id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
134355
<gh_stars>100-1000 # This file is meant to be run inside lldb as a command after # the attach_linux.dylib dll has already been loaded to settrace for all threads. def __lldb_init_module(debugger, internal_dict): # Command Initialization code goes here # print('Startup LLDB in Python!') import lldb try: show_debug_info = 1 is_debug = 0 options = lldb.SBExpressionOptions() options.SetFetchDynamicValue() options.SetTryAllThreads(run_others=False) options.SetTimeoutInMicroSeconds(timeout=10000000) target = debugger.GetSelectedTarget() if target: process = target.GetProcess() if process: for thread in process: # Get the first frame # print('Thread %s, suspended %s\n'%(thread, thread.IsStopped())) if internal_dict.get('_thread_%d' % thread.GetThreadID(), False): process.SetSelectedThread(thread) if not thread.IsStopped(): # thread.Suspend() error = process.Stop() frame = thread.GetSelectedFrame() if frame.GetFunctionName() == '__select': # print('We are in __select') # Step over select, otherwise evaluating expression there can terminate thread thread.StepOver() frame = thread.GetSelectedFrame() print('Will settrace in: %s' % (frame,)) for f in thread: print(f) res = frame.EvaluateExpression("(int) SetSysTraceFunc(%s, %s)" % ( show_debug_info, is_debug), options) error = res.GetError() if error: print(error) thread.Resume() except: import traceback;traceback.print_exc()
StarcoderdataPython
1740622
<gh_stars>0 # Create a SQL alchemy session maker to be used from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker SQLALCHEMY_DATABASE_URL = "postgresql+psycopg2://admin:admin@localhost/pht_conductor" engine = create_engine( SQLALCHEMY_DATABASE_URL, # connect_args={"check_same_thread": False} For sqlite db ) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
StarcoderdataPython
1712329
<filename>test/tutorial/scripts/api/download_data_metadata.py from dbio.dss import DSSClient dss = DSSClient() UUID = "ffffaf55-f19c-40e3-aa81-a6c69d357265" VERSION = "ffffaf55-f19c-40e3-aa81-a6c69d357265" # Download the metadata only dss.download( bundle_uuid=UUID, version=VERSION, replica="aws", download_dir=".dbio_metadata_only" ) # Download the data only dss.download( bundle_uuid=UUID, version=VERSION, replica="aws", download_dir=".dbio_data_only" )
StarcoderdataPython
3356028
<reponame>m-star18/atcoder<filename>submissions/abc101/b.py import math n = int(input()) n_check = n num = [] for i in range(int(math.log10(n)+1)+1): num.append(n % 10) n /= 10 n -= num[i]/10 if n_check%int(sum(num)) == 0: ans = 'Yes' else: ans = 'No' print(ans)
StarcoderdataPython
3306972
<filename>website/views.py<gh_stars>10-100 """ This module registers flask app views. """ from flask import Blueprint, render_template views = Blueprint('views', __name__) def base() -> str: """ Loads the main html template. --- Args: None Returns: base.html: base html template. """ return render_template("base.html") @views.route('/', methods=['GET']) @views.route('/home', methods=['GET']) def home() -> str: """ Loads the home html template. --- Args: None Returns: home.html: home html template. """ return render_template("home.html") @views.route('/support', methods=['GET']) def about() -> str: """ Loads the about html template. --- Args: None Returns: support.html: support html template """ return render_template("support.html")
StarcoderdataPython
4814902
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Access Missouri model managers for legislative tasks. """ from billmanager import BillManager
StarcoderdataPython
1795851
<reponame>kykosic/pycats """ Pipe type class. It can be used to fluently sequence computations on any object, but is especially useful to transform lazily evaluated data, such as Python generators. Users of R will find it similar to the dplyr `%>%` operator. """ from abc import ABC, abstractmethod from pycats.core import typeclass @typeclass class Pipe(ABC): """ Provides `pipe` method. Signatures for `Pipe[A]`: - `A.pipe(func: A -> B) -> B` """ @abstractmethod def pipe(self, func): pass
StarcoderdataPython
1750544
<filename>gym_PBN/envs/bittner/base.py<gh_stars>0 """ This file contains arcane magics. """ import copy import itertools import pickle import random import time from os import path import networkx as nx import numpy as np from scipy.special import smirnov class Node: def __init__(self, index, bittnerIndex, name, ID, LUTflag=False): self.index = index self.bittnerIndex = bittnerIndex self.name = name self.ID = ID self.LUTflag = LUTflag self.CODsum = 0 self.value = None self.predictors = [] self.inputNodes = None def addPredictors(self, predictors): IDstoPrint = [] for COD, A, inputIDs in predictors.T: if type(COD) == type(None): pass else: self.CODsum += COD if len(self.predictors) == 0: self.predictors += [(inputIDs, A, COD)] else: _, _, prevCOD = self.predictors[-1] currCOD = prevCOD + COD self.predictors += [(inputIDs, A, currCOD)] for inID in list(inputIDs): if not inID in IDstoPrint: IDstoPrint = IDstoPrint + [inID] def addInputNode(self, inputNode): self.inputNodes += [inputNode] def addInputNodes(self, inputNodes): self.inputNodes = np.append(self.inputNodes, inputNodes) def getInputNodes(self): inputList = [] for pred in self.predictors: for ID in pred[0]: if not ID in inputList: inputList.append(ID) return inputList def setValue(self, value): self.value = value def addLUT(self, LUT, inputIDs): self.LUT = LUT self.inputIDs = inputIDs def getStateProbs(self, state): probs = [0] * 2 prevCOD = 0 for IDs, A, COD in self.predictors: X = np.ones((len(IDs) + 1, 1)) for j in range(len(IDs)): ID = IDs[j] x = state[ID] X[j] = x currCOD = COD - prevCOD prevCOD = COD Ypred = np.matmul(X.T, A) if Ypred < 0.5: Y = 0 else: Y = 1 probs[Y] += currCOD / self.CODsum return probs def Predstep(self, state): if self.value == None: raise Exception("Forgot to initialise the states") r = random.random() * self.CODsum for i in range(len(self.predictors)): IDs, A, COD = self.predictors[i] if COD > r: break X = np.ones((len(IDs) + 1, 1)) for j in range(len(IDs)): ID = IDs[j] x = state[ID] X[j] = x Ypred = np.matmul(X.T, A) if Ypred < 0.5: Y = 0 else: Y = 1 return Y def LUTstep(self, state): X = np.empty((len(self.inputIDs), 1)) for j in range(len(self.inputIDs)): ID = self.inputIDs[j] x = state[ID] X[j] = x inputInt = int(integerize(X)[0]) LUTrow = self.LUT[inputInt, :] r = random.random() if r < LUTrow[0]: Y = 0 else: Y = 1 return Y def step(self, state, verbose=False): if self.LUTflag: Y = self.LUTstep(state) else: Y = self.Predstep(state) self.value = Y return Y def genBoolList(n, length, b): output = np.zeros((length), dtype=int) for i in range(length): output[i] = n % b n = n // b return output def integerize(state): output = 0 for i in range(len(state)): output += state[i] * (2**i) return output def KSstatistic(states1, states2, nMax): # Oh boy let's go M = states1.size maxDist = 0 for x in range(nMax): dist = abs(states1[x] - states2[x]) if dist > maxDist: maxDist = dist D = maxDist signif = smirnov(M, D) print("D: {0}".format(D)) # print("Alpha: {0}".format(signif)) return D, signif def indicatorF(inp, x): if inp <= x: return 1 else: return 0 # Object representing the Graph of the Probabilistic/random boolean network class Graph: def __init__(self, base): self.nodes = [] self.edges = [] # Indexes in the form of tuples (from->to) self.base = base self.perturbations = False self.p = 0.001 @property def N(self): return len(self.nodes) def genSTG(self, savepath): if not savepath == None: if path.exists(savepath): return pickle.load((open(savepath, "rb"))) a = [[0, 1]] * len(self.nodes) possibleStates = list(itertools.product(*a)) graphNodes = {} for possibleState in possibleStates: # print("Going through: {0}".format(possibleState)) starttime = time.time() # graphNodes[list(possibleState)] = () self.setState(list(possibleState)) nextStates = self.getNextStates() # adding on the inputs for the state for ( ns ) in nextStates: # Going through each of next states from current state state = ns prob = nextStates[ state ] # Probability of getting to the next state given current state if ( state in graphNodes.keys() ): # Going through each possible each state. Goal is to add self to their inputs. oldEntry = graphNodes[state] # Entry for that next state inOld = oldEntry[0] # Ond inputs for the next state outOld = oldEntry[1] # old outputs for the next state inOld[ possibleState ] = prob # Adding self to the inputs with the probability graphNodes[state] = (inOld, outOld) else: inNew = {possibleState: prob} graphNodes[state] = (inNew, None) # Adding on the outputs for the state if possibleState in graphNodes.keys(): # If it's already in oldEntry = graphNodes[possibleState] # Copy the old entry inOld = oldEntry[0] graphNodes[possibleState] = ( inOld, nextStates, ) # Return the old entry with the outputs appended. # the next state will not be overridden as it only gets added on at this step. else: # If it's new, then creating an entry graphNodes[possibleState] = ({}, nextStates) endtime = time.time() # print("Time elapsed: {0}".format(endtime-starttime)) if not savepath == None: pickle.dump(graphNodes, open(savepath, "wb")) return graphNodes def getNextStates(self): probs = [] for node in self.nodes: prob = node.getStateProbs(self.getState()) probs = probs + [prob] a = [[0, 1]] * len(self.nodes) possibleStates = list(itertools.product(*a)) nextStates = {} for state in possibleStates: p = 1 for i in range(len(state)): p *= probs[i][state[i]] if p > 0: nextStates[state] = p return nextStates def addNodes(self, nodeList): self.nodes = nodeList def addCon(self, conn): k = conn.shape[0] - 1 self.k = k for i in range(conn.shape[1]): targID = conn[k, i] targNode = self.getNodeByID(targID) for j in range(k): predID = conn[j, i] predNode = self.getNodeByID(predID) self.edges = self.edges + [(predNode.index, targNode.index)] targNode.addInputNode(predNode) def addEdge(self, startIndex, endIndex): self.nodes[endIndex].addInputNode(self.nodes[startIndex]) self.edges = self.edges + [(self.nodes[startIndex], self.nodes[endIndex])] def flipNode(self, index): if index < len(self.nodes): self.nodes[index].setValue(self.nodes[index].value ^ True) def step(self): # self.perturbations = True if self.perturbations: pertFlag = np.random.rand(len(self.nodes)) < self.p if pertFlag.any(): oldState = self.getState() for i in range(len(oldState.keys())): if pertFlag[i]: flipid = list(oldState.keys())[i] oldState[flipid] = oldState[flipid] ^ 1 self.setState(list(oldState.values())) else: oldState = self.getState() outputState = {} for i in range(0, len(self.nodes)): self.nodes[i].step(oldState) outputState = self.getState() else: oldState = self.getState() outputState = {} for i in range(0, len(self.nodes)): self.nodes[i].step(oldState) outputState = self.getState() def getState(self): outputState = {} for node in self.nodes: outputState[int(node.ID)] = node.value return outputState def getNames(self): names = [] for i in range(0, len(self.nodes)): names.append([self.nodes[i].name]) return names def getIDs(self): IDs = [node.ID[0] for node in self.nodes] return IDs def getNodeByID(self, ID): for node in self.nodes: if node.ID == ID: return node print("Node with ID {0} not found.".format(ID)) return None def printGraph(self, path, dist=10, charLim=10): self.G = nx.DiGraph() for node in self.nodes: self.G.add_node(str(node.name[0][:charLim])) inputIDs = node.getInputNodes() print(inputIDs) for ID in inputIDs: inNode = self.getNodeByID(ID) self.G.add_edge( str(inNode.name[0][:charLim]), str(node.name[0][:charLim]) ) # pos = nx.spring_layout(self.G, k=dist) # nx.draw_networkx_nodes(self.G, pos, node_size=500) # nx.draw_networkx_edges(self.G, pos) labels = {} for node in self.G.nodes(): labels[node] = node # nx.draw_networkx_labels(self.G, pos, labels, font_size=8) # plt.savefig(path) return self.G def setState(self, state): for x in range(0, len(self.nodes)): self.nodes[x].value = int(state[x]) def genRandState(self): for x in range(0, len(self.nodes)): self.nodes[x].value = int(random.randint(0, self.base - 1)) def findAttractors(STG): STG = stripSTG(STG) unknowns = {} GA = {} NGA = {} for key in list(STG.keys()): unknowns[key] = [key] # (Status, tags) unknowns, GA, NGA = identify(unknowns, GA, NGA, STG) while len(unknowns) > 0: print("Unknowns to clean up left: {0}".format(len(unknowns))) toRemove = list(unknowns.keys())[0] unknowns, GA, NGA, STG = removeNode(unknowns, GA, NGA, toRemove, STG) unknowns, GA, NGA = identify(unknowns, GA, NGA, STG) print("GA: {0}".format(GA)) return GA def stripSTG(STG): for node in list(STG.keys()): inputs, outputs = STG[node] newInputs = list(inputs.keys()) newOutputs = list(outputs.keys()) STG[node] = (newInputs, newOutputs) return STG def removeNode(unknowns, GA, NGA, toRemove, STG): inNodes = STG[toRemove][0] outNodes = STG[toRemove][1] print("n In: {0}".format(len(inNodes))) print("n Out: {0}".format(len(outNodes))) for inn in inNodes: if inn != toRemove: # Upstream passing tags if inn in GA.keys(): oldTags = GA[inn] newTags = oldTags + unknowns[toRemove] GA[inn] = newTags if inn in NGA.keys(): oldTags = NGA[inn] newTags = oldTags + unknowns[toRemove] NGA[inn] = newTags if inn in unknowns.keys(): oldTags = unknowns[inn] newTags = oldTags + unknowns[toRemove] unknowns[inn] = newTags # Tags passed, happy days. inNodeIn, inNodeOut = STG[ inn ] # Outputs of This particular input (looping over). Need to add outputs to it for out in outNodes: # My outputs if ( not out in inNodeOut ): # If this output is also an output of the input node inNodeOut = inNodeOut + [out] # By now all my outputs should be added to the outputs of the input. inNodeOut.remove(toRemove) # Remove self from the outputs of the input. STG[inn] = (inNodeIn, inNodeOut) # Push it in to the STG! # Adding my inputs to the inputs of my outputs. Also removing self. for out in outNodes: # Going through my outputs if out != toRemove: outNodesIn, outNodesOut = STG[ out ] # The input of the outputs being considered. for inn in inNodes: # Going through my inputs if not inn in outNodesIn: # If my input isn't already there outNodesIn = outNodesIn + [inn] # Add the input outNodesIn.remove(toRemove) # Removing self aswell STG[out] = (outNodesIn, outNodesOut) # Finalize. del STG[toRemove] # Removing self from STG. del unknowns[toRemove] return unknowns, GA, NGA, STG def identify( unknowns, GA, NGA, STG ): # Identifies Guaranteed attractors, garanteed non-attractors, and unknown nodes. for unTuple in list(unknowns.keys()): inNodes, outNodes = STG[unTuple] if len(inNodes) == 0: NGA[unTuple] = unknowns[unTuple] del unknowns[unTuple] if list(outNodes)[0] == unTuple and len(outNodes) == 1: GA[unTuple] = unknowns[unTuple] del unknowns[unTuple] return unknowns, GA, NGA def permutationWrapper(possibleStates): acc = [] stateSoFar = [] prob = 1 acc = nodePermutations(stateSoFar, possibleStates, acc, prob) return acc # Recursively does some jank def nodePermutations(stateSoFar, possibleStates, acc, prob): if len(possibleStates) == 0: return acc + [(stateSoFar, prob)] else: for i in range(0, len(possibleStates[0])): # Tag along the state currently being explored tempSSF = stateSoFar + possibleStates[0][i][0] # Run the same function again, without the first possible state which is being explored acc = nodePermutations( tempSSF, possibleStates[1:], acc, prob * possibleStates[0][i][1] ) return acc # Graph that represents the State Transotion Graph of a Boolean Network. class StateGraph: def __init__(self): self.nodes = [] self.edges = [] self.G = nx.DiGraph() def addState(self, node): if node not in self.nodes: self.nodes += [node] self.G.add_node(str(node)) def addEdge(self, edge): self.edges += [edge] self.G.add_edge(str(edge[0]), str(edge[1])) def printStateGraph(self): pos = nx.spring_layout(self.G, k=0.9) # nx.draw_networkx_nodes(self.G, pos, node_size=500) # nx.draw_networkx_edges(self.G, pos) labels = {} for node in self.G.nodes(): labels[node] = node # nx.draw_networkx_labels(self.G, pos, labels, font_size=8) # plt.savefig("ST_graph.png") return self.G def getAttractors(self, verbal=False): attractors = attractorSetFinder(self.nodes, self.edges, verbal) return attractors def attractorSetFinder(nodes, edges, verbal): attractors = list() n_nodes = len(nodes) # row-from node, col-to Node transMatrix = np.zeros((n_nodes, n_nodes), dtype=float) i = 0 if verbal else False for edge in edges: if verbal: print(str(i) + " out of " + str(len(edges)), end="\r") i += 1 inNode = binListToInt(edge[0]) outNode = binListToInt(edge[1]) transMatrix[inNode][outNode] = edge[2] if verbal: print() adjMatrix = transMatrix > 0 flags = computeFlags(adjMatrix) tags = copy.deepcopy(nodes) for i in range(0, len(nodes)): tags[i] = [nodes[i]] simplified = checkSimplified(flags) while not simplified: # Picking a node index i = pickUnconfirmedNode(flags) # Removing the node nodesIn = adjMatrix.T[i] nodesOut = adjMatrix[i] for j in range(0, len(nodesIn)): # If the considered node is an input node if nodesIn[j] == True and not tags[j] == None and not j == i: # Add the current tag to the input node's tags tags[j] = joinTags(tags[j], tags[i]) # Connect the input node's outputs to current nodes outputs inNodeIndex = binListToInt(tags[j][0]) adjMatrix[inNodeIndex] = np.logical_or(adjMatrix[inNodeIndex], nodesOut) adjMatrix[inNodeIndex][i] = False for j in range(0, len(nodesOut)): if nodesOut[j] == True and not tags[j] == None and not j == i: adjMatrix[i][j] = False adjMatrix[i][i] = False tags[i] = None flags = computeFlags(adjMatrix) simplified = checkSimplified(flags) if verbal: n_sorted = countSimplified(flags) print(str(n_sorted) + " out of " + str(flags.shape[0]), end="\r") for i in range(0, len(flags)): if flags[i][0] and not flags[i][1]: attractors.append(tags[i]) if verbal: print("") return attractors def computeFlags(adjMatrix): # Flags # First collumn true means that it has no outputs beside itself # second flag means that it has no inputs beside itself, and that it has outputs beside itself flags = np.ones((adjMatrix.shape[0], 2), dtype=bool) # Iterate over each row of the matrix, which means iterating over each of # the output vector for each node. for i in range(len(adjMatrix)): for j in range(len(adjMatrix[i])): # Found an output node which is not itself if adjMatrix[i][j] == True and not i == j: flags[i][0] = False # Same, buth with collumns, which shows the inputs for node i for i in range(len(adjMatrix)): # print(adjMatrix.T[i].astype(int)) for j in range(len(adjMatrix.T[i])): if adjMatrix.T[i][j] == True and not i == j: # Found an input node which is not itself flags[i][1] = False return flags def pickUnconfirmedNode(flags): for i in range(0, len(flags)): if not flags[i][0] and not flags[i][1]: return i return None def checkSimplified(flags): nodeSorted = np.logical_or(flags.T[0], flags.T[1]).T allSorted = True for node in nodeSorted: allSorted = allSorted and node return allSorted def countSimplified(flags): nodeSorted = np.logical_or(flags.T[0], flags.T[1]).T n_sorted = 0 for node in nodeSorted: if node: n_sorted += 1 return n_sorted def joinTags(firstTags, secondTags): for tag in secondTags: if tag not in firstTags: firstTags = firstTags + [tag] return firstTags def binListToInt( inList, b ): # Since it's done backwards (most significant values on the right). this is backwards. out = 0 for i in range(len(inList)): out += (b**i) * inList[i] return out def runAllFunctions(self): """ Having the current state as input, computes the ouptut for this node under each of the functions, and then adds up the probabilities for ending up at that node state """ if not self.functions == None: outputValues = [([0], 0), ([1], 0)] inputValues = [] for i in range(0, len(self.inputNodes)): inputValues += [int(self.inputNodes[i].value)] for function in self.functions: currentOutput = int(function[1](inputValues)) if currentOutput not in outputValues: outputValues[currentOutput] = ( [currentOutput], function[0] + outputValues[currentOutput][1], ) return outputValues else: return [([0], 0.5), ([1], 0.5)]
StarcoderdataPython
178843
import requests import re from bs4 import BeautifulSoup from tika import parser import json <<<<<<< HEAD ======= url = "https://www.facebook.com/legal/terms/plain_text_terms" file_location = "sample.pdf" >>>>>>> 076b8689d58d090438c3a5b07b32e4972b849093 # Subroutine for webpages # Proven that it works for facebook (in current state) def webpage(url): r = requests.get(url) # Parse through the text to find "terms of usage" <<<<<<< HEAD try: location = [m.start() for m in re.finditer('terms of service', r.text.lower())] soup = r.text[location[0]:] except: return 2 ======= location = [m.start() for m in re.finditer('terms of service', r.text.lower())] soup = r.text[location[0]:] >>>>>>> 076b8689d58d090438c3a5b07b32e4972b849093 location = [m.start() for m in re.finditer('<script>', soup.lower())] soup_stripped = soup[:location[0]] soup_stripped = BeautifulSoup(soup_stripped, "html.parser").get_text() # Prints our desired piece of code!!! print(soup_stripped) # All text. return soup_stripped def pdf(file_location): raw = parser.from_file(file_location) print(raw['content']) return raw['content'] <<<<<<< HEAD ======= # Enter your subroutines here... pdf(file_location) webpage(url) >>>>>>> 076b8689d58d090438c3a5b07b32e4972b849093 def tester(): data = {} data['key'] = [] data['key'].append({ 'rating': '6.44', 'potential_options':[{ 'wikipedia': '10', 'cbc': '9.23', 'tvo': '9.22' }] }) <<<<<<< HEAD return data ======= return data >>>>>>> 076b8689d58d090438c3a5b07b32e4972b849093
StarcoderdataPython
3367097
<gh_stars>0 # -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """'logging buckets create' command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.logging import util from googlecloudsdk.calliope import base class Create(base.CreateCommand): """Creates a bucket. """ @staticmethod def Args(parser): """Register flags for this command.""" parser.add_argument( 'BUCKET_ID', help='ID of the bucket to create.') parser.add_argument( '--display-name', help='A textual name to display for the bucket.') parser.add_argument( '--description', help='A textual description for the bucket.') parser.add_argument( '--retention-days', type=int, help='The period logs will be retained, after which logs will ' 'automatically be deleted. The default is 30 days.') util.AddBucketLocationArg( parser, True, 'Location in which to create the bucket. Once the bucket is created, ' 'the location cannot be changed.') def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: The created bucket. """ bucket_data = {} if args.IsSpecified('retention_days'): bucket_data['retentionDays'] = args.retention_days if args.IsSpecified('display_name'): bucket_data['displayName'] = args.display_name if args.IsSpecified('description'): bucket_data['description'] = args.description return util.GetClient().projects_locations_buckets.Create( util.GetMessages().LoggingProjectsLocationsBucketsCreateRequest( bucketId=args.BUCKET_ID, parent=util.CreateResourceName( util.GetProjectResource(args.project).RelativeName(), 'locations', args.location), logBucket=util.GetMessages().LogBucket(**bucket_data)))
StarcoderdataPython
1791914
<gh_stars>1-10 from torch.utils.data import Dataset class HumanPoseEstimationDataset(Dataset): """ HumanPoseEstimationDataset class. Generic class for HPE datasets. """ def __init__(self): pass def __len__(self): pass def __getitem__(self, item): pass def evaluate_accuracy(self, output, target, params=None): pass
StarcoderdataPython
81355
# -*- encoding: utf-8 -*- """ Query the S3 bucket containing Sierra progress reports, and log a report in Slack """ import datetime as dt import itertools import json import os import boto3 import requests from interval_arithmetic import combine_overlapping_intervals, get_intervals def get_matching_s3_keys(s3_client, bucket, prefix): """ Generate the keys in an S3 bucket that match a given prefix. """ paginator = s3_client.get_paginator("list_objects") for page in paginator.paginate(Bucket=bucket, Prefix=prefix): print("Got page of %d objects from S3…" % len(page["Contents"])) for s3_object in page["Contents"]: yield s3_object["Key"] def build_report(s3_client, bucket, resource_type): """ Generate a complete set of covering windows for a resource type. """ keys = get_matching_s3_keys( s3_client=s3_client, bucket=bucket, prefix=f"windows_{resource_type}_complete" ) yield from get_intervals(keys=keys) def chunks(iterable, chunk_size): return (iterable[i : i + chunk_size] for i in range(0, len(iterable), chunk_size)) class IncompleteReportError(Exception): pass def process_report(s3_client, bucket, resource_type): # Start by consolidating all the windows as best we can. This is an # incremental consolidation: it consolidates the first 1000 keys, then # the second 1000 keys, and so on. # # If there are more keys than it can consolidate in a single invocation, # it will at least have made progress and be less likely to time out # next time. consolidate_windows(s3_client=s3_client, bucket=bucket, resource_type=resource_type) for iv in build_report(s3_client, bucket, resource_type): # If the first gap is more than 6 hours old, we might have a # bug in the Sierra reader. Raise an exception. hours = (dt.datetime.now() - iv.end).total_seconds() / 3600 if hours > 6: raise IncompleteReportError(resource_type) # https://stackoverflow.com/q/6822725/1558022 def window(seq, n=2): """ Returns a sliding window (of width n) over data from the iterable s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), """ it = iter(seq) result = tuple(itertools.islice(it, n)) if len(result) == n: yield result for elem in it: result = result[1:] + (elem,) yield result def prepare_missing_report(s3_client, bucket, resource_type): """ Generate a report for windows that are missing. """ yield "" yield f"*missing {resource_type} windows*" for iv1, iv2 in window(build_report(s3_client, bucket, resource_type)): missing_start = iv1.end missing_end = iv2.start if missing_start.date() == missing_end.date(): yield f"{missing_start.date()}: {missing_start.strftime('%H:%M:%S')} — {missing_end.strftime('%H:%M:%S')}" else: yield f"{missing_start.strftime('%Y-%m-%d %H:%M:%S')} — {missing_end.strftime('%Y-%m-%d %H:%M:%S')}" yield "" def consolidate_windows(s3_client, bucket, resource_type): paginator = s3_client.get_paginator("list_objects") prefix = f"windows_{resource_type}_complete" for page in paginator.paginate(Bucket=bucket, Prefix=prefix): keys = [s3_obj["Key"] for s3_obj in page["Contents"]] intervals = get_intervals(keys=keys) for iv, running in combine_overlapping_intervals(intervals): if len(running) > 1: # Create a consolidated marker that represents the entire # interval. The back-history of Sierra includes >100k windows, # so combining them makes reporting faster on subsequent runs. start_str = iv.start.strftime("%Y-%m-%dT%H-%M-%S.%f+00-00") end_str = iv.end.strftime("%Y-%m-%dT%H-%M-%S.%f+00-00") consolidated_key = ( f"windows_{resource_type}_complete/{start_str}__{end_str}" ) s3_client.put_object(Bucket=bucket, Key=consolidated_key, Body=b"") # Then clean up the individual intervals that made up the set. # We sacrifice granularity for performance. for sub_ivs in chunks(running, chunk_size=1000): keys = [s.key for s in sub_ivs if s.key != consolidated_key] s3_client.delete_objects( Bucket=bucket, Delete={"Objects": [{"Key": k} for k in keys]} ) def main(event=None, _ctxt=None): s3_client = boto3.client("s3") bucket = os.environ["BUCKET"] slack_webhook = os.environ["SLACK_WEBHOOK"] errors = [] error_lines = [] for resource_type in ("bibs", "items", "holdings", "orders"): try: process_report( s3_client=s3_client, bucket=bucket, resource_type=resource_type ) except IncompleteReportError: error_lines.extend( prepare_missing_report( s3_client=s3_client, bucket=bucket, resource_type=resource_type ) ) errors.append(resource_type) if errors: error_lines.insert(0, "There are gaps in the %s data." % "/".join(errors)) error_lines.append( "You can fix this by running `$ python sierra_adapter/build_missing_windows.py` in the root of the catalogue repo." ) slack_data = { "username": "sierra-reader", "icon_emoji": ":sierra:", "attachments": [ { "color": "#8B4F30", "text": "\n".join(error_lines).strip(), "mrkdwn_in": ["text"], } ], } resp = requests.post( slack_webhook, data=json.dumps(slack_data), headers={"Content-Type": "application/json"}, ) resp.raise_for_status()
StarcoderdataPython
3377855
<reponame>Krish-sysadmin/DjangoPollsApp from django.apps import AppConfig class StartingpageConfig(AppConfig): name = 'startingpage'
StarcoderdataPython
3396827
<filename>registry/donor/models.py<gh_stars>0 from registry.extensions import db from registry.list.models import DonationCenter, Medals class Batch(db.Model): __tablename__ = "batches" id = db.Column(db.Integer, primary_key=True) donation_center = db.Column(db.ForeignKey(DonationCenter.id)) imported_at = db.Column(db.DateTime, nullable=False) def __repr__(self): return f"<Batch({self.id}) from {self.imported_at}>" class Record(db.Model): __tablename__ = "records" id = db.Column(db.Integer, primary_key=True) batch = db.Column(db.ForeignKey(Batch.id), nullable=False) rodne_cislo = db.Column(db.String(10), index=True, nullable=False) first_name = db.Column(db.String, nullable=False) last_name = db.Column(db.String, nullable=False) address = db.Column(db.String, nullable=False) city = db.Column(db.String, nullable=False) postal_code = db.Column(db.String(5), nullable=False) kod_pojistovny = db.Column(db.String(3), nullable=False) donation_count = db.Column(db.Integer, nullable=False) def __repr__(self): return f"<Record({self.id}) {self.rodne_cislo} from Batch {self.batch}>" @classmethod def from_list(cls, list): return cls( batch=list[0], rodne_cislo=list[1], first_name=list[2], last_name=list[3], address=list[4], city=list[5], postal_code=list[6], kod_pojistovny=list[7], donation_count=list[8], ) class AwardedMedals(db.Model): __tablename__ = "awarded_medals" rodne_cislo = db.Column(db.String(10), index=True, nullable=False) medal = db.Column(db.ForeignKey(Medals.id)) __tableargs__ = (db.PrimaryKeyConstraint(rodne_cislo, medal),) class DonorsOverview(db.Model): __tablename__ = "donors_overview" rodne_cislo = db.Column(db.String(10), primary_key=True) first_name = db.Column(db.String, nullable=False) last_name = db.Column(db.String, nullable=False) address = db.Column(db.String, nullable=False) city = db.Column(db.String, nullable=False) postal_code = db.Column(db.String(5), nullable=False) kod_pojistovny = db.Column(db.String(3), nullable=False) donation_count_fm = db.Column(db.Integer, nullable=False) donation_count_fm_bubenik = db.Column(db.Integer, nullable=False) donation_count_trinec = db.Column(db.Integer, nullable=False) donation_count_manual = db.Column(db.Integer, nullable=False) donation_count_total = db.Column(db.Integer, nullable=False) awarded_medal_br = db.Column(db.Boolean, nullable=False) awarded_medal_st = db.Column(db.Boolean, nullable=False) awarded_medal_zl = db.Column(db.Boolean, nullable=False) awarded_medal_kr3 = db.Column(db.Boolean, nullable=False) awarded_medal_kr2 = db.Column(db.Boolean, nullable=False) awarded_medal_kr1 = db.Column(db.Boolean, nullable=False) def __repr__(self): return f"<DonorsOverview ({self.rodne_cislo})>"
StarcoderdataPython
3386864
<filename>tests/compatability/testng/before_and_after/src/python/run_tests.py import BeforeAndAfter from proboscis import TestProgram if __name__ == '__main__': # Run Proboscis and exit. TestProgram().run_and_exit()
StarcoderdataPython
4801098
# TG-UserBot - A modular Telegram UserBot script for Python. # Copyright (C) 2019 Kandarp <https://github.com/kandnub> # # TG-UserBot is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # TG-UserBot is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with TG-UserBot. If not, see <https://www.gnu.org/licenses/>. # This is based on the parser of https://github.com/mojurasu/kantek/ import re from typing import Dict, List, Tuple, Union KWARGS = re.compile( r'(?<!\S)' # Make sure the key starts after a whitespace r'(?:(?P<q>\'|\")?)(?P<key>(?(q).+?|(?!\d)\w+?))(?(q)(?P=q))' r'(?::(?!//)|=)\s?' r'(?P<val>\[.+?\]|(?P<q1>\'|\").+?(?P=q1)|\S+)') ARGS = re.compile(r'(?:(?P<q>\'|\"))(.+?)(?:(?P=q))') BOOL_MAP = { 'false': False, 'true': True, } Value = Union[int, str, float, list] KeywordArgument = Union[Value, range, List[Value]] async def _parse_arg(val: str) -> Union[int, str, float]: val = val.strip() if re.match(r'^-?\d+$', val): return int(val) try: return float(val) except ValueError: pass if isinstance(val, str): if re.search(r'^\[.*\]$', val): val = re.sub(r'[\[\]]', '', val).split(',') val = [await _parse_arg(v.strip()) for v in val] else: val = BOOL_MAP.get(val.lower(), val) if isinstance(val, str): val = re.sub(r'(?<!\\), ?$', '', val) return val async def parse_arguments( self, arguments: str) -> Tuple[List[Value], Dict[str, KeywordArgument]]: keyword_args = {} args = [] for match in KWARGS.finditer(arguments): key = match.group('key') val = await _parse_arg(re.sub(r'[\'\"]', '', match.group('val'))) keyword_args.update({key: val}) arguments = KWARGS.sub('', arguments) for val in ARGS.finditer(arguments): args.append(await _parse_arg(val.group(2))) arguments = ARGS.sub('', arguments) for val in re.findall(r'([^\r\n\t\f\v ,]+|\[.*\])', arguments): parsed = await _parse_arg(val) if parsed: args.append(parsed) return args, keyword_args
StarcoderdataPython
119091
import unittest class TestCanary(unittest.TestCase): def test_add_one_two(self): self.assertEqual(3, 1 + 2)
StarcoderdataPython
4827481
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.distributed.fleet.utils.fs import HDFSClient import time import paddle.distributed.fleet as fleet import socket import sys import hashlib from .barrier_server_impl import BarrierServer from .barrier_client_impl import BarrierClient from .env import is_first_worker, get_node_info import sysconfig import multiprocessing import yaml import os def net_is_used(port, ip='127.0.0.1'): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((ip, port)) s.shutdown(2) return True except: return False def get_md5(file_path): hash_md5 = hashlib.md5() with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def check_exists(filelist, local_path): with open("{}/filelist.txt".format(local_path), 'r') as fin: for line in fin: current_file = line.split(' ')[0] current_md5 = line.split(' ')[1].strip() if current_file in filelist: if (not os.path.exists("{}/{}".format( local_path, current_file))) or get_md5("{}/{}".format( local_path, current_file)) != current_md5: return True return False def get_file_shard(node_id, node_num, local_path): while not os.path.exists('{}/filelist.txt'.format(local_path)): time.sleep(3) full_list = [] with open("{}/filelist.txt".format(local_path), 'r') as fin: for line in fin: full_list.append(line.split(' ')[0]) return full_list[node_id::node_num] class Downloader(object): def __init__(self): self.need_barrier = False def download_from_hdfs(self, fs_yaml=None, local_path="./", shard_num=-1, shard_id=-1, process_num=10): """ Download from hdfs The configurations are configured in fs_yaml file: TODO: add example and yaml argument fields introduction """ def multi_download(client, hdfs_path, local_path, filelist, process_num=process_num): def _subprocess_download(files): for ff in files: client.download('{}/{}'.format(hdfs_path, ff), '{}/{}'.format(local_path, ff)) cmd = "tar -xf {}/{} -C {}".format(local_path, ff, local_path) os.system(cmd) dir_per_process = len(filelist) / process_num procs = [] for i in range(process_num): process_filelist = filelist[i::process_num] p = multiprocessing.Process( target=_subprocess_download, args=(process_filelist, )) procs.append(p) p.start() for proc in procs: proc.join() if os.environ.get('PADDLE_TRAINER_ENDPOINTS') is not None: endpoints = os.environ.get('PADDLE_TRAINER_ENDPOINTS').split(",") current_endpoint = os.environ.get('PADDLE_CURRENT_ENDPOINT') self.server_endpoint = endpoints[0] self.server_port = self.server_endpoint.split(":")[1] self.barrier_server = BarrierServer() if current_endpoint == self.server_endpoint: while net_is_used(self.server_port): time.sleep(3) self.barrier_server.start_server_in_background( endpoint=self.server_endpoint, worker_endpoints=endpoints) self.need_barrier = True if is_first_worker(): if not os.path.exists(local_path): os.system('mkdir {}'.format(local_path)) _, ext = os.path.splitext(fs_yaml) assert ext in ['.yml', '.yaml'], "only support yaml files for now" with open(fs_yaml) as f: cfg = yaml.load(f, Loader=yaml.Loader) if "hadoop_home" in cfg: self.hadoop_home = cfg["hadoop_home"] elif "HADOOP_HOME" in os.environ: self.hadoop_home = os.environ['HADOOP_HOME'] elif os.system('which hadoop') == 0: path = os.popen("which hadoop").readlines()[0].rstrip() self.hadoop_home = os.path.dirname(os.path.dirname(path)) if self.hadoop_home: print("HADOOP_HOME: " + self.hadoop_home) if "fs.default.name" in cfg and "hadoop.job.ugi" in cfg: self.hdfs_configs = { "fs.default.name": cfg["fs.default.name"], "hadoop.job.ugi": cfg["hadoop.job.ugi"] } java_home = '' if "java_home" in cfg: java_home = cfg['java_home'] os.environ['JAVA_HOME'] = java_home if "data_path" in cfg: hdfs_path = cfg["data_path"] else: raise Exception("ERROR: Please figure your data path in AFS.") client = HDFSClient(self.hadoop_home, self.hdfs_configs) if is_first_worker(): if not (client.is_exist('{}/meta.txt'.format(hdfs_path)) and client.is_exist('{}/filelist.txt'.format(hdfs_path))): raise Exception( "ERROR: Your data dir should include filelist.txt and meta.txt" ) if not os.path.exists('{}/filelist.txt'.format(local_path)): client.download('{}/filelist.txt'.format(hdfs_path), '{}/filelist.txt'.format(local_path)) if not os.path.exists('{}/meta.txt'.format(local_path)): client.download('{}/meta.txt'.format(hdfs_path), '{}/meta.txt'.format(local_path)) with open('{}/meta.txt'.format(local_path), 'r') as fin: for line in fin: current_file = line.strip() if not os.path.exists('{}/{}'.format(local_path, current_file)): client.download( '{}/{}'.format(hdfs_path, current_file), '{}/{}'.format(local_path, current_file)) if shard_num > 0: assert ( shard_id >= 0, "Please provide worker index by fleet.worker_index() if you want to download sharded data on each machine" ) self.filelist = get_file_shard(shard_id, shard_num, local_path) need_download = check_exists(self.filelist, local_path) if need_download: multi_download(client, hdfs_path, local_path, self.filelist) else: if is_first_worker(): self.filelist = get_file_shard(0, 1, local_path) need_download = check_exists(self.filelist, local_path) if need_download: multi_download(client, hdfs_path, local_path, self.filelist) if self.need_barrier: client = BarrierClient() client.server_endpoint = self.server_endpoint client.my_endpoint = os.environ.get('PADDLE_CURRENT_ENDPOINT') client.connect() client.barrier() if client.my_endpoint == self.server_endpoint: time.sleep(10) self.barrier_server.close_server() return local_path def download_from_bos(self, fs_yaml=None, local_path="./", shard_num=-1, shard_id=-1, process_num=10): def multi_download(bos_path, local_path, filelist, process_num=process_num): def _subprocess_download(files): for ff in files: os.system("wget -q -P {} --no-check-certificate {}/{}". format(local_path, bos_path, ff)) cmd = "tar -xf {}/{} -C {}".format(local_path, ff, local_path) os.system(cmd) dir_per_process = len(filelist) / process_num procs = [] for i in range(process_num): process_filelist = filelist[i::process_num] p = multiprocessing.Process( target=_subprocess_download, args=(process_filelist, )) procs.append(p) p.start() for proc in procs: proc.join() if os.environ.get('PADDLE_TRAINER_ENDPOINTS') is not None: endpoints = os.environ.get('PADDLE_TRAINER_ENDPOINTS').split(",") current_endpoint = os.environ.get('PADDLE_CURRENT_ENDPOINT') self.server_endpoint = endpoints[0] self.server_port = self.server_endpoint.split(":")[1] self.barrier_server = BarrierServer() if current_endpoint == self.server_endpoint: while net_is_used(self.server_port): time.sleep(3) self.barrier_server.start_server_in_background( endpoint=self.server_endpoint, worker_endpoints=endpoints) self.need_barrier = True if is_first_worker(): if not os.path.exists(local_path): os.system('mkdir {}'.format(local_path)) yaml_file = fs_yaml.split('/')[-1] if not os.path.exists(yaml_file): if fs_yaml == None: raise Exception( "Error: you should provide a yaml to download data from bos, you can find yaml examples in the following links:" ) if is_first_worker(): os.system("wget -q --no-check-certificate {}".format(fs_yaml)) if not os.path.exists(yaml_file): raise Exception( "Error: If you provide a url, please check if your url is valid and is able to access; otherwise, please check if the yaml file is exists in your local path." ) else: while not os.path.exists(yaml_file): time.sleep(1) _, ext = os.path.splitext(fs_yaml) assert ext in ['.yml', '.yaml'], "only support yaml files for now" with open(yaml_file) as f: cfg = yaml.load(f, Loader=yaml.Loader) if 'bos_path' in cfg: bos_path = cfg["bos_path"] else: raise Exception("ERROR: Please figure your data path in BOS.") if is_first_worker(): try: os.system( "wget -q -P {} --no-check-certificate {}/filelist.txt". format(local_path, bos_path)) os.system("wget -q -P {} --no-check-certificate {}/meta.txt". format(local_path, bos_path)) except: raise Exception( "ERROR: Your data dir should include filelist.txt and meta.txt" ) with open('{}/meta.txt'.format(local_path), 'r') as fin: for line in fin: current_file = line[:-1] os.system("wget -q -P {} --no-check-certificate {}/{}". format(local_path, bos_path, current_file)) if shard_num > 0: assert ( shard_id >= 0, "Please provide worker index by fleet.worker_index() if you want to download sharded data on each machine" ) self.filelist = get_file_shard(shard_id, shard_num, local_path) need_download = check_exists(self.filelist, local_path) if need_download: multi_download(bos_path, local_path, self.filelist) else: if is_first_worker(): self.filelist = get_file_shard(0, 1, local_path) need_download = check_exists(self.filelist, local_path) if need_download: multi_download(bos_path, local_path, self.filelist) if self.need_barrier: client = BarrierClient() client.server_endpoint = self.server_endpoint client.my_endpoint = os.environ.get('PADDLE_CURRENT_ENDPOINT') client.connect() client.barrier() if client.my_endpoint == self.server_endpoint: time.sleep(10) self.barrier_server.close_server() return local_path
StarcoderdataPython
495
<gh_stars>10-100 #!/usr/bin/env python from __future__ import unicode_literals # Allow direct execution import os import sys import unittest sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from haruhi_dl.aes import aes_decrypt, aes_encrypt, aes_cbc_decrypt, aes_cbc_encrypt, aes_decrypt_text from haruhi_dl.utils import bytes_to_intlist, intlist_to_bytes import base64 # the encrypted data can be generate with 'devscripts/generate_aes_testdata.py' class TestAES(unittest.TestCase): def setUp(self): self.key = self.iv = [0x20, 0x15] + 14 * [0] self.secret_msg = b'Secret message goes here' def test_encrypt(self): msg = b'message' key = list(range(16)) encrypted = aes_encrypt(bytes_to_intlist(msg), key) decrypted = intlist_to_bytes(aes_decrypt(encrypted, key)) self.assertEqual(decrypted, msg) def test_cbc_decrypt(self): data = bytes_to_intlist( b"\x97\x92+\xe5\x0b\xc3\x18\x91ky9m&\xb3\xb5@\xe6'\xc2\x96.\xc8u\x88\xab9-[\x9e|\xf1\xcd" ) decrypted = intlist_to_bytes(aes_cbc_decrypt(data, self.key, self.iv)) self.assertEqual(decrypted.rstrip(b'\x08'), self.secret_msg) def test_cbc_encrypt(self): data = bytes_to_intlist(self.secret_msg) encrypted = intlist_to_bytes(aes_cbc_encrypt(data, self.key, self.iv)) self.assertEqual( encrypted, b"\x97\x92+\xe5\x0b\xc3\x18\x91ky9m&\xb3\xb5@\xe6'\xc2\x96.\xc8u\x88\xab9-[\x9e|\xf1\xcd") def test_decrypt_text(self): password = intlist_to_bytes(self.key).decode('utf-8') encrypted = base64.b64encode( intlist_to_bytes(self.iv[:8]) + b'\x17\x15\x93\xab\x8d\x80V\xcdV\xe0\t\xcdo\xc2\xa5\xd8ksM\r\xe27N\xae' ).decode('utf-8') decrypted = (aes_decrypt_text(encrypted, password, 16)) self.assertEqual(decrypted, self.secret_msg) password = intlist_to_bytes(self.key).decode('utf-8') encrypted = base64.b64encode( intlist_to_bytes(self.iv[:8]) + b'\x0b\xe6\xa4\xd9z\x0e\xb8\xb9\xd0\xd4i_\x85\x1d\x99\x98_\xe5\x80\xe7.\xbf\xa5\x83' ).decode('utf-8') decrypted = (aes_decrypt_text(encrypted, password, 32)) self.assertEqual(decrypted, self.secret_msg) if __name__ == '__main__': unittest.main()
StarcoderdataPython
85663
"""Mark as module for PyTest.""" def left(string, seq=(' ', '\t', '\r', '\n')): res = "" for c in string: if c in seq: res += c else: break return res def right(string, seq=(' ', '\t', '\r', '\n')): return left(reversed(string), seq) import xml.etree.cElementTree as et def isSVG(bdata): tag = None try: parser = et.XMLPullParser(["start"]) parser.feed(bdata) for event, el in parser.read_events(): tag = el.tag break except et.ParseError: pass return tag == '{http://www.w3.org/2000/svg}svg' import os def tabPathnames(names: list, skip=('undefined',)): splitnames = [name.split(os.path.sep) for name in names] mx = max([len(name) for name in splitnames]) tabs = {} for s in skip: i = -1 for o in range(names.count(s)): i = names.index(s, i+1) tabs[i] = s for i in range(mx): newnames = [os.path.sep.join(name[-i-1:]) for name in splitnames] for n1 in range(len(newnames)): if n1 in tabs: continue fnd = False for n2 in range(len(newnames)): if n1 == n2 or n2 in tabs: continue if newnames[n1] == newnames[n2]: fnd = True break if not fnd: tabs[n1] = newnames[n1] nlist = names[:] for idx in tabs: nlist[idx] = tabs[idx] return nlist
StarcoderdataPython
13155
<reponame>jschmidtnj/cs584 #!/usr/bin/env python3 """ decoder file decoder class """ import tensorflow as tf class BahdanauAttention(tf.keras.layers.Layer): def __init__(self, units): """ attention layer from Bahdanau paper """ super().__init__() self.w1 = tf.keras.layers.Dense(units) self.w2 = tf.keras.layers.Dense(units) self.vector = tf.keras.layers.Dense(1) def call(self, query, values): """ get context and weights given query and values """ query_with_time_axis = tf.expand_dims(query, 1) score = self.vector(tf.nn.tanh( self.w1(query_with_time_axis) + self.w2(values))) attention_weights = tf.nn.softmax(score, axis=1) context_vector = tf.reduce_sum(attention_weights * values, axis=1) return context_vector, attention_weights class Decoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dimension, decoding_units, batch_size, gru: bool = True): """ decoder for attention model """ super().__init__() self.batch_size = batch_size self.decoding_units = decoding_units self.embedding = tf.keras.layers.Embedding( vocab_size, embedding_dimension) if gru: self.layer = tf.keras.layers.GRU(self.decoding_units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform') else: self.layer = tf.keras.layers.LSTM(self.decoding_units, return_sequences=True, return_state=True) self.dense_layer = tf.keras.layers.Dense(vocab_size) self.attention = BahdanauAttention(self.decoding_units) def call(self, x, hidden, enc_output): """ given vector, hidden, and encoding, return new vector, state, and weights """ context_vector, attention_weights = self.attention(hidden, enc_output) x = self.embedding(x) x = tf.concat([tf.expand_dims(context_vector, 1), x], -1) output, state = self.layer(x) output = tf.reshape(output, (-1, output.shape[2])) x = self.dense_layer(output) return x, state, attention_weights
StarcoderdataPython
1602501
# coding=utf-8 from __future__ import absolute_import, division, print_function import io import sys import os import struct from math import floor, log10 from datetime import datetime, timedelta from collections import OrderedDict import re import errno import dbf HEADER_SIZE = 0x29 FOOTER_ENTRY_SIZE = 0x19 ENCRYPTED_IDENTIFIER = b'\xfe\xf2\xee' IDENTIFIER = b'\xfe\xf2\xff' def checksum_calc(string): chunk = string[0] chunka = (chunk & 0xF0) >> 4 chunkb = (chunk & 0x0F) >> 0 chunk = string[1] chunkc = (chunk & 0xF0) >> 4 chunkd = (chunk & 0x0F) >> 0 for chunk in string: chunka ^= (chunk & 0xF0) >> 4 chunkb ^= (chunk & 0x0F) >> 0 chunk = (chunka << 9) + ((chunka ^ chunkb) << 5) chunka, chunkb, chunkc, chunkd = ( chunka ^ chunkb ^ chunkc ^ ((chunk & 0xF000) >> 12), chunkd ^ ((chunk & 0x0F00) >> 8), chunka ^ ((chunk & 0x00F0) >> 4), chunka ^ chunkb ^ ((chunk & 0x000F) >> 0), ) return (chunka << 12) + (chunkb << 8) + (chunkc << 4) + (chunkd << 0) class BinaryFix(object): def __init__(self, name, open_params): self.fid = io.open(name, open_params) def read(self, length=None): return bytearray(self.fid.read(length)) def write(self, string): self.fid.write(string) def __enter__(self): return self def __exit__(self, type, value, traceback): self.fid.close() def seek(self, pos, start_pos=0): self.fid.seek(pos, start_pos) def tell(self): return self.fid.tell() def open(name, open_params): return BinaryFix(name, open_params) class FXPName(object): def __init__(self, name): self.name = str(name) def __repr__(self): return self.name class FXPAlias(FXPName): def __repr__(self): return self.name + '.' class FXPNumber(object): def __init__(self, number, digits, dec_digits=0): self.number = number digits -= dec_digits digits = max(digits, 0) self.format_string = '{{:0{}.{}f}}'.format(digits, dec_digits) def __repr__(self): return self.format_string.format(self.number) class FXPCurrency(object): def __init__(self, number, digits, dec_digits=0): self.number = number self.dec_digits = dec_digits digits -= dec_digits digits = max(digits, 0) self.digits = digits def __repr__(self): base = 10**self.dec_digits return '${}.{}'.format(self.number // base, self.number % base) def round_sig(x, sig): if x == 0: return 0. return round(x, sig-int(floor(log10(abs(x))))-1) def read_string(fid, *args): return fid.read(read_ushort(fid)).decode('ISO-8859-1') def read_single_quoted_string(fid, *args): return FXPName("'{}'".format(read_string(fid))) def read_double_quoted_string(fid, *args): return FXPName('"{}"'.format(read_string(fid))) def read_int8(fid, *args): digits = fid.read(1)[0] return FXPNumber(fid.read(1)[0], digits) def read_int16(fid, *args): digits = fid.read(1)[0] return FXPNumber(read_short(fid), digits) def read_int32(fid, *args): digits = fid.read(1)[0] return FXPNumber(read_int(fid), digits) def read_double(fid, *args): digits = fid.read(1)[0] - 1 dec_digits = fid.read(1)[0] return FXPNumber(struct.unpack('<d', fid.read(8))[0], digits, dec_digits) def read_float(fid, *args): return FXPNumber(struct.unpack('<i', fid.read(4))[0] / 65536., 10, 4) def read_currency(fid, *args): digits = fid.read(1)[0] - 1 dec_digits = fid.read(1)[0] return FXPCurrency(struct.unpack('<q', fid.read(8))[0], digits, dec_digits) def read_datetimeexpr(fid): days = struct.unpack('<d', fid.read(8))[0] if not days: return None days = timedelta(days - 2440588) days=timedelta(seconds=round(days.total_seconds())) return datetime.utcfromtimestamp(0) + days def read_datetime(fid, *args): dt = read_datetimeexpr(fid) if not dt: return '{ / / }' return '{{^{}}}'.format(dt) def read_date(fid, *args): dt = read_datetimeexpr(fid) if not dt: return '{ / / }' return '{{^{}}}'.format(dt.date()) def read_alias(fid, names, *args): return FXPAlias(names[read_ushort(fid)]) def read_special_alias(fid, *args): return FXPAlias(SPECIAL_NAMES[fid.read(1)[0]]) def read_system_alias(fid, *args): return FXPAlias(SYSTEM_NAMES[fid.read(1)[0]]) def read_system_name(fid, *args): return FXPName(SYSTEM_NAMES[fid.read(1)[0]]) def read_menu_system_name(fid, *args): return FXPName(MENU_SYSTEM_NAMES[fid.read(1)[0]]) def read_name(fid, names): return FXPName(names[read_ushort(fid)]) def read_raw(fid, length): return ' '.join('{:02x}'.format(d) for d in fid.read(length)) def read_next_code(fid, names, expr=None): if expr is None: expr = [] codeval = fid.read(1)[0] if codeval == END_EXPR: return codeval if codeval == PARAMETER_MARK: code = codeval elif codeval == SQL_SUBQUERY: length = read_ushort(fid) final = fid.tell() + length fid.read(1) code = FXPName('(SELECT {})'.format(parse_subline(fid, length, final, names, []))) elif codeval in FUNCTIONS: code = FUNCTIONS[codeval] if codeval in (0xE5, 0xF6): code = code(fid, names) while expr and type(expr[-1]) is FXPAlias: code = FXPName(repr(expr.pop()) + repr(code)) code = repr(code) elif callable(code): code = code(fid) parameters = [] while expr: parameter = expr.pop() if parameter == PARAMETER_MARK: break parameters.insert(0, parameter) code += '({})'.format(', '.join(repr(p) for p in parameters)) if codeval == 0xE5: code = FXPAlias(code) else: code = FXPName(code) elif codeval in OPERATORS: code = OPERATORS[codeval] if code[1] == 0: return read_next_code(fid, names, expr) elif code[1] > 0: parameters = [p for p in reversed([expr.pop() for i in range(code[1])])] if len(parameters) == 1: code = FXPName('({} {})'.format(code[0], repr(parameters[0]))) else: code = FXPName('({})'.format((' ' + code[0] + ' ').join(repr(p) for p in parameters))) else: code = code[0] elif codeval in VALUES: code = VALUES[codeval] if callable(code): code = code(fid, names) if codeval in (0xF0, 0xF1): return read_next_code(fid, names, expr) if type(code) is FXPName: while expr and type(expr[-1]) is FXPAlias: code = FXPName(repr(expr.pop()) + repr(code)) elif type(code) is FXPAlias: pass elif type(code) in (float, int): code = FXPName(repr(code)) else: code = FXPName(code) else: raise KeyError(hex(codeval)) return code def read_expr(fid, names, *args): expr = [] while True: code = read_next_code(fid, names, expr) if code == END_EXPR: break if code: expr.append(code) if len(expr) == 1: return expr[0] return expr def read_setcode(fid, length): return ['SET ' + SETCODES[fid.read(1)[0]]] def read_text(fid, length): length = read_ushort(fid) return [''.join(chr(x) for x in fid.read(length))] class Token(object): def __init__(self, tokenstr, tokenval): self.str = tokenstr self.val = tokenval def __repr__(self): return repr('{}({})'.format(self.str, self.val)) END_EXPR = 0xFD; PARAMETER_MARK = 0x43; SQL_SUBQUERY = 0xE8 SPECIAL_NAMES = { 0x0D: 'M', } SYSTEM_NAMES = { 0x00: '_ALIGNMENT', 0x05: '_PAGENO', 0x19: '_DBLCLICK', 0x1A: '_CALCVALUE', 0x1B: '_CALCMEM', 0x1C: '_DIARYDATE', 0x1D: '_CLIPTEXT', 0x1E: '_TEXT', 0x1F: '_PRETEXT', 0x20: '_TALLY', 0x21: '_CUROBJ', 0x22: '_MLINE', 0x23: '_THROTTLE', 0x24: '_GENMENU', 0x2F: '_STARTUP', 0x30: '_TRANSPORT', 0x31: '_BEAUTIFY', 0x32: '_DOS', 0x33: '_MAC', 0x34: '_UNIX', 0x35: '_WINDOWS', 0x36: '_SPELLCHK', 0x37: '_SHELL', 0x39: '_SCREEN', 0x3A: '_BUILDER', 0x3B: '_CONVERTER', 0x3C: '_WIZARD', 0x3D: '_TRIGGERLEVEL', 0x3E: '_ASCIICOLS', 0x3F: '_ASCIIROWS', 0x40: '_BROWSER', 0x41: '_SCCTEXT', 0x42: '_COVERAGE', 0x43: '_VFP', 0x44: '_GALLERY', 0x45: '_GETEXPR', 0x46: '_INCLUDE', 0x47: '_GENHTML', 0x49: '_SAMPLES', 0x4A: '_TASKLIST', 0x4B: '_ObjectBrowser', 0x4D: '_FOXCODE', 0x4E: '_FoxTask', 0x4F: '_CODESENSE', 0x50: '_INCSEEK', 0x51: '_PAGETOTAL', 0x52: '_FOXREF', 0x53: '_TOOLBOX', 0x54: '_TASKPANE', 0x55: '_REPORTBUILDER', 0x56: '_REPORTPREVIEW', 0x57: '_REPORTOUTPUT', } MENU_SYSTEM_NAMES = { 0x02: '_MSYSMENU', 0x03: '_MSM_SYSTM', 0x04: '_MSM_FILE', 0x05: '_MSM_EDIT', 0x08: '_MSM_PROG', 0x09: '_MSM_WINDO', 0x0A: '_MSM_VIEW', 0x0B: '_MSM_TOOLS', 0x0D: '_MSYSTEM', 0x10: '_MST_HPSCH', 0x12: '_MST_MACRO', 0x13: '_MST_SP100', 0x1B: '_MST_SP200', 0x1E: '_MST_TECHS', 0x1F: '_MST_ABOUT', 0x22: '_MST_VFPWEB', 0x23: '_MFILE', 0x24: '_MFI_NEW', 0x25: '_MFI_OPEN', 0x26: '_MFI_CLOSE', 0x27: '_MFI_CLALL', 0x28: '_MFI_SP100', 0x29: '_MFI_SAVE', 0x2A: '_MFI_SAVAS', 0x2B: '_MFI_REVRT', 0x2C: '_MFI_SP200', 0x2F: '_MFI_SYSPRINT', 0x31: '_MFI_SP300', 0x32: '_MFI_QUIT', 0x33: '_MFI_PREVU', 0x34: '_MFI_PGSET', 0x35: '_MFI_IMPORT', 0x36: '_MFI_EXPORT', 0x37: '_MFI_SP400', 0x38: '_MFI_SEND', 0x39: '_MEDIT', 0x3A: '_MED_UNDO', 0x3B: '_MED_REDO', 0x3C: '_MED_SP100', 0x3D: '_MED_CUT', 0x3E: '_MED_COPY', 0x3F: '_MED_PASTE', 0x40: '_MED_PSTLK', 0x41: '_MED_CLEAR', 0x42: '_MED_SP200', 0x43: '_MED_INSOB', 0x44: '_MED_OBJ', 0x45: '_MED_LINK', 0x47: '_MED_SP300', 0x48: '_MED_SLCTA', 0x49: '_MED_SP400', 0x4A: '_MED_GOTO', 0x4B: '_MED_FIND', 0x4D: '_MED_REPL', 0x4F: '_MED_SP500', 0x50: '_MED_BEAUT', 0x51: '_MED_PREF', 0x70: '_MPROG', 0x71: '_MPR_DO', 0x72: '_MPR_SP100', 0x73: '_MPR_CANCL', 0x74: '_MPR_RESUM', 0x76: '_MPR_COMPL', 0x7C: '_MPR_SUSPEND', 0x7D: '_MWINDOW', 0x7E: '_MWI_ARRAN', 0x7F: '_MWI_HIDE', 0x82: '_MWI_CLEAR', 0x83: '_MWI_SP100', 0x88: '_MWI_ROTAT', 0x8A: '_MWI_SP200', 0x8B: '_MWI_CMD', 0x8C: '_MWI_VIEW', 0x8D: '_MVI_TOOLB', 0x8E: '_MVIEW', 0x90: '_MTOOLS', 0x91: '_MTL_WZRDS', 0x92: '_MTL_SP100', 0x93: '_MTL_SP200', 0x94: '_MTL_SP300', 0x95: '_MTL_SP400', 0x96: '_MTL_OPTNS', 0x97: '_MTL_BROWSER', 0x98: '_MTI_FOXCODE', 0x99: '_MTL_DEBUGGER', 0x9A: '_MTI_TRACE', 0x9E: '_MTI_LOCALS', 0x9F: '_MTI_DBGOUT', 0xA0: '_MTI_CALLSTACK', 0xC4: '_MSM_TEXT', 0xE6: '_MST_MSDNS', 0xED: '_MTL_GALLERY', 0xEE: '_MTL_COVERAGE', 0xEF: '_MTI_TASKLIST', 0xF1: '_MTI_DOCVIEW', 0xF2: '_MTI_BREAKPOINT', 0xF4: '_MED_LISTMEMBERS', 0xF5: '_MED_QUICKINFO', 0xF6: '_MED_BKMKS', 0xFD: '_MWI_CASCADE', 0xFE: '_MWI_DOCKABLE', } COMMANDS = { #Commands are identified by a single byte as shown in the following list: 0x00: 'SELECT', 0x01: lambda fid, length: ['RAW CODE: ' + fid.read(length).decode('ISO-8859-1')], 0x02: '?', 0x03: '??', 0x04: '@', 0x05: 'ACCEPT', 0x06: 'APPEND', 0x07: 'ASSIST', 0x08: 'AVERAGE', 0x09: 'BROWSE', 0x0A: 'CALL', 0x0B: 'CANCEL', 0x0C: 'CASE', 0x0D: 'CHANGE', 0x0E: 'CLEAR', 0x0F: 'CLOSE', 0x10: 'CONTINUE', 0x11: 'COPY', 0x12: 'COUNT', 0x13: 'CREATE', 0x14: 'DELETE', 0x15: 'DIMENSION', 0x16: 'DIR', 0x17: 'DISPLAY', 0x18: 'DO', 0x19: 'EDIT', 0x1A: 'EJECT', 0x1B: 'ELSE', 0x1C: 'ENDCASE', 0x1D: 'ENDDO', 0x1E: 'ENDIF', 0x1F: 'ENDTEXT', 0x20: 'ERASE', 0x21: 'EXIT', 0x22: 'FIND', 0x23: 'GO', 0x24: 'HELP', 0x25: 'IF', 0x26: 'INDEX', 0x27: 'INPUT', 0x28: 'INSERT', 0x29: 'JOIN', 0x2A: 'LABEL', 0x2B: 'LIST', 0x2C: 'LOAD', 0x2D: 'LOCATE', 0x2E: 'LOOP', 0x2F: 'MODIFY', 0x30: lambda fid, length: ['NOTE'] + [fid.read(length).decode('ISO-8859-1')],#'NOTE', 0x31: 'ON', 0x32: 'OTHERWISE', 0x33: 'PACK', 0x34: 'PARAMETERS', 0x35: 'PRIVATE', 0x36: 'PROCEDURE', 0x37: 'PUBLIC', 0x38: 'QUIT', 0x39: 'READ', 0x3A: 'RECALL', 0x3B: 'REINDEX', 0x3C: 'RELEASE', 0x3D: 'RENAME', 0x3E: 'REPLACE', 0x3F: 'REPORT', 0x40: 'RESTORE', 0x41: 'RESUME', 0x42: 'RETURN', 0x43: 'RUN', 0x44: 'SAVE', 0x45: 'SEEK', 0x46: 'SELECT', 0x47: read_setcode, 0x48: 'SKIP', 0x49: 'SORT', 0x4A: 'STORE', 0x4B: 'SUM', 0x4C: 'SUSPEND', 0x4D: 'TEXT', 0x4E: 'TOTAL', 0x4F: 'TYPE', 0x50: 'UPDATE', 0x51: 'USE', 0x52: 'WAIT', 0x53: 'ZAP', 0x54: lambda fid, length: [], #variable assignment 0x55: 'ENDPROC\n', 0x56: 'EXPORT', 0x57: 'IMPORT', 0x58: 'RETRY', 0x5A: 'UNLOCK', 0x5B: 'FLUSH', 0x5C: 'KEYBOARD', 0x5D: 'MENU', 0x5E: 'SCATTER', 0x5F: 'GATHER', 0x60: 'SCROLL', 0x68: 'CREATE', 0x69: 'ALTER', 0x6A: 'DROP', 0x6F: 'SELECT', 0x70: 'UPDATE', 0x71: 'DELETE', 0x72: 'INSERT', 0x73: 'DEFINE', 0x74: 'ACTIVATE', 0x75: 'DEACTIVATE', 0x76: 'PRINTJOB', 0x77: 'ENDPRINTJOB', 0x79: '???', 0x7A: 'MOVE', 0x7B: 'ON', #CLEAR ON event 0x7C: 'DECLARE', 0x7D: 'CALCULATE', 0x7E: 'SCAN', 0x7F: 'ENDSCAN', 0x80: 'SHOW', 0x81: 'PLAY', 0x82: 'GETEXPR', 0x83: 'COMPILE', 0x84: 'FOR', 0x85: 'ENDFOR', 0x86: '=', #expression, 0x87: 'HIDE', 0x89: 'SIZE', 0x8A: 'PUSH', 0x8B: 'POP', 0x8C: 'ZOOM', 0x8D: '\\', 0x8E: '\\\\', 0x8F: 'BUILD', 0x90: 'EXTERNAL', 0x93: 'BLANK', 0x95: 'OPEN', 0x96: 'ADD', 0x97: 'REMOVE', 0x99: lambda fid, length: [], #function call 0x9B: 'BEGIN', 0x9C: 'ROLLBACK', 0x9D: 'END', 0x9E: 'add hidden method', 0x9F: 'HIDDEN', 0xA0: 'VALIDATE', 0xA1: 'PROTECTED', 0xA2: 'add method', 0xA3: 'add protected method', 0xA6: 'WITH', 0xA7: 'ENDWITH', 0xA8: 'ERROR', 0xA9: 'ASSERT', 0xAA: 'DEBUGOUT', 0xAB: 'FREE', 0xAC: 'NODEFAULT', 0xAD: 'MOUSE', 0xAE: 'LOCAL', 0xAF: 'LPARAMETERS', 0xB0: 'CD', 0xB1: 'MKDIR', 0xB2: 'RMDIR', 0xB3: 'DEBUG', 0xB4: lambda fid, length: ['BAD CODE: ' + fid.read(length).decode('ISO-8859-1')], 0xB5: 'FOR EACH', 0xB6: 'ENDFOREACH', 0xB7: 'DOEVENTS', 0xB9: 'IMPLEMENTS', 0xBA: 'TRY', 0xBB: 'CATCH', 0xBC: 'FINALLY', 0xBD: 'THROW', 0xBE: 'ENDTRY', 0xFB: read_text, } SETCODES = { 0x01: 'ALTERNATE', 0x02: 'BELL', 0x03: 'CARRY', 0x05: 'CENTURY', 0x07: 'COLOR', 0x09: 'CONFIRM', 0x0A: 'CONSOLE', 0x0B: 'DATE', 0x0C: 'DEBUG', 0x0E: 'DEFAULT', 0x0D: 'DECIMALS', 0x0F: 'DELETED', 0x15: 'ESCAPE', 0x16: 'EXACT', 0x17: 'EXCLUSIVE', 0x18: 'FIELDS', 0x1A: 'FILTER', 0x1B: 'FIXED', 0x1C: 'FORMAT', 0x1D: 'FUNCTION', 0x1E: 'HEADINGS', 0x1F: 'HELP', 0x21: 'INDEX', 0x23: 'MARGIN', 0x24: 'MEMOWIDTH', 0x26: 'MESSAGE', 0x27: 'ODOMETER', 0x28: 'ORDER', 0x29: 'PATH', 0x2A: 'PRINTER', 0x2B: 'PROCEDURE', 0x2D: 'RELATION', 0x2E: 'SAFETY', 0x30: 'STATUS', 0x31: 'STEP', 0x32: 'TALK', 0x35: 'TYPEAHEAD', 0x36: 'UNIQUE', 0x37: 'VIEW', 0x39: 'HOURS', 0x3A: 'MARK', 0x3B: 'POINT', 0x3C: 'SEPERATOR', 0x3D: 'BORDER', 0x3E: 'CLOCK', 0x40: 'SPACE', 0x41: 'COMPATIBLE', 0x42: 'AUTOSAVE', 0x43: 'BLOCKSIZE', 0x45: 'DEVELOPMENT', 0x46: 'NEAR', 0x48: 'REFRESH', 0x49: 'LOCK', 0x4C: 'WINDOW', 0x4D: 'REPROCESS', 0x4E: 'SKIP', 0x51: 'FULLPATH', 0x54: 'RESOURCE', 0x55: 'TOPIC', 0x57: 'LOGERRORS', 0x59: 'SYSMENU', 0x5A: 'NOTIFY', 0x5C: 'MACKEY', 0x5D: 'CURSOR', 0x5E: 'UDFPARMS', 0x5F: 'MULTILOCKS', 0x60: 'TEXTMERGE', 0x61: 'OPTIMIZE', 0x62: 'LIBRARY', 0x64: 'ANSI', 0x65: 'TRBETWEEN', 0x66: 'PDSETUP', 0x68: 'KEYCOMP', 0x69: 'PALETTE', 0x6A: 'READBORDER', 0x6B: 'COLLATE', 0x6D: 'NOCPTRANS', 0x77: 'NULL', 0x79: 'TAG', 0x7B: 'CPDIALOG', 0x7C: 'CPCOMPILE', 0x7D: 'SECONDS', 0x7E: 'CLASSLIB', 0x7F: 'DATABASE', 0x80: 'DATASESSION', 0x81: 'FDOW', 0x82: 'FWEEK', 0x83: 'SYSFORMATS', 0x84: 'OLEOBJECT', 0x85: 'ASSERTS', 0x86: 'COVERAGE', 0x87: 'EVENTTRACKING', 0x88: 'NULLDISPLAY', 0x89: 'EVENTLIST', 0x8D: 'BROWSEIME', 0x8E: 'STRICTDATE', 0x8F: 'AUTOINCERROR', 0x90: 'ENGINEBEHAVIOR', 0x91: 'TABLEVALIDATE', 0x92: 'SQLBUFFERING', 0x94: 'TABLEPROMPT', 0xFE: '\n', } CLAUSES = { 0x01: 'ADDITIVE', 0x02: 'ALIAS', 0x03: 'ALL', 0x04: 'ARRAY', 0x05: 'AT', 0x06: 'BAR', 0x07: ',', 0x08: 'BLANK', 0x0C: 'CLEAR', 0x0D: 'COLOR', 0x0E: 'DEFAULT', 0x0F: 'DOUBLE', 0x11: 'FIELDS', 0x12: 'FILE', 0x13: 'FOR', 0x14: 'FORM', 0x15: 'FROM', 0x16: 'IN', 0x17: 'KEY', 0x18: '(@ or LIKE)', 0x1A: 'MACROS', 0x1B: 'MEMO', 0x1C: 'MENU', 0x1D: 'MESSAGE', 0x1E: 'NEXT', 0x1F: 'OFF', 0x20: 'ON', 0x21: 'PRINTER', 0x22: 'PROMPT', 0x23: 'RECORD', 0x24: 'REST', 0x25: 'SAVE', 0x26: 'SCREEN', 0x27: 'TITLE', 0x28: 'TO', 0x29: 'TOP', 0x30: 'NOOPTIMIZE', 0x2B: 'WHILE', 0x2C: 'WINDOW', 0x2E: 'OBJECT', 0x31: 'TABLE', 0x32: 'LABEL', 0x33: 'REPORT', 0x36: 'BOTTOM', 0x38: 'BY', 0x39: 'NOCONSOLE', 0x3A: 'NOWAIT', 0x3B: 'PLAIN', 0x3C: 'DESCENDING', 0x3D: 'NOWINDOW', 0x40: 'FONT', 0x41: 'STYLE', 0x42: 'RGB', 0x48: 'CASE', 0x49: 'ID', 0x4A: 'NAME', 0x4B: 'PROGRAM', 0x4C: 'QUERY', 0x4E: 'SCHEME', 0x4F: 'CLASS', 0x51: 'AS', 0x52: 'CLASSLIB', 0x56: 'DLLS', 0x57: 'SHORT', 0x58: 'LEFT', 0x59: 'RIGHT', 0x5B: 'RTLJUSTIFY', 0x5C: 'LTRJUSTIFY', 0x5F: 'PICTRES', 0xE5: read_name, #user defined function alias 0xF6: read_name, #user defined function 0xFC: read_expr, END_EXPR: 'END EXPR', #0xFD 0xFE: '\n' } MULTICLAUSES = { 0x10: ('=', 'ERROR'), 0xBB: ('XL5', 'WITH BUFFERING='), 0xBC: ('INTO', 'ACTIVATE', 'COMMAND', 'PAD'), 0xBD: ('CENTER', 'CURSOR', 'TRANSACTION', 'APP', 'MINIMIZE', 'ESCAPE'), 0xBE: ('PROCEDURE', 'DELIMITED', 'EXE', 'DISTINCT', 'DOS', 'PAGE'), 0xBF: ('UNKNOWN', 'MIN', 'FLOAT'), 0xC0: ('HAVING', 'FREE', 'LOCAL', 'FOOTER'), 0xC1: ('LINE', 'TRIGGER', 'GLOBAL', 'GET'), 0xC2: ('SHARED', 'DATABASE', 'DROP', 'GETS', 'NOINIT'), 0xC3: ('ORDER BY', 'OF', 'REPLACE', 'NOCLOSE'), 0xC4: ('SAY', 'VIEWS'), 0xC5: ('VALUES', 'DBLCLICK'), 0xC6: ('POPUP', 'WHERE', 'DLL', 'DRAG', 'EXCLUDE'), 0xC7: ('*', 'STEP', 'XLS', 'MARK'), 0xC8: ('READ', 'MARGIN', 'RPD', 'READERROR'), 0xCA: ('TAG', 'SET', 'FORCE', 'NOMINIMIZE', 'EXIT'), 0xCB: ('STATUS', 'RECOMPILE', 'PRIMARY', 'WRK'), 0xCC: ('STRUCTURE', 'RELATIVE', 'FOREIGN', 'PROTECTED'), 0xCD: ('SHUTDOWN', 'NOFILTER'), 0xCE: ('TIMEOUT', 'UPDATE'), 0xCF: ('SHADOW',), 0xD0: ('NOCLEAR', 'SELECTION'), 0xD1: ('WITH', 'INTEGER', 'CONNECTION'), 0xD2: ('NOMARGIN',), 0xD3: ('UNIQUE', 'SIZE'), 0xD4: ('TYPE', 'LONG', 'SYSTEM'), 0xD5: ('EVENTS', 'CSV', 'COLUMN'), 0xD6: ('STRING', 'SHEET', 'NORM'), 0xD7: ('READWRITE',), } VALUES = { 0x2D: '.F.', 0x61: '.T.', 0xE4: '.NULL.', 0xD9: read_double_quoted_string, 0xDB: '', 0xDE: read_currency, 0xDF: '::', 0xE0: read_name, 0xE1: read_system_alias, 0xE2: '.', 0xE3: read_alias, 0xE6: read_datetime, 0xE7: read_float, SQL_SUBQUERY: 'SQL SUBQUERY', #0xE8 0xE9: read_int32, 0xEB: read_next_code, 0xEC: read_menu_system_name, 0xED: read_system_name, 0xEE: read_date, 0xF0: lambda fid, *args: '(SHORT CIRCUIT AND IN {})'.format(read_ushort(fid)), 0xF1: lambda fid, *args: '(SHORT CIRCUIT OR IN {})'.format(read_ushort(fid)), 0xF2: lambda fid, *args: '(SHORT CIRCUIT IIF IN {})'.format(read_ushort(fid)), 0xF3: lambda fid, *args: '(SHORT CIRCUIT IIF IN {})'.format(read_ushort(fid)), 0xF4: read_alias, 0xF5: read_special_alias, 0xF7: read_name, 0xF8: read_int8, 0xF9: read_int16, 0xFA: read_double, 0xFB: read_single_quoted_string, 0xFC: read_expr, 0xFF: lambda fid, *args: 'ff ' + read_raw(fid, 2), } OPERATORS = { 0x00: ('NOP', 0), 0x01: ('$', 2), 0x03: ('END PAREN', 0), 0x04: ('*', 2), 0x05: ('^', 2), 0x06: ('+', 2), 0x07: (',', 2), 0x08: ('-', 2), 0x09: ('AND', 2), 0x0A: ('NOT', 1), 0x0B: ('OR', 2), 0x0C: ('/', 2), 0x0D: ('<', 2), 0x0E: ('<=', 2), 0x0F: ('!=', 2), 0x10: ('=', 2), 0x11: ('>', 2), 0x12: ('>=', 2), 0x14: ('==', 2), 0x18: ('@', -1), 0xCC: ('', 1), } FUNCTIONS = { 0x19: 'ABS', 0x1A: lambda fid: EXTENDED1[fid.read(1)[0]], 0x1B: 'ALIAS', 0x1C: 'ASC', 0x1D: 'AT', 0x1E: 'BOF', 0x1F: 'CDOW', 0x20: 'CHR', 0x21: 'CMONTH', 0x22: 'COL', 0x23: 'CTOD', 0x24: 'DATE', 0x25: 'DAY', 0x26: 'DBF', 0x27: 'DELETED', 0x28: 'DISKSPACE', 0x29: 'DOW', 0x2A: 'DTOC', 0x2B: 'EOF', 0x2C: 'ERROR', 0x2E: 'FCOUNT', 0x2F: 'FIELD', 0x30: 'FILE', 0x31: 'FKLABEL', 0x32: 'FKMAX', 0x33: 'FLOCK', 0x34: 'FOUND', 0x35: 'GETENV', 0x36: 'IIF', 0x37: 'INKEY', 0x38: 'INT', 0x39: 'ISALPHA', 0x3A: 'ISCOLOR', 0x3B: 'ISLOWER', 0x3C: 'ISUPPER', 0x3D: 'LEFT', 0x3E: 'LEN', 0x3F: 'LOCK', 0x40: 'LOWER', 0x41: 'LTRIM', 0x42: 'LUPDATE', PARAMETER_MARK: 'MARK PARAMETERS', #0x43 0x44: 'MAX', 0x45: 'MESSAGE', 0x46: 'MIN', 0x47: 'MOD', 0x48: 'MONTH', 0x49: 'NDX', 0x4A: 'OS', 0x4B: 'PCOL', 0x4C: 'PROW', 0x4D: 'READKEY', 0x4E: 'RECCOUNT', 0x4F: 'RECNO', 0x50: 'RECSIZE', 0x51: 'REPLICATE', 0x52: 'RIGHT', 0x53: 'RLOCK', 0x54: 'ROUND', 0x55: 'ROWS', 0x56: 'RTRIM', 0x57: 'SELECT', 0x58: 'SPACE', 0x59: 'SQRT', 0x5A: 'STR', 0x5B: 'STUFF', 0x5C: 'SUBSTR', 0x5D: 'SYS', 0x5E: 'TIME', 0x5F: 'TRANSFORM', 0x60: 'TRIM', 0x62: 'TYPE', 0x64: 'UPDATED', 0x66: 'UPPER', 0x67: 'VAL', 0x68: 'VERSION', 0x69: 'YEAR', 0x6A: 'DMY', 0x6B: 'MDY', 0x6C: 'BAR', 0x6D: 'KEY', 0x6F: 'MEMORY', 0x70: 'MENU', 0x72: 'PAD', 0x73: 'POPUP', 0x74: 'PROGRAM', 0x75: 'PV', 0x76: 'SET', 0x77: 'CEILING', 0x7A: 'FLOOR', 0x7B: 'FV', 0x7C: 'LASTKEY', 0x7D: 'LIKE', 0x7E: 'LOOKUP', 0x7F: 'CDX', 0x80: 'MEMLINES', 0x81: 'MLINE', 0x82: 'ORDER', 0x83: 'PAYMENT', 0x84: 'PRINTSTATUS', 0x85: 'PROMPT', 0x86: 'RAND', 0x87: 'VARREAD', 0x89: 'RTOD', 0x8A: 'SEEK', 0x8B: 'SIGN', 0x8C: 'TAG', 0x8D: 'DTOR', 0x8E: 'DTOS', 0x8F: 'SCHEME', 0x90: 'FOPEN', 0x91: 'FCLOSE', 0x92: 'FREAD', 0x93: 'FWRITE', 0x94: 'FERROR', 0x95: 'FCREATE', 0x96: 'FSEEK', 0x97: 'FGETS', 0x98: 'FFLUSH', 0x99: 'FPUTS', 0x9B: 'ALLTRIM', 0x9C: 'ATLINE', 0x9D: 'CHRTRAN', 0x9E: 'FILTER', 0x9F: 'RELATION', 0xA0: 'TARGET', 0xA1: 'EMPTY', 0xA2: 'FEOF', 0xA3: 'HEADER', 0xA5: 'RAT', 0xA6: 'RATC', 0xA7: 'SECONDS', 0xA8: 'STRTRAN', 0xAA: 'USED', 0xAB: 'BETWEEN', 0xAC: 'CHRSAW', 0xAD: 'INLIST', 0xAE: 'ISDIGIT', 0xAF: 'OCCURS', 0xB0: 'PADC', 0xB1: 'PADL', 0xB2: 'PADR', 0xB3: 'FSIZE', 0xB4: 'SROWS', 0xB5: 'SCOLS', 0xB6: 'WCOLS', 0xB7: 'WROWS', 0xB8: 'ATC', 0xB9: 'ATCLINE', 0xBA: 'CURDIR', 0xBC: 'PROPER', 0xBB: 'FULLPATH', 0xBD: 'WEXISTS', 0xBE: 'WONTOP', 0xBF: 'WOUTPUT', 0xC0: 'WVISIBLE', 0xC1: 'GETFILE', 0xC2: 'PUTFILE', 0xC3: 'GOMONTH', 0xC4: 'PARAMETERS', 0xC5: 'MCOL', 0xC6: 'MDOWN', 0xC7: 'MROW', 0xC8: 'WLCOL', 0xC9: 'WLROW', 0xCB: 'FCHSIZE', 0xCD: 'ALEN', 0xCE: 'EVALUATE', 0xD1: 'ISNULL', 0xD2: 'NVL', 0xE5: read_name, #user defined function alias 0xEA: lambda fid: EXTENDED2[fid.read(1)[0]], 0xF6: read_name, #user defined function } EXTENDED1 = { 0x00: 'DISPLAYPATH', 0x01: 'CURSORTOXML', 0x02: 'XMLTOCURSOR', 0x03: 'GETINTERFACE', 0x04: 'BINDEVENT', 0x05: 'RAISEEVENT', 0x06: 'ADOCKSTATE', 0x07: 'GETCURSORADAPTER', 0x08: 'UNBINDEVENTS', 0x09: 'AEVENTS', 0x0A: 'ADDPROPERTY', 0x0E: 'ICASE', 0x0C: 'EVL', 0x0F: 'CAST', 0x10: 'ASQLHANDLES', 0x11: 'SETRESULTSET', 0x12: 'GETRESULTSET', 0x13: 'CLEARRESULTSET', 0x14: 'SQLIDLEDISCONNECT', 0x15: 'ISMEMOFETCHED', 0x16: 'GETAUTOINCVALUE', 0x17: 'MAKETRANSACTABLE', 0x18: 'ISTRANSACTABLE', 0x19: 'ISPEN', } EXTENDED2 = { #This list contains all those functions that are available through the 0xEA (extended function) code: 0x00: 'PRMPAD', 0x01: 'PRMBAR', 0x02: 'MRKPAD', 0x03: 'MRKBAR', 0x04: 'CNTPAD', 0x05: 'CNTBAR', 0x06: 'GETPAD', 0x07: 'GETBAR', 0x08: 'MWINDOW', 0x09: 'OBJNUM', 0x0A: 'WPARENT', 0x0B: 'WCHILD', 0x0C: 'RDLEVEL', 0x0D: 'ACOPY', 0x0E: 'AINS', 0x0F: 'ADEL', 0x10: 'ASORT', 0x11: 'ASCAN', 0x12: 'AELEMENT', 0x13: 'ASUBSCRIPT', 0x14: 'AFIELDS', 0x15: 'ADIR', 0x16: 'LOCFILE', 0x17: 'WBORDER', 0x18: 'ON', 0x19: '', #Some sort of array indicator? 0x1A: 'WLAST', 0x1B: 'SKPBAR', 0x1C: 'SKPPAD', 0x1D: 'WMAXIMUM', 0x1E: 'WMINIMUM', 0x1F: 'WREAD', 0x20: 'WTITLE', 0x21: 'GETPEM', 0x23: 'TXTWIDTH', 0x24: 'FONTMETRIC', 0x25: 'SYSMETRIC', 0x26: 'WFONT', 0x27: 'GETFONT', 0x28: 'AFONT', 0x29: 'DDEADVISE', 0x2A: 'DDEENABLED', 0x2B: 'DDEEXECUTE', 0x2C: 'DDEINITIATE', 0x2D: 'DDEPOKE', 0x2E: 'DDEREQUEST', 0x2F: 'DDESETSERVICE', 0x30: 'DDESETTOPIC', 0x31: 'DDETERMINATE', 0x32: 'DDELASTERROR', 0x33: 'GETDIR', 0x34: 'DDEABORTTRANS', 0x35: 'DDESETOPTION', 0x36: 'OEMTOANSI', 0x38: 'RGBSCHEME', 0x39: 'CPCONVERT', 0x3A: 'CPCURRENT', 0x3B: 'CPDBF', 0x3C: 'IDXCOLLATE', 0x3E: 'CAPSLOCK', 0x3F: 'NUMLOCK', 0x40: 'INSMODE', 0x41: 'SOUNDEX', 0x42: 'DIFFERENCE', 0x43: 'COS', 0x44: 'SIN', 0x45: 'TAN', 0x46: 'ACOS', 0x47: 'ASIN', 0x48: 'ATAN', 0x49: 'ATN2', 0x4A: 'LOG', 0x4B: 'LOG10', 0x4C: 'EXP', 0x4D: 'PI', 0x4E: 'CREATEOBJECT', 0x4F: 'BARPROMPT', 0x51: 'HOME', 0x53: 'FOR', 0x54: 'UNIQUE', 0x55: 'DESCENDING', 0x56: 'TAGCOUNT', 0x57: 'TAGNO', 0x58: 'FDATE', 0x59: 'FTIME', 0x5A: 'ISBLANK', 0x5B: 'ISMOUSE', 0x5C: 'GETOBJECT', 0x5D: 'OBJTOCLIENT', 0x5E: 'RGB', 0x5F: 'OLDVAL', 0x60: 'ASELOBJ', 0x61: 'ACLASS', 0x62: 'AMEMBERS', 0x63: 'COMPOBJ', 0x64: 'SQLCANCEL', 0x65: 'SQLCOLUMNS', 0x66: 'SQLCONNECT', 0x67: 'SQLDISCONNECT', 0x68: 'PEMSTATUS', 0x69: 'SQLEXEC', 0x6A: 'SQLGETPROP', 0x6B: 'SQLMORERESULTS', 0x6C: 'SQLSETPROP', 0x6D: 'SQLTABLES', 0x6E: 'FLDLIST', 0x6F: 'PRTINFO', 0x70: 'KEYMATCH', 0x71: 'OBJVAR', 0x72: 'NORMALIZE', 0x73: 'ISREADONLY', 0x74: 'PCOUNT', 0x78: 'MESSAGEBOX', 0x79: 'AUSED', 0x7A: 'AERROR', 0x7B: 'SQLCOMMIT', 0x7C: 'SQLROLLBACK', 0x7D: 'MTON', 0x7E: 'NTOM', 0x7F: 'DTOT', 0x80: 'TTOD', 0x81: 'TTOC', 0x82: 'CTOT', 0x83: 'HOUR', 0x84: 'MINUTE', 0x85: 'SEC', 0x86: 'DATETIME', 0x87: 'REQUERY', 0x88: 'CURSORSETPROP', 0x89: 'CURSORGETPROP', 0x8A: 'DBSETPROP', 0x8B: 'DBGETPROP', 0x8C: 'GETCOLOR', 0x8D: 'PRIMARY', 0x8E: 'CANDIDATE', 0x8F: 'CURVAL', 0x90: 'GETFLDSTATE', 0x91: 'SETFLDSTATE', 0x92: 'GETNEXTMODIFIED', 0x93: 'TABLEUPDATE', 0x94: 'TABLEREVERT', 0x95: 'ADATABASES', 0x96: 'DBC', 0x98: 'ADBOBJECTS', 0x99: 'APRINTERS', 0x9A: 'GETPRINTER', 0x9B: 'GETPICT', 0x9C: 'WEEK', 0x9D: 'REFRESH', 0x9E: 'GETCP', 0x9F: 'SQLSTRINGCONNECT', 0xA0: 'CREATEBINARY', 0xA1: 'DODEFAULT', 0xA2: 'ISEXCLUSIVE', 0xA3: 'TXNLEVEL', 0xA4: 'DBUSED', 0xA5: 'AINSTANCE', 0xA6: 'INDBC', 0xA7: 'BITLSHIFT', 0xA8: 'BITRSHIFT', 0xA9: 'BITAND', 0xAA: 'BITOR', 0xAB: 'BITNOT', 0xAC: 'BITXOR', 0xAD: 'BITSET', 0xAE: 'BITTEST', 0xAF: 'BITCLEAR', 0xB0: 'AT_C', 0xB1: 'ATCC', 0xB2: 'RATLINE', 0xB3: 'LEFTC', 0xB4: 'RIGHTC', 0xB5: 'SUBSTRC', 0xB6: 'STUFFC', 0xB7: 'LENC', 0xB8: 'CHRTRANC', 0xBA: 'LIKEC', 0xBC: 'IMESTATUS', 0xBD: 'ISLEADBYTE', 0xBE: 'STRCONV', 0xBF: 'BINTOC', 0xC0: 'CTOBIN', 0xC1: 'ISFLOCKED', 0xC2: 'ISRLOCKED', 0xC3: 'LOADPICTURE', 0xC4: 'SAVEPICTURE', 0xC5: 'SQLPREPARE', 0xC6: 'DIRECTORY', 0xC7: 'CREATEOFFLINE', 0xC8: 'DROPOFFLINE', 0xC9: 'AGETCLASS', 0xCA: 'AVCXCLASSES', 0xCB: 'STRTOFILE', 0xCC: 'FILETOSTR', 0xCD: 'ADDBS', 0xCE: 'DEFAULTEXT', 0xCF: 'DRIVETYPE', 0xD0: 'FORCEEXT', 0xD1: 'FORCEPATH', 0xD2: 'JUSTDRIVE', 0xD3: 'JUSTEXT', 0xD4: 'JUSTFNAME', 0xD5: 'JUSTPATH', 0xD6: 'JUSTSTEM', 0xD7: 'INDEXSEEK', 0xD8: 'COMRETURNERROR', 0xD9: 'VARTYPE', 0xDA: 'ALINES', 0xDB: 'NEWOBJECT', 0xDC: 'AMOUSEOBJ', 0xDD: 'COMCLASSINFO', 0xE0: 'ANETRESOURCES', 0xE1: 'AGETFILEVERSION', 0xE2: 'CREATEOBJECTEX', 0xE3: 'COMARRAY', 0xE4: 'EXECSCRIPT', 0xE5: 'XMLUPDATEGRAM', 0xE6: 'COMPROP', 0xE7: 'ATAGINFO', 0xE8: 'ASTACKINFO', 0xE9: 'EVENTHANDLER', 0xEA: 'EDITSOURCE', 0xEB: 'ADLLS', 0xEC: 'QUARTER', 0xED: 'GETWORDCOUNT', 0xEE: 'GETWORDNUM', 0xEF: 'ALANGUAGE', 0xF0: 'STREXTRACT', 0xF1: 'INPUTBOX', 0xF2: 'APROCINFO', 0xF3: 'WDOCKABLE', 0xF4: 'ASESSIONS', 0xF5: 'TEXTMERGE', 0xFD: 'MIN', } CLAUSES.update(VALUES) def read_short(fid): return struct.unpack('<h', fid.read(2))[0] def read_ushort(fid): return struct.unpack('<H', fid.read(2))[0] def read_int(fid): return struct.unpack('<i', fid.read(4))[0] def read_uint(fid): return struct.unpack('<I', fid.read(4))[0] def parse_subline(fid, length, final, names, line): while fid.tell() < final: clauseval = fid.read(1)[0] if clauseval in CLAUSES: clause = CLAUSES[clauseval] if clauseval in MULTICLAUSES: clause = ' or '.join(MULTICLAUSES[clauseval]) if clauseval == 0xF6 or clauseval == 0xF7: clause = clause(fid, names) while line and type(line[-1]) is FXPAlias: clause = FXPName(repr(line.pop()) + repr(clause)) elif callable(clause): clause = clause(fid, names) else: clause = FXPName(clause) line.append(clause) if len(line) > 1 and isinstance(line[-2], int): line.pop(-2) fid.seek(final - length) try: line = [' '.join(repr(l) for l in line)] except: pass line + [read_raw(fid, length)] + [fid.tell() - length] return line[0] def parse_line(fid, length, names): final = fid.tell() + length line = [] command = COMMANDS[fid.read(1)[0]] if callable(command): line += [FXPName(c) for c in command(fid, length-1)] else: line.append(FXPName(command)) return parse_subline(fid, length, final, names, line) def read_code_line_area(fid, names, final_fpos): d = [] while fid.tell() < final_fpos: try: start_pos = fid.tell() length = read_ushort(fid) d.append(parse_line(fid, length-2, names)) except: import traceback traceback.print_exc() fid.seek(start_pos) length = read_ushort(fid) line = read_raw(fid, length-2) print(line, file=sys.stderr) d.append(line) return ''.join(d) def read_code_name_list(fid): num_entries = read_ushort(fid) return [read_string(fid) for i in range(num_entries)] def change_named_value(expr, names): expr = expr.split()[1] if expr.endswith('.'): return names[int(expr[:-1])] + '.' else: return names[int(expr)] return expr def concatenate_aliases(codes, names): codes = codes[:] new_codes = [] while codes: code = codes.pop(0) if isinstance(code, str) and code.startswith('NAME '): code = change_named_value(code, names) while code.endswith('.'): code += change_named_value(codes.pop(0), names) if isinstance(code, str) and code.startswith('SPECIAL_NAME '): code = change_named_value(code, SPECIAL_NAMES) while code.endswith('.'): code += change_named_value(codes.pop(0), names) new_codes.append(code) return new_codes def read_code_block(fid): tot_length = read_ushort(fid) if tot_length == 0: tot_length = read_uint(fid) start_pos = fid.tell() fid.seek(fid.tell() + tot_length) names = read_code_name_list(fid) fid.seek(start_pos) return read_code_line_area(fid, names, start_pos+tot_length) def convert_date(date_bits): year = ((date_bits & 0xfe000000) >> 25) + 1980 month = (date_bits & 0x1e00000) >> 21 day = (date_bits & 0x1f0000) >> 16 hour = (date_bits & 0xf800) >> 11 minute = (date_bits & 0x7e0) >> 5 second = (date_bits & 0x1f) << 1 return datetime(year, month, day, hour, minute, second) def read_procedure_header(fid): return OrderedDict(( ('name', read_string(fid)), ('pos', read_uint(fid)), ('class_flag', read_short(fid)), ('class', read_short(fid)), )) def read_class_header(fid): return { 'name': read_string(fid), 'parent': read_string(fid), 'pos': read_uint(fid), 'reserved': fid.read(2), } def read_line_info(fid): return read_raw(fid, 2) def read_source_info(fid): unknown1, unknown2, unknown3, line_num_start = struct.unpack('IIII', fid.read(16)) return line_num_start, unknown1, unknown2, unknown3 def read_until_null(fid): string = fid.read(1) while string[-1] != 0: string += fid.read(1) if string: string = string[:-1] return string.decode('ISO-8859-1') def read_fxp_file_block(fid, start_pos, name_pos): fid.seek(start_pos) fmt = '<hhiiiiiiIIB' num_procedures, num_classes, main_codepos, procedure_pos, class_pos, source_info_pos, num_code_lines, code_lines_pos, date, original_name_pos, codepage = struct.unpack(fmt, fid.read(struct.calcsize(fmt))) procedure_pos += start_pos class_pos += start_pos code_lines_pos += start_pos source_info_pos += start_pos date = convert_date(date) codepage = dbf.code_pages[255 - codepage] fid.seek(name_pos + original_name_pos) original_name = read_until_null(fid) for item in ('num_procedures', 'num_classes', 'main_codepos', 'procedure_pos', 'class_pos', 'source_info_pos', 'num_code_lines', 'code_lines_pos', 'date', 'original_name', 'codepage'): print('{} = {!r}'.format(item, eval(item))) fid.seek(procedure_pos) procedures = [OrderedDict((key, val) for key, val in zip(('name', 'pos', 'class_flag', 'class'), ('', main_codepos, 0, -1)))] procedures += [read_procedure_header(fid) for i in range(num_procedures)] fid.seek(class_pos, 0) classes = [read_class_header(fid) for i in range(num_classes)] fid.seek(code_lines_pos) line_info = [read_line_info(fid) for i in range(num_code_lines)] fid.seek(source_info_pos) source_info = [read_source_info(fid) for i in range(num_procedures + num_classes + 1)] for proc_or_cls in procedures + classes: fid.seek(proc_or_cls['pos'] + start_pos) proc_or_cls['code'] = read_code_block(fid) proc_or_cls.pop('pos') return procedures, classes def fxp_read(fxp_file, output_dir=None): with open(fxp_file, 'rb') as fid: header_bytes = fid.read(HEADER_SIZE) if len(header_bytes) < HEADER_SIZE: raise Exception('File header too short') identifier, head, num_files, main_file, footer_pos, name_pos, name_len, reserved, checksum = struct.unpack('<3s2sHHIII18sH', header_bytes) if identifier == ENCRYPTED_IDENTIFIER: print(repr(header_bytes)) raise Exception('Encrypted file') if identifier != IDENTIFIER: print('bad header') raise Exception('bad header: {!r}'.format(identifier)) if checksum != checksum_calc(header_bytes[:-4]): raise Exception('bad checksum') for item in ('head', 'num_files', 'main_file', 'footer_pos', 'name_pos', 'name_len', 'reserved', 'checksum'): print('{} = {!r}'.format(item, eval(item))) print() if output_dir: try: os.makedirs(output_dir) except OSError as e: if e.errno != errno.EEXIST: raise fid.seek(footer_pos) footer_entries = [struct.unpack('<BIIII8s', fid.read(FOOTER_ENTRY_SIZE)) for i in range(num_files)] output = OrderedDict() for i, (file_type, file_start, file_stop, dirname_start, filename_start, reserved) in enumerate(footer_entries): if i == main_file: print('MAIN') fid.seek(name_pos + dirname_start) dirname = read_until_null(fid) fid.seek(name_pos + filename_start) filename = read_until_null(fid) for item in ('file_type', 'file_start', 'file_stop', 'dirname_start', 'filename_start', 'reserved', 'dirname', 'filename'): print('{} = {!r}'.format(item, eval(item))) if file_type == 0: try: output[filename] = read_fxp_file_block(fid, file_start, name_pos) except: pass if output_dir: with open(os.path.join(output_dir, filename), 'wb') as outfid: fid.seek(file_start) blocklen = file_stop - file_start filename_blocklen = len(dirname) + len(filename) + 3 new_footer_pos = HEADER_SIZE + blocklen + filename_blocklen new_name_pos = HEADER_SIZE + blocklen header_data = bytearray(struct.pack('<5sHHIII', IDENTIFIER, 1, 0, new_footer_pos, new_name_pos, filename_blocklen)) header_data += b'\x00' * 16 outfid.write(header_data) outfid.write(b'\x00' * 2) outfid.write(struct.pack('<H', checksum_calc(header_data))) file_start = outfid.tell() outfid.write(fid.read(blocklen)) file_stop = outfid.tell() outfid.write(b'\x00') outfid.write((dirname + '\x00').encode('ISO-8859-1')) outfid.write((filename + '\x00').encode('ISO-8859-1')) outfid.write(struct.pack('<BIIII', file_type, file_start, file_stop, 1, 1 + len(dirname) + 1)) outfid.write(b'\x00' * 8) else: if output_dir: with open(os.path.join(output_dir, filename), 'wb') as outfid: fid.seek(file_start) outfid.write(fid.read(file_stop - file_start)) print() if output_dir: for filename in output: with open(os.path.join(output_dir, os.path.splitext(filename)[0]) + '.prg', 'wb') as outfid: procedures, classes = output[filename] for proc in procedures: if not proc['class_flag']: if proc['name']: outfid.write('PROCEDURE {}\n'.format(proc['name']).encode('ISO-8859-1')) outfid.write(proc['code'].encode('ISO-8859-1')) for cls in classes: outfid.write('DEFINE CLASS {} AS {}\n'.format(cls['name'], cls['parent']).encode('ISO-8859-1')) for line in cls['code'].splitlines(True): match = re.match(r'add (hidden |protected |)?method ([0-9]*)', line) if match: qualifier = match.groups()[0] proc = procedures[int(match.groups()[1])] outfid.write('{}PROCEDURE {}\n'.format(qualifier, proc['name']).encode('ISO-8859-1')) outfid.write(proc['code'].encode('ISO-8859-1')) else: outfid.write(line) for filename in output: import pprint printer = pprint.PrettyPrinter(depth=10, indent=4) procedures, classes = output[filename] printer.pprint(filename) printer.pprint(procedures) printer.pprint(classes) if __name__ == '__main__': fxp_read(sys.argv[1], sys.argv[2] if len(sys.argv) > 2 else None)
StarcoderdataPython
157789
from gtts import gTTS import os tts = gTTS(text='temperatura a 30 grados', lang='es') tts.save('apagado.mp3')
StarcoderdataPython
1730481
''' 单词接龙 字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列: 序列中第一个单词是 beginWord 。 序列中最后一个单词是 endWord 。 每次转换只能改变一个字母。 转换过程中的中间单词必须是字典 wordList 中的单词。 给你两个单词 beginWord 和 endWord 和一个字典 wordList ,找到从 beginWord 到 endWord 的 最短转换序列 中的 单词数目 。 如果不存在这样的转换序列,返回 0。 ''' from typing import List class Graph: def __init__(self): self.nodes = {} def addNode(self, s: str): self.nodes[s] = Node(s) def addEdge(self, s1: str, s2: str): self.nodes[s1].edges.append(self.nodes[s2]) self.nodes[s2].edges.append(self.nodes[s1]) def isNode(self, s: str): return s in self.nodes # 求最短路径长度 def shortestPathLen(self, start: str, end: str): q = [] startNode, endNode = self.nodes[start], self.nodes[end] q.append(startNode) q.append(None) # 放置1个哨兵,标志着1层节点的结束 pathLen = 1 while q: node = q.pop(0) if node is None: pathLen += 1 if q: q.append(None) # 一层所有节点已经遍历完,再放置下一层的哨兵 continue if node == endNode: return pathLen node.traversed = True q.extend(filter(lambda node: not node.traversed, node.edges)) return 0 class Node: def __init__(self, s: str): self.s = s self.edges = [] self.traversed = False ''' 思路:图的最短路径 将每个word视为节点,2个只有1个字母不同的word之间视为有边,这道题就是求最短路径的长度。 1、首先需要将输入的beginWord、wordList转化为无权无向图。 要确认任意两个单词是否可以转换,可以将长度为m的单词每次去掉同列字符,形成m个新单词subword,具备相同subword的2个单词可以转化 2、搜索从节点beginWord到endWord的最短路径。采用广度优先搜索算法。 时间复杂度:O(m*m*n),转化为无权无向图,需要将每个word切分成m个subword,需要O(m*m*n)的时间,然后搜索最短路径搜索需要O(n) 空间复杂度:O(m*m*n),转化过程中需要m*m*n的辅助数组保存subword,无向图需要空间n ''' class Solution: def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int: graph = Graph() m = len(beginWord) # 1、转为无向图 subwords = [{} for i in range(m)] # 用这个数组保存去掉不同位置后形成的subword def cutWord(word: str): for i in range(m): subwordMap = subwords[i] subword = word[:i] + word[i + 1:] if subword not in subwordMap: subwordMap[subword] = [] else: for other in subwordMap[subword]: # 具有相同子串的word之间有边 graph.addEdge(word, other) subwordMap[subword].append(word) graph.addNode(beginWord) cutWord(beginWord) for word in wordList: graph.addNode(word) cutWord(word) # 判断endWord是否在字典中 if not graph.isNode(endWord): return 0 # 广度优先搜索最短路径长度 return graph.shortestPathLen(beginWord, endWord) s = Solution() print(s.ladderLength(beginWord="hit", endWord="cog", wordList=["hot", "dot", "dog", "lot", "log", "cog"])) print(s.ladderLength(beginWord="hit", endWord="cog", wordList=["hot", "dot", "dog", "lot", "log"]))
StarcoderdataPython
4822550
from pprint import pprint import textfsm template_file = "ex7_show_int_status.template" template = open(template_file) with open("ex7_show_int_status.txt") as f: raw_text_data = f.read() re_table = textfsm.TextFSM(template) data = re_table.ParseText(raw_text_data) template.close() print() new_list = [] keys = re_table.header values = data new_list = [{k:v for k,v in zip(keys,v)} for v in values] print(new_list)
StarcoderdataPython
43374
<gh_stars>0 # This software was developed by employees of the National Institute of # Standards and Technology (NIST), an agency of the Federal Government. # Pursuant to title 17 United States Code Section 105, works of NIST employees # are not subject to copyright protection in the United States and are # considered to be in the public domain. Permission to freely use, copy, # modify, and distribute this software and its documentation without fee is # hereby granted, provided that this notice and disclaimer of warranty appears # in all copies. # # THE SOFTWARE IS PROVIDED 'AS IS' WITHOUT ANY WARRANTY OF ANY KIND, EITHER # EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY # THAT THE SOFTWARE WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND FREEDOM FROM # INFRINGEMENT, AND ANY WARRANTY THAT THE DOCUMENTATION WILL CONFORM TO THE # SOFTWARE, OR ANY WARRANTY THAT THE SOFTWARE WILL BE ERROR FREE. IN NO EVENT # SHALL NIST BE LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, # INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, # OR IN ANY WAY CONNECTED WITH THIS SOFTWARE, WHETHER OR NOT BASED UPON # WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED # BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED # FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE SOFTWARE OR SERVICES # PROVIDED HEREUNDER. Distributions of NIST software should also include # copyright and licensing statements of any third-party software that are # legally bundled with the code in compliance with the conditions of those # licenses. """ This implementation is deeply intertwined obscure details of the python object model. Consider starting with a close read of the documentation and exploring the objects in an interpreter instead of reverse-engineering this code. """ from . import util import typing from warnings import warn from functools import wraps import validators as _val from contextlib import contextmanager from inspect import isclass import inspect import numbers import re # for common types from pathlib import Path import numpy as np import pandas as pd Undefined = inspect.Parameter.empty T = typing.TypeVar("T") class ThisType(typing.Generic[T]): pass class HasTraitsMeta(type): __cls_namespace__ = [] @classmethod def __prepare__(cls, names, bases, **kws): """Prepare copies of cls._traits, to ensure that any traits defined in the definition don't clobber parents' traits. """ ns = dict() if len(bases) >= 1: if hasattr(bases, "__children__"): ns["__children__"] = {} traits = {k: v.copy() for k, v in bases[0]._traits.items()} ns.update(traits) ns["_traits"] = traits HasTraitsMeta.__cls_namespace__.append(traits) return ns else: HasTraitsMeta.__cls_namespace__.append({}) return dict(_traits=HasTraitsMeta.__cls_namespace__[-1]) class Trait: """base class for typed descriptors in Device classes. These implement type checking, casting, decorators, and callbacks. A Device instance supports two types of Traits: * A _value trait_ acts as an attribute variable in instantiated classes * A _property trait_ exposes set and get operations for a parameter in the API wrapped by the owning Device class. The trait behavior is determined by whether its owner is a Device or HasSettings instance. Arguments: default: the default value of the trait (value traits only) key: some types of Device take this input to determine automation behavior help: the Trait docstring label: a label for the quantity, such as units Arguments: sets: True if the trait supports writes gets: True if the trait supports reads cache: if True, interact with the device only once, then return copies (state traits only) only: value allowlist; others raise ValueError Arguments: allow_none: permit None values in addition to the specified type remap: a lookup table that maps the python type (keys) to a potentially different backend values (values) , in places of the to_pythonic and from_pythonic methods (property traits only) """ ROLE_VALUE = "value" ROLE_PROPERTY = "property" ROLE_DATARETURN = "return" ROLE_UNSET = "unset" type = None role = ROLE_UNSET # keyword argument types and default values default: ThisType = Undefined key: Undefined = Undefined func: typing.Callable = None # role: str = ROLE_UNSET help: str = "" label: str = "" sets: bool = True gets: bool = True cache: bool = False only: tuple = tuple() allow_none: bool = False remap: dict = {} # If the trait is used for a state, it can operate as a decorator to # implement communication with a device _setter = None _getter = None _returner = None _decorated_funcs = [] # __decorator_action__ = None def __init__(self, *args, **kws): if len(args) >= 1: if len(args) == 1 and self.role == self.ROLE_VALUE: if "default" in kws: raise ValueError(f"duplicate 'default' argument in {self}") kws["default"] = args[0] elif len(args) == 1 and self.role == self.ROLE_DATARETURN: if "func" in kws: raise ValueError("duplicate 'func' argument") kws["func"] = args[0] else: raise ValueError(f"no positional arguments supported") self.kws = dict(kws) self.metadata = {} self._decorated_funcs = [] cls_defaults = {k: getattr(self, k) for k in self.__annotations__.keys()} if "default" in cls_defaults: cls_defaults["default"] = Undefined kws = dict(cls_defaults, **kws) # check role and related parameter dependencies if self.role == self.ROLE_VALUE: invalid_args = ("remap", "key", "func") elif self.role == self.ROLE_PROPERTY: invalid_args = ("default", "func") elif self.role == self.ROLE_DATARETURN: invalid_args = "default", "key", "sets", "gets" else: clsname = self.__class__.__qualname__ raise ValueError( f"{clsname}.role must be one of {(self.ROLE_PROPERTY, self.ROLE_DATARETURN, self.ROLE_VALUE)}, not {repr(self.role)}" ) for k in invalid_args: if k in cls_defaults and cls_defaults[k] != kws[k]: raise AttributeError( f"keyword argument '{k}' is not allowed with {self.role}" ) if self.role == self.ROLE_VALUE and kws["default"] is Undefined: # always go with None when this value is allowed, fallback to self.default kws["default"] = self.type() if self.role == self.ROLE_DATARETURN: if kws["func"] is not None: # apply a decorator self(kws["func"]) if self.role in (self.ROLE_DATARETURN, self.ROLE_PROPERTY): # default Undefined so that cache will fill them in self.default = Undefined # Replace self.from_pythonic and self.to_pythonic with lookups in self.remap (if defined) try: if len(kws["remap"]) > 0: self.remap_inbound = {v: k for k, v in kws["remap"].items()} else: self.remap_inbound = {} except KeyError: raise if len(kws["remap"]) != len(self.remap_inbound): raise ValueError(f"'remap' has duplicate values") # set value traits for k, v in kws.items(): setattr(self, k, v) @classmethod def __init_subclass__(cls, type=Undefined): """python triggers this call immediately after a Trait subclass is defined, allowing us to automatically customize its implementation. Arguments: type: the python type represented by the trait """ if type is not Undefined: cls.type = type # complete the annotation dictionary with the parent annots = dict( getattr(cls.__mro__[1], "__annotations__", {}), **getattr(cls, "__annotations__", {}), ) cls.__annotations__ = dict(annots) # # apply an explicit signature to cls.__init__ # annots = {k: cls.type if v is ThisType else (k, v) \ # for k, v in annots.items()} # cls._arg_defaults = {k: getattr(cls, k) # for k in annots if hasattr(cls, k)} # if 'default' in cls._arg_defaults: # cls._arg_defaults['default'] = Undefined # TODO: remove this # util.wrap_attribute(cls, '__init__', __init__, tuple(annots.keys()), cls._arg_defaults, 1, annots) # Help to reduce memory use by __slots__ definition (instead of __dict__) cls.__slots__ = [n for n in dir(cls) if not n.startswith("_")] + [ "metadata", "kind", "name", ] def copy(self, new_type=None, **update_kws): if new_type is None: new_type = type(self) obj = new_type(**dict(self.kws, **update_kws)) obj._getter = self._getter obj._setter = self._setter obj._returner = self._returner return obj ### Descriptor methods (called automatically by the owning class or instance) def __set_name__(self, owner_cls, name): """Immediately after an owner class is instantiated, it calls this method for each of its attributes that implements this method. Trait takes advantage of this to remember the owning class for debug messages and to register with the owner class. """ # other owning objects may unintentionally become owners; this causes problems # if they do not implement the HasTraits object protocol if issubclass(owner_cls, HasTraits): # inspect module expects this name - don't play with it self.__objclass__ = owner_cls # Take the given name, unless we've bene tagged with a different self.name = name owner_cls._traits[name] = self def __init_owner_subclass__(self, owner_cls): """The owner calls this in each of its traits at the end of defining the subclass (near the end of __init_subclass__). has been called. Now it is time to ensure properties are compatible with the owner class. This is here --- not in __set_name__ --- because python obfuscates exceptions raised in __set_name__. This is also where we finalize selecting decorator behavior; is it a property or a method? """ if self.role == self.ROLE_VALUE and len(self._decorated_funcs) > 0: raise AttributeError( f"tried to combine a default value and a decorator implementation in {self}" ) elif self.role == self.ROLE_DATARETURN and len(self._decorated_funcs) == 0: raise AttributeError(f"decorate a method to tag its return data") elif len(self._decorated_funcs) == 0: return positional_argcounts = [ f.__code__.co_argcount - len(f.__defaults__ or tuple()) for f in self._decorated_funcs ] if self.role == self.ROLE_DATARETURN: for func, argcount in zip(self._decorated_funcs, positional_argcounts): if len(self.help.rstrip().strip()) == 0: # take func docstring as default self.help self.help = (func.__doc__ or "").rstrip().strip() self._returner = func elif self.role == self.ROLE_PROPERTY: if set(positional_argcounts) not in ({1}, {1, 2}, {2}): raise AttributeError( f"a decorator implementation with @{self} must apply to a getter " f"(above `def func(self)`) and/or setter (above `def func(self, value):`)" ) for func, argcount in zip(self._decorated_funcs, positional_argcounts): doc = (func.__doc__ or "").strip().rstrip() if len(doc) > 0: # take func docstring as default self.help self.help = self.kws["help"] = doc if argcount == 1: self._getter = func else: self._setter = func def __init_owner_instance__(self, owner): # called by owner.__init__ pass @util.hide_in_traceback def __set__(self, owner, value): # First, validate the pythonic types if not self.sets: raise AttributeError(f"{self.__str__()} cannot be set") # Validate the pythonic value if value is not None: # cast to self.type and validate value = Trait.to_pythonic(self, value) value = self.validate(value, owner) if len(self.only) > 0 and not self.contains(self.only, value): raise ValueError( f"value '{value}' is not among the allowed values {repr(self.only)}" ) elif self.allow_none: value = None else: raise ValueError(f"None value not allowed for trait '{repr(self)}'") try: value = self.from_pythonic(value) except BaseException as e: name = owner.__class__.__qualname__ + "." + self.name e.args = (e.args[0] + f" in attempt to set '{name}'",) + e.args[1:] raise e if self.role == self.ROLE_VALUE: # apply as a value trait owner.__set_value__(self.name, value) elif self.role == self.ROLE_PROPERTY: # convert to the outbound representation if len(self.remap) > 0: value = self.remap.get(value, value) # send to the device if self._setter is not None: # from the function decorated by this trait self._setter(owner, value) elif self.key is not None: # otherwise, use the owner's set_key owner.set_key(self.key, value, self.name) else: objname = owner.__class__.__qualname__ + "." + self.name raise AttributeError( f"cannot set {objname}: no @{self.__repr__(owner_inst=owner)}." f"setter and no key argument" ) else: raise AttributeError(f"data return traits cannot be set") owner.__notify__(self.name, value, "set", cache=self.cache) @util.hide_in_traceback def __get__(self, owner, owner_cls=None): """Called by the class instance that owns this attribute to retreive its value. This, in turn, decides whether to call a wrapped decorator function or the owner's get_key method to retrieve the result. Returns: retreived value """ # only continue to get the value if the __get__ was called for an owning # instance, and owning class is a match for what we were told in __set_name__. # otherwise, someone else is trying to access `self` and we # shouldn't get in their way. if owner is None or owner_cls.__dict__.get( self.name, None ) is not self.__objclass__.__dict__.get(self.name): # the __dict__ acrobatics avoids a recursive __get__ loop return self elif self.role == self.ROLE_DATARETURN: # inject the labbench Trait hooks into the return value @wraps(self._returner) def method(*args, **kws): value = self._returner(owner, *args, **kws) return self.__cast_get__(owner, value) return method elif not self.gets: # stop now if this is not a gets Trait raise AttributeError(f"{self.__repr__(owner_inst=owner)} is not gets") elif self.role == self.ROLE_VALUE: return owner.__get_value__(self.name) # from here on, operate as a property getter if self.cache and self.name in owner.__cache__: # return the cached value if applicable return owner.__cache__[self.name] elif self._getter is not None: # get value with the decorator implementation, if available value = self._getter(owner) else: # otherwise, get with owner.get_key, if available if self.key is None: # otherwise, 'get' objname = owner.__class__.__qualname__ ownername = self.__repr__(owner_inst=owner) raise AttributeError( f"to set the property {self.name}, decorate a method in {objname} or use the function key argument" ) value = owner.get_key(self.key, self.name) # apply remapping as appropriate for the trait if len(self.remap_inbound) > 0: value = self.remap_inbound.get(value, value) return self.__cast_get__(owner, value, strict=False) @util.hide_in_traceback def __cast_get__(self, owner, value, strict=False): """Examine value and either return a valid pythonic value or raise an exception if it cannot be cast. Arguments: owner: the class that owns the trait value: the value we need to validate and notify :return: """ if self.allow_none and value is None: pass else: # skip validation if None and None values are allowed try: value = self.to_pythonic(value) except BaseException as e: # name = owner.__class__.__qualname__ + '.' + self.name e.args = ( e.args[0] + f" in attempt to get '{self.__repr__(owner_inst=owner)}'", ) + e.args[1:] raise e # Once we have a python value, give warnings (not errors) if the device value fails further validation if hasattr(owner, "_logger"): log = owner._logger.warning else: log = warn # TODO: This broke array-like data. Was it ever necessary? # if value != self.validate(value, owner): # raise ValueError # except ValueError: # log(f"'{self.__repr__(owner_inst=owner)}' {self.role} received the value {repr(value)}, " \ # f"which fails {repr(self)}.validate()") if value is None and not self.allow_none: log( f"'{self.__repr__(owner_inst=owner)}' {self.role} received value None, which" f"is not allowed for {repr(self)}" ) if len(self.only) > 0 and not self.contains(self.only, value): log( f"'{self.__repr__(owner_inst=owner)}' {self.role} received {repr(value)}, which" f"is not in the valid value list {repr(self.only)}" ) owner.__notify__( self.name, value, "get", cache=self.cache or (self.role == self.ROLE_VALUE) ) return value @util.hide_in_traceback def to_pythonic(self, value): """Convert a value from an unknown type to self.type.""" return self.type(value) @util.hide_in_traceback def from_pythonic(self, value): """convert from a python type representation to the format needed to communicate with the device""" return value @util.hide_in_traceback def validate(self, value, owner=None): """This is the default validator, which requires that trait values have the same type as self.type. A ValueError is raised for other types. value: value to check Returns: a valid value """ if not isinstance(value, self.type): typename = self.type.__qualname__ valuetypename = type(value).__qualname__ raise ValueError( f"{repr(self)} type must be '{typename}', not '{valuetypename}'" ) return value def contains(self, iterable, value): return value in iterable ### Decorator methods @util.hide_in_traceback def __call__(self, func): """use the Trait as a decorator, which ties this Trait instance to evaluate a property or method in the owning class. you can specify """ # only decorate functions. if not callable(func): raise Exception( f"object of type '{func.__class__.__qualname__}' must be callable" ) self._decorated_funcs.append(func) # Register in the list of decorators, in case we are overwritten by an # overloading function if getattr(self, "name", None) is None: self.name = func.__name__ if len(HasTraitsMeta.__cls_namespace__) > 0: HasTraitsMeta.__cls_namespace__[-1][func.__name__] = self # return self to ensure `self` is the value assigned in the class definition return self ### introspection ### def doc(self): params = self.doc_params(omit=["help", "default"]) typename = "Any" if self.type is None else self.type.__qualname__ doc = f"{self.name} ({typename}): {self.help}" if len(params) > 0: doc += f" ({params})" return doc def doc_params(self, omit=["help"]): pairs = [] for name in self.__annotations__.keys(): default = getattr(type(self), name) v = getattr(self, name) # skip uninformative debug info if name.startswith("_") or name in omit: continue # only show non-defaults v = getattr(self, name) if v == default: continue pairs.append(f"{name}={repr(v)}") return ",".join(pairs) def __repr__(self, omit=["help"], owner_inst=None): declaration = f"{self.role}.{type(self).__qualname__}({self.doc_params(omit)})" if owner_inst is None: return declaration else: return f"<{declaration} as {owner_inst}.{self.name}>" __str__ = __repr__ def _owned_name(self, owner): if owner._owned_name is None: return type(owner).__qualname__ + "." + self.name else: return owner._owned_name + "." + self.name def update(self, obj=None, **attrs): """ returns `self` or (if `obj` is None) or `other`, after updating its keyword parameters with `attrs` """ if obj is None: obj = self invalid_params = set(attrs).difference(obj.__dict__) if len(invalid_params) > 0: raise AttributeError( f"{obj} does not have the parameter(s) {invalid_params}" ) obj.__dict__.update(attrs) return obj Trait.__init_subclass__() @contextmanager def hold_trait_notifications(owner): def skip_notify(name, value, type, cache): old = owner.__cache__.setdefault(name, Undefined) msg = dict(new=value, old=old, owner=owner, name=name, type=type, cache=cache) owner.__cache__[name] = value original, owner.__notify__ = owner.__notify__, skip_notify yield owner.__notify__ = original class HasTraits(metaclass=HasTraitsMeta): __notify_list__ = {} __cls_namespace__ = {} def __init__(self, **values): # who is informed on new get or set values self.__notify_list__ = {} # for cached properties and values in this instance self.__cache__ = {} self._calibrations = {} for name, trait in self._traits.items(): trait.__init_owner_instance__(self) if trait.default is not Undefined: self.__cache__[name] = trait.default @util.hide_in_traceback def __init_subclass__(cls): cls._traits = dict(getattr(cls, "_traits", {})) cls._property_attrs = [] cls._value_attrs = [] cls._datareturn_attrs = [] parent_traits = getattr(cls.__mro__[1], "_traits", {}) # annotations = getattr(cls, '__annotations__', {}) for name, trait in dict(cls._traits).items(): # Apply the trait decorator to the object if it is "part 2" of a decorator obj = getattr(cls, name) if not isinstance(obj, Trait): if trait.role in ( Trait.ROLE_PROPERTY, Trait.ROLE_DATARETURN, ) and callable(obj): # if it's a method, decorate it cls._traits[name] = trait(obj) else: # if not decorating, clear from the traits dict, and emit a warning at runtime thisclsname = cls.__qualname__ parentclsname = cls.__mro__[1].__qualname__ warn( f"'{name}' in {thisclsname} is not a trait, but replaces one in parent class {parentclsname}" ) del cls._traits[name] continue setattr(cls, name, cls._traits[name]) if cls._traits in HasTraitsMeta.__cls_namespace__: HasTraitsMeta.__cls_namespace__.remove(cls._traits) # finalize trait setup for name, trait in dict(cls._traits).items(): if not hasattr(trait, "__objclass__"): trait.__set_name__(cls, name) trait.__init_owner_subclass__(cls) if trait.role == Trait.ROLE_VALUE: cls._value_attrs.append(name) elif trait.role == Trait.ROLE_DATARETURN: cls._datareturn_attrs.append(name) elif trait.role == Trait.ROLE_PROPERTY: cls._property_attrs.append(name) @util.hide_in_traceback def __notify__(self, name, value, type, cache): old = self.__cache__.setdefault(name, Undefined) msg = dict(new=value, old=old, owner=self, name=name, type=type, cache=cache) for handler in self.__notify_list__.values(): handler(dict(msg)) self.__cache__[name] = value def set_key(self, key, value, name=None): """implement this in subclasses to use `key` to set a parameter value from the Device with self.backend. property traits defined with "key=" call this to set values in the backend. """ clsname = self.__class__.__qualname__ raise NotImplementedError( f"implement {clsname}.get_key for access to key/value parameters on the device" ) def get_key(self, key, name=None): """implement this in subclasses to use `key` to retreive a parameter value from the Device with self.backend. property traits defined with "key=" call this to retrieve values from the backend. """ clsname = self.__class__.__qualname__ raise NotImplementedError( f"implement {clsname}.get_key for access key/value parameters on the device" ) @util.hide_in_traceback def __get_value__(self, name): """Get value of a trait for this value traits instance Arguments: name: Name of the trait Returns: cached value, or the trait default if it has not yet been set """ return self.__cache__[name] @util.hide_in_traceback def __set_value__(self, name, value): """Set value of a trait for this value traits instance Arguments: name: Name of the trait value: value to assign Returns: None """ # assignment to to self.__cache__ here would corrupt 'old' message key in __notify__ pass class Any(Trait, type=None): """allows any value""" @util.hide_in_traceback def validate(self, value, owner=None): return value @util.hide_in_traceback def to_pythonic(self, value): return value Trait.__annotations__["key"] = Any def observe(obj, handler, name=Any, type_=("get", "set")): """Register a handler function to be called whenever a trait changes. The handler function takes a single message argument. This dictionary message has the keys * `new`: the updated value * `old`: the previous value * `owner`: the object that owns the trait * `name`: the name of the trait * 'event': 'set' or 'get' Arguments: handler: the handler function to call when the value changes names: notify only changes to these trait names (None to disable filtering) """ def validate_name(n): attr = getattr(type(obj), n, Undefined) if attr is Undefined: raise TypeError(f'there is no attribute "{n}" to observe in "{obj}"') elif not isinstance(attr, Trait): raise TypeError(f"cannot observe {obj}.{n} because it is not a trait") if not callable(handler): raise ValueError( f"argument 'handler' is {repr(handler)}, which is not a callable" ) if isinstance(name, str): validate_name(name) name = (name,) elif isinstance(name, (tuple, list)): for n in name: validate_name(n) elif name is not Any: raise ValueError( f"name argument {name} has invalid type - must be one of (str, tuple, list), or the value Any" ) if isinstance(type, str): type_ = (type_,) def wrapped(msg): # filter according to name and type if name is not Any and msg["name"] not in name: return elif msg["type"] not in type_: return elif isinstance(msg["new"], Trait): raise TypeError(f"Trait instance returned as a callback value") handler(msg) if isinstance(obj, HasTraits): obj.__notify_list__[handler] = wrapped else: raise TypeError("object to observe must be an instance of Device") def unobserve(obj, handler): """Unregister a handler function from notifications in obj.""" if isinstance(obj, HasTraits): try: del obj.__notify_list__[handler] except KeyError as e: ex = e else: ex = None if ex: raise ValueError(f"{handler} was not registered to observe {obj}") else: raise TypeError("object to unobserve must be an instance of Device") def find_trait_in_mro(cls): if issubclass(cls, DependentTrait): return find_trait_in_mro(type(cls._trait_dependencies["base"])) else: return cls class DependentTrait(Trait): _trait_dependencies = set() def __set_name__(self, owner_cls, name): super().__set_name__(owner_cls, name) # propagate ownership of dependent traits, if available if isinstance(owner_cls, HasTraits): objclass = owner_cls elif hasattr(self, "__objclass__"): objclass = self.__objclass__ else: return for trait in self._trait_dependencies.values(): trait.__objclass__ = objclass def _validate_trait_dependencies(self, owner, allow_none: bool, operation="access"): if allow_none: return none_names = [ f"{owner}.{trait.name}" for trait in self._trait_dependencies.values() if getattr(owner, trait.name) is None ] if len(none_names) == 1: raise ValueError( f"cannot {operation} {owner}.{self.name} while {none_names[0]} is None" ) elif len(none_names) > 1: raise ValueError( f"cannot {operation} {owner}.{self.name} while {tuple(none_names)} are None" ) @classmethod def derive(mixin_cls, template_trait, dependent_traits={}, *init_args, **init_kws): name = template_trait.__class__.__name__ name = ("" if name.startswith("dependent_") else "dependent_") + name dependent_traits["base"] = template_trait traits_dict = {} for c in mixin_cls.__mro__: if issubclass(c, DependentTrait): traits_dict.update(c._trait_dependencies) traits_dict.update(dependent_traits) ns = dict(_trait_dependencies=traits_dict, **dependent_traits) ttype = type(name, (mixin_cls, find_trait_in_mro(type(template_trait))), ns) obj = ttype(*init_args, **init_kws) return obj class RemappingCorrectionMixIn(DependentTrait): """act as another BoundedNumber trait calibrated with a mapping""" mapping: Any = None # really a pandas Series EMPTY_STORE = dict(by_cal=None, by_uncal=None) def _min(self, owner): by_uncal = owner._calibrations.get(self.name, {}).get("by_uncal", None) if by_uncal is None: return None else: return by_uncal.min() def _max(self, owner): by_uncal = owner._calibrations.get(self.name, {}).get("by_uncal", None) if by_uncal is None: return None else: return by_uncal.max() def __init_owner_instance__(self, owner): self.set_mapping(self.mapping, owner=owner) observe( owner, self._on_base_trait_change, name=self._trait_dependencies["base"].name, ) def _on_base_trait_change(self, msg): owner = msg["owner"] owner.__notify__( self.name, self.lookup_cal(msg["new"], owner), msg["type"], cache=msg["cache"], ) def lookup_cal(self, uncal, owner): """look up and return the calibrated value, given the uncalibrated value""" owner_cal = owner._calibrations.get(self.name, self.EMPTY_STORE) if owner_cal.get("by_uncal", None) is None: return None try: return owner_cal["by_uncal"].loc[uncal] except KeyError: # spare us pandas details in the traceback util.logger.warning( f"{self.__repr__(owner_inst=owner)} has no entry at {repr(uncal)} {self.label}" ) return None def find_uncal(self, cal, owner): """look up the calibrated value for the given uncalibrated value. In the event of a lookup error, then if `self.allow_none` evaluates as True, triggers return of None, or if `self.allow_none` evaluates False, ValueError is raised. """ owner_cal = owner._calibrations.get(self.name, self.EMPTY_STORE) if owner_cal["by_uncal"] is None: return None i = owner_cal["by_cal"].index.get_loc(cal, method="nearest") return owner_cal["by_cal"].iloc[i] def set_mapping(self, series_or_uncal, cal=None, owner=None): """set the lookup mapping as `set_mapping(series)`, where `series` is a pandas Series (uncalibrated values in the index), or `set_mapping(cal_vector, uncal_vector)`, where both vectors have 1 dimension of the same length. """ if owner is None: raise ValueError(f"must pass owner to set_mapping") import pandas as pd if isinstance(series_or_uncal, pd.Series): by_uncal = pd.Series(series_or_uncal).copy() elif cal is not None: by_uncal = pd.Series(cal, index=series_or_uncal) elif series_or_uncal is None: return else: raise ValueError( f"must call set_mapping with None, a Series, or a pair of vector " f"arguments, not {series_or_uncal}" ) by_uncal = by_uncal[~by_uncal.index.duplicated(keep="first")].sort_index() by_uncal.index.name = "uncal" by_uncal.name = "cal" by_cal = pd.Series(by_uncal.index, index=by_uncal.values, name="uncal") by_cal = by_cal[~by_cal.index.duplicated(keep="first")].sort_index() by_cal.index.name = "cal" owner._calibrations.setdefault(self.name, {}).update( by_cal=by_cal, by_uncal=by_uncal ) @util.hide_in_traceback def __get__(self, owner, owner_cls=None): if owner is None or owner_cls is not self.__objclass__: return self # by_cal, by_uncal = owner._calibrations.get(self.name, (None, None)) self._validate_trait_dependencies(owner, self.allow_none, "get") uncal = self._trait_dependencies["base"].__get__(owner, owner_cls) cal = self.lookup_cal(uncal, owner) if cal is None: ret = uncal else: ret = cal if hasattr(self, "name"): owner.__notify__( self.name, ret, "get", cache=self.cache or (self.role == self.ROLE_VALUE), ) return ret @util.hide_in_traceback def __set__(self, owner, cal): owner_cal = owner._calibrations.get(self.name, self.EMPTY_STORE) self._validate_trait_dependencies(owner, False, "set") # start with type conversion and validation on the requested calibrated value cal = self._trait_dependencies["base"].to_pythonic(cal) # lookup the uncalibrated value that results in the nearest calibrated result uncal = self.find_uncal(cal, owner) if uncal is None: self._trait_dependencies["base"].__set__(owner, cal) elif uncal != type(self._trait_dependencies["base"]).validate( self, uncal, owner ): # raise an exception if the calibration table contains invalid # values, instead raise ValueError( f"calibration lookup in {self.__repr__(owner_inst=owner)} produced invalid value {repr(uncal)}" ) else: # execute the set self._trait_dependencies["base"].__set__(owner, uncal) if hasattr(self, "name"): owner.__notify__( self.name, cal, "set", cache=self.cache or (self.role == self.ROLE_VALUE), ) class TableCorrectionMixIn(RemappingCorrectionMixIn): _CAL_TABLE_KEY = "table" path_trait = None # a dependent Unicode trait index_lookup_trait = None # a dependent trait table_index_column: str = None def __init_owner_instance__(self, owner): super().__init_owner_instance__(owner) observe( owner, self._on_cal_update_event, name=[self.path_trait.name, self.index_lookup_trait.name], type_="set", ) def _on_cal_update_event(self, msg): owner = msg["owner"] if msg["name"] == self.path_trait.name: # if msg['new'] == msg['old']: # return path = msg["new"] index = getattr(owner, self.index_lookup_trait.name) ret = self._load_calibration_table(owner, path) self._update_index_value(owner, index) return ret elif msg["name"] == self.index_lookup_trait.name: # if msg['new'] == msg['old']: # return path = getattr(owner, self.path_trait.name) index = msg["new"] if self._CAL_TABLE_KEY not in owner._calibrations.get(self.name, {}): self._load_calibration_table(owner, path) ret = self._update_index_value(owner, index) return ret else: raise KeyError(f"unsupported trait name {msg['name']}") # return self._update_index_value(msg["owner"], msg["new"]) def _load_calibration_table(self, owner, path): """ stash the calibration table from disk """ import pandas as pd from pathlib import Path def read(path): # quick read cal = pd.read_csv(str(path), index_col=self.table_index_column, dtype=float) cal.columns = cal.columns.astype(float) if self.index_lookup_trait.max in cal.index: cal.drop(self.index_lookup_trait.max, axis=0, inplace=True) # self._cal_offset.values[:] = self._cal_offset.values-self._cal_offset.columns.values[np.newaxis,:] owner._calibrations.setdefault(self.name, {}).update( {self._CAL_TABLE_KEY: cal} ) owner._logger.debug(f"calibration data read from {path}") if path is None: if not self.allow_none: raise ValueError( f"{self} defined with allow_none=False; path_trait must not be None" ) else: return None read(path) def _touch_table(self, owner): # make sure that calibrations have been initialized table = owner._calibrations.get(self.name, {}).get(self._CAL_TABLE_KEY, None) if table is None: path = getattr(owner, self.path_trait.name) index = getattr(owner, self.index_lookup_trait.name) if None not in (path, index): setattr(owner, self.path_trait.name, path) setattr(owner, self.index_lookup_trait.name, index) def _update_index_value(self, owner, index_value): """update the calibration on change of index_value""" cal = owner._calibrations.get(self.name, {}).get(self._CAL_TABLE_KEY, None) if cal is None: txt = f"index_value change has no effect because calibration_data has not been set" elif index_value is None: cal = None txt = f"set {owner}.{self.index_lookup_trait.name} to enable calibration" else: # pull in the calibration mapping specific to this index_value i_freq = cal.index.get_loc(index_value, "nearest") cal = cal.iloc[i_freq] txt = f"calibrated at {index_value/1e6:0.3f} MHz" self.set_mapping(cal, owner=owner) @util.hide_in_traceback def __get__(self, owner, owner_cls=None): if owner is None or owner_cls is not self.__objclass__: return self self._touch_table(owner) return super().__get__(owner, owner_cls) @util.hide_in_traceback def __set__(self, owner, cal): self._touch_table(owner) super().__set__(owner, cal) class TransformMixIn(DependentTrait): """act as an arbitrarily-defined (but reversible) transformation of another BoundedNumber trait""" _forward: Any = lambda x, y: x _reverse: Any = lambda x, y: x def __init_owner_instance__(self, owner): super().__init_owner_instance__(owner) observe(owner, self.__owner_event__) def __owner_event__(self, msg): # pass on a corresponding notification when self._trait_dependencies['base'] changes base_trait = self._trait_dependencies["base"] if msg["name"] != getattr(base_trait, "name", None) or not hasattr( base_trait, "__objclass__" ): return owner = msg["owner"] owner.__notify__(self.name, msg["new"], msg["type"], cache=msg["cache"]) def _transformed_extrema(self, owner): base_trait = self._trait_dependencies["base"] base_bounds = [base_trait._min(owner), base_trait._max(owner)] other_trait = self._trait_dependencies.get("other", None) if other_trait is None: trial_bounds = [ self._forward(base_bounds[0]), self._forward(base_bounds[1]), ] else: other_value = getattr(owner, other_trait.name) # other_bounds = [ # other_trait._min(owner), # other_trait._max(owner), # ] # trial_bounds = [ # self._forward(base_bounds[0], other_bounds[0]), # self._forward(base_bounds[0], other_bounds[1]), # self._forward(base_bounds[1], other_bounds[0]), # self._forward(base_bounds[1], other_bounds[1]), # ] trial_bounds = [ self._forward(base_bounds[0], other_value), self._forward(base_bounds[1], other_value), ] if None in trial_bounds: return None, None return min(trial_bounds), max(trial_bounds) def _min(self, owner): # TODO: ensure this works properly for any reversible self._forward()? lo, hi = self._transformed_extrema(owner) if lo is None: return None else: return min(lo, hi) def _max(self, owner): # TODO: ensure this works properly for any reversible self._forward()? lo, hi = self._transformed_extrema(owner) if hi is None: return None else: return max(lo, hi) def __get__(self, owner, owner_cls=None): if owner is None or owner_cls is not self.__objclass__: return self base_value = self._trait_dependencies["base"].__get__(owner, owner_cls) if "other" in self._trait_dependencies: other_value = self._trait_dependencies["other"].__get__(owner, owner_cls) ret = self._forward(base_value, other_value) else: ret = self._forward(base_value) if hasattr(self, "name"): owner.__notify__( self.name, ret, "get", cache=self.cache or (self.role == self.ROLE_VALUE), ) return ret def __set__(self, owner, value_request): # use the other to the value into the proper format and validate it base_trait = self._trait_dependencies["base"] value = base_trait.to_pythonic(value_request) # now reverse the transformation if "other" in self._trait_dependencies: other_trait = self._trait_dependencies["other"] other_value = other_trait.__get__(owner, other_trait.__objclass__) base_value = self._reverse(value, other_value) else: base_value = self._reverse(value) # set the value of the base trait with the reverse-transformed value base_trait.__set__(owner, base_value) if hasattr(self, "name"): owner.__notify__( self.name, value, "set", cache=self.cache or (self.role == self.ROLE_VALUE), ) class BoundedNumber(Trait): """accepts numerical, str, or bytes values, following normal python casting procedures (with bounds checking)""" default: ThisType = None allow_none: bool = True min: ThisType = None max: ThisType = None @util.hide_in_traceback def validate(self, value, owner=None): if not isinstance(value, (bytes, str, bool, numbers.Number)): raise ValueError( f"a '{type(self).__qualname__}' trait value must be a numerical, str, or bytes instance" ) # Check bounds once it's a numerical type min = self._min(owner) max = self._max(owner) if max is not None and value > max: raise ValueError( f"{value} is greater than the max limit {max} of {self._owned_name(owner)}" ) if min is not None and value < min: raise ValueError( f"{value} is less than the min limit {min} of {self._owned_name(owner)}" ) return value def _max(self, owner): """overload this to dynamically compute max""" return self.max def _min(self, owner): """overload this to dynamically compute max""" return self.min path_trait: Any = None # TODO: should be a Unicode string trait index_lookup_trait: Any = None # TODO: this is a trait that should almost certainly be a BoundedNumber table_index_column: str = None def calibrate_from_table( self, path_trait, index_lookup_trait, *, table_index_column: str = None, help="", label=Undefined, allow_none=False, ): """generate a new Trait with value dependent on another trait. their configuration comes from a trait in the owner. Arguments: offset_name: the name of a value trait in the owner containing a numerical offset lookup1d: a table containing calibration data, or None to configure later """ if label is Undefined: label = self.label ret = TableCorrectionMixIn.derive( self, dict(path_trait=path_trait, index_lookup_trait=index_lookup_trait,), help=help, label=self.label if label is Undefined else label, sets=self.sets, gets=self.gets, allow_none=allow_none, table_index_column=table_index_column, ) return ret def calibrate_from_expression( self, trait_expression, help: str = "", label: str = Undefined, allow_none: bool = False, ): if isinstance(self, DependentTrait): # This a little unsatisfying, but the alternative would mean # solving the trait_expression for the trait `self` obj = trait_expression while isinstance(obj, DependentTrait): obj = obj._trait_dependencies["base"] if obj == self: break else: raise TypeError( f"the trait being calibrated must also be the first trait in the calibration expression" ) return self.update( trait_expression, help=help, label=label, allow_none=allow_none ) # def calibrate( # self, # offset=Undefined, # mapping=Undefined, # table=Undefined, # help="", # label=Undefined, # allow_none=False, # ): # """generate a new Trait with value dependent on another trait. their configuration # comes from a trait in the owner. # Arguments: # offset_name: the name of a value trait in the owner containing a numerical offset # lookup1d: a table containing calibration data, or None to configure later # """ # params = {} # if mapping is not Undefined: # mixin = RemappingCorrectionMixIn # params["mapping"] = mapping # elif offset is not Undefined: # mixin = OffsetCorrectionMixIn # params["offset"] = offset # if label is Undefined: # label = self.label # if len(params) != 1: # raise ValueError(f"must set exactly one of `offset`, `lookup1d`, and `lookup2d`") # return mixin.derive( # self, # help=help, # label=self.label, # sets=self.sets, # gets=self.gets, # allow_none=allow_none, # **params, # ) def transform( self, other_trait: Trait, forward: callable, reverse: callable, help="", allow_none=False, ): """generate a new Trait subclass that adjusts values in other traits. Arguments: forward: implementation of the forward transformation reverse: implementation of the reverse transformation """ obj = TransformMixIn.derive( self, dependent_traits={} if other_trait is None else dict(other=other_trait), help=help, label=self.label, sets=self.sets, gets=self.gets, allow_none=allow_none, _forward=forward, _reverse=reverse, ) return obj def __neg__(self): def neg(x, y=None): return None if x is None else -x return self.transform( None, neg, neg, allow_none=self.allow_none, help=f"-1*({self.help})" ) def __add__(self, other): def add(x, y): return None if None in (x, y) else x + y def sub(x, y): return None if None in (x, y) else x - y return self.transform( other, add, sub, allow_none=self.allow_none, help=f"({self.help}) + {other}" ) __radd__ = __add__ def __sub__(self, other): def add(x, y): return None if None in (x, y) else x + y def sub(x, y): return None if None in (x, y) else x - y return self.transform( other, sub, add, allow_none=self.allow_none, help=f"({self.help}) + {other}" ) def __rsub__(self, other): def add(x, y): return None if None in (x, y) else y + x def sub(x, y): return None if None in (x, y) else y - x return self.transform( other, sub, add, allow_none=self.allow_none, help=f"({self.help}) + {other}" ) def __mul__(self, other): def mul(x, y): return None if None in (x, y) else x * y def div(x, y): return None if None in (x, y) else x / y return self.transform( other, mul, div, allow_none=self.allow_none, help=f"({self.help}) + {other}" ) __rmul__ = __mul__ def __truediv__(self, other): def mul(x, y): return None if None in (x, y) else x * y def div(x, y): return None if None in (x, y) else x / y return self.transform( other, div, mul, allow_none=self.allow_none, help=f"({self.help}) + {other}" ) def __rdiv__(self, other): def mul(x, y): return None if None in (x, y) else y * x def div(x, y): return None if None in (x, y) else y / x return self.transform( other, div, mul, allow_none=self.allow_none, help=f"({self.help}) + {other}" ) class NonScalar(Any): """generically non-scalar data, such as a list, array, but not including a string or bytes""" @util.hide_in_traceback def validate(self, value, owner=None): if isinstance(value, (bytes, str)): raise ValueError(f"given text data but expected a non-scalar data") if not hasattr(value, "__iter__") and not hasattr(value, "__len__"): raise ValueError(f"expected non-scalar data but given a non-iterable") return value class Int(BoundedNumber, type=int): """accepts numerical, str, or bytes values, following normal python casting procedures (with bounds checking)""" class Float(BoundedNumber, type=float): """accepts numerical, str, or bytes values, following normal python casting procedures (with bounds checking)""" step: ThisType = None @util.hide_in_traceback def validate(self, value, owner=None): value = super().validate(value, owner) if self.step is not None: mod = value % self.step if mod < self.step / 2: return value - mod else: return value - (mod - self.step) return value class Complex(Trait, type=complex): """accepts numerical or str values, following normal python casting procedures (with bounds checking)""" allow_none: bool = False class Bool(Trait, type=bool): """accepts boolean or numeric values, or a case-insensitive match to one of ('true',b'true','false',b'false')""" allow_none: bool = False @util.hide_in_traceback def validate(self, value, owner=None): if isinstance(value, (bool, numbers.Number)): return value elif isinstance(value, (str, bytes)): lvalue = value.lower() if lvalue in ("true", b"true"): return True elif lvalue in ("false", b"false"): return False raise ValueError( f"'{self.__repr__(owner_inst=owner)}' accepts only boolean, numerical values," "or one of ('true',b'true','false',b'false'), case-insensitive" ) class String(Trait): """base class for string types, which adds support for case sensitivity arguments""" case: bool = True # allow_none: bool = True # let's not override this default @util.hide_in_traceback def contains(self, iterable, value): if not self.case: iterable = [v.lower() for v in iterable] value = value.lower() return value in iterable class Unicode(String, type=str): """accepts strings or numeric values only; convert others explicitly before assignment""" default: ThisType = "" @util.hide_in_traceback def validate(self, value, owner=None): if not isinstance(value, (str, numbers.Number)): raise ValueError( f"'{type(self).__qualname__}' traits accept values of str or numerical type, not {type(value).__name__}" ) return value class Bytes(String, type=bytes): """accepts bytes objects only - encode str (unicode) explicitly before assignment""" default: ThisType = b"" class Iterable(Trait): """accepts any iterable""" @util.hide_in_traceback def validate(self, value, owner=None): if not hasattr(value, "__iter__"): raise ValueError( f"'{type(self).__qualname__}' traits accept only iterable values" ) return value class Dict(Iterable, type=dict): """accepts any type of iterable value accepted by python `dict()`""" class List(Iterable, type=list): """accepts any type of iterable value accepted by python `list()`""" class Tuple(Iterable, type=tuple): """accepts any type of iterable value accepted by python `tuple()`""" sets: bool = False class Path(Trait, type=Path): must_exist: bool = False """ does the path need to exist when set? """ @util.hide_in_traceback def validate(self, value, owner=None): path = self.type(value) if self.must_exist and not path.exists(): raise IOError() return path class PandasDataFrame(NonScalar, type=pd.DataFrame): pass class PandasSeries(NonScalar, type=pd.Series): pass class NumpyArray(NonScalar, type=np.ndarray): pass class NetworkAddress(Unicode): """a IDN-compatible network address string, such as an IP address or DNS hostname""" accept_port: bool = True @util.hide_in_traceback def validate(self, value, owner=None): """Rough IDN compatible domain validator""" host, *extra = value.split(":", 1) if len(extra) > 0: port = extra[0] try: int(port) except ValueError: raise ValueError(f'port {port} in "{value}" is invalid') if not self.accept_port: raise ValueError( f"{self} does not accept a port number (accept_port=False)" ) for validate in _val.ipv4, _val.ipv6, _val.domain, _val.slug: if validate(host): break else: raise ValueError("invalid host address") return value VALID_TRAIT_ROLES = Trait.ROLE_VALUE, Trait.ROLE_PROPERTY, Trait.ROLE_DATARETURN def subclass_namespace_traits(namespace_dict, role, omit_trait_attrs): for name, attr in dict(namespace_dict).items(): if isclass(attr) and issubclass(attr, Trait): # subclass our traits with the given role new_trait = type(name, (attr,), dict(role=role)) new_trait.role = role # clean out annotations for stub generation new_trait.__annotations__ = dict(new_trait.__annotations__) for drop_attr in omit_trait_attrs: new_trait.__annotations__.pop(drop_attr) new_trait.__module__ = namespace_dict["__name__"] namespace_dict[name] = new_trait
StarcoderdataPython
4802045
import numpy as np def calculate_matrix(Ptran, states, number_processes): """Extends a HMM, corresponding to a binary Markov Process, (i.e. 0 or 1 open channels) to model up until K open channels by assuming K independent binary Markov processes.""" # Fill in diagonals such that each row sums to 1 for i in range(Ptran.shape[0]): Ptran[i, i] = 1 - np.sum(Ptran[i, :]) n0 = len(states) new = Ptran.copy() new_states = [(x,) for x in range(n0)] for process in range(1, number_processes): # We expand our current transition matrix (that models up to # `process` number of separate processes) its' dimensions by n0. We # basically add another possible state transition for a new process. nc = new.shape[0] Ptran_temp = np.zeros((n0*nc, n0*nc)) temp_states = [] for i in range(n0): temp_states.extend([s + (i,) for s in new_states]) for j in range(n0): # We add i -> j as our final transition Ptran_temp[i*nc:(i+1)*nc, j*nc:(j+1)*nc] = Ptran[i][j] * new # We now group similar processes together to reduce our matrix. # E.g. (1, 2, 3) is the same as (2, 3, 1) new_states = sorted(list(set([tuple(sorted(x)) for x in temp_states]))) new = np.zeros((len(new_states), len(new_states))) for i in range(len(new_states)): ix_i = [k for k, x in enumerate(temp_states) if tuple(sorted(x)) == new_states[i]] for j in range(len(new_states)): ix_j = [k for k, x in enumerate(temp_states) if tuple(sorted(x)) == new_states[j]] new[i, j] = np.sum(Ptran_temp[ix_i, :][:, ix_j]) new[i, j] /= len(ix_i) new_channels = [] for s in new_states: new_channels.append(sum([states[x] for x in s])) new_channels = np.array(new_channels) return new, new_channels def get_Psig(signal, States, kexp): """The provided States correspond to numbers of open channels, this calculates the PDF of a Gaussian, with the exception of some constants, assuming means equal to the open channels and a tunable variance (kexp)""" Psig = np.zeros((len(signal), len(States))) for i in range(len(Psig)): Psig[i] = np.exp((-(signal[i] - States)**2)/(kexp)) return Psig def forward(Psig, Ptran, etat_in=None, coef=1, normalize=True): """Custom forward-backward algorithm. This function is also used for the backward pass by reversing Psig and transposing Ptran. This custom function is both faster and slightly more accurate than, for example, hmmlearn. It introduces memory (defined by coef), by taking in to account the calculated probabilities from a previous pass (etat_in).""" if etat_in is None: etat_in = np.ones(Psig.shape)/Psig.shape[1] alpha = np.zeros(Psig.shape) # len(sig) x n_state etat = np.zeros(Psig.shape) # len(sig) x n_state etat[0] = etat_in[0] alpha[0] = etat_in[0] if normalize: alpha[0] = etat_in[0]*Psig[0] alpha[0]/=alpha[0].sum() for j in range(1, Psig.shape[0]): etat[j] = alpha[j-1]@Ptran if normalize: etat[j] /= etat[j].sum() etat[j] = (etat[j]**coef) * ((etat_in[j])**(1-coef)) if normalize: etat[j] /= etat[j].sum() alpha[j] = etat[j] * Psig[j] alpha[j] /= alpha[j].sum() return alpha, etat
StarcoderdataPython
3223016
statementArr = [ 'startSwitch("variableName")', 'endSwitch()', '''getComment("This is a comment")''', "puts('Something to print')", "getClassBeginning('sampleClass')", "getClassEnding()", 'setVar(valueToGet="1", valueToChange="x")', 'startCase("x")', 'endCase()', 'startDefault()', 'endDefault()', "equals(thing1 = 'x', thing2 = 'y', theType='int')", '''Or([compare(thing1 = "1", thing2 = "1", theType = "Int"), compare(thing1 = '"lolz"', thing2 = "lolz", theType = "String")])''', '''And(["x", "y"])''', '''Not("x")''', 'greaterThan("thing1", "thing2")', 'lessThan("thing1", "thing2")', 'Eval('"Evaluate this string."')', 'concatenateStrings(['"String 1"', '"String 2"'])', "endConditionalBlock()", "startConditionalBlock()", 'startIf(condition="x==2")', "endIf()", 'initializeVar(initialValue="1", variableName = "x", variableType = "String", arrayDimensions=None)', 'getFileExtension()', 'startForEach(variableName="varInArr", array="theArr", typeInArray="String")', 'startElse()', 'startWhile("x==1")', 'getReturnStatement("toReturn")', 'compare(theType="String", thing1="str1", thing2="str2")' "endElse()", "endWhile()", "endForEach()", "endMethod(methodName='methodName')", 'endElseIf()', 'arrayContains(valueToCheck="1", array="arrayOfIntegers")', 'this("variableName")', '''function(functionName="startForEach", returnType="String", isStatic=True, parameterNames=["lang", "array", "variableName", "typeInArray"], parameterTypes = ["String", "String", "String", "String"], body=[])''', 'startMain()', 'endMain()', 'subString(start="1", end="5", theString="strName")', 'charAt(theString="stringName", index="1")', 'index(indexList = ["1"], theType="String[]", theObject="ArrayName")', 'stringLength("stringName")', 'split(string = "string,test,1", separator = ",")', 'add(["1","2","3"])', 'concatenateArrays(["array1", "array2"])', 'endConstructor()', 'divide(20, 5)', 'toString(objectToConvert=1, convertFrom="Int")', 'startMethod(name="exampleMethod", returnType="int", parameterNames=["param1", "param2"], parameterTypes=["int", "int"], isStatic=True, requiresTheFunctions=False, isDefined=False)', 'typeOf(1)', 'callFunctionWithNamedArgs()', 'getVariableName(True)', 'getVariableName(False)', "lessThanOrEqual('a', 'b')", "greaterThanOrEqual('a', 'b')", "getArrayInitializer([[1,2], [3,4]])", "concatenateStrings(['a', 'b'])", 'def callFunction("functionName", "fromClass", ["parameter1", "parameter2"]):', 'semicolon("a statement")', 'getCorrespondingTypeWithoutBrackets("int")', 'getCorrespondingTypeWithoutBrackets("string")', 'getCorrespondingTypeWithoutBrackets("boolean")', 'startElseIf("condition")', 'include("fileToInclude")', 'Error("There is an error!")', 'args()', 'seriesOfStatements[1,2,3,4]', 'compare('"String1"', '"String2"', "String")' ]
StarcoderdataPython
1667537
#!/usr/bin/python #-*- encoding: utf-8 -*- """ A Docutils Publisher script for the Legal Resource Registry """ import re,os,os.path,sys try: import locale locale.setlocale(locale.LC_ALL, '') except: pass pth = os.path.split(sys.argv[0])[0] pth = os.path.join(pth,"..") pth = os.path.abspath(pth) from docutils.core import publish_cmdline, default_description from docutils.parsers.rst import directives, roles, states from docutils import nodes, statemachine from LRR import * directives.register_directive("bubble", BubbleDirective) directives.register_directive("variation", VariationDirective) directives.register_directive("reporter", ReporterDirective) directives.register_directive("fields", FieldsDirective) directives.register_directive("jurisdiction", JurisdictionDirective) directives.register_directive("court", CourtDirective) directives.register_directive("breadcrumb", BreadcrumbDirective) directives.register_directive("tab", TabDirective) directives.register_directive("floater", FloaterDirective) roles.register_local_role("trans", role_trans)
StarcoderdataPython
103378
"""Project metadata Information describing the project. """ # The package name, which is also the so-called "UNIX name" for the project. package = 'ecs' project = "Entity-Component-System" project_no_spaces = project.replace(' ', '') version = '0.1' description = 'An entity/component system library for games' authors = ['<NAME>', '<NAME>'] authors_string = ', '.join(authors) emails = ['<EMAIL>', '<EMAIL>'] license = 'MIT' copyright = '2013 ' + authors_string url = 'https://github.com/seanfisk/ecs'
StarcoderdataPython
3356844
<filename>catana/services/email.py<gh_stars>0 """Email service""" import smtplib from email.mime.text import MIMEText from catana.core.config import EMAIL, EMAIL_HOST, EMAIL_PASSWORD, EMIAL_HOST_PORT class Email: """Class to send emails to users""" smtp: smtplib.SMTP def __init__(self, auth=False): """Connect to SMTP server""" self.smtp = smtplib.SMTP(host=EMAIL_HOST, port=EMIAL_HOST_PORT) self.smtp.ehlo() if auth: self.smtp.login(EMAIL, EMAIL_PASSWORD) def send(self, email: str, user_email: str, subject: str, content: str): """Send example email""" msg = MIMEText(content) msg["Subject"] = subject msg["From"] = email msg["To"] = user_email self.smtp.send_message(msg) def close_connection(self): """Close connection""" self.smtp.close()
StarcoderdataPython
1690468
import sqlite3 from flask import current_app, g # g is a namespace object that can store data during an application context. def get_db(): if 'db' not in g: # if the object g does not have database, then create a new connection with it g.db = sqlite3.connect( current_app.config['DATABASE'], # the path of database is assigned in the __init__.py file detect_types=sqlite3.PARSE_DECLTYPES ) g.db.row_factory = sqlite3.Row # this tells the connection to return rows behave like dicts. Allows accesssing the columns by name return g.db def close_db(e=None): # This function is ressponsible for closing the connection when the request is done. db = g.pop('db', None) if db is not None: db.close() def init_app(app): app.teardown_appcontext(close_db) # This tells the application to close the connection after returning the response
StarcoderdataPython
3371515
""" Executor class. """ from __future__ import unicode_literals import yaml import subprocess from voluptuous import Schema from contextlib import closing from functools import partial from six import PY2 from locale import getpreferredencoding class BaseExecutor(object): """ A generic executor class. """ options_schema = Schema({}) def __init__(self, options=None): self.options = self.options_schema(options or {}) @property def full_name(self): """ Get the full name of the executor. :returns: The full dotted-name representation of the current instance class, including its definition module. """ return '{module}.{name}'.format( module=self.__module__, name=self.__class__.__name__, ) def execute(self, environment, commands, display): """ Execute the specified commands. :param environment: The environment variables dictionary. :param commands: A list of commands to execute. :param display: The display to use for command output and report. :returns: True if the execution went fine, False otherwise. """ display.set_context(commands=commands) for index, command in enumerate(commands): with display.command( index, command, ) as result: result.returncode = self.execute_one( environment=environment, command=command, output=partial(display.command_output, index), ) if result.returncode is None: raise RuntimeError( "No returncode specified for command execution " "({})".format( command, ), ) elif result.returncode != 0: return False return True def executor_representer(dumper, executor): if executor.options: return dumper.represent_mapping( 'tag:yaml.org,2002:map', { 'name': executor.full_name, 'options': executor.options, }, ) else: return dumper.represent_scalar( 'tag:yaml.org,2002:str', executor.full_name, ) yaml.add_multi_representer(BaseExecutor, executor_representer) class ShellExecutor(BaseExecutor): """ An executor that execute commands through the system shell. """ def execute_one(self, environment, command, output): # Python 2 subprocess doesn't deal well with unicode commands. command = ( command.encode(getpreferredencoding()) if PY2 else command ) process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, env=environment, ) with closing(process.stdout): while True: data = process.stdout.read(4096) if data: output(data) else: break process.wait() return process.returncode
StarcoderdataPython
1783979
<filename>tests/__init__.py<gh_stars>0 """Unit test package for itpminer."""
StarcoderdataPython
3292660
from operator import getitem from pendulum import period def auto_none_days(days, points): """Autoincrement don't works days yet with None.""" return points + [None for _ in range(len(days) - len(points))] def guide(total_points, graph_period): """Gerenate guide line with dayoffs.""" def weekday(day): return not day.weekday() in (5, 6) days = [(day, weekday(day)) for day in graph_period] n_days = len(list(filter(lambda x: getitem(x, 1), days))) median_points = total_points / (n_days - 1) last_value = total_points out = [] for n, (date, valid) in enumerate(days): if valid and n != 0: last_value = last_value - median_points out.append(last_value) else: out.append(last_value) return out def burn_down(sprint, initial_data, final_data, total_points, sprint_data): graph_period = list(period(initial_data, final_data).range('days')) y = auto_none_days(graph_period, sprint_data) return { 'data': [ { # Guide 'x': graph_period, 'y': guide(total_points, graph_period), 'name': 'Guides', 'type': 'scatter', 'mode': 'lines', 'line': {'color': 'grey', 'width': 3}, }, { # Sprint_data 'x': graph_period, 'y': y, 'type': 'scatter', 'name': 'Points', 'line': {'color': 'red', 'width': 3}, }, ], 'layout': { 'title': { 'text': 'Burn Down', 'x': 0.05, 'xanchor': 'left', } } }
StarcoderdataPython
4837826
<filename>libartipy/geometry/__init__.py<gh_stars>1-10 from .quaternion import Quaternion from .pose import Pose from .coordinate_system import CoordinateSystem, CoordinateSystemConverter from .camera import Camera
StarcoderdataPython
4816857
__author__ = 'n3k' import os from FakeTLSServer import WebServerSetup from Configuration import Configuration class TestControllerException(Exception): pass class TestController(object): """ This class is holds a dictionary with singletons per "client_address:hostname" that holds the tracking for all the testcases for domains under evaluation """ def __init__(self, hostname, port, testcase_list): self.hostname = hostname self.port = port self.testcase_iterator = iter(testcase_list) self.fake_server = None self.current_testcase = None self.remove_filename_list = [] self.crt_filename = None self.key_filename = None def __exit__(self, exc_type, exc_value, traceback): self.cleanup() def notification(self): """ A callback defining the action to perform after a client connects to our web server :return: """ pass def create_certificate(self): # Get the next TC of the List self.current_testcase = self.get_next_testcase() if self.current_testcase == None: return (None,), False # Make an instance self.current_testcase = self.current_testcase(self.hostname, self.port) cert_folder = Configuration().get_temp_certificate_folder() # Generate the Certificate crt, key = self.current_testcase.create_testing_certificate() crt_filename = os.path.join(cert_folder, crt) key_filename = os.path.join(cert_folder, key) self.remove_filename_list.append(crt_filename) self.remove_filename_list.append(key_filename) return (crt_filename, key_filename), True def get_next_testcase(self): pass def register_test_result(self, actual_status): pass def configure_web_server(self): """ Setup the internal web server that will get the request instead of the target domain """ # First check for current_testcase, if is not None we know # the client did not connect to our fakeserver if self.current_testcase is not None: self.register_test_result("Certificate Rejected") certificate, status = self.create_certificate() if not status: return None self.crt_filename, self.key_filename = certificate server_address = Configuration().fake_server_address print "+ Setting up WebServer with Test: %s" % self.current_testcase self.fake_server = WebServerSetup(keyfile=self.key_filename, certfile=self.crt_filename, server_address=server_address, callback=self.notification) # Return the actual address binded server_address = self.fake_server.start() return server_address def cleanup(self): """Kill web server and erase cert,key pair""" self.kill_web_server() for filename in self.remove_filename_list: try: os.unlink(filename) except: pass def kill_web_server(self): if self.fake_server: self.fake_server.kill() self.fake_server = None # Don't call this twice!
StarcoderdataPython
3397475
ID = "channels" permission = 3 privmsgEnabled = True def execute(self, name, params, channel, userdata, rank, chan): channels = ", ".join(self.channelData.keys()) self.sendNotice(name, "I'm currently connected to the following channels: {0}".format(channels))
StarcoderdataPython
1731368
<filename>modules/hub/hub/features/donations/views.py from datetime import datetime from dataclasses import dataclass from typing import List import string import requests from flask import Blueprint, Response, request, url_for, redirect from flask.views import MethodView from flask_babelplus import gettext as _ from flask_login import current_user, login_required from flask_sqlalchemy import Pagination from flaskbb.display.navigation import NavigationLink from flaskbb.utils.helpers import register_view, render_template from hub.utils import configs_path from hub.models import Player, PointsTransaction, MoneyTransaction, DonationType donations = Blueprint("donations", __name__, template_folder="templates") class UserDonationsView(MethodView): def __get_actions(self): actions = [] actions.append( NavigationLink( endpoint="donations.info", name=_("✨ Donate"), )) actions.append( NavigationLink( endpoint="donations.points_transactions", name=_("🔆 Opyxes Transactions"), )) actions.append( NavigationLink( endpoint="donations.money_transactions", name=_("💵 Donations History"), )) return actions def get_args(self): return { "actions": self.__get_actions() } def get(self): return redirect(url_for("donations.info")) class DonationsInfoView(UserDonationsView): decorators = [login_required] def get(self): content = "" with open(configs_path + "/donations_info.html", "r") as content_html: content = content_html.read() return render_template("features/donations/info.html", **self.get_args(), content=content) class UserPointsTransactionsView(UserDonationsView): decorators = [login_required] def get(self): page = request.args.get('page', 1, type=int) query = PointsTransaction.query\ .join(Player)\ .filter(Player.discord_user_id == current_user.discord)\ .order_by(PointsTransaction.datetime.desc()) pagination: Pagination = query.paginate(page, 20) transactions = pagination.items @dataclass class TransactionData: datetime: datetime change: string comment: string data = [] for transaction in transactions: data.append(TransactionData( datetime=transaction.datetime, change="{:+2}".format(transaction.change).rstrip('0').rstrip('.') + " 🔆", comment=transaction.comment )) return render_template( "features/donations/points_transactions.html", **self.get_args(), transactions=data, pagination=pagination) class UserMoneyTransactionsView(UserDonationsView): decorators = [login_required] def get(self): page = request.args.get('page', 1, type=int) query = MoneyTransaction.query\ .join(Player)\ .join(DonationType)\ .filter(Player.discord_user_id == current_user.discord)\ .order_by(MoneyTransaction.datetime.desc()) pagination: Pagination = query.paginate(page, 20) transactions: List[MoneyTransaction] = pagination.items @dataclass class TransactionData: datetime: datetime change: string comment: string data = [] for transaction in transactions: type_str = transaction.donation_type.type if type_str == "qiwi": type_str = "Пожертвование через QIWI" elif type_str == "patreon": type_str = "Подписка Patreon" data.append(TransactionData( datetime=transaction.datetime, change="{:+2}".format(transaction.change).rstrip('0').rstrip('.') + " ₽", comment=type_str )) return render_template( "features/donations/money_transactions.html", **self.get_args(), transactions=data, pagination=pagination) def parse_datetime(qiwi_format: str) -> datetime: return datetime.fromisoformat(qiwi_format) class QiwiHook(MethodView): def post(self): content = request.get_json() print("----") print("Qiwi hook:") print("Request: " + str(request.__dict__)) print("Json: " + str(content)) print("----") if content['payment']['type'] != 'IN' or content['payment']['status'] != 'SUCCESS': print("Skip hook: Not suitable hook") return Response(status=200) if content['payment']['sum']['currency'] != 643: # ruble print("Skip hook: Unknown currency") return Response(status=200) dt = parse_datetime(content['payment']['date']) ckey = content['payment']['comment'].split(' ')[0].lower().strip(string.punctuation) amount = content['payment']['sum']['amount'] print("New donation from " + ckey + ". Amount: " + str(amount) + ". Datetime: " + dt.isoformat()) return Response(status=200) def register_webhooks_service(app): if "QIWI_TOKEN" not in app.config: print("Error: QIWI_TOKEN isn't specified") return headers = { "Authorization": "Bearer " + app.config["QIWI_TOKEN"], "Accept": "application/json" } res = requests.get("https://edge.qiwi.com/person-profile/v1/profile/current", headers=headers) print("QIWI Test:") print(res.__dict__) if not app.config["QIWI_HOOKS"]: print("QIWI Webhooks registration skipped") return params = { "hookType": 1, "param": url_for("donations.qiwi_hook", _external=True), "txnType": 0 } headers = { "Authorization": "Bearer " + app.config["QIWI_TOKEN"], "Accept": "application/json" } res = requests.put("https://edge.qiwi.com/payment-notifier/v1/hooks", params=params, headers=headers) print("QIWI Webhooks registration result:") print("Request: " + str(res.request.__dict__)) print("Res: " + str(res.__dict__)) register_view( donations, routes=["/"], view_func=UserDonationsView.as_view("index"), ) register_view( donations, routes=["/info"], view_func=DonationsInfoView.as_view("info") ) register_view( donations, routes=["/points_transactions"], view_func=UserPointsTransactionsView.as_view("points_transactions") ) register_view( donations, routes=["/money_transactions"], view_func=UserMoneyTransactionsView.as_view("money_transactions") ) register_view( donations, routes=['/qiwi_hook'], view_func=QiwiHook.as_view('qiwi_hook') )
StarcoderdataPython
3308196
<gh_stars>0 from words import is_clean def test_clean(): assert is_clean("snowdrift") is True assert is_clean("snowdrift's") is False assert is_clean("Englishes") is False assert is_clean("steve") is False assert is_clean("conglomerated") is False
StarcoderdataPython
16245
# -*- coding: utf-8 -*- # Copyright (c) 2021. Distributed under the terms of the MIT License. from phonopy.interface.calculator import read_crystal_structure from phonopy.structure.atoms import PhonopyAtoms from vise.util.phonopy.phonopy_input import structure_to_phonopy_atoms import numpy as np def assert_same_phonopy_atoms(actual: PhonopyAtoms, expected: PhonopyAtoms): assert (actual.get_cell() == expected.get_cell()).all() assert (actual.get_scaled_positions() == expected.get_scaled_positions()).all() assert actual.symbols == expected.symbols def test_phonopy_atoms_behavior(sc_structure, tmpdir): print(tmpdir) tmpdir.chdir() # actual = structure_to_phonopy_atoms(sc_structure) sc_structure.to(fmt="poscar", filename="POSCAR") a, _ = read_crystal_structure("POSCAR") b = PhonopyAtoms(atoms=a) print(type(a.get_cell())) print(a.get_atomic_numbers()) assert_same_phonopy_atoms(a, b) def test_structure_to_phonopy_atoms(sc_structure): actual = structure_to_phonopy_atoms(sc_structure) expected = PhonopyAtoms(symbols=["H"], cell=np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]), scaled_positions=np.array([[0.0, 0.0, 0.0]])) assert_same_phonopy_atoms(actual, expected) # # def test_make_phonopy_input(mc_structure, mc_structure_conv): # actual = make_phonopy_input(unitcell=mc_structure, # supercell_matrix=np.eye(3).tolist(), # conventional_base=True) # supercell_matrix = [[ 1., 1., 0.], # [-1., 1., 0.], # [ 0., 0., 1.]] # supercell = mc_structure * supercell_matrix # expected = PhonopyInput(unitcell=mc_structure, # supercell=supercell, # supercell_matrix=supercell_matrix) # assert actual == expected # # # def test_make_phonopy_input_default(mc_structure, mc_structure_conv): # actual = make_phonopy_input(unitcell=mc_structure) # supercell_matrix = [[ 2., 2., 0.], # [-2., 2., 0.], # [ 0., 0., 2.]] # supercell = mc_structure * supercell_matrix # expected = PhonopyInput(unitcell=mc_structure, # supercell=supercell, # supercell_matrix=supercell_matrix) # assert actual == expected # # # def test_make_phonopy_input_default_hexa(): # structure = Structure(Lattice.hexagonal(1.0, 2.0), species=["H"], # coords=[[0.0]*3]) # actual = make_phonopy_input(unitcell=structure) # supercell_matrix = [[2, -1, 0], [2, 1, 0], [0, 0, 2]] # supercell = structure * supercell_matrix # expected = PhonopyInput(unitcell=structure, # supercell=supercell, # supercell_matrix=supercell_matrix) # assert actual == expected
StarcoderdataPython
3348546
# -*- coding: utf-8 -*- import numpy as np def eval_onevsall(distmat, q_pids, max_rank=50): """Evaluation with one vs all on query set.""" num_q = distmat.shape[0] if num_q < max_rank: max_rank = num_q print('Note: number of gallery samples is quite small, got {}'.format(num_q)) indices = np.argsort(distmat, axis=1) # print('indices\n', indices) matches = (q_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) # print('matches\n', matches) # compute cmc curve for each query all_cmc = [] all_AP = [] num_valid_q = 0.0 # number of valid query for q_idx in range(num_q): # remove the query itself order = indices[q_idx] keep = order != q_idx # compute cmc curve raw_cmc = matches[q_idx][ keep ] # binary vector, positions with value 1 are correct matches if not np.any(raw_cmc): # this condition is true when query identity has only one example # => cannot evaluate retrieval continue cmc = raw_cmc.cumsum() cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1.0 # compute average precision # reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision num_rel = raw_cmc.sum() tmp_cmc = raw_cmc.cumsum() tmp_cmc = [x / (i + 1.0) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * raw_cmc AP = tmp_cmc.sum() / num_rel all_AP.append(AP) print('Computed metrics on {} examples'.format(len(all_cmc))) assert num_valid_q > 0, 'Error: all query identities have one example' all_cmc = np.asarray(all_cmc).astype(np.float32) all_cmc = all_cmc.sum(0) / num_valid_q mAP = np.mean(all_AP) return all_cmc, mAP
StarcoderdataPython
3350491
from qtpy import QtWidgets class LabelQListWidget(QtWidgets.QListWidget): def __init__(self, *args, **kwargs): super(LabelQListWidget, self).__init__(*args, **kwargs) self.canvas = None self.itemsToShapes = [] self.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) def get_shape_from_item(self, item): for index, (item_, shape) in enumerate(self.itemsToShapes): if item_ is item: return shape def get_item_from_shape(self, shape): for index, (item, shape_) in enumerate(self.itemsToShapes): if shape_ is shape: return item def clear(self): super(LabelQListWidget, self).clear() self.itemsToShapes = [] def setParent(self, parent): self.parent = parent def dropEvent(self, event): shapes = self.shapes super(LabelQListWidget, self).dropEvent(event) if self.shapes == shapes: return if self.canvas is None: raise RuntimeError('self.canvas must be set beforehand.') self.parent.setDirty() self.canvas.loadShapes(self.shapes) @property def shapes(self): shapes = [] for i in range(self.count()): item = self.item(i) shape = self.get_shape_from_item(item) shapes.append(shape) return shapes
StarcoderdataPython
111579
from functools import reduce n = int(input()) a = [int(m) for m in input().split()] def gcd(a,b): if b == 0: return a return gcd(b, a % b) def gcd_list(numbers): return reduce(gcd, numbers) a.sort() new = [a[0]] for i in range(1, n): new.append(a[i] % a[0]) new.sort() k = gcd_list(new) for i in range(n): if new[i] % k != 0: print(1) exit() print(gcd_list(new))
StarcoderdataPython
142414
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The distiller to distil the student. Adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) """ import math import os import time import psutil import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import AdamW from torch.utils.data import BatchSampler, DataLoader, RandomSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm import json from .grouped_batch_sampler import GroupedBatchSampler, create_lengths_groups from transformers import get_linear_schedule_with_warmup from oscar.run_captioning import ( CaptionTSVDataset, CaptionTensorizer, evaluate, build_dataset, compute_score_with_logits) from .utils import logger try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter class Distiller: def __init__( self, params: dict, dataset: CaptionTSVDataset, student: nn.Module, teacher: nn.Module, val_dataset, tokenizer ): logger.info("Initializing Distiller") self.params = params self.dump_path = params.output_dir self.multi_gpu = params.multi_gpu self.fp16 = params.fp16 self.student = student self.teacher = teacher self.student_config = student.config self.vocab_size = student.config.vocab_size if params.n_gpu <= 1: sampler = RandomSampler(dataset) else: sampler = DistributedSampler(dataset) # if params.group_by_size: # groups = create_lengths_groups(lengths=dataset.lengths, k=params.max_model_input_size) # sampler = GroupedBatchSampler(sampler=sampler, group_ids=groups, batch_size=params.batch_size) # else: # sampler = BatchSampler(sampler=sampler, batch_size=params.batch_size, drop_last=False) sampler = BatchSampler(sampler=sampler, batch_size=params.batch_size, drop_last=False) self.dataloader = DataLoader(dataset=dataset, batch_sampler=sampler) self.val_dataset = val_dataset self.tokenizer = tokenizer self.eval_log = [] self.temperature = params.temperature assert self.temperature > 0.0 self.alpha_ce = params.alpha_ce self.alpha_mse = params.alpha_mse self.alpha_cos = params.alpha_cos # self.mlm = params.mlm # if self.mlm: # logger.info("Using MLM loss for LM step.") # self.mlm_mask_prop = params.mlm_mask_prop # assert 0.0 <= self.mlm_mask_prop <= 1.0 # assert params.word_mask + params.word_keep + params.word_rand == 1.0 # self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand]) # self.pred_probs = self.pred_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else self.pred_probs # self.token_probs = token_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else token_probs # if self.fp16: # self.pred_probs = self.pred_probs.half() # self.token_probs = self.token_probs.half() # else: # logger.info("Using CLM loss for LM step.") self.epoch = 0 self.n_iter = 0 self.n_total_iter = 0 self.n_sequences_epoch = 0 self.total_loss_epoch = 0 self.last_loss = 0 self.last_loss_ce = 0 if self.alpha_mse > 0.0: self.last_loss_mse = 0 if self.alpha_cos > 0.0: self.last_loss_cos = 0 self.last_log = 0 self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean") if self.alpha_mse > 0.0: self.mse_loss_fct = nn.MSELoss(reduction="sum") if self.alpha_cos > 0.0: self.cosine_loss_fct = nn.CosineEmbeddingLoss(reduction="mean") logger.info("--- Initializing model optimizer") assert params.gradient_accumulation_steps >= 1 self.num_steps_epoch = len(self.dataloader) num_train_optimization_steps = ( int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1 ) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in student.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad ], "weight_decay": params.weight_decay, }, { "params": [ p for n, p in student.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad ], "weight_decay": 0.0, }, ] logger.info( "------ Number of trainable parameters (student): %i" % sum([p.numel() for p in self.student.parameters() if p.requires_grad]) ) logger.info("------ Number of parameters (student): %i" % sum([p.numel() for p in self.student.parameters()])) self.optimizer = AdamW( optimizer_grouped_parameters, lr=params.learning_rate, eps=params.adam_epsilon, betas=(0.9, 0.98) ) warmup_steps = math.ceil(num_train_optimization_steps * params.warmup_prop) self.scheduler = get_linear_schedule_with_warmup( self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_train_optimization_steps ) if self.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") logger.info(f"Using fp16 training: {self.params.fp16_opt_level} level") self.student, self.optimizer = amp.initialize( self.student, self.optimizer, opt_level=self.params.fp16_opt_level ) self.teacher = self.teacher.half() if self.multi_gpu: if self.fp16: from apex.parallel import DistributedDataParallel logger.info("Using apex.parallel.DistributedDataParallel for distributed training.") self.student = DistributedDataParallel(self.student) else: from torch.nn.parallel import DistributedDataParallel logger.info("Using nn.parallel.DistributedDataParallel for distributed training.") self.student = DistributedDataParallel( self.student, device_ids=[params.local_rank], output_device=params.local_rank, find_unused_parameters=True, ) # self.is_master = params.is_master # if self.is_master: logger.info("--- Initializing Tensorboard") self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, "log", "train")) self.tensorboard.add_text(tag="config/training", text_string=str(self.params), global_step=0) self.tensorboard.add_text(tag="config/student", text_string=str(self.student_config), global_step=0) def train(self): """ The real training loop. """ logger.info("Starting training") self.last_log = time.time() self.student.train() self.teacher.eval() for _ in range(self.params.n_epoch): logger.info(f"--- Starting epoch {self.epoch}/{self.params.n_epoch-1}") if self.multi_gpu: torch.distributed.barrier() iter_bar = tqdm(self.dataloader, desc="-Iter", disable=self.params.local_rank not in [-1, 0]) for batch in iter_bar: if self.params.n_gpu > 0: img_key, example = batch # img_key = img_key.to(f"cuda:{self.params.local_rank}") example = tuple(t.to(f"cuda:{self.params.local_rank}") for t in example) '''CaptionTSVDataset: def __getitem__(self, idx): img_idx = self.get_image_index(idx) img_key = self.image_keys[img_idx] features = self.get_image_features(img_idx) caption = self.get_caption(idx) od_labels = self.get_od_labels(img_idx) example = self.tensorizer.tensorize_example(caption, features, text_b=od_labels) return img_key, example ''' # example: (input_ids, attention_mask, segment_ids, img_feat, masked_pos) inputs = {'input_ids': example[0], 'attention_mask': example[1], 'token_type_ids': example[2], 'img_feats': example[3], 'masked_pos': example[4], 'masked_ids': example[5] } outputs = self.step(**inputs) iter_bar.update() iter_bar.set_postfix( {"Last_loss": f"{self.last_loss:.2f}", "Avg_cum_loss": f"{self.total_loss_epoch/self.n_iter:.2f}"} ) iter_bar.close() logger.info(f"--- Ending epoch {self.epoch}/{self.params.n_epoch-1}") self.end_epoch() logger.info("Save very last checkpoint as `pytorch_model.bin`.") self.save_checkpoint(checkpoint_name="pytorch_model.bin") logger.info("Training is finished") def step(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids: torch.tensor, img_feats: torch.tensor, masked_pos: torch.tensor, masked_ids: torch.tensor): """ One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation), and possibly a parameter update (depending on the gradient accumulation). Input: ------ input_ids: `torch.tensor(bs, seq_length)` - The token ids. attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention. lm_labels: `torch.tensor(bs, seq_length)` - The language modeling labels (mlm labels for MLM and clm labels for CLM). """ s_logits, s_hidden_states = self.student( input_ids=input_ids, attention_mask=attention_mask, img_feats=img_feats, masked_pos=masked_pos, masked_ids=masked_ids, token_type_ids=token_type_ids ) # (bs, seq_length, voc_size) with torch.no_grad(): t_output = self.teacher( input_ids=input_ids, attention_mask=attention_mask, img_feats=img_feats, masked_pos=masked_pos, masked_ids=masked_ids, token_type_ids=token_type_ids ) # (bs, seq_length, voc_size) _, t_logits, t_hidden_states = t_output # output shape (num_blanks, voc_size) # mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_length, voc_size) # s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask # s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask # t_logits_slct = torch.masked_select(t_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask # t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask s_logits_slct = s_logits t_logits_slct = t_logits assert t_logits_slct.size() == s_logits_slct.size() loss_ce = ( self.ce_loss_fct( F.log_softmax(s_logits_slct / self.temperature, dim=-1), F.softmax(t_logits_slct / self.temperature, dim=-1), ) * (self.temperature) ** 2 ) loss = self.alpha_ce * loss_ce if self.alpha_mse > 0.0: loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct) / s_logits_slct.size( 0 ) # Reproducing batchmean reduction loss += self.alpha_mse * loss_mse if self.alpha_cos > 0.0: s_hidden_states = s_hidden_states[-1] # (bs, seq_length, dim) t_hidden_states = t_hidden_states[-1] # (bs, seq_length, dim) # mask = attention_mask.unsqueeze(-1).expand_as(s_hidden_states) # (bs, seq_length, dim) # assert s_hidden_states.size() == t_hidden_states.size() # dim = s_hidden_states.size(-1) # s_hidden_states_slct = torch.masked_select(s_hidden_states, mask) # (bs * seq_length * dim) # s_hidden_states_slct = s_hidden_states_slct.view(-1, dim) # (bs * seq_length, dim) # t_hidden_states_slct = torch.masked_select(t_hidden_states, mask) # (bs * seq_length * dim) # t_hidden_states_slct = t_hidden_states_slct.view(-1, dim) # (bs * seq_length, dim) s_hidden_states_slct = s_hidden_states.reshape(1,-1) t_hidden_states_slct = t_hidden_states.reshape(1,-1) target = torch.ones(s_hidden_states_slct.shape).to(s_hidden_states_slct.device) # (bs * seq_length,) loss_cos = self.cosine_loss_fct(s_hidden_states_slct, t_hidden_states_slct, target) loss += self.alpha_cos * loss_cos self.total_loss_epoch += loss.item() self.last_loss = loss.item() self.last_loss_ce = loss_ce.item() if self.alpha_mse > 0.0: self.last_loss_mse = loss_mse.item() if self.alpha_cos > 0.0: self.last_loss_cos = loss_cos.item() self.optimize(loss) self.n_sequences_epoch += input_ids.size(0) def optimize(self, loss): """ Normalization on the loss (gradient accumulation or distributed training), followed by backward pass on the loss, possibly followed by a parameter update (depending on the gradient accumulation). Also update the metrics for tensorboard. """ # Check for NaN if (loss != loss).data.any(): logger.error("NaN detected") exit() if self.multi_gpu: loss = loss.mean() if self.params.gradient_accumulation_steps > 1: loss = loss / self.params.gradient_accumulation_steps if self.fp16: from apex import amp with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() self.iter() if self.n_iter % self.params.gradient_accumulation_steps == 0: if self.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.params.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(self.student.parameters(), self.params.max_grad_norm) self.optimizer.step() self.optimizer.zero_grad() self.scheduler.step() def iter(self): """ Update global counts, write to tensorboard and save checkpoint. """ self.n_iter += 1 self.n_total_iter += 1 if self.n_total_iter % self.params.log_interval == 0: self.log_tensorboard() self.last_log = time.time() if self.n_total_iter % self.params.checkpoint_interval == 0: self.save_checkpoint() logger.info("Perform evaluation at step: %d" % (self.n_total_iter)) try: evaluate_file = evaluate(self.params, self.val_dataset, self.student, self.tokenizer, self.dump_path) with open(evaluate_file, 'r') as f: res = json.load(f) best_score = max(best_score, res['CIDEr']) res['epoch'] = epoch res['global_step'] = step res['best_CIDEr'] = best_score self.eval_log.append(res) with open(self.dump_path + '/eval_logs.json', 'w') as f: json.dump(eval_log, f) except: print("An exception was made in the evaluation process. ") def log_tensorboard(self): """ Log into tensorboard. Only by the master process. """ # if not self.is_master: # return for param_name, param in self.student.named_parameters(): self.tensorboard.add_scalar( tag="parameter_mean/" + param_name, scalar_value=param.data.mean(), global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="parameter_std/" + param_name, scalar_value=param.data.std(), global_step=self.n_total_iter ) if param.grad is None: continue self.tensorboard.add_scalar( tag="grad_mean/" + param_name, scalar_value=param.grad.data.mean(), global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="grad_std/" + param_name, scalar_value=param.grad.data.std(), global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="losses/cum_avg_loss_epoch", scalar_value=self.total_loss_epoch / self.n_iter, global_step=self.n_total_iter, ) self.tensorboard.add_scalar(tag="losses/loss", scalar_value=self.last_loss, global_step=self.n_total_iter) self.tensorboard.add_scalar( tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter ) if self.alpha_mse > 0.0: self.tensorboard.add_scalar( tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter ) if self.alpha_cos > 0.0: self.tensorboard.add_scalar( tag="losses/loss_cos", scalar_value=self.last_loss_cos, global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="learning_rate/lr", scalar_value=self.scheduler.get_lr()[0], global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="global/memory_usage", scalar_value=psutil.virtual_memory()._asdict()["used"] / 1_000_000, global_step=self.n_total_iter, ) self.tensorboard.add_scalar( tag="global/speed", scalar_value=time.time() - self.last_log, global_step=self.n_total_iter ) def end_epoch(self): """ Finally arrived at the end of epoch (full pass on dataset). Do some tensorboard logging and checkpoint saving. """ logger.info(f"{self.n_sequences_epoch} sequences have been trained during this epoch.") self.save_checkpoint(checkpoint_name=f"model_epoch_{self.epoch}.pth") self.tensorboard.add_scalar( tag="epoch/loss", scalar_value=self.total_loss_epoch / self.n_iter, global_step=self.epoch ) self.epoch += 1 self.n_sequences_epoch = 0 self.n_iter = 0 self.total_loss_epoch = 0 def save_checkpoint(self, checkpoint_name: str = "checkpoint.pth"): """ Save the current state. Only by the master process. """ # if not self.is_master: # return mdl_to_save = self.student.module if hasattr(self.student, "module") else self.student mdl_to_save.config.save_pretrained(self.dump_path) state_dict = mdl_to_save.state_dict() torch.save(state_dict, os.path.join(self.dump_path, checkpoint_name))
StarcoderdataPython
4826614
''' Module to perform linear systems calculations Uses polynomials form numpy: http://docs.scipy.org/doc/numpy/reference/routines.polynomials.package.html http://docs.scipy.org/doc/numpy/reference/routines.polynomials.classes.html History: 12/04/2016 : First version 16/04/2016 : Add of linear frequency response. Some plot corrections. 19/04/2016 : Add of 3D s-plane graphs 29/03/2017 : Add of help system 12/03/2018 : Added Python 2.7 and 3.x compatibility Improvement of plotting on Colaboratory Added version string Help comments are now Python help compatible 15/03/2018 : Add of substraction overload operator Add autorange for the frequencies of bode 16/03/2018 : Corrections on plotSplane Added tResponse member function 22/03/2018 : Added addBodeFromComplex and drawBodeFromComplex ''' # Python 2.7 compatibility from __future__ import print_function from __future__ import division try: input = raw_input except NameError: pass version = '22/03/2018' """ @root This is the main page of the Linear module help List of topics: linblk : Linear block class plot : Plot functions util : Utility functions You can also input the name of a particular command @plot Plot functions topics: Linear frequency: showFreqMag showFreqComplex Log frequency: showBodeMag showBodePhase drawBodePlot addBodePlot Pole/Zero: addPoleZeroPlot drawPoleZeroPlot showPlot @util Utility functions topics: frange : Generates log range f2w : Hz to rad/s w2f : rad/s to Hz dB : Linear to dB damping : Damping from poles q : Q from poles poleZeroPolar : Create pole or zero pair """ import numpy as np # Import numpy for numeric calculations import pylab as pl # Import pylab import matplotlib.pyplot as plt from matplotlib import cm # Colormaps from mpl_toolkits.mplot3d import Axes3D # For 3D graphs from numpy.polynomial import polynomial as P # Polinomial functions # External files HELP_FILE = "Linear_Help.dat" # Define normal mode outside colaboratory colaboratory = False # Exception code class LinearEx(Exception): def __init__(self, msg=""): print('** ' + msg) print("\n") def __str__(self): return repr(self.code) #################### HELP CODE ########################### def help(topic="root"): """ Gives help information Parameters: topic : Text to give information about Defaults to root Exits with a meesage if the help file is not found """ while (True): print() ftopic = "@"+topic topic_found = False try: with open(HELP_FILE, 'r') as hfile: for line in hfile: if line.startswith("#"): continue if not topic_found: if line.startswith("@#"): print( "'" + topic + "' topic not found") break elif line.upper().startswith(ftopic.upper()): topic_found = True else: if line.startswith("@"): break print(line[0:-1]) except: print('Help file ',HELP_FILE,' is not available') return print() print("root topic goes to main page") print("Just hit return to exit help") print() topic = input("Help topic : ") if topic == "": print() return ##################### FREQUENCY HELPER FUNCTIONS ############################# def frange(start,end=0,ndec=0,ppd=20): """ @frange frange(start,end,ndec,ppd) Generates a logarithmic range Required parameters: start : start value end : end value ndec : number of decades ppd : points per decade (defaults to 20) Either end or ndec must be provided Returns a vector with the frequencies Examples >> f = frange(fstart,fend) # Range with default 20 ppd >> f = frange(fstary,fend,ppd=10) # Range with 10 ppd >> f = frange(fstart,ndec=4) # 4 decades from fstart with default 20 ppd >> f = frange(fstrat,ndec=4,ppd=10) # 4 decades with custom ppd """ stlog = np.log10(start) # We don't provide end if end == 0: if ndec == 0: raise LinearEx('Need to provide end or decades') return 10**np.arange(stlog,stlog+ndec,1.0/ppd) # We provide end endlog = np.log10(end) return 10**np.arange(stlog,endlog,1.0/ppd) def f2w(f): """ @f2w f2w(f) Converts frequency from Hz to rad/s Returns frequency in rad/s """ return f*2*np.pi def w2f(w): """" @w2f w2f(w) Converts frequency from rad/s to Hz Returns frequency in Hz """ return w/(2*np.pi) # COLABORATORY FLAG FOR PLOTTING ##################################################### def setColaboratory(flag=True): """ @setColaboratory setColaboratory(flag=True) Indicates that we are in Colaboartory Don't return anything """ global colaboratory colaboratory = flag # Internal plot functions ############################################################ def _plotStart(): """" _plotStart (Internal use function) Starts a new plot Returns: fig : Figure object """ if colaboratory: fig=plt.figure() return fig # Outside colaboratory fig=plt.figure(facecolor="white") # White border return fig def _subplotStart(fig,n,title="",xt="",yt="",grid=True): """ _subplotStart (Internal use function) Starts a new subplot Paramenters: fig : Figure to add the subplot title : Title of the subplot (deafults to none) xt : x label of the subplot (defaults to none) yt : y label of the subplot (defaults to none) grid : Determines if there is grid (defaults to True) Returns: ax : Axes object """ # If we are inside colaboratory if colaboratory: ax = fig.add_subplot(n) ax.set_facecolor("white") ax.set_title(title) ax.set_xlabel(xt) ax.set_ylabel(yt) if (grid): plt.grid(True,color="lightgrey",linestyle='--') return ax # Outside colaboratory ax = fig.add_subplot(n) ax.set_title(title) ax.set_xlabel(xt) ax.set_ylabel(yt) if grid: pl.grid() return ax def _subplotEnd(ax,labels=[],location='best'): """ _subplotEnd (Internal use function) Ends a subplot Parameters: ax : Subplot axes labels : List of label names (Default to no labels) location : Location for labels (Default to 'best') Returns nothing """ if colaboratory: if not labels == []: pl.legend(loc=location) xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() ax.axvline(x=xmin,linewidth=2, color='black') ax.axvline(x=xmax,linewidth=2, color='black') ax.axhline(y=ymin,linewidth=2, color='black') ax.axhline(y=ymax,linewidth=2, color='black') # Outside colaboratory if not labels == []: pl.legend(loc=location) def _plotEnd(): """ _plotEnd Ends a previously started plot Takes no parameters Returns nothing """ if colaboratory: plt.show() return # Outside colaboratory pl.show() pl.close() ################## LINEAR FREQUENCY PLOT HELPER FUNCTIONS ################## def showFreqMag(f,mag,title='Magnitude Frequency Plot',ylabel='Magnitude'): """ @showFreqMag showFreqMag(f,mag,title,ylabel) Linear frequency magnitude plot Required parameters: f : Frequency vector (Hz) mag : Magnitude vector (in linear units) Optional parameters: title : Plot title ylabel : Y axis label Returns nothing """ fig=_plotStart() ax = _subplotStart(fig,111,title,'Frequency (Hz)',ylabel) pl.semilogx(f, mag) _subplotEnd(ax) _plotEnd() def showFreqComplex(f,vector,title='Magnitude/Phase Frequency Plot'): """ @showFreqComplex showFreqComplex(f,vector,title) Linear frequency magnitude and phase plot Required parameters: f : Frequency vector (Hz) vector : Complex vector Optional parameters: title : Plot title Returns nothing """ fig=_plotStart() ax = _subplotStart(fig,211,title,'','Magnitude') mag = np.absolute(vector) pl.semilogx(f, mag) _subplotEnd(ax) ax = _subplotStart(fig,212,'','Frequency (Hz)','Phase') phase = np.angle(vector,deg=True) pl.semilogx(f, phase) _subplotEnd(ax) _plotEnd() ######################## BODE HELPER FUNCTIONS ############################ def dB(gain): """ @dB dB(gain) Converts linear gain in dB Returns value in dB """ return 20*np.log10(gain) def showBodeMag(f,mag,title='Magnitude Bode Plot'): """ @showBodeMag Show Bode magnitude plot Required parameters: f : Frequency vector (Hz) mag : Magnitude vector (dB) Optional parameter: title : Plot title Returns nothing """ fig=_plotStart() ax=_subplotStart(fig,111,title,'Frequency (Hz)','Magnitude (dB)') pl.semilogx(f, mag) _subplotEnd(ax) _plotEnd() def showBodePhase(f,phase,title='Phase Bode Plot'): """ @showBodePhase showBodePhase(f,phase,title) Show Bode phase plot Required parameters: f : Frequency vector (Hz) phase : Phase vector (deg) Optional parameter: title : Plot title Returns nothing """ fig=_plotStart() ax=_subplotStart(fig,111,title,'Frequency (Hz)','Phase (deg)') pl.semilogx(f, phase) _subplotEnd(ax) _plotEnd() # Information about bodes bodeLabels = [] bodeFrequencies = [] bodeMagnitudes = [] bodePhases = [] def addBodePlot(f,mag,phase,label=''): """ @addBodePlot addBodePlot(f,mag,phase,label) Adds a new bode plot Useful to show different Bode curves together Required parameters: f : Frequency vector (Hz) mag : Magnitude vector(dB) phase : Phase vector (deg) Optional parameters: label : Label for the curve (Defaults to no label) Returns nothing See also showBodePlot """ global bodeFrequencies,bodeMagnitudes,bodePhases,bodeLabels bodeFrequencies.append(f) bodeMagnitudes.append(mag) bodePhases.append(phase) bodeLabels.append(label) def addBodeFromComplex(f,vector,label=''): """ @addBodeFromComplex addBodeFromComplex(f,vector,label) Adds a new bode plot Useful to show different Bode curves together Required parameters: f : Frequency vector (Hz) v : Complex vector Optional parameters: label : Label for the curve (Defaults to no label) Returns nothing See also showBodePlot """ addBodePlot(f,dB(np.abs(vector)),np.angle(vector,deg=True),label) def showBodePlot(title='Bode Plot',location='best'): """" @showPlot showPlot() Shows a multigraph plot Optional parameters: title : Title for the plot location : Location for the labels (Defaults to 'best') Returns nothing """ global bodeFrequencies,bodeMagnitudes,bodePhases,bodeLabels fig=_plotStart() ax = _subplotStart(fig,211,title,'','Magnitude (dB)') for element in zip(bodeFrequencies,bodeMagnitudes,bodeLabels): if len(bodeFrequencies) == 1: pl.semilogx(element[0],element[1],label='Nada') else: pl.semilogx(element[0],element[1],label=element[2]) # Legend only in phase plot #if len(bodeFrequencies) > 1: # pl.legend(loc=location) _subplotEnd(ax) ax = _subplotStart(fig,212,'','Frequency (Hz)','Phase (deg)') for element in zip(bodeFrequencies,bodePhases,bodeLabels): if len(bodeFrequencies) == 1: pl.semilogx(element[0],element[1],label='Nada') else: pl.semilogx(element[0],element[1],label=element[2]) if len(bodeFrequencies) > 1: pl.legend(loc=location) _subplotEnd(ax) _plotEnd() # Reset bode plots bodeFrequencies = [] bodeLabels = [] bodeMagnitudes = [] bodePhases = [] def drawBodePlot(f,mag,phase,title='Bode Plot'): """ @drawBodePlot drawBodePlot(f,mag,phase,title) Draws a bode plot Required parameters: f : Frequency vector (Hz) mag : Magnitude vector(dB) phase : Phase vector (deg) Optional parameters: title : Plot title Returns nothing """ addBodePlot(f,mag,phase) showBodePlot(title) def drawBodeFromComplex(f,v,title='Bode Plot'): """ @drawBodeFromComplex drawBodeFromComplex(f,v,title) Draws a bode plot Required parameters: f : Frequency vector (Hz) v : Complex vector Optional parameters: title : Plot title Returns nothing """ addBodeFromComplex(f,v) showBodePlot(title) #################### S PLOT HELPER FUNCTIONS ###################### # Global variables pzPlotPoles = [] pzPlotZeros = [] pzPlotLabels = [] pzPlotColors = [] def addPoleZeroPlot(poles=[],zeros=[],label=None,color='blue'): """ @addPoleZeroPlot addPoleZeroPlot(poles,zeros,title,color) Adds poles to the current plot Parameters: poles : List of poles zeros : List of zeros label : Label (optional) color : Color of symbols (defaults to 'blue') Returns nothing See also showPoleZeroPlot """ global pzPlotPoles,pzPlotZeros,pzPlotLabels,pzPlotColors pzPlotPoles.append(poles) pzPlotZeros.append(zeros) pzPlotLabels.append(label) pzPlotColors.append(color) def showPoleZeroPlot(title='Pole(x) / Zero(o) plot',location='best'): """ @showPoleZeroPlot showPoleZeroPlot(title,location) Draws a pole-zero plot after calls to addPoleZeroPlot Optional parameters: title : Title for the plot location : Location for the legend """ global pzPlotPoles,pzPlotZeros,pzPlotLabels,pzPlotColors labelBox = False fig=_plotStart() ax=_subplotStart(fig,111,title,'Real axis','Imaginary axis') for poles,zeros,label,color in zip(pzPlotPoles ,pzPlotZeros,pzPlotLabels,pzPlotColors): showLabel = (label != None) if len(poles): re = np.real(poles) im = np.imag(poles) if showLabel: pl.scatter(re,im,marker='x',label=label,color=color) labelBox=True showLabel = False else: pl.scatter(re,im,marker='x',color=color) if len(zeros): re = np.real(zeros) im = np.imag(zeros) if showLabel: pl.scatter(re,im,marker='x',label=label,color=color) labelBox=True else: pl.scatter(re,im,marker='o',color=color) # Zero lines ax.axvline(x=0,linewidth=1, color='black', linestyle='--') ax.axhline(y=0,linewidth=1, color='black', linestyle='--') if labelBox == True: pl.legend(loc=location) _subplotEnd(ax) _plotEnd() # Reset lists pzPlotPoles = [] pzPlotZeros = [] pzPlotLabels = [] pzPlotColors = [] def drawPoleZeroPlot(poles=[],zeros=[] ,title='Pole(x) & Zero(o) plot' ,color='blue'): """ @drawPoleZeroPlot drawPoleZeroPlot(poles,zeros,title,color) Draw a poles-zero plot Parameters: poles : List of poles zeros : List of zeros title : Graph title (optional) color : Color of symbols (optional) Returns nothing """ addPoleZeroPlot(poles,zeros,color=color) showPoleZeroPlot() def damping(pole): """ @damping damping(pole) Returns the damping associated to a single pole The results make no sense for real poles 0 : Undamped (Oscillator) <1 : Underdamped (Decaying oscillations) 1 : Critically damped or Overdamped (No oscillations) """ return -np.real(pole)/np.absolute(pole) def q(pole): """ @q q(pole) Returns the Q factor associated to a single pole The result make no sense for real poles """ damp = damping(pole) return 1.0/(2.0*damp) ######################### LINBLK CLASS ############################ """ @linblk class linblk Linear block class A new object can be created with: >> l1 = linblk() # H(s) = 1 >> l2 = linblk([1],[1,1/p1]) # H(s) = 1 / ( 1 + s/p1 ) Or you can also use linFromPZ or lin1 Additional topics: linFromPZ, lin1, operators, methods @operators Operators available on the linblk class: str : Shows numerator/denominator * : Cascade of two systems / : Cascade with second system pole <-> zero + : System output addition for same input - : Negation operator - : System substraction @methods Methods available on the linblk class: They are seachable as help topics nf : Negative feedback nf() pf : Positive feedback pf eval : Evaluation in s plane weval : Evaluation at jw bode : Pode plot freqR : Frequency response showBode : Bode plot addBode : Add Bode plot poles : List of poles zeros : List of zeros gain : System gain addPZplot : Add PZ plot showPZplot : PZ plot printPZ : Print PZ list clean : PZ cancelation pzRange : Range for all PZ plotSplane : Linear 3D Magnitude "s" plot bode3Dmag : Log 3D Magnitude "s" plot bode3Dphase : Log 3D Phase "s" plot ''' ''' @nf L1.nf(L2) L2 gives negative feedback on L1 Retuns composite system @pf L1.nf(L2) L2 gives positive feedback on L1 Retuns composite system @eval L1.eval(x) Evaluate the system on a point of the s plane x : Complex value Returns a complex value @weval L1.weval(w) Evaluate the system on a point on the imaginary axis w : Value on the j axis (Real value) Returns a complex value @bode L1.bode(f) Generates the bode plot vector results f : Frequency vector Returns: mag : Magnitude vector (dB) phase : Phase vector (deg) @freqR L1.freqR(f): Generates the frequency response as a vector f : Frequency vector Returns frecuency response (complex) @showBode L1.showBode(f,title): Shows the bode plot of the system f : Frequency vector title : Plot title (optional) Returns nothing @addBode L1.addBode(f,title,label) Add the bode plot to the current image f : Frequency vector title : Plot title (optional) label : Plot label (optional) Use showPlot() to see the final image Returns noting @poles L1.poles() Gives the list of poles of the system @zeros L1.zeros() Gives the list of zeros of the system @gain gain() Gives the gain of the system We define gain as the quotient of the first coef (in increase order) of num and den that is not zero @addPZplot L1.addPZplot(title,color) Add the pole-zero plot to the current image title : Plot title (optional) color : Color used (optional) Use showPlot() to see the final image Returns nothing @showPZplot L1.showPZplot(title,color): Show he pole-zero plot of the system title : Plot title (optional) color : Color used (optional) Returns nothing @printPZ L1.printPZ() Show poles and zeros on screen Returns nothing @clean L1.clean(ratio) Eliminates poles and zeros that cancel each other A pole and a zero are considered equal if their distance is lower than 1/ratio its magnitude ratio : Ratio to cancel PZ (default = 1000) Returns a new object @pzRange L1.pzRange() Returns in a tuple the range in the complex domain that includes all the poles and zeros @plotSplane L1.plotSplane(zmax) Plots the magnitude of the evaluation of the system inside the s plane in dB(magnitude) zmax : Maximum in Z axis (dB) (Optional) Returns nothing @bode3Dmag L1.bode3Dmag(sfmax,zmax) Plots the magnitude of the evaluation of the system inside the s plane in dB(magnitude) The plot uses log10 of frequency in the axes fmax : Maximum frequency (optional) zmax : Maximum in Z axis (dB) (optional) Returns nothing @bode3Dphase L1.bode3Dphase(fmax) Plots the phase of the evaluation of the system inside the s plane in dB(magnitude) The plot uses log10 of frequency in the axes fmax : Maximum frequency Returns nothing """ class linblk(): def __init__(self,num=[1.0],den=[1.0]): """ linblk Class constructor A new object can be created with: >> l1 = linblk() # H(s) = 1 block >> l2 = linblk([1],[1,1/p1]) # H(s) = 1 / ( 1 + s/p1 ) """ self.num = P.Polynomial(num) self.den = P.Polynomial(den) def __str__(self): """ Converts a linblk object to string Shows the numerator and denominator """ st = str(self.num.coef) + ' / ' + str(self.den.coef) return st def __mul__(self,other): """ Multiplication operator (*) Returns a cascade of two systems """ obj = linblk() obj.num = self.num * other.num obj.den = self.den * other.den return obj def __div__(self,other): """ Division operator (//) Returns a cascade of the first system with the second one changing poles to zeros """ obj = linblk() obj.num = self.num * other.den obj.den = self.den * other.num return obj def __truediv__(self,other): """ True Division operator (/) Returns a cascade of the first system with the second one changing poles to zeros """ obj = linblk() obj.num = self.num * other.den obj.den = self.den * other.num return obj def __add__(self,other): """ Addition operator (+) Returns a system that whose output is the sum of two systems with the same input """ obj = linblk() obj.num = (self.num * other.den) + (self.den*other.num) obj.den = self.den * other.den return obj def __sub__(self,other): """ Substraction operator (+) Returns a system that whose output is the substraction of two systems with the same input """ obj = linblk() obj.num = (self.num * other.den) - (self.den*other.num) obj.den = self.den * other.den return obj def __neg__(self): """ Negation operator (-) Returns a system with sign change """ obj = linblk() obj.num = -self.num obj.den = self.den return obj def nf(self,other): """ Negative feedback Use other system to give negative feedback """ obj = linblk() obj.num = self.num * other.den obj.den = (self.den * other.den) + (self.num * other.num) return obj def pf(self,other): """ Positive feedback Use other system to give positive feedback """ obj = linblk() obj.num = self.num * other.den obj.den = (self.den * other.den) - (self.num * other.num) return obj def eval(self,x): """ Evaluate the system on a point of the s plane x : Complex value """ y = self.num(x)/self.den(x) return y # Evaluation at jw def weval(self,w): """ Evaluate the system on a point on the imaginary axis w : Value on the j axis (Real value) """ x = w*1j y = self.num(x)/self.den(x) return y def bode(self,f): """ Generates the bode plot vector results f : Frequency vector Returns: mag : Magnitude vector (dB) phase : Phase vector (deg) """ w = f2w(f) res = self.weval(w) mag = dB(np.absolute(res)) phase = np.angle(res,deg=True) return mag, phase def freqR(self,f): """ Generates the frequency response vector results f : Frequency vector Returns: res : Freuency response (complex) """ w = f2w(f) res = self.weval(w) return res def autoRange(self): """ Creates a frequency vector that includes all poles and zeros Returns the frequency vector """ min,max = self.wRange() min = (min/10)/(2*np.pi) max = (max*10)/(2*np.pi) fv = frange(min,max) return fv def showBode(self,f=None,title='Bode Plot'): """ Shows the bode plot of the system f : Frequency vector """ if f is None: f=self.autoRange() mag, phase = self.bode(f) drawBodePlot(f,mag,phase,title) def addBode(self,f=None,label=None): """ Add the bode plot to the current image f : Frequency vector Use showBodePlot() to see the final image """ if f is None: f=self.autoRange() mag, phase = self.bode(f) addBodePlot(f,mag,phase,label=label) def poles(self): """ Get the list of poles of the system """ return self.den.roots() def zeros(self): """ Get the list of zeros of the system """ return self.num.roots() def gain(self): """ Get the gain of the system We define gain as the quotient of the first coef (in increase order) of num and den that is not zero """ for c in self.num.coef: if c!= 0.0: cnum = c break for c in self.den.coef: if c!= 0.0: cden = c break gain = cnum/cden return gain def addPZplot(self,label=None,color='blue'): """ Add the pole-zero plot to the current image Use showPoleZeroPlot() to see the final image label : Label for the set (optional) color : Color for the set (Defaults to 'blue') """ poles = self.poles() zeros = self.zeros() addPoleZeroPlot(poles,zeros,label=label,color=color) def showPZplot(self,title='',color='blue'): """ Add the pole-zero plot to the current image title : Plot title (optional) color : Simbol colors (Defaults to 'blue') """ self.addPZplot(color=color) showPoleZeroPlot(title) def printPZ(self): """ Show poles and zeros on screen """ poles = self.poles() zeros = self.zeros() gain = self.gain() print('Poles : ' + str(poles)) print('Zeros : ' + str(zeros)) print('Gain : ' + str(gain)) def clean(self,ratio=1000.0): """ Eliminates poles and zeros that cancel each other A pole and a zero are considered equal if their distance is lower than 1/ratio its magnitude ratio : Ratio to cancel PZ (default = 1000) Return a new object """ gain = self.gain() poles = self.poles() zeros = self.zeros() # Return if there are no poles or zeros if len(poles)==0: return if len(zeros)==0: return outPoles=[] # Empty pole list for pole in poles: outZeros=[] # Empty zero list found = False for zero in zeros: if not found: distance = np.absolute(pole-zero) threshold = ( np.absolute(pole) + np.absolute(zero) ) / (2.0*ratio) if distance > threshold: outZeros.append(zero) else: found = True else: outZeros.append(zero) if not found: outPoles.append(pole) zeros = outZeros poles = outPoles s = linblk() s.den=P.Polynomial(P.polyfromroots(poles)) s.num=P.Polynomial(P.polyfromroots(zeros)) # Add gain # curr = s.num.coef[0]/s.den.coef[0] curr = s.gain() s.num = s.num * gain / curr return s def pzRange(self): """ Returns the range in the complex domain that includes all the poles and zeros """ li = np.array(list(self.poles()[:]) + list(self.zeros()[:])) ReMin = np.amin(np.real(li)) ReMax = np.amax(np.real(li)) ImMin = np.amin(np.imag(li)) ImMax = np.amax(np.imag(li)) return ReMin + ImMin*1j , ReMax + ImMax*1j def wRange(self): """ Returns the angula frequency range that includes all poles and zeros that are not zero """ li = np.array(list(self.poles()[:]) + list(self.zeros()[:])) if len(li) == 0: return None li = np.abs(li) li = [x for x in li if x!=0.0] return min(li),max(li) def plotSplane(self,zmax=100.0): """ Plots the magnitude of the evaluation of the system inside the s plane in dB(magnitude) Optional parameter: zmax : Maximum in Z axis (dB) (Defaults to 100 dB) """ min,max = self.pzRange() fig = _plotStart() ax = fig.gca(projection='3d') X = np.linspace(2.0*np.real(min),0.0,100) Y = np.linspace(2.0*np.imag(min),2.0*np.imag(max),100) X, Y = np.meshgrid(X, Y) Z = np.clip(dB(np.absolute(self.eval(X + 1j*Y))),0.0,zmax) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) if colaboratory:# For colaboratory ax.set_facecolor("white") ax.xaxis.pane.set_edgecolor('black') ax.yaxis.pane.set_edgecolor('black') ax.zaxis.pane.set_edgecolor('black') ax.xaxis.pane.fill = True ax.yaxis.pane.fill = True ax.zaxis.pane.fill = True # Set pane colors ax.xaxis.set_pane_color((0.8, 0.9, 0.9, 1.0)) ax.yaxis.set_pane_color((0.9, 0.8, 0.9, 1.0)) ax.zaxis.set_pane_color((0.9, 0.9, 0.8, 1.0)) # Improve ticks and axes legend [t.set_va('center') for t in ax.get_yticklabels()] [t.set_ha('left') for t in ax.get_yticklabels()] [t.set_va('center') for t in ax.get_xticklabels()] [t.set_ha('right') for t in ax.get_xticklabels()] [t.set_va('center') for t in ax.get_zticklabels()] [t.set_ha('left') for t in ax.get_zticklabels()] ax.contour(X, Y, Z) ax.view_init(30, 30) ax.set_xlabel('Real') ax.set_ylabel('Imaginary') ax.set_zlabel('dB') _subplotEnd(ax) _plotEnd() def tResponse(self,vt,ts=None,fs=None): if fs == None: if ts == None: raise LinearEx('ts or fs must be provided') else: fs = 1/ts # Convert to frequency domain data = np.fft.fft(vt) # Create frequency vector ldata = int(len(data)/2) wv = np.pi*fs*np.array(list(range(0,ldata)) + [x - ldata for x in range(0,ldata)])/ldata # Calculate response resp = self.weval(wv) data = data * resp # Return to time domain result = np.real(np.fft.ifft(data)) return result ''' The bode3Dmag and bode3Dphase are currently deprecated as they are useful def bode3Dmag(self,fmax=None,zmax=100.0): """ Plots the magnitude of the evaluation of the system inside the s plane in dB(magnitude) The plot uses log10 of frequency in the axes fmax : Maximum frequency zmax : Maximum in Z axis (dB) """ if fmax is None: min,max = self.pzRange() fmax = np.max([np.absolute(np.real(min)) ,np.absolute(np.real(max)) ,np.absolute(np.imag(min)) ,np.absolute(np.real(max))]) max = np.log10(2.0*fmax) fig = plt.figure(facecolor="white") # White border ax = fig.gca(projection='3d') X = np.linspace(-max,0.0,100) Y = np.linspace(-max,max,100) X, Y = np.meshgrid(X, Y) Z = np.clip(dB(np.absolute(self.eval(np.sign(X)*10.0**np.absolute(X) + 1j*np.sign(Y)*10.0**np.absolute(Y)))),0.0,zmax) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.contour(X, Y, Z) ax.set_xlabel('Real (decade)') ax.set_ylabel('Imaginary (decade)') ax.set_zlabel('dB') ax.view_init(30, 30) plt.show() def bode3Dphase(self,fmax=None): """ Plots the phase of the evaluation of the system inside the s plane in dB(magnitude) The plot uses log10 of frequency in the axes fmax : Maximum frequency zmax : Maximum in Z axis (dB) """ if fmax is None: min,max = self.pzRange() fmax = np.max([np.absolute(np.real(min)) ,np.absolute(np.real(max)) ,np.absolute(np.imag(min)) ,np.absolute(np.real(max))]) max = np.log10(2.0*fmax) fig = plt.figure(facecolor="white") # White border ax = fig.gca(projection='3d') X = np.linspace(-max,0.0,100) Y = np.linspace(-max,max,100) X, Y = np.meshgrid(X, Y) Z = np.clip(np.angle(self.eval(np.sign(X)*10.0**np.absolute(X) + 1j*np.sign(Y)*10.0**np.absolute(Y)))*180.0/np.pi,-180.0,180.0) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.contour(X, Y, Z) ax.set_xlabel('Real (decade)') ax.set_ylabel('Imaginary (decade)') ax.set_zlabel('Phase') ax.view_init(30, 30) plt.show() ''' ################# HELPER SYSTEM FUNCTIONS ######################## def linFromPZ(poles=[],zeros=[],gain=1.0,wgain=0,ingain=None): """ @linFromPZ linFromPZ(poles,zeros,gain,ingain) Creates a system from the list of poles and zeros Parameters: poles : List of poles zeros : List of zeros Gain can be defined as: gain : Gain defined as the quotient of first num/den coef. wgain : Frequency where gain is defined igain : Gain defined at infinite freq. in high pass Returns a linblk object """ # Create new block s = linblk() s.den=P.Polynomial(P.polyfromroots(poles)) s.num=P.Polynomial(P.polyfromroots(zeros)) # Add gain if ingain == None: #curr = s.gain() curr=np.abs(s.eval(1j*wgain)) s.num = s.num * gain / curr else: curr = s.num.coef[-1] / s.den.coef[-1] s.num = s.num * gain /curr return s def poleZeroPolar(mag,angle): """ @poleZeroPolar poleZeroPolar(mag,angle) Generates a list of two poles or zeros from their magnitude and angle on the s plane Required parameters: mag : magnitude angle : angle of one pole or zero (0 to 90) Returns a list of two poles or zeros """ radians = angle * np.pi / 180.0 p1 = -mag*np.cos(radians) + 1j*mag*np.sin(radians) p2 = -mag*np.cos(radians) - 1j*mag*np.sin(radians) return [p1,p2] ####################### PREDEFINED SYSTEMS ################### """ @lin1 lin1 Identity system H(s)=1 """ # Linear indentiy system H(s) = 1 lin1 = linblk()
StarcoderdataPython
3376925
import json from jsonschema import ValidationError, exceptions from jsonschema.validators import Draft3Validator from functools import wraps from flask import _request_ctx_stack, request, jsonify def _validate(schema, data): reqv = Draft3Validator(schema) errors = [] for e in reqv.iter_errors(data): errors.append(dict(name=e.path[0], reason=e.validator)) return errors def validate(method, schema): def decorator(f): @wraps(f) def decorated_func(*args, **kws): ctype = request.headers.get("Content-Type") method_ = request.headers.get("X-HTTP-Method-Override", request.method) if method_.lower() == method.lower() and "json" in ctype: data = json.loads(request.data) errors = _validate(schema, data) if len(errors) > 0: resp = jsonify(result="failure", reason="invalid json", errors=errors) resp.status_code = 400 return resp return f(*args, **kws) return decorated_func return decorator
StarcoderdataPython
1711377
# Copyright (c) 2019, VMRaid Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import vmraid from vmraid import _ from functools import wraps from vmraid.utils import add_to_date, cint, get_link_to_form from vmraid.modules.import_file import import_file_by_path import os from os.path import join def cache_source(function): @wraps(function) def wrapper(*args, **kwargs): if kwargs.get("chart_name"): chart = vmraid.get_doc('Dashboard Chart', kwargs.get("chart_name")) else: chart = kwargs.get("chart") no_cache = kwargs.get("no_cache") if no_cache: return function(chart = chart, no_cache = no_cache) chart_name = vmraid.parse_json(chart).name cache_key = "chart-data:{}".format(chart_name) if int(kwargs.get("refresh") or 0): results = generate_and_cache_results(kwargs, function, cache_key, chart) else: cached_results = vmraid.cache().get_value(cache_key) if cached_results: results = vmraid.parse_json(vmraid.safe_decode(cached_results)) else: results = generate_and_cache_results(kwargs, function, cache_key, chart) return results return wrapper def generate_and_cache_results(args, function, cache_key, chart): try: args = vmraid._dict(args) results = function( chart_name = args.chart_name, filters = args.filters or None, from_date = args.from_date or None, to_date = args.to_date or None, time_interval = args.time_interval or None, timespan = args.timespan or None, heatmap_year = args.heatmap_year or None ) except TypeError as e: if str(e) == "'NoneType' object is not iterable": # Probably because of invalid link filter # # Note: Do not try to find the right way of doing this because # it results in an inelegant & inefficient solution # ref: https://github.com/vmraid/vmraid/pull/9403 vmraid.throw(_('Please check the filter values set for Dashboard Chart: {}').format( get_link_to_form(chart.doctype, chart.name)), title=_('Invalid Filter Value')) return else: raise vmraid.db.set_value("Dashboard Chart", args.chart_name, "last_synced_on", vmraid.utils.now(), update_modified = False) return results def get_dashboards_with_link(docname, doctype): dashboards = [] links = [] if doctype == 'Dashboard Chart': links = vmraid.get_all('Dashboard Chart Link', fields = ['parent'], filters = { 'chart': docname }) elif doctype == 'Number Card': links = vmraid.get_all('Number Card Link', fields = ['parent'], filters = { 'card': docname }) dashboards = [link.parent for link in links] return dashboards def sync_dashboards(app=None): """Import, overwrite fixtures from `[app]/fixtures`""" if not cint(vmraid.db.get_single_value('System Settings', 'setup_complete')): return if app: apps = [app] else: apps = vmraid.get_installed_apps() for app_name in apps: print("Updating Dashboard for {app}".format(app=app_name)) for module_name in vmraid.local.app_modules.get(app_name) or []: vmraid.flags.in_import = True make_records_in_module(app_name, module_name) vmraid.flags.in_import = False def make_records_in_module(app, module): dashboards_path = vmraid.get_module_path(module, "{module}_dashboard".format(module=module)) charts_path = vmraid.get_module_path(module, "dashboard chart") cards_path = vmraid.get_module_path(module, "number card") paths = [dashboards_path, charts_path, cards_path] for path in paths: make_records(path) def make_records(path, filters=None): if os.path.isdir(path): for fname in os.listdir(path): if os.path.isdir(join(path, fname)): if fname == '__pycache__': continue import_file_by_path("{path}/{fname}/{fname}.json".format(path=path, fname=fname))
StarcoderdataPython
164588
from openpyxl import load_workbook xlsx_file = "E:\\hello-git-sourcetree\\R_GO\\Python_RPA\\" xlsx = load_workbook(xlsx_file+"result.xlsx", read_only =True) sheet=xlsx.active print(sheet['A25'].value) print(sheet['B1'].value) row = sheet['1'] for data in row: print(data.value) xlsx=load_workbook(xlsx_file+"result.xlsx") sheet=xlsx.active col = sheet['A'] ''' for data in col: print(data.value) ''' print('-'*10,'multi row_data call','-'*10) rows = sheet['1:2'] for row in rows: for rowdata in row: print(rowdata.value) print('시트 일부의 셀 데이터 읽기') rows = sheet['A3:B5'] for row in rows: for cel in row: print(cel.value) from openpyxl import Workbook xlsx=Workbook() sheet=xlsx.active sheet['A1'] = 'my input data' #xlsx.save('other.xlsx') sheet.append(['A1-data','B1-data','C1-data']) sheet.append(['A2-data','B2-data','C2-data']) xlsx.save('other2.xlsx') sheet = xlsx.create_sheet('new sheet') sheet['A2'] = 'AIRIM' xlsx.save('new_xlsx.xlsx')
StarcoderdataPython
3258185
from human_services.organizations import models from common.testhelpers.random_test_values import a_string, a_website_address, an_email_address class OrganizationBuilder: def __init__(self): self.organization_id = a_string() self.name = a_string() self.description = a_string() self.website = a_website_address() self.email = an_email_address() def with_id(self, organization_id): self.organization_id = organization_id return self def with_name(self, name): self.name = name return self def with_description(self, description): self.description = description return self def with_website(self, website): self.website = website return self def with_email(self, email): self.email = email return self def build(self): result = models.Organization() result.id = self.organization_id result.name = self.name result.description = self.description result.website = self.website result.email = self.email return result def create(self): result = self.build() result.save() return result
StarcoderdataPython
123995
# -*- coding: utf-8 -*- """ Copyright [2009-2019] EMBL-European Bioinformatics Institute Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import tempfile from contextlib import contextmanager import pytest from rnacentral_pipeline.databases import data from rnacentral_pipeline.databases.helpers import publications as pub from rnacentral_pipeline.databases.genecards_suite import genecards as gene from rnacentral_pipeline.databases.genecards_suite.core import lookup @contextmanager def known(handle): with tempfile.NamedTemporaryFile() as tmp: lookup.write(handle, os.environ["PGDATABASE"], gene.CONTEXT.urs_field, tmp) tmp.seek(0) yield tmp @pytest.fixture(scope="module") def simple_data(): with open("data/genecards/data.tsv", "r") as raw: with known(raw) as indexed: raw.seek(0) entries = {} for entry in gene.parse(raw, indexed): assert entry.primary_id not in entries entries[entry.primary_id] = entry return entries def test_can_parse_all_entries(simple_data): assert len(simple_data) == 100 def test_can_create_unique_primary_ids(simple_data): data = [d.primary_id for d in simple_data.values()] assert len(data) == 100 def test_can_create_unique_accessions(simple_data): data = [d.accession for d in simple_data.values()] assert len(data) == 100 def test_can_create_correct_data(simple_data): assert simple_data["GENECARDS:1A9N_Q-015:URS00001EE9F1_9606"] == data.Entry( primary_id="GENECARDS:1A9N_Q-015:URS00001EE9F1_9606", accession="GENECARDS:1A9N_Q-015:URS00001EE9F1_9606", ncbi_tax_id=9606, database="GENECARDS", sequence="ATTGCAGTACCTCCAGGAACGGTGCAC", regions=[], rna_type="misc_RNA", url="https://www.genecards.org/cgi-bin/carddisp.pl?gene=1A9N_Q-015", seq_version=1, gene="1A9N_Q-015", description="Homo sapiens (human) miscellaneous RNA", species="Homo sapiens", common_name="human", lineage=( "Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; " "Euteleostomi; Mammalia; Eutheria; Euarchontoglires; " "Primates; Haplorrhini; Catarrhini; Hominidae; Homo; " "Homo sapiens" ), references=[pub.reference(27322403)], )
StarcoderdataPython
1768738
<gh_stars>0 grau=int(input()) minuto=int(input()) segundo=int(input()) grausdecimais= grau+(minuto/60)+(segundo/3600) print(f'graus = {grausdecimais:.4f}')
StarcoderdataPython
48898
# Author : <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Sequence Ordering of Alignments """ import os import numpy as np import pandas as pd from constants import ( folder, alignment_file, recipe_folder_name, ) from utils import ( fetch_parsed_recipe, fetch_action_ids, ) import warnings warnings.simplefilter(action='ignore', category=FutureWarning) class SequenceModel: def test_sequence_model(self): dish_list = os.listdir(folder) dish_list = [dish for dish in dish_list if not dish.startswith(".")] dish_list.sort() correct_predictions = 0 num_actions = 0 for dish in dish_list: data_folder = os.path.join(folder, dish) # dish folder recipe_folder = os.path.join(data_folder, recipe_folder_name) # recipe folder alignment_file_path = os.path.join( data_folder, alignment_file ) # alignment file # Gold Standard Alignments between all recipes for dish alignments = pd.read_csv( alignment_file_path, sep="\t", header=0, skiprows=0, encoding="utf-8" ) # Group by Recipe pairs group_alignments = alignments.groupby(["file1", "file2"]) dish_correct_predictions = 0 dish_num_actions = 0 for key in group_alignments.groups.keys(): #print('Recipe Pair: ') #print(key) recipe1_filename = os.path.join(recipe_folder, key[0] + ".conllu") recipe2_filename = os.path.join(recipe_folder, key[1] + ".conllu") parsed_recipe1 = fetch_parsed_recipe(recipe1_filename) parsed_recipe2 = fetch_parsed_recipe(recipe2_filename) action_ids1 = fetch_action_ids(parsed_recipe1) #print('Actions in Recipe 1: ') #print(action_ids1) action_ids2 = fetch_action_ids(parsed_recipe2) #print('Actions in Recipe 2: ') #print(action_ids2) if len(action_ids1) < len(action_ids2): predictions = action_ids2[:len(action_ids1)] else: predictions = action_ids2 predictions.extend([0] * (len(action_ids1) - len(action_ids2))) predictions = np.array(predictions) #print('Predictions: ') #print(predictions) recipe_pair_alignment = group_alignments.get_group(key) true_labels = list() for i in action_ids1: # True Action Id action_line = recipe_pair_alignment.loc[ recipe_pair_alignment["token1"] == i ] if not action_line.empty: label = action_line["token2"].item() true_labels.append(label) else: true_labels.append(0) true_labels = np.array(true_labels) #print('True Labels:') #print(true_labels) score = [predictions == true_labels] dish_correct_predictions += np.sum(score) dish_num_actions += len(action_ids1) dish_accuracy = dish_correct_predictions * 100 / dish_num_actions correct_predictions += dish_correct_predictions num_actions += dish_num_actions print("Accuracy of Dish {} : {:.2f}".format(dish, dish_accuracy)) model_accuracy = correct_predictions * 100 / num_actions print("Model Accuracy: {:.2f}".format(model_accuracy))
StarcoderdataPython
97158
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class SyncFullSchemaTableColumn(Model): """Properties of the column in the table of database full schema. Variables are only populated by the server, and will be ignored when sending a request. :ivar data_size: Data size of the column. :vartype data_size: str :ivar data_type: Data type of the column. :vartype data_type: str :ivar error_id: Error id of the column. :vartype error_id: str :ivar has_error: If there is error in the table. :vartype has_error: bool :ivar is_primary_key: If it is the primary key of the table. :vartype is_primary_key: bool :ivar name: Name of the column. :vartype name: str :ivar quoted_name: Quoted name of the column. :vartype quoted_name: str """ _validation = { 'data_size': {'readonly': True}, 'data_type': {'readonly': True}, 'error_id': {'readonly': True}, 'has_error': {'readonly': True}, 'is_primary_key': {'readonly': True}, 'name': {'readonly': True}, 'quoted_name': {'readonly': True}, } _attribute_map = { 'data_size': {'key': 'dataSize', 'type': 'str'}, 'data_type': {'key': 'dataType', 'type': 'str'}, 'error_id': {'key': 'errorId', 'type': 'str'}, 'has_error': {'key': 'hasError', 'type': 'bool'}, 'is_primary_key': {'key': 'isPrimaryKey', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'quoted_name': {'key': 'quotedName', 'type': 'str'}, } def __init__(self, **kwargs) -> None: super(SyncFullSchemaTableColumn, self).__init__(**kwargs) self.data_size = None self.data_type = None self.error_id = None self.has_error = None self.is_primary_key = None self.name = None self.quoted_name = None
StarcoderdataPython
3234417
from model import Model from model import Player import view as v import controller as cont def create_game(options = 'terminal'): m = create_bare_game() # Initial positions pos = create_initial_positions() m.set_placement(pos) # Create view view = create_view(options) m.set_view(view) # Create controller controller = create_controller(options) m.set_controller(controller) # Create players p1 = Player(view, controller, '1', lambda x: x > 0) p2 = Player(view, controller, '2', lambda x: x < 0) m.set_players([p1, p2]) return m def create_controller(options = 'terminal'): return cont.Terminal() def create_view(options = 'terminal'): return v.Terminal() def create_bare_game(): m = Model() return m def create_initial_positions(): ''' Could be moved into Game class ''' start_position_a = [ (6, 5), (8, 3), (13, 5), (24, 2) ] start_position_b = [(25-i, -val) for (i,val) in start_position_a] return start_position_a + start_position_b
StarcoderdataPython
148936
import requests import json import csv import os import LastRead def api_call(payload): auth = requests.post("https://api.mangadex.org/auth/login", json=payload) token = auth.json()["token"]["session"] bearer = {"Authorization": f"Bearer {token}"} offset = 0 follow_list = [] initial = {"limit": 100} initial_query = requests.get( "https://api.mangadex.org/user/follows/manga", headers=bearer, params=initial ).json() for i in range(0, initial_query["total"], 100): offset += i body = {"limit": 100, "offset": offset} r = requests.get( "https://api.mangadex.org/user/follows/manga", headers=bearer, params=body ).json() follow_list.append(r) return follow_list def file_handler(follow_list): try: with open("follow_list.csv", "w", newline="", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(["Title", "id"]) for j in range(0, len(follow_list)): for i in range(len(follow_list[j]["results"])): writer.writerow( [ follow_list[j]["results"][i]["data"]["attributes"]["title"][ "en" ], follow_list[j]["results"][i]["data"]["id"], ] ) except PermissionError: print("Please close the csv file made before (if its open in an editor) when trying to make a new one.") input("Press Enter to end") user = input("Enter Your Username: ") password = input("Enter Your Password: ") payload = {"username": user, "password": password} choice = input( "Do you also want your last read chapters? (may take a while and a seperate list will be created)\nType Y/N?: ") try: file_handler(api_call(payload)) print( f"Your follow list has been created at this directory:- {os.getcwd()}") input("Press Enter to end") if choice == 'Y': LastRead.lastread(payload) except: print("Wrong username or password, please try again or process ended by user") input("Press Enter to end")
StarcoderdataPython
137763
<reponame>jiskra/openmv # ADC Internal Channels Example # # This example shows how to read internal ADC channels. import time, pyb adc = pyb.ADCAll(12) print("VREF = %.1fv VREF = %.1fv Temp = %d" % (adc.read_core_vref(), adc.read_core_vbat(), adc.read_core_temp()))
StarcoderdataPython
130269
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations def add_91_room_functional_names(apps, schema_editor): map = { 'Hibiscus': 'Breakout 3', 'South Pacific 2': 'Meeting Room #6', 'South Pacific 1': 'Terminal Room', 'Coral 1': 'Breakout 4', 'Coral 2': 'Breakout 5', 'Coral 5': 'Breakout 6', 'Coral 4': 'Breakout 7', 'Coral 3': 'Breakout 8', 'Great Lawn': 'Welcome Reception', 'Rainbow Suite': 'Not Used', 'Lehua Suite': 'Breakout 1', 'Kahili': 'Breakout 2', 'Rainbow Suite 1/2': 'Meeting Room #2 (IESG Meeting Room)', 'Village Green': 'Meet and Greet', 'South Pacific 3': 'Meeting Room #4 (IAOC/IAD Office)', 'Rainbow Suite 3': 'Meeting Room #7', 'Rainbow Suite 2/3': 'ISOC Dinner', 'South Pacific 3/4': 'ISOC AC Meeting', 'Iolani 6/7': 'Meeting Room #5 (NomCom Office)', 'Sea Pearl 1/2': 'Reception', 'Sea Pearl 2': 'Meeting Room #1 (IAB Meeting Room)', 'Coral Lounge': 'Registration Area and Breaks', 'Tiare Suite': 'Meeting Room #8 (RFC Office)', } Room = apps.get_model('meeting', 'Room') for name,functional_name in map.items(): Room.objects.filter(meeting__number=91,name=name).update(functional_name=functional_name) class Migration(migrations.Migration): dependencies = [ ('meeting', '0009_room_functional_name'), ] operations = [ migrations.RunPython(add_91_room_functional_names), ]
StarcoderdataPython
3292664
<reponame>RichMooreNR/newrelic-lambda-cli # -*- coding: utf-8 -*- import click from newrelic_lambda_cli import utils from newrelic_lambda_cli.cli import functions, integrations, layers, subscriptions @click.group() @click.option("--verbose", "-v", help="Increase verbosity", is_flag=True) @click.pass_context def cli(ctx, verbose): ctx.ensure_object(dict) ctx.obj["VERBOSE"] = verbose def register_groups(group): functions.register(group) integrations.register(group) layers.register(group) subscriptions.register(group) @utils.catch_boto_errors def main(): register_groups(cli) cli()
StarcoderdataPython
4812775
<gh_stars>1-10 celsius = float(input("Digite a temperatura em Celsius: \n")) farenheit = ((1.8 * celsius) + 32) print("{}ºC correspondem a {:.1f}ºF.".format(celsius, farenheit))
StarcoderdataPython
1771482
<reponame>tosinolawore/py_everything import sphinx import python_docs_theme project = 'py_everything' copyright = '2021, PyBash' author = 'PyBash' release = '2.0.0' extensions = ['sphinx.ext.autodoc', 'python_docs_theme'] templates_path = ['_templates'] exclude_patterns = [] html_theme = 'python_docs_theme' html_static_path = ['_static'] html_logo = '..\\..\\extra\\logo.png' html_favicon = '..\\..\\extra\\logo.png'
StarcoderdataPython
1745531
<filename>src/LeucipPy/__tests6.py import WilliamsDivergenceMaker as wdm import BioPythonMaker as bpm import GeometryMaker as dfm import HtmlReportMaker as hrm import DsspMaker as dm strucs = bpm.loadPdbStructures([],'Data/',extension='ent',prefix='pdb',log=2) geo = dfm.GeometryMaker(strucs,log=2) data = geo.calculateGeometry(['N:CA']) dssp = dm.DsspMaker([],'Data/',extension='ent',prefix='pdb',log=2) data = dssp.addDsspColumn(data) print(data) df = geo.calculateGeometry(['FE:{O}','FE:{O@2}'],log=2) print(df) #df = geo.calculateGeometry(['FE:{O,N,NE2}','FE:{O,N@2}']) #print(df) #df = geo.calculateGeometry(['FE:{O,N}+1','FE:{O,N,NE2@2}+1']) #print(df) #df = geo.calculateGeometry(['FE:{O,N,FE}+1','FE:{O,N,FE@2}+1'],log=0) #print(df)
StarcoderdataPython
90420
<filename>bage_utils/ssh_util.py import traceback import warnings import paramiko warnings.filterwarnings("ignore") class SshUtil(object): """ - Connect remote by SSH and run specific command. - See also `bage_util.SellUtil` """ def __init__(self, hostname, username=None, password=<PASSWORD>, port=22, log=None): self.client = None self.log = log try: self.client = paramiko.SSHClient() self.client.set_missing_host_key_policy(paramiko.WarningPolicy()) # self.client.load_system_host_keys() # keys = paramiko.util.load_host_keys(os.path.expanduser('~/.ssh/known_hosts')) # key = keys[hostname] # print('keys:', keys # self.client.get_host_keys().add(hostname, 'ssh-rsa', key) self.client.connect(hostname, port, username, password) except Exception: self.close() if self.log: self.log.error(traceback.format_exc()) else: traceback.print_exc() def close(self): try: if self.client: self.client.close() except Exception: if self.log: self.log.error(traceback.format_exc) else: traceback.print_exc() def execute_n_print(self, command): _stdin, stdout, _stderr = self.client.exec_command(command) for line in stdout: print(line.strip('\n')) def execute(self, command): _stdin, stdout, _stderr = self.client.exec_command(command) return stdout def transfer(self, from_site, to_site): pass if __name__ == '__main__': import os ssh = SshUtil('gpu4') ssh.execute_n_print('ls -l')
StarcoderdataPython
163908
<reponame>quantmind/lux<filename>lux/core/commands/clear_cache.py<gh_stars>10-100 from lux.core import LuxCommand, Setting class Command(LuxCommand): help = "Clear Cache" option_list = ( Setting('prefix', nargs='?', desc=('Optional cache prefix. If omitted the default ' 'application prefix is used (APP_NAME)')), ) def run(self, options, **params): cache = self.app.cache_server result = cache.clear(options.prefix) self.write('Clear %d keys' % result) return result
StarcoderdataPython
4800365
<gh_stars>1-10 #!/usr/bin/env python # coding: utf-8 __author__ = 'whoami' """ @version: 1.0 @author: whoami @license: Apache Licence 2.0 @contact: <EMAIL> @site: http://www.itweet.cn @software: PyCharm Community Edition @file: cpu.py @time: 2015-11-28 下午1:51 """ import time def round_percentage(number,ndigits): return round(number*100,2) def monitor(frist_invoke=2): interval=frist_invoke f = open('/proc/stat') cpu_t1 = f.readline().split() f.close() time.sleep(interval) f = open('/proc/stat') cpu_t2 = f.readline().split() f.close() cpu_total_t1 = float(eval(('+'.join(cpu_t1)).split('cpu+')[1])) cpu_idle_t1 = float(cpu_t1[4]) cpu_total_t2 = float(eval(('+'.join(cpu_t2)).split('cpu+')[1])) cpu_idle_t2 = float(cpu_t2[4]) cpu_idle = cpu_idle_t2-cpu_idle_t1 cpu_total = cpu_total_t2-cpu_total_t1 cpu_percent = (cpu_total-cpu_idle)/cpu_total cpu_total_tmp = cpu_total_t1+cpu_total_t2/2 cpu_user_tmp = (int(cpu_t1[1])+int(cpu_t2[1]))/2 cpu_nice_tmp = (int(cpu_t1[2])+int(cpu_t2[2]))/2 cpu_system_tmp = (int(cpu_t1[3])+int(cpu_t2[3]))/2 cpu_idle_tmp = (int(cpu_t1[4])+int(cpu_t2[4]))/2 cpu_iowait_tmp = (int(cpu_t1[5])+int(cpu_t2[5]))/2 cpu_irq_tmp = (int(cpu_t1[6])+int(cpu_t2[6]))/2 cpu_softirq_tmp = (int(cpu_t1[7])+int(cpu_t2[7]))/2 cpu_steal_tmp = (int(cpu_t1[8])+int(cpu_t2[8]))/2 cpu_guest_tmp = (int(cpu_t1[9])+int(cpu_t2[9]))/2 value_dic = { 'cpu_user': round_percentage(cpu_user_tmp/cpu_total_tmp,2), 'cpu_nice': round_percentage(cpu_nice_tmp/cpu_total_tmp,2), 'cpu_system': round_percentage(cpu_system_tmp/cpu_total_tmp,2), 'cpu_idle': round_percentage(cpu_idle_tmp/cpu_total_tmp,2), 'cpu_iowait': round_percentage(cpu_iowait_tmp/cpu_total_tmp,2), 'cpu_irq': round_percentage(cpu_irq_tmp/cpu_total_tmp,2), 'cpu_softirq': round_percentage(cpu_softirq_tmp/cpu_total_tmp,2), 'cpu_steal': round_percentage(cpu_steal_tmp/cpu_total_tmp,2), 'cpu_guest': round_percentage(cpu_guest_tmp/cpu_total_tmp,2), 'cpu_percent': round_percentage(cpu_percent,2), } return value_dic if __name__ == '__main__': print monitor()
StarcoderdataPython
1668649
<gh_stars>1-10 from email.utils import formatdate from datetime import datetime, timedelta from time import mktime from django.shortcuts import get_object_or_404 from django.http import HttpResponse, Http404 from molly.utils.views import BaseView from molly.utils.breadcrumbs import NullBreadcrumb from models import ExternalImageSized class IndexView(BaseView): breadcrumb = NullBreadcrumb def handle_GET(self, request, context): raise Http404 class ExternalImageView(BaseView): breadcrumb = NullBreadcrumb def handle_GET(self, request, context, slug): eis = get_object_or_404(ExternalImageSized, slug=slug) try: response = HttpResponse(open(eis.get_filename(), 'rb').read(), mimetype=eis.content_type.encode('ascii')) except IOError: eis.delete() raise Http404() response['ETag'] = slug response['Expires'] = formatdate(mktime((datetime.now() + timedelta(days=7)).timetuple())) response['Last-Modified'] = formatdate(mktime(eis.external_image.last_updated.timetuple())) return response
StarcoderdataPython
1642586
import socket import time import threading UDP_IP = "192.168.0.120" UDP_PORT = 7191 spray_off_msg = b"0-Off" spray_on_msg = b"1-On" lighting_msg = "L=" thread_run = True def listen_for_udp(sock): global thread_run sock.connect((UDP_IP, UDP_PORT)) sock.settimeout(2) while thread_run: try: data, addr = sock.recvfrom(1024) print("received message:", data, addr) except socket.timeout: pass sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) listen_UDP = threading.Thread(target=listen_for_udp, args=(sock,)) listen_UDP.start() for i in range(2): if i % 2 == 0: sock.sendto(spray_off_msg, (UDP_IP, UDP_PORT)) print("UDP {}:{} {}".format(UDP_IP, UDP_PORT, spray_off_msg)) else: sock.sendto(spray_on_msg, (UDP_IP, UDP_PORT)) print("UDP {}:{} {}".format(UDP_IP, UDP_PORT, spray_on_msg)) light_lev_msg = bytes(lighting_msg + str(i*10), 'utf-8') sock.sendto(light_lev_msg, (UDP_IP, UDP_PORT)) print("UDP {}:{} {}".format(UDP_IP, UDP_PORT, light_lev_msg)) time.sleep(5.0) thread_run = False time.sleep(5.0)
StarcoderdataPython
68472
<reponame>nouranHnouh/FormusWorkshop-<gh_stars>0 import models members_data=[models.Member("Nancy",20), models.Member("Narmdha",27), models.Member("Mark",33), models.Member("George",40)] post_data=[models.Post("python","python is an interpreted high-level programming language",members_data[0].id), models.Post("Telecommunication network","is electronic system of switches and nodes, that aalows for data transfer and exchange between multiple users",members_data[3].id), models.Post("Artificial intelligence","is intellegence demonstrated by machine such as self-driving cars ",members_data[0]), models.Post("what is HTML?","HTML is standard markup language for creating web pages",members_data[1].id), models.Post("Electrical Engineering","is the field that deals with study and application of electricity and electronics",members_data[2].id), models.Post("circuit components","Resistors, Capacitors, and inductors are examples of circuit components",members_data[1]), models.Post("circuit simulation","matlab can be used to simulate circuits",members_data[2].id)] def test(member_store,post_store): for member in members_data: member_store.add(member) for post in post_data: post_store.add(post)
StarcoderdataPython
1651687
<gh_stars>10-100 # -*- coding: utf-8 -*- import os import shutil import sys import time import optparse import lib.config as config import lib.vcrparser as vcrparser # Dynamics load of the workload manager library depending on 'config.mode' value set in lib/config.py if config.mode == "LSF": import lib.sys_LSF as manager elif config.mode == "LOCAL": import lib.sys_single as manager else: import lib.sys_OTHER as manager ########################################################## ## Parsing command line arguments ########################################################## desc = "aRNApipe: RNA-seq framework" parser = optparse.OptionParser(description = desc) parser.add_option("-m", "--mode", dest = "m", default = "", help = "[Required] Write mode: 'new'/'update'/'kill'/'progress'/'skeleton'/'genomes'. 'new' all the libraries will be processed and previously processed results, if exist, will be removed; 'update' only those libraries that have not been previously processed will be analyzed; 'kill' stops a current execution of the given project by killing all its processes; 'progress' shows the progress of a running execution; 'skeleton' creates a skeleton for a project using the absolute path to the project folder given by -p; 'genomes' displays the genome versions currently available.") parser.add_option("-p", "--project_folder", dest = "folder", default = "", help = "[Required] Absolute path to the project folder. This folder will be used to store the results and must contain the files 'samples.list' and 'config.txt'.") parser.add_option("-w", "--walltime", dest = "wt", default = "200:00", help = "Optional: Wall time for the main job (defaults to 200:00).") parser.add_option("-q", "--queue", dest = "q", default = "priority", help = "Optional: Queue that will be used by the main job (defaults to 'priority').") (opt, args) = parser.parse_args() path_aRNApipe = os.path.dirname(sys.argv[0]) ########################################################## ## Genomes mode: Shows available genome builds and exits ########################################################## if opt.m == "genomes": db = path_aRNApipe+ "/../genomes_processed/installed_genomes.txt" if os.path.exists(db): f = open(db, 'r') print "Available genome builds:" for i in f: i = i.strip("\n").split("\t") if len(i) >= 2: print "- Key: " + i[0] + " (installed " + i[1] +"): " + "/".join(i[2:]) f.close() exit("All Done!") else: exit("Database file not found.") ############################################################# ## Skeleton mode: Builds skeleton for a new project and exits ############################################################# if opt.m == "skeleton": if not os.path.exists(opt.folder): try: os.mkdir(opt.folder) shutil.copy(path_aRNApipe + "/template/config.txt", opt.folder + "/config.txt") shutil.copy(path_aRNApipe + "/template/samples.list", opt.folder + "/samples.list") print "Project skeleton created." except: exit("Unspecified error during skeleton generation.") else: print "Project folder already exists" exit("All Done!") ########################################################## ## Checking required arguments (path and mode) ########################################################## if (opt.folder == "") or (opt.m == ""): exit("Parameters not provided. Check --help.") if not opt.folder.startswith("/"): exit("An absolute path must be provided (started with '/').") if opt.folder.endswith("/"): opt.folder = opt.folder[0:-1] opt.folder = opt.folder.split("/") opt.path_base = "/".join(opt.folder[0:-1]) opt.folder = opt.folder[-1] complete_path = opt.path_base + "/" + opt.folder ########################################################## ## Check for user confirmation in update, kill or new modes ########################################################## if opt.m == "kill": t = raw_input("Kill the current analysis (y/n)?") if t != "y": exit("--> Exit") elif opt.m == "update": print "When running 'update' be sure that no previuos processes on the same project are running." t = raw_input("Continue (y/n)?") if t != "y": exit("--> Exit") elif opt.m == "new": print "Mode 'new'. All the results data in the project folder, if exists, will be removed." t = raw_input("Continue (y/n)?") if t != "y": exit("--> Exit") ####################################################################### ## Removing previous results, temp folder and log files if mode = 'new' ####################################################################### if opt.m == "new": n = os.listdir(complete_path) for i in n: if i.startswith("results_"): nom = complete_path + "/" + i os.system("rm -r " + nom.replace("//", "/")) elif i.startswith("aRNApipe_"): nom = complete_path + "/" + i os.system("rm " + nom.replace("//", "/")) elif i=="temp": nom = complete_path + "/" + i os.system("rm -r " + nom.replace("//", "/")) elif i=="pid.txt": nom = complete_path + "/" + i os.system("rm " + nom.replace("//", "/")) elif i=="logs": nom = complete_path + "/" + i os.system("rm -r " + nom.replace("//", "/")) elif opt.m == "update": n = os.listdir(complete_path) for i in n: if i.startswith("results_"): if os.path.exists(complete_path + "/" + i + "/samples_ko.txt"): os.remove(complete_path + "/" + i + "/samples_ko.txt") ########################################################## ## Submiting the main process if mode 'new' or 'update' ########################################################## print "aRNApipe:" print "- Input: " + complete_path print "- Mode: " + opt.m ## Kill current analysis if mode 'kill' if opt.m == "kill": n = vcrparser.project_kill(opt.path_base, opt.folder) ## Check progress if mode 'progress' elif opt.m == "progress": n = vcrparser.project_process(opt.path_base, opt.folder) ## Submiting the main process if mode 'new' or 'update' elif opt.m in ["update", "new"]: timestamp = time.strftime("%y%m%d_%H%M%S") if not os.path.exists(complete_path): os.mkdir(complete_path) if not os.path.exists(complete_path + "/logs"): os.mkdir(complete_path + "/logs") vcr_args = " -f " + opt.folder + " -b " + opt.path_base + " -m " + opt.m + " -t " + timestamp if opt.m == "update": out = open(complete_path + "/logs/aRNApipe.log", 'a') print >> out, "###########################################" print >> out, "## Update: " + timestamp else: out = open(complete_path + "/logs/aRNApipe.log", 'w') print >> out, "###########################################" print >> out, "## New: " + timestamp print >> out, "###########################################" out.close() if not os.path.exists(complete_path + "/temp"): os.mkdir(complete_path + "/temp") ce = vcrparser.change_environment(config.environment) uds = manager.submit_job(opt.wt, "1", opt.q, complete_path + "/logs/aRNApipe_cluster_" + timestamp + ".log", opt.folder, "python " + path_aRNApipe + "/lib/wr_aRNApipe.py" + vcr_args + " >> " + complete_path + "/logs/aRNApipe.log", 0, complete_path, "") print "Main process submitted (jid=" + uds + ")" out = open(complete_path + "/pid.txt", 'w') print >> out, "aRNApipe\t" + uds + "\t" + timestamp out.close() else: exit("Selected mode not valid.")
StarcoderdataPython
1616076
<filename>src/secondaires/peche/commandes/appater/__init__.py<gh_stars>0 # -*-coding:Utf-8 -* # Copyright (c) 2012 <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Package contenant la commande 'appâter'.""" from primaires.interpreteur.commande.commande import Commande class CmdAppater(Commande): """Commande 'appâter'""" def __init__(self): """Constructeur de la commande""" Commande.__init__(self, "appâter", "bait") self.schema = "<nom_objet>" self.aide_courte = "appâte un ameçon" self.aide_longue = \ "Cette commande permet d'appâter un hameçon. Vous devez " \ "tenir une canne à pêche et préciser le nom de l'appât. " \ "Certains appâts, plus durs à trouver que d'autres, " \ "attirent aussi plus le poisson et peuvent augmenter la " \ "chance de pêcher une prise rare. Dès lors que vous avez " \ "pêché quelque chose, vous devez appâter de nouveau " \ "l'hameçon de la canne avant de la relancer." def ajouter(self): """Méthode appelée lors de l'ajout de la commande à l'interpréteur""" nom_objet = self.noeud.get_masque("nom_objet") nom_objet.proprietes["conteneurs"] = \ "(personnage.equipement.inventaire_simple.iter_objets_qtt(" \ "True), )" nom_objet.proprietes["quantite"] = "True" nom_objet.proprietes["conteneur"] = "True" def interpreter(self, personnage, dic_masques): """Interprétation de la commande.""" appat = dic_masques["nom_objet"].objet if not appat.est_de_type("appât"): personnage << "|err|Vous ne pouvez appâter {}.|ff|".format( appat.get_nom()) return canne = None for membre in personnage.equipement.membres: for objet in membre.equipe: if objet.est_de_type("canne à pêche"): canne = objet break if canne is None: personnage << "|err|Vous n'équipez aucune canne à pêche.|ff|" return if (getattr(canne, "appat", None) is not None and appat.prototype == canne.appat.prototype): personnage << "|err|Vous avez déjà appâté {} avec {}.|ff|".format( canne.get_nom(), appat.get_nom()) return personnage.agir("appater") appat.contenu.retirer(appat) a_appat = canne.appat if a_appat: importeur.objet.supprimer_objet(a_appat.identifiant) canne.appat = appat personnage << "Vous appâtez {} avec {}.".format( canne.get_nom(), appat.get_nom()) personnage.salle.envoyer("{{}} appâte {} avec {}.".format( canne.get_nom(), appat.get_nom()), personnage)
StarcoderdataPython
68057
from cart.services.inventory_services import InventoryService class CartItem: product_id: int quantity: int class ShoppingCart: id: int voucher: str discount_ratio: float @property def items(self): return tuple(self._items) def __init__(self): self._items = [] self.inventory = InventoryService() self.voucher = None self.discount_ratio = 0 def get_item(self, product_id): if not self.has_item(product_id): raise RuntimeError return next(x for x in self.items if x.product_id == product_id) def has_item(self, product_id): return product_id in map(lambda x: x.product_id, self.items) def add(self, item: CartItem): if self.inventory.remaining(item.product_id) < item.quantity: raise RuntimeError("Not enough inventory") self._items.append(item) def remove(self, item): self._items.remove(item) def clear_items(self): self._items.clear()
StarcoderdataPython
3363790
# Copyright 2020 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functionality for testing preconditions and assertions. """ import functools import sys def loaded_module(modules): """Function decorator that tests whether module(s) have already been loaded. Parameters ---------- modules: :class:`str` or sequence of :class:`str`, required Names of the modules that must already be loaded for the wrapped function to execute. Raises ------ :class:`RuntimeError` If any module in `modules` isn't already loaded. """ if isinstance(modules, str): modules = (modules,) # pragma: no cover def implementation(f): @functools.wraps(f) def implementation(*args, **kwargs): for module in modules: if module not in sys.modules: raise RuntimeError(f"Module {module} could not be found.") # pragma: no cover return f(*args, **kwargs) return implementation return implementation
StarcoderdataPython
4818096
import random class Solution: def __init__(self, nums): """ :type nums: List[int] """ self.org = nums self.aux = nums[:] def reset(self): """ Resets the array to its original configuration and return it. :rtype: List[int] """ return self.aux def shuffle(self): """ Returns a random shuffling of the array. :rtype: List[int] """ x = len(self.org) result = self.org[:] var = x for i in range(x): id = random.randrange(0, var) result[id], result[var - 1] = result[var - 1], result[id] var -= 1 return result # Your Solution object will be instantiated and called as such: # obj = Solution(nums) # param_1 = obj.reset() # param_2 = obj.shuffle()
StarcoderdataPython
3289220
<filename>qiskit/pulse/pulse_lib/samplers/decorators.py # -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-return-doc """Sampler decorator module for sampling of continuous pulses to discrete pulses to be exposed to user. Some atypical boilerplate has been added to solve the problem of decorators not preserving their wrapped function signatures. Below we explain the problem that samplers solve and how we implement this. A sampler is a function that takes an continuous pulse function with signature: ```python def f(times: np.ndarray, *args, **kwargs) -> np.ndarray: ... ``` and returns a new function: def f(duration: int, *args, **kwargs) -> SamplePulse: ... Samplers are used to build up pulse commands from continuous pulse functions. In Python the creation of a dynamic function that wraps another function will cause the underlying signature and documentation of the underlying function to be overwritten. In order to circumvent this issue the Python standard library provides the decorator `functools.wraps` which allows the programmer to expose the names and signature of the wrapped function as those of the dynamic function. Samplers are implemented by creating a function with signature @sampler def left(continuous_pulse: Callable, duration: int, *args, **kwargs) ... This will create a sampler function for `left`. Since it is a dynamic function it would not have the docstring of `left` available too `help`. This could be fixed by wrapping with `functools.wraps` in the `sampler`, but this would then cause the signature to be that of the sampler function which is called on the continuous pulse, below: `(continuous_pulse: Callable, duration: int, *args, **kwargs)`` This is not correct for the sampler as the output sampled functions accept only a function. For the standard sampler we get around this by not using `functools.wraps` and explicitly defining our samplers such as `left`, `right` and `midpoint` and calling `sampler` internally on the function that implements the sampling schemes such as `left_sample`, `right_sample` and `midpoint_sample` respectively. See `left` for an example of this. In this way our standard samplers will expose the proper help signature, but a user can still create their own sampler with @sampler def custom_sampler(time, *args, **kwargs): ... However, in this case it will be missing documentation of the underlying sampling methods. We believe that the definition of custom samplers will be rather infrequent. However, users will frequently apply sampler instances too continuous pulses. Therefore, a different approach was required for sampled continuous functions (the output of an continuous pulse function decorated by a sampler instance). A sampler instance is a decorator that may be used to wrap continuous pulse functions such as linear below: ```python @left def linear(times: np.ndarray, m: float, b: float) -> np.ndarray: ```Linear test function Args: times: Input times. m: Slope. b: Intercept Returns: np.ndarray ``` return m*times+b ``` Which after decoration may be called with a duration rather than an array of times ```python duration = 10 pulse_command = linear(10, 0.1, 0.1) ``` If one calls help on `linear` they will find ``` linear(duration:int, *args, **kwargs) -> numpy.ndarray Discretized continuous pulse function: `linear` using sampler: `_left`. The first argument (time) of the continuous pulse function has been replaced with a discretized `duration` of type (int). Args: duration (int) *args: Remaining arguments of continuous pulse function. See continuous pulse function documentation below. **kwargs: Remaining kwargs of continuous pulse function. See continuous pulse function documentation below. Sampled continuous function: function linear in module test.python.pulse.test_samplers linear(x:numpy.ndarray, m:float, b:float) -> numpy.ndarray Linear test function Args: x: Input times. m: Slope. b: Intercept Returns: np.ndarray ``` This is partly because `functools.wraps` has been used on the underlying function. This in itself is not sufficient as the signature of the sampled function has `duration`, whereas the signature of the continuous function is `time`. This is achieved by removing `__wrapped__` set by `functools.wraps` in order to preserve the correct signature and also applying `_update_annotations` and `_update_docstring` to the generated function which corrects the function annotations and adds an informative docstring respectively. The user therefore has access to the correct sampled function docstring in its entirety, while still seeing the signature for the continuous pulse function and all of its arguments. """ import functools from typing import Callable import textwrap import pydoc import numpy as np import qiskit.pulse.commands as commands from . import strategies def _update_annotations(discretized_pulse: Callable) -> Callable: """Update annotations of discretized continuous pulse function with duration. Args: discretized_pulse: Discretized decorated continuous pulse. """ undecorated_annotations = list(discretized_pulse.__annotations__.items()) decorated_annotations = undecorated_annotations[1:] decorated_annotations.insert(0, ('duration', int)) discretized_pulse.__annotations__ = dict(decorated_annotations) return discretized_pulse def _update_docstring(discretized_pulse: Callable, sampler_inst: Callable) -> Callable: """Update annotations of discretized continuous pulse function. Args: discretized_pulse: Discretized decorated continuous pulse. sampler_inst: Applied sampler. """ wrapped_docstring = pydoc.render_doc(discretized_pulse, '%s') header, body = wrapped_docstring.split('\n', 1) body = textwrap.indent(body, ' ') wrapped_docstring = header+body updated_ds = """ Discretized continuous pulse function: `{continuous_name}` using sampler: `{sampler_name}`. The first argument (time) of the continuous pulse function has been replaced with a discretized `duration` of type (int). Args: duration (int) *args: Remaining arguments of continuous pulse function. See continuous pulse function documentation below. **kwargs: Remaining kwargs of continuous pulse function. See continuous pulse function documentation below. Sampled continuous function: {continuous_doc} """.format(continuous_name=discretized_pulse.__name__, sampler_name=sampler_inst.__name__, continuous_doc=wrapped_docstring) discretized_pulse.__doc__ = updated_ds return discretized_pulse def sampler(sample_function: Callable) -> Callable: """Sampler decorator base method. Samplers are used for converting an continuous function to a discretized pulse. They operate on a function with the signature: `def f(times: np.ndarray, *args, **kwargs) -> np.ndarray` Where `times` is a numpy array of floats with length n_times and the output array is a complex numpy array with length n_times. The output of the decorator is an instance of `FunctionalPulse` with signature: `def g(duration: int, *args, **kwargs) -> SamplePulse` Note if your continuous pulse function outputs a `complex` scalar rather than a `np.ndarray`, you should first vectorize it before applying a sampler. This class implements the sampler boilerplate for the sampler. Args: sample_function: A sampler function to be decorated. """ def generate_sampler(continuous_pulse: Callable) -> Callable: """Return a decorated sampler function.""" @functools.wraps(continuous_pulse) def call_sampler(duration: int, *args, **kwargs) -> commands.SamplePulse: """Replace the call to the continuous function with a call to the sampler applied to the analytic pulse function.""" sampled_pulse = sample_function(continuous_pulse, duration, *args, **kwargs) return np.asarray(sampled_pulse, dtype=np.complex_) # Update type annotations for wrapped continuous function to be discrete call_sampler = _update_annotations(call_sampler) # Update docstring with that of the sampler and include sampled function documentation. call_sampler = _update_docstring(call_sampler, sample_function) # Unset wrapped to return base sampler signature # but still get rest of benefits of wraps # such as __name__, __qualname__ call_sampler.__dict__.pop('__wrapped__') # wrap with functional pulse return commands.functional_pulse(call_sampler) return generate_sampler def left(continuous_pulse: Callable) -> Callable: r"""Left sampling strategy decorator. See `pulse.samplers.sampler` for more information. For `duration`, return: $$\{f(t) \in \mathbb{C} | t \in \mathbb{Z} \wedge 0<=t<\texttt{duration}\}$$ Args: continuous_pulse: To sample. """ return sampler(strategies.left_sample)(continuous_pulse) def right(continuous_pulse: Callable) -> Callable: r"""Right sampling strategy decorator. See `pulse.samplers.sampler` for more information. For `duration`, return: $$\{f(t) \in \mathbb{C} | t \in \mathbb{Z} \wedge 0<t<=\texttt{duration}\}$$ Args: continuous_pulse: To sample. """ return sampler(strategies.right_sample)(continuous_pulse) def midpoint(continuous_pulse: Callable) -> Callable: r"""Midpoint sampling strategy decorator. See `pulse.samplers.sampler` for more information. For `duration`, return: $$\{f(t+0.5) \in \mathbb{C} | t \in \mathbb{Z} \wedge 0<=t<\texttt{duration}\}$$ Args: continuous_pulse: To sample. """ return sampler(strategies.midpoint_sample)(continuous_pulse)
StarcoderdataPython
4806218
''' ------------------------------------------------------------------------ This file sets parameters for the OG-USA model run. This module calls the following other module(s): demographics.py income.py txfunc.py elliptical_u_est.py This module defines the following function(s): read_parameter_metadata() read_tax_func_estimate() get_parameters_from_file() get_parameters() get_reduced_parameters() get_full_parameters() ------------------------------------------------------------------------ ''' ''' ------------------------------------------------------------------------ Import Packages ------------------------------------------------------------------------ ''' import os import json import numpy as np import scipy.interpolate as si import demographics as dem import income as inc import pickle import txfunc import elliptical_u_est as ellip import matplotlib.pyplot as plt ''' ------------------------------------------------------------------------ Set paths, define user modifiable parameters ------------------------------------------------------------------------ ''' PARAMS_FILE = os.path.join(os.path.dirname(__file__), 'default_full_parameters.json') PARAMS_FILE_METADATA_NAME = 'parameters_metadata.json' PARAMS_FILE_METADATA_PATH = os.path.join(os.path.dirname(__file__), PARAMS_FILE_METADATA_NAME) TAX_ESTIMATE_PATH = os.environ.get("TAX_ESTIMATE_PATH", ".") USER_MODIFIABLE_PARAMS = ['g_y_annual', 'frisch'] def read_parameter_metadata(): ''' -------------------------------------------------------------------- This function reads in parameter metadata -------------------------------------------------------------------- INPUTS: None OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: /PARAMS_FILE_METADATA_PATH/ = json file with metadata OBJECTS CREATED WITHIN FUNCTION: params_dict = dictionary of metadata RETURNS: params_dict -------------------------------------------------------------------- ''' if os.path.exists(PARAMS_FILE_METADATA_PATH): with open(PARAMS_FILE_METADATA_PATH) as pfile: params_dict = json.load(pfile) else: from pkg_resources import resource_stream, Requirement path_in_egg = os.path.join('ogusa', PARAMS_FILE_METADATA_NAME) buf = resource_stream(Requirement.parse('ogusa'), path_in_egg) as_bytes = buf.read() as_string = as_bytes.decode("utf-8") params_dict = json.loads(as_string) return params_dict def read_tax_func_estimate(pickle_path, pickle_file): ''' -------------------------------------------------------------------- This function reads in tax function parameters -------------------------------------------------------------------- INPUTS: pickle_path = string, path to pickle with tax function parameter estimates pickle_file = string, name of pickle file with tax function parmaeter estimates OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: /picklepath/ = pickle file with dictionary of tax function estimated parameters OBJECTS CREATED WITHIN FUNCTION: dict_params = dictionary, contains numpy arrays of tax function estimates RETURNS: dict_params -------------------------------------------------------------------- ''' if os.path.exists(pickle_path): print 'pickle path exists' with open(pickle_path) as pfile: dict_params = pickle.load(pfile) else: from pkg_resources import resource_stream, Requirement path_in_egg = pickle_file buf = resource_stream(Requirement.parse('ogusa'), path_in_egg) as_bytes = buf.read() as_string = as_bytes.decode("utf-8") dict_params = pickle.loads(as_string) return dict_params def get_parameters_from_file(): ''' -------------------------------------------------------------------- This function loads the json file with model parameters -------------------------------------------------------------------- INPUTS: None OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: /PARAMS_FILE/ = json file with model parameters OBJECTS CREATED WITHIN FUNCTION: RETURNS: j -------------------------------------------------------------------- ''' with open(PARAMS_FILE,'r') as f: j = json.load(f) for key in j: if isinstance(j[key], list): j[key] = np.array(j[key]) return j def get_parameters(test=False, baseline=False, guid='', user_modifiable=False, metadata=False): ''' -------------------------------------------------------------------- This function returns the model parameters. -------------------------------------------------------------------- INPUTS: test = boolean, =True if run test version with smaller state space baseline = boolean, =True if baseline tax policy, =False if reform guid = string, id for reform run user_modifiable = boolean, =True if allow user modifiable parameters metadata = boolean, =True if use metadata file for parameter values (rather than what is entered in parameters below) OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: read_tax_func_estimate() ellip.estimation() read_parameter_metadata() OBJECTS CREATED WITHIN FUNCTION: See parameters defined above allvars = dictionary, dictionary with all parameters defined in this function RETURNS: allvars, dictionary with model parameters -------------------------------------------------------------------- ''' ''' ------------------------------------------------------------------------ Parameters ------------------------------------------------------------------------ Model Parameters: ------------------------------------------------------------------------ S = integer, number of economically active periods an individual lives J = integer, number of different ability groups T = integer, number of time periods until steady state is reached BW = integer, number of time periods in the budget window lambdas = [J,] vector, percentiles for ability groups imm_rates = [J,T+S] array, immigration rates by age and year starting_age = integer, age agents enter population ending age = integer, maximum age agents can live until E = integer, age agents become economically active beta_annual = scalar, discount factor as an annual rate beta = scalar, discount factor for model period sigma = scalar, coefficient of relative risk aversion alpha = scalar, capital share of income Z = scalar, total factor productivity parameter in firms' production function delta_annual = scalar, depreciation rate as an annual rate delta = scalar, depreciation rate for model period ltilde = scalar, measure of time each individual is endowed with each period g_y_annual = scalar, annual growth rate of technology g_y = scalar, growth rate of technology for a model period frisch = scalar, Frisch elasticity that is used to fit ellipitcal utility to constant Frisch elasticity function b_ellipse = scalar, value of b for elliptical fit of utility function k_ellipse = scalar, value of k for elliptical fit of utility function upsilon = scalar, value of omega for elliptical fit of utility function ------------------------------------------------------------------------ Small Open Economy Parameters: ------------------------------------------------------------------------ ss_firm_r = scalar, world interest rate available to firms in the steady state ss_hh_r = scalar, world interest rate available to households in the steady state tpi_firm_r = [T+S,] vector, world interest rate (firm). Must be ss_firm_r in last period. tpi_hh_r = [T+S,] vector, world interest rate (household). Must be ss_firm_r in last period. ------------------------------------------------------------------------ Fiscal imbalance Parameters: ------------------------------------------------------------------------ alpha_T = scalar, share of GDP that goes to transfers. alpha_G = scalar, share of GDP that goes to gov't spending in early years. tG1 = scalar < t_G2, period at which change government spending rule from alpha_G*Y to glide toward SS debt ratio tG2 = scalar < T, period at which change gov't spending rule with final discrete jump to achieve SS debt ratio debt_ratio_ss = scalar, steady state debt/GDP. ------------------------------------------------------------------------ Tax Parameters: ------------------------------------------------------------------------ mean_income_data = scalar, mean income from IRS data file used to calibrate income tax etr_params = [S,BW,#tax params] array, parameters for effective tax rate function mtrx_params = [S,BW,#tax params] array, parameters for marginal tax rate on labor income function mtry_params = [S,BW,#tax params] array, parameters for marginal tax rate on capital income function h_wealth = scalar, wealth tax parameter h (scalar) m_wealth = scalar, wealth tax parameter m (scalar) p_wealth = scalar, wealth tax parameter p (scalar) tau_bq = [J,] vector, bequest tax tau_payroll = scalar, payroll tax rate retire = integer, age at which individuals eligible for retirement benefits ------------------------------------------------------------------------ Simulation Parameters: ------------------------------------------------------------------------ MINIMIZER_TOL = scalar, tolerance level for the minimizer in the calibration of chi parameters MINIMIZER_OPTIONS = dictionary, dictionary for options to put into the minimizer, usually to set a max iteration PLOT_TPI = boolean, =Ture if plot the path of K as TPI iterates (for debugging purposes) maxiter = integer, maximum number of iterations that SS and TPI solution methods will undergo mindist_SS = scalar, tolerance for SS solution mindist_TPI = scalar, tolerance for TPI solution nu = scalar, contraction parameter in SS and TPI iteration process representing the weight on the new distribution flag_graphs = boolean, =True if produce graphs in demographic, income, wealth, and labor files (True=graph) chi_b_guess = [J,] vector, initial guess of \chi^{b}_{j} parameters (if no calibration occurs, these are the values that will be used for \chi^{b}_{j}) chi_n_guess_80 = (80,) vector, initial guess of chi_{n,s} parameters for 80 one-year-period ages from 21 to 100 chi_n_guess = (S,) vector, interpolated initial guess of chi^{n,s} parameters (if no calibration occurs, these are the values that will be used age_midp_80 = (80,) vector, midpoints of age bins for 80 one-year- period ages from 21 to 100 for interpolation chi_n_interp = function, interpolation function for chi_n_guess newstep = scalar > 1, duration in years of each life period age_midp_S = (S,) vector, midpoints of age bins for S one-year- period ages from 21 to 100 for interpolation ------------------------------------------------------------------------ Demographics and Ability variables: ------------------------------------------------------------------------ omega = [T+S,S] array, time path of stationary distribution of economically active population by age g_n_ss = scalar, steady state population growth rate omega_SS = [S,] vector, stationary steady state population distribution surv_rate = [S,] vector, survival rates by age rho = [S,] vector, mortality rates by age g_n_vector = [T+S,] vector, growth rate in economically active pop for each period in transition path e = [S,J] array, normalized effective labor units by age and ability type ------------------------------------------------------------------------ ''' # Model Parameters if test: # size of state space S = int(40) lambdas = np.array([0.6,0.4]) J = lambdas.shape[0] # Simulation Parameters MINIMIZER_TOL = 1e-6 MINIMIZER_OPTIONS = {'maxiter': 1} PLOT_TPI = False maxiter = 35 mindist_SS = 1e-6 mindist_TPI = 1e-3 nu = .4 flag_graphs = False else: S = int(80) lambdas = np.array([0.25, 0.25, 0.2, 0.1, 0.1, 0.09, 0.01]) J = lambdas.shape[0] # Simulation Parameters MINIMIZER_TOL = 1e-14 MINIMIZER_OPTIONS = None PLOT_TPI = False maxiter = 250 mindist_SS = 1e-9 mindist_TPI = 1e-5#1e-9 nu = .4 flag_graphs = False # Time parameters T = int(4 * S) BW = int(10) start_year = 2016 starting_age = 20 ending_age = 100 E = int(starting_age * (S / float(ending_age - starting_age))) beta_annual = .96 # Carroll (JME, 2009) beta = beta_annual ** (float(ending_age - starting_age) / S) sigma = 1.5 # value from Attanasio, Banks, Meghir and Weber (JEBS, 1999) alpha = .35 gamma = 0.35 # many use 0.33, but many find that capitals share is increasing (e.g. Elsby, Hobijn, and Sahin (BPEA, 2013)) epsilon = 1.0#0.6 ##Note: If note =1, then careful w calibration Z = 1.0 delta_annual = 0.05 # approximately the value from Kehoe calibration exercise: http://www.econ.umn.edu/~tkehoe/classes/calibration-04.pdf delta = 1 - ((1 - delta_annual) ** (float(ending_age - starting_age) / S)) ltilde = 1.0 g_y_annual = 0.03 g_y = (1 + g_y_annual)**(float(ending_age - starting_age) / S) - 1 # Ellipse parameters frisch = 0.4 # Frisch elasticity consistent with Altonji (JPE, 1996) and Peterman (Econ Inquiry, 2016) b_ellipse, upsilon = ellip.estimation(frisch,ltilde) k_ellipse = 0 # this parameter is just a level shifter in utlitiy - irrelevant for analysis # Small Open Economy parameters. Currently these are placeholders. Can introduce a # borrow/lend spread and a time path from t=0 to t=T-1. However, from periods T through # T+S, the steady state rate should hold. ss_firm_r_annual = 0.04 ss_hh_r_annual = 0.04 ss_firm_r = (1 + ss_firm_r_annual) ** (float(ending_age - starting_age) / S) - 1 ss_hh_r = (1 + ss_hh_r_annual) ** (float(ending_age - starting_age) / S) - 1 tpi_firm_r = np.ones(T+S)*ss_firm_r tpi_hh_r = np.ones(T+S)*ss_hh_r # Fiscal imbalance parameters. These allow government deficits, debt, and savings. tG1 = 20#int(T/4) # change government spending rule from alpha_G*Y to glide toward SS debt ratio tG2 = int(T*0.8) # change gov't spending rule with final discrete jump to achieve SS debt ratio alpha_T = 0.09 # share of GDP that goes to transfers each period. This ratio will hold in later baseline periods & SS. alpha_G = 0.05 # share of GDP of government spending for periods t<tG1 ALPHA_T = np.ones(T+S)*alpha_T # Periods can be assigned different %-of-GDP rates for the baseline. Assignment after tG1 is not recommended. ALPHA_G = np.ones(T)*alpha_G # Early periods (up to tG1) can be assigned different %-of-GDP rates for the baseline # Assign any deviations from constant share of GDP in pre-tG1 ALPHA_T and ALPHA_G in the user dashboard of run_ogusa_serial. rho_G = 0.1 # 0 < rho_G < 1 is transition speed for periods [tG1, tG2-1]. Lower rho_G => slower convergence. debt_ratio_ss = 0.4 # assumed steady-state debt/GDP ratio. Savings would be a negative number. initial_debt = 0.59 # first-period debt/GDP ratio. Savings would be a negative number. # Business tax parameters tau_b = 0.20 # business income tax rate delta_tau_annual = .027# from B-Tax delta_tau = 1 - ((1 - delta_annual) ** (float(ending_age - starting_age) / S)) if tG1 > tG2: print 'The first government spending rule change date, (', tG1, ') is after the second one (', tG2, ').' err = "Gov't spending rule dates are inconsistent" raise RuntimeError(err) if tG2 > T: print 'The second government spending rule change date, (', tG2, ') is after time T (', T, ').' err = "Gov't spending rule dates are inconsistent" raise RuntimeError(err) # Tax parameters: # Income Tax Parameters # will call tax function estimation function here... # do output such that each parameters is in a separate SxBW array # read in estimated parameters #print 'baseline is:', baseline if baseline: baseline_pckl = "TxFuncEst_baseline{}.pkl".format(guid) estimate_file = os.path.join(TAX_ESTIMATE_PATH, baseline_pckl) print 'using baseline tax parameters' dict_params = read_tax_func_estimate(estimate_file, baseline_pckl) else: policy_pckl = "TxFuncEst_policy{}.pkl".format(guid) estimate_file = os.path.join(TAX_ESTIMATE_PATH, policy_pckl) print 'using policy tax parameters' dict_params = read_tax_func_estimate(estimate_file, policy_pckl) mean_income_data = dict_params['tfunc_avginc'][0] etr_params = dict_params['tfunc_etr_params_S'][:S,:BW,:] mtrx_params = dict_params['tfunc_mtrx_params_S'][:S,:BW,:] mtry_params = dict_params['tfunc_mtry_params_S'][:S,:BW,:] # # Make all ETRs equal the average etr_params = np.zeros(etr_params.shape) etr_params[:, :, 10] = dict_params['tfunc_avg_etr'] # set shift to average rate # # Make all MTRx equal the average mtrx_params = np.zeros(mtrx_params.shape) mtrx_params[:, :, 10] = dict_params['tfunc_avg_mtrx'] # set shift to average rate # # Make all MTRy equal the average mtry_params = np.zeros(mtry_params.shape) mtry_params[:, :, 10] = dict_params['tfunc_avg_mtry'] # set shift to average rate # # Make MTRx depend only on labor income # mtrx_params[:, :, 11] = 1.0 # set share parameter to 1 # # Make MTRy depend only on capital income # mtry_params[:, :, 11] = 0.0 # set share parameter to 0 # # set all MTRx parameters equal to the 43-yr-old values from 2016 # mtrx_params = np.tile(mtrx_params[11, 0, :], (S, 10, 1)) # Wealth tax params # These are non-calibrated values, h and m just need # need to be nonzero to avoid errors. When p_wealth # is zero, there is no wealth tax. h_wealth = 0.1 m_wealth = 1.0 p_wealth = 0.0 # Bequest and Payroll Taxes tau_bq = np.zeros(J) tau_payroll = 0.0 #0.15 # were are inluding payroll taxes in tax functions for now retire = np.int(np.round(9.0 * S / 16.0) - 1) # Calibration parameters # These guesses are close to the calibrated values chi_b_guess = np.ones((J,)) * 80.0 #chi_b_guess = np.array([0.7, 0.7, 1.0, 1.2, 1.2, 1.2, 1.4]) #chi_b_guess = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 4.0, 10.0]) #chi_b_guess = np.array([5, 10, 90, 250, 250, 250, 250]) #chi_b_guess = np.array([2, 10, 90, 350, 1700, 22000, 120000]) chi_n_guess_80 = np.array( [38.12000874, 33.22762421, 25.3484224, 26.67954008, 24.41097278, 23.15059004, 22.46771332, 21.85495452, 21.46242013, 22.00364263, 21.57322063, 21.53371545, 21.29828515, 21.10144524, 20.8617942, 20.57282, 20.47473172, 20.31111347, 19.04137299, 18.92616951, 20.58517969, 20.48761429, 20.21744847, 19.9577682, 19.66931057, 19.6878927, 19.63107201, 19.63390543, 19.5901486, 19.58143606, 19.58005578, 19.59073213, 19.60190899, 19.60001831, 21.67763741, 21.70451784, 21.85430468, 21.97291208, 21.97017228, 22.25518398, 22.43969757, 23.21870602, 24.18334822, 24.97772026, 26.37663164, 29.65075992, 30.46944758, 31.51634777, 33.13353793, 32.89186997, 38.07083882, 39.2992811, 40.07987878, 35.19951571, 35.97943562, 37.05601334, 37.42979341, 37.91576867, 38.62775142, 39.4885405, 37.10609921, 40.03988031, 40.86564363, 41.73645892, 42.6208256, 43.37786072, 45.38166073, 46.22395387, 50.21419653, 51.05246704, 53.86896121, 53.90029708, 61.83586775, 64.87563699, 66.91207845, 68.07449767, 71.27919965, 73.57195873, 74.95045988, 76.6230815]) # Generate Income and Demographic parameters (omega, g_n_ss, omega_SS, surv_rate, rho, g_n_vector, imm_rates, omega_S_preTP) = dem.get_pop_objs(E, S, T, 1, 100, start_year, flag_graphs) # Interpolate chi_n_guesses and create omega_SS_80 if necessary if S == 80: chi_n_guess = chi_n_guess_80.copy() omega_SS_80 = omega_SS.copy() elif S < 80: age_midp_80 = np.linspace(20.5, 99.5, 80) chi_n_interp = si.interp1d(age_midp_80, chi_n_guess_80, kind='cubic') newstep = 80.0 / S age_midp_S = np.linspace(20 + 0.5 * newstep, 100 - 0.5 * newstep, S) chi_n_guess = chi_n_interp(age_midp_S) (_, _, omega_SS_80, _, _, _, _,_) = dem.get_pop_objs(20, 80, 320, 1, 100, start_year, False) ## To shut off demographics, uncomment the following 9 lines of code # g_n_ss = 0.0 # surv_rate1 = np.ones((S,))# prob start at age S # surv_rate1[1:] = np.cumprod(surv_rate[:-1], dtype=float) # omega_SS = np.ones(S)*surv_rate1# number of each age alive at any time # omega_SS = omega_SS/omega_SS.sum() # imm_rates = np.zeros((T+S,S)) # omega = np.tile(np.reshape(omega_SS,(1,S)),(T+S,1)) # omega_S_preTP = omega_SS # g_n_vector = np.tile(g_n_ss,(T+S,)) e = inc.get_e_interp(S, omega_SS, omega_SS_80, lambdas, plot=False) # e_hetero = get_e(S, J, starting_age, ending_age, lambdas, omega_SS, flag_graphs) # e = np.tile(((e_hetero*lambdas).sum(axis=1)).reshape(S,1),(1,J)) # e = np.tile(e[:,0].reshape(S,1),(1,J)) # e /= (e * omega_SS.reshape(S, 1)* lambdas.reshape(1, J)).sum() # print 'g_y: ', g_y # print 'e: ', e # print 'chi_n_guess: ', chi_n_guess # print 'chi_b_guess: ', chi_b_guess # print 'delta, beta: ', delta, beta # quit() allvars = dict(locals()) if user_modifiable: allvars = {k:allvars[k] for k in USER_MODIFIABLE_PARAMS} if metadata: params_meta = read_parameter_metadata() for k,v in allvars.iteritems(): params_meta[k]["value"] = v allvars = params_meta return allvars
StarcoderdataPython
116895
# coding: utf-8 """ Consolidate Services Description of all APIs # noqa: E501 The version of the OpenAPI document: version not set Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from argocd_client.configuration import Configuration class V1alpha1ResourceDiff(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'diff': 'str', 'group': 'str', 'hook': 'bool', 'kind': 'str', 'live_state': 'str', 'name': 'str', 'namespace': 'str', 'normalized_live_state': 'str', 'predicted_live_state': 'str', 'target_state': 'str' } attribute_map = { 'diff': 'diff', 'group': 'group', 'hook': 'hook', 'kind': 'kind', 'live_state': 'liveState', 'name': 'name', 'namespace': 'namespace', 'normalized_live_state': 'normalizedLiveState', 'predicted_live_state': 'predictedLiveState', 'target_state': 'targetState' } def __init__(self, diff=None, group=None, hook=None, kind=None, live_state=None, name=None, namespace=None, normalized_live_state=None, predicted_live_state=None, target_state=None, local_vars_configuration=None): # noqa: E501 """V1alpha1ResourceDiff - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._diff = None self._group = None self._hook = None self._kind = None self._live_state = None self._name = None self._namespace = None self._normalized_live_state = None self._predicted_live_state = None self._target_state = None self.discriminator = None if diff is not None: self.diff = diff if group is not None: self.group = group if hook is not None: self.hook = hook if kind is not None: self.kind = kind if live_state is not None: self.live_state = live_state if name is not None: self.name = name if namespace is not None: self.namespace = namespace if normalized_live_state is not None: self.normalized_live_state = normalized_live_state if predicted_live_state is not None: self.predicted_live_state = predicted_live_state if target_state is not None: self.target_state = target_state @property def diff(self): """Gets the diff of this V1alpha1ResourceDiff. # noqa: E501 :return: The diff of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._diff @diff.setter def diff(self, diff): """Sets the diff of this V1alpha1ResourceDiff. :param diff: The diff of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._diff = diff @property def group(self): """Gets the group of this V1alpha1ResourceDiff. # noqa: E501 :return: The group of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._group @group.setter def group(self, group): """Sets the group of this V1alpha1ResourceDiff. :param group: The group of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._group = group @property def hook(self): """Gets the hook of this V1alpha1ResourceDiff. # noqa: E501 :return: The hook of this V1alpha1ResourceDiff. # noqa: E501 :rtype: bool """ return self._hook @hook.setter def hook(self, hook): """Sets the hook of this V1alpha1ResourceDiff. :param hook: The hook of this V1alpha1ResourceDiff. # noqa: E501 :type: bool """ self._hook = hook @property def kind(self): """Gets the kind of this V1alpha1ResourceDiff. # noqa: E501 :return: The kind of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this V1alpha1ResourceDiff. :param kind: The kind of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._kind = kind @property def live_state(self): """Gets the live_state of this V1alpha1ResourceDiff. # noqa: E501 :return: The live_state of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._live_state @live_state.setter def live_state(self, live_state): """Sets the live_state of this V1alpha1ResourceDiff. :param live_state: The live_state of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._live_state = live_state @property def name(self): """Gets the name of this V1alpha1ResourceDiff. # noqa: E501 :return: The name of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this V1alpha1ResourceDiff. :param name: The name of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._name = name @property def namespace(self): """Gets the namespace of this V1alpha1ResourceDiff. # noqa: E501 :return: The namespace of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._namespace @namespace.setter def namespace(self, namespace): """Sets the namespace of this V1alpha1ResourceDiff. :param namespace: The namespace of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._namespace = namespace @property def normalized_live_state(self): """Gets the normalized_live_state of this V1alpha1ResourceDiff. # noqa: E501 :return: The normalized_live_state of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._normalized_live_state @normalized_live_state.setter def normalized_live_state(self, normalized_live_state): """Sets the normalized_live_state of this V1alpha1ResourceDiff. :param normalized_live_state: The normalized_live_state of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._normalized_live_state = normalized_live_state @property def predicted_live_state(self): """Gets the predicted_live_state of this V1alpha1ResourceDiff. # noqa: E501 :return: The predicted_live_state of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._predicted_live_state @predicted_live_state.setter def predicted_live_state(self, predicted_live_state): """Sets the predicted_live_state of this V1alpha1ResourceDiff. :param predicted_live_state: The predicted_live_state of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._predicted_live_state = predicted_live_state @property def target_state(self): """Gets the target_state of this V1alpha1ResourceDiff. # noqa: E501 :return: The target_state of this V1alpha1ResourceDiff. # noqa: E501 :rtype: str """ return self._target_state @target_state.setter def target_state(self, target_state): """Sets the target_state of this V1alpha1ResourceDiff. :param target_state: The target_state of this V1alpha1ResourceDiff. # noqa: E501 :type: str """ self._target_state = target_state def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1alpha1ResourceDiff): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1alpha1ResourceDiff): return True return self.to_dict() != other.to_dict()
StarcoderdataPython
68598
# -*- coding: utf-8 -*- from os import popen class UpdtPyLibs(object): """ 升级所有第三方有更新的python库到最新版本 """ @staticmethod def exec_cmd(cmmd): """ 执行命令 :param cmmd: str/命令内容 :return: tuple/(boolean, result) """ return popen(cmmd).read() @staticmethod def get_lib_name(libs_str): """ 获得需要升级的pylibs名称列表 :param libs_str: str :return: list/[pylib_name1, pylib_name2, ..., pylibn] """ res = [] lines = libs_str.split('\n')[2:] lines = lines if lines[-1] else lines[:-1] for line in lines: res.append(line.split()[0]) return res def main(): failed = 0 cmd_ls = 'pip list --outdated' cmd_updt = "pip install -U {}" print("Searching libs ...") libs_str = UpdtPyLibs.exec_cmd(cmd_ls) print("Searching done.") libs_name = UpdtPyLibs.get_lib_name(libs_str) lib_len = len(libs_name) for count, lib in enumerate(libs_name, 1): res = 'Succeed' cmmd = cmd_updt.format(lib) try: UpdtPyLibs.exec_cmd(cmmd) except Exception as e: failed += 1 res = 'Failed' finally: report = "[ Name: {}\t| res: {}\t| {}/{}\t| {:.2%} ]".format(lib, res, count, lib_len, count / lib_len) print(report) final_report = "[UPDATED: {} | FAILED: {} ]".format(lib_len - failed, failed) if __name__ == '__main__': main()
StarcoderdataPython
3291927
""" Repetition Code Encoder Classes """ from typing import Dict, List, Tuple, Optional, Type from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit.circuit import Qubit from qtcodes.circuits.base import ( _Stabilizer, _TopologicalLattice, TopologicalQubit, ) TQubit = Tuple[float, float, float] class _Parity(_Stabilizer): """ Parity syndrome measurement for Repetition code. """ def entangle(self) -> None: """ Parity measurement on nearby data qubits. """ syndrome = self.qubit_indices[0] left = self.qubit_indices[1] right = self.qubit_indices[2] self.circ.cx(left, syndrome) self.circ.cx(right, syndrome) class _RepetitionLattice(_TopologicalLattice): """ This class contains all the lattice geometry specifications regarding the Repetition Code. E.g. X | X | X | X | X d=5 Rep Code """ def __init__(self, params: Dict[str, float], name: str, circ: QuantumCircuit): """ Initializes this Topological Lattice class. Args: params (Dict[str,int]): Contains params such as d, where d is the number of physical "data" qubits lining a row or column of the lattice. name (str): Useful when combining multiple TopologicalQubits together. Prepended to all registers. circ (QuantumCircuit): QuantumCircuit on top of which the topological qubit is built. This is often shared amongst multiple TQubits. """ self.geometry: Dict[str, List[List[int]]] = {} super().__init__(params, name, circ) def _params_validate_and_generate(self) -> None: """ Validate and generate params. E.g. self.params["num_syn"] = params["d"] - 1 """ # default params if "d" not in self.params: self.params["d"] = 3 # calculated params self.params["T"] = -1 # -1 until a stabilizer round is added! self.params["num_readout"] = -1 # -1 until a logical readout is performed! self.params[ "num_lattice_readout" ] = -1 # -1 until a lattice readout is performed! self.params["num_data"] = self.params["d"] self.params["num_syn"] = self.params["d"] - 1 def _gen_registers(self) -> None: """ Implement this method to create quantum and classical registers. E.g. qregisters["data"] = QuantumRegister(params["num_data"], name=name + "_data") """ self.qregisters["data"] = QuantumRegister( self.params["num_data"], name=self.name + "_data" ) self.qregisters["mz"] = QuantumRegister( self.params["num_syn"], name=self.name + "_mp" ) self.qregisters["ancilla"] = QuantumRegister(1, name=self.name + "_ancilla") def _set_geometry(self): """ Construct the lattice geometry for reuse across this class. Returns: geometry (Dict[str, List[List[int]]]): key: syndrome/plaquette type value: List of lists of qubit indices comprising one plaquette. """ geometry = {"mz": []} for i in range(int(self.params["num_syn"])): syn = i left = i right = i + 1 geometry["mz"].append([syn, left, right]) self.geometry = geometry def _gen_qubit_indices_and_stabilizers( self, ) -> Tuple[List[List[Qubit]], List[Type[_Parity]]]: """ Generates lattice blueprint for rep code with our chosen layout and numbering. Returns: qubit_indices (List[List[Qubit]]): List of lists of Qubits that comprise each plaquette. stabilizers (List[_Stabilizer]): List of stabilizers for each plaquette. """ self._set_geometry() qubit_indices = [] stabilizers = [] for stabilizer, idx_lists in self.geometry.items(): stabilizer_cls = _Parity for idx_list in idx_lists: syn = self.qregisters[stabilizer][idx_list[0]] plaquette = [ self.qregisters["data"][idx] if idx is not None else None for idx in idx_list[1:] ] plaquette = [syn,] + plaquette qubit_indices.append(plaquette) stabilizers.append(stabilizer_cls) return qubit_indices, stabilizers def extract_final_stabilizer_and_logical_readout_z( self, final_readout_string: str ) -> Tuple[int, str]: """ Extract final Parity syndrome measurements and logical Z readout from lattice readout along the Parity syndrome graph. Args: final_readout_string (str): readout string of length equal to the number of data qubits contains the readout values of each data qubit measured along axes specified by the Z syndrome graph Returns: logical_readout (int): logical readout value stabilizer_str (str): returns a string of the form "Z_{N}Z_{N-1}...Z_{0}" """ readout_values = [int(q) for q in final_readout_string] readout_values = readout_values[::-1] # [q_0,q_1,...,q_24] z_stabilizer = "" # "Z_{N}Z_{N-1}..Z_{0}" for idx_list in self.geometry["mz"]: stabilizer_val = ( sum( [ readout_values[idx] if idx is not None else 0 for idx in idx_list[1:] ] ) # [syn, left, right] % 2 ) z_stabilizer = str(stabilizer_val) + z_stabilizer logical_readout = readout_values[0] # first row qubit return logical_readout, z_stabilizer def reset_x(self) -> None: """ Initialize/reset to a logical |x+> state. Create a GHZ state: |+_L> := |0_L> + |1_L> = |00..0> + |11..1> """ self.circ.reset(self.qregisters["data"]) self.circ.h(self.qregisters["data"][0]) for i in range(len(self.qregisters["data"]) - 1): self.circ.cx(self.qregisters["data"][i], self.qregisters["data"][i + 1]) self.circ.barrier() def reset_z(self) -> None: """ Initialize/reset to a logical |z+> state. """ self.circ.reset(self.qregisters["data"]) self.circ.barrier() def x(self) -> None: """ Logical X operator on the topological qubit. Defined as the left-most column on the X Syndrome Graph. """ self.circ.x(self.qregisters["data"]) self.circ.barrier() def z(self) -> None: """ Logical Z operator on the topological qubit. Defined as the top-most row on the Z Syndrome Graph. """ self.circ.z(self.qregisters["data"][0]) def x_c_if(self, classical: ClassicalRegister, val: int) -> None: """ Classically conditioned logical X operator on the topological qubit. """ self.circ.x(self.qregisters["data"]).c_if(classical, val) self.circ.barrier() def z_c_if(self, classical: ClassicalRegister, val: int) -> None: """ Classically conditioned logical Z operator on the topological qubit. """ self.circ.z(self.qregisters["data"][0]).c_if(classical, val) def cx(self, control: Optional[Qubit] = None, target: Optional[Qubit] = None): """ Logical CX Gate Args: control (Optional[Qubit]): If provided, then this gate will implement a logical x gate on this tqubit conditioned on source target (Optional[Qubit]): If provided, then this gate will implement a logical x gate on target conditioned on this tqubit """ if control: self.circ.cx(control, self.qregisters["data"]) self.circ.barrier() elif target: self.circ.cx(self.qregisters["data"][0], target) def _readout_x_into_ancilla(self) -> None: """ Convenience method to read-out the logical-X projection into an ancilla qubit. Uses the left-most column. """ self.circ.reset(self.qregisters["ancilla"]) # X Readout self.circ.h(self.qregisters["ancilla"]) self.circ.cx(self.qregisters["ancilla"], self.qregisters["data"]) self.circ.h(self.qregisters["ancilla"]) def readout_x(self, readout_creg: Optional[ClassicalRegister] = None) -> None: """ Convenience method to read-out the logical-X projection. """ if not readout_creg: self.params["num_readout"] += 1 creg_name = self.name + "_readout_" + str(self.params["num_readout"]) readout = ClassicalRegister(1, name=creg_name) self.circ.add_register(readout) self.cregisters[creg_name] = readout readout_creg = self.cregisters[creg_name] self._readout_x_into_ancilla() self.circ.measure(self.qregisters["ancilla"], readout_creg) self.circ.barrier() def readout_z(self, readout_creg: Optional[ClassicalRegister] = None) -> None: """ Convenience method to read-out the logical-Z projection. Uses the top-most row (in this case just the first qubit). """ if not readout_creg: self.params["num_readout"] += 1 creg_name = self.name + "_readout_" + str(self.params["num_readout"]) readout = ClassicalRegister(1, name=creg_name) self.circ.add_register(readout) self.cregisters[creg_name] = readout readout_creg = self.cregisters[creg_name] self.circ.reset(self.qregisters["ancilla"]) self.circ.measure(self.qregisters["data"][0], readout_creg) self.circ.barrier() def lattice_readout_x(self) -> None: """ Not applicable/relevant to the Rep Code. """ self.params["num_lattice_readout"] += 1 creg_name = ( self.name + "_lattice_readout_" + str(self.params["num_lattice_readout"]) ) readout = ClassicalRegister(self.params["num_data"], name=creg_name,) self.circ.add_register(readout) self.cregisters[creg_name] = readout # measure along X self.circ.h(self.qregisters["data"]) self.circ.measure(self.qregisters["data"], self.cregisters[creg_name]) self.circ.barrier() def lattice_readout_z(self) -> None: """ Readout all data qubits that constitute the lattice. This readout can be used to extract a final round of Parity stabilizer measurments, as well as a logical Z readout. """ self.params["num_lattice_readout"] += 1 creg_name = ( self.name + "_lattice_readout_" + str(self.params["num_lattice_readout"]) ) readout = ClassicalRegister(self.params["num_data"], name=creg_name,) self.circ.add_register(readout) self.cregisters[creg_name] = readout self.circ.measure(self.qregisters["data"], self.cregisters[creg_name]) self.circ.barrier() def parse_readout( self, readout_string: str, readout_type: Optional[str] = None ) -> Tuple[int, Dict[str, List[TQubit]]]: """ Helper method to turn a result string (e.g. 0000 000 000) into an appropriate logical readout value and XOR-ed syndrome locations according to our grid coordinate convention. Args: readout_string (str): Readout like "0 000 000 000" (logical_readout syndrome_2 syndrome_1 syndrome_0) or of the form "0000 000 000" (lattice_readout syndrome_1 syndrome_0) A syndrome_i measurement "00..0" is of the form Z_{N}Z_{N-1}...Z_{0} readout_type (Optional[str]): "X" or "Z" needed to accurately parse a lattice readout to extract a final round of syndrome measurements and logical readout. Returns: logical_readout (int): logical readout value syndromes (Dict[str, List[TQubit]]]): key: syndrome type value: (time, row, col) of parsed syndrome hits (changes between consecutive rounds) """ chunks = readout_string.split(" ") if len(chunks[0]) > 1: # this is true when all data qubits are readout assert ( readout_type == "Z" ), "Rep code currently only supports Z lattice readout." ( logical_readout, final_stabilizer, ) = self.extract_final_stabilizer_and_logical_readout_z(chunks[0]) chunks = [final_stabilizer,] + chunks[1:] else: logical_readout = int(chunks[0]) chunks = chunks[1:] int_syndromes = [int(x, base=2) for x in chunks[::-1]] z_syndromes = [a ^ b for (a, b) in zip(int_syndromes, int_syndromes[1:])] Z = [] for T, syndrome in enumerate(z_syndromes): for loc in range(int(self.params["num_syn"])): if syndrome & 1 << loc: Z.append((float(T), 0.5 + loc, 0.0)) return ( logical_readout, {"Z": Z}, ) class RepetitionQubit(TopologicalQubit): """ A single logical repetition code qubit. At the physical level, this wraps a circuit, so we chose to subclass and extend TopologicalQubit which extends QuantumCircuit. """ lattice_type = _RepetitionLattice def stabilize(self) -> None: """ Run a single round of stabilization (entangle and measure). """ self.lattice.params["T"] += 1 syndrome_readouts = ClassicalRegister( self.lattice.params["num_syn"], name=self.name + "_c{}".format(self.lattice.params["T"]), ) self.lattice.cregisters[ "syndrome{}".format(self.lattice.params["T"]) ] = syndrome_readouts self.circ.add_register(syndrome_readouts) self.lattice.entangle() # measure syndromes self.circ.measure( self.lattice.qregisters["mz"], syndrome_readouts, ) self.circ.reset(self.lattice.qregisters["mz"]) self.circ.barrier()
StarcoderdataPython
92546
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 from __future__ import absolute_import import six from .common import ObjectMeta from ..base import Model from ..fields import Field, ListField class LabelSelectorRequirement(Model): key = Field(six.text_type) operator = Field(six.text_type) values = ListField(six.text_type) class LabelSelector(Model): matchExpressions = Field(LabelSelectorRequirement) matchLabels = Field(dict) class PodDisruptionBudgetSpec(Model): minAvailable = Field(six.text_type, alt_type=int) maxUnavailable = Field(six.text_type, alt_type=int) selector = Field(LabelSelector) class PodDisruptionBudget(Model): class Meta: list_url = "/apis/policy/v1beta1/poddisruptionbudgets" url_template = "/apis/policy/v1beta1/namespaces/{namespace}/poddisruptionbudgets/{name}" metadata = Field(ObjectMeta) spec = Field(PodDisruptionBudgetSpec)
StarcoderdataPython
1683440
import os from . import constants _basedir = os.path.abspath(os.path.dirname(__file__)) # Get this file's directory rather than pwd for f in os.listdir("{}/scripts".format(_basedir)): # Loop through the scripts folder filename, file_extension = os.path.splitext(f) if file_extension and file_extension == ".js": # Any JS files added to the JS_SCRIPTS dictionary in constants.py with open("{}/scripts/{}".format(_basedir, f), "r") as open_file: constants.JS_SCRIPTS[filename] = open_file.read()
StarcoderdataPython
3209377
<filename>htag/runners/devapp.py # -*- coding: utf-8 -*- # ############################################################################# # Copyright (C) 2022 <NAME>[at]gmail(dot)com # # MIT licence # # https://github.com/manatlan/htag # ############################################################################# from .. import Tag from ..render import HRenderer import threading import os,json from starlette.applications import Starlette from starlette.responses import HTMLResponse from starlette.routing import Route,WebSocketRoute from starlette.endpoints import WebSocketEndpoint import socket def isFree(ip, port): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(1) return not (s.connect_ex((ip,port)) == 0) class DevApp(Starlette): """ DEV APP, Runner specialized for development process. Features : * autoreload on file changes * refresh UI/HTML/client part, after server autoreloaded * console.log/info in devtools, for all exchanges * uvicorn debug * js error() method auto implemented (popup with skip/refresh) Simple ASync Web Server (with starlette) with WebSocket interactions with HTag. Open the rendering in a browser tab. The instance is an ASGI htag app """ def __init__(self,tagClass:type): assert issubclass(tagClass,Tag) #/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # add a Static Template, for displaying beautiful full error on UI ;-) #/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ #TODO: perhaps something integrated in hrenderer t=Tag.H.div( _style="z-index:10000000000;position:fixed;top:10px;left:10px;background:#F00;padding:8px;border:1px solid yellow" ) t <= Tag.H.a("X",_href="#",_onclick="this.parentNode.remove()",_style="color:yellow;text-decoration:none",_title="Forget error (skip)") t <= " " t <= Tag.H.a("REFRESH",_href="#",_onclick="window.location.reload()",_style="color:yellow;text-decoration:none",_title="Restart the UI part by refreshing it") t <= Tag.H.pre() template = Tag.H.template(t,_id="DevAppError") #/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ js = """ window.error=function(txt) { var clone = document.importNode(document.querySelector("#DevAppError").content, true); clone.querySelector("pre").innerHTML = txt document.body.appendChild(clone) } async function interact( o ) { let packet = JSON.stringify(o) console.info("[htag interact]",packet.length,o) ws.send( packet ); } var ws = new WebSocket("ws://"+document.location.host+"/ws"); ws.onopen = function() {console.info("[htag start]");start()}; ws.onclose = function() {document.body.innerHTML="Refreshing";window.location.reload()} ws.onmessage = function(e) { let data = JSON.parse(e.data); console.info("[htag action]",e.data.length,data) action( data ); }; """ self.renderer=HRenderer(tagClass, js, lambda: os._exit(0), fullerror=True, statics=[template,]) class WsInteract(WebSocketEndpoint): encoding = "json" async def on_receive(this, websocket, data): actions = await self.renderer.interact(data["id"],data["method"],data["args"],data["kargs"]) await websocket.send_text( json.dumps(actions) ) Starlette.__init__(self,debug=True, routes=[ Route('/', self.GET, methods=["GET"]), WebSocketRoute("/ws", WsInteract), ]) async def GET(self,request): return HTMLResponse( str(self.renderer) ) def run(self, host="127.0.0.1", port=8000, openBrowser=True): # localhost, by default !! """ example `app.run(__name__)` """ import uvicorn,webbrowser import inspect,sys from pathlib import Path try: fi= inspect.getframeinfo(sys._getframe(1)) stem = Path(fi.filename).stem instanceName = fi.code_context[0].strip().split(".")[0] except Exception as e: print("Can't run DevApp :",e) sys.exit(-1) fileapp = stem+":"+instanceName url = f"http://{host}:{port}" print("="*79) print(f"Start Uvicorn Reloader for '{fileapp}' ({url})") print("="*79) if openBrowser: webbrowser.open_new_tab(url) uvicorn.run(fileapp,host=host,port=port,reload=True,debug=True)
StarcoderdataPython
1693427
#import copy #import re, sys from collections import defaultdict #from Queue import Queue from data_structures import CanonicalDerivation, Edge, RuleInstance class CanonicalParser(object): def __init__(self,s): """ Takes a sentence and learns a canonical derivation according to the simple grammar defined below. """ derivs_cur = set() derivs_fail = set() self.derivs_done = set() derivs_all = set() self.s = s # Add the full AMR to start with derivs_cur.add(CanonicalDerivation([s['mrt']])) while len(derivs_cur) > 0: derivation = derivs_cur.pop() if len(derivation.get_triples()) == 1 and derivation.get_triples()[0][1].isNonterminal(): self.derivs_done.add(derivation) derivs_all.add(derivation) else: deriv = False for rule in [self.applyDelex,self.applySL,self.applySW, \ self.applySO,self.applyCircle,self.applyJointHit,self.applyElongate]: deriv = rule(derivation) if deriv: break # If we don't learn anything, add this derivation to the failures if not deriv: derivs_fail.add(derivation) else: # If we've seen this derivation before, don't go there again if deriv not in derivs_all: derivs_cur.add(deriv) derivs_all.add(deriv) self.derivs_done = list(self.derivs_done) self.derivs_fail = list(derivs_fail) #print "Failed derivations: ", len(derivs_fail) print "Complete derivations: ", len(self.derivs_done) """ # Print the failed derivations to see what went wrong for d in self.derivs_fail: print "Failed derivation: " print d.get_triples() """ def applyDelex(self,d): triples = d.get_triples() for i in xrange(len(triples)): (a,b,c) = triples[i] if b.isTerminal(): ntLabel,tmp = b[0].split(":",1) nrf = (a,Edge(ntLabel,d.count),c) nrt = [triples[i]] new_mrt = list(triples) new_mrt[i] = nrf # replace triple with new triple new_rule = RuleInstance(nrf,nrt,'DL') return CanonicalDerivation.derive(d,new_mrt,new_rule) return False def applySL(self,d): """ Search for any node with one occurence as p1 and one as p2 only. Combine these two by removing that node and merging the edges. """ triples = d.get_triples() ANodes = defaultdict(int) BNodes = defaultdict(int) for (a,b,c) in triples: ANodes[a] += 1 BNodes[c] += 1 for a in ANodes.keys(): if ANodes[a] == 1 and BNodes[a] == 1: # we have an edge that we can shorten: remove (x,X,a) and (a,X,z) for (x,Y,z) nrf = [None,Edge('*',d.count),None] # new rule from nrt = [0,0] # new rule to new_amr = list(triples) for i in xrange(len(triples)): at = triples[i] if at[0] == a and at[2] != a: nrf[2] = at[2] nrt[1] = at elif at[2] == a and at[0] != a: nrf[0] = at[0] nrf[1][0] = at[1][0] nrt[0] = at index = i if nrt[0][1].isNonterminal() and nrt[1][1].isNonterminal(): new_amr[index] = tuple(nrf) new_amr.remove(nrt[1]) new_rule = RuleInstance(tuple(nrf),nrt,'SL') return CanonicalDerivation.derive(d,new_amr,new_rule) return False def applySW(self,d): """ Search for any multiple edges (a-X-b) and merge two of these """ triples = d.get_triples() Nodes = defaultdict(int) for (a,b,c) in triples: Nodes[(a,c)] += 1 for (a,c) in Nodes.keys(): if Nodes[(a,c)] > 1: # We have one edge that we can remove: remove (a,X,b) and (a,Y,b) for (a,Y,b) # If more than two, we can remove any one of these, given any other one of these for i in xrange(len(triples)): candidate = triples[i] (x,y,z) = candidate if x == a and z == c and y.isNonterminal(): for j in xrange(i+1,len(triples)): candidate2 = triples[j] (k,l,m) = candidate2 if k == x and m == z and l.isNonterminal() and candidate != candidate2: nrf = (k,Edge(y[0],d.count),m) nrt = [candidate,candidate2] new_amr = list(triples) new_amr[i] = nrf del new_amr[j] new_rule = RuleInstance(nrf,nrt,'SW') return CanonicalDerivation.derive(d,new_amr,new_rule) return False def applySO(self,d): """ Search for any split a-X-b,a-Y-c where c is a leaf node Remove a-Y-c and let it be generated by a-X-b """ triples = d.get_triples() Leaves = defaultdict(int) Branches = defaultdict(int) for (a,b,c) in triples: Leaves[c] += 1 Branches[a] += 1 # If leaves[b] == 1 and branches[a] > 1 we can remove the (a,X,b) edge using SO for i in xrange(len(triples)): candidate = triples[i] (a,b,c) = candidate if Leaves[c] == 1 and Branches[a] > 1 and Branches[c] == 0 and b.isNonterminal(): for j in xrange(len(triples)): candidate2 = triples[j] (x,y,z) = candidate2 if x == a and z != c and y.isNonterminal(): # Depending on the grammar it would make sense to install a clause here # which determines the 'surviving' edge based on some implicit ordering nrf = (x,Edge(y[0],d.count),z) nrt = [candidate2,candidate] rulename = 'OL' # short for open-left new_amr = list(triples) new_amr[j] = nrf del new_amr[i] new_rule = RuleInstance(nrf,nrt,rulename) return CanonicalDerivation.derive(d,new_amr,new_rule) return False def applyJointHit(self,d): """ edge A-B becomes edges A-C and B-C in reverse """ child = defaultdict(set) parent = defaultdict(set) triples = d.get_triples() for trip in triples: (a,b,c) = trip child[a].add(trip) parent[c].add(trip) for i in xrange(len(triples)): candidate1 = triples[i] (a,x,c) = candidate1 if len(child[c]) == 0 and len(parent[c]) == 2 and x.isNonterminal(): for candidate2 in parent[c]: (b,y,tmp) = candidate2 if y.isNonterminal() and b != a: # we know that c == tmp wrongWay = False for check in child[b]: # optional (attempts to avoid generating looped structures) (k,l,m) = check if m == a: wrongWay = True if not wrongWay: # We found a candidate to remove (a,x,c) (b,y,c) down to (a,?,b) # Now, let's iterate so that we can find the suitable edges (with labels) nrf = (a,Edge('*',d.count),b) nrt = [candidate1,candidate2] new_amr = list(triples) new_amr[i] = nrf new_amr.remove(candidate2) new_rule = RuleInstance(nrf,nrt,'JH') return CanonicalDerivation.derive(d,new_amr,new_rule) return False def applyElongate(self,d): """ A->B becomes A->B->C in reverse """ child = defaultdict(set) parent = defaultdict(set) triples = d.get_triples() for trip in triples: (a,b,c) = trip child[a].add(trip) parent[c].add(trip) for i in xrange(len(triples)): candidate1 = triples[i] (b,x,c) = candidate1 if len(child[c]) == 0 and len(parent[c]) == 1 and x.isNonterminal(): for candidate2 in parent[b]: (a,y,tmp) = candidate2 if y.isNonterminal(): # we already know tmp == b # We found a candidate to remove (a,y,b,x,c) down to (a,y,b) nrf = (a,Edge(y[0],d.count),b) nrt = [candidate2,candidate1] new_amr = list(triples) new_amr[i] = nrf new_amr.remove(candidate2) new_rule = RuleInstance(nrf,nrt,'LL') return CanonicalDerivation.derive(d,new_amr,new_rule) return False def applyCircle(self,d): """ A->B becomes A->B->B (circle) in reverse """ parent = defaultdict(set) triples = d.get_triples() for i in xrange(len(triples)): (a,b,c) = triples[i] parent[c].add((i,triples[i])) for i in xrange(len(triples)): candidate1 = triples[i] (a,b,c) = candidate1 if a == c and b.isNonterminal(): for index,candidate2 in parent[c]: (x,y,z) = candidate2 if y.isNonterminal(): # We found a candidate to remove (x,y,a,b,a) down to (x,y,a) nrf = (x,Edge(y[0],d.count),z) nrt = [candidate2,candidate1] new_amr = list(triples) new_amr[index] = nrf del new_amr[i] new_rule = RuleInstance(nrf,nrt,'CC') return CanonicalDerivation.derive(d,new_amr,new_rule) return False
StarcoderdataPython
57551
<reponame>apie/countries_visited from flask_restless import ProcessingException from flask import redirect, url_for, request from flask_login import current_user from flask_security import Security, auth_required from visited import app, user_datastore, Visit security = Security(app, user_datastore) @security.unauthn_handler def r(*args, headers): if 'api/' in request.url: #Needed for auth_func because it needs to raise something. Return values dont matter. raise ProcessingException(description='Not Authorized', code=401) #Otherwise, normal behavior: redirect to login page return redirect(url_for('security.login')) @auth_required() def auth_func_single(instance_id=None, **kwargs): if ('data' in kwargs and kwargs['data']['username'] != str(current_user.email)) or (Visit.query.filter_by(username=current_user.email, id=instance_id).first() is None): # Changed the username OR instance_id was not found for the current user raise ProcessingException(description='Not Authorized', code=401) @auth_required() def auth_func_many(search_params=None, **kwargs): if 'filters' not in search_params: search_params['filters'] = [] # Always filter on current logged in user search_params['filters'].append( dict(name='username', op='eq', val=current_user.email) ) def deny(*args, **kwargs): raise ProcessingException(description='Forbidden', code=403) def auth_func_post(data, **kwargs): if data['username'] != str(current_user.email): # Can only post for the current user raise ProcessingException(description='Not Authorized', code=401) check_user=dict( GET_SINGLE=[auth_func_single], GET_MANY=[auth_func_many], POST=[auth_func_post], PUT_SINGLE=[auth_func_single], PUT_MANY=[deny], DELETE_SINGLE=[auth_func_single], DELETE_MANY=[deny], )
StarcoderdataPython
1771301
<gh_stars>10-100 from __future__ import print_function, division, absolute_import from pymel.core import curve, delete, revolve from . import _build_util as util @util.commonArgs def build(): p = [ [0, -0.49, 0], [-0.49, -0.49, 0.49], [-0.49, 0.49, 0.49], [0, 0.49, 0] ] temp = curve( p=p, d=1 ) ctrl = revolve( temp, ssw=0, esw=360, d=1, ax=[0, 1, 0], s=4 )[0] points = [ [-0.5, 0.5, 0.5], [-0.5, -0.5, 0.5], [-0.5, -0.5, -0.5], [-0.5, 0.5, -0.5], [-0.5, 0.5, 0.5], [0.5, 0.5, 0.5], [0.5, 0.5, -0.5], [-0.5, 0.5, -0.5], [-0.5, -0.5, -0.5], [0.5, -0.5, -0.5], [0.5, 0.5, -0.5], [0.5, -0.5, -0.5], [0.5, -0.5, 0.5], [0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [-0.5, -0.5, 0.5] ] line = curve(p=points, d=1) line.rename('outline') line.getShape().setParent( ctrl, add=True, shape=True ) delete(line, temp) return ctrl
StarcoderdataPython
1753649
from . import users from .change_password import ChangePasswordForm from .users import UserForm from .balance import BalanceForm
StarcoderdataPython
4801711
<reponame>shubhamkanungoo007/competitive-programming-solutions<gh_stars>0 ls=[2,33,4,2,1,2] ls1=[77,66,55,44] s=ls+ls1 s.sort(reverse=True) print(s)
StarcoderdataPython
118087
# THIS FILE IS AUTO-GENERATED. DO NOT EDIT from verta._swagger.base_type import BaseType class UacAction(BaseType): def __init__(self, service=None, role_service_action=None, authz_service_action=None, modeldb_service_action=None): required = { "service": False, "role_service_action": False, "authz_service_action": False, "modeldb_service_action": False, } self.service = service self.role_service_action = role_service_action self.authz_service_action = authz_service_action self.modeldb_service_action = modeldb_service_action for k, v in required.items(): if self[k] is None and v: raise ValueError('attribute {} is required'.format(k)) @staticmethod def from_json(d): from .ServiceEnumService import ServiceEnumService from .RoleActionEnumRoleServiceActions import RoleActionEnumRoleServiceActions from .AuthzActionEnumAuthzServiceActions import AuthzActionEnumAuthzServiceActions from .ModelDBActionEnumModelDBServiceActions import ModelDBActionEnumModelDBServiceActions tmp = d.get('service', None) if tmp is not None: d['service'] = ServiceEnumService.from_json(tmp) tmp = d.get('role_service_action', None) if tmp is not None: d['role_service_action'] = RoleActionEnumRoleServiceActions.from_json(tmp) tmp = d.get('authz_service_action', None) if tmp is not None: d['authz_service_action'] = AuthzActionEnumAuthzServiceActions.from_json(tmp) tmp = d.get('modeldb_service_action', None) if tmp is not None: d['modeldb_service_action'] = ModelDBActionEnumModelDBServiceActions.from_json(tmp) return UacAction(**d)
StarcoderdataPython
4822404
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ from pandas.util.testing import assert_frame_equal from pyflink.common import Row from pyflink.table import expressions as expr from pyflink.table.types import DataTypes from pyflink.table.udf import udf, udtf, udaf, AggregateFunction from pyflink.testing import source_sink_utils from pyflink.testing.test_case_utils import PyFlinkBlinkBatchTableTestCase, \ PyFlinkBlinkStreamTableTestCase class RowBasedOperationTests(object): def test_map(self): t = self.t_env.from_elements( [(1, 2, 3), (2, 1, 3), (1, 5, 4), (1, 8, 6), (2, 3, 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT())])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.BIGINT(), DataTypes.BIGINT()]) self.t_env.register_table_sink("Results", table_sink) func = udf(lambda x: Row(x + 1, x * x), result_type=DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT()), DataTypes.FIELD("b", DataTypes.BIGINT())])) t.map(func(t.b)).alias("a", "b") \ .map(func(t.a)).alias("a", "b") \ .execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["4,9", "3,4", "7,36", "10,81", "5,16"]) def test_map_with_pandas_udf(self): t = self.t_env.from_elements( [(1, Row(2, 3)), (2, Row(1, 3)), (1, Row(5, 4)), (1, Row(8, 6)), (2, Row(3, 4))], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.ROW([DataTypes.FIELD("a", DataTypes.INT()), DataTypes.FIELD("b", DataTypes.INT())]))])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.BIGINT(), DataTypes.BIGINT()]) self.t_env.register_table_sink("Results", table_sink) def func(x, y): import pandas as pd a = (x * 2).rename('b') res = pd.concat([a, x], axis=1) + y return res pandas_udf = udf(func, result_type=DataTypes.ROW( [DataTypes.FIELD("c", DataTypes.BIGINT()), DataTypes.FIELD("d", DataTypes.BIGINT())]), func_type='pandas') t.map(pandas_udf(t.a, t.b)).execute_insert("Results").wait() actual = source_sink_utils.results() self.assert_equals(actual, ["3,5", "3,7", "6,6", "9,8", "5,8"]) def test_flat_map(self): t = self.t_env.from_elements( [(1, "2,3", 3), (2, "1", 3), (1, "5,6,7", 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.STRING()), DataTypes.FIELD("c", DataTypes.INT())])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.BIGINT(), DataTypes.STRING()]) self.t_env.register_table_sink("Results", table_sink) @udtf(result_types=[DataTypes.INT(), DataTypes.STRING()]) def split(x, string): for s in string.split(","): yield x, s t.flat_map(split(t.a, t.b)) \ .alias("a, b") \ .flat_map(split(t.a, t.b)) \ .execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["1,2", "1,3", "2,1", "1,5", "1,6", "1,7"]) class BatchRowBasedOperationITTests(RowBasedOperationTests, PyFlinkBlinkBatchTableTestCase): def test_aggregate_with_pandas_udaf(self): t = self.t_env.from_elements( [(1, 2, 3), (2, 1, 3), (1, 5, 4), (1, 8, 6), (2, 3, 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT())])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b', 'c'], [DataTypes.TINYINT(), DataTypes.FLOAT(), DataTypes.INT()]) self.t_env.register_table_sink("Results", table_sink) pandas_udaf = udaf(lambda a: (a.mean(), a.max()), result_type=DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.FLOAT()), DataTypes.FIELD("b", DataTypes.INT())]), func_type="pandas") t.group_by(t.a) \ .aggregate(pandas_udaf(t.b).alias("c", "d")) \ .select("a, c, d").execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["1,5.0,8", "2,2.0,3"]) def test_aggregate_with_pandas_udaf_without_keys(self): t = self.t_env.from_elements( [(1, 2, 3), (2, 1, 3), (1, 5, 4), (1, 8, 6), (2, 3, 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT())])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.FLOAT(), DataTypes.INT()]) self.t_env.register_table_sink("Results", table_sink) pandas_udaf = udaf(lambda a: Row(a.mean(), a.max()), result_type=DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.FLOAT()), DataTypes.FIELD("b", DataTypes.INT())]), func_type="pandas") t.aggregate(pandas_udaf(t.b).alias("c", "d")) \ .select("c, d").execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["3.8,8"]) def test_window_aggregate_with_pandas_udaf(self): import datetime from pyflink.table.window import Tumble t = self.t_env.from_elements( [ (1, 2, 3, datetime.datetime(2018, 3, 11, 3, 10, 0, 0)), (3, 2, 4, datetime.datetime(2018, 3, 11, 3, 10, 0, 0)), (2, 1, 2, datetime.datetime(2018, 3, 11, 3, 10, 0, 0)), (1, 3, 1, datetime.datetime(2018, 3, 11, 3, 40, 0, 0)), (1, 8, 5, datetime.datetime(2018, 3, 11, 4, 20, 0, 0)), (2, 3, 6, datetime.datetime(2018, 3, 11, 3, 30, 0, 0)) ], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT()), DataTypes.FIELD("rowtime", DataTypes.TIMESTAMP(3))])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b', 'c'], [ DataTypes.TIMESTAMP(3), DataTypes.FLOAT(), DataTypes.INT() ]) self.t_env.register_table_sink("Results", table_sink) pandas_udaf = udaf(lambda a: (a.mean(), a.max()), result_type=DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.FLOAT()), DataTypes.FIELD("b", DataTypes.INT())]), func_type="pandas") tumble_window = Tumble.over(expr.lit(1).hours) \ .on(expr.col("rowtime")) \ .alias("w") t.window(tumble_window) \ .group_by("w") \ .aggregate(pandas_udaf(t.b).alias("d", "e")) \ .select("w.rowtime, d, e") \ .execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["2018-03-11 03:59:59.999,2.2,3", "2018-03-11 04:59:59.999,8.0,8"]) class StreamRowBasedOperationITTests(RowBasedOperationTests, PyFlinkBlinkStreamTableTestCase): def test_aggregate(self): import pandas as pd t = self.t_env.from_elements( [(1, 2, 3), (2, 1, 3), (1, 5, 4), (1, 8, 6), (2, 3, 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT())])) function = CountAndSumAggregateFunction() agg = udaf(function, result_type=function.get_result_type(), accumulator_type=function.get_accumulator_type(), name=str(function.__class__.__name__)) result = t.group_by(t.a) \ .aggregate(agg(t.b).alias("c", "d")) \ .select("a, c, d") \ .to_pandas() assert_frame_equal(result, pd.DataFrame([[1, 3, 15], [2, 2, 4]], columns=['a', 'c', 'd'])) class CountAndSumAggregateFunction(AggregateFunction): def get_value(self, accumulator): from pyflink.common import Row return Row(accumulator[0], accumulator[1]) def create_accumulator(self): from pyflink.common import Row return Row(0, 0) def accumulate(self, accumulator, *args): accumulator[0] += 1 accumulator[1] += args[0] def retract(self, accumulator, *args): accumulator[0] -= 1 accumulator[1] -= args[0] def merge(self, accumulator, accumulators): for other_acc in accumulators: accumulator[0] += other_acc[0] accumulator[1] += other_acc[1] def get_accumulator_type(self): return DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT()), DataTypes.FIELD("b", DataTypes.BIGINT())]) def get_result_type(self): return DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT()), DataTypes.FIELD("b", DataTypes.BIGINT())]) if __name__ == '__main__': import unittest try: import xmlrunner testRunner = xmlrunner.XMLTestRunner(output='target/test-reports') except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
StarcoderdataPython
65840
<reponame>jonasht/pythonEstudos from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * import sys class Window(QWindow): def __init__(self): QWindow.__init__(self) self.setTitle('janela') self.resize(400,300) app = QApplication(sys.argv) tela = Window() tela.show() sys.exit(app.exec_())
StarcoderdataPython
85231
# Generated by Django 2.1.3 on 2018-11-21 01:37 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('product', '0002_auto_20181121_0740'), ] operations = [ migrations.CreateModel( name='Apistep', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('apiname', models.CharField(max_length=100, verbose_name='接口名称')), ('apiurl', models.CharField(max_length=200, verbose_name='url地址')), ('apistep', models.CharField(max_length=100, null=True, verbose_name='测试步骤')), ('apiparamvalue', models.CharField(max_length=800, verbose_name='请求参数和值')), ], ), migrations.CreateModel( name='Apitest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('apitestname', models.CharField(max_length=64, verbose_name='流程接口名称')), ('apitestdesc', models.CharField(max_length=64, null=True, verbose_name='描述')), ('apitester', models.CharField(max_length=16, verbose_name='测试负责人')), ('apitestresult', models.BooleanField(verbose_name='测试结果')), ('create_time', models.DateField(auto_now=True, verbose_name='创建时间')), ('Product', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='product.Product')), ], options={ 'verbose_name': '流程场景接口', 'verbose_name_plural': '流程场景接口', }, ), migrations.AddField( model_name='apistep', name='Apitest', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='product.Apitest'), ), ]
StarcoderdataPython
140085
<gh_stars>0 # Copyright 2015 IBM All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The v1 Language Translation service (https://http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/language-translation.html) """ from .watson_developer_cloud_service import WatsonDeveloperCloudService from .watson_developer_cloud_service import WatsonInvalidArgument class LanguageTranslationV2(WatsonDeveloperCloudService): default_url = "https://gateway.watsonplatform.net/language-translation/api" def __init__(self, url=default_url, **kwargs): WatsonDeveloperCloudService.__init__( self, 'language_translation', url, **kwargs) def identify(self, text): """ Identifies the language of given source text """ return self.request(method='POST', url='/v2/identify', data=text, headers={'content-type': 'text/plain'}, accept_json=True) def get_models(self, default=None, source=None, target=None): """ Get the available models for translation """ params = {'default': default, 'source': source, 'target': target} return self.request(method='GET', url='/v2/models', params=params, accept_json=True) def translate(self, text, source=None, target=None, model=None): """ Translates text from a source language to a target language """ if model is None and (source is None or target is None): raise WatsonInvalidArgument('Either model or source and target must be specified') data = {'text': text, 'source': source, 'target': target, 'model': model} # data=data or json=data return self.request(method='POST', url='/v2/translate', json=data).text
StarcoderdataPython
137251
"""Test cases for IR generation.""" import os.path from mypy.test.config import test_temp_dir from mypy.test.data import DataDrivenTestCase from mypy.errors import CompileError from mypyc.common import TOP_LEVEL_NAME from mypyc.ir.func_ir import format_func from mypyc.test.testutil import ( ICODE_GEN_BUILTINS, use_custom_builtins, MypycDataSuite, build_ir_for_single_file, assert_test_output, remove_comment_lines, replace_native_int ) from mypyc.options import CompilerOptions files = [ 'irbuild-basic.test', 'irbuild-lists.test', 'irbuild-dict.test', 'irbuild-statements.test', 'irbuild-nested.test', 'irbuild-classes.test', 'irbuild-optional.test', 'irbuild-tuple.test', 'irbuild-any.test', 'irbuild-generics.test', 'irbuild-try.test', 'irbuild-set.test', 'irbuild-str.test', 'irbuild-strip-asserts.test', 'irbuild-int.test', ] class TestGenOps(MypycDataSuite): files = files base_path = test_temp_dir optional_out = True def run_case(self, testcase: DataDrivenTestCase) -> None: # Kind of hacky. Not sure if we need more structure here. options = CompilerOptions(strip_asserts='StripAssert' in testcase.name) """Perform a runtime checking transformation test case.""" with use_custom_builtins(os.path.join(self.data_prefix, ICODE_GEN_BUILTINS), testcase): expected_output = remove_comment_lines(testcase.output) expected_output = replace_native_int(expected_output) try: ir = build_ir_for_single_file(testcase.input, options) except CompileError as e: actual = e.messages else: actual = [] for fn in ir: if (fn.name == TOP_LEVEL_NAME and not testcase.name.endswith('_toplevel')): continue actual.extend(format_func(fn)) assert_test_output(testcase, actual, 'Invalid source code output', expected_output)
StarcoderdataPython
161782
from . import db from werkzeug.security import generate_password_hash,check_password_hash from flask_login import UserMixin from . import login_manager from sqlalchemy.sql import func @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class User(UserMixin,db.Model): __tablename__ = 'users' id = db.Column(db.Integer,primary_key = True) username = db.Column(db.String(255),index = True) email = db.Column(db.String(255),unique = True,index = True) # role_id = db.Column(db.Integer,db.ForeignKey('roles.id')) bio = db.Column(db.String(255)) profile_pic_path = db.Column(db.String()) password_secure = db.Column(db.String(255)) blogs = db.relationship('Blog') @property def password(self): raise AttributeError('You cannnot read the password attribute') @password.setter def password(self, password): self.password_secure = generate_password_hash(password) def verify_password(self,password): return check_password_hash(self.password_secure,password) def __repr__(self): return f'User {self.username}' #class Role(db.Model): # __tablename__ = 'roles' # # id = db.Column(db.Integer,primary_key = True) # name = db.Column(db.String(255)) # users = db.relationship('User',backref = 'role',lazy="dynamic") # # # # def __repr__(self): # return f'User {self.username}' class Blog(db.Model): __tablename__ = 'blogs' id = db.Column(db.Integer,primary_key = True) topic = db.Column(db.String(200)) data = db.Column(db.String()) date = db.Column(db.DateTime(timezone = True), default = func.now(), index = True) user_id = db.Column(db.Integer, db.ForeignKey('users.id')) comments = db.relationship('Comment') class Comment(db.Model): __tablename__ = 'comments' id = db.Column(db.Integer,primary_key = True) comment = db.Column(db.String(500)) date = db.Column(db.DateTime(timezone = True), default = func.now(), index = True) blog_id = db.Column(db.Integer, db.ForeignKey('blogs.id'))
StarcoderdataPython
3290923
from telas.atualizar import Atualizar from tkinter import Tk from tkinter import PhotoImage from telas.design import Design from telas.bug import Bug from telas.splash import Splash from time import sleep import util.funcoes as funcoes import tkinter.font as tkFont from tkinter import Button def atualizar(): master = Tk() design = Design() design.update_design_dic() # Configurações da IDE arquivo_configuracoes = funcoes.carregar_json("configuracoes/configuracoes.json") # Idioma que a safira está configurada idioma = arquivo_configuracoes['idioma'] interface_idioma = funcoes.carregar_json("configuracoes/interface.json") icon = PhotoImage(file='imagens/icone.png') atualizar = Atualizar(master, design, idioma, interface_idioma, icon) # Quando a safira é iniciado # Verificar a primeira vez # Primeira vez não mostra mensagem de erro # e nem mensagem se estiver atualizado #atualizar.verificar_versao(primeira_vez=True) # Quando o usuário tenta buscar atualizações de atualizar.verificar_versao() #atualizar.aviso_aguarde_instalando('0.25') master.mainloop() def bug(): master = Tk() design = Design() design.update_design_dic() # Configurações da IDE arquivo_configuracoes = funcoes.carregar_json("configuracoes/configuracoes.json") # Idioma que a safira está configurada idioma = arquivo_configuracoes['idioma'] interface_idioma = funcoes.carregar_json("configuracoes/interface.json") icon = PhotoImage(file='imagens/icone.png') bug = Bug(master, design, idioma, interface_idioma, icon) bug.interface() master.mainloop() def splash(): master = Tk() # Obter o Design de interfaces design = Design() design.update_design_dic() sp = Splash(design) sleep(5) sp.splash_fim() master.mainloop() root = Tk() fonts=list(tkFont.families()) for fonte in sorted(fonts): if 'mono' in fonte.lower(): print(fonte)
StarcoderdataPython
3351864
""" wav_prints.py ~~~~~~~~~~ A common collection of print statements for various file types """ import os import datetime import getpass import re #from reportlab.lib.enums import TA_JUSTIFY #from reportlab.lib.pagesizes import letter #from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image, Table, TableStyle, PageBreak, Flowable, PageTemplate, Frame #from reportlab.platypus.tableofcontents import TableOfContents #from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle #from reportlab.lib.units import inch, mm, cm #from reportlab.lib import colors #from reportlab.pdfgen import canvas #from reportlab.lib.utils import ImageReader # #class WavPrint(): # # ################################################ # def __init__(self): # pass # ################################################ def created_line(start=''): """Gets the username and date for creation info. 'start' is used to add any sort of comment string to the beginning of each line""" yr = datetime.date.today().strftime("%Y") day = datetime.date.today().strftime("%d") mon = datetime.date.today().strftime("%B") t = datetime.datetime.now().strftime("%H:%M:%S") user = getpass.getuser() cstring = start+'\n' #cstring = cstring+start+' Copyright (C) Wavious {0} - All Rights Reserved'.format(yr)+'\n'+start+'\n' #cstring = cstring+start+' Unauthorized copying of this file, via any medium is strictly prohibited\n'+start+'\n' cstring = cstring+start+' Created by {0}'.format(str(user))+' on {0}/{1}/{2} at {3}'.format(mon,day,yr,t)+'\n' cstring = cstring+start+'\n' return cstring ################################################ def print_verilog_c_script_header(extra=None): """Returns a verilog/C formatted 'header' for top of file descriptions User can pass 'extra' string if there is something they want to include in the header""" hstring = '' com = '//' dottedline = com+'===================================================================\n' hstring = dottedline create = created_line(start=com) hstring = hstring+create if extra: hstring = hstring+com+' '+extra+'\n'+com+'\n' hstring = hstring+dottedline hstring = hstring+'\n\n\n' return hstring ################################################# ## ___ ___ ___ ## | _ \ | \ | __| ## | _/ | |) | | _| ## |_| |___/ |_| ## ################################################# #class WavCanvas(canvas.Canvas): # """ # Adapted from http://code.activestate.com/recipes/576832/ # """ # def __init__(self, *args, **kwargs): # canvas.Canvas.__init__(self, *args, **kwargs) # self._saved_page_states = [] # # def showPage(self): # self._saved_page_states.append(dict(self.__dict__)) # self._startPage() # # def drawPageNumber(self, page_count): # self.setFont('Helvetica', 8) # self.drawRightString(21 * cm, 1 * cm, # 'Page %s / %s' % (self._pageNumber, page_count)) # def save(self): # num_pages = len(self._saved_page_states) # for state in self._saved_page_states: # self.__dict__.update(state) # self.drawPageNumber(num_pages) # canvas.Canvas.showPage(self) # canvas.Canvas.save(self) # ################################################# #class WavPDFLine(Flowable): # """Flowable class for drawing lines onto a PDF""" # def __init__(self, width=500, height=0): # Flowable.__init__(self) # self.width = width # self.height = height # # def __repr__(self): # return "Line(w=%s)" % self.width # # def draw(self): # self.canv.line(0, self.height, self.width, self.height) # # ################################################# #class WavDocTemplate(SimpleDocTemplate): # """Doc template we extend from to performa any special tasks, such as TOC""" # # def __init__(self, filename, **kw): # self.allowSplitting = 0 # SimpleDocTemplate.__init__(self, filename, **kw) # # def afterFlowable(self, flowable): # "Registers TOC entries." # if flowable.__class__.__name__ == 'Paragraph': # text = flowable.getPlainText() # style = flowable.style.name # if style == 'Heading1': # key = 'h1-%s' % self.seq.nextf('heading1') # self.canv.bookmarkPage(key) # text = re.sub('System:\s*', '', text) # self.notify('TOCEntry', (0, text, self.page, key)) # # if style == 'Heading2': # key = 'h2-%s' % self.seq.nextf('heading2') # self.canv.bookmarkPage(key) # text = re.sub('Register Block:\s*', '', text) # self.notify('TOCEntry', (1, text, self.page, key)) # # if style == 'Heading3': # key = 'h3-%s' % self.seq.nextf('heading3') # self.canv.bookmarkPage(key) # self.notify('TOCEntry', (2, text, self.page, key)) # ################################################# #class WavPDF: # """Class for PDF generation. Mainly used so we can do footers and headers a little bit # easier than ReportLab normally allows""" # # ############################## # def __init__(self, filename, *args, **kwargs): # self.filename = filename # self.doc = WavDocTemplate(self.filename, pagesize=letter, # rightMargin=30,leftMargin=30, # topMargin=30,bottomMargin=30) # # styles=getSampleStyleSheet() # # # if 'footer' in kwargs: # self.footer = kwargs['footer'] # else: # yr = datetime.date.today().strftime("%Y") # self.footer = ' Copyright (C) Wavious {0} - All Rights Reserved'.format(yr) # # if 'header' in kwargs: # self.header = kwargs['header'] # else: # self.header = '' # # if 'title' in kwargs: # self.title = kwargs['title'] # else: # self.title = None # # # # Coordinates for headers/footer # self.center_x = (self.doc.width + self.doc.leftMargin + self.doc.rightMargin) / 2 # self.top_y = self.doc.height + self.doc.topMargin # self.bottom_y = self.doc.bottomMargin - 2 # # # Headings for TableOfContents # self.toc = TableOfContents() # self.head1 = ParagraphStyle(name='Heading1', fontSize=14, leading=16) # self.head2 = ParagraphStyle(name='Heading2', fontSize=12, leading=14) # self.head3 = ParagraphStyle(name='Heading3', fontSize=12, leading=12) # #self.toc.levelStyles= [self.head1, self.head2, self.head3] # self.toc.levelStyles= [ # ParagraphStyle(fontSize=14, name='TOCHeading1', leftIndent=10, firstLineIndent=-20, spaceBefore=0, leading=14), # ParagraphStyle(fontSize=12, name='TOCHeading2', leftIndent=20, firstLineIndent=-20, spaceBefore=0, leading=12), # ParagraphStyle(fontSize=6, name='TOCHeading3', leftIndent=40, firstLineIndent=-20, spaceBefore=0, leading=2), # ] # # self.Story = [] # # if self.title: # self.Story.append(Spacer(1, 150)) # self.Story.append(Paragraph("<font size=14><b><i>{0}</i></b></font>".format(self.title), styles["Normal"])) # self.Story.append(PageBreak()) # # self.Story.append(self.toc) # self.Story.append(PageBreak()) # # ############################## # # First Page Headers/Footers # ############################## # def onMyFirstPage(self, canvas, doc): # canvas.saveState() # canvas.setFont('Helvetica', 8) # canvas.drawString(5*mm, self.bottom_y, "Confidential") # # if self.footer is not None: # canvas.drawCentredString(self.center_x, self.bottom_y, self.footer) # # #logo = ImageReader("/home/sbridges/wavious_logo.png") # #canvas.drawImage(logo, 3, self.top_y - 8, width=20*mm, height=10*mm, mask='auto') # canvas.restoreState() # # ############################## # # Remainder Page Headers/Footers # ############################## # def onMyLaterPages(self, canvas, doc): # canvas.saveState() # canvas.setFont('Helvetica', 8) # canvas.drawString(5*mm, self.bottom_y, "Confidential") # # if self.footer is not None: # canvas.drawCentredString(self.center_x, self.bottom_y, self.footer) # if self.header is not None: # w, h = (doc.width, doc.height) # canvas.drawCentredString(self.center_x,self.top_y, self.header) # # #logo = ImageReader("/home/sbridges/wavious_logo.png") # #canvas.drawImage(logo, 3, self.top_y - 8, width=20*mm, height=10*mm, mask='auto') # canvas.restoreState() # # ############################## # def who_made_me(self): # styles=getSampleStyleSheet() # user = getpass.getuser() # yr = datetime.date.today().strftime("%Y") # day = datetime.date.today().strftime("%d") # mon = datetime.date.today().strftime("%B") # t = datetime.datetime.now().strftime("%H:%M:%S") # when = '{0}/{1}/{2} at {3}'.format(mon,day,yr,t) # # s = "<font size=14>Filename: {0}\nGenerated By: {1}\nGenerated On: {2}</font>".format(self.filename, user, when) # # self.Story.append(PageBreak()) # self.Story.append(Spacer(1, 28)) # self.Story.append(Paragraph("<font size=14>Filename: <b>{0}</b></font>".format(self.filename), styles["Normal"])) # self.Story.append(Paragraph("<font size=14>Generated By: <b>{0}</b></font>".format(user), styles["Normal"])) # self.Story.append(Paragraph("<font size=14>Generated On: <b>{0}</b></font>".format(when), styles["Normal"])) # # # ############################## # def gen_pdf(self): # self.who_made_me() # #self.doc.multiBuild(self.Story, canvasmaker=WavCanvas, onFirstPage=self.onMyFirstPage, onLaterPages=self.onMyLaterPages) # self.doc.multiBuild(self.Story, onFirstPage=self.onMyFirstPage, onLaterPages=self.onMyLaterPages) # # # ################################################# #def wrap_font(s, size): # return "<font size={0}>{1}</font>".format(size, s) # ################################################# #def wrap_bold(s): # return "<b>{0}</b>".format(s)
StarcoderdataPython
1666194
# Import default libraries import pandas as pd import numpy as np import os import json import logging import argparse # Import custom libraries from modules.feature_extraction import * from modules.feature_preprocessing import * from modules.pipelines import * # Set debugging level (default DEBUG) logging.basicConfig(level=logging.INFO) # Initialize configuration dictionary config = { # Default configuration file 'config_file': './config.json' } # Load configuration settings from configuration file with open(config.get('config_file')) as config_file: config = json.load(config_file) # Parse arguments parser = argparse.ArgumentParser(description='Train a given model to predict LIP flag over aminoacidic sequences', prog='LIP learner') # Define protein PDB ID parser.add_argument('lip_file', help='FIle which contains LIP/non-LIP tagged aminoacidic sequence', type=str, action='store') # Define random seed # parser.add_argument('-rs', --'random_seed', help='Random seed used in training', type=int, action='store') # Define PDB ids to be excluded by computations parser.add_argument('-e', '--exclude', help='PDB to be excluded from training', action='append') # Define window size parser.add_argument('-ws', '--window_size', help='Size of the window used to average residues features', type=int, action='store') # Define a force command do overwrite ring files parser.add_argument('-rf', '--ring_force', help='Forces the program to download RING file relative to given PDB instance again', type=bool, action='store') # Define ring files download directory parser.add_argument('-rd', '--ring_dir', help='Folder where RING files will be downloaded', type=str, action='store') # Define pdb files download directory parser.add_argument('-pd', '--pdb_dir', help='Folder where PDB files will be downloaded', type=str, action='store') # Define configuration file to overwrite momentaniously overwrite the default one parser.add_argument('-cf', '--config_file', help='Define a custom configuration file, overwrites original parameters', type=str, action='store') # Parse arguments args = vars(parser.parse_args()) # Delete arguments which are None args = {k: v for k, v in args.items() if v is not None} # Check if there is a configuration file specified new_config_file = args.get('config_file') # Import config file if new_config_file: # Open new configuration file with open(new_config_file) as new_config_file: # Get new configuration file content new_config = json.load(new_config_file) # Merge content into the default configuration file config = {**config, **new_config} # Merge command line arguments into the config dictionary (they have highest priority) config = {**config, **args} # Debug logging.debug(config) # Train the model train_pipeline(config)
StarcoderdataPython
4804398
# Copyright 2020 MERA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import collections from deep_pavlov_wrapper import BertModel from flask import Flask, request, jsonify from flask_cors import CORS from flask_json_schema import JsonSchema, JsonValidationError app = Flask(__name__) schema = JsonSchema(app) CORS(app) embedding_schema = { 'type': 'object', 'properties': { 'text': {'type': 'string'} }, 'required': ['text'], } _model = None def get_model(): """Lazy loading of the model.""" global _model if _model is None: _model = BertModel() return _model @app.errorhandler(JsonValidationError) def validation_error(e): return jsonify({ 'error': e.message, 'errors': [validation_error.message for validation_error in e.errors] }), 400 @app.route("/embedding_generator", methods=["POST"]) @schema.validate(embedding_schema) def embedding_generator(): """Trainsform text to embedding.""" request_data = request.get_json() text = request_data['text'] emb = get_model().get_embeddings([text]) for k, v in emb.items(): emb[k] = v[0].tolist() return jsonify(emb), 200 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
StarcoderdataPython
70533
<gh_stars>10-100 #!/usr/bin/env python2.7 # Copyright 2016 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Script to check C and C++ file header guards. This script accepts a list of file or directory arguments. If a given path is a file, it runs the checker on it. If the path is a directory, it runs the checker on all files in that directory. In addition, this script checks for potential header guard collisions. This is useful since we munge / to _, and so lib/abc/xyz/xyz.h and lib/abc_xyz/xyz.h both want to use LIB_ABC_XYZ_XYZ_H_ as a header guard. """ import argparse import collections import fileinput import os.path import re import string import sys FUCHSIA_ROOT = os.path.dirname( # $root os.path.dirname( # scripts os.path.dirname( # style os.path.realpath( os.path.abspath(__file__))))) SYSROOT_PREFIXES = [ 'ZIRCON_SYSTEM_PUBLIC', 'ZIRCON_THIRD_PARTY_ULIB_MUSL_INCLUDE', ] sysroot_prefix = re.compile('^(' + string.join(SYSROOT_PREFIXES, '|') + ')_') PUBLIC_PREFIXES = [ 'ZIRCON_SYSTEM_ULIB_.*_INCLUDE', 'GARNET_PUBLIC', 'PERIDOT_PUBLIC', 'TOPAZ_PUBLIC', 'SDK' ] public_prefix = re.compile('^(' + string.join(PUBLIC_PREFIXES, '|') + ')_') all_header_guards = collections.defaultdict(list) pragma_once = re.compile('^#pragma once$') disallowed_header_characters = re.compile('[^a-zA-Z0-9_]') def adjust_for_location(header_guard): """Remove internal location prefix from public headers if applicable.""" # Remove public prefixes header_guard = public_prefix.sub('', header_guard, 1) # Replace sysroot prefixes header_guard = sysroot_prefix.sub('SYSROOT_', header_guard, 1) return header_guard def header_guard_from_path(path): """Compute the header guard from the path""" assert(path.startswith(FUCHSIA_ROOT)) relative_path = path[len(FUCHSIA_ROOT):].strip('/') upper_path = relative_path.upper() header_guard = re.sub(disallowed_header_characters, '_', upper_path) + '_' header_guard = adjust_for_location(header_guard) return header_guard def check_file(path, fix_guards=False): """Check whether the file has a correct header guard. A header guard can either be a #pragma once, or else a matching set of #ifndef PATH_TO_FILE_ #define PATH_TO_FILE_ ... #endif // PATH_TO_FILE_ preprocessor directives, where both '.' and '/' in the path are mapped to '_', and a trailing '_' is appended. In either the #pragma once case or the header guard case, it is assumed that there is no trailing or leading whitespace. """ # Only check .h files if path[-2:] != '.h': return True header_guard = header_guard_from_path(path) all_header_guards[header_guard].append(path) ifndef = re.compile('^#ifndef %s$' % header_guard) define = re.compile('^#define %s$' % header_guard) endif = re.compile('^#endif +// *%s$' % header_guard) found_pragma_once = False found_ifndef = False found_define = False found_endif = False with open(path, 'r') as f: for line in f.readlines(): match = pragma_once.match(line) if match: if found_pragma_once: print('%s contains multiple #pragma once' % path) return False found_pragma_once = True match = ifndef.match(line) if match: if found_ifndef: print('%s contains multiple ifndef header guards' % path) return False found_ifndef = True match = define.match(line) if match: if found_define: print('%s contains multiple define header guards' % path) return False found_define = True match = endif.match(line) if match: if found_endif: print('%s contains multiple endif header guards' % path) return False found_endif = True if found_pragma_once: if found_ifndef or found_define or found_endif: print('%s contains both #pragma once and header guards' % path) return False if not fix_guards: return True if found_ifndef and found_define and found_endif: return True if not found_ifndef: print('%s did not contain ifndef part of its header guard' % path) elif not found_define: print('%s did not contain define part of its header guard' % path) elif not found_endif: print('%s did not contain endif part of its header guard' % path) elif fix_guards: if found_pragma_once: print('%s contained #pragma once instead of a header guard' % path) else: print('%s did not contain a header guard or the header guard did ' 'not match the file path' % path) else: print('%s contained neither a proper header guard nor #pragma once' % path) header_guards_fixed = False if fix_guards: header_guards_fixed = fix_header_guard(path, header_guard) if not header_guards_fixed: print('Allowable header guard values are %s' % all_header_guards.keys()); return False def fix_header_guard(path, header_guard): """Attempt to fix the header guard in the given file.""" ifndef = re.compile('^#ifndef [^\s]+_H_$') define = re.compile('^#define [^\s]+_H_$') endif = re.compile('^#endif +// *[^\s]+_H_$') fixed_ifndef = False fixed_define = False fixed_endif = False fixed_pragma_once = False for line in fileinput.input(path, inplace=1): (new_line, changes) = re.subn(ifndef, '#ifndef %s' % header_guard, line) if changes: fixed_ifndef = True sys.stdout.write(new_line) continue (new_line, changes) = re.subn(define, '#define %s' % header_guard, line) if changes: fixed_define = True sys.stdout.write(new_line) continue (new_line, changes) = re.subn(endif, '#endif // %s' % header_guard, line) if changes: fixed_endif = True sys.stdout.write(new_line) continue if pragma_once.match(line): fixed_pragma_once = True sys.stdout.write('#ifndef %s\n' % header_guard) sys.stdout.write('#define %s\n' % header_guard) continue sys.stdout.write(line) if fixed_pragma_once: with open(path, 'a') as file: file.write('\n') file.write('#endif // %s\n' % header_guard) if (fixed_ifndef and fixed_define and fixed_endif) or fixed_pragma_once: print('Fixed!') return True print('Not fixed...') return False def check_dir(p, fix_guards=False): """Walk recursively over a directory checking .h files""" def prune(d): if d[0] == '.' or d == 'third_party': return True return False for root, dirs, paths in os.walk(p): # Prune dot directories like .git [dirs.remove(d) for d in list(dirs) if prune(d)] for path in paths: check_file(os.path.join(root, path), fix_guards=fix_guards) def check_collisions(): for header_guard, paths in all_header_guards.iteritems(): if len(paths) == 1: continue print('Multiple files could use %s as a header guard:' % header_guard) for path in paths: print(' %s' % path) def main(): parser = argparse.ArgumentParser() parser.add_argument('--fix', help='Correct wrong header guards', action='store_true') (arg_results, other_args) = parser.parse_known_args() fix_guards = arg_results.fix for p in other_args: p = os.path.realpath(os.path.abspath(p)) if os.path.isdir(p): check_dir(p, fix_guards=fix_guards) else: check_file(p, fix_guards=fix_guards) check_collisions() if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
51677
<reponame>canyon289/Theano-PyMC import numpy as np import theano import theano.tensor as tt import theano.typed_list from tests.tensor.utils import rand_ranged from theano import In from theano.typed_list.basic import Append, Extend, Insert, Remove, Reverse from theano.typed_list.type import TypedListType class TestInplace: def test_reverse_inplace(self): mySymbolicMatricesList = TypedListType( tt.TensorType(theano.config.floatX, (False, False)) )() z = Reverse()(mySymbolicMatricesList) m = theano.compile.mode.get_default_mode().including("typed_list_inplace_opt") f = theano.function( [In(mySymbolicMatricesList, borrow=True, mutable=True)], z, accept_inplace=True, mode=m, ) assert f.maker.fgraph.toposort()[0].op.inplace x = rand_ranged(-1000, 1000, [100, 101]) y = rand_ranged(-1000, 1000, [100, 101]) assert np.array_equal(f([x, y]), [y, x]) def test_append_inplace(self): mySymbolicMatricesList = TypedListType( tt.TensorType(theano.config.floatX, (False, False)) )() mySymbolicMatrix = tt.matrix() z = Append()(mySymbolicMatricesList, mySymbolicMatrix) m = theano.compile.mode.get_default_mode().including("typed_list_inplace_opt") f = theano.function( [ In(mySymbolicMatricesList, borrow=True, mutable=True), In(mySymbolicMatrix, borrow=True, mutable=True), ], z, accept_inplace=True, mode=m, ) assert f.maker.fgraph.toposort()[0].op.inplace x = rand_ranged(-1000, 1000, [100, 101]) y = rand_ranged(-1000, 1000, [100, 101]) assert np.array_equal(f([x], y), [x, y]) def test_extend_inplace(self): mySymbolicMatricesList1 = TypedListType( tt.TensorType(theano.config.floatX, (False, False)) )() mySymbolicMatricesList2 = TypedListType( tt.TensorType(theano.config.floatX, (False, False)) )() z = Extend()(mySymbolicMatricesList1, mySymbolicMatricesList2) m = theano.compile.mode.get_default_mode().including("typed_list_inplace_opt") f = theano.function( [ In(mySymbolicMatricesList1, borrow=True, mutable=True), mySymbolicMatricesList2, ], z, mode=m, ) assert f.maker.fgraph.toposort()[0].op.inplace x = rand_ranged(-1000, 1000, [100, 101]) y = rand_ranged(-1000, 1000, [100, 101]) assert np.array_equal(f([x], [y]), [x, y]) def test_insert_inplace(self): mySymbolicMatricesList = TypedListType( tt.TensorType(theano.config.floatX, (False, False)) )() mySymbolicIndex = tt.scalar(dtype="int64") mySymbolicMatrix = tt.matrix() z = Insert()(mySymbolicMatricesList, mySymbolicIndex, mySymbolicMatrix) m = theano.compile.mode.get_default_mode().including("typed_list_inplace_opt") f = theano.function( [ In(mySymbolicMatricesList, borrow=True, mutable=True), mySymbolicIndex, mySymbolicMatrix, ], z, accept_inplace=True, mode=m, ) assert f.maker.fgraph.toposort()[0].op.inplace x = rand_ranged(-1000, 1000, [100, 101]) y = rand_ranged(-1000, 1000, [100, 101]) assert np.array_equal(f([x], np.asarray(1, dtype="int64"), y), [x, y]) def test_remove_inplace(self): mySymbolicMatricesList = TypedListType( tt.TensorType(theano.config.floatX, (False, False)) )() mySymbolicMatrix = tt.matrix() z = Remove()(mySymbolicMatricesList, mySymbolicMatrix) m = theano.compile.mode.get_default_mode().including("typed_list_inplace_opt") f = theano.function( [ In(mySymbolicMatricesList, borrow=True, mutable=True), In(mySymbolicMatrix, borrow=True, mutable=True), ], z, accept_inplace=True, mode=m, ) assert f.maker.fgraph.toposort()[0].op.inplace x = rand_ranged(-1000, 1000, [100, 101]) y = rand_ranged(-1000, 1000, [100, 101]) assert np.array_equal(f([x, y], y), [x]) def test_constant_folding(): m = tt.ones((1,), dtype="int8") l = theano.typed_list.make_list([m, m]) f = theano.function([], l) topo = f.maker.fgraph.toposort() assert len(topo) assert isinstance(topo[0].op, theano.compile.ops.DeepCopyOp) assert f() == [1, 1]
StarcoderdataPython
48913
<filename>pipy/tests/test_utils.py import pandas as pd from pipy.pipeline.utils import combine_series def test_combine_series(): s1 = pd.Series(dict(zip("AB", (1, 2)))) s2 = pd.Series(dict(zip("BC", (20, 30)))) s3 = combine_series(s1, s2) pd.testing.assert_series_equal(s3, pd.Series({"A": 1, "B": 20, "C": 30}))
StarcoderdataPython