id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
3262699
<gh_stars>10-100 import unittest import collections from fontParts.base import FontPartsError class TestGuideline(unittest.TestCase): def getGuideline_generic(self): guideline, _ = self.objectGenerator("guideline") guideline.x = 1 guideline.y = 2 guideline.angle = 90 guideline.name = "Test Guideline" return guideline def getGuideline_fontGuideline(self): font, _ = self.objectGenerator("font") guideline = font.appendGuideline((1, 2), 90, "Test Guideline Font") return guideline def getGuideline_glyphGuideline(self): font, _ = self.objectGenerator("font") layer = font.newLayer("L") glyph = layer.newGlyph("X") guideline = glyph.appendGuideline((1, 2), 90, "Test Guideline Glyph") return guideline # ---- # repr # ---- def test_reprContents(self): guideline = self.getGuideline_generic() value = guideline._reprContents() self.assertIsInstance(value, list) for i in value: self.assertIsInstance(i, str) def test_reprContents_noGlyph(self): guideline, _ = self.objectGenerator("guideline") value = guideline._reprContents() self.assertIsInstance(value, list) for i in value: self.assertIsInstance(i, str) def test_reprContents_Layer(self): guideline = self.getGuideline_glyphGuideline() value = guideline._reprContents() self.assertIsInstance(value, list) for i in value: self.assertIsInstance(i, str) # -------- # Attributes # -------- # x def test_x_get_generic(self): guideline = self.getGuideline_generic() self.assertEqual( guideline.x, 1 ) def test_x_get_fontGuideline(self): guideline = self.getGuideline_fontGuideline() self.assertEqual( guideline.x, 1 ) def test_x_get_glyphGuideline(self): guideline = self.getGuideline_glyphGuideline() self.assertEqual( guideline.x, 1 ) def test_x_set_valid_zero_generic(self): guideline = self.getGuideline_generic() guideline.x = 0 self.assertEqual( guideline.x, 0 ) def test_x_set_valid_zero_fontGuideline(self): guideline = self.getGuideline_fontGuideline() guideline.x = 0 self.assertEqual( guideline.x, 0 ) def test_x_set_valid_zero_glyphGuideline(self): guideline = self.getGuideline_glyphGuideline() guideline.x = 0 self.assertEqual( guideline.x, 0 ) def test_x_set_valid_positive(self): guideline = self.getGuideline_generic() guideline.x = 1 self.assertEqual( guideline.x, 1 ) def test_x_set_valid_negative(self): guideline = self.getGuideline_generic() guideline.x = -1 self.assertEqual( guideline.x, -1 ) def test_x_set_valid_positive_float(self): guideline = self.getGuideline_generic() guideline.x = 1.1 self.assertEqual( guideline.x, 1.1 ) def test_x_set_valid_negative_float(self): guideline = self.getGuideline_generic() guideline.x = -1.1 self.assertEqual( guideline.x, -1.1 ) def test_x_set_valid_None(self): guideline = self.getGuideline_generic() guideline.x = None self.assertEqual( guideline.x, 0 ) def test_x_set_invalid_string(self): guideline = self.getGuideline_generic() with self.assertRaises(TypeError): guideline.x = "ABC" # y def test_y_get_generic(self): guideline = self.getGuideline_generic() self.assertEqual( guideline.y, 2 ) def test_y_get_fontGuideline(self): guideline = self.getGuideline_fontGuideline() self.assertEqual( guideline.y, 2 ) def test_y_get_glyphGuideline(self): guideline = self.getGuideline_glyphGuideline() self.assertEqual( guideline.y, 2 ) def test_y_set_valid_zero_generic(self): guideline = self.getGuideline_generic() guideline.y = 0 self.assertEqual( guideline.y, 0 ) def test_y_set_valid_zero_fontGuideline(self): guideline = self.getGuideline_fontGuideline() guideline.y = 0 self.assertEqual( guideline.y, 0 ) def test_y_set_valid_zero_glyphGuideline(self): guideline = self.getGuideline_glyphGuideline() guideline.y = 0 self.assertEqual( guideline.y, 0 ) def test_y_set_valid_positive(self): guideline = self.getGuideline_generic() guideline.y = 1 self.assertEqual( guideline.y, 1 ) def test_y_set_valid_negative(self): guideline = self.getGuideline_generic() guideline.y = -1 self.assertEqual( guideline.y, -1 ) def test_y_set_valid_positive_float(self): guideline = self.getGuideline_generic() guideline.y = 1.1 self.assertEqual( guideline.y, 1.1 ) def test_y_set_valid_negative_float(self): guideline = self.getGuideline_generic() guideline.y = -1.1 self.assertEqual( guideline.y, -1.1 ) def test_y_set_valid_None(self): guideline = self.getGuideline_generic() guideline.y = None self.assertEqual( guideline.y, 0 ) def test_y_set_invalid_string(self): guideline = self.getGuideline_generic() with self.assertRaises(TypeError): guideline.y = "ABC" # angle def test_angle_get_generic(self): guideline = self.getGuideline_generic() self.assertEqual( guideline.angle, 90 ) def test_angle_get_fontGuideline(self): guideline = self.getGuideline_fontGuideline() self.assertEqual( guideline.angle, 90 ) def test_angle_get_glyphGuideline(self): guideline = self.getGuideline_glyphGuideline() self.assertEqual( guideline.angle, 90 ) def test_angle_set_valid_zero_generic(self): guideline = self.getGuideline_generic() guideline.angle = 0 self.assertEqual( guideline.angle, 0 ) def test_angle_set_valid_zero_fontGuideline(self): guideline = self.getGuideline_fontGuideline() guideline.angle = 0 self.assertEqual( guideline.angle, 0 ) def test_angle_set_valid_zero_glyphGuideline(self): guideline = self.getGuideline_glyphGuideline() guideline.angle = 0 self.assertEqual( guideline.angle, 0 ) def test_angle_set_valid_positive(self): guideline = self.getGuideline_generic() guideline.angle = 10 self.assertEqual( guideline.angle, 10 ) def test_angle_set_valid_negative(self): guideline = self.getGuideline_generic() guideline.angle = -10 self.assertEqual( guideline.angle, 350 ) def test_angle_set_valid_positive_float(self): guideline = self.getGuideline_generic() guideline.angle = 10.1 self.assertEqual( guideline.angle, 10.1 ) def test_angle_set_valid_negative_float(self): guideline = self.getGuideline_generic() guideline.angle = -10.1 self.assertEqual( guideline.angle, 349.9 ) def test_angle_set_valid_positive_edge(self): guideline = self.getGuideline_generic() guideline.angle = 360 self.assertEqual( guideline.angle, 360 ) def test_angle_set_valid_negative_edge(self): guideline = self.getGuideline_generic() guideline.angle = -360 self.assertEqual( guideline.angle, 0 ) def test_angle_set_valid_None(self): guideline = self.getGuideline_generic() guideline.angle = None self.assertEqual( guideline.angle, 0 ) def test_angle_set_invalid_positive_edge(self): guideline = self.getGuideline_generic() with self.assertRaises(ValueError): guideline.angle = 361 def test_angle_set_invalid_negative_edge(self): guideline = self.getGuideline_generic() with self.assertRaises(ValueError): guideline.angle = -361 def test_angle_set_invalid_string(self): guideline = self.getGuideline_generic() with self.assertRaises(TypeError): guideline.angle = "ABC" def test_angle_set_valid_none_x0_y0(self): guideline = self.getGuideline_generic() guideline.x = 0 guideline.y = 0 guideline.angle = None self.assertEqual( guideline.angle, 0 ) def test_angle_set_valid_none_x1_y0(self): guideline = self.getGuideline_generic() guideline.x = 1 guideline.y = 0 guideline.angle = None self.assertEqual( guideline.angle, 90 ) def test_angle_set_valid_none_x0_y1(self): guideline = self.getGuideline_generic() guideline.x = 0 guideline.y = 1 guideline.angle = None self.assertEqual( guideline.angle, 0 ) def test_angle_set_valid_none_x1_y1(self): guideline = self.getGuideline_generic() guideline.x = 1 guideline.y = 1 guideline.angle = None self.assertEqual( guideline.angle, 0 ) # index def getGuideline_index(self): glyph, _ = self.objectGenerator("glyph") glyph.appendGuideline((0, 0), 90, "guideline 0") glyph.appendGuideline((0, 0), 90, "guideline 1") glyph.appendGuideline((0, 0), 90, "guideline 2") return glyph def test_get_index_noParent(self): guideline, _ = self.objectGenerator("guideline") self.assertIsNone(guideline.index) def test_get_index(self): glyph = self.getGuideline_index() for i, guideline in enumerate(glyph.guidelines): self.assertEqual(guideline.index, i) def test_set_index_noParent(self): guideline, _ = self.objectGenerator("guideline") with self.assertRaises(FontPartsError): guideline.index = 1 def test_set_index_positive(self): glyph = self.getGuideline_index() guideline = glyph.guidelines[0] with self.assertRaises(FontPartsError): guideline.index = 2 def test_set_index_negative(self): glyph = self.getGuideline_index() guideline = glyph.guidelines[1] with self.assertRaises(FontPartsError): guideline.index = -1 # name def test_name_get_none(self): guideline, _ = self.objectGenerator("guideline") self.assertIsNone(guideline.name) def test_name_set_valid(self): guideline = self.getGuideline_generic() guideline.name = u"foo" self.assertEqual(guideline.name, u"foo") def test_name_set_none(self): guideline = self.getGuideline_generic() guideline.name = None self.assertIsNone(guideline.name) def test_name_set_invalid(self): guideline = self.getGuideline_generic() with self.assertRaises(TypeError): guideline.name = 123 # color def test_color_get_none(self): guideline = self.getGuideline_generic() self.assertIsNone(guideline.color) def test_color_set_valid_max(self): guideline = self.getGuideline_generic() guideline.color = (1, 1, 1, 1) self.assertEqual(guideline.color, (1, 1, 1, 1)) def test_color_set_valid_min(self): guideline = self.getGuideline_generic() guideline.color = (0, 0, 0, 0) self.assertEqual(guideline.color, (0, 0, 0, 0)) def test_color_set_valid_decimal(self): guideline = self.getGuideline_generic() guideline.color = (0.1, 0.2, 0.3, 0.4) self.assertEqual(guideline.color, (0.1, 0.2, 0.3, 0.4)) def test_color_set_none(self): guideline = self.getGuideline_generic() guideline.color = None self.assertIsNone(guideline.color) def test_color_set_invalid_over_max(self): guideline = self.getGuideline_generic() with self.assertRaises(ValueError): guideline.color = (1.1, 0.2, 0.3, 0.4) def test_color_set_invalid_uner_min(self): guideline = self.getGuideline_generic() with self.assertRaises(ValueError): guideline.color = (-0.1, 0.2, 0.3, 0.4) def test_color_set_invalid_too_few(self): guideline = self.getGuideline_generic() with self.assertRaises(ValueError): guideline.color = (0.1, 0.2, 0.3) def test_color_set_invalid_string(self): guideline = self.getGuideline_generic() with self.assertRaises(TypeError): guideline.color = "0.1,0.2,0.3,0.4" def test_color_set_invalid_int(self): guideline = self.getGuideline_generic() with self.assertRaises(TypeError): guideline.color = 123 # identifier def test_identifier_get_none(self): guideline = self.getGuideline_generic() self.assertIsNone(guideline.identifier) def test_identifier_generated_type(self): guideline = self.getGuideline_generic() guideline.getIdentifier() self.assertIsInstance(guideline.identifier, str) def test_identifier_consistency(self): guideline = self.getGuideline_generic() guideline.getIdentifier() # get: twice to test consistency self.assertEqual(guideline.identifier, guideline.identifier) def test_identifier_cannot_set(self): # identifier is a read-only property guideline = self.getGuideline_generic() with self.assertRaises(FontPartsError): guideline.identifier = "ABC" def test_identifier_force_set(self): identifier = "ABC" guideline = self.getGuideline_generic() guideline._setIdentifier(identifier) self.assertEqual(guideline.identifier, identifier) # ------- # Methods # ------- def getGuideline_copy(self): guideline = self.getGuideline_generic() guideline.name = "foo" guideline.color = (0.1, 0.2, 0.3, 0.4) return guideline # copy def test_copy_seperate_objects(self): guideline = self.getGuideline_copy() copied = guideline.copy() self.assertIsNot(guideline, copied) def test_copy_same_name(self): guideline = self.getGuideline_copy() copied = guideline.copy() self.assertEqual(guideline.name, copied.name) def test_copy_same_color(self): guideline = self.getGuideline_copy() copied = guideline.copy() self.assertEqual(guideline.color, copied.color) def test_copy_same_identifier(self): guideline = self.getGuideline_copy() copied = guideline.copy() self.assertEqual(guideline.identifier, copied.identifier) def test_copy_generated_identifier_different(self): guideline = self.getGuideline_copy() copied = guideline.copy() guideline.getIdentifier() copied.getIdentifier() self.assertNotEqual(guideline.identifier, copied.identifier) def test_copy_same_x(self): guideline = self.getGuideline_copy() copied = guideline.copy() self.assertEqual(guideline.x, copied.x) def test_copy_same_y(self): guideline = self.getGuideline_copy() copied = guideline.copy() self.assertEqual(guideline.y, copied.y) def test_copy_same_angle(self): guideline = self.getGuideline_copy() copied = guideline.copy() self.assertEqual(guideline.angle, copied.angle) # transform def getGuideline_transform(self): guideline = self.getGuideline_generic() guideline.angle = 45.0 return guideline def test_transformBy_valid_no_origin(self): guideline = self.getGuideline_transform() guideline.transformBy((2, 0, 0, 3, -3, 2)) self.assertEqual(guideline.x, -1) self.assertEqual(guideline.y, 8) self.assertAlmostEqual(guideline.angle, 56.310, places=3) def test_transformBy_valid_origin(self): guideline = self.getGuideline_transform() guideline.transformBy((2, 0, 0, 2, 0, 0), origin=(1, 2)) self.assertEqual(guideline.x, 1) self.assertEqual(guideline.y, 2) self.assertAlmostEqual(guideline.angle, 45.000, places=3) def test_transformBy_invalid_one_string_value(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.transformBy((1, 0, 0, 1, 0, "0")) def test_transformBy_invalid_all_string_values(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.transformBy("1, 0, 0, 1, 0, 0") def test_transformBy_invalid_int_value(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.transformBy(123) # moveBy def test_moveBy_valid(self): guideline = self.getGuideline_transform() guideline.moveBy((-1, 2)) self.assertEqual(guideline.x, 0) self.assertEqual(guideline.y, 4) self.assertAlmostEqual(guideline.angle, 45.000, places=3) def test_moveBy_invalid_one_string_value(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.moveBy((-1, "2")) def test_moveBy_invalid_all_strings_value(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.moveBy("-1, 2") def test_moveBy_invalid_int_value(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.moveBy(1) # scaleBy def test_scaleBy_valid_one_value_no_origin(self): guideline = self.getGuideline_transform() guideline.scaleBy((-2)) self.assertEqual(guideline.x, -2) self.assertEqual(guideline.y, -4) self.assertAlmostEqual(guideline.angle, 225.000, places=3) def test_scaleBy_valid_two_values_no_origin(self): guideline = self.getGuideline_transform() guideline.scaleBy((-2, 3)) self.assertEqual(guideline.x, -2) self.assertEqual(guideline.y, 6) self.assertAlmostEqual(guideline.angle, 123.690, places=3) def test_scaleBy_valid_two_values_origin(self): guideline = self.getGuideline_transform() guideline.scaleBy((-2, 3), origin=(1, 2)) self.assertEqual(guideline.x, 1) self.assertEqual(guideline.y, 2) self.assertAlmostEqual(guideline.angle, 123.690, places=3) def test_scaleBy_invalid_one_string_value(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.scaleBy((-1, "2")) def test_scaleBy_invalid_two_string_values(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.scaleBy("-1, 2") def test_scaleBy_invalid_tuple_too_many_values(self): guideline = self.getGuideline_transform() with self.assertRaises(ValueError): guideline.scaleBy((-1, 2, -3)) # rotateBy def test_rotateBy_valid_no_origin(self): guideline = self.getGuideline_transform() guideline.rotateBy(45) self.assertAlmostEqual(guideline.x, -0.707, places=3) self.assertAlmostEqual(guideline.y, 2.121, places=3) self.assertAlmostEqual(guideline.angle, 0.000, places=3) def test_rotateBy_valid_origin(self): guideline = self.getGuideline_transform() guideline.rotateBy(45, origin=(1, 2)) self.assertAlmostEqual(guideline.x, 1) self.assertAlmostEqual(guideline.y, 2) self.assertAlmostEqual(guideline.angle, 0.000, places=3) def test_rotateBy_invalid_string_value(self): guideline = self.getGuideline_transform() with self.assertRaises(TypeError): guideline.rotateBy("45") def test_rotateBy_invalid_too_large_value_positive(self): guideline = self.getGuideline_transform() with self.assertRaises(ValueError): guideline.rotateBy(361) def test_rotateBy_invalid_too_large_value_negative(self): guideline = self.getGuideline_transform() with self.assertRaises(ValueError): guideline.rotateBy(-361) # skewBy def test_skewBy_valid_no_origin_one_value(self): guideline = self.getGuideline_transform() guideline.skewBy(100) self.assertAlmostEqual(guideline.x, -10.343, places=3) self.assertEqual(guideline.y, 2.0) self.assertAlmostEqual(guideline.angle, 8.525, places=3) def test_skewBy_valid_no_origin_two_values(self): guideline = self.getGuideline_transform() guideline.skewBy((100, 200)) self.assertAlmostEqual(guideline.x, -10.343, places=3) self.assertAlmostEqual(guideline.y, 2.364, places=3) self.assertAlmostEqual(guideline.angle, 5.446, places=3) def test_skewBy_valid_origin_one_value(self): guideline = self.getGuideline_transform() guideline.skewBy(100, origin=(1, 2)) self.assertEqual(guideline.x, 1) self.assertEqual(guideline.y, 2) self.assertAlmostEqual(guideline.angle, 8.525, places=3) def test_skewBy_valid_origin_two_values(self): guideline = self.getGuideline_transform() guideline.skewBy((100, 200), origin=(1, 2)) self.assertEqual(guideline.x, 1) self.assertEqual(guideline.y, 2) self.assertAlmostEqual(guideline.angle, 5.446, places=3) # ------------- # Normalization # ------------- # round def getGuideline_round(self): guideline = self.getGuideline_generic() guideline.x = 1.1 guideline.y = 2.5 guideline.angle = 45.5 return guideline def test_round_close_to(self): guideline = self.getGuideline_round() guideline.round() self.assertEqual(guideline.x, 1) def test_round_at_half(self): guideline = self.getGuideline_round() guideline.round() self.assertEqual(guideline.y, 3) def test_round_angle(self): guideline = self.getGuideline_round() guideline.round() self.assertEqual(guideline.angle, 45.5) # ---- # Hash # ---- def test_hash_object_self(self): guideline_one = self.getGuideline_generic() self.assertEqual( hash(guideline_one), hash(guideline_one) ) def test_hash_object_other(self): guideline_one = self.getGuideline_generic() guideline_two = self.getGuideline_generic() self.assertNotEqual( hash(guideline_one), hash(guideline_two) ) def test_hash_object_self_variable_assignment(self): guideline_one = self.getGuideline_generic() a = guideline_one self.assertEqual( hash(guideline_one), hash(a) ) def test_hash_object_other_variable_assignment(self): guideline_one = self.getGuideline_generic() guideline_two = self.getGuideline_generic() a = guideline_one self.assertNotEqual( hash(guideline_two), hash(a) ) def test_is_hashable(self): guideline_one = self.getGuideline_generic() self.assertTrue( isinstance(guideline_one, collections.abc.Hashable) ) # ------- # Parents # ------- def test_get_parent_font(self): font, _ = self.objectGenerator("font") layer = font.newLayer("L") glyph = layer.newGlyph("X") guideline = glyph.appendGuideline((0, 0), 90, "Test Guideline") self.assertIsNotNone(guideline.font) self.assertEqual( guideline.font, font ) def test_get_parent_noFont(self): layer, _ = self.objectGenerator("layer") glyph = layer.newGlyph("X") guideline = glyph.appendGuideline((0, 0), 90, "Test Guideline") self.assertIsNone(guideline.font) def test_get_parent_layer(self): layer, _ = self.objectGenerator("layer") glyph = layer.newGlyph("X") guideline = glyph.appendGuideline((0, 0), 90, "Test Guideline") self.assertIsNotNone(guideline.layer) self.assertEqual( guideline.layer, layer ) def test_get_parent_noLayer(self): glyph, _ = self.objectGenerator("glyph") guideline = glyph.appendGuideline((0, 0), 90, "Test Guideline") self.assertIsNone(guideline.font) self.assertIsNone(guideline.layer) def test_get_parent_glyph(self): glyph, _ = self.objectGenerator("glyph") guideline = glyph.appendGuideline((0, 0), 90, "Test Guideline") self.assertIsNotNone(guideline.glyph) self.assertEqual( guideline.glyph, glyph ) def test_get_parent_noGlyph(self): guideline, _ = self.objectGenerator("guideline") self.assertIsNone(guideline.font) self.assertIsNone(guideline.layer) self.assertIsNone(guideline.glyph) def test_set_parent_glyph(self): glyph, _ = self.objectGenerator("glyph") guideline = self.getGuideline_generic() guideline.glyph = glyph self.assertIsNotNone(guideline.glyph) self.assertEqual( guideline.glyph, glyph ) def test_set_parent_glyph_none(self): guideline, _ = self.objectGenerator("guideline") guideline.glyph = None self.assertIsNone(guideline.glyph) def test_set_parent_font_none(self): guideline, _ = self.objectGenerator("guideline") guideline.font = None self.assertIsNone(guideline.glyph) def test_set_parent_glyph_exists(self): glyph, _ = self.objectGenerator("glyph") otherGlyph, _ = self.objectGenerator("glyph") guideline = glyph.appendGuideline((0, 0), 90, "Test Guideline") with self.assertRaises(AssertionError): guideline.glyph = otherGlyph def test_set_parent_glyph_font_exists(self): guideline = self.getGuideline_fontGuideline() glyph, _ = self.objectGenerator("glyph") with self.assertRaises(AssertionError): guideline.glyph = glyph def test_set_parent_font_font_exists(self): guideline = self.getGuideline_fontGuideline() font, _ = self.objectGenerator("font") with self.assertRaises(AssertionError): guideline.font = font def test_set_parent_font_glyph_exists(self): guideline = self.getGuideline_glyphGuideline() font, _ = self.objectGenerator("font") with self.assertRaises(AssertionError): guideline.font = font # -------- # Equality # -------- def test_object_equal_self(self): guideline_one = self.getGuideline_generic() self.assertEqual( guideline_one, guideline_one ) def test_object_not_equal_other(self): guideline_one = self.getGuideline_generic() guideline_two = self.getGuideline_generic() self.assertNotEqual( guideline_one, guideline_two ) def test_object_equal_self_variable_assignment(self): guideline_one = self.getGuideline_generic() a = guideline_one a.x = 200 self.assertEqual( guideline_one, a ) def test_object_not_equal_other_variable_assignment(self): guideline_one = self.getGuideline_generic() guideline_two = self.getGuideline_generic() a = guideline_one self.assertNotEqual( guideline_two, a ) # --------- # Selection # --------- def test_selected_true(self): guideline = self.getGuideline_generic() try: guideline.selected = False except NotImplementedError: return guideline.selected = True self.assertEqual( guideline.selected, True ) def test_not_selected_false(self): guideline = self.getGuideline_generic() try: guideline.selected = False except NotImplementedError: return self.assertEqual( guideline.selected, False )
StarcoderdataPython
278844
<reponame>aheck/reflectrpc<gh_stars>10-100 from __future__ import unicode_literals, print_function from builtins import bytes, dict, list, int, float, str import json import sys from cmd import Cmd from reflectrpc.client import RpcClient from reflectrpc.client import RpcError import reflectrpc import reflectrpc.cmdline def print_types(types): for t in types: if t['type'] == 'enum': print('enum: %s' % (t['name'])) print('Description: %s' % (t['description'])) for value in t['values']: print(' [%d] %s - %s' % (value['intvalue'], value['name'], value['description'])) elif t['type'] == 'hash': print('hash: %s' % (t['name'])) print('Description: %s' % (t['description'])) for field in t['fields']: print(' [%s] %s - %s' % (field['type'], field['name'], field['description'])) else: print('Unknown class of custom type: %s' % (t['type'])) def print_functions(functions): for func_desc in functions: paramlist = [param['name'] for param in func_desc['params']] paramlist = ', '.join(paramlist) print("%s(%s) - %s" % (func_desc['name'], paramlist, func_desc['description'])) for param in func_desc['params']: print(" [%s] %s - %s" % (param['type'], param['name'], param['description'])) print(" Result: %s - %s" % (func_desc['result_type'], func_desc['result_desc'])) def split_exec_line(line): tokens = [] curtoken = '' intoken = False instring = False lastc = '' arraylevel = 0 hashlevel = 0 for c in line: if c.isspace(): if not intoken: lastc = c continue # end of token? if not arraylevel and not hashlevel and not instring: tokens.append(curtoken.strip()) curtoken = '' intoken = False else: intoken = True if intoken: curtoken += c if c == '"': if lastc != '\\': instring = not instring elif c == '[': if not instring: arraylevel += 1 elif c == ']': if not instring: arraylevel -= 1 elif c == '{': if not instring: hashlevel += 1 elif c == '}': if not instring: hashlevel -= 1 lastc = c if len(curtoken.strip()): tokens.append(curtoken.strip()) # type casting itertokens = iter(tokens) next(itertokens) # skip first token which is the method name for i, t in enumerate(itertokens): i += 1 try: tokens[i] = json.loads(t) except ValueError as e: print("Invalid JSON in parameter %i:" % (i)) print("'%s'" % (t)) return None return tokens class ReflectRpcShell(Cmd): def __init__(self, client): if issubclass(Cmd, object): super().__init__() else: Cmd.__init__(self) self.client = client def connect(self): self.client.enable_auto_reconnect() try: self.retrieve_service_description() self.retrieve_functions() self.retrieve_custom_types() except reflectrpc.client.NetworkError as e: print(e, file=sys.stderr) print('', file=sys.stderr) reflectrpc.cmdline.connection_failed_error(self.client.host, self.client.port, True) except reflectrpc.client.HttpException as e: if e.status == '401': print('Authentication failed\n', file=sys.stderr) reflectrpc.cmdline.connection_failed_error(self.client.host, self.client.port, True) raise e self.prompt = '(rpc) ' if self.client.host.startswith('unix://'): self.intro = "ReflectRPC Shell\n================\n\nType 'help' for available commands\n\nRPC server: %s" % (self.client.host) else: self.intro = "ReflectRPC Shell\n================\n\nType 'help' for available commands\n\nRPC server: %s:%i" % (self.client.host, self.client.port) if self.service_description: self.intro += "\n\nSelf-description of the Service:\n================================\n" if self.service_description['name']: self.intro += self.service_description['name'] if self.service_description['version']: self.intro += " (%s)\n" % (self.service_description['version']) if self.service_description['description']: self.intro += self.service_description['description'] def retrieve_service_description(self): self.service_description = '' try: self.service_description = self.client.rpc_call('__describe_service') except RpcError: pass def retrieve_functions(self): self.functions = [] try: self.functions = self.client.rpc_call('__describe_functions') except RpcError: pass def retrieve_custom_types(self): self.custom_types = [] try: self.custom_types = self.client.rpc_call('__describe_custom_types') except RpcError: pass def complete_doc(self, text, line, start_index, end_index): return self.function_completion(text, line) def complete_exec(self, text, line, start_index, end_index): return self.function_completion(text, line) def complete_notify(self, text, line, start_index, end_index): return self.function_completion(text, line) def function_completion(self, text, line): if len(line.split()) > 2: return [] if len(line.split()) == 2 and text == '': return [] result = [f['name'] for f in self.functions if f['name'].startswith(text)] if len(result) == 1 and result[0] == text: return [] return result def complete_type(self, text, line, start_index, end_index): if len(line.split()) > 2: return [] if len(line.split()) == 2 and text == '': return [] result = [t['name'] for t in self.custom_types if t['name'].startswith(text)] if len(result) == 1 and result[0] == text: return [] return result def do_help(self, line): if not line: print("list - List all RPC functions advertised by the server") print("doc - Show the documentation of a RPC function") print("type - Show the documentation of a custom RPC type") print("types - List all custom RPC types advertised by the server") print("exec - Execute an RPC call") print("notify - Execute an RPC call but tell the server to send no response") print("raw - Directly send a raw JSON-RPC message to the server") print("quit - Quit this program") print("help - Print this message. 'help [command]' prints a") print(" detailed help message for a command") return if line == 'list': print("List all RPC functions advertised by the server") elif line == 'doc': print("Show the documentation of an RPC function") print("Example:") print(" doc echo") elif line == 'type': print("Shos the documentation of a custom RPC type") print("Example:") print(" type PhoneType") elif line == 'types': print("List all custom RPC types advertised by the server") elif line == 'exec': print("Execute an RPC call") print("Examples:") print(" exec echo \"Hello RPC server\"") print(" exec add 4 8") elif line == 'notify': print("Execute an RPC call but tell the server to send no response") print("Example:") print(" notify rpc_function") elif line == 'raw': print("Directly send a raw JSON-RPC message to the server") print("Example:") print(' raw {"method": "echo", "params": ["Hello Server"], "id": 1}') elif line == 'quit': print("Quit this program") elif line == 'help': pass else: print("No help available for unknown command:", line) def do_type(self, line): if not line: print("You have to pass the name of a custom RPC type: 'type [typename]'") return t = [t for t in self.custom_types if t['name'] == line] if not t: print("Unknown custom RPC type:", line) print_types(t) def do_types(self, line): for t in self.custom_types: print(t['name']) def do_exec(self, line): tokens = split_exec_line(line) if not tokens: return method = tokens.pop(0) try: result = self.client.rpc_call(method, *tokens) print("Server replied:", json.dumps(result, indent=4, sort_keys=True)) except RpcError as e: print(e) def do_notify(self, line): tokens = split_exec_line(line) if not tokens: return method = tokens.pop(0) self.client.rpc_notify(method, *tokens) def do_raw(self, line): print(self.client.rpc_call_raw(line)) def do_doc(self, line): if not line: print("You have to pass the name of an RPC function: 'doc [function]'") return function = [func for func in self.functions if func['name'] == line] if not function: print("Unknown RPC function:", line) print_functions(function) def do_list(self, line): for func in self.functions: paramlist = [param['name'] for param in func['params']] print("%s(%s)" % (func['name'], ', '.join(paramlist))) def do_quit(self, line): sys.exit(0) def do_EOF(self, line): sys.exit(0)
StarcoderdataPython
151450
#!/usr/bin/env python # # Copyright (C) 2017 ShadowMan # class FatalError(Exception): pass class FrameHeaderParseError(Exception): pass class ConnectClosed(Exception): pass class RequestError(Exception): pass class LoggerWarning(RuntimeWarning): pass class DeamonError(Exception): pass class SendDataPackError(Exception): pass class InvalidResponse(Exception): pass class ParameterError(Exception): pass def raise_parameter_error(name, except_type, got_val): if not isinstance(got_val, except_type): raise ParameterError( '{name} except {except_type}, got {got_type}'.format( name=name, except_type=except_type.__name__, got_type=type(got_val).__name__)) class ExitWrite(Exception): pass class BroadcastError(Exception): pass class HttpVerifierError(Exception): pass class FrameVerifierError(Exception): pass class WSSCertificateFileNotFound(Exception): pass
StarcoderdataPython
12807077
<gh_stars>1-10 # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Test the design_matrix utilities. Note that the tests just looks whether the data produces has correct dimension, not whether it is exact """ import numpy as np from os.path import join, dirname from ..experimental_paradigm import (EventRelatedParadigm, BlockParadigm, load_protocol_from_csv_file) from ..design_matrix import ( dmtx_light, _convolve_regressors, DesignMatrix, dmtx_from_csv, make_dmtx) from nose.tools import assert_true, assert_equal from numpy.testing import assert_almost_equal from ....testing import parametric def basic_paradigm(): conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] paradigm = EventRelatedParadigm(conditions, onsets) return paradigm def modulated_block_paradigm(): conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] duration = 5 + 5 * np.random.rand(len(onsets)) values = 1 + np.random.rand(len(onsets)) paradigm = BlockParadigm(conditions, onsets, duration, values) return paradigm def modulated_event_paradigm(): conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] values = 1 + np.random.rand(len(onsets)) paradigm = EventRelatedParadigm(conditions, onsets, values) return paradigm def block_paradigm(): conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] duration = 5 * np.ones(9) paradigm = BlockParadigm (conditions, onsets, duration) return paradigm def test_show_dmtx(): # test that the show code indeed (formally) runs frametimes = np.linspace(0, 127 * 1.,128) DM = make_dmtx(frametimes, drift_model='Polynomial', drift_order=3) ax = DM.show() assert (ax is not None) def test_dmtx0(): # Test design matrix creation when no paradigm is provided tr = 1.0 frametimes = np.linspace(0, 127 * tr,128) X, names= dmtx_light(frametimes, drift_model='Polynomial', drift_order=3) print names assert_true(len(names)==4) def test_dmtx0b(): # Test design matrix creation when no paradigm is provided tr = 1.0 frametimes = np.linspace(0, 127 * tr,128) X, names= dmtx_light(frametimes, drift_model='Polynomial', drift_order=3) assert_almost_equal(X[:, 0], np.linspace(- 0.5, .5, 128)) def test_dmtx0c(): # test design matrix creation when regressors are provided manually tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) ax = np.random.randn(128, 4) X, names= dmtx_light(frametimes, drift_model='Polynomial', drift_order=3, add_regs=ax) assert_almost_equal(X[:, 0], ax[:, 0]) def test_dmtx0d(): # test design matrix creation when regressors are provided manually tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) ax = np.random.randn(128, 4) X, names= dmtx_light(frametimes, drift_model='Polynomial', drift_order=3, add_regs=ax) assert_true((len(names) == 8) & (X.shape[1] == 8)) def test_dmtx1(): # basic test based on basic_paradigm and canonical hrf tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) assert_true(len(names)==7) def test_convolve_regressors(): # tests for convolve_regressors helper function conditions = ['c0', 'c1'] onsets = [20, 40] paradigm = EventRelatedParadigm(conditions, onsets) # names not passed -> default names frametimes = np.arange(100) f, names = _convolve_regressors(paradigm, 'Canonical', frametimes) assert_equal(names, ['c0', 'c1']) def test_dmtx1b(): # idem test_dmtx1, but different test tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) print np.shape(X) assert_true(X.shape == (128, 7)) def test_dmtx1c(): # idem test_dmtx1, but different test tr = 1.0 frametimes = np.linspace(0, 127 *tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X,names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) assert_true((X[:, - 1] == 1).all()) def test_dmtx1d(): # idem test_dmtx1, but different test tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X,names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) assert_true((np.isnan(X) == 0).all()) def test_dmtx2(): # idem test_dmtx1 with a different drift term tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Cosine', hfcut=63) assert_true(len(names) == 8) def test_dmtx3(): # idem test_dmtx1 with a different drift term tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X,names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Blank') print names assert_true(len(names) == 4) def test_dmtx4(): # idem test_dmtx1 with a different hrf model tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical With Derivative' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) assert_true(len(names) == 10) def test_dmtx5(): # idem test_dmtx1 with a block paradigm tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = block_paradigm() hrf_model = 'Canonical' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) assert_true(len(names) == 7) def test_dmtx6(): # idem test_dmtx1 with a block paradigm and the hrf derivative tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = block_paradigm() hrf_model = 'Canonical With Derivative' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) assert_true(len(names) == 10) def test_dmtx7(): # idem test_dmtx1, but odd paradigm tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) conditions = [0, 0, 0, 1, 1, 1, 3, 3, 3] # no condition 'c2' onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] paradigm = EventRelatedParadigm(conditions, onsets) hrf_model = 'Canonical' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) assert_true(len(names) == 7) def test_dmtx8(): # basic test based on basic_paradigm and FIR tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) assert_true(len(names) == 7) def test_dmtx9(): # basic test based on basic_paradigm and FIR tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, fir_delays=range(1, 5)) assert_true(len(names) == 16) def test_dmtx10(): # Check that the first column o FIR design matrix is OK tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) assert_true(np.all((X[onset + 1, 0] == 1))) def test_dmtx11(): # check that the second column of the FIR design matrix is OK indeed tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) assert_true(np.all(X[onset + 3, 2] == 1)) def test_dmtx12(): # check that the 11th column of a FIR design matrix is indeed OK tr = 1.0 frametimes = np.linspace(0, 127 * tr,128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c2'].astype(np.int) assert_true(np.all(X[onset + 4, 11] == 1)) def test_dmtx13(): # Check that the fir_duration is well taken into account tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) assert_true(np.all(X[onset + 1, 0] == 1)) def test_dmtx14(): # Check that the first column o FIR design matrix is OK after a 1/2 # time shift tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) + tr / 2 paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) assert_true(np.all(X[onset + 1, 0] == 1)) def test_dmtx15(): # basic test based on basic_paradigm, plus user supplied regressors tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' ax = np.random.randn(128, 4) X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, add_regs=ax) assert(len(names) == 11) assert(X.shape[1] == 11) def test_dmtx16(): # Check that additional regressors are put at the right place tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' ax = np.random.randn(128, 4) X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, add_regs=ax) assert_almost_equal(X[:, 3: 7], ax) def test_dmtx17(): # Test the effect of scaling on the events tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = modulated_event_paradigm() hrf_model = 'Canonical' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) ct = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) + 1 assert((X[ct, 0] > 0).all()) def test_dmtx18(): # Test the effect of scaling on the blocks tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = modulated_block_paradigm() hrf_model = 'Canonical' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3) ct = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) + 3 assert((X[ct, 0] > 0).all()) def test_dmtx19(): # Test the effect of scaling on a FIR model tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = modulated_event_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='Polynomial', drift_order=3, fir_delays=range(1, 5)) idx = paradigm.onset[paradigm.con_id == 0].astype(np.int) assert_true((X[idx + 1, 0] == X[idx + 2, 1]).all()) def test_csv_io(): # test the csv io on design matrices from tempfile import mkdtemp from os.path import join tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = modulated_event_paradigm() DM = make_dmtx(frametimes, paradigm, hrf_model='Canonical', drift_model='Polynomial', drift_order=3) path = join(mkdtemp(), 'dmtx.csv') DM.write_csv(path) DM2 = dmtx_from_csv( path) assert_almost_equal (DM.matrix, DM2.matrix) assert_true (DM.names == DM2.names) def test_spm_1(): # Check that the nipy design matrix is close enough to the SPM one # (it cannot be identical, because the hrf shape is different) tr = 1.0 frametimes = np.linspace(0, 99, 100) conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 50, 70, 10, 30, 80, 30, 40, 60] hrf_model = 'Canonical' paradigm = EventRelatedParadigm(conditions, onsets) X1 = make_dmtx(frametimes, paradigm, drift_model='Blank') spm_dmtx = np.load(join(dirname(__file__),'spm_dmtx.npz'))['arr_0'] assert ((spm_dmtx - X1.matrix) ** 2).sum() / (spm_dmtx ** 2).sum() < .1 def test_spm_2(): # Check that the nipy design matrix is close enough to the SPM one # (it cannot be identical, because the hrf shape is different) import os tr = 1.0 frametimes = np.linspace(0, 99, 100) conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 50, 70, 10, 30, 80, 30, 40, 60] duration = 10 * np.ones(9) hrf_model = 'Canonical' paradigm = BlockParadigm(conditions, onsets, duration) X1 = make_dmtx(frametimes, paradigm, drift_model='Blank') spm_dmtx = np.load(join(dirname(__file__),'spm_dmtx.npz'))['arr_1'] assert ((spm_dmtx - X1.matrix) ** 2).sum() / (spm_dmtx ** 2).sum() < .1 if __name__ == "__main__": import nose nose.run(argv=['', __file__])
StarcoderdataPython
179787
__all__ = [ 'AutoInitAndCloseable', 'Disposable', 'NoReentrantContext', 'DisposableContext', ] class AutoInitAndCloseable(object): """ Classes with :meth:`init()` to initialize its internal states, and also :meth:`close()` to destroy these states. The :meth:`init()` method can be repeatedly called, which will cause initialization only at the first call. Thus other methods may always call :meth:`init()` at beginning, which can bring auto-initialization to the class. A context manager is implemented: :meth:`init()` is explicitly called when entering the context, while :meth:`destroy()` is called when exiting the context. """ _initialized = False def _init(self): """Override this method to initialize the internal states.""" raise NotImplementedError() def init(self): """Ensure the internal states are initialized.""" if not self._initialized: self._init() self._initialized = True def __enter__(self): """Ensure the internal states are initialized.""" self.init() return self def _close(self): """Override this method to destroy the internal states.""" raise NotImplementedError() def close(self): """Ensure the internal states are destroyed.""" if self._initialized: try: self._close() finally: self._initialized = False def __exit__(self, exc_type, exc_val, exc_tb): """Cleanup the internal states.""" self.close() class Disposable(object): """ Classes which can only be used once. """ _already_used = False def _check_usage_and_set_used(self): """ Check whether the usage flag, ensure the object has not been used, and then set it to be used. """ if self._already_used: raise RuntimeError('Disposable object cannot be used twice: {!r}.'. format(self)) self._already_used = True class NoReentrantContext(object): """ Base class for contexts which are not reentrant (i.e., if there is a context opened by ``__enter__``, and it has not called ``__exit__``, the ``__enter__`` cannot be called again). """ _is_entered = False def _enter(self): """ Enter the context. Subclasses should override this instead of the true ``__enter__`` method. """ raise NotImplementedError() def _exit(self, exc_type, exc_val, exc_tb): """ Exit the context. Subclasses should override this instead of the true ``__exit__`` method. """ raise NotImplementedError() def _require_entered(self): """ Require the context to be entered. Raises: RuntimeError: If the context is not entered. """ if not self._is_entered: raise RuntimeError('Context is required be entered: {!r}.'. format(self)) def __enter__(self): if self._is_entered: raise RuntimeError('Context is not reentrant: {!r}.'. format(self)) ret = self._enter() self._is_entered = True return ret def __exit__(self, exc_type, exc_val, exc_tb): if self._is_entered: self._is_entered = False return self._exit(exc_type, exc_val, exc_tb) class DisposableContext(NoReentrantContext): """ Base class for contexts which can only be entered once. """ _has_entered = False def __enter__(self): if self._has_entered: raise RuntimeError( 'A disposable context cannot be entered twice: {!r}.'. format(self)) ret = super(DisposableContext, self).__enter__() self._has_entered = True return ret
StarcoderdataPython
1662361
<filename>dailyproblems/__main__.py<gh_stars>0 from .problems import Problems, Node obj = Problems() # print(obj.day_one([1, 2, 3, 5, 5], 10)) # print(obj.day_two([1, 2, 3, 4, 5])) e1 = Node('Monday') e2 = Node('Tuesday') e3 = Node('Wednesday') e4 = Node('Thursday') e5 = Node('Friday') e1.nextval = e2 e2.nextval = e3 e3.nextval = e4 e4.nextval = e5 e3.traverse() obj.day_three()
StarcoderdataPython
4957743
# -*- coding: UTF-8 -*- # # Copyright 2016 Metamarkets Group Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import csv import os import pandas import pytest from pandas.testing import assert_frame_equal from pydruid.query import Query, QueryBuilder from pydruid.utils import aggregators, filters, having, postaggregator def create_query_with_results(): query = Query({}, "timeseries") query.result = [ { "result": {"value1": 1, "value2": "㬓"}, "timestamp": "2015-01-01T00:00:00.000-05:00", }, { "result": {"value1": 2, "value2": "㬓"}, "timestamp": "2015-01-02T00:00:00.000-05:00", }, ] return query EXPECTED_RESULTS_PANDAS = [ {"timestamp": "2015-01-01T00:00:00.000-05:00", "value1": 1, "value2": "㬓"}, {"timestamp": "2015-01-02T00:00:00.000-05:00", "value1": 2, "value2": "㬓"}, ] def expected_results_csv_reader(): # csv.DictReader does not perform promotion to int64 expected_results = [] for element in EXPECTED_RESULTS_PANDAS: modified_elem = element.copy() modified_elem.update({"value1": str(modified_elem["value1"])}) expected_results.append(modified_elem) return expected_results class TestQueryBuilder: def test_build_query(self): # given expected_query_dict = { "queryType": None, "dataSource": "things", "aggregations": [{"fieldName": "thing", "name": "count", "type": "count"}], "postAggregations": [ { "fields": [ {"fieldName": "sum", "type": "fieldAccess"}, {"fieldName": "count", "type": "fieldAccess"}, ], "fn": "/", "name": "avg", "type": "arithmetic", } ], "pagingSpec": {"pagingIdentifies": {}, "threshold": 1}, "filter": {"dimension": "one", "type": "selector", "value": 1}, "having": {"aggregation": "sum", "type": "greaterThan", "value": 1}, "new_key": "value", } builder = QueryBuilder() # when query = builder.build_query( None, { "datasource": "things", "aggregations": {"count": aggregators.count("thing")}, "post_aggregations": { "avg": (postaggregator.Field("sum") / postaggregator.Field("count")) }, "paging_spec": {"pagingIdentifies": {}, "threshold": 1}, "filter": filters.Dimension("one") == 1, "having": having.Aggregation("sum") > 1, "new_key": "value", }, ) # then assert query.query_dict == expected_query_dict def test_build_query_none_type(self): # given expected_query_dict = { "queryType": None, "dataSource": "things", "aggregations": [{"fieldName": "thing", "name": "count", "type": "count"}], "filter": {"dimension": "one", "type": "selector", "value": 1}, "having": {"aggregation": "sum", "type": "greaterThan", "value": 1}, "dimension": "dim1", } builder = QueryBuilder() # when builder_dict = { "datasource": "things", "aggregations": {"count": aggregators.count("thing")}, "filter": filters.Dimension("one") == 1, "having": having.Aggregation("sum") > 1, "dimension": "dim1", } query = builder.build_query(None, builder_dict) # then assert query.query_dict == expected_query_dict # you should be able to pass `None` to dimension/having/filter for v in ["dimension", "having", "filter"]: expected_query_dict[v] = None builder_dict[v] = None query = builder.build_query(None, builder_dict) assert query.query_dict == expected_query_dict def test_validate_query(self): # given builder = QueryBuilder() # when builder.validate_query(None, ["validkey"], {"validkey": "value"}) # then pytest.raises( ValueError, builder.validate_query, *[None, ["validkey"], {"invalidkey": "value"}] ) def test_union_datasource(self): # Given expected_query_dict = {"queryType": None, "dataSource": "things"} builder = QueryBuilder() # when builder_dict = {"datasource": "things"} query = builder.build_query(None, builder_dict) # then assert query.query_dict == expected_query_dict # Given expected_query_dict = { "queryType": None, "dataSource": { "type": "union", "dataSources": ["things", "others", "more"], }, } builder = QueryBuilder() # when builder_dict = {"datasource": ["things", "others", "more"]} query = builder.build_query(None, builder_dict) # then assert query.query_dict == expected_query_dict # Given check that it rejects non-string items builder = QueryBuilder() builder_dict = {"datasource": ["things", 123]} with pytest.raises(ValueError): query = builder.build_query(None, builder_dict) def test_build_subquery(self): # given expected_query_dict = { "query": { "queryType": "groupBy", "dataSource": "things", "aggregations": [ {"fieldName": "thing", "name": "count", "type": "count"} ], "postAggregations": [ { "fields": [ {"fieldName": "sum", "type": "fieldAccess"}, {"fieldName": "count", "type": "fieldAccess"}, ], "fn": "/", "name": "avg", "type": "arithmetic", } ], "filter": {"dimension": "one", "type": "selector", "value": 1}, "having": {"aggregation": "sum", "type": "greaterThan", "value": 1}, }, "type": "query", } builder = QueryBuilder() # when subquery_dict = builder.subquery( { "datasource": "things", "aggregations": {"count": aggregators.count("thing")}, "post_aggregations": { "avg": (postaggregator.Field("sum") / postaggregator.Field("count")) }, "filter": filters.Dimension("one") == 1, "having": having.Aggregation("sum") > 1, } ) # then assert subquery_dict == expected_query_dict class TestQuery: def test_export_tsv(self, tmpdir): query = create_query_with_results() file_path = tmpdir.join("out.tsv") query.export_tsv(str(file_path)) with open(str(file_path)) as tsv_file: reader = csv.DictReader(tsv_file, delimiter="\t") actual = [line for line in reader] assert actual == expected_results_csv_reader() def test_export_pandas(self): query = create_query_with_results() df = query.export_pandas() expected_df = pandas.DataFrame(EXPECTED_RESULTS_PANDAS) assert_frame_equal(df, expected_df, check_like=True) query = Query({}, "timeseries") df = query.export_pandas() assert_frame_equal(df, pandas.DataFrame()) def test_query_acts_as_a_wrapper_for_raw_result(self): # given query = create_query_with_results() # then assert len(query) == 2 assert isinstance(query[0], dict) assert isinstance(query[1], dict)
StarcoderdataPython
1685065
sequences = input().split("|") numbers = [[int(el) for el in seq.split()] for seq in sequences ] numbers.reverse() numbers = [str(number) for seq in numbers for number in seq] print(" ".join(numbers))
StarcoderdataPython
216857
from .active_lives import ActiveLivesValEMD from .disabled_lives import DisabledLivesProjEMD, DisabledLivesValEMD
StarcoderdataPython
6672169
<gh_stars>0 #!/usr/bin/env python3 """ Module that constructs the CLI, handles configuration files initialization, and sets up logging. """ import logging import sys import click from hopla.cli.add.todo import todo from hopla.cli.authenticate import authenticate from hopla.cli.buy.enchanted_armoire import enchanted_armoire from hopla.cli.cast import cast from hopla.cli.complete import complete from hopla.cli.config import config from hopla.cli.feed import feed from hopla.cli.feed_all import feed_all from hopla.cli.get_group import get_group from hopla.cli.get_user.auth import auth from hopla.cli.get_user.info import info from hopla.cli.get_user.inventory import inventory from hopla.cli.get_user.stats import stats from hopla.cli.groupcmds.add import add from hopla.cli.groupcmds.api import api from hopla.cli.groupcmds.buy import buy from hopla.cli.groupcmds.get_user import get_user from hopla.cli.groupcmds.hatch import hatch from hopla.cli.groupcmds.set import set # pylint: disable=redefined-builtin from hopla.cli.hatch.quest_egg import quest_egg from hopla.cli.hatch.standard_egg import standard_egg from hopla.cli.hatch_all import hatch_all from hopla.cli.request import request from hopla.cli.support_development import support_development from hopla.cli.version import version from hopla.hoplalib.common import GlobalConstants from hopla.hoplalib.configuration import ConfigInitializer, ConfigurationFileParser from hopla.hoplalib.hoplaversion import HoplaVersion def setup_logging() -> logging.Logger: """Setup python logging for the entire hopla project""" parsed_loglevel: str = ConfigurationFileParser().get_full_config_name( "cmd_all.loglevel", fallback="info" ) loglevel_mapping = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR } # https://docs.python.org/3.8/howto/logging.html#logging-basic-tutorial logging.basicConfig( format="[%(levelname)s][%(filename)s|%(asctime)s] %(message)s", level=loglevel_mapping[parsed_loglevel], datefmt="%Y-%m-%dT%H:%M:%S" ) return logging.getLogger(__package__) log = setup_logging() log.debug(f"start application with arguments: {sys.argv}") HOPLA_CONTEXT_SETTINGS = dict( help_option_names=["-h", "--help"], # add -h auto_envvar_prefix=GlobalConstants.APPLICATION_NAME ) @click.group(context_settings=HOPLA_CONTEXT_SETTINGS) @click.version_option(version=HoplaVersion().semantic_version()) def hopla(): """hopla - a command line interface (CLI) to interact with habitica.com""" def organize_cli() -> None: """Attach the subgroups and subcommands to the top hopla group command""" # pylint: disable=too-many-statements # authenticate hopla.add_command(authenticate) # add hopla.add_command(add) add.add_command(todo) # api hopla.add_command(api) # buy hopla.add_command(buy) buy.add_command(enchanted_armoire) # cast hopla.add_command(cast) # complete hopla.add_command(complete) # config hopla.add_command(config) # feed hopla.add_command(feed) # feed-all hopla.add_command(feed_all) # get-group hopla.add_command(get_group) # get-user hopla.add_command(get_user) get_user.add_command(inventory) get_user.add_command(stats) get_user.add_command(info) get_user.add_command(auth) # hatch hopla.add_command(hatch) hatch.add_command(standard_egg) hatch.add_command(quest_egg) # hatch-all hopla.add_command(hatch_all) # request hopla.add_command(request) # support-development hopla.add_command(support_development) # version hopla.add_command(version) # set hopla.add_command(set) def init_hopla_config_files() -> None: """Setup the config file.""" had_to_create_new_config_file: bool = ConfigInitializer().initialize_before_running_cmds() if had_to_create_new_config_file is True: click.echo(f"Thank you for trying out {GlobalConstants.APPLICATION_NAME}") click.echo( "Bug reports, pull requests, and feature requests are welcomed over at: " ) click.echo(GlobalConstants.ISSUE_URL) def kickstart_hopla() -> None: """Setup the config files, organize the CLI, and call the base command group.""" init_hopla_config_files() organize_cli() hopla()
StarcoderdataPython
11341074
<gh_stars>1-10 import numpy as np from sklearn.metrics import mean_squared_error class MSE(): """Class for partitioning based on MSE between the mean and measured values of the sample group. """ def __init__(self): pass def __call__(self, X, X_l, X_r, y, y_l, y_r): return self._calc(X, y) - self._calc(X_l, y_l) - self._calc(X_r, y_r) def _calc(self, X, y): return np.sum(np.power(y - np.mean(y), 2)) class MSE_by_model(): """Class for partitioning based on MSE between the predicted values of the regression model applied to the sample group and measured values. """ def __init__(self, model): self.model = model def __call__(self, X, X_l, X_r, y, y_l, y_r): return self._calc(X, y) - self._calc(X_l, y_l) - self._calc(X_r, y_r) def _calc(self, X, y): self.model.fit(X, y) return mean_squared_error(y, self.model.predict(X))
StarcoderdataPython
1767608
<gh_stars>0 from .users import SignIn,SignUp, UsersApi from .trips import ( TripApi, TripsApi, JoinTripApi, UpdateCoordinatesAPI, GetCoordinatesAPI, ) def initialize_routes(api): # Users API api.add_resource(UsersApi, "/api/users") api.add_resource(SignIn, "/api/users/sign-in/<username>/<password>") api.add_resource(SignUp, "/api/users/sign-up/<username>/<password>") #api.add_resource(Userget, "/api/users/<userID>") # Trips API api.add_resource(TripsApi, "/api/trips") api.add_resource(TripApi, "/api/trips/<tripId>") api.add_resource(JoinTripApi, "/api/trips/<tripId>/join") api.add_resource(UpdateCoordinatesAPI, "/api/trips/<tripId>/update-coordinates") api.add_resource(GetCoordinatesAPI, "/api/trips/<tripId>/get-coordinates")
StarcoderdataPython
9704796
class ViliParser: spacing = 4
StarcoderdataPython
144359
<filename>tests/framework/unit_tests/TSA/testFourier.py # Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This Module performs Unit Tests for the TSA.Fourier class. It can not be considered part of the active code but of the regression test system """ import os import sys import copy import numpy as np # add RAVEN to path frameworkDir = os.path.abspath(os.path.join(*([os.path.dirname(__file__)] + [os.pardir]*4 + ['framework']))) if frameworkDir not in sys.path: sys.path.append(frameworkDir) from utils.utils import find_crow find_crow(frameworkDir) from utils import xmlUtils from TSA import Fourier plot = False print('Module undergoing testing:') print(Fourier) print('') results = {"pass":0,"fail":0} def checkFloat(comment, value, expected, tol=1e-10, update=True): """ This method is aimed to compare two floats given a certain tolerance @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, tol, float, optional, the tolerance @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if same """ if np.isnan(value) and np.isnan(expected): res = True elif np.isnan(value) or np.isnan(expected): res = False else: res = abs(value - expected) <= tol if update: if not res: print("checking float",comment,'|',value,"!=",expected) results["fail"] += 1 else: results["pass"] += 1 return res def checkTrue(comment, res, update=True): """ This method is a pass-through for consistency and updating @ In, comment, string, a comment printed out if it fails @ In, res, bool, the tested value @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if test """ if update: if res: results["pass"] += 1 else: print("checking bool",comment,'|',res,'is not True!') results["fail"] += 1 return res def checkSame(comment, value, expected, update=True): """ This method is aimed to compare two identical things @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if same """ res = value == expected if update: if res: results["pass"] += 1 else: print("checking string",comment,'|',value,"!=",expected) results["fail"] += 1 return res def checkArray(comment, first, second, dtype, tol=1e-10, update=True): """ This method is aimed to compare two arrays @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, tol, float, optional, the tolerance @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if same """ res = True if len(first) != len(second): res = False print("checking answer",comment,'|','lengths do not match:',len(first),len(second)) else: for i in range(len(first)): if dtype == float: pres = checkFloat('',first[i],second[i],tol,update=False) elif dtype in (str,unicode): pres = checkSame('',first[i],second[i],update=False) if not pres: print('checking array',comment,'|','entry "{}" does not match: {} != {}'.format(i,first[i],second[i])) res = False if update: if res: results["pass"] += 1 else: results["fail"] += 1 return res def checkNone(comment, entry, update=True): """ Checks if entry is None. @ In, comment, string, a comment printed out if it fails @ In, entry, object, to test if against None @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if None """ res = entry is None if update: if res: results["pass"] += 1 else: print("checking answer",comment,'|','"{}" is not None!'.format(entry)) results["fail"] += 1 def checkFails(comment, errstr, function, update=True, args=None, kwargs=None): """ Checks if expected error occurs @ In, comment, string, a comment printed out if it fails @ In, errstr, str, expected fail message @ In, function, method, method to run to test for failure @ In, update, bool, optional, if False then don't update results counter @ In, args, list, arguments to pass to function @ In, kwargs, dict, keyword arguments to pass to function @ Out, res, bool, True if failed as expected """ print('Error testing ...') if args is None: args = [] if kwargs is None: kwargs = {} try: function(*args,**kwargs) res = False msg = 'Function call did not error!' except Exception as e: res = checkSame('',e.args[0],errstr,update=False) if not res: msg = 'Unexpected error message. \n Received: "{}"\n Expected: "{}"'.format(e.args[0],errstr) if update: if res: results["pass"] += 1 print(' ... end Error testing (PASSED)') else: print("checking error",comment,'|',msg) results["fail"] += 1 print(' ... end Error testing (FAILED)') print('') return res ###################################### # CONSTRUCTION # ###################################### def createFourierXML(targets, periods): xml = xmlUtils.newNode('Fourier', attrib={'target':','.join(targets)}) xml.append(xmlUtils.newNode('periods', text=','.join(str(k) for k in periods))) return xml def createFromXML(xml): fourier = Fourier() inputSpec = Fourier.getInputSpecification()() inputSpec.parseNode(xml) fourier.handleInput(inputSpec) return fourier def createFourier(targets, periods): xml = createFourierXML(targets, periods) fourier = createFromXML(xml) return fourier def createFourierSignal(amps, periods, phases, pivot, intercept=0, plot=False): if plot: import matplotlib.pyplot as plt fig, ax = plt.subplots() signal = np.zeros(len(pivot)) + intercept for k, period in enumerate(periods): new = amps[k] * np.sin(2 * np.pi / period * pivot + phases[k]) if plot: ax.plot(pivot, new, ':') signal += new if plot: ax.plot(pivot, signal, 'k-') plt.show() return signal ################### # Simple # ################### # generate signal targets = ['A', 'B', 'C'] pivot = np.arange(100) / 10. periods = [2, 5, 10] amps = [0.5, 1, 2] phasesA = [0, np.pi, 0] signalA = createFourierSignal(amps, periods, phasesA, pivot, plot=plot) phasesB = [np.pi, 0, np.pi/4] signalB = createFourierSignal(amps, periods, phasesB, pivot, plot=plot) phasesC = [np.pi, np.pi/4, -np.pi/4] interceptC = 2 signalC = createFourierSignal(amps, periods, phasesC, pivot, intercept=interceptC, plot=plot) signals = np.zeros((len(pivot), 3)) signals[:, 0] = signalA signals[:, 1] = signalB signals[:, 2] = signalC fourier = createFourier(targets, periods) params = fourier.characterize(signals, pivot, targets) # intercepts checkFloat('Signal A intercept', params['A']['intercept'], 0) checkFloat('Signal B intercept', params['B']['intercept'], 0) checkFloat('Signal C intercept', params['C']['intercept'], interceptC) # amplitudes checkFloat('Signal A period 0 amplitude', params['A']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal A period 1 amplitude', params['A']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal A period 2 amplitude', params['A']['coeffs'][periods[2]]['amplitude'], amps[2]) checkFloat('Signal B period 0 amplitude', params['B']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal B period 1 amplitude', params['B']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal B period 2 amplitude', params['B']['coeffs'][periods[2]]['amplitude'], amps[2]) checkFloat('Signal C period 0 amplitude', params['C']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal C period 1 amplitude', params['C']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal C period 2 amplitude', params['C']['coeffs'][periods[2]]['amplitude'], amps[2]) # phases # check absolute value of phase pi since -pi and pi are often converged on separately checkFloat('Signal A period 0 phase', params['A']['coeffs'][periods[0]]['phase'] , phasesA[0]) checkFloat('Signal A period 1 phase', abs(params['A']['coeffs'][periods[1]]['phase']), phasesA[1]) checkFloat('Signal A period 2 phase', params['A']['coeffs'][periods[2]]['phase'] , phasesA[2]) checkFloat('Signal B period 0 phase', abs(params['B']['coeffs'][periods[0]]['phase']), phasesB[0]) checkFloat('Signal B period 1 phase', params['B']['coeffs'][periods[1]]['phase'] , phasesB[1]) checkFloat('Signal B period 2 phase', params['B']['coeffs'][periods[2]]['phase'] , phasesB[2]) checkFloat('Signal C period 0 phase', abs(params['C']['coeffs'][periods[0]]['phase']), phasesC[0]) checkFloat('Signal C period 1 phase', params['C']['coeffs'][periods[1]]['phase'] , phasesC[1]) checkFloat('Signal C period 2 phase', params['C']['coeffs'][periods[2]]['phase'] , phasesC[2]) # recreate signals res = fourier.generate(params, pivot, None) for tg, target in enumerate(targets): checkArray(f'Signal {target} replication', res[:, tg], signals[:, tg], float) ##### now redo with non-simultaneous fitting params = fourier.characterize(signals, pivot, targets, simultFit=False) # intercepts checkFloat('Signal A intercept', params['A']['intercept'], 0) checkFloat('Signal B intercept', params['B']['intercept'], 0) checkFloat('Signal C intercept', params['C']['intercept'], interceptC) # amplitudes checkFloat('Signal A period 0 amplitude', params['A']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal A period 1 amplitude', params['A']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal A period 2 amplitude', params['A']['coeffs'][periods[2]]['amplitude'], amps[2]) checkFloat('Signal B period 0 amplitude', params['B']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal B period 1 amplitude', params['B']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal B period 2 amplitude', params['B']['coeffs'][periods[2]]['amplitude'], amps[2]) checkFloat('Signal C period 0 amplitude', params['C']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal C period 1 amplitude', params['C']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal C period 2 amplitude', params['C']['coeffs'][periods[2]]['amplitude'], amps[2]) # phases # check absolute value of phase pi since -pi and pi are often converged on separately checkFloat('Signal A period 0 phase', params['A']['coeffs'][periods[0]]['phase'] , phasesA[0]) checkFloat('Signal A period 1 phase', abs(params['A']['coeffs'][periods[1]]['phase']), phasesA[1]) checkFloat('Signal A period 2 phase', params['A']['coeffs'][periods[2]]['phase'] , phasesA[2]) checkFloat('Signal B period 0 phase', abs(params['B']['coeffs'][periods[0]]['phase']), phasesB[0]) checkFloat('Signal B period 1 phase', params['B']['coeffs'][periods[1]]['phase'] , phasesB[1]) checkFloat('Signal B period 2 phase', params['B']['coeffs'][periods[2]]['phase'] , phasesB[2]) checkFloat('Signal C period 0 phase', abs(params['C']['coeffs'][periods[0]]['phase']), phasesC[0]) checkFloat('Signal C period 1 phase', params['C']['coeffs'][periods[1]]['phase'] , phasesC[1]) checkFloat('Signal C period 2 phase', params['C']['coeffs'][periods[2]]['phase'] , phasesC[2]) # recreate signals res = fourier.generate(params, pivot, None) for tg, target in enumerate(targets): checkArray(f'Signal {target} replication', res[:, tg], signals[:, tg], float) # check residual # -> generate random noise to add to signal, then check it is returned in residual r = np.random.rand(pivot.size, len(targets)) new = r + signals res = fourier.getResidual(new, params, pivot, None) for tg, target in enumerate(targets): checkArray(f'Signal {target} residual', res[:, tg], r[:, tg], float) print(results) sys.exit(results["fail"]) """ <TestInfo> <name>framework.unit_tests.TSA.Fourier</name> <author>talbpaul</author> <created>2021-01-05</created> <classesTested>TSA.Fourier</classesTested> <description> This test is a Unit Test for the Fourier TimeSeriesAnalyzer classes. </description> </TestInfo> """
StarcoderdataPython
8159021
<filename>test/scrapy.py<gh_stars>0 #!/usr/bin/env python3 # -*- coding:utf-8 -*- import Queue initial_page = "http://www.zhugelicai.com" url_queue = Queue.Queue() seen = set() seen.insert(initial_page) url_queue.put(initial_page) while(True): # 一直进行直到海枯石烂 if url_queue.size() > 0: current_url = url_queue.get() # 拿出队例中第一个的url store(current_url) # 把这个url代表的网页存储好 for next_url in extract_urls(current_url): # 提取把这个url里链向的url if next_url not in seen: seen.put(next_url) url_queue.put(next_url) else: break
StarcoderdataPython
11295512
<reponame>kharrigian/pitchers-and-pianists<filename>scripts/tap_processing_stage_1.py ## In Stage 1 of proessing, we manually check time series and throw out bad data (sensor malfunction, forgetting the task) ############################### ### Imports ############################### # Standard I/O and Data Handling import pandas as pd import numpy as np import os, glob, sys import datetime import copy import pickle # Signal Processing import scipy.io as sio # Data Loading from scripts.libraries.helpers import load_tapping_data from scripts.libraries.helpers import load_pickle, dump_pickle # Plotting import matplotlib.pyplot as plt ############################### ### Globals ############################### # Main Data Directory data_dir = "./data/" # Tapping Data Directory tapping_data_dir = data_dir + "tapping/" # Tapping Filenames tapping_filenames = glob.glob(tapping_data_dir + "*/*") tapping_filenames = [tapping_filenames[i] for i in np.argsort([int(t.split("/")[-1].replace(".mat","")) for t in tapping_filenames])] tapping_subjects = [int(t.split("/")[-1].split(".mat")[0]) for t in tapping_filenames] # Survey Data Filename survey_data_filename = data_dir + "survey.csv" # Store Inspected File eye_checks = {} eye_check_store = data_dir + "manual_inspection.pickle" if os.path.exists(eye_check_store): eye_checks = load_pickle(eye_check_store) ############################### ### Survey Data ############################### # Load Survey Data survey_data = pd.read_csv(survey_data_filename) # Missing Survey Subjects missing_survey_data = [t for t in tapping_subjects if int(t) not in survey_data.Subject.values] # Add Flag re: Tapping Participation survey_data["valid_tapping_participant"] = survey_data.Subject.map(lambda i: i in tapping_subjects) # Describe Arbitrary Dataset def describe_subject_pool(survey_df): n_sub = len(survey_df.Subject.unique()) female_percent = survey_df.Gender.value_counts(normalize=True)["F"] * 100 mean_age = survey_df.Age.mean() std_age = survey_df.Age.std() return """%s subjects (%.2f%% female, %.1f+-%.1f years old) """ % (n_sub, female_percent, mean_age, std_age) print("Entire Study: %s" % describe_subject_pool(survey_data)) print("Tapping Study: %s" % describe_subject_pool(survey_data.loc[survey_data.valid_tapping_participant])) ############################### ### Bad Data Filtering (manual) ############################### # Stage 1 (Bad Trial Plots) stage_1_dir = "./plots/stage_1/" if not os.path.exists(stage_1_dir): os.mkdir(stage_1_dir) # Check Each Subject for file in tapping_filenames: # Load in the Data subject_data = load_tapping_data(file) # Split out Data and Format subject = file.split("/")[-1].replace(".mat","") force_signal = subject_data["trial_force"] trial_data = pd.DataFrame(force_signal.T) trial_data.index = trial_data.index / 2000 # If subject didn't fill out survey, ignore if int(subject) in missing_survey_data: eye_checks[file] = "missing_survey_data" # Check subjects that haven't been inspected or were discarded if file not in eye_checks or (file in eye_checks and eye_checks[file] != "pass"): # Create Plot fig, ax = plt.subplots(figsize = (14,8), sharex = True) trial_data.plot(subplots = True, layout = (2,3), color = "blue", linestyle = "-", alpha = .8, linewidth = 1, ax = ax, legend = False) fig.tight_layout() fig.subplots_adjust(top=.94) fig.suptitle("Subject: %s" % subject, y = .98) # If already inspected, continue if file not in eye_checks: plt.show(block=False) # Manually decide whether to keep or discard keep_or_discard = input("Discard? ") if len(keep_or_discard) == 0: keep_or_discard == "pass" # Otherwise, load decision else: keep_or_discard = eye_checks[file] # Store Decision eye_checks[file] = keep_or_discard # Save plot if discarded if keep_or_discard != "pass": plt.savefig(stage_1_dir + "%s_%s.png" % (subject, keep_or_discard)) # Close Plot plt.close("all") # Save Inspection dump_pickle(eye_checks, eye_check_store) ############################### ### Analyze Thrown Out Data ############################### # Create DF eye_check_df = pd.Series(eye_checks).reset_index().rename(columns = {"index":"file",0:"decision"}) # Absolute Thrown Out (18 out 338) n_good_subjects = eye_check_df.decision.value_counts()["pass"] n_bad_subjcts = len(eye_check_df) - n_good_subjects print("%s/%s subjects thrown out immediately" % (n_bad_subjcts, len(eye_check_df))) # Merge Demographics eye_check_df["subject"] = eye_check_df["file"].map(lambda i: i.split("/")[-1].replace(".mat","")).astype(int) eye_check_df = pd.merge(eye_check_df, survey_data[["Subject","Age","Gender"]], left_on = ["subject"], right_on = ["Subject"], how = "left") # Isolate Thrown Out Subjects thrown_out_df = eye_check_df.loc[eye_check_df.decision != "pass"] # Thrown-out Age Distribution (non-sensor related <= 15 years old) print("Thrown Out Age Distributions") print(thrown_out_df.groupby(["decision"]).Age.value_counts()) # Valid Subject Pool print(describe_subject_pool(eye_check_df.loc[eye_check_df.decision == "pass"])) ############################### ### Notes ############################### """ We begin data analysis with 336 subject data files. However, we immediately throw out 1 subject who did not complete a survey at all (subject 105). Then we throw out an additional 17 subjects for the following reasons: * forget (3): the subject forgot to continue tapping after the metronome ended in more than 2 trials * style (2): the subject tapped too lightly or pressed in an abnormal fashion on the sensor * sensor (12): the subjects data was corrupted by a sensor malfunction and we do not expect to recover taps correctly This leaves us with 318 subjects for which to process (identify taps, run analysis, etc.). Their summary is as follow: 318 subjects (54.09% female, 26.0+-14.4 years old) """
StarcoderdataPython
5084175
<filename>src/sage/combinat/subsets_pairwise.py r""" Subsets whose elements satisfy a predicate pairwise """ #***************************************************************************** # Copyright (C) 2011 <NAME> <nthiery at users.sf.net> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #****************************************************************************** from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.sets.set import Set_object_enumerated from sage.combinat.backtrack import SearchForest from sage.combinat.subset import Subsets class PairwiseCompatibleSubsets(SearchForest): r""" The set of all subsets of ``ambient`` whose elements satisfy ``predicate`` pairwise INPUT: - ``ambient`` -- a set (or iterable) - ``predicate`` -- a binary predicate Assumptions: ``predicate`` is symmetric (``predicate(x,y) == predicate(y,x)``) and reflexive (``predicate(x,x) == True``). .. note:: in fact, ``predicate(x,x)`` is never called. .. warning:: The current name is suboptimal and is subject to change. Suggestions for a good name, and a good user entry point are welcome. Maybe ``Subsets(..., independent = predicate)``. EXAMPLES: We construct the set of all subsets of `\{4,5,6,8,9\}` whose elements are pairwise relatively prime:: sage: from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets sage: def predicate(x,y): return gcd(x,y) == 1 sage: P = PairwiseCompatibleSubsets( [4,5,6,8,9], predicate); P An enumerated set with a forest structure sage: P.list() [{}, {4}, {4, 5}, {9, 4, 5}, {9, 4}, {5}, {5, 6}, {8, 5}, {8, 9, 5}, {9, 5}, {6}, {8}, {8, 9}, {9}] sage: P.cardinality() 14 sage: P.category() Category of finite enumerated sets Here we consider only those subsets which are maximal for inclusion (not yet implemented):: sage: P = PairwiseCompatibleSubsets( [4,5,6,8,9], predicate, maximal = True); P An enumerated set with a forest structure sage: P.list() # todo: not implemented [{9, 4, 5}, {5, 6}, {8, 9, 5}] sage: P.cardinality() # todo: not implemented 14 sage: P.category() Category of finite enumerated sets .. rubric:: Algorithm In the following, we order the elements of the ambient set by order of apparition. The elements of ``self`` are generated by organizing them in a search tree. Each node of this tree is of the form ``(subset, rest)``, where: - ``subset`` represents an element of ``self``, represented by an increasing tuple - ``rest`` is the set of all `y`'s such that `y` appears after `x` in the ambient set and ``predicate(x,y)`` holds, represented by a decreasing tuple The root of this tree is ``( (), ambient )``. All the other elements are generated by recursive depth first search, which gives lexicographic order. """ #@staticmethod #def __classcall__(cls, ambient, predicate): # ambient = Set(ambient) # return super(PairwiseCompatibleSubsets, cls).__classcall__(cls, ambient, predicate) __len__ = None def __init__(self, ambient, predicate, maximal = False, element_class = Set_object_enumerated): """ TESTS:: sage: from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets sage: def predicate(x,y): return gcd(x,y) == 1 sage: P = PairwiseCompatibleSubsets( [4,5,6,8,9], predicate); P An enumerated set with a forest structure sage: import __main__; __main__.predicate = predicate sage: TestSuite(P).run() """ self._ambient = set(ambient) self._roots = ( ((), tuple(reversed(ambient))), ) self._predicate = predicate self._maximal = maximal # TODO: use self.element_class for consistency # At this point (2011/03) TestSuite fails if we do so self._element_class = element_class SearchForest.__init__(self, algorithm = 'depth', category = FiniteEnumeratedSets()) def __eq__(self, other): """ Equality test; not really useful, but this pleases pickling ... TESTS:: sage: from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets sage: def predicate(x,y): return gcd(x,y) == 1 sage: P = PairwiseCompatibleSubsets( [4,5,6,8,9], predicate); P An enumerated set with a forest structure sage: P == P True """ return self.__class__ is other.__class__ and self._ambient == other._ambient and self._predicate == other._predicate def __contains__(self, subset): """ Membership testing Returns whether subset is a subset of ``self._ambient``, and ``predicate(x,y)`` holds for every ``x,y`` in ``self``. EXAMPLES:: sage: from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets sage: def predicate(x,y): return gcd(x,y) == 1 sage: P = PairwiseCompatibleSubsets( [4,5,6,8,9], predicate); P An enumerated set with a forest structure sage: Set([5,8,9]) in P True sage: Set([5,8,11]) in P False sage: Set([4,6]) in P False """ return isinstance(subset, self._element_class ) and \ set(subset).issubset(self._ambient) and \ all( self._predicate(x,y) for x,y in Subsets(subset,2) ) def post_process(self, subset_rest): """ TESTS:: sage: from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets sage: def predicate(x,y): return gcd(x,y) == 1 sage: P = PairwiseCompatibleSubsets( [4,5,6,8,9], predicate); P An enumerated set with a forest structure sage: P.post_process( ((4,5), (9)) ) {4, 5} sage: P.post_process( ((4,5), ()) ) {4, 5} """ return self._element_class(subset_rest[0]) def children(self, subset_rest): """ Returns the children of a node in the tree. TESTS:: sage: from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets sage: def predicate(x,y): return gcd(x,y) == 1 sage: P = PairwiseCompatibleSubsets( [3,5,7,11,14], predicate); P An enumerated set with a forest structure sage: list(P.children( ((3,5), [14,11,7]) )) [((3, 5, 7), (11,)), ((3, 5, 11), (14,)), ((3, 5, 14), ())] """ (subset, rest) = subset_rest predicate = self._predicate result = [] rest = list(rest) while rest: x = rest.pop() result.append((subset+(x,), tuple( y for y in rest if predicate(x,y) ))) return result
StarcoderdataPython
4977514
#The MIT License # #Copyright (c) 2017 DYNI machine learning & bioacoustics team - Univ. Toulon # #Permission is hereby granted, free of charge, to any person obtaining a copy of #this software and associated documentation files (the "Software"), to deal in #the Software without restriction, including without limitation the rights to #use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of #the Software, and to permit persons to whom the Software is furnished to do so, #subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS #FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR #COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER #IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN #CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from enum import Enum from scipy.signal import hann from dynibatch.utils.exceptions import DynibatchError class WindowType(Enum): rect = 0 hanning = 1 def window(win_type, size): """Return a precalculated window with a defined size and type Args: win_type (WindowType): type of the window wanted size (int): size of the window Returns: a precalculated (win_type) window with (size) as size """ if win_type == WindowType.hanning: # use asymetric window (https://en.wikipedia.org/wiki/Window_function#Symmetry) return hann(size, sym=False) else: raise DynibatchError("Window type {} is not defined".format(win_type))
StarcoderdataPython
6439632
from __future__ import unicode_literals import django from django.test import TestCase from job.configuration.interface.scale_file import ScaleFileDescription class TestScaleFileDescriptionMediaTypeAllowed(TestCase): def setUp(self): django.setup() def test_accept_all(self): """Tests calling ScaleFileDescription.is_media_type_allowed() when accepting all media types.""" self.assertTrue(ScaleFileDescription().is_media_type_allowed('application/json')) self.assertTrue(ScaleFileDescription().is_media_type_allowed('application/x-some-crazy-thing')) def test_accept_specific(self): """Tests calling ScaleFileDescription.is_media_type_allowed() when accepting specific media types.""" file_desc = ScaleFileDescription() file_desc.add_allowed_media_type(None) # Don't blow up file_desc.add_allowed_media_type('application/json') file_desc.add_allowed_media_type('text/plain') self.assertTrue(file_desc.is_media_type_allowed('application/json')) self.assertTrue(file_desc.is_media_type_allowed('text/plain')) self.assertFalse(file_desc.is_media_type_allowed('application/x-some-crazy-thing'))
StarcoderdataPython
111575
<gh_stars>0 # Generated by Django 3.0.7 on 2020-07-18 10:11 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('to_do', '0009_auto_20200718_1523'), ] operations = [ migrations.CreateModel( name='Last_Date', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('last_date', models.TextField(default='yo', null=True)), ], ), migrations.RemoveField( model_name='todo', name='last_date', ), migrations.AddField( model_name='todo', name='pub_date', field=models.DateTimeField(default=datetime.datetime(2020, 7, 18, 10, 11, 57, 568311, tzinfo=utc), null=True), ), ]
StarcoderdataPython
1734242
<gh_stars>1-10 import subprocess import os import argparse import time DATA_LOC='/home/boubin/Images/' CUBE_LOC='/home/boubin/SoftwarePilot/DistributedRL/Data/' def consoleLog(string): print("#################################################") print("##############DRL Controller:") print(string) print("#################################################") #Start HDFS def startHDFS(): consoleLog("DRL Controller Loading HDFS Containers") pwd = os.<PASSWORD>() os.chdir('../docker-hadoop') subprocess.call(['docker-compose','up', '-d']) os.chdir(pwd) consoleLog("HDFS Loaded") #Start Servers def startServers(numServs): serverList = [] pwd = os.getcwd() os.chdir('../Gateway') for i in range(0, numServs): #subprocess.call(['docker', 'run', '--net=host', '-e SERVERNUM='+str(i), # '--name','server'+str(i), 'spcn', '/bin/bash']) subprocess.call(['bash','runGateway_Sim.sh', str(i),'server'+str(i)]) consoleLog("Server" + str(i)+" Started") serverList.append("server"+str(i)) os.chdir(pwd) return serverList def startAggregators(numAgs): aggList = [] pwd = os.getcwd() os.chdir('../Aggregator') for i in range(numAgs): models = '{:04b}'.format(i) subprocess.call(['bash', 'runAggregator_Sim.sh', models, 'Aggregator'+str(models)]) consoleLog("Aggregator "+str(models)+" Started") os.chdir(pwd) return aggList #Start workers and servers def startWorkers(numServs, numWorkers): workerList = [] pwd = os.getcwd() os.chdir('../Worker') for i in range(0, numServs): for j in range(0,numWorkers): #subprocess.call(['docker', 'run', '--net=host', # '-e SERVERNUM='+str(i),'-e WORKERNUM='+str(j), # '--name','worker'+str(i)+'_'+str(j), # '-v',CUBE_LOC+"Worker"+str(i)+'_'+str(j) + ':/home/mydata:Z', # '-v',DATA_LOC + ':/home/imageData:Z', # 'spen', '/bin/bash', '-c \"bash run.sh\"']) subprocess.call(['bash','runWorker_Sim.sh',str(i), str(j),"worker"+str(i)+'_'+str(j)]) consoleLog("Worker" + str(i)+'_'+str(j)+" Started") workerList.append("worker"+str(i)+'_'+str(j)) os.chdir(pwd) return workerList def startGlobal(): pwd = os.getcwd() os.chdir("../Global") subprocess.call(['bash','runGlobal_Sim.sh',"global"]) consoleLog("Global Started") #start simulation #Stop Servers def stopServers(serverList): for server in serverList: subprocess.call(["docker", "rm", "-f", server]) consoleLog("Server " + server + " Stopped") #Stop Workers def stopWorkers(workerList): for worker in workerList: subprocess.call(["docker", "rm", "-f", worker]) consoleLog("Worker " + worker + " Stopped") def stopGlobal(): subprocess.call(["docker","rm","-f","global"]) consoleLog("Global Stopped") #kill HDFS def killHDFS(): consoleLog("Exiting Simulation") consoleLog("Killing HDFS") os.chdir('../docker-hadoop') subprocess.call(['docker-compose', 'down']) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Distributed RL Controller') #parser.add_argument('servers', metavar='S', type=int, nargs='+', help='Number of Server Nodes to Start') #parser.add_argument('workers', metavar='W', type=int, nargs='+', help='Number of Worker Nodes to Start per Server') #args = parser.parse_args() consoleLog("DRL Controller Starting") #Start HDFS Docker cluster consoleLog("Starting HDFS Cluster") #Currently Assuming HDFS instance runs independently of DRL Controller #startHDFS() consoleLog("Starting Global") startGlobal() consoleLog("Starting Aggregators") serverList = startAggregators(16) consoleLog("Starting Workers") workerList = startWorkers(2, 2) #Run Simulation #time.sleep(3600) #Stop Servers #consoleLog("Stopping Global") #stopGlobal() #consoleLog("Stopping Servers") #stopServers(serverList); #consoleLog("Stopping Workers") #stopWorkers(workerList) #consoleLog("Killing HDFS") #killHDFS();
StarcoderdataPython
6688672
<reponame>ammsa23/dials<filename>tests/command_line/test_slice_sequence.py from __future__ import annotations import os import procrunner import pytest from dxtbx.serialize import load from dials.array_family import flex def test_slice_sequence_and_compare_with_expected_results(dials_regression, tmpdir): # use the i04_weak_data for this test data_dir = os.path.join(dials_regression, "refinement_test_data", "i04_weak_data") experiments_path = os.path.join(data_dir, "experiments.json") pickle_path = os.path.join(data_dir, "indexed_strong.pickle") for pth in (experiments_path, pickle_path): assert os.path.exists(pth) result = procrunner.run( ["dials.slice_sequence", experiments_path, pickle_path, "image_range=1 20"], working_directory=tmpdir, ) assert not result.returncode and not result.stderr # load results sliced_exp = load.experiment_list( tmpdir.join("experiments_1_20.expt").strpath, check_format=False )[0] sliced_refs = flex.reflection_table.from_file(tmpdir / "indexed_strong_1_20.refl") # simple test of results assert sliced_exp.scan.get_image_range() == (1, 20) assert len(sliced_refs) == 3670 def test_slice_sequence_with_first_images_missing(dials_regression, tmpdir): """Test slicing where scan image range does not start at 1, exercising a case that exposed a bug""" # use the i04_weak_data for this test data_dir = os.path.join(dials_regression, "refinement_test_data", "i04_weak_data") experiments_path = os.path.join(data_dir, "experiments.json") # first slice result = procrunner.run( ["dials.slice_sequence", experiments_path, "image_range=5,20"], working_directory=tmpdir, ) assert not result.returncode and not result.stderr # second slice result = procrunner.run( ["dials.slice_sequence", "experiments_5_20.expt", "image_range=10,20"], working_directory=tmpdir, ) assert not result.returncode and not result.stderr sliced_exp = load.experiment_list( tmpdir.join("experiments_5_20_10_20.expt").strpath, check_format=False )[0] assert sliced_exp.scan.get_image_range() == (10, 20) assert sliced_exp.scan.get_array_range() == (9, 20) assert sliced_exp.scan.get_oscillation()[0] == pytest.approx(83.35) def test_slice_sequence_to_degree_blocks(dials_data, tmpdir): """Slice data into 10 degree blocks i.e. 17 datasets""" expt = dials_data("l_cysteine_4_sweeps_scaled") / "scaled_30.expt" refl = dials_data("l_cysteine_4_sweeps_scaled") / "scaled_30.refl" procrunner.run( [ "dials.slice_sequence", "block_size=10", "output.experiments=sliced.expt", "output.reflections=sliced.refl", expt, refl, ], working_directory=tmpdir, ) sliced_expts = load.experiment_list( tmpdir.join("sliced.expt").strpath, check_format=False ) assert len(sliced_expts) == 17 sliced_refl = flex.reflection_table.from_file(tmpdir.join("sliced.refl").strpath) assert len(set(sliced_refl.experiment_identifiers().values())) == 17 sliced_refl.assert_experiment_identifiers_are_consistent(sliced_expts) def test_slice_sequence_with_scan_varying_crystal(dials_data, tmpdir): """test slicing keeps a scan-varying crystal""" expt = dials_data("l_cysteine_4_sweeps_scaled") / "scaled_30.expt" procrunner.run( [ "dials.slice_sequence", "image_range=10,20", "output.experiments=sliced.expt", expt, ], working_directory=tmpdir, ) orig = load.experiment_list(expt.strpath, check_format=False)[0] sliced = load.experiment_list( tmpdir.join("sliced.expt").strpath, check_format=False )[0] assert sliced.crystal.num_scan_points == 12 orig_UB = [ orig.crystal.get_A_at_scan_point(i) for i in range(orig.crystal.num_scan_points) ] sliced_UB = [ sliced.crystal.get_A_at_scan_point(i) for i in range(sliced.crystal.num_scan_points) ] for a, b in zip(orig_UB[9:21], sliced_UB): assert a == pytest.approx(b)
StarcoderdataPython
3393957
from webApp.utils.cryptographie import * class Credentials: vault_masterpassword = None vault_username = None user_id = None len_vault_username = None len_vault_masterpassword = None # len_user_id_hashed = None user_id_hash = None #user_id={lenght=fixed(64)} def __init__(self, pvault_username, pvault_masterpassword, puser_id): self.user_id = puser_id self.vault_username = hash(pvault_username, 99999, puser_id.encode()) self.vault_masterpassword = hash(pvault_masterpassword, <PASSWORD>, puser_id.encode()) self.len_vault_username = len(pvault_username) self.len_vault_masterpassword = len(pvault_masterpassword) self.len_user_id = len(self.user_id) self.user_id_hash = hash(self.user_id, 14082, puser_id.encode()) def get_creds(self, obj_1, obj_2, const, merged_data): output = None if obj_1 > obj_2: calc_value = const - (obj_1 - obj_2) if calc_value < 0: self.mani_value = obj_1 - calc_value else: self.mani_value = obj_1 + calc_value output = merged_data[obj_2:self.mani_value] elif obj_1 < obj_2: calc_value = const - (obj_2 - obj_1) if calc_value < 0: self.mani_value = obj_2 - calc_value else: self.mani_value = obj_2 + calc_value output = merged_data[obj_1:self.mani_value] else: calc_value = const - (obj_2) if calc_value < 0: self.mani_value = obj_2 - calc_value else: self.mani_value = obj_2 + calc_value output = merged_data[obj_1:self.mani_value] return output #IV = 16 #SALT = 64 def get_SecretKey(self): #1 start #obj_1=master_password length #obj_2=username length merged_data_salt = hash((self.vault_username+self.vault_masterpassword+self.user_id_hash)*(self.len_vault_masterpassword+self.len_vault_username), 99999, self.user_id.encode()) salt = self.get_creds(self.len_vault_masterpassword, self.len_vault_username, 64, merged_data_salt).encode() merged_data_iv = hash((self.vault_username+self.vault_masterpassword)*(self.len_vault_masterpassword+self.len_vault_username), 99999, salt) iv = self.get_creds(self.len_vault_masterpassword, self.len_vault_username, 16, merged_data_iv).encode() return iv+salt def gen_UserKey(self, salt): #2 start hash_list = hash(self.vault_username, 10000, salt), hash(self.vault_masterpassword, 10000, salt), hash(self.user_id, 10000, salt) user_pass_hash = hash(hash_list[1] + hash_list[2], 50000, salt) pass_id_hash = hash(hash_list[2] + hash_list[0], 50000, salt) userKey = hash(user_pass_hash + pass_id_hash, len(self.vault_username) * len(self.vault_masterpassword), salt) return userKey def gen_key(self, psecret_key, salt):#3 start secret_key = hash(psecret_key.decode("ascii"), 99999, salt) key = hash(secret_key + self.gen_UserKey(salt), 99999, salt) return key
StarcoderdataPython
131689
<filename>day02/python/part1.py #!/usr/bin/env python3 import helper class ShouldNeverGetHere(Exception): pass def main(): # lines = helper.read_lines("example.txt") lines = helper.read_lines("input.txt") horizontal, depth = (0, 0) for line in lines: parts = line.split() instruction = parts[0] value = int(parts[1]) if instruction == "forward": horizontal += value elif instruction == "down": depth += value elif instruction == "up": depth -= value else: raise ShouldNeverGetHere() # # print(f"{horizontal=}") print(f"{depth=}") print("---") print(horizontal * depth) ############################################################################## if __name__ == "__main__": main()
StarcoderdataPython
9628240
<reponame>lukeenterprise/json-subschema ''' Created on May 30, 2019 @author: <NAME> ''' import unittest from jsonsubschema.checker import isSubschema class TestArraySubtype(unittest.TestCase): def test_identity(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "minItems": 5, "maxItems:": 10} s2 = s1 self.assertTrue(isSubschema(s1, s2)) def test_min_max(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "minItems": 5, "maxItems:": 10} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "minItems": 1, "maxItems:": 20} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertFalse(isSubschema(s2, s1)) def test_unique(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "uniqueItems": True} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "uniqueItems": False} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertFalse(isSubschema(s2, s1)) def test_empty_items1(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array"} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": {}} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertTrue(isSubschema(s2, s1)) def test_empty_items2(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "additionalItems": False} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": {}} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertTrue(isSubschema(s2, s1)) def test_empty_items3(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{}, {}], "additionalItems": False} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": {}} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertFalse(isSubschema(s2, s1)) def test_empty_items4(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{}, {}], "additionalItems": True} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": {}} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertTrue(isSubschema(s2, s1)) def test_empty_items5(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{}, {}], "additionalItems": False} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{}], "additionalItems": False} with self.subTest(): self.assertFalse(isSubschema(s1, s2)) with self.subTest(): self.assertTrue(isSubschema(s2, s1)) def test_dictItems_listItems1(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": {"type": "string"}} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}]} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertFalse(isSubschema(s2, s1)) def test_dictItems_listItems2(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": {"type": "string"}} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}, {"type": "string"}]} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertFalse(isSubschema(s2, s1)) def test_dictItems_listItems3(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}]} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}, {"type": "number"}]} with self.subTest(): self.assertFalse(isSubschema(s1, s2)) with self.subTest(): self.assertTrue(isSubschema(s2, s1)) def test_dictItems_listItems4(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}], "additionalItems": False} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}, {"type": "number"}]} with self.subTest(): self.assertTrue(isSubschema(s1, s2)) with self.subTest(): self.assertFalse(isSubschema(s2, s1)) def test_dictItems_listItems5(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}], "additionalItems": True} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}, {"type": "number"}]} with self.subTest(): self.assertFalse(isSubschema(s1, s2)) with self.subTest(): self.assertTrue(isSubschema(s2, s1)) def test_dictItems_listItems6(self): s1 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}], "additionalItems": {}} s2 = {"$schema": "http://json-schema.org/draft-04/schema", "type": "array", "items": [{"type": "string"}, {"type": "number"}]} with self.subTest(): self.assertFalse(isSubschema(s1, s2)) with self.subTest(): self.assertTrue(isSubschema(s2, s1))
StarcoderdataPython
8057953
# coding: utf-8 from __future__ import print_function import json from comodit_client.api.platform import Image from comodit_client.api.settings import SimpleSetting from comodit_client.control import completions from comodit_client.control.doc import ActionDoc from comodit_client.control.entity import EntityController from comodit_client.control.exceptions import ArgumentException from comodit_client.control.json_update import JsonUpdater class InstancesController(EntityController): def __init__(self): super(InstancesController, self).__init__() # actions self._register(["start"], self._start, self._print_entity_completions) self._register(["pause"], self._pause, self._print_entity_completions) self._register(["resume"], self._resume, self._print_entity_completions) self._register(["shutdown"], self._shutdown, self._print_entity_completions) self._register(["poweroff"], self._poweroff, self._print_entity_completions) self._register(["forget"], self._forget, self._print_entity_completions) self._register(["properties"], self._properties, self._print_entity_completions) self._register(["show_file"], self._show_file, self._print_entity_completions) self._register(["get_status"], self._get_status, self._print_entity_completions) self._register(["create_image"], self._create_image, self._print_entity_completions) # Unregister unsupported actions self._unregister(["update", "list", "add"]) self._doc = "Host instances handling." self._update_action_doc_params("delete", "<org_name> <env_name> <host_name>") self._update_action_doc_params("show", "<org_name> <env_name> <host_name>") self._register_action_doc(self._start_doc()) self._register_action_doc(self._pause_doc()) self._register_action_doc(self._resume_doc()) self._register_action_doc(self._shutdown_doc()) self._register_action_doc(self._poweroff_doc()) self._register_action_doc(self._forget_doc()) self._register_action_doc(self._properties_doc()) self._register_action_doc(self._show_file_doc()) self._register_action_doc(self._get_status_doc()) self._register_action_doc(self._create_image_doc()) def get_collection(self, argv): if len(argv) < 3: raise ArgumentException("Wrong number of arguments"); return self._client.get_host(argv[0], argv[1], argv[2]).instance() def _print_collection_completions(self, param_num, argv): if param_num == 0: completions.print_identifiers(self._client.organizations()) elif len(argv) > 0 and param_num == 1: completions.print_identifiers(self._client.environments(argv[0])) elif len(argv) > 1 and param_num == 2: completions.print_identifiers(self._client.hosts(argv[0], argv[1])) def _print_entity_completions(self, param_num, argv): if param_num < 3: self._print_collection_completions(param_num, argv) def _get_name_argument(self, argv): return "" def _get_value_argument(self, argv): return None def _properties(self, argv): instance = self._get_entity(argv) options = self._config.options if options.raw: print(json.dumps(instance._get_field("properties"), indent = 4)) else: for p in instance.properties: p.show() def _properties_doc(self): return ActionDoc("properties", "<org_name> <env_name> <host_name>", """ Show properties of a given host instance.""") def _delete(self, argv): instance = self._get_entity(argv) instance.delete() def _delete_doc(self): return ActionDoc("delete", "<org_name> <env_name> <host_name>", """ Delete a host instance.""") def _start(self, argv): instance = self._get_entity(argv) instance.start() def _start_doc(self): return ActionDoc("start", "<org_name> <env_name> <host_name>", """ Start a host instance.""") def _pause(self, argv): instance = self._get_entity(argv) instance.pause() def _pause_doc(self): return ActionDoc("pause", "<org_name> <env_name> <host_name>", """ Pause a host instance.""") def _resume(self, argv): instance = self._get_entity(argv) instance.resume() def _resume_doc(self): return ActionDoc("resume", "<org_name> <env_name> <host_name>", """ Resume a host instance.""") def _shutdown(self, argv): instance = self._get_entity(argv) instance.shutdown() def _shutdown_doc(self): return ActionDoc("shutdown", "<org_name> <env_name> <host_name>", """ Shutdown a host instance.""") def _poweroff(self, argv): instance = self._get_entity(argv) instance.poweroff() def _poweroff_doc(self): return ActionDoc("poweroff", "<org_name> <env_name> <host_name>", """ Power-off a host instance.""") def _forget(self, argv): instance = self._get_entity(argv) instance.forget() def _forget_doc(self): return ActionDoc("forget", "<org_name> <env_name> <host_name>", """ Forgets a host instance.""") def _show_file(self, argv): if len(argv) < 4: raise ArgumentException("Wrong number of arguments"); instance = self._get_entity(argv) print(instance.get_file_content(argv[3]).read(), end=' ') def _show_file_doc(self): return ActionDoc("show_file", "<org_name> <env_name> <host_name> <path>", """ Show a host's file content.""") def _get_status(self, argv): if len(argv) < 5: raise ArgumentException("Wrong number of arguments"); instance = self._get_entity(argv) print(instance.get_status(argv[3], argv[4]), end=' ') def _get_status_doc(self): return ActionDoc("get_status", "<org_name> <env_name> <host_name> <collection> <sensor>", """ Show a host's file content.""") def _create_image(self, argv): image = Image() image.create_distribution = False host = self._client.get_host(argv[0], argv[1], argv[2]) platform = self._client.get_platform(argv[0], host.platform_name) image.settings = [ self._build_setting(param) for param in platform.image_parameters() ] updater = JsonUpdater(self._config.options, ignore_not_modified=True) updated_json = updater.update(image) image.set_json(updated_json) instance = self._get_entity(argv) instance.create_image(image) def _build_setting(self, parameter): setting = SimpleSetting(None) setting.key = parameter.key setting.value = parameter.value return setting def _create_image_doc(self): return ActionDoc("create_image", "<org_name> <env_name> <host_name>", """ Creates an image from given host's instance.""")
StarcoderdataPython
5020018
<filename>rsbook_code/utilities/differences.py from __future__ import print_function,division from builtins import range import numpy as np def gradient_forward_difference(f,x,h): """Approximation of the gradient of f(x) using forward differences with step size h""" g = np.zeros(len(x)) f0 = f(x) for i in range(len(x)): v = x[i] x[i] += h g[i] = (f(x)-f0) x[i] = v g *= 1.0/h return g def jacobian_forward_difference(f,x,h): """Approximation of the Jacobian of vector function f(x) using forward differences with step size h""" f0 = np.asarray(f(x)) J = np.zeros((len(f0),len(x))) for i in range(len(x)): v = x[i] x[i] += h J[:,i] = (np.asarray(f(x))-f0) x[i] = v J *= 1.0/h return J def hessian_forward_difference(f,x,h): """Approximation of the hessian of f(x) using forward differences with step size h. """ H = np.zeros((len(x),len(x))) f0 = f(x) fs = [] for i in range(len(x)): v = x[i] x[i] += h fs.append(f(x)) x[i] = v for i in range(len(x)): v = x[i] x[i] += h for j in range(i): w = x[j] x[j] += h fij = f(x) H[i,j] = (fij-fs[j]) - (fs[i]-f0) H[j,i] = H[i,j] x[j] = w x[i] = v x[i] -= h fij = f(x) H[i,i] = (fs[i]-f0) - (f0-fij) x[i] = v H *= 1.0/h**2 return H def hessian2_forward_difference(f,x,y,h): """Approximation of the hessian of a 2-parameter function f(x,y) w.r.t. x and y using forward differences with step size h. """ H = np.zeros((len(x),len(y))) f0 = f(x,y) fxs = [] fys = [] for i in range(len(x)): v = x[i] x[i] += h fxs.append(f(x,y)) x[i] = v for i in range(len(y)): v = y[i] y[i] += h fys.append(f(x,y)) y[i] = v for i in range(len(x)): v = x[i] x[i] += h for j in range(len(y)): w = y[j] y[j] += h fij = f(x,y) H[i,j] = ((fij-fys[j]) - (fxs[i]-f0)) y[j] = w x[i] = v H *= 1.0/h**2 return H
StarcoderdataPython
12803872
def client(api_key, api_url=None, version=None, **kwargs): from client import QencodeApiClient return QencodeApiClient(api_key, api_url=api_url, version=version, **kwargs) def custom_params(): from custom_params import CustomTranscodingParams return CustomTranscodingParams() def format(): from custom_params import Format return Format() def destination(): from custom_params import Destination return Destination() def stream(): from custom_params import Stream return Stream() def x264_video_codec(): from custom_params import Libx264_VideoCodecParameters return Libx264_VideoCodecParameters() def x265_video_codec(): from custom_params import Libx265_VideoCodecParameters return Libx265_VideoCodecParameters() from exeptions import QencodeClientException, QencodeTaskException __version__ = "0.9.29" __status__ = "Beta" __author__ = "Qencode"
StarcoderdataPython
8089913
<filename>aliyun-api-gateway-demo-sign/ClientDemo.py # -*- coding: utf-8 -*- from com.aliyun.api.gateway.sdk import client from com.aliyun.api.gateway.sdk.http import request from com.aliyun.api.gateway.sdk.common import constant # 这里为友盟一键登录接口 host = "https://verify5.market.alicloudapi.com" url = "/api/v1/mobile/info?appkey=xxx" cli = client.DefaultClient(app_key="appKey", app_secret="appSecret") # GET # req = request.Request(host=host,protocol=constant.HTTP, url=url, method="GET", time_out=30000) # print cli.execute(req) #post body stream import json req_post = request.Request(host=host, protocol=constant.HTTP, url=url, method="POST", time_out=30000) body = {} body["token"] = "<PASSWORD>" req_post.set_body(json.dumps(body)) req_post.set_content_type(constant.CONTENT_TYPE_STREAM) _, _, data = cli.execute(req_post) print(json.loads(data)) #post form # req_post = request.Request(host=host, protocol=constant.HTTP, url=url, method="POST", time_out=30000) # bodyMap = {} # bodyMap["bodyForm1"] = "fwefwef" # bodyMap["bodyForm2"] = "ffwefwef" # req_post.set_body(bodyMap) # req_post.set_content_type(constant.CONTENT_TYPE_FORM) # print cli.execute(req_post)
StarcoderdataPython
79573
# # Copyright (c) 2018 Via Technology Ltd. All Rights Reserved. # Consult your license regarding permissions and restrictions. # """ operations related to airspaces and intersections. """ from psycopg2 import Error, InternalError from psycopg2.extensions import AsIs from psycopg2.extras import DictCursor from itertools import filterfalse from functools import reduce from shapely.wkt import loads import pru.db.context as ctx from pru.logger import logger log = logger(__name__) def make_point(lon, lat, connection): """ Makes a geo point """ cursor = connection.cursor() query = "SELECT ST_MakePoint(%s, %s)" params = (float(lon), float(lat)) cursor.execute(query, params) return cursor.fetchone() def make_augmented_point_from_position(position, flight_id, connection): """ Takes a position tuple and makes a augmented point. """ point = make_point(position[1], position[0], connection) return {'flight_id': flight_id, 'lon': position[1], 'lat': position[0], 'geoPoint': point} def make_augmented_points_from_positions(latitudes, longitudes, flight_id, connection): """ Takes a list of latitudes and a list of longitudes and a flight_id. Makes a list of augmented points. """ return [make_augmented_point_from_position(position, flight_id, connection) for position in zip(latitudes, longitudes)] def extract_point_list_from_augmented_points(augmented_points): """ Given a list or generator of augmented points extract the geo point representation as a list. """ return list(map(lambda augmented_points: augmented_points['geoPoint'], augmented_points)) def make_line_from_augmented_points(augmented_points, flight_id, connection): """ Given a list of augmented points create a geographic line. """ if (len(augmented_points) == 0): log.warning(f"Creating a line from a list of points but the list " "was empty for flight id {flight_id}.") return [[]] cursor = connection.cursor() query = "SELECT ST_AsEWKT(ST_MakeLine(ARRAY[%s]));" params = [augmented_points] cursor.execute(query, params) return cursor.fetchone() def find_sectors_intersected_by(line_string, flight_id, min_altitude, max_altitude, context, connection): """ Lists the airspace ids and details of those airspaces where the given line string intersects excluding those that are outside of the range of altitudes of the trajectory. """ log.debug(f"Finding trajectory intersection with airspaces for flight id: {flight_id}") schema_name = context[ctx.SCHEMA_NAME] try: with connection.cursor() as cursor: query = "SELECT id, av_airspace_id, min_altitude, max_altitude " \ "from %s.sectors where " \ "NOT (max_altitude < %s OR min_altitude > %s) AND " \ "ST_Intersects(wkt, ST_GeographyFromText('SRID=4326;%s'));" params = [AsIs(schema_name), min_altitude, max_altitude, AsIs(line_string)] cursor.execute(query, params) return cursor.fetchall() except InternalError: log.exception(f"Failed whist trying to find the intersection between " "a route with flight id {flight_id} and the airspace model.") return [] def find_user_sectors_intersected_by(line_string, flight_id, min_altitude, max_altitude, context, connection): """ Lists the user defined airspace uids and details of those airspaces where the given line string intersects. """ log.debug(f"Finding trajectory intersection with user defined airspaces for flight id: {flight_id}") schema_name = context[ctx.SCHEMA_NAME] try: with connection.cursor() as cursor: query = "SELECT id, org_id, min_altitude, max_altitude, user_id, " \ "sector_name from %s.user_defined_sectors where " \ "NOT (max_altitude < %s OR min_altitude > %s) AND " \ "ST_Intersects(wkt, ST_GeographyFromText('SRID=4326;%s'));" params = [AsIs(schema_name), min_altitude, max_altitude, AsIs(line_string)] cursor.execute(query, params) return cursor.fetchall() except InternalError: log.exception(f"Failed whist trying to find the intersection between " "a route with flight id {flight_id} and the airspace model.") return [] def make_geographic_trajectory(augmented_points, flight_id, connection): """ Given a list of augmented points create a geographic line segment. """ log.debug(f"Making geo trajectory for flight id: {flight_id}") return make_line_from_augmented_points( extract_point_list_from_augmented_points(augmented_points), flight_id, connection)[0] def make_augmented_trajectory(augmented_points, geographic_trajectory, flight_id, min_altitude, max_altitude, connection, is_user_defined=False): """ Makes a trajectory augmented with geographic positions and a list of sectors intersected by the trajectory excluding those that do not meet the altitude range of the trajectory. """ log.debug(f"Creating an augmented trajectory for flight id: {flight_id}") if not is_user_defined: sectors = find_sectors_intersected_by(geographic_trajectory, flight_id, min_altitude, max_altitude, ctx.CONTEXT, connection) else: sectors = find_user_sectors_intersected_by(geographic_trajectory, flight_id, min_altitude, max_altitude, ctx.CONTEXT, connection) return {'extendedPoints': augmented_points, 'line': geographic_trajectory, 'sectors': sectors, 'is_user_defined': is_user_defined} def find_sector(db_ID, connection): schemaName = ctx.CONTEXT[ctx.SCHEMA_NAME] with connection.cursor(cursor_factory=DictCursor) as cursor: cursor.execute("SELECT id, av_airspace_id, av_icao_state_id, av_name, min_altitude, max_altitude FROM %s.sectors WHERE " "id = %s", [AsIs(schemaName), db_ID]) return cursor.fetchone() def find_sector_identifiers(db_ID, context, connection): """ Finds the identifiers for a sector given the db id of the sector. """ schemaName = context[ctx.SCHEMA_NAME] with connection.cursor(cursor_factory=DictCursor) as cursor: cursor.execute("SELECT av_airspace_id, av_icao_state_id, av_name FROM %s.sectors WHERE " "id = %s", [AsIs(schemaName), db_ID]) return cursor.fetchmany() def find_airspace_by_database_ID(db_ID, context, connection, is_user_defined=False): """ Finds an aairspace with the given database id Returns a list, list may be empty. """ schemaName = context[ctx.SCHEMA_NAME] with connection.cursor(cursor_factory=DictCursor) as cursor: if is_user_defined: cursor.execute("SELECT * FROM %s.user_defined_sectors WHERE " "id = %s", [AsIs(schemaName), db_ID]) return cursor.fetchmany() else: cursor.execute("SELECT * FROM %s.sectors WHERE " "id = %s", [AsIs(schemaName), db_ID]) return cursor.fetchmany() def originates(first_point, polygon_string, flight_id, sector_id, connection): """ If the first point is inside the given sector we determine that the trajectory originates in the sector. first_point wkb for the first point of the trajectory returns True => originates in sectors """ cursor = connection.cursor() query = "SELECT ST_Intersects(%s::geography, %s::geography);" params = [first_point, polygon_string] cursor.execute(query, params) originates = cursor.fetchone()[0] if originates: log.debug(f"Flight with id {flight_id} originates in sector {sector_id}") return originates def find_line_poly_intersection_without_boundary(lineString, polygonString, connection): """ Use the geo db to find the intersections between the linestring and the unbounded polygon string. The polygon is assumed to _NOT_ have a boundary around it. """ query = "SELECT ST_AsText(ST_Intersection(%s::geography, ST_Force2D(ST_Boundary(%s))::geography));" params = [lineString, polygonString] try: with connection.cursor() as cursor: cursor.execute(query, params) res = cursor.fetchall() return {'segmentStrings': res, 'ploygonString': polygonString} except Error: log.exception("Failed to find intersection : Error") return [] def find_line_poly_intersection_with_boundary(lineString, polygonString, connection): """ Use the geo db to find the intersections between the linestring and the bounded polygon string. The polygon is assumed to already have a boundary around it. """ query = "SELECT unit.find_intersections(%s, %s)" params = [lineString, polygonString] try: with connection.cursor() as cursor: cursor.execute(query, params) res = cursor.fetchall() return {'segmentStrings': res, 'ploygonString': polygonString} except Error: log.exception("Failed to find intersection : Error") return [] def find_intersections(augmented_trajectory, min_altitude, max_altitude, flight_id, connection): """ Finds the points on the trajectory that intersect with the sectors of the the augmented trajectory. """ log.debug(f"Finding intersection for flight id {flight_id}") first_point = augmented_trajectory['extendedPoints'][0]['geoPoint'] first_point_lon = augmented_trajectory['extendedPoints'][0]['lon'] first_point_lat = augmented_trajectory['extendedPoints'][0]['lat'] is_user_defined = augmented_trajectory['is_user_defined'] # Find each sector sector_IDs = [sector[0] for sector in augmented_trajectory['sectors']] log.debug("Found sector ids %s", str(sector_IDs)) sectors = [find_airspace_by_database_ID(str(sector_id), ctx.CONTEXT, connection, is_user_defined)[0] for sector_id in sector_IDs] # Find the points of the trajectory where the trajectory intersects # with each sector if is_user_defined: segments = [{'flight_id': flight_id, 'intersections': find_line_poly_intersection_with_boundary(augmented_trajectory['line'], sector['bounded_sector'], connection), 'origin': {'is_origin': originates(first_point, sector['wkt'], flight_id, sector['id'], connection), 'origin_lat': first_point_lat, 'origin_lon': first_point_lon}, 'id': sector['id'], 'org_id': sector['org_id'], 'user_id': sector['user_id'], 'sector_name': sector['sector_name'], 'min_altitude': sector['min_altitude'], 'max_altitude': sector['max_altitude'], 'is_cylinder': sector['is_cylinder'], 'is_user_defined': is_user_defined} for sector in sectors] else: segments = [{'flight_id': flight_id, 'intersections': find_line_poly_intersection_with_boundary(augmented_trajectory['line'], sector['bounded_sector'], connection), 'origin': {'is_origin': originates(first_point, sector['wkt'], flight_id, sector['id'], connection), 'origin_lat': first_point_lat, 'origin_lon': first_point_lon}, 'id': sector['id'], 'av_icao_state_id': sector['av_icao_state_id'], 'av_name': sector['av_name'], 'av_airspace_id': sector['av_airspace_id'], 'min_altitude': sector['min_altitude'], 'max_altitude': sector['max_altitude'], 'is_user_defined': is_user_defined} for sector in sectors] return segments def extract(sector_id, shape, flight_id): """ Given a shapley shape find if we have a point or a multipoint. For a point extract the y, x pair as a list of one tuple of sector_id, latitude and longitude. For a multipoint return a list of multiple tuples. """ if shape.geom_type == 'MultiPoint': return [(sector_id, p.y, p.x) for p in shape] elif shape.geom_type == 'Point': return [(sector_id, shape.y, shape.x)] else: log.debug("Unknown geom type : %s in flight id %s and sector_id %s, was %s, skipping", shape.geom_type, flight_id, sector_id, str(shape)) return [] def extract_details_from_intersection(sector_id, wkt, origin, flight_id): """ Given an intersection wkt use shapley to create the point or multipoint object. Then extract the latitude and longitudes from the (multi)point. Returns a list of tuples of sector_id, latiitude and longitude """ intersection_tuples = extract(sector_id, loads(wkt), flight_id) if origin['is_origin']: # If this sector is an origin sector, add in the lat lons at the start. intersection_tuples = [(sector_id, origin['origin_lat'], origin['origin_lon'])] + intersection_tuples return intersection_tuples def make_sector_description(intersection, is_user_defined=False): """ Makes a text description of the sector from the intersection description """ if is_user_defined: return f'{intersection["org_id"]}/{intersection["user_id"]}/{intersection["sector_name"]}' else: return f'{intersection["av_icao_state_id"]}/{intersection["av_name"]}/{intersection["id"]}/{intersection["av_airspace_id"]}' def make_sector_identifier(intersection): """ Makes a text version of the database id in the given intersection """ return f'{intersection["id"]}' def extract_intersection_wkts(intersections): """ Given a list of intersection dicts return a list of wkts with sector descriptive text and the origin details as a tuple. ie ("some-text-made-from-sector-ids", wkt, {is_origin:False, origin_lat:lat, origin_lon: lon}) """ return [(make_sector_identifier(intersection), intersection['intersections']['segmentStrings'][0][0], intersection['origin']) for intersection in intersections] def merge_l_t(l, lt): """ Merge a list of tuples lt, each of three values into three lists l. For example: [('a', 'b', 'c'), ('a', 'd', 'e')] -> [['a', 'a'], ['b', 'd'], ['c', 'e']] """ for t in lt: l[0].append(t[1]) l[1].append(t[2]) l[2].append(t[0]) return l def create_intersection_data_structure(intersections, flight_id): """ Given the intersection data structures create a response tuple. """ # The intersection wkts are tuples of the sector_id, the wkt and the origin # status for the intersection. intersection_wkts = extract_intersection_wkts(intersections) intersection_details = [extract_details_from_intersection(*intersection_wkt, flight_id) for intersection_wkt in intersection_wkts] x_y_sector_ids = reduce(merge_l_t, intersection_details, [[], [], []]) return x_y_sector_ids[0], x_y_sector_ids[1], x_y_sector_ids[2]
StarcoderdataPython
11205547
<filename>setup.py from importlib import import_module from pathlib import Path from setuptools import setup, find_packages SRC_ROOT = 'src' BIN_ROOT = 'bin/' about = import_module(SRC_ROOT + '.rhasspy_desktop_satellite.about') with Path('README.md').open('r') as fh: long_description = fh.read() with Path('requirements.txt').open('r') as fh: requirements = fh.read().splitlines() requirements = [requirement for requirement in requirements if not requirement.startswith('#')] binaries = [BIN_ROOT + about.PROJECT] setup( name=about.PROJECT, version=about.VERSION, description=about.DESCRIPTION, long_description=long_description, long_description_content_type='text/markdown', license=about.LICENSE, author=about.AUTHOR, author_email=about.EMAIL, url=about.GITHUB_URL, project_urls={ 'Documentation': about.DOC_URL, 'Source': about.GITHUB_URL, 'Tracker': about.TRACKER_URL, }, packages=find_packages(SRC_ROOT), package_dir={'': SRC_ROOT}, install_requires=requirements, python_requires='>=3', include_package_data=True, zip_safe=False, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX', 'Programming Language :: Python', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Home Automation', 'Topic :: Multimedia :: Sound/Audio :: Capture/Recording', 'Topic :: Multimedia :: Sound/Audio :: Players' ], keywords=about.KEYWORDS, scripts=binaries)
StarcoderdataPython
267033
<reponame>hafeez3000/wnframework<gh_stars>1-10 # Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import webnotes def get_workflow_name(doctype): if getattr(webnotes.local, "workflow_names", None) is None: webnotes.local.workflow_names = {} if doctype not in webnotes.local.workflow_names: workflow_name = webnotes.conn.get_value("Workflow", {"document_type": doctype, "is_active": "1"}, "name") # no active? get default workflow if not workflow_name: workflow_name = webnotes.conn.get_value("Workflow", {"document_type": doctype}, "name") webnotes.local.workflow_names[doctype] = workflow_name return webnotes.local.workflow_names[doctype] def get_default_state(doctype): workflow_name = get_workflow_name(doctype) return webnotes.conn.get_value("Workflow Document State", {"parent": workflow_name, "idx":1}, "state") def get_state_fieldname(doctype): workflow_name = get_workflow_name(doctype) return webnotes.conn.get_value("Workflow", workflow_name, "workflow_state_field")
StarcoderdataPython
5155131
<reponame>ishine/neural_sp #! /usr/bin/env python3 # -*- coding: utf-8 -*- """Test for RNN encoder.""" import importlib import math import numpy as np import pytest import torch from neural_sp.models.torch_utils import ( np2tensor, pad_list ) def make_args(**kwargs): args = dict( input_dim=80, enc_type='blstm', n_units=16, n_projs=0, last_proj_dim=0, n_layers=4, n_layers_sub1=0, n_layers_sub2=0, dropout_in=0.1, dropout=0.1, subsample="1_1_1_1", subsample_type='drop', n_stacks=1, n_splices=1, frontend_conv=None, bidir_sum_fwd_bwd=False, task_specific_layer=False, param_init=0.1, chunk_size_current="0", chunk_size_right="0", cnn_lookahead=True, rsp_prob=0, ) args.update(kwargs) return args def make_args_conv(**kwargs): args = dict( input_dim=80, in_channel=1, channels="32_32", kernel_sizes="(3,3)_(3,3)", strides="(1,1)_(1,1)", poolings="(2,2)_(2,2)", dropout=0.1, normalization='', residual=False, bottleneck_dim=0, param_init=0.1, ) args.update(kwargs) return args @pytest.mark.parametrize( "args, args_conv", [ # RNN type ({'enc_type': 'blstm'}, {}), ({'enc_type': 'lstm'}, {}), ({'enc_type': 'lstm', 'rsp_prob': 0.5}, {}), # 2dCNN-RNN ({'enc_type': 'conv_blstm'}, {}), ({'enc_type': 'conv_blstm', 'input_dim': 240}, {'input_dim': 240, 'in_channel': 3}), # 1dCNN-RNN ({'enc_type': 'conv_blstm'}, {'kernel_sizes': "3_3", 'strides': "1_1", 'poolings': "2_2"}), ({'enc_type': 'conv_blstm', 'input_dim': 240}, {'input_dim': 240, 'in_channel': 3, 'kernel_sizes': "3_3", 'strides': "1_1", 'poolings': "2_2"}), # normalization ({'enc_type': 'conv_blstm'}, {'normalization': 'batch_norm'}), ({'enc_type': 'conv_blstm'}, {'normalization': 'layer_norm'}), # projection ({'enc_type': 'blstm', 'n_projs': 8}, {}), ({'enc_type': 'lstm', 'n_projs': 8}, {}), ({'enc_type': 'blstm', 'bidir_sum_fwd_bwd': True}, {}), ({'enc_type': 'blstm', 'bidir_sum_fwd_bwd': True, 'n_projs': 8}, {}), ({'enc_type': 'blstm', 'last_proj_dim': 5}, {}), ({'enc_type': 'blstm', 'last_proj_dim': 5, 'n_projs': 8}, {}), ({'enc_type': 'lstm', 'last_proj_dim': 5, 'n_projs': 8}, {}), ({'enc_type': 'blstm', 'bidir_sum_fwd_bwd': True, 'last_proj_dim': 5}, {}), ({'enc_type': 'blstm', 'bidir_sum_fwd_bwd': True, 'last_proj_dim': 5, 'n_projs': 8}, {}), # subsampling ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'drop'}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'concat'}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'max_pool'}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'conv1d'}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'add'}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'drop', 'bidir_sum_fwd_bwd': True}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'concat', 'bidir_sum_fwd_bwd': True}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'max_pool', 'bidir_sum_fwd_bwd': True}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'conv1d', 'bidir_sum_fwd_bwd': True}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'add', 'bidir_sum_fwd_bwd': True}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'drop', 'n_projs': 8}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'concat', 'n_projs': 8}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'max_pool', 'n_projs': 8}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'conv1d', 'n_projs': 8}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_2_1", 'subsample_type': 'add', 'n_projs': 8}, {}), # LC-BLSTM ({'enc_type': 'blstm', 'chunk_size_current': "0", 'chunk_size_right': "40"}, {}), # BLSTM for PT ({'enc_type': 'blstm', 'chunk_size_current': "40", 'chunk_size_right': "40"}, {}), ({'enc_type': 'blstm', 'bidir_sum_fwd_bwd': True, 'chunk_size_current': "0", 'chunk_size_right': "40"}, {}), # BLSTM for PT ({'enc_type': 'blstm', 'bidir_sum_fwd_bwd': True, 'chunk_size_current': "40", 'chunk_size_right': "40"}, {}), ({'enc_type': 'conv_blstm', 'bidir_sum_fwd_bwd': True, 'chunk_size_current': "40", 'chunk_size_right': "40"}, {}), ({'enc_type': 'conv_blstm', 'bidir_sum_fwd_bwd': True, 'chunk_size_current': "40", 'chunk_size_right': "40", 'rsp_prob': 0.5}, {}), # LC-BLSTM + subsampling ({'enc_type': 'blstm', 'subsample': "1_2_1_1", 'chunk_size_right': "40"}, {}), # BLSTM for PT ({'enc_type': 'blstm', 'subsample': "1_2_1_1", 'chunk_size_current': "40", 'chunk_size_right': "40"}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_1_1", 'bidir_sum_fwd_bwd': True, 'chunk_size_right': "40"}, {}), # BLSTM for PT ({'enc_type': 'blstm', 'subsample': "1_2_1_1", 'bidir_sum_fwd_bwd': True, 'chunk_size_current': "40", 'chunk_size_right': "40"}, {}), ({'enc_type': 'blstm', 'subsample': "1_2_1_1", 'bidir_sum_fwd_bwd': True, 'chunk_size_current': "40", 'chunk_size_right': "40", 'rsp_prob': 0.5}, {}), # Multi-task ({'enc_type': 'blstm', 'n_layers_sub1': 2}, {}), ({'enc_type': 'blstm', 'n_layers_sub1': 2, 'task_specific_layer': True}, {}), ({'enc_type': 'blstm', 'n_layers_sub1': 2, 'task_specific_layer': True, 'chunk_size_current': "0", 'chunk_size_right': "40"}, {}), # BLSTM for PT ({'enc_type': 'blstm', 'n_layers_sub1': 2, 'task_specific_layer': True, 'chunk_size_current': "40", 'chunk_size_right': "40"}, {}), # LC-BLSTM ({'enc_type': 'blstm', 'n_layers_sub1': 2, 'task_specific_layer': True, 'chunk_size_current': "0", 'chunk_size_right': "40", 'rsp_prob': 0.5}, {}), # BLSTM for PT ({'enc_type': 'blstm', 'n_layers_sub1': 2, 'task_specific_layer': True, 'chunk_size_current': "40", 'chunk_size_right': "40", 'rsp_prob': 0.5}, {}), # LC-BLSTM ({'enc_type': 'blstm', 'n_layers_sub1': 2, 'n_layers_sub2': 1}, {}), ({'enc_type': 'blstm', 'n_layers_sub1': 2, 'n_layers_sub2': 1, 'task_specific_layer': True}, {}), # Multi-task + subsampling ({'enc_type': 'blstm', 'subsample': "2_1_1_1", 'n_layers_sub1': 2, 'chunk_size_current': "0", 'chunk_size_right': "40", 'task_specific_layer': True}, {}), # BLSTM for PT ({'enc_type': 'blstm', 'subsample': "2_1_1_1", 'n_layers_sub1': 2, 'chunk_size_current': "40", 'chunk_size_right': "40", 'task_specific_layer': True}, {}), # LC-BLSTM ] ) def test_forward(args, args_conv): device = "cpu" args = make_args(**args) if 'conv' in args['enc_type']: conv_module = importlib.import_module('neural_sp.models.seq2seq.encoders.conv') args_conv = make_args_conv(**args_conv) args['frontend_conv'] = conv_module.ConvEncoder(**args_conv).to(device) bs = 4 xmaxs = [40, 45] if int(args['chunk_size_current'].split('_')[0]) == -1 else [400, 455] module = importlib.import_module('neural_sp.models.seq2seq.encoders.rnn') enc = module.RNNEncoder(**args).to(device) for xmax in xmaxs: xs = np.random.randn(bs, xmax, args['input_dim']).astype(np.float32) xlens = torch.IntTensor([len(x) - i * enc.subsampling_factor for i, x in enumerate(xs)]) # shuffle perm_ids = torch.randperm(bs) xs = xs[perm_ids] xlens = xlens[perm_ids] xs = pad_list([np2tensor(x, device).float() for x in xs], 0.) eout_dict = enc(xs, xlens, task='all') assert eout_dict['ys']['xs'].size(0) == bs assert eout_dict['ys']['xs'].size(1) == eout_dict['ys']['xlens'].max() for b in range(bs): if 'conv' in args['enc_type'] or args['subsample_type'] in ['max_pool', 'conv1d', 'drop', 'add']: assert eout_dict['ys']['xlens'][b].item() == math.ceil(xlens[b].item() / enc.subsampling_factor) else: assert eout_dict['ys']['xlens'][b].item() == xlens[b].item() // enc.subsampling_factor if args['n_layers_sub1'] > 0: # all outputs assert eout_dict['ys_sub1']['xs'].size(0) == bs assert eout_dict['ys_sub1']['xs'].size(1) == eout_dict['ys_sub1']['xlens'].max() for b in range(bs): if 'conv' in args['enc_type'] or args['subsample_type'] in ['max_pool', 'conv1d', 'drop', 'add']: assert eout_dict['ys_sub1']['xlens'][b].item() == math.ceil( xlens[b].item() / enc.subsampling_factor_sub1) else: assert eout_dict['ys_sub1']['xlens'][b].item() == xlens[b].item() // enc.subsampling_factor_sub1 # single output eout_dict_sub1 = enc(xs, xlens, task='ys_sub1') assert eout_dict_sub1['ys_sub1']['xs'].size(0) == bs assert eout_dict_sub1['ys_sub1']['xs'].size(1) == eout_dict['ys_sub1']['xlens'].max() if args['n_layers_sub2'] > 0: # all outputs assert eout_dict['ys_sub2']['xs'].size(0) == bs assert eout_dict['ys_sub2']['xs'].size(1) == eout_dict['ys_sub2']['xlens'].max() for b in range(bs): if 'conv' in args['enc_type'] or args['subsample_type'] in ['max_pool', 'conv1d', 'drop', 'add']: assert eout_dict['ys_sub2']['xlens'][b].item() == math.ceil( xlens[b].item() / enc.subsampling_factor_sub2) else: assert eout_dict['ys_sub2']['xlens'][b].item() == xlens[b].item() // enc.subsampling_factor_sub2 # single output eout_dict_sub2 = enc(xs, xlens, task='ys_sub2') assert eout_dict_sub2['ys_sub2']['xs'].size(0) == bs assert eout_dict_sub2['ys_sub2']['xs'].size(1) == eout_dict_sub2['ys_sub2']['xlens'].max()
StarcoderdataPython
5154182
import os from dataclasses import dataclass import numpy as np import pandas as pd __all__ = ["Test1", "Test2", "assets", "scenarios", "outlook"] assets = 'DMEQ', 'EMEQ', 'PE', 'RE', 'NB', 'EILB', 'CASH' scenarios = 'Baseline', 'Goldilocks', 'Stagflation', 'HHT' outlook = pd.read_csv(os.path.join(os.path.dirname(__file__), "scenario.csv")) @dataclass class Bounds: DMEQ: float EMEQ: float PE: float RE: float NB: float EILB: float CASH: float def as_array(self): return [self.DMEQ, self.EMEQ, self.PE, self.RE, self.NB, self.EILB, self.CASH] @dataclass class CVAR: Baseline: float Goldilocks: float Stagflation: float HHT: float def as_array(self): return np.array([self.Baseline, self.Goldilocks, self.Stagflation, self.HHT]) def __getitem__(self, item: str): return self.__dict__[item] @dataclass class Probability(CVAR): pass class Weights(Bounds): pass class OptimalMix(CVAR): pass @dataclass class Expected: Mix: OptimalMix Baseline: Weights Goldilocks: Weights Stagflation: Weights HHT: Weights Optimal: Weights @dataclass class RegretTest: lb: Bounds ub: Bounds cvar: CVAR prob: Probability expected: Expected @property def solutions(self): return np.array([ self.expected.Baseline.as_array(), self.expected.Goldilocks.as_array(), self.expected.Stagflation.as_array(), self.expected.HHT.as_array(), ]) @property def optimal(self): return self.expected.Optimal.as_array() @property def proportions(self): return self.expected.Mix.as_array() Test1 = RegretTest( lb=Bounds( DMEQ=0, EMEQ=0, PE=0.13, RE=0.11, NB=0, EILB=0.05, CASH=0.04, ), ub=Bounds( DMEQ=1, EMEQ=0.18, PE=0.13, RE=0.11, NB=1, EILB=0.05, CASH=0.04, ), prob=Probability( Baseline=0.57, Goldilocks=0.1, Stagflation=0.14, HHT=0.19, ), cvar=CVAR( Baseline=-0.34, Goldilocks=-0.253, Stagflation=-0.501, HHT=-0.562 ), expected=Expected( Mix=OptimalMix( Baseline=0.732, Goldilocks=0, Stagflation=0, HHT=0.268 ), Baseline=Weights( DMEQ=0.25, EMEQ=0.18, PE=0.13, RE=0.11, NB=0.24, EILB=0.05, CASH=0.04, ), Goldilocks=Weights( DMEQ=0.3485, EMEQ=0.0947, PE=0.13, RE=0.11, NB=0.2268, EILB=0.05, CASH=0.04, ), Stagflation=Weights( DMEQ=0.1, EMEQ=0, PE=0.13, RE=0.11, NB=0.57, EILB=0.05, CASH=0.04, ), HHT=Weights( DMEQ=0, EMEQ=0, PE=0.13, RE=0.11, NB=0.67, EILB=0.05, CASH=0.04, ), Optimal=Weights( DMEQ=0.183, EMEQ=0.132, PE=0.13, RE=0.11, NB=0.355, EILB=0.05, CASH=0.04, ), ) ) Test2 = RegretTest( lb=Bounds( DMEQ=0, EMEQ=0, PE=0, RE=0, NB=0, EILB=0, CASH=0, ), ub=Bounds( DMEQ=1, EMEQ=0.18, PE=0.13, RE=0.11, NB=1, EILB=0.05, CASH=0.04, ), prob=Probability( Baseline=0.57, Goldilocks=0.1, Stagflation=0.14, HHT=0.19, ), cvar=CVAR( Baseline=-0.34, Goldilocks=-0.253, Stagflation=-0.501, HHT=-0.562 ), expected=Expected( Mix=OptimalMix( Baseline=0.765, Goldilocks=0, Stagflation=0, HHT=0.235 ), Baseline=Weights( DMEQ=0.25, EMEQ=0.18, PE=0.13, RE=0.11, NB=0.24, EILB=0.05, CASH=0.04, ), Goldilocks=Weights( DMEQ=0.357, EMEQ=0.099, PE=0.13, RE=0.11, NB=0.264, EILB=0, CASH=0.04, ), Stagflation=Weights( DMEQ=0.1, EMEQ=0, PE=0.13, RE=0.11, NB=0.57, EILB=0.05, CASH=0.04, ), HHT=Weights( DMEQ=0, EMEQ=0, PE=0, RE=0, NB=0.95, EILB=0.05, CASH=0, ), Optimal=Weights( DMEQ=0.191, EMEQ=0.138, PE=0.1, RE=0.084, NB=0.407, EILB=0.05, CASH=0.031, ), ) )
StarcoderdataPython
6699883
##@package layer #@author <NAME> ## Layer of the system. # List the agents belonging to one layer. class Layer: ## Total number of layers. _layersNumber=0 ## Default constructor. # @param agentList Initial list of agents in the layer. # @param name Name of the layer. def __init__(self, agentList=[], name=""): self._agentList=agentList self._id=Layer._layersNumber Layer._layersNumber+=1 self.rename(name) ## Perform the action of all agents in the layer. # The data are modified by the actions of the agent. # @param data Data needed for the action. def act(self, data): for a in self._agentList: a.act(data,self) ## Add an agent to the agent list. # @param agent Agent to add. def addAgent(self,agent): if agent not in agentList: agentList.append(agent) ## Get the list of agents in the layer. # @return List of agents def agentList(self): return self._agentList ## Get the layer's id. def id(self): return self._id ## Remove an agent from the agent list. # @param agent Agent to add. def removeAgent(self,agent): agentList.remove(agent) ## Rename the layer. # @param name New name. # If an empty name is given the new name is "Layer #id". def rename(self,name=""): if name=="": self.name="Layer #"+str(self._id) else: self.name=name def __str__(self): return self.name # @var _agentList # List of agents in this layer. ## @var _id # Unique identifier of the layer. ## @var name # Layer name.
StarcoderdataPython
11358706
# Copyright 2018 GoDaddy # Copyright (c) 2015 Rackspace # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import random from unittest import mock from oslo_utils import uuidutils from octavia.common import data_models from octavia.statistics.drivers import update_db from octavia.tests.unit import base class TestStatsUpdateDb(base.TestCase): def setUp(self): super(TestStatsUpdateDb, self).setUp() self.amphora_id = uuidutils.generate_uuid() self.listener_id = uuidutils.generate_uuid() @mock.patch('octavia.db.repositories.ListenerStatisticsRepository') @mock.patch('octavia.db.api.get_session') def test_update_stats(self, mock_get_session, mock_listener_stats_repo): bytes_in1 = random.randrange(1000000000) bytes_out1 = random.randrange(1000000000) active_conns1 = random.randrange(1000000000) total_conns1 = random.randrange(1000000000) request_errors1 = random.randrange(1000000000) stats_1 = data_models.ListenerStatistics( listener_id=self.listener_id, amphora_id=self.amphora_id, bytes_in=bytes_in1, bytes_out=bytes_out1, active_connections=active_conns1, total_connections=total_conns1, request_errors=request_errors1 ) bytes_in2 = random.randrange(1000000000) bytes_out2 = random.randrange(1000000000) active_conns2 = random.randrange(1000000000) total_conns2 = random.randrange(1000000000) request_errors2 = random.randrange(1000000000) stats_2 = data_models.ListenerStatistics( listener_id=self.listener_id, amphora_id=self.amphora_id, bytes_in=bytes_in2, bytes_out=bytes_out2, active_connections=active_conns2, total_connections=total_conns2, request_errors=request_errors2 ) update_db.StatsUpdateDb().update_stats( [stats_1, stats_2], deltas=False) mock_listener_stats_repo().replace.assert_has_calls([ mock.call(mock_get_session(), stats_1), mock.call(mock_get_session(), stats_2) ]) update_db.StatsUpdateDb().update_stats( [stats_1, stats_2], deltas=True) mock_listener_stats_repo().increment.assert_has_calls([ mock.call(mock_get_session(), stats_1), mock.call(mock_get_session(), stats_2) ])
StarcoderdataPython
1681520
<reponame>albgar/aiida_siesta_plugin #!/usr/bin/env runaiida ''' This is an example of how to launch multiple SIESTA simulations iterating over one or more parameters using the aiida_siesta plugin. ''' #Not required by AiiDA import os.path as op import sys #AiiDA classes and functions from aiida.engine import submit from aiida.orm import load_code from aiida.orm import Float, Dict, StructureData, KpointsData from aiida_pseudo.data.pseudo.psf import PsfData from aiida_siesta.workflows.iterate import SiestaIterator ''' First of all, we need to setup all the inputs of the calculations. See https://aiida-siesta-plugin.readthedocs.io/en/stable/workflows/base.html#inputs. Basically, we will build an "inputs" dict at the end of the file, and all we are doing until there is to build every part of it step by step. All this is general to any SIESTA calculation with AiiDa, so if you already know how it works, go to the end of the file, where we really do the iterate specific stuff. ''' # Load the version of siesta that we are going to use try: codename = sys.argv[1] except IndexError: codename = 'Siesta-4.0.2@kay' code = load_code(codename) # Generate the structure (or get it from somewhere else) try: # We can get it using sisl (useful if we have it in an *fdf, *XV, ...) import sisl ase_struct = sisl.geom.diamond(5.430, 'Si').toASE() except: # Or using ASE import ase.build ase_struct = ase.build.bulk('Si', 'diamond', 5.430) # Then just pass it to StructureData, which is the type that Aiida works with structure = StructureData(ase=ase_struct) # Specify some parameters that go into the fdf file parameters = Dict( dict={ 'xc-functional': 'LDA', 'xc-authors': 'CA', 'max-scfiterations': 40, 'dm-numberpulay': 4, 'dm-mixingweight': 0.3, 'dm-tolerance': 1.e-5, 'Solution-method': 'diagon', 'electronic-temperature': '25 meV', }) # Extra parameters that also go to the fdf file, but are related # to the basis. basis = Dict( dict={ 'pao-energy-shift': '300 meV', '%block pao-basis-sizes': """ Si DZP %endblock pao-basis-sizes""", }) # Define the kpoints for the simulations. Note that this is not passed as # a normal fdf parameter, it has "its own input" kpoints = KpointsData() kpoints.set_kpoints_mesh([14, 14, 14]) # Get the appropiate pseudos (in "real life", one could have a pseudos family defined # in aiida database with `verdi data psf uploadfamily <path to folder> <family name>`) # and then pass it as a simple string, Aiida will know which pseudos to use. # See the pseudo_family in the aiida_siesta docs (link on top of the file) pseudos_dict = {} raw_pseudos = [("Si.psf", ['Si'])] for fname, kinds in raw_pseudos: absname = op.realpath(op.join(op.dirname(__file__), "../fixtures/sample_psf", fname)) pseudo = PsfData.get_or_create(absname) if not pseudo.is_stored: print("\nCreated the pseudo for {}".format(kinds)) else: print("\nUsing the pseudo for {} from DB: {}".format(kinds, pseudo.pk)) for j in kinds: pseudos_dict[j]=pseudo # Options that are related to how the job is technically submitted and # run. Some of this options define flags for the job manager (e.g. SLURM) # and some other's are related to how the code is executed. Note that # 'max_wallclock_seconds' is a required option, so that SIESTA can stop # gracefully before the job runs out of time. options = Dict( dict={ "max_wallclock_seconds": 360, #'withmpi': True, #'account': "<KEY>", #'queue_name': "DevQ", "resources": { "num_machines": 1, "num_mpiprocs_per_machine": 1, } }) # Now we have all inputs defined, so as promised at the beggining of the file # we build the inputs dicts to pass it to the process. There's no need though, # we could pass each input separately. This is just so that the process call # looks cleaner. inputs = { 'structure': structure, 'parameters': parameters, 'code': code, 'basis': basis, 'kpoints': kpoints, 'pseudos': pseudos_dict, 'options': options, } # Up until this point, all the things done have been general to any SIESTA # simulation. Now, we will use the SiestaIterator workflow to launch SIESTA # simulations iterating over parameters # Iterate over meshcutoff #process = submit(SiestaIterator, **inputs, # iterate_over={ # 'meshcutoff': [100,200,300,400,500,600,700,800,900], # }, # batch_size=Int(4) #) # Iterate over meshcutoff and energyshift at the same time #process = submit(SiestaIterator, **inputs, # iterate_over={ # 'meshcutoff': [100,200,300], # 'pao-energyshift': [0.02, 0.01, 0.05] # }, #) # This will run three simulations with these values (meshcutoff, energyshift) # (100, 0.02), (200, 0.01), (300, 0.05) # But what if you want to try all the combinations? # You can do so by setting the mode to "product" process = submit(SiestaIterator, **inputs, iterate_over={ 'meshcutoff': [100,200,300], 'pao-energyshift': [0.02, 0.01, 0.05] }, iterate_mode=Str('product'), batch_size=Int(3) #This selects how many values run at the same time ) # This will run nine simulations with these values (meshcutoff, energyshift) # (100, 0.02), (100, 0.01), (300, 0.05), (200, 0.02), (200, 0.01) ... # Print some info print("Submitted workchain; ID={}".format(process.pk)) print( "For information about this workchain type: verdi process show {}".format( process.pk)) print("For a list of running processes type: verdi process list")
StarcoderdataPython
5091508
"""py.test configuration.""" import os import tempfile from pathlib import Path import numpy as np import nibabel as nb import pytest from dipy.data.fetcher import _make_fetcher, UW_RW_URL _dipy_datadir_root = os.getenv("DMRIPREP_TESTS_DATA") or Path.home() dipy_datadir = Path(_dipy_datadir_root) / ".cache" / "data" dipy_datadir.mkdir(parents=True, exist_ok=True) _make_fetcher( "fetch_sherbrooke_3shell", str(dipy_datadir), UW_RW_URL + "1773/38475/", ["HARDI193.nii.gz", "HARDI193.bval", "HARDI193.bvec"], ["HARDI193.nii.gz", "HARDI193.bval", "HARDI193.bvec"], [ "0b735e8f16695a37bfbd66aab136eb66", "e9b9bb56252503ea49d31fb30a0ac637", "0c83f7e8b917cd677ad58a078658ebb7", ], doc="Download a 3shell HARDI dataset with 192 gradient direction", )() _sherbrooke_data = { "dwi_file": dipy_datadir / "HARDI193.nii.gz", "bvecs": np.loadtxt(dipy_datadir / "HARDI193.bvec").T, "bvals": np.loadtxt(dipy_datadir / "HARDI193.bval"), } @pytest.fixture(autouse=True) def doctest_autoimport(doctest_namespace): """Make available some fundamental modules to doctest modules.""" doctest_namespace["np"] = np doctest_namespace["nb"] = nb doctest_namespace["os"] = os doctest_namespace["Path"] = Path doctest_namespace["data_dir"] = Path(__file__).parent / "data" / "tests" doctest_namespace["dipy_datadir"] = dipy_datadir tmpdir = tempfile.TemporaryDirectory() doctest_namespace["tmpdir"] = tmpdir.name yield tmpdir.cleanup() @pytest.fixture() def dipy_test_data(scope="session"): """Create a temporal directory shared across tests to pull data in.""" return _sherbrooke_data
StarcoderdataPython
399915
<filename>alloy2vec/processing/data/clean_corpus.py import os,re,sys # initializing bad_chars_list bad_chars = [',', ';', ':', '!', '.', '(', ')', '"', "*"] #filename="mat2vec-1a5b3240-abstracts-head.csv" filename=sys.argv[1] #"mat2vec-1a5b3240-abstracts.csv" print(filename) filename_w="cleaned_"+filename with open( filename_w, 'a+') as corpus_w: with open(filename,"r") as corpus: data=corpus.readlines() for line in data: #words=line.split(',') #(" ") #split_again=str(words[0]).split(".") #year=split_again[3] #if int(year)>2020 or int(year)<1900: # year=split_again[2] #filename_i=os.path.join("corpus_by_year",str(year)+".csv") #words_j='' #for j in range(1,len(words)): # words_j +=words[j] #words_jj=re.split('.|,|"|:', str(words_j)) #words_k='' #for k in range(0,len(words_jj)): # words_k += words_jj[k] # remove bad_chars for ii in bad_chars : words = line.replace(ii, '') corpus_w.write(words + '\n')
StarcoderdataPython
1879229
# from.import invoice_report
StarcoderdataPython
5140239
<reponame>kkelchte/pilot #!/usr/bin/python # Block all numpy-scipy incompatibility warnings (could be removed at following scipy update (>1.1)) import warnings warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") import numpy as np import os,sys, time import argparse import shutil import subprocess, shlex import json import skimage.io as sio import matplotlib.pyplot as plt import ou_noise class bcolors: """ Colors to print in terminal with color! """ HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' ''' augment_data.py: In a factorized control the network should solely focus on the relationship between the obstacle in the foreground and the annotated control. Just to be sure that the factor does not put attention on the background, the background is filled with noise. The experiments are done with two types of noise: 1. Uniform noise over all three channels 2. OU Noise in x and y direction for each channel Runs are collected from .txt files All runs are saved in destination with incrementing index and a set.txt file. exit code: 2: not enough success runs so shutting down. ''' print("\n {0} Augment data.py: started.".format(time.strftime("%Y-%m-%d_%I%M"))) # 1. Parse arguments and make settings parser = argparse.ArgumentParser(description='Clean up dataset collected by a group of recordings that loop over different runs.') parser.add_argument("--data_root", default="pilot_data/",type=str, help="Define the root folder of the different datasets.") parser.add_argument("--mother_dir", default='', type=str, help="Define the mother dir in data_root with all runs (over rules endswith).") parser.add_argument("--txt_set", default='', type=str, help="Define the run dirs with a train/val/test_set.txt.") parser.add_argument("--destination", default='', type=str, help="Define the name of the final dataset.") parser.add_argument("--noise_type", default='uni', type=str, help="Define how background of image is filled with noise: uni, ou") parser.add_argument("--owr", action='store_true', help="If destination already exists, overwrite.") parser.add_argument("--gray_min",default=170,type=int,help="The minimum gray value that channel should have to be put as background.") parser.add_argument("--gray_max",default=180,type=int,help="The maximum gray value that channel should have to be put as background.") FLAGS, others = parser.parse_known_args() if FLAGS.data_root[0] != '/': # 2. Pilot_data directory for saving data FLAGS.data_root=os.environ['HOME']+'/'+FLAGS.data_root # get all runs if len(FLAGS.txt_set) != 0: runs=[r.strip() for r in open(FLAGS.data_root+FLAGS.mother_dir+'/'+FLAGS.txt_set,'r').readlines()] else: raise NotImplementedError("loop over different txt files not implemented yet, please provide --txt_set option") # default destination is mother_dir + '_' + noise_type if FLAGS.destination == '': FLAGS.destination = FLAGS.data_root + FLAGS.mother_dir + '_' + FLAGS.noise_type elif not FLAGS.destination.startswith('/'): FLAGS.destination = FLAGS.data_root + FLAGS.destination print("\nSettings:") for f in FLAGS.__dict__: print("{0}: {1}".format( f, FLAGS.__dict__[f])) # create destination count_offset=0 if os.path.isdir(FLAGS.destination): if FLAGS.owr: shutil.rmtree(FLAGS.destination) else: count_offset = len([d for d in os.listdir(FLAGS.destination) if os.path.isdir(FLAGS.destination+'/'+d)]) print("Copy with offset as there were already {0} directories in {1}".format(count_offset, FLAGS.destination)) # raise NameError( 'Destination already exists, overwriting alert: '+ FLAGS.destination ) if not os.path.isdir(FLAGS.destination): os.makedirs(FLAGS.destination) new_runs=[] # for each run for i,r in enumerate(runs): print("{0}: {1}/{2} : {3}".format(time.strftime("%Y-%m-%d_%I%M"), i, len(runs), r)) # 1. copy run to destination subprocess.call(shlex.split("cp -r {0} {1}/{2:05d}_{3}".format(r, FLAGS.destination, count_offset+i, os.path.basename(r).split('_')[1]))) # 2. mv RGB to RGB_old subprocess.call(shlex.split("mv {1}/{2:05d}_{3}/RGB {1}/{2:05d}_{3}/RGB_old".format(r, FLAGS.destination, count_offset+i, os.path.basename(r).split('_')[1]))) # 3. create new RGB os.makedirs("{0}/{1:05d}_{2}/RGB".format(FLAGS.destination, count_offset+i, os.path.basename(r).split('_')[1])) # 4. for img in RGB_old images=["{0}/{1:05d}_{2}/RGB_old/{3}".format(FLAGS.destination, count_offset+i, os.path.basename(r).split('_')[1],img) for img in os.listdir("{0}/{1:05d}_{2}/RGB_old".format(FLAGS.destination, count_offset+i, os.path.basename(r).split('_')[1]))] for file_name in images: # 4.1. read in image img=sio.imread(file_name) # 4.2. create mask mask=np.zeros(img.shape) #initialize all negative # go over each channel to filter vector wise mask_0=mask[:,:,0] mask_1=mask[:,:,1] mask_2=mask[:,:,2] img_0 = img[:,:,0] img_1 = img[:,:,1] img_2 = img[:,:,2] for mask_i in [mask_0, mask_1, mask_2]: for img_i in [img_0, img_1, img_2]: mask_i[img_i<FLAGS.gray_min]=1 mask_i[img_i>FLAGS.gray_max]=1 # mask_0[img_0<FLAGS.gray_min]=1 # mask_0[img_0>FLAGS.gray_max]=1 # mask_1[img_1<FLAGS.gray_min]=1 # mask_1[img_1>FLAGS.gray_max]=1 # mask_2[img_2<FLAGS.gray_min]=1 # mask_2[img_2>FLAGS.gray_max]=1 # 4.3. create background and combine if FLAGS.noise_type == 'uni': background = np.random.randint(0,255+1,size=img.shape) elif FLAGS.noise_type == 'ou': theta=0.1 sigma=0.1 # create horizontal noise over the columns repeated over the rows ou = ou_noise.OUNoise(3,0,theta,sigma) horizontal_noise = [] for j in range(img.shape[1]): horizontal_noise.append(np.asarray(256*ou.noise()+256/2.)) horizontal_noise = np.repeat(np.expand_dims(np.asarray(horizontal_noise), axis=0),img.shape[0],axis=0).astype(np.uint8) # create vertical noise over the rows repeated over the columns ou = ou_noise.OUNoise(3,0,theta,sigma) vertical_noise = [] for j in range(img.shape[0]): vertical_noise.append(np.asarray(256*ou.noise()+256/2.)) vertical_noise = np.repeat(np.expand_dims(np.asarray(vertical_noise), axis=1),img.shape[1],axis=1).astype(np.uint8) # combine the two background = (horizontal_noise + vertical_noise)/2. # ensure it is uint8 background = background.astype(np.uint8) else: raise NotImplementedError("Type of noise is unknown:{0}".format(FLAGS.noise_type)) # 4.4. combine in new image inv_mask=np.abs(mask-1) combined=np.multiply(mask,img)+np.multiply(inv_mask,background) # 4.5. save the image away plt.imsave("{0}/{1:05d}_{2}/RGB/{3}".format(FLAGS.destination, count_offset+i, os.path.basename(r).split('_')[1], os.path.basename(file_name)),combined.astype(np.uint8)) # 5. append runs to set.txt new_runs.append("{0}/{1:05d}_{2} \n".format(FLAGS.destination, count_offset+i, os.path.basename(r).split('_')[1])) # 6. remove RGB_old subprocess.call(shlex.split("rm -r {0}/{1:05d}_{2}/RGB_old".format(FLAGS.destination, count_offset+i, os.path.basename(r).split('_')[1]))) with open("{0}/{1}".format(FLAGS.destination, FLAGS.txt_set),'w') as new_set: for l in new_runs: new_set.write(l) print("\n {0} Augment data.py: finished.".format(time.strftime("%Y-%m-%d_%I%M")))
StarcoderdataPython
6573472
<reponame>ScSteffen/neuralEntropyComparison ''' This is the script that gets called from the C++ KiT-RT method MLOptimizer.cpp It initializes and loads a neural Closure The call method performs a prediction Author: <NAME> Version: 0.0 Date 29.10.2020 ''' ### imports ### from src.neuralClosures.configModel import initNeuralClosure import numpy as np import tensorflow as tf import os import pandas as pd from optparse import OptionParser ### global variable ### neuralClosureModel = 0 # bm.initNeuralClosure(0,0) ### function definitions ### def initModelCpp(input): ''' input: string array consisting of [modelNumber,maxDegree_N, folderName] modelNumber : Defines the used network model, i.e. MK1, MK2... maxDegree_N : Defines the maximal Degree of the moment basis, i.e. the "N" of "M_N" folderName: Path to the folder containing the neural network model ''' print("|-------------------- Tensorflow initialization Log ------------------") print("|") modelNumber = input[0] maxDegree_N = input[1] # --- Transcribe the modelNumber and MaxDegree to the correct model folder --- # folderName = "neuralClosure_M" + str(maxDegree_N) + "_MK" + str(modelNumber) global neuralClosureModel neuralClosureModel = initNeuralClosure(modelNumber, maxDegree_N, folderName) neuralClosureModel.loadModel() neuralClosureModel.model.summary() print("|") print("| Tensorflow neural closure initialized.") print("|") return 0 ### function definitions ### def initModel(modelNumber=1, polyDegree=0, spatialDim=3, folderName="testFolder", optimizer='adam', width=10, height=5): ''' modelNumber : Defines the used network model, i.e. MK1, MK2... maxDegree_N : Defines the maximal Degree of the moment basis, i.e. the "N" of "M_N" ''' global neuralClosureModel neuralClosureModel = initNeuralClosure(modelNumber, polyDegree, spatialDim, folderName, optimizer, width, height) return 0 def callNetwork(input): ''' # Input: input.shape = (nCells,nMaxMoment), nMaxMoment = 9 in case of MK3 # Output: Gradient of the network wrt input ''' # predictions = neuralClosureModel.model.predict(input) x_model = tf.Variable(input) with tf.GradientTape() as tape: # training=True is only needed if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = neuralClosureModel.model(x_model, training=False) # same as neuralClosureModel.model.predict(x) gradients = tape.gradient(predictions, x_model) return gradients def callNetworkBatchwise(inputNetwork): # Transform npArray to tfEagerTensor x_model = tf.Variable(inputNetwork) # Compute Autodiff tape with tf.GradientTape() as tape: # training=True is only needed if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = neuralClosureModel.model(x_model, training=False) # same as model.predict(x) # Compute the gradients gradients = tape.gradient(predictions, x_model) # ---- Convert gradients from eagerTensor to numpy array and then to flattened c array ---- # Note: Use inputNetwork as array, since a newly generated npArray seems to cause a Segfault in cpp (dimCell, dimBase) = inputNetwork.shape for i in range(0, dimCell): for j in range(0, dimBase): inputNetwork[i, j] = gradients[i, j] return inputNetwork def main(): print("---------- Start Network Training Suite ------------") print("Parsing options") # --- parse options --- parser = OptionParser() parser.add_option("-b", "--batch", dest="batch", default=1000, help="batch size", metavar="BATCH") parser.add_option("-c", "--epochChunk", dest="epochchunk", default=1, help="number of epoch chunks", metavar="EPOCHCHUNK") parser.add_option("-d", "--degree", dest="degree", default=0, help="max degree of moment", metavar="DEGREE") parser.add_option("-e", "--epoch", dest="epoch", default=1000, help="epoch count for neural network", metavar="EPOCH") parser.add_option("-f", "--folder", dest="folder", default="testFolder", help="folder where the model is stored", metavar="FOLDER") parser.add_option("-l", "--loadModel", dest="loadmodel", default=1, help="load model weights from file", metavar="LOADING") parser.add_option("-m", "--model", dest="model", default=1, help="choice of network model", metavar="MODEL") parser.add_option("-n", "--normalized", dest="normalized", default=0, help="train on normalized moments", metavar="NORMALIZED") parser.add_option("-o", "--optimizer", dest="optimizer", default="Adam", help="optimizer choice", metavar="OPTIMIZER") parser.add_option("-p", "--processingmode", dest="processingmode", default=1, help="gpu mode (1). cpu mode (0) ", metavar="PROCESSINGMODE") parser.add_option("-s", "--spatialDimension", dest="spatialDimension", default=3, help="spatial dimension of closure", metavar="SPATIALDIM") parser.add_option("-t", "--training", dest="training", default=1, help="training mode (1) execution mode (0)", metavar="TRAINING") parser.add_option("-v", "--verbosity", dest="verbosity", default=1, help="output verbosity keras (0 or 1)", metavar="VERBOSITY") parser.add_option("-w", "--networkwidth", dest="networkwidth", default=10, help="width of each network layer", metavar="WIDTH") parser.add_option("-x", "--networkheight", dest="networkheight", default=5, help="height of the network", metavar="HEIGHT") (options, args) = parser.parse_args() options.degree = int(options.degree) options.spatialDimension = int(options.spatialDimension) options.model = int(options.model) options.epoch = int(options.epoch) options.epochchunk = int(options.epochchunk) options.batch = int(options.batch) options.verbosity = int(options.verbosity) options.loadmodel = int(options.loadmodel) options.training = int(options.training) options.processingmode = int(options.processingmode) options.normalized = int(options.normalized) options.networkwidth = int(options.networkwidth) options.networkheight = int(options.networkheight) # --- End Option Parsing --- # witch to CPU mode, if wished if options.processingmode == 0: # Set CPU as available physical device # Set CPU as available physical device os.environ['CUDA_VISIBLE_DEVICES'] = '-1' if tf.test.gpu_device_name(): print('GPU found. Using GPU') else: print("Disabled GPU. Using CPU") # --- initialize model print("Initialize model") initModel(modelNumber=options.model, polyDegree=options.degree, spatialDim=options.spatialDimension, folderName=options.folder, optimizer=options.optimizer, width=options.networkwidth, height=options.networkheight) neuralClosureModel.model.summary() # Print chosen options to file d = {'degree': [options.degree], 'spatial Dimension': [options.spatialDimension], 'model': [options.model], 'epoch': [options.epoch], 'epochChunk': [options.epochchunk], 'batchsize': [options.batch], 'verbosity': [options.verbosity], 'loadmodel': [options.loadmodel], 'training': [options.training], 'folder': [options.folder], 'optimizer': [options.optimizer], 'processingmode': [options.processingmode], 'normalized moments': [options.normalized]} df = pd.DataFrame(data=d) count = 0 cfgFile = neuralClosureModel.filename + '/config_001_' while os.path.isfile(cfgFile + '.csv'): count += 1 cfgFile = neuralClosureModel.filename + '/config_' + str(count).zfill(3) + '_' cfgFile = cfgFile + '.csv' print("Writing config to " + cfgFile) df.to_csv(cfgFile, index=False) if (options.loadmodel == 1 or options.training == 0): # in execution mode the model must be loaded. # load model weights neuralClosureModel.loadModel() else: print("Start training with new weights") if (options.training == 1): # create training Data neuralClosureModel.loadTrainingData(normalizedMoments=options.normalized) # train model neuralClosureModel.trainModel(valSplit=0.01, epochCount=options.epoch, epochChunks=options.epochchunk, batchSize=options.batch, verbosity=options.verbosity, processingMode=options.processingmode) # save model neuralClosureModel.saveModel() # --- in execution mode, callNetwork or callNetworkBatchwise get called from c++ directly --- return 0 if __name__ == '__main__': main()
StarcoderdataPython
6653908
<reponame>TG-Techie/tg-gui from __future__ import annotations from typing import TYPE_CHECKING, Generic, TypeVar, Protocol from tg_gui_core import * from tg_gui_core.shared import Missing, MissingType, as_any if TYPE_CHECKING: from typing import ( Callable, ClassVar, Any, overload, Literal, Type, TypeGuard, TypeAlias, ) from typing_extensions import Self _C = TypeVar("_C", bound="Callable") _OnupdateCallback = Callable[["_T"], None] _OnupdateMthd = Callable[[Widget, "_T"], None] Stateful: TypeAlias = "State[_T] | _T" # --- _T = TypeVar("_T") _Widget = Widget class ProxyProvider(Protocol[_T]): def get_proxy(self, owner: Widget) -> Proxy[_T]: ... class Proxy(Protocol[_T]): def value(self, *, reader: Identifiable) -> _T: ... def update(self, value: _T, *, writer: Identifiable) -> None: ... def subscribe( self, *, subscriber: Identifiable, onupdate: Callable[[_T], None], ) -> Proxy[_T]: ... def unsubscribe(self, *, subscriber: Identifiable) -> bool: ... def isstate(__obj: State[_T] | _T) -> TypeGuard[State[_T]]: return isinstance(__obj, State) class State(Generic[_T]): """ These wrap a value to update widgets as the value changes. State objects are usually auto-generated by the stateful descriptor but can be used as their own descriptors. """ _value: _T _subscribed: dict[UID, _OnupdateCallback[_T]] def get_proxy(self, owner: Widget) -> Proxy[_T]: return self def value(self, *, reader: Identifiable) -> _T: return self._value def update(self, value: _T, *, writer: Identifiable) -> None: if value == self._value: return self._value = value # for uid, onupdate in self._subscribed.items(): if uid == writer.id: continue onupdate(value) def subscribe( self, *, subscriber: Identifiable, onupdate: _OnupdateCallback[_T], ) -> Self: if subscriber.id in self._subscribed: raise ValueError(f"{subscriber} is already subscribed to {self}") self._subscribed[subscriber.id] = onupdate return self def unsubscribe(self, *, subscriber: Identifiable) -> bool: return self._subscribed.pop(subscriber.id, None) is not None if TYPE_CHECKING: @overload def __get__(self, instance: _Widget, owner: Type[_Widget]) -> _T: ... @overload def __get__(self, instance: None, owner: Type[_Widget]) -> Self: ... def __get__(self, instance, owner): if instance is None: return self else: return self.value(reader=instance) def __set__(self, instance: _Widget, value: _T) -> None: self.update(value, writer=instance) def __bool__(self) -> bool: raise TypeError("Cannot use a state as a boolean") if TYPE_CHECKING: def __new__(cls: type[Self], value: _T) -> _T: ... else: def __init__(self, value: _T) -> None: # TODO: allow write locking based on id self._value = value self._subscribed: dict[UID, _OnupdateCallback[_T]] = {} _T = TypeVar("_T") class StatefulAttr(WidgetAttr[_T]): _onupdate: _OnupdateMthd[_T] | None # TODO: add get_attr, set_attr, and init_attr methods def init_attr(self, owner: _Widget, value: _T | State[_T] | MissingType) -> None: setattr(owner, self.private_name, value) if value is not Missing and isstate(value): self._subscribe_to_state(owner, value) def del_attr(self, owner: _Widget) -> None: # unsubscribe from the old state if it is a state existing = self.get_raw_attr(owner) if isstate(existing): existing.unsubscribe(subscriber=owner) def get_raw_attr(self, widget: _Widget) -> _T | State[_T]: """ returns the unsugared instance attribute value. This may be a raw value or a State instance that wraps that value. """ return getattr(widget, self.private_name) def get_attr(self, owner: _Widget) -> _T: attr: _T | State[_T] = self.get_raw_attr(owner) if isstate(attr): value = attr.value(reader=owner) else: assert not isinstance(attr, State) value = attr return value def get_proxy(self, owner: _Widget) -> State[_T]: existing = self.get_raw_attr(owner) if isstate(existing): return existing else: assert not isinstance(existing, State) # auto-generate a state, set it and re-turn it value: State[_T] = as_any(State(existing)) self._subscribe_to_state(owner, value) setattr(owner, self.private_name, value) return value def set_onupdate(self, onupdate: _OnupdateMthd[_T]) -> _OnupdateMthd[_T]: # make sure one is not already set if self._onupdate is not None: raise ValueError(f"onupdate is already proided for {self}.") else: # TODO: fix this? self._onupdate = onupdate return onupdate def _subscribe_to_state(self, owner: _Widget, state: State[_T]) -> None: if self._onupdate is not None: state.subscribe( subscriber=owner, onupdate=getattr(owner, self._onupdate.__name__), ) # NOTE: this uses pep 681, which is to be approved if TYPE_CHECKING: # NOTE: this uses pep 681 that is yet to be approved. # see tg_gui_core.attrs.py for what this is overriding. @overload def __new__( cls, default: State[_T] | _T, onupdate: _OnupdateCallback | None = None, *, init: Literal[True] = True, ) -> Any: ... @overload def __new__( cls, *, factory: Callable[[], _T], onupdate: _OnupdateCallback | None = None, init: Literal[True] = True, ) -> Any: ... @overload def __new__( cls, *, init: Literal[True] = True, onupdate: _OnupdateCallback | None = None, kw_only: bool = True, ) -> Any: ... def __new__(cls, *_, **__) -> Any: ... else: pass # see below for the init implementation def __widattr_init__( self: StatefulAttr[_T], default: _T | State[_T] | MissingType = Missing, # onupdate: _OnupdateCallback[_T] | None = None, *, factory: Callable[[], _T] | MissingType = Missing, init: Literal[True] = True, kw_only: bool | MissingType = Missing, ) -> None: assert init is True, "init must be True" if default is not Missing: assert ( factory is Missing ), f"{self.__class__.__name__}(...) got arguments for 'default' and 'factory', only one is allowed." assert ( kw_only is Missing ), f"{self.__class__.__name__}(...) got arguments for 'default' and 'kw_only', only one is allowed." super(StatefulAttr, self).__widattr_init__(default=default, init=True) # type: ignore elif factory is not Missing: assert ( kw_only is Missing ), f"{self.__class__.__name__}(...) got arguments for 'factory' and 'kw_only', only one is allowed." super(StatefulAttr, self).__widattr_init__(default_factory=factory, init=True) # type: ignore else: super(StatefulAttr, self).__widattr_init__(init=True, kw_only=kw_only or True) # type: ignore self._onupdate = None
StarcoderdataPython
1866825
<reponame>Symantec/ccs-api-samples # Script to Search the asset group in the CCS system # For more details Refer the CCS REST API document at : https://apidocs.symantec.com/home/CCS import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning # Variable # Replace the <hostname> with CCS application server host name # Replace the <port number> with the configured port number for REST API, Default Port Number : 12431 # Replace the <user name> and <password> with valid CCS user name and password for example: UserName = domain1\\administrator, password = <PASSWORD> HostName = '<hostname>' PortNumber = '<port number>' UserName = '<user name>' Password = '<password>' # Function to generate CCS REST API access token def getToken(): urlToken = "https://" + HostName + ":" + PortNumber + "/ccs/api/v1/oauth/tokens" payload = "grant_type=password&username=" + UserName + "&password=" + Password +"" headers = {'Content-Type': "application/json"} responseToken = requests.request("POST", urlToken, data=payload, headers=headers, verify=False) autheticationresult = responseToken.status_code if (autheticationresult!=200) : print("\nToken Generation Failed. Please check if the REST API is enabled and User name and password is correct\n") exit() tokenDict = responseToken.json() token = tokenDict['access_token'] refreshToken = tokenDict['refresh_token'] print("bearer Token is:\n") print(token) print("\n Refresh Token is:\n") print(refreshToken) return token # CCS asset group URI url = "https://" + HostName + ":" + PortNumber + "/ccs/api/v1/AssetGroup" requests.packages.urllib3.disable_warnings(InsecureRequestWarning) bearertoken = "Bearer " + getToken() headers = { 'Authorization': bearertoken } # Simple Search querystring = {"Attributes":"(displayName = All DB2 *)"} # Advanced Search #querystring = {"Attributes":"(displayName = *)","ContainerPath":"Asset system","SearchSubTree":"True"} response = requests.request("GET", url, headers=headers, params=querystring, verify=False) GroupData = response.json() print(response.text)
StarcoderdataPython
1754028
<filename>252_meeting_rooms.py # # 252. Meeting Rooms # # Q: https://leetcode.com/problems/meeting-rooms/ # A: https://leetcode.com/problems/meeting-rooms/discuss/919342/Kt-Js-Py3-Cpp-Sort-%2B-Scan # from typing import List class Solution: def canAttendMeetings(self, A: List[List[int]], last = 0) -> bool: for i, j in sorted(A): if not (last <= i): return False last = j return True
StarcoderdataPython
3200312
<reponame>mickypaganini/everware<filename>everware/home_handler.py from tornado import web, gen from docker.errors import NotFound from jupyterhub.handlers.base import BaseHandler from IPython.html.utils import url_path_join from tornado.httputil import url_concat from tornado.httpclient import HTTPRequest, AsyncHTTPClient import json import re @gen.coroutine def _fork_github_repo(url, token): http_client = AsyncHTTPClient() headers={"User-Agent": "JupyterHub", "Authorization": "token {}".format(token) } result = re.findall('^https://github.com/([^/]+)/([^/]+).*', url) if not result: raise ValueError('URL is not a github URL') owner, repo = result[0] api_url = "https://api.github.com/repos/%s/%s/forks" % (owner, repo) req = HTTPRequest(api_url, method="POST", headers=headers, body='', ) resp = yield http_client.fetch(req) return json.loads(resp.body.decode('utf8', 'replace')) @gen.coroutine def _github_fork_exists(username, url, token): http_client = AsyncHTTPClient() headers={"User-Agent": "JupyterHub", "Authorization": "token {}".format(token) } result = re.findall('^https://github.com/([^/]+)/([^/]+).*', url) if not result: raise ValueError('URL (%s) is not a github URL' % url) owner, repo = result[0] api_url = "https://api.github.com/repos/%s/%s" % (username, repo) req = HTTPRequest(api_url, method="GET", headers=headers, ) try: resp = yield http_client.fetch(req) return True except: return False @gen.coroutine def _repository_changed(user): try: setup = yield user.spawner.docker( 'exec_create', container=user.spawner.container_id, cmd="bash -c 'cd $JPY_WORKDIR && \ (git fetch --unshallow > /dev/null 2>&1; true) && \ git diff --name-only'", ) out = yield user.spawner.docker( 'exec_start', exec_id=setup['Id'], ) except NotFound: return False if out: return True else: return False @gen.coroutine def _push_github_repo(user, url, commit_sha, branch_name, token): result = re.findall('^https://github.com/([^/]+)/([^/]+).*', url) if not result: raise ValueError('URL is not a github URL') owner, repo = result[0] fork_url = "https://{}@github.com/{}/{}".format(token, user.name, repo) out = yield user.spawner.docker( 'exec_create', container=user.spawner.container_id, cmd="bash -c 'cd $JPY_WORKDIR && \ git config --global user.email \"<EMAIL>\" && \ git config --global user.name \"Everware\" && \ (git fetch --unshallow; true) && \ git add . && \ git commit -m \"Update through everware\" && \ (git remote add everware-fork {fork_url}; true) && \ git push -f everware-fork {branch_name}'".format( fork_url=fork_url, commit_sha=commit_sha, branch_name=branch_name ), ) response = yield user.spawner.docker( 'exec_start', exec_id=out['Id'], ) class HomeHandler(BaseHandler): """Render the user's home page.""" @web.authenticated @gen.coroutine def get(self): user = self.get_current_user() repourl = self.get_argument('repourl', '') do_fork = self.get_argument('do_fork', False) do_push = self.get_argument('do_push', False) if repourl: self.log.info('Got %s in home' % repourl) self.redirect(url_concat( url_path_join(self.hub.server.base_url, 'spawn'), { 'repourl': repourl } )) return branch_name = commit_sha = None repo_url = '' fork_exists = False repository_changed = False if user.running and hasattr(user, 'login_service'): branch_name = user.spawner.branch_name commit_sha = user.spawner.commit_sha if user.login_service == "github": if do_fork: self.log.info('Will fork %s' % user.spawner.repo_url) yield _fork_github_repo( user.spawner.repo_url, user.token, ) self.redirect('/hub/home') return if do_push: self.log.info('Will push to fork') yield _push_github_repo( user, user.spawner.repo_url, commit_sha, branch_name, user.token, ) self.redirect('/hub/home') return repo_url = user.spawner.repo_url fork_exists = yield _github_fork_exists( user.name, user.spawner.repo_url, user.token, ) repository_changed = yield _repository_changed(user) if hasattr(user, 'login_service'): loginservice = user.login_service else: loginservice = 'none' html = self.render_template('home.html', user=user, repourl=repo_url, login_service=loginservice, fork_exists=fork_exists, repository_changed=repository_changed, branch_name=branch_name, commit_sha=commit_sha ) self.finish(html)
StarcoderdataPython
1762666
<gh_stars>0 ''' Bool - A mutable bool class ################################################## ###### AUTOGENERATED - DO NOT EDIT DIRECTLY ###### ################################################## ''' from mutable_primitives.base import Mutable class Bool(Mutable): ''' Bool - A mutable bool class ''' base = bool def __init__(self, val): super(Bool, self).__init__(val, self.base) #pylint: disable=super-with-arguments self.val = val def get(self): ''' get raw (primitive) value ''' return self.val def set(self, val): ''' set raw (primitive) value ''' assert isinstance(val, self.base) self.val = val def __eq__(self, other): return self.val == other def __ne__(self, other): return self.val != other def __str__(self): return '{}({})'.format(self.__class__.__name__, self.val) def __repr__(self): return '{}({})'.format(self.__class__.__name__, self.val) def __bool__(self): ''' boolean test for python3 ''' if self.val: return True return False def __nonzero__(self): ''' boolean test for python2 ''' if self.val: return True return False
StarcoderdataPython
298714
<reponame>kipkurui/gimmemotifs # Copyright (c) 2009-2010 <NAME> <<EMAIL>> # # This module is free software. You can redistribute it and/or modify it under # the terms of the MIT License, see the file COPYING included with this # distribution. """ Odds and ends that for which I didn't (yet) find another place """ # Python imports import os import re import sys import random import tempfile from math import log from string import strip from subprocess import Popen, PIPE # External imports import numpy from scipy import special from gimmemotifs import tools from gimmemotifs.fasta import * lgam = special.gammaln def run_command(cmd): #print args from subprocess import Popen p = Popen(cmd, shell=True) p.communicate() def star(stat, categories): stars = 0 for c in sorted(categories): if stat >= c: stars += 1 else: return stars return stars def phyper_single(k, good, bad, N): return numpy.exp(lgam(good+1) - lgam(good-k+1) - lgam(k+1) + lgam(bad+1) - lgam(bad-N+k+1) - lgam(N-k+1) - lgam(bad+good+1) + lgam(bad+good-N+1) + lgam(N+1)) def phyper(k, good, bad, N): """ Current hypergeometric implementation in scipy is broken, so here's the correct version """ pvalues = [phyper_single(x, good, bad, N) for x in range(k + 1, N + 1)] return numpy.sum(pvalues) def divide_file(file, sample, rest, fraction, abs_max): lines = open(file).readlines() #random.seed() random.shuffle(lines) x = int(fraction * len(lines)) if x > abs_max: x = abs_max tmp = tempfile.NamedTemporaryFile() # Fraction as sample for line in lines[:x]: tmp.write(line) tmp.flush() # Make sure it is sorted for tools that use this information (MDmodule) stdout,stderr = Popen("sort -k4gr %s > %s" % (tmp.name, sample), shell=True).communicate() tmp.close() if stderr: print "Something went wrong: %s" % stderr sys.exit() # Rest f = open(rest, "w") for line in lines[x:]: f.write(line) f.close() #if os.path.exists(tmp.name): # os.unlink(tmp.name) return x, len(lines[x:]) def divide_fa_file(file, sample, rest, fraction, abs_max): fa = Fasta(file) ids = fa.ids[:] x = int(fraction * len(ids)) if x > abs_max: x = abs_max sample_seqs = random.sample(ids, x) # Rest f_sample = open(sample, "w") f_rest = open(rest, "w") for id,seq in fa.items(): if id in sample_seqs: f_sample.write(">%s\n%s\n" % (id, seq)) else: f_rest.write(">%s\n%s\n" % (id, seq)) f_sample.close() f_rest.close() return x, len(ids[x:]) def make_gff_histogram(gfffile, outfile, l, title, breaks=21): try: import matplotlib.pyplot as plt except: pass data = [] for line in open(gfffile): vals = line.strip().split("\t") data.append((int(vals[3]) + int(vals[4])) / 2) plt.hist(data, breaks) plt.title(title) plt.savefig(outfile) def ks_pvalue(values, l): from scipy.stats import kstest from numpy import array if len(values) == 0: return 1.0 a = array(values, dtype="float") / l return kstest(a, "uniform")[1] def write_equalwidth_bedfile(bedfile, width, outfile): """Read input from <bedfile>, set the width of all entries to <width> and write the result to <outfile>. Input file needs to be in BED or WIG format.""" BUFSIZE = 10000 f = open(bedfile) out = open(outfile, "w") lines = f.readlines(BUFSIZE) line_count = 0 while lines: for line in lines: line_count += 1 if not line.startswith("#") and not line.startswith("track") and not line.startswith("browser"): vals = line.strip().split("\t") try: start, end = int(vals[1]), int(vals[2]) except: print "Error on line %s while reading %s. Is the file in BED or WIG format?" % (line_count, bedfile) sys.exit(1) start = (start + end) / 2 - (width / 2) # This shifts the center, but ensures the width is identical... maybe not ideal if start < 0: start = 0 end = start + width # Keep all the other information in the bedfile if it's there if len(vals) > 3: out.write("%s\t%s\t%s\t%s\n" % (vals[0], start, end, "\t".join(vals[3:]))) else: out.write("%s\t%s\t%s\n" % (vals[0], start, end)) lines = f.readlines(BUFSIZE) out.close() f.close() def get_significant_motifs(motifs, fg_fasta, bg_fasta, e_cutoff=None, p_cutoff=None, save_result=None): pass class MotifMatch: def __init__(self, seq, name, instance, start, end, strand, score): self.sequence = seq self.motif_name = name self.motif_instance = instance self.start = start self.end = end self.strand = strand self.score = score class MotifResult: def __init__(self): self.raw_output = "" self.datetime = "" self.command = "" self.fastafile = "" self.params = {} self.program = "" self.feature = "" self.sequences = {} self.motifs = {} self.matches = {} def to_gff(self, gb_format=False): p = re.compile(r'([\w_]+):(\d+)-(\d+)') gff_output = "" for seq, dict in self.matches.items(): for motif, mms in dict.items(): for mm in mms: print_seq = seq (start, end) = (mm.start, mm.end) if gb_format: m = p.match(seq) if m: print_seq = m.group(1) start = int(start) + int(m.group(2)) - 1 end = int(end) + int(m.group(2)) - 1 gff_output += "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (print_seq, self.program, self.feature, start, end, mm.score, mm.strand, ".", "motif_name \"%s\" ; motif_instance \"%s\"" % (mm.motif_name, mm.motif_instance)) return gff_output[:-1] def seqn(self): return len(self.sequences.keys()) def parse_gff(gff_file, lowmem=False): mr = MotifResult() total = 0 f = open(gff_file) BUFSIZE = 10000000 while 1: lines = f.readlines(BUFSIZE) if not lines: break for line in lines: vals = line.strip().split("\t") if len(vals) == 9: (seq, program, feature, start, end, score, strand, bla, extra) = vals (motif_name, motif_instance) = map(strip, extra.split(";")) motif_name = motif_name.split(" ")[1][1:-1] motif_instance = motif_instance.split(" ")[1][1:-1] mr.sequences[seq] = 1 if not(mr.motifs.has_key(motif_name)): mr.motifs[motif_name] = {} if not(mr.motifs[motif_name].has_key(seq)): mr.motifs[motif_name][seq] = 0 mr.motifs[motif_name][seq] += 1 else: sys.stderr.write("Error parsing line in %s\n%s\n" % (gff_file, line)) total += len(lines) return mr def scan_fasta_file_with_motifs(fastafile, motiffile, threshold, gfffile, scan_rc=True, nreport=1): error = None try: from gimmemotifs.fasta import Fasta from gimmemotifs.motif import pwmfile_to_motifs motifs = pwmfile_to_motifs(motiffile) fa = Fasta(fastafile) for motif in motifs: motif.pwm_scan_to_gff(fa, gfffile, nreport=nreport, cutoff=float(threshold), scan_rc=scan_rc, append=True) except Exception,e : error = e return error def calc_motif_enrichment(sample, background, mtc=None, len_sample=None, len_back=None): """Calculate enrichment based on hypergeometric distribution""" INF = "Inf" # Local imports to enable parellel Python calls from scipy.stats import hypergeom if mtc not in [None, "Bonferroni", "Benjamini-Hochberg", "None"]: raise RuntimeError, "Unknown correction: %s" % mtc sig = {} p_value = {} n_sample = {} n_back = {} if not(len_sample): len_sample = sample.seqn() if not(len_back): len_back = background.seqn() for motif in sample.motifs.keys(): p = "NA" s = "NA" q = len(sample.motifs[motif]) m = 0 if(background.motifs.get(motif)): m = len(background.motifs[motif]) n = len_back - m k = len_sample p = phyper(q - 1, m, n, k) if p != 0: s = -(log(p)/log(10)) else: s = INF else: s = INF p = 0.0 sig[motif] = s p_value[motif] = p n_sample[motif] = q n_back[motif] = m if mtc == "Bonferroni": for motif in p_value.keys(): if p_value[motif] != "NA": p_value[motif] = p_value[motif] * len(p_value.keys()) if p_value[motif] > 1: p_value[motif] = 1 elif mtc == "Benjamini-Hochberg": motifs = p_value.keys() motifs.sort(cmp=lambda x,y: -cmp(p_value[x],p_value[y])) l = len(p_value) c = l for m in motifs: if p_value[motif] != "NA": p_value[m] = p_value[m] * l / c c -= 1 return (sig, p_value, n_sample, n_back) def calc_enrichment(sample, background, len_sample, len_back, mtc=None): """Calculate enrichment based on hypergeometric distribution""" INF = "Inf" # Local imports to enable parellel Python calls from scipy.stats import hypergeom if mtc not in [None, "Bonferroni", "Benjamini-Hochberg", "None"]: raise RuntimeError, "Unknown correction: %s" % mtc sig = {} p_value = {} n_sample = {} n_back = {} for motif in sample.keys(): p = "NA" s = "NA" q = sample[motif] m = 0 if(background[motif]): m = background[motif] n = len_back - m k = len_sample p = phyper(q - 1, m, n, k) if p != 0: s = -(log(p)/log(10)) else: s = INF else: s = INF p = 0.0 sig[motif] = s p_value[motif] = p n_sample[motif] = q n_back[motif] = m if mtc == "Bonferroni": for motif in p_value.keys(): if p_value[motif] != "NA": p_value[motif] = p_value[motif] * len(p_value.keys()) if p_value[motif] > 1: p_value[motif] = 1 elif mtc == "Benjamini-Hochberg": motifs = p_value.keys() motifs.sort(cmp=lambda x,y: -cmp(p_value[x],p_value[y])) l = len(p_value) c = l for m in motifs: if p_value[motif] != "NA": p_value[m] = p_value[m] * l / c c -= 1 return (sig, p_value, n_sample, n_back) def gff_enrichment(sample, background, numsample, numbackground, outfile): data_sample = parse_gff(sample) data_bg = parse_gff(background) (e,p,ns,nb) = calc_motif_enrichment(data_sample, data_bg, "Benjamini-Hochberg", numsample, numbackground) out = open(outfile, "w") out.write("Motif\tSig\tp-value\t# sample\t# background\tEnrichment\n") for m in e.keys(): if nb[m] > 0: enrich = (ns[m] / float(numsample)) / (nb[m] / float(numbackground)) out.write("%s\t%s\t%s\t%s\t%s\t%0.3f\n" % (m, e[m], p[m], ns[m], nb[m], enrich)) else: out.write("%s\t%s\t%s\t%s\t%s\tInf\n" % (m, e[m], p[m], ns[m], nb[m])) out.close() def is_valid_bedfile(bedfile, columns=6): f = open(bedfile) for i, line in enumerate(f.readlines()): if not (line.startswith("browser") or line.startswith("track")): vals = line.split("\t") # Gene file should be at least X columns if len(vals) < columns: sys.stderr.write("Error in line %s: we need at least %s columns!\n" % (i, columns)) return False # Check coordinates try: int(vals[1]), int(vals[2]) except ValueError: sys.stderr.write("Error in line %s: coordinates in column 2 and 3 need to be integers!\n" % (i)) return False if columns >= 6: # We need the strand if vals[5] not in ["+", "-"]: sys.stderr.write("Error in line %s: column 6 (strand information) needs to be + or -" % (i)) return False f.close() return True def median_bed_len(bedfile): f = open(bedfile) l = [] for i, line in enumerate(f.readlines()): if not (line.startswith("browser") or line.startswith("track")): vals = line.split("\t") try: l.append(int(vals[2]) - int(vals[1])) except: sys.stderr.write("Error in line %s: coordinates in column 2 and 3 need to be integers!\n" % (i)) sys.exit(1) f.close() return numpy.median(l) def locate_tool(tool, verbose=True): tool = re.sub(r'[^a-zA-Z]','',tool) m = eval("tools." + tool)() bin = which(m.cmd) if bin: print "Found %s in %s" % (m.name, bin) return bin else: print "Couldn't find %s" % m.name def motif_localization(fastafile, motif, width, outfile, cutoff=0.9): NR_HIST_MATCHES = 100 from gimmemotifs.plot import plot_histogram from gimmemotifs.utils import ks_pvalue from gimmemotifs.fasta import Fasta from numpy import array matches = motif.pwm_scan(Fasta(fastafile), cutoff=cutoff, nreport=NR_HIST_MATCHES) if len(matches) > 0: ar = [] for a in matches.values(): ar += a matches = array(ar) p = ks_pvalue(matches, width - len(motif)) plot_histogram(matches - width / 2 + len(motif) / 2, outfile, xrange=(-width / 2, width / 2), breaks=21, title="%s (p=%0.2e)" % (motif.id, p), xlabel="Position") return motif.id, p else: return motif.id, 1.0 def parse_cutoff(motifs, cutoff, default=0.9): """ Provide either a file with one cutoff per motif or a single cutoff returns a hash with motif id as key and cutoff as value """ cutoffs = {} if os.path.isfile(str(cutoff)): for i,line in enumerate(open(cutoff)): if line != "Motif\tScore\tCutoff\n": try: motif,v,c = line.strip().split("\t") c = float(c) cutoffs[motif] = c except Exception as e: sys.stderr.write("Error parsing cutoff file, line {0}: {1}\n".format(e, i + 1)) sys.exit(1) else: for motif in motifs: cutoffs[motif.id] = float(cutoff) for motif in motifs: if not cutoffs.has_key(motif.id): sys.stderr.write("No cutoff found for {0}, using default {1}\n".format(motif.id, default)) cutoffs[motif.id] = default return cutoffs def _treesort(order, nodeorder, nodecounts, tree): # From the Pycluster library, <NAME> # Find the order of the nodes consistent with the hierarchical clustering # tree, taking into account the preferred order of nodes. nNodes = len(tree) nElements = nNodes + 1 neworder = numpy.zeros(nElements) clusterids = numpy.arange(nElements) for i in range(nNodes): i1 = tree[i].left i2 = tree[i].right if i1 < 0: order1 = nodeorder[-i1-1] count1 = nodecounts[-i1-1] else: order1 = order[i1] count1 = 1 if i2 < 0: order2 = nodeorder[-i2-1] count2 = nodecounts[-i2-1] else: order2 = order[i2] count2 = 1 # If order1 and order2 are equal, their order is determined # by the order in which they were clustered if i1 < i2: if order1 < order2: increase = count1 else: increase = count2 for j in range(nElements): clusterid = clusterids[j] if clusterid == i1 and order1 >= order2: neworder[j] += increase if clusterid == i2 and order1 < order2: neworder[j] += increase if clusterid == i1 or clusterid == i2: clusterids[j] = -i-1 else: if order1 <= order2: increase = count1 else: increase = count2 for j in range(nElements): clusterid = clusterids[j] if clusterid == i1 and order1 > order2: neworder[j] += increase if clusterid == i2 and order1 <= order2: neworder[j] += increase if clusterid == i1 or clusterid == i2: clusterids[j] = -i-1 return numpy.argsort(neworder) def sort_tree(tree, order): # Adapted from the Pycluster library, <NAME> nnodes = len(tree) nodeindex = 0 nodecounts = numpy.zeros(nnodes, int) nodeorder = numpy.zeros(nnodes) nodedist = numpy.array([node.distance for node in tree]) for nodeindex in range(nnodes): min1 = tree[nodeindex].left min2 = tree[nodeindex].right if min1 < 0: index1 = -min1-1 order1 = nodeorder[index1] counts1 = nodecounts[index1] nodedist[nodeindex] = max(nodedist[nodeindex],nodedist[index1]) else: order1 = order[min1] counts1 = 1 if min2 < 0: index2 = -min2-1 order2 = nodeorder[index2] counts2 = nodecounts[index2] nodedist[nodeindex] = max(nodedist[nodeindex],nodedist[index2]) else: order2 = order[min2] counts2 = 1 counts = counts1 + counts2 nodecounts[nodeindex] = counts nodeorder[nodeindex] = (counts1*order1+counts2*order2) / counts # Now set up order based on the tree structure index = _treesort(order, nodeorder, nodecounts, tree) return index
StarcoderdataPython
46253
import dash from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_html_components as html import dash_table import plotly.express as px import pandas as pd import requests from bs4 import BeautifulSoup import re from newspaper import Article import sys module_path = './question_answering' if module_path not in sys.path: sys.path.append(module_path) from question_answering_inference_utility import question_answering # ------------------------------ LAYOUT CONTAINERS ------------------------------ # The main page will be divided in two columns. # We'll define them right away. # 1st column: col_1 = html.Div( className='column-left', children=[ html.Div([ # Where the content of the tabs will be showed: html.B( children='The article must be in English.' ), dcc.Input( id="input_url", type="url", placeholder="Source URL", required=True, style=dict( width='100%' ) ) ]), # Radiobuttons for choosing parser: html.Div([ html.Div('Parser:'), dcc.RadioItems( id='radiobuttons-parser', options=[ {'label': "lxml: newspaper3k's default parser", 'value': 'lxml'}, {'label': "html.parser: Python's default parser", 'value': 'html.parser'}, {'label': 'html5lib: Extremely lenient but quite slow', 'value': 'html5lib'}, ], value='lxml' ) ]), # Button to extract text from the give url: html.Button( id='extract-button-state', n_clicks=0, children='Extract', style=dict( width='100%' ) ), # Div to debug: html.Div(id='output-state-extract') ] ) # 2nd column: col_2 = html.Div( className='column-right', children=[ # Text area for the extracted text from the URL: html.Div('Extracted text:'), dcc.Textarea( id='textarea-processed-url', className='extracted-text', value='Textarea content initialized\nwith multiple lines of text', persistence=True, readOnly=True, )] ) # Input question container: input_question_container = html.Div( children=[ html.Div( style={'margin-bottom': '10px'}, children=[ html.Div('Question:'), dcc.Input( id="input-question", type='text', placeholder="Please enter your question.", style=dict( width='100%', ) ) ] ), # Checkbutton for filtering numbers: dcc.Checklist( id='checkbutton', options=[ {'label': 'Filter numbers', 'value': '1'}, ], value=['1'] ), ] ) # Submit button container: submit_button_container = html.Div( children=[ html.Div( className='center', children=[ html.Button( id='submit-button-state', className='submit-button', n_clicks=0, children='Submit') ], style=dict( margin='20px' ) ), # Div to debug: html.Div(id='output-state-submit') ] ) # ------------------------------ FINAL LAYOUT ------------------------------ layout = html.Div( className='main', children=[ html.H1( children='T5 Text Extraction Demo', style={'textAlign': 'center'} ), html.Div( className="row", children=[ col_1, col_2 ] ), # Horizontal separator: html.Hr(), input_question_container, submit_button_container ] ) # ------------------------------ CALLBACKS ------------------------------ # Callback for when the Extract button has been pressed: @app.callback( [ Output('output-state-extract', 'children'), Output('textarea-processed-url', 'value') ], [ Input('extract-button-state', 'n_clicks') ], [ State('input_url', 'value'), State('radiobuttons-parser', 'value') ] ) def update_output_extract_button(n_clicks, url, parser): children = '' # Web scrapping if url is None: return children, '' else: regex_url = r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)" if re.match(regex_url, url) is None: children += '\nIncorrect url!' return children, '' else: article = Article(url=url, language='en') article.download() article.parse() title = article.title article.nlp() keywords = article.keywords if parser=='lxml': extracted_txt = article.text else: resp = requests.get(url) html_doc = resp.text soup = BeautifulSoup(html_doc, 'html.parser') extracted_txt = re.sub(r'(\n| )+', ' ', soup.text) children += f'Title: {title}, keywords: {keywords}, parser: {parser}' return children, extracted_txt # Callback for when the Submit button has been pressed: @app.callback( Output('output-state-submit', 'children'), [ Input('submit-button-state', 'n_clicks') ], [ State('textarea-processed-url', 'value'), State('input-question', 'value'), State('checkbutton', 'value') ] ) def update_output_extract_button(n_clicks, processed_txt, question, checkbutton_value): # Question answering: if n_clicks >= 1: if len(processed_txt) == 0: return 'Please enter a proper URL.' elif question is None: return 'Please enter a question.' else: answer, paragraph, prob = question_answering( query=question, text=processed_txt, filter_numbers=checkbutton_value) children = [ html.P(f'Asked question: "{question}"'), html.P(f'Answer: {answer}'), html.P(f'Paragraph: {paragraph}'), html.P(f'Probability: {prob}') ] return children else: return ''
StarcoderdataPython
3229157
"""Test cases for ansatz-related utilities.""" import unittest from unittest import mock import numpy as np import numpy.testing from zquantum.core.interfaces.ansatz_utils import ( DynamicProperty, ansatz_property, combine_ansatz_params, invalidates_parametrized_circuit, ) class PseudoAnsatz: n_layers = ansatz_property(name="n_layers") def __init__(self, n_layers): self.n_layers = n_layers self._parametrized_circuit = None @property def parametrized_circuit(self): if self._parametrized_circuit is None: self._parametrized_circuit = f"Circuit with {self.n_layers} layers" return self._parametrized_circuit @invalidates_parametrized_circuit def rotate(self): """Mock method that "alters" some characteristics of ansatz. Using this method should invalidate parametrized circuit. """ class DynamicPropertyTests(unittest.TestCase): def test_uses_default_value_if_not_overwritten(self): class MyCls: x = DynamicProperty(name="x", default_value=-15) obj = MyCls() self.assertEqual(obj.x, -15) def test_can_be_set_in_init(self): class MyCls: length = DynamicProperty(name="length") def __init__(self, length): self.length = length obj = MyCls(0.5) self.assertEqual(obj.length, 0.5) def test_values_are_instance_dependent(self): class MyCls: height = DynamicProperty(name="height") obj1 = MyCls() obj2 = MyCls() obj1.height = 15 obj2.height = 30 self.assertEqual(obj1.height, 15) self.assertEqual(obj2.height, 30) class TestAnsatzProperty(unittest.TestCase): """Note that we don't really need an ansatz intance, we only need to check that _parametrized_circuit is set to None. """ def test_setter_resets_parametrized_circuit(self): ansatz = PseudoAnsatz(n_layers=10) # Trigger initial computation of parametrized circuit self.assertEqual(ansatz.parametrized_circuit, "Circuit with 10 layers") # Change n_layers -> check if it recalculated. ansatz.n_layers = 20 self.assertIsNone(ansatz._parametrized_circuit) self.assertEqual(ansatz.parametrized_circuit, "Circuit with 20 layers") class InvalidatesParametrizedCircuitTest(unittest.TestCase): def test_resets_parametrized_circuit(self): ansatz = PseudoAnsatz(n_layers=10) # Trigger initial computation of parametrized circuit self.assertEqual(ansatz.parametrized_circuit, "Circuit with 10 layers") # Trigger circuit invalidation ansatz.rotate() self.assertIsNone(ansatz._parametrized_circuit) def test_forwards_arguments_to_underlying_methods(self): method_mock = mock.Mock() decorated_method = invalidates_parametrized_circuit(method_mock) ansatz = PseudoAnsatz(n_layers=10) # Mock calling a regular method. Notice that we need to pass self explicitly decorated_method(ansatz, 2.0, 1.0, x=100, label="test") # Check that arguments were passed to underlying method method_mock.assert_called_once_with(ansatz, 2.0, 1.0, x=100, label="test") def test_combine_ansatz_params(): params1 = np.array([1.0, 2.0]) params2 = np.array([3.0, 4.0]) target_params = np.array([1.0, 2.0, 3.0, 4.0]) combined_params = combine_ansatz_params(params1, params2) np.testing.assert_array_equal(combined_params, target_params)
StarcoderdataPython
271690
import tensorflow as tf import numpy as np import logging def crop_and_concat(net1, net2): """ the size(net1) <= size(net2) """ net1_shape = net1.get_shape().as_list() net2_shape = net2.get_shape().as_list() # print(net1_shape) # print(net2_shape) # if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]: offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0] size = [-1, net1_shape[1], net1_shape[2], -1] net2_resize = tf.slice(net2, offsets, size) return tf.concat([net1, net2_resize], 3) # else: # offsets = [0, (net1_shape[1] - net2_shape[1]) // 2, (net1_shape[2] - net2_shape[2]) // 2, 0] # size = [-1, net2_shape[1], net2_shape[2], -1] # net1_resize = tf.slice(net1, offsets, size) # return tf.concat([net1_resize, net2], 3) def crop_only(net1, net2): """ the size(net1) <= size(net2) """ net1_shape = net1.get_shape().as_list() net2_shape = net2.get_shape().as_list() # print(net1_shape) # print(net2_shape) # if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]: offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0] size = [-1, net1_shape[1], net1_shape[2], -1] net2_resize = tf.slice(net2, offsets, size) # return tf.concat([net1, net2_resize], 3) return net2_resize class Model: def __init__(self, config, input_batch=None, mode='train'): self.depths = config.depths self.filters_root = config.filters_root self.kernel_size = config.kernel_size self.dilation_rate = config.dilation_rate self.pool_size = config.pool_size self.X_shape = config.X_shape self.Y_shape = config.Y_shape self.n_channel = config.n_channel self.n_class = config.n_class self.class_weights = config.class_weights self.batch_size = config.batch_size self.loss_type = config.loss_type self.weight_decay = config.weight_decay self.optimizer = config.optimizer self.learning_rate = config.learning_rate self.decay_step = config.decay_step self.decay_rate = config.decay_rate self.momentum = config.momentum self.global_step = tf.compat.v1.get_variable(name="global_step", initializer=0, dtype=tf.int32) self.summary_train = [] self.summary_valid = [] self.build(input_batch, mode=mode) def add_placeholders(self, input_batch=None, mode="train"): if input_batch is None: self.X = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, self.X_shape[0], self.X_shape[1], self.X_shape[2]], name='X') self.Y = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, self.Y_shape[0], self.Y_shape[1], self.n_class], name='y') else: self.X = input_batch[0] if mode in ["train", "valid", "test"]: self.Y = input_batch[1] self.input_batch = input_batch self.is_training = tf.compat.v1.placeholder(dtype=tf.bool, name="is_training") # self.keep_prob = tf.placeholder(dtype=tf.float32, name="keep_prob") self.drop_rate = tf.compat.v1.placeholder(dtype=tf.float32, name="drop_rate") def add_prediction_op(self): logging.info("Model: depths {depths}, filters {filters}, " "filter size {kernel_size[0]}x{kernel_size[1]}, " "pool size: {pool_size[0]}x{pool_size[1]}, " "dilation rate: {dilation_rate[0]}x{dilation_rate[1]}".format( depths=self.depths, filters=self.filters_root, kernel_size=self.kernel_size, dilation_rate=self.dilation_rate, pool_size=self.pool_size)) if self.weight_decay > 0: weight_decay = tf.constant(self.weight_decay, dtype=tf.float32, name="weight_constant") self.regularizer = tf.keras.regularizers.l2(l=0.5 * (weight_decay)) else: self.regularizer = None self.initializer = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform") # down sample layers convs = [None] * self.depths # store output of each depth with tf.compat.v1.variable_scope("Input"): net = self.X net = tf.compat.v1.layers.conv2d(net, filters=self.filters_root, kernel_size=self.kernel_size, activation=None, padding='same', dilation_rate=self.dilation_rate, kernel_initializer=self.initializer, kernel_regularizer=self.regularizer, # bias_regularizer=self.regularizer, name="input_conv") net = tf.compat.v1.layers.batch_normalization(net, training=self.is_training, name="input_bn") net = tf.nn.relu(net, name="input_relu") # net = tf.nn.dropout(net, self.keep_prob) net = tf.compat.v1.layers.dropout(net, rate=self.drop_rate, training=self.is_training, name="input_dropout") for depth in range(0, self.depths): with tf.compat.v1.variable_scope("DownConv_%d" % depth): filters = int(2 ** (depth) * self.filters_root) net = tf.compat.v1.layers.conv2d(net, filters=filters, kernel_size=self.kernel_size, activation=None, use_bias=False, padding='same', dilation_rate=self.dilation_rate, kernel_initializer=self.initializer, kernel_regularizer=self.regularizer, # bias_regularizer=self.regularizer, name="down_conv1_{}".format(depth + 1)) net = tf.compat.v1.layers.batch_normalization(net, training=self.is_training, name="down_bn1_{}".format(depth + 1)) net = tf.nn.relu(net, name="down_relu1_{}".format(depth + 1)) net = tf.compat.v1.layers.dropout(net, rate=self.drop_rate, training=self.is_training, name="down_dropout1_{}".format(depth + 1)) convs[depth] = net if depth < self.depths - 1: net = tf.compat.v1.layers.conv2d(net, filters=filters, kernel_size=self.kernel_size, strides=self.pool_size, activation=None, use_bias=False, padding='same', dilation_rate=self.dilation_rate, kernel_initializer=self.initializer, kernel_regularizer=self.regularizer, # bias_regularizer=self.regularizer, name="down_conv3_{}".format(depth + 1)) net = tf.compat.v1.layers.batch_normalization(net, training=self.is_training, name="down_bn3_{}".format(depth + 1)) net = tf.nn.relu(net, name="down_relu3_{}".format(depth + 1)) net = tf.compat.v1.layers.dropout(net, rate=self.drop_rate, training=self.is_training, name="down_dropout3_{}".format(depth + 1)) # up layers for depth in range(self.depths - 2, -1, -1): with tf.compat.v1.variable_scope("UpConv_%d" % depth): filters = int(2 ** (depth) * self.filters_root) net = tf.compat.v1.layers.conv2d_transpose(net, filters=filters, kernel_size=self.kernel_size, strides=self.pool_size, activation=None, use_bias=False, padding="same", kernel_initializer=self.initializer, kernel_regularizer=self.regularizer, # bias_regularizer=self.regularizer, name="up_conv0_{}".format(depth + 1)) net = tf.compat.v1.layers.batch_normalization(net, training=self.is_training, name="up_bn0_{}".format(depth + 1)) net = tf.nn.relu(net, name="up_relu0_{}".format(depth + 1)) net = tf.compat.v1.layers.dropout(net, rate=self.drop_rate, training=self.is_training, name="up_dropout0_{}".format(depth + 1)) # skip connection net = crop_and_concat(convs[depth], net) # net = crop_only(convs[depth], net) net = tf.compat.v1.layers.conv2d(net, filters=filters, kernel_size=self.kernel_size, activation=None, use_bias=False, padding='same', dilation_rate=self.dilation_rate, kernel_initializer=self.initializer, kernel_regularizer=self.regularizer, # bias_regularizer=self.regularizer, name="up_conv1_{}".format(depth + 1)) net = tf.compat.v1.layers.batch_normalization(net, training=self.is_training, name="up_bn1_{}".format(depth + 1)) net = tf.nn.relu(net, name="up_relu1_{}".format(depth + 1)) net = tf.compat.v1.layers.dropout(net, rate=self.drop_rate, training=self.is_training, name="up_dropout1_{}".format(depth + 1)) # Output Map with tf.compat.v1.variable_scope("Output"): net = tf.compat.v1.layers.conv2d(net, filters=self.n_class, kernel_size=(1, 1), activation=None, padding='same', # dilation_rate=self.dilation_rate, kernel_initializer=self.initializer, kernel_regularizer=self.regularizer, # bias_regularizer=self.regularizer, name="output_conv") # net = tf.nn.relu(net, # name="output_relu") # net = tf.layers.dropout(net, # rate=self.drop_rate, # training=self.is_training, # name="output_dropout") # net = tf.layers.batch_normalization(net, # training=self.is_training, # name="output_bn") output = net with tf.compat.v1.variable_scope("representation"): self.representation = convs[-1] with tf.compat.v1.variable_scope("logits"): self.logits = output tmp = tf.compat.v1.summary.histogram("logits", self.logits) self.summary_train.append(tmp) with tf.compat.v1.variable_scope("preds"): self.preds = tf.nn.softmax(output) tmp = tf.compat.v1.summary.histogram("preds", self.preds) self.summary_train.append(tmp) def add_loss_op(self): if self.loss_type == "cross_entropy": with tf.compat.v1.variable_scope("cross_entropy"): flat_logits = tf.reshape(self.logits, [-1, self.n_class], name="logits") flat_labels = tf.reshape(self.Y, [-1, self.n_class], name="labels") if (np.array(self.class_weights) != 1).any(): class_weights = tf.constant(np.array(self.class_weights, dtype=np.float32), name="class_weights") weight_map = tf.multiply(flat_labels, class_weights) weight_map = tf.reduce_sum(input_tensor=weight_map, axis=1) loss_map = tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels) # loss_map = tf.nn.sigmoid_cross_entropy_with_logits(logits=flat_logits, # labels=flat_labels) weighted_loss = tf.multiply(loss_map, weight_map) loss = tf.reduce_mean(input_tensor=weighted_loss) else: loss = tf.reduce_mean(input_tensor=tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels)) # loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=flat_logits, # labels=flat_labels)) elif self.loss_type == "IOU": with tf.compat.v1.variable_scope("IOU"): eps = 1e-7 loss = 0 for i in range(1, self.n_class): intersection = eps + tf.reduce_sum(input_tensor=self.preds[:, :, :, i] * self.Y[:, :, :, i], axis=[1, 2]) union = eps + tf.reduce_sum(input_tensor=self.preds[:, :, :, i], axis=[1, 2]) + tf.reduce_sum( input_tensor=self.Y[:, :, :, i], axis=[1, 2]) loss += 1 - tf.reduce_mean(input_tensor=intersection / union) elif self.loss_type == "mean_squared": with tf.compat.v1.variable_scope("mean_squared"): flat_logits = tf.reshape(self.logits, [-1, self.n_class], name="logits") flat_labels = tf.reshape(self.Y, [-1, self.n_class], name="labels") with tf.compat.v1.variable_scope("mean_squared"): loss = tf.compat.v1.losses.mean_squared_error(labels=flat_labels, predictions=flat_logits) else: raise ValueError("Unknown loss function: " % self.loss_type) tmp = tf.compat.v1.summary.scalar("train_loss", loss) self.summary_train.append(tmp) tmp = tf.compat.v1.summary.scalar("valid_loss", loss) self.summary_valid.append(tmp) if self.weight_decay > 0: with tf.compat.v1.name_scope('weight_loss'): tmp = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES) weight_loss = tf.add_n(tmp, name="weight_loss") self.loss = loss + weight_loss else: self.loss = loss def add_training_op(self): if self.optimizer == "momentum": self.learning_rate_node = tf.compat.v1.train.exponential_decay(learning_rate=self.learning_rate, global_step=self.global_step, decay_steps=self.decay_step, decay_rate=self.decay_rate, staircase=True) optimizer = tf.compat.v1.train.MomentumOptimizer(learning_rate=self.learning_rate_node, momentum=self.momentum) elif self.optimizer == "adam": self.learning_rate_node = tf.compat.v1.train.exponential_decay(learning_rate=self.learning_rate, global_step=self.global_step, decay_steps=self.decay_step, decay_rate=self.decay_rate, staircase=True) optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=self.learning_rate_node) update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): self.train_op = optimizer.minimize(self.loss, global_step=self.global_step) tmp = tf.compat.v1.summary.scalar("learning_rate", self.learning_rate_node) self.summary_train.append(tmp) def add_metrics_op(self): with tf.compat.v1.variable_scope("metrics"): Y = tf.argmax(input=self.Y, axis=-1) confusion_matrix = tf.cast(tf.math.confusion_matrix( labels=tf.reshape(Y, [-1]), predictions=tf.reshape(self.preds, [-1]), num_classes=self.n_class, name='confusion_matrix'), dtype=tf.float32) # with tf.variable_scope("P"): c = tf.constant(1e-7, dtype=tf.float32) precision_P = (confusion_matrix[1, 1] + c) / (tf.reduce_sum(input_tensor=confusion_matrix[:, 1]) + c) recall_P = (confusion_matrix[1, 1] + c) / (tf.reduce_sum(input_tensor=confusion_matrix[1, :]) + c) f1_P = 2 * precision_P * recall_P / (precision_P + recall_P) tmp1 = tf.compat.v1.summary.scalar("train_precision_p", precision_P) tmp2 = tf.compat.v1.summary.scalar("train_recall_p", recall_P) tmp3 = tf.compat.v1.summary.scalar("train_f1_p", f1_P) self.summary_train.extend([tmp1, tmp2, tmp3]) tmp1 = tf.compat.v1.summary.scalar("valid_precision_p", precision_P) tmp2 = tf.compat.v1.summary.scalar("valid_recall_p", recall_P) tmp3 = tf.compat.v1.summary.scalar("valid_f1_p", f1_P) self.summary_valid.extend([tmp1, tmp2, tmp3]) # with tf.variable_scope("S"): precision_S = (confusion_matrix[2, 2] + c) / (tf.reduce_sum(input_tensor=confusion_matrix[:, 2]) + c) recall_S = (confusion_matrix[2, 2] + c) / (tf.reduce_sum(input_tensor=confusion_matrix[2, :]) + c) f1_S = 2 * precision_S * recall_S / (precision_S + recall_S) tmp1 = tf.compat.v1.summary.scalar("train_precision_s", precision_S) tmp2 = tf.compat.v1.summary.scalar("train_recall_s", recall_S) tmp3 = tf.compat.v1.summary.scalar("train_f1_s", f1_S) self.summary_train.extend([tmp1, tmp2, tmp3]) tmp1 = tf.compat.v1.summary.scalar("valid_precision_s", precision_S) tmp2 = tf.compat.v1.summary.scalar("valid_recall_s", recall_S) tmp3 = tf.compat.v1.summary.scalar("valid_f1_s", f1_S) self.summary_valid.extend([tmp1, tmp2, tmp3]) self.precision = [precision_P, precision_S] self.recall = [recall_P, recall_S] self.f1 = [f1_P, f1_S] def train_on_batch(self, sess, inputs_batch, labels_batch, summary_writer, drop_rate=0.0): feed = {self.X: inputs_batch, self.Y: labels_batch, self.drop_rate: drop_rate, self.is_training: True} _, step_summary, step, loss = sess.run([self.train_op, self.summary_train, self.global_step, self.loss], feed_dict=feed) summary_writer.add_summary(step_summary, step) return loss def valid_on_batch(self, sess, inputs_batch, labels_batch, summary_writer): feed = {self.X: inputs_batch, self.Y: labels_batch, self.drop_rate: 0, self.is_training: False} step_summary, step, loss, preds = sess.run([self.summary_valid, self.global_step, self.loss, self.preds], feed_dict=feed) summary_writer.add_summary(step_summary, step) return loss, preds # def train_on_batch(self, sess, summary_writer, drop_rate=0.0, raw_data=False): # feed = {self.drop_rate: drop_rate, # self.is_training: True} # if raw_data: # _, step_summary, step, loss, preds, logits, \ # X_batch, Y_batch = sess.run([self.train_op, # self.summary_train, # self.global_step, # self.loss, # self.preds, # self.logits, # self.X, # self.Y], # feed_dict=feed) # summary_writer.add_summary(step_summary, step) # return loss, preds, logits, X_batch, Y_batch # else: # _, step_summary, step, loss = sess.run([self.train_op, # self.summary_train, # self.global_step, # self.loss], # feed_dict=feed) # summary_writer.add_summary(step_summary, step) # return loss def test_on_batch(self, sess, summary_writer): feed = {self.drop_rate: 0, self.is_training: False} step_summary, step, loss, preds, \ X_batch, Y_batch, fname_batch, \ itp_batch, its_batch = sess.run([self.summary_valid, self.global_step, self.loss, self.preds, self.X, self.Y, self.input_batch[2], self.input_batch[3], self.input_batch[4]], feed_dict=feed) summary_writer.add_summary(step_summary, step) return loss, preds, X_batch, Y_batch, fname_batch, itp_batch, its_batch def build(self, input_batch=None, mode='train'): self.add_placeholders(input_batch, mode) self.add_prediction_op() if mode in ["train", "valid", "test"]: self.add_loss_op() self.add_training_op() # self.add_metrics_op() self.summary_train = tf.compat.v1.summary.merge(self.summary_train) self.summary_valid = tf.compat.v1.summary.merge(self.summary_valid) return 0
StarcoderdataPython
1849851
<gh_stars>10-100 # Code créé par <NAME> le 7 Mai 2018 # Kolmogorov-Smyrnov Test extended to two dimensions. # References:s # [1] <NAME>. (1983). Two-dimensional goodness-of-fit testing # in astronomy. Monthly Notices of the Royal Astronomical Society, # 202(3), 615-627. # [2] <NAME>., & <NAME>. (1987). A multidimensional version of # the Kolmogorov–Smirnov test. Monthly Notices of the Royal Astronomical # Society, 225(1), 155-170. # [3] <NAME>., <NAME>., <NAME>., & <NAME>. # (1992). Numerical recipes in C. Press Syndicate of the University # of Cambridge, New York, 24, 78. import sys import inspect import numpy as np import scipy.stats def CountQuads(Arr2D, point): """ Computes the probabilities of finding points in each 4 quadrant defined by a vertical and horizontal lines crossing the point, by counting the proportion of points in Arr2D in each quadrant. :param list Arr2D: Array of points to be counted. :param array point: A 2 element list, point, which is the center of 4 square quadrants. :returns: a tuple of 4 floats. The probabilities of finding a point in each quadrants, with point as the origin. p stands for positive, n for negative, with the first and second positions meaning the x and y directions respectively. """ if isinstance(point, list): point = np.asarray((np.ravel(point))) elif type(point).__module__+type(point).__name__ == 'numpyndarray': point = np.ravel(point.copy()) else: raise TypeError('Input point is neither list nor numpyndarray') if len(point) != 2: return if isinstance(Arr2D, list): Arr2D = np.asarray((Arr2D)) elif type(Arr2D).__module__+type(Arr2D).__name__ == 'numpyndarray': pass else: raise TypeError('Input Arr2D is neither list nor numpyndarray') if Arr2D.shape[1] > Arr2D.shape[0]: # Reshape to A[row,column] Arr2D = Arr2D.copy().T if Arr2D.shape[1] != 2: raise TypeError('Input Arr2D is not 2D') # The pp of Qpp refer to p for 'positive' and n for 'negative' quadrants. # In order. first subscript is x, second is y. Qpp = Arr2D[(Arr2D[:, 0] > point[0]) & (Arr2D[:, 1] > point[1]), :] Qnp = Arr2D[(Arr2D[:, 0] < point[0]) & (Arr2D[:, 1] > point[1]), :] Qpn = Arr2D[(Arr2D[:, 0] > point[0]) & (Arr2D[:, 1] < point[1]), :] Qnn = Arr2D[(Arr2D[:, 0] < point[0]) & (Arr2D[:, 1] < point[1]), :] # Normalized fractions: ff = 1./len(Arr2D) fpp = len(Qpp)*ff fnp = len(Qnp)*ff fpn = len(Qpn)*ff fnn = len(Qnn)*ff # NOTE: all the f's are supposed to sum to 1.0. Float representation # cause SOMETIMES sum to 1.000000002 or something. I don't know how to # test for that reliably, OR what to do about it yet. Keep in mind. return(fpp, fnp, fpn, fnn) def FuncQuads(func2D, point, xlim, ylim, rounddig=4): """ Computes the probabilities of finding points in each 4 quadrant defined by a vertical and horizontal lines crossing the point, by integrating the density function func2D in each quadrant. :param array func2D: Density function that takes 2 arguments: x and y. :param list point: A 2 element list, point, which is the center of 4 square quadrants. :param array xlim,ylim: Domain of numerical integration necessary to compute the quadrant probabilities. :returns: a tuple of 4 floats. The probabilities of finding a point in each quadrants, with point as the origin. p stands for positive, n for negative, with the first and second positions meaning the x and y directions respectively. """ if callable(func2D): if len(inspect.getfullargspec(func2D)[0]) != 2: raise TypeError('Input func2D is not a function with 2 arguments') pass else: raise TypeError('Input func2D is not a function') # If xlim, ylim and point are not lists or ndarray, exit. if isinstance(point, list): point = np.asarray((np.ravel(point))) elif type(point).__module__+type(point).__name__ == 'numpyndarray': point = np.ravel(point.copy()) else: raise TypeError('Input point is not a list or numpyndarray') if len(point) != 2: raise TypeError('Input point has not exactly 2 elements') if isinstance(xlim, list): xlim = np.asarray((np.sort(np.ravel(xlim)))) elif type(xlim).__module__+type(xlim).__name__ == 'numpyndarray': xlim = np.sort(np.ravel(xlim.copy())) else: raise TypeError('Input xlim is not a list or ndarray') if len(xlim) != 2: raise TypeError('Input xlim has not exactly 2 elements') if xlim[0] == xlim[1]: raise TypeError('Input xlim[0] should be different to xlim[1]') if isinstance(ylim, list): ylim = np.asarray((np.sort(np.ravel(ylim)))) elif type(ylim).__module__+type(ylim).__name__ == 'numpyndarray': ylim = np.sort(np.ravel(ylim.copy())) else: raise TypeError('Input ylim is not a list or ndarray') if len(ylim) != 2: raise TypeError('Input ylim has not exactly 2 elements') if ylim[0] == ylim[1]: raise TypeError('Input ylim[0] should be different to ylim[1]') # Numerical integration to find the quadrant probabilities. totInt = scipy.integrate.dblquad(func2D, *xlim, lambda x: np.amin(ylim), lambda x: np.amax(ylim))[0] Qpp = scipy.integrate.dblquad(func2D, point[0], np.amax(xlim), lambda x: point[1], lambda x: np.amax(ylim))[0] Qpn = scipy.integrate.dblquad(func2D, point[0], np.amax(xlim), lambda x: np.amin(ylim), lambda x: point[1])[0] Qnp = scipy.integrate.dblquad(func2D, np.amin(xlim), point[0], lambda x: point[1], lambda x: np.amax(ylim))[0] Qnn = scipy.integrate.dblquad(func2D, np.amin(xlim), point[0], lambda x: np.amin(ylim), lambda x: point[1])[0] fpp = round(Qpp/totInt, rounddig) fnp = round(Qnp/totInt, rounddig) fpn = round(Qpn/totInt, rounddig) fnn = round(Qnn/totInt, rounddig) return(fpp, fnp, fpn, fnn) def Qks(alam, iter=100, prec=1e-17): """ Computes the value of the KS probability function, as a function of alam, the D statistic. From *Numerical recipes in C* page 623: '[...] the K–S statistic useful is that its distribution in the case of the null hypothesis (data sets drawn from the same distribution) can be calculated, at least to useful approximation, thus giving the significance of any observed nonzero value of D.' (D being the KS statistic). :param float alam: D statistic. :param int iter: Number of iterations to be perfomed. On non-convergence, returns 1.0. :param float prec: Convergence criteria of the qks. Stops converging if that precision is attained. :returns: a float. The significance level of the observed D statistic. """ # If j iterations are performed, meaning that toadd # is still 2 times larger than the precision. if isinstance(alam, int) | isinstance(alam, float): pass else: raise TypeError('Input alam is neither int nor float') toadd = [1] qks = 0. j = 1 while (j < iter) & (abs(toadd[-1]) > prec*2): toadd.append(2.*(-1.)**(j-1.)*np.exp(-2.*j**2.*alam**2.)) qks += toadd[-1] j += 1 if (j == iter) | (qks > 1): # If no convergence after j iter, return 1.0 return(1.0) if qks < prec: return(0.) else: return(qks) def ks2d2s(Arr2D1, Arr2D2): """ ks stands for Kolmogorov-Smirnov, 2d for 2 dimensional, 2s for 2 samples. KS test for goodness-of-fit on two 2D samples. Tests the hypothesis that the two samples are from the same distribution. :param array Arr2D1: 2D array of points/samples. :param array Arr2D2: 2D array of points/samples. :returns: a tuple of two floats. First, the two-sample K-S statistic. If this value is higher than the significance level of the hypothesis, it is rejected. Second, the significance level of *d*. Small values of prob show that the two samples are significantly different. """ if type(Arr2D1).__module__+type(Arr2D1).__name__ == 'numpyndarray': pass else: raise TypeError('Input Arr2D1 is neither list nor numpyndarray') if Arr2D1.shape[1] > Arr2D1.shape[0]: Arr2D1 = Arr2D1.copy().T if type(Arr2D2).__module__+type(Arr2D2).__name__ == 'numpyndarray': pass else: raise TypeError('Input Arr2D2 is neither list nor numpyndarray') if Arr2D2.shape[1] > Arr2D2.shape[0]: Arr2D2 = Arr2D2.copy().T if Arr2D1.shape[1] != 2: raise TypeError('Input Arr2D1 is not 2D') if Arr2D2.shape[1] != 2: raise TypeError('Input Arr2D2 is not 2D') d1, d2 = 0., 0. for point1 in Arr2D1: fpp1, fmp1, fpm1, fmm1 = CountQuads(Arr2D1, point1) fpp2, fmp2, fpm2, fmm2 = CountQuads(Arr2D2, point1) d1 = max(d1, abs(fpp1-fpp2)) d1 = max(d1, abs(fpm1-fpm2)) d1 = max(d1, abs(fmp1-fmp2)) d1 = max(d1, abs(fmm1-fmm2)) for point2 in Arr2D2: fpp1, fmp1, fpm1, fmm1 = CountQuads(Arr2D1, point2) fpp2, fmp2, fpm2, fmm2 = CountQuads(Arr2D2, point2) d2 = max(d2, abs(fpp1-fpp2)) d2 = max(d2, abs(fpm1-fpm2)) d2 = max(d2, abs(fmp1-fmp2)) d2 = max(d2, abs(fmm1-fmm2)) d = (d1+d2)/2. sqen = np.sqrt(len(Arr2D1)*len(Arr2D2)/(len(Arr2D1)+len(Arr2D2))) R1 = scipy.stats.pearsonr(Arr2D1[:, 0], Arr2D1[:, 1])[0] R2 = scipy.stats.pearsonr(Arr2D2[:, 0], Arr2D2[:, 1])[0] RR = np.sqrt(1.-(R1*R1+R2*R2)/2.) prob = Qks(d*sqen/(1.+RR*(0.25-0.75/sqen))) # Small values of prob show that the two samples are significantly # different. Prob is the significance level of an observed value of d. # NOT the same as the significance level that ou set and compare to D. return(d, prob) def ks2d1s(Arr2D, func2D, xlim=[], ylim=[]): """ ks stands for Kolmogorov-Smirnov, 2d for 2 dimensional, 1s for 1 sample. KS test for goodness-of-fit on one 2D sample and one 2D density distribution. Tests the hypothesis that the data was generated from the density distribution. :param array Arr2D: 2D array of points/samples. :param func2D: Density distribution. Could implement a function for arrays in the future... :param array xlim, ylim: Defines the domain for the numerical integration necessary to compute the quadrant probabilities. :returns: tuple of two floats. First, the two-sample K-S statistic. If this value is higher than the significance level of the hypothesis, it is rejected. Second, the significance level of *d*. Small values of prob show that the two samples are significantly different. """ if callable(func2D): if len(inspect.getfullargspec(func2D)[0]) != 2: raise TypeError('Input func2D is not a function with 2 input arguments') pass else: raise TypeError('Input func2D is not a function') if type(Arr2D).__module__+type(Arr2D).__name__ == 'numpyndarray': pass else: raise TypeError('Input Arr2D is neither list nor numpyndarray') print(Arr2D.shape) if Arr2D.shape[1] > Arr2D.shape[0]: Arr2D = Arr2D.copy().T if Arr2D.shape[1] != 2: raise TypeError('Input Arr2D is not 2D') if xlim == []: xlim.append(np.amin(Arr2D[:, 0]) - abs(np.amin(Arr2D[:, 0]) - np.amax(Arr2D[:, 0]))/10) xlim.append(np.amax(Arr2D[:, 0]) - abs(np.amin(Arr2D[:, 0]) - np.amax(Arr2D[:, 0]))/10) if ylim == []: ylim.append(np.amin(Arr2D[:, 1]) - abs(np.amin(Arr2D[:, 1]) - np.amax(Arr2D[:, 1]))/10) ylim.append(np.amax(Arr2D[:, 1]) - abs(np.amin(Arr2D[:, 1]) - np.amax(Arr2D[:, 1]))/10) d = 0 for point in Arr2D: fpp1, fmp1, fpm1, fmm1 = FuncQuads(func2D, point, xlim, ylim) fpp2, fmp2, fpm2, fmm2 = CountQuads(Arr2D, point) d = max(d, abs(fpp1-fpp2)) d = max(d, abs(fpm1-fpm2)) d = max(d, abs(fmp1-fmp2)) d = max(d, abs(fmm1-fmm2)) sqen = np.sqrt(len(Arr2D)) R1 = scipy.stats.pearsonr(Arr2D[:, 0], Arr2D[:, 1])[0] RR = np.sqrt(1.0-R1**2) prob = Qks(d*sqen/(1.+RR*(0.25-0.75/sqen))) return d, prob
StarcoderdataPython
31780
<reponame>ramoslin02/binanceapi<filename>binanceapi/constant.py from enum import Enum class OrderStatus(object): """ Order Status """ NEW = "NEW" PARTIALLY_FILLED = "PARTIALLY_FILLED" FILLED = "FILLED" CANCELED = "CANCELED" PENDING_CANCEL = "PENDING_CANCEL" REJECTED = "REJECTED" EXPIRED = "EXPIRED" class OrderType(Enum): """ Order type """ LIMIT = "LIMIT" MARKET = "MARKET" STOP = "STOP" class RequestMethod(Enum): """ Request methods """ GET = 'GET' POST = 'POST' PUT = 'PUT' DELETE = 'DELETE' class Interval(Enum): """ Interval for klines """ MINUTE_1 = '1m' MINUTE_3 = '3m' MINUTE_5 = '5m' MINUTE_15 = '15m' MINUTE_30 = '30m' HOUR_1 = '1h' HOUR_2 = '2h' HOUR_4 = '4h' HOUR_6 = '6h' HOUR_8 = '8h' HOUR_12 = '12h' DAY_1 = '1d' DAY_3 = '3d' WEEK_1 = '1w' MONTH_1 = '1M' class OrderSide(Enum): """ order side """ BUY = "BUY" SELL = "SELL"
StarcoderdataPython
8045031
'''''' from flask import Flask from flask_login import LoginManager from flask_mongoengine import MongoEngine from config import Config db = MongoEngine() login_manager = LoginManager() #login_manager.session_protection = 'strong' #login_manager.login_view = 'auth.login' def create_app(config=Config.DEFAULT): '''''' app = Flask(__name__) app.config.from_object(config.value) from .main import main app.register_blueprint(main) from .auth import auth app.register_blueprint(auth) db.init_app(app) login_manager.init_app(app) return app
StarcoderdataPython
11373940
""" This file is written originally for testing the csv files directly in the test/ directory. Now as the DAG is going to call the parser and will create tables in the tables in the database, this file will be only for a reference on how to use Airflow DAGs and self-defined operators """ from datetime import datetime from airflow import DAG from airflow.contrib.sensors.file_sensor import FileSensor from airflow.operators.dummy_operator import DummyOperator from airflow.utils.trigger_rule import TriggerRule from operators.my_operators import StartOperator, DirectorySensor, ScriptParser __author__ = "<NAME>" __email__ = "<EMAIL>" __version__ = '0.1' __status__ = 'Development' dag = DAG('my_operator_tester_dag', description="'Testing custom operators", schedule_interval='0 12 * * *', start_date=datetime(2017, 3, 20), catchup=False) starter = StartOperator(task_id="start_operator", dag=dag) sensor = DirectorySensor(directory="/usr/local/airflow/test", task_id="directory_sensor", dag=dag) parser = ScriptParser(directory="/usr/local/airflow/test", task_id="script_parser", dag=dag) failed = DummyOperator(task_id="failing_state", trigger_rule=TriggerRule.ONE_FAILED, dag=dag) success = DummyOperator(task_id="success_state", trigger_rule=TriggerRule.ALL_SUCCESS, dag=dag) done = DummyOperator(task_id="finish_state", trigger_rule=TriggerRule.ALL_DONE, dag=dag) starter >> sensor >> parser >> (failed, success) >> done
StarcoderdataPython
8085002
#!/usr/bin/env python # -*- coding: utf-8 -*- import flwr as fl class AggregateCustomMetricStrategy(fl.server.strategy.FedAvg): def aggregate_evaluate( self, rnd: int, results, failures, ): """Aggregate evaluation losses using weighted average.""" if not results: return None # Weigh accuracy of each client by number of examples used mse = [r.metrics["mse"] * r.num_examples for _, r in results] examples = [r.num_examples for _, r in results] # Aggregate and print custom metric mse_aggregated = sum(mse) / sum(examples) print(f"Round {rnd} R2 aggregated from client results: {mse_aggregated}") # Call aggregate_evaluate from base class (FedAvg) return super().aggregate_evaluate(rnd, results, failures)
StarcoderdataPython
9672478
from rest_framework.response import Response import ippon.models.tournament as tm def has_tournament_authorization(allowed_master_statuses, pk, request): try: if not isinstance(allowed_master_statuses, list): allowed_master_statuses = [allowed_master_statuses] admin = tm.TournamentAdmin.objects.get( user=request.user.id, tournament=pk, is_master__in=allowed_master_statuses) is_admin = False if admin is not None: is_admin = True return Response({ 'isAuthorized': is_admin }) except tm.TournamentAdmin.DoesNotExist: return Response({ 'isAuthorized': False })
StarcoderdataPython
1608136
# !usr/bin/env python # -*- coding: utf-8 -*- # # Licensed under a 3-clause BSD license. class CatalogdbError(Exception): """A custom core Catalogdb exception""" def __init__(self, message=None): message = 'There has been an error' \ if not message else message super(CatalogdbError, self).__init__(message) class CatalogdbNotImplemented(CatalogdbError): """A custom exception for not yet implemented features.""" def __init__(self, message=None): message = 'This feature is not implemented yet.' \ if not message else message super(CatalogdbNotImplemented, self).__init__(message) class CatalogdbMissingDependency(CatalogdbError): """A custom exception for missing dependencies.""" pass class CatalogdbWarning(Warning): """Base warning for Catalogdb.""" class CatalogdbUserWarning(UserWarning, CatalogdbWarning): """The primary warning class.""" pass class CatalogdbDeprecationWarning(CatalogdbUserWarning): """A warning for deprecated features.""" pass
StarcoderdataPython
241257
from .toc import *
StarcoderdataPython
3261049
'''This test suite contains 3 passing tests. ''' import pytest from seleniumbase import BaseCase from basic_methods import BasicMethods as bm import config import constants as const import time class TestLogout(BaseCase): def test_LogoutClicked_MsgUserRedirected(self): ''' Checks if when user open user's menu and press log out will be redirected to autorization page and message appear''' self.open(config.url) bm.log_in(self, config.valid_username, config.valid_password) self.click_chain([const.user_menu_btn_selector, 'span:contains("Logout")']) self.assert_element(const.toast_msg_success_selector) self.assertNotEqual(config.url, config.url_authorization, "Did not redirect") def test_LoggedoutClickBackButton_StayOnAuthorizationPage(self): ''' Checks if when user logs out and click back button will still stay on authorization page''' self.test_LogoutClicked_MsgUserRedirected() self.go_back() self.assertEqual(self.get_current_url(), config.url_authorization, "Redirected") def test_LoggedinClickedLogout_ShouldBeAbleToLogInAgain(self): '''Checks if user is able to log in just after user logged out''' self.open(config.url) bm.log_in(self, config.valid_username, config.valid_password) bm.log_out(self) # need to hard-code login because bm.log_in opens config.url time.sleep(1) self.type(const.authorization_user_selector, config.valid_username) self.type(const.authorization_password_selector, config.valid_password+"\n") self.wait_for_element_visible(const.user_menu_btn_selector) self.assertNotEqual(self.get_current_url(), config.url_authorization, "Redirected")
StarcoderdataPython
310635
<reponame>Yiling-J/pharos import yaml from unittest import TestCase, mock from jinja2 import PackageLoader, Environment, FileSystemLoader from kubernetes.dynamic import exceptions as api_exceptions from pharos import models, fields, exceptions, lookups, backend, jinja from pharos.jinja import to_yaml from pharos.backend import TemplateBackend class BaseCase(TestCase): def setUp(self): self.dynamic_client = mock.Mock() self.client = mock.Mock() self.client.settings.enable_chunk = True self.client.settings.chunk_size = 100 self.client.settings.jinja_loader = PackageLoader("tests", "./") self.client.settings.template_engine = "pharos.jinja.JinjaEngine" self.client.dynamic_client = self.dynamic_client class DeploymentTestCase(BaseCase): def test_no_client(self): with self.assertRaises(exceptions.ClientNotSet): len(models.Deployment.objects.all()) def test_chunk_iterator(self): mock_response = mock.Mock() response_lambda = lambda token: { "metadata": {"continue": token}, "items": [ { "id": token, "metadata": { "ownerReferences": [{"kind": "Apple", "uid": "123"}], "name": "test", }, } ], } # should call 6 times, and get END signal, so 7 won't be called mock_response.to_dict.side_effect = [ response_lambda(f"{i}") for i in [1, 2, 3, 4, 5, "END", 7] ] self.dynamic_client.resources.get.return_value.get.return_value = mock_response query = models.Deployment.objects.using(self.client).all() self.assertEqual(len(query), 6) expected_call = [ mock.call.get(_continue=None, limit=100), mock.call.get(_continue="1", limit=100), mock.call.get(_continue="2", limit=100), mock.call.get(_continue="3", limit=100), mock.call.get(_continue="4", limit=100), mock.call.get(_continue="5", limit=100), ] self.assertEqual( self.dynamic_client.resources.get.return_value.method_calls, expected_call ) def test_limit_with_iterator(self): mock_response = mock.Mock() response_lambda = lambda token: { "metadata": {"continue": token}, "items": [ { "id": token, "metadata": { "ownerReferences": [{"kind": "Apple", "uid": "123"}], "name": "test", }, } ], } # should call 3 times only mock_response.to_dict.side_effect = [ response_lambda(f"{i}") for i in [1, 2, 3, 4, 5, "END", 7] ] self.dynamic_client.resources.get.return_value.get.return_value = mock_response query = models.Deployment.objects.using(self.client).limit(3) self.assertEqual(len(query), 3) expected_call = [ mock.call.get(_continue=None, limit=100), mock.call.get(_continue="1", limit=100), mock.call.get(_continue="2", limit=100), ] self.assertEqual( self.dynamic_client.resources.get.return_value.method_calls, expected_call ) def test_deployment_query_basic(self): test_cases = [ { "query": models.Deployment.objects.using(self.client).all(), "api_call": {}, }, { "query": models.Deployment.objects.using(self.client).filter( name="apple" ), "api_call": { "name": "apple", }, }, { "query": models.Deployment.objects.using(self.client).filter( name="apple", namespace="orange" ), "api_call": { "name": "apple", "namespace": "orange", }, }, { "query": models.Deployment.objects.using(self.client) .filter(name="apple") .filter(namespace="orange"), "api_call": { "name": "apple", "namespace": "orange", }, }, { "query": models.Deployment.objects.using(self.client).filter( selector="app in (a)" ), "api_call": { "label_selector": "app in (a)", }, }, { "query": models.Deployment.objects.using(self.client) .filter(selector="app in (a)") .filter(selector="app=b"), "api_call": { "label_selector": "app in (a),app=b", }, }, { "query": models.Deployment.objects.using(self.client).filter( field_selector="name=foo" ), "api_call": { "field_selector": "name=foo", }, }, { "query": models.Deployment.objects.using(self.client) .filter(field_selector="name=foo") .filter(field_selector="type=bar"), "api_call": { "field_selector": "name=foo,type=bar", }, }, ] self.dynamic_client.resources.get.return_value.get.return_value.to_dict.side_effect = lambda: { "metadata": {}, "items": ["test"], } for case in test_cases: with self.subTest(case=case): len(case["query"]) self.assertEqual( self.dynamic_client.resources.method_calls, [mock.call.get(api_version="v1", kind="Deployment")], ) self.assertEqual( self.dynamic_client.resources.get.return_value.method_calls, [mock.call.get(**case["api_call"], _continue=None, limit=100)], ) self.dynamic_client.reset_mock() models.Deployment.objects.using(self.client).get( name="apple", namespace="orange" ) self.assertEqual( self.dynamic_client.resources.get.return_value.method_calls, [ mock.call.get( name="apple", namespace="orange", _continue=None, limit=100 ) ], ) def test_owner(self): mock_data = {"kind": "Apple", "metadata": {"uid": "123"}} mock_owner = models.Deployment(client=None, k8s_object=mock_data) mock_response = mock.Mock() mock_response.to_dict.side_effect = lambda: { "metadata": {}, "items": [ { "id": 1, "metadata": { "ownerReferences": [{"kind": "Apple", "uid": "123"}], "name": "test", }, }, { "id": 2, "metadata": {"ownerReferences": [{"kind": "Appl", "uid": "124"}]}, }, { "id": 3, "metadata": {"ownerReferences": [{"kind": "Apple", "uid": "125"}]}, }, {"id": 4, "metadata": {"ownerReferences": [{"kind": "Apple"}]}}, { "id": 6, "metadata": {"ownerReferences": [{"kind": "Apple", "uid": "123"}]}, }, ], } self.dynamic_client.resources.get.return_value.get.return_value = mock_response query = models.Deployment.objects.using(self.client).filter(owner=mock_owner) self.assertEqual(len(query), 2) mock_owner2 = models.Deployment( client=None, k8s_object={"kind": "Apple", "metadata": {"uid": "124"}} ) query = models.Deployment.objects.using(self.client).filter( owner__in=[mock_owner, mock_owner2] ) self.assertEqual(len(query), 3) deployment = query[0] self.assertEqual(deployment.name, "test") def test_deployment_pods(self): deployment = models.Deployment( client=self.client, k8s_object={ "metadata": {"uid": "123"}, "spec": {"selector": {"matchLabels": {"app": "test"}}}, }, ) mock_rs_response = mock.Mock() mock_rs_response.to_dict.return_value = { "metadata": {}, "items": [ { "id": 1, "metadata": { "ownerReferences": [{"kind": "ReplicaSet", "uid": "123"}], "uid": "234", }, }, { "id": 2, "metadata": { "ownerReferences": [{"kind": "ReplicaSet", "uid": "124"}], "uid": "235", }, }, { "id": 3, "metadata": { "ownerReferences": [{"kind": "ReplicaSet", "uid": "123"}], "uid": "236", }, }, ], } mock_pod_response = mock.Mock() mock_pod_response.to_dict.return_value = { "metadata": {}, "items": [ { "id": 1, "metadata": { "ownerReferences": [{"kind": "ReplicaSet", "uid": "234"}] }, }, { "id": 2, "metadata": { "ownerReferences": [{"kind": "ReplicaSet", "uid": "235"}] }, }, {"id": 4, "metadata": {"ownerReferences": [{"kind": "ReplicaSet"}]}}, ], } # pod come first because owner filter is POST operator self.dynamic_client.resources.get.return_value.get.side_effect = [ mock_pod_response, mock_rs_response, ] self.assertEqual(len(deployment.pods.all()), 1) def test_refresh(self): deployment = models.Deployment( client=self.client, k8s_object={ "metadata": {"uid": "123", "name": "foo"}, "spec": {"selector": {"matchLabels": {"app": "test"}}}, }, ) self.assertEqual(deployment.name, "foo") mock_response = mock.Mock() mock_response.to_dict.side_effect = lambda: {"metadata": {"name": "bar"}} self.dynamic_client.resources.get.return_value.get.return_value = mock_response deployment.refresh() self.assertEqual(deployment.name, "bar") def test_delete(self): deployment = models.Deployment( client=self.client, k8s_object={ "metadata": { "name": "nginx-deployment", "annotations": { "deployment.kubernetes.io/revision": "1", "pharos.py/template": "test.yaml", "pharos.py/variable": "deployment-nginx-deployment-default", }, "spec": {"selector": {"matchLabels": {"app": "test"}}}, } }, ) mock_response = { "metadata": { "name": "nginx-deployment", "namespace": "default", "annotations": { "deployment.kubernetes.io/revision": "1", "pharos.py/template": "test.yaml", "pharos.py/variable": "deployment-nginx-deployment-default", }, }, "json": {"label_name": "foo"}, } self.dynamic_client.resources.get.return_value.get.return_value.to_dict.return_value = ( mock_response ) deployment.delete() self.assertSequenceEqual( self.dynamic_client.resources.method_calls, [ mock.call.get(api_version="v1", kind="Deployment"), mock.call.get(api_version="pharos.py/v1", kind="Variable"), mock.call.get(api_version="v1", kind="Deployment"), ], ) self.assertSequenceEqual( self.dynamic_client.resources.get.return_value.method_calls, [ mock.call.get(name="nginx-deployment", namespace="default"), mock.call.delete("deployment-nginx-deployment-default", None), mock.call.delete("nginx-deployment", "default"), ], ) def test_create_deployment_wrong_resource(self): mock_response = { "metadata": { "name": "foobar", "namespace": "default", "annotations": {"pharos.py/template": "test.yaml"}, } } self.dynamic_client.resources.get.return_value.create.return_value.to_dict.return_value = ( mock_response ) with self.assertRaises(exceptions.ResourceNotMatch): models.Service.objects.using(self.client).create( "test.yaml", {"label_name": "foo"} ) class ServicePodsTestCase(BaseCase): def test_service_pods(self): service = models.Service( client=self.client, k8s_object={ "metadata": {"uid": "123"}, "spec": {"selector": {"foo": "bar"}}, }, ) mock_rs_response = mock.Mock() mock_rs_response.to_dict.return_value = {} self.dynamic_client.resources.get.return_value.get.return_value = ( mock_rs_response ) len(service.pods.all()) self.assertEqual( self.dynamic_client.resources.get.return_value.method_calls, [mock.call.get(_continue=None, label_selector="foo=bar", limit=100, namespace=None)], ) class CustomLookup(lookups.Lookup): name = "foo" type = lookups.Lookup.POST def validate(self, obj, data): return True fields.JsonPathField.add_lookup(CustomLookup) class CustomModel(models.Model): id = fields.JsonPathField(path="id") task = fields.JsonPathField(path="job.task") class Meta: api_version = "v1" kind = "CustomModel" class CustomModelTestCase(BaseCase): def test_custom_model(self): mock_data = { "kind": "CustomModel", "job": {"task": "task1"}, "metadata": {"name": "custom", "namespace": "default"}, } mock_obj = CustomModel(client=None, k8s_object=mock_data) self.assertEqual(mock_obj.task, "task1") self.assertEqual(mock_obj.name, "custom") self.assertEqual(mock_obj.namespace, "default") def test_custom_filed_filter(self): mock_response = mock.Mock() mock_response.to_dict.side_effect = lambda: { "metadata": {}, "items": [ {"id": 1, "job": {"task": "task1"}}, {"id": 2, "job": {"task": "task2"}}, {"id": 3, "job": {"task": "task3"}}, ], } self.dynamic_client.resources.get.return_value.get.return_value = mock_response queryset = CustomModel.objects.using(self.client).filter(task="task3") self.assertEqual(len(queryset), 1) self.assertEqual(queryset[0].task, "task3") queryset = CustomModel.objects.using(self.client).filter( task__in=["task1", "task3"] ) self.assertEqual(len(queryset), 2) self.assertEqual(queryset[0].task, "task1") self.assertEqual(queryset[1].task, "task3") def test_custom_lookup(self): mock_response = mock.Mock() mock_response.to_dict.side_effect = lambda: { "metadata": {}, "items": [{"id": 1, "job": {"task": "task1"}}], } self.dynamic_client.resources.get.return_value.get.return_value = mock_response queryset = CustomModel.objects.using(self.client).filter(task__foo="task3") self.assertEqual(len(queryset), 1) def test_contains(self): mock_response = mock.Mock() mock_response.to_dict.side_effect = lambda: { "metadata": {}, "items": [ {"id": 1, "job": {"task": "foo"}}, {"id": 2, "job": {"task": "bar"}}, {"id": 3, "job": {"task": "barfoobar"}}, ], } self.dynamic_client.resources.get.return_value.get.return_value = mock_response queryset = CustomModel.objects.using(self.client).filter(task__contains="foo") self.assertEqual(len(queryset), 2) def test_contains_list(self): mock_response = mock.Mock() mock_response.to_dict.side_effect = lambda: { "metadata": {}, "items": [ {"id": 1, "job": {"task": ["foo"]}}, {"id": 2, "job": {"task": ["foo", "bar"]}}, {"id": 3, "job": {"task": ["foo", "bar", "new"]}}, ], } self.dynamic_client.resources.get.return_value.get.return_value = mock_response queryset = CustomModel.objects.using(self.client).filter( task__contains=["foo", "new"] ) self.assertEqual(len(queryset), 1) self.assertEqual(queryset[0].task, ["foo", "bar", "new"]) def test_startswith(self): mock_response = mock.Mock() mock_response.to_dict.side_effect = lambda: { "metadata": {}, "items": [ {"id": 1, "job": {"task": "foofoo"}}, {"id": 2, "job": {"task": "fobar"}}, {"id": 3, "job": {"task": "barfoobar"}}, ], } self.dynamic_client.resources.get.return_value.get.return_value = mock_response queryset = CustomModel.objects.using(self.client).filter(task__startswith="foo") self.assertEqual(len(queryset), 1) def test_compare(self): mock_response = mock.Mock() mock_response.to_dict.side_effect = lambda: { "metadata": {}, "items": [ {"id": 1, "job": {"task": "foofoo"}}, {"id": 2, "job": {"task": "fobar"}}, {"id": 3, "job": {"task": "barfoobar"}}, ], } self.dynamic_client.resources.get.return_value.get.return_value = mock_response queryset = CustomModel.objects.using(self.client).filter(id__gt=1) self.assertEqual(len(queryset), 2) queryset = CustomModel.objects.using(self.client).filter(id__gt=2) self.assertEqual(len(queryset), 1) queryset = CustomModel.objects.using(self.client).filter(id__gte=2) self.assertEqual(len(queryset), 2) queryset = CustomModel.objects.using(self.client).filter(id__lt=4) self.assertEqual(len(queryset), 3) queryset = CustomModel.objects.using(self.client).filter(id__lt=1) self.assertEqual(len(queryset), 0) queryset = CustomModel.objects.using(self.client).filter(id__lte=1) self.assertEqual(len(queryset), 1) class Step: parent = None client = None class GetSpec(Step): parent = mock.call.resources def __init__(self, api_version, kind, inherit=False): self.api_version = api_version self.kind = kind self.inherit = inherit @property def call(self): return self.parent.get(api_version=self.api_version, kind=self.kind) class GetResource(Step): parent = mock.call.resources.get() def __init__(self, name, namespace, inherit=False, limit=False): self.name = name self.namespace = namespace self.inherit = inherit self.limit = limit @property def call(self): params = {'name': self.name, 'namespace': self.namespace} if self.limit: params['_continue'] = None params['limit'] = 100 return self.parent.get(**params) class CreateResource(Step): parent = mock.call.resources.get() def __init__( self, template, variable, namespace="default", inherit=False, internal=False, dry_run=False, ): self.template = template self.variable = variable self.namespace = namespace self.inherit = inherit self.internal = internal self.dry_run = dry_run @property def call(self): loader = FileSystemLoader("./tests") engine = jinja.JinjaEngine(self.client, loader=loader, internal=self.internal) template_backend = backend.TemplateBackend() template_backend.set_engine(engine) body = template_backend.render( self.namespace, self.template, self.variable, self.internal ) params = {"body": body, "namespace": self.namespace} if self.dry_run: params["query_params"] = [("dryRun", "All")] return self.parent.create(**params) class UpdateResource(Step): parent = mock.call.resources.get() def __init__( self, template, variable, namespace="default", inherit=False, internal=False, dry_run=False, resource_version=None ): self.template = template self.variable = variable self.namespace = namespace self.inherit = inherit self.internal = internal self.dry_run = dry_run self.resource_version = resource_version @property def call(self): loader = FileSystemLoader("./tests") engine = jinja.JinjaEngine(self.client, loader=loader, internal=self.internal) template_backend = backend.TemplateBackend() template_backend.set_engine(engine) body = template_backend.render( self.namespace, self.template, self.variable, self.internal ) body["metadata"]["resourceVersion"] = self.resource_version params = {"body": body, "namespace": self.namespace} params["query_params"] = [] if self.dry_run: params["query_params"] = [("dryRun", "All")] return self.parent.replace(**params) class DeleteResource(Step): parent = mock.call.resources.get() def __init__(self, name, namespace, inherit=False): self.name = name self.namespace = namespace self.inherit = inherit @property def call(self): return self.parent.delete(self.name, self.namespace) class ToDict(Step): parent = mock.call.resources.get().create() def __init__(self, inherit=False): self.inherit = inherit @property def call(self): return self.parent.to_dict() class ResourceCreateTestCase(BaseCase): def assertQuery(self, steps, query): expected_calls = [] for step in steps: step.client = self.client if step.inherit: step.parent = expected_calls[-1] expected_calls.append(step.call) query() self.assertSequenceEqual(self.dynamic_client.mock_calls, expected_calls) def test_create_deployment(self): mock_response = { "metadata": { "name": "foobar", "namespace": "default", "annotations": {"pharos.py/template": "test.yaml"}, } } self.dynamic_client.resources.get.return_value.create.return_value.to_dict.return_value = ( mock_response ) expected_steps = [ GetSpec("v1", "Deployment"), CreateResource("test.yaml", {"label_name": "foo"}, inherit=True), ToDict(inherit=True), GetSpec("apiextensions.k8s.io/v1", "CustomResourceDefinition"), CreateResource("variable_crd.yaml", {}, inherit=True, internal=True), ToDict(inherit=True), GetSpec("pharos.py/v1", "Variable"), CreateResource( "variables.yaml", {"name": "deployment-foobar-default", "value": {"label_name": "foo"}}, inherit=True, internal=True, ), ToDict(inherit=True), ] query = lambda: models.Deployment.objects.using(self.client).create( "test.yaml", {"label_name": "foo"} ) self.assertQuery(expected_steps, query) def test_create_deployment_namespace(self): mock_response = { "metadata": { "name": "foobar", "namespace": "test", "annotations": {"pharos.py/template": "test.yaml"}, } } self.dynamic_client.resources.get.return_value.create.return_value.to_dict.return_value = ( mock_response ) expected_steps = [ GetSpec("v1", "Deployment"), CreateResource( "test.yaml", {"label_name": "foo"}, inherit=True, namespace="test" ), ToDict(inherit=True), GetSpec("apiextensions.k8s.io/v1", "CustomResourceDefinition"), CreateResource("variable_crd.yaml", {}, inherit=True, internal=True), ToDict(inherit=True), GetSpec("pharos.py/v1", "Variable"), CreateResource( "variables.yaml", {"name": "deployment-foobar-test", "value": {"label_name": "foo"}}, inherit=True, internal=True, namespace="test", ), ToDict(inherit=True), ] query = lambda: models.Deployment.objects.using(self.client).create( "test.yaml", {"label_name": "foo"}, namespace="test" ) self.assertQuery(expected_steps, query) def test_create_deployment_dry(self): mock_response = { "metadata": { "name": "foobar", "namespace": "default", "annotations": {"pharos.py/template": "test.yaml"}, } } self.dynamic_client.resources.get.return_value.create.return_value.to_dict.return_value = ( mock_response ) expected_steps = [ GetSpec("v1", "Deployment"), CreateResource( "test.yaml", {"label_name": "foo"}, inherit=True, dry_run=True ), ToDict(inherit=True), ] query = lambda: models.Deployment.objects.using(self.client).create( "test.yaml", {"label_name": "foo"}, dry_run=True ) self.assertQuery(expected_steps, query) class ResourceUpdateTestCase(BaseCase): def assertQuery(self, steps, query): expected_calls = [] for step in steps: step.client = self.client if step.inherit: step.parent = expected_calls[-1] expected_calls.append(step.call) query() self.assertSequenceEqual(self.dynamic_client.mock_calls, expected_calls) def test_sync_deployment(self): mock_response = { "metadata": { "name": "foobar", "namespace": "default", "annotations": {"pharos.py/template": "test.yaml"}, } } self.dynamic_client.resources.get.return_value.create.return_value.to_dict.return_value = ( mock_response ) self.dynamic_client.resources.get.return_value.replace.return_value.to_dict.return_value = ( mock_response ) deployment = models.Deployment( client=self.client, k8s_object={ "metadata": { "name": "nginx-deployment", "annotations": { "deployment.kubernetes.io/revision": "1", }, "spec": {"selector": {"matchLabels": {"app": "test"}}}, } }, ) query = lambda: deployment.sync("test.yaml", {"label_name": "foo"}) expected_steps = [ GetSpec("v1", "Deployment"), GetResource('nginx-deployment', 'default', inherit=True), ToDict(inherit=True), GetSpec("v1", "Deployment"), UpdateResource( "test.yaml", {"label_name": "foo"}, inherit=True ), ToDict(inherit=True), GetSpec("apiextensions.k8s.io/v1", "CustomResourceDefinition"), CreateResource("variable_crd.yaml", {}, inherit=True, internal=True), ToDict(inherit=True), GetSpec("pharos.py/v1", "Variable"), DeleteResource('deployment-foobar-default', None), GetSpec("pharos.py/v1", "Variable"), CreateResource( "variables.yaml", {"name": "deployment-foobar-default", "value": {"label_name": "foo"}}, inherit=True, internal=True, ), ToDict(inherit=True), ] self.assertQuery(expected_steps, query) def test_update_deployment(self): mock_response = { "metadata": { "name": "nginx-deployment", "namespace": "default", "annotations": {"pharos.py/template": "test.yaml"}, }, "json": {"label_name": "foo"}, } self.dynamic_client.resources.get.return_value.get.return_value.to_dict.return_value = ( mock_response ) self.dynamic_client.resources.get.return_value.replace.return_value.to_dict.return_value = ( mock_response ) deployment = models.Deployment( client=self.client, k8s_object={ "metadata": { "name": "nginx-deployment", "annotations": { "deployment.kubernetes.io/revision": "1", "pharos.py/template": "test.yaml", "pharos.py/variable": "deployment-nginx-deployment-default", }, "spec": {"selector": {"matchLabels": {"app": "test"}}}, } }, ) query = lambda: deployment.deploy() expected_steps = [ GetSpec("v1", "Deployment"), GetResource('nginx-deployment', 'default', inherit=True), ToDict(inherit=True), GetSpec("pharos.py/v1", "Variable"), GetResource('deployment-nginx-deployment-default', 'default', inherit=True, limit=True), ToDict(inherit=True), GetSpec("v1", "Deployment"), UpdateResource( "test.yaml", {"label_name": "foo"}, inherit=True ), ToDict(inherit=True), GetSpec("pharos.py/v1", "Variable"), UpdateResource( "variables.yaml", {"name": "deployment-nginx-deployment-default", "value": {"label_name": "foo"}}, namespace='default', inherit=True, internal=True, ), ToDict(inherit=True) ] self.assertQuery(expected_steps, query) def test_update_deployment_dry(self): mock_response = { "metadata": { "name": "nginx-deployment", "namespace": "default", "annotations": {"pharos.py/template": "test.yaml"}, }, "json": {"label_name": "foo"}, } self.dynamic_client.resources.get.return_value.get.return_value.to_dict.return_value = ( mock_response ) self.dynamic_client.resources.get.return_value.replace.return_value.to_dict.return_value = ( mock_response ) deployment = models.Deployment( client=self.client, k8s_object={ "metadata": { "name": "nginx-deployment", "annotations": { "deployment.kubernetes.io/revision": "1", "pharos.py/template": "test.yaml", "pharos.py/variable": "deployment-nginx-deployment-default", }, "spec": {"selector": {"matchLabels": {"app": "test"}}}, } }, ) query = lambda: deployment.deploy(dry_run=True) expected_steps = [ GetSpec("v1", "Deployment"), GetResource('nginx-deployment', 'default', inherit=True), ToDict(inherit=True), GetSpec("pharos.py/v1", "Variable"), GetResource('deployment-nginx-deployment-default', 'default', inherit=True, limit=True), ToDict(inherit=True), GetSpec("v1", "Deployment"), UpdateResource( "test.yaml", {"label_name": "foo"}, inherit=True, dry_run=True ), ToDict(inherit=True), ] self.assertQuery(expected_steps, query) def test_update_deployment_variable(self): mock_response = { "metadata": { "name": "nginx-deployment", "namespace": "default", "annotations": {"pharos.py/template": "test.yaml"}, }, "json": {"label_name": "foo"}, } self.dynamic_client.resources.get.return_value.get.return_value.to_dict.return_value = ( mock_response ) self.dynamic_client.resources.get.return_value.replace.return_value.to_dict.return_value = ( mock_response ) deployment = models.Deployment( client=self.client, k8s_object={ "metadata": { "name": "nginx-deployment", "annotations": { "deployment.kubernetes.io/revision": "1", "pharos.py/template": "test.yaml", "pharos.py/variable": "deployment-nginx-deployment-default", }, "spec": {"selector": {"matchLabels": {"app": "test"}}}, } }, ) deployment.set_variable({"label_name": "bar"}) query = lambda: deployment.deploy() expected_steps = [ GetSpec("v1", "Deployment"), GetResource('nginx-deployment', 'default', inherit=True), ToDict(inherit=True), GetSpec("pharos.py/v1", "Variable"), GetResource('deployment-nginx-deployment-default', 'default', inherit=True, limit=True), ToDict(inherit=True), GetSpec("v1", "Deployment"), UpdateResource( "test.yaml", {"label_name": "bar"}, inherit=True ), ToDict(inherit=True), GetSpec("pharos.py/v1", "Variable"), UpdateResource( "variables.yaml", {"name": "deployment-nginx-deployment-default", "value": {"label_name": "bar"}}, namespace='default', inherit=True, internal=True, ), ToDict(inherit=True) ] self.assertQuery(expected_steps, query)
StarcoderdataPython
293923
<filename>operators/bias_operators.py import random import copy import utils.constants as const import utils.properties as props import utils.exceptions as e import utils.mutation_utils as mu def operator_add_bias(model): if not model: print("raise,log we have probllems") current_index = props.add_bias["current_index"] tmp = model.get_config() print("Adding bias to layer"+str(current_index)) if 'use_bias' in tmp['layers'][current_index]['config'] and not tmp['layers'][current_index]['config']['use_bias']: tmp['layers'][current_index]['config']['use_bias'] = True else: raise e.AddAFMutationError(str(current_index), "Not possible to apply the add bias mutation to layer ") model = mu.model_from_config(model, tmp) return model def operator_remove_bias(model): if not model: print("raise,log we have probllems") current_index = props.remove_bias["current_index"] tmp = model.get_config() print("Removing bias from layer " + str(current_index)) if 'use_bias' in tmp['layers'][current_index]['config'] and tmp['layers'][current_index]['config']['use_bias']: tmp['layers'][current_index]['config']['use_bias'] = False else: raise e.AddAFMutationError(str(current_index), "Not possible to apply the add bias mutation to layer ") model = mu.model_from_config(model, tmp) return model
StarcoderdataPython
1698263
<reponame>shrinandj/aim from typing import Generic, Union, Tuple, List, TypeVar, Dict from aim.storage.arrayview import ArrayView from aim.storage.context import Context from aim.storage.hashing import hash_auto from typing import TYPE_CHECKING if TYPE_CHECKING: from aim.sdk.run import Run T = TypeVar('T') class Sequence(Generic[T]): """Class representing single series of tracked value. Objects series can be retrieved as Sequence regardless the object's type, but subclasses of Sequence might provide additional functionality. Provides interface to access tracked values, steps, timestamps and epochs. Values, epochs and timestamps are accessed via :obj:`aim.storage.arrayview.ArrayView` interface. """ registry: Dict[str, 'Sequence'] = dict() collections_allowed = False def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) subclass_typename = cls.sequence_name() if subclass_typename is not None: # check for intermediate helper classes cls.registry[subclass_typename] = cls def __init__( self, name: str, context: Context, # TODO ?dict run: 'Run' ): self.name = name self.context = context self.run = run self._sequence_meta_tree = None self._series_tree = run.series_run_tree.subtree((context.idx, name)) self._hash: int = None def __repr__(self) -> str: return f'<Metric#{hash(self)} name=`{self.name}` context=`{self.context}` run=`{self.run}`>' @classmethod def allowed_dtypes(cls) -> Union[str, Tuple[str, ...]]: """classmethod to get allowed object types for particular sequence For example, numeric sequences a.k.a. Metric allow float and integer numbers. The base Sequence allows any value, and to indicate that, `allowed_dtypes` returns '*'. """ return '*' @classmethod def sequence_name(cls) -> str: """classmethod to get retrieve sequence's registered name""" ... def _calc_hash(self): return hash_auto( (self.name, hash(self.context), hash(self.run)) ) def __hash__(self) -> int: if self._hash is None: self._hash = self._calc_hash() return self._hash @property def values(self) -> ArrayView: """Tracked values array as :obj:`ArrayView`. :getter: Returns values ArrayView. """ return self._series_tree.array('val') @property def indices(self) -> List[int]: """Metric tracking steps as :obj:`list`. :getter: Returns steps list. """ array_view = [i for i, _ in enumerate(self.values)] return array_view @property def epochs(self) -> ArrayView: """Tracked epochs array as :obj:`ArrayView`. :getter: Returns epochs ArrayView. """ return self._series_tree.array('epoch', dtype='int64') @property def timestamps(self) -> ArrayView: """Tracked timestamps array as :obj:`ArrayView`. :getter: Returns timestamps ArrayView. """ return self._series_tree.array('time', dtype='int64') @property def _meta_tree(self): if self._sequence_meta_tree is None: self._sequence_meta_tree = self.run.meta_run_tree.subtree(('traces', self.context.idx, self.name)) return self._sequence_meta_tree def __bool__(self) -> bool: try: return bool(self.values) except ValueError: return False def __len__(self) -> int: return len(self.values) def preload(self): self._series_tree.preload() class MediaSequenceBase(Sequence): """Helper class for media sequence types.""" collections_allowed = True def first_step(self): """Get sequence tracked first step. Required to implement ranged and sliced data fetching. """ return self._meta_tree['first_step'] def last_step(self): """Get sequence tracked last step. Required to implement ranged and sliced data fetching. """ return self._meta_tree['last_step'] def record_length(self): """Get tracked records longest list length or `None` if Text objects are tracked. Required to implement ranged and sliced data fetching. """ return self._meta_tree.get('record_max_length', None)
StarcoderdataPython
1670268
<gh_stars>0 """ @file setup.py @date 2008-09-16 Contributors can be viewed at: http://svn.secondlife.com/svn/linden/projects/2008/pyogp/CONTRIBUTORS.txt $LicenseInfo:firstyear=2008&license=apachev2$ Copyright 2008, Linden Research, Inc. Licensed under the Apache License, Version 2.0 (the "License"). You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 or in http://svn.secondlife.com/svn/linden/projects/2008/pyogp/LICENSE.txt $/LicenseInfo$ """ from setuptools import setup, find_packages import os version = '1.0' setup(name='pyogp.lib.agentdomain', version=version, description="Library components implementing an Agent Domain", long_description=open("README.txt").read() + "\n" + open(os.path.join("docs", "HISTORY.txt")).read(), # Get more strings from http://www.python.org/pypi?%3Aaction=list_classifiers classifiers=[ "Programming Language :: Python", "Topic :: Software Development :: Libraries :: Python Modules", ], keywords='pyogp python awg ogp virtualworlds metaverse agentdomain', author='Architecture Working Group', author_email='<EMAIL>', url='http://pyogp.net', license='Apache License V2.0', packages=find_packages(exclude=['ez_setup']), namespace_packages=['pyogp', 'pyogp.lib'], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', # -*- Extra requirements: -*- 'zope.component [zcml]', 'zope.interface', 'grokcore.component', 'pyogp.lib.base', ], entry_points=""" # -*- Entry points: -*- """, )
StarcoderdataPython
6616746
# Generated by Django 2.2.2 on 2019-06-15 17:53 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Area', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('active', models.BooleanField(default=True)), ('description', models.TextField(max_length=500)), ('date', models.DateField()), ], options={ 'verbose_name': 'Area', 'verbose_name_plural': 'Areas', }, ), ]
StarcoderdataPython
11286101
import grpc import numpy as np import evocraft_ga.external.minecraft_pb2_grpc as minecraft_pb2_grpc from evocraft_ga.external.minecraft_pb2 import * # noqa class Spawner: def __init__( self, start_x=20, start_y=10, start_z=20, cube_len=10, class_dict={0: AIR, 1: REDSTONE_BLOCK}, orientation=SOUTH, ): self.start_x = start_x self.start_y = start_y self.start_z = start_z self.cube_len = cube_len self.class_dict = class_dict self.class_dict[-1.0] = AIR self.orientation = orientation self.channel = grpc.insecure_channel("localhost:5001") self.client = minecraft_pb2_grpc.MinecraftServiceStub(self.channel) def create_block(self, x, y, z, block_type): return Block( position=Point(x=x, y=y, z=z), type=block_type, orientation=self.orientation, ) def clear_blocks(self, x_min, y_min, z_min): self.client.fillCube( FillCubeRequest( # Clear a 20x10x20 working area cube=Cube( min=Point(x=x_min, y=y_min, z=z_min), max=Point( x=x_min + self.cube_len, y=y_min + self.cube_len, z=z_min + self.cube_len, ), ), type=AIR, ) ) def populate_arr(self, arr, x_min, y_min, z_min): blocks = [] # self.clear_blocks(x_min,y_min,z_min) for coord in np.ndindex(arr.shape): block = self.create_block( x=x_min + coord[0], y=y_min + coord[1], z=z_min + coord[2], block_type=self.class_dict[arr[coord]], ) blocks.append(block) blocks = Blocks(blocks=blocks) self.client.spawnBlocks(blocks) def populate(self, cube_probs, clear_population=False): if clear_population: self.clear_population(len(cube_probs)) for i in range(len(cube_probs)): dist = i * 5 + i * self.cube_len self.populate_arr( cube_probs[i], self.start_x + dist, self.start_y, self.start_z ) def clear_population(self, population_size): for i in range(population_size): dist = i * 5 + i * self.cube_len self.clear_blocks(self.start_x + dist, self.start_y, self.start_z)
StarcoderdataPython
392272
<reponame>manulangat1/Jaza-ndai<filename>backend/blocks/fl.py # import flask from flask import Flask, jsonify,url_for from twilio.twiml.voice_response import VoiceResponse from twilio.rest import Client import json # Declare Flask application from flask_web3 import current_web3, FlaskWeb3 TWILIO_ACCOUNT_SID = "ACc8e3a5361026364333bcd339433f54f9" TWILIO_AUTH_TOKEN = "74ca46f63ad8f45bc5fbb642ad510b58" TWILIO_NUMBER = "+1 207 477 7406" from twilio.twiml.voice_response import VoiceResponse from twilio.rest import Client app = Flask(__name__) # from ..models import Appointment # from ..backend.models import Appointment # Set Flask-Web3 configuration app.config.update({'ETHEREUM_PROVIDER': 'http', 'ETHEREUM_ENDPOINT_URI': 'http://localhost:8545'}) # Declare Flask-Web3 extension web3 = FlaskWeb3(app=app) def load_into_db(): print("hey") # Declare route @app.route('/blockNumber') def block_number(): print(current_web3.isConnected()) print(current_web3.eth.blockNumber) accnt = current_web3.eth.accounts[0] accnt1 = current_web3.eth.accounts[1] print(accnt,"",accnt1) print(web3.toWei(1, 'ether')) print(web3.isAddress(accnt)) tx = web3.eth.sendTransaction({'to': accnt1, 'from': accnt, 'value': 12345}) # print(tx) t = tx.decode('ISO-8859-1') print(t) return jsonify({'data': current_web3.eth.blockNumber}) # export const PayView = () => dispatch => { # axios.get("/api/payment") # .then(res => { # dispatch({ # type:PAY, # payload:res.data # }) # }) # .catch(err => console.log(err)) # } @app.route('/call',methods=['GET','POST']) def call(): twilio_client = Client(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN) twilio_client.calls.create(from_=TWILIO_NUMBER, to="+254740415950", url=url_for('.outbound', _external=True)) return jsonify({'message': 'Call incoming!'}) @app.route('/outbound', methods=['POST']) def outbound(): response = VoiceResponse() response.say("Thank you for contacting our sales department. If this " "click to call application was in production, we would " "dial out to your sales team with the Dial verb.", voice='alice') response.number("+254740415950") return str(response)
StarcoderdataPython
8098624
# folding.py import openpyxl def folding(path, rows=None, cols=None, hidden=True): workbook = openpyxl.Workbook() sheet = workbook.active if rows: begin_row, end_row = rows sheet.row_dimensions.group(begin_row, end_row, hidden=hidden) if cols: begin_col, end_col = cols sheet.column_dimensions.group(begin_col, end_col, hidden=hidden) workbook.save(path) if __name__ == "__main__": folding("folded.xlsx", rows=(1, 5), cols=("C", "F"))
StarcoderdataPython
29127
<gh_stars>1-10 """ Show the INI config(s) used by a command tree. """ from .. import command class Show(command.Command): """ Show current INI configuration. Programs may make use of a configuration file which is usually located in your $HOME directory as .<prog>_config. The file is a standard INI style config file where each `[section]` is the full path of a command including spaces. """ name = 'show' def setup_args(self, parser): self.add_argument('section', nargs='?', help='Only show config for ' 'this section.') self.add_argument('--all', '-a', action='store_true', help='Show ' 'all sections') super().setup_args(parser) def run(self, args): if args.section: try: config = {args.section: self.session.config[args.section]} except KeyError: raise SystemExit("Invalid section: %s" % args.section) else: config = self.session.config for section, values in config.items(): if values or args.all: print("[%s]" % section) for k, v in values.items(): print(" %s = %s" % (k, v)) print() class INI(command.Command): """ INI style configuration. Commands support user configuration in an INI style config file. """ name = 'ini' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.add_subcommand(Show, default=True)
StarcoderdataPython
1849575
"""<NAME>'s aospy.Proj object for collaboration w/ Natalie Burls.""" import datetime import os from aospy.proj import Proj from aospy.model import Model from aospy.run import Run from aospy_user import regions _ROOT = os.path.join(os.environ['HOME'], 'Dropbox/projects/gms_natalie_burls') cam_2xco2 = Run( name='2xco2', description='Coupled model w/ doubled CO2', data_direc=os.path.join(_ROOT, 'cam_output'), data_dir_struc='one_dir', data_dur=1, data_start_date=datetime.datetime(700, 2, 1), data_end_date=datetime.datetime(700, 2, 28), data_files={name: 'abrupt2xCO2_T31_gx3v7.cam2.h0.0700-01.nc' for name in ['temp', 'precip', 'hght', 'sphum', 'vcomp', 'ps', 'bk', 'pk', 'pfull', 'phalf']} ) cam = Model( name='cam', description='NCAR CAM', grid_file_paths=os.path.join( _ROOT, 'cam_output/abrupt2xCO2_T31_gx3v7.cam2.h0.0700-01.nc' # 'cam_output/abrupt2xCO2_T31_gx3v7_ANN_climo.701.800.nc' ), data_dur=1, data_start_date=datetime.datetime(700, 1, 1), data_end_date=datetime.datetime(800, 12, 31), runs=[cam_2xco2], ) burls = Proj( 'burls', direc_out=os.path.join(_ROOT, 'aospy_output'), models=[cam], regions=( regions.globe, regions.nh, regions.sh, regions.tropics, regions.wpwp, regions.epac, regions.sahel, regions.sahel2, regions.sahel3, regions.sahara, regions.ind_monsoon, regions.land, regions.ocean, regions.trop_land, regions.trop_ocean, regions.sahel_south, regions.sahel_north, regions.sahel_east, regions.sahel_west, regions.east_asia_monsoon, regions.china_east, regions.china_west, ) )
StarcoderdataPython
6628977
<filename>problems/1021-remove-outermost-parentheses.py class Solution: """ 有效括号字符串为空 ("")、"(" + A + ")" 或 A + B,其中 A 和 B 都是有效的括号字符串,+ 代表字符串的连接。 例如,"","()","(())()" 和 "(()(()))" 都是有效的括号字符串。 如果有效字符串 S 非空,且不存在将其拆分为 S = A+B 的方法,我们称其为原语(primitive),其中 A 和 B 都是非空有效括号字符串。 给出一个非空有效字符串 S,考虑将其进行原语化分解,使得:S = P_1 + P_2 + ... + P_k,其中 P_i 是有效括号字符串原语。 对 S 进行原语化分解,删除分解中每个原语字符串的最外层括号,返回 S 。 示例 1: 输入:"(()())(())" 输出:"()()()" 解释: 输入字符串为 "(()())(())",原语化分解得到 "(()())" + "(())", 删除每个部分中的最外层括号后得到 "()()" + "()" = "()()()"。 示例 2: 输入:"(()())(())(()(()))" 输出:"()()()()(())" 解释: 输入字符串为 "(()())(())(()(()))",原语化分解得到 "(()())" + "(())" + "(()(()))", 删除每隔部分中的最外层括号后得到 "()()" + "()" + "()(())" = "()()()()(())"。 示例 3: 输入:"()()" 输出:"" 解释: 输入字符串为 "()()",原语化分解得到 "()" + "()", 删除每个部分中的最外层括号后得到 "" + "" = ""。 """ def removeOuterParentheses(self, s: str) -> str: """ 将字符串每个字符入栈,遇到括号就移除。 每次栈空,则将索引在 s[start+1:end] 加入结果集(移除最外层括号) :param s: :return: """ stack, result, start, end = [], [], 0, 0 for idx, c in enumerate(s): if stack: if stack[-1] == '(' and c == ')': stack.pop(-1) else: stack.append(c) if not stack: end = idx result.append(s[start+1:end]) start = idx + 1 else: stack.append(c) return ''.join(result) if __name__ == '__main__': tests = [ ('(()())(())', '()()()'), ('(()())(())(()(()))', '()()()()(())') ] for i, o in tests: assert Solution().removeOuterParentheses(i) == o
StarcoderdataPython
9604900
# Generated by Django 3.0.6 on 2020-05-05 14:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0007_auto_20200505_0704'), ] operations = [ migrations.AlterField( model_name='config', name='sslexpire', field=models.DateField(default='1970-01-01'), ), ]
StarcoderdataPython
1664854
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from hyperion.util.integrate import integrate_subset from scipy import stats from .units import ConvertUnits class MakePlots(object): ''' Plots slices of the val cube from SyntheticCube a the closest slice to wav_interest or val images of SyntheticImage. The boundaries of the slice or image is ploted as well. The plot has 4 different cut levels at 100, 99, 95 and 90 percent. Parameters ---------- input_array : SyntheticCube, SyntheticImage, optional input_array also reads arrays with SyntheticCube and SyntheticImage properties. wav_interest : float, ``None`` * float : wavelength close to slice in microns. * ``None`` : Only if input_array is SyntheticImage like prefix : str Name of the image. Default naming chain is switched off. name : str Name of image within the default naming chain to distinguish the plot files. E. g. 'PSF_gaussian' mulit_cut : ``True``, ``None`` * ``True`` : plots chosen image slice at cuts of [100, 99, 95, 90]%. * ``None`` : no mulit-plot is returned. Default is ``None``. single_cut : float, ``None`` * float : cut level for single plot of image slice between 0 and 100. * ``None`` : no single plot is returned. set_cut : tuple, ``None`` * tuple : set_cut(v_min, v_max) Minimal and Maximal physical value presented in the colorbars. * ``None`` : no plot with minimal and maximal cut is returned. Default is ``None``. dpi : ``None``, scalar > 0 The resolution in dots per inch. ``None`` is default and will use the value savefig.dpi in the matplotlibrc file. Returns ------- cube : SyntheticCube 3D val array with SyntheticCube properties. image : SyntheticImage 2D val array with SyntheticImage properties. ''' def __init__(self, input_array, wav_interest=None, prefix=None, name=None, multi_cut=None, single_cut=None, set_cut=None, dpi=None): if multi_cut == None and single_cut == None and set_cut == None: raise Exception('At least one plotting routine (multi_cut, single_cut or set_cut == None) has to be chosen.') self.prefix = prefix if self.prefix is None and name is None: raise Exception('If prefix name is not given, you need to give the a name to enable the default naming chain.') if input_array.val.ndim in (2, 3): # input_array properties self.input_name = name self.name = input_array.name self.unit_out = input_array.unit_out self.val = input_array.val self.wav = input_array.wav self.wav_interest = wav_interest self.filter = input_array.filter #print self.filter self.grid_unit = input_array.grid_unit self.grid_unit_name = input_array.grid_unit_name # measure of the image self.FOV = input_array.FOV self.x_min = input_array.x_min self.x_max = input_array.x_max self.y_min = input_array.y_min self.y_max = input_array.y_max self.pixel = input_array.pixel self.pixel_2D = self.pixel[0] * self.pixel[1] #print self.val.shape # condition to find slice close to wav_interest if input_array.val.ndim == 3: if self.wav_interest is None and self.filter['waf_min'] is None: raise Exception('WARNING: wav_interest or waf_0 need to be defined if 3D cube is pasted.') find_minimum = np.abs(self.wav - self.wav_interest) num = np.arange(len(self.wav)) index = num[find_minimum == np.min(find_minimum)][0] wav_min = 10. ** (np.log10(self.wav[index]) - input_array.spacing_wav / 2.) wav_max = 10. ** (np.log10(self.wav[index]) + input_array.spacing_wav / 2.) self.val_2D = self.val[:, :, index] self.wav_real = (round(wav_min, 2), round(wav_max, 2)) # condition for image if input_array.val.ndim == 2: self.val_2D = self.val.copy() self.wav_real = (round(self.filter['waf_min'], 2), round(self.filter['waf_max'], 2)) else: raise Exception('WARNING: MakePlots only can use SyntheticCube or SyntheticImage.') # creat cut levels self.val_sort = np.sort(self.val_2D.ravel()) self.xx = np.linspace(0, len(self.val_sort), len(self.val_sort)) # statstics self.median = stats.scoreatpercentile(self.val_sort, 50) self.min_0 = stats.scoreatpercentile(self.val_sort, 0) self.min_5 = stats.scoreatpercentile(self.val_sort, 5) self.max_95 = stats.scoreatpercentile(self.val_sort, 95) self.max_100 = stats.scoreatpercentile(self.val_sort, 100) # grid of X, Y plot x = np.linspace(self.x_min / self.grid_unit, self.x_max / self.grid_unit, self.pixel[0]) y = np.linspace(self.y_min / self.grid_unit, self.y_max / self.grid_unit, self.pixel[1]) X, Y = np.meshgrid(y,x) label = 'Flux [' + self.unit_out + ']' # titel of plot titel = self.name + ' ' + str(self.wav_real) + ' micron' # ploting multiple plot if multi_cut is not None: fig2 = plt.figure() fig2.suptitle(titel, fontsize=10.) fig2.subplots_adjust(hspace=0.3, wspace=0.3) font = {'size': 6} mpl.rc('font', **font) a = np.array([100, 99, 95, 90]) b = np.array([1, 2]) c = np.array([1, 1]) for l in range(len(a)): k = l + 1 ax = fig2.add_subplot(2, 2, k) title = str(int(a[l])) + ' %' plt.title(title) self.percentage = a[l] self.percent = self.percentage / 2. lower_cut = (100 - a[l]) / 2. upper_cut = lower_cut + a[l] self.min = stats.scoreatpercentile(self.val_sort, lower_cut) self.max = stats.scoreatpercentile(self.val_sort, upper_cut) vmin = self.min vmax = self.max self.norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) c = ax.pcolormesh(X, Y, self.val_2D, cmap=plt.cm.gist_heat, norm=self.norm) ax.set_xlim(x[0], x[-1]) ax.set_ylim(y[0], y[-1]) ax.set_xlabel('x [' + self.grid_unit_name + ']') ax.set_ylabel('y [' + self.grid_unit_name + ']') cb = fig2.colorbar(c) cb.set_label(label) if self.prefix is None: self.plot_name = self.name + '_image_' + self.input_name + '_multi_cut_' + str(self.wav_real[0]) + '_' + str(self.wav_real[1]) + '.png' if self.prefix is not None: self.plot_name = self.prefix + '.png' fig2.savefig(self.plot_name, bbox_inches='tight', dpi=dpi) # single plot for certain cut if cut is not None if single_cut is not None: fig3 = plt.figure() fig3.suptitle(titel, fontsize=10.) fig3.subplots_adjust(hspace=0.3, wspace=0.3) font = {'size': 6} mpl.rc('font', **font) a = np.array([single_cut]) ax = fig3.add_subplot(1, 1, 1) title = str(int(a[0])) + ' %' plt.title(title) lower_cut = (100 - single_cut) / 2. upper_cut = lower_cut + single_cut self.min = stats.scoreatpercentile(self.val_sort, lower_cut) self.max = stats.scoreatpercentile(self.val_sort, upper_cut) vmin = self.min vmax = self.max self.norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) c = ax.pcolormesh(X, Y, self.val_2D, cmap=plt.cm.gist_heat, norm=self.norm) ax.set_xlim(x[0], x[-1]) ax.set_ylim(y[0], y[-1]) ax.set_xlabel('x [' + self.grid_unit_name + ']') ax.set_ylabel('y [' + self.grid_unit_name + ']') cb = fig3.colorbar(c) cb.set_label(label) if self.prefix is None: self.plot_name = self.name + '_image_' + self.input_name + '_single_cut_' + str(single_cut) + '%_' + str(self.wav_real[0]) + '_' + str(self.wav_real[1]) + '.png' if self.prefix is not None: self.plot_name = self.prefix + '.png' fig3.savefig(self.plot_name, bbox_inches='tight', dpi=dpi) # single plot for certain cut if cut is not None if set_cut is not None: fig4 = plt.figure() fig4.suptitle(titel, fontsize=10.) fig4.subplots_adjust(hspace=0.3, wspace=0.3) font = {'size': 6} mpl.rc('font', **font) # min max vmin = set_cut[0] vmax = set_cut[1] ax = fig4.add_subplot(1, 1, 1) title = '[' + str("%0.2e" % vmin) + ', ' + str("%0.2e" % vmax) + ']' title2 = 'flux values within ' + title + ' ' + self.unit_out plt.title(title2) self.norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) #print X.shape, Y.shape, self.val_2D.shape c = ax.pcolormesh(X, Y, self.val_2D, cmap=plt.cm.gist_heat, norm=self.norm) ax.set_xlim(x[0], x[-1]) ax.set_ylim(y[0], y[-1]) ax.set_xlabel('x [' + self.grid_unit_name + ']') ax.set_ylabel('y [' + self.grid_unit_name + ']') cb = fig4.colorbar(c) cb.set_label(label) if self.prefix is None: self.plot_name = self.name + '_image_' + self.input_name + '_set_cut_' + str("%0.2e" % vmin) + '_' + str("%0.2e" % vmax) + '_' + str(self.wav_real[0]) + '_' + str(self.wav_real[1]) + '.png' if self.prefix is not None: self.plot_name = self.prefix + '.png' fig4.savefig(self.plot_name, bbox_inches='tight', dpi=dpi) def histogram_cuts(self, dpi=None): ''' DS9 like histograms of the cuts can be checked here. Parameters ---------- dpi : None, scalar > 0 The resolution in dots per inch. ``None`` is default and will use the val savefig.dpi in the matplotlibrc file. ''' # Histograms of cut levels fig = plt.figure() fig.suptitle(self.name, fontsize=10.) fig.subplots_adjust(hspace=0.3) ax1 = fig.add_subplot(2, 1, 1) plt.semilogy(self.val_sort[::-1], self.xx, 'b-') plt.semilogy([self.median, self.median], [self.xx[0] + 1., self.xx[-1]], 'r-') # min max plt.semilogy([self.min_0, self.min_0], [self.xx[0] + 1., self.xx[-1]], 'g-') plt.semilogy([self.min_5, self.min_5], [self.xx[0] + 1., self.xx[-1]], 'y-') plt.semilogy([self.max_95, self.max_95], [self.xx[0] + 1., self.xx[-1]], 'y-') plt.semilogy([self.max_100, self.max_100], [self.xx[0] + 1., self.xx[-1]], 'g-') ax1.set_xlabel('val distribution') ax1.set_ylabel('Number of pixels') ax2 = fig.add_subplot(2, 1, 2) plt.plot(self.val_sort) ax2.set_xlabel('Number of pixels') ax2.set_ylabel('val distribution') ax2.set_xlim(self.xx[0], self.xx[-1]) ax2.set_ylim(self.val_sort[0], self.val_sort[-1]) if self.prefix is None: self.plot_name = self.name + '_image_' + self.input_name + '_' + str(self.wav_real[0]) + '_' + str(self.wav_real[1]) + '_histogram.png' if self.prefix is not None: self.plot_name = self.prefix + '_histogram.png' fig.savefig(self.plot_name, bbox_inches='tight', dpi=dpi)
StarcoderdataPython
1825396
<reponame>dikyindrah/Python-Pemrograman-Dasar<filename>21-Operator Perbandingan/Script.py # Operator perbandingan print('\n==========Operator Perbandingan==========\n') x = int(input('Masukan nilai x: ')) y = int(input('Masukan nilai y: ')) print('') print(x, '==', y, ' =', (x==y)) print(x, '!=', y, ' =', (x!=y)) print(x, '<', y, ' =', (x<y)) print(x, '>', y, ' =', (x>y)) print(x, '<=', y, ' =', (x<=y)) print(x, '>=', y, ' =', (x>=y)) print('')
StarcoderdataPython
1792348
from .. import testing class CountIfTest(testing.FunctionalTestCase): filename = "IF.xlsx" def test_evaluation_ABCDE_1(self): for col in "ABCDE": cell = f'Sheet1!{col}1' excel_value = self.evaluator.get_cell_value(cell) value = self.evaluator.evaluate(cell) self.assertEqual(excel_value, value)
StarcoderdataPython
179639
<reponame>jeremycward/ipp-core<gh_stars>1-10 import pandas as pd def header_cols(header): return (header.name, header.storage_method, header.path, str(header.memory_style), header.description) def mtx_headers_as_dataframe(matrix_headers): record_data = [header_cols(i) for i in matrix_headers] return pd.DataFrame.from_records(data= record_data, columns= ["name", "storage method", "path", "mem style", "description"])
StarcoderdataPython
6557314
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from nltk import word_tokenize external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server app.layout = html.Div([ html.Label('Escribamos números en mapuzugun!',style={'color': 'black', 'fontSize': 20}), html.Label('Dime un número entre 1 y 9999',style={'color': '#8B008B', 'fontSize': 20, 'font-weight': 'bold'}), dcc.Input(id='my-id', value=1, type='text'), html.Div(id='my-div',style={'color': 'black', 'fontSize': 16}),#'font-weight': 'bold' html.H3('Si quieres cooperar con esta iniciativa escríbeme a <EMAIL>',style={'fontSize': 14}) ]) numbers_1_9={'kiñe':1,'epu':2,'kvla':3,'meli':4,'kecu':5,'kayu':6,'reqle':7,'pura':8,'ayja':9} numbers_10_1000={'mari':10,'pataka':100,'waragka':1000} def numbers_map_decimal(string): string=word_tokenize(string) n=len(string) if n==1: token=string[0] if token in numbers_1_9.keys(): return numbers[token] if token in numbers_10_1000.keys(): return numbers[token] elif n==2: if string[1] in numbers_1_9: return numbers_10_1000[string[0]]+numbers_1_9[string[1]] if string[0] in numbers_1_9: return numbers_1_9[string[0]]*numbers_10_1000[string[1]] else: s=0 if 'mari' in string: if string[-1] in numbers_1_9: s+=numbers_1_9[string[-1]] mari_index=string.index('mari') if string[mari_index-1] in numbers_1_9: s=s+numbers_1_9[string[mari_index-1]]*10 else: s=s+10 if 'pataka' in string: pataka_index=string.index('pataka') if string[pataka_index-1] in numbers_1_9: s=s+numbers_1_9[string[pataka_index-1]]*100 else: s=s+100 if 'warangka' in string: warangka_index=string.index('waragka') if string[warangka_index-1] in numbers_1_9: s=s+numbers_1_9[string[warangka_index-1]]*1000 else: s=s+1000 return s # In[2]: words_1_10={1:'kiñe',2:'epu',3:'kvla',4:'meli',5:'kecu',6:'kayu',7:'reqle',8:'pura',9:'ayja',10:'mari'} def decimal_to_map_99(number): components=[int(i) for i in str(number)] if number<=10: return words_1_10[number] if number>10 and number<20: return 'mari'+' '+words_1_10[components[1]] if number>=20 and number<=99: if components[1]==0: return words_1_10[components[0]]+' '+'mari' else: return words_1_10[components[0]]+' '+'mari'+' '+words_1_10[components[1]] def decimal_to_map_999(number): hundred=int(str(number)[0]) if number<100: return decimal_to_map_99(number) elif number==100: return 'pataka' elif number%100==0 and number>100 and number<1000: return words_1_10[hundred]+' '+'pataka' else: if hundred==1: return 'pataka'+' '+decimal_to_map_99(int(str(number)[1:])) else: return words_1_10[hundred]+' '+'pataka'+' '+decimal_to_map_99(int(str(number)[1:])) def decimal_to_map_9999(number): thousand=int(str(number)[0]) if number<1000: return decimal_to_map_999(number) elif number==1000: return 'waragka' elif number%1000==0 and number>1000 and number<10000: return words_1_10[thousand]+' '+'pataka' else: if thousand==1: return 'waragka'+' '+decimal_to_map_999(int(str(number)[1:])) else: return words_1_10[thousand]+' '+'waragka'+' '+decimal_to_map_999(int(str(number)[1:])) # In[3]: words_1_10_esp={1:'uno',2:'dos',3:'tres',4:'cuatro',5:'cinco',6:'seis',7:'siete',8:'ocho',9:'nueve',10:'diez'} words_11_20_esp={11:'once',12:'doce',13:'trece',14:'catorce',15:'quince',16:'dieciseis',17:'diecisiete',18:'dieciocho', 19:'diecinueve',20:'veinte'} words_20_90_esp={2:'veinti',3:'treinta',4:'cuarenta',5:'cincuenta',6:'sesenta',7:'setenta',8:'ochenta', 9:'noventa'} def decimal_to_map_99_esp(number): components=[int(i) for i in str(number)] if number<=10: return words_1_10_esp[number] if number>10 and number<20: return words_11_20_esp[number] if number>=20 and number<=99: if number==20: return words_11_20_esp[number] if components[1]==0: return words_20_90_esp[components[0]] if components[1]!=0 and number<30: return words_20_90_esp[components[0]]+words_1_10_esp[components[1]] if components[1]!=0 and number>=30: return words_20_90_esp[components[0]]+' '+'y'+' '+words_1_10_esp[components[1]] def decimal_to_map_999_esp(number): hundred=int(str(number)[0]) if number<100: return decimal_to_map_99_esp(number) elif number==100: return 'cien' elif number%100==0 and number>100 and number<1000: if hundred==5: return 'quinientos' if hundred==7: return 'setecientos' if hundred==9: return 'novecientos' else: return words_1_10_esp[hundred]+'cientos' else: if hundred==1: return 'ciento'+' '+decimal_to_map_99_esp(int(str(number)[1:])) else: if hundred==5: return 'quinientos'+' '+decimal_to_map_99_esp(int(str(number)[1:])) if hundred==7: return 'setecientos'+' '+decimal_to_map_99_esp(int(str(number)[1:])) if hundred==9: return 'novecientos'+' '+decimal_to_map_99_esp(int(str(number)[1:])) else: return words_1_10_esp[hundred]+'cientos'+' '+decimal_to_map_99_esp(int(str(number)[1:])) def decimal_to_map_9999_esp(number): thousand=int(str(number)[0]) if number<1000: return decimal_to_map_999_esp(number) elif number==1000: return 'mil' elif number%1000==0 and number>1000 and number<10000: return words_1_10_esp[thousand]+' '+'mil' else: if thousand==1: return 'mil'+' '+decimal_to_map_999_esp(int(str(number)[1:])) else: return words_1_10_esp[thousand]+' '+'mil'+' '+decimal_to_map_999_esp(int(str(number)[1:])) def map_esp(number): return decimal_to_map_9999(number)#+' | '+decimal_to_map_9999_esp(number) @app.callback( Output(component_id='my-div', component_property='children'), [Input(component_id='my-id', component_property='value')] ) def update_output_div(input_value): try: input_value=int(input_value) except ValueError: return 'Solo traduzco números :)' if input_value < 1 or input_value > 9999: return 'Aún no podemos traducir números en ese rango :(' else: #return 'En mapuzugun, el número "{}" se dice'.format(input_value)+' "'+map_esp(input_value)+'"' return (html.P(['En mapuzugun, el número "{}" se dice'.format(input_value),html.Br(),html.Strong(map_esp(input_value), style={'color': '#8B008B', 'fontSize': 20})])) if __name__ == '__main__': app.run_server(debug=True)
StarcoderdataPython
1728600
from days import AOCDay, day import math from collections import defaultdict def borders(data): top = data[0] right = ''.join(line[-1] for line in data) bottom = data[-1] left = ''.join(line[0] for line in data) return (top, right, bottom, left) def mirrors(data): mirrors = [data] mirrors.append(data[::-1]) mirrors.append([row[::-1] for row in data]) mirrors.append([row[::-1] for row in data][::-1]) return mirrors def rotations(data): rotations = [data] cur = data for _ in range(3): data = [line[:] for line in data] for x in range(len(data)): for y in range(len(data[x])): data[x][y] = cur[len(data[x]) - y - 1][x] cur = data rotations.append(data) return rotations def all_options(data): options = [] for mirror in mirrors(data): options.extend(rotations(mirror)) # Remove duplicates result = [] for option in options: if option not in result: result.append(option) return result @day(20) class Day20(AOCDay): print_debug = "c12" test_input = """Tile 2311: ..##.#..#. ##..#..... #...##..#. ####.#...# ##.##.###. ##...#.### .#.#.#..## ..#....#.. ###...#.#. ..###..### Tile 1951: #.##...##. #.####...# .....#..## #...###### .##.#....# .###.##### ###.##.##. .###....#. ..#.#..#.# #...##.#.. Tile 1171: ####...##. #..##.#..# ##.#..#.#. .###.####. ..###.#### .##....##. .#...####. #.##.####. ####..#... .....##... Tile 1427: ###.##.#.. .#..#.##.. .#.##.#..# #.#.#.##.# ....#...## ...##..##. ...#.##### .#.####.#. ..#..###.# ..##.#..#. Tile 1489: ##.#.#.... ..##...#.. .##..##... ..#...#... #####...#. #..#.#.#.# ...#.#.#.. ##.#...##. ..##.##.## ###.##.#.. Tile 2473: #....####. #..#.##... #.##..#... ######.#.# .#...#.#.# .######### .###.#..#. ########.# ##...##.#. ..###.#.#. Tile 2971: ..#.#....# #...###... #.#.###... ##.##..#.. .#####..## .#..####.# #..#.#..#. ..####.### ..#.#.###. ...#.#.#.# Tile 2729: ...#.#.#.# ####.#.... ..#.#..... ....#..#.# .##..##.#. .#.####... ####.#.#.. ##.####... ##..#.##.. #.##...##. Tile 3079: #.#.#####. .#..###### ..#....... ######.... ####.#..#. .#...#.##. #.#####.## ..#.###... ..#....... ..#.###...""".split("\n") MONSTER_PATTERN = ''' # # ## ## ### # # # # # # '''.split("\n") tiles = {} grid = {} def common(self, input_data): input_data = "\n".join(input_data).split("\n\n") self.tiles = {} self.grid = {} for tile in input_data: tile = tile.split("\n") tile_id = int(tile[0].split(" ")[1].replace(":", "")) self.tiles[tile_id] = [list(l) for l in tile[1:]] def generate_tiling(self, tile_map): puzzle_size = math.isqrt(len(tile_map)) tiles = [[None for _ in range(puzzle_size)] for _ in range(puzzle_size)] def generate_tiling_recurse(tiles, x, y, seen): if y == puzzle_size: return tiles next_x, next_y = x + 1, y if next_x == puzzle_size: next_x, next_y = 0, next_y + 1 for tile_id, options in tile_map.items(): if tile_id in seen: continue seen.add(tile_id) for index, borders in options.items(): top, left = borders[0], borders[3] if x > 0: neighbour_id, neighbour_orientation = tiles[x - 1][y] neighbour_right = tile_map[neighbour_id][neighbour_orientation][1] if neighbour_right != left: continue if y > 0: neighbour_id, neighbour_orientation = tiles[x][y - 1] neighbour_bottom = tile_map[neighbour_id][neighbour_orientation][2] if neighbour_bottom != top: continue tiles[x][y] = (tile_id, index) answer = generate_tiling_recurse(tiles, next_x, next_y, seen) if answer is not None: return answer seen.remove(tile_id) tiles[x][y] = None return None return generate_tiling_recurse(tiles, 0, 0, set()) def part1(self, input_data): tile_options = {tile_id: all_options(tile) for tile_id, tile in self.tiles.items()} tile_map = defaultdict(dict) for tile_id, options in tile_options.items(): for index, tile in enumerate(options): tile_map[tile_id][index] = borders(tile) tiling = self.generate_tiling(tile_map) corners = [tiling[0][0], tiling[0][-1], tiling[-1][0], tiling[-1][-1]] answer = 1 for c, _ in corners: answer *= c yield answer def make_image(self, tile_options, tiling): result = [] for row in tiling: grids = [] for tile_id, orientation in row: grid = tile_options[tile_id][orientation] # Remove borders grid = [line[1:-1] for line in grid[1: -1]] grids.append(grid) for y in range(len(grids[0][0])): res_row = [] for i in range(len(grids)): res_row.extend(grids[i][x][y] for x in range(len(grids[i]))) result.append("".join(res_row)) return result def find_monsters(self, image): monster_locs = [] max_x, max_y = 0, 0 for dy, line in enumerate(self.MONSTER_PATTERN): for dx, c in enumerate(line): if c == "#": monster_locs.append((dx, dy)) max_x, max_y = max(dx, max_x), max((dy, max_y)) monster_tiles = set() for y in range(len(image)): if y + max_y >= len(image): break for x in range(len(image[y])): if x + max_x >= len(image[y]): break has_monster = True for dx, dy in monster_locs: if image[y + dy][x + dx] != "#": has_monster = False break if has_monster: for dx, dy in monster_locs: monster_tiles.add((x + dx, y + dy)) if len(monster_tiles) == 0: return None all_squares = set() for y, line in enumerate(image): for x, c in enumerate(line): if c == "#": all_squares.add((x, y)) return len(all_squares - monster_tiles) def part2(self, input_data): tile_options = {tile_id: all_options(tile) for tile_id, tile in self.tiles.items()} tile_map = defaultdict(dict) for tile_id, options in tile_options.items(): for index, tile in enumerate(options): tile_map[tile_id][index] = borders(tile) tiling = self.generate_tiling(tile_map) image = self.make_image(tile_options, tiling) image_options = all_options([list(line) for line in image]) answer = None for opt in image_options: answer = self.find_monsters(opt) if answer is not None: break yield answer
StarcoderdataPython
1773694
<filename>chronostar/component.py """ Class object that encapsulates a component, the phase-space model of an unbound set of stars formed from the same starburst/filament. A component models the initial phase-space distribution of stars as a Gaussian. As such there are three key attributes: - mean: the central location - covariance matrix: the spread in each dimension along with any correlations - age: how long the stars have been travelling TODO: Have actual names for parameters for clarity when logging results """ from __future__ import print_function, division, unicode_literals from abc import ABCMeta, abstractmethod import numpy as np from scipy.stats.mstats import gmean from . import transform from chronostar.traceorbit import trace_cartesian_orbit from . import traceorbit class AbstractComponent(object): """ An abstract class that (when implmented) encapsulates a component, the phase-space model of an unbound set of stars formed from the same starburst/filament. A component models the initial phase-space distribution of stars as a Gaussian. As such there are three key attributes: - mean: the central location - covariance matrix: the spread in each dimension along with any correlations - age: how long the stars have been travelling This class has been left abstract so as to easily facilitate (and encourage) alternate parameterisations of components. In brief, just copy-paste SphereComponent below to make your new class, and modify the methods and attribute to suit your new parametrisation. In order to implement this class and make a concrete class, only one variable must be set, and four methods implmented. In short, the class must be told how to turn raw parameters into attributes, and vice verse. Attributes to set: `PARAMETER_FORMAT` This parameter must be set. An ordered list of labels describing what purpose each input serves. e.g. for a SphereComponent, the list is 3*['pos'] + 3*['vel'] + ['log_pos_std', 'log_vel_std', 'age'] See `SENSIBLE_WALKER_SPREADS` for a set of viable labels, and include your own as needed! Note that this is the parameters in "internal form", i.e. the form of the parameter space that emcee explores. Methods to define internalise(pars) and externalise(pars) You must tell the Component class how to switch between internal and external formats. These methods are static because there is not always a need to instantiate an entire Component object simply to convert between parameter forms. There is perhaps scope to have the Component class to intuit how to convert between forms based on `PARAMETER_FORMAT` values. _set_covmatrix(covmatrix=None), (REQUIRED) _set_mean(mean=None), _set_age(age=None) (both optional) These methods instruct the class how to (if input is None) build the attribute from self.pars, or (if input is provided) to set the self._mean (for e.g.) attribute but also to reverse engineer the self.pars values and update accordingly. These methods should only be called internally, (from the __init__() method, or the update_attributes() method) as it is critical to do some tidying up (setting mean_now and covmatrix_now to None) whenever self.pars is modified. If you stick to the convention of the mean=pars[:6] and age=pars[-1] then the default methods will suffice and you will only need to implement _set_covmatrix(). Of course if you wish, you can override _set_mean() or _set_age(). """ __metaclass__ = ABCMeta DEFAULT_TINY_AGE = 1e-10 _pars = None _mean = None _covmatrix = None _age = None _sphere_dx = None _sphere_dv = None _mean_now = None _covmatrix_now = None # Set these in concrete class, matching form with 'SENSIBLE_WALKER_SPREADS' # See SphereComponent and EllipComponent for examples PARAMETER_FORMAT = None # This is used to guide the scale of variations in each parameter # Super useful when initialising emcee walkers across a sensible # volume of parameter space. SENSIBLE_WALKER_SPREADS = { 'pos':10., 'pos_std':1., 'log_pos_std':0.5, 'vel':2., 'vel_std':1., 'log_vel_std':0.5, 'corr':0.05, 'age':1., 'angle_rad':0.25*np.pi, 'angle_deg':45., } def __init__(self, pars=None, attributes=None, internal=False, trace_orbit_func=None): """ An abstraction for the parametrisation of a moving group component origin. As a 6D Gaussian, a Component has three key attributes; mean, covariance matrix, and age. There are many ways to parameterise a covariance matrix to various degrees of freedom. Parameters ---------- pars: 1D float array_like Raw values for the parameters of the component. Can be provided in "external" form (standard) or "internal" form (e.g. treating standard deviations in log space to ensure uninformed prior) attributes: dict with all the following keys: mean: [6] float array_like The mean of the initial Gaussian distribution in cartesian space: [X(pc), Y(pc), Z(pc), U(km/s), V(km/s), W(km/s)] covmatrix: [6,6] float array_like the covariance matrix of the initial Gaussian distribution, with same units as `mean` age: float the age of the component (positive) in millions of years internal: boolean {False} If set, and if `pars` is provided, treats input pars as internal form, and first externalises them before building attributes. trace_orbit_func: function {traceOrbitXYZUVW} Function used to calculate an orbit through cartesian space (centred on, and co-rotating with, the local standard of rest). Function must be able to take two parameters, the starting location and the age, with positive age corrsponding to forward evolution, and negative age backward evolution. It should also be "odd", i.e.: func(loc_then, +age) = loc_now func(loc_now, -age) = loc_then Returns ------- res: Component object An astraction of a set of values parametrising the origin of a moving group component. """ # Some basic implementation checks self.check_parameter_format() # Set cartesian orbit tracing function if trace_orbit_func is None: self.trace_orbit_func = trace_cartesian_orbit else: self.trace_orbit_func = trace_orbit_func # If parameters are provided in internal form (the form used by emcee), # then externalise before setting of various other attributes. if pars is not None: if internal: self._pars = self.externalise(pars) else: self._pars = np.copy(pars) else: self._pars = np.zeros(len(self.PARAMETER_FORMAT)) # Age *must* be non-zero self._set_age(self.DEFAULT_TINY_AGE) # Using provided parameters, set up the three model attributes: # mean, covariance and age. If attributes are provided, then use # those. if attributes is None: attributes = {} self._set_mean(attributes.get('mean', None)) self._set_covmatrix(attributes.get('covmatrix', None)) self._set_age(attributes.get('age', None)) # For some purposes (e.g. virialisation estimation) it is useful to # approximate position and velocity volumes as spherical. Calculate # and set those attributes. self.set_sphere_stds() def __str__(self): x,y,z,u,v,w = self.get_mean_now() return 'Currentday(' \ 'X: {:.2}pc, Y: {:.2}pc, Z: {:.2}pc, ' \ 'U {:.2}km/s, V {:.2}km/s, W {:.2}km/s, ' \ 'age: {:.2}Myr)'.format(x,y,z,u,v,w, self._age) def __repr__(self): return self.__str__() @classmethod def check_parameter_format(cls): """ A check for valid implementation. If this throws an error then the PARAMETER_FORMAT attribute has been incorrectly defined. """ if cls.PARAMETER_FORMAT is None: raise NotImplementedError('Need to define PARAMETER_FORMAT ' 'as a class parameter') if not np.all(np.isin(cls.PARAMETER_FORMAT, list(cls.SENSIBLE_WALKER_SPREADS.keys()))): raise NotImplementedError('Label in PARAMETER_FORMAT doesn\'t ' 'seem to be in SENSIBLE_WALKER_SPREADS. ' 'Extend dictionary in AbstractComponent ' 'accordingly: {}'.format( cls.PARAMETER_FORMAT )) @staticmethod def externalise(pars): """ Take parameter set in internal form (as used by emcee) and convert to external form (as used to build attributes). Tasks ----- There is scope to implement this here, and use cls.PARAMETER_FORMAT to guide the parameter conversions """ raise NotImplementedError @staticmethod def internalise(pars): """ Take parameter set in external form (as used to build attributes) and convert to internal form (as used by emcee). Tasks ----- There is scope to implement this here, and use cls.PARAMETER_FORMAT to guide the parameter conversions """ raise NotImplementedError def get_pars(self): """ Return a copy of the raw (external) parameterisation of the Component """ return np.copy(self._pars) def _set_mean(self, mean=None): """ Builds mean from self.pars. If setting from an externally provided mean then updates self.pars for consistency If implementation does use the first 6 values in self._pars to set the mean then this method should be overridden. """ # If mean hasn't been provided, generate from self._pars # and set. if mean is None: self._mean = self._pars[:6] # If mean has been provided, reverse engineer and update # self._pars accordingly. else: self._mean = np.copy(mean) self._pars[:6] = self._mean def get_mean(self): """Return a copy of the mean (initial) of the component""" return np.copy(self._mean) @abstractmethod def _set_covmatrix(self, covmatrix=None): """ Builds covmatrix from self._pars. If setting from an externally provided covmatrix then update self._pars for consistency. This is the sole method that needs implmentation to build a usable Component class """ pass def get_covmatrix(self): """Return a copy of the covariance matrix (initial)""" return np.copy(self._covmatrix) def _set_age(self, age=None): """Builds age from self.pars. If setting from an externally provided age then updates self.pars for consistency""" if age is None: self._age = self._pars[-1] else: self._age = age self._pars[-1] = age def get_age(self): """Returns the age of the Component""" return self._age def get_attributes(self): """ Get a dictionary of all three key attributes of the Component model. Done this way for easy of initialising a new Component. """ return {'mean':self.get_mean(), 'covmatrix':self.get_covmatrix(), 'age':self.get_age()} def set_sphere_stds(self): """ Set the spherical standard deviations in position space and velocity space. Calculated in such a way so as to preserved volume in position space and velocity space retrospectively. Note that combined phase-space volume is not conserved by this implementation. """ self._sphere_dx = gmean(np.sqrt( np.linalg.eigvalsh(self._covmatrix[:3, :3])) ) self._sphere_dv = gmean(np.sqrt( np.linalg.eigvalsh(self._covmatrix[3:, 3:])) ) def get_sphere_dx(self): """ Return the spherical standard deviation in position space. First check if it is None (which may be the case if covmatrix has been updated for e.g.) and recalculate at need. """ if self._sphere_dx is None: self.set_sphere_stds() return self._sphere_dx def get_sphere_dv(self): """ Return the spherical standard deviation in velocity space. First check if it is None (which may be the case if covmatrix has been updated for e.g.) and recalculate at need. """ if self._sphere_dv is None: self.set_sphere_stds() return self._sphere_dv def update_attribute(self, attributes=None): """ Update attributes based on input dictionary. Parameters ---------- attributes: dict A dictionary with the any combination (including none) of the following: 'mean': [6] float array_like the mean of the initial 6D Gaussian 'covmatrix': [6,6] float array_like the covariance matrix of the initial 6D Gaussian 'age': float the age of the component Notes ----- A potential source of subtle bugs is that one can modify attributes (e.g. mean) but if `covmatrix_now` has already been calculated, it won't update. So it is critical to use only this method to modify attributes such that we can force the recalculation of current-day projections as required. """ if type(attributes) is not dict: raise TypeError('Attributes must be passed in as dictionary') if 'mean' in attributes.keys(): self._set_mean(mean=attributes['mean']) if 'covmatrix' in attributes.keys(): self._set_covmatrix(covmatrix=attributes['covmatrix']) if 'age' in attributes.keys(): self._set_age(age=attributes['age']) self._mean_now = None self._covmatrix_now = None self._sphere_dx = None self._sphere_dv = None def get_mean_now(self): """ Calculates the mean of the component when projected to the current-day """ if self._mean_now is None: self._mean_now =\ self.trace_orbit_func(self._mean, times=self._age) return self._mean_now def get_covmatrix_now(self): """ Calculates covariance matrix of current day distribution. Calculated as a first-order Taylor approximation of the coordinate transformation that takes the initial mean to the current day mean. This is the most expensive aspect of Chronostar, so we first make sure the covariance matrix hasn't already been projected. """ if self._covmatrix_now is None: self._covmatrix_now = transform.transform_covmatrix( self._covmatrix, trans_func=self.trace_orbit_func, loc=self._mean, args=(self._age,), ) return self._covmatrix_now def get_currentday_projection(self): """ Calculate (as needed) and return the current day projection of Component Returns ------- mean_now : [6] float array_like The phase-space centroid of current-day Gaussian distribution of Component covmatrix_now : [6,6] float array_like The phase-space covariance matrix of current-day Gaussian distribution of Component """ return self.get_mean_now(), self.get_covmatrix_now() def splitGroup(self, lo_age, hi_age): """ Generate two new components that share the current day mean, and initial covariance matrix of this component but with different ages: `lo_age` and `hi_age`. Parameters ---------- lo_age : float Must be a positive (and ideally smaller) value than self.age. Serves as the age for the younger component. hi_age : float Must be a positive (and ideally larger) value than self.age Serves as the age for the older component. Returns ------- lo_comp : Component A component that matches `self` in current-day mean and initial covariance matrix but with a younger age hi_comp : Component A component that matches `self` in current-day mean and initial covariance matrix but with an older age """ comps = [] for new_age in [lo_age, hi_age]: # Give new component identical initial covmatrix, and a initial # mean chosen to yield identical mean_now new_mean = self.trace_orbit_func(self.get_mean_now(), times=-new_age) new_comp = self.__class__(attributes={'mean':new_mean, 'covmatrix':self._covmatrix, 'age':new_age}) comps.append(new_comp) return comps def get_peak(self, amplitude=1.): """ Get the density at the peak of distribution. Use this as a proxy of the characteristic density of the distribution, with the option to scale by the amplitude of the Gaussian. Note, the height of the peak is only dependent on the covariance matrix. """ expon = 0 # because we are evaluating the ditribution *at* the mean det = np.linalg.det(self.get_covmatrix_now()) coeff = 1./np.sqrt( (2*np.pi)**6 * det) return amplitude * coeff * np.exp(expon) @staticmethod def load_components(filename): """ Load Component objects from a *.npy file. Used to standardise result if loading a single component vs multiple components. Parameters ---------- filename : str name of the stored file Returns ------- res : [Component] list A list of Component objects """ res = np.load(filename) if res.shape == (): return np.array([res.item()]) else: return res @classmethod def get_sensible_walker_spread(cls): """Get an array of sensible walker spreads (based on class constants `PARAMTER_FORMAT` and `SENSIBLE_WALKER_SPREADS` to guide emcee in a sensible starting range of parameters.""" sensible_spread = [] for par_form in cls.PARAMETER_FORMAT: sensible_spread.append(cls.SENSIBLE_WALKER_SPREADS[par_form]) return np.array(sensible_spread) class SphereComponent(AbstractComponent): PARAMETER_FORMAT = ['pos', 'pos', 'pos', 'vel', 'vel', 'vel', 'log_pos_std', 'log_vel_std', 'age'] @staticmethod def externalise(pars): """ Take parameter set in internal form (as used by emcee) and convert to external form (as used to build attributes). """ extern_pars = np.copy(pars) extern_pars[6:8] = np.exp(extern_pars[6:8]) return extern_pars @staticmethod def internalise(pars): """ Take parameter set in external form (as used to build attributes) and convert to internal form (as used by emcee). """ intern_pars = np.copy(pars) intern_pars[6:8] = np.log(intern_pars[6:8]) return intern_pars def _set_covmatrix(self, covmatrix=None): """Builds covmatrix from self.pars. If setting from an externally provided covariance matrix then updates self.pars for consistency""" # If covmatrix hasn't been provided, generate from self._pars # and set. if covmatrix is None: dx = self._pars[6] dv = self._pars[7] self._covmatrix = np.identity(6) self._covmatrix[:3, :3] *= dx ** 2 self._covmatrix[3:, 3:] *= dv ** 2 # If covmatrix has been provided, reverse engineer the most # suitable set of parameters and update self._pars accordingly # (e.g. take the geometric mean of the (square-rooted) velocity # eigenvalues as dv, as this at least ensures constant volume # in velocity space). else: self._covmatrix = np.copy(covmatrix) dx = gmean(np.sqrt( np.linalg.eigvalsh(self._covmatrix[:3, :3])) ) dv = gmean(np.sqrt( np.linalg.eigvalsh(self._covmatrix[3:, 3:])) ) self._pars[6] = dx self._pars[7] = dv self.set_sphere_stds() class EllipComponent(AbstractComponent): PARAMETER_FORMAT = ['pos', 'pos', 'pos', 'vel', 'vel', 'vel', 'log_pos_std', 'log_pos_std', 'log_pos_std', 'log_vel_std', 'corr', 'corr', 'corr', 'age'] @staticmethod def externalise(pars): """ Take parameter set in internal form (as used by emcee) and convert to external form (as used to build attributes). """ extern_pars = np.copy(pars) extern_pars[6:10] = np.exp(extern_pars[6:10]) return extern_pars @staticmethod def internalise(pars): """ Take parameter set in external form (as used to build attributes) and convert to internal form (as used by emcee). """ intern_pars = np.copy(pars) intern_pars[6:10] = np.log(intern_pars[6:10]) return intern_pars def _set_covmatrix(self, covmatrix=None): """Builds covmatrix from self.pars. If setting from an externally provided covariance matrix then updates self.pars for consistency""" # If covmatrix hasn't been provided, generate from self._pars # and set. if covmatrix is None: dx, dy, dz = self._pars[6:9] dv = self._pars[9] c_xy, c_xz, c_yz = self._pars[10:13] self._covmatrix = np.array([ [dx**2, c_xy*dx*dy, c_xz*dx*dz, 0., 0., 0.], [c_xy*dx*dy, dy**2, c_yz*dy*dz, 0., 0., 0.], [c_xz*dx*dz, c_yz*dy*dz, dz**2, 0., 0., 0.], [0., 0., 0., dv**2, 0., 0.], [0., 0., 0., 0., dv**2, 0.], [0., 0., 0., 0., 0., dv**2], ]) # If covmatrix has been provided, reverse engineer the most # suitable set of parameters and update self._pars accordingly # (e.g. take the geometric mean of the (square-rooted) velocity # eigenvalues as dv, as this at least ensures constant volume # in velocity space). else: self._covmatrix = np.copy(covmatrix) pos_stds = np.sqrt(np.diagonal(self._covmatrix[:3, :3])) dx, dy, dz = pos_stds pos_corr_matrix = (self._covmatrix[:3, :3] / pos_stds / pos_stds.reshape(1,3).T) c_xy, c_xz, c_yz = pos_corr_matrix[np.triu_indices(3,1)] dv = gmean(np.sqrt( np.linalg.eigvalsh(self._covmatrix[3:, 3:])) ) self._pars[6:9] = dx, dy, dz self._pars[9] = dv self._pars[10:13] = c_xy, c_xz, c_yz
StarcoderdataPython
3589645
<gh_stars>1-10 #!/usr/bin/python # Finds vulnerabilites in manifest files import sys from xml.dom.minidom import Element from androguard.core.bytecodes import apk from androguard.core.bytecodes import dvm import permissions # Component Types Enum ACTIVITY = 0 SERVICE = 1 RECEIVER = 2 PROVIDER = 3 tag2type = { "activity":ACTIVITY, "activity-alias":ACTIVITY, "service":SERVICE, "receiver":RECEIVER, "provider":PROVIDER} type2tag = { ACTIVITY:"activity", SERVICE:"service", RECEIVER:"receiver", PROVIDER:"provider"} type2methods = { ACTIVITY: ["onCreate"], SERVICE: ["onStartCommand", "onBind"], RECEIVER: ["onReceive"], PROVIDER: []} class Component: def __init__(self, element, perms, perm=None): self.element = element self.type = tag2type[element.tagName] if self.element.tagName == "activity-alias": self.name = self.element.getAttribute("android:targetActivity") else: self.name = self.element.getAttribute("android:name") self.path = '/'.join(self.name.split('.'))+";" self.perm_level = None self.perm = None if self.element.hasAttribute("android:permission"): self.perm = self.element.getAttribute("android:permission") elif perm: self.perm = perm if self.perm: perm_key = self.perm.split(".")[-1] if perms.has_key(perm_key): self.perm_level = perms[perm_key] else: print "unknown perm %s(%s)" % (perm_key, self.perm) self.perm_level = permissions.SIGSYS def __repr__(self): return "<"+type2tag[self.type] + " " + self.name + ">" def is_public(self): exported_set = self.element.hasAttribute("android:exported") exported = False if exported_set: exported = self.element.getAttribute("android:exported") == "true" has_filter = False if self.element.hasChildNodes(): for child in [c for c in self.element.childNodes if isinstance(c,Element)]: has_filter = has_filter or child.tagName == "intent-filter" # See http://developer.android.com/guide/topics/manifest/service-element.html#exported if has_filter: if exported_set: return exported else: return True else: if exported_set: return exported else: return False def is_exploitable(self): if self.perm: return self.is_public() and self.perm_level<=permissions.DANG else: return self.is_public() def cleanup_attributes(a, element): if isinstance(element,Element): for tag in ["android:name", "android:targetActivity"]: if element.hasAttribute(tag): name_attr = element.getAttributeNode(tag) name_attr.value = a.format_value(name_attr.value) if element.hasChildNodes(): for e in element.childNodes: cleanup_attributes(a, e) def extract_perms(manifest): new_perms = {} for p in manifest.getElementsByTagName("permission"): perm = p.getAttribute("android:name") level = permissions.NORMAL if p.hasAttribute("android:protectionLevel"): attr_level = p.getAttribute("android:protectionLevel") try: l = str(eval(attr_level)) attr_level = l except Exception: pass level = permissions.text2perm[attr_level] new_perms[perm.split(".")[-1]] = level return new_perms def get_exploitable_methods(a, d, perms): xml = a.get_AndroidManifest() cleanup_attributes(a,xml.documentElement) perms.update(extract_perms(xml)) app = xml.getElementsByTagName("application")[0] app_perm = None if app.hasAttribute("android:permission"): app_perm = activity.getAttribute("android:permission") components = [] for comp_name in tag2type.keys(): for item in xml.getElementsByTagName(comp_name): comp = Component(item, perms, app_perm) if comp.is_exploitable(): components.append(comp) #print components classes = d.get_classes() # Possible way of finding programmatically created receivers? #[p.get_src(d.CM) for p in dx.get_tainted_packages().search_methods("content/Context","registerReceiver",".")] exploitable_methods = [] for comp in components: c_objects = [k for k in classes if k.get_name().count(comp.path) > 0] if len(c_objects) != 1: print "oh no! Found %d classes for component %s" % (len(c_objects), comp.name) continue c_obj = c_objects[0] # TODO: perhaps we need to look for methods in superclass? For example: # BitCoin Wallet app has receiver # de.schildbach.wallet.WalletBalanceWidgetProvider # which subclasses android.appwidget.AppWidgetProvider, which is where # the onReceive method is implemented... method_objects = [m for m in c_obj.get_methods() if m.get_name() in type2methods[comp.type]] exploitable_methods = exploitable_methods + [(comp,m) for m in method_objects] #print [m[1].get_name() for m in exploitable_methods] # Links to check out: # http://developer.android.com/guide/topics/manifest/provider-element.html#gprmsn # http://developer.android.com/guide/topics/manifest/data-element.html # https://developer.android.com/guide/topics/security/permissions.html#enforcement return exploitable_methods if __name__ == "__main__" : get_exploitable_methods(apk.APK(sys.argv[1]), dvm.DalvikVMFormat(a.get_dex()),permissions.permissions)
StarcoderdataPython
5197057
#!/usr/bin/env python3 """ This script collects any vulnerabilities associated with the five C/C++ projects by scraping the CVE Details website. This information includes the CVE identifier, publish date, CVSS score, various impacts, vulnerability types, the CWE ID, and the URLs to other relevant websites like a project's Bugzilla or Security Advisory platforms. For each project, this information is saved to a CSV file. """ import csv import os from modules.common import log from modules.project import Project #################################################################################################### project_list = Project.get_project_list_from_config() Project.debug_ensure_all_project_repositories_were_loaded(project_list) for project in project_list: CSV_HEADER = [ 'CVE', 'CVE URL', 'Publish Date', 'Last Update Date', 'CVSS Score', 'Confidentiality Impact', 'Integrity Impact', 'Availability Impact', 'Access Complexity', 'Authentication', 'Gained Access', 'Vulnerability Types', 'CWE', 'Affected Product Versions', 'Bugzilla URLs', 'Bugzilla IDs', 'Advisory URLs', 'Advisory IDs', 'Advisory Info', 'Git URLs', 'Git Commit Hashes', 'SVN URLs', 'SVN Revision Numbers' ] project.create_output_subdirectory() output_csv_path = project.get_base_output_csv_path('cve') with open(output_csv_path, 'w', newline='') as csv_file: csv_writer = csv.DictWriter(csv_file, fieldnames=CSV_HEADER) csv_writer.writeheader() for cve in project.scrape_vulnerabilities_from_cve_details(): cve.serialize_containers() csv_row = { 'CVE': cve.id, 'CVE URL': cve.url, 'Publish Date': cve.publish_date, 'Last Update Date': cve.last_update_date, 'CVSS Score': cve.cvss_score, 'Confidentiality Impact': cve.confidentiality_impact, 'Integrity Impact': cve.integrity_impact, 'Availability Impact': cve.availability_impact, 'Access Complexity': cve.access_complexity, 'Authentication': cve.authentication, 'Gained Access': cve.gained_access, 'Vulnerability Types': cve.vulnerability_types, 'CWE': cve.cwe, 'Affected Product Versions': cve.affected_products, 'Bugzilla URLs': cve.bugzilla_urls, 'Bugzilla IDs': cve.bugzilla_ids, 'Advisory URLs': cve.advisory_urls, 'Advisory IDs': cve.advisory_ids, 'Advisory Info': cve.advisory_info, 'Git URLs': cve.git_urls, 'Git Commit Hashes': cve.git_commit_hashes, 'SVN URLs': cve.svn_urls, 'SVN Revision Numbers': cve.svn_revision_numbers } csv_writer.writerow(csv_row) log.info(f'Finished running for the project "{project}".') log.info('Finished running.') print('Finished running.')
StarcoderdataPython
1788802
#!/usr/bin/env python # # Copyright (c) 2015, Arista Networks, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name of Arista Networks nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR # BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN # IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pylint: disable=R0904,F0401 import unittest from client_test_lib import Bootstrap from client_test_lib import raise_exception class XmppConfigTest(unittest.TestCase): @classmethod def bootstrap(cls, xmpp): bootstrap = Bootstrap() bootstrap.ztps.set_config_response(xmpp=xmpp) bootstrap.ztps.set_node_check_response() bootstrap.ztps.set_definition_response() bootstrap.start_test() return bootstrap def xmpp_sanity_test(self, xmpp): bootstrap = self.bootstrap(xmpp) try: self.failUnless(bootstrap.eapi_node_information_collected()) self.failUnless(bootstrap.missing_startup_config_failure()) self.failIf(bootstrap.error) self.failIf('XmppClient' not in bootstrap.output) except AssertionError as assertion: print 'Output: %s' % bootstrap.output print 'Error: %s' % bootstrap.error raise_exception(assertion) finally: bootstrap.end_test() def test_full(self): self.xmpp_sanity_test({'server' : 'test-server', 'port' : 112233, 'username' : 'test-username', 'password' : '<PASSWORD>', 'domain' : 'test-domain', 'rooms' : ['test-room-1', 'test-room-2']}) def test_msg_type_debug(self): self.xmpp_sanity_test({'server' : 'test-server', 'port' : 112233, 'username' : 'test-username', 'password' : '<PASSWORD>', 'domain' : 'test-domain', 'rooms' : ['test-room-1', 'test-room-2'], 'msg_type' : 'debug'}) def test_msg_type_info(self): self.xmpp_sanity_test({'server' : 'test-server', 'port' : 112233, 'username' : 'test-username', 'password' : '<PASSWORD>', 'domain' : 'test-domain', 'rooms' : ['test-room-1', 'test-room-2'], 'msg_type' : 'debug'}) def test_partial(self): self.xmpp_sanity_test({'rooms' : ['test-room-1'], 'username' : 'test-username', 'password' : '<PASSWORD>', 'domain' : 'test-domain'}) def test_erroneous_msg_type(self): bootstrap = self.bootstrap({'server' : 'test-server', 'port' : 112233, 'username' : 'test-username', 'password' : '<PASSWORD>', 'domain' : 'test-domain', 'rooms' : ['test-room-1', 'test-room-2'], 'msg_type' : 'bogus'}) try: self.failUnless(bootstrap.eapi_node_information_collected()) self.failUnless(bootstrap.missing_startup_config_failure()) self.failIf(bootstrap.error) self.failIf('XMPP configuration failed because of ' 'unexpected \'msg_type\'' not in bootstrap.output) except AssertionError as assertion: print 'Output: %s' % bootstrap.output print 'Error: %s' % bootstrap.error raise_exception(assertion) finally: bootstrap.end_test() if __name__ == '__main__': unittest.main()
StarcoderdataPython
9786901
import numpy as np import tensorflow as tf from config import MovieQAPath from legacy.input import Input _mp = MovieQAPath() hp = {'emb_dim': 300, 'feat_dim': 512, 'learning_rate': 10 ** (-4), 'decay_rate': 0.97, 'decay_type': 'exp', 'decay_epoch': 2, 'opt': 'adam', 'checkpoint': '', 'dropout_rate': 0.1, 'pos_len': 35} def dropout(x, training): return tf.layers.dropout(x, hp['dropout_rate'], training=training) def make_mask(x, length): return tf.tile(tf.expand_dims(tf.sequence_mask(x, maxlen=length), axis=-1), [1, 1, hp['emb_dim']]) def sliding(x): return tf.nn.pool(x, [3], 'AVG', 'SAME', data_format='NWC') def seq_mean(x, l): return tf.reduce_sum(x, axis=1) / tf.to_float(tf.expand_dims(l, axis=-1)) class Model(object): def __init__(self, data, training=False): self.data = data self.initializer = tf.glorot_normal_initializer() q_mask = make_mask(self.data.ql, 25) # (1, L_q, E) s_mask = make_mask(self.data.sl, 29) # (N, L_s, E) a_mask = make_mask(self.data.al, 34) # (5, L_a, E) ques_shape = tf.shape(q_mask) subt_shape = tf.shape(s_mask) ans_shape = tf.shape(a_mask) with tf.variable_scope('Embedding'): self.embedding = tf.get_variable('embedding_matrix', initializer=np.load(_mp.embedding_file), trainable=False) self.ques = tf.nn.embedding_lookup(self.embedding, self.data.ques) # (1, L_q, E) self.ans = tf.nn.embedding_lookup(self.embedding, self.data.ans) # (5, L_a, E) self.subt = tf.nn.embedding_lookup(self.embedding, self.data.subt) # (N, L_s, E) # self.ques = tf.layers.dropout(self.ques, hp['dropout_rate'], training=training) # (1, L_q, E) # self.ans = tf.layers.dropout(self.ans, hp['dropout_rate'], training=training) # (5, L_a, E) # self.subt = tf.layers.dropout(self.subt, hp['dropout_rate'], training=training) # (N, L_s, E) with tf.variable_scope('Embedding_Linear'): self.ques_embedding = self.embedding_linear(self.ques, q_mask, 'question') # (1, L_q, E_t) self.ans_embedding = self.embedding_linear(self.ans, a_mask, 'answer') # (5, L_a, E_t) self.subt_embedding = self.embedding_linear(self.subt, s_mask, 'subtitle') # (N, L_s, E_t) with tf.variable_scope('Language_Attention'): position_attn = tf.get_variable('position_attention', shape=[hp['pos_len'], hp['emb_dim']], initializer=self.initializer, trainable=False) ques_pos, _ = tf.split(position_attn, [25, hp['pos_len'] - 25]) ans_pos, _ = tf.split(position_attn, [34, hp['pos_len'] - 34]) subt_pos, _ = tf.split(position_attn, [29, hp['pos_len'] - 29]) self.one_word_encodes = [self.subt_embedding] ques_enc = seq_mean(self.ques_embedding * ques_pos, self.data.ql) # (1, E_t) for i in range(2): with tf.variable_scope('OneWord_Attention_%d' % i): subt_enc = seq_mean(self.one_word_encodes[-1] * subt_pos, self.data.sl) # (N, E_t) subt_pre_attn = tf.nn.tanh( self.dense_wo_everything(ques_enc) + self.dense_wo_everything(subt_enc) + self.dense_wo_everything(tf.reduce_mean(subt_enc, axis=0, keepdims=True))) # (N, E_t) subt_pre_attn = tf.expand_dims( tf.einsum('ijk,ik->ij', self.one_word_encodes[-1], subt_pre_attn), axis=-1) # (N, L_s, 1) subt_attn = tf.nn.softmax(subt_pre_attn, axis=1) # (N, L_s, 1) self.one_word_encodes.append(self.one_word_encodes[-1] * (1 + subt_attn)) # (N, L_s, E_t) self.one_word_mean = tf.concat([tf.expand_dims(t, axis=0) for t in self.one_word_encodes], axis=0) # (3, N, L_s, E_t) self.one_word_weight = tf.reshape( tf.nn.softmax( tf.layers.dense(ques_enc, 3, kernel_initializer=self.initializer), axis=-1), [3, 1, 1, 1]) # (3, 1, 1, 1) self.one_word_mean = tf.transpose( tf.reduce_sum( tf.reduce_sum(self.one_word_mean * self.one_word_weight, axis=0), axis=1, keepdims=True) / tf.to_float(tf.reshape(self.data.sl, [-1, 1, 1])), [1, 0, 2]) # (1, N, E_t) self.pool_subt = sliding(self.subt_embedding * subt_pos) # (N, L_s, E_t) self.tri_word_encodes = [self.pool_subt] for i in range(2): with tf.variable_scope('TriWord_Attention_%d' % i): pool_subt_enc = seq_mean(self.tri_word_encodes[-1], self.data.sl) # (N, E_t) pool_subt_pre_attn = tf.nn.tanh( self.dense_wo_everything(ques_enc) + self.dense_wo_everything(pool_subt_enc) + self.dense_wo_everything(tf.reduce_mean(pool_subt_enc, axis=0, keepdims=True))) # (N, E_t) pool_subt_pre_attn = tf.expand_dims( tf.einsum('ijk,ik->ij', self.tri_word_encodes[-1], pool_subt_pre_attn), axis=-1) # (N, L_s, 1) pool_subt_attn = tf.nn.softmax(pool_subt_pre_attn, axis=1) # (N, L_s, 1) self.tri_word_encodes.append(self.tri_word_encodes[-1] * (1 + pool_subt_attn)) # (N, L_s, E_t) self.tri_word_mean = tf.concat([tf.expand_dims(t, axis=0) for t in self.tri_word_encodes], axis=0) # (3, N, L_s, E_t) self.tri_word_weight = tf.reshape( tf.nn.softmax( tf.layers.dense(ques_enc, 3, kernel_initializer=self.initializer), axis=-1), [3, 1, 1, 1]) # (3, 1, 1, 1) self.tri_word_mean = tf.transpose( tf.reduce_sum( tf.reduce_sum(self.tri_word_mean * self.tri_word_weight, axis=0), axis=1, keepdims=True) / tf.to_float(tf.reshape(self.data.sl, [-1, 1, 1])), [1, 0, 2]) # (1, N, E_t) tile_ques_enc = tf.tile(tf.expand_dims(ques_enc, axis=0), [1, subt_shape[0], 1]) # (1, N, E_t) self.one_concat = tf.concat([self.one_word_mean, tile_ques_enc], axis=-1) # (1, N, 2 * E_t) self.tri_concat = tf.concat([self.tri_word_mean, tile_ques_enc], axis=-1) # (1, N, 2 * E_t) with tf.variable_scope('Temporal_Attention'): self.temp_one_attn = tf.nn.softmax( tf.layers.conv1d( tf.layers.conv1d(self.one_concat, hp['emb_dim'] * 2, 3, padding='same', activation=tf.nn.relu), 1, 5, padding='same', activation=None), axis=1) # (1, N, 1) self.temp_tri_attn = tf.nn.softmax( tf.layers.conv1d( tf.layers.conv1d(self.tri_concat, hp['emb_dim'] * 2, 3, padding='same', activation=tf.nn.relu), 1, 5, padding='same', activation=None ), axis=1) # (1, N, 1) self.temp_one = tf.reduce_sum(self.one_word_mean * self.temp_one_attn, axis=1) # (1, E_t) self.temp_tri = tf.reduce_sum(self.tri_word_mean * self.temp_tri_attn, axis=1) # (1, E_t) self.temp_weight = tf.transpose(tf.nn.softmax( tf.layers.dense(ques_enc, 3, kernel_initializer=self.initializer), axis=-1)) # (3, 1) self.ans_vec = tf.concat([self.temp_one, self.temp_tri, ques_enc], axis=0) * self.temp_weight self.ans_vec = tf.tile(tf.reduce_sum(self.ans_vec, axis=0, keepdims=True), [5, 1]) ans_enc = seq_mean(self.ans_embedding * ans_pos, self.data.al) self.output = tf.reduce_sum(self.ans_vec * ans_enc, axis=1) def embedding_linear(self, x, x_mask, scope): with tf.variable_scope(scope): x = tf.layers.dense(x, hp['emb_dim'] * 4, activation=tf.nn.relu, kernel_initializer=self.initializer) x = tf.layers.dense(x, hp['emb_dim'], kernel_initializer=self.initializer) zeros = tf.zeros_like(x) x = tf.where(x_mask, x, zeros) return x def dense_wo_everything(self, x): return tf.layers.dense(x, hp['emb_dim'], use_bias=False, kernel_initializer=self.initializer) def main(): data = Input(split='train') model = Model(data) for v in tf.global_variables(): print(v) config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True # config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 with tf.Session(config=config) as sess: sess.run([model.data.initializer, tf.global_variables_initializer()], ) # q, a, s = sess.run([model.ques_enc, model.ans_enc, model.subt_enc]) # print(q.shape, a.shape, s.shape) # a, b, c, d = sess.run(model.tri_word_encodes) # print(a, b, c, d) # print(a.shape, b.shape, c.shape, d.shape) a, b = sess.run([model.ans_vec, model.output]) print(a, b) print(a.shape, b.shape) if __name__ == '__main__': main()
StarcoderdataPython
1641636
<filename>gps/pasing/google_parser.py import datetime import json import pickle import time as t from pathlib import Path url = "/Users/rohit/Downloads/Takeout/Location_History/Location_History.json" class Location: latitude = None longitude = None date = None milisec = None accuracy = None def __init__(self, loc=None,date=None): if loc is not None: self.lat = loc['latitudeE7'] self.long = loc['longitudeE7'] self.accuracy = loc['accuracy'] self.milisec = int(loc["timestampMs"]) time = int(loc["timestampMs"]) / 1000 date = datetime.datetime.fromtimestamp( int(time) ) if self.lat is not None and self.long is not None and date is not None: self.longitude = self.long self.latitude = self.lat self.date = date else: raise Exception("Invalid Data for creating Location object {} - {} - {}".format(self.lat, self.long, self.date)) return elif date is not None: self.lat= 0 self.long = 0 self.accuracy = 0 self.milisec = int(t.mktime(date.timetuple()) * 1e3 + date.microsecond / 1e3) self.date = date else: raise Exception("Invalid Data for creating Location object") def __str__(self): return str("Time : {} - Latitude : {} - Longitude : {}".format(self.milisec,self.latitude,self.longitude)) def __repr__(self): return str("Time : {} - Latitude : {} - Longitude : {}".format(self.milisec, self.latitude, self.longitude)) class DataModel: path = None def __init__(self, path=url,preloded=False): if preloded is True: return if path is None or len(path) == 0: raise Exception("Invalid File path, ensure the corrected path") my_file = Path(path) if my_file.exists() is False: raise Exception("Invalid File path, {} check if it exist".format(path)) else: self.path = path def load_data_array(self): with open(self.path) as data_file: json_data = json.load(data_file) data = [] json_data = json_data["locations"] print(len(json_data)) for i in range(len(json_data)): data.append(Location(json_data[i])) print("Loading {}".format(i)) pickle.dump(data, open("locations.p", "wb")) def load_data_map(self): with open(self.path) as data_file: json_data = json.load(data_file) loc_map = {} json_data = json_data["locations"] print(len(json_data)) for i in range(len(json_data)): loc = Location(json_data[i]) key = loc.date.strftime('%Y-%m-%d') if key in loc_map: loc_map[key].append(loc) else: loc_map[key] = [loc] print("Found {} - {}".format(i, loc)) pickle.dump(loc_map, open("data/locations_map.p", "wb")) def get_location_map(self): with open("data/locations_map.p", "rb") as input_file: return pickle.load(input_file)
StarcoderdataPython
226300
# coding: utf-8 # Copyright (c) 2016, <NAME> (alexpirine), 2016 import itertools import re import sudokumaker from django.contrib import messages from django.shortcuts import render from sudoku import SudokuProblem from . import forms # Create your views here. def home(request): action = request.POST.get('action', None) suggest = request.GET.get('suggest', False) matrix = request.POST.getlist('matrix') solution = None solved = False initial_data = None if suggest: matrix = sudokumaker.make_problem() initial_data = [{'value': v or None} for k, v in enumerate(itertools.chain.from_iterable(matrix))] form = forms.SudokuForm(request.POST or None, initial=initial_data) if action == 'solve' and form.is_valid(): user_data = [v['value'] or 0 for v in form.cleaned_data] matrix = [user_data[i:i+9] for i in xrange(0, len(user_data), 9)] problem = SudokuProblem(matrix) solution = problem.solve() if solution: initial_data = [{'value': v} for k, v in enumerate(itertools.chain.from_iterable(solution.matrix))] form = forms.SudokuForm(initial=initial_data) for k, f in enumerate(form): if not bool(user_data[k]): f.fields['value'].widget.attrs['class'] += ' text-success' else: f.fields['value'].widget.attrs['class'] += ' font-bold' solved = True c = { 'action': action, 'form': form, 'solved': solved, } return render(request, 'home.html', c)
StarcoderdataPython
5051666
# -*- coding: utf-8 -*- """ Created on Fri Apr 30 08:48:06 2021 @author: u0139894 """ import numpy as np import os class Model: def __init__(self, modelPath, initial): self.modelPath = modelPath self.initial = initial self.__getMets() self.__getReacs() def __getMets(self): mets = {} with open(os.path.join(self.modelPath, 'metabolites.txt')) as f: f.readline() for line in f: a = line.strip().split('\t') if int(a[3]): mets[a[0]] = (a[1], int(a[2])) else: mets[self.initial+a[0]] = (a[1], int(a[2])) with open(os.path.join(self.modelPath, 'enzymes.txt')) as f: f.readline() for line in f: a = line.strip().split('\t') mets[self.initial + a[0] + '_a'] = (a[1].upper() + '(free)', float(a[2])) mets[self.initial + a[0] + '_b'] = (a[1].upper() + '(conj)', 0) self.mets = mets def __makeString(self, st): sc = st.replace('"','') r = sc.split(',') rs = '' c = 0 for i in r: a = i.split(':') if c==0: rs += str('(' + a[1] + ') ') else: rs+=' + ' + '(' + a[1] + ') ' c+=1 if a[0].replace(' ','') in self.mets: rs += self.mets[a[0].replace(' ','')][0] else: rs += self.mets[self.initial + a[0].replace(' ','')][0] return rs def __makeReacDict(self, st): d= {} sc = st.replace('"','') r = sc.split(',') for i,v in enumerate(r): a = v.split(':') met = a[0].replace(' ','') if self.initial + met in self.mets: met = self.initial + met d[met] = float(a[1]) return d def __getReacs(self): reacs = {} with open(os.path.join(self.modelPath, 'reactions.txt')) as f: f.readline() for line in f: a = line.strip().split('\t') #conjugate reaction = a[0] + '_a' reactants = a[1] + ',' + a[3] + '_a:1' products = a[3] + '_b:1' reacs[reaction] = {'reactants':self.__makeReacDict(reactants), 'products': self.__makeReacDict(products), 'string':self.__makeString(reactants) + ' => ' + self.__makeString(products), 'rate':float(a[4])} #react reaction = a[0] + '_b' reactants = a[3] + '_b:1' products = a[2] + ',' + a[3] + '_a:1' reacs[reaction] = {'reactants':self.__makeReacDict(reactants), 'products': self.__makeReacDict(products), 'string':self.__makeString(reactants) + ' => ' + self.__makeString(products), 'rate':float(a[4])} #rev conjugate reaction = a[0] + '_c' reactants = a[2] + ',' + a[3] + '_a:1' products = a[3] + '_b:1' reacs[reaction] = {'reactants':self.__makeReacDict(reactants), 'products': self.__makeReacDict(products), 'string':self.__makeString(reactants) + ' => ' + self.__makeString(products), 'rate':float(a[5])} #rev react reaction = a[0] + '_d' reactants = a[3] + '_b:1' products = a[1] + ',' + a[3] + '_a:1' reacs[reaction] = {'reactants':self.__makeReacDict(reactants), 'products': self.__makeReacDict(products), 'string':self.__makeString(reactants) + ' => ' + self.__makeString(products), 'rate':float(a[5])} self.reacs = reacs #M = Model('C:/Users/u0139894/Documents/BH_EnergyMetabolism/files/gillespie/autotrophic', 'aut_') # with open('C:/Users/u0139894/Documents/BH_EnergyMetabolism/files/gillespie/reactions.txt') as f: # with open('C:/Users/u0139894/Documents/BH_EnergyMetabolism/files/gillespie/reactions2.txt', 'w') as f2: # f2.write(f.readline()) # for line in f: # a=line.strip().split('\t') # f2.write(line.strip() + '\t' + M.reacs[a[0]] + '\n')
StarcoderdataPython
1759033
# -*- coding: utf-8 -*- import time from pykinect2 import PyKinectV2 from pykinect2.PyKinectV2 import * from pykinect2 import PyKinectRuntime from Kinetic import extractPoints from numpy import * #import pyttsx k = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Body) print "Kinect lance" #e = pyttsx.init() #e.say('Bonjour et bienvenu dans la prossaidure de calibration de la machine vivante. Une personne doit se mettre debout au centre de la saine, face public, les bras ecartai comme jaizu cri. et une autre personne est praite a tourner la Kinect selon l''axe Z. Tenez vous prai dans dix, neuf, huit, sept, six, cinq, quatre, trois, deux, un.') #e.runAndWait() calib = True while calib : time.sleep(0.1) seeBody = False if k.has_new_body_frame(): bs = k.get_last_body_frame() tiltrad = arctan(bs.floor_clip_plane.z/bs.floor_clip_plane.y) w = bs.floor_clip_plane.w #print tiltrad*180.0/pi,w if bs is not None: for b in bs.bodies: if not b.is_tracked: continue # get joints positions js = b.joints kpos = extractPoints(js,tiltrad,w,0.0,0.0) if kpos["spine_base"][1]>0.05: # e.say(u'tourner la kinect un peu a droite!') # e.runAndWait() print(u'tourner la kinect un peu a droite!') elif kpos["spine_base"][1]<-0.05: # e.say(u'tourner la kinect un peu a gauche!') # e.runAndWait() print(u'tourner la kinect un peu a gauche!') else: # e.say('c''est bon ne touchez plus la Kinect, tout est calibrai. Merci de votre devoumain') # e.runAndWait() print('c''est bon ne touchez plus la Kinect, tout est calibrai. Merci de votre devoumain') print "rtip" print kpos["r_tip"] print "ltip" print kpos["l_tip"] print "spine" print kpos["spine_base"] print "tilt" print tiltrad*180.0/pi print "hkinect" print w print "dkinect" print -kpos["spine_base"][0] print "pan" print arctan((kpos["r_tip"][0]-kpos["l_tip"][0])/(kpos["r_tip"][1]-kpos["l_tip"][1]))*180.0/pi calib = False
StarcoderdataPython
43508
<reponame>ekkipermana/robotframework-test """ dexml: a dead-simple Object-XML mapper for Python Let's face it: xml is a fact of modern life. I'd even go so far as to say that it's *good* at what is does. But that doesn't mean it's easy to work with and it doesn't mean that we have to like it. Most of the time, XML just needs to get the hell out of the way and let you do some actual work instead of writing code to traverse and manipulate yet another DOM. The dexml module takes the obvious mapping between XML tags and Python objects and lets you capture that as cleanly as possible. Loosely inspired by Django's ORM, you write simple class definitions to define the expected structure of your XML document. Like so: >>> import dexml >>> from dexml import fields >>> class Person(dexml.Model): ... name = fields.String() ... age = fields.Integer(tagname='age') Then you can parse an XML document into an object like this: >>> p = Person.parse("<Person name='<NAME>'><age>42</age></Person>") >>> p.name u'<NAME>' >>> p.age 42 And you can render an object into an XML document like this: >>> p = Person(name="<NAME>",age=36) >>> p.render() '<?xml version="1.0" ?><Person name="<NAME>"><age>36</age></Person>' Malformed documents will raise a ParseError: >>> p = Person.parse("<Person><age>92</age></Person>") Traceback (most recent call last): ... ParseError: required field not found: 'name' Of course, it gets more interesting when you nest Model definitions, like this: >>> class Group(dexml.Model): ... name = fields.String(attrname="name") ... members = fields.List(Person) ... >>> g = Group(name="Monty Python") >>> g.members.append(Person(name="<NAME>",age=69)) >>> g.members.append(Person(name="<NAME>",age=67)) >>> g.render(fragment=True) '<Group name="<NAME>"><Person name="<NAME>"><age>69</age></Person><Person name="<NAME>"><age>67</age></Person></Group>' There's support for XML namespaces, default field values, case-insensitive parsing, and more fun stuff. Check out the documentation on the following classes for more details: :Model: the base class for objects that map into XML :Field: the base class for individual model fields :Meta: meta-information about how to parse/render a model """ __ver_major__ = 0 __ver_minor__ = 3 __ver_patch__ = 7 __ver_sub__ = "" __version__ = "%d.%d.%d%s" % (__ver_major__,__ver_minor__,__ver_patch__,__ver_sub__) import copy from xml.dom import minidom ## Local Imports import fields from _util import * class Model(object): """Base class for dexml Model objects. Subclasses of Model represent a concrete type of object that can parsed from or rendered to an XML document. The mapping to/from XML is controlled by two things: * attributes declared on an inner class named 'meta' * fields declared using instances of fields.Field Here's a quick example: class Person(dexml.Model): # This overrides the default tagname of 'Person' class meta tagname = "person" # This maps to a 'name' attributr on the <person> tag name = fields.String() # This maps to an <age> tag within the <person> tag age = fields.Integer(tagname='age') See the 'Meta' class in this module for available meta options, and the 'fields' submodule for available field types. """ __metaclass__ = ModelMetaclass _fields = [] def __init__(self,**kwds): """Default Model constructor. Keyword arguments that correspond to declared fields are processed and assigned to that field. """ for f in self._fields: val = kwds.get(f.field_name) setattr(self,f.field_name,val) @classmethod def parse(cls,xml): """Produce an instance of this model from some xml. The given xml can be a string, a readable file-like object, or a DOM node; we might add support for more types in the future. """ self = cls() node = self._make_xml_node(xml) self.validate_xml_node(node) # Keep track of fields that have successfully parsed something fields_found = [] # Try to consume all the node's attributes attrs = node.attributes.values() for field in self._fields: unused_attrs = field.parse_attributes(self,attrs) if len(unused_attrs) < len(attrs): fields_found.append(field) attrs = unused_attrs for attr in attrs: self._handle_unparsed_node(attr) # Try to consume all child nodes if self.meta.order_sensitive: self._parse_children_ordered(node,self._fields,fields_found) else: self._parse_children_unordered(node,self._fields,fields_found) # Check that all required fields have been found for field in self._fields: if field.required and field not in fields_found: err = "required field not found: '%s'" % (field.field_name,) raise ParseError(err) field.parse_done(self) # All done, return the instance so created return self def _parse_children_ordered(self,node,fields,fields_found): """Parse the children of the given node using strict field ordering.""" cur_field_idx = 0 for child in node.childNodes: idx = cur_field_idx # If we successfully break out of this loop, one of our # fields has consumed the node. while idx < len(fields): field = fields[idx] res = field.parse_child_node(self,child) if res is PARSE_DONE: if field not in fields_found: fields_found.append(field) cur_field_idx = idx + 1 break if res is PARSE_MORE: if field not in fields_found: fields_found.append(field) cur_field_idx = idx break if res is PARSE_CHILDREN: self._parse_children_ordered(child,[field],fields_found) cur_field_idx = idx break idx += 1 else: self._handle_unparsed_node(child) def _parse_children_unordered(self,node,fields,fields_found): """Parse the children of the given node using loose field ordering.""" done_fields = {} for child in node.childNodes: idx = 0 # If we successfully break out of this loop, one of our # fields has consumed the node. while idx < len(fields): if idx in done_fields: idx += 1 continue field = fields[idx] res = field.parse_child_node(self,child) if res is PARSE_DONE: done_fields[idx] = True if field not in fields_found: fields_found.append(field) break if res is PARSE_MORE: if field not in fields_found: fields_found.append(field) break if res is PARSE_CHILDREN: self._parse_children_unordered(child,[field],fields_found) break idx += 1 else: self._handle_unparsed_node(child) def _handle_unparsed_node(self,node): if not self.meta.ignore_unknown_elements: if node.nodeType == node.ELEMENT_NODE: err = "unknown element: %s" % (node.nodeName,) raise ParseError(err) elif node.nodeType in (node.TEXT_NODE,node.CDATA_SECTION_NODE): if node.nodeValue.strip(): err = "unparsed text node: %s" % (node.nodeValue,) raise ParseError(err) elif node.nodeType == node.ATTRIBUTE_NODE: if not node.nodeName.startswith("xml"): err = "unknown attribute: %s" % (node.name,) raise ParseError(err) def render(self,encoding=None,fragment=False,nsmap=None): """Produce XML from this model's instance data. A unicode string will be returned if any of the objects contain unicode values; specifying the 'encoding' argument forces generation of an ASCII string. By default a complete XML document is produced, including the leading "<?xml>" declaration. To generate an XML fragment set the 'fragment' argument to True. The 'nsmap' argument maintains the current stack of namespace prefixes used during rendering; it maps each prefix to a list of namespaces, with the first item in the list being the current namespace for that prefix. This argument should never be given directly; it is for internal use by the rendering routines. """ if nsmap is None: nsmap = {} data = [] if not fragment: if encoding: s = '<?xml version="1.0" encoding="%s" ?>' % (encoding,) data.append(s) else: data.append('<?xml version="1.0" ?>') data.extend(self._render(nsmap)) xml = "".join(data) if encoding: xml = xml.encode(encoding) return xml def _render(self,nsmap): """Render this model as an XML fragment.""" # Determine opening and closing tags pushed_ns = False if self.meta.namespace: namespace = self.meta.namespace prefix = self.meta.namespace_prefix try: cur_ns = nsmap[prefix] except KeyError: cur_ns = [] nsmap[prefix] = cur_ns if prefix: tagname = "%s:%s" % (prefix,self.meta.tagname) open_tag_contents = [tagname] if not cur_ns or cur_ns[0] != namespace: cur_ns.insert(0,namespace) pushed_ns = True open_tag_contents.append('xmlns:%s="%s"'%(prefix,namespace)) close_tag_contents = tagname else: open_tag_contents = [self.meta.tagname] if not cur_ns or cur_ns[0] != namespace: cur_ns.insert(0,namespace) pushed_ns = True open_tag_contents.append('xmlns="%s"'%(namespace,)) close_tag_contents = self.meta.tagname else: open_tag_contents = [self.meta.tagname] close_tag_contents = self.meta.tagname # Find the attributes and child nodes attrs = [] children = [] num = 0 for f in self._fields: val = getattr(self,f.field_name) attrs.extend(f.render_attributes(self,val,nsmap)) children.extend(f.render_children(self,val,nsmap)) if len(attrs) + len(children) == num and f.required: raise RenderError("Field '%s' is missing" % (f.field_name,)) # Actually construct the XML if pushed_ns: nsmap[prefix].pop(0) open_tag_contents.extend(attrs) if children: yield "<%s>" % (" ".join(open_tag_contents),) for chld in children: yield chld yield "</%s>" % (close_tag_contents,) else: yield "<%s />" % (" ".join(open_tag_contents),) @staticmethod def _make_xml_node(xml): """Transform a variety of input formats to an XML DOM node.""" try: ntype = xml.nodeType except AttributeError: if isinstance(xml,basestring): try: xml = minidom.parseString(xml) except Exception, e: raise XmlError(e) elif hasattr(xml,"read"): try: xml = minidom.parse(xml) except Exception, e: raise XmlError(e) else: raise ValueError("Can't convert that to an XML DOM node") node = xml.documentElement else: if ntype == xml.DOCUMENT_NODE: node = xml.documentElement else: node = xml return node @classmethod def validate_xml_node(cls,node): """Check that the given xml node is valid for this object. Here 'valid' means that it is the right tag, in the right namespace. We might add more eventually... """ if node.nodeType != node.ELEMENT_NODE: err = "Class '%s' got a non-element node" err = err % (cls.__name__,) raise ParseError(err) equals = (lambda a, b: a == b) if cls.meta.case_sensitive else (lambda a, b: a.lower() == b.lower()) if not equals(node.localName, cls.meta.tagname): err = "Class '%s' got tag '%s' (expected '%s')" err = err % (cls.__name__,node.localName, cls.meta.tagname) raise ParseError(err) if cls.meta.namespace: if node.namespaceURI != cls.meta.namespace: err = "Class '%s' got namespace '%s' (expected '%s')" err = err % (cls.__name__,node.namespaceURI, cls.meta.namespace) raise ParseError(err) else: if node.namespaceURI: err = "Class '%s' got namespace '%s' (expected no namespace)" err = err % (cls.__name__,node.namespaceURI,) raise ParseError(err)
StarcoderdataPython
1950756
<filename>makeCourse/plastex/appendixnumberbeamer/__init__.py from plasTeX.PackageResource import (PackageResource, PackageCss, PackageJs, PackageTemplateDir) from plasTeX import Command, Environment, sourceArguments def ProcessOptions(options, document): tpl = PackageTemplateDir(renderers='html5',package='appendixnumberbeamer') document.addPackageResource([tpl]) class appendix(Command): args = ''
StarcoderdataPython
3463498
import numpy as np import matplotlib.pyplot as plt def generate_linerp_plot(linerp_vals_train, linerp_vals_test, title:str=''): xs_train = np.linspace(0, 1, len(linerp_vals_train)) xs_test = np.linspace(0, 1, len(linerp_vals_test)) fig = plt.figure(figsize=(8, 5)) if title != '': plt.title(title) plt.plot(xs_train, linerp_vals_train, label='Train') plt.plot(xs_test, linerp_vals_test, label='Test') plt.legend() plt.xlabel('alpha') plt.grid() return fig def generate_acts_entropy_linerp_plot(linerp_values): linerp_values = np.array(linerp_values) xs = np.linspace(0, 1, linerp_values.shape[1]) colors = plt.cm.jet(np.linspace(0, 1, linerp_values.shape[0])) fig = plt.figure(figsize=(12, 7)) for i, layer_entropies in enumerate(linerp_values): plt.plot(xs, layer_entropies, label='Layer #%d' % i, color=colors[i]) plt.legend() plt.xlabel('alpha') plt.grid() return fig def generate_weights_entropy_linerp_plot(values): xs = np.linspace(0, 1, len(values)) fig = plt.figure(figsize=(7, 5)) plt.plot(xs, values) plt.xlabel('alpha') plt.grid() return fig
StarcoderdataPython
280797
import os import struct import re import logging NFD_LABEL = "feature.node.kubernetes.io/cpu-power.sst_bf.enabled" def get_cpu_count(): dirs = os.listdir("/sys/devices/system/cpu") return len([c for c in dirs if re.search(r"^cpu[0-9]+$", c)]) def read_msr(msr, cpu=0): try: with open("/dev/cpu/{}/msr".format(cpu), "rb") as f: f.seek(msr) raw = f.read(8) val = struct.unpack("BBBBBBBB", raw) return val except IOError as err: logging.error("Could not read MSR: {}".format(err)) raise err def get_cpu_base_frequency(): b = read_msr(0xCE) # MSR_PLATFORM_INFO # Byte 1 contains the max non-turbo frequecy base_freq = b[1] * 100 return base_freq def cpus(): cpus = [] try: p1 = get_cpu_base_frequency() except Exception as err: logging.error("Could not read base freq from MSR: {}".format(err)) try: p1 = get_cpu_base_frequency_no_msr() except Exception as err: logging.error("Could not read base freq from sys fs: {}" .format(err)) return cpus for c in range(0, get_cpu_count()): try: base = read_cpu_base_freq(c) if base > p1: cpus.append(c) except IOError: logging.warning( "Could not read base frequency of CPU {}, skipping".format(c)) return cpus # reads base frequencies for each core and returns the lowest value def get_cpu_base_frequency_no_msr(): freqs = [] for c in range(0, get_cpu_count()): try: freqs.append(read_cpu_base_freq(c)) except IOError: logging.warning( "Could not read base frequency of CPU {}, skipping".format(c)) return min(freqs) def read_cpu_base_freq(cpu): base_freq = 0 base_freq_template = "/sys/devices/system/cpu/cpu{}/cpufreq/base_frequency" base_file_path = base_freq_template.format(cpu) with open(base_file_path, "r") as f: # base_frequency reports cores frequency in kHz base_freq = int(f.readline().rstrip()) / 1000 return base_freq
StarcoderdataPython
8073452
<gh_stars>0 import pkg_resources from .core import RedisChannelLayer from .local import RedisLocalChannelLayer __version__ = pkg_resources.require('asgi_redis')[0].version
StarcoderdataPython
4803930
<reponame>leylop/correlation_viewer __author__ = 'Diego' import os import PyQt4.uic if __name__ == '__main__': this_dir=os.path.dirname(__file__) qt_gui_dir=os.path.join(this_dir,'gui') PyQt4.uic.compileUiDir(qt_gui_dir)
StarcoderdataPython
12838132
<reponame>ldimaggi/acceptance-testing<gh_stars>0 # # Copyright The Helm Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import common from Kind import kind_auth_wrap needs_cluster = False class Sh(common.CommandRunner): def require_cluster(self, require): global needs_cluster if require == "True" or require == "true": needs_cluster = True else: needs_cluster = False def wrap(self, cmd): global needs_cluster if needs_cluster == True: return kind_auth_wrap(cmd) return cmd def Run(self, cmd): self.run_command(self.wrap(cmd)) def should_pass(self, cmd): self.Run(cmd) self.return_code_should_be(0) def should_fail(self, cmd): self.Run(cmd) self.return_code_should_not_be(0)
StarcoderdataPython
1900266
class TelegramData: def __init__(self, autoconv, users): self.autoconv = autoconv self.update = None self.context = None self.telegram_id = None self.udata = None self.sdata = None self.message = None self.chat_type = None self.exception = None self.users = users def __str__(self): return ( f"UPDATE {self.update}\n" f"CONTEXT {self.context}\n" f"TELEGRAM ID {self.telegram_id}\n" f"USER DATA {self.udata}\n" f"STATES DATA {self.sdata}\n" f"AUTH USERS {self.users}" ) # ---- Update functions def update_telegram_data(self, update, context): """Simple info update in TelegramData""" self.update = update self.context = context def prepare(self): """Preparing all the update info for dynamic stuff in handler""" self.message = self.update.message or self.update.callback_query.message self.telegram_id = self.update.effective_user.id self.chat_type = self.message.chat.type self.udata = self.context.user_data self.sdata = self.udata.get("data") if self.udata else None self.message = self.update.message return self # ---- Public function def save(self, *args, **kwargs): """Save key:value in user_data space""" self.context.user_data.update(*args, **kwargs) self.prepare() def add(self, key, value): """Add some value to a already stored key in user_data""" prev_value = self.udata.get(key) self.context.user_data.update({key: prev_value + value}) self.prepare() return prev_value + value def get_or_set(self, key, set_value): """Get or set a value associated to a key in user_data""" if key not in self.udata: self.save({key: set_value}) return self.udata.get(key) def delete(self, key, pop_value=None): """Delete a key in user_data""" value = self.context.user_data.pop(key, pop_value) self.prepare() return value
StarcoderdataPython
300326
<reponame>yunzhang599/Python3_Package_Examples<gh_stars>1-10 # full pymongo documentation # http://api.mongodb.org/python/current/ import pymongo client = pymongo.MongoClient("localhost", 27017) db = client.test print db.name print db.my_collection db.my_collection.save({"x": 10}) db.my_collection.save({"x": 8}) db.my_collection.save({"x": 11}) db.my_collection.find_one() for item in db.my_collection.find(): print item["x"] db.my_collection.create_index("x") for item in db.my_collection.find().sort("x", pymongo.ASCENDING): print item["x"] print [item["x"] for item in db.my_collection.find().limit(2).skip(1)]
StarcoderdataPython
1826548
#!/usr/bin/env python """ Copyright (c) 2006-2018 sqlmap developers (http://sqlmap.org/) See the file 'LICENSE' for copying permission """ import os import re import socket import threading import time class DNSQuery(object): """ Used for making fake DNS resolution responses based on received raw request Reference(s): http://code.activestate.com/recipes/491264-mini-fake-dns-server/ https://code.google.com/p/marlon-tools/source/browse/tools/dnsproxy/dnsproxy.py """ def __init__(self, raw): self._raw = raw self._query = "" type_ = (ord(raw[2]) >> 3) & 15 # Opcode bits if type_ == 0: # Standard query i = 12 j = ord(raw[i]) while j != 0: self._query += raw[i + 1:i + j + 1] + '.' i = i + j + 1 j = ord(raw[i]) def response(self, resolution): """ Crafts raw DNS resolution response packet """ retVal = "" if self._query: retVal += self._raw[:2] # Transaction ID retVal += "\x85\x80" # Flags (Standard query response, No error) retVal += self._raw[4:6] + self._raw[4:6] + "\x00\x00\x00\x00" # Questions and Answers Counts retVal += self._raw[12:(12 + self._raw[12:].find("\x00") + 5)] # Original Domain Name Query retVal += "\xc0\x0c" # Pointer to domain name retVal += "\x00\x01" # Type A retVal += "\x00\x01" # Class IN retVal += "\x00\x00\x00\x20" # TTL (32 seconds) retVal += "\x00\x04" # Data length retVal += "".join(chr(int(_)) for _ in resolution.split('.')) # 4 bytes of IP return retVal class DNSServer(object): def __init__(self): self._check_localhost() self._requests = [] self._lock = threading.Lock() try: self._socket = socket._orig_socket(socket.AF_INET, socket.SOCK_DGRAM) except AttributeError: self._socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self._socket.bind(("", 53)) self._running = False self._initialized = False def _check_localhost(self): response = "" try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("", 53)) s.send("6509012000010000000000010377777706676f6f676c6503636f6d00000100010000291000000000000000".decode("hex")) # A www.google.com response = s.recv(512) except: pass finally: if response and "google" in response: raise socket.error("another DNS service already running on *:53") def pop(self, prefix=None, suffix=None): """ Returns received DNS resolution request (if any) that has given prefix/suffix combination (e.g. prefix.<query result>.suffix.domain) """ retVal = None with self._lock: for _ in self._requests: if prefix is None and suffix is None or re.search(r"%s\..+\.%s" % (prefix, suffix), _, re.I): retVal = _ self._requests.remove(_) break return retVal def run(self): """ Runs a DNSServer instance as a daemon thread (killed by program exit) """ def _(): try: self._running = True self._initialized = True while True: data, addr = self._socket.recvfrom(1024) _ = DNSQuery(data) self._socket.sendto(_.response("127.0.0.1"), addr) with self._lock: self._requests.append(_._query) except KeyboardInterrupt: raise finally: self._running = False thread = threading.Thread(target=_) thread.daemon = True thread.start() if __name__ == "__main__": server = None try: server = DNSServer() server.run() while not server._initialized: time.sleep(0.1) while server._running: while True: _ = server.pop() if _ is None: break else: print "[i] %s" % _ time.sleep(1) except socket.error, ex: if 'Permission' in str(ex): print "[x] Please run with sudo/Administrator privileges" else: raise except KeyboardInterrupt: os._exit(0) finally: if server: server._running = False
StarcoderdataPython
1933206
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import tempfile from metrics import loading from telemetry.core.platform.profiler import perf_profiler from telemetry.page import page_measurement from telemetry.value import scalar class LoadingProfile(page_measurement.PageMeasurement): options = {'page_repeat': 2} def __init__(self): super(LoadingProfile, self).__init__(discard_first_result=True) @property def results_are_the_same_on_every_page(self): return False def CustomizeBrowserOptions(self, options): if not perf_profiler.PerfProfiler.is_supported(browser_type='any'): raise Exception('This measurement is not supported on this platform') perf_profiler.PerfProfiler.CustomizeBrowserOptions( browser_type='any', options=options) def WillNavigateToPage(self, page, tab): tab.browser.StartProfiling(perf_profiler.PerfProfiler.name(), os.path.join(tempfile.mkdtemp(), page.file_safe_name)) def MeasurePage(self, page, tab, results): # In current telemetry tests, all tests wait for DocumentComplete state, # but we need to wait for the load event. tab.WaitForJavaScriptExpression('performance.timing.loadEventStart', 300) profile_files = tab.browser.StopProfiling() loading.LoadingMetric().AddResults(tab, results) profile_file = None for profile_file in profile_files: if 'renderer' in profile_file: break for function, period in perf_profiler.PerfProfiler.GetTopSamples( profile_file, 10).iteritems(): results.AddValue(scalar.ScalarValue( results.current_page, function.replace('.', '_'), 'period', period))
StarcoderdataPython
6446241
<gh_stars>1-10 # coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from swagger_server.models.base_model_ import Model from swagger_server import util class BeaconKnowledgeMapPredicate(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, edge_label: str=None, relation: str=None, negated: bool=None): # noqa: E501 """BeaconKnowledgeMapPredicate - a model defined in Swagger :param edge_label: The edge_label of this BeaconKnowledgeMapPredicate. # noqa: E501 :type edge_label: str :param relation: The relation of this BeaconKnowledgeMapPredicate. # noqa: E501 :type relation: str :param negated: The negated of this BeaconKnowledgeMapPredicate. # noqa: E501 :type negated: bool """ self.swagger_types = { 'edge_label': str, 'relation': str, 'negated': bool } self.attribute_map = { 'edge_label': 'edge_label', 'relation': 'relation', 'negated': 'negated' } self._edge_label = edge_label self._relation = relation self._negated = negated @classmethod def from_dict(cls, dikt) -> 'BeaconKnowledgeMapPredicate': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The BeaconKnowledgeMapPredicate of this BeaconKnowledgeMapPredicate. # noqa: E501 :rtype: BeaconKnowledgeMapPredicate """ return util.deserialize_model(dikt, cls) @property def edge_label(self) -> str: """Gets the edge_label of this BeaconKnowledgeMapPredicate. Human readable name of the 'minimal' standard Biolink Model predicate relationship name. See [Biolink Model](https://biolink.github.io/biolink-model) for the full list of terms. # noqa: E501 :return: The edge_label of this BeaconKnowledgeMapPredicate. :rtype: str """ return self._edge_label @edge_label.setter def edge_label(self, edge_label: str): """Sets the edge_label of this BeaconKnowledgeMapPredicate. Human readable name of the 'minimal' standard Biolink Model predicate relationship name. See [Biolink Model](https://biolink.github.io/biolink-model) for the full list of terms. # noqa: E501 :param edge_label: The edge_label of this BeaconKnowledgeMapPredicate. :type edge_label: str """ self._edge_label = edge_label @property def relation(self) -> str: """Gets the relation of this BeaconKnowledgeMapPredicate. Human readable name of a 'maximal' Biolink Model or beacon-specific (or Reasoner-specific) predicate relationship name. # noqa: E501 :return: The relation of this BeaconKnowledgeMapPredicate. :rtype: str """ return self._relation @relation.setter def relation(self, relation: str): """Sets the relation of this BeaconKnowledgeMapPredicate. Human readable name of a 'maximal' Biolink Model or beacon-specific (or Reasoner-specific) predicate relationship name. # noqa: E501 :param relation: The relation of this BeaconKnowledgeMapPredicate. :type relation: str """ self._relation = relation @property def negated(self) -> bool: """Gets the negated of this BeaconKnowledgeMapPredicate. :return: The negated of this BeaconKnowledgeMapPredicate. :rtype: bool """ return self._negated @negated.setter def negated(self, negated: bool): """Sets the negated of this BeaconKnowledgeMapPredicate. :param negated: The negated of this BeaconKnowledgeMapPredicate. :type negated: bool """ self._negated = negated
StarcoderdataPython
1988848
from setuptools import setup import os.path import sys setup( name='pysetupdi', version='2018.10.22', packages=['pysetupdi'], url='https://github.com/gwangyi/pysetupdi', license='MIT', author='<NAME>', author_email='<EMAIL>', description='Python SetupAPI wrapper', platforms=['win32'], entry_points={ 'console_scripts': ['pysetupdi=pysetupdi.__main__:main'] } )
StarcoderdataPython