEqual( f('result: {value:{width}.{precision}}'), 'result: 12.35') def test_empty(self): with self.assertRaises(ValueError): f('{}') with self.assertRaises(ValueError): f('{ }')
StarcoderdataPython
11384650
<reponame>styx-dev/pystyx import json from typing import Callable, Dict from munch import munchify # Adapted from this response in Stackoverflow # http://stackoverflow.com/a/19053800/1072990 def _to_camel_case(snake_str): components = snake_str.split("_") # We capitalize the first letter of each component except the first one # with the 'capitalize' method and join them together. return components[0] + "".join(x.capitalize() if x else "_" for x in components[1:]) class TomlFunction: _functions: Dict[str, Callable] = {} @staticmethod def _parse_functions(functions_toml): declared_functions = set(functions_toml.functions) decorated_functions = set(TomlFunction._functions.keys()) extra_declared_functions = declared_functions - decorated_functions extra_decorated_functions = decorated_functions - declared_functions if extra_declared_functions: functions = ", ".join( sorted(func_name for func_name in extra_declared_functions) ) msg = f"Found extra functions in functions.styx that were not defined!\nFunction names were: {functions}" raise TypeError(msg) if extra_decorated_functions: functions = ", ".join( sorted(func_name for func_name in extra_decorated_functions) ) msg = f"Found extra functions decorated with @toml_function that were not declared in functions.styx!\nFunction names were: {functions}" raise TypeError(msg) return TomlFunction._functions @staticmethod def parse_functions(functions_toml): if hasattr(functions_toml, "functions"): if not isinstance(functions_toml.functions, list): raise TypeError( "functions.styx was malformed. 'functions' key must be a list." ) return TomlFunction._parse_functions(functions_toml) else: raise TypeError("functions.styx was malformed. No 'functions' list found.") class styx_function: function: Callable _functions = {} def __init__(self, function: Callable): self.function = function function_name = function.__name__ if function_name in TomlFunction._functions: raise RuntimeError( f"Duplicate name found in toml_functions: {function_name}" ) TomlFunction._functions[function_name] = function def __call__(self, *args, **kwargs): return self.function(*args, **kwargs) @styx_function def to_camel_case(snake_str): return _to_camel_case(snake_str) @styx_function def parse_json(s): return munchify(json.loads(s)) @styx_function def parse_bool(s): return s.lower() in ("true", "1", "t", "y", "yes")
StarcoderdataPython
4838062
<filename>neutron_taas/services/taas/drivers/linux/ovs_taas.py<gh_stars>10-100 # Copyright (C) 2015 Ericsson AB # Copyright (c) 2015 Gigamon # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron.agent.common import ovs_lib from neutron.agent.linux import utils from neutron.conf.agent import common from neutron_lib import constants as n_consts from neutron_taas.services.taas.agents.extensions import taas as taas_base import neutron_taas.services.taas.drivers.linux.ovs_constants \ as taas_ovs_consts import neutron_taas.services.taas.drivers.linux.ovs_utils as taas_ovs_utils from oslo_config import cfg from oslo_log import log as logging LOG = logging.getLogger(__name__) TaaS_DRIVER_NAME = 'Taas OVS driver' class OVSBridge_tap_extension(ovs_lib.OVSBridge): def __init__(self, br_name, root_helper): super(OVSBridge_tap_extension, self).__init__(br_name) class OvsTaasDriver(taas_base.TaasAgentDriver): def __init__(self): super(OvsTaasDriver, self).__init__() LOG.debug("Initializing Taas OVS Driver") self.agent_api = None self.root_helper = common.get_root_helper(cfg.CONF) def initialize(self): self.int_br = self.agent_api.request_int_br() self.tun_br = self.agent_api.request_tun_br() self.tap_br = OVSBridge_tap_extension('br-tap', self.root_helper) # Prepare OVS bridges for TaaS self.setup_ovs_bridges() # Setup key-value manager for ingress BCMC flows self.bcmc_kvm = taas_ovs_utils.key_value_mgr(4096) def periodic_tasks(self, args=None): # # Regenerate the flow in br-tun's TAAS_SEND_FLOOD table # to ensure all existing tunnel ports are included. # self.update_tunnel_flood_flow() def setup_ovs_bridges(self): # # br-int : Integration Bridge # br-tap : Tap Bridge # br-tun : Tunnel Bridge # # Create br-tap self.tap_br.create() # Connect br-tap to br-int and br-tun self.int_br.add_patch_port('patch-int-tap', 'patch-tap-int') self.tap_br.add_patch_port('patch-tap-int', 'patch-int-tap') self.tun_br.add_patch_port('patch-tun-tap', 'patch-tap-tun') self.tap_br.add_patch_port('patch-tap-tun', 'patch-tun-tap') # Get patch port IDs patch_tap_int_id = self.tap_br.get_port_ofport('patch-tap-int') patch_tap_tun_id = self.tap_br.get_port_ofport('patch-tap-tun') patch_tun_tap_id = self.tun_br.get_port_ofport('patch-tun-tap') # Purge all existing Taas flows from br-tap and br-tun self.tap_br.delete_flows(table=0) self.tap_br.delete_flows(table=taas_ovs_consts.TAAS_RECV_LOC) self.tap_br.delete_flows(table=taas_ovs_consts.TAAS_RECV_REM) self.tun_br.delete_flows(table=0, in_port=patch_tun_tap_id) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_SEND_UCAST) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_SEND_FLOOD) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_CLASSIFY) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_DST_CHECK) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_SRC_CHECK) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_DST_RESPOND) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_SRC_RESPOND) # # Configure standard TaaS flows in br-tap # self.tap_br.add_flow(table=0, priority=1, in_port=patch_tap_int_id, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_RECV_LOC) self.tap_br.add_flow(table=0, priority=1, in_port=patch_tap_tun_id, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_RECV_REM) self.tap_br.add_flow(table=0, priority=0, actions="drop") self.tap_br.add_flow(table=taas_ovs_consts.TAAS_RECV_LOC, priority=0, actions="output:%s" % str(patch_tap_tun_id)) self.tap_br.add_flow(table=taas_ovs_consts.TAAS_RECV_REM, priority=0, actions="drop") # # Configure standard Taas flows in br-tun # self.tun_br.add_flow(table=0, priority=1, in_port=patch_tun_tap_id, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_SEND_UCAST) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_SEND_UCAST, priority=0, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_SEND_FLOOD) flow_action = self._create_tunnel_flood_flow_action() if flow_action != "": self.tun_br.add_flow(table=taas_ovs_consts.TAAS_SEND_FLOOD, priority=0, actions=flow_action) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_CLASSIFY, priority=2, reg0=0, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_DST_CHECK) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_CLASSIFY, priority=1, reg0=1, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_DST_CHECK) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_CLASSIFY, priority=1, reg0=2, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_SRC_CHECK) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_DST_CHECK, priority=0, actions="drop") self.tun_br.add_flow(table=taas_ovs_consts.TAAS_SRC_CHECK, priority=0, actions="drop") self.tun_br.add_flow(table=taas_ovs_consts.TAAS_DST_RESPOND, priority=2, reg0=0, actions="output:%s" % str(patch_tun_tap_id)) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_DST_RESPOND, priority=1, reg0=1, actions=( "output:%s," "move:NXM_OF_VLAN_TCI[0..11]->NXM_NX_TUN_ID" "[0..11],mod_vlan_vid:2,output:in_port" % str(patch_tun_tap_id))) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_SRC_RESPOND, priority=1, actions=( "learn(table=%s,hard_timeout=60," "priority=1,NXM_OF_VLAN_TCI[0..11]," "load:NXM_OF_VLAN_TCI[0..11]->NXM_NX_TUN_ID" "[0..11],load:0->NXM_OF_VLAN_TCI[0..11]," "output:NXM_OF_IN_PORT[])" % taas_ovs_consts.TAAS_SEND_UCAST)) return def consume_api(self, agent_api): self.agent_api = agent_api def create_tap_service(self, tap_service): taas_id = tap_service['taas_id'] port = tap_service['port'] # Get OVS port id for tap service port ovs_port = self.int_br.get_vif_port_by_id(port['id']) ovs_port_id = ovs_port.ofport # Get VLAN id for tap service port port_dict = self.int_br.get_port_tag_dict() port_vlan_id = port_dict[ovs_port.port_name] # Get patch port IDs patch_int_tap_id = self.int_br.get_port_ofport('patch-int-tap') patch_tap_int_id = self.tap_br.get_port_ofport('patch-tap-int') # Add flow(s) in br-int self.int_br.add_flow(table=0, priority=25, in_port=patch_int_tap_id, dl_vlan=taas_id, actions="mod_vlan_vid:%s,output:%s" % (str(port_vlan_id), str(ovs_port_id))) # Add flow(s) in br-tap self.tap_br.add_flow(table=taas_ovs_consts.TAAS_RECV_LOC, priority=1, dl_vlan=taas_id, actions="output:in_port") self.tap_br.add_flow(table=taas_ovs_consts.TAAS_RECV_REM, priority=1, dl_vlan=taas_id, actions="output:%s" % str(patch_tap_int_id)) # Add flow(s) in br-tun for tunnel_type in n_consts.TUNNEL_NETWORK_TYPES: self.tun_br.add_flow(table=n_consts.TUN_TABLE[tunnel_type], priority=1, tun_id=taas_id, actions=( "move:NXM_OF_VLAN_TCI[0..11]->" "NXM_NX_REG0[0..11],move:NXM_NX_TUN_ID" "[0..11]->NXM_OF_VLAN_TCI[0..11]," "resubmit(,%s)" % taas_ovs_consts.TAAS_CLASSIFY)) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_DST_CHECK, priority=1, tun_id=taas_id, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_DST_RESPOND) # # Disable mac-address learning in the Linux bridge to which # the OVS port is attached (via the veth pair) if the system # uses OVSHybridIptablesFirewallDriver (Linux bridge & OVS). # This will effectively turn the bridge into a hub, ensuring # that all incoming mirrored traffic reaches the tap interface # (used for attaching a VM to the bridge) irrespective of the # destination mac addresses in mirrored packets. # # Get hybrid plug info vif_details = port.get('binding:vif_details') is_hybrid_plug = vif_details.get('ovs_hybrid_plug') if is_hybrid_plug: ovs_port_name = ovs_port.port_name linux_br_name = ovs_port_name.replace('qvo', 'qbr') utils.execute(['brctl', 'setageing', linux_br_name, 0], run_as_root=True, privsep_exec=True) return def delete_tap_service(self, tap_service): taas_id = tap_service['taas_id'] # Get patch port ID patch_int_tap_id = self.int_br.get_port_ofport('patch-int-tap') # Delete flow(s) from br-int self.int_br.delete_flows(table=0, in_port=patch_int_tap_id, dl_vlan=taas_id) # Delete flow(s) from br-tap self.tap_br.delete_flows(table=taas_ovs_consts.TAAS_RECV_LOC, dl_vlan=taas_id) self.tap_br.delete_flows(table=taas_ovs_consts.TAAS_RECV_REM, dl_vlan=taas_id) # Delete flow(s) from br-tun for tunnel_type in n_consts.TUNNEL_NETWORK_TYPES: self.tun_br.delete_flows(table=n_consts.TUN_TABLE[tunnel_type], tun_id=taas_id) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_DST_CHECK, tun_id=taas_id) self.tun_br.delete_flows(table=taas_ovs_consts.TAAS_SRC_CHECK, tun_id=taas_id) return def create_tap_flow(self, tap_flow): taas_id = tap_flow['taas_id'] port = tap_flow['port'] direction = tap_flow['tap_flow']['direction'] # Get OVS port id for tap flow port ovs_port = self.int_br.get_vif_port_by_id(port['id']) ovs_port_id = ovs_port.ofport # Get patch port ID patch_int_tap_id = self.int_br.get_port_ofport('patch-int-tap') # Add flow(s) in br-int if direction == 'OUT' or direction == 'BOTH': self.int_br.add_flow(table=0, priority=20, in_port=ovs_port_id, actions="normal,mod_vlan_vid:%s,output:%s" % (str(taas_id), str(patch_int_tap_id))) if direction == 'IN' or direction == 'BOTH': port_mac = tap_flow['port_mac'] # # Note: The ingress side flow (for unicast traffic) should # include a check for the 'VLAN id of the Neutron # network the port belongs to' + 'MAC address of the # port', to comply with the requirement that port MAC # addresses are unique only within a Neutron network. # Unfortunately, at the moment there is no clean way # to implement such a check, given OVS's handling of # VLAN tags and Neutron's use of the NORMAL action in # br-int. # # We are therefore temporarily disabling the VLAN id # check until a mechanism is available to implement # it correctly. The {broad,multi}cast flow, which is # also dependent on the VLAN id, has been disabled # for the same reason. # # Get VLAN id for tap flow port # port_dict = self.int_br.get_port_tag_dict() # port_vlan_id = port_dict[ovs_port.port_name] self.int_br.add_flow(table=0, priority=20, # dl_vlan=port_vlan_id, dl_dst=port_mac, actions="normal,mod_vlan_vid:%s,output:%s" % (str(taas_id), str(patch_int_tap_id))) # self._add_update_ingress_bcmc_flow(port_vlan_id, # taas_id, # patch_int_tap_id) # Add flow(s) in br-tun for tunnel_type in n_consts.TUNNEL_NETWORK_TYPES: self.tun_br.add_flow(table=n_consts.TUN_TABLE[tunnel_type], priority=1, tun_id=taas_id, actions=( "move:NXM_OF_VLAN_TCI[0..11]->" "NXM_NX_REG0[0..11],move:NXM_NX_TUN_ID" "[0..11]->NXM_OF_VLAN_TCI[0..11]," "resubmit(,%s)" % taas_ovs_consts.TAAS_CLASSIFY)) self.tun_br.add_flow(table=taas_ovs_consts.TAAS_SRC_CHECK, priority=1, tun_id=taas_id, actions="resubmit(,%s)" % taas_ovs_consts.TAAS_SRC_RESPOND) return def delete_tap_flow(self, tap_flow): port = tap_flow['port'] direction = tap_flow['tap_flow']['direction'] # Get OVS port id for tap flow port ovs_port = self.int_br.get_vif_port_by_id(port['id']) ovs_port_id = ovs_port.ofport # Delete flow(s) from br-int if direction == 'OUT' or direction == 'BOTH': self.int_br.delete_flows(table=0, in_port=ovs_port_id) if direction == 'IN' or direction == 'BOTH': port_mac = tap_flow['port_mac'] # # The VLAN id related checks have been temporarily disabled. # Please see comment in create_tap_flow() for details. # # taas_id = tap_flow['taas_id'] # Get VLAN id for tap flow port # port_dict = self.int_br.get_port_tag_dict() # port_vlan_id = port_dict[ovs_port.port_name] # Get patch port ID # patch_int_tap_id = self.int_br.get_port_ofport('patch-int-tap') self.int_br.delete_flows(table=0, # dl_vlan=port_vlan_id, dl_dst=port_mac) # self._del_update_ingress_bcmc_flow(port_vlan_id, # taas_id, # patch_int_tap_id) return def update_tunnel_flood_flow(self): flow_action = self._create_tunnel_flood_flow_action() if flow_action != "": self.tun_br.mod_flow(table=taas_ovs_consts.TAAS_SEND_FLOOD, actions=flow_action) def _create_tunnel_flood_flow_action(self): args = ["ovs-vsctl", "list-ports", "br-tun"] res = utils.execute(args, run_as_root=True, privsep_exec=True) port_name_list = res.splitlines() flow_action = ("move:NXM_OF_VLAN_TCI[0..11]->NXM_NX_TUN_ID[0..11]," "mod_vlan_vid:1") tunnel_ports_exist = False for port_name in port_name_list: if (port_name != 'patch-int') and (port_name != 'patch-tun-tap'): flow_action += (",output:%d" % self.tun_br.get_port_ofport(port_name)) tunnel_ports_exist = True if tunnel_ports_exist: return flow_action else: return "" def _create_ingress_bcmc_flow_action(self, taas_id_list, out_port_id): flow_action = "normal" for taas_id in taas_id_list: flow_action += (",mod_vlan_vid:%d,output:%d" % (taas_id, out_port_id)) return flow_action # # Adds or updates a special flow in br-int to mirror (duplicate and # redirect to 'out_port_id') all ingress broadcast/multicast traffic, # associated with a VLAN, to possibly multiple tap service instances. # def _add_update_ingress_bcmc_flow(self, vlan_id, taas_id, out_port_id): # Add a tap service instance affiliation with VLAN self.bcmc_kvm.affiliate(vlan_id, taas_id) # Find all tap service instances affiliated with VLAN taas_id_list = self.bcmc_kvm.list_affiliations(vlan_id) # # Add/update flow to mirror ingress BCMC traffic, associated # with VLAN, to all affiliated tap-service instances. # flow_action = self._create_ingress_bcmc_flow_action(taas_id_list, out_port_id) self.int_br.add_flow(table=0, priority=20, dl_vlan=vlan_id, dl_dst="01:00:00:00:00:00/01:00:00:00:00:00", actions=flow_action) return # # Removes or updates a special flow in br-int to mirror (duplicate # and redirect to 'out_port_id') all ingress broadcast/multicast # traffic, associated with a VLAN, to possibly multiple tap-service # instances. # def _del_update_ingress_bcmc_flow(self, vlan_id, taas_id, out_port_id): # Remove a tap-service instance affiliation with VLAN self.bcmc_kvm.unaffiliate(vlan_id, taas_id) # Find all tap-service instances affiliated with VLAN taas_id_list = self.bcmc_kvm.list_affiliations(vlan_id) # # If there are tap service instances affiliated with VLAN, update # the flow to mirror ingress BCMC traffic, associated with VLAN, # to all of them. Otherwise, remove the flow. # if taas_id_list: flow_action = self._create_ingress_bcmc_flow_action(taas_id_list, out_port_id) self.int_br.add_flow(table=0, priority=20, dl_vlan=vlan_id, dl_dst="01:00:00:00:00:00/01:00:00:00:00:00", actions=flow_action) else: self.int_br.delete_flows(table=0, dl_vlan=vlan_id, dl_dst=("01:00:00:00:00:00/" "01:00:00:00:00:00")) return
StarcoderdataPython
5096024
<reponame>MateusPsi/erp-Core-N400<filename>N400 ERP CORE_1.py #!/usr/bin/env python # coding: utf-8 # --- # title: ERP Core N400 preprocessing in MNE-Python # date: 2021-02-25 # image: # preview_only: true # tags: # - Python # - EEG # - Preprocessing # categories: # - Python # - EEG # - English # summary: "Replicating Matlab's ERP CORE pipeline in MNE-Python." # copyright_license: # enable: true # # --- # <NAME> is one of the greatest authorities in EEG data processing and analysis. His lab has lauched the ERP Core database with how-to preprocess and get some of the most studied ERP waveforms in cognitive neuroscience. # # Luck's pipelines are available as Matlab scripts to be run with [EEGLAB](https://sccn.ucsd.edu/eeglab/index.php) and [ERPLAB](https://erpinfo.org/erplab) toolboxes. Here, I adapt the N400 ERP pipeline to [MNE-Python](https://mne.tools/stable/index.html), an open-source alternative to conduct EEG analyses. The idea is to show how MNE-Python works while replicating the pipeline proposed in ERP CORE. The idea is not to teach EEG preprocessing, but I hope this material can help people considering to switch their EEG analyses from MATLAB to Python and also newcomers. # # I will walkthrough each of N400 ERP CORE's scripts. In this first part, I will cover all the proprocessing steps. I'll always show do the steps in the data of a single participant and finish with a loop to run all subjects. ERP CORE Data and scripts can be found [here](https://osf.io/thsqg/) at OSF. # ## Load libraries # # Before we start, we load the libraries we will use, libraries are similar to MATLAB's toolboxes. The most important is MNE-Python, of course. But we also load useful libraries to work with data in general: NumPy and Pandas. # In[1]: # set working directory import os os.chdir('D:\\EEGdata\\Erp CORE\\N400') import mne # import some methods directly so we can call them by name from mne.io import read_raw_eeglab, read_raw from mne.channels import read_dig_polhemus_isotrak, read_custom_montage from mne.preprocessing import read_ica import numpy as np import pandas as pd # graphics definitions for jupyter lab import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'qt') get_ipython().run_line_magic('gui', 'qt') # ## Individual-Subject EEG and ERP Processing Procedures # ### Script 1: load, reference, downsample, montage and filter # To start: load data, identify events (or "triggers"), downsample data do 256Hz, change reference to mastoids and create H/VEOG channels. # # In MNE, events are loaded as annotations. Annotations are identifiers associated to the data. They can be useful to show experiment sections in plots and to mark noisy segments in the data. # In[2]: subj = 1 raw_name = '{0}\\{0}_N400.set'.format(subj) raw = read_raw_eeglab(raw_name, preload = True) #Annotations. Uncomment if you want to see the structure #set(raw.annotations.description) #set(raw.annotations.duration) #raw.annotations.onset #Shift the stimulus event codes forward in time to account for the LCD monitor delay #(26 ms on our monitor, as measured with a photosensor) raw.annotations.onset = raw.annotations.onset+.026 # Create events, we'll need them later to make our epochs. events, event_dict = mne.events_from_annotations(raw) raw.events = events #Downsample from the recorded sampling rate of 1024 Hz to 256 Hz to speed data processing raw, events = raw.resample(256, events = events) #Rereference to the average of P9 and P10 raw = raw.set_eeg_reference(['P9','P10']) #Create HEOG channel... heog_info = mne.create_info(['HEOG'], 256, "eog") heog_data = raw['HEOG_left'][0]-raw['HEOG_right'][0] heog_raw = mne.io.RawArray(heog_data, heog_info) #...and VOEG veog_info = mne.create_info(['VEOG'], 256, "eog") veog_data = raw['VEOG_lower'][0]-raw['FP2'][0] veog_raw = mne.io.RawArray(heog_data, veog_info) #Append them to the data raw.add_channels([heog_raw, veog_raw],True) # Let's take a look at the data at this stage: # In[3]: raw.plot(start = 14) # 'start' here is just to get to a not so messy data period # The original script sets electrodes positions with a function that checks present channels in the data and maps them to a layout with all possible positions. We will have to do the same by hand, since that is not the way things work in MNE. Usually, the data will already provide the right montage or you'll be able to use one of the many montages available in MNE ([documentation here](https://mne.tools/stable/auto_tutorials/intro/plot_40_sensor_locations.html)). # # Here, we create a montage with the `make_dig_montage`. The steps are: # # 1. load a montage with all possible positions given by ERP CORE # 2. correct the names of Fp channels # 3. make a dictionary of channel positions getting them from the montage # 4. create the final montage with the dictionary and the fiducial positions from the original montage # 5. add montage to the raw data object # In[18]: # 1 - load montage with all possible possitions montage = read_custom_montage('standard_10_5_cap385.elp') # 2 - correct FP names raw.rename_channels(dict(FP1 = 'Fp1', FP2 = 'Fp2')) # 3 - make dict of channel positions ch_positions = dict() for ch in raw.ch_names: if not (ch in ['VEOG_lower', 'HEOG_right', 'HEOG_left']): ch_index = montage.ch_names.index(ch)+3 ch_positions.update({ch : montage.dig[ch_index]['r']}) # 4 - create montage with really occuring channels in our data montage = mne.channels.make_dig_montage(ch_positions, nasion = montage.dig[1]['r'], lpa = montage.dig[0]['r'], rpa = montage.dig[2]['r']) # 5 add it to the raw object raw.set_montage(montage, on_missing='ignore') # Let's take a look how it turned out: # In[36]: fig, ax = plt.subplots(figsize = (4,3)) raw.plot_sensors(show_names = True, show = False, axes = ax) fig # Everything seems to be in its right place. The only exceptions are the eog channels, which appear at the side because they do not have a mapped position. That is no problem, since we won't use them for any topographic operations. # # The only thing left to do in this first steps of preprocessing is filter the data with a high-pass filter. # In[20]: raw.filter(l_freq = 0.1, h_freq = None) # At the end of this first script, data looks like this: # In[21]: raw.plot(start = 14) # Run for all cases and save intermediate file: # In[ ]: # Set path you want to save data raw_path = "D:/EEGdata/Erp CORE/N400/mne/raw/" for subj in range(1,41): raw_name = '{0}\\{0}_N400.set'.format(subj) raw = read_raw_eeglab(raw_name, preload = True) #Shift the stimulus event codes forward in time to account for the LCD monitor delay #(26 ms on our monitor, as measured with a photosensor) raw.annotations.onset = raw.annotations.onset+.026 # Create events, we'll need them to make our epochs. events, event_dict = mne.events_from_annotations(raw) raw.events = events #Downsample from the recorded sampling rate of 1024 Hz to 256 Hz to speed data processing raw, events = raw.resample(256, events = events) #Rereference to the average of P9 and P10 raw = raw.set_eeg_reference(['P9','P10']) #Create HEOG channel... heog_info = mne.create_info(['HEOG'], 256, "eog") heog_data = raw['HEOG_left'][0]-raw['HEOG_right'][0] heog_raw = mne.io.RawArray(heog_data, heog_info) #...and VOEG veog_info = mne.create_info(['VEOG'], 256, "eog") veog_data = raw['VEOG_lower'][0]-raw['FP2'][0] veog_raw = mne.io.RawArray(veog_data, veog_info) #Append them to the data raw.add_channels([heog_raw, veog_raw],True) #Create and set montage montage = read_custom_montage('standard_10_5_cap385.elp') ch_positions = dict() raw.rename_channels(dict(FP1 = 'Fp1', FP2 = 'Fp2')) for ch in raw.ch_names: if not (ch in ['VEOG_lower', 'HEOG_right', 'HEOG_left']): ch_index = montage.ch_names.index(ch)+3 ch_positions.update({ch : montage.dig[ch_index]['r']}) montage = mne.channels.make_dig_montage(ch_positions, nasion = montage.dig[1]['r'], lpa = montage.dig[0]['r'], rpa = montage.dig[2]['r']) raw.set_montage(montage, on_missing='ignore') raw.filter(0.1, None, n_jobs = 6) raw_name = "N400_ERP_CORE_{}-raw.fif".format(subj) #raw.save(raw_path+raw_name, overwrite=True) # At the next post, we will get to the artifact rejection steps of preprocessing. Stay tuned!
StarcoderdataPython
8157739
import os import re import time import numpy as np import pandas as pd import requests from bs4 import BeautifulSoup from nba_api.stats.endpoints import leaguestandings scatter_vals = ['Team', 'Average Age', 'Wins', 'Losses', 'Pythagorean Wins', 'Pythagorean Losses', 'Margin of Victory', 'Strength of Schedule', 'Simple Rating System', 'Offensive Rating', 'Defensive Rating', 'Net Rating', 'Pace', 'Free Throw Attempt Rate', '3 Point Attempt Rate', 'True Shooting Percentage', 'Effective Field Goal Percentage', 'Turnover Percentage', 'Offensive Rebound Percentage', 'Free Throws Per Field Goal Attempt', 'Effective Field Goal Percentage Allowed', 'Opponent Turnover Percentage', 'Defensive Rebound Pecentage', 'Opponent Free Throws Per Field Goal Attempt', 'Attendance', 'Attendance Per Game'] def scatter_data(season): html = requests.get(f'http://www.basketball-reference.com/leagues/NBA_{int(season) + 1}.html').content time.sleep(1) cleaned_soup = BeautifulSoup(re.sub(rb"<!--|-->",rb"", html), features='lxml') misc_table = cleaned_soup.find('table', {'id':'advanced-team'}) df = pd.read_html(str(misc_table))[0] df.columns = df.columns.get_level_values(1) df['Team'] = df['Team'].apply(lambda x: x if x[-1] != '*' else x[:-1]) df = df.drop(['Rk', 'Arena', 'Unnamed: 27_level_1', 'Unnamed: 17_level_1', 'Unnamed: 22_level_1'], axis=1).copy() df.columns = scatter_vals df = df[df['Team'] != 'League Average'] df[['Wins', 'Losses']] = df[['Wins', 'Losses']].astype(int) return df
StarcoderdataPython
4935570
import pextant.backend_app.events.event_definitions as event_definitions import socket import selectors import traceback from pextant.backend_app.app_component import AppComponent from pextant.backend_app.events.event_dispatcher import EventDispatcher from pextant.backend_app.client_server.client_data_stream_handler import ClientDataStreamHandler, SocketClosedException class Server(AppComponent): """A simple server used for accepting client connections and handling subsequent communication""" '''======================================= FIELDS =======================================''' # consts CONNECTION_ACCEPT_SERVER_DATA = "SERVER_SOCKET" # properties @property def is_listening(self): return self.server_socket is not None '''======================================= STARTUP/SHUTDOWN =======================================''' def __init__(self, host_name, host_port, manager): super().__init__(manager) # create selector (object for handling socket events on multiple socket connections) self.selector = selectors.DefaultSelector() # store server information, reference to socket self.server_address = (host_name, host_port) self.server_socket = None # store information about all clients that connect self.connected_client_handlers = {} def close(self): super().close() self.stop_listening() self.selector.close() def start_listening(self): # if we don't already have an active listening socket if self.server_socket is None: # create the server socket self.server_socket = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) self.server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.server_socket.bind(self.server_address) self.server_socket.listen() print(f"listening for clients at {self.server_address[0]}:{self.server_address[1]}") # register with selector (read only - only job is to accept connections) self.selector.register(self.server_socket, selectors.EVENT_READ, data=Server.CONNECTION_ACCEPT_SERVER_DATA) def stop_listening(self): # close all client connections self._close_all_client_sockets() # if we have a connection accept socket if self.server_socket: # shut it down self.selector.unregister(self.server_socket) self.server_socket.close() self.server_socket = None print("listening socket closed") '''======================================= UPDATES =======================================''' def update(self, delta_time): super().update(delta_time) # if we have no server socket, do nothing if self.server_socket is None: return # get all events that are currently ready events = self.selector.select(timeout=0) for key, mask in events: # check to see if socket is our connection server if key.data == Server.CONNECTION_ACCEPT_SERVER_DATA: # all this thing does is accept connections self._accept_pending_connection() # otherwise... (one of our connected, peer-to-peer sockets) else: # have the event handler process the event client_socket = key.fileobj client_event_handler = self.connected_client_handlers[client_socket] try: client_event_handler.process_events(mask) # if client socket closes, just close on our end except SocketClosedException as e: print("SocketClosedException:", e) self._close_client_socket(client_socket) # some other exception - print it out except Exception as e: # RuntimeError or ValueError print( "main: error: exception for", f"{client_event_handler.address}:\n{traceback.format_exc()}", ) self._close_client_socket(client_socket) '''======================================= CONNECTED CLIENTS =======================================''' def send_message_to_client(self, client_socket, msg): # if client is in list of connected if client_socket in self.connected_client_handlers: # get handler and send a message client_event_handler = self.connected_client_handlers[client_socket] client_event_handler.enqueue_message(msg) def send_message_to_all_clients(self, msg): # for each connected client for client_socket in self.connected_client_handlers.keys(): # send the message self.send_message_to_client(client_socket, msg) def _accept_pending_connection(self): # accept connection client_socket, address = self.server_socket.accept() # register with our selector client_event_handler = ClientDataStreamHandler(self.selector, client_socket, address) events = selectors.EVENT_READ # | selectors.EVENT_WRITE self.selector.register(client_socket, events) # add to container of connected clients self.connected_client_handlers[client_socket] = client_event_handler # dispatch event EventDispatcher.instance().trigger_event(event_definitions.CLIENT_CONNECTED, client_socket, address) def _close_client_socket(self, client_socket): # close the handler (will close socket) and remove from container if client_socket in self.connected_client_handlers: client_event_handler = self.connected_client_handlers[client_socket] del self.connected_client_handlers[client_socket] client_event_handler.close() def _close_all_client_sockets(self): # close all handlers for client_event_handler in self.connected_client_handlers.values(): client_event_handler.close() # clear the container self.connected_client_handlers.clear()
StarcoderdataPython
4950531
<filename>Advanced/Exercises/Multi_Dimentional_Lists_Exercise_1/2_diagonal_difference.py # Write a program that finds the difference between the sums of the square matrix diagonals (absolute value). # On the first line, you will receive an integer N - the size of a square matrix. # The following N lines hold the values for each column - N numbers separated by a single space. # Print the absolute difference between the primary and the secondary diagonal sums result = 0 size = int(input()) for i in range(size): row = [int(x) for x in input().split()] result += row[i] -row[-i-1] print(abs(result))
StarcoderdataPython
319643
# example of a very simple Python script # you can run this from inside TextPad: http://www.atug.com/andypatterns/textpad_and_python.htm # you first need to install Python for Windows of course: http://www.python.org/ # for Python reference and help: http://safari.oreilly.com/JVXSL.asp # this imports useful Python libraries import re,os,sys,string,time top_dir = 'y:/best_study_ever/analysis/' subjects_list = [1,2,3,4,5,12,234] [batch_file_list] = ['prestats','stats','poststats'] for subject in subjects_list: # this appends the text 'subjectN' to the top directory, formating the subject number N to have leading 0s subject_dir = top_dir+'subject%003d'%subject # change to subject directory os.chdir(subject_dir) # now run all three batch files for batch_file in batch_file_list: batch_file_name = batch_file+'.bat' # run the batch file os.system(batch_file_name)
StarcoderdataPython
11360967
# -*- coding: utf-8 -*- """Raspa input plugin.""" import os from shutil import copyfile, copytree from aiida.orm import Dict, FolderData, List, RemoteData, SinglefileData from aiida.common import CalcInfo, CodeInfo, InputValidationError #from aiida.cmdline.utils import echo from aiida.engine import CalcJob from aiida.plugins import DataFactory from aiida_raspa.utils import RaspaInput # data objects CifData = DataFactory('cif') # pylint: disable=invalid-name class RaspaCalculation(CalcJob): """This is a RaspaCalculation, subclass of CalcJob, to prepare input for RASPA code. For information on RASPA, refer to: https://github.com/iraspa/raspa2. """ # Defaults INPUT_FILE = 'simulation.input' OUTPUT_FOLDER = 'Output' RESTART_FOLDER = 'Restart' PROJECT_NAME = 'aiida' DEFAULT_PARSER = 'raspa' @classmethod def define(cls, spec): super().define(spec) #Input parameters spec.input('parameters', valid_type=Dict, required=True, help='Input parameters') spec.input_namespace('framework', valid_type=CifData, required=False, dynamic=True, help='Input framework(s)') spec.input_namespace('block_pocket', valid_type=SinglefileData, required=False, dynamic=True, help='Zeo++ block pocket file') spec.input_namespace('file', valid_type=SinglefileData, required=False, dynamic=True, help='Additional input file(s)') spec.input('settings', valid_type=Dict, required=False, help='Additional input parameters') spec.input('parent_folder', valid_type=RemoteData, required=False, help='Remote folder used to continue the same simulation stating from the binary restarts.') spec.input('retrieved_parent_folder', valid_type=FolderData, required=False, help='To use an old calculation as a starting poing for a new one.') spec.inputs['metadata']['options']['parser_name'].default = cls.DEFAULT_PARSER spec.inputs['metadata']['options']['resources'].default = { 'num_machines': 1, 'num_mpiprocs_per_machine': 1, 'num_cores_per_mpiproc': 1, } spec.inputs['metadata']['options']['withmpi'].default = False # Output parameters spec.output('output_parameters', valid_type=Dict, required=True, help="The results of a calculation") spec.output('warnings', valid_type=List, required=False, help="Warnings that appeared during the calculation") # Exit codes spec.exit_code(100, 'ERROR_NO_RETRIEVED_FOLDER', message='The retrieved folder data node could not be accessed.') spec.exit_code(101, 'ERROR_NO_OUTPUT_FILE', message='The retrieved folder does not contain an output file.') spec.exit_code(102, 'ERROR_SIMULATION_DID_NOT_START', message='The output does not contain "Starting simulation".') spec.exit_code(500, 'TIMEOUT', message='The calculation could not be completed due to the lack of time.') # Default output node spec.default_output_node = 'output_parameters' # -------------------------------------------------------------------------- # pylint: disable = too-many-locals def prepare_for_submission(self, folder): """ This is the routine to be called when you want to create the input files and related stuff with a plugin. :param folder: a aiida.common.folders.Folder subclass where the plugin should put all its files. """ # create calc info calcinfo = CalcInfo() calcinfo.remote_copy_list = [] calcinfo.local_copy_list = [] # initialize input parameters inp = RaspaInput(self.inputs.parameters.get_dict()) # keep order of systems in the extras self.node.set_extra('system_order', inp.system_order) # handle framework(s) and/or box(es) if "System" in inp.params: self._handle_system_section(inp.params["System"], folder) # handle restart if 'retrieved_parent_folder' in self.inputs: self._handle_retrieved_parent_folder(inp, folder) inp.params['GeneralSettings']['RestartFile'] = True # handle binary restart if 'parent_folder' in self.inputs: inp.params['GeneralSettings']['ContinueAfterCrash'] = True calcinfo.remote_copy_list.append((self.inputs.parent_folder.computer.uuid, os.path.join(self.inputs.parent_folder.get_remote_path(), 'CrashRestart'), 'CrashRestart')) # get settings if 'settings' in self.inputs: settings = self.inputs.settings.get_dict() else: settings = {} # write raspa input file with open(folder.get_abs_path(self.INPUT_FILE), "w") as fobj: fobj.write(inp.render()) # create code info codeinfo = CodeInfo() codeinfo.cmdline_params = settings.pop('cmdline', []) + [self.INPUT_FILE] codeinfo.code_uuid = self.inputs.code.uuid calcinfo.stdin_name = self.INPUT_FILE calcinfo.uuid = self.uuid calcinfo.cmdline_params = codeinfo.cmdline_params calcinfo.stdin_name = self.INPUT_FILE #calcinfo.stdout_name = self.OUTPUT_FILE calcinfo.codes_info = [codeinfo] # file lists if 'file' in self.inputs: for fobj in self.inputs.file.values(): calcinfo.local_copy_list.append((fobj.uuid, fobj.filename, fobj.filename)) # block pockets if 'block_pocket' in self.inputs: for name, fobj in self.inputs.block_pocket.items(): calcinfo.local_copy_list.append((fobj.uuid, fobj.filename, name + '.block')) calcinfo.retrieve_list = [self.OUTPUT_FOLDER, self.RESTART_FOLDER] calcinfo.retrieve_list += settings.pop('additional_retrieve_list', []) # check for left over settings if settings: raise InputValidationError("The following keys have been found " + "in the settings input node {}, ".format(self.pk) + "but were not understood: " + ",".join(list(settings.keys()))) return calcinfo def _handle_system_section(self, system_dict, folder): """Handle framework(s) and/or box(es).""" for name, sparams in system_dict.items(): if sparams["type"] == "Framework": try: self.inputs.framework[name].export(folder.get_abs_path(name + '.cif'), fileformat='cif') except KeyError: raise InputValidationError( "You specified '{}' framework in the input dictionary, but did not provide the input " "framework with the same name".format(name)) def _handle_retrieved_parent_folder(self, inp, folder): """Enable restart from the retrieved folder.""" if "Restart" not in self.inputs.retrieved_parent_folder._repository.list_object_names(): # pylint: disable=protected-access raise InputValidationError("Restart was requested but the restart " "folder was not found in the previos calculation.") dest_folder = folder.get_abs_path("RestartInitial") # we first copy the whole restart folder copytree( os.path.join(self.inputs.retrieved_parent_folder._repository._get_base_folder().abspath, "Restart"), # pylint: disable=protected-access dest_folder) # once this is done, we rename the files to match temperature, pressure and number of unit cells for i_system, system_name in enumerate(inp.system_order): system = inp.params["System"][system_name] current_folder = folder.get_abs_path("RestartInitial/System_{}".format(i_system)) content = os.listdir(current_folder) if len(content) != 1: raise InputValidationError("Restart folder should contain 1 file only, got {}".format(len(content))) old_fname = content[0] if system["type"] == "Box": system_or_box = "Box" (n_x, n_y, n_z) = (1, 1, 1) if 'ExternalPressure' not in system: system['ExternalPressure'] = 0 elif system["type"] == "Framework": system_or_box = system_name try: (n_x, n_y, n_z) = tuple(map(int, system['UnitCells'].split())) except KeyError: (n_x, n_y, n_z) = 1, 1, 1 external_pressure = system['ExternalPressure'] if 'ExternalPressure' in system else 0 new_fname = "restart_{:s}_{:d}.{:d}.{:d}_{:f}_{:g}".format(system_or_box, n_x, n_y, n_z, system['ExternalTemperature'], external_pressure) os.rename(os.path.join(current_folder, old_fname), os.path.join(current_folder, new_fname))
StarcoderdataPython
6414970
<filename>probs/continuous/gamma.py<gh_stars>0 from dataclasses import dataclass from scipy.stats import gamma # type: ignore[import] from probs.continuous.rv import ContinuousRV @dataclass(eq=False) class Gamma(ContinuousRV): """ The gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. The parameterization with k and θ appears to be more common in econometrics and certain other applied fields, where for example the gamma distribution is frequently used to model waiting times. The parameterization with α and β is more common in Bayesian statistics, where the gamma distribution is used as a conjugate prior distribution for various types of inverse scale (rate) parameters, such as the λ (rate) of an exponential distribution or of a Poisson distribution. https://en.wikipedia.org/wiki/Gamma_distribution """ alpha: float = 1 beta: float = 1 def __post_init__(self) -> None: if self.alpha < 0 or self.beta < 0: raise ValueError("α and β must be greater than 0.") def __str__(self) -> str: return f"Gamma(α={self.alpha}, β={self.beta})" def median(self) -> float: # No simple closed form raise NotImplementedError def mode(self) -> float: return (self.alpha - 1) / self.beta def expectation(self) -> float: return self.alpha / self.beta def variance(self) -> float: return self.alpha / self.beta ** 2 def pdf(self, x: float) -> float: # TODO this is incorrect - missing self.beta return float(gamma.pdf(x, self.alpha)) def cdf(self, x: float) -> float: # TODO this is incorrect - missing self.beta return float(gamma.cdf(x, self.alpha))
StarcoderdataPython
1800438
""" Simple example showing how to control a GPIO pin from the ULP coprocessor. The GPIO port is configured to be attached to the RTC module, and then set to OUTPUT mode. To avoid re-initializing the GPIO on every wakeup, a magic token gets set in memory. After every change of state, the ULP is put back to sleep again until the next wakeup. The ULP wakes up every 500ms to change the state of the GPIO pin. An LED attached to the GPIO pin would toggle on and off every 500ms. The end of the python script has a loop to show the value of the magic token and the current state, so you can confirm the magic token gets set and watch the state value changing. If the loop is stopped (Ctrl-C), the LED attached to the GPIO pin continues to blink, because the ULP runs independently from the main processor. """ from esp32 import ULP from machine import mem32 from esp32_ulp import src_to_binary source = """\ # constants from: # https://github.com/espressif/esp-idf/blob/1cb31e5/components/soc/esp32/include/soc/soc.h #define DR_REG_RTCIO_BASE 0x3ff48400 # constants from: # https://github.com/espressif/esp-idf/blob/1cb31e5/components/soc/esp32/include/soc/rtc_io_reg.h #define RTC_IO_TOUCH_PAD2_REG (DR_REG_RTCIO_BASE + 0x9c) #define RTC_IO_TOUCH_PAD2_MUX_SEL_M (BIT(19)) #define RTC_GPIO_OUT_REG (DR_REG_RTCIO_BASE + 0x0) #define RTC_GPIO_ENABLE_W1TS_REG (DR_REG_RTCIO_BASE + 0x10) #define RTC_GPIO_ENABLE_W1TC_REG (DR_REG_RTCIO_BASE + 0x14) #define RTC_GPIO_ENABLE_W1TS_S 14 #define RTC_GPIO_ENABLE_W1TC_S 14 #define RTC_GPIO_OUT_DATA_S 14 # constants from: # https://github.com/espressif/esp-idf/blob/1cb31e5/components/soc/esp32/include/soc/rtc_io_channel.h #define RTCIO_GPIO2_CHANNEL 12 # When accessed from the RTC module (ULP) GPIOs need to be addressed by their channel number .set gpio, RTCIO_GPIO2_CHANNEL .set token, 0xcafe # magic token .text magic: .long 0 state: .long 0 .global entry entry: # load magic flag move r0, magic ld r1, r0, 0 # test if we have initialised already sub r1, r1, token jump after_init, eq # jump if magic == token (note: "eq" means the last instruction (sub) resulted in 0) init: # connect GPIO to ULP (0: GPIO connected to digital GPIO module, 1: GPIO connected to analog RTC module) WRITE_RTC_REG(RTC_IO_TOUCH_PAD2_REG, RTC_IO_TOUCH_PAD2_MUX_SEL_M, 1, 1); # GPIO shall be output, not input WRITE_RTC_REG(RTC_GPIO_OUT_REG, RTC_GPIO_OUT_DATA_S + gpio, 1, 1); # store that we're done with initialisation move r0, magic move r1, token st r1, r0, 0 after_init: move r1, state ld r0, r1, 0 move r2, 1 sub r0, r2, r0 # toggle state st r0, r1, 0 # store updated state jumpr on, 0, gt # if r0 (state) > 0, jump to 'on' jump off # else jump to 'off' on: # turn on led (set GPIO) WRITE_RTC_REG(RTC_GPIO_ENABLE_W1TS_REG, RTC_GPIO_ENABLE_W1TS_S + gpio, 1, 1) jump exit off: # turn off led (clear GPIO) WRITE_RTC_REG(RTC_GPIO_ENABLE_W1TC_REG, RTC_GPIO_ENABLE_W1TC_S + gpio, 1, 1) jump exit exit: halt # go back to sleep until next wakeup period """ binary = src_to_binary(source) load_addr, entry_addr = 0, 8 ULP_MEM_BASE = 0x50000000 ULP_DATA_MASK = 0xffff # ULP data is only in lower 16 bits ulp = ULP() ulp.set_wakeup_period(0, 500000) # use timer0, wakeup after 500000usec (0.5s) ulp.load_binary(load_addr, binary) ulp.run(entry_addr) while True: print(hex(mem32[ULP_MEM_BASE + load_addr] & ULP_DATA_MASK), # magic token hex(mem32[ULP_MEM_BASE + load_addr + 4] & ULP_DATA_MASK) # current state )
StarcoderdataPython
9727915
from django.contrib import admin from django.urls import path, include from . import views urlpatterns = [ path('',views.password_reset,name='password_reset'), path('send_password_reset_mail',views.send_password_reset_mail,name='send_password_reset_mail'), ]
StarcoderdataPython
11348602
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% import onnx from onnx import shape_inference import warnings from onnx_tf.backend import prepare import numpy as np # %% def stride_print(input): tensor = input.flatten().tolist() length = len(tensor) size = 20 stride = length//size if stride == 0: stride = 1 size = length // stride nums = [] for i in range(0, size): item = tensor[i * stride] # nums.append(str(i * stride) + ": " + str(item)) nums.append(str(item)) print(nums) # for i in range(0, size): # item = tensor[i * stride] # print ("{} ".format(item),end="") # %% diff_threadhold = 0.05 def compare(input): stride_print(input) tensor = input.flatten().tolist() length = len(tensor) size = 20 stride = length//size if stride == 0: stride = 1 size = length // stride nums = [] for i in range(0, size): item = tensor[i * stride] # nums.append(str(i * stride) + ": " + str(item)) nums.append(item) for i in range(0, size): right_v = nums[i] paddle_v = float(input_paddle[i]) if (abs(right_v-paddle_v) > diff_threadhold): print("err at {} {} {} ".format(i, right_v, paddle_v)) # %% model = onnx.load("v18_7_6_2_leakyReLU_rgb_mask_test_t2.onnx") onnx.checker.check_model(model) inferred_model = shape_inference.infer_shapes(model) # %% model.graph.output.extend(inferred_model.graph.value_info) # %% warnings.filterwarnings('ignore') tfm = prepare(model) # input = np.fromfile('input', dtype=np.float32).reshape(1, 3, 256, 256) input = np.loadtxt('./input_1_3_256_256', dtype=np.float32).reshape(1, 3, 256, 256) res = tfm.run(input) # %% input_paddle = "0.53125 0.549316 0.558594 0.677246 0.470703 0.634766 0.540039 0.566406 0.495605 0.597168 0.602539 0.480957 0.448486 0.553711 0.474365 0.612793 0.609863 0.518555 0.617188 0.505371 0.504395".split( " ") compare(res["mask"]) # %% input_paddle = "0.245117 -0.222656 0.0887451 0.803711 0.639648 0.0995483 0.807129 -0.224609 -0.267578 0.33667 0.372559 -0.353516 0.343262 0.549805 0.344971 0.503906 0.152466 -0.0531616 0.0315247 -0.0397034 -0.218262".split( " ") compare(res["rgb"])
StarcoderdataPython
8107705
import matplotlib.pyplot as plt from scipy.ndimage.filters import gaussian_filter1d from matplotlib.pyplot import figure def make_line_plot(save_to_folder: str, list_of_data_points, xlabel, ylabel, title, add_avg_line=False, sigma=0, all_xticks=False, custom_width=False, width=0): if custom_width: figure(num=None, figsize=(width, 6), dpi=300, facecolor='w', edgecolor='k') else: figure(num=None, figsize=(8, 6), dpi=300, facecolor='w', edgecolor='k') if add_avg_line: x = range(1, len(list_of_data_points) + 1) y = gaussian_filter1d(list_of_data_points, sigma=sigma) plt.plot(x, y, '--') plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) x2 = range(1, len(list_of_data_points) + 1) y2 = list_of_data_points if all_xticks: plt.xticks(x2) plt.plot(x2, y2) plt.grid() file_name = str(title + '.jpg').replace(' ', '_') plt.savefig(save_to_folder + file_name, dpi=300, facecolor='w', edgecolor='w', orientation='portrait', papertype=None, format=None, transparent=False, pad_inches=1, metadata=None) return file_name
StarcoderdataPython
1984550
# encoding=utf-8 import tensorflow as tf import numpy as np time_steps = 12 channel_size = 3 embedding_size = 64 embedding_fn_size = 312 filter_num = 8 filter_sizes = [1, 3, 5] threshold = 0.5 class CnnModel(object): def __init__(self, init_learning_rate, decay_steps, decay_rate): weights = { 'wc1': tf.Variable(tf.truncated_normal([filter_sizes[0], channel_size, filter_num], stddev=0.1)), 'wc2': tf.Variable( tf.truncated_normal([filter_sizes[1], channel_size, filter_num], stddev=0.1)), 'wc3': tf.Variable( tf.truncated_normal([filter_sizes[2], channel_size, filter_num], stddev=0.1)) } biases = { 'bc1': tf.Variable(tf.truncated_normal([filter_num], stddev=0.1)), 'bc2': tf.Variable(tf.truncated_normal([filter_num], stddev=0.1)), 'bc3': tf.Variable(tf.truncated_normal([filter_num], stddev=0.1)) } global_step = tf.Variable(0) learning_rate = tf.train.exponential_decay(init_learning_rate, global_step, decay_steps, decay_rate, staircase=True) # define placeholder self.x = tf.placeholder(tf.float32, [None, channel_size, time_steps]) x_emb = tf.transpose(self.x, [0, 2, 1]) # [None,time_steps,embedding_size] self.e = tf.placeholder(tf.float32, [None, embedding_size]) self.y = tf.placeholder(tf.int32, [None, 1]) self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") ones = tf.ones_like(self.y) zeros = tf.zeros_like(self.y) with tf.name_scope("FN_Part"): output_fn = tf.layers.dense(self.e, embedding_fn_size, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.1)) with tf.name_scope("CNN_Part"): x_convs = self.multi_conv(x_emb, weights, biases) x_convs = tf.reshape(x_convs, [-1, 3 * filter_num]) with tf.name_scope("Output_Part"): concate_v = tf.concat([output_fn, x_convs], axis=1) weight_last = tf.Variable( tf.truncated_normal([3 * filter_num + embedding_fn_size, 1]) * np.sqrt(2. / (3 * filter_num))) bias_last = tf.Variable(tf.truncated_normal([1], stddev=0.1)) concate_v = tf.nn.dropout(concate_v, self.dropout_keep_prob) logits_cnn = tf.matmul(concate_v, weight_last) + bias_last self.loss_cnn = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.cast(self.y, tf.float32), logits=logits_cnn)) self.optimizer_cnn = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.loss_cnn, global_step=global_step) self.logits_pred = tf.nn.sigmoid(logits_cnn) self.prediction_cnn = tf.cast(tf.where(tf.greater(self.logits_pred, threshold), ones, zeros), tf.int32) self.accuracy = tf.reduce_mean(tf.cast(tf.equal(self.prediction_cnn, self.y), tf.float32)) def conv1d(sef, x, W, b): x = tf.reshape(x, shape=[-1, time_steps, channel_size]) x = tf.nn.conv1d(x, W, 1, padding='SAME') x = tf.nn.bias_add(x, b) # shape=(n,time_steps,filter_num) h = tf.nn.relu(x) pooled = tf.reduce_max(h, axis=1) return pooled def multi_conv(self, x, weights, biases): # Convolution Layer conv1 = self.conv1d(x, weights['wc1'], biases['bc1']) conv2 = self.conv1d(x, weights['wc2'], biases['bc2']) conv3 = self.conv1d(x, weights['wc3'], biases['bc3']) # n*time_steps*(3*filter_num) convs = tf.concat([conv1, conv2, conv3], 1) return convs
StarcoderdataPython
6635672
<filename>molmodmt/sequence.py<gh_stars>0 from molmodmt import convert as _convert from molmodmt import select as _select def sequence_alignment(ref_item=None, item=None, engine='biopython', prettyprint=False, prettyprint_alignment_index = 0, **kwards): alignment = None if engine=='biopython': # from ensembler.modeling.align_target_template # (https://github.com/choderalab/ensembler/blob/master/ensembler/modeling.py) from Bio.pairwise2 import align as _biopython_align from Bio.SubsMat import MatrixInfo as _biopython_MatrixInfo tmp_ref_seq=_convert(ref_item,'biopython.Seq') tmp_seq=_convert(item,'biopython.Seq') matrix = getattr(_biopython_MatrixInfo,'gonnet') gap_open=-10 gap_extend=-0.5 alignment = _biopython_align.globalds(tmp_ref_seq, tmp_seq, matrix, gap_open, gap_extend) del(_biopython_MatrixInfo,_biopython_align,matrix,gap_open,gap_extend,tmp_ref_seq,tmp_seq) elif engine=='modeller': raise NotImplementedError else: raise NotImplementedError if prettyprint: textredbold = '\033[1;31;48m' # Red bold text textbluebold = '\033[1;34;48m' # Green bold text endcolor = '\033[m' # reset color # Color guide in: http://ozzmaker.com/add-colour-to-text-in-python/ aln = alignment align = prettyprint_alignment_index seq1 ="" seq2 ="" for r in range(len(aln[align][0])): res1 = aln[align][0][r] res2 = aln[align][1][r] if res1 == res2: seq1+=res1 seq2+=res2 elif res1 == '-': seq1+=res1 seq2+=textbluebold+res2+endcolor elif res2 == '-': seq1+=textbluebold+res1+endcolor seq2+=res2 else: seq1+=textredbold+res1+endcolor seq2+=textredbold+res2+endcolor print(seq1) print() print(seq2) pass else: return alignment def structure_alignment(ref_item=None, item=None, ref_selection_alignment='all', selection_alignment='all', ref_selection_rmsd=None, selection_rmsd='backbone', ref_frame_index=0, frame_indices='all', parallel=True, engine_sequence_alignment = 'biopython', engine_least_rmsd_fit = 'mdtraj', syntaxis='mdtraj'): from .rmsd import least_rmsd_fit as _least_rmsd_fit from .multitool import extract as _extract from .multitool import select as _select if ref_selection_rmsd is None: ref_selection_rmsd = selection_rmsd if engine_sequence_alignment == 'biopython': is_all_ref_item = False if type(ref_selection_alignment)==int: if ref_selection_alignment=='all': is_all_ref_item =True if is_all_ref_item: tmp_ref_item = ref_item else: atomslist_ref_alignment = _select(ref_item, ref_selection_alignment) tmp_ref_item = _extract(ref_item, atomslist_ref_alignment) is_all_item = False if type(selection_alignment)==int: if selection_alignment=='all': is_all_item =True if is_all_item: tmp_item = item else: atomslist_alignment = _select(item, selection_alignment) tmp_item = _extract(item, atomslist_alignment) idty, intersection_atoms = sequence_identity(tmp_ref_item,tmp_item, intersection_set="atoms", engine='biopython') if not is_all_ref_item: intersection_atoms[0]=atomslist_ref_alignment[intersection_atoms[0]] if not is_all_item: intersection_atoms[1]=atomslist_alignment[intersection_atoms[1]] is_all_ref_item = False if type(ref_selection_rmsd)==int: if ref_selection_rmsd=='all': is_all_ref_item =True is_all_item = False if type(selection_rmsd)==int: if selection_rmsd=='all': is_all_item =True if is_all_ref_item: ref_item_selection = 'index '+" ".join(map(str,intersection_atoms[0])) else: ref_item_selection = ref_selection_rmsd+' and index '+\ " ".join(map(str,intersection_atoms[0])) if is_all_item: item_selection = 'index '+" ".join(map(str,intersection_atoms[1])) else: item_selection = selection_rmsd+' and index '+" ".join(map(str,intersection_atoms[1])) if engine_least_rmsd_fit == 'mdtraj': return _least_rmsd_fit(ref_item=ref_item, item=item, ref_selection=ref_item_selection, selection=item_selection, ref_frame_index=ref_frame_index, frame_indices=frame_indices, engine=engine_least_rmsd_fit, parallel=parallel, syntaxis=syntaxis) else: raise NotImplementedError else: raise NotImplementedError def sequence_identity(ref_item=None, item=None, intersection_set=None, engine='biopython', **kwards): if engine=='biopython': # This is code from ensembler.modeling.calculate_seq_identity # This should be implemented here importing the function but there is a conflict installing # ensembler: ensembler is only available for python 2.7 # (https://github.com/choderalab/ensembler/blob/master/ensembler/modeling.py) aln = sequence_alignment(ref_item, item, engine) len_shorter_seq = min([len(aln[0][0].replace('-', '')), len(aln[0][1].replace('-', ''))]) seq_id = 0 intersect_1=[] intersect_2=[] ii_1 = 0 ii_2 = 0 for r in range(len(aln[0][0])): res1 = aln[0][0][r] res2 = aln[0][1][r] if res1 == res2: seq_id += 1 intersect_1.append(ii_1) intersect_2.append(ii_2) if res1 != '-': ii_1+=1 if res2 != '-': ii_2+=1 seq_id = 100 * float(seq_id) / float(len_shorter_seq) if intersection_set=='residues': from .multitool import convert as _convert tmp_item = _convert(ref_item).topology set_1 = [tmp_item.residue(ii).resSeq for ii in intersect_1] tmp_item = _convert(item).topology set_2 = [tmp_item.residue(ii).resSeq for ii in intersect_2] del(_convert,tmp_item) return seq_id, [set_1, set_2] elif intersection_set=='atoms': from .multitool import convert as _convert set_1 = [] tmp_item = _convert(ref_item).topology for tmp_residue in [tmp_item.residue(ii) for ii in intersect_1]: for tmp_atom in tmp_residue.atoms: set_1.append(tmp_atom.index) tmp_item = _convert(item).topology set_2 = [] for tmp_residue in [tmp_item.residue(ii) for ii in intersect_2]: for tmp_atom in tmp_residue.atoms: set_2.append(tmp_atom.index) del(_convert,tmp_item,tmp_residue,tmp_atom) return seq_id, [set_1, set_2] else: return seq_id else: raise NotImplementedError
StarcoderdataPython
1678057
<filename>Matlab and Python Scripts/PyAppNotes/PyAppNotes/AN24_02.py # AN24_02 -- FMCW Basics import Class.Adf24Tx2Rx4 as Adf24Tx2Rx4 from numpy import * # (1) Connect to Radarbook # (2) Enable Supply # (3) Configure RX # (4) Configure TX # (5) Start Measurements # (6) Configure calculation of range profile #-------------------------------------------------------------------------- # Setup Connection #-------------------------------------------------------------------------- Brd = Adf24Tx2Rx4.Adf24Tx2Rx4() Brd.BrdRst() #-------------------------------------------------------------------------- # Software Version #-------------------------------------------------------------------------- Brd.BrdDispSwVers() #-------------------------------------------------------------------------- # Configure Receiver #-------------------------------------------------------------------------- Brd.RfRxEna() TxPwr = 100 NrFrms = 4 #-------------------------------------------------------------------------- # Configure Transmitter (Antenna 0 - 3, Pwr 0 - 31) #-------------------------------------------------------------------------- Brd.RfTxEna(1, TxPwr) #-------------------------------------------------------------------------- # Configure Up-Chirp #-------------------------------------------------------------------------- dCfg = { "fs" : 1.0e6, "fStrt" : 24.0e9, "fStop" : 24.25e9, "TRampUp" : 260/1.0e6, "Tp" : 300/1.0e6, "N" : 256, "StrtIdx" : 0, "StopIdx" : 2, "MimoEna" : 0 } Brd.RfMeas('Adi', dCfg); fStrt = Brd.Adf_Pll.fStrt fStop = Brd.Adf_Pll.fStop TRampUp = Brd.Adf_Pll.TRampUp DataTx1 = zeros((256*dCfg["StopIdx"]*4, int(NrFrms))) for Cycles in range(0, int(NrFrms)): Data = Brd.BrdGetData() print("FrmCntr: ", Data[0,:]) del Brd
StarcoderdataPython
6549551
<reponame>Addovej/spotiplays<filename>src/conf/__init__.py from functools import lru_cache from .settings import Settings @lru_cache def get_settings() -> Settings: return Settings() settings = get_settings() __all__ = ( 'settings', )
StarcoderdataPython
8018478
<gh_stars>1-10 ''' Author: <NAME> Date: 2021-10-02 15:56:57 LastEditTime: 2021-10-06 10:04:04 LastEditors: <NAME> Description: FilePath: /INF/INF101/TD/1.3.14.py ''' n = float(input("Saissez un nombre n")) tmp = 0 def trouve_nombre_or(range): table = [] count = 0 table.append(1) table.append(1) while True: tmp = table[count + 1] + table[count] table.append(tmp) nombre_or = table[len(table) - 2] / table[len(table) - 1] print(nombre_or) if range > abs(nombre_or - 0.618033988749895): return table, nombre_or else: count += 1 table, nombre_or = trouve_nombre_or(n) print("Derniere Nombre: %s" % table[len(table) - 1]) print(table) print("Nombre d'Or: %s" % nombre_or)
StarcoderdataPython
1811567
<filename>python/sum-and-prod.py import numpy n,m=map(int,input().split()) a=numpy.zeros((n,m),int) for i in range(n): a[i]=numpy.array(input().split()) print(numpy.prod(numpy.sum(a,axis=0),axis=None))
StarcoderdataPython
4811611
<reponame>eyalle/python_course<gh_stars>0 import sys, random, time sys.path.append("../../") from exercises.data import get_data data = get_data(5) users = [{'name': items['name']} for items in data] hobbies = [ 'football', 'strongman', 'mario', 'tekken-3', 'beach', 'soccer', 'bacon', 'pool', 'dodge ball' ] hobbies2 = [ 'star wars', 'star trek', 'mario cart', 'draw', 'manga artist', 'ogre slayer', 'porn star', 'high five guy!', 'idan hakimi' ] consolidated_hobbies = list(set(hobbies + hobbies2)) print(consolidated_hobbies) def add_random_hobby(users): for user in users: user['hobby'] = random.choice(hobbies) time.sleep(1) def count_hobbies(users): count = {hobby: 0 for hobby in hobbies} for user in users: if (user['hobby']): count[user['hobby']] += 1 elif (user['hobby2']): count[user['hobby2']] += 1 for hobby in count: print(hobby, count[hobby]) time.sleep(1) def add_second_hobby(users): for user in users: hobby2 = random.choice(hobbies) if (hobby2 == user['hobby']): hobby2 = random.choice(hobbies2) user['hobby2'] = hobby2 print(f'{users}') time.sleep(1) if __name__ == "__main__": print('\n\nwelcome, adding random hobby') add_random_hobby(users) print('\ncounting hobbies..') count_hobbies(users) print('\n\nadding second hobby') add_second_hobby(users) print('\n\ncounting hobbies, now with seocnd hobby..') count_hobbies(users)
StarcoderdataPython
12823853
from phactori import * from paraview.simple import * #utilities for doing various data grid/geometric operations in parallel #in particular: #GetListOfGridPointsNearestListOfPointsV5 # takes a list of geometric points, and goes through all processors and all # blocks and finds the data grid point which is nearest to each point in the list #GetListOfCellTestPointsNearestListOfPointsV5 # takes a list of geometric points, and goes through all processors and all # blocks and all cells in each block and for each geometric point finds the # cell bounding box center which is nearest to each point in the list #phactori_combine_to_single_python_file_subpiece_begin_1 def GetGridPointsClosestToPointsInBlockV5(recursionObject, inInputCsData, inParameters): if PhactoriDbg(100): myDebugPrint3("GetGridPointsClosestToPointsInBlockV5 entered\n") numCells = inInputCsData.GetNumberOfCells() numPoints = inInputCsData.GetNumberOfPoints() if (numCells == 0) or (numPoints == 0): #no cells here if PhactoriDbg(100): myDebugPrint3("GetGridPointsClosestToPointsInBlockV5 returning (no cells or no points)\n") return if PhactoriDbg(100): myDebugPrint3(str(inParameters.testPointList) + "\n") myDebugPrint3(str(inParameters.distSqrdList) + "\n") pointsArray = inInputCsData.GetPoints() gridPtXyz = [0.0, 0.0, 0.0] for gridPtNdx in range(0,numPoints): pointsArray.GetPoint(gridPtNdx, gridPtXyz) for ptndx, oneTestPt in enumerate(inParameters.testPointList): testDist = vecDistanceSquared(oneTestPt, gridPtXyz) if testDist < inParameters.distSqrdList[ptndx]: inParameters.closestList[ptndx] = list(gridPtXyz) inParameters.distSqrdList[ptndx] = testDist if PhactoriDbg(100): myDebugPrint3(str(inParameters.testPointList) + "\n") myDebugPrint3(str(inParameters.distSqrdList) + "\n") if PhactoriDbg(100): myDebugPrint3("after this block:\n") for ii, oneGridPoint in enumerate(inParameters.closestList): myDebugPrint3(str(ii) + ": " + \ str(inParameters.distSqrdList[ii]) + "\n" + \ str(inParameters.testPointList[ii]) + "\n" + str(oneGridPoint)) myDebugPrint3("\n") if PhactoriDbg(100): myDebugPrint3("GetGridPointsClosestToPointsInBlockV5 returning\n") def GetCellsClosestToPointsInBlockV5(recursionObject, inInputCsData, inParameters): if PhactoriDbg(100): myDebugPrint3("GetCellsClosestToPointsInBlock entered\n") numCells = inInputCsData.GetNumberOfCells() numPoints = inInputCsData.GetNumberOfPoints() if (numCells == 0) or (numPoints == 0): #no cells here if PhactoriDbg(100): myDebugPrint3("GetCellsClosestToPointsInBlock returning (no cells or no points)\n") return if PhactoriDbg(100): myDebugPrint3(str(inParameters.testPointList) + "\n") myDebugPrint3(str(inParameters.distSqrdList) + "\n") for cellIndex in range(0,numCells): oneCell = inInputCsData.GetCell(cellIndex) cellTestPoint = GetCellTestPoint(oneCell) for ptndx, oneTestPt in enumerate(inParameters.testPointList): testDist = vecDistanceSquared(oneTestPt, cellTestPoint) if testDist < inParameters.distSqrdList[ptndx]: inParameters.closestList[ptndx] = cellTestPoint inParameters.distSqrdList[ptndx] = testDist if PhactoriDbg(100): myDebugPrint3(str(inParameters.testPointList) + "\n") myDebugPrint3(str(inParameters.distSqrdList) + "\n") if PhactoriDbg(100): myDebugPrint3("after this block:\n") for ii, oneCellPoint in enumerate(inParameters.closestList): myDebugPrint3(str(ii) + ": " + \ str(inParameters.distSqrdList[ii]) + "\n" + \ str(inParameters.testPointList[ii]) + "\n" + str(oneCellPoint)) myDebugPrint3("\n") if PhactoriDbg(100): myDebugPrint3("GetCellsClosestToPointsInBlock returning\n") class GetCellsClosestToPointsInBlockRecursionParamsV5: def __init__(self): self.testPointList = [] self.distSqrdList = [] self.closestList = [] def InitializeWithPointList(self, inTestPointList): self.testPointList = inTestPointList numTestPoints = len(inTestPointList) for ii in range(0, numTestPoints): self.distSqrdList.append(sys.float_info.max) self.closestList.append(None) def GetCellsClosestToPointsOnThisProcessFromParaViewFilterV5(inInputFilter, inTestPointList): if PhactoriDbg(100): myDebugPrint3("GetCellsClosestToPointsOnThisProcessFromParaViewFilter entered\n") recursionObj = PhactoriParaviewMultiBlockRecursionControl() recursionObj.mParameters = GetCellsClosestToPointsInBlockRecursionParamsV5() recursionObj.mParameters.InitializeWithPointList(inTestPointList) recursionObj.mOperationToDoPerBlock = GetCellsClosestToPointsInBlockV5 PhactoriRecusivelyDoMethodPerBlockFromParaViewFilter(recursionObj, inInputFilter) if PhactoriDbg(100): myDebugPrint3("GetCellsClosestToPointsOnThisProcessFromParaViewFilter returning\n") return recursionObj.mParameters.closestList, recursionObj.mParameters.distSqrdList def GetGridPointsClosestToPointsOnThisProcessFromParaViewFilterV5(inInputFilter, inTestPointList): if PhactoriDbg(100): myDebugPrint3("GetGridPointsClosestToPointsOnThisProcessFromParaViewFilterV5 entered\n") recursionObj = PhactoriParaviewMultiBlockRecursionControl() recursionObj.mParameters = GetCellsClosestToPointsInBlockRecursionParamsV5() recursionObj.mParameters.InitializeWithPointList(inTestPointList) recursionObj.mOperationToDoPerBlock = GetGridPointsClosestToPointsInBlockV5 PhactoriRecusivelyDoMethodPerBlockFromParaViewFilter(recursionObj, inInputFilter) if PhactoriDbg(100): myDebugPrint3("GetGridPointsClosestToPointsOnThisProcessFromParaViewFilterV5 returning\n") return recursionObj.mParameters.closestList, recursionObj.mParameters.distSqrdList def GetPidWithLeastValueListV5(inLocalDistSqrdList): myPid = int(SmartGetLocalProcessId()) globalDistSqrdList = UseReduceOnFloatList(inLocalDistSqrdList, 1) localPidList = [] numItems = len(inLocalDistSqrdList) for ndx in range(0,numItems): if globalDistSqrdList[ndx] == inLocalDistSqrdList[ndx]: localPidList.append(myPid) else: localPidList.append(-1) pidWithDataList = UseReduceOnIntegerList(localPidList, 0) return pidWithDataList, globalDistSqrdList def UseMpiToGetGlobalCellPointsClosestV5(inInputFilter, inLocalCellPointList, inLocalDistSqrdList): if PhactoriDbg(100): myDebugPrint3("PhactoriSegmentCellSampler3.UseMpiToGetGlobalCellPointsClosest entered\n", 100) if PhactoriDbg(100): myDebugPrint3("inLocalCellPointList:\n" + str(inLocalCellPointList) + "\ninLocalDistSqrdList:\n" + str(inLocalDistSqrdList) + "\n") pidWithDataList, globalDistSqrdList = GetPidWithLeastValueListV5(inLocalDistSqrdList) if PhactoriDbg(100): myDebugPrint3("pidWithDataList:\n" + str(pidWithDataList) + "\nglobalDistSqrdList:\n" + str(globalDistSqrdList) + "\n") #convert cell point list to array of doubles and ints, use mpi reduce to share #the values, then convert back to cell point list serializeFloatArray = [] serializeIntArray = [] #convert cell point list to array of doubles cellPointFloatArray = [] myPid = SmartGetLocalProcessId() for ii, oneCellPoint in enumerate(inLocalCellPointList): if pidWithDataList[ii] == myPid: cellPointFloatArray.append(oneCellPoint[0]) cellPointFloatArray.append(oneCellPoint[1]) cellPointFloatArray.append(oneCellPoint[2]) else: cellPointFloatArray.append(0.0) cellPointFloatArray.append(0.0) cellPointFloatArray.append(0.0) #use mpi reduce to spread array correctly globalCellPointFloatArray = UseReduceOnFloatList(cellPointFloatArray, 2) #now create return global cell point list from arrays numCells = len(inLocalCellPointList) returnGlobalCellPointList = [] for ii in range(0,numCells): myndx = ii*3 oneCellPoint = [globalCellPointFloatArray[myndx], globalCellPointFloatArray[myndx+1], globalCellPointFloatArray[myndx+2]] returnGlobalCellPointList.append(oneCellPoint) if PhactoriDbg(100): myDebugPrint3("returnGlobalCellPointList:\n" + str(returnGlobalCellPointList) + "\n") if PhactoriDbg(100): myDebugPrint3("PhactoriSegmentCellSampler3.UseMpiToGetGlobalCellPointsClosest returning\n", 100) return returnGlobalCellPointList, globalDistSqrdList def GetListOfCellTestPointsNearestListOfPointsV5(inInputFilter, pointList): """for each point in the list, find the cell test point (e.g. center of cell bounding box) which is nearest the test point. Use MPI to work in parallel""" thisProcessNearestCellPointList, thisProcDistSqrdList = \ GetCellsClosestToPointsOnThisProcessFromParaViewFilterV5(inInputFilter, pointList) nearestCellList, distanceList = UseMpiToGetGlobalCellPointsClosestV5( inInputFilter, thisProcessNearestCellPointList, thisProcDistSqrdList) return nearestCellList def GetListOfGridPointsNearestListOfPointsV5(inInputFilter, pointList): """for each point in the list, find the point in the data grid which is nearest the test point. Use MPI to work in parallel""" thisProcessNearestGridPointList, thisProcDistSqrdList = \ GetGridPointsClosestToPointsOnThisProcessFromParaViewFilterV5(inInputFilter, pointList) nearestCellList, distanceList = UseMpiToGetGlobalCellPointsClosestV5( inInputFilter, thisProcessNearestGridPointList, thisProcDistSqrdList) return nearestCellList #phactori_combine_to_single_python_file_subpiece_end_1
StarcoderdataPython
3523114
import warnings import numpy as np from sklearn.preprocessing import StandardScaler class SkLearnMixerHelper: def _input_encoded_columns(self, target_column, when_data_source): """ :param when_data_source: is a DataSource object :return: numpy.nd array input encoded values """ input_encoded = None for column in self.feature_columns[target_column]: if input_encoded is None: input_encoded = self._encoded_data([column], when_data_source) else: input_encoded = np.append(input_encoded, self._encoded_data([column], when_data_source), axis=1) return StandardScaler().fit_transform(input_encoded) def _output_encoded_columns(self, column, data_source): """ :param data_source: is a DataSource object :return: numpy.nd array output encoded values """ output_encoded_column = self._encoded_data([column], data_source) self.output_encoders = data_source.encoders return output_encoded_column def _extract_features(self, data_source, model_class, output_encoded_column): """ :param data_source: is a DataSource object :param model_class: type of model to be fitted :param output_encoded_column: target variable encoded values :return: numpy.nd array: important input encoded columns """ input_encoded_columns = None feature_columns = [] for column in self.input_column_names: input_encoded_column = self._encoded_data([column], data_source) input_encoded_column = StandardScaler().fit_transform(input_encoded_column) with warnings.catch_warnings(): warnings.simplefilter("ignore") model = model_class.fit(StandardScaler().fit_transform(input_encoded_column), output_encoded_column) score = model.score(input_encoded_column, output_encoded_column) self.feature_models[column] = model self.feature_importance[column] = score if score > self.score_threshold: feature_columns.append(column) if input_encoded_columns is None: input_encoded_columns = input_encoded_column else: input_encoded_columns = np.append(input_encoded_columns, input_encoded_column, axis=1) return StandardScaler().fit_transform(input_encoded_columns), feature_columns @staticmethod def _encoded_data(features, data_source): """ :param features: list of column names :param data_source: input data :return encoded_data: numpy.nd array encoded values """ for cnt, column in enumerate(features): if cnt == 0: encoded_data = data_source.get_encoded_column_data(column).numpy() else: encoded_data = np.append(encoded_data, data_source.get_encoded_column_data(column).numpy(), axis=1) return encoded_data def _decoded_data(self, features, data_source, encoded_data): """ :param features: list : columns to be decoded :param data_source: is a DataSource object :param encoded_data: encoded data :return: decoded data """ for column in features: encoders = self.output_encoders.get(column, None) if encoders is None: decoded_data = data_source.get_decoded_column_data(column, encoded_data) else: decoded_data = encoders.decode(encoded_data) return decoded_data def _determine_model_class(self, column, data_source): """ :param column: name of the column :param data_source: is a DataSource object :return: model: Model to be considered for fitting data """ data_type = data_source.get_column_config(column)['type'] from lightwood.mixers.sk_learn.feature import FeatureFactory if data_type is not None: feature = FeatureFactory.create_feature(data_source.get_column_config(column)) model = feature.get_model_class(self.classifier_class, self.regression_class) return model
StarcoderdataPython
8075658
<gh_stars>1-10 # coding: utf-8 """ MailSlurp API MailSlurp is an API for sending and receiving emails from dynamically allocated email addresses. It's designed for developers and QA teams to test applications, process inbound emails, send templated notifications, attachments, and more. ## Resources - [Homepage](https://www.mailslurp.com) - Get an [API KEY](https://app.mailslurp.com/sign-up/) - Generated [SDK Clients](https://www.mailslurp.com/docs/) - [Examples](https://github.com/mailslurp/examples) repository # noqa: E501 The version of the OpenAPI document: 6.5.2 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import mailslurp_client from mailslurp_client.api.inbox_forwarder_controller_api import InboxForwarderControllerApi # noqa: E501 from mailslurp_client.rest import ApiException class TestInboxForwarderControllerApi(unittest.TestCase): """InboxForwarderControllerApi unit test stubs""" def setUp(self): self.api = mailslurp_client.api.inbox_forwarder_controller_api.InboxForwarderControllerApi() # noqa: E501 def tearDown(self): pass def test_create_new_inbox_forwarder(self): """Test case for create_new_inbox_forwarder Create an inbox forwarder # noqa: E501 """ pass def test_delete_inbox_forwarder(self): """Test case for delete_inbox_forwarder Delete an inbox forwarder # noqa: E501 """ pass def test_delete_inbox_forwarders(self): """Test case for delete_inbox_forwarders Delete inbox forwarders # noqa: E501 """ pass def test_get_inbox_forwarder(self): """Test case for get_inbox_forwarder Get an inbox forwarder # noqa: E501 """ pass def test_get_inbox_forwarders(self): """Test case for get_inbox_forwarders List inbox forwarders # noqa: E501 """ pass def test_test_inbox_forwarder(self): """Test case for test_inbox_forwarder Test an inbox forwarder # noqa: E501 """ pass def test_test_inbox_forwarders_for_inbox(self): """Test case for test_inbox_forwarders_for_inbox Test inbox forwarders for inbox # noqa: E501 """ pass def test_test_new_inbox_forwarder(self): """Test case for test_new_inbox_forwarder Test new inbox forwarder # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
StarcoderdataPython
3284294
<filename>utils.py import torch import torch.nn as nn import numpy as np from scipy.interpolate import interp1d import os import sys import random import config def upgrade_resolution(arr, scale): x = np.arange(0, arr.shape[0]) f = interp1d(x, arr, kind='linear', axis=0, fill_value='extrapolate') scale_x = np.arange(0, arr.shape[0], 1 / scale) up_scale = f(scale_x) return up_scale def get_proposal_oic(tList, wtcam, final_score, c_pred, scale, v_len, sampling_frames, num_segments, _lambda=0.25, gamma=0.2): t_factor = float(16 * v_len) / (scale * num_segments * sampling_frames) temp = [] for i in range(len(tList)): c_temp = [] temp_list = np.array(tList[i])[0] if temp_list.any(): grouped_temp_list = grouping(temp_list) for j in range(len(grouped_temp_list)): inner_score = np.mean(wtcam[grouped_temp_list[j], i, 0]) len_proposal = len(grouped_temp_list[j]) outer_s = max(0, int(grouped_temp_list[j][0] - _lambda * len_proposal)) outer_e = min(int(wtcam.shape[0] - 1), int(grouped_temp_list[j][-1] + _lambda * len_proposal)) outer_temp_list = list(range(outer_s, int(grouped_temp_list[j][0]))) + list(range(int(grouped_temp_list[j][-1] + 1), outer_e + 1)) if len(outer_temp_list) == 0: outer_score = 0 else: outer_score = np.mean(wtcam[outer_temp_list, i, 0]) c_score = inner_score - outer_score + gamma * final_score[c_pred[i]] t_start = grouped_temp_list[j][0] * t_factor t_end = (grouped_temp_list[j][-1] + 1) * t_factor c_temp.append([c_pred[i], c_score, t_start, t_end]) temp.append(c_temp) return temp def result2json(result): result_file = [] for i in range(len(result)): line = {'label': config.class_dict[result[i][0]], 'score': result[i][1], 'segment': [result[i][2], result[i][3]]} result_file.append(line) return result_file def grouping(arr): return np.split(arr, np.where(np.diff(arr) != 1)[0] + 1) def save_best_record_thumos(test_info, file_path): fo = open(file_path, "w") fo.write("Step: {}\n".format(test_info["step"][-1])) fo.write("Test_acc: {:.4f}\n".format(test_info["test_acc"][-1])) fo.write("average_mAP[0.1:0.7]: {:.4f}\n".format(test_info["average_mAP[0.1:0.7]"][-1])) fo.write("average_mAP[0.1:0.5]: {:.4f}\n".format(test_info["average_mAP[0.1:0.5]"][-1])) fo.write("average_mAP[0.3:0.7]: {:.4f}\n".format(test_info["average_mAP[0.3:0.7]"][-1])) tIoU_thresh = np.linspace(0.1, 0.7, 7) for i in range(len(tIoU_thresh)): fo.write("mAP@{:.1f}: {:.4f}\n".format(tIoU_thresh[i], test_info["mAP@{:.1f}".format(tIoU_thresh[i])][-1])) fo.close() def minmax_norm(act_map, min_val=None, max_val=None): if min_val is None or max_val is None: relu = nn.ReLU() max_val = relu(torch.max(act_map, dim=1)[0]) min_val = relu(torch.min(act_map, dim=1)[0]) delta = max_val - min_val delta[delta <= 0] = 1 ret = (act_map - min_val) / delta.detach() ret[ret > 1] = 1 ret[ret < 0] = 0 return ret def nms(proposals, thresh): proposals = np.array(proposals) x1 = proposals[:, 2] x2 = proposals[:, 3] scores = proposals[:, 1] areas = x2 - x1 + 1 order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(proposals[i].tolist()) xx1 = np.maximum(x1[i], x1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) inter = np.maximum(0.0, xx2 - xx1 + 1) iou = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(iou < thresh)[0] order = order[inds + 1] return keep def set_seed(seed): torch.manual_seed(seed) np.random.seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) torch.backends.cudnn.deterministic=True torch.backends.cudnn.benchmark=False def save_config(config, file_path): fo = open(file_path, "w") fo.write("Configurtaions:\n") fo.write(str(config)) fo.close() def feature_sampling(features, start, end, num_divide): step = (end - start) / num_divide feature_lst = torch.zeros((num_divide, features.shape[1])).cuda() for i in range(num_divide): start_point = int(start + step * i) end_point = int(start + step * (i+1)) if start_point >= end_point: end_point += 1 sample_id = np.random.randint(start_point, end_point) feature_lst[i] = features[sample_id] return feature_lst.mean(dim=0) def get_oic_score(cas_sigmoid_fuse, start, end, delta=0.25): length = end - start + 1 inner_score = torch.mean(cas_sigmoid_fuse[start:end+1]) outer_s = max(0, int(start - delta * length)) outer_e = min(int(cas_sigmoid_fuse.shape[0] - 1), int(end + delta * length)) outer_seg = list(range(outer_s, start)) + list(range(end + 1, outer_e + 1)) if len(outer_seg) == 0: outer_score = 0 else: outer_score = torch.mean(cas_sigmoid_fuse[outer_seg]) return inner_score - outer_score def select_seed(cas_sigmoid_fuse, point_anno): point_anno_agnostic = point_anno.max(dim=2)[0] bkg_seed = torch.zeros_like(point_anno_agnostic) act_seed = point_anno.clone().detach() act_thresh = 0.1 bkg_thresh = 0.95 bkg_score = cas_sigmoid_fuse[:,:,-1] for b in range(point_anno.shape[0]): act_idx = torch.nonzero(point_anno_agnostic[b]).squeeze(1) """ most left """ if act_idx[0] > 0: bkg_score_tmp = bkg_score[b,:act_idx[0]] idx_tmp = bkg_seed[b,:act_idx[0]] idx_tmp[bkg_score_tmp >= bkg_thresh] = 1 if idx_tmp.sum() >= 1: start_index = idx_tmp.nonzero().squeeze(1)[-1] idx_tmp[:start_index] = 1 else: max_index = bkg_score_tmp.argmax(dim=0) idx_tmp[:max_index+1] = 1 """ pseudo action point selection """ for j in range(act_idx[0] - 1, -1, -1): if bkg_score[b][j] <= act_thresh and bkg_seed[b][j] < 1: act_seed[b, j] = act_seed[b, act_idx[0]] else: break """ most right """ if act_idx[-1] < (point_anno.shape[1] - 1): bkg_score_tmp = bkg_score[b,act_idx[-1]+1:] idx_tmp = bkg_seed[b,act_idx[-1]+1:] idx_tmp[bkg_score_tmp >= bkg_thresh] = 1 if idx_tmp.sum() >= 1: start_index = idx_tmp.nonzero().squeeze(1)[0] idx_tmp[start_index:] = 1 else: max_index = bkg_score_tmp.argmax(dim=0) idx_tmp[max_index:] = 1 """ pseudo action point selection """ for j in range(act_idx[-1] + 1, point_anno.shape[1]): if bkg_score[b][j] <= act_thresh and bkg_seed[b][j] < 1: act_seed[b, j] = act_seed[b, act_idx[-1]] else: break """ between two instances """ for i in range(len(act_idx) - 1): if act_idx[i+1] - act_idx[i] <= 1: continue bkg_score_tmp = bkg_score[b,act_idx[i]+1:act_idx[i+1]] idx_tmp = bkg_seed[b,act_idx[i]+1:act_idx[i+1]] idx_tmp[bkg_score_tmp >= bkg_thresh] = 1 if idx_tmp.sum() >= 2: start_index = idx_tmp.nonzero().squeeze(1)[0] end_index = idx_tmp.nonzero().squeeze(1)[-1] idx_tmp[start_index+1:end_index] = 1 else: max_index = bkg_score_tmp.argmax(dim=0) idx_tmp[max_index] = 1 """ pseudo action point selection """ for j in range(act_idx[i] + 1, act_idx[i+1]): if bkg_score[b][j] <= act_thresh and bkg_seed[b][j] < 1: act_seed[b, j] = act_seed[b, act_idx[i]] else: break for j in range(act_idx[i+1] - 1, act_idx[i], -1): if bkg_score[b][j] <= act_thresh and bkg_seed[b][j] < 1: act_seed[b, j] = act_seed[b, act_idx[i+1]] else: break return act_seed, bkg_seed
StarcoderdataPython
64999
#$Id$ class Category: """This class is used to create object for category.""" def __init__(self): """Initialize parameters for Category.""" self.id = "" self.name = "" def set_id(self, id): """Set id. Args: id(str): Id. """ self.id = id def get_id(self): """Get id. Returns: str: Id. """ return self.id def set_name(self, name): """Set name. Args: name(str): name. """ self.name = name def get_name(self): """Get name. Returns: str: name. """ return self.name
StarcoderdataPython
1703828
from __future__ import print_function import re import tempfile from .base import Base from .hash import HASH_ALGORITHM from .signature import SIGN_ALGORITHM _DIRTY_PATH = re.compile('(?:^|/)(\.\.?)(?:/|$)') class Downloader(Base): def _validate_entry_path(self, path): if path.startswith('/'): raise Exception( 'Unexpected absolute entry in manifest: {}'.format(path)) match = _DIRTY_PATH.search(path) if match: if match.group(1) == '.': raise Exception( 'Manifest entry contains redundant \'./\' segments: {}' .format(path)) raise Exception( 'Manifest entry contains disallowed \'../\' segments: {}' .format(path)) def _validate_manifest(self, manifest): '''Validates the manifest. Returns list of (hash, mode, path)-tuples for the file entries in the manifest. ''' manifest.seek(0) for hash_algorithm in manifest: break else: raise Exception('Manifest is empty') if hash_algorithm[:-1].decode() != HASH_ALGORITHM: raise Exception( 'Unexpected hashing algorithm in manifest: {}' .format(hash_algorithm[:-1])) entries = [] for entry in manifest: if entry == b'---\n': break entries.append(entry) else: raise Exception('Manifest is not trusted: missing signature') for sign_algorithm in manifest: break else: raise Exception('Manifest is not trusted: missing signature') if sign_algorithm[:-1].decode() != SIGN_ALGORITHM: raise Exception( 'Unexpected signing algorithm in manifest: {}' .format(sign_algorithm[:-1])) manifest_hash = self.get_hash([hash_algorithm] + entries) signature = b''.join(list(manifest)) if not self.verify(manifest_hash, signature): raise Exception( 'Manifest is not trusted: signature verification failed') result = [] for entry in entries: content_hash, mode, path = entry[:-1].split(b' ', 2) content_hash = content_hash.decode() mode = int(mode, 8) path = path.decode() self._validate_entry_path(path) result.append((content_hash, mode, path)) return result def download(self): with tempfile.SpooledTemporaryFile(max_size=1024*1024) as manifest: self.download_manifest(manifest) entries = self._validate_manifest(manifest) self.ensure_directory(self.directory) for content_hash, mode, path in entries: self.download_file(path, mode=mode, content_hash=content_hash) run = download
StarcoderdataPython
1881308
<filename>auction_api/api/bidder_admin.py import pymongo from werkzeug.wrappers.response import Response import utils.globales as globales from bson.json_util import dumps def get_requests_by_status(status): if status not in ["0","1"]: return Response("Invalid Status",400) mongo_cli = pymongo.MongoClient(globales.mongodb_uri) db = mongo_cli[globales.mongodb_db] col = db['bidders'] cur = col.find({"status" : int(status)}) result = dumps(cur) cur.close() return Response(result,200) def delete_pending_requests(id_number): pass def approve_pending_requests(id_number): pass
StarcoderdataPython
1952711
numbers = [int(s) for s in input().split(', ')] def get_positive_numbers(numbers): return [str(s) for s in numbers if s >= 0] def get_negative_numbers(numbers): return [str(s) for s in numbers if s < 0] def get_odd_numbers(numbers): return [str(s) for s in numbers if s % 2 != 0] def get_even_numbers(numbers): return [str(s) for s in numbers if s % 2 == 0] def print_result(positive_numbers, negative_numbers, odd_numbers, even_numbers): print(f'Positive: {", ".join(positive_numbers)}') print(f'Negative: {", ".join(negative_numbers)}') print(f'Even: {", ".join(even_numbers)}') print(f'Odd: {", ".join(odd_numbers)}') positive_numbers = get_positive_numbers(numbers) negative_numbers = get_negative_numbers(numbers) odd_numbers = get_odd_numbers(numbers) even_numbers = get_even_numbers(numbers) print_result(positive_numbers, negative_numbers, odd_numbers, even_numbers)
StarcoderdataPython
11205921
import datetime as dt from collections import Sequence from pandas_datareader.data import DataReader from .download_splits_dividends import download_splits_dividends def download_stock(symbol, start_date=dt.datetime(1990, 1, 1)): # Download assets. stock = DataReader(symbol, "yahoo", start_date) stock.rename(columns={"Adj Close": "Adj. Close"}, inplace=True) # Compute the adjusted prices. ratio = stock["Adj. Close"] / stock["Close"] stock["Adj. Open"] = stock["Open"] * ratio stock["Adj. High"] = stock["High"] * ratio stock["Adj. Low"] = stock["Low"] * ratio stock["Adj. Volume"] = stock["Volume"] * ratio stock["Split Ratio"] = 1.0 stock["Ex-Dividend"] = 0.0 # Fetch the dividends and splits for this stock. Notice that we restrict the # dates to lie in the appropriate range. ds = download_splits_dividends(symbol) # Store dividend data. if "DIVIDEND" in ds.index: divs = ds.ix[["DIVIDEND"]].set_index("datetime") idx = divs.index.intersection(stock.index) stock.ix[idx, "Ex-Dividend"] = [ float(x) for x in divs.ix[idx, "adjustment"] ] # Store stock split data. if "SPLIT" in ds.index: splits = ds.ix[["SPLIT"]].set_index("datetime") splits["adjustment"] = [ float(x.split(":")[0]) / float(x.split(":")[1]) for x in splits["adjustment"] ] idx = splits.index.intersection(stock.index) stock.ix[idx, "Split Ratio"] = splits.ix[idx, "adjustment"] return stock
StarcoderdataPython
3552544
<reponame>ghanigreen/pytest_code import textwrap from math import sqrt from pytest import approx def magnitude(x, y): return sqrt(x * x + y * y) def test_simple_math(): assert abs(0.1 + 0.2) - 0.3 < 0.0001 def test_simple_math2(): assert (-0.1 - 0.2) + 0.3 < 0.0001 def test_approx_simple(): assert 0.1 + 0.2 == approx(0.3) def test_approx_list(): assert [0.1 + 1.2, 0.2 + 0.8] == approx([1.3, 1.0]) def test_approx_dict(): values = {"v1": 0.1 + 1.2, "v2": 0.2 + 0.8} assert values == approx(dict(v1=1.3, v2=1.0)) def test_approx_simple_fail(): assert 0.1 + 0.2 == approx(0.35) def test_approx_list_fail(): assert [0.1 + 1.2, 0.2 + 0.8] == approx([1.3, 1.1]) def test_approx_numpy(): import numpy as np values = np.array([0.1, 0.2]) + np.array([1.2, 0.8]) assert values == approx(np.array([1.3, 1.0])) def test_magnitude_plain(): assert abs(magnitude(8.0, 20.0) - 21.540659) < 0.00001 def test_magnitude(): assert magnitude(8.0, 20.0) == approx(21.540659) def get_default_health(class_name): assert class_name == "warrior" return 80 def test_default_health(): health = get_default_health("warrior") assert health == 95 def get_default_player_class(): return "warrior" def test_default_player_class(): x = get_default_player_class() assert x == "sorcerer" def get_short_class_description(class_name): assert class_name == "warrior" return "A battle-hardened veteran, favors heavy armor and weapons." def test_warrior_short_description(): desc = get_short_class_description("warrior") assert ( desc == "A battle-hardened veteran, can equip heavy armor and weapons." ) def get_long_class_description(class_name): assert class_name == "warrior" return textwrap.dedent( """\ A seasoned veteran of many battles. High Strength and Dexterity allow to yield heavy armor and weapons, as well as carry more equipment while keeping a light roll. Weak in magic. """ ) def test_warrior_long_description(): desc = get_long_class_description("warrior") assert ( desc == textwrap.dedent( """\ A seasoned veteran of many battles. Strength and Dexterity allow to yield heavy armor and weapons, as well as carry more equipment. Weak in magic. """ ) ) def get_starting_equipment(class_name): assert class_name == "warrior" return ["long sword", "warrior set", "shield"] def test_get_starting_equiment(): expected = ["long sword", "shield"] assert get_starting_equipment("warrior") == expected def test_long_list(): x = [str(i) for i in range(100)] y = [str(i) for i in range(0, 100, 2)] assert x == y def get_classes_starting_health(): return {"warrior": 85, "sorcerer": 55, "knight": 95} def test_starting_health(): expected = {"warrior": 85, "sorcerer": 50} assert get_classes_starting_health() == expected def get_player_classes(): return {"warrior", "knight", "sorcerer"} def test_player_classes(): assert get_player_classes() == {"warrior", "sorcerer"}
StarcoderdataPython