id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
3247120
"""Module for generating reports on the results of input files. .. important:: While this should work generally, autojob is currently tested on the following types of code: FEFF 9.9.1, VASP 6.2.1, and the default CONFIG assumes these code versions. """ from collections import Counter from pathlib import Path from autojob import logger from autojob.file_utils import ( exhaustive_directory_search, run_command, check_if_substring_match, ) CONFIG = { "in": { "FEFF": ["feff.inp"], "VASP": ["INCAR", "POSCAR", "KPOINTS", "POTCAR"], }, "out": { "FEFF": [["xmu.dat", None], ["feff.out", "feff ends at"]], "VASP": [ [ "OUTCAR", " General timing and accounting informations for this job:", ] ], }, } def check_computation_type(root, input_files=CONFIG["in"]): """Determines which type of computation has been completed in the directory of interest. In the cases when no input file types can be matched, or when multiple input file types are found, warnings/errors will be logged and None will be returned. Parameters ---------- root : os.PathLike The directory containing the input_files : dict, optional A dictionary that contains keys corresponding to computation types (e.g. VASP) and values of lists of file names. These file names must _all_ be present in a given directory to confirm that the calculation is of a certain type. Returns ------- str The type of calculation that the directory contains. The available options are found in DEFAULT_INPUT_FILES. """ contained = {xx.parts[-1] for xx in list(Path(root).iterdir())} overlap = { key: set(value).issubset(contained) for key, value in input_files.items() } # Check to see if for some reason there are multiple computations' input # files in one directory. This obvious is a problem. N = sum(list(overlap.values())) if N != 1: if N < 1: logger.warning(f"No matching input files found in {root}") elif N > 1: logger.error(f"More than one type of calculation found in {root}") return None # Otherwise, we simply find which one is true calc_type = [key for key, value in overlap.items() if value][0] logger.debug(f"{root} identified as {calc_type}") return calc_type def check_job_status(root, checks): """Checks the status of a job by looking in the directory of interest for the appropriate completion status. This function does not check that the provided root directory actually corresponds to the type of calculation provided will error ungracefully if it does not contain the appropriate files. Output files have their last 100 lines checked. Parameters ---------- root : os.PathLike The directory containing input and output files. checks : list of list of str A doubly nested list. The outer lists correspond to filename-substring pairs. If the substring is None, then this will simply check whether or not the file exists and is not empty. Returns ------- bool True if the job has completed successfully, False otherwise. """ for filename, substring in checks: path = Path(root) / Path(filename) logger.debug(f"Running checks {checks} on {path}") # Check for existence and that the file size is > 0 if substring is None: if not path.exists(): logger.debug(f"{path} does not exist - status FALSE") return False if path.stat().st_size == 0: logger.debug(f"{path} is empty - status FALSE") return False else: command = f"tail -n 100 {str(path)}" res = run_command(command) lines = res["stdout"].split("\n") cond = check_if_substring_match(lines, str(substring)) if not cond: logger.debug(f"{path} missing {substring} - status FALSE") return False logger.debug(f"{path} - status TRUE") return True def generate_report(root, filename, output_files=CONFIG["out"]): """Generates a report of which jobs have finished, which are still ongoing and which have failed. Currently, returns True if the job completed with seemingly no issues, and False otherwise. .. warning:: If the directories of interest cannot be identified, None will be returned. This happens if check_computation_type returns None. Warnings are issued in this case, and these directories will be ignored. Notes ----- What is checked given some calculation type is detailed below: * VASP: If the job completed, the OUTCAR file will contain timing information. * FEFF: If the job completed, there will be a non-empty xmu.dat file. Parameters ---------- root : os.PathLike Root location for the exhaustive directory search. filename : str Looks exhaustively in root for directories containing a file matching this name. identifiers : dict, optional A dictionary containing strings as keys, which identify the computation type, and sets as values, which identify input files that all must be contained in the directory to identify the directory as corresponding to a certain computation type. Default is DEFAULT_INPUT_FILES. Returns ------- dict A dictionary with keys as the paths to the directories checked and boolean values, indicating the success status of the calculation. """ logger.info(f"Generating report at {root} (searching for {filename})") # Get the directories matching the filename of the directory search directories = exhaustive_directory_search(root, filename) # For each directory in the tree, determine the type of calculation that # was run. calculation_types = {dd: check_computation_type(dd) for dd in directories} calculation_types = { key: value for key, value in calculation_types.items() if value is not None } cc = Counter(list(calculation_types.values())) # Get the statuses status = dict() complete = {ctype: 0 for ctype in cc.keys()} report = {ctype: {"success": [], "fail": []} for ctype in cc.keys()} for dd, ctype in calculation_types.items(): checks = output_files[ctype] if ctype is not None else None status[dd] = check_job_status(dd, checks=checks) complete[ctype] += int(status[dd]) if status[dd]: report[ctype]["success"].append(str(dd)) else: report[ctype]["fail"].append(str(dd)) for ctype, ncomplete in complete.items(): if ncomplete == cc[ctype]: logger.success(f"{ctype}: all {ncomplete} complete") else: logger.warning(f"{ctype} incomplete: {ncomplete}/{cc[ctype]}") return report
StarcoderdataPython
11350062
''' Module to evaluate the fitness value of a scenario ''' from pymoo.model.problem import Problem class MyProblem(Problem): def __init__(self, **kwargs): super().__init__( n_var=1, n_obj=1, n_constr=0, elementwise_evaluation=True, **kwargs ) # self.pool = ThreadPool(8) def _evaluate(self, x, out, *args, **kwargs): s = x[0] s.eval_fitness() out["F"] = s.fitness
StarcoderdataPython
1723849
from simulation.visualization import Visualizer import game_events.game_events as events class TextualVisualizer(Visualizer): def __init__(self): pass def visualize(self, event, params): if isinstance(event, events.AbilityCastStarted): self.visualize_ability_cast_started(params) elif isinstance(event, events.AbilityCastEnded): self.visualize_ability_cast_ended(params) elif isinstance(event, events.EveryoneRestoreHealthAndResources): self.visualize_everyone_restore_health_and_resources(params) def visualize_ability_cast_started(self, params): time = params["current_time"] source = params["sender"] target = params["target"] ability = params["ability"] print("[Time: {}] {} is casting {} on {}".format(time, source.name, ability.name, target.name)) def visualize_ability_cast_ended(self, params): time = params["current_time"] source = params["sender"] target = params["target"] ability = params["ability"] health_before = params["target_health_before"] health_after = params["target_health_after"] success = params["success"] if success: if health_after > 0: print("[Time: {}] {} has hit {} for {} damage, {} left.".format( time, source.name, target.name, health_before - health_after, health_after )) else: print("[Time: {}] {} has hit {} for {} damage, {} has died.".format( time, source.name, target.name, health_before - health_after, target.name )) else: print("[Time: {}] {} was not able to cast {} on {}.".format(time, source.name, ability.name, target.name)) def visualize_everyone_restore_health_and_resources(self, params): time = params["current_time"] players = params["sender"].players # pass
StarcoderdataPython
3592540
import enchant from quasimodo.data_structures.submodule_interface import SubmoduleInterface import logging dirty_words = ["their", "so", "also"] forbidden = ["used", "called", "xbox", "youtube", "xo", "quote", "quotes", "minecraft", "important", "considered", "why", "using", "as", "for", "as a", "like", "doing", "the", "would", "of", "in", "now", "tonight", "today"] totally_forbidden = ["xbox", "youtube", "xo", "quote", "quotes", "minecraft", "why", "quizlet", "nz", "wz", "quora", "reddit", "skyrim", "shippuden", "yahoo", "wikipedia", "how", "why", "brainly", "joke", "jokes", "quiz"] D_ENCHANT = enchant.Dict("en_US") def _is_totally_forbidden(sentence, forbidden): s = sentence.split(" ") if "quiz let" in sentence: return True for w in s: if w in forbidden: return True return False class FilterObjectSubmodule(SubmoduleInterface): def __init__(self, module_reference): super().__init__() self._module_reference = module_reference self._name = "Filter Object" def process(self, input_interface): logging.info("Start the filtering object") new_generated_facts = [] all_subjects = input_interface.get_subjects() for generated_fact in input_interface.get_generated_facts(): obj = generated_fact.get_object().get() if obj in forbidden or _is_totally_forbidden(obj, totally_forbidden) or len(obj) == 1: continue if " " not in obj and not D_ENCHANT.check(obj) and not obj in all_subjects: continue obj = generated_fact.get_object().get().split(" ") predicate = generated_fact.get_predicate().get() if predicate == obj[0]: obj = obj[1:] # Remove last punctuation changed_last = False if obj and obj[-1] and not obj[-1][-1].isalnum(): obj[-1] = obj[-1][:-1] changed_last = True new_obj = [] for p in obj: if p not in dirty_words: new_obj.append(p) if (obj != new_obj or changed_last) and len(new_obj) != 0: generated_fact = generated_fact.change_object(" ".join(new_obj).strip()) if len(new_obj) != 0: new_generated_facts.append(generated_fact) logging.info("%d facts were removed by the object cleaner", len(input_interface.get_generated_facts()) - len(new_generated_facts)) return input_interface.replace_generated_facts(new_generated_facts)
StarcoderdataPython
9635204
print('Ola mundo!!') a = 10
StarcoderdataPython
11397623
<gh_stars>0 #!/usr/bin/python # # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests to cover AdWordsClient.""" __author__ = ('<EMAIL> (<NAME>)', '<EMAIL> (<NAME>)') import os import StringIO import sys import unittest sys.path.insert(0, os.path.join('..', '..', '..')) import mock from adspygoogle.adwords.AdWordsClient import AdWordsClient from adspygoogle.common.Errors import ValidationError DEFAULT_HEADERS = { 'userAgent': 'Foo Bar', 'developerToken': 'devtoken' } class AdWordsClientValidationTest(unittest.TestCase): """Tests the validation logic when instantiating AdWordsClient.""" def testEmailPassOnly(self): """Tests that specifying solely email & password works.""" with mock.patch('adspygoogle.common.Utils.GetAuthToken') as mock_get_token: mock_get_token.return_value = 'FooBar' headers = DEFAULT_HEADERS.copy() headers['email'] = '<EMAIL>' headers['password'] = 'password' client = AdWordsClient(headers=headers) self.assertEquals(client._headers['authToken'], 'FooBar') mock_get_token.assert_called_once_with( '<EMAIL>', 'password', mock.ANY, mock.ANY, mock.ANY, mock.ANY, mock.ANY) def testEmailPassOthersBlank(self): """Tests that email and password with other auth blank works.""" with mock.patch('adspygoogle.common.Utils.GetAuthToken') as mock_get_token: mock_get_token.return_value = 'FooBar' headers = DEFAULT_HEADERS.copy() headers['email'] = '<EMAIL>' headers['password'] = 'password' headers['authToken'] = '' headers['oauth_credentials'] = None client = AdWordsClient(headers=headers) self.assertEquals(client._headers['authToken'], 'FooBar') mock_get_token.assert_called_once_with( '<EMAIL>', 'password', mock.ANY, mock.ANY, mock.ANY, mock.ANY, mock.ANY) def testAuthTokenOnly(self): """Tests that specifying solely authtoken works.""" headers = DEFAULT_HEADERS.copy() headers['authToken'] = 'MyToken' client = AdWordsClient(headers=headers) self.assertEquals(client._headers['authToken'], 'MyToken') def testAuthTokenOthersBlank(self): """Tests that authToken with other auth blank works.""" headers = DEFAULT_HEADERS.copy() headers['authToken'] = 'MyToken' headers['email'] = '' headers['password'] = '' headers['oauth_credentials'] = None client = AdWordsClient(headers=headers) self.assertEquals(client._headers['authToken'], 'MyToken') def testOAuth2CredentialsOnly(self): """Tests that specifying solely oauth_credentials works.""" headers = DEFAULT_HEADERS.copy() headers['oauth2credentials'] = 'credential!' client = AdWordsClient(headers=headers) self.assertTrue(client.oauth2credentials) def testOAuthCredentialsOthersBlank(self): """Tests that oauth_credentials with other auth blank works.""" headers = DEFAULT_HEADERS.copy() headers['oauth2credentials'] = 'credential!' headers['email'] = '' headers['password'] = '' headers['authToken'] = '' client = AdWordsClient(headers=headers) self.assertTrue(client.oauth2credentials) def testNonStrictThrowsValidationError(self): """Tests that even when using non-strict mode, we still raise a ValidationError when no auth credentials are provided.""" headers = DEFAULT_HEADERS.copy() config = {'strict': 'n'} def Run(): _ = AdWordsClient(headers=headers, config=config) self.assertRaises(ValidationError, Run) class AdWordsClientCaptchaHandlingTest(unittest.TestCase): """Tests the captcha handling logic.""" CAPTCHA_CHALLENGE = '''Url=http://www.google.com/login/captcha Error=CaptchaRequired CaptchaToken=DQAA<PASSWORD> CaptchaUrl=Captcha?ctoken=<KEY>''' SUCCESS = '''SID=DQAAAGgA...7Zg8CTN LSID=DQAAAGsA...lk8BBbG Auth=DQAAAGgA...dk3fA5N''' def testCaptchaHandling(self): headers = DEFAULT_HEADERS.copy() headers['email'] = '<EMAIL>' headers['password'] = 'password' client = None try: with mock.patch('urllib2.urlopen') as mock_urlopen: mock_urlopen.return_value = StringIO.StringIO(self.CAPTCHA_CHALLENGE) client = AdWordsClient(headers=headers) self.fail('Expected a CaptchaError to be thrown') except ValidationError, e: with mock.patch('urllib2.urlopen') as mock_urlopen: mock_urlopen.return_value = StringIO.StringIO(self.SUCCESS) client = AdWordsClient(headers=headers, login_token=e.root_cause.captcha_token, login_captcha='foo bar') self.assertEquals(client._headers['authToken'], 'DQAAAGgA...dk3fA5N') class AdWordsClientServiceTest(unittest.TestCase): """Tests for retrieving SOAP services via AdWordsClient.""" def setUp(self): """Prepare unittest.""" self.client = AdWordsClient(headers={'authToken': 'AUTH TOKEN', 'userAgent': 'USER AGENT', 'developerToken': 'DEV TOKEN'}) def testGetBudgetService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetBudgetService() self.assertEquals('BudgetService', service._service_name) def testGetAdGroupFeedService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetAdGroupFeedService() self.assertEquals('AdGroupFeedService', service._service_name) def testGetCampaignFeedService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetCampaignFeedService() self.assertEquals('CampaignFeedService', service._service_name) def testGetFeedItemService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetFeedItemService() self.assertEquals('FeedItemService', service._service_name) def testGetFeedMappingService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetFeedMappingService() self.assertEquals('FeedMappingService', service._service_name) def testGetFeedService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetFeedService() self.assertEquals('FeedService', service._service_name) def testGetCampaignSharedSetService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetCampaignSharedSetService() self.assertEquals('CampaignSharedSetService', service._service_name) def testGetSharedSetService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetSharedSetService() self.assertEquals('SharedSetService', service._service_name) def testGetSharedCriterionService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetSharedCriterionService() self.assertEquals('SharedCriterionService', service._service_name) def testGetAdGroupBidModifierService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetAdGroupBidModifierService() self.assertEquals('AdGroupBidModifierService', service._service_name) def testGetOfflineConversionFeedService(self): with mock.patch('adspygoogle.SOAPpy.WSDL.Proxy'): service = self.client.GetOfflineConversionFeedService() self.assertEquals('OfflineConversionFeedService', service._service_name) if __name__ == '__main__': unittest.main()
StarcoderdataPython
12844560
<gh_stars>100-1000 from typing import Union, Callable, Iterable, Optional from typing_extensions import Literal from anndata import AnnData from cellrank import logging as logg from cellrank.ul._docs import d, inject_docs from cellrank.tl._utils import _deprecate from cellrank.tl.kernels import VelocityKernel, ConnectivityKernel from cellrank.tl.kernels._base_kernel import KernelExpression from cellrank.tl.kernels._velocity_kernel import BackwardMode, VelocityMode from cellrank.tl.kernels._velocity_schemes import Scheme @_deprecate(version="2.0") @inject_docs(m=VelocityMode, b=BackwardMode, s=Scheme) # don't swap the order @d.dedent def transition_matrix( adata: AnnData, backward: bool = False, vkey: str = "velocity", xkey: str = "Ms", conn_key: str = "connectivities", gene_subset: Optional[Iterable] = None, mode: Literal[ "deterministic", "stochastic", "sampling", "monte_carlo" ] = VelocityMode.DETERMINISTIC, backward_mode: Literal["transpose", "negate"] = BackwardMode.TRANSPOSE, scheme: Union[ Literal["dot_product", "cosine", "correlation"], Callable ] = Scheme.CORRELATION, softmax_scale: Optional[float] = None, weight_connectivities: float = 0.2, density_normalize: bool = True, key: Optional[str] = None, **kwargs, ) -> KernelExpression: """ Compute a transition matrix based on a combination of RNA Velocity and transcriptomic or spatial similarity. To learn more about the way in which the transition matrices are computed, see :class:`cellrank.tl.kernels.VelocityKernel` for the velocity-based transition matrix and :class:`cellrank.tl.kernels.ConnectivityKernel` for the similarity-based transition matrix. Parameters ---------- %(adata)s %(backward)s vkey Key from ``adata.layers`` to access the velocities. xkey Key in ``adata.layers`` where expected gene expression counts are stored. conn_key Key in :attr:`anndata.AnnData.obsp` to obtain the connectivity matrix, describing cell-cell similarity. gene_subset List of genes to be used to compute transition probabilities. By default, genes from ``adata.var['velocity_genes']`` are used. %(velocity_mode)s %(velocity_backward_mode_high_lvl)s %(velocity_scheme)s %(softmax_scale)s weight_connectivities Weight given to similarities as opposed to velocities. Must be in `[0, 1]`. density_normalize Whether to use density correction when computing the transition probabilities based on similarities. Density correction is done as by :cite:`haghverdi:16`. %(write_to_adata.parameters)s kwargs Keyword arguments for :meth:`cellrank.tl.kernels.VelocityKernel.compute_transition_matrix`. Returns ------- A kernel expression object containing the computed transition matrix. %(write_to_adata)s """ def compute_velocity_kernel() -> VelocityKernel: return VelocityKernel( adata, backward=backward, vkey=vkey, xkey=xkey, gene_subset=gene_subset, conn_key=conn_key, ).compute_transition_matrix( softmax_scale=softmax_scale, mode=mode, backward_mode=backward_mode, scheme=scheme, **kwargs, ) if 0 < weight_connectivities < 1: vk = compute_velocity_kernel() logg.info(f"Using a connectivity kernel with weight `{weight_connectivities}`") ck = ConnectivityKernel( adata, backward=backward, conn_key=conn_key ).compute_transition_matrix(density_normalize=density_normalize) final = ( (1 - weight_connectivities) * vk + weight_connectivities * ck ).compute_transition_matrix() elif weight_connectivities == 0: final = compute_velocity_kernel() elif weight_connectivities == 1: final = ConnectivityKernel( adata, backward=backward, conn_key=conn_key, ).compute_transition_matrix(density_normalize=density_normalize) else: raise ValueError( f"Parameter `weight_connectivities` must be in range `[0, 1]`, found `{weight_connectivities}`." ) final.write_to_adata(key=key) return final
StarcoderdataPython
6456620
<reponame>sireliah/polish-python # Copyright 2006 Google, Inc. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. """Fixer that turns <> into !=.""" # Local imports z .. zaimportuj pytree z ..pgen2 zaimportuj token z .. zaimportuj fixer_base klasa FixNe(fixer_base.BaseFix): # This jest so simple that we don't need the pattern compiler. _accept_type = token.NOTEQUAL def match(self, node): # Override zwróć node.value == "<>" def transform(self, node, results): new = pytree.Leaf(token.NOTEQUAL, "!=", prefix=node.prefix) zwróć new
StarcoderdataPython
6703335
<reponame>sanghyun-son/srwarp<filename>src/data/sr/benchmark/urban100.py from os import path from data.sr import base class Urban100(base.SRBase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def get_path(self) -> str: return path.join(self.dpath, 'benchmark', 'urban100')
StarcoderdataPython
5100665
<reponame>dy1zan/softwarecapstone from .company import Company
StarcoderdataPython
1707995
# coding: utf-8 # # This code is part of qclib. # # Copyright (c) 2021, <NAME> import os.path import pickle from collections.abc import MutableMapping from typing import Iterable, Any def cachekey(*args, **kwargs): argstr = "; ".join(str(x) for x in args) kwargstr = "; ".join(f"{k}={v}" for k, v in kwargs.items()) return "; ".join(s for s in [argstr, kwargstr] if s) class Cache(MutableMapping): def __init__(self, file: str = "", autosave=True): super().__init__() self._data = dict() self.file = file self.auotsave = autosave self.load() @staticmethod def key(*args, **kwargs): return cachekey(*args, **kwargs) def on_change(self): if self.auotsave: self.save() def __len__(self) -> int: return len(self._data) def __iter__(self) -> Iterable[Any]: return iter(self._data) def __getitem__(self, key: str) -> Any: return self._data[key] def __setitem__(self, key: str, value: Any) -> None: self._data[key] = value self.on_change() def __delitem__(self, key: str) -> None: del self._data[key] self.on_change() def clear(self) -> None: self._data.clear() self.on_change() def save(self) -> None: if self.file: with open(self.file, "wb") as fh: pickle.dump(self._data, fh) def load(self) -> None: if os.path.isfile(self.file): with open(self.file, "rb") as fh: self._data = pickle.load(fh) cache = Cache("cache.pkl", autosave=True)
StarcoderdataPython
12836341
<filename>pitfall/utils.py # Copyright 2019 Ali (@bincyber) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import exceptions from Cryptodome.Cipher import AES from Cryptodome.Hash import SHA1, SHA256 from Cryptodome.Protocol.KDF import PBKDF2 from Cryptodome.Random import get_random_bytes from datetime import datetime from pathlib import Path from typing import Dict, Tuple import base64 import distutils.spawn import uuid def get_random_string(length: int = 32) -> str: """ This function returns an alphanumeric string of the requested length. :param int length: the length of the random string. Max of 32 characters :returns: a random string :rtype: str """ if length > 32: length = 32 elif length <= 0: length = 1 random_string = uuid.uuid4().hex return random_string[:length] def generate_project_name() -> str: """ This fuction generates and returns a unique name for the Pulumi Project. :returns: a unique project name :rtype: str """ random_string = get_random_string(16) project_name = f"pitf-project-{random_string}" return project_name def generate_stack_name() -> str: """ This fuction generates and returns a unique name for the Pulumi Stack """ random_string = get_random_string(16) stack_name = f"pitf-stack-{random_string}" return stack_name def get_project_backend_url(path: Path = None) -> Dict[str, str]: """ This fuction returns the location of the Pulumi state directory. By default, the current working directory. :param Path path: a path object :returns: dictionary containing a file URL pointing to the Pulumi state directory :rtype: dict """ if path is None: path = Path.cwd() return {"url": path.as_uri()} def generate_aes_encryption_key(password: str, salt: bytes = None) -> Tuple[bytes, bytes]: """ uses PBKDF2 with SHA256 HMAC to derive a 32-byte encryption key from the provided password """ if salt is None: salt = get_random_bytes(8) return PBKDF2(password, salt, 32, count=1000000, hmac_hash_module=SHA256), salt def encrypt_with_aes_gcm(key: bytes, plaintext: bytes) -> Tuple[bytes, bytes, bytes]: """ encrypts plaintext using 256-bit AES in GCM mode """ nonce = get_random_bytes(12) cipher = AES.new(key=key, nonce=nonce, mode=AES.MODE_GCM, mac_len=16) ciphertext, mac = cipher.encrypt_and_digest(plaintext) return nonce, ciphertext, mac def decrypt_with_aes_gcm(key: bytes, nonce: bytes, ciphertext: bytes, mac: bytes) -> bytes: """ decrypts 256-bit AES encrypted ciphertext """ cipher = AES.new(key=key, nonce=nonce, mode=AES.MODE_GCM, mac_len=16) plaintext = cipher.decrypt_and_verify(ciphertext, mac) return plaintext def generate_encryptionsalt(password: str) -> Tuple[bytes, str]: """ generates the base64 encoded string for the encryptionsalt field in Pulumi stack files """ plaintext = b'pulumi' key, salt = generate_aes_encryption_key(password) nonce, ciphertext, mac = encrypt_with_aes_gcm(key, plaintext) # 16-byte MAC tag is appended to the ciphertext message = ciphertext + mac salt_b64 = base64.b64encode(salt).decode('utf-8') nonce_b64 = base64.b64encode(nonce).decode('utf-8') message_b64 = base64.b64encode(message).decode('utf-8') encryptionsalt = f"v1:{salt_b64}:v1:{nonce_b64}:{message_b64}" return key, encryptionsalt def get_encrypted_secret(plaintext: bytes, key: bytes) -> str: """ returns a base64 formatted encrypted Pulumi secret """ nonce, ciphertext, mac = encrypt_with_aes_gcm(key, plaintext) # 16-byte MAC tag is appended to the ciphertext message = ciphertext + mac nonce_b64 = base64.b64encode(nonce).decode('utf-8') message_b64 = base64.b64encode(message).decode('utf-8') encrypted_secret = f"v1:{nonce_b64}:{message_b64}" return encrypted_secret def get_current_timestamp() -> str: """ returns the current date and time in ISO 8601 format """ return datetime.now().astimezone().isoformat() def sha1sum(data: bytes) -> str: """ returns the SHA1 hash of the provided data """ h = SHA1.new() h.update(data) return h.hexdigest() def sha256sum(data: bytes) -> str: """ returns the SHA256 hash of the provided data """ h = SHA256.new() h.update(data) return h.hexdigest() def decode_utf8(data: bytes) -> str: return data.decode('utf-8') def get_directory_abspath(path: Path) -> Path: if not path.is_dir(): path = path.parent return path.absolute() def find_pulumi_binary() -> str: location = distutils.spawn.find_executable('pulumi') if location is None: raise exceptions.PulumiBinaryNotFoundError("Could not find the pulumi binary on the system") return location
StarcoderdataPython
6463718
# Stem module for Tensorflow. A stem is a structure that contains one or more # substructures called subobjects. These subobjects may be classes that inherit from stem # or from leaf. Note it is up to inheriting classes whether the subobjects are arranged # in series, in parallel, or a combination. # # <NAME> #------------------------------------------------------------------------------- from deepnodal.python.concepts.leaf import * #------------------------------------------------------------------------------- class stem (structure): # we inherit structure because a stem is never a leaf """ A stem is a structure that supports and broadcasts specifications to many subobjects. Note a subobject may be another stem or a leaf (the default). The stem class is abstract and inheriting classes must define self.__call__(inp) to be instantiated. """ # public def_name = 'stem' # default name def_subobject = leaf # default subobject class def_subobject_name = 'subobject' # default subobject name # protected _subobjects = None # subobject instances which may be leaves or stems _n_subobjects = None # number of subobjects _subobject = leaf # subobject class _unit_subobject = None # flag to state unit subobject _subobject_name = 'subobject' # default subobject name if not unit_subobject _spec_type = None # container type to give specifications to subobjects (dict not allowed) _inp = None # input _out = None # output _params = None # parameters - collated from subobjects _n_params = None # len(parameters) _outputs = None # parameters - collated from subobjects _n_outputs = None # len(parameters) _ex_outputs = False # flag to include exhaustive list of all outputs #------------------------------------------------------------------------------- def __init__(self, name = None, dev = None): self.set_name(name) self.set_dev(dev) self.set_ex_outputs() # Note this flag is only pertinent the function classes self.set_subobject() self.set_subobjects() #------------------------------------------------------------------------------- def set_name(self, name = None): self.name = name if name is not None else self.def_name if self._subobjects is None: return for i, subobject in enumerate(self._subobjects): # no point re-naming subobjects if unit_subobject is true subobject_name = self.name if self._unit_subobject else self.name + "/" + self._subobject_name + "_" + str(i) subobject.set_name(subobject_name) #------------------------------------------------------------------------------- def set_dev(self, dev = None): self.dev = dev if self._subobjects is None: return for subobject in self._subobjects: subobject.set_dev(dev) #------------------------------------------------------------------------------- def set_ex_outputs(self, _ex_outputs = False): self.ex_outputs = _ex_outputs #------------------------------------------------------------------------------- def ret_ex_outputs(self, _ex_outputs = False): return self.ex_outputs #------------------------------------------------------------------------------- def set_subobject(self, subobject = None, subobject_name = None): """ This sets the class-type of each subobject and associated name prior to indexing. """ self._subobject = subobject if subobject is not None else self.def_subobject self._subobject_name = subobject_name if subobject_name is not None else self.def_subobject_name #------------------------------------------------------------------------------- def set_subobjects(self, subobjects = None): """ This allows either manually setting the list of subobjects, or if subobjects is an integer it instantiates that number of subobjects. """ self._subobjects = subobjects self._n_subobjects = 0 self._unit_subobject = None if self._subobjects is None: return self._subobjects elif type(self._subobjects) is list: self._n_subobjects = len(self._subobjects) self._unit_subobject = self._n_subobjects == 1 # it would be quite rude to rename or redevice these subobjects so we won't elif type(subobjects) is int: self._n_subobjects = subobjects self._unit_subobject = self._n_subobjects == 1 self._subobjects = [self._subobject() for i in range(self._n_subobjects)] self.set_name(self.name) # this renames all subobjects self.set_dev(self.dev) # this redevices all subobjects else: raise TypeError("Unrecognised subobjects specification.") return self._subobjects #------------------------------------------------------------------------------- def add_subobjects(self, count = 1): if self._subobjects is None: self._subobjects = [] for i in range(count): self._subobjects.append(self._subobject()) self._n_subobjects = len(self._subobjects) self._unit_subobject = self._n_subobjects == 1 self.set_name(self.name) # this renames all subobjects self.set_dev(self.dev) # this redevices all subobjects if count == 1: return self._subobjects[-1] return self._subobjects[-count:] #------------------------------------------------------------------------------- def set_inp(self, inp = None): self._inp = inp self._out = None return self.inp #------------------------------------------------------------------------------- def __getitem__(self, index): return self._subobjects[index] #------------------------------------------------------------------------------- def __len__(self): return self._n_subobjects #------------------------------------------------------------------------------- @abstractmethod def __call__(self, inp = None): # this function is for calling graph objects pass #------------------------------------------------------------------------------- def ret_inp(self): return self._inp #------------------------------------------------------------------------------- def ret_out(self): return self._out #------------------------------------------------------------------------------- def _set_spec(self, func, spec = None, *args, **kwds): """ Allows set_specing of a specification to all subobjects in the following form: return [func(subobject, spec, *args, **kwds) for subobject in enumerate(self.subobjects)] ...or... return [func(subobject, spec[i], *args[i], **kwds[i]) for i, subobject in enumerate(self.subobjects)] ...or... any such combination. """ if type(spec) is tuple: if len(spec) > 0: if isinstance(spec[0], structure): return [func(subobject, spec, *args, **kwds) for subobject in self._subobjects] if isinstance(spec, (dict, set)): return [func(subobject, spec, *args, **kwds) for subobject in self._subobjects] if self._spec_type is None: return [func(subobject, spec, *args, **kwds) for i, subobject in enumerate(self._subobjects)] if type(spec) is not self._spec_type: spec = self._spec_type([spec] * self._n_subobjects) elif len(spec) != self._n_subobjects: raise ValueError("Specification incommensurate with number of subobjects") if len(kwds): if len(args) == 1: args = args[0] if type(args) is not self._spec_type: args = self._spec_type([args] * self._n_subobjects) elif len(args) != self._n_subobjects: raise ValueError("Specification arguments incommensurate with number of subobjects") return [func(subobject, spec[i], args[i], **kwds) for i, subobject in enumerate(self._subobjects)] elif len(args): return [func(subobject, spec[i], *args, **kwds) for i, subobject in enumerate(self._subobjects)] else: return [func(subobject, spec[i], **kwds) for i, subobject in enumerate(self._subobjects)] elif len(args) == 1: args = args[0] if type(args) is dict: kwds = dict(args) return [func(subobject, spec[i], **kwds) for i, subobject in enumerate(self._subobjects)] elif type(args) is self._spec_type: if len(args) != self._n_subobjects: raise ValueError("Specification arguments incommensurate with number of subobjects") return [func(subobject, spec[i], args[i]) for i, subobject in enumerate(self._subobjects)] else: return [func(subobject, spec[i], args) for i, subobject in enumerate(self._subobjects)] elif len(args): return [func(subobject, spec[i], args) for i, subobject in enumerate(self._subobjects)] else: return [func(subobject, spec[i]) for i, subobject in enumerate(self._subobjects)] #------------------------------------------------------------------------------- def _setup_params(self): """ Collates lists of parameter ordered dictionaries to a single list self.params. Classes inheriting from stemes do not possess autonomous parameter lists but must collate their lists from subobjects, until eventually reaching leaf-derived classes each of which may posses an autonomous parameter list associated with a single TensorFlow call. """ assert self._called, "Cannot setup params without object being called" self._params = [] if self._subobjects: for obj in self._subobjects: self._params.extend(obj._setup_params()) self._n_params = len(self._params) return self._params #------------------------------------------------------------------------------- def ret_params(self, param_spec = None, ret_indices = False): """ Returns parameter mappings (and associated indices if ret_indices is True) depending on the value of param_spec: param_spec = None (or True): returns all parameters param_spec = a string: returns parameters which includes that string in the name param_spec = list of booleans/sublists of booleans: allow subobject specification """ if not(self._called): return self, stem.ret_params, param_spec, ret_indices if self._params is None: self._setup_params() elif not(len(self._params)): self._setup_params() if param_spec is None: if not ret_indices: return self._params else: return list(range(len(self._params))) params = [] indices = [] if type(param_spec) is bool: if param_spec: params = self._params indices = list(range(len(self._params))) elif type(param_spec) is str: for i, param in enumerate(self._params): if param_spec in list(param)[0]: params.append(param) indices.append(i) elif len(param_spec) != self._n_subobjects: raise ValueError("Parameter specification incommensurate with hierarchical structure") else: for i, spec in enumerate(param_spec): params += self._subobjects[i].ret_params(spec) for param in params: param_name = list(param)[0] param_object = param[param_name] for i, _param in enumerate(self.params): _param_name = list(_param)[0] if _param[_param_name] == param_object: indices.append(i) if not ret_indices: return params else: return indices #------------------------------------------------------------------------------- def _ret_param(self, param_spec = None): """ Identical to self.ret_params but with checking of a unique result and returns the mapping itself. """ if not(self._called): return self, stem._ret_param, param_spec param = self.ret_params(param_spec) if len(param) != 1: raise ValueError("Specification " + str(param_spec) + " returns " + str(len(param)) + " results.") return param[0] #------------------------------------------------------------------------------- def ret_param(self, param_spec = None): """ Identical to self._ret_param but returns the graph object rather than mapping. """ if not(self._called): return self, stem.ret_param, param_spec param = self._ret_param(param_spec) return list(param.values())[0] #------------------------------------------------------------------------------- def _setup_moments(self): """ Collates lists of moments ordered dictionaries to a single list self._moments. Classes inheriting from stemes do not possess autonomous moment lists but must collate their lists from subobjects, until eventually reaching leaf-derived classes each of which may posses an autonomous parameter list associated with a single TensorFlow call. """ self._moments = [] if self._subobjects: for subobject in self._subobjects: subobject._setup_moments() self._moments += subobject._moments self._n_moments = len(self._moments) return self._moments #------------------------------------------------------------------------------- def ret_moments(self): """ Returns moment mappings """ return self._moments #------------------------------------------------------------------------------- def _setup_updates(self): """ Collates lists of updates ordered dictionaries to a single list self._updates. Classes inheriting from stemes do not possess autonomous moment lists but must collate their lists from subobjects, until eventually reaching leaf-derived classes each of which may posses an autonomous parameter list associated with a single TensorFlow call. """ self._updates = [] if self._subobjects: for subobject in self._subobjects: subobject._setup_updates() self._updates += subobject._updates self._n_updates = len(self._updates) return self._updates #------------------------------------------------------------------------------- def ret_updates(self): """ Returns update mappings """ return self._updates #------------------------------------------------------------------------------- def _setup_outputs(self): """ Collates lists of output ordered dictionaries to a single list self.outputs. Classes inheriting from stemes do not possess autonomous outputs lists but must collate their lists from subobjects, until eventually reaching leaf-derived classes each of which may posses an autonomous output list associated with a single TensorFlow call. """ self._outputs = [] for subobject in self._subobjects: subobject._setup_outputs() self._outputs += subobject._outputs self._n_outputs = len(self._outputs) return self._outputs #------------------------------------------------------------------------------- def ret_outputs(self, output_spec = None): """ Similar to self.ret_params but for outputs rather than parameters. """ if not(self._called): return self, stem.ret_outputs, output_spec if output_spec is None: return self._outputs outputs = [] if type(output_spec) is bool: if output_spec: outputs = self._outputs elif len(output_spec) != self._n_subobjects: raise ValueError("Outputs specification incommensurate with hierarchical structure") else: for i, spec in enumerate(output_spec): outputs += self._subobjects[i].ret_outputs(spec) return outputs #------------------------------------------------------------------------------- def _ret_output(self, output_spec = None): """ Identical to self.ret_outputs but with checking of a unique result and returns the mapping itself. """ if not(self._called): return self, stem._ret_output, output_spec output = self._ret_outputs(outputs_spec) if len(output) != 1: raise ValueError("Specification " + str(output_spec) + " returns " + str(len(output)) + " results.") return output[0] #------------------------------------------------------------------------------- def ret_output(self, output_spec = None): """ Identical to self._ret_output but returns the graph object rather than mapping. """ if not(self._called): return self, stem._ret_output, output_spec output = self._ret_output(output_spec) return list(output.values())[0] #-------------------------------------------------------------------------------
StarcoderdataPython
3360701
<gh_stars>0 def get_form(): from .forms import CustomCommentForm return CustomCommentForm
StarcoderdataPython
6444473
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from auto_scan_test import MkldnnAutoScanTest from program_config import TensorConfig, ProgramConfig, OpConfig import numpy as np from functools import partial import unittest from hypothesis import given import hypothesis.strategies as st class TestMkldnnShapeOp(MkldnnAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self, *args, **kwargs): def generate_input(*args, **kwargs): return np.random.random(kwargs['in_shape']).astype(kwargs[ 'in_dtype']) shape_op = OpConfig( type="shape", inputs={"Input": ["input_data"]}, outputs={"Out": ["output_data"]}) program_config = ProgramConfig( ops=[shape_op], weights={}, inputs={ "input_data": TensorConfig(data_gen=partial(generate_input, *args, **kwargs)), }, outputs=["output_data"]) yield program_config def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_mkldnn=True) yield config, (1e-5, 1e-5) @given( in_shape=st.lists( st.integers( min_value=1, max_value=3), min_size=1, max_size=9), in_dtype=st.sampled_from([np.float32, np.uint16, np.int8, np.uint8])) def test(self, *args, **kwargs): self.run_test(quant=False, *args, **kwargs) if __name__ == "__main__": unittest.main()
StarcoderdataPython
8104911
<gh_stars>1-10 import os files = ['maya_modeling_v001.mb','maya_modeling_v002.mb','maya_modeling_v003.mb', 'head_model_v001.mb','head_model_v002.mb','head_model_v003.mb','head_model_v004.mb'] def create_file_list(files): files_list = [] for file in files: name , ext = os.path.splitext(file) name = name.split('_') del name[-1] name = "_".join(name) if name not in files_list: files_list.append(name) return files_list def get_version(files, file_names): for file in files: for parent in file_names: if file.startswith(parent): print(file) # if file in file_names: # print(file) file_names = (create_file_list(files)) get_version(files, file_names)
StarcoderdataPython
3205175
<reponame>jorisvandenbossche/DS-python-geospatial<gh_stars>10-100 # Make a Grey scale plot gent_f.sum(dim="band").plot.imshow(cmap="Greys", figsize=(9, 5))
StarcoderdataPython
1806071
import edgeiq import pandas as pd import os import cv2 """ Use pose estimation to determine human poses in realtime. Human Pose returns a list of key points indicating joints that can be used for applications such as activity recognition and augmented reality. To change the engine and accelerator, follow this guide: https://alwaysai.co/docs/application_development/changing_the_engine_and_accelerator.html To install app dependencies in the runtime container, list them in the requirements.txt file. """ POSES = [ "Tree_Pose_or_Vrksasana_", "Extended_Revolved_Triangle_Pose_or_Utthita_Trikonasana_", "Warrior_I_Pose_or_Virabhadrasana_I_", "Warrior_II_Pose_or_Virabhadrasana_II_", "Warrior_III_Pose_or_Virabhadrasana_III_" ] def main(): pose_estimator = edgeiq.PoseEstimation("alwaysai/human-pose") pose_estimator.load(engine=edgeiq.Engine.DNN) print("Loaded model:\n{}\n".format(pose_estimator.model_id)) print("Engine: {}".format(pose_estimator.engine)) print("Accelerator: {}\n".format(pose_estimator.accelerator)) key_points = [ 'Neck', 'Right Shoulder', 'Right Elbow', 'Right Wrist', 'Left Shoulder', 'Left Elbow', 'Left Wrist', 'Right Hip', 'Right Knee', 'Right Ankle', 'Left Hip', 'Left Knee', 'Left Ankle'] header = {} for key_point in key_points: header['{} x'.format(key_point)] = [] header['{} y'.format(key_point)] = [] for pose in POSES: df = pd.DataFrame(header) print('Generating results for {}'.format(pose)) image_paths = edgeiq.list_images(os.path.join('images', 'downloads', pose)) for image_path in image_paths: try: image = cv2.imread(image_path) results = pose_estimator.estimate(image) if len(results.poses) > 0: results = results.poses[0].key_points # Filter only desired key points results = {key: value for key, value in results.items() if key in key_points} new_row = pd.DataFrame(header) for key, value in results.items(): if key not in key_points: continue new_row['{} x'.format(key)] = [value[0]] new_row['{} y'.format(key)] = value[1] df = df.append(new_row, ignore_index=True) else: print('Skipping {}, no pose detected!'.format(image_path)) except Exception as e: print('Exception on {}! {}'.format(image_path, e)) df.to_csv('{}.csv'.format(pose)) if __name__ == "__main__": main()
StarcoderdataPython
5093399
#!/usr/bin/env python # # Author: <NAME> (mmckerns @caltech and @uqfoundation) # Copyright (c) 2008-2016 California Institute of Technology. # Copyright (c) 2016-2021 The Uncertainty Quantification Foundation. # License: 3-clause BSD. The full license text is available at: # - https://github.com/uqfoundation/dill/blob/master/LICENSE """ global settings for Pickler """ try: from pickle import DEFAULT_PROTOCOL except ImportError: from pickle import HIGHEST_PROTOCOL as DEFAULT_PROTOCOL settings = { #'main' : None, 'protocol' : DEFAULT_PROTOCOL, 'byref' : False, #'strictio' : False, 'fmode' : 0, #HANDLE_FMODE 'recurse' : False, 'ignore' : False, } del DEFAULT_PROTOCOL
StarcoderdataPython
1960328
<reponame>JCSDA/mpas-jedi<gh_stars>1-10 import datetime as dt import os import sys import numpy import numpy as np from netCDF4 import Dataset # http://code.google.com/p/netcdf4-python/ import matplotlib.cm as cm import matplotlib.pyplot as plt from copy import deepcopy from datetime import datetime, timedelta import modelsp_utils as mu def write_diag_stats(): if os.path.exists(mu.expStats+'.nc'): os.remove(mu.expStats+'.nc') path = os.getcwd() date = path.split('/')[-2] initDate = datetime.strptime(date,"%Y%m%d%H") lats, lons = mu.readGrid() for varName in mu.varNames: for latBand in range(0, len(mu.latBands)): tmp = [] meanncs = [] rmsncs = [] msncs = [] for fcTDelta in np.arange(0, mu.fcRange+mu.interval,mu.interval): fcDate = initDate + timedelta(days=fcTDelta) fileDate= fcDate.strftime("%Y-%m-%d_%H.%M.%S") ncFile1 = mu.GFSANA_DIR+'/x1.40962.init.'+fileDate+'.nc' ncFile2 = '../restart.'+fileDate+'.nc' tmp = mu.varDiff(varName,ncFile1,ncFile2) #bin for regions tmpbin = [] tmpbin = deepcopy(tmp) tmpbin[np.logical_or(lats < mu.latBandsBounds [latBand+1], lats > mu.latBandsBounds [latBand])] = np.NaN #save every level stat newfile = write_stats(tmpbin,varName,mu.latBands[latBand],str(fcTDelta)) meannc = np.nanmean(tmpbin.flatten(),axis=0) rmsnc = np.sqrt(np.nanmean(tmpbin.flatten()**2,axis=0)) msnc = np.nanmean(tmpbin.flatten()**2,axis=0) meanncs = np.append(meanncs,meannc) rmsncs = np.append(rmsncs,rmsnc) msncs = np.append(msncs,msnc) #save all levels stat newfile = write_stats_levall(meanncs,varName,mu.latBands[latBand],'Mean') newfile = write_stats_levall(rmsncs,varName,mu.latBands[latBand],'RMS') newfile = write_stats_levall(msncs,varName,mu.latBands[latBand],'MS') #TODO: move the following functions to plot_utils.py or basic_plot_functions.py def write_stats(array_f,varNames,band,fcTDelta): STATS = {} STATS['Mean'] = np.nanmean(array_f,axis=0) STATS['MS'] = np.nanmean(array_f**2,axis=0) STATS['RMS'] = np.sqrt(np.nanmean(array_f**2,axis=0)) STATS['STD'] = np.nanstd(array_f,axis=0) STATS['Min'] = np.nanmin(array_f,axis=0) STATS['Max'] = np.nanmax(array_f,axis=0) if os.path.exists(mu.expStats+'.nc'): w_nc_fid = Dataset(mu.expStats+'.nc', 'a', format='NETCDF4') else: w_nc_fid = Dataset(mu.expStats+'.nc', 'w', format='NETCDF4') w_nc_fid.description = "MPAS diagnostics/statistics" w_nc_fid.createDimension('level', 55) w_nc_fid.createDimension('fcnums', int(mu.fcNums)) w_nc_fid.createDimension('levelP1', 56) w_nc_fid.createDimension('levelSurface', 1) for statName in mu.allFileStats: if varNames in mu.varNames3d: if (varNames == 'w'): bias2exp = w_nc_fid.createVariable(mu.expStats+"_day"+fcTDelta+"_"+band+"_"+varNames+"_"+statName,'f4', "levelP1") else: bias2exp = w_nc_fid.createVariable(mu.expStats+"_day"+fcTDelta+"_"+band+"_"+varNames+"_"+statName,'f4', "level") else: bias2exp = w_nc_fid.createVariable(mu.expStats+"_day"+fcTDelta+"_"+band+"_"+varNames+"_"+statName,'f4', "levelSurface") w_nc_fid.variables[mu.expStats+"_day"+fcTDelta+'_'+band+'_'+varNames+'_'+statName][:] = STATS[statName] w_nc_fid.close() def write_stats_levall(array_f,varNames,band,statName): if os.path.exists(mu.expStats+'.nc'): w_nc_fid = Dataset(mu.expStats+'.nc', 'a', format='NETCDF4') else: w_nc_fid = Dataset(mu.expStats+'.nc', 'w', format='NETCDF4') w_nc_fid.description = "MPAS diagnostics/statistics" bias2exp = w_nc_fid.createVariable(mu.expStats+"_"+band+"_"+varNames+"_"+statName,'f4', "fcnums") w_nc_fid.variables[mu.expStats+'_'+band+'_'+varNames+'_'+statName][:] = array_f w_nc_fid.close() def main(): write_diag_stats() if __name__ == '__main__': main()
StarcoderdataPython
6558338
from node import Node # Comment it before submitting # class Node: # def __init__(self, left=None, right=None, value=0): # self.right = right # self.left = left # self.value = value def insert(root, key): if root is None: root = Node(value=key) return root if key < root.value: if root.left is not None: insert(root.left, key) else: root.left = Node(value=key) elif key >= root.value: if root.right is not None: insert(root.right, key) else: root.right = Node(value=key) return root
StarcoderdataPython
162376
<filename>morpfw/authn/pas/user/typeinfo.py<gh_stars>1-10 from .model import UserCollection, UserModel from .schema import UserSchema from .path import get_user, get_user_collection from ..app import App @App.typeinfo(name='morpfw.pas.user',schema=UserSchema) def get_typeinfo(request): return { 'title': 'User', 'description': 'User type', 'schema': UserSchema, 'collection': UserCollection, 'collection_factory': get_user_collection, 'model': UserModel, 'model_factory': get_user, 'internal': True }
StarcoderdataPython
1612447
from flask import json from flaskapp.models import Paper from test.main.base_classes import BaseMCQQuestion from test.main.base_classes import BaseSubQuestion from test.main.utils import test_post_request class PaperGenerateRequest(BaseSubQuestion, BaseMCQQuestion): def test_paper_generate_request(self): data = dict(questions=[1, 2, 3], total_marks=30) response = self.client.post( "/course/1/papers/generate/request", data=json.dumps(data), headers={"Content-Type": "application/json"}, ) self.assertIn( (b"You should be redirected automatically to target URL: " b"<a href=/course/1/papers/generate/form/ >"), response.data, ) def test_handle_conflicting_questions(self): data = dict(mcq={ "ask": [1, 3], "nask": [2, 4] }, sub={ "ask": [1, 3], "nask": [2, 4] }) response = self.client.post( "/papers/handle/conflicts", data=json.dumps(data), headers={"Content-Type": "application/json"}, ) data1 = json.loads(response.get_data(as_text=True)) self.assertEqual(data1["status"], "OK") def test_mark_distribution_form(self): self.test_paper_generate_request() data = { "Unit:01": "30", "Knowledge": "10", "Comprehension": "10", "Application": "10", "Easy": "10", "Medium": "10", "Hard": "10", "Que.1.A": "5", "Que.2.A": "5", "Que.2.B": "5", "Que.3.A": "5", "Que.3.B": "5", "Que.3.C": "5", "sub": 15, "mcq": 15, } response, _ = test_post_request(self, "/course/1/papers/generate/form/", data) self.assertIn(b"<title>Mark Distribution</title>", response.data) response = self.client.post( "/course/1/papers/confirm/template/", data=json.dumps(dict(status="OK")), headers={"Content-Type": "application/json"}, ) self.assertIn( (b"You should be redirected automatically to target URL: " b"<a href=/course/1/papers/generate/ >"), response.data, ) def test_generate_and_confirm_paper(self): self.test_paper_generate_request() self.test_mark_distribution_form() data = { "name": "paper1", "term": "winter", "exam_date": "2020-10-15", "time_limit": "2", } test_post_request(self, "/course/1/papers/generate/", data, Paper, 1) # testing gerenated paper with self.mail.record_messages() as outbox: data = {"generate": "YES", "examiner_email": "<EMAIL>"} test_post_request(self, "papers/confirm/1", data=data) self.assertEqual(1, len(outbox)) self.assertEqual("Paper for paper1", outbox[0].subject) def test_pdf_paper(self): self.test_paper_generate_request() self.test_mark_distribution_form() self.test_generate_and_confirm_paper() response = self.client.get('/papers/1') self.assertIn(b"Answer the following Multiple choice questions", response.data)
StarcoderdataPython
8090856
"""The module contains package wide custom exceptions and warnings. """ class NotProfiledError(ValueError, AttributeError): """Exception class to raise if profiling results are acquired before calling `profile`. This class inherits from both ValueError and AttributeError to help with exception handling """
StarcoderdataPython
6453670
<reponame>keithfma/py_ice_cascade from setuptools import setup import py_ice_cascade as ic setup( name=ic.__name__, version=ic.__version__, description=ic._description, url=ic._url, author=ic._author, author_email=ic._author_email, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Programming Language :: Python :: 3.5', 'Operating System :: POSIX :: Linux', 'License :: OSI Approved :: MIT License'], packages=['py_ice_cascade'], package_data={'py_ice_cascade' : ['data/*']}, install_requires=[], )
StarcoderdataPython
11200516
<filename>cli.py """ Inputs: - predefined config - GPU # check with nvidia-smi first # Run from within tmux python cli.py run ./output/cli/ 1 wiki.bert_base__joint__seq512 python cli.py run ./output/cli/ 2 wiki.bert_base__joint__seq256 ... """ import json import logging import os import pickle import sys from importlib import import_module import fire logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) def run(output_dir, gpu_id: int, config_name, **override_config): """ :param output_dir: :param gpu_id: GPU (-1 == CPU) :param config_name: Predefined experiment config :param override_config: Use kwargs to override config variables, e.g., --foo__bar=1 (nested dict with __) :return: """ output_dir = os.path.join(output_dir, config_name) logger.info(f'Starting... {config_name}') if os.path.exists(output_dir): logger.error(f'Output dir exist already: {output_dir}') sys.exit(1) # GPU if gpu_id < 0: logger.info('GPU is disabled') else: os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) # check with nvidia-smi import torch if not torch.cuda.is_available(): logger.error('CUDA is not available!') sys.exit(1) # Predefined configs config_name = 'experiments.predefined.' + config_name try: package, module_name = config_name.rsplit('.', 1) module = import_module(package) config = getattr(module, module_name) assert isinstance(config, dict) == True except ValueError: logger.error(f'Cannot load experiment config from: {config_name}') sys.exit(1) # Override config from experiments.predefined import update from experiments.utils import unflatten if override_config: override_config = unflatten(override_config) logger.info(f'Override config with: {override_config}') config = update(config, override_config) from experiments import Experiment exp = Experiment(**config) exp.run(mode=2) # save os.makedirs(output_dir) exp.output_dir = output_dir with open(os.path.join(output_dir, 'experiment.pickle'), 'wb') as f: # json.dump(exp.to_dict(), f) pickle.dump(exp.to_dict(), f) with open(os.path.join(output_dir, 'reports.json'), 'w') as f: json.dump(exp.reports, f) exp.save() logger.info('Done') def build_script(input_dir, output_dir, gpu_ids, missing_only=False, **override_config): """ python cli.py build_script ./output/4fold ./output/4fold_results/ 0,1,2,3 --missing_only=1 :param input_dir: :param output_dir: :param gpu_ids: :param missing_only: :param override_config: :return: """ from experiments.utils import chunk configs = [ 'bert_base__joint__seq128', 'bert_base__joint__seq256', 'bert_base__joint__seq512', 'bert_base__siamese__seq128__2d', 'bert_base__siamese__seq128__3d', 'bert_base__siamese__seq128__4d', 'bert_base__siamese__seq256__2d', 'bert_base__siamese__seq256__3d', 'bert_base__siamese__seq256__4d', 'bert_base__siamese__seq512__2d', 'bert_base__siamese__seq512__3d', 'bert_base__siamese__seq512__4d', 'xlnet_base__joint__seq128', 'xlnet_base__joint__seq256', 'xlnet_base__joint__seq512', 'xlnet_base__siamese__seq128__2d', 'xlnet_base__siamese__seq128__3d', 'xlnet_base__siamese__seq128__4d', 'xlnet_base__siamese__seq256__2d', 'xlnet_base__siamese__seq256__3d', 'xlnet_base__siamese__seq256__4d', 'xlnet_base__siamese__seq512__2d', 'xlnet_base__siamese__seq512__3d', 'xlnet_base__siamese__seq512__4d', ] # python cli.py run ./output/cli/ 2 wiki.bert_base__siamese__seq128__2d runs = [] for k in sorted(os.listdir(input_dir)): for k_config in configs: runs.append((os.path.join(output_dir, k), os.path.join(input_dir, k), k_config)) gpu_ids = list(gpu_ids) if isinstance(gpu_ids, list) else [gpu_ids] missing = 0 for i, gpu_runs in enumerate(chunk(runs, len(gpu_ids))): gpu_id = gpu_ids[i] for out_dir, in_dir, cfg in gpu_runs: if not missing_only or not os.path.exists(out_dir): missing += 1 print(f'python cli.py run {out_dir} {gpu_id} wiki.{cfg} --data_helper_params__train_dataframe_path={in_dir}/train.csv --data_helper_params__test_dataframe_path={in_dir}/test.csv') #print(gpu_id) # pass print() print(f'# GPU cores: {len(gpu_ids)}') print(f'# Configs: {len(configs)}') print(f'# Runs: {len(runs)} (missing: {missing}') print(f'# Folds: {len(os.listdir(input_dir))}') if __name__ == '__main__': fire.Fire()
StarcoderdataPython
3269332
import mobula @mobula.op.register class AttSamplerGrid: def __init__(self, scale=1.0, dense=4, iters=5): self.scale = scale self.dense = dense self.iters = iters def forward(self, data, attx, atty):#data[1, 1, 224, 224] attx[1, 224, 1] F = self.F._mobula_hack # attx: (N, W, 1) # atty: (N, H, 1) N, _, in_size, in_sizey = data.shape#N大概是batch_size. in_size是图片的宽度224 att_size = attx.shape[1]#的到图片的宽度 att_sizey = atty.shape[1] out_size = int(in_size * self.scale)#输出的size和输入的size一样大 out_sizey = int(in_sizey * self.scale)#输出的size和输入的size一样大 #print('out_sizey',out_sizey) #threshold应该是 方大缩小的界限 threshold = float(self.scale * self.dense * in_size) / att_size #print('threshold',threshold) #attention的尺寸根据输入和输出的尺寸改变 attx = attx * out_size atty = atty * out_sizey #print('attx',attx) for j in range(self.iters): max_attx = F.max(attx, 1, keepdims=True) # (N, 1, 1) #print('max_attx',max_attx) max_atty = F.max(atty, 1, keepdims=True) # (N, 1, 1) #print('max_atty',max_atty) if j == 0: threshold = F.minimum(F.minimum( max_attx, max_atty), threshold) # (N, 1, 1) else: threshold = F.minimum(max_attx, max_atty) #print(j) #print(threshold) #print('attx',attx) F.broadcast_minimum(threshold, attx, out=attx) #print('attx',attx) F.broadcast_minimum(threshold, atty, out=atty) sum_x = F.sum(attx, 1, keepdims=True) # (N, 1, 1) sum_y = F.sum(atty, 1, keepdims=True) # (N, 1, 1) deltax = (out_size - sum_x) / att_size deltay = (out_sizey - sum_y) / att_sizey # compensate the drop value attx += deltax atty += deltay ''' it is the same as the original implemenation. the first element is 1. ''' attx[:, 0] = 1 #print(attx) atty[:, 0] = 1 #产生逆变换函数的过程 attxi = F.cumsum(attx, 1)#新的attention坐标300 #print('attxi',attxi) attyi = F.cumsum(atty, 1) stepx = attxi[:, -1] / out_size stepy = attyi[:, -1] / out_sizey #stepy tensor([[1.0034]]) ctx = F.get_ctx(stepx) #创建随机变量的过程 index_x = F.empty((N, out_sizey, 1), ctx=ctx)#-1,1 应该是 index_y = F.empty((N, out_size, 1), ctx=ctx) #应该是逆变换的过程(离散逆变换的过程,涉及插值的部分) mobula.func.map_step(N, attxi, index_y, stepx, att_size, out_size) mobula.func.map_step(N, attyi, index_x, stepy, att_sizey, out_sizey) #GG = F.tile(F.reshape(index_x, (N, 1, out_sizey)), (1, out_size, 1)) #MM = F.tile(index_y, (1, 1, out_sizey)) #print('GG',GG) #print('GG',GG.shape) #print('MM',MM) #print('GG',MM.shape) return F.tile(F.reshape(index_x, (N, 1, out_sizey)), (1, out_size, 1)),\ F.tile(index_y, (N, 1, out_sizey)) def backward(self, dy_x, dy_y): return [0, 0, 0] def infer_shape(self, in_shape): #in_shape [torch.Size([1, 1, 342, 400]), torch.Size([1, 342, 1]), torch.Size([1, 400, 1])] dshape = in_shape[0] out_size = int(dshape[2] * self.scale) #dshape1 = in_shape[1] out_size1 = int(dshape[3] * self.scale) #print('out_size1',out_size1.shape) oshape = (dshape[0], out_size, out_size1) return in_shape, [oshape, oshape]
StarcoderdataPython
172821
<gh_stars>1-10 from tkinter import * from tkinter import END class SimpleInfoBox(Frame): def __init__(self, master, row, column, background='#ADD8E6'): Frame.__init__(self, master, background=background) self.grid(row=row, column=column) self.info = 'Loading Information' self.info_text = None self.main_theme = '#ADD8E6' self.highlight_theme = '#91B6CE' self.on_create() def on_create(self): info_box = Frame(self) info_box.grid(row=0, column=1) inner_info_box = Frame(info_box, width=640, height=240, background=self.highlight_theme) inner_info_box.grid(row=0, column=0) upper_border_info_box = Frame(inner_info_box, width=660, height=2, background=self.highlight_theme) upper_border_info_box.grid(row=0, column=0) info_text = Text(inner_info_box, bg='#DCDCDC', width=99, height=17) info_text.grid(row=1, column=0) lower_border_info_box = Frame(inner_info_box, width=660, height=2, background=self.highlight_theme) lower_border_info_box.grid(row=2, column=0) scroll_bar = Scrollbar(inner_info_box) scroll_bar.grid(row=1, column=1, sticky='nw') scroll_bar.configure(relief='flat') info_text.configure(font=('calibri', (10)), relief='flat') scroll_bar.config(command=info_text.yview) info_text.config(yscrollcommand=scroll_bar.set) info_text.insert(END, self.info) info_text.config(state=DISABLED) self.info_text = info_text lower_border_info_box = Frame(info_box, width=714, height=5, background= self.main_theme) lower_border_info_box.grid(row=3, column=0) def set_info_text(self, info): self.info_text.config(state=NORMAL) self.info_text.delete('1.0', END) self.info_text.insert(END, info) self.info_text.config(state=DISABLED)
StarcoderdataPython
9723347
<reponame>hboshnak/python_toolbox # Copyright 2009-2017 <NAME>. # This program is distributed under the MIT license. import sys from python_toolbox.math_tools import binomial def test(): assert binomial(7, 3) == 35 assert binomial(0, 0) == 1 assert binomial(1, 0) == 1 assert binomial(0, 1) == 0 assert binomial(1543, 634) == 127103521979248139661884595050302692072114625333816461647571438364482801578062268185939019831927710543644891679108093639691467979466411177318250931548804667267192030646116875003881007119966764992383016174407823444352165249728639847571592229832113238415348489512831060701471487834812550521403788703534654431344329462541634971732197170414906629071055802381322184009159362499960475076746698583466181504060523973736761406471112019069930703149760846502951040
StarcoderdataPython
12806992
#Escreva um programa que obtenha um nome de um arquivo texto do usuário e crie um processo para executar o programa do sistema Windows bloco de notas (notepad) para abrir o arquivo. import subprocess,sys def cria_arquivo(): nome = str(input("Digite o nome do arquivo:")) file = open(f"{nome}.txt", "w") file.write("This is my notepad!") file.close() def abre_arquivo(): arquivo = str(input("Digite o nome do arquivo que deseja abrir:")) print(subprocess.run(["notepad", f"{arquivo}.txt"])) def main(): print("1-Criar arquivo notepad\n2-Abrir arquivo notepad\n3-Fechar programa") while True: opção = int(input("Escolha uma opção:")) if opção == 1: cria_arquivo() elif opção == 2: abre_arquivo() elif opção == 3: sys.exit() else: print("Opção inválida") main()
StarcoderdataPython
6518207
<reponame>Srkline3/25-TkinterAndMQTT """ Using a Brickman (robot) as the receiver of messages. """ # Same as m2_fake_robot_as_mqtt_sender, # but have the robot really do the action. # Implement just FORWARD at speeds X and Y is enough. import ev3dev.ev3 as ev3 import time import math class SimpleRoseBot(object): def __init__(self): self.left_motor = Motor('B') self.right_motor = Motor('C') def go(self, left_speed, right_speed): self.left_motor.turn_on(left_speed) self.right_motor.turn_on(right_speed) def stop(self): self.left_motor.turn_off() self.right_motor.turn_off() def go_straight_for_seconds(self, seconds, speed): start_time = time.time() self.go(speed, speed) while True: current_time = time.time() if current_time - start_time >= seconds: break self.stop() def go_straight_for_inches(self, inches, speed): delta_s = (inches/self.left_motor.WheelCircumference)*360 start_distance = self.left_motor.get_position() self.go(speed, speed) while True: current_distance = self.left_motor.get_position() if current_distance - start_distance >= delta_s: break self.stop() class DelegateThatReceives(object): # self.bobob = SimpleRoseBot() def forward(self, left_speed, right_speed): bobob = SimpleRoseBot() bobob.go(left_speed, right_speed) def main(): name1 = input("Enter one name (subscriber): ") name2 = input("Enter another name (publisher): ") my_delegate = DelegateThatReceives() mqtt_client = com.MqttClient(my_delegate) mqtt_client.connect(name1, name2) time.sleep(1) # Time to allow the MQTT setup. print() while True: time.sleep(0.01) # Time to allow message processing ############################################################################### # The Motor and ColorSensor classes. USE them, but do NOT modify them. ############################################################################### class Motor(object): WheelCircumference = 1.3 * math.pi def __init__(self, port): # port must be 'B' or 'C' for left/right wheels self._motor = ev3.LargeMotor('out' + port) def turn_on(self, speed): # speed must be -100 to 100 self._motor.run_direct(duty_cycle_sp=speed) def turn_off(self): self._motor.stop(stop_action="brake") def get_position(self): # Units are degrees (that the motor has rotated). return self._motor.position def reset_position(self): self._motor.position = 0
StarcoderdataPython
9638089
<reponame>FreeDiscovery/jwzthreading<filename>setup.py try: from setuptools import setup except ImportError: from distutils.core import setup from jwzthreading.jwzthreading import __version__ kw = { 'name': 'jwzthreading', 'version': __version__, 'description': 'Algorithm for threading mail messages.', 'long_description' : '''Contains an implementation of an algorithm for threading mail messages, as described at http://www.jwz.org/doc/threading.html.''', 'author': "<NAME> et al", 'packages': ['jwzthreading'], 'classifiers': [ 'Development Status :: 3 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Topic :: Software Development :: Libraries', 'Topic :: Communications :: Email', ] } setup(**kw)
StarcoderdataPython
281914
<reponame>wenhaopeter/read_pytorch_code<gh_stars>0 import torch.distributed.rpc as rpc import torch.testing._internal.dist_utils class RpcAgentTestFixture(object): @property def world_size(self): return 4 @property def init_method(self): return torch.testing._internal.dist_utils.INIT_METHOD_TEMPLATE.format( file_name=self.file_name ) @property def rpc_backend(self): return rpc.backend_registry.BackendType[ torch.testing._internal.dist_utils.TEST_CONFIG.rpc_backend_name ] @property def rpc_backend_options(self): return torch.testing._internal.dist_utils.TEST_CONFIG.build_rpc_backend_options( self )
StarcoderdataPython
89513
<gh_stars>0 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('geoinfo', '0006_auto_20160524_1954'), ] operations = [ migrations.AlterField( model_name='spatialreport', name='report_on', field=models.ForeignKey(related_name='layers_reported_on', to='geoinfo.GISLayerMaster', null=True, blank=True), ), ]
StarcoderdataPython
9727300
<filename>AtCoder/ABC066/B/abc066_b.py<gh_stars>1-10 s = list(input())[0:-1] t = 1 while s[0:len(s)//2] != s[len(s)//2:]: s.pop() t += 1 print(len("".join(s)))
StarcoderdataPython
3527273
# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input import tensorflow as tf import numpy as np import tritonclient.http as httpclient from tritonclient.utils import triton_to_np_dtype def process_image(image_path="img1.jpg"): img = image.load_img(image_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) return preprocess_input(x) transformed_img = process_image() # Setting up client triton_client = httpclient.InferenceServerClient(url="localhost:8000") test_input = httpclient.InferInput("input_1", transformed_img.shape, datatype="FP32") test_input.set_data_from_numpy(transformed_img, binary_data=True) test_output = httpclient.InferRequestedOutput("predictions", binary_data=True, class_count=1000) # Querying the server results = triton_client.infer(model_name="resnet50", inputs=[test_input], outputs=[test_output]) test_output_fin = results.as_numpy('predictions') print(test_output_fin)
StarcoderdataPython
4879018
<reponame>kaka-lin/ML-Courses<gh_stars>0 import numpy as np import matplotlib.pyplot as plt import math def sign(x): if x >= 0: return 1 else: return -1 def logistic(x): return 1 / (1 + math.exp(-x)) def err01(x, y): if sign(x) == y: return 0 else: return 1 def err1(x, y): return max(0, 1 - y * x) def err2(x, y): return pow(max(0, 1 - y * x), 2) def err3(x, y): return max(0, -y * x) def err4(x, y): return logistic(-y * x) def err5(x, y): return math.exp(-y * x) x_range = np.arange(-2, 2, 0.0001) y_log = [] err_01 = [] err_1 = [] err_2 = [] err_3 = [] err_4 = [] err_5 = [] y = 1 for i in range(len(x_range)): y_log.append(logistic(x_range[i])) err_01.append(err01(x_range[i], y)) err_1.append(err1(x_range[i], y)) err_2.append(err2(x_range[i], y)) err_3.append(err3(x_range[i], y)) err_4.append(err4(x_range[i], y)) err_5.append(err5(x_range[i], y)) plt.figure(figsize = (20, 7)) plt.subplot(321) plt.plot(x_range, y_log, label = r'$\frac{1}{1 + \mathrm{exp(-w^Tx)}}$', color = 'red' ) plt.plot(x_range, err_01, label = r'$err0/1$' ) plt.legend() plt.subplot(322) plt.plot(x_range, err_1, label = r'$(max(0, 1-y\mathrm{\mathbf{w^Tx}}))^2$', color = 'blue' ) # max(0, 1 − ywT x) plt.plot(x_range, err_01, label = r'$[[sign(\mathrm{\mathbf{w^Tx}} )\neq y]]$' ) plt.legend() plt.subplot(323) plt.plot(x_range, err_2, label = r'$(max(0, 1-y\mathrm{\mathbf{w^Tx}}))^2$', color = 'black' ) # pow(max(0, 1 − ywT x), 2) plt.plot(x_range, err_01, label = r'$[[sign(\mathrm{\mathbf{w^Tx}} )\neq y]]$' ) plt.legend() plt.subplot(324) plt.plot(x_range, err_3, label = r'$max(0, -y\mathrm{\mathbf{w^Tx}})$', color = 'yellow' ) # max(0, −ywT x) plt.plot(x_range, err_01, label = r'$[[sign(\mathrm{\mathbf{w^Tx}} )\neq y]]$' ) plt.legend() plt.subplot(325) plt.plot(x_range, err_4, label = r'$\theta(-y\mathrm{\mathbf{w^Tx}})$', color = 'green' ) # θ(−ywT x) plt.plot(x_range, err_01, label = r'$[[sign(\mathrm{\mathbf{w^Tx}} )\neq y]]$' ) plt.legend() plt.subplot(326) plt.plot(x_range, err_5, label = r'$exp(-y\mathrm{\mathbf{w^Tx}})$', color = '#AE0000' ) # exp(−ywT x) plt.plot(x_range, err_01, label = r'$[[sign(\mathrm{\mathbf{w^Tx}} )\neq y]]$' ) plt.legend() plt.savefig('hw3_2.png', dpi = 100) plt.show()
StarcoderdataPython
3300692
from urllib import request url = "http://quotes.toscrape.com/" # 设置需要打开的链接 resp = request.urlopen(url) # 使用请求函数打开链接 print(resp.read()) # 打印获取到的信息
StarcoderdataPython
4964393
<reponame>jdavidagudelo/tensorflow-models # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import numpy as np from research.steve import nn from research.steve.learner import CoreModel class DeterministicWorldModel(CoreModel): """ A simple feed-forward neural network world model, with an option for an ensemble. """ @property def saveid(self): return "worldmodel" def create_params(self, env_config, learner_config): self.obs_dim = np.prod(env_config["obs_dims"]) self.action_dim = env_config["action_dim"] self.reward_scale = env_config["reward_scale"] self.discount = env_config["discount"] self.aux_hidden_dim = self.learner_config["aux_hidden_dim"] self.transition_hidden_dim = self.learner_config["transition_hidden_dim"] self.bayesian_config = self.learner_config["bayesian"] with tf.variable_scope(self.name): if self.bayesian_config: self.transition_predictor = nn.EnsembleFeedForwardNet('transition_predictor', self.obs_dim + self.action_dim, [self.obs_dim], layers=8, hidden_dim=self.transition_hidden_dim, get_uncertainty=True, ensemble_size=self.bayesian_config["transition"][ "ensemble_size"], train_sample_count= self.bayesian_config["transition"][ "train_sample_count"], eval_sample_count= self.bayesian_config["transition"][ "eval_sample_count"]) self.done_predictor = nn.EnsembleFeedForwardNet('done_predictor', self.obs_dim + self.obs_dim + self.action_dim, [], layers=4, hidden_dim=self.aux_hidden_dim, get_uncertainty=True, ensemble_size=self.bayesian_config["transition"][ "ensemble_size"], train_sample_count=self.bayesian_config["transition"][ "train_sample_count"], eval_sample_count=self.bayesian_config["transition"][ "eval_sample_count"]) self.reward_predictor = nn.EnsembleFeedForwardNet('reward_predictor', self.obs_dim + self.obs_dim + self.action_dim, [], layers=4, hidden_dim=self.aux_hidden_dim, get_uncertainty=True, ensemble_size=self.bayesian_config["reward"][ "ensemble_size"], train_sample_count=self.bayesian_config["reward"][ "train_sample_count"], eval_sample_count=self.bayesian_config["reward"][ "eval_sample_count"]) else: self.transition_predictor = nn.FeedForwardNet('transition_predictor', self.obs_dim + self.action_dim, [self.obs_dim], layers=8, hidden_dim=self.transition_hidden_dim, get_uncertainty=True) self.done_predictor = nn.FeedForwardNet('done_predictor', self.obs_dim + self.obs_dim + self.action_dim, [], layers=4, hidden_dim=self.aux_hidden_dim, get_uncertainty=True) self.reward_predictor = nn.FeedForwardNet('reward_predictor', self.obs_dim + self.obs_dim + self.action_dim, [], layers=4, hidden_dim=self.aux_hidden_dim, get_uncertainty=True) def get_ensemble_idx_info(self): if self.bayesian_config is not False: ensemble_idxs = tf.random_shuffle(tf.range(self.transition_predictor.ensemble_size)) transition_ensemble_sample_n = self.transition_predictor.eval_sample_count reward_ensemble_sample_n = self.reward_predictor.eval_sample_count ensemble_idxs = ensemble_idxs[:transition_ensemble_sample_n] return ensemble_idxs, transition_ensemble_sample_n, reward_ensemble_sample_n else: return None, 1, 1 def build_training_graph(self, obs, next_obs, actions, rewards, dones, data_size): info = tf.concat([obs, actions], -1) predicted_next_obs = self.transition_predictor(info, is_eval=False, reduce_mode="random") + obs next_info = tf.concat([next_obs, info], -1) predicted_dones = self.done_predictor(next_info, is_eval=False, reduce_mode="random") predicted_rewards = self.reward_predictor(next_info, is_eval=False, reduce_mode="random") done_losses = tf.nn.sigmoid_cross_entropy_with_logits(labels=dones, logits=predicted_dones) reward_losses = .5 * tf.square(rewards - predicted_rewards) next_obs_losses = .5 * tf.reduce_sum(tf.square(next_obs - predicted_next_obs), -1) done_loss = tf.reduce_mean(done_losses) reward_loss = tf.reduce_mean(reward_losses) next_obs_loss = tf.reduce_mean(next_obs_losses) reg_loss = .0001 * (self.done_predictor.l2_loss() + self.reward_predictor.l2_loss() + self.transition_predictor.l2_loss()) total_loss = done_loss + reward_loss + next_obs_loss + reg_loss inspect = (total_loss, done_loss, reward_loss, next_obs_loss, reg_loss) return total_loss, inspect def init_extra_info(self, obs): return tf.zeros_like(obs) def transition(self, obs, action, extra_info, ensemble_idxs=None, pre_expanded=None): info = tf.concat([obs, action], -1) next_obs_delta = self.transition_predictor(info, reduce_mode="none", ensemble_idxs=ensemble_idxs, pre_expanded=pre_expanded) if ensemble_idxs is None: next_obs = tf.expand_dims(obs, -2) + next_obs_delta next_info = tf.concat([next_obs, tf.expand_dims(info, -2)], -1) else: next_obs = obs + next_obs_delta next_info = tf.concat([next_obs, info], -1) done = tf.nn.sigmoid( self.done_predictor(next_info, reduce_mode="none", ensemble_idxs=ensemble_idxs, pre_expanded=True)) extra_info = tf.zeros_like(obs) return next_obs, done, extra_info def get_rewards(self, obs, action, next_obs): next_info = tf.concat([next_obs, obs, action], -1) reward = self.reward_predictor(next_info, reduce_mode="none") return reward
StarcoderdataPython
3228254
import cv2 from glob import glob import numpy as np import random from sklearn.utils import shuffle import pickle import os def pickle_images_labels(): images_labels = [] images = glob("gestures/*/*.jpg") images.sort() for image in images: print(image) label = image[image.find(os.sep)+1: image.rfind(os.sep)] img = cv2.imread(image, 0) images_labels.append((np.array(img, dtype=np.uint8), int(label))) return images_labels images_labels = pickle_images_labels() images_labels = shuffle(shuffle(shuffle(shuffle(images_labels)))) images, labels = zip(*images_labels) print("Length of images_labels", len(images_labels)) train_images = images[:int(5/6*len(images))] print("Length of train_images", len(train_images)) with open("train_images", "wb") as f: pickle.dump(train_images, f) del train_images train_labels = labels[:int(5/6*len(labels))] print("Length of train_labels", len(train_labels)) with open("train_labels", "wb") as f: pickle.dump(train_labels, f) del train_labels test_images = images[int(5/6*len(images)):int(11/12*len(images))] print("Length of test_images", len(test_images)) with open("test_images", "wb") as f: pickle.dump(test_images, f) del test_images test_labels = labels[int(5/6*len(labels)):int(11/12*len(images))] print("Length of test_labels", len(test_labels)) with open("test_labels", "wb") as f: pickle.dump(test_labels, f) del test_labels val_images = images[int(11/12*len(images)):] print("Length of test_images", len(val_images)) with open("val_images", "wb") as f: pickle.dump(val_images, f) del val_images val_labels = labels[int(11/12*len(labels)):] print("Length of val_labels", len(val_labels)) with open("val_labels", "wb") as f: pickle.dump(val_labels, f) del val_labels
StarcoderdataPython
5172781
# -*- coding: utf-8 -*- # Copyright 2019 Cohesity Inc. class GlacierRetrievalTypeEnum(object): """Implementation of the 'GlacierRetrievalType' enum. Specifies the way data needs to be retrieved from the external target. This information will be filled in by Iris and Magneto will pass it along to the Icebox as it is to support bulk retrieval from Glacier. Specifies the type of Restore Task. 'kStandard' specifies retrievals that allow to access any of your archives within several hours. Standard retrievals typically complete within 3–5 hours.This is the default option for retrieval requests that do not specify the retrieval option. 'kBulk' specifies retrievals that are Glacier’s lowest-cost retrieval option, which can be use to retrieve large amounts, even petabytes, of data inexpensively in a day. Bulk retrieval typically complete within 5–12 hours. 'kExpedited' specifies retrievals that allows to quickly access your data when occasional urgent requests for a subset of archives are required. For all but the largest archives (250 MB+), data accessed using Expedited retrievals are typically made available within 1–5 minutes. Attributes: KSTANDARD: TODO: type description here. KBULK: TODO: type description here. KEXPEDITED: TODO: type description here. """ KSTANDARD = 'kStandard' KBULK = 'kBulk' KEXPEDITED = 'kExpedited'
StarcoderdataPython
4863530
import os import sys import logging import inspect import fossor from fossor.engine import Fossor logging.basicConfig(stream=sys.stdout, level=logging.INFO) log = logging.getLogger(__name__) def test_no_popen_usage(): f = Fossor() for plugin in f.list_plugins(): for line in inspect.getsourcelines(plugin)[0]: print(line) if 'popen' in line: log.error("os.popen is deprecated as of python 2.6, please use the plugin.py shell_call method instead.") log.error('os.popen usage located in {plugin} for line {line}'.format(plugin=plugin, line=line)) assert 'popen' not in line def test_has_license(): fossor_path = fossor.__path__[0] test_path = fossor_path + '/../test' paths = [fossor_path, test_path] for path in paths: for root, dirs, files in os.walk(path): for file in files: if file == '__init__.py': continue if os.path.splitext(file)[-1] != '.py': continue filepath = os.path.join(root, file) has_license = False license = 'BSD-2 Clause license' with open(filepath, 'rt') as f: for line in f: if license in line: has_license = True break if not has_license: raise Exception(f"File: {filepath} does not have the license: {license}")
StarcoderdataPython
8048712
import torch.nn as nn from .dropout import LockedDropout class Embedding(nn.Embedding): def __init__(self, num_embeddings, embedding_dim, dropoute=.0, dropout=.0, **kwargs): super(Embedding, self).__init__(num_embeddings, embedding_dim, **kwargs) self.dropoute = dropoute self.drop = LockedDropout(dropout) self.weight.data.uniform_(-0.1, 0.1) if self.padding_idx is not None: self.weight.data[self.padding_idx] = 0 def forward(self, input): emb = super(Embedding, self).forward(input) if self.training and self.dropoute > 0: input_flatten = input.flatten() mask = emb.new(self.num_embeddings).bernoulli_(1 - self.dropoute) / (1 - self.dropoute) mask = mask[input_flatten].view_as(input).unsqueeze(-1).expand_as(emb) emb = emb * mask return self.drop(emb)
StarcoderdataPython
3320544
from pynwb import TimeSeries import numpy as np from bisect import bisect, bisect_left def get_timeseries_tt(node: TimeSeries, istart=0, istop=None) -> np.ndarray: """ For any TimeSeries, return timestamps. If the TimeSeries uses starting_time and rate, the timestamps will be generated. Parameters ---------- node: pynwb.TimeSeries istart: int, optional Optionally sub-select the returned times - lower bound istop: int, optional Optionally sub-select the returned times - upper bound Returns ------- numpy.ndarray """ if node.timestamps is not None: return node.timestamps[istart:istop] else: if not np.isfinite(node.starting_time): starting_time = 0 else: starting_time = node.starting_time if istop is None: return np.arange(istart, len(node.data)) / node.rate + starting_time elif istop > 0: return np.arange(istart, istop) / node.rate + starting_time else: return ( np.arange(istart, len(node.data) + istop - 1) / node.rate + starting_time ) def get_timeseries_maxt(node: TimeSeries) -> float: """ Returns the maximum time of any TimeSeries Parameters ---------- node: pynwb.TimeSeries Returns ------- float """ if node.timestamps is not None: return node.timestamps[-1] elif np.isnan(node.starting_time): return (len(node.data) - 1) / node.rate else: return (len(node.data) - 1) / node.rate + node.starting_time def get_timeseries_mint(node: TimeSeries) -> float: """ Returns the minimum time of any TimeSeries Parameters ---------- node: pynwb.TimeSeries Returns ------- float """ if node.timestamps is not None: return node.timestamps[0] elif np.isnan(node.starting_time): return 0 else: return node.starting_time def get_timeseries_in_units(node: TimeSeries, istart=None, istop=None): """ Convert data into the designated units Parameters ---------- node: pynwb.TimeSeries istart: int istop: int Returns ------- numpy.ndarray, str """ data = node.data[istart:istop] if node.conversion and np.isfinite(node.conversion): data = data * node.conversion unit = node.unit else: unit = None return data, unit def timeseries_time_to_ind(node: TimeSeries, time, ind_min=None, ind_max=None) -> int: """ Get the index of a certain time for any TimeSeries. For TimeSeries that use timestamps, bisect is used. You can optionally provide ind_min and ind_max to constrain the search. Parameters ---------- node: pynwb.TimeSeries time: float ind_min: int, optional ind_max: int, optional Returns ------- """ if node.timestamps is not None: kwargs = dict() if ind_min is not None: kwargs.update(lo=ind_min) if ind_max is not None: kwargs.update(hi=ind_max) id_found = bisect_left(node.timestamps, time, **kwargs) return id_found if id_found < len(node.data) else len(node.data) - 1 else: if np.isnan(node.starting_time): starting_time = 0 else: starting_time = node.starting_time id_found = int(np.ceil((time - starting_time) * node.rate)) return id_found if id_found < len(node.data) else len(node.data) - 1 def bisect_timeseries_by_times( timeseries: TimeSeries, starts, duration: float, traces=None ): """ Parameters ---------- timeseries: TimeSeries starts: iterable time at which to bisect duration: float duration of window after start traces: int index into the second dim of data Returns ------- out: list list with bisected arrays from data """ out = [] for start in starts: if timeseries.rate is not None: idx_start = int((start - timeseries.starting_time) * timeseries.rate) idx_stop = int(idx_start + duration * timeseries.rate) else: idx_start = bisect(timeseries.timestamps, start) idx_stop = bisect(timeseries.timestamps, start + duration, lo=idx_start) if len(timeseries.data.shape) > 1 and traces is not None: out.append(timeseries.data[idx_start:idx_stop, traces]) else: out.append(timeseries.data[idx_start:idx_stop]) return out def align_by_times_with_timestamps( timeseries: TimeSeries, starts, duration: float, traces=None ): """ Parameters ---------- timeseries: TimeSeries timeseries with variable timestamps starts: array-like starts in seconds duration: float duration in seconds Returns ------- out: list list: length=(n_trials); list[0]: array, shape=(n_time, ...) """ assert timeseries.timestamps is not None, "supply timeseries with timestamps" return bisect_timeseries_by_times(timeseries, starts, duration, traces) def align_by_times_with_rate( timeseries: TimeSeries, starts, duration: float, traces=None ): """ Parameters ---------- timeseries: TimeSeries timeseries with variable timestamps starts: array-like starts in seconds duration: float duration in seconds Returns ------- out: list list: length=(n_trials); list[0]: array, shape=(n_time, ...) """ assert timeseries.rate is not None, "supply timeseries with start_time and rate" return np.array(bisect_timeseries_by_times(timeseries, starts, duration, traces)) def align_timestamps_by_trials( timeseries: TimeSeries, starts, before: float, after: float ): """ Parameters ---------- timeseries: TimeSeries timeseries with variable timestamps starts: array-like starts in seconds duration: float duration in seconds Returns ------- out: list list: length=(n_trials); list[0]: array, shape=(n_time, ...) """ assert timeseries.timestamps is not None, "supply timeseries with timestamps" out = [] for start in starts: idx_start = bisect(timeseries.timestamps, start) idx_stop = bisect(timeseries.timestamps, start + before + after, lo=idx_start) out.append(timeseries.timestamps[idx_start:idx_stop]) return [list(np.array(i) - i[0] - before) for i in out] def align_by_trials( timeseries: TimeSeries, start_label="start_time", before=0.0, after=1.0, ): """ Args: timeseries: TimeSeries start_label: str default: 'start_time' before: float time after start_label in secs (positive goes back in time) after: float time after stop_label in secs (positive goes forward in time) Returns: np.array(shape=(n_trials, n_time, ...)) """ trials = timeseries.get_ancestor("NWBFile").trials return align_by_time_intervals(timeseries, trials, start_label, before, after) def align_by_time_intervals( timeseries: TimeSeries, intervals, start_label="start_time", before=0.0, after=0.0, traces=None, ): """ Args: timeseries: pynwb.TimeSeries intervals: pynwb.epoch.TimeIntervals start_label: str default: 'start_time' before: float time after start_label in secs (positive goes back in time) after: float time after stop_label in secs (positive goes forward in time) timestamps: bool if alignment uses timestamps or constant rate and starting time in TimeSeries Returns: np.array(shape=(n_trials, n_time, ...)) """ starts = np.array(intervals[start_label][:]) - before if timeseries.rate is not None: return align_by_times_with_rate( timeseries, starts, duration=after + before, traces=traces ) else: return align_by_times_with_timestamps( timeseries, starts, duration=after + before, traces=traces )
StarcoderdataPython
11332624
<reponame>drewtray/spotify_net<gh_stars>0 # AUTOGENERATED! DO NOT EDIT! File to edit: 01_retrieve_last.ipynb (unless otherwise specified). __all__ = ['last_cred', 'last_get', 'last_format'] # Cell import pandas as pd import requests import boto3 import json # Cell def last_cred(): secret_name = "last_keys" region_name = "us-east-1" # Create a Secrets Manager client session = boto3.session.Session() client = session.client( service_name='secretsmanager', region_name=region_name ) get_secret_value_response = client.get_secret_value(SecretId=secret_name) last_key = json.loads(get_secret_value_response['SecretString'])['last_apiKEY'] last_agent = json.loads(get_secret_value_response['SecretString'])['last_userAGENT'] last_user = json.loads(get_secret_value_response['SecretString'])['last_username'] return last_key, last_agent, last_user # Cell def last_get(method, agent, user, key, period='1month'): headers = { 'user-agent': agent } payload = {'method': method, 'period': period, 'user': user, 'api_key': key, 'format': 'json' } r = requests.get('https://ws.audioscrobbler.com/2.0/', headers=headers, params=payload) # print(r.status_code) return r.json() # Cell def last_format(f_tracks, cutoff): f_tracks = pd.DataFrame(f_tracks['toptracks']['track']) f_tracks = f_tracks[['name', 'artist', 'playcount']] f_tracks['artist'] = f_tracks['artist'].apply(lambda x: x['name']) f_tracks['playcount'] = f_tracks['playcount'].astype(int) f_tracks = f_tracks.sort_values('playcount', ascending=False) f_tracks = f_tracks[f_tracks['playcount'] >= cutoff] return f_tracks # Cell if __name__ == '__main__': API_KEY, USER_AGENT, USERNAME = last_cred() tracks = last_get('user.gettoptracks', USER_AGENT, USERNAME, API_KEY) formatted = last_format(tracks, 7) formatted.to_csv('s3://spotify-net/df_tracks.csv') print('Retrieved')
StarcoderdataPython
3288053
<filename>mmgen/core/scheduler/lr_updater.py<gh_stars>1-10 from mmcv.runner import HOOKS, LrUpdaterHook @HOOKS.register_module() class LinearLrUpdaterHook(LrUpdaterHook): """Linear learning rate scheduler for image generation. In the beginning, the learning rate is 'base_lr' defined in mmcv. We give a target learning rate 'target_lr' and a start point 'start' (iteration / epoch). Before 'start', we fix learning rate as 'base_lr'; After 'start', we linearly update learning rate to 'target_lr'. Args: target_lr (float): The target learning rate. Default: 0. start (int): The start point (iteration / epoch, specified by args 'by_epoch' in its parent class in mmcv) to update learning rate. Default: 0. interval (int): The interval to update the learning rate. Default: 1. """ def __init__(self, target_lr=0, start=0, interval=1, **kwargs): super().__init__(**kwargs) self.target_lr = target_lr self.start = start self.interval = interval def get_lr(self, runner, base_lr): """Calculates the learning rate. Args: runner (object): The passed runner. base_lr (float): Base learning rate. Returns: float: Current learning rate. """ if self.by_epoch: progress = runner.epoch max_progress = runner.max_epochs else: progress = runner.iter max_progress = runner.max_iters assert max_progress >= self.start if max_progress == self.start: return base_lr # Before 'start', fix lr; After 'start', linearly update lr. factor = (max(0, progress - self.start) // self.interval) / ( (max_progress - self.start) // self.interval) return base_lr + (self.target_lr - base_lr) * factor
StarcoderdataPython
17354
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from .. import _utilities import typing # Export this package's modules as members: from ._enums import * from .application import * from .application_package import * from .batch_account import * from .certificate import * from .get_application import * from .get_application_package import * from .get_batch_account import * from .get_certificate import * from .get_pool import * from .list_batch_account_keys import * from .pool import * from ._inputs import * from . import outputs # Make subpackages available: if typing.TYPE_CHECKING: import pulumi_azure_native.batch.v20151201 as __v20151201 v20151201 = __v20151201 import pulumi_azure_native.batch.v20170101 as __v20170101 v20170101 = __v20170101 import pulumi_azure_native.batch.v20170501 as __v20170501 v20170501 = __v20170501 import pulumi_azure_native.batch.v20170901 as __v20170901 v20170901 = __v20170901 import pulumi_azure_native.batch.v20181201 as __v20181201 v20181201 = __v20181201 import pulumi_azure_native.batch.v20190401 as __v20190401 v20190401 = __v20190401 import pulumi_azure_native.batch.v20190801 as __v20190801 v20190801 = __v20190801 import pulumi_azure_native.batch.v20200301 as __v20200301 v20200301 = __v20200301 import pulumi_azure_native.batch.v20200501 as __v20200501 v20200501 = __v20200501 import pulumi_azure_native.batch.v20200901 as __v20200901 v20200901 = __v20200901 import pulumi_azure_native.batch.v20210101 as __v20210101 v20210101 = __v20210101 import pulumi_azure_native.batch.v20210601 as __v20210601 v20210601 = __v20210601 else: v20151201 = _utilities.lazy_import('pulumi_azure_native.batch.v20151201') v20170101 = _utilities.lazy_import('pulumi_azure_native.batch.v20170101') v20170501 = _utilities.lazy_import('pulumi_azure_native.batch.v20170501') v20170901 = _utilities.lazy_import('pulumi_azure_native.batch.v20170901') v20181201 = _utilities.lazy_import('pulumi_azure_native.batch.v20181201') v20190401 = _utilities.lazy_import('pulumi_azure_native.batch.v20190401') v20190801 = _utilities.lazy_import('pulumi_azure_native.batch.v20190801') v20200301 = _utilities.lazy_import('pulumi_azure_native.batch.v20200301') v20200501 = _utilities.lazy_import('pulumi_azure_native.batch.v20200501') v20200901 = _utilities.lazy_import('pulumi_azure_native.batch.v20200901') v20210101 = _utilities.lazy_import('pulumi_azure_native.batch.v20210101') v20210601 = _utilities.lazy_import('pulumi_azure_native.batch.v20210601')
StarcoderdataPython
1731116
<reponame>pervcomp/Procem # -*- coding: utf-8 -*- """Module for handling electricity SPOT price data from Nord Pool.""" # Copyright (c) TUT Tampere University of Technology 2015-2018. # This software has been developed in Procem-project funded by Business Finland. # This code is licensed under the MIT license. # See the LICENSE.txt in the project root for the license terms. # # Main author(s): <NAME>, <NAME>, <NAME>, # <NAME> ja <NAME> import datetime import json import time try: import adapters.common_utils as common_utils import adapters.rest_utils as rest_utils except: # used when running the module directly import common_utils import rest_utils def timeToMicrosecondFormat(time_str, nzeros=6): """Helper function to change the given time string to a microsecond precision.""" dot = time_str.rfind(".") if dot < 0: return time_str + "." + "0" * nzeros else: return time_str + "0" * (nzeros - (len(time_str) - dot - 1)) def isDSTTime(timestamp): """Helper function for determining whether the local time currently uses daylight saving time.""" local_time = time.localtime(timestamp) return time.daylight > 0 and local_time.tm_isdst > 0 class Nordpool: """Class for receiving and handling data from Nord Pool.""" def __init__(self, params, data_queue): self.__config = params.get("config", {}) self.__currency = params.get("currency", "") self.__areas = params.get("areas", []) self.__last_query_date = None self.__last_update = None self.__time_interval = params.get("time_interval_s", 3600) self.__time_interval_min = params.get("time_interval_min_s", 60) self.__rtl_id_base = int(params.get("rtl_id_base", 0)) self.__path = params.get("iot_ticket_path_base", "/{area_long:}") self.__name = params.get("iot_ticket_name_base", "{area:}_price") self.__desc = params.get("description", "{area_long:} price") # TODO: handle the clock changes better self.__from_dst_to_normal_days = [datetime.date(2018, 10, 28)] self.__clock_change_hour_utc = 0 self.__data_info = self.getNordpoolInfo() self.__data_queue = data_queue if self.__config.get("write_csv", False): self.writeNordPoolCsv() def getNordpoolInfo(self): """Loads the data information using the given configurations.""" try: # determine the unit by making a request to the Nord Pool API kwargs = { "config": self.__config, "currency": self.__currency, "date": time.time() } req = rest_utils.runAPIQuery(**kwargs) if req.status_code == rest_utils.STATUS_OK: js = json.loads(req.text) unit = js["data"]["Units"][0] else: unit = "" # collect the data information for each considered area. info = {} count = 0 for area in self.__areas: info[area] = {} count += 1 area_long = self.__config.get("long_names", {}).get(area, area) info[area]["rtl_id"] = self.__rtl_id_base + count info[area]["name"] = self.__name.format(area=area) info[area]["path"] = self.__path.format(area_long=area_long) info[area]["unit"] = unit info[area]["datatype"] = "float" info[area]["confidential"] = False info[area]["description"] = self.__desc.format(area_long=area_long) return info except: return {} def writeNordPoolCsv(self): """Writes the data information to a CSV file.""" try: delimiter = ";" filename = self.__config["csv_filename"] columns = [ "rtl_id", "area", "datatype", "unit", "name", "path", "confidential", "description" ] header = delimiter.join(columns) with open(filename, "w") as file: file.write(header + "\n") for area, area_info in self.__data_info.items(): rtl_id = str(area_info["rtl_id"]) datatype = area_info["datatype"] unit = area_info["unit"] name = area_info["name"] path = area_info["path"] if area_info["confidential"]: confidential = "x" else: confidential = "" desc = area_info["description"] file.write(delimiter.join([rtl_id, area, datatype, unit, name, path, confidential, desc]) + "\n") except: print(common_utils.getTimeString(), "Error while writing Nord Pool csv file.") def getData(self): """Tries to get new data from the Nord Pool API. If new data is found, it is send to the Procem RTL handler and the function returns True. Otherwise, the function returns False.""" try: if self.__last_query_date is None: timestamp = time.time() else: timestamp = (self.__last_query_date + datetime.timedelta(days=1)).timestamp() kwargs = { "config": self.__config, "currency": self.__currency, "date": timestamp } req = rest_utils.runAPIQuery(**kwargs) if req.status_code != rest_utils.STATUS_OK: print(common_utils.getTimeString(), "Nord Pool, received status code:", req.status_code) return False js = json.loads(req.text) if self.__currency != js["currency"]: print(common_utils.getTimeString(), "Nord Pool, received currency:", js["currency"]) return False data = js["data"] # use the time zone field in the response to get the proper timestamps # NOTE: changes to hardcoded timezone since the website started giving wrong timezone on 2018-10-28 time_zone_info = 1 # time_zone_info = int(data["TimeZoneInformation"]) if isDSTTime(timestamp) or datetime.date.fromtimestamp(timestamp) in self.__from_dst_to_normal_days: time_zone_info += 1 timezone = datetime.timezone(datetime.timedelta(hours=time_zone_info)) result_datetime_format = self.__config["result_datetime_format"] update_time_str = timeToMicrosecondFormat(data["DateUpdated"]) update_date = datetime.datetime.strptime(update_time_str, result_datetime_format).replace(tzinfo=timezone) update_timestamp = update_date.timestamp() price_data = self.getPriceData(data["Rows"], timezone) received_prices = [len(prices) for area, prices in price_data.items()] if datetime.date.fromtimestamp(timestamp) in self.__from_dst_to_normal_days: hour_count = 25 else: hour_count = 24 if max(received_prices) != hour_count or min(received_prices) != hour_count: print(common_utils.getTimeString(), " Nord Pool: ", max(received_prices), "/", hour_count, " prices received.", sep="") return False self.sendDataToProcem(price_data) self.__last_update = update_timestamp self.__last_query_date = datetime.datetime.fromtimestamp(timestamp).replace( hour=12, minute=0, second=0, microsecond=0) return True except Exception as error: print(common_utils.getTimeString(), "Nord Pool:", error) return False def getWaitingTime(self): """Returns the time in seconds that should be waited before making the next data query.""" if self.__last_update is None or self.__last_query_date is None: # no data received yet at all return self.__time_interval_min / 2 elif self.__last_query_date.day == datetime.datetime.fromtimestamp(self.__last_update).day: # last data query was for today, try to get tomorrows data as soon as possible return self.__time_interval_min else: return max( self.__time_interval_min, self.__time_interval - (time.time() - self.__last_update) + self.__time_interval_min / 2) def getPriceData(self, rows, timezone): """Parses the price data from the given response data.""" clock_changed = False price_data = {} for row in rows: if row["IsExtraRow"]: continue result_datetime_format = self.__config["result_datetime_format"] start_time_str = timeToMicrosecondFormat(row["StartTime"]) dt = datetime.datetime.strptime(start_time_str, result_datetime_format).replace( tzinfo=timezone).astimezone(datetime.timezone.utc) ts = int(dt.timestamp() * 1000) if (dt.date() in self.__from_dst_to_normal_days and not clock_changed and dt.hour == self.__clock_change_hour_utc): timezone = datetime.timezone(timezone.utcoffset(dt) - datetime.timedelta(hours=1)) clock_changed = True for area in self.__areas: if area not in price_data: price_data[area] = [] column = [column for column in row["Columns"] if column["Name"] == area][0] if not column["IsValid"] or not column["IsOfficial"] or column["Value"] == "-": continue value = float(column["Value"].replace(",", ".").replace(" ", "")) price_data[area].append({ "v": value, "ts": ts }) return price_data def sendDataToProcem(self, price_data): """Sends the price data to Procem RTL handler.""" for area, values in price_data.items(): rtl_id = self.__data_info[area]["rtl_id"] unit = self.__data_info[area]["unit"] datatype = self.__data_info[area]["datatype"] name = self.__data_info[area]["name"] path = self.__data_info[area]["path"] confidential = self.__data_info[area]["confidential"] for value in values: v = value["v"] ts = value["ts"] pkt_str = common_utils.getProcemRTLpkt(name, path, v, ts, unit, datatype, rtl_id, confidential) packet = bytes(pkt_str, "utf-8") self.__data_queue.put(packet) # put empty item to the queue as a mark that the buffer should be emptied self.__data_queue.put(bytes())
StarcoderdataPython
8023548
<reponame>c-yan/atcoder<filename>abc/abc186/abc186d.py<gh_stars>1-10 N, *A = map(int, open(0).read().split()) A.sort() s = sum(A) result = 0 for i in range(N): a = A[i] s -= a result += s - a * (N - i - 1) print(result)
StarcoderdataPython
3338183
import itertools from datetime import timedelta from unittest.mock import Mock from pfun import schedule, success two_seconds = timedelta(seconds=2) def test_spaced(): deltas = schedule.spaced(two_seconds).run(None) assert list(itertools.islice(deltas, 3)) == [two_seconds] * 3 def test_exponential(): deltas = schedule.exponential(two_seconds).run(None) assert list(itertools.islice(deltas, 3)) == [two_seconds, two_seconds * 2, two_seconds * 4] def test_recurs(): deltas = schedule.recurs(3, schedule.spaced(two_seconds)).run(None) assert list(deltas) == [two_seconds] * 3 def test_take_while(): deltas = schedule.take_while( lambda delta: delta < timedelta(seconds=8), schedule.exponential(two_seconds) ).run(None) assert list(deltas) == [two_seconds, two_seconds * 2] def test_until(): deltas = schedule.until( timedelta(seconds=8), schedule.exponential(two_seconds) ).run(None) assert list(deltas) == [two_seconds, two_seconds * 2] def test_jitter(): mock_random = Mock() mock_random.random.return_value = success(.5) modules = Mock() modules.random = mock_random deltas = schedule.jitter(schedule.spaced(two_seconds)).run(modules) assert list(itertools.islice(deltas, 3)) == [timedelta(seconds=2.5)] * 3
StarcoderdataPython
3434299
def test_logger(): import tempfile from tblogging import TBLogger with tempfile.TemporaryDirectory() as logdir: logger = TBLogger(logdir, "test") logger.register_scalar("mean", "scalar") logger.freeze() logger.log(1, {"mean": 0.0}) logger.close()
StarcoderdataPython
3393366
import itertools __author__ = 'danny' #Human helper - cheats NO_JUMP = -1 class Cpu(object): def __init__(self, memory, pc): """Memory should be an array. Which is writable/readable is up to implementation. pc should be an offset into that memory. Memory word size, a, b and pc should be the same.""" self.memory = memory self.pc = pc def run(self): while True: a, b, j = self.fetch() self.execute(a, b, j) yield def fetch(self): """Fetch the instruction""" return self.memory[self.pc:self.pc + 3] def execute(self, a, b, jump_to): """Execute the instruction""" if a < 0 or b < 0 or (jump_to != NO_JUMP and jump_to < 0): raise StopIteration self.memory[b] -= self.memory[a] if jump_to != NO_JUMP and self.memory[b] <= 0: self.pc = jump_to else: self.pc += 3 class Memory(object): highest_mark =0 def __init__(self): self.memory_sections = [] def add_section(self, address, data): """Add a section of addressable memory. address - the location in the memory map, data - an addressable object. Addresses used with that object will be relative to the start of the object, not the absolute address. It must implement len, and getitem. To be writeable, it must implement setitem too. """ if address < self.highest_mark: raise RuntimeError("Sections must be added in order") self.memory_sections.append((address, data)) self.highest_mark = address + len(data) def _getsection(self, address): """Get a section for a an address. Returns the section, and the new address relative to the section start""" for section_start, section in self.memory_sections: if address >= section_start: if address < section_start + len(section): real_addr = address - section_start return section, real_addr return None, None def __getitem__(self, item): """Get item at item""" if type(item) is slice: return [self[i] for i in range(item.start, item.stop, item.step or 1)] else: section, real_addr = self._getsection(item) if section: return section[real_addr] return 0 def __setitem__(self, key, value): """Set items if possible""" section, real_addr = self._getsection(key) if section: try: section[real_addr] = value except TypeError: pass def __len__(self): return self.highest_mark def __iter__(self): for n in range(self.highest_mark): n = yield(self[n]) def CLW(): """Clear the work register""" return [ 0, 0, NO_JUMP, ] def MOV(in_addr, out_addr): return CLW + [ out_addr, out_addr, NO_JUMP, in_addr, 0, NO_JUMP, 0, out_addr, NO_JUMP, ] def HALT(): return [ -1, -1, -1 ] def ADD(a, b): """Synthesize b += a for subleq""" return CLW + [ a, 0, NO_JUMP, 0, b, NO_JUMP, ] def JMP(j): return [0, 0, j] #def JIND(aj): # """Jump indirect - load the value at aj, # use as address to jump to""" # output = CLW + # #Zero the work register # #Sub the address from it (negative) # #Sub the address from the j of the jump instruction # #Sub the jump instruction address from work area, and jump. def hello(): #hello registers_start = 0 registers = [0] rom_start = len(registers) rom= tuple([ord(c) for c in "Hello"]) # 128 bytes of output ram_start = rom_start + len(rom) ram=([0] * 6) prog_start = ram_start + len(ram) #Start code at 0xff program = ( MOV(rom_start, ram_start) + MOV(rom_start + 1, ram_start + 1) + MOV(rom_start + 2, ram_start + 2) + MOV(rom_start + 3, ram_start + 3) + MOV(rom_start + 4, ram_start + 4) + HALT() ) mem = Memory() mem.add_section(registers_start, registers) mem.add_section(rom_start, rom) mem.add_section(ram_start, ram) mem.add_section(prog_start, program) cpu = Cpu(mem, prog_start) r = cpu.run() _ = [n for n in r] print [chr(n) for n in ram[0:5]] def add12and13(): registers_start = 0 registers = [0] rom_start = len(registers) rom= (12, 13) # 128 bytes of output ram_start = rom_start + len(rom) ram=[0] prog_start = ram_start + len(ram) program = ( MOV(rom_start, ram_start) + ADD(rom_start + 1, ram_start) + HALT() ) mem = Memory() mem.add_section(registers_start, registers) mem.add_section(rom_start, rom) mem.add_section(ram_start, ram) mem.add_section(prog_start, program) cpu = Cpu(mem, prog_start) r = cpu.run() try: while True: r.next() except StopIteration: pass print "Result is ", mem[ram_start] if __name__ == "__main__": hello() add12and13()
StarcoderdataPython
3553302
<reponame>JoshPattman/Spot-Puppy-Lib<filename>spotpuppy/rotation/mpu6050_rotation_sensor.py from math import atan, sqrt, pow, radians, degrees from . import rotation_sensor_base IS_IMPORTED=False class sensor(rotation_sensor_base.sensor): def __init__(self, inverse_x=False, inverse_z=False, accelerometer_bias=0.05): global IS_IMPORTED if not IS_IMPORTED: global mpu6050 from mpu6050 import mpu6050 IS_IMPORTED = True rotation_sensor_base.sensor.__init__(self, inverse_x=inverse_x, inverse_z=inverse_z) self.accelerometer_bias=accelerometer_bias self.mpu = mpu6050(0x68) self.rotation[0] = 0 self.rotation[1] = 0 self.dx = 0 self.dy = 0 self.ax = 0 self.ay = 0 self.last_update = time.time() def update(self): # Get gyro data data = self.mpu.get_gyro_data() # Find elapsed time t = time.time() elaplsed = t - self.last_update self.last_update = t # Add the rotation velocity * time self.rotation[0] += (data['x'] - self.dx) * elaplsed self.rotation[1] += (data['y'] - self.dy) * elaplsed # Get accel angle aang = self._get_acc_ang() # Add accel angle into the actual angle (slowly introducing it to reduce noise, as it is only really used to stop gyro drift) self.rotation[0] = (self.rotation[0] * (1 - self.accelerometer_bias)) + (aang[0] * self.accelerometer_bias) self.rotation[1] = (self.rotation[1] * (1 - self.accelerometer_bias)) + (aang[1] * -self.accelerometer_bias) def calibrate(self): data1 = self.mpu.get_gyro_data() time.sleep(0.5) data2 = self.mpu.get_gyro_data() time.sleep(0.5) data3 = self.mpu.get_gyro_data() self.dx = (data1['x'] + data2['x'] + data3['x']) / 3 self.dy = (data1['y'] + data2['y'] + data3['y']) / 3 self.ax = 0 self.ay = 0 adata = self._get_acc_ang() self.ax = adata[0] self.ay = adata[1] self.rotation[0] = 0 self.rotation[1] = 0 def _get_acc_ang(self): data = self.mpu.get_accel_data() ax = data['y'] ay = data['x'] az = data['z'] xAngle = degrees(atan(ax / (sqrt(pow(ay, 2) + pow(az, 2))))) yAngle = degrees(atan(ay / (sqrt(pow(ax, 2) + pow(az, 2))))) zAngle = degrees(atan(sqrt(pow(ax, 2) + pow(ay, 2)) / az)) return [xAngle - self.ax, yAngle - self.ay]
StarcoderdataPython
313710
from __future__ import annotations import abc import string from typing import TypeVar class _EndStringFormatter(string.Formatter): """ Custom string formatter to not throw errors when args or kwargs are missing.""" def get_value(self, key, args, kwargs): if isinstance(key, int): if len(args) > key: return args[key] else: return '{{}}' return kwargs[key] if key in kwargs else '{{{}}}'.format(key) _SelfType = TypeVar('_SelfType', bound='IPrefixSuffix') class IPrefixSuffix(abc.ABC): """ Interface used for everything in this library. This interface allows for prefixes and suffixes to be added to a class, and to allow the formatting of those prefixes/suffixes without throwing errors when an argument is missing from formatting. The default prefix and suffix is an empty string. The default kwargs for prefix and suffix are empty dicts. Usage: Assume x is an instance of a class that inherits from IPrefixSuffix. # Set a prefix while optionally specifying replacement fields as kwargs x.set_prefix('print before everything') x.set_prefix('print before with formatting {arg}', arg='my kwarg') x.set_prefix('print before with formatting {arg}') # Set a suffix while optionally specifying replacement fields as kwargs x.set_suffix('print after everything') x.set_suffix('print after with formatting {arg}', arg='my kwarg') x.set_suffix('print after with formatting {arg}') # Set the replacement field values for prefix/suffix x.set_prefix_replacement_fields({'arg': 'my kwarg'}) x.set_suffix_replacement_fields({'arg': 'my kwarg'}) # Get the prefix/suffix after formatting x.formatted_prefix() x.formatted_suffix() # Get the prefix/suffix before formatting x.get_prefix() x.get_suffix() # Get the current prefix/suffix replacement field mappings x.get_prefix_replacement_fields() x.get_suffix_replacement_fields() """ _FORMATTER = _EndStringFormatter() def __init__(self): self._prefix: str = '' self._prefix_replacement_fields: dict = {} self._suffix: str = '' self._suffix_replacement_fields: dict = {} def get_prefix(self) -> str: """ Get the prefix without formatting.""" return self._prefix def set_prefix(self: _SelfType, val: str, **kwargs) -> _SelfType: """ Set the prefix while optionally specifying any replacement fields. Keyword arguments: val -- The new prefix Optional kwargs: Any replacement fields in the prefix """ self._prefix = val if len(kwargs) > 0: self._prefix_replacement_fields = kwargs return self def get_prefix_replacement_fields(self) -> dict: """ Get the replacement field values for the prefix.""" return self._prefix_replacement_fields def set_prefix_replacement_fields(self: _SelfType, val: dict) -> _SelfType: """ Set the replacement field values for the prefix. Keyword arguments: val -- Dict mapping of replaecment field names to their values """ self._prefix_replacement_fields = val return self def get_suffix(self) -> str: """ Get the suffix without any formatting.""" return self._suffix def set_suffix(self: _SelfType, val: str, **kwargs) -> _SelfType: """ Set the suffix while optionally specifying any replacement fields. Keyword arugments: val -- The new suffix Optional kwargs: Any replacement fields in the suffix """ self._suffix = val if len(kwargs) > 0: self._suffix_replacement_fields = kwargs return self def get_suffix_replacement_fields(self) -> dict: """ Get the replacement field values for the suffix.""" return self._suffix_replacement_fields def set_suffix_replacement_fields(self: _SelfType, val: dict) -> _SelfType: """ Set the replacement field values for the prefix. Keyword arguments: val -- Dict mapping of replacement field names to their values """ self._suffix_replacement_fields = val return self def formatted_prefix(self) -> str: """ Get the prefix after formatting using the prefix replacement field mapping.""" return self._custom_format(self._prefix, self._prefix_replacement_fields) def formatted_suffix(self) -> str: """ Get the suffix after formatting using the suffix replacement field mapping.""" return self._custom_format(self._suffix, self._suffix_replacement_fields) def _custom_format(self, text: str, relevant_kwargs: dict = {}) -> str: """ Format a string with the values in a dict. The formatter does not throw errors, even if a replacement field exists in the string that does not have a corresponding positional arg or kwarg to replace it. When one of these replacement fields is found, it is ignored and left in the string as-is. """ return IPrefixSuffix._FORMATTER.format(text, **relevant_kwargs)
StarcoderdataPython
11251505
<reponame>dntoll/loraMesh from simulator.FakePycomInterface import FakePycomInterface from simulator.Radio import Radio from simulator.SimTestView import SimTestView from view.CompositeView import CompositeView from simulator.SimulatorSocket import SimulatorSocket from meshlibrary.PymeshAdapter import PymeshAdapter from meshlibrary.Message import Message from time import sleep class SimTest: def __init__(self, showOutput = False): self.radio = Radio() self.fpi = FakePycomInterface() self.views = {} self.clients = {} self.showOutput = showOutput def callBack(nodeID, MessageBytes): print(MessageBytes) def add(self, nodeId, x, y): socket = SimulatorSocket(nodeId, x, y, 1.1) self.radio.add(nodeId, socket) self.views[nodeId] = SimTestView(nodeId) self.clients[nodeId] = PymeshAdapter(self.views[nodeId], socket, self.fpi, SimTest.callBack) def disableRadio(self, nodeId): self.radio.disableRadio(nodeId) def clearMessages(self, nodeId): self.views[nodeId].clearMessages() def send(self, fromNodeID, to, message): self.clients[fromNodeID].sendMessage(to, message) def endSim(self): self.fpi.die() def processUntilSilent(self, secondsOfSilence): self.radio.processUntilSilent(secondsOfSilence) print("process until silent") def assertHasMessage(self, nodeID, messageType): if messageType == Message.TYPE_ACC: t = "acc" elif messageType == Message.TYPE_FIND: t = "find" else: t = "message" hasMess = self.views[nodeID].hasMessage(messageType) assert hasMess, "No message on node " + str(nodeID) + " of type " + t def assertHasNoMessage(self, nodeID, messageType): if messageType == Message.TYPE_ACC: t = "acc" elif messageType == Message.TYPE_FIND: t = "find" else: t = "message" hasMess = self.views[nodeID].hasMessage(messageType) assert not hasMess, "No message on node " + str(nodeID) + " of type " + t
StarcoderdataPython
9765893
<reponame>tomichec/covid-cz-regions import json def main(): dates = ["2020-03-25@21-45", "2020-03-26@12-45", "2020-03-26@18-04", "2020-03-27@09-49", "2020-03-27@18-09", "2020-03-28@09-44", "2020-03-29@18-28", "2020-03-30@09-27", "2020-03-31@10-06", "2020-03-31@19-18", "2020-04-01@17-51", "2020-04-02@19-49", "2020-04-03@10-38", "2020-04-04@09-15", "2020-04-06@21-40", "2020-04-08@21-04", "2020-04-09@12-21",] # get all time data into array all_time = {} for date in dates: filename = 'covid_' + date + '.json' with open(filename) as f: daily = json.load(f) key = ("%s" % date) all_time[key] = daily # transpose the data into desired format transposed = [] for region_name in all_time["2020-04-09@12-21"].keys(): data = [] for date in dates: for key in all_time[date].keys(): if key == region_name: data.append({ 'date': date, 'value': all_time[date][key] }) transposed.append({ "name": region_name, "data": data }) print(json.dumps(transposed,indent=4, sort_keys=True, ensure_ascii=False)) if (__name__ == "__main__"): main()
StarcoderdataPython
4878743
import ast import logging from .environment import Robot import numpy as np import itertools import matplotlib import matplotlib.style import pandas as pd import sys from collections import defaultdict from . import plotting_r as plotting import json matplotlib.style.use('ggplot') SPEED = 0.7 logging.basicConfig(filename='reinforcement-learning.log', filemode='w', level=logging.DEBUG) def createEpsilonGreedyPolicy(Q, epsilon, num_actions): """ Creates an epsilon-greedy policy based on a given Q-function and epsilon. Returns a function that takes the state as an input and returns the probabilities for each action in the form of a numpy array of length of the action space(set of possible actions). """ def policyFunction(state): action_probabilities = np.ones(num_actions,dtype=float) * epsilon / num_actions best_action = np.argmax(Q[state]) action_probabilities[best_action] += (1.0 - epsilon) return action_probabilities return policyFunction def qLearning(env, num_episodes, discount_factor=1, alpha=0.01, epsilon=0.1): """ Q-Learning algorithm: Off-policy TD control. Finds the optimal greedy policy while improving following an epsilon-greedy policy """ # Action value function # A nested dictionary that maps # state -> (action -> action-value). # import pdb; pdb.set_trace() Q = defaultdict(lambda: np.zeros(3)) with open('model.txt', 'r') as f: json_file = json.load(f) old_dict = {ast.literal_eval(k): np.array(ast.literal_eval(v)) for k, v in json_file.items()} for v, k in old_dict.items(): Q[v][0] = k[0] Q[v][1] = k[1] Q[v][2] = k[2] # Keeps track of useful statistics stats = plotting.EpisodeStats( episode_lengths = np.zeros(num_episodes), episode_rewards = np.zeros(num_episodes) ) # Create an epsilon greedy policy function # appropriately for environment action space policy = createEpsilonGreedyPolicy(Q, epsilon, 3) # For every episode for ith_episode in range(num_episodes): # Reset the environment and pick the first action state = env.reset_sim() state = tuple(state['proxy_sensor'][0]) logging.debug('Ith_Episode: {}'.format(ith_episode)) for t in itertools.count(): logging.debug('\tt_episode: {}'.format(t)) # get probabilities of all actions from current state action_probabilities = policy(state) logging.debug('\t\taction_probabilities: {}'.format(action_probabilities)) # choose action according to # the probability distribution action = np.random.choice(np.arange(len(action_probabilities)), p=action_probabilities) logging.debug("\t\tActions: {}".format(action)) if action == 0: action_env = [1.5, 1.5] elif action == 1: action_env = [0.5, 1.5] elif action == 2: action_env = [1.5, 0.5] else: raise Exception("Invalid action!") # take action and get reward, transit to next state next_state, reward, done = env.step(action_env) next_state = tuple(next_state['proxy_sensor'][0]) reward = reward['proxy_sensor'] logging.debug("\t\tReward: {}".format(reward)) # Update statistics stats.episode_rewards[ith_episode] += reward stats.episode_lengths[ith_episode] = t # TD Update best_next_action = np.argmax(Q[next_state]) logging.debug("\t\tBest Next Action: {}".format(best_next_action)) td_target = reward + discount_factor * Q[next_state][best_next_action] logging.debug("\t\tTD Target: {}".format(td_target)) td_delta = td_target - Q[state][action] logging.debug("\t\tTD Delta: {}".format(td_delta)) Q[state][action] += alpha * td_delta # done is True if episode terminated if done: break state = next_state epsilon -= 0.001 env.destroy_sim() return Q, stats if __name__ == '__main__': env = Robot() Q, stats = qLearning(env, 500) try: # save the learned model with open('model.txt', 'w') as f: json.dump({str(k): str(tuple(v)) for k, v in Q.items()}, f) except: import pdb; pdb.set_trace() plotting.plot_episode_stats(stats)
StarcoderdataPython
6524767
<gh_stars>1-10 from unittest import TestCase from .helpers.parser import ParserTesterMixin from jaqalpaq.parser.extract_let import extract_let from jaqalpaq.parser.tree import make_lark_parser from jaqalpaq.parser.identifier import Identifier class ExtractLetTester(ParserTesterMixin, TestCase): def test_extract_integer(self): text = "let a 5" exp_value = {Identifier("a"): 5} self.run_test(text, exp_value) def test_extract_negative_integer(self): text = "let a -5" exp_value = {Identifier("a"): -5} self.run_test(text, exp_value) def test_extract_float(self): text = "let a 5.5" exp_value = {Identifier("a"): 5.5} self.run_test(text, exp_value) def test_extract_negative_float(self): text = "let a -5.5" exp_value = {Identifier("a"): -5.5} self.run_test(text, exp_value) def test_extract_duplicate(self): with self.assertRaises(Exception): text = "let a 5; let a 6" parser = make_lark_parser() extract_let(parser.parse(text)) def run_test(self, text, exp_value): parser = make_lark_parser() tree = parser.parse(text) act_value = extract_let(tree, use_float=True) self.assertEqual(exp_value, act_value)
StarcoderdataPython
4915943
import re import setuptools with open("README.md", "r") as fh: long_description = fh.read() with open("jsview/__init__.py") as fh: version = re.search(r'^__version__\s*=\s*"(.*)"', fh.read(), re.M).group(1) setuptools.setup( name="jsview", version=version, author="<NAME>", author_email="<EMAIL>", description="A smarter JSON indenter", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/fab13n/jsview", packages=setuptools.find_packages(), entry_points={ "console_scripts": ['jsview = jsview:main'] }, classifiers=( "Programming Language :: Python :: 2", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ), )
StarcoderdataPython
95496
<reponame>zhongtianxie/fm-orchestrator # -*- coding: utf-8 -*- # SPDX-License-Identifier: MIT from __future__ import absolute_import from mock import patch, PropertyMock import pytest from module_build_service.common import models from module_build_service.common.modulemd import Modulemd from module_build_service.common.utils import load_mmd from module_build_service.common.resolve import get_base_module_mmds from module_build_service.scheduler.db_session import db_session from tests import clean_database, make_module_in_db, init_data, read_staged_data class TestResolve: def setup_method(self, test_method): clean_database(False) def teardown_method(self, test_method): clean_database() def test__get_base_module_mmds(self): """Ensure the correct results are returned without duplicates.""" init_data(data_size=1, multiple_stream_versions=True) mmd = load_mmd(read_staged_data("testmodule_v2.yaml")) deps = mmd.get_dependencies()[0] new_deps = Modulemd.Dependencies() for stream in deps.get_runtime_streams("platform"): new_deps.add_runtime_stream("platform", stream) new_deps.add_buildtime_stream("platform", "f29.1.0") new_deps.add_buildtime_stream("platform", "f29.2.0") mmd.remove_dependencies(deps) mmd.add_dependencies(new_deps) mmds = get_base_module_mmds(db_session, mmd) expected = {"platform:f29.0.0", "platform:f29.1.0", "platform:f29.2.0"} # Verify no duplicates were returned before doing set operations assert len(mmds["ready"]) == len(expected) # Verify the expected ones were returned actual = set() for mmd_ in mmds["ready"]: actual.add("{}:{}".format(mmd_.get_module_name(), mmd_.get_stream_name())) assert actual == expected @pytest.mark.parametrize("virtual_streams", (None, ["f29"], ["lp29"])) def test__get_base_module_mmds_virtual_streams(self, virtual_streams): """Ensure the correct results are returned without duplicates.""" init_data(data_size=1, multiple_stream_versions=True) mmd = load_mmd(read_staged_data("testmodule_v2")) deps = mmd.get_dependencies()[0] new_deps = Modulemd.Dependencies() for stream in deps.get_runtime_streams("platform"): new_deps.add_runtime_stream("platform", stream) new_deps.add_buildtime_stream("platform", "f29.2.0") mmd.remove_dependencies(deps) mmd.add_dependencies(new_deps) make_module_in_db("platform:lp29.1.1:12:c11", virtual_streams=virtual_streams) mmds = get_base_module_mmds(db_session, mmd) if virtual_streams == ["f29"]: expected = { "platform:f29.0.0", "platform:f29.1.0", "platform:f29.2.0", "platform:lp29.1.1" } else: expected = {"platform:f29.0.0", "platform:f29.1.0", "platform:f29.2.0"} # Verify no duplicates were returned before doing set operations assert len(mmds["ready"]) == len(expected) # Verify the expected ones were returned actual = set() for mmd_ in mmds["ready"]: actual.add("{}:{}".format(mmd_.get_module_name(), mmd_.get_stream_name())) assert actual == expected @patch( "module_build_service.common.config.Config.allow_only_compatible_base_modules", new_callable=PropertyMock, return_value=False ) def test__get_base_module_mmds_virtual_streams_only_major_versions(self, cfg): """Ensure the correct results are returned without duplicates.""" init_data(data_size=1, multiple_stream_versions=["foo28", "foo29", "foo30"]) # Mark platform:foo28 as garbage to test that it is still considered as compatible. platform = db_session.query(models.ModuleBuild).filter_by( name="platform", stream="foo28").first() platform.state = "garbage" db_session.add(platform) db_session.commit() mmd = load_mmd(read_staged_data("testmodule_v2")) deps = mmd.get_dependencies()[0] new_deps = Modulemd.Dependencies() for stream in deps.get_runtime_streams("platform"): new_deps.add_runtime_stream("platform", stream) new_deps.add_buildtime_stream("platform", "foo29") mmd.remove_dependencies(deps) mmd.add_dependencies(new_deps) mmds = get_base_module_mmds(db_session, mmd) expected = {} expected["ready"] = {"platform:foo29", "platform:foo30"} expected["garbage"] = {"platform:foo28"} # Verify no duplicates were returned before doing set operations assert len(mmds) == len(expected) for k in expected.keys(): assert len(mmds[k]) == len(expected[k]) # Verify the expected ones were returned actual = set() for mmd_ in mmds[k]: actual.add("{}:{}".format(mmd_.get_module_name(), mmd_.get_stream_name())) assert actual == expected[k]
StarcoderdataPython
9706738
"""Simple periodic timer""" from threading import Timer from typing import Callable, Optional class PeriodicTimer: """Simple periodic timer""" # Note: callback is not optional but mypy has a bug: # https://github.com/python/mypy/issues/708 _callback: Optional[Callable[[], None]] _period: float _timer: Optional[Timer] def __init__(self, period: float, callback: Callable[[], None]) -> None: self._callback = callback self._period = period self._timer = None def start(self) -> None: """Starts the periodic execution of the callback function""" self._tick() def _tick(self) -> None: # Execute the callback assert self._callback is not None self._callback() # Enqueue to run again self._timer = Timer(self._period, self._tick) self._timer.start() def stop(self) -> None: """Cancel the timers""" if self._timer is not None: self._timer.cancel()
StarcoderdataPython
3227449
<filename>src/atcoder/abc226/a/sol_0.py import typing def main() -> typing.NoReturn: a, b = input().split('.') print(int(a) + (int(b[0]) >= 5)) main()
StarcoderdataPython
8103473
<reponame>joeyzhou85/python<gh_stars>1000+ """ LCS Problem Statement: Given two sequences, find the length of longest subsequence present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily continious. Example:"abc", "abg" are subsequences of "abcdefgh". """ from __future__ import print_function try: xrange # Python 2 except NameError: xrange = range # Python 3 def lcs_dp(x, y): # find the length of strings m = len(x) n = len(y) # declaring the array for storing the dp values L = [[None] * (n + 1) for i in xrange(m + 1)] seq = [] for i in range(m + 1): for j in range(n + 1): if i == 0 or j == 0: L[i][j] = 0 elif x[i - 1] == y[ j - 1]: L[i][j] = L[i - 1][j - 1] + 1 seq.append(x[i -1]) else: L[i][j] = max(L[i - 1][j], L[i][j - 1]) # L[m][n] contains the length of LCS of X[0..n-1] & Y[0..m-1] return L[m][n], seq if __name__=='__main__': x = 'AGGTAB' y = 'GXTXAYB' print(lcs_dp(x, y))
StarcoderdataPython
8041458
begin_unit comment|'# Copyright (c) 2014 Hewlett-Packard Development Company, L.P.' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' name|'import' name|'copy' newline|'\n' nl|'\n' name|'from' name|'oslo_serialization' name|'import' name|'jsonutils' newline|'\n' name|'from' name|'oslo_utils' name|'import' name|'versionutils' newline|'\n' name|'import' name|'six' newline|'\n' nl|'\n' name|'from' name|'nova' name|'import' name|'objects' newline|'\n' name|'from' name|'nova' op|'.' name|'objects' name|'import' name|'base' newline|'\n' name|'from' name|'nova' op|'.' name|'objects' name|'import' name|'fields' newline|'\n' nl|'\n' nl|'\n' op|'@' name|'base' op|'.' name|'NovaObjectRegistry' op|'.' name|'register' newline|'\n' DECL|class|PciDevicePool name|'class' name|'PciDevicePool' op|'(' name|'base' op|'.' name|'NovaObject' op|')' op|':' newline|'\n' comment|'# Version 1.0: Initial version' nl|'\n' comment|'# Version 1.1: Added numa_node field' nl|'\n' DECL|variable|VERSION indent|' ' name|'VERSION' op|'=' string|"'1.1'" newline|'\n' nl|'\n' DECL|variable|fields name|'fields' op|'=' op|'{' nl|'\n' string|"'product_id'" op|':' name|'fields' op|'.' name|'StringField' op|'(' op|')' op|',' nl|'\n' string|"'vendor_id'" op|':' name|'fields' op|'.' name|'StringField' op|'(' op|')' op|',' nl|'\n' string|"'numa_node'" op|':' name|'fields' op|'.' name|'IntegerField' op|'(' name|'nullable' op|'=' name|'True' op|')' op|',' nl|'\n' string|"'tags'" op|':' name|'fields' op|'.' name|'DictOfNullableStringsField' op|'(' op|')' op|',' nl|'\n' string|"'count'" op|':' name|'fields' op|'.' name|'IntegerField' op|'(' op|')' op|',' nl|'\n' op|'}' newline|'\n' nl|'\n' DECL|member|obj_make_compatible name|'def' name|'obj_make_compatible' op|'(' name|'self' op|',' name|'primitive' op|',' name|'target_version' op|')' op|':' newline|'\n' indent|' ' name|'target_version' op|'=' name|'versionutils' op|'.' name|'convert_version_to_tuple' op|'(' name|'target_version' op|')' newline|'\n' name|'if' name|'target_version' op|'<' op|'(' number|'1' op|',' number|'1' op|')' name|'and' string|"'numa_node'" name|'in' name|'primitive' op|':' newline|'\n' indent|' ' name|'del' name|'primitive' op|'[' string|"'numa_node'" op|']' newline|'\n' nl|'\n' comment|'# NOTE(pmurray): before this object existed the pci device pool data was' nl|'\n' comment|'# stored as a dict. For backward compatibility we need to be able to read' nl|'\n' comment|'# it in from a dict' nl|'\n' dedent|'' dedent|'' op|'@' name|'classmethod' newline|'\n' DECL|member|from_dict name|'def' name|'from_dict' op|'(' name|'cls' op|',' name|'value' op|')' op|':' newline|'\n' indent|' ' name|'pool_dict' op|'=' name|'copy' op|'.' name|'copy' op|'(' name|'value' op|')' newline|'\n' name|'pool' op|'=' name|'cls' op|'(' op|')' newline|'\n' name|'pool' op|'.' name|'vendor_id' op|'=' name|'pool_dict' op|'.' name|'pop' op|'(' string|'"vendor_id"' op|')' newline|'\n' name|'pool' op|'.' name|'product_id' op|'=' name|'pool_dict' op|'.' name|'pop' op|'(' string|'"product_id"' op|')' newline|'\n' name|'pool' op|'.' name|'numa_node' op|'=' name|'pool_dict' op|'.' name|'pop' op|'(' string|'"numa_node"' op|',' name|'None' op|')' newline|'\n' name|'pool' op|'.' name|'count' op|'=' name|'pool_dict' op|'.' name|'pop' op|'(' string|'"count"' op|')' newline|'\n' name|'pool' op|'.' name|'tags' op|'=' name|'pool_dict' newline|'\n' name|'return' name|'pool' newline|'\n' nl|'\n' comment|'# NOTE(sbauza): Before using objects, pci stats was a list of' nl|'\n' comment|"# dictionaries not having tags. For compatibility with other modules, let's" nl|'\n' comment|'# create a reversible method' nl|'\n' DECL|member|to_dict dedent|'' name|'def' name|'to_dict' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'pci_pool' op|'=' name|'base' op|'.' name|'obj_to_primitive' op|'(' name|'self' op|')' newline|'\n' name|'tags' op|'=' name|'pci_pool' op|'.' name|'pop' op|'(' string|"'tags'" op|',' op|'{' op|'}' op|')' newline|'\n' name|'for' name|'k' op|',' name|'v' name|'in' name|'six' op|'.' name|'iteritems' op|'(' name|'tags' op|')' op|':' newline|'\n' indent|' ' name|'pci_pool' op|'[' name|'k' op|']' op|'=' name|'v' newline|'\n' dedent|'' name|'return' name|'pci_pool' newline|'\n' nl|'\n' nl|'\n' dedent|'' dedent|'' op|'@' name|'base' op|'.' name|'NovaObjectRegistry' op|'.' name|'register' newline|'\n' DECL|class|PciDevicePoolList name|'class' name|'PciDevicePoolList' op|'(' name|'base' op|'.' name|'ObjectListBase' op|',' name|'base' op|'.' name|'NovaObject' op|')' op|':' newline|'\n' comment|'# Version 1.0: Initial version' nl|'\n' comment|'# PciDevicePool <= 1.0' nl|'\n' comment|'# Version 1.1: PciDevicePool version 1.1' nl|'\n' DECL|variable|VERSION indent|' ' name|'VERSION' op|'=' string|"'1.1'" newline|'\n' DECL|variable|fields name|'fields' op|'=' op|'{' nl|'\n' string|"'objects'" op|':' name|'fields' op|'.' name|'ListOfObjectsField' op|'(' string|"'PciDevicePool'" op|')' op|',' nl|'\n' op|'}' newline|'\n' nl|'\n' nl|'\n' DECL|function|from_pci_stats dedent|'' name|'def' name|'from_pci_stats' op|'(' name|'pci_stats' op|')' op|':' newline|'\n' indent|' ' string|'"""Create and return a PciDevicePoolList from the data stored in the db,\n which can be either the serialized object, or, prior to the creation of the\n device pool objects, a simple dict or a list of such dicts.\n """' newline|'\n' name|'pools' op|'=' op|'[' op|']' newline|'\n' name|'if' name|'isinstance' op|'(' name|'pci_stats' op|',' name|'six' op|'.' name|'string_types' op|')' op|':' newline|'\n' indent|' ' name|'try' op|':' newline|'\n' indent|' ' name|'pci_stats' op|'=' name|'jsonutils' op|'.' name|'loads' op|'(' name|'pci_stats' op|')' newline|'\n' dedent|'' name|'except' op|'(' name|'ValueError' op|',' name|'TypeError' op|')' op|':' newline|'\n' indent|' ' name|'pci_stats' op|'=' name|'None' newline|'\n' dedent|'' dedent|'' name|'if' name|'pci_stats' op|':' newline|'\n' comment|'# Check for object-ness, or old-style storage format.' nl|'\n' indent|' ' name|'if' string|"'nova_object.namespace'" name|'in' name|'pci_stats' op|':' newline|'\n' indent|' ' name|'return' name|'objects' op|'.' name|'PciDevicePoolList' op|'.' name|'obj_from_primitive' op|'(' name|'pci_stats' op|')' newline|'\n' dedent|'' name|'else' op|':' newline|'\n' comment|'# This can be either a dict or a list of dicts' nl|'\n' indent|' ' name|'if' name|'isinstance' op|'(' name|'pci_stats' op|',' name|'list' op|')' op|':' newline|'\n' indent|' ' name|'pools' op|'=' op|'[' name|'objects' op|'.' name|'PciDevicePool' op|'.' name|'from_dict' op|'(' name|'stat' op|')' nl|'\n' name|'for' name|'stat' name|'in' name|'pci_stats' op|']' newline|'\n' dedent|'' name|'else' op|':' newline|'\n' indent|' ' name|'pools' op|'=' op|'[' name|'objects' op|'.' name|'PciDevicePool' op|'.' name|'from_dict' op|'(' name|'pci_stats' op|')' op|']' newline|'\n' dedent|'' dedent|'' dedent|'' name|'return' name|'objects' op|'.' name|'PciDevicePoolList' op|'(' name|'objects' op|'=' name|'pools' op|')' newline|'\n' dedent|'' endmarker|'' end_unit
StarcoderdataPython
9685754
import unittest import os import time from flow.core.experiment import Experiment from flow.core.params import VehicleParams from flow.controllers import IDMController, RLController, ContinuousRouter from flow.core.params import SumoCarFollowingParams from flow.core.params import SumoParams from flow.core.params import EnvParams, InitialConfig, NetParams from flow.core.params import TrafficLightParams from flow.envs import AccelEnv from flow.networks import RingNetwork from tests.setup_scripts import ring_road_exp_setup import numpy as np os.environ["TEST_FLAG"] = "True" class TestNumSteps(unittest.TestCase): """ Tests that experiment class runs for the number of steps requested. """ def setUp(self): # create the environment and network classes for a ring road env, _, flow_params = ring_road_exp_setup() flow_params['sim'].render = False flow_params['env'].horizon = 10 # instantiate an experiment class self.exp = Experiment(flow_params) self.exp.env = env def tearDown(self): # free up used memory self.exp = None def test_steps(self): self.exp.run(num_runs=1) self.assertEqual(self.exp.env.time_counter, 10) class TestNumRuns(unittest.TestCase): """ Tests that the experiment class properly resets as many times as requested, after the correct number of iterations. """ def test_num_runs(self): # run the experiment for 1 run and collect the last position of all # vehicles env, _, flow_params = ring_road_exp_setup() flow_params['sim'].render = False flow_params['env'].horizon = 10 exp = Experiment(flow_params) exp.env = env exp.run(num_runs=1) vel1 = [exp.env.k.vehicle.get_speed(exp.env.k.vehicle.get_ids())] # run the experiment for 2 runs and collect the last position of all # vehicles env, _, flow_params = ring_road_exp_setup() flow_params['sim'].render = False flow_params['env'].horizon = 10 exp = Experiment(flow_params) exp.env = env exp.run(num_runs=2) vel2 = [exp.env.k.vehicle.get_speed(exp.env.k.vehicle.get_ids())] # check that the final position is the same in both instances np.testing.assert_array_almost_equal(vel1, vel2) class TestRLActions(unittest.TestCase): """ Test that the rl_actions parameter acts as it should when it is specified, and does not break the simulation when it is left blank. """ def test_rl_actions(self): def rl_actions(*_): return [1] # actions are always an acceleration of 1 for one veh # create an environment using AccelEnv with 1 RL vehicle vehicles = VehicleParams() vehicles.add( veh_id="rl", acceleration_controller=(RLController, {}), routing_controller=(ContinuousRouter, {}), car_following_params=SumoCarFollowingParams( speed_mode="aggressive", ), num_vehicles=1) env, _, flow_params = ring_road_exp_setup(vehicles=vehicles) flow_params['sim'].render = False flow_params['env'].horizon = 10 exp = Experiment(flow_params) exp.env = env exp.run(1, rl_actions=rl_actions) # check that the acceleration of the RL vehicle was that specified by # the rl_actions method self.assertAlmostEqual(exp.env.k.vehicle.get_speed("rl_0"), 1, places=1) class TestConvertToCSV(unittest.TestCase): """ Tests that the emission files are converted to csv's if the parameter is requested. """ def test_convert_to_csv(self): dir_path = os.path.dirname(os.path.realpath(__file__)) sim_params = SumoParams(emission_path="{}/".format(dir_path)) vehicles = VehicleParams() vehicles.add( veh_id="idm", acceleration_controller=(IDMController, {}), routing_controller=(ContinuousRouter, {}), car_following_params=SumoCarFollowingParams( speed_mode="aggressive", ), num_vehicles=1) additional_env_params = { "target_velocity": 8, "max_accel": 1, "max_decel": 1, "sort_vehicles": False, } env_params = EnvParams( horizon=10, additional_params=additional_env_params) additional_net_params = { "length": 230, "lanes": 1, "speed_limit": 30, "resolution": 40 } net_params = NetParams(additional_params=additional_net_params) flow_params = dict( exp_tag="RingRoadTest", env_name=AccelEnv, network=RingNetwork, simulator='traci', sim=sim_params, env=env_params, net=net_params, veh=vehicles, initial=InitialConfig(lanes_distribution=1), tls=TrafficLightParams(), ) exp = Experiment(flow_params) exp.run(num_runs=1, convert_to_csv=True) time.sleep(1.0) # check that both the csv file exists and the xml file doesn't. self.assertFalse(os.path.isfile(dir_path + "/{}-emission.xml".format( exp.env.network.name))) self.assertTrue(os.path.isfile(dir_path + "/{}-emission.csv".format( exp.env.network.name))) time.sleep(0.1) # delete the files os.remove(os.path.expanduser(dir_path + "/{}-emission.csv".format( exp.env.network.name))) if __name__ == '__main__': unittest.main()
StarcoderdataPython
11242155
<filename>tests/test_list.py from django.test import TestCase from rest_assured.testcases import ListAPITestCaseMixin from tests import mocks class TestListTestCase(TestCase): def get_case(self, **kwargs): class MockListTestCase(ListAPITestCaseMixin, mocks.MockTestCase): base_name = 'stuff' factory_class = mocks.StuffFactory self.case_class = MockListTestCase return MockListTestCase(**kwargs) def test_get_list_url(self): instance = self.get_case(methodName='dummy') instance.setUp() assert instance.get_list_url() == '/stuff/' def test_get_list_response(self): instance = self.get_case(methodName='dummy') instance.setUp() response = instance.get_list_response() assert response assert response.status_code == 200 assert response.data def test_test_list(self): instance = self.get_case(methodName='dummy') instance.setUp() response = instance.test_list() assert response
StarcoderdataPython
6657368
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import numpy as np from InnerEyeDataQuality.selection.selectors.label_based import SampleSelector class RandomSelector(SampleSelector): """ Selects samples at random """ def __init__(self, num_samples: int, num_classes: int, name: str = "Random Selector") -> None: super().__init__(num_samples=num_samples, num_classes=num_classes, name=name) def get_relabelling_scores(self, current_labels: np.ndarray) -> np.ndarray: return np.random.choice(self.num_samples, self.num_samples, replace=False) def get_ambiguity_scores(self, current_labels: np.ndarray) -> np.ndarray: raise NotImplementedError def get_mislabelled_scores(self, current_labels: np.ndarray) -> np.ndarray: raise NotImplementedError
StarcoderdataPython
8072497
<gh_stars>1-10 # adata scripts/mqtt_subscription ''' Simple example MQTT ''' from adata import echo, Module from adata.mqtt import Broker class Define(Module): name = "mqtt_channels" menu = "Service" def task(self): broker = ScanTopics("test.mosquitto.org", 1883) broker.app = self.app broker.subscribe("adata/#") def menuitem(self): return { 'name': "MQTT connection example", } class ScanTopics(Broker): def on_message(self, client, userdata, msg): try: echo("%s: " % msg.topic, "FFFF00", lf=False) echo("%s" % msg.payload) #print("%s %s" % (msg.topic, repr())) except Exception as e: echo("Error: %s" % e) def publish(self, topic, payload): def on_connect(client, userdata, flags, rc): if rc!=0: print("Error %s" % rc) sys.exit(rc) client.publish(topic, payload=payload) self.sent = True self.sent = False self.connect(on_connect) while not self.sent: self.client.loop() self.client.disconnect()
StarcoderdataPython
5158267
<gh_stars>1-10 # Copyright 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ import unittest import subprocess import shlex import time import logging from sawtooth_intkey.intkey_message_factory import IntkeyMessageFactory from sawtooth_integration.tests.integration_tools import wait_for_rest_apis from sawtooth_cli.rest_client import RestClient LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.DEBUG) # This needs to be coordinated with the test's yaml file. VALIDATOR_COUNT = 3 # Wait times and batch count can be increased for more rigor. INITIAL_WAIT_TIME = 30 TIME_BETWEEN_BATCHES = 1 CATCH_UP_TIME = 30 TRY_AGAIN_TIME = 60 BATCH_COUNT = 20 class TestPoetSmoke(unittest.TestCase): def setUp(self): endpoints = ['rest-api-{}:8080'.format(i) for i in range(VALIDATOR_COUNT)] wait_for_rest_apis(endpoints, tries=10) self.clients = [IntkeyClient('http://' + endpoint) for endpoint in endpoints] def test_poet_smoke(self): ''' $VALIDATOR_COUNT validators are started, each with config, intkey, and validator registry transaction processors. After waiting for the validators to register, do the following: 1) Send a batch of intkey 'set' transactions to one validator. 2) Send one batch of intkey 'inc' transactions to each validator one after the other $BATCH_COUNT times. 3) Loop through the validators, sending each one $BATCH_COUNT batches of intkey 'inc' transactions. 4) Assert that the validators are in consensus with each. ''' populate, increment = _make_txns() # wait for validators to get genesis block time.sleep(INITIAL_WAIT_TIME) self.assert_consensus() LOGGER.info('Sending populate txns') self.clients[0].send_txns(populate) time.sleep(TIME_BETWEEN_BATCHES) # send txns to each validator in succession for i in range(BATCH_COUNT): for client in self.clients: LOGGER.info('Sending batch {} @ {}'.format(i, client.url)) client.send_txns(increment) time.sleep(TIME_BETWEEN_BATCHES) # send txns to one validator at a time for client in self.clients: for i in range(BATCH_COUNT): LOGGER.info('Sending batch {} @ {}'.format(i, client.url)) client.send_txns(increment) time.sleep(TIME_BETWEEN_BATCHES) # wait for validators to catch up time.sleep(CATCH_UP_TIME) self.assert_consensus() # if the validators aren't in consensus, wait and try again def assert_consensus(self): try: self._assert_consensus() except AssertionError: time.sleep(TRY_AGAIN_TIME) self._assert_consensus() def _assert_consensus(self): tolerance = self.clients[0].calculate_tolerance() LOGGER.info('Verifying consensus @ tolerance {}'.format(tolerance)) # for convenience, list the blocks for client in self.clients: url = client.url LOGGER.info('Blocks @ {}'.format(url)) subprocess.run(shlex.split( 'sawtooth block list --url {}'.format(url))) list_of_sig_lists = [ client.recent_block_signatures(tolerance) for client in self.clients ] sig_list_0 = list_of_sig_lists[0] for sig_list in list_of_sig_lists[1:]: self.assertTrue( any(sig in sig_list for sig in sig_list_0), 'Validators are not in consensus') class IntkeyClient(RestClient): def __init__(self, url): super().__init__(url) self.url = url def send_txns(self, txns): batch = IntkeyMessageFactory().create_batch(txns) self.send_batches(batch) def recent_block_signatures(self, tolerance): signatures = self.list_block_signatures() return self.list_block_signatures()[:tolerance] def list_block_signatures(self): return [block['header_signature'] for block in self.list_blocks()] def calculate_tolerance(self): length = len(self.list_blocks()) # the most recent nth of the chain, at least 2 blocks return max( 2, length // 5) def _make_txns(): fruits = 'fig', 'quince', 'medlar', 'cornel', 'pomegranate' populate = [('set', fruit, 10000) for fruit in fruits] increment = [('inc', fruit, 1) for fruit in fruits] return populate, increment
StarcoderdataPython
8114430
from json import JSONDecodeError from pathlib import Path from bx_py_utils.test_utils.assertion import assert_equal from bx_py_utils.test_utils.snapshot import assert_snapshot def build_requests_mock_history(mock, only_json=True): history = [] for request in mock.request_history: request_info = { 'request': f'{request.method} {request.url}' } try: json_data = request.json() except JSONDecodeError as err: if only_json: raise AssertionError( f'{request.method} {request.url} without valid JSON: {err} in:\n{err.doc!r}' ) request_info['text'] = request.text else: request_info['json'] = json_data history.append(request_info) return history def assert_json_requests_mock(mock, data): """ Check the requests mock history. In this case all requests must be JSON. e.g.: with requests_mock.mock() as m: m.post('http://test.tld', text='resp') requests.post('http://test.tld', json={'foo': 'bar'}) assert_json_requests_mock(mock=m, data=[{ 'request': 'POST http://test.tld/', 'json': {'foo': 'bar'}, }]) """ history = build_requests_mock_history(mock, only_json=True) assert_equal(history, data, msg='Request history are not equal:') def assert_json_requests_mock_snapshot(mock): """ Check requests mock history via snapshot. Accepts only JSON requests. :param mock: :return: """ history = build_requests_mock_history(mock, only_json=True) assert_snapshot(got=history, self_file_path=Path(__file__)) def assert_requests_mock(mock, data): """ Check the requests mock history. Accept mixed "text" and "JSON". e.g.: with requests_mock.mock() as m: m.get('http://test.tld', text='foo') m.post('http://test.tld', text='bar') requests.post('http://test.tld', data={'foo': 'one'}) requests.post('http://test.tld', json={'foo': 'two'}) assert_requests_mock(mock=m, data=[{ 'request': 'POST http://test.tld/', 'text': 'foo=one', }, { 'request': 'POST http://test.tld/', 'json': {'foo': 'two'}, }]) """ history = build_requests_mock_history(mock, only_json=False) assert_equal(history, data, msg='Request history are not equal:') def assert_requests_mock_snapshot(mock): """ Check requests mock history via snapshot. Accept mixed "text" and "JSON". """ history = build_requests_mock_history(mock, only_json=False) assert_snapshot(got=history, self_file_path=Path(__file__))
StarcoderdataPython
6443645
from pyspark.sql import SparkSession from pyspark.sql import functions as func from pyspark.sql.types import StructType, StructField, StringType, IntegerType, FloatType # creates a SparkSession spark = SparkSession.builder.appName("MinTemperatures").getOrCreate() # we are determining the Schema of the Table schema = StructType([ StructField("stationID", StringType(), True), StructField("date", IntegerType(), True), StructField("measure_type", StringType(), True), StructField("temperature", FloatType(), True)]) # // Read the file as dataframe df = spark.read.schema(schema).csv("file:///home/sambiase/courses/SparkCourse/1800.csv") df.printSchema() # Filter out all but TMIN entries minTemps = df.filter(df.measure_type == "TMIN") # Select only stationID and temperature stationTemps = minTemps.select("stationID", "temperature") # Aggregate to find minimum temperature for every station minTempsByStation = stationTemps.groupBy("stationID").min("temperature") minTempsByStation.show() # Convert temperature to fahrenheit and sort the dataset # withColumn creates a new column called temperature minTempsByStationF = minTempsByStation.withColumn("temperature", func.round(func.col("min(temperature)") * 0.1 * (9.0 / 5.0) + 32.0, 2))\ .select("stationID", "temperature").sort("temperature") # Collect, format, and print the results results = minTempsByStationF.collect() for result in results: print(result[0] + "\t{:.2f}F".format(result[1])) spark.stop()
StarcoderdataPython
291218
<gh_stars>10-100 # Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import copy import decimal import json import os import uuid import boto3 import math import urllib3 from decimal import Decimal from datetime import datetime from boto3.dynamodb.conditions import Key, Attr from botocore.config import Config MAX_INPUTS_PER_JOB = int(os.environ['MediaConvertMaxInputJobs']) ACCELERATION_MEDIA_CONVERT_QUEUE = os.environ['MediaConvertAcceleratorQueueArn'] OUTPUT_BUCKET = os.environ['OutputBucket'] ssm = boto3.client('ssm') class Mp4Generator: def __init__(self, event): from MediaReplayEngineWorkflowHelper import ControlPlane self._controlPlane = ControlPlane() tmpEvent = self.__get_dataplane_payload(event) self.__eventName = tmpEvent['Event']['Name'] self.__program = tmpEvent['Event']['Program'] self.__profile = tmpEvent['Profile']['Name'] self.__framerate = tmpEvent['Profile']['ProcessingFrameRate'] from MediaReplayEnginePluginHelper import DataPlane self._dataplane = DataPlane(tmpEvent) self.__event = event def __get_dataplane_payload(self, event): program = event['ReplayRequest']['Program'] event = event['ReplayRequest']['Event'] event_details = self._controlPlane.get_event(event, program) profile_name = event_details['Profile'] profile_detail = self._controlPlane.get_profile(profile_name) final_event = { "Event": { "Program": program, "Name": event }, "Profile": { "Name": profile_name, "ChunkSize": profile_detail['ChunkSize'], "ProcessingFrameRate": profile_detail['ProcessingFrameRate'], "Classifier": profile_detail['Classifier']['Name'], "MaxSegmentLengthSeconds": profile_detail['MaxSegmentLengthSeconds'] } } return final_event def generate_mp4(self): replay_id = self.__event['ReplayRequest']['ReplayId'] audio_track = self.__event['ReplayRequest']['AudioTrack'] event_details = self._controlPlane.get_event(self.__eventName, self.__program) profile_name = event_details['Profile'] output_resolutions = self.__event['ReplayRequest']['Resolutions'] # Segments that have been created for the current Replay replay_segments = self._dataplane.get_all_segments_for_replay(self.__program, self.__eventName, replay_id) print('---------------- get_all_segments_for_replay -----------------------') print(replay_segments) #batch_id = f"{str(self.__eventName).lower()}-{str(self.__program).lower()}-{replay_id}" batch_id = f"{str(uuid.uuid4())}" job_metadata = [] resolution_thumbnail_mapping = [] # For each Resolution in the Replay Request, create Media Convert Jobs # by configuring the Output Resolution and Input Clip settings using Replay Segment Information for resolution in output_resolutions: # Contains Job IDs for all the MP4 Jobs. We will need to # check if all Jobs have completed before updating the Replay request with the S3 location all_mp4_clip_job_metadata = [] # Create Input settings per segment input_job_settings = [] for segment in replay_segments: startTime = segment['OptoStart'] if 'OptoStart' in segment else segment['Start'] endTime = segment['OptoEnd'] if 'OptoEnd' in segment else segment['End'] chunks = self._dataplane.get_chunks_for_segment(startTime, endTime, self.__program, self.__eventName, profile_name ) input_settings = self.__build_mp4_input(chunks, audio_track, startTime, endTime) print('---------------- __build_mp4_input -----------------------') print(input_settings) input_job_settings.extend(input_settings) groups_of_input_settings = [input_job_settings[x:x+MAX_INPUTS_PER_JOB] for x in range(0, len(input_job_settings), MAX_INPUTS_PER_JOB)] index = 1 res = resolution.split(' ')[0] print('---------------- groups_of_input_settings -----------------------') print(groups_of_input_settings) for inputsettings in groups_of_input_settings: # Each Input setting will have the relevant AudioTrack embedded. print('---------------- inputsettings -----------------------') print(inputsettings) job, job_output_destination = self.__create_mp4_clips(inputsettings, index, batch_id, res.strip(), resolution_thumbnail_mapping) print('---------------- after __create_mp4_clips -----------------------') print(job) if job != None: all_mp4_clip_job_metadata.append({ "JobsId": job['Job']['Id'], "OutputDestination": job_output_destination, "BatchId": batch_id }) index += 1 job_metadata.append({ "Resolution": res, "JobMetadata": all_mp4_clip_job_metadata, "ThumbnailLocations": resolution_thumbnail_mapping }) return job_metadata def __build_mp4_input(self, chunks ,audioTrack, start_time, end_time): inputs = [] # Only chunk, so will have Start and End Clipping time if len(chunks) == 1: inputClippings = [] inputClip = {} ic = {} endtime = self._dataplane.get_mediaconvert_clip_format(end_time, program=self.__program, event=self.__eventName, profile=self.__profile, frame_rate=self.__framerate) starttime = self._dataplane.get_mediaconvert_clip_format(start_time, program=self.__program, event=self.__eventName, profile=self.__profile, frame_rate=self.__framerate) #endtime, starttime = self._dataplane.get_mediaconvert_clip_format(end_time), self._dataplane.get_mediaconvert_clip_format(start_time) ic['EndTimecode'] = str(endtime) ic['StartTimecode'] = str(starttime) #If we have a single Chunk we don't need the Endtime Configured if it is less than Start time. Remove it. if datetime.strptime(endtime, "%H:%M:%S:%f") < datetime.strptime(starttime, "%H:%M:%S:%f"): ic.pop('EndTimecode', None) #ic['EndTimecode'], ic['StartTimecode'] = get_clip_timings(segment, event) inputClippings.append(ic) inputClip['InputClippings'] = inputClippings #------------- Update MediaConvert AudioSelectors Input ------------- # Leave the default Input AudioSelectors as is if we are dealing with default Track or only one. # If we have multiple AudioTracks, this lambda will be provided with one. inputClip['AudioSelectors'] = { "Audio Selector 1": { "Tracks": [ int(audioTrack) ], "DefaultSelection": "NOT_DEFAULT", "SelectorType": "TRACK" } } inputClip['AudioSelectorGroups'] = { "Audio Selector Group 1": { "AudioSelectorNames": [ "Audio Selector 1" ] } } #------------- Update MediaConvert AudioSelectors Input Ends ------------- inputClip['VideoSelector'] = {} inputClip['TimecodeSource'] = "ZEROBASED" inputClip['FileInput'] = f"s3://{chunks[0]['S3Bucket']}/{chunks[0]['S3Key']}" inputs.append(inputClip) elif len(chunks) > 1: for chunk_index in range(len(chunks)): ic = {} inputClippings = [] inputClip = {} if chunk_index == 0: # First Chunk ic['StartTimecode'] = self._dataplane.get_mediaconvert_clip_format(start_time, program=self.__program, event=self.__eventName, profile=self.__profile, frame_rate=self.__framerate) inputClippings.append(ic) inputClip['InputClippings'] = inputClippings elif chunk_index == len(chunks)-1: # Last Chunk ic['EndTimecode'] = self._dataplane.get_mediaconvert_clip_format(end_time, program=self.__program, event=self.__eventName, profile=self.__profile, frame_rate=self.__framerate) inputClippings.append(ic) inputClip['InputClippings'] = inputClippings else: # Sandwitch Chunks have no clippings inputClip['InputClippings'] = [] #------------- Update MediaConvert AudioSelectors Input ------------- # Leave the default Input AudioSelectors as is if we are dealing with default Track or only one. # If we have multiple AudioTracks, this lambda will be provided with one. inputClip['AudioSelectors'] = { "Audio Selector 1": { "Tracks": [ int(audioTrack) ], "DefaultSelection": "NOT_DEFAULT", "SelectorType": "TRACK" } } inputClip['AudioSelectorGroups'] = { "Audio Selector Group 1": { "AudioSelectorNames": [ "Audio Selector 1" ] } } #------------- Update MediaConvert AudioSelectors Input Ends ------------- inputClip['VideoSelector'] = {} inputClip['TimecodeSource'] = "ZEROBASED" inputClip['FileInput'] = f"s3://{chunks[chunk_index]['S3Bucket']}/{chunks[chunk_index]['S3Key']}" inputs.append(inputClip) return inputs def __create_mp4_clips(self, inputSettings, index, batch_id, resolution, resolution_thumbnail_mapping): if len(inputSettings) == 0: return None try: job_settings_filename = os.path.join(os.path.dirname(__file__), 'job_settings_mp4.json') with open(job_settings_filename) as json_data: jobSettings = json.load(json_data) job_output_destination = f"s3://{OUTPUT_BUCKET}/mp4replay/{batch_id}/{resolution}/" jobSettings["OutputGroups"][0]["OutputGroupSettings"]["FileGroupSettings"]["Destination"] = job_output_destination #jobSettings["OutputGroups"][0]['Outputs'][0]["NameModifier"] = f"Part-{index}" # Set Resolution to the Output Groups for Video res = resolution.split(' ')[0] video_res_width, video_res_height = self.__get_output_jobsetting_by_resolution(res) jobSettings["OutputGroups"][0]['Outputs'][0]["VideoDescription"]["Width"] = video_res_width jobSettings["OutputGroups"][0]['Outputs'][0]["VideoDescription"]["Height"] = video_res_height # Set Thumbnail location as another Output Group thumbnail_destination = f"s3://{OUTPUT_BUCKET}/mp4replay/{batch_id}/thumbnails/{resolution}/" jobSettings["OutputGroups"][1]['OutputGroupSettings']['FileGroupSettings']['Destination'] = thumbnail_destination jobSettings["OutputGroups"][1]['Outputs'][0]["VideoDescription"]["Width"] = video_res_width jobSettings["OutputGroups"][1]['Outputs'][0]["VideoDescription"]["Height"] = video_res_height resolution_thumbnail_mapping.append({ resolution: thumbnail_destination }) jobSettings['Inputs'] = inputSettings # Convert the video using AWS Elemental MediaConvert jobMetadata = { 'BatchId': batch_id } return self.__create_job(jobMetadata, jobSettings), job_output_destination except Exception as e: print ('Exception: %s' % e) raise def __create_job(self, jobMetadata, jobSettings): # get the account-specific mediaconvert endpoint for this region endpoint = ssm.get_parameter(Name='/MRE/ClipGen/MediaConvertEndpoint', WithDecryption=False)['Parameter']['Value'] # Customizing Exponential backoff # Retries with additional client side throttling. boto_config = Config( retries = { 'max_attempts': 10, 'mode': 'adaptive' } ) # add the account-specific endpoint to the client session client = boto3.client('mediaconvert', config=boto_config, endpoint_url=endpoint, verify=False) mediaConvertRole = os.environ['MediaConvertRole'] return client.create_job(Role=mediaConvertRole, UserMetadata=jobMetadata, Settings=jobSettings) def __get_output_jobsetting_by_resolution(self, resolution): if "360p" in resolution: return 640, 360 elif "480p" in resolution: return 854, 480 elif "720p" in resolution: return 1280, 720 elif "16:9" in resolution: return 1920, 1080 elif "1:1" in resolution: return 1080, 1080 elif "4:5" in resolution: return 864, 1080 elif "9:16" in resolution: return 608, 1080 elif "2K" in resolution: return 2560, 1440 elif "4K" in resolution: return 3840, 2160
StarcoderdataPython
1665125
import numpy as np from astropy import wcs def makeGaussian(size, fwhm=3, center=None): x = np.arange(0, size, 1, float) y = x[:,np.newaxis] if center is None: x0 = y0 = size // 2 else: x0 = center[0] y0 = center[1] return np.exp(-4*np.log(2)*((x-x0)**2 + (y-y0)**2)/fwhm**2) def makeWCS(coords=[0.,0.],coord_types=["RA---TAN","DEC--TAN"],xsize=1,ysize=1,pa=0.,scale=[1.,1.],sip=None): w = wcs.WCS(naxis=2) w.wcs.ctype = coord_types w.wcs.crpix = [int(np.floor(xsize/2.)),int(np.floor(ysize/2.))] w.wcs.crval = coords w.wcs.cdelt = np.array(scale) / 3600. cpa = np.cos(np.radians(pa%360.)) spa = np.sin(np.radians(pa%360.)) w.wcs.pc = np.array([[cpa,-spa],[spa,cpa]]) if sip is not None: w.sip = sip return w def verifyData(dat1,dat2): assert dat1.shape[0] == dat2.shape[0] assert dat1.shape[1] == dat2.shape[1] # np.testing.assert_allclose(dat1,dat2,atol=1e-3) for y in range(dat1.shape[0]): for x in range(dat1.shape[1]): verifyPoint(dat1,dat2,x,y) def verifyPoint(dat1, dat2, x, y, threshold=1.e-3): if abs(dat1[y,x] - dat2[y,x]) > threshold: print(x, y, dat1[y,x], dat2[y,x], abs(dat1[y,x] - dat2[y,x])) assert abs(dat1[y,x] - dat2[y,x]) <= threshold def verifyImage(im1,im2): assert im1.out_path == im2.out_path assert im1.name == im2.name assert im1.xsize == im2.xsize assert im1.ysize == im2.ysize np.testing.assert_allclose((im1.xscale,im1.yscale),(im2.xscale,im2.yscale),atol=1e-3) assert im1.distorted == im2.distorted np.testing.assert_allclose((im1.ra,im1.dec,im1.pa),(im2.ra,im2.dec,im2.pa),atol=1e-3) assert im1.history == im2.history assert im1.zeropoint == im2.zeropoint assert im1.header['EQUINOX'] == im2.header['EQUINOX'] np.testing.assert_allclose((im1.header['PA_APER']),(im2.header['PA_APER']),atol=1e-3) assert im1.header['VAFACTOR'] == im2.header['VAFACTOR'] np.testing.assert_allclose((im1.header['ORIENTAT']),(im2.header['ORIENTAT']),atol=1e-3) np.testing.assert_allclose((im1.header['RA_APER']),(im2.header['RA_APER']),atol=1e-3) np.testing.assert_allclose((im1.header['DEC_APER']),(im2.header['DEC_APER']),atol=1e-3) assert im1.header['NAXIS1'] == im2.header['NAXIS1'] assert im1.header['NAXIS2'] == im2.header['NAXIS2'] def verifyParameters(image,results): assert image.out_path == results['out_path'] assert image.name == results['name'] assert image.xsize == results['xsize'] assert image.ysize == results['ysize'] np.testing.assert_allclose((image.xscale,image.yscale),(results['xscale'],results['yscale']),atol=1e-3) assert image.distorted == results['distorted'] np.testing.assert_allclose((image.ra,image.dec,image.pa),(results['ra'],results['dec'],results['pa']),atol=1e-3) assert image.history == results['history'] assert image.zeropoint == results['zeropoint'] assert image.header['EQUINOX'] == results['equinox'] np.testing.assert_allclose((image.header['PA_APER']),(results['pa_aper']),atol=1e-3) assert image.header['VAFACTOR'] == results['vafactor'] np.testing.assert_allclose((image.header['ORIENTAT']),(results['orientat']),atol=1e-3) np.testing.assert_allclose((image.header['RA_APER']),(results['ra_aper']),atol=1e-3) np.testing.assert_allclose((image.header['DEC_APER']),(results['dec_aper']),atol=1e-3) assert image.header['NAXIS1'] == results['naxis1'] assert image.header['NAXIS2'] == results['naxis2']
StarcoderdataPython
154963
import unittest import models.EndNode as n class TestEndNode(unittest.TestCase): def setUp(self): self.a = n.EndNode('192.168.0.1', id = 1) self.b = n.EndNode('192.168.0.1') self.c = n.EndNode('192.168.0.3') def testEquality(self): self.assertTrue(self.a == self.a) self.assertTrue(self.b == self.b) self.assertTrue(self.c == self.c) self.assertTrue(self.a == self.b) self.assertFalse(self.a == self.c) self.assertFalse(self.b == self.c) def testIp(self): self.assertEqual(self.a.ip,"192.168.0.1") self.assertNotEqual(self.a.ip,"192.168.0.3") self.assertEqual(self.a.ip, self.b.ip) self.assertEqual(self.b.ip,"192.168.0.1") self.assertEqual(self.c.ip, "192.168.0.3") if __name__ == '__main__': unittest.main()
StarcoderdataPython
1613765
<filename>src/reader.py import collections import numpy as np import re class TextProcessor(object): @staticmethod def from_file(input_file): with open(input_file, 'r', encoding = 'utf8') as fh: text = fh.read() return TextProcessor(text) def __init__(self, text): # self.words = self._text2words(text) self.words = [w for w in text.split()] self.id2word = None self.word2id = None self.vector = None def set_vocab(self, word2id): self.word2id = word2id return self def create_vocab(self, size): counter = collections.Counter(self.words) print( 'Vocabulary size reduced from %s to %s' % (len(counter), size) ) count_pairs = counter.most_common(size-1) self.id2word = list(dict(count_pairs).keys()) self.id2word[-1] = '<unk>' self.word2id = dict(zip(self.id2word, range(len(self.id2word)))) def get_vector(self): unk = self.word2id['<unk>'] self.vector = [self.word2id[word] if word in self.word2id else unk for word in self.words] return self.vector def save_converted(self, filename): with open(filename, 'w') as fh: for wid in self.vector: fh.write(self.id2word[wid]+' ') @staticmethod def _text2words(text): # prepare for word based processing re4 = re.compile(r'\.\.+') re5 = re.compile(r' +') text = text.lower() text = re4.sub(' <3dot> ', text) text = text.replace(',', ' , ') text = text.replace('.', ' . ') text = text.replace('/', ' . ') text = text.replace('(', ' ( ') text = text.replace(')', ' ) ') text = text.replace('[', ' ( ') text = text.replace(']', ' ) ') text = text.replace(':', ' : ') text = text.replace("'", " '") text = text.replace('?', ' ? ') text = text.replace(';', ' . ') text = text.replace('-', ' -') text = text.replace('<3dot>', ' ... ') text = text.replace('"', '') text = re5.sub(' ', text) text = text.replace('\n', ' <nl> ') return ['\n' if w == '<nl>' else w for w in text.split()] def train_iterator(raw_data, batch_size, num_steps): raw_data = np.array(raw_data, dtype=np.int32) data_len = len(raw_data) batch_len = data_len // batch_size data = np.zeros([batch_size, batch_len], dtype=np.int32) for i in range(batch_size): data[i] = raw_data[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i * num_steps:(i + 1) * num_steps] y = data[:, i * num_steps + 1:(i + 1) * num_steps + 1] yield (x, y)
StarcoderdataPython
3376239
from multiprocessing import Pipe # 双工 conn1, conn2 = Pipe() conn1.send('conn1第1次发送的数据') conn1.send('conn1第2次发送的数据') conn2.send('conn2第1次发送的数据') conn2.send('conn2第2次发送的数据') print(conn1.recv()) print(conn1.recv()) print(conn2.recv()) print(conn2.recv()) # 单工 c1, c2 = Pipe(False) c2.send('c2发送的数据') print(c1.recv()) # c1.send('c1发送的数据')
StarcoderdataPython
3387708
<filename>csc work/misc/w5/r/collatz.py def count_collatz_steps(n): ''' (int) -> int Return the number of steps it takes to reach 1, by repeating the two steps of the Collatz conjecture beginning from n. >>> count_collatz_steps(6) 8 ''' count = 0 while n > 1: if n % 2 == 0: n /= 2 else: n = (3 * n) + 1 count = count + 1 return count
StarcoderdataPython
134732
import toolz import toolz.curried from toolz.curried import (take, first, second, sorted, merge_with, reduce, merge, operator as cop) from collections import defaultdict from importlib import import_module from operator import add def test_take(): assert list(take(2)([1, 2, 3])) == [1, 2] def test_first(): assert first is toolz.itertoolz.first def test_merge(): assert merge(factory=lambda: defaultdict(int))({1: 1}) == {1: 1} assert merge({1: 1}) == {1: 1} assert merge({1: 1}, factory=lambda: defaultdict(int)) == {1: 1} def test_merge_with(): assert merge_with(sum)({1: 1}, {1: 2}) == {1: 3} def test_merge_with_list(): assert merge_with(sum, [{'a': 1}, {'a': 2}]) == {'a': 3} def test_sorted(): assert sorted(key=second)([(1, 2), (2, 1)]) == [(2, 1), (1, 2)] def test_reduce(): assert reduce(add)((1, 2, 3)) == 6 def test_module_name(): assert toolz.curried.__name__ == 'toolz.curried' def test_curried_operator(): for k, v in vars(cop).items(): if not callable(v): continue if not isinstance(v, toolz.curry): try: # Make sure it is unary v(1) except TypeError: try: v('x') except TypeError: pass else: continue raise AssertionError( 'toolz.curried.operator.%s is not curried!' % k, ) # Make sure this isn't totally empty. assert len(set(vars(cop)) & {'add', 'sub', 'mul'}) == 3 def test_curried_namespace(): exceptions = import_module('toolz.curried.exceptions') namespace = {} def should_curry(func): if not callable(func) or isinstance(func, toolz.curry): return False nargs = toolz.functoolz.num_required_args(func) if nargs is None or nargs > 1: return True return nargs == 1 and toolz.functoolz.has_keywords(func) def curry_namespace(ns): return { name: toolz.curry(f) if should_curry(f) else f for name, f in ns.items() if '__' not in name } from_toolz = curry_namespace(vars(toolz)) from_exceptions = curry_namespace(vars(exceptions)) namespace.update(toolz.merge(from_toolz, from_exceptions)) namespace = toolz.valfilter(callable, namespace) curried_namespace = toolz.valfilter(callable, toolz.curried.__dict__) if namespace != curried_namespace: missing = set(namespace) - set(curried_namespace) if missing: raise AssertionError('There are missing functions in toolz.curried:\n %s' % ' \n'.join(sorted(missing))) extra = set(curried_namespace) - set(namespace) if extra: raise AssertionError('There are extra functions in toolz.curried:\n %s' % ' \n'.join(sorted(extra))) unequal = toolz.merge_with(list, namespace, curried_namespace) unequal = toolz.valfilter(lambda x: x[0] != x[1], unequal) messages = [] for name, (orig_func, auto_func) in sorted(unequal.items()): if name in from_exceptions: messages.append('%s should come from toolz.curried.exceptions' % name) elif should_curry(getattr(toolz, name)): messages.append('%s should be curried from toolz' % name) else: messages.append('%s should come from toolz and NOT be curried' % name) raise AssertionError('\n'.join(messages))
StarcoderdataPython
395664
from codecs import open import toml from setuptools import find_packages, setup with open("README.rst") as f: readme = f.read() project = toml.load("pyproject.toml")["mewo_project"] setup( name="sty", version=project["version"], author="<NAME>", author_email="<EMAIL>", maintainer="<NAME>", maintainer_email="<EMAIL>", url="https://github.com/feluxe/sty", description="String styling for your terminal", long_description=readme, long_description_content_type="text/x-rst", download_url="https://github.com/feluxe/sty" + "/tarball/" + project["version"], license="Apache 2.0", keywords=["styling", "color", "colour", "terminal", "ansi"], include_package_data=True, platforms="", classifiers=[ "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Typing :: Typed", "Topic :: Printing", "Topic :: Terminals", "Topic :: System :: Shells", ], install_requires=[], packages=find_packages(where=".", exclude=("tests", "tests.*")), package_dir={"sty": "sty"}, package_data={}, data_files=[], entry_points={"console_scripts": [], "gui_scripts": []}, tests_require=[], )
StarcoderdataPython
12848471
""" A PyTorch implmentation of the KL-Divergence Loss as described in (https://arxiv.org/abs/1511.06321) Lua Implementation (not inspected yet TODO) (https://github.com/yenchanghsu/NNclustering/blob/master/BatchKLDivCriterion.lua) """ import torch import torch.nn.functional as F from torch import nn import numpy as np from IPython import embed class triplet_loss(nn.Module): def __init__(self, alpha = 7.18): super(triplet_loss, self).__init__() self.alpha = alpha def forward(self, outputs, clusters): """ :param indices The index of each embedding :param outputs The set of embeddings :param clusters Cluster assignments for each index :return Loss Magnet loss calculated for current batch """ assert not clusters.requires_grad, \ "nn criterions don't compute the gradient w.r.t. targets - please " \ "mark these variables as volatile or not requiring gradients" _min_float = 1e-6 num_instances = 0.0 outputs = outputs.float() clusters = clusters.cpu().data.numpy() batch_size = outputs.size(0) loss = torch.zeros(1) # If GPU is available compute loss on it loss = loss.cuda() loss = torch.autograd.Variable(loss).cuda() ######################### Cluster Assignments ########################## # Generate a set of clusters in the batch # and the local indices corresponding to each of those clusters # batch_clusters = { cluster_number : [ local_indices] } # TODO fix later!!! -- for now assiming indices are irrelevant! batch_clusters = {} for i in range(0, len(clusters)): if clusters[i] in batch_clusters.keys(): batch_clusters[clusters[i]].append(i) else: batch_clusters[clusters[i]] = [i] ######################### Cluster Assignments ########################## old_clusters = list(batch_clusters.keys()) clusters = [] # remove clusters with less than D instances TODO for c in old_clusters: if len(batch_clusters[c]) >= 2: clusters.append(c) ########################## CALCULATE THE LOSS ######################### instances_1 = [] instances_2 = [] instances_3 = [] for m in range(0, len(clusters)): c = clusters[m] for d1 in range(0, len(batch_clusters[c]) - 1): for d2 in range(d1+1, len(batch_clusters[c])): ins_i1 = batch_clusters[c][d1] ins_i2 = batch_clusters[c][d2] for mN in range(0, len(clusters)): if mN != m: cN = clusters[mN] for dN in range(0, len(batch_clusters[cN])): ins_iN = batch_clusters[cN][dN] instances_1.append(ins_i1) instances_2.append(ins_i2) instances_3.append(ins_iN) return ((outputs[instances_1] - outputs[instances_2]).norm(p=2, dim = 1) + self.alpha - (outputs[instances_1] - outputs[instances_3]).norm(p=2, dim = 1)).clamp(min = 0.0).mean()
StarcoderdataPython
3538375
<reponame>helderthh/leetcode<filename>medium/merge-intervals.py # 56. Merge Intervals # https://leetcode.com/problems/merge-intervals/ class Solution: def merge(self, intervals: List[List[int]]) -> List[List[int]]: res = [] # list of final intervals # for each interval for interval in intervals: final_interval = interval # for each res i = 0 while i < len(res): # check if interval.left is lower or equal res.right if self.are_overlapping(final_interval, res[i]): # if it is, merge those intervals final_interval = self._merge(final_interval, res[i]) # swap and pop interval res[i], res[-1] = res[-1], res res.pop() i -= 1 i += 1 res.append(final_interval) return res # insert merged interval def are_overlapping(self, a, b): return (a[0] <= b[1] \ and a[1] >= b[0]) \ or (a[0] >= b[1] \ and a[1] <= b[0]) def _merge(self, a, b): return [min(a[0], b[0]), max(a[1], b[1])]
StarcoderdataPython
11219614
<filename>practice/filecompross/rarunrar/unrarfiles.py # -*- coding:utf-8 -*- """ 安装解压rar文件的插件: pip install unrar 注意: 这个插件需要rarlib的支持. 安装rarlib: https://www.rarlab.com/rar_add.htm 下载UnRARDLL.exe并安装,然后添加到环境变量中即可. """ # 说明: # 如果不安装UnRARDLL.exe,运行python脚本会报:LookupError: Couldn't find path to unrar library.错误. # 意思是找不到unrar library的路径,这里我们就需要去下载这个unrar library,事实上它就是UnRAR.dll这个东西,下载网址: http://www.rarlab.com/rar/UnRARDLL.exe或者去http://www.rarlab.com/rar_add.htm找到UnRAR.dll下载. # 第二步: # 安装完后我电脑中的路径为C:\Program Files (x86)\UnrarDLL,win7 32位的朋友可以将它添加到环境变量中,64位的需要将其中的X64文件夹设置为环境变量,因为unrar模块识别的文件是unrar.dll和unrar.lib,所以将文件夹中的UnRAR.dll和UnRAR.lib用小写重命名. from unrar import rarfile import os import shutil def Un_rar(rardir,rarname,Archiverar): """ 解压rar文件 rardir: 压缩包的存放路径 rarname: 要解压压缩包的文件名 Archiverar: 解压缩后的存放路径. filestat: 判断文件后缀 """ try: Unrar_path = os.path.join(rardir,rarname) r = rarfile.RarFile(Unrar_path) if r: if os.path.isdir(Archiverar): shutil.rmtree(Archiverar) print("如果存放目录已存在,就删除该存放目录.") os.mkdir(Archiverar) print("解压后的存放目录已经成功创建.") r.extractall(Archiverar) print("解压完成,请查看解压后的存放目录") else: os.mkdir(Archiverar) print("解压后的存放目录已经成功创建.") r.extractall(Archiverar) print("解压完成,请查看解压后的存放目录") except Exception as e: return e if __name__=="__main__": decompress = None rarname = "" rardir = "" if rarname: print("已经找到压缩文件名为:{}".format(rarname)) if rardir: print("已经找到压缩文件的目录为:{}".format(rardir)) else: rarname = input("请输入你想要解压的压缩文件名称(file.rar):") rarsuf = ".rar" zipsuf = ".zip" if rarname.endswith(rarsuf): rardir = input("请输入解压文件存放的目录(path):") if os.path.isdir(rardir): unrarpath = r'F:\PythonProject\python-scripts\practice' Archiverar = os.path.join(unrarpath + "\\") + "files_" + rarname decompress = Un_rar(rardir,rarname,Archiverar) else: print("没有指定解压文件存放的目录,请重新运行程序输入目录:") elif rarname.endswith(zipsuf): print("您输入的是zip压缩文件,暂不支持.") else: print("其他的压缩类型,暂时不支持.")
StarcoderdataPython
5142252
<gh_stars>0 def sub_gen1(x): r = yield x print('subgen1', r) def gen1(x): r = yield sub_gen1(x) print('gen1', r) g = gen1(3) g.send(None) g.send(21) # g = gen1(3) # g # <generator object gen1 at 0x10f9ce450> # g.send(None) # <generator object sub_gen1 at 0x10f9ce3d0> # g.send(21) # gen1 21 # Traceback (most recent call last): # File "<input>", line 1, in <module> # StopIteration def sub_gen2(x): r = yield x print('subgen2', r) return x + 10 def gen2(x): r = yield from sub_gen2(x) print('gen2', r) g2 = gen2(2) g2.send(None) g2.send(9) # g2=gen2(2) # g2.send(None) # 2 # g2.send(100) # subgen2 100 # gen2 12
StarcoderdataPython
6501311
<reponame>nutanixdev/calm-dsl from calm.dsl.decompile.render import render_template from calm.dsl.decompile.task import render_task_template from calm.dsl.decompile.parallel_task import render_parallel_task_template from calm.dsl.decompile.variable import render_variable_template from calm.dsl.builtins import action, ActionType, RefType from calm.dsl.log import get_logging_handle LOG = get_logging_handle(__name__) RUNBOOK_ACTION_MAP = {} def render_action_template(cls, entity_context=""): global RUNBOOK_ACTION_MAP LOG.debug("Rendering {} action template".format(cls.__name__)) if not isinstance(cls, ActionType): raise TypeError("{} is not of type {}".format(cls, action)) # Update entity context # TODO for now, not adding runbook to context as current mapping -is 1:1 entity_context = entity_context + "_Action_" + cls.__name__ runbook = cls.runbook # Note cls.__name__ should be used for call_runbook tasks RUNBOOK_ACTION_MAP[runbook.__name__] = cls.__name__ # NOTE Not using main_task_local_reference for now, # bcz type of main task is "DAG" levelled_tasks = get_task_order(runbook.tasks) tasks = [] for task_list in levelled_tasks: if len(task_list) != 1: tasks.append( render_parallel_task_template( task_list, entity_context, RUNBOOK_ACTION_MAP ) ) else: tasks.append( render_task_template(task_list[0], entity_context, RUNBOOK_ACTION_MAP) ) variables = [] for variable in runbook.variables: variables.append(render_variable_template(variable, entity_context)) if not (variables or tasks): return "" user_attrs = { "name": cls.__name__, "description": cls.__doc__ or "", "tasks": tasks, "variables": variables, } gui_display_name = getattr(cls, "name", "") or cls.__name__ if gui_display_name != cls.__name__: user_attrs["gui_display_name"] = gui_display_name text = render_template(schema_file="action.py.jinja2", obj=user_attrs) return text.strip() def get_task_order(task_list): """Returns the list where each index represents a list of task that executes parallely""" dag_task = None for ind, task in enumerate(task_list): if task.type == "DAG": dag_task = task task_list.pop(ind) break if not dag_task: raise ValueError("Dag task not found") # Edges between tasks edges = dag_task.attrs["edges"] # Final resultant task list with level as index res_task_list = [] # map to store the edges from given task task_edges_map = {} # map to store indegree of everyu task task_indegree_count_map = {} # create task map with name task_name_data_map = {} for task in task_list: task_name = task.name task_name_data_map[task_name] = task task_indegree_count_map[task_name] = 0 task_edges_map[task_name] = [] # store in degree of every task for edge in edges: from_task = RefType.decompile(edge["from_task_reference"]) to_task = RefType.decompile(edge["to_task_reference"]) task_indegree_count_map[to_task.name] += 1 task_edges_map[from_task.name].append(to_task.name) # Queue to store elements having indegree 0 queue = [] # Push elements having indegree = 0 for task_name, indegree in task_indegree_count_map.items(): if indegree == 0: queue.append(task_name) # Topological sort while queue: # length of queue ql = len(queue) # Inserting task with current indegree = 0 task_data_list = [] for task in queue: task_data_list.append(task_name_data_map[task]) if task_data_list: res_task_list.append(task_data_list) while ql: # Popping the element at start cur_task = queue.pop(0) # Iterating its edges, and decrease the indegree of to_edge task by 1 for to_task in task_edges_map[cur_task]: task_indegree_count_map[to_task] -= 1 # If indegree is 0, push to queue if task_indegree_count_map[to_task] == 0: queue.append(to_task) # decrement the counter for queue length ql -= 1 return res_task_list
StarcoderdataPython
8060264
import sys import pygame from pygame.locals import * # init pygame pygame.init() DISPLAYSURFACE = pygame.display.set_mode((400, 300), 0, 32) pygame.display.set_caption('Hello World') # color constants WHITE = (255, 255, 255) GREEN = (0, 255, 0) BLUE = (0, 0, 255) # create text fontObj = pygame.font.Font('freesansbold.ttf', 32) textSurfaceObj = fontObj.render('Hello World!', True, GREEN, BLUE) textRectObj = textSurfaceObj.get_rect() textRectObj.center = (200, 150) # game loop while True: # process events for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() # draw DISPLAYSURFACE.fill(WHITE) DISPLAYSURFACE.blit(textSurfaceObj, textRectObj) pygame.display.update()
StarcoderdataPython
9653711
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests to assure the users API end-point. Test-Suite to ensure that the /users endpoint is working as expected. """ import copy from auth_api import status as http_status from auth_api.models import ContactLink as ContactLinkModel from auth_api.schemas import utils as schema_utils from auth_api.services import Org as OrgService from tests.utilities.factory_scenarios import TestJwtClaims, TestOrgInfo, TestUserInfo from tests.utilities.factory_utils import ( factory_auth_header, factory_contact_model, factory_user_model, patch_token_info) def test_get_user_settings(client, jwt, session, keycloak_mock, monkeypatch): # pylint:disable=unused-argument """Assert that get works and adhere to schema.""" user_model = factory_user_model(user_info=TestUserInfo.user_test) contact = factory_contact_model() contact_link = ContactLinkModel() contact_link.contact = contact contact_link.user = user_model contact_link.commit() kc_id = user_model.keycloak_guid claims = copy.deepcopy(TestJwtClaims.updated_test.value) claims['sub'] = str(kc_id) patch_token_info(claims, monkeypatch) OrgService.create_org(TestOrgInfo.org1, user_id=user_model.id) # post token with updated claims headers = factory_auth_header(jwt=jwt, claims=claims) rv = client.get(f'/api/v1/users/{kc_id}/settings', headers=headers, content_type='application/json') item_list = rv.json account = next(obj for obj in item_list if obj['type'] == 'ACCOUNT') assert account['accountType'] == 'BASIC' assert rv.status_code == http_status.HTTP_200_OK assert schema_utils.validate(item_list, 'user_settings_response')[0] assert account['productSettings'] == f'/account/{account["id"]}/settings/restricted-product'
StarcoderdataPython
9614165
<filename>countries/management/commands/_base.py from pathlib import Path from django.core import serializers from django.core.management.base import BaseCommand __all__ = ['DumperBaseCommand'] class TextIOWrapper(object): def __init__(self, path, mode, format, is_fake=False): self.format = format self.is_fake = is_fake if not is_fake: self._file = open(path.as_posix(), mode) else: self._file = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if not self.is_fake: self._file.close() def read(self): if self.is_fake: return [] return serializers.deserialize(self.format, self._file.read()) def write(self, queryset, **kwargs): if not self.is_fake: data = serializers.serialize(self.format, queryset, **kwargs) self._file.write(data) class DumperBaseCommand(BaseCommand): exclude_fixtures = () def __init__(self, *args, **kwargs): self._rootdir = Path(__file__).parents[2] / 'fixtures' super().__init__(*args, **kwargs) def get_fixture_path(self, path): path = Path(path) if not path.is_absolute(): return self._rootdir / path.with_name(path.name + '.json') return path def get_country_path(self, country, name): return Path('countries', country.cca2.lower()).with_suffix('.' + name) def open_fixture(self, path, mode): path = self.get_fixture_path(path) return TextIOWrapper( path=path, mode=mode, format='json', is_fake=self.is_excluded(path)) def is_excluded(self, path): return next(( True for pattern in self.exclude_fixtures if path.match(pattern)), False)
StarcoderdataPython
41965
<gh_stars>0 ''' AUTOR: <NAME> Date: 08/10/2020 WilliamHillURLs class to managed info about William Hill web pages. ''' import requests from bs4 import BeautifulSoup from urlvalidator import validate_url, ValidationError class WilliamHillURLs: """Auxiliar class with data about William Hill Web to scraping data. Returns: WilliamHillURLs: An object with data and auxiliar functions. Attributes ---------- BaseURL : str William Hill URL base web page. URL_FootballOnDirect : str Football matches URL in direct on William Hill web page. URL_TenisOnDirect : str Tenis matches URL in direct on William Hill web page. URL_BasketOnDirect : str Basket matches URL in direct on William Hill web page. """ BaseURL = 'https://sports.williamhill.es/' URL_FootballOnDirect = 'https://sports.williamhill.es/betting/es-es/en-directo/f%C3%BAtbol' URL_TenisOnDirect = 'https://sports.williamhill.es/betting/es-es/en-directo/tenis' URL_BasketOnDirect = 'https://sports.williamhill.es/betting/es-es/en-directo/baloncesto' def GetAllUrlMatches(self, urlSport=URL_FootballOnDirect): """Get all url matchs from a sport (by default foorball urls.). Validate each URL if it´s a URL valid. Args: urlSport (str, optional): Football mathes on direct URL William Hill . Defaults to "https://sports.williamhill.es/betting/es-es/en-directo/f%C3%BAtbol". Returns: list: List with all URL matches. """ req = requests.get(urlSport) soup = BeautifulSoup(req.content.decode('utf-8','ignore'), "html.parser") aux = soup.findAll("a", {"class": ['btmarket__name btmarket__name--featured']}) auxList = [] for item in aux: try: theUrl = (self.BaseURL + item['href']).replace("//","/").replace("https:/","https://") validate_url(theUrl) auxList.append(theUrl) except ValidationError: raise ValidationError(theUrl) return auxList def GetAllMatchsPlayedActually(self, urlSport=URL_FootballOnDirect): """Get all sport matches played in the actuall moment. Args: urlSport (str, optional): A William Hill URL sport. Defaults to URL_FootballOnDirect. Returns: list: List with all matches and its bets. """ req = requests.get(urlSport) soup = BeautifulSoup(req.content.decode('utf-8','ignore'), "lxml") matches = soup.findAll("div", {"class": "btmarket__link-name btmarket__link-name--ellipsis show-for-desktop-medium"}) listaApuestas = soup.findAll("div", {"class": "btmarket__selection"}) matchList = [] for item in matches: var = item.text + ': ' + listaApuestas[0].text + ' | ' + listaApuestas[1].text + ' | ' + listaApuestas[2].text matchList.append(var) return matchList def ConvertFractionalBetToDecimalBet(self, theBet): """Convert a fraccioanl bet str to Args: theBet (str): A fractional bet. Returns: [str]: A decimal bet. """ bet = 0.0 aux = str(theBet).split('/') bet = (int(aux[0], 10) / int(aux[1], 10) ) + 1 return str(round(bet, 2)) def GetAllBetsFromURLMatch(self, url): """Get all bets actually from a match. Args: url (str): Match URL Returns: [type]: A list with the diferents bets availables. """ allBetsList = [] req = requests.get(url) soup = BeautifulSoup(req.content.decode('utf-8','ignore'), "html.parser") aux = soup.findAll("h2", {"class" : ['fl']}) # print('Number of diferent bets: ', len(aux), ', Match URL: ', url) for item in aux: allBetsList.append(item.text) # print(item.text,'|',type(item.text), item['class']) return allBetsList
StarcoderdataPython
9751507
from pathlib import Path import os, sys def get_script_path(): return os.path.dirname(os.path.realpath(sys.argv[0])) # this size is required for embedding FACE_PIC_SIZE = 160 EMBEDDING_SIZE = 512 #PRETREINED_MODEL_DIR = os.path.join(str(Path.home()), 'pretrained_models') PRETREINED_MODEL_DIR = "/workspace/pretrained_models" UNKNOWN_CLASS = "unknown"
StarcoderdataPython
9705298
<reponame>czbiohub/special_ops_crispr_tools #!/usr/bin/env python3 import sys if sys.version_info < (3,5): print("This script requires Python >= 3.5.") print("Current Python version is {}.".format(sys.version.split()[0])) sys.exit(-1) import subprocess, traceback, time, requests from requests.exceptions import ConnectionError import logging log = logging.getLogger(__name__) # For given radius c5_c10_c20 around a target we can determine if there are # any offtargets in that radius. There are two radii of interest. # offtarget_proximity = { "far": "5_9_18", "near": "5_9_19" } assert offtarget_proximity["far"] < offtarget_proximity["near"] # # Def: A radius c5_c10_c20 specifies maximum Hamming distances on nested # suffixes of 5, 10, 20 bases. A 20-mer Y is within 5_9_18 radius of 20-mer X # if and only if the 5-char suffixes of X and Y match exactly, the 10-char # suffixes have at most 1 positional difference, and the 20-char suffixes # (i.e. the entire X and Y) have at most 2 positional differences. gvc_top = "generated_files/under_version_control" # Contains .txt files with various indexes of target => target properties target_index_dir = "{}/target_index".format(gvc_top) # Produced by make_genes_and_identify_all_targets.py, formerly split_fasta genes_dir = "{}/genes".format(gvc_top) genes_temp_dir = genes_dir + "_temp" all_targets_path = "{}/all_targets.txt".format(target_index_dir) ambiguous_targets_path = "{}/ambiguous_targets.txt".format(target_index_dir) antibiotics_by_gene_path = "{}/antibiotics_by_gene.txt".format(target_index_dir) genes_by_antibiotic_path = "{}/genes_by_antibiotic.txt".format(target_index_dir) antibiotics_path = "{}/antibiotics.txt".format(target_index_dir) # Produced by filter_offtargets.py with input from all_targets_path # and using the GO server for offtarget filtering. off_targets_path = "{}/off_targets.txt".format(target_index_dir) # Produced by filter_targets.py with input from all_targets_path # and off_targets_path. filtered_targets_path = "{}/filtered_targets.txt".format(target_index_dir) # Produced by make_gene_index, formerly known as crispr_sites.py. gene_index_dir = "{}/gene_index".format(gvc_top) gene_index_temp_dir = "{}/gene_index_temp".format(gvc_top) padding_input_path = "inputs/additional/padding.json" special_token = "<PASSWORD>" # It is convenient to track changes with git for the smaller and more human # readable generated files. # # When files are (re)generated, the build process presents a git status # report showing which, if any, of the generated files have changed. # # The changes are automatically added to the git index, i.e., to the # user's pending commit. def git_reset_and_remove_generated_folder(output_dir, return_values={}): try: assert ' ' not in output_dir # t = time.time() print("Deleting every file in {}.".format(output_dir)) subprocess.check_call("rm -rf {}".format(output_dir).split()) subprocess.check_call("git rm -r --cached --force --ignore-unmatch --quiet {}".format(output_dir).split()) # print("GIT houskeeping took {:3.1f} seconds.".format(time.time() - t)) return_values['status'] = 'Success' except: traceback.print_exc() return_values['status'] = 'Failure' def git_add_back_generated_folder(output_dir, return_values={}): try: assert output_dir assert ' ' not in output_dir print("Adding every file in {output_dir} to git.".format(output_dir=output_dir)) subprocess.check_call("git add -A {}".format(output_dir).split()) subprocess.check_call("git status --short {}".format(output_dir).split()) return_values['status'] = 'Success' except: traceback.print_exc() return_values['status'] = 'Failure' def git_remove_generated_file(output_file): assert ' ' not in output_file subprocess.check_call("rm -f {}".format(output_file).split()) subprocess.check_call("git rm --cached --force --ignore-unmatch --quiet {}".format(output_file).split()) def git_add_back_generated_file(output_file, skip_status=False): assert output_file assert ' ' not in output_file print("Adding {} back to git.".format(output_file)) subprocess.check_call("git add -A {}".format(output_file).split()) if not skip_status: subprocess.check_call("git status --short {}".format(output_file).split()) def fetch_with_retries(targets, c5, c10, c20, max_attempts=5, timeout=600): failures = 0 while True: try: url = "http://localhost:8080/search?targets=%s&limits=%s" url = url % (",".join(map(str, targets)), ",".join(map(str, [c5, c10, c20]))) return requests.get(url, timeout=timeout) except (ConnectionResetError, ConnectionError): log.warning('Offtarget server not ready, trying again in {} seconds, attempt {}/{}'.format(timeout, failures + 1, max_attempts)) failures += 1 if failures > max_attempts: raise time.sleep(timeout) def main(): t = time.time() print("-------------------------------------------------------------------------------------") subprocess.check_call("python make_genes_and_identify_all_targets.py {}".format(special_token).split()) print("-------------------------------------------------------------------------------------") subprocess.check_call("python filter_offtarget.py".split()) print("-------------------------------------------------------------------------------------") subprocess.check_call("python filter_targets.py".split()) print("-------------------------------------------------------------------------------------") subprocess.check_call("python make_gene_index.py {}".format(special_token).split()) print("-------------------------------------------------------------------------------------") print("Complete rebuild took {:3.1f} seconds.".format(time.time() - t)) return 0 if __name__ == "__main__": print("Builder of FLASH. For usage, see README.TXT.") try: print("Poking offtarget server. Timeout 30 seconds.") fetch_with_retries(["ACGT" * 5], 5, 9, 18, max_attempts=5, timeout=30) print("Offtarget server is alive.") except: traceback.print_exc() print("*********************************************************************************") print("*** Did you forget to start the offtarget server? Did it finish loading? ***") print("*** Please follow the instructions in README.TXT and try again. ***") print("*********************************************************************************") sys.exit(-1) retcode = main() sys.exit(retcode)
StarcoderdataPython
1778825
# coding: utf-8 import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence import numpy as np class Model(nn.Module): def __init__(self, args): super(Model, self).__init__() if args['embedding_pretrained'] is not None: self.embedding = nn.Embedding.from_pretrained(args['embedding_pretrained'], freeze=False) else: self.embedding = nn.Embedding(args['n_vocab'], args['embed'], padding_idx=args['n_vocab'] - 1) self.lstm = nn.LSTM(args['embed'], args['hidden_size'], args['num_layers'], bidirectional=True, batch_first=True, dropout=args['dropout']) self.tanh = nn.Tanh() self.w = nn.Parameter(torch.zeros(args['hidden_size'] * 2)) #self.fc1 = nn.Linear(args['hidden_size'] * 2, args['hidden_size2']) #self.fc2 = nn.Linear(args['hidden_size2'], args['num_classes']) self.fc = nn.Linear(args['hidden_size'] * 2, args['num_classes']) def forward(self, x): # x[0]: [batch_size, seq_len] # x[1]: [batch_size] actual len of each sentence emb = self.embedding(x[0]) # emb: [batch_size, seq_len, embed] packed_input = pack_padded_sequence(emb, x[1], batch_first=True, enforce_sorted=False) # use this function to speed up packed_output, (hidden, cell) = self.lstm(packed_input) # hidden: [num_directions, batch_size, hidden_size] out, seq_len = pad_packed_sequence(packed_output, batch_first=True) # out: [batch_size, seq_len, hidden_size*num_directions] M = self.tanh(out) # M: [batch_size, seq_len, hidden_size*num_directions] alpha = F.softmax(torch.matmul(M, self.w), dim=1).unsqueeze(-1) # alpha: [batch_size, seq_len, 1] out = out*alpha # out: [batch_size, seq_len, hidden_size*num_directions] out = torch.sum(out,1) # out: [batch_size, hidden_size*num_directions] out = F.relu(out) out = self.fc(out) #out = self.fc1(out) # out: [batch_size, hidden_size2] #out = self.fc2(out) # out: [batch_size, num_classes] return out
StarcoderdataPython
43060
import os import csv import subprocess import matplotlib.pyplot as plt from math import ceil from tqdm import tqdm from pandas import read_csv from netCDF4 import Dataset, num2date from multiprocessing import cpu_count, Process from .plot import plot_filtered_profiles_data def download_data(files, storage_path): # Download data from Argo rsync's server with tqdm(total=files.shape[0]) as pbar: for file in files: subprocess.call(["rsync", "-azh", f"vdmzrs.ifremer.fr::argo/{file}", storage_path]) pbar.update(1) def filter_point_in_polygon(data, start, end, polygon, thread, storage_path, file_name, source_path): N = len(polygon) with open(f'{storage_path}/{file_name}-{thread}.csv', 'a', newline='') as file: writer = csv.writer(file) for i in range(start, end): # Point-in-polygon filter if(is_inside_the_polygon(polygon, N, [data.latitude.values[i],data.longitude.values[i]])): writer.writerow(data.values[i]) def get_data_from_nc(data, start, end, polygon, thread, storage_path, file_name, source_path): with open(f'{storage_path}/{file_name}-{thread}.csv', 'a', newline='') as file: writer = csv.writer(file) measurements = [] for k in range(start, end): try: # Extract data from NetCDF files nc = Dataset(f"{source_path}/{data.values[k]}") PLATFORM_NUMBER = nc.variables['PLATFORM_NUMBER'][:] CYCLE_NUMBER = nc.variables['CYCLE_NUMBER'][:] DATA_MODE = nc.variables['DATA_MODE'][:] JULD = nc.variables['JULD'] JULD = num2date(JULD[:],JULD.units) LATITUDE = nc.variables['LATITUDE'][:] LONGITUDE = nc.variables['LONGITUDE'][:] PRES = nc.variables['PRES'][:] PRES_ADJUSTED = nc.variables['PRES_ADJUSTED'][:] TEMP = nc.variables['TEMP'][:] TEMP_ADJUSTED = nc.variables['TEMP_ADJUSTED'][:] PSAL = nc.variables['PSAL'][:] PSAL_ADJUSTED = nc.variables['PSAL_ADJUSTED'][:] for j in range(PRES_ADJUSTED.shape[1]): if(str(DATA_MODE[0], 'utf-8').strip() == 'R'): if(PRES[0][j] > 0 and TEMP[0][j] > 0 and PSAL[0][j] > 0): measurements.append([str(PLATFORM_NUMBER[0], 'utf-8').strip(),CYCLE_NUMBER[0],str(DATA_MODE[0], 'utf-8').strip(),JULD[0],LATITUDE[0],LONGITUDE[0],PRES[0][j],TEMP[0][j],PSAL[0][j]]) else: if(PRES_ADJUSTED[0][j] > 0 and TEMP_ADJUSTED[0][j] > 0 and PSAL_ADJUSTED[0][j] > 0): measurements.append([str(PLATFORM_NUMBER[0], 'utf-8').strip(),CYCLE_NUMBER[0],str(DATA_MODE[0], 'utf-8').strip(),JULD[0],LATITUDE[0],LONGITUDE[0],PRES_ADJUSTED[0][j],TEMP_ADJUSTED[0][j],PSAL_ADJUSTED[0][j]]) except: print(f"File [error]: {data.values[k]}") writer.writerows(measurements) def get_data_from_source(files, source_path, storage_path): columns = ['PLATFORM_NUMBER','CYCLE_NUMBER','DATA_MODE','DATE','LATITUDE','LONGITUDE','PRES','TEMP','PSAL'] # Execute parallel computation with function "get_data_from_nc" exec_parallel_computation(files, columns, get_data_from_nc, storage_path, "measurements", source_path=source_path) def get_index(storage_path): subprocess.call(["rsync", "-azh", "vdmzrs.ifremer.fr::argo-index/ar_index_global_prof.txt", storage_path]) def get_profiles_within_polygon(data, polygon, storage_path): # Maximum and minimum filter filtered_data = data[(data.latitude > polygon.latitude.min()) & (data.latitude < polygon.latitude.max()) & (data.longitude > polygon.longitude.min()) & (data.longitude < polygon.longitude.max())].reset_index() # Execute parallel computation exec_parallel_computation(filtered_data, filtered_data.columns, filter_point_in_polygon, storage_path, "filtered_profiles", polygon) filtered_profiles = read_csv(f"{storage_path}/filtered_profiles.csv") #Plot study area plot_filtered_profiles_data(polygon, filtered_profiles, data, storage_path) return filtered_profiles def is_inside_the_polygon(polygon, N, p): xinters = 0 counter = 0 p1 = polygon.iloc[0] # Even-odd algorithm for i in range(1, N+1): p2 = polygon.iloc[i % N] if (p[0] > min(p1[0],p2[0])): if (p[0] <= max(p1[0],p2[0])): if (p[1] <= max(p1[1],p2[1])): if (p1[0] != p2[0]): xinters = (p[0]-p1[0])*(p2[1]-p1[1])/(p2[0]-p1[0])+p1[1] if (p1[1] == p2[1] or p[1] <= xinters): counter += 1 p1 = p2 return counter % 2 != 0 def exec_parallel_computation(data, columns, function, storage_path, file_name, polygon=[], source_path=""): # Get number of CPUs in the system processes = [] cpucount = cpu_count() r_range = ceil(data.shape[0]/cpucount) # Parallel computation for i in range(cpucount): with open(f"{storage_path}/{file_name}-{i}.csv", 'w', newline='') as file: writer = csv.writer(file) writer.writerow(columns) start = i * r_range end = start + r_range if(end > data.shape[0]): end = data.shape[0] p = Process(target=function, args=(data, start, end, polygon, i, storage_path, file_name, source_path)) processes.append(p) p.start() # Block threads until the process join() method is called for p in processes: p.join() # Collect parallel compute data filtered_profiles_path = f"{storage_path}/{file_name}.csv" with open(filtered_profiles_path, 'w', newline='') as file: writer = csv.writer(file) writer.writerow(columns) for i in range(cpucount): writer.writerows(read_csv(f"{storage_path}/{file_name}-{i}.csv").values) os.remove(f"{storage_path}/{file_name}-{i}.csv")
StarcoderdataPython
9620605
from django.core.context_processors import csrf from django.db.utils import IntegrityError from django.shortcuts import render_to_response from django.template import RequestContext from TwRestApiPlaces.models import * def test(request): test_place = None try: test_place = Place.objects.create(name = 'Spain', code = 'es') except IntegrityError as e: #Write to log file e exception pass if not test_place: test_place = Place.objects.get(name = 'Spain') try: test_place.get_woeid_from_yahoo() except YahooSearchException as e: #Write to log file e exception pass #Get Actual Trends Of Spain Place test_place.get_trends() context = { 'Places': Place.objects.all(), 'Trends_Spain': test_place.trend_set.all(), } context.update(csrf(request)) return render_to_response('test.html', context, RequestContext(request))
StarcoderdataPython
12840407
<reponame>yyang08/swagger-spec-compatibility # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals from copy import deepcopy import mock import pytest from swagger_spec_compatibility.spec_utils import load_spec_from_spec_dict from swagger_spec_compatibility.util import EntityMapping from swagger_spec_compatibility.walkers.enum_values import _different_enum_values_mapping from swagger_spec_compatibility.walkers.enum_values import EnumValuesDiff from swagger_spec_compatibility.walkers.enum_values import EnumValuesDifferWalker @pytest.mark.parametrize( 'left_dict, right_dict, expected_value', [ (None, None, None), ({}, {}, None), ({'type': 'object'}, {}, None), ({'enum': ['v1']}, {}, None), ({'type': 'string', 'enum': ['v1']}, {}, EntityMapping({'v1'}, set())), ({}, {'type': 'string', 'enum': ['v1']}, EntityMapping(set(), {'v1'})), ({'type': 'string', 'enum': ['v1']}, {'type': 'string', 'enum': ['v1']}, None), ({'type': 'string', 'enum': ['v1', 'v2']}, {'type': 'string', 'enum': ['v2', 'v1']}, None), ({'type': 'string', 'enum': ['old', 'common']}, {'type': 'string', 'enum': ['common', 'new']}, EntityMapping({'old'}, {'new'})), ], ) def test__different_enum_values_mapping(left_dict, right_dict, expected_value): assert _different_enum_values_mapping( left_spec=mock.sentinel.LEFT_SPEC, right_spec=mock.sentinel.RIGHT_SPEC, left_schema=left_dict, right_schema=right_dict, ) == expected_value def test_EnumValuesDifferWalker_returns_no_paths_if_no_endpoints_defined(minimal_spec): assert EnumValuesDifferWalker(minimal_spec, minimal_spec).walk() == [] def test_EnumValuesDifferWalker_returns_paths_of_endpoints_responses(minimal_spec_dict): old_spec_dict = dict( minimal_spec_dict, definitions={ 'enum_1': { 'type': 'string', 'enum': ['value_to_remove', 'E2', 'E3'], 'x-model': 'enum_1', }, 'enum_2': { 'type': 'string', 'enum': ['E1', 'E2', 'E3'], 'x-model': 'enum_2', }, 'object': { 'properties': { 'enum_1': {'$ref': '#/definitions/enum_1'}, 'enum_2': {'$ref': '#/definitions/enum_2'}, }, 'type': 'object', 'x-model': 'object', }, }, paths={ '/endpoint': { 'get': { 'parameters': [{ 'in': 'body', 'name': 'body', 'required': True, 'schema': { '$ref': '#/definitions/object', }, }], 'responses': { '200': { 'description': '', 'schema': { '$ref': '#/definitions/object', }, }, }, }, }, }, ) new_spec_dict = deepcopy(old_spec_dict) del new_spec_dict['definitions']['enum_1']['enum'][0] new_spec_dict['definitions']['enum_2']['enum'].append('new_value') old_spec = load_spec_from_spec_dict(old_spec_dict) new_spec = load_spec_from_spec_dict(new_spec_dict) assert sorted(EnumValuesDifferWalker(old_spec, new_spec).walk()) == sorted([ EnumValuesDiff( path=('definitions', 'enum_2'), mapping=EntityMapping(old=set(), new={'new_value'}), ), EnumValuesDiff( path=('definitions', 'object', 'properties', 'enum_2'), mapping=EntityMapping(old=set(), new={'new_value'}), ), EnumValuesDiff( path=('definitions', 'object', 'properties', 'enum_1'), mapping=EntityMapping(old={'value_to_remove'}, new=set()), ), EnumValuesDiff( path=('definitions', 'enum_1'), mapping=EntityMapping(old={'value_to_remove'}, new=set()), ), EnumValuesDiff( path=('paths', '/endpoint', 'get', 'responses', '200', 'schema', 'properties', 'enum_2'), mapping=EntityMapping(old=set(), new={'new_value'}), ), EnumValuesDiff( path=('paths', '/endpoint', 'get', 'responses', '200', 'schema', 'properties', 'enum_1'), mapping=EntityMapping(old={'value_to_remove'}, new=set()), ), EnumValuesDiff( path=('paths', '/endpoint', 'get', 'parameters', 0, 'schema', 'properties', 'enum_2'), mapping=EntityMapping(old=set(), new={'new_value'}), ), EnumValuesDiff( path=('paths', '/endpoint', 'get', 'parameters', 0, 'schema', 'properties', 'enum_1'), mapping=EntityMapping(old={'value_to_remove'}, new=set()), ), ])
StarcoderdataPython
133818
<reponame>CircleLiu/DataWarehouse import redis import re import csv from itertools import islice redis_pool = redis.ConnectionPool(host='127.0.0.1', port=6379, db=0) redis_conn = redis.StrictRedis(connection_pool=redis_pool) def cache(): total_lines = 7911684 * 9 with open('./movies.txt', 'r', errors='ignore') as f: for n, line in enumerate(f): if line.startswith('review/userId:'): user_id = line.split(':')[1].strip() if line.startswith('review/profileName:'): user_name = line.split(':')[1].strip() if n % 9 == 8: redis_conn.hset('user', user_id, user_name) print('\r {}%'.format(100*n/total_lines), end='') def save(): with open('./csv/user.csv', 'w', newline='') as csvfile: cw = csv.writer(csvfile) cw.writerow(['userID', 'profileName']) for i in range(redis_conn.scard('user:id')): user_id = str(redis_conn.spop('user:id'), encoding='utf-8') name = str(redis_conn.hget('user', user_id), encoding='utf-8') cw.writerow([user_id, name]) print('\r{}'.format(i)) def load_id(): ids = redis_conn.hkeys('user') for i in ids: redis_conn.sadd('user:id', i) save()
StarcoderdataPython
3485809
<filename>FastEMRIWaveforms/few/amplitude/interp2dcubicspline.py # Schwarzschild Eccentric amplitude module for Fast EMRI Waveforms # performed with bicubic splines # Copyright (C) 2020 <NAME>, <NAME>, <NAME>, <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import os import h5py import numpy as np # Cython/C++ imports from pyInterp2DAmplitude import pyAmplitudeGenerator # Python imports from few.utils.baseclasses import SchwarzschildEccentric, AmplitudeBase from few.utils.utility import check_for_file_download from few.utils.citations import * # get path to file dir_path = os.path.dirname(os.path.realpath(__file__)) class Interp2DAmplitude(AmplitudeBase, SchwarzschildEccentric): """Calculate Teukolsky amplitudes by 2D Cubic Spline interpolation. Please see the documentations for :class:`few.utils.baseclasses.SchwarzschildEccentric` for overall aspects of these models. Each mode is setup with a 2D cubic spline interpolant. When the user inputs :math:`(p,e)`, the interpolatant determines the corresponding amplitudes for each mode in the model. args: **kwargs (dict, optional): Keyword arguments for the base class: :class:`few.utils.baseclasses.SchwarzschildEccentric`. Default is {}. """ def __init__(self, **kwargs): SchwarzschildEccentric.__init__(self, **kwargs) AmplitudeBase.__init__(self, **kwargs) # check if you have the necessary file # it will download from Zenodo if the user does not have it. few_dir = dir_path + "/../../" fp = "Teuk_amps_a0.0_lmax_10_nmax_30_new.h5" check_for_file_download(fp, few_dir) self.amplitude_generator = pyAmplitudeGenerator(self.lmax, self.nmax, few_dir) def attributes_Interp2DAmplitude(self): """ attributes: amplitude_generator (obj): C++ class that performs the bicubic interpolation. It stores all of the splines during initialization steps. """ pass @property def citation(self): """Return citations for this class""" return few_citation + few_software_citation def get_amplitudes(self, p, e, *args, specific_modes=None, **kwargs): """Calculate Teukolsky amplitudes for Schwarzschild eccentric. This function takes the inputs the trajectory in :math:`(p,e)` as arrays and returns the complex amplitude of all modes to adiabatic order at each step of the trajectory. args: p (1D double numpy.ndarray): Array containing the trajectory for values of the semi-latus rectum. e (1D double numpy.ndarray): Array containing the trajectory for values of the eccentricity. l_arr (1D int numpy.ndarray): :math:`l` values to evaluate. m_arr (1D int numpy.ndarray): :math:`m` values to evaluate. n_arr (1D int numpy.ndarray): :math:`ns` values to evaluate. *args (tuple, placeholder): Added to create flexibility when calling different amplitude modules. It is not used. specific_modes (list, optional): List of tuples for (l, m, n) values desired modes. Default is None. **kwargs (dict, placeholder): Added to create flexibility when calling different amplitude modules. It is not used. returns: 2D array (double): If specific_modes is None, Teukolsky modes in shape (number of trajectory points, number of modes) dict: Dictionary with requested modes. """ input_len = len(p) # set the l,m,n arrays # if all modes, return modes from the model if specific_modes is None: l_arr, m_arr, n_arr = ( self.l_arr[self.m_zero_up_mask], self.m_arr[self.m_zero_up_mask], self.n_arr[self.m_zero_up_mask], ) # prepare arrays if specific modes are requested else: l_arr = np.zeros(len(specific_modes), dtype=int) m_arr = np.zeros(len(specific_modes), dtype=int) n_arr = np.zeros(len(specific_modes), dtype=int) # to deal with weird m structure inds_revert = [] for i, (l, m, n) in enumerate(specific_modes): l_arr[i] = l m_arr[i] = np.abs(m) n_arr[i] = n if m < 0: inds_revert.append(i) inds_revert = np.asarray(inds_revert) # interface to C++ teuk_modes = self.amplitude_generator( p, e, l_arr.astype(np.int32), m_arr.astype(np.int32), n_arr.astype(np.int32), input_len, len(l_arr), ) # determine return quantities # return array of all modes if specific_modes is None: return teuk_modes # dict containing requested modes else: temp = {} for i, lmn in enumerate(specific_modes): temp[lmn] = teuk_modes[:, i] l, m, n = lmn # apply +/- m symmetry if m < 0: temp[lmn] = np.conj(temp[lmn]) return temp
StarcoderdataPython
225866
import os import sys from io import StringIO from autouri import AutoURI from caper.cromwell import Cromwell from caper.cromwell_metadata import CromwellMetadata from .example_wdl import make_directory_with_failing_wdls, make_directory_with_wdls def test_on_successful_workflow(tmp_path, cromwell, womtool): fileobj_stdout = sys.stdout make_directory_with_wdls(str(tmp_path / 'successful')) # Run Cromwell to get metadata JSON c = Cromwell(cromwell=cromwell, womtool=womtool) th = c.run( wdl=str(tmp_path / 'successful' / 'main.wdl'), inputs=str(tmp_path / 'successful' / 'inputs.json'), fileobj_stdout=fileobj_stdout, cwd=str(tmp_path / 'successful'), ) th.join() metadata = th.returnvalue assert metadata cm = CromwellMetadata(metadata) # test all properties assert cm.data == metadata assert cm.metadata == metadata assert CromwellMetadata(metadata).data == metadata assert cm.workflow_id == metadata['id'] assert cm.workflow_status == metadata['status'] # no failures for successful workflow's metadata assert cm.failures is None assert cm.calls == metadata['calls'] # test recurse_calls(): test with a simple function def fnc(call_name, call, parent_call_names): assert call_name in ('main.t1', 'sub.t2', 'sub_sub.t3') assert call['executionStatus'] == 'Done' if call_name == 'main.t1': assert not parent_call_names elif call_name == 'sub.t2': assert parent_call_names == ('main.sub',) elif call_name == 'sub_sub.t3': assert parent_call_names == ('main.sub', 'sub.sub_sub') else: raise ValueError('Wrong call_name: {name}'.format(name=call_name)) cm.recurse_calls(fnc) # test write_on_workflow_root() m_file_on_root = os.path.join(cm.metadata['workflowRoot'], 'metadata.json') u = AutoURI(m_file_on_root) u.rm() assert not u.exists cm.write_on_workflow_root() assert os.path.exists(m_file_on_root) assert CromwellMetadata(m_file_on_root).metadata == cm.metadata def test_on_failed_workflow(tmp_path, cromwell, womtool): fileobj_stdout = sys.stdout make_directory_with_failing_wdls(str(tmp_path / 'failed')) # Run Cromwell to get metadata JSON # designed to fail in a subworkflow c = Cromwell(cromwell=cromwell, womtool=womtool) th = c.run( wdl=str(tmp_path / 'failed' / 'main.wdl'), inputs=str(tmp_path / 'failed' / 'inputs.json'), fileobj_stdout=fileobj_stdout, cwd=str(tmp_path / 'failed'), ) th.join() # check failed assert th.returncode metadata = th.returnvalue assert metadata cm = CromwellMetadata(metadata) assert cm.failures == metadata['failures'] assert cm.calls == metadata['calls'] # test troubleshoot() fileobj = StringIO() cm.troubleshoot(fileobj=fileobj) fileobj.seek(0) s = fileobj.read() assert '* Found failures JSON object' in s assert 'NAME=sub.t2_failing' in s assert 'INTENTED_ERROR: command not found'
StarcoderdataPython
4957466
import argparse import pdb def get_args(): """Get arguments from CLI""" parser = argparse.ArgumentParser( description="""Program description""") parser.add_argument( "--input", required=True, help="""The input BED file""" ) parser.add_argument( "--output", required=True, help="""The output BED file""" ) parser.add_argument( "--min-length", type=int, default=100, help="""The minimum length to filter""", ) return parser.parse_args() def main(): args = get_args() with open(args.input, 'rU') as input: with open(args.output, 'w') as outf: for line in input: ls = line.strip().split('\t') if int(ls[2]) - int(ls[1]) >= args.min_length: outf.write(line) if __name__ == '__main__': main()
StarcoderdataPython
8109747
<reponame>hsm207/sage """ SAT Functions for Boolean Polynomials These highlevel functions support solving and learning from Boolean polynomial systems. In this context, "learning" means the construction of new polynomials in the ideal spanned by the original polynomials. AUTHOR: - <NAME> (2012): initial version Functions ^^^^^^^^^ """ ############################################################################## # Copyright (C) 2012 <NAME> <<EMAIL>> # Distributed under the terms of the GNU General Public License (GPL) # The full text of the GPL is available at: # http://www.gnu.org/licenses/ ############################################################################## from sage.sat.solvers import SatSolver from sage.sat.converters import ANF2CNFConverter from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds): """ Solve system of Boolean polynomials ``F`` by solving the SAT-problem -- produced by ``converter`` -- using ``solver``. INPUT: - ``F`` - a sequence of Boolean polynomials - ``n`` - number of solutions to return. If ``n`` is +infinity then all solutions are returned. If ``n <infinity`` then ``n`` solutions are returned if ``F`` has at least ``n`` solutions. Otherwise, all solutions of ``F`` are returned. (default: ``1``) - ``converter`` - an ANF to CNF converter class or object. If ``converter`` is ``None`` then :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: ``None``) - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: ``None``) - ``target_variables`` - a list of variables. The elements of the list are used to exclude a particular combination of variable assignments of a solution from any further solution. Furthermore ``target_variables`` denotes which variable-value pairs appear in the solutions. If ``target_variables`` is ``None`` all variables appearing in the polynomials of ``F`` are used to construct exclusion clauses. (default: ``None``) - ``**kwds`` - parameters can be passed to the converter and the solver by prefixing them with ``c_`` and ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass ``s_verbosity=1``. OUTPUT: A list of dictionaries, each of which contains a variable assignment solving ``F``. EXAMPLES: We construct a very small-scale AES system of equations:: sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True) sage: F,s = sr.polynomial_system() and pass it to a SAT solver:: sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: s = solve_sat(F) # optional - cryptominisat sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables This time we pass a few options through to the converter and the solver:: sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat c ... ... sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables We construct a very simple system with three solutions and ask for a specific number of solutions:: sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat sage: f = a*b # optional - cryptominisat sage: l = solve_sat([f],n=1) # optional - cryptominisat sage: len(l) == 1, f.subs(l[0]) # optional - cryptominisat (True, 0) sage: l = solve_sat([a*b],n=2) # optional - cryptominisat sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat (True, 0, 0) sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3)) # optional - cryptominisat [(0, 0), (0, 1), (1, 0)] sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=4)) # optional - cryptominisat [(0, 0), (0, 1), (1, 0)] sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=infinity)) # optional - cryptominisat [(0, 0), (0, 1), (1, 0)] In the next example we see how the ``target_variables`` parameter works:: sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: R.<a,b,c,d> = BooleanPolynomialRing() # optional - cryptominisat sage: F = [a+b,a+c+d] # optional - cryptominisat First the normal use case:: sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F,n=infinity)) # optional - cryptominisat [(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)] Now we are only interested in the solutions of the variables a and b:: sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - cryptominisat [{b: 0, a: 0}, {b: 1, a: 1}] Here, we generate and solve the cubic equations of the AES SBox (see :trac:`26676`):: sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence # optional - cryptominisat, long time sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat, long time sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True) # optional - cryptominisat, long time sage: sb = sr.sbox() # optional - cryptominisat, long time sage: eqs = sb.polynomials(degree = 3) # optional - cryptominisat, long time sage: eqs = PolynomialSequence(eqs) # optional - cryptominisat, long time sage: variables = map(str, eqs.variables()) # optional - cryptominisat, long time sage: variables = ",".join(variables) # optional - cryptominisat, long time sage: R = BooleanPolynomialRing(16, variables) # optional - cryptominisat, long time sage: eqs = [R(eq) for eq in eqs] # optional - cryptominisat, long time sage: sls_aes = solve_sat(eqs, n = infinity) # optional - cryptominisat, long time sage: len(sls_aes) # optional - cryptominisat, long time 256 TESTS: Test that :trac:`26676` is fixed:: sage: varl = ['k{0}'.format(p) for p in range(29)] sage: B = BooleanPolynomialRing(names = varl) sage: B.inject_variables(verbose=False) sage: keqs = [ ....: k0 + k6 + 1, ....: k3 + k9 + 1, ....: k5*k18 + k6*k18 + k7*k16 + k7*k10, ....: k9*k17 + k8*k24 + k11*k17, ....: k1*k13 + k1*k15 + k2*k12 + k3*k15 + k4*k14, ....: k5*k18 + k6*k16 + k7*k18, ....: k3 + k26, ....: k0 + k19, ....: k9 + k28, ....: k11 + k20] sage: from sage.sat.boolean_polynomials import solve as solve_sat sage: solve_sat(keqs, n=1, solver=SAT('cryptominisat')) # optional - cryptominisat [{k28: 0, k26: 1, k24: 0, k20: 0, k19: 0, k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0, k10: 0, k9: 0, k8: 0, k7: 0, k6: 1, k5: 0, k4: 0, k3: 1, k2: 0, k1: 0, k0: 0}] sage: solve_sat(keqs, n=1, solver=SAT('picosat')) # optional - pycosat [{k28: 0, k26: 1, k24: 0, k20: 0, k19: 0, k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 1, k12: 1, k11: 0, k10: 0, k9: 0, k8: 0, k7: 0, k6: 1, k5: 0, k4: 1, k3: 1, k2: 1, k1: 1, k0: 0}] .. NOTE:: Although supported, passing converter and solver objects instead of classes is discouraged because these objects are stateful. """ assert(n>0) try: len(F) except AttributeError: F = F.gens() len(F) P = next(iter(F)).parent() K = P.base_ring() if target_variables is None: target_variables = PolynomialSequence(F).variables() else: target_variables = PolynomialSequence(target_variables).variables() assert(set(target_variables).issubset(set(P.gens()))) # instantiate the SAT solver if solver is None: from sage.sat.solvers import CryptoMiniSat as solver if not isinstance(solver, SatSolver): solver_kwds = {} for k, v in kwds.items(): if k.startswith("s_"): solver_kwds[k[2:]] = v solver = solver(**solver_kwds) # instantiate the ANF to CNF converter if converter is None: from sage.sat.converters.polybori import CNFEncoder as converter if not isinstance(converter, ANF2CNFConverter): converter_kwds = {} for k, v in kwds.items(): if k.startswith("c_"): converter_kwds[k[2:]] = v converter = converter(solver, P, **converter_kwds) phi = converter(F) rho = dict((phi[i], i) for i in range(len(phi))) S = [] while True: s = solver() if s: S.append(dict((x, K(s[rho[x]])) for x in target_variables)) if n is not None and len(S) == n: break exclude_solution = tuple(-rho[x] if s[rho[x]] else rho[x] for x in target_variables) solver.add_clause(exclude_solution) else: try: learnt = solver.learnt_clauses(unitary_only=True) if learnt: S.append(dict((phi[abs(i)-1], K(i<0)) for i in learnt)) else: S.append(s) break except (AttributeError, NotImplementedError): # solver does not support recovering learnt clauses S.append(s) break if len(S) == 1: if S[0] is False: return False if S[0] is None: return None elif S[-1] is False: return S[0:-1] return S def learn(F, converter=None, solver=None, max_learnt_length=3, interreduction=False, **kwds): """ Learn new polynomials by running SAT-solver ``solver`` on SAT-instance produced by ``converter`` from ``F``. INPUT: - ``F`` - a sequence of Boolean polynomials - ``converter`` - an ANF to CNF converter class or object. If ``converter`` is ``None`` then :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: ``None``) - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: ``None``) - ``max_learnt_length`` - only clauses of length <= ``max_length_learnt`` are considered and converted to polynomials. (default: ``3``) - ``interreduction`` - inter-reduce the resulting polynomials (default: ``False``) .. NOTE:: More parameters can be passed to the converter and the solver by prefixing them with ``c_`` and ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass ``s_verbosity=1``. OUTPUT: A sequence of Boolean polynomials. EXAMPLES:: sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - cryptominisat We construct a simple system and solve it:: sage: set_random_seed(2300) # optional - cryptominisat sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - cryptominisat sage: F,s = sr.polynomial_system() # optional - cryptominisat sage: H = learn_sat(F) # optional - cryptominisat sage: H[-1] # optional - cryptominisat k033 + 1 """ try: len(F) except AttributeError: F = F.gens() len(F) P = next(iter(F)).parent() K = P.base_ring() # instantiate the SAT solver if solver is None: from sage.sat.solvers.cryptominisat import CryptoMiniSat as solver solver_kwds = {} for k, v in kwds.items(): if k.startswith("s_"): solver_kwds[k[2:]] = v solver = solver(**solver_kwds) # instantiate the ANF to CNF converter if converter is None: from sage.sat.converters.polybori import CNFEncoder as converter converter_kwds = {} for k, v in kwds.items(): if k.startswith("c_"): converter_kwds[k[2:]] = v converter = converter(solver, P, **converter_kwds) phi = converter(F) rho = dict((phi[i], i) for i in range(len(phi))) s = solver() if s: learnt = [x + K(s[rho[x]]) for x in P.gens()] else: learnt = [] try: lc = solver.learnt_clauses() except (AttributeError, NotImplementedError): # solver does not support recovering learnt clauses lc = [] for c in lc: if len(c) <= max_learnt_length: try: learnt.append(converter.to_polynomial(c)) except (ValueError, NotImplementedError, AttributeError): # the solver might have learnt clauses that contain CNF # variables which have no correspondence to variables in our # polynomial ring (XOR chaining variables for example) pass learnt = PolynomialSequence(P, learnt) if interreduction: learnt = learnt.ideal().interreduced_basis() return learnt
StarcoderdataPython
3469020
"""Set version helper """ #!/usr/bin/env python import argparse import semantic_version from utils_file import FileContext from utils_iotedge import get_modules if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('type', choices=['patch', 'minor', 'major', 'set'], help="Update type") parser.add_argument('--version', type=semantic_version.Version, help="set version") args = parser.parse_args() fc = FileContext(__file__) modules = get_modules(fc.git_root + "/factory-ai-vision/EdgeSolution/modules") for module in modules: if args.type == 'patch': module.next_patch() elif args.type == 'minor': module.next_minor() elif args.type == 'major': module.next_major() elif args.type == 'set': if not args.version: parser.error('please provide version number (--version)') module.version = args.version
StarcoderdataPython