id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
150961
import re patterns = ["term1", "term2"] text = "This is a string with term1, not the other" split_term = "@" email = "<EMAIL>" # for pattern in patterns: # print("I'm searching for: " + pattern) # # if re.search(pattern, text): # print("MATCH!") # else: # print("NO MATCH!") print(re.split(split_term, email)) # email.split("@") # print(match.start()) print(re.findall("match", "test phrase match in match middle")) def multi_re_find(patterns, phrase): for pat in patterns: print("Searching for pattern {}".format(pat)) print(re.findall(pat, phrase)) print("\n") # test_phrase = "sdsd..sssddd..sdddsddd...dsds...dssssss...sddddd" # test_patterns = ["s[sd]+"] # test_phrase = "This is a string! But it has punctuation. How can we remove it?" # test_patterns = ["[^!.?]+"] # test_patterns = ["[A-Z]+"] test_phrase = "This is a string with numbers 12312 and a symbol #hashtag" # d - digits # D - non-digits # s - whitespace # S - non-whitespace # w - alphanumeric characters # W - non-alphanumeric characters test_patterns = [r"\W+"] multi_re_find(test_patterns, test_phrase)
StarcoderdataPython
3285420
class Solution: def judgeCircle(self, moves: str) -> bool: U, D, L, R = moves.count('U'), moves.count('D'), moves.count('L'), moves.count('R') if U == D and L == R: return True else: return False
StarcoderdataPython
3237865
<filename>lingofunk_classify_sentiment/model/naive_bayes/preprocess.py import itertools import re from nltk.collocations import BigramCollocationFinder from nltk.corpus import stopwords from nltk.metrics import BigramAssocMeasures from nltk.tokenize import word_tokenize def tokenize(text): """Splits a text to words, separates by space and punctuation, converts to lowercase.""" return map(lambda token: token.lower(), re.findall(r"[\w']+|[.,!?;-]", text)) def remove_stopwords_and_include_bigrams( text, score_fn=BigramAssocMeasures.chi_sq, n_bigrams=500 ): stopset = set(stopwords.words("english")) words = [word for word in tokenize(text) if word not in stopset] bigram_finder = BigramCollocationFinder.from_words(words) bigrams = bigram_finder.nbest(score_fn, n_bigrams) return dict([(ngram, True) for ngram in itertools.chain(words, bigrams)])
StarcoderdataPython
89772
<gh_stars>0 # # Copyright (C) Analytics Engines 2021 # <NAME> (<EMAIL>) # import pandas as pd import streamlit as st st.set_page_config(layout="wide") import requests import streamlit_bd_cytoscapejs from common import login,init_state,base_url,format_request,local_css init_state(['jwt','login_request']) local_css("colorful.css") st.markdown(""" # Login """) user_name = st.text_input('Username','<EMAIL>') password = st.text_input('Password','<PASSWORD>!',type='password') jwt_output = st.empty() st.button('Click To Login',on_click=lambda: login(user_name,password)) st.write("Login HTTP Request will appear below on click") st.markdown(st.session_state.login_request,unsafe_allow_html=True) st.write({"jwt" : st.session_state.jwt})
StarcoderdataPython
1700020
import sys with open(sys.argv[1]) as input_file: for problem in input_file.readlines(): print(problem.strip().split(' ')[-2])
StarcoderdataPython
3286564
<gh_stars>1-10 # -*- coding: utf-8 -*- import xbmc import xbmcgui import time import threading import traceback MONITOR = None class BaseFunctions: xmlFile = '' path = '' theme = '' res = '720p' width = 1280 height = 720 usesGenerate = False def __init__(self): self.isOpen = True def onWindowFocus(self): # Not automatically called. Can be used by an external window manager pass def onClosed(self): pass @classmethod def open(cls, **kwargs): window = cls(cls.xmlFile, cls.path, cls.theme, cls.res, **kwargs) window.modal() return window @classmethod def create(cls, show=True, **kwargs): window = cls(cls.xmlFile, cls.path, cls.theme, cls.res, **kwargs) if show: window.show() window.isOpen = True return window def modal(self): self.isOpen = True self.doModal() self.onClosed() self.isOpen = False def activate(self): if not self._winID: self._winID = xbmcgui.getCurrentWindowId() xbmc.executebuiltin('ReplaceWindow({0})'.format(self._winID)) def mouseXTrans(self, val): return int((val / self.getWidth()) * self.width) def mouseYTrans(self, val): return int((val / self.getHeight()) * self.height) def closing(self): return self._closing @classmethod def generate(self): return None def setProperties(self, prop_list, val_list_or_val): if isinstance(val_list_or_val, list) or isinstance(val_list_or_val, tuple): val_list = val_list_or_val else: val_list = [val_list_or_val] * len(prop_list) for prop, val in zip(prop_list, val_list): self.setProperty(prop, val) def propertyContext(self, prop, val='1'): return WindowProperty(self, prop, val) def setBoolProperty(self, key, boolean): self.setProperty(key, boolean and '1' or '') class BaseWindow(xbmcgui.WindowXML, BaseFunctions): def __init__(self, *args, **kwargs): BaseFunctions.__init__(self) self._closing = False self._winID = None self.started = False self.finishedInit = False def onInit(self): self._winID = xbmcgui.getCurrentWindowId() if self.started: self.onReInit() else: self.started = True self.onFirstInit() self.finishedInit = True def onFirstInit(self): pass def onReInit(self): pass def setProperty(self, key, value): if self._closing: return if not self._winID: self._winID = xbmcgui.getCurrentWindowId() try: xbmcgui.Window(self._winID).setProperty(key, value) xbmcgui.WindowXML.setProperty(self, key, value) except RuntimeError: xbmc.log('kodigui.BaseWindow.setProperty: Missing window', xbmc.LOGDEBUG) def doClose(self): if not self.isOpen: return self._closing = True self.isOpen = False self.close() def show(self): self._closing = False self.isOpen = True xbmcgui.WindowXML.show(self) def onClosed(self): pass class BaseDialog(xbmcgui.WindowXMLDialog, BaseFunctions): def __init__(self, *args, **kwargs): BaseFunctions.__init__(self) self._closing = False self._winID = '' self.started = False def onInit(self): self._winID = xbmcgui.getCurrentWindowDialogId() if self.started: self.onReInit() else: self.started = True self.onFirstInit() def onFirstInit(self): pass def onReInit(self): pass def setProperty(self, key, value): if self._closing: return if not self._winID: self._winID = xbmcgui.getCurrentWindowId() try: xbmcgui.Window(self._winID).setProperty(key, value) xbmcgui.WindowXMLDialog.setProperty(self, key, value) except RuntimeError: xbmc.log('kodigui.BaseDialog.setProperty: Missing window', xbmc.LOGDEBUG) def doClose(self): self._closing = True self.close() def show(self): self._closing = False xbmcgui.WindowXMLDialog.show(self) def onClosed(self): pass class ControlledBase: def doModal(self): self.show() self.wait() def wait(self): while not self._closing and not MONITOR.waitForAbort(0.1): pass def close(self): self._closing = True class ControlledWindow(ControlledBase, BaseWindow): def onAction(self, action): try: if action in (xbmcgui.ACTION_PREVIOUS_MENU, xbmcgui.ACTION_NAV_BACK): self.doClose() return except: traceback.print_exc() BaseWindow.onAction(self, action) class ControlledDialog(ControlledBase, BaseDialog): def onAction(self, action): try: if action in (xbmcgui.ACTION_PREVIOUS_MENU, xbmcgui.ACTION_NAV_BACK): self.doClose() return except: traceback.print_exc() BaseDialog.onAction(self, action) DUMMY_LIST_ITEM = xbmcgui.ListItem() class ManagedListItem(object): def __init__(self, label='', label2='', iconImage='', thumbnailImage='', path='', data_source=None, properties=None): self._listItem = xbmcgui.ListItem(label, label2, iconImage, thumbnailImage, path) self.dataSource = data_source self.properties = {} self.label = label self.label2 = label2 self.iconImage = iconImage self.thumbnailImage = thumbnailImage self.path = path self._ID = None self._manager = None self._valid = True if properties: for k, v in properties.items(): self.setProperty(k, v) def __nonzero__(self): return self._valid @property def listItem(self): if not self._listItem: if not self._manager: return None try: self._listItem = self._manager.getListItemFromManagedItem(self) except RuntimeError: return None return self._listItem def invalidate(self): self._valid = False self._listItem = DUMMY_LIST_ITEM def _takeListItem(self, manager, lid): self._manager = manager self._ID = lid self._listItem.setProperty('__ID__', lid) li = self._listItem self._listItem = None self._manager._properties.update(self.properties) return li def _updateListItem(self): self.listItem.setProperty('__ID__', self._ID) self.listItem.setLabel(self.label) self.listItem.setLabel2(self.label2) self.listItem.setIconImage(self.iconImage) self.listItem.setThumbnailImage(self.thumbnailImage) self.listItem.setPath(self.path) for k in self._manager._properties.keys(): self.listItem.setProperty(k, self.properties.get(k) or '') def clear(self): self.label = '' self.label2 = '' self.iconImage = '' self.thumbnailImage = '' self.path = '' for k in self.properties: self.properties[k] = '' self._updateListItem() def pos(self): if not self._manager: return None return self._manager.getManagedItemPosition(self) def addContextMenuItems(self, items, replaceItems=False): self.listItem.addContextMenuItems(items, replaceItems) def addStreamInfo(self, stype, values): self.listItem.addStreamInfo(stype, values) def getLabel(self): return self.label def getLabel2(self): return self.label2 def getProperty(self, key): return self.properties.get(key, '') def getdescription(self): return self.listItem.getdescription() def getduration(self): return self.listItem.getduration() def getfilename(self): return self.listItem.getfilename() def isSelected(self): return self.listItem.isSelected() def select(self, selected): return self.listItem.select(selected) def setArt(self, values): return self.listItem.setArt(values) def setIconImage(self, icon): self.iconImage = icon return self.listItem.setIconImage(icon) def setInfo(self, itype, infoLabels): return self.listItem.setInfo(itype, infoLabels) def setLabel(self, label): self.label = label return self.listItem.setLabel(label) def setLabel2(self, label): self.label2 = label return self.listItem.setLabel2(label) def setMimeType(self, mimetype): return self.listItem.setMimeType(mimetype) def setPath(self, path): self.path = path return self.listItem.setPath(path) def setProperty(self, key, value): if self._manager: self._manager._properties[key] = 1 self.properties[key] = value self.listItem.setProperty(key, value) return self def setBoolProperty(self, key, boolean): return self.setProperty(key, boolean and '1' or '') def setSubtitles(self, subtitles): return self.listItem.setSubtitles(subtitles) # List of strings - HELIX def setThumbnailImage(self, thumb): self.thumbnailImage = thumb return self.listItem.setThumbnailImage(thumb) def onDestroy(self): pass class ManagedControlList(object): def __init__(self, window, control_id, max_view_index, data_source=None): self.controlID = control_id self.control = window.getControl(control_id) self.items = [] self._sortKey = None self._idCounter = 0 self._maxViewIndex = max_view_index self._properties = {} self.dataSource = data_source def __getattr__(self, name): return getattr(self.control, name) def __getitem__(self, idx): if isinstance(idx, slice): return self.items[idx] else: return self.getListItem(idx) def __iter__(self): for i in self.items: yield i def __len__(self): return self.size() def _updateItems(self, bottom=None, top=None): if bottom is None: bottom = 0 top = self.size() try: for idx in range(bottom, top): li = self.control.getListItem(idx) mli = self.items[idx] self._properties.update(mli.properties) mli._manager = self mli._listItem = li mli._updateListItem() except RuntimeError: xbmc.log('kodigui.ManagedControlList._updateItems: Runtime error', xbmc.LOGNOTICE) return False return True def _nextID(self): self._idCounter += 1 return str(self._idCounter) def reInit(self, window, control_id): self.controlID = control_id self.control = window.getControl(control_id) self.control.addItems([i._takeListItem(self, self._nextID()) for i in self.items]) def setSort(self, sort): self._sortKey = sort def addItem(self, managed_item): self.items.append(managed_item) self.control.addItem(managed_item._takeListItem(self, self._nextID())) def addItems(self, managed_items): self.items += managed_items self.control.addItems([i._takeListItem(self, self._nextID()) for i in managed_items]) def replaceItem(self, pos, mli): self[pos].onDestroy() self[pos].invalidate() self.items[pos] = mli li = self.control.getListItem(pos) mli._manager = self mli._listItem = li mli._updateListItem() def replaceItems(self, managed_items): if not self.items: self.addItems(managed_items) return True oldSize = self.size() for i in self.items: i.onDestroy() i.invalidate() self.items = managed_items size = self.size() if size != oldSize: pos = self.getSelectedPosition() if size > oldSize: for i in range(0, size - oldSize): self.control.addItem(xbmcgui.ListItem()) elif size < oldSize: diff = oldSize - size idx = oldSize - 1 while diff: self.control.removeItem(idx) idx -= 1 diff -= 1 if self.positionIsValid(pos): self.selectItem(pos) elif pos >= size: self.selectItem(size - 1) self._updateItems(0, self.size()) def getListItem(self, pos): li = self.control.getListItem(pos) mli = self.items[pos] mli._listItem = li return mli def getListItemByDataSource(self, data_source): for mli in self: if data_source == mli.dataSource: return mli return None def getSelectedItem(self): pos = self.control.getSelectedPosition() if not self.positionIsValid(pos): pos = self.size() - 1 if pos < 0: return None return self.getListItem(pos) def removeItem(self, index): old = self.items.pop(index) old.onDestroy() old.invalidate() self.control.removeItem(index) top = self.control.size() - 1 if top < 0: return if top < index: index = top self.control.selectItem(index) def removeManagedItem(self, mli): self.removeItem(mli.pos()) def insertItem(self, index, managed_item): pos = self.getSelectedPosition() + 1 if index >= self.size() or index < 0: self.addItem(managed_item) else: self.items.insert(index, managed_item) self.control.addItem(managed_item._takeListItem(self, self._nextID())) self._updateItems(index, self.size()) if self.positionIsValid(pos): self.selectItem(pos) def moveItem(self, mli, dest_idx): source_idx = mli.pos() if source_idx < dest_idx: rstart = source_idx rend = dest_idx + 1 # dest_idx-=1 else: rstart = dest_idx rend = source_idx + 1 mli = self.items.pop(source_idx) self.items.insert(dest_idx, mli) self._updateItems(rstart, rend) def swapItems(self, pos1, pos2): if not self.positionIsValid(pos1) or not self.positionIsValid(pos2): return False item1 = self.items[pos1] item2 = self.items[pos2] li1 = item1._listItem li2 = item2._listItem item1._listItem = li2 item2._listItem = li1 item1._updateListItem() item2._updateListItem() self.items[pos1] = item2 self.items[pos2] = item1 return True def shiftView(self, shift, hold_selected=False): if not self._maxViewIndex: return selected = self.getSelectedItem() selectedPos = selected.pos() viewPos = self.getViewPosition() if shift > 0: pushPos = selectedPos + (self._maxViewIndex - viewPos) + shift if pushPos >= self.size(): pushPos = self.size() - 1 self.selectItem(pushPos) newViewPos = self._maxViewIndex elif shift < 0: pushPos = (selectedPos - viewPos) + shift if pushPos < 0: pushPos = 0 self.selectItem(pushPos) newViewPos = 0 if hold_selected: self.selectItem(selected.pos()) else: diff = newViewPos - viewPos fix = pushPos - diff # print '{0} {1} {2}'.format(newViewPos, viewPos, fix) if self.positionIsValid(fix): self.selectItem(fix) def reset(self): self.dataSource = None for i in self.items: i.onDestroy() i.invalidate() self.items = [] self.control.reset() def size(self): return len(self.items) def getViewPosition(self): try: return int(xbmc.getInfoLabel('Container({0}).Position'.format(self.controlID))) except: return 0 def getViewRange(self): viewPosition = self.getViewPosition() selected = self.getSelectedPosition() return range(max(selected - viewPosition, 0), min(selected + (self._maxViewIndex - viewPosition) + 1, self.size() - 1)) def positionIsValid(self, pos): return 0 <= pos < self.size() def sort(self, sort=None, reverse=False): sort = sort or self._sortKey self.items.sort(key=sort, reverse=reverse) self._updateItems(0, self.size()) def reverse(self): self.items.reverse() self._updateItems(0, self.size()) def getManagedItemPosition(self, mli): return self.items.index(mli) def getListItemFromManagedItem(self, mli): pos = self.items.index(mli) return self.control.getListItem(pos) def topHasFocus(self): return self.getSelectedPosition() == 0 def bottomHasFocus(self): return self.getSelectedPosition() == self.size() - 1 def invalidate(self): for item in self.items: item._listItem = DUMMY_LIST_ITEM def newControl(self, window=None, control_id=None): self.controlID = control_id or self.controlID self.control = window.getControl(self.controlID) self.control.addItems([xbmcgui.ListItem() for i in range(self.size())]) self._updateItems() class _MWBackground(ControlledWindow): def __init__(self, *args, **kwargs): self._multiWindow = kwargs.get('multi_window') self.started = False BaseWindow.__init__(self, *args, **kwargs) def onInit(self): if self.started: return self.started = True self._multiWindow._open() self.close() class MultiWindow(object): def __init__(self, windows=None, default_window=None, **kwargs): self._windows = windows self._next = default_window or self._windows[0] self._properties = {} self._current = None self._allClosed = False self.exitCommand = None def __getattr__(self, name): return getattr(self._current, name) def setWindows(self, windows): self._windows = windows def setDefault(self, default): self._next = default or self._windows[0] def windowIndex(self, window): if hasattr(window, 'MULTI_WINDOW_ID'): for i, w in enumerate(self._windows): if window.MULTI_WINDOW_ID == w.MULTI_WINDOW_ID: return i return 0 else: return self._windows.index(window.__class__) def nextWindow(self, window=None): if window is False: window = self._windows[self.windowIndex(self._current)] if window: if window.__class__ == self._current.__class__: return None else: idx = self.windowIndex(self._current) idx += 1 if idx >= len(self._windows): idx = 0 window = self._windows[idx] self._next = window self._current.doClose() return self._next def _setupCurrent(self, cls): self._current = cls(cls.xmlFile, cls.path, cls.theme, cls.res) self._current.onFirstInit = self._onFirstInit self._current.onReInit = self.onReInit self._current.onClick = self.onClick self._current.onFocus = self.onFocus self._currentOnAction = self._current.onAction self._current.onAction = self.onAction @classmethod def open(cls, **kwargs): mw = cls(**kwargs) b = _MWBackground(mw.bgXML, mw.path, mw.theme, mw.res, multi_window=mw) b.modal() del b import gc gc.collect(2) return mw def _open(self): while not xbmc.abortRequested and not self._allClosed: self._setupCurrent(self._next) self._current.modal() self._current.doClose() del self._current del self._next del self._currentOnAction def setProperty(self, key, value): self._properties[key] = value self._current.setProperty(key, value) def _onFirstInit(self): for k, v in self._properties.items(): self._current.setProperty(k, v) self.onFirstInit() def doClose(self): self._allClosed = True self._current.doClose() def onFirstInit(self): pass def onReInit(self): pass def onAction(self, action): if action == xbmcgui.ACTION_PREVIOUS_MENU or action == xbmcgui.ACTION_NAV_BACK: self.doClose() self._currentOnAction(action) def onClick(self, controlID): pass def onFocus(self, controlID): pass class SafeControlEdit(object): CHARS_LOWER = 'abcdefghijklmnopqrstuvwxyz' CHARS_UPPER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' CHARS_NUMBERS = '0123456789' CURSOR = '[COLOR FFCC7B19]|[/COLOR]' def __init__(self, control_id, label_id, window, key_callback=None, grab_focus=False): self.controlID = control_id self.labelID = label_id self._win = window self._keyCallback = key_callback self.grabFocus = grab_focus self._text = '' self._compatibleMode = False self.setup() def setup(self): self._labelControl = self._win.getControl(self.labelID) self._winOnAction = self._win.onAction self._win.onAction = self.onAction self.updateLabel() def setCompatibleMode(self, on): self._compatibleMode = on def onAction(self, action): try: controlID = self._win.getFocusId() if controlID == self.controlID: if self.processAction(action.getId()): return elif self.grabFocus: if self.processOffControlAction(action.getButtonCode()): self._win.setFocusId(self.controlID) return except: traceback.print_exc() self._winOnAction(action) def processAction(self, action_id): if not self._compatibleMode: self._text = self._win.getControl(self.controlID).getText() if self._keyCallback: self._keyCallback() self. updateLabel() return True if 61793 <= action_id <= 61818: # Lowercase self.processChar(self.CHARS_LOWER[action_id - 61793]) elif 61761 <= action_id <= 61786: # Uppercase self.processChar(self.CHARS_UPPER[action_id - 61761]) elif 61744 <= action_id <= 61753: self.processChar(self.CHARS_NUMBERS[action_id - 61744]) elif action_id == 61728: # Space self.processChar(' ') elif action_id == 61448: self.delete() else: return False if self._keyCallback: self._keyCallback() return True def processOffControlAction(self, action_id): if 61505 <= action_id <= 61530: # Lowercase self.processChar(self.CHARS_LOWER[action_id - 61505]) elif 192577 <= action_id <= 192602: # Uppercase self.processChar(self.CHARS_UPPER[action_id - 192577]) elif 61488 <= action_id <= 61497: self.processChar(self.CHARS_NUMBERS[action_id - 61488]) elif 61552 <= action_id <= 61561: self.processChar(self.CHARS_NUMBERS[action_id - 61552]) elif action_id == 61472: # Space self.processChar(' ') else: return False if self._keyCallback: self._keyCallback() return True def _setText(self, text): self._text = text if not self._compatibleMode: self._win.getControl(self.controlID).setText(text) self.updateLabel() def _getText(self): if not self._compatibleMode and self._win.getFocusId() == self.controlID: return self._win.getControl(self.controlID).getText() else: return self._text def updateLabel(self): self._labelControl.setLabel(self._getText() + self.CURSOR) def processChar(self, char): self._setText(self.getText() + char) def setText(self, text): self._setText(text) def getText(self): return self._getText() def append(self, text): self._setText(self.getText() + text) def delete(self): self._setText(self.getText()[:-1]) class PropertyTimer(): def __init__(self, window_id, timeout, property_, value='', init_value='1', addon_id=None, callback=None): self._winID = window_id self._timeout = timeout self._property = property_ self._value = value self._initValue = init_value self._endTime = 0 self._thread = None self._addonID = addon_id self._closeWin = None self._closed = False self._callback = callback def _onTimeout(self): self._endTime = 0 xbmcgui.Window(self._winID).setProperty(self._property, self._value) if self._addonID: xbmcgui.Window(10000).setProperty('{0}.{1}'.format(self._addonID, self._property), self._value) if self._closeWin: self._closeWin.doClose() if self._callback: self._callback() def _wait(self): while not xbmc.abortRequested and time.time() < self._endTime: xbmc.sleep(100) if xbmc.abortRequested: return if self._endTime == 0: return self._onTimeout() def _stopped(self): return not self._thread or not self._thread.isAlive() def _reset(self): self._endTime = time.time() + self._timeout def _start(self): self.init(self._initValue) self._thread = threading.Thread(target=self._wait) self._thread.start() def stop(self, trigger=False): self._endTime = trigger and 1 or 0 if not self._stopped(): self._thread.join() def close(self): self._closed = True self.stop() def init(self, val): if val is False: return elif val is None: val = self._initValue xbmcgui.Window(self._winID).setProperty(self._property, val) if self._addonID: xbmcgui.Window(10000).setProperty('{0}.{1}'.format(self._addonID, self._property), val) def reset(self, close_win=None, init=None): self.init(init) if self._closed: return if not self._timeout: return self._closeWin = close_win self._reset() if self._stopped: self._start() class WindowProperty(): def __init__(self, win, prop, val='1', end=None): self.win = win self.prop = prop self.val = val self.end = end self.old = self.win.getProperty(self.prop) def __enter__(self): self.win.setProperty(self.prop, self.val) return self def __exit__(self, exc_type, exc_value, traceback): self.win.setProperty(self.prop, self.end or self.old) class GlobalProperty(): def __init__(self, prop, val='1', end=None): import xbmcaddon self._addonID = xbmcaddon.Addon().getAddonInfo('id') self.prop = prop self.val = val self.end = end self.old = xbmc.getInfoLabel('Window(10000).Property({0}}.{1})'.format(self._addonID, prop)) def __enter__(self): xbmcgui.Window(10000).setProperty('{0}.{1}'.format(self._addonID, self.prop), self.val) return self def __exit__(self, exc_type, exc_value, traceback): xbmcgui.Window(10000).setProperty('{0}.{1}'.format(self._addonID, self.prop), self.end or self.old)
StarcoderdataPython
1661271
# Generated by Django 2.1.2 on 2018-10-20 11:56 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('incidentes', '0003_auto_20181020_0817'), ] operations = [ migrations.RenameField( model_name='ticket', old_name='grupo', new_name='grupo_destino', ), migrations.AlterField( model_name='ticket', name='equipo', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='incidentes.Equipos'), ), migrations.RemoveField( model_name='usuario', name='grupo', ), migrations.AddField( model_name='usuario', name='grupo', field=models.ManyToManyField(to='incidentes.Grupo'), ), ]
StarcoderdataPython
109783
<filename>codebase_analizer/project.py import os import shutil import tempfile from contextlib import contextmanager # Python 2/3 compatibility from builtins import object class Project(object): def __init__(self, project_location): self._project_location = project_location self._tmpdir = tempfile.gettempdir() @property def should_be_clonned(self): return self._project_location.startswith('http') @property def name(self): project_name = self._project_location.split('/')[-1] if self.should_be_clonned: # Truncate .git postfix project_name = project_name.split('.git')[0] return project_name @property def path(self): if self.should_be_clonned: # Return path where projects are cloned return os.path.join(self._tmpdir, self.name) return self._project_location @contextmanager def open(self): """Open project and return its path. Clone the project if needed but clean after yourself. """ if self.should_be_clonned: self._clone() yield self.path # Remove clonned project - # user should not store folders he don't know about. self._remove() else: yield self.path def _clone(self): assert self.should_be_clonned os.system('git clone {repo_url} {directory}'.format( repo_url=self._project_location, directory=self.path )) def _remove(self): shutil.rmtree(self.path)
StarcoderdataPython
1651950
<reponame>antoine-moulin/rlberry import logging import gym.spaces as spaces import numpy as np from rlberry.agents import IncrementalAgent from rlberry.agents.adaptiveql.tree import MDPTreePartition from rlberry.utils.writers import PeriodicWriter logger = logging.getLogger(__name__) class AdaMBAgent(IncrementalAgent): """ Model-Based Reinforcement Learning with Adaptive Partitioning [1]_ .. warning:: TO BE IMPLEMENTED, initially for enviroments with continuous (Box) states and **discrete actions**. Parameters ---------- env : gym.Env Environment with discrete states and actions. n_episodes : int Number of episodes gamma : double, default: 1.0 Discount factor in [0, 1]. horizon : int Horizon of the objective function. bonus_scale_factor : double, default: 1.0 Constant by which to multiply the exploration bonus, controls the level of exploration. bonus_type : {"simplified_bernstein"} Type of exploration bonus. Currently, only "simplified_bernstein" is implemented. References ---------- .. [1] <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2020). Adaptive Discretization for Model-Based Reinforcement Learning. arXiv preprint arXiv:2007.00717. Notes ------ Uses the metric induced by the l-infinity norm. """ name = 'AdaMBAgent' def __init__(self, env, n_episodes=1000, gamma=1.0, horizon=50, bonus_scale_factor=1.0, bonus_type="simplified_bernstein", **kwargs): IncrementalAgent.__init__(self, env, **kwargs) assert isinstance(self.env.observation_space, spaces.Box) assert isinstance(self.env.action_space, spaces.Discrete) self.n_episodes = n_episodes self.gamma = gamma self.horizon = horizon self.bonus_scale_factor = bonus_scale_factor self.bonus_type = bonus_type # maximum value r_range = self.env.reward_range[1] - self.env.reward_range[0] if r_range == np.inf or r_range == 0.0: logger.warning("{}: Reward range is zero or infinity. ".format(self.name) + "Setting it to 1.") r_range = 1.0 self.v_max = np.zeros(self.horizon) self.v_max[-1] = r_range for hh in reversed(range(self.horizon-1)): self.v_max[hh] = r_range + self.gamma*self.v_max[hh+1] self.reset() def reset(self): # stores Q function and MDP model. self.model = MDPTreePartition(self.env.observation_space, self.env.action_space, self.horizon) # info self._rewards = np.zeros(self.n_episodes) self.episode = 0 # default writer self.writer = PeriodicWriter(self.name, log_every=5*logger.getEffectiveLevel()) def policy(self, observation, hh=0, **kwargs): return 0 def _update(self, node, state, action, next_state, reward, hh): pass def _compute_bonus(self, n, hh): if self.bonus_type == "simplified_bernstein": bonus = self.bonus_scale_factor * np.sqrt(1.0 / n) + self.v_max[hh] / n bonus = min(bonus, self.v_max[hh]) return bonus else: raise ValueError( "Error: bonus type {} not implemented".format(self.bonus_type)) def _run_episode(self): # interact for H steps episode_rewards = 0 state = self.env.reset() for hh in range(self.horizon): action = 0 # TODO next_state, reward, done, _ = self.env.step(action) episode_rewards += reward # self._update(node, state, action, next_state, reward, hh) state = next_state if done: break # update info ep = self.episode self._rewards[ep] = episode_rewards self.episode += 1 # writer if self.writer is not None: self.writer.add_scalar("ep reward", episode_rewards, self.episode) # return sum of rewards collected in the episode return episode_rewards def partial_fit(self, fraction, **kwargs): assert 0.0 < fraction <= 1.0 n_episodes_to_run = int(np.ceil(fraction*self.n_episodes)) count = 0 while count < n_episodes_to_run and self.episode < self.n_episodes: self._run_episode() count += 1 info = {"n_episodes": self.episode, "episode_rewards": self._rewards[:self.episode]} return info if __name__ == '__main__': from rlberry.envs.benchmarks.ball_exploration.ball2d import get_benchmark_env env = get_benchmark_env(level=2) agent = AdaMBAgent(env, n_episodes=50, horizon=30) agent.fit() agent.policy(env.observation_space.sample())
StarcoderdataPython
16977
import os, time, mimetypes, glob from django.utils.translation import gettext_lazy as _ from django.urls import reverse from task.const import * from task.models import Task, detect_group from rusel.base.config import Config from rusel.base.forms import CreateGroupForm from rusel.context import get_base_context from rusel.utils import extract_get_params class Context: def set_config(self, config, cur_view): self.config = Config(config, cur_view) def get_app_context(self, user_id, search_qty=None, icon=None, nav_items=None, **kwargs): context = {} if hasattr(self, 'object') and self.object: title = self.object.name else: if 'title' in kwargs: title = kwargs['title'] else: title = _(self.config.title).capitalize() nav_item = None if (Task.get_nav_role(self.config.app) != self.config.get_cur_role()): nav_item = Task.get_active_nav_item(user_id, self.config.app) if nav_item: title = (title, nav_item.name) context['nav_item'] = nav_item context.update(get_base_context(self.request, self.config.app, self.config.get_cur_role(), self.config.cur_view_group, (hasattr(self, 'object') and self.object != None), title, icon=icon)) context['fix_list'] = self.get_fixes(self.config.views, search_qty) context['group_form'] = CreateGroupForm() context['config'] = self.config context['params'] = extract_get_params(self.request, self.config.group_entity) if nav_items: context['nav_items'] = nav_items context['add_item_placeholder'] = '{} {}'.format(_('add').capitalize(), self.config.item_name if self.config.item_name else self.config.get_cur_role()) if self.config.add_button: context['add_item_template'] = 'base/add_item_button.html' else: context['add_item_template'] = 'base/add_item_input.html' if (self.config.group_entity in self.request.GET): context['current_group'] = self.request.GET[self.config.group_entity] elif ('ret' in self.request.GET): context['current_group'] = self.request.GET['ret'] return context def get_sorts(self, sorts): ret = [] for sort in sorts: ret.append({'id': sort[0], 'name': _(sort[1]).capitalize()}) return ret def get_fixes(self, views, search_qty): fixes = [] if (self.config.app == APP_ALL): common_url = reverse('index') else: common_url = reverse(self.config.app + ':list') nav_item=Task.get_active_nav_item(self.request.user.id, self.config.app) for key, value in views.items(): url = common_url determinator = 'view' view_id = self.config.main_view if (view_id != key): if ('role' in value): determinator = 'role' view_id = value['role'] url += view_id + '/' else: view_id = key if (key != self.config.main_view): if ('page_url' in value): url += value['page_url'] + '/' else: url += '?view=' + key if (self.config.app in FOLDER_NAV_APPS): folder = '' if ('folder' in self.request.GET): folder = self.request.GET['folder'] if folder: if ('?' in url): url += '&' else: url += '?' url += 'folder=' + folder hide_qty = False if ('hide_qty' in value): hide_qty = value['hide_qty'] if hide_qty: qty = None else: if (view_id == self.config.group_entity): _nav_item = None else: _nav_item = nav_item fix_group = detect_group(self.request.user, self.config.app, determinator, view_id, _(value['title']).capitalize()) qty = self.get_view_qty(fix_group, _nav_item) active = (self.config.cur_view_group.determinator == determinator) and (self.config.cur_view_group.view_id == view_id) fix = { 'determinator': determinator, 'id': view_id, 'url': url, 'icon': value['icon'], 'title': _(value['title']).capitalize(), 'qty': qty, 'active': active, 'search_qty': search_qty, } fixes.append(fix) return fixes def get_view_qty(self, group, nav_item): data = self.get_dataset(group, nav_item=nav_item) return len(data) def get_dataset(self, group, query=None, nav_item=None): if (group.determinator == 'role'): cur_role = group.view_id else: cur_role = self.config.base_role data = Task.get_role_tasks(self.request.user.id, self.config.app, cur_role, nav_item) if (self.config.app == APP_ALL) and (not query): return data if data and ((not group.determinator) or (group.determinator == 'group')): data = data.filter(groups__id=group.id) # if (not group.completed): # data = data.filter(completed=False) if hasattr(self, 'tune_dataset'): return self.tune_dataset(data, group) return data def get_nav_items(self): nav_role = Task.get_nav_role(self.config.app) if (not nav_role) or (nav_role == self.config.cur_view_group.view_id): return None href = self.request.path if ('pk' in self.kwargs): pk = str(self.kwargs['pk']) + '/' if (pk in href): href = href.split(pk)[0] sort = 'name' nav_item_group = detect_group(self.request.user, self.config.app, 'role', nav_role, '') if nav_item_group and nav_item_group.items_sort: sort = nav_item_group.items_sort ret = [] for item in Task.get_role_tasks(self.request.user.id, self.config.app, nav_role).order_by(sort): ret.append({ 'id': item.id, 'name': item.name, 'qty': len(Task.get_role_tasks(self.request.user.id, self.config.app, self.config.cur_view_group.view_id, item)), 'href': href, }) return ret class DirContext(Context): def get_context_data(self, **kwargs): self.config.set_view(self.request) self.object = None self.cur_folder = '' page_title = '' title = '' if ('folder' in self.request.GET): self.cur_folder = self.request.GET['folder'] page_title = self.cur_folder.split('/')[-1:][0] title = self.cur_folder if not self.cur_folder: page_title = _(self.config.app_title) title = page_title kwargs.update({'title': page_title}) dir_tree = [] self.scan_dir_tree(dir_tree, self.cur_folder, self.store_dir.rstrip('/')) self.scan_files() self.object = None context = super().get_context_data(**kwargs) upd_context = self.get_app_context(self.request.user.id, None, icon=self.config.view_icon, nav_items=None, **kwargs) context.update(upd_context) context['title'] = title context['dir_tree'] = dir_tree context['file_list'] = self.file_list context['gps_data'] = self.gps_data if (self.config.cur_view_group.determinator == 'view') and (self.config.cur_view_group.view_id != self.config.main_view): context['cur_view'] = self.config.cur_view_group.view_id context['theme_id'] = 24 context['cur_folder'] = self.cur_folder return context def scan_dir_tree(self, dir_tree, cur_folder, path, parent=None, demo=False): ld = glob.glob(path + '/*/') if not len(ld): return node = '' level = 0 if parent: node = parent['node'] if node: node += '/' node += parent['name'] level = parent['level'] + 1 s_node = node if node: s_node = node + '/' p = path for d in ld: dd = d.replace('\\', '/') name = dd.split(p)[1].strip('/') x = { 'node': node, 'name': name, 'active': (cur_folder == s_node + name), 'level': level, 'qty': 0, } dir_tree.append(x) if not demo: self.scan_dir_tree(dir_tree, cur_folder, path + '/' + name, x) def scan_files(self): self.gps_data = [] self.file_list = [] with os.scandir(self.store_dir + self.cur_folder) as it: for entry in it: if (entry.name.upper() == 'Thumbs.db'.upper()): continue if entry.is_dir(): continue ff = self.store_dir + self.cur_folder + '/' + entry.name mt = mimetypes.guess_type(ff) file_type = '' if mt and mt[0]: file_type = mt[0] self.file_list.append({ 'name': entry.name, 'href': 'file/?folder=' + self.cur_folder + '&file=' + entry.name, 'date': time.ctime(os.path.getmtime(ff)), 'type': file_type, 'size': self.sizeof_fmt(os.path.getsize(ff)), }) return self.gps_data def sizeof_fmt(self, num, suffix='B'): for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']: if abs(num) < 1024.0: return f'{num:3.1f}{unit}{suffix}' num /= 1024.0 return f'{num:.1f}Yi{suffix}'
StarcoderdataPython
3261873
import mock import testtools from shakenfist import config from shakenfist import exceptions class ConfigTestCase(testtools.TestCase): @mock.patch('socket.getfqdn', return_value='a.b.com') @mock.patch('socket.gethostbyname', return_value='1.1.1.1') def test_hostname(self, mock_hostname, mock_fqdn): config.parsed.parse() mock_fqdn.assert_called() mock_hostname.assert_called() self.assertEqual('a.b.com', config.parsed.get('NODE_NAME')) self.assertEqual('1.1.1.1', config.parsed.get('NODE_IP')) @mock.patch.dict('os.environ', {'SHAKENFIST_STORAGE_PATH': 'foo'}) def test_string_override(self): config.parsed.parse() self.assertTrue(isinstance(config.parsed.get('STORAGE_PATH'), str)) self.assertEqual('foo', config.parsed.get('STORAGE_PATH')) @mock.patch.dict('os.environ', {'SHAKENFIST_CPU_OVERCOMMIT_RATIO': '1'}) def test_int_override(self): config.parsed.parse() self.assertTrue(isinstance( config.parsed.get('CPU_OVERCOMMIT_RATIO'), int)) self.assertEqual(1, config.parsed.get('CPU_OVERCOMMIT_RATIO')) @mock.patch.dict('os.environ', {'SHAKENFIST_RAM_SYSTEM_RESERVATION': '4.0'}) def test_float_override(self): config.parsed.parse() self.assertTrue(isinstance(config.parsed.get( 'RAM_SYSTEM_RESERVATION'), float)) self.assertEqual(4.0, config.parsed.get('RAM_SYSTEM_RESERVATION')) @mock.patch.dict('os.environ', {'SHAKENFIST_RAM_SYSTEM_RESERVATION': 'banana'}) def test_bogus_override(self): self.assertRaises(ValueError, config.parsed.parse) @mock.patch.dict('shakenfist.config.CONFIG_DEFAULTS', {'FOO': [1, 2, 3]}) @mock.patch.dict('os.environ', {'SHAKENFIST_FOO': '[1, 4, 6]'}) def test_bogus_default(self): self.assertRaises(exceptions.FlagException, config.parsed.parse)
StarcoderdataPython
3327797
import gensim.downloader import numpy as np from gensim.corpora import Dictionary from gensim.models import TfidfModel from argparse import ArgumentParser from logging import Logger from pathlib import Path from typing import List from speechless.edit_context.common import TimelineChange from speechless.processing.analysis.analysis import (ARG_PREPARE_METHOD_FN, AnalysisDomain, AnalysisMethod, analysis_method_cli) from speechless.processing.tokenization import (EditToken, make_timeline_changes, sentence_segmentation, spacy_nlp) from speechless.readers.subtitles import read_subtitles from speechless.readers import read_entire_audio from speechless.transcription import speech_to_text from speechless.utils.logging import NULL_LOGGER from speechless.utils.storage import make_cache_dir_rel GENSIM_CACHE_DIR = make_cache_dir_rel('gensim') CORPUS_DIR = str(GENSIM_CACHE_DIR / 'gensim-data/') DICTIONARY_FILE = str(GENSIM_CACHE_DIR / 'tfidf_dictionary.dic') MODEL_FILE = str(GENSIM_CACHE_DIR / 'tfidf_model.model') class TfidfAnalysis(AnalysisMethod): def __init__(self, corpus: str, sent_th_ratio: float, remove_sw: bool, lemmatize: bool, logger: Logger = NULL_LOGGER) -> None: super().__init__('Tf-idf Analysis', [AnalysisDomain.TEXT], logger) self.sent_th_ratio = sent_th_ratio self.remove_sw = remove_sw self.lemmatize = lemmatize gensim.downloader.BASE_DIR = CORPUS_DIR gensim.downloader.base_dir = CORPUS_DIR if Path(DICTIONARY_FILE).exists() and Path(MODEL_FILE).exists(): self.data_dict = Dictionary.load(DICTIONARY_FILE) self.model = TfidfModel.load(MODEL_FILE) else: data = gensim.downloader.load(corpus) self.data_dict = Dictionary(data) self.data_dict.save(DICTIONARY_FILE) corpus = [self.data_dict.doc2bow(line) for line in data] self.model = TfidfModel(corpus) self.model.save(MODEL_FILE) def analyze(self, recording_path: str, subtitles_path: str) -> List[TimelineChange]: if subtitles_path is None: audio, _ = read_entire_audio(recording_path, aud_format='s16le', sample_rate=16000, logger=self.logger) transcript = speech_to_text(audio[0] if len(audio.shape) > 1 else audio) else: transcript = read_subtitles(subtitles_path) sentences = sentence_segmentation(transcript) tokens = self.set_labels(sentences) return make_timeline_changes(tokens) def set_labels(self, sentences: List[List[EditToken]]) -> List[EditToken]: spacy_pipes = ['tagger', 'attribute_ruler'] + (['lemmatizer'] if self.lemmatize else []) doc_text = ''.join([token.text for sentence in sentences for token in sentence]) doc_tokens = spacy_nlp(doc_text, spacy_pipes) doc_tokens = [token for token in doc_tokens if not token.is_punct] if self.remove_sw: doc_tokens = [token for token in doc_tokens if not token.is_stop] if self.lemmatize: tfidf_doc = [token.lemma_ for token in doc_tokens] else: tfidf_doc = [token.norm_ for token in doc_tokens] sent_scores = [[] for _ in range(len(sentences))] if len(tfidf_doc) > 0: bow = self.data_dict.doc2bow(tfidf_doc,) doc_scores = self.model[bow] doc_scores = {self.data_dict[key]: score for key, score in doc_scores} sent_idx = -1 sent_start, sent_end = 0, 0 for token_idx, token in enumerate(doc_tokens): while sent_idx + 1 < len(sentences) and not (sent_start <= token.idx < sent_end): sent_idx += 1 first_sent_token = sentences[sent_idx][0] last_sent_token = sentences[sent_idx][-1] sent_start = first_sent_token.start_pos sent_end = last_sent_token.start_pos + len(last_sent_token) if sent_idx >= len(sentences): break sent_scores[sent_idx].append(doc_scores.get(tfidf_doc[token_idx], 0.0)) sent_scores = np.array([np.mean(s_sc) if len(s_sc) > 0 else 0 for s_sc in sent_scores]) sent_scores = (sent_scores >= self.sent_th_ratio * np.mean(sent_scores)).astype(float) for sent_idx, sentence in enumerate(sentences): for t in sentence: t.label = sent_scores[sent_idx] return [token for s in sentences for token in s] def score_transcription(self, transcript: List[EditToken]) -> List[float]: sentences = sentence_segmentation(transcript) tokens = self.set_labels(sentences) changes = [token.label for token in tokens] return changes ############################################### CLI ################################################ @analysis_method_cli class CLI: COMMAND = 'tfidf' DESCRIPTION = 'Tf-idf analysis' ARG_CORPUS = 'corpus' ARG_SENT_TH_RATIO = 'sent_th_ratio' ARG_REMOVE_SW = 'remove_sw' ARG_LEMMATIZE = 'lemmatize' DEFAULT_ARGS = { ARG_CORPUS: 'text8', ARG_SENT_TH_RATIO: 1.0, ARG_REMOVE_SW: False, ARG_LEMMATIZE: False } @staticmethod def prepare_method(args, logger: Logger) -> 'TfidfAnalysis': return TfidfAnalysis(args.get(CLI.ARG_CORPUS, CLI.DEFAULT_ARGS[CLI.ARG_CORPUS]), args.get(CLI.ARG_SENT_TH_RATIO, CLI.DEFAULT_ARGS[CLI.ARG_SENT_TH_RATIO]), args.get(CLI.ARG_REMOVE_SW, CLI.DEFAULT_ARGS[CLI.ARG_REMOVE_SW]), args.get(CLI.ARG_LEMMATIZE, CLI.DEFAULT_ARGS[CLI.ARG_LEMMATIZE]), logger=logger) @staticmethod def setup_arg_parser(parser: ArgumentParser) -> ArgumentParser: """Sets up a CLI argument parser for this submodule Returns: ArgumentParser: Configured parser """ parser.add_argument('-c', f'--{CLI.ARG_CORPUS}', help='Corpus from gensim', type=str, action='store', default=CLI.DEFAULT_ARGS[CLI.ARG_CORPUS]) parser.add_argument('-tr', f'--{CLI.ARG_SENT_TH_RATIO}', help='Sentence threshold ratio. Sentences with a score lower than \ `mean sentence score`*`ratio` will be removed from the recording', type=float, action='store', default=CLI.DEFAULT_ARGS[CLI.ARG_SENT_TH_RATIO]) parser.add_argument('-rsw', f'--{CLI.ARG_REMOVE_SW}', help='Remove stopwords', action='store_true', default=CLI.DEFAULT_ARGS[CLI.ARG_REMOVE_SW]) parser.add_argument('-l', f'--{CLI.ARG_LEMMATIZE}', help='Use lemmatization', action='store_true', default=CLI.DEFAULT_ARGS[CLI.ARG_LEMMATIZE]) parser.set_defaults(**{ARG_PREPARE_METHOD_FN: CLI.prepare_method})
StarcoderdataPython
3379303
import re from sqlalchemy import or_,and_ from sqlalchemy import Column, String, Integer, Boolean, Float, ForeignKey,PrimaryKeyConstraint from sqlalchemy.orm import relationship from fr.tagc.rainet.core.util.sql.Base import Base from fr.tagc.rainet.core.util.sql.SQLManager import SQLManager from fr.tagc.rainet.core.util.exception.RainetException import RainetException from fr.tagc.rainet.core.util.log.Logger import Logger from fr.tagc.rainet.core.data import DataConstants from fr.tagc.rainet.core.util.pattern.PatternUtil import PatternUtil from fr.tagc.rainet.core.util.sql.SQLUtil import SQLUtil from fr.tagc.rainet.core.data.ProteinCrossReference import ProteinCrossReference from fr.tagc.rainet.core.data.RNA import RNA from fr.tagc.rainet.core.data.Protein import Protein from fr.tagc.rainet.core.util.exception.NotRequiredInstantiationException import NotRequiredInstantiationException from sqlalchemy.orm.base import instance_dict from fr.tagc.rainet.core.util.time.Timer import Timer import sys # # # This class describes a Protein-RNA interactions predicted by CatRAPID software. # class ProteinRNAInteractionCatRAPID( Base ): __tablename__ = 'ProteinRNAInteractionCatRAPID' # The RNA transcript ID, Ensembl ENST transcriptID = Column( String, ForeignKey( 'RNA.transcriptID'), primary_key=True) # The Protein Uniprot_ac ID proteinID = Column( String, ForeignKey( 'Protein.uniprotAC'), primary_key=True) # The interaction score / interaction propensity from catRAPID prediction interactionScore = Column( Float ) proteins = relationship( "Protein" ) # # # The ProteinRNAInteractionCatRAPID constructor. # # @param interactors: the interacting protein-RNA pair # @param interaction_score: the interaction score # def __init__( self, interactors, interaction_score): from fr.tagc.rainet.core.util.data.DataManager import DataManager dt_manager = DataManager.get_instance() #======================================================================= # Parse interactors # # Example # sp|Q96DC8|ECHD3_HUMAN ENST00000579524 -12.33 0.10 0.00 # sp|P10645|CMGA_HUMAN ENST00000516610 10.66 0.32 0.00 # protein and rna separated by " ", other values separated by "\t" # # Protein is always on left side, RNA in the right side. # Assumption that there only one interaction between each Protein-RNA pair #======================================================================= spl = interactors.split(" ") if len(spl) == 2: protein_id = spl[0].split( "|")[1] transcript_id = spl[1].split( "\t")[0] else: raise RainetException( "ProteinRNAInteractionCatRAPID.__init__ : The interactor string could not be parsed: " + str( interactors )) #======================================================================= # Fill variables #======================================================================= try: self.interactionScore = float( interaction_score) except ValueError as ve: raise RainetException( "ProteinRNAInteractionCatRAPID.__init__ : The value of interaction score is not a float: " + str( interaction_score ), ve ) #======================================================================= # Query Protein object # See if Protein with given protein_id exists in database #======================================================================= protein_list = dt_manager.get_data( DataConstants.PROT_ALL_KW) if protein_id in protein_list: self.proteinID = protein_id else: # raise RainetException( "ProteinRNAInteractionCatRAPID.init : No Protein object while using cross references for protein_id = " + protein_id) Logger.get_instance().warning( "\nProteinRNAInteractionCatRAPID.init : Protein ID not found, will skip interaction:\t" + str( protein_id) ) # Store missing Protein ID in a list dt_manager.data[ DataConstants.PROTEIN_RNA_INTERACTION_CATRAPID_MISSING_PROT_KW].append( protein_id) raise NotRequiredInstantiationException( "ProteinRNAInteractionCatRAPID.init : No Protein found, instance will not be created.") #======================================================================= # Query RNA object # See if RNA with given transcript_id exists in database #======================================================================= RNA_list = dt_manager.get_data( DataConstants.RNA_ALL_KW) if transcript_id in RNA_list: self.transcriptID = transcript_id else: # raise RainetException( "ProteinRNAInteractionCatRAPID.init : No RNA object found for transcript_id = " + transcript_id) Logger.get_instance().warning( "\nProteinRNAInteractionCatRAPID.init : RNA ID not found, will skip interaction:\t" + str( transcript_id) ) # Store missing RNA ID in a list dt_manager.data[ DataConstants.PROTEIN_RNA_INTERACTION_CATRAPID_MISSING_RNA_KW].append( transcript_id) raise NotRequiredInstantiationException( "ProteinRNAInteractionCatRAPID.init: No RNA found, instance will not be created." ) ## # Add the object to SQLAlchemy session if it is linked to a protein and RNA def add_to_session(self): sql_session = SQLManager.get_instance().get_session() sql_session.add( self)
StarcoderdataPython
3358693
import os import tensorflow as tf from tensorkit.log import logger, Color class Restore(object): def __init__(self): self._var_list = None self._restore_saver = None self._restore_optimistic = False self.restore_ckpt_file = None self._inited = False def init(self, var_list=None, ckpt_dir=None, ckpt_file=None, optimistic=False): """ :param var_list: vars for restore :param ckpt_dir: prefix of model files. :param ckpt_file: exact name of model file, priority is higher than `ckpt_dir` :param optimistic: only restore weights of same names with model. :return: """ assert (var_list is None) or (len(var_list) > 0), 'invalid var_list: {}'.format(var_list) assert ckpt_dir is not None or ckpt_file is not None, 'ckpt_dir and ckpt_file are both None' self._var_list = var_list self._restore_optimistic = optimistic if ckpt_file is None: assert os.path.exists(ckpt_dir), 'invalid checkpoint dir: %s' % ckpt_dir # get ckpt file. self.restore_ckpt_file = tf.train.latest_checkpoint(os.path.dirname(ckpt_dir + os.sep)) else: self.restore_ckpt_file = ckpt_file self._inited = True return self def restore(self, sess): assert self._inited, 'make sure init() before restore()' if self._restore_vars(sess): logger.info('- succeed restore variables from: {}'.format(self.restore_ckpt_file)) return True return False def _restore_vars(self, sess): """ :param sess: :return: boolean for successful or not """ if not self._restore_optimistic: if self.restore_ckpt_file is None: logger.warn( Color.yellow('No checkpoint file for restore vars, checkpoint file is None', bold=True)) return False self._restore_saver = tf.train.Saver(self._var_list, name='tk_restore') self._restore_saver.restore(sess, self.restore_ckpt_file) return True else: return self._optimistic_restore_model(sess) def _optimistic_restore_model(self, sess): """ restore weights of same names with model. :param sess: :return: """ if self.restore_ckpt_file is None: logger.warn(Color.yellow('No ckpt file for restore vars, ckpt file is None')) return False reader = tf.train.NewCheckpointReader(self.restore_ckpt_file) saved_shapes = reader.get_variable_to_shape_map() if self._var_list is None: restore_key2vars = {var.name.split(':')[0]: var for var in tf.global_variables()} elif isinstance(self._var_list, list): restore_key2vars = {var.name.split(':')[0]: var for var in self._var_list} elif isinstance(self._var_list, dict): restore_key2vars = self._var_list else: raise RuntimeError('type error {}'.format(self._var_list)) assert len(restore_key2vars) > 0 restore_key2vars = sorted([(k, v) for k, v in restore_key2vars.items() if k in saved_shapes]) msg = [] var_list = dict() with tf.variable_scope('', reuse=True): for key, var in restore_key2vars: var_shape = var.get_shape().as_list() if var_shape == saved_shapes[key]: var_list[key] = var var_name = var.name[:var.name.index(':')] msg.append('- restoring variable: {}'.format(var_name) if var_name == key else '- restoring variable {} from {}'.format(var_name, key)) else: msg.append(Color.yellow( '- variable({}) with inconsistent shape: {}(graph) != {}(ckpt)'.format( key, var_shape, saved_shapes[key]) )) if len(var_list) != 0: msg += ['- total variable count: {}'.format(len(var_list))] logger.info('\n'.join(msg)) saver = tf.train.Saver(var_list, name='tk_restore') saver.restore(sess, self.restore_ckpt_file) return True else: logger.warn(Color.yellow('No vars need to restore from file: {}'.format(self.restore_ckpt_file))) return False def __str__(self): content = 'RESTORE_OPTIMISTIC: %s' \ '\nRESTORE_CHECKPOINT_FILE: %s' % (self._restore_optimistic, self.restore_ckpt_file) return content
StarcoderdataPython
1724031
""" Implementation of Eccles, Tom, et al. "Biases for Emergent Communication in Multi-agent Reinforcement Learning." Advances in Neural Information Processing Systems. 2019. """ import gym import numpy as np from ray.rllib import SampleBatch from ray.rllib.agents.impala import vtrace from ray.rllib.agents.impala.vtrace_policy import _make_time_major, BEHAVIOUR_LOGITS from ray.rllib.models import ModelCatalog from ray.rllib.models.tf.tf_action_dist import MultiActionDistribution, Categorical from ray.rllib.policy.policy import ACTION_LOGP from ray.rllib.utils import try_import_tf from ray.rllib.utils.tuple_actions import TupleActions from .impala_cpc_sa import WASTED_ACTS, CpcVTracePolicy from ..utils.model_utils import CPCLayer tf = try_import_tf() NO_MESSAGE_OBS = "no_message_obs" class MessageActionDistribution(MultiActionDistribution): """Distribution for (action, message) tuple""" def __init__(self, inputs, model, action_space, name): child_dist = [] input_lens = [] for action in action_space.spaces: dist, action_size = ModelCatalog.get_action_dist(action, {}) child_dist.append(dist) input_lens.append(action_size) super().__init__(inputs, model, action_space, child_dist, input_lens) with tf.variable_scope(name): self.entropy_list = [s.entropy() for s in self.child_distributions] @staticmethod def required_model_output_shape(action_space, model_config): input_lens = [] for action in action_space.spaces: dist, action_size = ModelCatalog.get_action_dist(action, {}) input_lens.append(action_size) return sum(input_lens) def entropy(self): return self.entropy_list[0] def message_entropy(self): return self.entropy_list[-1] def mean_message_entropy(self): """Entropy of the mean message policy""" p_average = self.mean_message_p() logp_average = tf.log(p_average) return -tf.reduce_sum(p_average * logp_average) def mean_message_p(self): message_dist = self.child_distributions[-1] message_logits = message_dist.inputs p_bt = tf.nn.softmax(message_logits) p_average = tf.reduce_mean(p_bt, axis=0) return p_average def action_p(self): action_dist = self.child_distributions[0] action_logits = action_dist.inputs return tf.nn.softmax(action_logits) def action_logits(self): return self.child_distributions[0].inputs class DeterministicMessageActionDistribution(MessageActionDistribution): """Distribution for (stochastic action, deterministic message) tuple""" def sample(self): return TupleActions( [ self.child_distributions[0].sample(), self.child_distributions[1].deterministic_sample(), ] ) def logp(self, x): split_indices = [] for dist in self.child_distributions: if isinstance(dist, Categorical): split_indices.append(1) else: split_indices.append(tf.shape(dist.sample())[1]) split_list = tf.split(x, split_indices, axis=1) for i, distribution in enumerate(self.child_distributions): # Remove extra categorical dimension if isinstance(distribution, Categorical): split_list[i] = tf.cast(tf.squeeze(split_list[i], axis=-1), tf.int32) log_action = self.child_distributions[0].logp(split_list[0]) all_message_p = tf.nn.softmax(self.child_distributions[1].inputs) indices = tf.stack([tf.range(tf.shape(all_message_p)[0]), split_list[1]], axis=1) message_p = tf.gather_nd(all_message_p, indices) return log_action + message_p class CommBiasLoss: def __init__( self, actions, actions_logp, actions_entropy, message_entropy, dones, behaviour_action_logp, behaviour_logits, target_logits, discount, rewards, values, bootstrap_value, dist_class, model, valid_mask, config, vf_loss_coeff=0.5, entropy_coeff=0.01, message_entropy_coeff=0.0, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0, use_cpc=True, cpc_ins=None, cpc_preds=None, cpc_coeff=10.0, use_sender_bias=False, l_ps_lambda=3.0, entropy_target=1.0, average_message_entropy=None, sender_bias_coeff=0.1, use_receiver_bias=False, l_ce_coeff=0.001, l_pl_coeff=0.01, message_p=None, no_message_p=None, **kwargs, ): """ See VTraceLoss class Args: use_cpc: True if CPC loss should be added cpc_ins: Input encodings of CPC (Shape: [T, B, code_size] cpc_preds: Output encodings of CPC(Shape: [T, B, length, code_size] cpc_coeff: Coefficient for CPC loss use_sender_bias: True if sender bias loss should be added l_ps_lambda: """ # Compute vtrace on the CPU for better perf. with tf.device("/cpu:0"): self.vtrace_returns = vtrace.multi_from_logits( behaviour_action_log_probs=behaviour_action_logp, behaviour_policy_logits=behaviour_logits, target_policy_logits=target_logits, actions=tf.unstack(actions, axis=2), discounts=tf.to_float(~dones) * discount, rewards=rewards, values=values, bootstrap_value=bootstrap_value, dist_class=dist_class, model=model, clip_rho_threshold=tf.cast(clip_rho_threshold, tf.float32), clip_pg_rho_threshold=tf.cast(clip_pg_rho_threshold, tf.float32), ) self.value_targets = self.vtrace_returns.vs # The policy gradients loss self.pi_loss = -tf.reduce_sum( tf.boolean_mask(actions_logp * self.vtrace_returns.pg_advantages, valid_mask) ) # The baseline loss delta = tf.boolean_mask(values - self.vtrace_returns.vs, valid_mask) self.vf_loss = 0.5 * tf.reduce_sum(tf.square(delta)) # The entropy loss self.entropy = tf.reduce_sum(tf.boolean_mask(actions_entropy, valid_mask)) self.message_entropy = tf.reduce_sum(tf.boolean_mask(message_entropy, valid_mask)) # The summed weighted loss self.total_loss = ( self.pi_loss + self.vf_loss * vf_loss_coeff - self.entropy * entropy_coeff - self.message_entropy * message_entropy_coeff ) if use_cpc: # CPC loss with tf.variable_scope("cpc_loss"): losses = [] cpc_length = cpc_preds.shape.as_list()[2] T = tf.shape(cpc_preds)[0] # Scaling coeff to take mean over k scaling_coeff = tf.cast( tf.reverse(tf.minimum(tf.range(1, T - 1 + 1), cpc_length), axis=[0]), dtype=tf.float32, ) for k in range(1, cpc_length + 1): loss = CPCLayer(k, name=f"cpc_{k}")([cpc_ins, cpc_preds[:, :, k - 1]]) losses.append(tf.reduce_sum(loss / scaling_coeff[: T - k])) self.cpc_loss = tf.reduce_sum(tf.stack(losses), name=f"cpc_loss") self.total_loss += self.cpc_loss * cpc_coeff else: self.cpc_loss = tf.constant(np.nan) if use_sender_bias: # Sender bias loss with tf.variable_scope("sender_bias"): self.average_message_entropy = average_message_entropy self.sender_bias_loss = ( tf.reduce_sum(l_ps_lambda * (message_entropy - entropy_target) ** 2) - average_message_entropy ) self.total_loss += self.sender_bias_loss * sender_bias_coeff else: self.average_message_entropy = tf.constant(np.nan) self.sender_bias_loss = tf.constant(np.nan) if use_receiver_bias: # Receiver bias loss with tf.variable_scope("receiver_bias"): self.l_ce = -tf.reduce_sum( tf.stop_gradient(message_p) * tf.log(no_message_p) ) self.l_pl = tf.reduce_sum( tf.abs(message_p - tf.stop_gradient(no_message_p)) ) self.total_loss += self.l_ce * l_ce_coeff - self.l_pl * l_pl_coeff else: self.l_ce = tf.constant(np.nan) self.l_pl = tf.constant(np.nan) def build_ma_comm_loss(policy, model, dist_class, train_batch): """ Copied from build_vtrace_loss. Adds CPC loss, comm biases and/or modifications for inference based messaging """ def make_time_major(*args, **kw): return _make_time_major(policy, train_batch.get("seq_lens"), *args, **kw) actions = train_batch[SampleBatch.ACTIONS] dones = make_time_major(train_batch[SampleBatch.DONES], drop_last=False) rewards = make_time_major(train_batch[SampleBatch.REWARDS], drop_last=False) completed = tf.to_float(~dones)[-1] next_train_batch = { SampleBatch.CUR_OBS: make_time_major(train_batch[SampleBatch.NEXT_OBS])[-1], SampleBatch.PREV_ACTIONS: make_time_major(train_batch[SampleBatch.ACTIONS])[-1], SampleBatch.PREV_REWARDS: make_time_major(train_batch[SampleBatch.REWARDS])[-1], "seq_lens": tf.ones_like(train_batch["seq_lens"]), } i = 0 while f"state_out_{i}" in train_batch: next_train_batch[f"state_in_{i}"] = make_time_major( train_batch[f"state_out_{i}"] )[-1] i += 1 next_model_out, _ = model.from_batch(next_train_batch) next_values = model.value_function() bootstrap_value = tf.multiply(next_values, completed, name="bootstrap_value") model_out, _ = model.from_batch(train_batch) action_dist = dist_class(model_out, model) if isinstance(policy.action_space, gym.spaces.Discrete): is_multidiscrete = False output_hidden_shape = [policy.action_space.n] elif isinstance(policy.action_space, gym.spaces.multi_discrete.MultiDiscrete): is_multidiscrete = True output_hidden_shape = policy.action_space.nvec.astype(np.int32) else: is_multidiscrete = False output_hidden_shape = 1 behaviour_action_logp = make_time_major(train_batch[ACTION_LOGP], drop_last=False) behaviour_logits = train_batch[BEHAVIOUR_LOGITS] unpacked_behaviour_logits = tf.split(behaviour_logits, output_hidden_shape, axis=1) unpacked_outputs = tf.split(model_out, output_hidden_shape, axis=1) values = model.value_function() if policy.is_recurrent(): max_seq_len = tf.reduce_max(train_batch["seq_lens"]) - 1 mask = tf.sequence_mask(train_batch["seq_lens"], max_seq_len) mask = tf.reshape(mask, [-1]) else: mask = tf.ones_like(rewards) # Prepare actions for loss loss_actions = actions if is_multidiscrete else tf.expand_dims(actions, axis=1) custom_opts = policy.config["model"]["custom_options"] use_cpc = custom_opts["use_cpc"] if use_cpc: cpc_ins = model.cpc_ins() cpc_preds = model.cpc_preds() cpc_config = custom_opts["cpc_opts"] cpc_config.update( dict(cpc_ins=make_time_major(cpc_ins), cpc_preds=make_time_major(cpc_preds)) ) else: cpc_config = {} use_sender_bias = custom_opts["use_sender_bias"] if use_sender_bias: size = tf.cast(tf.shape(actions)[0], tf.float32) sender_bias_config = custom_opts["sender_bias_opts"] sender_bias_config.update( {"average_message_entropy": action_dist.mean_message_entropy() * size} ) else: sender_bias_config = {} use_receiver_bias = custom_opts["use_receiver_bias"] if use_receiver_bias: no_message_model_out = model.no_message_out() no_message_action_dist = dist_class(no_message_model_out, model) receiver_bias_config = dict( message_p=action_dist.action_p(), no_message_p=no_message_action_dist.action_p(), **custom_opts["receiver_bias_opts"], ) else: receiver_bias_config = {} use_inference_policy = custom_opts["use_inference_policy"] if use_inference_policy: if custom_opts["inference_policy_opts"]["type"] == "moving_avg": # Update the moving average based on the rollout data # policy._avg_message_state used in build_apply_op() to store the curent # average for the next rollout ewma_momentum = custom_opts["inference_policy_opts"]["ewma_momentum"] unscaled_message_p = model.unscaled_message_p() policy._avg_message_state = [tf.reduce_mean(unscaled_message_p, axis=0)] if ewma_momentum is None: policy._avg_message_state += [ tf.cast(tf.shape(unscaled_message_p)[0], dtype=tf.float32) ] elif custom_opts["inference_policy_opts"]["type"] == "hyper_nn": # Find true p(m) for training the p(m) estimator (not used in the paper) # policy._pm_loss added to other losses (no scaling required since the p(m) # estimator and policy/value networks are independent pm_logits = model.pm_logits() unscaled_message_p = model.unscaled_message_p() pm_true = tf.reduce_mean(unscaled_message_p, axis=0) policy._pm_loss = tf.reduce_sum( tf.nn.softmax_cross_entropy_with_logits(labels=pm_true, logits=pm_logits) ) else: raise NotImplementedError("Wrong type for inference_policy") # Inputs are reshaped from [B * T] => [T - 1, B] for V-trace calc. policy.loss = CommBiasLoss( actions=make_time_major(loss_actions, drop_last=False), actions_logp=make_time_major(action_dist.logp(actions), drop_last=False), actions_entropy=make_time_major(action_dist.multi_entropy(), drop_last=False), message_entropy=make_time_major(action_dist.message_entropy(), drop_last=False), dones=dones, behaviour_action_logp=behaviour_action_logp, behaviour_logits=make_time_major(unpacked_behaviour_logits, drop_last=False), target_logits=make_time_major(unpacked_outputs, drop_last=False), discount=policy.config["gamma"], rewards=rewards, values=make_time_major(values, drop_last=False), bootstrap_value=bootstrap_value, dist_class=dist_class, model=model, valid_mask=make_time_major(mask, drop_last=False), config=policy.config, vf_loss_coeff=policy.config["vf_loss_coeff"], entropy_coeff=policy.entropy_coeff, message_entropy_coeff=policy.config["model"]["custom_options"][ "message_entropy_coeff" ], clip_rho_threshold=policy.config["vtrace_clip_rho_threshold"], clip_pg_rho_threshold=policy.config["vtrace_clip_pg_rho_threshold"], use_cpc=use_cpc, **cpc_config, use_sender_bias=use_sender_bias, **sender_bias_config, use_receiver_bias=use_receiver_bias, **receiver_bias_config, ) if hasattr(policy, "_pm_loss"): return policy.loss.total_loss + policy._pm_loss else: return policy.loss.total_loss def stats(policy, train_batch): """Stats to save during training""" wasted_actions = tf.reduce_mean(train_batch[WASTED_ACTS]) core_stats = { "cur_lr": tf.cast(policy.cur_lr, tf.float64), "policy_loss": policy.loss.pi_loss, "entropy": policy.loss.entropy, "message_entropy": policy.loss.message_entropy, "vf_loss": policy.loss.vf_loss, "cpc_loss": policy.loss.cpc_loss, "average_message_entropy": policy.loss.average_message_entropy, "sender_bias_loss": policy.loss.sender_bias_loss, "l_ce": policy.loss.l_ce, "l_pl": policy.loss.l_pl, "wasted_actions": wasted_actions, } if hasattr(policy.model, "_avg_message_p"): core_stats["avg_message_p"] = policy.model._avg_message_p if hasattr(policy, "_pm_loss"): core_stats["pm_loss"] = policy._pm_loss return core_stats def build_apply_op(policy, optimizer, grads_and_vars): """ Override for custom gradient apply computation. Only change from the original policy is setting the average message state in the case of inference based messaging. """ ops = [ optimizer.apply_gradients( policy._grads_and_vars, global_step=tf.train.get_or_create_global_step() ) ] if hasattr(policy, "_avg_message_state") and policy._avg_message_state is not None: # Ops to update p(m) and optionally t for message probability scaling ops.extend(policy.model.set_avg_message_state(policy._avg_message_state)) return ops CommPolicy = CpcVTracePolicy.with_updates( loss_fn=build_ma_comm_loss, stats_fn=stats, apply_gradients_fn=build_apply_op ) SenderPolicy = CommPolicy.with_updates(name="Sender") ReceiverPolicy = CommPolicy.with_updates(name="Receiver")
StarcoderdataPython
3324117
<filename>binreconfiguration/itemgenerator/intuniform.py """Item generator: integer uniform distribution""" from .itemgenerator import ItemGenerator import random class IntUniform(ItemGenerator): def __init__(self, lower_bound, upper_bound): self._lower_bound = lower_bound self._upper_bound = upper_bound def item(self): """Return a random integer. """ return random.randint(self._lower_bound, self._upper_bound)
StarcoderdataPython
1639463
import os from IPython.core.magic import register_line_magic os.system('wget -qO tldr https://github.com/dbrgn/tealdeer/releases/download/v1.3.0/tldr-linux-x86_64-musl') os.system('chmod +x tldr') os.system('mv tldr /usr/local/bin') os.system('tldr --update') # need once @register_line_magic def tldr(line): get_ipython().system('tldr '+line)
StarcoderdataPython
3338189
<reponame>wtriplett/lonestar4_launch<gh_stars>1-10 #!/usr/bin/env python # launch script for stampede # deals with both command files for parametric launcher and with single commands import argparse import sys,os from tempfile import * import subprocess import math MAXCORES=4104 MAXNODES=171 # set up argument args def launch_slurm_ls5 (serialcmd='', script_name='', runtime='01:00:00', jobname='launch', projname='', queue='normal', email=False, qsubfile='', keepqsubfile=False, ignoreuser=False, test=False, parser=[], c=[], max_cores_per_node=None, verbose=0, hold=[], outfile=[], cwd=[], nodes=0, use_hyperthreading=True): if use_hyperthreading: ncores_per_node = 48 else: ncores_per_node = 24 if max_cores_per_node is None: max_cores_per_node = ncores_per_node elif int(max_cores_per_node) > ncores_per_node: print("Requested max cores per node (%s) exceeds available cores per node (%d)." \ % (max_cores_per_node, ncores_per_node)) if use_hyperthreading is False: print("Enabling hyperthreading (--ht) would double the available cores per node.") sys.exit() max_cores_per_node = int(max_cores_per_node) if len(serialcmd) > 0: print('sorry, serial mode is not currently supported') sys.exit(1) #parametric = 0 #print('Running serial command: '+cmd) #nnodes = 1 #parenv = '1way' #queue = 'serial' elif script_name: parametric = 1 print('Submitting parametric job file: ' + script_name) try: f = open(script_name,'r') except: print('%s does not exist -e!' % script_name) sys.exit(0) script_cmds = f.readlines() f.close() ncmds = len(script_cmds) print('found %d commands' % ncmds) # need to check for empty lines for s in script_cmds: if s.strip() == '': print('command file contains empty lines - please remove them first') sys.exit() if not nodes: nodes = math.ceil(float(ncmds)/float(max_cores_per_node)) print('Number of compute nodes not specified - estimating as %d' % nodes) if int(nodes) > MAXNODES: print('Warning # of nodes exceeds max allowed (%d), reducing requested nodes to %d.' \ % (nodes, MAXNODES)) nodes=MAXNODES else: print('ERROR: you must either specify a script name (using -s) or a command to run\n\n') sys.exit() if not qsubfile: qsubfile,qsubfilepath = mkstemp(prefix=jobname+"_",dir='.',suffix='.slurm',text=True) os.close(qsubfile) total_cores = max_cores_per_node*int(nodes) print('Outputting qsub commands to %s' % qsubfilepath) qsubfile = open(qsubfilepath,'w') qsubfile.write('#!/bin/bash\n#\n') qsubfile.write('# SLURM control file automatically created by launch\n') if parametric == 1: qsubfile.write('#SBATCH -N %d\n'%int(nodes)) else: print('sorry - serial mode is not currently supported') sys.exit(1) #qsubfile.write('# Launching single command: %s\n#\n#\n'%cmd) qsubfile.write('#SBATCH -J %s # Job Name\n'%jobname) qsubfile.write('#SBATCH -o {0}.o%j # Name of the output file (eg. myMPI.oJobID)\n'.format(jobname)) qsubfile.write('#SBATCH -p %s\n' % queue) qsubfile.write('#SBATCH -t %s\n' % runtime) qsubfile.write('#SBATCH -n %d\n' % total_cores) #ncmds) if type(hold) is str: qsubfile.write("#SBATCH -d afterok") qsubfile.write(":{0}".format(int(hold))) qsubfile.write('\n') if projname != "": qsubfile.write("#SBATCH -A {0}\n".format(projname)) try: waitfor except: waitfor = None if waitfor: qsubfile.write('#SBATCH -d %d\n' % waitfor) qsubfile.write('#----------------\n# Job Submission\n#----------------\n') #qsubfile.write('umask 2\n\n') if not parametric: # currently not supported... qsubfile.write('\n\nset -x # Echo commands, use "set echo" with csh\n') qsubfile.write(cmd+'\n') else: #qsubfile.write('module load launcher\n') qsubfile.write('export LAUNCHER_PLUGIN_DIR=$LAUNCHER_DIR/plugins\n') qsubfile.write('export LAUNCHER_RMI=SLURM\n') qsubfile.write('export LAUNCHER_JOB_FILE=%s\n'%script_name) #qsubfile.write('cd $WORKDIR\n') #qsubfile.write('echo " WORKING DIR: $WORKDIR/"\n') qsubfile.write('$LAUNCHER_DIR/paramrun\n') qsubfile.write('echo " "\necho " Parameteric Job Complete"\necho " "\n') qsubfile.close() jobid = None if not test: process = subprocess.Popen('sbatch %s' % qsubfilepath, shell=True, stdout=subprocess.PIPE) for line in process.stdout: print(line.strip()) if line.find('Submitted batch job') == 0: jobid=int(line.strip().split(' ')[3]) process.wait() if not keepqsubfile: print('Deleting qsubfile: %s'%qsubfilepath) os.remove(qsubfilepath) return jobid
StarcoderdataPython
3345944
from __future__ import print_function import time # import board # import busio # import adafruit_ads1x15.ads1015 as ADS # from adafruit_ads1x15.analog_in import AnalogIn # import Adafruit_DHT import pyowm import firebase_admin from firebase_admin import credentials from firebase_admin import db as fb_db from datetime import datetime import json import requests import MySQLdb import mysql.connector def main(): now = datetime.now() # settings for temperature sensor (comment out if not the right sensor): # local_sensor_type = Adafruit_DHT.DHT22 # pin = 12 # only adjust cred file with data for sensor with open('/home/pi/placed/sensor_creds/local_db_cred_sensor2.json', 'r') as file: connection_dictionary = json.load(file) # load data from creds file for line in connection_dictionary: host = line['host'] user = line['user'] password = line['password'] sensor = line['sensor'] is_generic = line['is_generic'] # open connection to local SQL-Database localDB = mysql.connector.connect( host=host, user=user, password=password, database="placed" ) # cursor = element which reads/writes to/from database. Only onw is needed, for readability two writeCursor = localDB.cursor() readCursor = localDB.cursor() # firebase-realitme-database initialization with special credits and uid-override if not firebase_admin._apps: cred = credentials.Certificate('/home/pi/placed_service_cred.json') firebase_admin.initialize_app(cred, { 'databaseURL': 'https://placed-5b875-default-rtdb.europe-west1.firebasedatabase.app/', 'databaseAuthVariableOverride': { 'uid': 'sensor_placed_moist_1' } }) ref = fb_db.reference('/') # connection to the Sensor. Uncomment right sensor type and adjust the connection parameters # --- temperature and air-humidity sensor --- # Adafruit_DHT.read_retry(local_sensor_type, pin) # humidity, value = Adafruit_DHT.read_retry(local_sensor_type, pin) # if humidity is not None and value is not None: # print("Temp={0:0.1f}*C Humidity={1:0.1f}%" # .format(value, humidity)) # else: # print("Failed to get reading. Try again!") # --- humidity-sensor --- # i2c = busio.I2C(board.SCL, board.SDA) # ads = ADS.ADS1015(i2c) # chan = AnalogIn(ads, ADS.P0) # value = 100 - (((float(chan.value) - 6000) / 12000) * 100) # --- outdoor temperature from owm --- request = requests.get( 'http://api.openweathermap.org/data/2.5/weather?q=Mainz&appid=1d8b79c5b6cfa1b5982dfb7f4db4bcfd&units=metric') data = request.json() for key in data['main']: content = data['main'].get(key, '') if key == "temp": value = content # --- outdoor weather type from owm --- # r = requests.get( # 'http://api.openweathermap.org/data/2.5/weather?q=Mainz&appid=1d8b79c5b6cfa1b5982dfb7f4db4bcfd&units=metric') # json_content = json.loads(r.content) # weather_id = json_content.get('weather').__getitem__(0).get('id') print('value: ' + str(value)) # sql command for saving data to local server sql = "INSERT INTO `data`(`sensor`, `is_generic`, `value`, `data_type`, `year`, `month`, `day`, `hour`, `minute`) VALUES ('%s','%s','%s','%s','%s','%s','%s','%s','%s')" % \ (sensor, is_generic, value, 'single', now.year, now.month, now.day, now.hour, now.minute) # execution of sql command with fail-safe try: writeCursor.execute(sql) localDB.commit() print("data from sensor " + sensor + " inserted into " + host) except Exception as e: print("Error. Rolling back") print(e) # sql-command for getting the last entered id sql = "SELECT id FROM data WHERE sensor = %s ORDER BY id DESC LIMIT 1" inp = (sensor,) readCursor.execute(sql, inp) readResult = readCursor.fetchone() # try to save the data to the firebase database with fail-safe try: data_ref = ref.child('data_by_sensors').child(sensor) data_ref.update({ 'id':readResult[0], 'sensor': int(sensor), 'is_generic': is_generic, 'value':value, 'data_type': 'single', 'year': now.year, 'month': now.month, 'day': now.day, 'hour': now.hour, 'minute': now.minute, 'requestUpdate': 0 }) print("data from sensor " + sensor + " uploaded to firebase") except Exception as e: print("Error. Rolling back") print(e) if __name__ == "__main__": main()
StarcoderdataPython
133563
import sqlite3 from config.constants import DB_NAME if __name__ == '__main__': conn = sqlite3.connect(str(DB_NAME), detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES) cursor = conn.cursor() cursor.execute('''CREATE TABLE IF NOT EXISTS nodes (node_number INTEGER PRIMARY KEY , node_name VARCHAR(100) NOT NULL );''') cursor.execute('''CREATE TABLE IF NOT EXISTS temperature (temperature_id INTEGER PRIMARY KEY, temperature REAL NOT NULL, time_stamp TIMESTAMP, node_id INTEGER NOT NULL, FOREIGN KEY (node_id) REFERENCES nodes(node_number));''') conn.commit() conn.close()
StarcoderdataPython
1653209
<reponame>ECSLab/ES_IoT_Cloud import urllib.parse import urllib.request import time def postt(posturl, data): req = urllib.request.Request(posturl, data) return urllib.request.urlopen(req) if __name__ == '__main__': posturl = 'http://127.0.0.1:9000/upload' dd = urllib.parse.urlencode({ 'api_key': 'sdakasyri', 'device_id': '1', 'data': 'ON'}).encode('utf-8') while(True): postt(posturl, dd) time.sleep(2)
StarcoderdataPython
30532
<reponame>vanish125/DS1054_BodePlotter """Unit tests for fygen module.""" import unittest import six import fygen import fygen_help from wavedef import SUPPORTED_DEVICES # pylint: disable=too-many-public-methods # pylint: disable=invalid-name # pylint: disable=too-many-lines class FakeSerial(object): """Fake serial object for when more interaction is required.""" def __init__(self, read_lines): self.read_lines = read_lines self.write_lines = [] def getvalue(self): return ''.join(self.write_lines) def write(self, line): self.write_lines.append(line.decode('utf8')) # pylint: disable=unused-argument # pylint: disable=no-self-use def flush(self): pass def read(self, unused_length): return '\n' def reset_input_buffer(self): pass def reset_output_buffer(self): pass def read_until(self, terminator='\n', size=0): """fake read_until method.""" r = self.read_lines[0] del self.read_lines[0] return r # pylint: enable=unused-argument # pylint: enable=no-self-use class TestFYGen(unittest.TestCase): """Test harness for FYGen.""" def setUp(self): self.output = six.StringIO() self.fy = fygen.FYGen( port=self.output, init_state=False, device_name='fy2300', ) def tearDown(self): self.fy.close() def test_help(self): """Asserts that all help sections render.""" for section in range(len(fygen_help.SECTIONS)): fygen.help(section, fout=self.output) self.assertIn('Other Help Sections', self.output.getvalue()) def test_help_device(self): """Tests calling help with a device name.""" for section in range(len(fygen_help.SECTIONS)): fygen.help(section, 'fy2300', self.output) self.assertIn('Other Help Sections', self.output.getvalue()) def test_help_invalid_section(self): """Provides an invalid help section number.""" with self.assertRaises(fygen.HelpError): fygen.help(len(fygen_help.SECTIONS)) def test_get_version(self): """Tests the version command.""" self.assertEqual(1.0, fygen.get_version()) def test_autoset(self): """Tests autoset functionality.""" fy = fygen.FYGen(port=self.output) fy.set((0, 1)) val = self.output.getvalue() self.assertIn('WMN0\n', val) self.assertIn('WFN0\n', val) def test_autoset_with_args(self): """Tests autoset with additional arguments provided.""" fy = fygen.FYGen(port=self.output) fy.set(wave='square', volts=0.1) val = self.output.getvalue() self.assertIn('WMW01\n', val) self.assertIn('WMA0.10\n', val) def test_send(self): """Tests the low-level send.""" fs = FakeSerial([b'foo\n', b'bar\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual('foo', fy.send('foocmd')) self.assertEqual('bar', fy.send('barcmd')) self.assertEqual('foocmd\nbarcmd\n', fs.getvalue()) def test_send_too_short(self): """Provides a command that is too short.""" with self.assertRaises(fygen.CommandTooShortError): self.fy.send('FO') def test_set_enable(self): """Enables generator on both channels.""" self.fy.set(channel=(0, 1), volts=3, enable=True) self.assertEqual( 'WMA3.00\n' 'WMN1\n' 'WFA3.00\n' 'WFN1\n', self.output.getvalue()) def test_already_enabled(self): """Tests WMN1 is not sent if the channel is already enabled.""" fs = FakeSerial([b'1\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, enable=True) self.assertEqual('RMN\n', fs.getvalue()) def test_set_disable(self): """Tests disable function on both channels.""" fy = fygen.FYGen(port=self.output, default_channel=(0, 1), init_state=False) fy.set(volts=3, enable=False) self.assertEqual( 'WMN0\n' 'WMA3.00\n' 'WFN0\n' 'WFA3.00\n', self.output.getvalue()) def test_already_disabled(self): """Tests that WMN0 is not sent if the channel is already disabled.""" fs = FakeSerial([b'0\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, enable=False) self.assertEqual('RMN\n', fs.getvalue()) def test_invalid_channel(self): """Passes an invalid channel.""" with self.assertRaises(fygen.InvalidChannelError): self.fy.set(channel=2) def test_set_wave1(self): """Sets current wave by name.""" self.fy.set(wave='sin') self.fy.set(channel=1, wave='square') self.assertEqual( 'WMW00\n' 'WFW01\n', self.output.getvalue()) def test_set_wave2(self): """Sets current wave by number.""" self.fy.set(wave=46) self.assertEqual('WMW46\n', self.output.getvalue()) def test_wave_already_set(self): """Asserts a wave that is already square is not reset to square.""" fs = FakeSerial([b'1\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, wave='square') self.assertEqual('RMW\n', fs.getvalue()) def test_unknown_wave(self): """Passes an unknown waveform name.""" with self.assertRaises(fygen.UnknownWaveformError): self.fy.set(wave='foo') def test_invalid_wave_index(self): """Passes an invalid waveform index.""" with self.assertRaises(fygen.UnknownWaveformError): self.fy.set(wave=-1) def test_set_freq1(self): """Sets a frequency using freq_hz.""" self.fy.set(freq_hz=5000) self.fy.set(channel=1, freq_hz=1e6) self.assertEqual( 'WMF00005000000000\n' 'WFF01000000000000\n', self.output.getvalue()) def test_set_freq2(self): """Sets a frequency using freq_uhz.""" self.fy.set(freq_uhz=5000) self.fy.set(channel=1, freq_uhz=1e6) self.assertEqual( 'WMF00000000005000\n' 'WFF00000001000000\n', self.output.getvalue()) def test_freq_already_set1(self): """Tests that a frequency is not reset to the same thing.""" fs = FakeSerial([b'12345\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, freq_hz=12345) self.assertEqual('RMF\n', fs.getvalue()) def test_freq_already_set2(self): """Tests that a frequency is not reset to the same thing.""" fs = FakeSerial([b'1234.5\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, freq_uhz=1234500000) self.assertEqual('RMF\n', fs.getvalue()) def test_set_both_frequencies(self): """Tries passing both freq_hz and freq_uhz.""" with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set(freq_hz=4000, freq_uhz=5000) def test_invalid_freq1(self): """Tries passing a negative frequency (freq_hz version).""" with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set(freq_hz=-1) def test_invalid_freq2(self): """Tries passing a negative frequency (freq_uhz version).""" with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set(freq_uhz=-1) def test_set_volts(self): """Sets voltage amplitude on both channels.""" self.fy.set(volts=10) self.fy.set(channel=1, volts=0) self.assertEqual( 'WMA10.00\n' 'WFA0.00\n', self.output.getvalue()) def test_volts_already_set(self): """Tries to set the voltage to an already set value.""" fs = FakeSerial([b'56000\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, volts=5.6) self.assertEqual('RMA\n', fs.getvalue()) def test_volts_too_low(self): """Tries to set the voltage to a negative value.""" fy = fygen.FYGen(port=self.output) with self.assertRaises(fygen.InvalidVoltageError): fy.set(volts=-0.1) def test_volts_too_high(self): """Tries to set the voltage higher than the allowed maximum.""" fy = fygen.FYGen(port=self.output, max_volts=1.5) with self.assertRaises(fygen.InvalidVoltageError): fy.set(volts=1.6) def test_duty_cycle(self): """Sets the duty cycle on both channels.""" self.fy.set(duty_cycle=0.5) self.fy.set(channel=1, duty_cycle=0.9) self.assertEqual( 'WMD50.0\n' 'WFD90.0\n', self.output.getvalue()) def test_duty_cycle_already_set(self): """Sets the duty cycle to an already-set value.""" fs = FakeSerial([b'10500\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, duty_cycle=0.105) self.assertEqual('RMD\n', fs.getvalue()) def test_duty_cycle_too_low(self): """Tries to set the duty cycle to zero.""" with self.assertRaises(fygen.InvalidDutyCycleError): self.fy.set(duty_cycle=0) def test_duty_cycle_too_high(self): """Tries to set the duty cycle to one.""" with self.assertRaises(fygen.InvalidDutyCycleError): self.fy.set(duty_cycle=1) def test_offset_volts(self): """Sets the offset voltage on both channels.""" self.fy.set(offset_volts=1.5) self.fy.set(channel=1, offset_volts=-1.6) self.assertEqual( 'WMO1.50\n' 'WFO-1.60\n', self.output.getvalue()) def test_offset_volts_already_set(self): """Tries to set the offset voltage to a value already set.""" fs = FakeSerial([b'12340\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, offset_volts=12.34) self.assertEqual('RMO\n', fs.getvalue()) def test_offset_volts_too_low(self): """Tries to set the offset voltage too low.""" fy = fygen.FYGen(port=self.output, min_volts=-1.5, init_state=False) with self.assertRaises(fygen.InvalidVoltageOffsetError): fy.set(offset_volts=-1.6) def test_offset_volts_too_high(self): """Tries to set the offset voltage too high.""" fy = fygen.FYGen(port=self.output, max_volts=1.5, init_state=False) with self.assertRaises(fygen.InvalidVoltageOffsetError): fy.set(offset_volts=1.6) def test_phase(self): """Sets the phase on both channels.""" self.fy.set(phase_degrees=10) self.fy.set(channel=1, phase_degrees=380.3) self.assertEqual( 'WMP10.000\n' 'WFP20.300\n', self.output.getvalue()) def test_phase_already_set(self): """Tries to set the phase to an already-set value.""" fs = FakeSerial([b'189300\n']) fy = fygen.FYGen(port=fs, init_state=False) fy.is_serial = True fy.read_before_write = True fy.set(0, phase_degrees=189.3) self.assertEqual('RMP\n', fs.getvalue()) def test_set_modulation(self): """Tries every known combination of modulatin and trigger.""" self.fy.set_modulation(mode=fygen.MODULATION_FSK) self.fy.set_modulation(mode=fygen.MODULATION_ASK) self.fy.set_modulation(mode=fygen.MODULATION_PSK) self.fy.set_modulation(mode=fygen.MODULATION_BURST) self.fy.set_modulation(mode=fygen.MODULATION_AM) self.fy.set_modulation(mode=fygen.MODULATION_FM) self.fy.set_modulation(mode=fygen.MODULATION_PM) self.fy.set_modulation(trigger=fygen.TRIGGER_CH2) self.fy.set_modulation(trigger=fygen.TRIGGER_EXTERNAL_AC) self.fy.set_modulation(trigger=fygen.TRIGGER_EXTERNAL_IN) self.fy.set_modulation(trigger=fygen.TRIGGER_MANUAL) self.fy.set_modulation(trigger=fygen.TRIGGER_EXTERNAL_DC) self.fy.set_modulation(burst_count=76) self.fy.set_modulation(am_attenuation=0.121) self.fy.set_modulation(pm_bias_degrees=23.4) self.fy.set_modulation(hop_freq_hz=1234) self.fy.set_modulation(hop_freq_uhz=1234) self.fy.set_modulation(fm_bias_freq_hz=1234) self.fy.set_modulation(fm_bias_freq_uhz=1234) self.assertEqual( 'WPF0\n' 'WPF1\n' 'WPF2\n' 'WPF3\n' 'WPF4\n' 'WPF5\n' 'WPF6\n' 'WPM0\n' 'WPM1\n' 'WPM1\n' 'WPM2\n' 'WPM3\n' 'WPN76\n' 'WPR12.1\n' 'WPP23.4\n' 'WFK00001234000000\n' 'WFK00000000001234\n' 'WFM00001234000000\n' 'WFM00000000001234\n', self.output.getvalue()) def test_invalid_modulation_mode(self): """Tries to set invalid modulation modes.""" with self.assertRaises(fygen.InvalidModulationModeError): self.fy.set_modulation(mode=-1) with self.assertRaises(fygen.InvalidModulationModeError): self.fy.set_modulation(mode=7) def test_invalid_burst_cycle_count(self): """Tries to set an invalid burst cycle count.""" with self.assertRaises(fygen.InvalidBurstCycleCountError): self.fy.set_modulation(burst_count=0) def test_invalid_trigger_mode(self): """Tries to set invalid trigger modes.""" with self.assertRaises(fygen.InvalidTriggerModeError): self.fy.set_modulation(trigger=-1) with self.assertRaises(fygen.InvalidTriggerModeError): self.fy.set_modulation(trigger=4) def test_invalid_am_attenuation(self): """Tries to set an invalid rate percentage.""" with self.assertRaises(fygen.InvalidAMAttenuationError): self.fy.set_modulation(am_attenuation=-0.1) with self.assertRaises(fygen.InvalidAMAttenuationError): self.fy.set_modulation(am_attenuation=2.1) def test_invalid_hop_frequency(self): """Tries to set an invalid hop frequency.""" with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set_modulation(hop_freq_hz=-0.1) with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set_modulation(hop_freq_uhz=-0.1) with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set_modulation(hop_freq_hz=1, hop_freq_uhz=1) def test_invalid_fm_bias_frequency(self): """Tries to set an invalid fm bias frequency.""" with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set_modulation(fm_bias_freq_hz=-0.1) with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set_modulation(fm_bias_freq_uhz=-0.1) with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set_modulation(fm_bias_freq_hz=1, fm_bias_freq_uhz=1) def test_get_enable(self): """Gets the current enable status.""" fs = FakeSerial([b'255\n', b'0\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(True, fy.get(0, 'enable')) self.assertEqual(False, fy.get(1, 'enable')) self.assertEqual('RMN\nRFN\n', fs.getvalue()) def test_get(self): """Calls get with no arguments.""" fs = FakeSerial([ b'50000\n', # duty cycle b'255\n', # enable b'12345.6789\n', # freq hz b'12340\n', # offset volts b'189300\n', # phase degrees b'123400\n', # volts b'4\n', # wave ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual({ 'duty_cycle': 0.5, 'enable': True, 'freq_hz': 12345, 'offset_volts': 12.34, 'phase_degrees': 189.3, 'volts': 12.34, 'wave': 'dc', }, fy.get()) self.assertEqual( 'RMD\n' 'RMN\n' 'RMF\n' 'RMO\n' 'RMP\n' 'RMA\n' 'RMW\n' '', fs.getvalue()) def test_get_wave(self): """Gets the current wave.""" fs = FakeSerial([b'4\n', b'4\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual('dc', fy.get(0, 'wave')) self.assertEqual({'wave': 'tri'}, fy.get(1, ('wave',))) self.assertEqual('RMW\nRFW\n', fs.getvalue()) def test_get_invalid_channel(self): """Tries to pass an invalid channel.""" with self.assertRaises(fygen.InvalidChannelError): self.fy.get(2, 'wave') def test_get_invalid_parameter(self): """Tries to pass an invalid parameter.""" with self.assertRaises(fygen.UnknownParameterError): self.fy.get(0, 'foo') def test_get_invalid_waveform_index(self): """Unrecognized wave index is returned by the siggen.""" fs = FakeSerial([b'100\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True with self.assertRaises(fygen.UnknownWaveformError): fy.get(0, 'wave') def test_get_freq1(self): """Gets the frequency in Hz.""" fs = FakeSerial([b'12345.6789\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(12345, fy.get(0, 'freq_hz')) self.assertEqual('RMF\n', fs.getvalue()) def test_get_freq2(self): """Gets the frequency in uHz.""" fs = FakeSerial([b'12345.6789\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(12345678900, fy.get(1, 'freq_uhz')) self.assertEqual('RFF\n', fs.getvalue()) def test_get_volts(self): """Gets the amplitude voltage.""" fs = FakeSerial([b'123400\n', b'5000\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(12.34, fy.get(0, 'volts')) self.assertEqual(0.5, fy.get(1, 'volts')) self.assertEqual('RMA\nRFA\n', fs.getvalue()) def test_get_offset_volts(self): """Gets the offset voltage.""" fs = FakeSerial([b'12340\n', b'4294962296\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(12.34, fy.get(0, 'offset_volts')) self.assertEqual(-5, fy.get(1, 'offset_volts')) self.assertEqual('RMO\nRFO\n', fs.getvalue()) def test_get_phase_degrees(self): """Gets the phase angle.""" fs = FakeSerial([b'0\n', b'189300\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(0, fy.get(0, 'phase_degrees')) self.assertEqual(189.3, fy.get(1, 'phase_degrees')) self.assertEqual('RMP\nRFP\n', fs.getvalue()) def test_get_duty_cycle(self): """Gets the duty cycle.""" fs = FakeSerial([b'50000\n', b'10500\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(0.5, fy.get(0, 'duty_cycle')) self.assertEqual(0.105, fy.get(1, 'duty_cycle')) self.assertEqual('RMD\nRFD\n', fs.getvalue()) def test_set_waveform(self): """Sets a custom waveform.""" wave = [-1.0, 0.0, 1.0, 0.0] * 2048 self.fy.set_waveform(5, values=wave) expected = 'DDS_WAVE5\n' expected += '00000020FF3F002000000020FF3F0020\n' * 1024 self.assertEqual(expected, self.output.getvalue()) def test_set_raw_waveform(self): """Sets a custom waveform using raw values.""" wave = [1, 2, 3, 4] * 2048 self.fy.set_waveform(6, raw_values=wave) expected = 'DDS_WAVE6\n' expected += '01000200030004000100020003000400\n' * 1024 self.assertEqual(expected, self.output.getvalue()) def test_bad_waveform_index(self): """Passes an invalid waveform index.""" with self.assertRaises(fygen.UnknownWaveformError): self.fy.set_waveform(0, raw_values=[0]*8192) def test_raw_value_conflict_error(self): """Passes both values and raw_values.""" with self.assertRaises(fygen.RawValueConflictError): self.fy.set_waveform(1, values=[0.0] * 8192, raw_values=[0]*8192) def test_value_count_error(self): """Passes the wrong array size.""" with self.assertRaises(fygen.ValueCountError): self.fy.set_waveform(1, raw_values=[0]*8191) with self.assertRaises(fygen.ValueCountError): self.fy.set_waveform(1, values=[0.0]*8191) def test_cmd_noack_error(self): """Simulates the siggen not responsing to the DDR_WAVE request.""" fs = FakeSerial([b'0\n', b'0\n', b'E\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True with self.assertRaises(fygen.CommandNotAcknowledgedError): fy.set_waveform(1, values=[0.0]*8192) def test_data_noack_error(self): """Simulates the siggen not responsing to data sent.""" fs = FakeSerial([b'0\n', b'0\n', b'W\n', b'E\n']) fy = fygen.FYGen(port=fs) fy.is_serial = True with self.assertRaises(fygen.CommandNotAcknowledgedError): fy.set_waveform(1, values=[0.0]*8192) def test_set_sweep(self): """Tries every known sweep variable.""" self.fy.set_sweep(enable=False, mode=fygen.SWEEP_FREQUENCY) self.fy.set_sweep(mode=fygen.SWEEP_AMPLITUDE) self.fy.set_sweep(mode=fygen.SWEEP_OFFSET) self.fy.set_sweep(mode=fygen.SWEEP_DUTY_CYCLE) self.fy.set_sweep(log_sweep=False) self.fy.set_sweep(log_sweep=True) self.fy.set_sweep(source=fygen.SWEEP_SOURCE_TIME) self.fy.set_sweep(source=fygen.SWEEP_SOURCE_VCO_IN) self.fy.set_sweep(time_seconds=10.1) self.fy.set_sweep(start_freq_hz=1234.56, end_freq_hz=1234.56) self.fy.set_sweep(start_volts=12.3456, end_volts=12.3456) self.fy.set_sweep(start_offset_volts=-12.3456, end_offset_volts=-12.3456) self.fy.set_sweep(start_duty_cycle=0.1, end_duty_cycle=0.9) self.assertEqual( 'SBE0\n' 'SOB0\n' 'SBE0\n' 'SOB1\n' 'SBE0\n' 'SOB2\n' 'SBE0\n' 'SOB3\n' 'SBE0\n' 'SMO0\n' 'SBE0\n' 'SMO1\n' 'SBE0\n' 'SXY0\n' 'SBE0\n' 'SXY1\n' 'SBE0\n' 'STI10.10\n' 'SBE0\n' 'SST1234.6\n' 'SEN1234.6\n' 'SBE0\n' 'SST12.346\n' 'SEN12.346\n' 'SBE0\n' 'SST-2.346\n' 'SEN-2.346\n' 'SBE0\n' 'SST10.0\n' 'SEN90.0\n' '', self.output.getvalue()) def test_sweep_enable(self): """Tries to enable sweep mode.""" with self.assertRaises(fygen.PossibleFirmwareBugError): self.fy.set_sweep(enable=True) def test_sweep_enable_forced(self): """Tries to enable sweep mode.""" fy = fygen.FYGen(port=self.output) fy.force_sweep_enable = True fy.set_sweep(enable=True) self.assertEqual('SBE1\n', self.output.getvalue()) def test_invalid_sweep_mode(self): """Sets an invalid sweep mode.""" with self.assertRaises(fygen.InvalidSweepModeError): self.fy.set_sweep(mode=5) def test_invalid_sweep_source(self): """Sets an invalid sweep source.""" with self.assertRaises(fygen.InvalidSweepSourceError): self.fy.set_sweep(source=2) def test_sweep_vco_with_time(self): """Sets a time with a VCO source.""" with self.assertRaises(fygen.InvalidSweepSourceError): self.fy.set_sweep(source=fygen.SWEEP_SOURCE_VCO_IN, time_seconds=1) def test_invalid_sweep_time(self): """Sets an invalid sweep time.""" with self.assertRaises(fygen.InvalidSweepTimeError): self.fy.set_sweep(time_seconds=0) def test_sweep_start_freq_in_invalid_mode(self): """Sets start_freq_hz in amplitude mode.""" with self.assertRaises(fygen.InvalidModeError): self.fy.set_sweep(mode=fygen.SWEEP_AMPLITUDE, start_freq_hz=1000) def test_invalid_start_freq(self): """Sets start_freq_hz to zero.""" with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set_sweep(start_freq_hz=0) def test_sweep_end_freq_in_invalid_mode(self): """Sets end_freq_hz in amplitude mode.""" with self.assertRaises(fygen.InvalidModeError): self.fy.set_sweep(mode=fygen.SWEEP_AMPLITUDE, end_freq_hz=1000) def test_invalid_end_freq(self): """Sets end_freq_hz to zero.""" with self.assertRaises(fygen.InvalidFrequencyError): self.fy.set_sweep(end_freq_hz=0) def test_sweep_start_volts_in_invalid_mode(self): """Sets start_volts in amplitude mode.""" with self.assertRaises(fygen.InvalidModeError): self.fy.set_sweep(mode=fygen.SWEEP_FREQUENCY, start_volts=10) def test_invalid_start_volts(self): """Sets start_volts to zero and too high.""" with self.assertRaises(fygen.InvalidVoltageError): self.fy.set_sweep(start_volts=0) with self.assertRaises(fygen.InvalidVoltageError): self.fy.set_sweep(start_volts=30) def test_sweep_end_volts_in_invalid_mode(self): """Sets end_volts in amplitude mode.""" with self.assertRaises(fygen.InvalidModeError): self.fy.set_sweep(mode=fygen.SWEEP_FREQUENCY, end_volts=10) def test_invalid_end_volts(self): """Sets end_volts to zero and too high.""" with self.assertRaises(fygen.InvalidVoltageError): self.fy.set_sweep(end_volts=0) with self.assertRaises(fygen.InvalidVoltageError): self.fy.set_sweep(end_volts=30) def test_sweep_start_offset_volts_in_invalid_mode(self): """Sets start_offset_volts in amplitude mode.""" with self.assertRaises(fygen.InvalidModeError): self.fy.set_sweep(mode=fygen.SWEEP_FREQUENCY, start_offset_volts=10) def test_invalid_start_offset_volts(self): """Sets start_offset_volts too high.""" with self.assertRaises(fygen.InvalidVoltageError): self.fy.set_sweep(start_offset_volts=30) def test_sweep_end_offset_volts_in_invalid_mode(self): """Sets end_offset_volts in amplitude mode.""" with self.assertRaises(fygen.InvalidModeError): self.fy.set_sweep(mode=fygen.SWEEP_FREQUENCY, end_offset_volts=10) def test_invalid_end_offset_volts(self): """Sets end_offset_volts too high.""" with self.assertRaises(fygen.InvalidVoltageError): self.fy.set_sweep(end_offset_volts=30) def test_sweep_start_duty_cycle_in_invalid_mode(self): """Sets start_duty_cycle in amplitude mode.""" with self.assertRaises(fygen.InvalidModeError): self.fy.set_sweep(mode=fygen.SWEEP_FREQUENCY, start_duty_cycle=0.1) def test_invalid_start_duty_cycle(self): """Sets start_duty_cycle to zero and too high.""" with self.assertRaises(fygen.InvalidDutyCycleError): self.fy.set_sweep(start_duty_cycle=0) with self.assertRaises(fygen.InvalidDutyCycleError): self.fy.set_sweep(start_duty_cycle=1) def test_sweep_end_duty_cycle_in_invalid_mode(self): """Sets end_duty_cycle in amplitude mode.""" with self.assertRaises(fygen.InvalidModeError): self.fy.set_sweep(mode=fygen.SWEEP_FREQUENCY, end_duty_cycle=0.9) def test_invalid_end_duty_cycle(self): """Sets end_duty_cycle to zero and one.""" with self.assertRaises(fygen.InvalidDutyCycleError): self.fy.set_sweep(end_duty_cycle=0) with self.assertRaises(fygen.InvalidDutyCycleError): self.fy.set_sweep(end_duty_cycle=1) def test_set_measurement(self): """Tests all combinations of set_measurement.""" self.fy.set_measurement(reset_counter=True) self.fy.set_measurement(pause=False) self.fy.set_measurement(pause=True) self.fy.set_measurement(gate_time=fygen.GATE_TIME_1S) self.fy.set_measurement(gate_time=fygen.GATE_TIME_10S) self.fy.set_measurement(gate_time=fygen.GATE_TIME_100S) self.fy.set_measurement(coupling=fygen.COUPLING_DC) self.fy.set_measurement(coupling=fygen.COUPLING_AC) self.assertEqual( 'WCZ0\n' 'WCP1\n' 'WCP0\n' 'WCG0\n' 'WCG1\n' 'WCG2\n' 'WCC1\n' 'WCC0\n', self.output.getvalue()) def test_set_measurement_invalid_gate_time(self): """Passes an invalid gate_time.""" with self.assertRaises(fygen.InvalidGateTimeError): self.fy.set_measurement(gate_time=4) def test_set_measurement_invalid_coupling(self): """Passes an invalid coupling.""" with self.assertRaises(fygen.InvalidCouplingError): self.fy.set_measurement(coupling=2) def test_get_measurement(self): """Gets all measurements.""" fs = FakeSerial([ b'0\n', # gate mode = 1S b'0000000668\n', # freq_hz b'0000060668\n', # period_sec b'0000012345\n', # positive_width_sec b'0000054321\n', # negative_width_sec b'0000000541\n', # duty cycle ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual( { 'freq_hz': 668.0, 'period_sec': 6.0668e-5, 'positive_width_sec': 1.2345e-5, 'negative_width_sec': 5.4321e-5, 'duty_cycle': 0.541 }, fy.get_measurement()) def test_get_measurement_counter(self): """Gets the counter measurement.""" fs = FakeSerial([ b'0000000669\n', # counter ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual({'counter': 669}, fy.get_measurement({'counter'})) def test_get_measurement_frequency(self): """Gets frequencies.""" fs = FakeSerial([ b'0\n', # gate mode = 1S b'0000000668\n', # freq_hz b'1\n', # gate mode = 10S b'0000000668\n', # freq_hz b'2\n', # gate mode = 100S b'0000000668\n', # freq_hz ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(668.0, fy.get_measurement('freq_hz')) self.assertEqual(66.8, fy.get_measurement('freq_hz')) self.assertEqual(6.68, fy.get_measurement('freq_hz')) def test_get_measurement_invalid_gate_time(self): """siggen returns an unexpected gate time mode.""" fs = FakeSerial([ b'x\n', # gate mode = ??? b'0000000668\n', # freq_hz ]) fy = fygen.FYGen(port=fs) fy.is_serial = True with self.assertRaises(fygen.InvalidGateTimeError): fy.get_measurement('freq_hz') def test_get_measurement_unknown_parameter(self): """requests an unknown parameter.""" with self.assertRaises(fygen.UnknownParameterError): self.fy.get_measurement('foo') def test_save(self): """Saves parameters.""" self.fy.save(2) self.assertEqual('USN02\n', self.output.getvalue()) def test_load(self): """Loads parameters.""" self.fy.load(3) self.assertEqual('ULN03\n', self.output.getvalue()) def test_set_synchronization(self): """Sets all known sync modes.""" self.fy.set_synchronization(wave=True) self.fy.set_synchronization(freq=True) self.fy.set_synchronization(volts=True) self.fy.set_synchronization(offset_volts=True) self.fy.set_synchronization(duty_cycle=True) self.assertEqual( 'USA0\n' 'USA1\n' 'USA2\n' 'USA3\n' 'USA4\n' '', self.output.getvalue()) def test_get_synchronization(self): """Gets all known sync modes.""" fs = FakeSerial([ b'0\n', # duty cycle b'255\n', # freq b'0\n', # offset_volts b'255\n', # volts b'0\n', # wave ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual({ 'duty_cycle': False, 'freq': True, 'offset_volts': False, 'volts': True, 'wave': False, }, fy.get_synchronization()) self.assertEqual( 'RSA4\n' 'RSA1\n' 'RSA3\n' 'RSA2\n' 'RSA0\n' '', fs.getvalue()) def test_get_synchronization_dict(self): """Gets all known sync modes.""" fs = FakeSerial([ b'255\n', # duty cycle ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual( {'duty_cycle': True}, fy.get_synchronization(('duty_cycle',))) self.assertEqual('RSA4\n', fs.getvalue()) def test_get_synchronization_single(self): """Gets all known sync modes.""" fs = FakeSerial([ b'0\n', # wave ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual(False, fy.get_synchronization('wave')) self.assertEqual('RSA0\n', fs.getvalue()) def test_get_invalid_sync_mode(self): """Gets an invalid sync mode.""" with self.assertRaises(fygen.InvalidSynchronizationMode): self.fy.get_synchronization('foo') def test_set_buzzer(self): """Sets the buzzer.""" self.fy.set_buzzer(False) self.fy.set_buzzer(True) self.assertEqual('UBZ0\nUBZ1\n', self.output.getvalue()) def test_get_buzzer(self): """Gets buzzer state.""" fs = FakeSerial([ b'0\n', b'255\n', ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertFalse(fy.get_buzzer()) self.assertTrue(fy.get_buzzer()) self.assertEqual('RBZ\nRBZ\n', fs.getvalue()) def test_set_uplink(self): """Tries all setuplink combinations.""" self.fy.set_uplink(is_master=True, enable=False) self.fy.set_uplink(is_master=False, enable=True) self.assertEqual( 'UUL0\n' 'UMS0\n' 'UMS1\n' 'UUL1\n' '', self.output.getvalue()) def test_get_uplink(self): """Gets uplink settings.""" fs = FakeSerial([ b'0\n', b'255\n', b'255\n', ]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual({'enable': False, 'is_master': False}, fy.get_uplink()) self.assertTrue(fy.get_uplink('enable')) self.assertEqual('RUL\nRMS\nRUL\n', fs.getvalue()) def test_get_id(self): """Gets device id.""" fs = FakeSerial([b'12345\n',]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual('12345', fy.get_id()) self.assertEqual('UID\n', fs.getvalue()) def test_get_model(self): """Gets device model.""" fs = FakeSerial([b'fy2300\n',]) fy = fygen.FYGen(port=fs) fy.is_serial = True self.assertEqual('fy2300', fy.get_model()) self.assertEqual('UMO\n', fs.getvalue()) def test_auto_detect_on_init(self): """Autodetects runs on FYGen init""" fs = FakeSerial([b'FY6900-60\n',]) fy = fygen.FYGen(port=fs, _port_is_serial=True) self.assertEqual('fy6900', fy.device_name) self.assertEqual('UMO\n', fs.getvalue()) def test_auto_detect(self): self.assertEqual(fygen.detect_device('FY6900-60M'), 'fy6900') self.assertEqual(fygen.detect_device('FY2350H'), 'fy2300') def test_autodetect_no_conflict(self): """ Make sure no exact match maps to the wrong device. This is just to future proof in case two devices with leading 4-char prefix gets added that have different waveform id's """ for device in SUPPORTED_DEVICES: self.assertEqual(fygen.detect_device(device), device) if __name__ == '__main__': unittest.main()
StarcoderdataPython
130000
<reponame>RileyWClarke/flarubin<gh_stars>0 # Tuples of RA,dec in degrees ELAISS1 = (9.45, -44.) XMM_LSS = (35.708333, -4-45/60.) ECDFS = (53.125, -28.-6/60.) COSMOS = (150.1, 2.+10./60.+55/3600.) EDFS_a = (58.90, -49.315) EDFS_b = (63.6, -47.60) def ddf_locations(): """Return the DDF locations as as dict. RA and dec in degrees. """ result = {} result['ELAISS1'] = ELAISS1 result['XMM_LSS'] = XMM_LSS result['ECDFS'] = ECDFS result['COSMOS'] = COSMOS result['EDFS_a'] = EDFS_a result['EDFS_b'] = EDFS_b return result
StarcoderdataPython
171743
<filename>NPC.py import sys, pygame, math class NPC(pygame.sprite.Sprite): def __init__(self, maxSpeed, pos = [0,0]): pygame.sprite.Sprite.__init__(self, self.containers) #Images From: URL: http://opengameart.org/content/classic-knight-animated playerSize = [25,25] self.rightImages = [pygame.transform.scale(pygame.image.load("NPC\NPC Images\walkRight0.png"), playerSize) ] self.leftImages = [pygame.transform.scale(pygame.image.load("NPC\NPC Images\walkLeft0.png"), playerSize) ] self.upImages = [pygame.transform.scale(pygame.image.load("NPC\NPC Images\walkUp0.png"), playerSize) ] self.downImages = [pygame.transform.scale(pygame.image.load("NPC\NPC Images\walkDown0.png"), playerSize) ] self.images = self.rightImages self.frame = 0 self.maxFrame = len(self.images)-1 self.image = self.images[self.frame] self.rect = self.image.get_rect() self.xDirection = "right" self.yDirection = "none" self.speedx = 0 self.speedy = 0 self.speed = [self.speedx, self.speedy] self.maxSpeedx = maxSpeed[0] self.maxSpeedy = maxSpeed[1] self.timer = 0 self.timerMax = .25* 60 self.didBounceX = False self.didBounceY = False self.rect = self.rect.move(pos) self.living = True self.lives = 3 self.score = 0 def die(self): self.lives -= 1 self.lives if self.lives <= 0: self.living = False def update(*args): self = args[0] size = args[1] self.move() self.animate() self.collideScreen(size) def collideObject(self, other): if self.rect.right > other.rect.left and self.rect.left < other.rect.right: if self.rect.bottom > other.rect.top and self.rect.top < other.rect.bottom: if self.radius + other.radius > self.distanceTo(other.rect.center): return True return False def collideScreen(self, size): width = size[0] height = size[1] if not self.didBounceX: if self.rect.center[0] < -1: self.rect.center = (width, self.rect.center[1]) elif self.rect.center[0] > width+1: self.rect.center = (0, self.rect.center[1]) def collideHardblock(self, other): if self.rect.right > other.rect.left and self.rect.left < other.rect.right: if self.rect.bottom > other.rect.top and self.rect.top < other.rect.bottom: self.speedx = -self.speedx self.speedy = -self.speedy self.move() self.speedx = 0 self.speedy = 0 def animate(self): if self.timer < self.timerMax: self.timer += 1 else: self.timer = 0 if self.frame < self.maxFrame: self.frame += 1 else: self.frame = 0 self.image = self.images[self.frame] def move(self): self.speed = [self.speedx, self.speedy] self.rect = self.rect.move(self.speed) self.didBounceX = False self.didBounceY = False def distanceTo(self, pt): x1 = self.rect.center[0] y1 = self.rect.center[1] x2 = pt[0] y2 = pt[1] return math.sqrt((x1-x2)**2+(y1-y2)**2)
StarcoderdataPython
1749063
<gh_stars>1-10 # # MIT License # # Copyright 2017 Launchpad project contributors (see COPYRIGHT.md) # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # import base64 import os from django.conf import settings from .interface import BaseLoader ps1_loader_template = """ {script} $b = @" {executable} "@ $b = [Byte[]][Convert]::FromBase64String($b) Invoke-ReflectivePEInjection -PEBytes $b -ForceASLR """ class Ps1Loader(BaseLoader): platform = ['windows'] cpu = ['x86', 'x64'] def get_loader(self, executable): with open(str(settings.DEPENDENCIES_DIR / 'ps1' / 'Invoke-ReflectivePEInjection.ps1'), 'r') as fp: script = fp.read() if isinstance(executable, (str, os.PathLike)): with open(executable, 'rb') as fp: executable = fp.read() elif not isinstance(executable, (bytes, bytearray)): raise ValueError('`executable` must be path to a file or binary blob.') executable = base64.b64encode(executable).decode() result = ps1_loader_template.format(**locals()) return result def get_oneliner(self, loader_url): return f"(New-Object System.Net.WebClient).DownloadString('{loader_url}')|iex"
StarcoderdataPython
13707
import pixiedust my_logger = pixiedust.getLogger(__name__)
StarcoderdataPython
45004
def mergeSort(elements): if len(elements) == 0 or len(elements) == 1: # BASE CASE return elements middle = len(elements) // 2 left = mergeSort(elements[:middle]) right = mergeSort(elements[middle:]) if left == [] or right == []: return left or right result = [] i, j = 0, 0 while (len(result) < len(left) + len(right)): if left[i] < right[j]: result.append(left[i]) i+= 1 else: result.append(right[j]) j+= 1 if i == len(left) or j == len(right): result.extend(left[i:] or right[j:]) break return result print(mergeSort([3,4,5,1,2,8,3,7,6]))
StarcoderdataPython
1653117
<filename>src/borg/platform/base.py import os """ platform base module ==================== Contains platform API implementations based on what Python itself provides. More specific APIs are stubs in this module. When functions in this module use platform APIs themselves they access the public platform API: that way platform APIs provided by the platform-specific support module are correctly composed into the base functionality. """ API_VERSION = 3 fdatasync = getattr(os, 'fdatasync', os.fsync) def acl_get(path, item, st, numeric_owner=False): """ Saves ACL Entries If `numeric_owner` is True the user/group field is not preserved only uid/gid """ def acl_set(path, item, numeric_owner=False): """ Restore ACL Entries If `numeric_owner` is True the stored uid/gid is used instead of the user/group names """ try: from os import lchflags def set_flags(path, bsd_flags, fd=None): lchflags(path, bsd_flags) except ImportError: def set_flags(path, bsd_flags, fd=None): pass def get_flags(path, st): """Return BSD-style file flags for path or stat without following symlinks.""" return getattr(st, 'st_flags', 0) def sync_dir(path): fd = os.open(path, os.O_RDONLY) try: os.fsync(fd) finally: os.close(fd) class SyncFile: """ A file class that is supposed to enable write ordering (one way or another) and data durability after close(). The degree to which either is possible varies with operating system, file system and hardware. This fallback implements a naive and slow way of doing this. On some operating systems it can't actually guarantee any of the above, since fsync() doesn't guarantee it. Furthermore it may not be possible at all to satisfy the above guarantees on some hardware or operating systems. In these cases we hope that the thorough checksumming implemented catches any corrupted data due to misordered, delayed or partial writes. Note that POSIX doesn't specify *anything* about power failures (or similar failures). A system that routinely loses files or corrupts file on power loss is POSIX compliant. TODO: Use F_FULLSYNC on OSX. TODO: A Windows implementation should use CreateFile with FILE_FLAG_WRITE_THROUGH. """ def __init__(self, path): self.fd = open(path, 'xb') self.fileno = self.fd.fileno() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def write(self, data): self.fd.write(data) def sync(self): """ Synchronize file contents. Everything written prior to sync() must become durable before anything written after sync(). """ from .. import platform self.fd.flush() platform.fdatasync(self.fileno) if hasattr(os, 'posix_fadvise'): os.posix_fadvise(self.fileno, 0, 0, os.POSIX_FADV_DONTNEED) def close(self): """sync() and close.""" from .. import platform self.sync() self.fd.close() platform.sync_dir(os.path.dirname(self.fd.name)) def swidth(s): """terminal output width of string <s> For western scripts, this is just len(s), but for cjk glyphs, 2 cells are used. """ return len(s)
StarcoderdataPython
177507
<gh_stars>10-100 import os from urllib import request import numpy as np from numpy import genfromtxt from .. import pklhandler ''' This module contains helper functions to download and load the boston housing dataset. ''' def get(): ''' Downloads the boston dataset from https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and saves it as a pkl file `boston.pkl`. Raises ------ urllib.error.URLError If internet connection is not available or the URL is not accessible. OSError If the file cannot be created due to a system-related error. KeyError If invalid/unknown type. Note ---- You only need to call this method once, i.e, after the dataset has been downloaded and you have the `boston.pkl` file, you don't need to call this method again. ''' # Url to download the dataset from url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data' # Download the dataset print('Downloading housing.data...') request.urlretrieve(url, 'housing.data') print('Download complete.') # Parse the data and save it as a pkl file pklhandler.save(genfromtxt('housing.data'), 'boston.pkl') # Delete unnecessary files os.remove('housing.data') print('Deleted unnecessary files.') def load(): ''' Loads the boston housing dataset from pkl file. The inputs have following columns: - CRIM : per capita crime rate by town - ZN : proportion of residential land zoned for lots over 25,000 sq.ft. - INDUS : proportion of non-retail business acres per town - CHAS : Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) - NOX : nitric oxides concentration (parts per 10 million) - RM : average number of rooms per dwelling - AGE : proportion of owner-occupied units built prior to 1940 - DIS : weighted distances to five Boston employment centres - RAD : index of accessibility to radial highways - TAX : full-value property-tax rate per $10,000 - PTRATIO : pupil-teacher ratio by town - B : 1000(Bk - 0.63)^2 where Bk is the proportion of black by town - LSTAT : % lower status of the population The outputs are - MEDV : Median value of owner-occupied homes in $1000's Returns ------- inputs_train : numpy.array outputs_train : numpy.array inputs_test : numpy.array outputs_test : numpy.array ''' data_array = pklhandler.load('boston.pkl') inputs_train = data_array[0:500, :-1] outputs_train = data_array[0:500, -1] inputs_test = data_array[500:, :-1] outputs_test = data_array[500:, -1] return inputs_train, outputs_train, inputs_test, outputs_test
StarcoderdataPython
3398720
<filename>tests/unit/test_core_driver.py<gh_stars>1-10 import sys import pytest from ssh2net.exceptions import UnknownPrivLevel from ssh2net.core.driver import BaseNetworkDriver from ssh2net.core.cisco_iosxe.driver import PRIVS IOS_ARP = """Protocol Address Age (min) Hardware Addr Type Interface Internet 172.31.254.1 - 0000.0c07.acfe ARPA Vlan254 Internet 172.31.254.2 - c800.84b2.e9c2 ARPA Vlan254 """ def test__determine_current_priv(): base_driver = BaseNetworkDriver() base_driver.privs = PRIVS current_priv = base_driver._determine_current_priv("execprompt>") assert current_priv.name == "exec" def test__determine_current_priv_unknown(): base_driver = BaseNetworkDriver() base_driver.privs = PRIVS with pytest.raises(UnknownPrivLevel): base_driver._determine_current_priv("!!!!thisissoooowrongggg!!!!!!?!") @pytest.mark.skipif(sys.platform.startswith("win"), reason="not supporting textfsm on windows") def test_textfsm_parse_output(): base_driver = BaseNetworkDriver() base_driver.textfsm_platform = "cisco_ios" result = base_driver.textfsm_parse_output("show ip arp", IOS_ARP) assert isinstance(result, list) assert result[0] == ["Internet", "172.31.254.1", "-", "0000.0c07.acfe", "ARPA", "Vlan254"]
StarcoderdataPython
3336180
<filename>AtCoder/ABC/153/D. Caracal Vs Monster.py def f(x): if x == 1: return 1 else: k = f(x//2) return 1+2*k H = int(input()) print(f(H))
StarcoderdataPython
1676698
from __future__ import division from __future__ import print_function import time import argparse import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from pygcn.utils import load_data, accuracy from pygcn.models import GCN, MLP from sklearn.preprocessing import StandardScaler scaler = StandardScaler() # Training settings parser = argparse.ArgumentParser() parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.') parser.add_argument('--fastmode', action='store_true', default=False, help='Validate during training pass.') parser.add_argument('--seed', type=int, default=42, help='Random seed.') parser.add_argument('--epochs', type=int, default=5000, help='Number of epochs to train.') parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate.') parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).') parser.add_argument('--hidden', type=int, default=32, help='Number of hidden units.') parser.add_argument('--input_droprate', type=float, default=0.5, help='Dropout rate of the input layer (1 - keep probability).') parser.add_argument('--hidden_droprate', type=float, default=0.5, help='Dropout rate of the hidden layer (1 - keep probability).') parser.add_argument('--dropnode_rate', type=float, default=0.5, help='Dropnode rate (1 - keep probability).') parser.add_argument('--patience', type=int, default=100, help='Patience') parser.add_argument('--order', type=int, default=5, help='Propagation step') parser.add_argument('--sample', type=int, default=4, help='Sampling times of dropnode') parser.add_argument('--tem', type=float, default=0.5, help='Sharpening temperature') parser.add_argument('--lam', type=float, default=1., help='Lamda') parser.add_argument('--dataset', type=str, default='cora', help='Data set') parser.add_argument('--cuda_device', type=int, default=4, help='Cuda device') parser.add_argument('--use_bn', action='store_true', default=False, help='Using Batch Normalization') #dataset = 'citeseer' #dataset = 'pubmed' args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.cuda.set_device(args.cuda_device) dataset = args.dataset np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) # Load data A, features, labels, idx_train, idx_val, idx_test = load_data(dataset) idx_unlabel = torch.arange(idx_train.shape[0], labels.shape[0], dtype=int) # Model and optimizer model = MLP(nfeat=features.shape[1], nhid=args.hidden, nclass=labels.max().item() + 1, input_droprate=args.input_droprate, hidden_droprate=args.hidden_droprate, use_bn = args.use_bn) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) if args.cuda: model.cuda() features = features.cuda() A = A.cuda() labels = labels.cuda() idx_train = idx_train.cuda() idx_val = idx_val.cuda() idx_test = idx_test.cuda() idx_unlabel = idx_unlabel.cuda() def propagate(feature, A, order): #feature = F.dropout(feature, args.dropout, training=training) x = feature y = feature for i in range(order): x = torch.spmm(A, x).detach_() #print(y.add_(x)) y.add_(x) return y.div_(order+1.0).detach_() def rand_prop(features, training): n = features.shape[0] drop_rate = args.dropnode_rate drop_rates = torch.FloatTensor(np.ones(n) * drop_rate) if training: masks = torch.bernoulli(1. - drop_rates).unsqueeze(1) features = masks.cuda() * features else: features = features * (1. - drop_rate) features = propagate(features, A, args.order) return features def consis_loss(logps, temp=args.tem): ps = [torch.exp(p) for p in logps] sum_p = 0. for p in ps: sum_p = sum_p + p avg_p = sum_p/len(ps) #p2 = torch.exp(logp2) sharp_p = (torch.pow(avg_p, 1./temp) / torch.sum(torch.pow(avg_p, 1./temp), dim=1, keepdim=True)).detach() loss = 0. for p in ps: loss += torch.mean((p-sharp_p).pow(2).sum(1)) loss = loss/len(ps) return args.lam * loss def train(epoch): t = time.time() X = features model.train() optimizer.zero_grad() X_list = [] K = args.sample for k in range(K): X_list.append(rand_prop(X, training=True)) output_list = [] for k in range(K): output_list.append(torch.log_softmax(model(X_list[k]), dim=-1)) loss_train = 0. for k in range(K): loss_train += F.nll_loss(output_list[k][idx_train], labels[idx_train]) loss_train = loss_train/K #loss_train = F.nll_loss(output_1[idx_train], labels[idx_train]) + F.nll_loss(output_1[idx_train], labels[idx_train]) #loss_js = js_loss(output_1[idx_unlabel], output_2[idx_unlabel]) #loss_en = entropy_loss(output_1[idx_unlabel]) + entropy_loss(output_2[idx_unlabel]) loss_consis = consis_loss(output_list) loss_train = loss_train + loss_consis acc_train = accuracy(output_list[0][idx_train], labels[idx_train]) loss_train.backward() optimizer.step() if not args.fastmode: model.eval() X = rand_prop(X,training=False) output = model(X) output = torch.log_softmax(output, dim=-1) loss_val = F.nll_loss(output[idx_val], labels[idx_val]) acc_val = accuracy(output[idx_val], labels[idx_val]) print('Epoch: {:04d}'.format(epoch+1), 'loss_train: {:.4f}'.format(loss_train.item()), 'acc_train: {:.4f}'.format(acc_train.item()), 'loss_val: {:.4f}'.format(loss_val.item()), 'acc_val: {:.4f}'.format(acc_val.item()), 'time: {:.4f}s'.format(time.time() - t)) return loss_val.item(), acc_val.item() def Train(): # Train model t_total = time.time() loss_values = [] acc_values = [] bad_counter = 0 # best = args.epochs + 1 loss_best = np.inf acc_best = 0.0 loss_mn = np.inf acc_mx = 0.0 best_epoch = 0 for epoch in range(args.epochs): # if epoch < 200: # l, a = train(epoch, True) # loss_values.append(l) # acc_values.append(a) # continue l, a = train(epoch) loss_values.append(l) acc_values.append(a) print(bad_counter) if loss_values[-1] <= loss_mn or acc_values[-1] >= acc_mx:# or epoch < 400: if loss_values[-1] <= loss_best: #and acc_values[-1] >= acc_best: loss_best = loss_values[-1] acc_best = acc_values[-1] best_epoch = epoch torch.save(model.state_dict(), dataset +'.pkl') loss_mn = np.min((loss_values[-1], loss_mn)) acc_mx = np.max((acc_values[-1], acc_mx)) bad_counter = 0 else: bad_counter += 1 # print(bad_counter, loss_mn, acc_mx, loss_best, acc_best, best_epoch) if bad_counter == args.patience: print('Early stop! Min loss: ', loss_mn, ', Max accuracy: ', acc_mx) print('Early stop model validation loss: ', loss_best, ', accuracy: ', acc_best) break print("Optimization Finished!") print("Total time elapsed: {:.4f}s".format(time.time() - t_total)) # Restore best model print('Loading {}th epoch'.format(best_epoch)) model.load_state_dict(torch.load(dataset +'.pkl')) def test(): model.eval() X = features X = rand_prop(X, training=False) output = model(X) output = torch.log_softmax(output, dim=-1) loss_test = F.nll_loss(output[idx_test], labels[idx_test]) acc_test = accuracy(output[idx_test], labels[idx_test]) print("Test set results:", "loss= {:.4f}".format(loss_test.item()), "accuracy= {:.4f}".format(acc_test.item())) Train() test()
StarcoderdataPython
3274340
# -*- coding: utf-8 -*- import scrapy import re import datetime from ..items import LianjiaChengjiaoItem class ChengjiaoSpider(scrapy.Spider): name = 'chengjiao' allowed_domains = ['cd.lianjia.com'] start_url = "https://cd.lianjia.com/xiaoqu/" #分小区页面 next_region_url = "https://cd.lianjia.com{}pg{}/" #已售房源页面 solded_url = "https://cd.lianjia.com/chengjiao/pg{}c{}/" def start_requests(self): yield scrapy.Request(self.start_url,callback=self.parse) #解析获取主地区链接,如锦江区\成华区 def parse(self, response): regions = response.xpath("//div[@data-role='ershoufang']/div/a/@href").extract() for region in regions: region_url = "https://cd.lianjia.com" + region yield scrapy.Request(region_url, callback=self.parse_region) #解析获取分地区链接,如川大\红牌楼 def parse_region(self, response): next_regions = response.xpath("//div[@data-role='ershoufang']/div[2]/a/@href").extract() for next_region in next_regions: yield scrapy.Request(self.next_region_url.format(next_region, 1), meta={"page": 1,"next_region":next_region}, callback=self.parse_next_region) #解析获取分地区下的小区链接,如川大花园小区 def parse_next_region(self, response): #当前页 page = int(response.meta.get("page")) next_region = response.meta.get("next_region") next_region_name = response.meta.get("next_region_name") items = response.xpath("//ul[@class='listContent']/li") for item in items: #获取小区id village_id = item.xpath("./@data-id").extract_first() # 获取小区主地区 region = item.xpath(".//a[@class='district']/text()").extract_first().strip() # 获取小区分地区 next_region_name = item.xpath(".//a[@class='bizcircle']/text()").extract_first().strip() yield scrapy.Request(self.solded_url.format(1, village_id), callback=self.parse_solded_page, meta={"village_id": village_id, "region": region, "next_region": next_region,"page": 1, "next_region_name":next_region_name}) # total为小区总数 total = response.xpath("//div[@class='resultDes clear']/h2[@class='total fl']/span/text()").extract_first().strip() # 平均页数,需转换为整数页 ave_page = int(total)/30 if page < ave_page: page += 1 yield scrapy.Request(self.next_region_url.format(next_region, page), callback=self.parse_next_region, meta={"page": page, "next_region": next_region}) #解析小区已售房源信息 def parse_solded_page(self, response): page = int(response.meta.get("page")) village_id = response.meta.get("village_id") region = response.meta.get("region") next_region_name = response.meta.get("next_region_name") next_region = response.meta.get("next_region") total_num = int(response.xpath("//div[@class='total fl']/span/text()").extract_first().strip()) if total_num != 0: items = response.xpath("//ul[@class='listContent']/li") for item in items: i = LianjiaChengjiaoItem() title = item.xpath(".//div[@class='title']/a/text()").extract_first() if "车位" not in title: village_name = title.split(" ")[0] room_num = title.split(" ")[1] area = title.split(" ")[2] price_info = item.xpath(".//div[@class='totalPrice']/span/text()").extract_first() if "*" in price_info: total_price = item.xpath(".//span[@class='dealCycleTxt']/span[1]/text()").extract_first().split("牌")[1].split("万")[0] push_time = str(datetime.date.today()) else: total_price = price_info.split("万")[0].strip() push_time =response.xpath(".//div[@class='dealDate']/text()").extract_first().replace(".", "-") try: total_time = item.xpath(".//span[@class='dealCycleTxt']/span[2]/text()").extract_first() i['total_time'] = int(total_time.split("期")[1].split("天")[0]) except: total_time = item.xpath(".//span[@class='dealCycleTxt']/span/text()").extract_first() i['total_time'] = int(total_time.split("期")[1].split("天")[0]) house_info = item.xpath(".//div[@class='houseInfo']/text()").extract_first() i['village_id'] = village_id i['region'] = region i['next_region_name'] = next_region_name i['village_name'] = village_name i['room_num'] = room_num i['area'] = float(area.split("平")[0]) i['total_price'] = int(float(total_price)*10000) i['push_time'] = push_time i["forward"] = house_info.split("|")[0].strip() i["elevator"] = house_info.split("|")[-1].strip() i["url"] = response.url i["unit_price"] = int((float(total_price)*10000)/(float(area.split("平")[0]))) yield i ave_page = total_num/30 if page < ave_page: page += 1 yield scrapy.Request(self.solded_url.format(page, village_id), callback=self.parse_solded_page, meta={"village_id": village_id, "region": region, "next_region": next_region,"page": page,'next_region_name':next_region_name})
StarcoderdataPython
50097
<reponame>evi1hack/viperpython # -*- coding: utf-8 -*- # @File : SimpleRewMsfModule.py # @Date : 2019/1/11 # @Desc : # # from PostModule.lib.Configs import * from PostModule.lib.ModuleTemplate import TAG2CH, PostMSFRawModule from PostModule.lib.OptionAndResult import Option, register_options # from PostModule.lib.Session import Session class PostModule(PostMSFRawModule): NAME = "原始msf模块样例" DESC = "这是一个原始msf模块的样例,执行的是multi/gather/session_info模块" REQUIRE_SESSION = True MODULETYPE = TAG2CH.example OPTIONS = register_options([ Option(name='StrTest', name_tag="字符串测试", type='str', required=False, desc="测试一个字符串参数", ), Option(name='BoolTest', name_tag="Bool测试", type='bool', required=False, desc="测试一个Bool参数", default=False), Option(name='IntgerTest', name_tag="Intger测试", type='integer', required=False, desc="测试一个Intger参数"), Option(name='EnumTest', name_tag="Enum测试", type='enum', required=False, desc="测试一个enum参数", default='test1', enum_list=['test1', 'test2', 'test3']), Option(name=HANDLER_OPTION.get('name'), name_tag=HANDLER_OPTION.get('name_tag'), type=HANDLER_OPTION.get('type'), required=False, desc=HANDLER_OPTION.get('desc'), enum_list=[], option_length=HANDLER_OPTION.get('option_length')), Option(name=CREDENTIAL_OPTION.get('name'), name_tag=CREDENTIAL_OPTION.get('name_tag'), type=CREDENTIAL_OPTION.get('type'), required=False, desc=CREDENTIAL_OPTION.get('desc'), enum_list=[], option_length=CREDENTIAL_OPTION.get('option_length'), extra_data={'password_type': ['windows', 'browsers']} ), ]) def __init__(self, sessionid, hid, custom_param): super().__init__(sessionid, hid, custom_param) self.type = "post" self.mname = "multi/gather/session_info" self.runasjob = True def check(self): """执行前的检查函数""" return True, None def callback(self, status, message, data): print(status) print(message) print(data)
StarcoderdataPython
1749506
<reponame>J-81/dp_tools from collections import defaultdict import copy import enum import gzip import logging import math from pathlib import Path from statistics import mean, median, stdev import subprocess from typing import Callable, DefaultDict, Dict, List, Set, Tuple, Union import pandas as pd from dp_tools.components.components import GenomeAlignments, RawReadsComponent from dp_tools.core.entity_model import ( DataDir, DataFile, ModuleLevelMQC, TemplateDataset, TemplateSample, ) log = logging.getLogger(__name__) from dp_tools.core.check_model import Check, Flag, FlagCode # adapted from reference: https://stackoverflow.com/questions/56048627/round-floats-in-a-nested-dictionary-recursively # used to round values for easier to read messages def formatfloat(x): return "%.3g" % float(x) def pformat(original_dictionary, function): dictionary = copy.deepcopy( original_dictionary ) # we don't want to override original values if isinstance(dictionary, dict): new_dict = dict() for k, v in dictionary.items(): new_dict[k] = function(v) if isinstance(v, float) else pformat(v, function) return new_dict return dictionary class MIDDLE(enum.Enum): mean: Tuple[Callable] = (mean,) median: Tuple[Callable] = (median,) def __call__(self, *args, **kwargs): return self.value[0](*args, **kwargs) def identify_outliers( valueDict: Dict[str, float], standard_deviation_threshold: float, middle: Callable ): # determine middle value middle_value: float = middle(valueDict.values()) std_deviation: float = stdev(valueDict.values()) # init tracker # holds the key name and the standard deviations from the middle outliers: Dict[str, float] = dict() # exit early if std_deviation is zero (i.e. no outliers) if std_deviation == 0: return outliers # check if a value is an outlier for key, value in valueDict.items(): # calculate standard deviations num_std_deviations_vector = (value - middle_value) / std_deviation # if an outlier, add it to a dict of outliers (include a +/- standard deviations) if abs(num_std_deviations_vector) > standard_deviation_threshold: outliers[key] = num_std_deviations_vector return outliers # TODO: typedict for thresholds def identify_values_past_thresholds(thresholds: dict, value: float) -> List[FlagCode]: """Return empty list if no codes are raised""" VALID_THRESHOLD_TYPES = {"lower", "upper"} new_codes = list() for threshold in thresholds: assert ( threshold.get("type") in VALID_THRESHOLD_TYPES ), f"Invalid threshold type configured: valid options {VALID_THRESHOLD_TYPES} got {threshold.get('type')}" if threshold.get("type") == "lower": if value < threshold["value"]: new_codes.append(threshold["code"]) elif threshold.get("type") == "upper": if value > threshold["value"]: new_codes.append(threshold["code"]) return new_codes def convert_nan_to_zero(input: Dict[str, Union[float, int]]) -> Dict: """Convert any Nan into zero""" output = dict() for key, value in input.items(): output[key] = value if not math.isnan(value) else 0 return output ## Functions that use the following syntax to merge values from general stats: # "stat1 + stat2" should search and sum the stats def stat_string_to_value(stat_string: str, mqcData: ModuleLevelMQC) -> float: """ "stat1 + stat2" should search and sum the stats""" sum = float(0) direct_keys = stat_string.split(" + ") for direct_key in direct_keys: print(direct_key) sum += mqcData["General_Stats"][direct_key] return sum ## Dataframe and Series specific helper functions def nonNull(df: pd.DataFrame) -> bool: # negation since it checks if any are null return ~df.isnull().any(axis=None) def nonNegative(df: pd.DataFrame) -> bool: """This ignores null values, use nonNull to validate that condition""" return ((df >= 0) | (df.isnull())).all(axis=None) def onlyAllowedValues(df: pd.DataFrame, allowed_values: list) -> bool: """This ignores null values, use nonNull to validate that condition""" return ((df.isin(allowed_values)) | (df.isnull())).all(axis=None) class SAMPLE_RAWREADS_0001(Check): description = ( "Check that appropriate raw reads components exist. Also check that " "All datafiles associated with the components are present. " "For paired end studies, this means both rawForwardReads and rawReverseReads " "Are attached components. For single end studies, " "this means the rawReads component is attached. " "For paired end studies, confirms that forward and reverse read counts match." ) flag_desc = { FlagCode.GREEN: "All expected raw read files present", FlagCode.HALT1: "Missing expected components: {missing_components}", FlagCode.HALT2: "Forward and reverse reads counts differ. Forward: ({forward_read_count}) Reverse: ({reverse_read_count})", FlagCode.DEV_HANDLED: "Searched for component, but component was not expected by entity model: {unexpected_components}", } def validate_func(self, sample: TemplateSample) -> Flag: # assume passing unless a flag condition arises code = FlagCode.GREEN # set branching informative parameters based on layout if sample.dataset.metadata.paired_end: expected_components = ["rawForwardReads", "rawReverseReads"] check_read_parity = True else: expected_components = ["rawReads"] check_read_parity = False missing_components = list() unexpected_components = list() for expected_component in expected_components: component = getattr(sample, expected_component, None) if component == None: unexpected_components.append(expected_component) if not isinstance(component, RawReadsComponent): missing_components.append(expected_component) if unexpected_components: code = FlagCode.DEV_HANDLED if missing_components: code = FlagCode.HALT1 # check parity if all([check_read_parity, code == FlagCode.GREEN]): if ( not sample.rawForwardReads.mqcData["FastQC"]["General_Stats"][ "total_sequences" ] == sample.rawReverseReads.mqcData["FastQC"]["General_Stats"][ "total_sequences" ] ): code = FlagCode.HALT2 return Flag( check=self, codes=code, message_args={ "missing_components": missing_components, "forward_read_count": sample.rawForwardReads.mqcData["FastQC"][ "General_Stats" ]["total_sequences"] if code == FlagCode.HALT2 else None, "reverse_read_count": sample.rawReverseReads.mqcData["FastQC"][ "General_Stats" ]["total_sequences"] if code == FlagCode.HALT2 else None, }, ) class SAMPLE_TRIMREADS_0001(SAMPLE_RAWREADS_0001): ... class COMPONENT_RAWREADS_0001(Check): config = { "lines_to_check": 200_000_000, # attributes names "expected_data_files": [ "fastqGZ", "fastQCmultiQCDirZIP", "fastqcReportHTML", "fastqcReportZIP", ], } description = ( "Confirms that all read components (e.g. rawForwardReads, trimmedReads) should include the following: " "Datafiles of the format: {expected_data_files} related to the reads component. " "Additionally, the following checks are performed for each file type: " "\tfastq.gz: First {lines_to_check} lines are checked for correct format. " ) flag_desc = { FlagCode.GREEN: "Component passes all validation requirements.", FlagCode.HALT1: "Missing expected files: {missing_files}", FlagCode.HALT2: "Fastq.gz file has issues on lines: {lines_with_issues}", FlagCode.HALT3: "Corrupted Fastq.gz file suspected, last line number encountered: {last_line_checked}", } def validate_func(self: Check, component) -> Flag: """Checks fastq lines for expected header content Note: Example of header from GLDS-194 | ``@J00113:376:HMJMYBBXX:3:1101:26666:1244 1:N:0:NCGCTCGA\n`` This also assumes the fastq file does NOT split sequence or quality lines for any read :param component: A ReadsComponent """ # assume passing first # overwrite if flag conditions met code = FlagCode.GREEN # Subcheck: 1 ( can trigger HALT1 ) # check if expected files exist first missing_files: List[Path] = list() lines_with_issues: List[int] = list() i = 0 for expected_file in self.config["expected_data_files"]: try: # check the attribute is exists and is of the proper type assert any( [ isinstance(getattr(component, expected_file), DataFile), isinstance(getattr(component, expected_file), DataDir), ] ) # check the path exists assert getattr(component, expected_file).path.exists() except AssertionError: code = FlagCode.HALT1 missing_files.append(expected_file) # check if exiting makes sense before next checks if code != FlagCode.GREEN: return Flag( check=self, codes=code, message_args={ "lines_with_issues": lines_with_issues, "last_line_checked": i, "missing_files": missing_files, }, ) # subcheck: 2 ( can trigger HALT2,HALT3 ) # check fastq.gz file looks correct file = component.fastqGZ.path count_lines_to_check = self.config["lines_to_check"] if count_lines_to_check == -1: count_lines_to_check = float("inf") # truncated files raise EOFError # catch this as HALT3 try: with gzip.open(file, "rb") as f: for i, line in enumerate(f): # checks if lines counted equals the limit input if i + 1 == count_lines_to_check: log.debug( f"Reached {count_lines_to_check} lines, ending line check" ) break line = line.decode() # every fourth line should be an identifier expected_identifier_line = i % 4 == 0 # check if line is actually an identifier line if expected_identifier_line and line[0] != "@": lines_with_issues.append(i + 1) # update every 20,000,000 reads if i % 20_000_000 == 0: log.debug(f"Checked {i} lines for {file}") pass if not len(lines_with_issues) == 0: code = FlagCode.HALT2 except (EOFError, gzip.BadGzipFile): code = FlagCode.HALT3 # return flag return Flag( check=self, codes=code, message_args={ "lines_with_issues": lines_with_issues, "last_line_checked": i, "missing_files": missing_files, }, ) class COMPONENT_TRIMREADS_0001(COMPONENT_RAWREADS_0001): config = { "lines_to_check": 200_000_000, "expected_data_files": [ "fastqGZ", "fastQCmultiQCDirZIP", "fastqcReportHTML", "fastqcReportZIP", "trimmingReportTXT", ], } class COMPONENT_GENOMEALIGNMENTS_0001(Check): config = { "expected_files": { "alignedToTranscriptomeBam": {"samtoolsQuickCheck": True}, "alignedSortedByCoordBam": {"samtoolsQuickCheck": True}, "alignedSortedByCoordResortedBam": {"samtoolsQuickCheck": True}, "alignedSortedByCoordResortedBamIndex": {}, "logFinal": {}, "logProgress": {}, "logFull": {}, "sjTab": {}, }, # Will use the following syntax for combined metrics # 'metric1' + 'metric2' + 'metric3' # valid types: 'upper', 'lower' "general_stats_metrics": { "uniquely_mapped_percent + multimapped_percent": [ {"code": FlagCode.YELLOW1, "type": "lower", "value": 70}, {"code": FlagCode.RED1, "type": "lower", "value": 50}, ], # DISCUSS: this seems an odd check. Recommending modification # Maybe combine with other metrics for more meaningful assessment # Ref: https://github.com/J-81/JDO_V-V/blob/b3e0f4734eedabaa7ec99119073cf4e263f0963d/CHECKS.md?plain=1#L192 "multimapped_toomany_percent + multimapped_percent": [ {"code": FlagCode.YELLOW1, "type": "lower", "value": 30}, {"code": FlagCode.RED1, "type": "lower", "value": 15}, ], }, } description = ( "Check that the following files exists: {expected_files} " "Beyond existence, validating the files are not corrupt needs to be performed external to this automated V&V program " "Specifically, bam files can be validated using samtools quickcheck (see: http://www.htslib.org/doc/samtools-quickcheck.html) " "" ) flag_desc = { FlagCode.GREEN: "Component passes all validation requirements.", FlagCode.YELLOW1: "Found values beyond defined yellow thresholds: {flagged_values} -> {threshold_config}", FlagCode.RED1: "Found values beyond defined red thresholds: {flagged_values} -> {threshold_config}", FlagCode.HALT1: "Missing expected files: {missing_files}", } def UNIMPLEMENTED_samtoolsQuickCheck(self, bamFile: Path) -> str: """ This function is deprecated until getting subprocesses to use conda envs is properly implemented Returns error message if an issue is found, empty string otherwise """ # check with coord file with samtools process = subprocess.Popen( ["samtools", "quickcheck", bamFile], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = process.communicate() return stderr.decode() def validate_func( self: Check, component: GenomeAlignments, mqc_name: str = "STAR" ) -> Flag: codes = {FlagCode.GREEN} missing_files = list() flagged_values = dict() for expected_file, constraints in self.config["expected_files"].items(): # type: ignore # check exists if not getattr(component, expected_file).path.is_file(): codes.add(FlagCode.HALT1) missing_files.append(expected_file) # check with samtools (as per "samtoolsQuickCheck") # if constraints.get("samtoolsQuickCheck"): # self._samtoolsQuickCheck(getattr(component, expected_file).path) for key, thresholds in self.config["general_stats_metrics"].items(): # type: ignore # key may be a direct general stats key or a stat_string # check if direct key value = component.mqcData[mqc_name].get(key, None) if not value: # check if valid stat_string value = stat_string_to_value(key, component.mqcData[mqc_name]) # check against thresholds # yellow level outliers if new_codes := identify_values_past_thresholds(thresholds, value): # add highest severity new code codes.add(max(new_codes)) flagged_values[key] = value return Flag( check=self, codes=codes, message_args={ "missing_files": missing_files, "threshold_config": self.config["general_stats_metrics"], "flagged_values": flagged_values, }, ) class DATASET_METADATA_0001(Check): config = {"expected_metadata_attrs": ["paired_end", "has_ercc"]} description = "Checks and reports expected metdata required for processing" flag_desc = { FlagCode.GREEN: "All expected metadata is accessible and populated. {actual_metadata_fields}", FlagCode.HALT1: "Missing expected metadata fields: {missing_metadata_fields}", } def validate_func(self, dataset: TemplateDataset) -> Flag: # assume green unless flag condition met code = FlagCode.GREEN # set up tracker for expected attributes values tracked_metadata = dict() # and a tracker for missing attributes missing_metadata_fields = list() for attr in self.config["expected_metadata_attrs"]: attr_value = getattr(dataset.metadata, attr, None) if attr_value != None: tracked_metadata[attr] = attr_value else: missing_metadata_fields.append(attr) # check if any missing_metadata_fields are present if missing_metadata_fields: code = FlagCode.HALT1 return Flag( check=self, codes=code, message_args={ "actual_metadata_fields": tracked_metadata, "missing_metadata_fields": missing_metadata_fields, }, ) class DATASET_RAWREADS_0001(Check): config = { "metrics": [ "percent_gc", "avg_sequence_length", "total_sequences", "percent_duplicates", # "percent_fails", number of failed FastQC submodules, not a very useful metric for BulkRNASeq ], "middle": MIDDLE.median, "yellow_standard_deviation_threshold": 2, "red_standard_deviation_threshold": 4, "target_components_by_paired_end": { True: ["rawForwardReads", "rawReverseReads"], False: ["rawReads"], }, } description = ( "Check that the reads stats (source from FastQC) have no outliers among samples " "for the following metrics: {metrics}. " "Yellow Flagged Outliers are defined as a being {yellow_standard_deviation_threshold} - {red_standard_deviation_threshold} standard " "deviations away from the {middle.name}. " "Red Flagged Outliers are defined as a being {red_standard_deviation_threshold}+ standard " "deviations away from the {middle.name}. " ) flag_desc = { FlagCode.GREEN: "No reads metric outliers detected for {metrics}", FlagCode.YELLOW1: "Outliers detected as follows (values are rounded number of standard deviations from middle): {formatted_outliers}", FlagCode.RED1: "Outliers detected as follows (values are rounded number of standard deviations from middle): {formatted_outliers}", } def validate_func(self: Check, dataset: TemplateDataset) -> Flag: code = FlagCode.GREEN # pull variables from config metrics = self.config["metrics"] middle = self.config["middle"] yellow_threshold = self.config["yellow_standard_deviation_threshold"] red_threshold = self.config["red_standard_deviation_threshold"] # init trackers for issues outliers: DefaultDict[str, Dict[str, float]] = defaultdict(dict) # determine reads components in samples readsComponents = self.config["target_components_by_paired_end"][ dataset.metadata.paired_end ] def format_identifier(sample_name: str, component_str: str) -> str: """Add forward and reverse suffix if paired end, add nothing otherwise""" return ( f"{sample_name}:{component_str}" if dataset.metadata.paired_end else sample_name ) # iterate through metrics (here all pulled from FastQC general stats) for readComponent in readsComponents: for metric in metrics: sampleToMetric: Dict[str, float] = { format_identifier(s.name, readComponent): getattr( s, readComponent ).mqcData["FastQC"]["General_Stats"][metric] for s in dataset.samples.values() } # ensure any NaN convert to zero as implied by MultiQC sampleToMetric = convert_nan_to_zero(sampleToMetric) # yellow level outliers if outliersForThisMetric := identify_outliers( sampleToMetric, standard_deviation_threshold=yellow_threshold, middle=middle, ): if code < FlagCode.YELLOW1: code = FlagCode.YELLOW1 outliers[metric] = outliers[metric] | outliersForThisMetric # red level outliers if outliersForThisMetric := identify_outliers( sampleToMetric, standard_deviation_threshold=red_threshold, middle=middle, ): if code < FlagCode.RED1: code = FlagCode.RED1 outliers[metric] = outliers[metric] | outliersForThisMetric return Flag( codes=code, check=self, message_args={ "outliers": outliers, "metrics": metrics, "formatted_outliers": pformat(outliers, formatfloat), }, ) class DATASET_TRIMREADS_0001(DATASET_RAWREADS_0001): # overwrite specific config only config = DATASET_RAWREADS_0001.config | { "target_components_by_paired_end": { True: ["trimForwardReads", "trimReverseReads"], False: ["trimReads"], } } class DATASET_GENOMEALIGNMENTS_0001(Check): config = { "metrics": [ # "total_reads", # check in FastQC, but is used to normalize # "avg_input_read_length", # "uniquely_mapped", # redundant with better metric of percent "uniquely_mapped_percent", "avg_mapped_read_length", # "num_splices", # "num_annotated_splices", # "num_GTAG_splices", # "num_GCAG_splices", # "num_ATAC_splices", # "num_noncanonical_splices", "mismatch_rate", "deletion_rate", "deletion_length", "insertion_rate", "insertion_length", # "multimapped", # redundant with better metric of percent "multimapped_percent", # "multimapped_toomany", # redundant with better metric of percent "multimapped_toomany_percent", "unmapped_mismatches_percent", "unmapped_tooshort_percent", "unmapped_other_percent", # "unmapped_mismatches", # redundant with better metric of percent # "unmapped_tooshort", # redundant with better metric of percent # "unmapped_other", # redundant with better metric of percent ], "middle": MIDDLE.median, "yellow_standard_deviation_threshold": 2, "red_standard_deviation_threshold": 4, } description = ( "Check that the genome alignment stats (source from STAR logs) have no outliers among samples " "for the following metrics: {metrics}. " "Yellow Flagged Outliers are defined as a being {yellow_standard_deviation_threshold} - {red_standard_deviation_threshold} standard " "deviations away from the {middle.name}. " "Red Flagged Outliers are defined as a being {red_standard_deviation_threshold}+ standard " "deviations away from the {middle.name}. " ) flag_desc = { FlagCode.GREEN: "No genome alignment metric outliers detected for {metrics}", FlagCode.YELLOW1: "Outliers detected as follows (values are rounded number of standard deviations from middle): {formatted_outliers}", FlagCode.RED1: "Outliers detected as follows (values are rounded number of standard deviations from middle): {formatted_outliers}", } def validate_func(self: Check, dataset: TemplateDataset) -> Flag: code = FlagCode.GREEN # pull variables from config metrics = self.config["metrics"] middle = self.config["middle"] yellow_threshold = self.config["yellow_standard_deviation_threshold"] red_threshold = self.config["red_standard_deviation_threshold"] # init trackers for issues outliers: DefaultDict[str, Dict[str, float]] = defaultdict(dict) # determine reads components in samples targetComponents = ["genomeAlignments"] # iterate through metrics (here all pulled from FastQC general stats) for targetComponent in targetComponents: for metric in metrics: sampleToMetric: Dict[str, float] = { s.name: getattr(s, targetComponent).mqcData["STAR"][ "General_Stats" ][metric] for s in dataset.samples.values() } # ensure any NaN convert to zero as implied by MultiQC sampleToMetric = convert_nan_to_zero(sampleToMetric) # yellow level outliers if outliersForThisMetric := identify_outliers( sampleToMetric, standard_deviation_threshold=yellow_threshold, middle=middle, ): if code < FlagCode.YELLOW1: code = FlagCode.YELLOW1 outliers[metric] = outliers[metric] | outliersForThisMetric # red level outliers if outliersForThisMetric := identify_outliers( sampleToMetric, standard_deviation_threshold=red_threshold, middle=middle, ): if code < FlagCode.RED1: code = FlagCode.RED1 outliers[metric] = outliers[metric] | outliersForThisMetric return Flag( codes=code, check=self, message_args={ "outliers": outliers, "metrics": metrics, "formatted_outliers": pformat(outliers, formatfloat), }, ) class DATASET_RSEQCANALYSIS_0001(Check): config = { "plots_all": ["Read Distribution", "Infer experiment", "Gene Body Coverage"], "plot_paired_end": ["Inner Distance"], "middle": MIDDLE.median, "yellow_standard_deviation_threshold": 2, "red_standard_deviation_threshold": 4, "stranded_assessment_range": {"min": 75, "max": 100}, # percents "halt_ambiguous_dominant_strandedness_range": { "min": 60, "max": 75, }, # percents "unstranded_assessment_range": {"min": 40, "max": 60}, # percents "valid_dominant_strandedness_assessments": [ "Sense (% Tags)", "Antisense (% Tags)", ], # this leaves out undetermined, which should raise alarms if it is the dominant assessment } description = ( "Check that the rseqc analysis stats (sourced from the rseqc logs) have no outlier values among samples " "for the following plots: {plots_all} (Paired end only: {plot_paired_end}). " "Yellow Flagged Outliers are defined as a being {yellow_standard_deviation_threshold} - {red_standard_deviation_threshold} standard " "deviations away from the {middle.name}. " "Red Flagged Outliers are defined as a being {red_standard_deviation_threshold}+ standard " "deviations away from the {middle.name}. " "Additionally the following is assessed for infer experiment strandedess metrics: " "A Halt Flag is raised in the case that the dominant strandessness is between " "{halt_ambiguous_dominant_strandedness_range} " "Note: the 'dominant strandedness' is the max(datasetwide_median(antisense), datasetwide_median(sense)) " "Valid assessments include {valid_dominant_strandedness_assessments}, other assessments (e.g. 'undetermined') will raise a Halting flag " ) flag_desc = { FlagCode.GREEN: "No rseqc analysis metric outliers detected for {metrics}", FlagCode.YELLOW1: "Outliers detected as follows (values are rounded number of standard deviations from middle): {formatted_outliers}", FlagCode.RED1: "Outliers detected as follows (values are rounded number of standard deviations from middle): {formatted_outliers}", FlagCode.RED2: "At least one sample is outside the dominant strandedness assignment range: {samples_outside_range}", FlagCode.HALT1: "The dominant strandedness is {dominant_strandedness}, this is lower than the halting flag threshold.", FlagCode.HALT2: "The dominant strandedness is {dominant_strandedness} which is not a invalid assessment.", } def validate_func(self: Check, dataset: TemplateDataset) -> Flag: codes = {FlagCode.GREEN} # pull variables from config targetPlotsAll = self.config["plots_all"] targetPlotsPairedEnd = self.config["plot_paired_end"] middle = self.config["middle"] yellow_threshold = self.config["yellow_standard_deviation_threshold"] red_threshold = self.config["red_standard_deviation_threshold"] # init trackers for issues outliers: DefaultDict[str, Dict[str, float]] = defaultdict(dict) # extend with paired end specific plot if appropriate targetPlots = targetPlotsAll if dataset.metadata.paired_end: targetPlots.extend(targetPlotsPairedEnd) # iterate through metrics (here all pulled from FastQC general stats) for plot_name in targetPlots: # extract dataframe of all samples df = dataset.getMQCDataFrame( sample_component="rSeQCAnalysis", mqc_module="RSeQC", mqc_plot=plot_name ) # convert to samplewise dicts metricToSampleToMetricValue: Dict[str, Dict[str, float]] = df.to_dict() for metricName, sampleToMetricValue in metricToSampleToMetricValue.items(): # ensure any NaN convert to zero as implied by MultiQC sampleToMetricValue = convert_nan_to_zero(sampleToMetricValue) # yellow level outliers if outliersForThisMetric := identify_outliers( sampleToMetricValue, standard_deviation_threshold=yellow_threshold, middle=middle, ): if max(codes) < FlagCode.YELLOW1: codes.add(FlagCode.YELLOW1) outliers[metricName] = outliers[metricName] | outliersForThisMetric # red level outliers if outliersForThisMetric := identify_outliers( sampleToMetricValue, standard_deviation_threshold=red_threshold, middle=middle, ): if max(codes) < FlagCode.RED1: codes.add(FlagCode.RED1) # remove lower FlagCode YELLOW1 codes.remove(FlagCode.YELLOW1) outliers[metricName] = outliers[metricName] | outliersForThisMetric def get_median_strandedness(dataset: TemplateDataset) -> tuple[str, float]: df = dataset.getMQCDataFrame( sample_component="rSeQCAnalysis", mqc_module="RSeQC", mqc_plot="Infer experiment", ).fillna( 0 ) # Nan is a zero for this MultiQC table median_strandedness = df.median().to_dict() return median_strandedness median_strandedness = get_median_strandedness(dataset) # check if dominant assessment is valid strand_assessment: str = max( median_strandedness, key=lambda k: median_strandedness[k] ) if ( strand_assessment not in self.config["valid_dominant_strandedness_assessments"] ): codes.add(FlagCode.HALT2) # flag based on thresholds assessment_value: float = median_strandedness[strand_assessment] is_stranded: bool = ( self.config["stranded_assessment_range"]["max"] > assessment_value > self.config["stranded_assessment_range"]["min"] ) is_unstranded: bool = ( self.config["unstranded_assessment_range"]["max"] > assessment_value > self.config["unstranded_assessment_range"]["min"] ) def determine_samples_outside_range( dataset: TemplateDataset, min: float, max: float ) -> list[str]: df = dataset.getMQCDataFrame( sample_component="rSeQCAnalysis", mqc_module="RSeQC", mqc_plot="Infer experiment", ).fillna( 0 ) # Nan is a zero for this MultiQC table return df.index[df[strand_assessment].between(min, max) == False].to_list() # Catalog and flag any samples outside of range # flags based on samples that are out of the assessment range samples_outside_range: list[str] if is_stranded: samples_outside_range = determine_samples_outside_range( dataset, self.config["stranded_assessment_range"]["min"], self.config["stranded_assessment_range"]["max"], ) elif is_unstranded: samples_outside_range = determine_samples_outside_range( dataset, self.config["unstranded_assessment_range"]["min"], self.config["unstranded_assessment_range"]["max"], ) else: # this means that the standing is ambiguous samples_outside_range = list() codes.add(FlagCode.HALT1) if len(samples_outside_range) != 0: codes.add(FlagCode.RED2) return Flag( codes=codes, check=self, message_args={ "outliers": outliers, "formatted_outliers": pformat(outliers, formatfloat), "dominant_strandedness": (strand_assessment, assessment_value), "samples_outside_range": samples_outside_range, }, ) class DATASET_GENECOUNTS_0001(Check): config = { "metrics": [ "Unalignable", "Alignable", "Filtered", "Total", "alignable_percent", "Unique", "Multi", "Uncertain", ], "middle": MIDDLE.median, "yellow_standard_deviation_threshold": 2, "red_standard_deviation_threshold": 4, } description = ( "Check that the gene counts alignments (source from the RSEM logs) have no outlier values among samples " "for the following metrics: {metrics} " "Yellow Flagged Outliers are defined as a being {yellow_standard_deviation_threshold} - {red_standard_deviation_threshold} standard " "deviations away from the {middle.name}. " "Red Flagged Outliers are defined as a being {red_standard_deviation_threshold}+ standard " "deviations away from the {middle.name}. " ) flag_desc = { FlagCode.GREEN: "No gene count mapping metric outliers detected for {metrics}", FlagCode.YELLOW1: "Outliers detected as follows (values are rounded number of standard deviations from middle): {formatted_outliers}", FlagCode.RED1: "Outliers detected as follows (values are rounded number of standard deviations from middle): {formatted_outliers}", } def validate_func(self: Check, dataset: TemplateDataset) -> Flag: codes = {FlagCode.GREEN} # pull variables from config metrics = self.config["metrics"] middle = self.config["middle"] yellow_threshold = self.config["yellow_standard_deviation_threshold"] red_threshold = self.config["red_standard_deviation_threshold"] # init trackers for issues outliers: DefaultDict[str, Dict[str, float]] = defaultdict(dict) # extract dataframe of general stats df = dataset.getMQCDataFrame( sample_component="geneCounts", mqc_module="Rsem", mqc_plot="general_stats" ) # iterate through metrics (here all pulled from FastQC general stats) for metric_name in metrics: sampleToMetricValue = df[[metric_name]].to_dict()[metric_name] # ensure any NaN convert to zero as implied by MultiQC sampleToMetricValue = convert_nan_to_zero(sampleToMetricValue) # yellow level outliers if outliersForThisMetric := identify_outliers( sampleToMetricValue, standard_deviation_threshold=yellow_threshold, middle=middle, ): if max(codes) < FlagCode.YELLOW1: codes.add(FlagCode.YELLOW1) outliers[metric_name] = ( outliers[metric_name] | outliersForThisMetric ) # red level outliers if outliersForThisMetric := identify_outliers( sampleToMetricValue, standard_deviation_threshold=red_threshold, middle=middle, ): if max(codes) < FlagCode.RED1: codes.add(FlagCode.RED1) outliers[metric_name] = ( outliers[metric_name] | outliersForThisMetric ) return Flag( codes=codes, check=self, message_args={ "outliers": outliers, "formatted_outliers": pformat(outliers, formatfloat), "metrics": metrics, }, ) # TODO: Flag message gets really messy, convert into a json like string for easier reading/parsing # TODO: Check for extra unexpected columns, these should give clues to names differences class DATASET_DIFFERENTIALGENEEXPRESSION_0001(Check): handle_with_monads = True config = { "expected_tables": [ "differential_expression.csv", "visualization_output_table.csv", "visualization_PCA_table.csv", ], # Expected column name, but dependent on dataset organism "dge_table_master_annotation_keys": { "Arabidopsis thaliana": "TAIR", "_DEFAULT": "ENSEMBL", }, "dge_table_expected_annotation_columns": [ "SYMBOL", "GENENAME", "REFSEQ", "ENTREZID", "STRING_id", "GOSLIM_IDS", ], # includes column specific constraints # these prefix as follows {prefix}{pairWiseFactorGroupComparison} "pairwise_columns_prefixes": { "Log2fc_": {"nonNull": True}, "Stat_": {"nonNull": True}, # can be removed from analysis before p-value and adj-p-value assessed # ref: https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-values-set-to-na "P.value_": {"nonNegative": True, "nonNull": False}, "Adj.p.value_": {"nonNegative": True, "nonNull": False}, }, "viz_pairwise_columns_prefixes": { "Log2_Adj.p.value_": {"nonNull": False}, "Sig.1_": {"allowedValues": [False, True], "nonNull": False}, "Sig.05_": {"allowedValues": [False, True], "nonNull": False}, "Log2_P.value_": {"nonNegative": False, "nonNull": False}, "Updown_": {"allowedValues": [1, 0, -1], "nonNull": True}, }, # these prefix as follows {prefix}{FactorGroup} "group_factorwise_columns_prefixes": { "Group.Mean_": {"nonNull": True, "nonNegative": True}, "Group.Stdev_": {"nonNull": True, "nonNegative": True}, }, "fixed_stats_columns": { "All.mean": {"nonNull": True, "nonNegative": True}, "All.stdev": {"nonNull": True, "nonNegative": True}, "LRT.p.value": {"nonNull": False, "nonNegative": True}, }, "sample_counts_constraints": {"nonNegative": True}, "expected_vis_pca_columns": [ "PC1", "PC2", ], # more may be included but these are REQUIRED "float_tolerance": 0.0001, # PERCENT # TODO: DISCUSS, these baseline values, should indicate a very heavy left-hand skewed histogram of differences - JDO "log2fc_cross_method_percent_difference_threshold": 10, # PERCENT "log2fc_cross_method_tolerance_percent": 50, # PERCENT # PERCENT difference minimum between group means to included "log2fc_cross_method_sign_check_group_mean_difference_threshold": 50, # PERCENT genes allowed sign inversions between methods for groups that meet # log2fc_cross_method_sign_check_group_mean_difference_threshold minimum "log2fc_cross_method_sign_check_tolerance_percent": 0, # "middle": MIDDLE.median, # "yellow_standard_deviation_threshold": 2, # "red_standard_deviation_threshold": 4, } description = ( "Check that the differential expression outputs exist (source from the deseq2 script) and " "the following tables: {expected_tables}. " "For studies with ERCC spike-in, performs the same check on analogous tables. " "Additional performs the file specific validations: " "- contrasts.csv: Includes all the existing comparison groups (based on factor values in the metadata) and is formatted correctly" "- differential_expression.csv: Includes expected annotation columns {dge_table_expected_annotation_columns}, includes a master annotation key " "column dependent on the dataset organism as follows: {dge_table_master_annotation_keys} ," "includes sample count columns for all samples, all sample count values are non-negative, " "all pairwise comparision columns exist with the following prefixes and adhere to the following constraints: {pairwise_columns_prefixes} " "all groupFactorWise statistics columns exists with the following prefixes and adhere to the following constraints: {group_factorwise_columns_prefixes} " "all fixed statistics columns exist and adhere to the following constraints: {fixed_stats_columns} " " - visualization_PCA_table.csv: All samples in index and at the following columns exist {expected_vis_pca_columns} " " - visualization_output_table.csv: Performs same checks as differential_expression.csv as well as, " "ensuring the additional pairwise comparision columns exist with the following prefixes and " "adhere to the following constraints: {expected_vis_pca_columns}. " "Confirms that gene counts between differential expression table and normalized counts tables are the same. " "Confirms that computations match expectations with respect to following operations: (Float tolerance: +/-{float_tolerance} %)" "- Group means are correctly computed from normalized counts " "- log2FC values (computed with DESeq2's MLE approach) are comparable to direct computation with log2( mean(group1) / mean(group2) ), specifically " "checking if at least {log2fc_cross_method_tolerance_percent} % of all genes have absolute percent differences between methods " "less than {log2fc_cross_method_percent_difference_threshold} % " ) flag_desc = { FlagCode.GREEN: "All described elements checked and no issues arose", FlagCode.HALT1: "Contrasts file does not match expectations based on metadata: Error Message(s): {contrasts_err_msg}", FlagCode.HALT2: "Differential expression file does not match expectations: Error Message(s): {differential_expression_table_err_msg}", FlagCode.HALT3: "Viz PCA file does not match expectations: Error Message(s): {viz_pca_err_msg}", FlagCode.HALT4: "Viz output table file does not match expectations: Error Message(s): {viz_output_table_err_msg}", } def _contrasts_check(self, dataset: TemplateDataset, componentTarget: str) -> str: """Performs contrasts specific subcheck Returns empty string if no issues are found Returns an error message (string) otherwise """ # extract target Component target_component = getattr(dataset, componentTarget) err_msg = "" # extract dicts for deseq2 contrasts and the metadata formatted one here # make sure to read in explicit index column for deseq2 dict_deseq2: Dict = pd.read_csv( target_component.contrastsCSV.path, index_col=0 ).to_dict(orient="list") dict_data_model: Dict = dataset.metadata.contrasts.to_dict(orient="list") # check that all headers are present deseq2_headers = set(dict_deseq2.keys()) data_model_headers = set(dict_data_model.keys()) if deseq2_headers != data_model_headers: err_msg += f"Header disparity! Extra deseq2 headers: {deseq2_headers - data_model_headers} Extra metadata headers: {data_model_headers - deseq2_headers}" # return early, if headers mismatch no point in checking column content return err_msg # check contents of each column matches expecatation (group1 and group2 formatted as expected) # this also rechecks headers (keys) but that is caught in the prior validation if dict_deseq2 != dict_data_model: err_msg += f"Rows don't match expectations. Deseq2: {dict_deseq2}. DataModel (from metadata source): {dict_data_model}" return err_msg def _differential_expression_table_check( self, dataset: TemplateDataset, componentTarget: str, componentDataAsset: str = "annotatedTableCSV", ) -> str: err_msg = "" target_component = getattr(dataset, componentTarget) target_data_asset = getattr(target_component, componentDataAsset) # read in dataframe df_dge = pd.read_csv(target_data_asset.path) # check all constant columns exist missing_constant_columns: set master_key = self.config["dge_table_master_annotation_keys"].get( dataset.metadata.organism, self.config["dge_table_master_annotation_keys"]["_DEFAULT"], ) log.debug( f"Resolved master annotation key for {dataset.metadata.organism} is {master_key}" ) expected_columns: list = self.config["dge_table_expected_annotation_columns"] + [master_key] # type: ignore if missing_constant_columns := set(expected_columns) - set(df_dge.columns): err_msg += f"Annotation Columns missing: {missing_constant_columns}" # check all sample counts columns exist expected_samples = set(dataset.samples.keys()) if missing_samples := expected_samples - set(df_dge.columns): err_msg += f"Sample Count Columns missing: {missing_samples}" # check that they met constraints # all sample column counts are not negative if not (df_dge[list(expected_samples)] >= 0).all(axis=None): err_msg += ( f"Sample Count Columns include negative values: {missing_samples}" ) # check all expected statistic columns present # pairwise comparison level pairwise_comparisons = dataset.metadata.contrasts.columns for statistical_prefix, constraints in self.config[ "pairwise_columns_prefixes" ].items(): # type: ignore target_cols: list = [ f"{statistical_prefix}{comparison}" for comparison in pairwise_comparisons ] # check existense first and bail if any don't exist if missing_cols := set(target_cols) - set(df_dge.columns): err_msg += f"Missing pairwise statistical column(s): {missing_cols}" continue target_df_subset: pd.DataFrame = df_dge[target_cols] # check non null constraint if constraints.get("nonNull") and nonNull(target_df_subset) == False: err_msg += f"At least one value in columns {target_cols} fails nonNull constraint." # check non negative constraint if ( constraints.get("nonNegative") and nonNegative(target_df_subset) == False ): err_msg += f"At least one value in columns {target_cols} fails nonNegative constraint." # factorGroup level factorGroups = list( set(dataset.metadata.factor_groups.values()) ) # list-set to dedupe for statistical_prefix, constraints in self.config[ "group_factorwise_columns_prefixes" ].items(): # type: ignore target_cols = [f"{statistical_prefix}{group}" for group in factorGroups] # check existense first and bail if any don't exist if missing_cols := set(target_cols) - set(df_dge.columns): err_msg += f"Missing groupFactor statistical column(s): {missing_cols}" continue target_df_subset = df_dge[target_cols] # check non null constraint if constraints.get("nonNull") and nonNull(target_df_subset) == False: err_msg += f"At least one value in columns {target_cols} fails nonNull constraint." # check non negative constraint if ( constraints.get("nonNegative") and nonNegative(target_df_subset) == False ): err_msg += f"At least one value in columns {target_cols} fails nonNegative constraint." # fixed stat columns level for target_col, constraints in self.config["fixed_stats_columns"].items(): # type: ignore # check existense first and bail if any don't exist if missing_cols := {target_col} - set(df_dge.columns): err_msg += f"Missing fixed statistical column(s): {missing_cols}" continue target_df_subset = df_dge[target_col] # check non null constraint if constraints.get("nonNull") and nonNull(target_df_subset) == False: err_msg += f"At least one value in column ['{target_col}'] fails nonNull constraint." # check non negative constraint if ( constraints.get("nonNegative") and nonNegative(target_df_subset) == False ): err_msg += f"At least one value in column ['{target_col}'] fails nonNegative constraint." # mathematical checks groups: list[str] = list( {group for group in dataset.metadata.factor_groups.values()} ) # check means are computed correctly for query_group in groups: query_column = f"Group.Mean_{query_group}" group_samples = [ sample for sample, this_group in dataset.metadata.factor_groups.items() if this_group == query_group ] abs_percent_difference = abs( ( ( ( df_dge[group_samples].mean(axis="columns") - df_dge[query_column] ) / df_dge[query_column] ) * 100 ) ) within_tolerance = abs_percent_difference < self.config["float_tolerance"] if not within_tolerance.all() == True: err_msg += f"Group Mean value in table is out of float tolerance. This means {query_group} has improperly computed values" # check that log2FC are within a reasonable range # the log2FC computation within DESEQ2 is NOT directly computed from the ratio of group means # for comparision in dataset.metadata.contrasts.columns: query_column = f"Log2fc_{comparision}" group1_mean_col = ( "Group.Mean_" + comparision.split(")v(")[0] + ")" ) # Uses parens and adds them back to prevent slicing on 'v' within factor names group2_mean_col = "Group.Mean_" + "(" + comparision.split(")v(")[1] computed_log2fc = (df_dge[group1_mean_col] / df_dge[group2_mean_col]).apply( math.log, args=[2] ) abs_percent_difference = abs( ((computed_log2fc - df_dge[query_column]) / df_dge[query_column]) * 100 ) percent_within_tolerance = ( mean( abs_percent_difference < self.config["log2fc_cross_method_percent_difference_threshold"] ) * 100 ) # flag if not enough within tolerance if ( percent_within_tolerance < self.config["log2fc_cross_method_tolerance_percent"] ): err_msg += ( f"For comparison: '{comparision}' {percent_within_tolerance:.2f} % of genes have absolute percent differences " f"(between log2fc direct computation and DESeq2's approach) " f"less than {self.config['log2fc_cross_method_percent_difference_threshold']} % which does not met the minimum percentage " f"({self.config['log2fc_cross_method_tolerance_percent']} %) of genes required. " f"This may indicate misassigned or misaligned columns. " ) return err_msg def _viz_pca_table_check( self, dataset: TemplateDataset, componentTarget: str, dataAssetTarget: str = "visualizationPCATableCSV", ) -> str: err_msg = "" target_component = getattr(dataset, componentTarget) target_asset = getattr(target_component, dataAssetTarget) # read into dataframe df = pd.read_csv(target_asset.path, index_col=0) # check all samples included if missing_samples := set(dataset.samples.keys()) - set(df.index): err_msg += f"Missing samples in index: {missing_samples}" # check all expected columns exist if missing_cols := set(self.config["expected_vis_pca_columns"]) - set(df.columns): # type: ignore err_msg += f"Missing expected columns: {missing_cols}" return err_msg def _viz_output_table_check( self, dataset: TemplateDataset, componentTarget: str ) -> str: """Since this effectively extends the differential expression table, run that first and build on the error message as needed""" err_msg = self._differential_expression_table_check( dataset, componentTarget, componentDataAsset="visualizationTableCSV" ) target_component = getattr(dataset, componentTarget) target_data_asset = getattr(target_component, "visualizationTableCSV") # read in dataframe df = pd.read_csv(target_data_asset.path) # check all expected columns exists (all unique to the viz table) # check all expected statistic columns present # pairwise comparison level pairwise_comparisons = dataset.metadata.contrasts.columns for statistical_prefix, constraints in self.config[ "viz_pairwise_columns_prefixes" ].items(): # type: ignore target_cols: list = [ f"{statistical_prefix}{comparison}" for comparison in pairwise_comparisons ] # check existense first and bail if any don't exist if missing_cols := set(target_cols) - set(df.columns): err_msg += f"Missing pairwise statistical column(s): {missing_cols}" continue target_df_subset: pd.DataFrame = df[target_cols] # check non null constraint if constraints.get("nonNull") and nonNull(target_df_subset) == False: err_msg += f"At least one value in columns {target_cols} fails nonNull constraint." # check non negative constraint if ( constraints.get("nonNegative") and nonNegative(target_df_subset) == False ): err_msg += f"At least one value in columns {target_cols} fails nonNegative constraint." # check allowed values constraint if ( constraints.get("allowedValues") and onlyAllowedValues( target_df_subset, constraints.get("allowedValues") ) == False ): err_msg += f"At least one value in columns {target_cols} fails allowedValues constraint (allowed values: {constraints.get('allowedValues')})." return err_msg def validate_func(self: Check, dataset: TemplateDataset) -> Flag: codes = {FlagCode.GREEN} target_components = ["differentialGeneExpression"] if dataset.metadata.has_ercc: target_components.append("differentialGeneExpressionERCC") # holds component and subcheck specific error messages err_msgs: Dict = defaultdict(dict) for target_component in target_components: #results = FlaggableMonad(dataset) #results = results.bind(self._contrasts_check) # perform contrasts file subcheck contrasts_result = self._contrasts_check(dataset, target_component) if contrasts_result != "": codes.add(FlagCode.HALT1) err_msgs["contrasts"][target_component] = contrasts_result # perform differential expression file subcheck differential_expression_result = self._differential_expression_table_check( dataset, target_component ) if differential_expression_result != "": codes.add(FlagCode.HALT2) err_msgs["differential_expression"][ target_component ] = differential_expression_result # perform viz PCA file subcheck viz_pca_result = self._viz_pca_table_check(dataset, target_component) if viz_pca_result != "": codes.add(FlagCode.HALT3) err_msgs["viz_pca"][target_component] = viz_pca_result # perform viz PCA file subcheck viz_output_table_result = self._viz_output_table_check( dataset, target_component ) if viz_output_table_result != "": codes.add(FlagCode.HALT4) err_msgs["viz_output_table"][target_component] = viz_output_table_result return Flag( codes=codes, check=self, message_args={ "contrasts_err_msg": "::".join( [f"{k}->{v}" for k, v in err_msgs["contrasts"].items()] ), "differential_expression_table_err_msg": "::".join( [ f"{k}->{v}" for k, v in err_msgs["differential_expression"].items() ] ), "viz_pca_table_err_msg": "::".join( [f"{k}->{v}" for k, v in err_msgs["viz_pca"].items()] ), "viz_output_table_err_msg": "::".join( [f"{k}->{v}" for k, v in err_msgs["viz_output_table"].items()] ), }, )
StarcoderdataPython
3230471
#for chrom in ["chr1", "chr10", "chr11", "chr12", "chr13", "chr14", "chr15", "chr16", "chr17", "chr18", "chr19", "chr2", "chr20", "chr21", "chr22", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8", "chr9", "chrX", "chrY"]: #for chrom in ["chr19", "chr2", "chr20", "chr21", "chr22", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8", "chr9", "chrX", "chrY"]: localDir = "/home/ubuntu/pkerp" for chrom in ["chrY"]: dataframe = "/data/dataframes.rcsb.org/parquet/humangenome/20160517/hg38/" + chrom uniprotpdbFile = '/data/dataframes.rcsb.org/parquet/uniprotpdb/20160517/' chrMappingsFile = "/data/GCF_000001405.33.assembly.txt" chrMappings = dict(sc.textFile(localDir + chrMappingsFile) .filter(lambda x: x[0] != '#') .map(lambda x: x.split('\t')) .map(lambda x: dict(zip("Sequence-Name Sequence-Role Assigned-Molecule Assigned-Molecule-Location/Type GenBank-Accn Relationship RefSeq-Accn Assembly-Unit Sequence-Length UCSC-style-name".split(), x))) .map(lambda x: (x['UCSC-style-name'],x['GenBank-Accn'])) .collect()) humangenome = (sqlContext.read.parquet(localDir + dataframe)) humangenome.registerTempTable("humangenome") humangenome.count() #115,989,151 protpos_chrompos = humangenome.map(lambda x: ((x.uniProtId, int(x.uniProtPos)), (x.chromosomeName, x.orientation, x.position))) uniprotpdb = (sqlContext.read.parquet(localDir + uniprotpdbFile)) uniprotpdb.registerTempTable("uniprotpdb") uniprotpdb.count() #74,209,158 protpos_pdbinfo = uniprotpdb.map(lambda x: ((x.uniProtId, int(x.uniProtPos)), (x.pdbId, x.chainId, x.pdbAtomPos, x.insCode))) joined = protpos_chrompos.join(protpos_pdbinfo) joined_formatted = joined.map(lambda ((protid, protpos), ((chrid, orientation, pos), (pdbid, chainid, pdbAtomPos, insCode))): " ".join(map(str,[protid, protpos, chrid, orientation, pos, pdbid, chainid, pdbAtomPos, insCode]))) joined_formatted.saveAsTextFile("output/protpos_chrompos_pdbinfo_formatted_" + chrom)
StarcoderdataPython
3343925
"""Spectral Embedding.""" # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: BSD 3 clause import warnings import numpy as np from scipy import sparse from scipy.linalg import eigh from scipy.sparse.linalg import eigsh from scipy.sparse.csgraph import connected_components from scipy.sparse.csgraph import laplacian as csgraph_laplacian from ..base import BaseEstimator from ..utils import ( check_array, check_random_state, check_symmetric, ) from ..utils._arpack import _init_arpack_v0 from ..utils.extmath import _deterministic_vector_sign_flip from ..utils.fixes import lobpcg from ..metrics.pairwise import rbf_kernel from ..neighbors import kneighbors_graph, NearestNeighbors from ..utils.validation import _deprecate_positional_args from ..utils.deprecation import deprecated def _graph_connected_component(graph, node_id): """Find the largest graph connected components that contains one given node. Parameters ---------- graph : array-like of shape (n_samples, n_samples) Adjacency matrix of the graph, non-zero weight means an edge between the nodes. node_id : int The index of the query node of the graph. Returns ------- connected_components_matrix : array-like of shape (n_samples,) An array of bool value indicating the indexes of the nodes belonging to the largest connected components of the given query node. """ n_node = graph.shape[0] if sparse.issparse(graph): # speed up row-wise access to boolean connection mask graph = graph.tocsr() connected_nodes = np.zeros(n_node, dtype=bool) nodes_to_explore = np.zeros(n_node, dtype=bool) nodes_to_explore[node_id] = True for _ in range(n_node): last_num_component = connected_nodes.sum() np.logical_or(connected_nodes, nodes_to_explore, out=connected_nodes) if last_num_component >= connected_nodes.sum(): break indices = np.where(nodes_to_explore)[0] nodes_to_explore.fill(False) for i in indices: if sparse.issparse(graph): neighbors = graph[i].toarray().ravel() else: neighbors = graph[i] np.logical_or(nodes_to_explore, neighbors, out=nodes_to_explore) return connected_nodes def _graph_is_connected(graph): """ Return whether the graph is connected (True) or Not (False). Parameters ---------- graph : {array-like, sparse matrix} of shape (n_samples, n_samples) Adjacency matrix of the graph, non-zero weight means an edge between the nodes. Returns ------- is_connected : bool True means the graph is fully connected and False means not. """ if sparse.isspmatrix(graph): # sparse graph, find all the connected components n_connected_components, _ = connected_components(graph) return n_connected_components == 1 else: # dense graph, find all connected components start from node 0 return _graph_connected_component(graph, 0).sum() == graph.shape[0] def _set_diag(laplacian, value, norm_laplacian): """Set the diagonal of the laplacian matrix and convert it to a sparse format well suited for eigenvalue decomposition. Parameters ---------- laplacian : {ndarray, sparse matrix} The graph laplacian. value : float The value of the diagonal. norm_laplacian : bool Whether the value of the diagonal should be changed or not. Returns ------- laplacian : {array, sparse matrix} An array of matrix in a form that is well suited to fast eigenvalue decomposition, depending on the band width of the matrix. """ n_nodes = laplacian.shape[0] # We need all entries in the diagonal to values if not sparse.isspmatrix(laplacian): if norm_laplacian: laplacian.flat[::n_nodes + 1] = value else: laplacian = laplacian.tocoo() if norm_laplacian: diag_idx = (laplacian.row == laplacian.col) laplacian.data[diag_idx] = value # If the matrix has a small number of diagonals (as in the # case of structured matrices coming from images), the # dia format might be best suited for matvec products: n_diags = np.unique(laplacian.row - laplacian.col).size if n_diags <= 7: # 3 or less outer diagonals on each side laplacian = laplacian.todia() else: # csr has the fastest matvec and is thus best suited to # arpack laplacian = laplacian.tocsr() return laplacian @_deprecate_positional_args def spectral_embedding(adjacency, *, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True, drop_first=True): """Project the sample on the first eigenvectors of the graph Laplacian. The adjacency matrix is used to compute a normalized graph Laplacian whose spectrum (especially the eigenvectors associated to the smallest eigenvalues) has an interpretation in terms of minimal number of cuts necessary to split the graph into comparably sized components. This embedding can also 'work' even if the ``adjacency`` variable is not strictly the adjacency matrix of a graph but more generally an affinity or similarity matrix between samples (for instance the heat kernel of a euclidean distance matrix or a k-NN matrix). However care must taken to always make the affinity matrix symmetric so that the eigenvector decomposition works as expected. Note : Laplacian Eigenmaps is the actual algorithm implemented here. Read more in the :ref:`User Guide <spectral_embedding>`. Parameters ---------- adjacency : {array-like, sparse graph} of shape (n_samples, n_samples) The adjacency matrix of the graph to embed. n_components : int, default=8 The dimension of the projection subspace. eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. If None, then ``'arpack'`` is used. random_state : int, RandomState instance or None, default=None Determines the random number generator used for the initialization of the lobpcg eigenvectors decomposition when ``solver`` == 'amg'. Pass an int for reproducible results across multiple function calls. See :term: `Glossary <random_state>`. eigen_tol : float, default=0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. norm_laplacian : bool, default=True If True, then compute normalized Laplacian. drop_first : bool, default=True Whether to drop the first eigenvector. For spectral embedding, this should be True as the first eigenvector should be constant vector for connected graph, but for spectral clustering, this should be kept as False to retain the first eigenvector. Returns ------- embedding : ndarray of shape (n_samples, n_components) The reduced samples. Notes ----- Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph has one connected component. If there graph has many components, the first few eigenvectors will simply uncover the connected components of the graph. References ---------- * https://en.wikipedia.org/wiki/LOBPCG * Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method <NAME> https://doi.org/10.1137%2FS1064827500366124 """ adjacency = check_symmetric(adjacency) try: from pyamg import smoothed_aggregation_solver except ImportError as e: if eigen_solver == "amg": raise ValueError("The eigen_solver was set to 'amg', but pyamg is " "not available.") from e if eigen_solver is None: eigen_solver = 'arpack' elif eigen_solver not in ('arpack', 'lobpcg', 'amg'): raise ValueError("Unknown value for eigen_solver: '%s'." "Should be 'amg', 'arpack', or 'lobpcg'" % eigen_solver) random_state = check_random_state(random_state) n_nodes = adjacency.shape[0] # Whether to drop the first eigenvector if drop_first: n_components = n_components + 1 if not _graph_is_connected(adjacency): warnings.warn("Graph is not fully connected, spectral embedding" " may not work as expected.") laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian, return_diag=True) if (eigen_solver == 'arpack' or eigen_solver != 'lobpcg' and (not sparse.isspmatrix(laplacian) or n_nodes < 5 * n_components)): # lobpcg used with eigen_solver='amg' has bugs for low number of nodes # for details see the source code in scipy: # https://github.com/scipy/scipy/blob/v0.11.0/scipy/sparse/linalg/eigen # /lobpcg/lobpcg.py#L237 # or matlab: # https://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m laplacian = _set_diag(laplacian, 1, norm_laplacian) # Here we'll use shift-invert mode for fast eigenvalues # (see https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html # for a short explanation of what this means) # Because the normalized Laplacian has eigenvalues between 0 and 2, # I - L has eigenvalues between -1 and 1. ARPACK is most efficient # when finding eigenvalues of largest magnitude (keyword which='LM') # and when these eigenvalues are very large compared to the rest. # For very large, very sparse graphs, I - L can have many, many # eigenvalues very near 1.0. This leads to slow convergence. So # instead, we'll use ARPACK's shift-invert mode, asking for the # eigenvalues near 1.0. This effectively spreads-out the spectrum # near 1.0 and leads to much faster convergence: potentially an # orders-of-magnitude speedup over simply using keyword which='LA' # in standard mode. try: # We are computing the opposite of the laplacian inplace so as # to spare a memory allocation of a possibly very large array laplacian *= -1 v0 = _init_arpack_v0(laplacian.shape[0], random_state) _, diffusion_map = eigsh( laplacian, k=n_components, sigma=1.0, which='LM', tol=eigen_tol, v0=v0) embedding = diffusion_map.T[n_components::-1] if norm_laplacian: embedding = embedding / dd except RuntimeError: # When submatrices are exactly singular, an LU decomposition # in arpack fails. We fallback to lobpcg eigen_solver = "lobpcg" # Revert the laplacian to its opposite to have lobpcg work laplacian *= -1 elif eigen_solver == 'amg': # Use AMG to get a preconditioner and speed up the eigenvalue # problem. if not sparse.issparse(laplacian): warnings.warn("AMG works better for sparse matrices") # lobpcg needs double precision floats laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True) laplacian = _set_diag(laplacian, 1, norm_laplacian) # The Laplacian matrix is always singular, having at least one zero # eigenvalue, corresponding to the trivial eigenvector, which is a # constant. Using a singular matrix for preconditioning may result in # random failures in LOBPCG and is not supported by the existing # theory: # see https://doi.org/10.1007/s10208-015-9297-1 # Shift the Laplacian so its diagononal is not all ones. The shift # does change the eigenpairs however, so we'll feed the shifted # matrix to the solver and afterward set it back to the original. diag_shift = 1e-5 * sparse.eye(laplacian.shape[0]) laplacian += diag_shift ml = smoothed_aggregation_solver(check_array(laplacian, accept_sparse='csr')) laplacian -= diag_shift M = ml.aspreconditioner() X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() _, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.e-5, largest=False) embedding = diffusion_map.T if norm_laplacian: embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError if eigen_solver == "lobpcg": # lobpcg needs double precision floats laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True) if n_nodes < 5 * n_components + 1: # see note above under arpack why lobpcg has problems with small # number of nodes # lobpcg will fallback to eigh, so we short circuit it if sparse.isspmatrix(laplacian): laplacian = laplacian.toarray() _, diffusion_map = eigh(laplacian, check_finite=False) embedding = diffusion_map.T[:n_components] if norm_laplacian: embedding = embedding / dd else: laplacian = _set_diag(laplacian, 1, norm_laplacian) # We increase the number of eigenvectors requested, as lobpcg # doesn't behave well in low dimension X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() _, diffusion_map = lobpcg(laplacian, X, tol=1e-15, largest=False, maxiter=2000) embedding = diffusion_map.T[:n_components] if norm_laplacian: embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError embedding = _deterministic_vector_sign_flip(embedding) if drop_first: return embedding[1:n_components].T else: return embedding[:n_components].T class SpectralEmbedding(BaseEstimator): """Spectral embedding for non-linear dimensionality reduction. Forms an affinity matrix given by the specified function and applies spectral decomposition to the corresponding graph laplacian. The resulting transformation is given by the value of the eigenvectors for each data point. Note : Laplacian Eigenmaps is the actual algorithm implemented here. Read more in the :ref:`User Guide <spectral_embedding>`. Parameters ---------- n_components : int, default=2 The dimension of the projected subspace. affinity : {'nearest_neighbors', 'rbf', 'precomputed', \ 'precomputed_nearest_neighbors'} or callable, \ default='nearest_neighbors' How to construct the affinity matrix. - 'nearest_neighbors' : construct the affinity matrix by computing a graph of nearest neighbors. - 'rbf' : construct the affinity matrix by computing a radial basis function (RBF) kernel. - 'precomputed' : interpret ``X`` as a precomputed affinity matrix. - 'precomputed_nearest_neighbors' : interpret ``X`` as a sparse graph of precomputed nearest neighbors, and constructs the affinity matrix by selecting the ``n_neighbors`` nearest neighbors. - callable : use passed in function as affinity the function takes in data matrix (n_samples, n_features) and return affinity matrix (n_samples, n_samples). gamma : float, default=None Kernel coefficient for rbf kernel. If None, gamma will be set to 1/n_features. random_state : int, RandomState instance or None, default=None Determines the random number generator used for the initialization of the lobpcg eigenvectors when ``solver`` == 'amg'. Pass an int for reproducible results across multiple function calls. See :term: `Glossary <random_state>`. eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems. If None, then ``'arpack'`` is used. n_neighbors : int, default=None Number of nearest neighbors for nearest_neighbors graph building. If None, n_neighbors will be set to max(n_samples/10, 1). n_jobs : int, default=None The number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Attributes ---------- embedding_ : ndarray of shape (n_samples, n_components) Spectral embedding of the training matrix. affinity_matrix_ : ndarray of shape (n_samples, n_samples) Affinity_matrix constructed from samples or precomputed. n_neighbors_ : int Number of nearest neighbors effectively used. Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.manifold import SpectralEmbedding >>> X, _ = load_digits(return_X_y=True) >>> X.shape (1797, 64) >>> embedding = SpectralEmbedding(n_components=2) >>> X_transformed = embedding.fit_transform(X[:100]) >>> X_transformed.shape (100, 2) References ---------- - A Tutorial on Spectral Clustering, 2007 <NAME> http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - On Spectral Clustering: Analysis and an algorithm, 2001 <NAME>, <NAME>, <NAME> http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100 - Normalized cuts and image segmentation, 2000 <NAME>, <NAME> http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 """ @_deprecate_positional_args def __init__(self, n_components=2, *, affinity="nearest_neighbors", gamma=None, random_state=None, eigen_solver=None, n_neighbors=None, n_jobs=None): self.n_components = n_components self.affinity = affinity self.gamma = gamma self.random_state = random_state self.eigen_solver = eigen_solver self.n_neighbors = n_neighbors self.n_jobs = n_jobs def _more_tags(self): return {'pairwise': self.affinity in ["precomputed", "precomputed_nearest_neighbors"]} # TODO: Remove in 1.1 # mypy error: Decorated property not supported @deprecated("Attribute _pairwise was deprecated in " # type: ignore "version 0.24 and will be removed in 1.1 (renaming of 0.26).") @property def _pairwise(self): return self.affinity in ["precomputed", "precomputed_nearest_neighbors"] def _get_affinity_matrix(self, X, Y=None): """Calculate the affinity matrix from data Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. If affinity is "precomputed" X : array-like of shape (n_samples, n_samples), Interpret X as precomputed adjacency graph computed from samples. Y: Ignored Returns ------- affinity_matrix of shape (n_samples, n_samples) """ if self.affinity == 'precomputed': self.affinity_matrix_ = X return self.affinity_matrix_ if self.affinity == 'precomputed_nearest_neighbors': estimator = NearestNeighbors(n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric="precomputed").fit(X) connectivity = estimator.kneighbors_graph(X=X, mode='connectivity') self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) return self.affinity_matrix_ if self.affinity == 'nearest_neighbors': if sparse.issparse(X): warnings.warn("Nearest neighbors affinity currently does " "not support sparse input, falling back to " "rbf affinity") self.affinity = "rbf" else: self.n_neighbors_ = (self.n_neighbors if self.n_neighbors is not None else max(int(X.shape[0] / 10), 1)) self.affinity_matrix_ = kneighbors_graph(X, self.n_neighbors_, include_self=True, n_jobs=self.n_jobs) # currently only symmetric affinity_matrix supported self.affinity_matrix_ = 0.5 * (self.affinity_matrix_ + self.affinity_matrix_.T) return self.affinity_matrix_ if self.affinity == 'rbf': self.gamma_ = (self.gamma if self.gamma is not None else 1.0 / X.shape[1]) self.affinity_matrix_ = rbf_kernel(X, gamma=self.gamma_) return self.affinity_matrix_ self.affinity_matrix_ = self.affinity(X) return self.affinity_matrix_ def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. If affinity is "precomputed" X : {array-like, sparse matrix}, shape (n_samples, n_samples), Interpret X as precomputed adjacency graph computed from samples. y : Ignored Returns ------- self : object Returns the instance itself. """ X = self._validate_data(X, accept_sparse='csr', ensure_min_samples=2, estimator=self) random_state = check_random_state(self.random_state) if isinstance(self.affinity, str): if self.affinity not in {"nearest_neighbors", "rbf", "precomputed", "precomputed_nearest_neighbors"}: raise ValueError(("%s is not a valid affinity. Expected " "'precomputed', 'rbf', 'nearest_neighbors' " "or a callable.") % self.affinity) elif not callable(self.affinity): raise ValueError(("'affinity' is expected to be an affinity " "name or a callable. Got: %s") % self.affinity) affinity_matrix = self._get_affinity_matrix(X) self.embedding_ = spectral_embedding(affinity_matrix, n_components=self.n_components, eigen_solver=self.eigen_solver, random_state=random_state) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. If affinity is "precomputed" X : {array-like, sparse matrix} of shape (n_samples, n_samples), Interpret X as precomputed adjacency graph computed from samples. y : Ignored Returns ------- X_new : array-like of shape (n_samples, n_components) """ self.fit(X) return self.embedding_
StarcoderdataPython
1638317
import calendar import csv import datetime from datetime import date from io import StringIO import xlrd from beancount.core import data from beancount.core.data import Note, Transaction from . import (DictReaderStrip, get_account_by_guess, get_income_account_by_guess) from .base import Base from .deduplicate import Deduplicate Account余额宝 = 'Assets:Company:Alipay:MonetaryFund' incomes = ['余额自动转入', '收益', '单次转入'] class YuEBao(Base): def __init__(self, filename, byte_content, entries, option_map): if not filename.endswith('xls'): raise 'Not YuEBao!' data = xlrd.open_workbook(filename) table = data.sheets()[0] rows_value = table.row_values(0) if rows_value[0] != '余额宝收支明细查询': raise 'Not YuEBao!' self.book = data self.table = table self.deduplicate = Deduplicate(entries, option_map) def parse(self): table = self.table rows = table.nrows for i in range(5, rows - 4): row = table.row_values(i) time = datetime.datetime( *xlrd.xldate_as_tuple(table.cell_value(rowx=i, colx=0), self.book.datemode)) print("Importing {} price = {} balance = {}".format( time, row[2], row[3])) meta = {} amount = float(row[1]) entry = Transaction( meta, date(time.year, time.month, time.day), '*', '余额宝', '余额宝', data.EMPTY_SET, data.EMPTY_SET, [] ) if not row[2] in incomes: amount = -amount if self.deduplicate.find_duplicate(entry, amount, None, Account余额宝): print( "Unknown transaction for {}, check if Alipay transaction exists.".format(time)) self.deduplicate.apply_beans() return []
StarcoderdataPython
1695596
<filename>tanit/master/core/worker/worker_manager.py import logging as lg from datetime import datetime from threading import RLock from .worker import WorkerState from .worker_monitor import WorkerMonitor _logger = lg.getLogger(__name__) class WorkerManager(object): """Monitor and Maintain workers states. The WorkerManager monitor the state of workers and maintain the list of active/dead workers. It is not really part of the execution pipeline, its role is just to keep tack of which machines are active and fetch their state. """ # NOQA def __init__(self, workers_factory): self.worker_factory = workers_factory self.workers = [] self.lock = RLock() # monitor self.monitor = WorkerMonitor(self) def start(self): _logger.info("Stating tanit worker manager.") self.monitor.start() _logger.info("Tanit worker manager started.") def stop(self): _logger.info("Stopping tanit worker manager.") self.monitor.stop() with self.lock: for wkr in self.list_workers(): wkr.stop() _logger.info("Tanit worker manager stopped.") def disable_monitor(self): self.monitor.heartbeat_check_interval = -1 def get_worker(self, wid): with self.lock: for wkr in self.workers: if wkr.wid == wid: return wkr return None def list_workers(self, state=None): with self.lock: if state is None: return self.workers else: return [wkr for wkr in self.list_workers() if wkr.state == state] def list_active_workers(self): return self.list_workers(state=WorkerState.ACTIVE) def register_worker(self, worker): """Register a Worker. Register the worker in the worker manager. Note: This does not activate the worker. """ _logger.info("Registering new Worker [ %s ].", worker.wid) with self.lock: remote_worker = self.get_worker(worker.wid) if remote_worker is not None: if remote_worker.wid == worker.wid: _logger.warning("Worker [ %s ] is already registered.", worker.wid) elif ( remote_worker.address == worker.address and remote_worker.port == worker.port and worker.address is not None and worker.port is not None ): _logger.warning( "Worker running on address [ %s ] and port [ %s ] " + "is already registered.", worker.address, worker.port, ) elif remote_worker.address == worker.address: _logger.warning( "Another Worker [ %s ] is already running on [ %s ].", worker.wid, worker.address, ) else: remote_worker = self.worker_factory.create_worker(worker) remote_worker.start() self.workers.append(remote_worker) _logger.info("Worker [ %s ] registered.", worker.wid) def activate_worker(self, wid): """Activate a Worker. Transition worker to state `ACTIVE`. Worker in any state except `DEACTIVATING` can be activated """ _logger.info("Activating Worker [ %s ]", wid) with self.lock: remote_worker = self.get_worker(wid) if remote_worker is not None: if remote_worker.state == WorkerState.DEACTIVATING: _logger.error("Cannot activate worker in decommissioning state.") raise IllegalWorkerStateException( "Cannot activate worker in decommissioning state." ) elif remote_worker.state == WorkerState.DEAD: _logger.warning( "Worker %s is in %s state, forcing activation" % ( remote_worker.wid, WorkerState._VALUES_TO_NAMES[WorkerState.DEAD], ) ) _logger.info( "Transitioning worker from state %s to %s" % ( WorkerState._VALUES_TO_NAMES[remote_worker.state], WorkerState._VALUES_TO_NAMES[WorkerState.ACTIVE], ) ) remote_worker.state = WorkerState.ACTIVE else: raise NoSuchWorkerException("No such worker [ %s ]", wid) _logger.info("Worker [ %s ] Activated", wid) def deactivate_worker(self, wid): """Deactivate a Worker. Transition worker to state `DEACTIVATING`. This does not really decommission the worker but rather schedule it for decommissioning by the `WorkerDecommissioner`. Only workers in state `ACTIVE` transition to `DEACTIVATING` state. """ _logger.info("Deactivating Worker [ %s ]", wid) with self.lock: remote_worker = self.get_worker(wid) if remote_worker is not None: if remote_worker.state == WorkerState.ACTIVE: remote_worker.state = WorkerState.DEACTIVATING elif remote_worker.state in [ WorkerState.DEACTIVATING, WorkerState.DEACTIVATED, ]: _logger.info("Worker [ %s ] already decommissioned.", wid) elif remote_worker.state == WorkerState.ALIVE: _logger.info( "Worker %s in state %s , forcing state %s" % ( remote_worker.wid, WorkerState._VALUES_TO_NAMES[WorkerState.ALIVE], WorkerState._VALUES_TO_NAMES[WorkerState.DEACTIVATED], ) ) remote_worker.state = WorkerState.DEACTIVATED else: _logger.error( "Cannot transition worker %s from state %s to %s" % ( remote_worker.wid, WorkerState._VALUES_TO_NAMES[remote_worker.state], WorkerState._VALUES_TO_NAMES[WorkerState.DEACTIVATING], ) ) raise IllegalWorkerStateException( "Cannot transition worker %s from state %s to %s" % ( remote_worker.wid, WorkerState._VALUES_TO_NAMES[remote_worker.state], WorkerState._VALUES_TO_NAMES[WorkerState.DEACTIVATING], ) ) else: raise NoSuchWorkerException("No such worker [ %s ]", wid) _logger.info("Worker [ %s ] deactivated", wid) def register_heartbeat(self, worker): with self.lock: remote_worker = self.get_worker(worker.wid) if remote_worker is not None: remote_worker.last_hear_beat = datetime.now() if remote_worker.state == WorkerState.DEAD: remote_worker.state = WorkerState.ALIVE else: # register the worker without activating _logger.info( "Received heartbeat from unknown worker %s, registering it." % worker.wid ) self.register_worker(worker) class IllegalWorkerStateException(Exception): pass class NoSuchWorkerException(Exception): pass class AlreadyRegisteredWorkerException(Exception): pass
StarcoderdataPython
3235354
<filename>docs/hyperpython/hp03.py from hyperpython import h from htm import htm # start @htm def html(tag, props, children): if callable(tag): return tag() return h(tag, props, children) def Heading(): return html('<header>Hello World</header>') result03 = str(html(""" <{Heading}><//> """))
StarcoderdataPython
3214099
<filename>setup.py # -*- coding: utf-8 -*- import os from setuptools import setup, find_packages with open(os.path.join('flagging_site', '__init__.py'), encoding='utf8') as f: version = re.search(r"__version__ = '(.*?)'", f.read()).group(1) with open('README.md', encoding='utf8') as f: readme = f.read() setup( name='CRWA Flagging Website', version=version, packages=find_packages(), author='<NAME>', python_requires='>=3.7.1', maintainer='Charles River Watershed Association', license='MIT', include_package_data=True, setup_requires=[ 'pytest-runner', ], tests_require=[ 'pytest', 'pytest-cov' ], install_requires=[ 'pandas', 'flask', 'jinja2', 'flasgger', 'requests', 'Flask-SQLAlchemy', 'Flask-Admin', 'Flask-BasicAuth', 'py7zr' ], extras_require={ 'windows': ['psycopg2'], 'osx': ['psycopg2-binary'] }, url='https://github.com/codeforboston/flagging', description='Flagging website for the CRWA', long_description=readme, long_description_content_type='text/markdown', )
StarcoderdataPython
95883
from urllib.parse import urlparse from django.test import TestCase # Create your tests here. from smart_bookmarks.core.utils import url_guid def test_foo(): guid = url_guid( "https://stackoverflow.com/questions/3278077/difference-between-getattr-vs-getattribute/3278104?q=alamakota#1234567" ) print(guid)
StarcoderdataPython
3211695
<reponame>Melykuti/sh-pixel-labelling # This is the code to define the graphical user interface (GUI) with Tkinter from datetime import datetime, timedelta import json import numpy as np import os from PIL import Image, ImageTk import tkinter as tk from utils.downloading import SH_TCI_retrieve_successor from utils.utils import rows_to_pairs, consolidate_name class ImagePanel(tk.Canvas): def __init__(self, master, img): #self.grid(row=0, column=0) hei, wid = img.shape[0], img.shape[1] self.width=master.magnification*wid self.height=master.magnification*hei tk.Canvas.__init__(self, master, width=self.width, height=self.height) self.bind("<Button-1>", self.pixelclick) self.img_orig = img self.draw_image(self.img_orig, self.master.pxs) def draw_image(self, img_orig, l): if len(l)>0: img = img_orig.copy() for px in l: # Black: #img[px[0], px[1], :] = 0 # Magenta: #img[px[0], px[1], 0] = 192 #img[px[0], px[1], 1] = 0 #img[px[0], px[1], 2] = 192 img[px[0], px[1], 0] = self.master.colour_for_selection[0] img[px[0], px[1], 1] = self.master.colour_for_selection[1] img[px[0], px[1], 2] = self.master.colour_for_selection[2] else: img = img_orig.copy() img = np.kron(img, np.ones((self.master.magnification, self.master.magnification), dtype=np.uint8)[:,:,np.newaxis]) self.imgPIL=ImageTk.PhotoImage(Image.fromarray(img)) self.create_image((0, 0), image=self.imgPIL, anchor='nw', state="normal") def pixelclick(self, event): col, row = event.x//self.master.magnification, event.y//self.master.magnification #print("Clicked at row {0}, column {1}.".format(row, col)) if [row, col] in self.master.pxs: self.master.pxs.remove([row, col]) else: self.master.pxs.append([row, col]) self.draw_image(self.img_orig, self.master.pxs) class ButtonsPanel(tk.Frame): def __init__(self, master): frame = tk.Frame.__init__(self, master) #self.grid(row=0, column=1, sticky="s") self.createWidgets() return frame def createWidgets(self): self.skip = tk.Button(self, text="Skip", command=self.skp, padx=5) self.skip.grid(row=0) self.savencontinue = tk.Button(self, text="Save & Continue", command=self.snc) self.savencontinue.grid(row=1) self.savenquit = tk.Button(self, text="Save & Quit", command=self.snq, padx=2) self.savenquit.grid(row=2) self.cancel = tk.Button(self, text="Cancel", command=self.cnq, padx=4) self.cancel.grid(row=3) def skp(self): # active_date, next_date are strings in YYYY-MM-DD format active_date = self.master.location['date'] print("Skipping " + active_date) # increment date by 1 day next_date = datetime.strftime(datetime.strptime(active_date, '%Y-%m-%d') + timedelta(1), '%Y-%m-%d') self.master.location['date'] = next_date #local_location = self.master.location.copy() #local_location['date'] = next_date active_date = self.master.create_workspace(self.master, self.master.location) #active_date = self.master.create_workspace(self.master, local_location) self.master.location['date'] = active_date def snc(self): # active_date, next_date are strings in YYYY-MM-DD format active_date = self.master.location['date'] print("Saving {0} & Continuing".format(active_date)) self.master.locations_json[active_date] = self.master.location.copy() self.master.locations_json[active_date]['px'] = self.master.pxs.copy() self.savetofile() # increment date by 1 day next_date = datetime.strftime(datetime.strptime(active_date, '%Y-%m-%d') + timedelta(1), '%Y-%m-%d') self.master.location['date'] = next_date active_date = self.master.create_workspace(self.master, self.master.location) self.master.location['date'] = active_date def snq(self): # active_date is a string in YYYY-MM-DD format active_date = self.master.location['date'] print("Saving {0} & Quitting".format(active_date)) self.master.locations_json[active_date] = self.master.location.copy() self.master.locations_json[active_date]['px'] = self.master.pxs.copy() self.savetofile() self.master.destroy() def cnq(self): active_date = self.master.location['date'] print("Cancel. Quitting without saving {0}.".format(active_date)) self.master.destroy() def savetofile(self): if not os.path.exists(self.master.output_folder): os.makedirs(self.master.output_folder) # save dict of dates and pixels in JSON, named using locations[k]['name'] with open(os.path.join(self.master.output_folder, consolidate_name(self.master.location['name']) + '_' + self.master.level_choice + '_locations.json'), 'w') as openfile: openfile.write(json.dumps(self.master.locations_json, ensure_ascii=False, indent=0)) # Saving pixel intensity values will be done separately. class BigFrame(tk.Tk): def __init__(self, location, INSTANCE_ID, LAYER_NAME_TCI, DATA_SOURCE, magnification, colour_for_selection, output_folder, level_choice): tk.Tk.__init__(self) # location['px'] (px) is an np.array of size (2 x nr_of_pixels). self.master.pxs is a list of pairs. self.location = location self.pxs = rows_to_pairs(location['px']) self.INSTANCE_ID = INSTANCE_ID self.LAYER_NAME_TCI = LAYER_NAME_TCI self.DATA_SOURCE = DATA_SOURCE self.magnification = magnification self.colour_for_selection = colour_for_selection self.output_folder = output_folder self.level_choice = level_choice self.canvas = tk.Canvas().grid(row=0, column=0) self.but = ButtonsPanel(master=self).grid(row=0, column=1)#, sticky="s") active_date = self.create_workspace(self, self.location) self.location['date'] = active_date self.locations_json = dict() def create_workspace(self, root, location): wms_true_color_imgs, available_dates = SH_TCI_retrieve_successor(location, self.INSTANCE_ID, self.LAYER_NAME_TCI, self.DATA_SOURCE) print('Next available dates: ', [datetime.strftime(ad, '%Y-%m-%d %H:%M:%S') for ad in available_dates]) if len(available_dates)>0: img = wms_true_color_imgs[0] #px = location['px'] self.imgpanel = ImagePanel(root, img).grid(row=0, column=0) #self.imgpanel = ImagePanel(root, img, px).grid(row=0, column=0) #self.imgpanel = ImagePanel(self.canvas, img, px, magnification, root.colour_for_selection).grid(row=0, column=0) return datetime.strftime(available_dates[0], '%Y-%m-%d') else: print('You reached the present.') #self.but.cnq() #self.bbb #self.destroy() root.destroy()
StarcoderdataPython
67416
<reponame>sunway513/Tensile<gh_stars>0 ################################################################################ # Copyright (C) 2016-2019 Advanced Micro Devices, Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop- # ies of the Software, and to permit persons to whom the Software is furnished # to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM- # PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE- # CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ################################################################################ # This script only gets called by CMake if __name__ == "__main__": print("This file can no longer be run as a script. Run 'Tensile/bin/TensileCreateLibrary' instead.") exit(1) from . import Common from . import EmbeddedData from . import Utils from . import YAMLIO from .Common import globalParameters, HR, print1, print2, printExit, ensurePath, \ CHeader, CMakeHeader, assignGlobalParameters, ProgressBar, \ listToInitializer from .KernelWriterAssembly import KernelWriterAssembly from .KernelWriterSource import KernelWriterSource from .SolutionStructs import Solution from .SolutionWriter import SolutionWriter import argparse import collections import itertools import os import shutil import subprocess import sys import time ################################################################################ def processKernelSource(kernel, kernelWriterSource, kernelWriterAssembly): """ Generate source for a single kernel. Returns (error, source, header, kernelName). """ try: kernelWriter = kernelWriterSource if kernel["KernelLanguage"] == "Source" else kernelWriterAssembly # get kernel name kernelName = kernelWriter.getKernelName(kernel) #sys.stderr.write("kernel:%s\n"% kernelName) (err, src) = kernelWriter.getSourceFileString(kernel) header = kernelWriter.getHeaderFileString(kernel) except RuntimeError: return (1, "", "", kernelName) return (err, src, header, kernelName) def getAssemblyCodeObjectFiles(kernels, kernelWriterAssembly, outputPath): destDir = ensurePath(os.path.join(outputPath, 'library')) asmDir = kernelWriterAssembly.getAssemblyDirectory() assemblyKernels = list([k for k in kernels if k['KernelLanguage'] == 'Assembly']) if len(assemblyKernels) == 0: return [] if globalParameters["MergeFiles"]: archs = collections.defaultdict(list) for k in assemblyKernels: archs[tuple(k['ISA'])].append(k) coFiles = [] for arch, archKernels in archs.items(): objectFiles = list([kernelWriterAssembly.getKernelName(k) + '.o' \ for k in archKernels \ if k['KernelLanguage'] == 'Assembly']) if len(objectFiles) == 0: continue archName = 'gfx'+''.join(map(str,arch)) coFile = os.path.join(destDir, 'TensileLibrary_{}.co'.format(archName)) args = kernelWriterAssembly.getLinkCodeObjectArgs(objectFiles, coFile) subprocess.check_call(args, cwd=asmDir) coFiles.append(coFile) return coFiles else: assemblyKernelNames = [kernelWriterAssembly.getKernelName(k) for k in assemblyKernels] origCOFiles = [os.path.join(asmDir, k + '.co') for k in assemblyKernelNames] newCOFiles = [os.path.join(destDir, k + '.co') for k in assemblyKernelNames] for src, dst in Utils.tqdm(zip(origCOFiles, newCOFiles), "Copying code objects"): shutil.copyfile(src, dst) return newCOFiles def which(p): exes = [p+x for x in ['', '.exe', '.bat']] system_path = os.environ['PATH'].split(os.pathsep) for dirname in system_path+['/opt/rocm/bin']: for exe in exes: candidate = os.path.join(os.path.expanduser(dirname), exe) if os.path.isfile(candidate): return candidate return None def buildSourceCodeObjectFile(CxxCompiler, outputPath, kernelFile): buildPath = ensurePath(os.path.join(globalParameters['WorkingPath'], 'code_object_tmp')) destDir = ensurePath(os.path.join(outputPath, 'library')) (_, filename) = os.path.split(kernelFile) (base, _) = os.path.splitext(filename) objectFilename = base + '.o' objectFilepath = os.path.join(buildPath, objectFilename) soFilename = base + '.so' soFilepath = os.path.join(buildPath, soFilename) archs = ['gfx'+''.join(map(str,arch)) for arch in globalParameters['SupportedISA'] \ if globalParameters["AsmCaps"][arch]["SupportedISA"]] archFlags = ['--amdgpu-target=' + arch for arch in archs] if (CxxCompiler == 'hcc'): hipFlags = subprocess.check_output([which('hcc-config'), '--cxxflags']).decode().split(' ') # when HCC_HOME is defined -I/opt/rocm/include is *not* part of # hcc-config --cxxflags; so we need hipconfig -C to be safe hipFlags += subprocess.check_output([which('hipconfig'), '-C']).decode().split(' ') hipLinkFlags = subprocess.check_output([which('hcc-config'), '--ldflags', '--shared']).decode().split(' ') hipFlags += ['-I', outputPath, '-fPIC'] compileArgs = [which('hcc')] + hipFlags + [kernelFile, '-c', '-o', objectFilepath] linkArgs = [globalParameters['AssemblerPath']] + hipLinkFlags + archFlags + [objectFilepath, '-shared', '-o', soFilepath] extractArgs = [globalParameters['ExtractKernelPath'], '-i', soFilename] #print(' '.join(compileArgs)) subprocess.check_call(compileArgs) #print(' '.join(linkArgs)) subprocess.check_call(linkArgs) #print(' '.join(extractArgs)) subprocess.check_call(extractArgs, cwd=buildPath) coFilenames = ["{0}-000-{1}.hsaco".format(soFilename, arch) for arch in archs] elif (CxxCompiler == "hipcc"): hipFlags = ["--genco", "-D__HIP_HCC_COMPAT_MODE__=1"] hipFlags += ['-I', outputPath] compileArgs = [which('hipcc')] + hipFlags + archFlags + [kernelFile, '-c', '-o', soFilepath] #print(' '.join(compileArgs)) subprocess.check_call(compileArgs) coFilenames = [soFilename] else: raise RuntimeError("Unknown compiler {}".format(CxxCompiler)) extractedCOs = [os.path.join(buildPath, name) for name in coFilenames] destCOs = [os.path.join(destDir, name) for name in coFilenames] for (src, dst) in zip(extractedCOs, destCOs): shutil.copyfile(src, dst) return destCOs def buildSourceCodeObjectFiles(CxxCompiler, kernelFiles, outputPath): args = zip(itertools.repeat(CxxCompiler), itertools.repeat(outputPath), kernelFiles) coFiles = Common.ParallelMap(buildSourceCodeObjectFile, args, "Compiling source kernels", method=lambda x: x.starmap) return itertools.chain.from_iterable(coFiles) ################################################################################ def prepAsm(): """ Create and prepare the assembly directory - called ONCE per output dir: """ asmPath = ensurePath(os.path.join(globalParameters["WorkingPath"], "assembly") ) assemblerFileName = os.path.join(asmPath, \ "asm.%s"%("bat" if os.name=="nt" else "sh")) assemblerFile = open(assemblerFileName, "w") if os.name == "nt": assemblerFile.write("echo Windows: Copying instead of Assembling\n") assemblerFile.write("copy %1.s %1.o\n") assemblerFile.write("copy %1.o %1.co\n") else: assemblerFile.write("#!/bin/sh %s\n" % ("-x" if globalParameters["PrintLevel"] >=2 else "")) assemblerFile.write("# usage: asm.sh kernelName ASM_ARGS\n") assemblerFile.write("# example: asm.sh kernelName -mcpu=gfx900\n") assemblerFile.write("f=$1\n") assemblerFile.write("shift\n") assemblerFile.write("ASM=%s\n"%globalParameters["AssemblerPath"]) # cannot use globalParameters["CurrentISA"] because it might be (0,0,0) defaultIsa = (9,0,0) assemblerFile.write( \ "${ASM} -x assembler -target amdgcn-amd-amdhsa %s $@ -c -o $f.o $f.s\n" % \ ("-mno-code-object-v3" if \ globalParameters["AsmCaps"][defaultIsa]["HasCodeObjectV3"] and \ globalParameters["CodeObjectVersion"] == "V2" else "-mcode-object-v3")) assemblerFile.write("${ASM} -target amdgcn-amd-amdhsa $f.o -o $f.co\n") assemblerFile.close() os.chmod(assemblerFileName, 0o777) ################################################################################ def buildKernelSourceAndHeaderFiles(results, outputPath, kernelsWithBuildErrs, \ kernelSourceFile, kernelHeaderFile): """ Logs errors and writes appropriate info to kernelSourceFile and kernelHeaderFile. Arguments: results: list of (err, src, header, kernelName) outputPath: path to source directory kernelsWithBuildErrs: Dictionary to be updated with kernels that have errors kernelSourceFile: File to write source data to kernelHeaderFile: File to write header data to """ sourceFilenames = [] for (err,src,header,kernelName) in results: if err: kernelsWithBuildErrs[kernelName] = err #print "*** warning: invalid kernel#%s"%kernelName # write kernel.cpp if not globalParameters["MergeFiles"]: filename = os.path.join(outputPath, "Kernels", kernelName+".cpp") sourceFilenames.append(filename) kernelSourceFile = open(filename, "w") kernelSourceFile.write(CHeader) kernelSourceFile.write(src) if not globalParameters["MergeFiles"]: kernelSourceFile.close() # write kernel.h kernelHeaderFile = open(os.path.join(outputPath, "Kernels", kernelName+".h"), "w") kernelHeaderFile.write(CHeader) kernelHeaderFile.write(header) if not globalParameters["MergeFiles"]: kernelHeaderFile.close() return sourceFilenames ################################################################################ # Write Solutions and Kernels for BenchmarkClient or LibraryClient ################################################################################ def writeSolutionsAndKernels(outputPath, CxxCompiler, problemTypes, solutions, kernels, kernelsBetaOnly, \ solutionWriter, kernelWriterSource, kernelWriterAssembly, errorTolerant=False): start = time.time() codeObjectFiles = [] print1("# Writing Kernels...") if not globalParameters["MergeFiles"]: ensurePath(os.path.join(outputPath, "Solutions")) ensurePath(os.path.join(outputPath, "Kernels")) ############################################################################## # Write Kernels ############################################################################## kernelFiles = [] if globalParameters["MergeFiles"]: kernelSourceFilename = os.path.join(outputPath, "Kernels.cpp") kernelHeaderFilename = os.path.join(outputPath, "Kernels.h") kernelFiles.append(kernelSourceFilename) kernelSourceFile = open(kernelSourceFilename, "w") kernelHeaderFile = open(kernelHeaderFilename, "w") kernelSourceFile.write(CHeader) kernelHeaderFile.write(CHeader) kernelSourceFile.write("#include \"Kernels.h\"\n") kernelHeaderFile.write("#pragma once\n") if globalParameters["RuntimeLanguage"] == "HIP": kernelHeaderFile.write("#include <hip/hip_runtime.h>\n") kernelHeaderFile.write("#include <hip/hip_hcc.h>\n\n") kernelHeaderFile.write("#include \"KernelHeader.h\"\n\n") else: kernelSourceFile = None kernelHeaderFile = None kernelsWithBuildErrs = {} prepAsm() kIter = zip(kernels, itertools.repeat(kernelWriterSource), itertools.repeat(kernelWriterAssembly)) results = Common.ParallelMap(processKernelSource, kIter, "Generating kernels", method=lambda x: x.starmap) print(len(results)) removeKernels = [] removeSolutions = [] removeResults = [] for kernIdx in range(0, len(results)): (err,src,header,kernelName) = results[kernIdx] if(err == -2): removeKernels.append(kernels[kernIdx]) removeSolutions.append(solutions[kernIdx]) removeResults.append(results[kernIdx]) for kern in removeKernels: kernels.remove(kern) for solut in removeSolutions: solutions.remove(solut) for rel in removeResults: results.remove(rel) kernelFiles += buildKernelSourceAndHeaderFiles(results, outputPath, kernelsWithBuildErrs, kernelSourceFile, kernelHeaderFile) kernelsToBuild = list(kernels) if errorTolerant: def success(kernel): writer = kernelWriterAssembly if kernel['KernelLanguage'] == 'Assembly' else kernelWriterSource kernelName = writer.getKernelName(kernel) return kernelName not in kernelsWithBuildErrs kernelsToBuild = list(filter(success, kernelsToBuild)) if False:#len(kernelsWithBuildErrs) > 0: print("\nKernel compilation failed in one or more subprocesses. May want to set CpuThreads=0 and re-run to make debug easier") printExit("** kernel compilation failure **") # beta-only kernels for kernel in kernelsBetaOnly: kernelWriter = kernelWriterSource kernelName = kernelWriter.getKernelNameBetaOnly(kernel) # write kernel.cpp if not globalParameters["MergeFiles"]: kernelSourceFilename = os.path.join(outputPath, "Kernels", kernelName+".cpp") kernelSourceFile = open(kernelSourceFilename, "w") kernelSourceFile.write(CHeader) kernelFiles.append(kernelSourceFilename) (err, src) = kernelWriter.getSourceFileStringBetaOnly(kernel) kernelSourceFile.write(src) if err: print("*** warning: invalid kernel#%u"%kernelName) if not globalParameters["MergeFiles"]: kernelSourceFile.close() # write kernel.h if not globalParameters["MergeFiles"]: kernelHeaderFile = open(os.path.join(outputPath, "Kernels", kernelName + ".h"), "w") kernelHeaderFile.write(CHeader) kernelHeaderFile.write( kernelWriter.getHeaderFileStringBetaOnly(kernel)) if not globalParameters["MergeFiles"]: kernelHeaderFile.close() # close merged if globalParameters["MergeFiles"]: kernelSourceFile.close() kernelHeaderFile.close() kernelsToBuild += kernelsBetaOnly codeObjectFiles += buildSourceCodeObjectFiles(CxxCompiler, kernelFiles, outputPath) codeObjectFiles += getAssemblyCodeObjectFiles(kernelsToBuild, kernelWriterAssembly, outputPath) stop = time.time() print("# Kernel Building elapsed time = %.1f secs" % (stop-start)) print1("# Writing Solutions") if globalParameters["ShowProgressBar"]: progressBar = ProgressBar(len(solutions)) ############################################################################## # Write Solutions ############################################################################## solutionSourceFilename = os.path.join(outputPath, "Solutions.cpp") solutionHeaderFilename = os.path.join(outputPath, "Solutions.h") solutionSourceFile = open(solutionSourceFilename, "w") solutionHeaderFile = open(solutionHeaderFilename, "w") solutionSourceFile.write(CHeader) solutionHeaderFile.write(CHeader) solutionSourceFile.write("#include \"Solutions.h\"\n") solutionSourceFile.write("#include <algorithm>\n") solutionHeaderFile.write("#include \"TensileTypes.h\"\n") solutionHeaderFile.write("#include \"SolutionHelper.h\"\n") solutionHeaderFile.write("#include \"Tools.h\"\n") if globalParameters["CodeFromFiles"]: solutionHeaderFile.write("#include <unistd.h>\n") if globalParameters["MergeFiles"]: solutionHeaderFile.write("#include \"Kernels.h\"\n") # Write a solution pointer typedef for each problemType: h = "" for problemType in problemTypes: #print "p=", problemType argListAll = solutionWriter.getArgList(problemType, True, True, True, True) # declare TensileSolutionPointer_ProblemType h += "\n// solution pointer\n" h += "typedef TensileStatus (*TensileSolutionPointer_%s)(\n" % problemType for i in range(0, len(argListAll)): h += " %s %s%s" % (argListAll[i][0], argListAll[i][1], ",\n" \ if i < len(argListAll)-1 else ");\n\n") h += "\n" solutionHeaderFile.write(h) # for solution in solutions: # get solution name if not globalParameters["MergeFiles"]: solutionFileName = solutionWriter.getSolutionName(solution) # write solution.cpp if not globalParameters["MergeFiles"]: solutionSourceFile = open(os.path.join(outputPath, \ "Solutions", solutionFileName+".cpp"), "w") solutionSourceFile.write(CHeader) solutionSourceFile.write( \ solutionWriter.getProblemSourceString(solution["ProblemType"], solution, kernelsWithBuildErrs)) if not globalParameters["MergeFiles"]: solutionSourceFile.close() # write solution.h if not globalParameters["MergeFiles"]: solutionHeaderFile = open(os.path.join(outputPath, \ "Solutions", solutionFileName+".h"), "w") solutionHeaderFile.write(CHeader) solutionHeaderFile.write( \ solutionWriter.getHeaderFileString(solution)) if not globalParameters["MergeFiles"]: solutionHeaderFile.close() if globalParameters["ShowProgressBar"]: progressBar.increment() # close merged if not globalParameters["MergeFiles"]: solutionHeaderFile.close() if globalParameters["ExitAfterKernelGen"]: printExit("** Exiting after kernel generation due to ExitAfterKernelGen=1") return codeObjectFiles ################################################################################ # Write Logic ################################################################################ def writeLogic(outputPath, logicData, solutionWriter ): print1("# Writing Library Logic") if not globalParameters["MergeFiles"]: ensurePath(os.path.join(outputPath, "Logic")) # Tensile.h h = "" h += "#pragma once\n" h += "#include \"TensileTypes.h\"\n" h += "#include \"SolutionHelper.h\"\n" h += "#include \"SolutionMapper.h\"\n" # TensileInternal.h ih = "" ih += "#include \"Tensile.h\"\n" # Tensile.cpp sourceIncludes = "" sourceIncludes += "#include \"Solutions.h\"\n" sourceIncludes += "#include \"Tensile.h\"\n" sourceIncludes += "#include \"TensileInternal.h\"\n" sourceIncludes += "#include \"SolutionMapper.h\"\n" s = sourceIncludes ######################################## # problemType for problemType in logicData: # function argument list argListSizes = solutionWriter.getArgList(problemType, False, False, False, False) argListData = solutionWriter.getArgList(problemType, False, True, True, True) argListAll = solutionWriter.getArgList(problemType, True, True, True, True) # tensile initializer h += "\nvoid tensileInitialize();\n\n" # declare tensile_ProblemType h += "\n// enqueue solution\n" h += "TensileStatus tensile_%s(\n" % problemType for i in range(0, len(argListData)): h += " %s %s%s" \ % (argListData[i][0], argListData[i][1], \ ",\n" if i < len(argListData)-1 else ");\n\n") numSizes = problemType["TotalIndices"]; firstStride = 0 if problemType["UseInitialStrides"] else 1 lastStrideA = len(problemType["IndexAssignmentsA"]) lastStrideB = len(problemType["IndexAssignmentsB"]) lastStrideC = problemType["NumIndicesC"] lastStrideD = problemType["NumIndicesC"] h += "typedef ProblemKey<%u> ProblemKey_%s;\n" % (numSizes,problemType) h += "typedef ProblemDims<%u,%u,%u,%u,%u,%u> ProblemDims_%s;\n" \ % (firstStride, lastStrideD, lastStrideC, lastStrideA, lastStrideB, numSizes, problemType) h += "typedef SolutionMapper<ProblemDims_%s, ProblemKey_%s> SolutionMapper_%s;\n" \ % (problemType, problemType, problemType) # declare tensileGetSolutionPointer_ProblemType h += "\n// get solution pointer\n" h += "SolutionMapper_%s::SolutionRuntime *\n" % (problemType) h += "tensileGetSolutionPointer_%s(\n" % (problemType) for i in range(0, len(argListSizes)): h += " %s %s%s" \ % (argListSizes[i][0], argListSizes[i][1], \ ",\n" if i < len(argListSizes)-1 else ");\n\n") # declare tensileName_ h += "// get solution name\n" h += "const char * tensileGetSolutionName_%s(\n" \ % (problemType) for i in range(0, len(argListSizes)): h += " %s %s%s" \ % (argListSizes[i][0], argListSizes[i][1], \ ",\n" if i < len(argListSizes)-1 else ");\n\n") # get solution naming for problem type solutionsForProblemType = [] for scheduleTuple in logicData[problemType]: solutionsForSchedule = scheduleTuple[2] for solution in solutionsForSchedule: if solution not in solutionsForProblemType: solutionsForProblemType.append(solution) # solution names for problem type solutionNamesForProblemType = [] for solution in solutionsForProblemType: solutionName = solutionWriter.getSolutionName(solution) solutionNamesForProblemType.append(solutionName) # reset problemType source if not globalParameters["MergeFiles"]: filePrefix = "Tensile_%s" % (problemType) s = sourceIncludes for solutionName in solutionNamesForProblemType: s += "#include \"%s.h\"\n" % solutionName ######################################## # Per-problem constants here: # These are common for all schedules and thus do not include schedule name (vega,hip,etc) s += "\n" s += "/*******************************************************************************\n" s += "* Per-Problem Functions for %s\n" % problemType s += "*******************************************************************************/\n" s += "// Problem type include the index assignments for free, summation, batch:\n" s += "static const ProblemType problemType_%s( " % problemType s += listToInitializer(problemType["IndicesFree"]) + ", " s += listToInitializer(problemType["IndicesSummation"]) + ", " s += listToInitializer(problemType["IndicesBatch"]) + ", " s += listToInitializer(problemType["IndexAssignmentsA"]) + ", " s += listToInitializer(problemType["IndexAssignmentsB"]) s += ");\n" s += "\n" s += "// Master solution mapper is the entry point for problem->solution mapping\n" s += "// There is one master solution mapper per problem type\n" s += "// The master solution mapper contains pointers to the solution mappers for each device\n" s += "static MasterSolutionMapper<ProblemDims_%s> masterSolutionMapper_%s;\n " % (problemType,problemType) ######################################## # implement per-Schedule functions in source s += "\n" s += "/*******************************************************************************\n * Per-Schedule Functions\n *******************************************************************************/" for scheduleTuple in logicData[problemType]: # get logic parameters for problem type scheduleName = scheduleTuple[0] deviceNames = scheduleTuple[1] solutionsForSchedule = scheduleTuple[2] indexOrder = scheduleTuple[3] exactLogic = scheduleTuple[4] rangeLogic = scheduleTuple[5] # solution names for schedule solutionNamesForSchedule = [] for solution in solutionsForSchedule: solutionName = solutionWriter.getSolutionName(solution) solutionNamesForSchedule.append(solutionName) s += "\n\n" schedProbName = "%s_%s" % (scheduleName, problemType) s += writeSolutionAndExactTable(scheduleName, deviceNames, schedProbName, problemType, \ solutionsForSchedule, solutionNamesForSchedule, exactLogic) # Per-problem function here: # function tensileGetSolutionPointer_ProblemType del schedProbName del scheduleName s += "\n// problem dims -> solution logic\n" s += "SolutionMapper_%s::SolutionRuntime *\n" % (problemType) s += "tensileGetSolutionPointer_%s(\n" % (problemType) for i in range(0, len(argListSizes)): s += " %s %s%s" \ % (argListSizes[i][0], argListSizes[i][1], \ ",\n" if i < len(argListSizes)-1 else ") {\n\n") exactLogicStr = writeExactLogic(problemType, indexOrder, \ solutionsForSchedule, exactLogic, \ solutionNamesForSchedule, True) if rangeLogic != None: print("** warning: ignored ranges in logic file, these should have been expanded with ExpandRanges=1 during Tensile phase 3") s += " /* exact mappings */\n" s += exactLogicStr s += "\n return nullptr;\n" s += "\n}\n" # function tensileGetSolutionName_Schedule_ProblemType s += "\n// get solution name for problem dims\n" s += "const char * tensileGetSolutionName_%s(\n" \ % (problemType) for i in range(0, len(argListSizes)): s += " %s %s%s" \ % (argListSizes[i][0], argListSizes[i][1], \ ",\n" if i < len(argListSizes)-1 else ") {\n\n") exactLogicStr = writeExactLogic(problemType, indexOrder, \ solutionsForSchedule, exactLogic, \ solutionNamesForSchedule, False) s += " /* exact mappings */\n" s += exactLogicStr #s += " return NULL; // none\n" s += "\n}\n" ######################################## # implement problem-type functions in source s += "/*******************************************************************************\n * Per-ProblemType Functions\n *******************************************************************************/" # declare tensile_ProblemType s += "\n// main call to solution; enqueues a kernel\n" s += "TensileStatus tensile_%s(\n" % problemType for i in range(0, len(argListData)): s += " %s %s%s" \ % (argListData[i][0], argListData[i][1], \ ",\n" if i < len(argListData)-1 else ") {\n") s += " auto solution = tensileGetSolutionPointer_%s(\n" % (problemType) for i in range(0, len(argListSizes)): s += " %s%s" \ % (argListSizes[i][1], ", " if i < len(argListSizes)-1 else ");") s += "\n" s += " if (solution) {\n" s += " TensileSolutionPointer_%s f = reinterpret_cast<TensileSolutionPointer_%s> (solution->_info->_functionPtr);\n" \ % (problemType, problemType) s += " auto solutionLock = &solution->_lock;\n" s += " return f(" for i in range(0, len(argListAll)): s += "%s%s" \ % (argListAll[i][1], ", " if i < len(argListAll)-1 else ");\n") s += " } else {\n" #s += " printf(\"solution not valid, returning fail\\n\");" s += " return tensileStatusFailure; // no solution found\n" s += " }\n" s += "}\n" # open and close problemType files if not globalParameters["MergeFiles"]: logicSourceFile = open(os.path.join(outputPath, "Logic", \ "%s.cpp" % filePrefix), "w") logicSourceFile.write(s) logicSourceFile.close() s += "\n" s += writeTensileInitialize(logicData) # close merged files if globalParameters["MergeFiles"]: logicSourceFile = open(os.path.join(outputPath, \ "Tensile.cpp"), "w") logicSourceFile.write(s) logicSourceFile.close() logicHeaderFile = open(os.path.join(outputPath, \ "Tensile.h"), "w") logicHeaderFile.write(h) logicHeaderFile.close() internalHeaderFile = open(os.path.join(outputPath, \ "TensileInternal.h"), "w") internalHeaderFile.write(ih) internalHeaderFile.close() def writeTensileInitialize(logicData): s = "/*******************************************************************************\n" s += "* Tensilze initializer\n" s += "*******************************************************************************/\n" s += "void tensileInitialize() {\n" for problemType in logicData: s += " masterSolutionMapper_%s.initialize();\n" % problemType for scheduleTuple in logicData[problemType]: scheduleName = scheduleTuple[0] deviceNames = scheduleTuple[1] schedProbName = "%s_%s" % (scheduleName, problemType) s += " solutionMapper_%s.initializeMappers(" % (schedProbName) s += "{%s}," % (', '.join('"{0}"'.format(w) for w in deviceNames)) s += "&masterSolutionMapper_%s);\n" % (problemType) s += "}" return s def writeSolutionAndExactTable(scheduleName, deviceNames, schedProbName, problemType, \ solutionsForSchedule, solutionNames, exactLogic): s = "" s += "namespace { // Start schedule '%s'\n" % scheduleName s += "// solution table - function, name, assertion requirements\n" s += "static const SolutionInfo solutionTable_%s[] = {\n" % (schedProbName) for i in range(0, len(solutionsForSchedule)): solution = solutionsForSchedule[i] solutionName = solutionNames[i] s += " {(void*)%s, \"%s\", {%d, %d, %d, %d, %d, %d, %d} }%s // %d" % \ (solutionName, solutionName, \ solution["AssertSummationElementMultiple"], \ solution["AssertFree0ElementMultiple"], \ solution["AssertFree1ElementMultiple"], \ solution["AssertMinApproxSize"], \ solution["LdcEqualsLdd"], \ solution["PackBatchDims"]==2, \ solution["PackBatchDims"]==1, \ "," if i < len(solutionsForSchedule)-1 else "", \ i) s += "\n" s += "};\n\n" # Write the exact problems here s += "// table of exact problem dims and selected solutionIdx\n" s += "static const std::pair<const ProblemKey_%s, int> embeddedExactTable_%s[] = {\n" % (problemType,schedProbName) numSizes = problemType["TotalIndices"] for ruleIdx in range(0, len(exactLogic)): rule = exactLogic[ruleIdx] problemSize = rule[0][:numSizes] solutionIdx = rule[1][0] solutionGFlops = rule[1][1] s += " { {" for i in range(0, len(problemSize)): if i == 0: s += "%u" % problemSize[i]; else: s += ", %u" % problemSize[i]; s += "}, %u}" % (solutionIdx) s += "," if ruleIdx != len(exactLogic)-1 else " " s += " // %.0f GFlop/s" % (solutionGFlops) s += "\n"; s += "};\n\n" # Create a solution mapper and init with the table above: s += "// The solution master constructor here adds device to the master solution mapper\n" s += "// The entrypoint to find a solution for this problem is through the master solution master\n" s += "static SolutionMapper_%s solutionMapper_%s(\n" % (problemType, schedProbName) s += " \"%s\", // schedule+problem name\n" % (schedProbName) s += " solutionTable_%s, %u,\n" % (schedProbName, len(solutionsForSchedule)) s += " embeddedExactTable_%s, %u,\n" % (schedProbName, len(exactLogic)) s += " &problemType_%s);\n" % (problemType) s += "} // end anonymous namespace\n" return s ################################################################################ # Write Range Logic Recursive # ptr : # True : write logic to return the function pointer # False : write logic to return the function name ################################################################################ def writeExactLogic(problemType, indexOrder, solutionsForSchedule, exactLogic, \ solutionNames, ptr): s = "" s += " ProblemDims_%s pdims(" % problemType indexChars = globalParameters["IndexChars"] firstStride = 0 if problemType["UseInitialStrides"] else 1 lastStrideD = problemType["NumIndicesC"] lastStrideC = problemType["NumIndicesC"] lastStrideA = len(problemType["IndexAssignmentsA"]) lastStrideB = len(problemType["IndexAssignmentsB"]) for i in range(firstStride,lastStrideD): if i != firstStride: s += ", " s += "strideD%u%s" % (i, indexChars[i]) for i in range(firstStride,lastStrideC): s += ", strideC%u%s" % (i, indexChars[i]) for i in range(firstStride,lastStrideA): s += ", strideA%u%s" % (i, \ indexChars[problemType["IndexAssignmentsA"][i]]) for i in range(firstStride,lastStrideB): s += ", strideB%u%s" % (i, \ indexChars[problemType["IndexAssignmentsB"][i]]) for i in range(0,len(indexOrder)): s += ", size%s" % indexChars[i] s += ");\n" s += " auto solutionMapper = reinterpret_cast<SolutionMapper_%s *> (masterSolutionMapper_%s.mapper());\n" \ % (problemType, problemType) if ptr: s += " return solutionMapper->getSolutionWithFallback(pdims,&masterSolutionMapper_%s);\n" % problemType else: s += " return solutionMapper->getSolutionWithFallback(pdims,&masterSolutionMapper_%s)->_info->_name;\n" % problemType return s ################################################################################ # Write Solution Call ################################################################################ def writeSolutionCall(solutionName, problemType): indexChars = globalParameters["IndexChars"] s = "" s += "%s(" % solutionName # solution parameters s += " dataD, dataC, dataA, dataB, alpha" if problemType["UseBeta"]: s += ", beta" s += ", offsetC, offsetA, offsetB" firstStride = 1 if problemType["UseInitialStrides"]: firstStride = 0 lastStrideD = problemType["NumIndicesC"] lastStrideC = problemType["NumIndicesC"] lastStrideA = len(problemType["IndexAssignmentsA"]) lastStrideB = len(problemType["IndexAssignmentsB"]) for i in range(firstStride,lastStrideD): s += ", strideD%u%s" % (i, indexChars[i]) for i in range(firstStride,lastStrideC): s += ", strideC%u%s" % (i, indexChars[i]) for i in range(firstStride,lastStrideA): s += ", strideA%u%s" % (i, \ indexChars[problemType["IndexAssignmentsA"][i]]) for i in range(firstStride,lastStrideB): s += ", strideB%u%s" % (i, \ indexChars[problemType["IndexAssignmentsB"][i]]) for i in range(0, problemType["TotalIndices"]): s += ", size%s" % indexChars[i] s += ", stream, numInputEvents, inputEvents, outputEvent )" return s ################################################################################ # Write CMake ################################################################################ def writeCMake(outputPath, solutions, kernels, libraryStaticFiles, clientName ): print1("# Writing Custom CMake") ############################################################################## # Min Naming ############################################################################## if globalParameters["ShortNames"] and not globalParameters["MergeFiles"] : solutionSerialNaming = Solution.getSerialNaming(solutions) kernelSerialNaming = Solution.getSerialNaming(kernels) else: solutionSerialNaming = None kernelSerialNaming = None solutionMinNaming = Solution.getMinNaming(solutions) kernelMinNaming = Solution.getMinNaming(kernels) solutionWriter = SolutionWriter( \ solutionMinNaming, solutionSerialNaming, \ kernelMinNaming, kernelSerialNaming) kernelWriterSource = KernelWriterSource( \ kernelMinNaming, kernelSerialNaming) kernelWriterAssembly = KernelWriterAssembly( \ kernelMinNaming, kernelSerialNaming) generatedFile = open(os.path.join(outputPath, "Generated.cmake"), "w") generatedFile.write(CMakeHeader) generatedFile.write("set( TensileClient_SOLUTIONS\n") # write solution names if globalParameters["MergeFiles"]: generatedFile.write(" ${CMAKE_SOURCE_DIR}/Solutions.h\n") generatedFile.write(" ${CMAKE_SOURCE_DIR}/Solutions.cpp\n") else: for solution in solutions: solutionName = solutionWriter.getSolutionName(solution) generatedFile.write(" ${CMAKE_SOURCE_DIR}/Solutions/%s.h\n" \ % (solutionName) ) generatedFile.write(" ${CMAKE_SOURCE_DIR}/Solutions/%s.cpp\n" \ % (solutionName) ) generatedFile.write(" )\n") # write kernel names generatedFile.write("set( TensileClient_KERNELS\n") if globalParameters["MergeFiles"]: generatedFile.write(" ${CMAKE_SOURCE_DIR}/Kernels.h\n") generatedFile.write(" ${CMAKE_SOURCE_DIR}/Kernels.cpp\n") else: for kernel in kernels: kernelName = kernelWriterSource.getKernelName(kernel) if kernel["KernelLanguage"] == "Source" else kernelWriterAssembly.getKernelName(kernel) generatedFile.write(" ${CMAKE_SOURCE_DIR}/Kernels/%s.h\n" % (kernelName)) generatedFile.write(" ${CMAKE_SOURCE_DIR}/Kernels/%s.cpp\n" % kernelName) generatedFile.write(" )\n") generatedFile.write("set( TensileClient_SOURCE\n") for fileName in libraryStaticFiles: # copy file shutil.copy( os.path.join(globalParameters["SourcePath"], fileName), \ outputPath ) # add file to cmake generatedFile.write(" ${CMAKE_SOURCE_DIR}/%s\n" % fileName) generatedFile.write(" )\n\n") # close generated cmake generatedFile.close() ################################################################################ # Tensile Create Library ################################################################################ def TensileCreateLibrary(): print1("") print1(HR) print1("# Tensile Create Library") print2(HR) print2("") ############################################################################## # Parse Command Line Arguments ############################################################################## print2("Arguments: %s" % sys.argv) argParser = argparse.ArgumentParser() argParser.add_argument("LogicPath", help="Path to LibraryLogic.yaml files.") argParser.add_argument("OutputPath", help="Where to write library files?") argParser.add_argument("RuntimeLanguage", help="Which runtime language?", choices=["OCL", "HIP", "HSA"]) argParser.add_argument("--cxx-compiler", dest="CxxCompiler", choices=["hcc", "hipcc"], action="store", default="hcc") argParser.add_argument("--code-object-version", dest="CodeObjectVersion", choices=["V2", "V3"], action="store", default="V2") argParser.add_argument("--merge-files", dest="MergeFiles", action="store_true") argParser.add_argument("--no-merge-files", dest="MergeFiles", action="store_false") argParser.add_argument("--short-file-names", dest="ShortNames", action="store_true") argParser.add_argument("--no-short-file-names", dest="ShortNames", action="store_false") argParser.add_argument("--library-print-debug", dest="LibraryPrintDebug", action="store_true") argParser.add_argument("--no-library-print-debug", dest="LibraryPrintDebug", action="store_false") argParser.add_argument("--embed-library", dest="EmbedLibrary", help="Embed (new) library files into static variables. Specify the name of the library.") argParser.add_argument("--embed-library-key", dest="EmbedLibraryKey", default=None, help="Access key for embedding library files.") args = argParser.parse_args() logicPath = args.LogicPath outputPath = args.OutputPath CxxCompiler = args.CxxCompiler print2("OutputPath: %s" % outputPath) ensurePath(outputPath) arguments = {} arguments["RuntimeLanguage"] = args.RuntimeLanguage arguments["CodeObjectVersion"] = args.CodeObjectVersion arguments["CxxCompiler"] = args.CxxCompiler arguments["MergeFiles"] = args.MergeFiles arguments["ShortNames"] = args.ShortNames arguments["LibraryPrintDebug"] = args.LibraryPrintDebug arguments["CodeFromFiles"] = False arguments["EmbedLibrary"] = args.EmbedLibrary assignGlobalParameters(arguments) print1("# CodeObjectVersion from TensileCreateLibrary: %s" % arguments["CodeObjectVersion"]) print1("# CxxCompiler from TensileCreateLibrary: %s" % CxxCompiler) if not os.path.exists(logicPath): printExit("LogicPath %s doesn't exist" % logicPath) logicFiles = [os.path.join(logicPath, f) for f in os.listdir(logicPath) \ if (os.path.isfile(os.path.join(logicPath, f)) \ and os.path.splitext(f)[1]==".yaml")] print1("# LibraryLogicFiles:" % logicFiles) for logicFile in logicFiles: print1("# %s" % logicFile) ############################################################################## # Parse config files ############################################################################## solutions = [] logicData = {} # keys are problemTypes, values are schedules newMasterLibrary = None libraries = Common.ParallelMap(YAMLIO.readLibraryLogicForSchedule, logicFiles, "Reading logic files") for logic in Utils.tqdm(libraries, "Processing logic data"): (scheduleName, deviceNames, problemType, solutionsForSchedule, \ indexOrder, exactLogic, rangeLogic, newLibrary) = logic if problemType not in logicData: logicData[problemType] = [] logicData[problemType].append((scheduleName, deviceNames, \ solutionsForSchedule, indexOrder, exactLogic, rangeLogic )) for solution in solutionsForSchedule: if solution not in solutions: solutions.append(solution) if newMasterLibrary is None: newMasterLibrary = newLibrary else: newMasterLibrary.merge(newLibrary) # create solution writer and kernel writer kernels = [] kernelsBetaOnly = [] for solution in solutions: solutionKernels = solution.getKernels() for kernel in solutionKernels: if kernel not in kernels: kernels.append(kernel) solutionKernelsBetaOnly = solution.getKernelsBetaOnly() for kernel in solutionKernelsBetaOnly: if kernel not in kernelsBetaOnly: kernelsBetaOnly.append(kernel) # if any kernels are assembly, append every ISA supported if globalParameters["ShortNames"] and not globalParameters["MergeFiles"]: solutionSerialNaming = Solution.getSerialNaming(solutions) kernelSerialNaming = Solution.getSerialNaming(kernels) else: solutionSerialNaming = None kernelSerialNaming = None solutionMinNaming = Solution.getMinNaming(solutions) kernelMinNaming = Solution.getMinNaming(kernels) solutionWriter = SolutionWriter( \ solutionMinNaming, solutionSerialNaming, \ kernelMinNaming, kernelSerialNaming) kernelWriterSource = KernelWriterSource( \ kernelMinNaming, kernelSerialNaming) kernelWriterAssembly = KernelWriterAssembly( \ kernelMinNaming, kernelSerialNaming) libraryStaticFiles = [ "SolutionMapper.h", "TensileTypes.h", "tensile_bfloat16.h", "KernelHeader.h", "SolutionHelper.cpp", "SolutionHelper.h", "Tools.cpp", "Tools.h" ] # write cmake clientName = "LibraryClient" writeCMake(outputPath, solutions, kernels, libraryStaticFiles, clientName ) # write solutions and kernels problemTypes = list(logicData.keys()) codeObjectFiles = writeSolutionsAndKernels(outputPath, CxxCompiler, problemTypes, solutions, kernels, kernelsBetaOnly, solutionWriter, kernelWriterSource, kernelWriterAssembly) # write logic writeLogic(outputPath, logicData, solutionWriter) newLibraryDir = ensurePath(os.path.join(outputPath, 'library')) masterFile = os.path.join(newLibraryDir, "TensileLibrary.yaml") newMasterLibrary.applyNaming(kernelMinNaming) YAMLIO.write(masterFile, Utils.state(newMasterLibrary)) if args.EmbedLibrary is not None: embedFileName = os.path.join(outputPath, "library/{}.cpp".format(args.EmbedLibrary)) with EmbeddedData.EmbeddedDataFile(embedFileName) as embedFile: embedFile.embed_file(newMasterLibrary.cpp_base_class, masterFile, nullTerminated=True, key=args.EmbedLibraryKey) for co in Utils.tqdm(codeObjectFiles): embedFile.embed_file("SolutionAdapter", co, nullTerminated=False, key=args.EmbedLibraryKey) print1("# Tensile Library Writer DONE") print1(HR) print1("")
StarcoderdataPython
4818722
<reponame>hoaiphun96/Leet-Code-Problems """ Given a sorted list of integer ranges (see Range in Use Me) and a new range as inputs, insert the new range at the correct position and merge all overlapping ranges. Note: Check out the Use Me section to get the structure of the Range class. Example: Input : [[1,10], [5,8], [8,15]] New range : [9,20] Output : [[1,20]] """ #Approach 1: def insert_and_merge(input_range_list, new_range): position = find_insert_position(input_range_list, new_range) if position == len(input_range_list): input_range_list.append(new_range) else: input_range_list = input_range_list[:position] + [new_range] + input_range_list[position:] return merge_ranges(input_range_list) def find_insert_position(input_range_list, new_range): left, right = 0, len(input_range_list) - 1 while left <= right: middle = (left + right) // 2 if input_range_list[middle].lower_bound > new_range.lower_bound: right = middle - 1 elif input_range_list[middle].lower_bound < new_range.lower_bound: left = middle + 1 else: return middle + 1 return left def merge_ranges(input_range_list): ret = [input_range_list[0]] for index in range(1, len(input_range_list)): if input_range_list[index].lower_bound <= ret[-1].upper_bound: ret[-1].upper_bound = max(ret[-1].upper_bound, input_range_list[index].upper_bound) else: ret.append(input_range_list[index]) return ret #Approach 2 def insert_and_merge(input_range_list, new_range): # Insert Range insert_list = [] for range in input_range_list: if range.upper_bound < new_range.lower_bound: insert_list.append(range) else: if range.lower_bound > new_range.upper_bound: insert_list.append(new_range) new_range = range else: if range.upper_bound >= new_range.lower_bound or range.lower_bound <= newRange.upper_bound: new_range = Range(min(range.lower_bound, new_range.lower_bound), max(new_range.upper_bound, range.upper_bound)) insert_list.append(new_range) # Merge ranges output_list = [] previous = insert_list[0] i = 1 while i < len(insert_list): current = insert_list[i] if (previous.upper_bound >= current.lower_bound): merged = Range(previous.lower_bound, max(previous.upper_bound, current.upper_bound)); previous = merged else: output_list.append(previous) previous = current i = i + 1 output_list.append(previous) return output_list
StarcoderdataPython
172369
<reponame>FelixWeichselgartner/PiHeld # https://github.com/fidoriel/pyMCP23017 import pyMCP23017 from time import sleep mcp = pyMCP23017.MCP23017(0x20) pin=7 mcp.setup(pin, mcp.OUT) pin2=8 mcp.setup(pin2, mcp.OUT) while 1: sleep(1) mcp.output(pin, mcp.HIGH) mcp.output(pin2, mcp.LOW) sleep(1) mcp.output(pin2, mcp.HIGH) mcp.output(pin, mcp.LOW)
StarcoderdataPython
4812083
<reponame>bobosoft/intrepyd import unittest from intrepyd.iec611312py.expression import ConstantOcc, VariableOcc from intrepyd.iec611312py.variable import Variable from intrepyd.iec611312py.datatype import Primitive from intrepyd.iec611312py.expression import Expression from intrepyd.iec611312py.inferdatatype import InferDatatypeBottomUp, InferDatatypeTopDown from intrepyd.iec611312py.statement import Assignment boolType = Primitive('BOOL') intType = Primitive('INT') class TestSTInferDatatype(unittest.TestCase): def test_eq_1(self): a = Variable('a', intType, Variable.LOCAL) var = VariableOcc(a) cst = ConstantOcc('0') eq = Expression('=', [var, cst]) idbu = InferDatatypeBottomUp() idbu.process_statements([eq]) self.assertEqual(eq.datatype, boolType) idtd = InferDatatypeTopDown() idtd.process_statements([eq]) self.assertEqual(cst.datatype, intType) def test_eq_2(self): a = Variable('a', intType, Variable.LOCAL) var = VariableOcc(a) cst = ConstantOcc('0') plus = Expression('+', [var, cst]) idbu = InferDatatypeBottomUp() idbu.process_statements([plus]) self.assertEqual(plus.datatype, intType) idtd = InferDatatypeTopDown() idtd.process_statements([plus]) self.assertEqual(cst.datatype, intType) def test_eq_3(self): a = Variable('a', intType, Variable.LOCAL) var = VariableOcc(a) cst = ConstantOcc('0') assign = Assignment(var, cst) idbu = InferDatatypeBottomUp() idbu.process_statements([assign]) idtd = InferDatatypeTopDown() idtd.process_statements([assign]) self.assertEqual(cst.datatype, intType) if __name__ == "__main__": unittest.main()
StarcoderdataPython
3208313
<filename>application.py import sys import click import os import glob from flask import Flask, Markup, Response, render_template, render_template_string, send_from_directory, current_app, safe_join from flask_flatpages import FlatPages, pygmented_markdown, pygments_style_defs from flask_frozen import Freezer app = Flask(__name__) app.config.from_object('settings') pages = FlatPages(app) freezer = Freezer(app=app, log_url_for=True, with_static_files=True) def get_pages(**kwargs): """ Convenience function to get one or more pages by one or more of its metadata items. """ pass def get_pages_by_slug(slug): for p in pages: if p.meta.get('slug', None) == slug: return p def get_pages_by_tags(*args): tag_set = set(args) pages_ = (p for p in pages if tag_set & set(p.meta.get('tags',''))) return sorted(pages_, reverse=True, key=lambda p: p.meta['date']) def get_pages_by_missing_tags(*args): tag_set = set(args) pages_ = (p for p in pages if tag_set - set(p.meta.get('tags',''))) return sorted(pages_, reverse=True, key=lambda p: p.meta['date']) def get_pages_sorted(sort_by='date', reverse=True, page_type='article'): pages_ = (p for p in pages if p.meta.get('status','') == 'published' and p.meta.get('type','') == page_type) return sorted(pages_, reverse=reverse, key=lambda p: p.meta[sort_by]) def get_related_pages(page): """ Get related pages by using overlapping tags. """ pass @app.route('/') def index(): index = get_pages_by_slug('index') articles = get_pages_by_tags('geo') other_articles = get_pages_by_tags('other') return render_template('index.html', **locals()) @app.route('/articles/<slug>/') def article(slug): article = get_pages_by_slug(slug) article_html = article.html.replace("%%THANKS%%", '<p class="thanks">Thanks for reading! Get in touch via <a href="https://twitter.com/kokoalberti">@kokoalberti</a> for any questions or comments. I also post new articles there when they are first published.</p>') return render_template('article.html', **locals()) @app.route('/articles/<slug>/<path:filename>') def article_static(slug, filename): article = get_pages_by_slug(slug) directory = os.path.dirname(safe_join(current_app.root_path, current_app.config.get("FLATPAGES_ROOT"), article.path)) return send_from_directory(directory, filename) @app.route('/pages/<slug>/') def page(slug): page = get_pages_by_slug(slug) return render_template('page.html', **locals()) @app.route('/tag/<tag>/') def tag(tag): articles = get_pages_by_tags(tag) article = '' return render_template('tag.html', **locals()) @app.route('/sitemap.xml') def sitemap(): server_name = current_app.config.get("SITEMAP_SERVER_NAME") articles = get_pages_sorted() pages = get_pages_sorted(page_type='page') index = get_pages_by_slug('index') tags = set() for article in articles: for tag in article.meta.get("tags",[]): tags.add(tag) return Response(render_template('sitemap.xml', **locals()), mimetype='application/xml') @app.route('/robots.txt') def robots(): server_name = current_app.config.get("SITEMAP_SERVER_NAME") return Response(render_template('robots.txt', **locals()), mimetype='text/plain') @app.route('/google0e9a29b6ad0a512a.html') def google_verification(): return render_template('google0e9a29b6ad0a512a.html') @freezer.register_generator def other_static_files(): """ Register the URLs for the robots and sitemap routes to frozen flask """ yield 'robots', {} yield 'sitemap', {} yield 'google_verification', {} @freezer.register_generator def article_static_files(): """ Register the URLS for article's static files (PNG images only for now) to frozen flask. """ static_patterns = ("*.png", "*.jpg", "*.zip") for p in pages: directory = os.path.dirname(safe_join(current_app.root_path, current_app.config.get("FLATPAGES_ROOT"), p.path)) files = [] for pattern in static_patterns: files.extend(glob.glob(os.path.join(directory, "**", pattern), recursive=True)) for static_file in files: filename = static_file.replace(directory+'/', "") yield 'article_static', {'slug':p.meta.get('slug'), 'filename':filename} @app.cli.command() def freeze(): print("Freezing...") freezer.freeze()
StarcoderdataPython
138828
<reponame>Next-Gen-UI/Code-Dynamics class MyHashSet: def __init__(self): self.set = [False] * 1000001 def add(self, key: int) -> None: self.set[key] = True def remove(self, key: int) -> None: self.set[key] = False def contains(self, key: int) -> bool: return self.set[key]
StarcoderdataPython
90079
from handler.base_plugin import BasePlugin class AutoSender(BasePlugin): __slots__ = ("text", ) def __init__(self, text): """Answers with text `text` to user without any conditions.""" super().__init__() self.text = text async def check_message(self, msg): return True async def process_message(self, msg): await msg.answer(self.text)
StarcoderdataPython
1785250
"""Wrapper class for WPWithin Service.""" import os import time import sys import threading from pkg_resources import resource_filename import thriftpy from thriftpy.rpc import make_client from thriftpy.protocol.binary import TBinaryProtocolFactory from thriftpy.transport.buffered import TBufferedTransportFactory from .wpwithin_types import Error from .converters import ConvertToThrift, ConvertFromThrift from .launcher import run_rpc_agent, start_server from .make_simple_server import make_simple_server THRIFT_WPW_PATH = resource_filename(__name__, 'wpwithin.thrift') wpw_thrift = thriftpy.load(THRIFT_WPW_PATH, module_name="wpw_thrift", include_dirs=[os.path.dirname(THRIFT_WPW_PATH)]) THRIFT_TYPES_PATH = resource_filename(__name__, 'wptypes.thrift') wptypes_thrift = thriftpy.load(THRIFT_TYPES_PATH, module_name="wptypes_thrift", include_dirs=[os.path.dirname(THRIFT_TYPES_PATH)]) class WPWithin(object): """Wrapper class for thrift generated struct WPWithin.""" def __init__(self, host, port, start_rpc=True, rpc_dir=None, start_callback_server=False, callback_port=None, event_listener=None): """Initialise WPWithin object. host (integer): Client host port (integer): Client port (optional) start_rpc (boolean): Whether to start an rpc agent. Defaults to True. (optional) rpc_dir: path to directory with rpc agent launchers. If not specified, will search for the files in ./wpw-bin/ and $WPW_HOME/bin, in that order. (optional) start_callback_server (boolean): Whether to start a callback server. Defaults to False. If True, callback_port and event_listener must be specified. (optional) callback_port (integer): port to listen for callback events (optional) event_listener: instance of a class which implements AbstractEventListener. """ if start_callback_server and (callback_port is None or event_listener is None): raise ValueError('No callback port or listener provided') if start_rpc: self._rpc = run_rpc_agent(port, rpc_dir, start_callback_server, callback_port) time.sleep(1) self._thrift_client = make_client(wpw_thrift.WPWithin, host=host, port=port, proto_factory=TBinaryProtocolFactory(), trans_factory=TBufferedTransportFactory()) if start_callback_server: self._server = make_simple_server(wpw_thrift.WPWithinCallback, event_listener, host=host, port=callback_port) self._server_thread = threading.Thread(target=start_server, args=([self._server])) self._server_thread.daemon = True self._server_thread.start() def shutdown(self): """Close all processes started.""" self._thrift_client.close() if hasattr(self, '_server'): self._server.close() if hasattr(self, '_rpc'): self._rpc.kill() sys.exit(0) def setup(self, name, description): """Setup the thrift client.""" try: self._thrift_client.setup(name, description) except wptypes_thrift.Error as err: raise Error(err.message) def add_service(self, svc): """Add service svc to the client. svc: instance of Service. """ service = ConvertToThrift.service(svc) try: self._thrift_client.addService(service) except wptypes_thrift.Error as err: raise Error(err.message) def remove_service(self, svc): """Remove service svc to the client. svc: instance of Service. """ service = ConvertToThrift.service(svc) try: self._thrift_client.removeService(service) except wptypes_thrift.Error as err: raise Error(err.message) def init_consumer(self, scheme, hostname, port, url_prefix, client_id, hce_card, psp_config): """Initialise a consumer on the client. hce_card: instance of HCECard psp_config: Payment Service Provider details. Must include psp_name and api_endpoint. Example: { "psp_name": "worldpayonlinepayments", "api_endpoint": "https://api.worldpay.com/v1", } For more details see: https://github.com/WPTechInnovation/worldpay-within-sdk/wiki/Worldpay-Total-US-(SecureNet)-Integration#usage """ card = ConvertToThrift.hce_card(hce_card) try: self._thrift_client.initConsumer(scheme, hostname, port, url_prefix, client_id, card, psp_config) except wptypes_thrift.Error as err: raise Error(err.message) def init_producer(self, psp_config): """Initialise a producer on the client. psp_config: Payment Service Provider details. For details see: https://github.com/WPTechInnovation/worldpay-within-sdk/wiki/Worldpay-Total-US-(SecureNet)-Integration#usage """ try: self._thrift_client.initProducer(psp_config) except wptypes_thrift.Error as err: raise Error(err.message) def get_device(self): return ConvertFromThrift.device(self._thrift_client.getDevice()) def start_service_broadcast(self, timeout_ms): """Start broadcasting services added to client. If timeout_ms=0, broadcasts indefinetely. """ try: self._thrift_client.startServiceBroadcast(timeout_ms) except wptypes_thrift.Error as err: raise Error(err.message) def stop_service_broadcast(self): try: self._thrift_client.stopServiceBroadcast() except wptypes_thrift.Error as err: raise Error(err.message) def device_discovery(self, timeout_ms): """Return list of ServiceMessage found on the network.""" try: service_messages = self._thrift_client.deviceDiscovery(timeout_ms) except wptypes_thrift.Error as err: raise Error(err.message) else: svc_messages = [] for val in service_messages: svc_messages.append(ConvertFromThrift.service_message(val)) return svc_messages def request_services(self): """Return list of ServiceDetails found on the network.""" try: service_details = self._thrift_client.requestServices() except wptypes_thrift.Error as err: raise Error(err.message) else: svc_details = [] for val in service_details: svc_details.append(ConvertFromThrift.service_details(val)) return svc_details def get_service_prices(self, service_id): """Return list of Price for specified service.""" try: prices = self._thrift_client.getServicePrices(service_id) except wptypes_thrift.Error as err: raise Error(err.message) else: wprices = [] for val in prices: wprices.append(ConvertFromThrift.price(val)) return wprices def select_service(self, service_id, number_of_units, price_id): """Send request to buy number_of_units of service_id at price_id. Return TotalPriceResponse, to be used as argument for WPWithin.make_payment. """ try: service = self._thrift_client.selectService(service_id, number_of_units, price_id) except wptypes_thrift.Error as err: raise Error(err.message) else: return ConvertFromThrift.total_price_response(service) def make_payment(self, request): """Pay for service. request: TotalPriceResponse returned from WPWithin.select_service. """ trequest = ConvertToThrift.total_price_response(request) try: response = self._thrift_client.makePayment(trequest) except wptypes_thrift.Error as err: raise Error(err.message) else: return ConvertFromThrift.payment_response(response) def begin_service_delivery(self, service_id, service_delivery_token, units_to_supply): token = ConvertToThrift.service_delivery_token(service_delivery_token) try: token_received = self._thrift_client.beginServiceDelivery( service_id, token, units_to_supply) except wptypes_thrift.Error as err: raise Error(err.message) else: return ConvertFromThrift.service_delivery_token(token_received) def end_service_delivery(self, service_id, service_delivery_token, units_received): token = ConvertToThrift.service_delivery_token(service_delivery_token) try: token_received = self._thrift_client.endServiceDelivery(service_id, token, units_received) except wptypes_thrift.Error as err: raise Error(err.message) else: return ConvertFromThrift.service_delivery_token(token_received)
StarcoderdataPython
3227209
<filename>projecteuler/fastdoublingfib.py def _fib(n): if n==0: return (0, 1) else: a, b = _fib(n//2) c = a * (b * 2 - a) d = a * a + b * b if n % 2 == 0: return(c, d) else: return(d, c + d) print(200) end = time.time() print(end-start)
StarcoderdataPython
30158
<reponame>capellaspace/console-client<filename>tests/test_search.py<gh_stars>10-100 #!/usr/bin/env python import pytest from .test_data import get_search_test_cases, search_catalog_get_stac_ids from capella_console_client import client from capella_console_client.validate import _validate_uuid from capella_console_client.search import _paginated_search @pytest.mark.parametrize("search_args,expected", get_search_test_cases()) def test_search(search_args, expected, search_client): search_client.search(**search_args) assert client._paginated_search.call_args[0][1] == expected def test_validate_uuid_raises(): with pytest.raises(ValueError): _validate_uuid("123") def test_paginated_search_single_page(single_page_search_client): results = _paginated_search(single_page_search_client._sesh, payload={"limit": 1}) assert len(results) == 1 assert results[0] == search_catalog_get_stac_ids()["features"][0] def test_paginated_search_multi_page(multi_page_search_client): results = _paginated_search(multi_page_search_client._sesh, payload={"limit": 10}) assert len(results) == 10
StarcoderdataPython
1629385
<gh_stars>0 #!/usr/bin/python # -*- coding: utf-8 -*- import openpyxl import os, sys, shutil import json from datetime import datetime from optparse import OptionParser config = {} def row_to_data(row): data = { 'label': row[config['label']].value, 'file': row[config['file']].value, 'translations': {} } for key in config['translations'].keys(): data['translations'][key] = row[config['translations'][key]].value return data class File: def __init__(self, id): self.idd = id self.labels = [] def add_label(self, label): self.labels.append(label) def format(self, language): file_format = '<?xml version="1.0" encoding="utf-8"?>\n<resources>\n\n' for label in self.labels: label_format = label.format(language) if label_format: file_format += "%s\n" % label.format(language) file_format += "\n\n</resources>" return file_format class Label: def __init__(self, id): self.idd = id self.translations = {} def add_translation(self, language, translation): self.translations[language] = translation def format(self, language): if not self.translations[language]: return None if not self.translations[language].startswith('['): return '<string name="%s">%s</string>' % (self.idd, self.__ap(self.translations[language])) else: items_string = "" for item in self.translations[language].replace("[", "").replace("]", "").split(","): items_string += "\t<item>%s</item>\n" % self.__ap(item) array_string = '<string-array name="%s">\n%s</string-array>' % (self.idd, items_string) return array_string def __ap(self, item): return item.replace("\'", "\\\'").replace("\"", "\\\"") def validate_data(data): if data['file'] and data['file'].endswith(".xml") and data['label']: return True return False def create_label_from_data(data): label = Label(data['label']) for k in data['translations'].keys(): label.add_translation(k, data['translations'][k]) return label def main(): usage = "Usage: %prog [options] path_file.xlsx" parser = OptionParser(usage=usage) parser.add_option( "-c", "--config-file", dest="config_file", default="config.json", help="Configuration file" ) (options, args) = parser.parse_args() if len(args) == 0: parser.print_usage() exit(0) if len(args) == 1: filename = args[0] if not os.path.exists(filename): print "Error! %s xlsx file doesn't exist" % config_file exit(0) config_file = options.config_file if not os.path.exists(config_file): print "Error! %s configuration file doesn't exist" % config_file exit(0) f = open(config_file, "r") json_file_content = f.read() print json_file_content global config config = json.loads(json_file_content) default = config['default'] files = {} print "" print "+++++++++++++++++++++++++++" print "+ XLSXI18N +" print "+++++++++++++++++++++++++++" print "" print "Reading %s..." % filename workbook = openpyxl.load_workbook(filename) worksheet = workbook.get_sheet_by_name('Languages') for row in worksheet.rows: data = row_to_data(row) if validate_data(data): file_name = data['file'] if not file_name in files: files[file_name] = File(file_name) label = create_label_from_data(data) files[file_name].add_label(label) try: if os.path.exists("res"): dest_folder = "backup_res_%s" % datetime.now().strftime('%Y%m%d_%H%M%S') print "Backing up 'res' folder into '%s'" % dest_folder shutil.copytree("res", dest_folder) except OSError: pass print "Writing files..." for k in data['translations'].keys(): if default == k: folder = os.path.join("res", "values") else: folder = os.path.join("res", "values-%s" % k) if not os.path.exists(folder): os.makedirs(folder) for file_k in files.keys(): f = open(os.path.join(folder, file_k), "w") f.write(files[file_k].format(k).encode('utf8')) print "End" if __name__ == "__main__": main()
StarcoderdataPython
3262000
import requests from requests.auth import HTTPBasicAuth from .errors import * from .config import config as target_config class TargetApiClient(object): def __init__(self, account_sid, access_token): self.config = target_config self.set_config({ 'account_sid': account_sid, 'access_token': access_token }) def set_config(self, config): self.config.update(config) def call(self, resource, params): if 'account_sid' not in self.config: raise TargetApiParameterNotImplementedError(parameter='account_sid') if 'access_token' not in self.config: raise TargetApiParameterNotImplementedError(parameter='access_token') if not self._validate_parameters(params): raise TargetApiParamsError() response = self._make_call(resource, params) if response.status_code != 200: # Process errors if response.status_code == 400: raise TargetApiBadRequestError() elif response.status_code == 401: raise TargetApiUnauthorizedError() elif response.status_code == 404: raise TargetApiNotFoundError() elif response.status_code == 405: raise TargetApiMethodNotAllowedError() elif response.status_code == 500: raise TargetApiServerError() elif response.status_code == 503: raise TargetApiServiceUnavailableError() else: raise TargetApiUnknownError() if response.headers['content-type'].find('application/json') != -1: return response.json() return response.content def _make_call(self, resource, params): return requests.get( self._generate_url(resource), params=params, auth=HTTPBasicAuth(self.config['account_sid'], self.config['access_token']) ) @classmethod def _validate_parameters(cls, params): if 'Query' not in params: return False return True def _generate_url(self, resource_name): if 'base_url' not in self.config: raise TargetApiParameterNotImplementedError(parameter='base_url') if 'account_sid' not in self.config: raise TargetApiParameterNotImplementedError(parameter='account_sid') return self.config['base_url']\ .replace('{AccountSID}', self.config['account_sid'])\ .replace('{ResourceName}', resource_name)
StarcoderdataPython
1678355
<reponame>luminousmen/grokking_concurrency #!/usr/bin/env python3 """Implementing parking garage using semaphore for control critical section""" import time from threading import Thread, Semaphore CAPACITY = 5 # shared memory BUFFER = ["" for i in range(CAPACITY)] mutex = Semaphore() empty = Semaphore(CAPACITY) full = Semaphore(0) producer_idx = 0 class Producer(Thread): def __init__(self, name: str, items_amount: int = 5): super().__init__() self.counter = 0 self.name = name self.items_amount = items_amount def next_index(self, producer_idx) -> int: return (producer_idx + 1) % CAPACITY def run(self): global producer_idx while self.counter < self.items_amount: empty.acquire() mutex.acquire() self.counter += 1 BUFFER[producer_idx] = f"{self.name}-{self.counter}" print(f"{self.name} produced: `{BUFFER[producer_idx]}`") producer_idx = self.next_index(producer_idx) mutex.release() full.release() # simulating some real action here time.sleep(1) class Consumer(Thread): def __init__(self, name: str, items_amount: int = 10): super().__init__() self.name = name self.idx = 0 self.counter = 0 self.items_amount = items_amount def next_index(self): return (self.idx + 1) % CAPACITY def run(self): while self.counter < self.items_amount: full.acquire() mutex.acquire() item = BUFFER[self.idx] print(f"{self.name} consumed item: `{item}`") self.idx = self.next_index() self.counter += 1 mutex.release() empty.release() # simulating some real action here time.sleep(2) if __name__ == "__main__": threads = [ Producer("John"), Producer("Sara"), Consumer("Bob") ] for thread in threads: thread.start() for thread in threads: thread.join()
StarcoderdataPython
173914
<filename>storemanager/users/admin.py from django.contrib import admin from .models import User,UserProfile admin.site.register(User) admin.site.register(UserProfile)
StarcoderdataPython
1655519
<reponame>yawatajunk/Wi-Sun_EnergyMeter<filename>sem_com.py #!/usr/bin/python3 # coding: UTF-8 import argparse import binascii import datetime import glob import json import threading import time import os import pickle import socket import sys import RPi.GPIO as gpio from y3module import Y3Module from echonet_lite import * import user_conf # 定数定義 Y3RESET_GPIO = 18 # Wi-SUNリセット用GPIO LED_GPIO = 4 # LED用GPIO # ログファイル関連 TMP_LOG_DIR = '/tmp/' # 一次ログディレクトリ LOG_DIR = 'sem_app/public/logs/' # ログ用ディレクトリ, 本スクリプトからの相対パス SOCK_FILE = TMP_LOG_DIR + 'sem.sock' # UNIXソケット TMP_LOG_FILE = TMP_LOG_DIR + 'sem.csv' # 一時ログファイル POW_DAYS_JSON_FILE = LOG_DIR + 'pow_days.json' # JSON形式の電力ログファイル POW_DAY_LOG_HEAD = 'pow_day_' # 日別ログファイル名の先頭 POW_DAY_LOG_FMT = '%Y%m%d' # 日時フォーマット CURR_POW_FILE = TMP_LOG_DIR + 'curr_pow.txt' # 低圧スマート電力量計 情報保存用リスト sem_info = {} def gpio_init(): """GPIO初期化""" gpio.setwarnings(False) gpio.setmode(gpio.BCM) gpio.setup(Y3RESET_GPIO, gpio.OUT) gpio.setup(LED_GPIO, gpio.OUT) gpio.output(Y3RESET_GPIO, gpio.HIGH) time.sleep(0.1) gpio.output(LED_GPIO, gpio.LOW) class LedThread(threading.Thread): """LEDを点滅させるスレッド""" def __init__(self): super().__init__() self._trigger = False self._termFlag = False def run(self): while not self._termFlag: if self._trigger: self.ledon(True) time.sleep(0.3) self.ledon(False) self._trigger = False else: time.sleep(0.1) @staticmethod def ledon(ctl): if ctl: gpio.output(LED_GPIO, gpio.HIGH) else: gpio.output(LED_GPIO, gpio.LOW) def oneshot(self): self._trigger = True def terminate(self): self._termFlag = True self.join() def y3reset(): """Wi-Sunモジュールのリセット""" gpio.output(Y3RESET_GPIO, gpio.LOW) # high -> low -> high time.sleep(0.5) gpio.output(Y3RESET_GPIO, gpio.HIGH) time.sleep(2.0) class Y3ModuleSub(Y3Module): """Y3Module()のサブクラス""" global sem_inf_list def __init__(self): super().__init__() self.EHD = '1081' self.ECV_INF = '73' # ECHONET ECVコード (INF) # UART受信スレッドrun()をECHONET Lite電文用に拡張 # UART受信用スレッド def run(self): while not self.term_flag: msg = self.read() if msg: msg_list = self.parse_message(msg) # debug: UDP(PANA)の受信 if msg_list['COMMAND'] == 'ERXUDP' and msg_list['LPORT'] == self.Y3_UDP_PANA_PORT: sys.stdout.write('[PANA]: {}\n'.format(msg_list['DATA'])) # スマートメーターが自発的に発するプロパティ通知 if msg_list['COMMAND'] == 'ERXUDP' and msg_list['DATA'][0:4] == self.EHD \ and msg_list['DATA'][20:22] == self.ECV_INF: sem_inf_list.append(msg_list) elif self.search['search_words']: # サーチ中である # サーチワードを受信した。 search_words = self.search['search_words'][0] if isinstance(search_words, list): for word in search_words: if msg_list['COMMAND'].startswith(word): self.search['found_word_list'].append(msg_list) self.search['search_words'].pop(0) break elif msg_list['COMMAND'].startswith(search_words): self.search['found_word_list'].append(msg_list) self.search['search_words'].pop(0) elif self.search['ignore_intermidiate']: pass # 途中の受信データを破棄 else: # サーチワードではなかった self.enqueue_message(msg_list) else: # サーチ中ではない self.enqueue_message(msg_list) elif self.search['timeout']: # read()がタイムアウト,write()でタイムアウトが設定されている if time.time() - self.search['start_time'] > self.search['timeout']: self.search['found_word_list'] = [] self.search['search_words'] = [] self.search['timeout'] = 0 def sem_get(epc): """プロパティ値要求 'Get' """ global tid_counter frame = sem.GET_FRAME_DICT['get_' + epc] tid_counter = tid_counter + 1 if tid_counter + 1 != 65536 else 0 # TICカウントアップ frame = sem.change_tid_frame(tid_counter, frame) res = y3.udp_send(1, ip6, True, y3.Y3_UDP_ECHONET_PORT, frame) def sem_get_getres(epc): """プロパティ値要求 'Get', 'GetRes'受信 epc: EHONET Liteプロパティ """ sem_get(epc) # 'Get'送信 start = time.time() while True: if y3.get_queue_size(): # データ受信 msg_list = y3.dequeue_message() # 受信データ取り出し if msg_list['COMMAND'] == 'ERXUDP': parsed_data = sem.parse_frame(msg_list['DATA']) if parsed_data: if parsed_data['tid'] != tid_counter: errmsg = '[Error]: ECHONET Lite TID mismatch\n' sys.stdout.write(errmsg) return False else: return msg_list['DATA'] else: sys.stdout.write('[Error]: ECHONET Lite frame error.\n') return False else: sys.stdout.write('[Error]: Unknown data received.\n') return False else: # データ未受信 if time.time() - start > 20: # タイムアウト 20s sys.stdout.write('[Error]: Time out.\n') return False time.sleep(0.01) def sem_seti(epc, edt): """プロパティ値書き込み要求(応答要) 'SetI' ---------------------------------  (注)未検証 (注)未検証 (注)未検証 --------------------------------- epc: Echonet Liteプロパティ(bytes) edt: Echonet Liteプロパティ値データ(bytes) return: True(成功) / False(失敗)""" global tid_counter tid_counter = tid_counter + 1 if tid_counter + 1 != 65536 else 0 # TICカウントアップ ptys = [[epc, edt]] frame = sem.make_frame(tid_counter, sem.ESV_CODE['setc'], ptys) res = y3.udp_send(1, ip6, True, y3.Y3_UDP_ECHONET_PORT, frame) start = time.time() while True: if y3.get_queue_size(): # データ受信 msg_list = y3.dequeue_message() # 受信データ取り出し if msg_list['COMMAND'] == 'ERXUDP': parsed_data = sem.parse_frame(msg_list['DATA']) if parsed_data: if parsed_data['tid'] != tid_counter: errmsg = '[Error]: ECHONET Lite TID mismatch\n' sys.stdout.write(errmsg) return False else: return msg_list['DATA'] else: sys.stdout.write('[Error]: ECHONET Lite frame error.\n') return False else: sys.stdout.write('[Error]: Unknown data received.\n') return False else: # データ未受信 if time.time() - start > 20: # タイムアウト 20s sys.stdout.write('[Error]: Time out.\n') return False time.sleep(0.01) def pow_logfile_init(dt): """電力ログファイル初期設定""" f = open(TMP_LOG_FILE , 'w') # 一時ログ初期化 f.close() if not (os.path.isdir(LOG_DIR) and os.access(LOG_DIR, os.W_OK)): # ログ用ディレクトリ確認 return False csv_day_files = [] # 10日分のログファイルリスト(CSV) pkl_day_files = [] # (pickle) for i in range(10): # 10日分の電力ログ作成 t = dt - datetime.timedelta(days = i) # 対象日のdatetime # ログファイル名 dt_str = t.strftime(POW_DAY_LOG_FMT) csv_filename = LOG_DIR + POW_DAY_LOG_HEAD + dt_str + '.csv' pkl_filename = TMP_LOG_DIR + POW_DAY_LOG_HEAD + dt_str + '.pickle' csv_day_files.append(csv_filename) pkl_day_files.append(pkl_filename) if not os.path.exists(csv_filename): # 電力ログ(CSV)が無かったら作成する try: fcsv = open(csv_filename, 'w') fcsv.close() except: return False if not os.path.exists(pkl_filename): # 電力ログ(pickle)が無かったら作成する result = csv2pickle(csv_filename, pkl_filename, t) if not result: return False files = glob.glob(LOG_DIR + POW_DAY_LOG_HEAD + '*.csv') # 電力ログ(CSV)検索 for f in files: if f in csv_day_files: continue else: os.remove(f) # 古い電力ログ(CSV)を削除 files = glob.glob(TMP_LOG_DIR + POW_DAY_LOG_HEAD + '*.pickle') # 電力ログ(pickle)検索 for f in files: if f in pkl_day_files: continue else: os.remove(f) # 古い電力ログ(pickle)を削除 # CSVファイルをJSONファイルに変換 pickle2json(sorted(pkl_day_files), POW_DAYS_JSON_FILE) return True def pow_logfile_maintainance(last_dt, new_dt): """電力ログファイル更新""" if last_dt.minute != new_dt.minute and new_dt.minute % 10 == 0: # 10分毎 dt_str = last_dt.strftime(POW_DAY_LOG_FMT) today_csv_file = LOG_DIR + POW_DAY_LOG_HEAD + dt_str + '.csv' today_pkl_file = TMP_LOG_DIR + POW_DAY_LOG_HEAD + dt_str + '.pickle' file_cat(today_csv_file, TMP_LOG_FILE) os.remove(TMP_LOG_FILE) # 一時ログファイルを削除 csv2pickle(today_csv_file, today_pkl_file, last_dt) # pickle更新 if last_dt.day != new_dt.day: # 日付変更 pow_logfile_init(new_dt) # 電力ログ初期化 else: pkl_day_files = glob.glob(TMP_LOG_DIR + POW_DAY_LOG_HEAD + '*.pickle') # 電力ログ(pickle)検索 pickle2json(sorted(pkl_day_files), POW_DAYS_JSON_FILE) # CSVファイルをJSONファイルに変換 def file_cat(file_a, file_b): """ファイルを連結する""" try: fp_a = open(file_a, 'ab') fp_b = open(file_b, 'rb') fp_a.write(fp_b.read()) fp_a.close() fp_b.close() return True except: return False def csv2pickle(csvfile, pklfile, dt): """csvファイルをpickleファイルに変換""" try: fcsv = open(csvfile, 'r') fpkl = open(pklfile, 'wb') data = fcsv.readlines() except: return False if data == []: # 新規作成のよりcsvファイルが空の場合 # 引数dt(datetime型)から、0時0分のタイムスタンプを作成 ts_origin = datetime.datetime.combine(dt, datetime.time(0, 0)).timestamp() else: ts = int(data[0].strip().split(',')[0]) # ログからタイムスタンプを取得 dt = datetime.datetime.fromtimestamp(ts) # 0時0分のタイムスタンプを作成 ts_origin = datetime.datetime(dt.year, dt.month, dt.day).timestamp() data_work = [[None, []] for row in range(60 * 24)] # 作業用空箱 for minute in range(60 * 24): data_work[minute][0] = ts_origin + 60 * minute # 1分刻みのタイムスタンプを設定 for row in data: row_list = row.strip().split(',') # [タイムスタンプ(s), 電力] if row_list[1] != 'None': minute = int((int(row_list[0]) - ts_origin) / 60) # 00:00からの経過時間[分] if minute > 0 and minute < 60 * 24: data_work[minute][1].append(int(row_list[1])) # 電力を追加 data_summary = [[None, None] for row in range(60 * 24)] # 集計用空箱 for minute, data in enumerate(data_work): data_summary[minute][0] = data[0] if len(data[1]): data_summary[minute][1] = round(sum(data[1]) / len(data[1])) # 電力平均値 pickle.dump(data_summary, fpkl) fcsv.close() fpkl.close() return True def pickle2json(pklfiles, jsonfile): """pickleファイルをJSONファイルに変換する""" data = [] for fpkl in pklfiles: try: f = open(fpkl, 'rb') d = pickle.load(f) data = data + d except: return False json_data = [] for row in data: row = [int(row[0])*1000, None if row[1] is None else int(row[1])] json_data.append(row) s = json.dumps(json_data) try: f = open(jsonfile, 'w') f.write(s) f.close() return True except: return False # コマンドライン引数 def arg_parse(): p = argparse.ArgumentParser() p.add_argument('-d', '--delay', help='This script starts after a delay of [n] seconds.', default=0, type=int) args = p.parse_args() return args if __name__ == '__main__': args = arg_parse() if args.delay: # スクリプトをスタートするまでの待ち時間。sem_appとの連携時にsem_com.pyのスタートを遅らせる。 if isinstance(args.delay, int): ws = args.delay sys.stdout.write('Waiting for {} seconds...\n'.format(ws)) time.sleep(ws) os.chdir(os.path.dirname(os.path.abspath(__file__))) sem_inf_list = [] # スマートメータのプロパティ通知用 tid_counter = 0 # TIDカウンタ pana_ts = 0.0 # PANA認証時のタイムスタンプを記録 saved_dt = datetime.datetime.now() # 現在日時を保存 sys.stdout.write('Log files setup...\n') result = pow_logfile_init(saved_dt) # ログファイル初期化 if not result: sys.stdout.write('[Error]: Log file error\n') sys.exit(-1) gpio_init() led = LedThread() led.start() led.oneshot() y3 = Y3ModuleSub() y3.uart_open(dev='/dev/ttyAMA0', baud=115200, timeout=1) y3.start() sys.stdout.write('Wi-SUN reset...\n') y3reset() y3.set_echoback_off() y3.set_opt(True) y3.set_password(user_conf.SEM_PASSWORD) y3.set_routeb_id(user_conf.SEM_ROUTEB_ID) sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) try: sock.connect(SOCK_FILE) except: sock = None channel_list = [] sem_exist = False for i in range(10): sys.stdout.write('({}/10) Active scan with a duration of {}...\n'.format(i+1, user_conf.SEM_DURATION)) channel_list = y3.active_scan(user_conf.SEM_DURATION) if channel_list is False: # active_scan()をCtrl+cで終了したとき break if channel_list: sem_exist = True break if not sem_exist: # スキャン失敗 sys.stdout.write('[Error]: Can not connect to a smart energy meter\n') if sem_exist: ch = channel_list[0] sys.stdout.write('Energy Meter: [Ch.0x{:02X}, Addr.{}, LQI.{}, PAN.0x{:04X}]\n'.format(ch['Channel'], ch['Addr'], ch['LQI'], ch['Pan ID'])) # チャンネル設定 y3.set_channel(ch['Channel']) sys.stdout.write('Set channel to 0x{:02X}\n'.format(ch['Channel'])) # スマートメータのIP6アドレス ip6 = y3.get_ip6(ch['Addr']) sys.stdout.write('IP6 address is \'{}\'\n'.format(ip6)) # PAN ID y3.set_pan_id(ch['Pan ID']) sys.stdout.write('Set PAN ID to 0x{:04X}\n'.format(ch['Pan ID'])) # PANA認証(PaC) sem_exist = False pana_done = False for i in range(10): sys.stdout.write('({}/10) PANA connection...\n'.format(i+1)) sem_exist = y3.start_pac(ip6) if sem_exist: # インスタンスリスト通知の受信待ち st = time.time() while True: if sem_inf_list: pana_ts = time.time() # タイムスタンプを保存 sys.stdout.write('Successfully done.\n') time.sleep(3) pana_done = True break elif time.time() - st > 15: # PANA認証失敗によるタイムアウト sys.stdout.write('Fail to connect.\n') sem_exist = False pana_done = False break else: time.sleep(0.1) if pana_done: break if sem_exist: sem = EchonetLiteSmartEnergyMeter() get_list = ['operation_status', 'location', 'version', 'fault_status', 'manufacturer_code', 'production_no', 'current_time', 'current_date', 'get_pty_map', 'set_pty_map', 'chg_pty_map', 'epc_coefficient', 'digits', 'unit_amount_energy', 'amount_energy_normal', 'recent_amount_energy_norm', 'hist_amount_energy1_norm'] for epc in get_list: # 各種データ取得 edt = False for i in range(10): data = sem_get_getres(epc) if data: parsed_data = sem.parse_frame(data) if parsed_data: edt = parsed_data['ptys'][0]['edt'] break else: continue # Get失敗 再試行 else: # Get失敗 再試行 continue if edt: if epc == 'operation_status': result = True if edt == b'\x30' else False elif epc == 'location': result = binascii.b2a_hex(edt) elif epc == 'version': result = edt[2:3].decode() elif epc == 'manufacturer_code': result = binascii.b2a_hex(edt) elif epc == 'production_no': result = binascii.b2a_hex(edt) elif epc == 'current_time': hour = int.from_bytes(edt[0:1], 'big') min = int.from_bytes(edt[1:2], 'big') result = datetime.time(hour, min) elif epc == 'current_date': year = int.from_bytes(edt[0:2], 'big') month = int.from_bytes(edt[2:3], 'big') day = int.from_bytes(edt[3:4], 'big') result = datetime.date(year, month, day) elif epc == 'fault_status': result = True if edt == b'\x42' else False elif epc == 'get_pty_map': result = binascii.b2a_hex(edt) elif epc == 'set_pty_map': result = binascii.b2a_hex(edt) elif epc == 'chg_pty_map': result = binascii.b2a_hex(edt) elif epc == 'epc_coefficient': result = int.from_bytes(edt, 'big') elif epc == 'digits': result = int.from_bytes(edt, 'big') elif epc == 'unit_amount_energy': if edt == b'\x00': result = 1.0 elif edt == b'\x01': result = 0.1 elif edt == b'\x02': result = 0.01 elif edt == b'\x03': result = 0.001 elif edt == b'\x04': result = 0.0001 elif edt == b'\x0A': result = 10.0 elif edt == b'\x0B': result = 100.0 elif edt == b'\x0C': result = 1000.0 elif edt == b'\x0D': result = 10000.0 else: result = 0.0 elif epc == 'amount_energy_normal': result = int.from_bytes(edt, 'big') result *= sem_info['epc_coefficient'] * sem_info['unit_amount_energy'] elif epc == 'recent_amount_energy_norm': dt = sem.parse_datetime(edt[0:7]) energy = int.from_bytes(edt[7:11], 'big') energy *= sem_info['epc_coefficient'] * sem_info['unit_amount_energy'] result = [dt, energy] elif epc == 'hist_amount_energy1_norm': result = binascii.b2a_hex(edt) sem_info[epc] = result sys.stdout.write('[Get]: {}, {}\n'.format(epc, result)) else: # Get失敗x10 sys.stdout.write('[Error]: Can not get {}.\n'.format(epc)) sem_exist = False break if sem_exist: start = time.time() - 1000 # 初期値を1000s前に設定 while True: try: pana_done = False if (time.time() - pana_ts > 12 * 60 * 60): # 12時間毎にPANA認証を更新 sys.stdout.write('PANA re-connection...\n') sem_exist = y3.restart_pac() if sem_exist: # インスタンスリスト通知の受信待ち st = time.time() while True: if sem_inf_list: pana_ts = time.time() # タイムスタンプを保存 pana_done = True sys.stdout.write('Successfully done.\n') time.sleep(3) break elif time.time() - st > 15: # PANA認証失敗によるタイムアウト sys.stdout.write('Fail to connect.\n') break else: time.sleep(0.1) if not pana_done: break # PANA認証失敗でbreakする while True: if (time.time() - start) >= user_conf.SEM_INTERVAL: start = time.time() break else: time.sleep(0.1) sem_get('instant_power') # Get while True: # GetRes待ちループ rcd_time = time.time() # rcd_time[s] new_dt = datetime.datetime.fromtimestamp(rcd_time) # ログファイルメンテナンス pow_logfile_maintainance(saved_dt, new_dt) saved_dt = new_dt if y3.get_queue_size(): msg_list = y3.dequeue_message() if msg_list['COMMAND'] == 'ERXUDP': led.oneshot() parsed_data = sem.parse_frame(msg_list['DATA']) if parsed_data: if parsed_data['tid'] != tid_counter: errmsg = '[Error]: ECHONET Lite TID mismatch\n' sys.stdout.write(errmsg) else: watt_int = int.from_bytes(parsed_data['ptys'][0]['edt'], 'big', signed=True) sys.stdout.write('[{:5d}] {:4d} W\n'.format(tid_counter, watt_int)) sys.stdout.flush() with open(CURR_POW_FILE, 'w') as fs: fs.write(str(watt_int)) try: # 一時ログファイルに書き込み f = open(TMP_LOG_FILE, 'a') # rcd_time[ms] (JavaScript用) f.write('{},{}\n'.format(round(rcd_time), watt_int)) f.close() except: sys.stdout.write('[Error]: can not write to file.\n') if sock: # UNIXドメインソケットで送信 sock_data = json.dumps({'time': rcd_time, 'power': watt_int}).encode('utf-8') try: sock.send(sock_data) except: sys.stdout.write('[Error]: Broken socket.\n') break else: # 電文が壊れている errmsg = '[Error]: ECHONET Lite frame error\n' sys.stdout.write(errmsg) else: # 電文が壊れている??? errmsg = '[Error]: Unknown data received.\n' sys.stdout.write(errmsg) else: # GetRes待ち while sem_inf_list: inf = sem_inf_list.pop(0) sys.stdout.write('[Inf]: {}\n'.format(inf['DATA'])) if time.time() - start > 20: # GetRes最大待ち時間: 20s sys.stdout.write('[Error]: Time out.\n') try: # 一時ログファイルに書き込み f = open(TMP_LOG_FILE, 'a') f.write('{},None\n'.format(round(rcd_time))) f.close() except: sys.stdout.write('[Error]: can not write to file.\n') break time.sleep(0.1) except KeyboardInterrupt: break else: sys.stdout.write('[Error]: Can not connect with a smart energy meter.\n') # 終了処理 if sock: try: sock.close() except: sys.stdout.write('[Error]: Broken socket.\n') sys.stdout.write('\nWi-SUN reset...\n') y3reset() y3.terminate() y3.uart_close() led.terminate() gpio.cleanup() if os.path.exists(TMP_LOG_FILE): os.remove(TMP_LOG_FILE) sys.stdout.write('Bye.\n') sys.exit(0)
StarcoderdataPython
1623868
fileLines = open('exercise101.py','r') lines = fileLines.readlines() for line in range(len(lines)-1,0, -1): lineStr = lines[line] if len(lineStr.strip()) > 0 : print(lineStr, end="")
StarcoderdataPython
3350123
<gh_stars>1-10 def solution(r): answer = 0 for i in range(1, r): for j in range(1, r): if i ** 2 + j ** 2 <= r ** 2: answer += 1 return answer * 4 def main(): r = int(input()) print(solution(r)) if __name__ == '__main__': main()
StarcoderdataPython
192991
import math from tf_pwa.err_num import * def test_add(): a = NumberError(1.0, 0.3) b = NumberError(2.0, 0.4) c = a + b assert c.value == 3.0 assert c.error == 0.5 d = b - a assert d.value == 1.0 assert d.error == 0.5 e = -a assert e.value == -1.0 assert e.error == 0.3 f = a - 1.0 d = a + 3.0 def test_mul(): a = NumberError(3.0, 0.3) b = NumberError(2.0, 0.4) c = a * b assert c.value == 6.0 assert c.error == math.sqrt(1.8) d = a / b assert d.value == 1.5 assert d.error == math.sqrt(0.1125) e = b ** 3 assert e.value == 8.0 assert abs(e.error - math.sqrt(23.04)) < 1e-7 f = b ** a g = 3.0 ** a def test_exp(): a = NumberError(3.0, 0.3) b = NumberError(2.0, 0.4) c = a.exp() d = b.log() e = a.apply(math.sqrt) g = a.apply(math.sin, math.cos) print(g) def test_cal_err(): a = NumberError(3.0, 0.3) b = NumberError(2.0, 0.3) f = lambda x: x * 3.0 + x ** 2 * 2.0 + 1.0 c = cal_err(f, a) g = lambda x, y: x + y + (x - y) * (x + y) d = cal_err(g, a, b) e = cal_err(g, 3.0, b) h = cal_err(g, a, 2.0) assert d.value == e.value assert e.value == h.value
StarcoderdataPython
1793278
# -*- coding: utf-8 -*- """ Created on Wed Dec 26 16:56:08 2018 @author: lenovo """ from sklearn.svm import SVC clf = SVC() clf.fit(sel.x_train, sel.y_train) pred=clf.predict(test_data) pred[pred==1]=0 pred[pred==3]=1 a=pred-test_label.T a=a.T sum(a==0)/206
StarcoderdataPython
3375166
<gh_stars>1000+ class UnableToReadBaselineError(ValueError): """Think of this as a 404, if getting a baseline had a HTTPError code.""" pass class InvalidBaselineError(ValueError): """Think of this as a 400, if getting a baseline had a HTTPError code.""" pass class InvalidFile(ValueError): """Think of this as a 400, if FileNotFoundError was a 404 HTTPError code.""" pass class SecretNotFoundOnSpecifiedLineError(Exception): def __init__(self, line: int) -> None: super().__init__( 'ERROR: Secret not found on line {}!\n'.format(line) + 'Try recreating your baseline to fix this issue.', ) class NoLineNumberError(Exception): def __init__(self) -> None: super().__init__( 'ERROR: No line numbers found in baseline! Line numbers are needed ' 'for auditing secret occurrences. Try recreating your baseline to fix ' 'this issue.', )
StarcoderdataPython
49264
from __future__ import annotations from edutorch.typing import NPArray from .batchnorm import BatchNorm class SpatialBatchNorm(BatchNorm): def forward(self, x: NPArray) -> NPArray: """ Computes the forward pass for spatial batch normalization. Inputs: - x: Input data of shape (N, C, H, W) - gamma: Scale parameter, of shape (C,) - beta: Shift parameter, of shape (C,) - bn_param: Dictionary with the following keys: - mode: 'train' or 'test'; required - eps: Constant for numeric stability - momentum: Constant for running mean / variance. momentum=0 means that old information is discarded completely at every time step, while momentum=1 means that new information is never incorporated. The default of momentum=0.9 should work well in most situations. - running_mean: Array of shape (D,) giving running mean of features - running_var Array of shape (D,) giving running variance of features Returns a tuple of: - out: Output data, of shape (N, C, H, W) - cache: Values needed for the backward pass """ N, C, H, W = x.shape x_flat = x.transpose(0, 2, 3, 1).reshape(-1, C) out_flat = super().forward(x_flat) out = out_flat.reshape(N, H, W, C).transpose(0, 3, 1, 2) return out def backward(self, dout: NPArray) -> tuple[NPArray, ...]: """ Computes the backward pass for spatial batch normalization. Inputs: - dout: Upstream derivatives, of shape (N, C, H, W) - cache: Values from the forward pass Returns a tuple of: - dx: Gradient with respect to inputs, of shape (N, C, H, W) - dgamma: Gradient with respect to scale parameter, of shape (C,) - dbeta: Gradient with respect to shift parameter, of shape (C,) """ N, C, H, W = dout.shape dout_flat = dout.transpose(0, 2, 3, 1).reshape(-1, C) dx_flat, dgamma, dbeta = super().backward(dout_flat) dx = dx_flat.reshape(N, H, W, C).transpose(0, 3, 1, 2) return dx, dgamma, dbeta
StarcoderdataPython
4814464
#!/usr/bin/python # Copyright 2015 The ANGLE Project Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # # gen_texture_format_table.py: # Code generation for texture format map # import json import pprint template = """// GENERATED FILE - DO NOT EDIT. // Generated by gen_texture_format_table.py using data from texture_format_data.json // // Copyright 2015 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // texture_format_table: // Queries for full textureFormat information based in internalFormat // #include "libANGLE/renderer/d3d/d3d11/texture_format_table.h" #include "libANGLE/renderer/d3d/d3d11/formatutils11.h" #include "libANGLE/renderer/d3d/d3d11/internal_format_initializer_table.h" #include "libANGLE/renderer/d3d/d3d11/load_functions_table.h" #include "libANGLE/renderer/d3d/d3d11/renderer11_utils.h" #include "libANGLE/renderer/d3d/d3d11/swizzle_format_info.h" #include "libANGLE/renderer/d3d/loadimage.h" namespace rx {{ namespace d3d11 {{ namespace {{ typedef bool (*FormatSupportFunction)(const Renderer11DeviceCaps &); bool AnyDevice(const Renderer11DeviceCaps &deviceCaps) {{ return true; }} bool OnlyFL10Plus(const Renderer11DeviceCaps &deviceCaps) {{ return (deviceCaps.featureLevel >= D3D_FEATURE_LEVEL_10_0); }} bool OnlyFL9_3(const Renderer11DeviceCaps &deviceCaps) {{ return (deviceCaps.featureLevel == D3D_FEATURE_LEVEL_9_3); }} template <DXGI_FORMAT format, bool requireSupport> bool SupportsFormat(const Renderer11DeviceCaps &deviceCaps) {{ // Must support texture, SRV and RTV support UINT mustSupport = D3D11_FORMAT_SUPPORT_TEXTURE2D | D3D11_FORMAT_SUPPORT_TEXTURECUBE | D3D11_FORMAT_SUPPORT_SHADER_SAMPLE | D3D11_FORMAT_SUPPORT_MIP | D3D11_FORMAT_SUPPORT_RENDER_TARGET; if (d3d11_gl::GetMaximumClientVersion(deviceCaps.featureLevel) > 2) {{ mustSupport |= D3D11_FORMAT_SUPPORT_TEXTURE3D; }} bool fullSupport = false; if (format == DXGI_FORMAT_B5G6R5_UNORM) {{ // All hardware that supports DXGI_FORMAT_B5G6R5_UNORM should support autogen mipmaps, but // check anyway. mustSupport |= D3D11_FORMAT_SUPPORT_MIP_AUTOGEN; fullSupport = ((deviceCaps.B5G6R5support & mustSupport) == mustSupport); }} else if (format == DXGI_FORMAT_B4G4R4A4_UNORM) {{ fullSupport = ((deviceCaps.B4G4R4A4support & mustSupport) == mustSupport); }} else if (format == DXGI_FORMAT_B5G5R5A1_UNORM) {{ fullSupport = ((deviceCaps.B5G5R5A1support & mustSupport) == mustSupport); }} else {{ UNREACHABLE(); return false; }} // This 'SupportsFormat' function is used by individual entries in the D3D11 Format Map below, // which maps GL formats to DXGI formats. if (requireSupport) {{ // This means that ANGLE would like to use the entry in the map if the inputted DXGI format // *IS* supported. // e.g. the entry might map GL_RGB5_A1 to DXGI_FORMAT_B5G5R5A1, which should only be used if // DXGI_FORMAT_B5G5R5A1 is supported. // In this case, we should only return 'true' if the format *IS* supported. return fullSupport; }} else {{ // This means that ANGLE would like to use the entry in the map if the inputted DXGI format // *ISN'T* supported. // This might be a fallback entry. e.g. for ANGLE to use DXGI_FORMAT_R8G8B8A8_UNORM if // DXGI_FORMAT_B5G5R5A1 isn't supported. // In this case, we should only return 'true' if the format *ISN'T* supported. return !fullSupport; }} }} // End Format Support Functions // For sized GL internal formats, there are several possible corresponding D3D11 formats depending // on device capabilities. // This function allows querying for the DXGI texture formats to use for textures, SRVs, RTVs and // DSVs given a GL internal format. const TextureFormat GetD3D11FormatInfo(GLenum internalFormat, DXGI_FORMAT texFormat, DXGI_FORMAT srvFormat, DXGI_FORMAT rtvFormat, DXGI_FORMAT dsvFormat) {{ TextureFormat info; info.texFormat = texFormat; info.srvFormat = srvFormat; info.rtvFormat = rtvFormat; info.dsvFormat = dsvFormat; // Given a GL internal format, the renderFormat is the DSV format if it is depth- or // stencil-renderable, // the RTV format if it is color-renderable, and the (nonrenderable) texture format otherwise. if (dsvFormat != DXGI_FORMAT_UNKNOWN) {{ info.renderFormat = dsvFormat; }} else if (rtvFormat != DXGI_FORMAT_UNKNOWN) {{ info.renderFormat = rtvFormat; }} else if (texFormat != DXGI_FORMAT_UNKNOWN) {{ info.renderFormat = texFormat; }} else {{ info.renderFormat = DXGI_FORMAT_UNKNOWN; }} // Compute the swizzle formats const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(internalFormat); if (internalFormat != GL_NONE && formatInfo.pixelBytes > 0) {{ if (formatInfo.componentCount != 4 || texFormat == DXGI_FORMAT_UNKNOWN || srvFormat == DXGI_FORMAT_UNKNOWN || rtvFormat == DXGI_FORMAT_UNKNOWN) {{ // Get the maximum sized component unsigned int maxBits = 1; if (formatInfo.compressed) {{ unsigned int compressedBitsPerBlock = formatInfo.pixelBytes * 8; unsigned int blockSize = formatInfo.compressedBlockWidth * formatInfo.compressedBlockHeight; maxBits = std::max(compressedBitsPerBlock / blockSize, maxBits); }} else {{ maxBits = std::max(maxBits, formatInfo.alphaBits); maxBits = std::max(maxBits, formatInfo.redBits); maxBits = std::max(maxBits, formatInfo.greenBits); maxBits = std::max(maxBits, formatInfo.blueBits); maxBits = std::max(maxBits, formatInfo.luminanceBits); maxBits = std::max(maxBits, formatInfo.depthBits); }} maxBits = roundUp(maxBits, 8U); const SwizzleFormatInfo &swizzleInfo = GetSwizzleFormatInfo(maxBits, formatInfo.componentType); info.swizzleTexFormat = swizzleInfo.mTexFormat; info.swizzleSRVFormat = swizzleInfo.mSRVFormat; info.swizzleRTVFormat = swizzleInfo.mRTVFormat; }} else {{ // The original texture format is suitable for swizzle operations info.swizzleTexFormat = texFormat; info.swizzleSRVFormat = srvFormat; info.swizzleRTVFormat = rtvFormat; }} }} else {{ // Not possible to swizzle with this texture format since it is either unsized or GL_NONE info.swizzleTexFormat = DXGI_FORMAT_UNKNOWN; info.swizzleSRVFormat = DXGI_FORMAT_UNKNOWN; info.swizzleRTVFormat = DXGI_FORMAT_UNKNOWN; }} // Check if there is an initialization function for this texture format info.dataInitializerFunction = GetInternalFormatInitializer(internalFormat, texFormat); // Gather all the load functions for this internal format info.loadFunctions = GetLoadFunctionsMap(internalFormat, texFormat); ASSERT(info.loadFunctions.size() != 0 || internalFormat == GL_NONE); return info; }} }} // namespace TextureFormat::TextureFormat() : texFormat(DXGI_FORMAT_UNKNOWN), srvFormat(DXGI_FORMAT_UNKNOWN), rtvFormat(DXGI_FORMAT_UNKNOWN), dsvFormat(DXGI_FORMAT_UNKNOWN), renderFormat(DXGI_FORMAT_UNKNOWN), swizzleTexFormat(DXGI_FORMAT_UNKNOWN), swizzleSRVFormat(DXGI_FORMAT_UNKNOWN), swizzleRTVFormat(DXGI_FORMAT_UNKNOWN), dataInitializerFunction(NULL), loadFunctions() {{ }} const TextureFormat &GetTextureFormatInfo(GLenum internalFormat, const Renderer11DeviceCaps &renderer11DeviceCaps) {{ // clang-format off switch (internalFormat) {{ {data} default: break; }} // clang-format on static const TextureFormat defaultInfo; return defaultInfo; }} // GetTextureFormatInfo }} // namespace d3d11 }} // namespace rx """ tex_format = "texFormat" srv_format = "srvFormat" rtv_format = "rtvFormat" dsv_format = "dsvFormat" def get_texture_format_item(idx, texture_format): table_data = ''; if idx == 0: table_data += ' if (' + texture_format["requirementsFcn"] + '(renderer11DeviceCaps))\n' else: table_data += ' else if (' + texture_format["requirementsFcn"] + '(renderer11DeviceCaps))\n' table_data += ' {\n' table_data += ' static const TextureFormat textureFormat = GetD3D11FormatInfo(internalFormat,\n' table_data += ' ' + texture_format[tex_format] + ',\n' table_data += ' ' + texture_format[srv_format] + ',\n' table_data += ' ' + texture_format[rtv_format] + ',\n' table_data += ' ' + texture_format[dsv_format] + ');\n' table_data += ' return textureFormat;\n' table_data += ' }\n' return table_data def parse_json_into_switch_string(json_data): table_data = '' for internal_format_item in sorted(json_data.iteritems()): internal_format = internal_format_item[0] table_data += ' case ' + internal_format + ':\n' table_data += ' {\n' for idx, texture_format in enumerate(sorted(json_data[internal_format])): table_data += get_texture_format_item(idx, texture_format) table_data += ' else\n' table_data += ' {\n' table_data += ' break;\n' table_data += ' }\n' table_data += ' }\n' return table_data with open('texture_format_data.json') as texture_format_json_file: texture_format_data = texture_format_json_file.read(); texture_format_json_file.close() json_data = json.loads(texture_format_data) table_data = parse_json_into_switch_string(json_data) output = template.format(data=table_data) with open('texture_format_table_autogen.cpp', 'wt') as out_file: out_file.write(output) out_file.close()
StarcoderdataPython
1630216
<reponame>Zhenye-Na/LxxxCode<gh_stars>10-100 class Solution: """ @param: nums: An integer array @return: A list of integers includes the index of the first number and the index of the last number """ def continuousSubarraySum(self, nums): # write your code here if not nums or len(nums) == 0: return [0, 0] prefix_sum, min_sum, max_sum = 0, 0, -sys.maxsize i, j, min_idx = -1, -1, -1 for idx, num in enumerate(nums): prefix_sum += num if prefix_sum - min_sum > max_sum: max_sum = prefix_sum - min_sum i, j = min_idx + 1, idx if prefix_sum < min_sum: min_sum = prefix_sum min_idx = idx return [i, j]
StarcoderdataPython
4841846
# type: ignore __all__ = ["conda_search_reqs"] def conda_search_reqs(requirements) -> set: conda_reqs = set() for req in requirements.registered_imports: # look up req (imported module name) in database compiled in advance pass return conda_reqs
StarcoderdataPython
15058
import sys import io input_txt = """ 44 """ sys.stdin = io.StringIO(input_txt) tmp = input() # copy the below part and paste to the submission form. # ---------function------------ def fibonacci(n): if n <= 1: return 1 fib_array = [1] * 45 for i in range(2, n+1): fib_array[i] = fib_array[i-1] + fib_array[i-2] return fib_array[n] def main(): n = int(input()) fib = fibonacci(n) print(fib) return main() # ----------------------------- sys.stdin = sys.__stdin__
StarcoderdataPython
196377
<gh_stars>1-10 import discord from discord.ext import commands from datetime import datetime class ChannelCommands(commands.Cog): def __init__(self, client): self.client = client @commands.command() @commands.has_permissions(manage_channels=True) async def lock(self, ctx, channel : discord.TextChannel=None): channel = channel or ctx.channel overwrite = channel.overwrites_for(ctx.guild.default_role) overwrite.send_messages = False await channel.set_permissions(ctx.guild.default_role, overwrite=overwrite) await ctx.send('Channel locked.') @commands.command() @commands.has_permissions(manage_channels=True) async def unlock(self, ctx): await ctx.channel.set_permissions(ctx.guild.default_role, send_messages=True) await ctx.send(ctx.channel.mention + " ***has been unlocked.***") # Channel Errors # @lock.error # async def lock_error(ctx, error): # if isinstance(error,commands.CheckFailure): # await ctx.send('You do not have permission to use this command!') def setup(client): client.add_cog(ChannelCommands(client))
StarcoderdataPython
3286050
<reponame>alexbigkid/ingredients_for_cooking<gh_stars>0 """Main program for displaying ingredients list for shopping with the recipes liked""" # Standard library imports import sys # Third party imports from colorama import Fore, Style # Local application imports from ingredients_input import IngredientsInput from search_recipes_by_ingredients import SearchRecipesByIngredients from recipe_view import RecipeView from shopping_list import ShoppingList from recipe_price_breakdown import RecipePriceBreakdown def get_ingredients(): ingredients_input = IngredientsInput() ingredients_input.ask_for_ingredients() return ingredients_input.read_input() def get_recipes(ingredients): search_recipes = SearchRecipesByIngredients() return search_recipes.get_recipes(ingredients) def get_liked_recipes(recipes): recipe_selection = RecipeView(recipes) recipe_selection.show_recipe_list() return recipe_selection.get_liked_recipe_list() def get_price_info(liked_recipe_list): recipe_price = RecipePriceBreakdown(liked_recipe_list) return recipe_price.get_price_breakdown() def show_shopping_list(liked_recipe_list, price_info_list): shopping_list = ShoppingList(liked_recipe_list, price_info_list) shopping_list.print_price_per_recipe() shopping_list.print_final_result() def main(): exit_code = 0 try: ingredient_list = get_ingredients() # ingredient_list = ['garlic', 'ginger', 'granny smith apple'] recipe_list = get_recipes(ingredient_list) liked_recipe_list = get_liked_recipes(recipe_list) price_info_list = get_price_info(liked_recipe_list) show_shopping_list(liked_recipe_list, price_info_list) except Exception as exception: print(Fore.RED + f"ERROR: executing getting recipes with your favorite ingredients") print(f"{exception}{Style.RESET_ALL}") exit_code = 1 sys.exit(exit_code) if __name__ == '__main__': main()
StarcoderdataPython
107791
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages requirements = ('numpy', 'opencv-python', 'solt==0.1.8', 'pyyaml', 'torch>=1.3.1', 'tqdm', 'scikit-learn', 'tensorboard', 'dill', 'matplotlib', 'pandas', 'pretrainedmodels', 'pillow==6.1', 'segmentation-models-pytorch') setup_requirements = () test_requirements = ('pytest',) description = """Deep Learning framework for reproducible science. From Finland with love.""" setup( author="<NAME>, <NAME>, <NAME>", author_email='<EMAIL>, <EMAIL>, <EMAIL>,', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Operating System :: MacOS', 'Operating System :: POSIX :: Linux' ], description="Deep Learning Framework for Reproducible Science", install_requires=requirements, license="MIT license", long_description=description, include_package_data=True, keywords='data augmentations, deeep learning', name='collagen', packages=find_packages(include=['collagen']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/MIPT-Oulu/Collagen', version='0.0.1', zip_safe=False, )
StarcoderdataPython
3221976
#!/usr/bin/python3 # INP 1A Nancy Tetris import pygame pygame.init() pygame.font.init() from game import Game game = Game() game.run()
StarcoderdataPython
3392357
<reponame>vt-sailbot/sailbot<gh_stars>1-10 import socket, sys, json, time, modules.utils, autonomous, logging from modules.utils import SocketType, socket_connect logger = logging.getLogger('log') # Define the global values, as generated by the configuration file values = {} def main(): arduino_sock = socket_connect(SocketType.arduino) rudder_sock = socket_connect(SocketType.rudder) winch_sock = socket_connect(SocketType.winch) logger.debug('Built sockets!') time.sleep(1) logger.info('Starting sail boat RC control!') time.sleep(2) # Enter the main loop while True: try: arduino_sock.send(str(0).encode('utf-8')) states = json.loads(arduino_sock.recv(128).decode('utf-8')) rudder_angle = float(states['rudder']) * float(values['max_rudder_angle']) winch_angle = (float(states['winch']) * 20) + 60 set_angle(rudder_sock, rudder_angle) set_angle(winch_sock, winch_angle) logger.info("Set %0.5f and %0.5f" % (winch_angle, rudder_angle)) if states['switch']: generate_error('Leaving manual control for autonomous!') autonomous.main() generate_error('Manual control caught exited autonomous process! Continuing!') except Exception as e: logger.error("%r error!" % (e.__class__.__name__)) time.sleep(0.25) # Define servo control methods def set_angle(connection, angle): connection.send(str(angle).encode('utf-8')) if __name__ == '__main__': modules.utils.setup_config(values) if values['debug']: modules.utils.setup_logging() modules.utils.setup_terminal_logging() logger.debug('Read configuration values!') try: main() except: logger.critical("Shutting down!") time.sleep(2) modules.utils.shutdown_terminal()
StarcoderdataPython
3386092
<filename>examples/matplotlib_chart.py # Make it run from the examples directory import sys sys.path.append("..") import pandas as pd import numpy as np from liquer import * import liquer.ext.lq_pandas import liquer.ext.lq_matplotlib from flask import Flask import liquer.blueprint as bp app = Flask(__name__) app.register_blueprint(bp.app, url_prefix='/liquer') @app.route('/') @app.route('/index.html') def index(): return """<h1><a href="https://matplotlib.org/">Matplotlib</a> chart app</h1> <ul> <li><a href="/liquer/q/data/data.html">data</a></li> <li><a href="/liquer/q/data/data.csv">data (csv)</a></li> <li><a href="/liquer/q/data/mpl-xy-xcol-ycol">chart</a></li> <li><a href="/liquer/q/data/mpl-xy-xcol-ycol">chart</a></li> <li><a href="/liquer/q/sin_cos_chart/sin_cos_chart.png">png</a>, <a href="/liquer/q/sin_cos_chart/sin_cos_chart.svg">svg</a>, <a href="/liquer/q/sin_cos_chart/sin_cos_chart.pdf">pdf</a></li> </ul> """ @first_command def data(): x = np.linspace(0,2*np.pi,100) y = np.sin(x) return pd.DataFrame(dict(xcol=x,ycol=y)) @first_command def sin_cos_chart(): import matplotlib.pyplot as plt x = np.linspace(0,2*np.pi,100) fig, ax = plt.subplots() ax.plot(x,np.sin(x)) ax.plot(x,np.cos(x)) return fig if __name__ == '__main__': evaluate_and_save("data/mpl-xy-xcol-ycol/matplotlib_chart.png") # evaluate_and_save("sin_cos_chart/sin_cos_chart.png") # evaluate_and_save("sin_cos_chart/sin_cos_chart.pdf") app.run()
StarcoderdataPython
3200792
# EMACS settings: -*- tab-width: 2; indent-tabs-mode: t; python-indent-offset: 2 -*- # vim: tabstop=2:shiftwidth=2:noexpandtab # kate: tab-width 2; replace-tabs off; indent-width 2; # # ============================================================================== # Authors: <NAME> # # Python Class: Base class for *** # # License: # ============================================================================== # Copyright 2007-2016 Technische Universitaet Dresden - Germany # Chair of VLSI-Design, Diagnostics and Architecture # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # load dependencies import shutil from datetime import datetime from os import chdir from Base import IHost from lib.Functions import Init from lib.Parser import ParserException from Base.Exceptions import CommonException, SkipableCommonException from Base.Logging import ILogable from Base.Project import ToolChain, Tool, VHDLVersion, Environment from DataBase.Solution import VirtualProject, FileListFile __api__ = [ 'to_time', 'Shared' ] __all__ = __api__ # local helper function def to_time(seconds): """ Convert *n* seconds to a :py:class:`str` with this pattern: "{min}:{sec:02}". :type seconds: int :param seconds: Number of seconds to be converted. :rtype: str :return: Returns a string formatted as #:##. E.g. "1:05" """ minutes = int(seconds / 60) seconds = seconds - (minutes * 60) return "{min}:{sec:02}".format(min=minutes, sec=seconds) class Shared(ILogable): """ Base class for Simulator and Compiler. :type host: object :param host: The hosting instance for this instance. :type dryRun: bool :param dryRun: Enable dry-run mode :type noCleanUp: bool :param noCleanUp: Don't clean up after a run. """ ENVIRONMENT = Environment.Any TOOL_CHAIN = ToolChain.Any TOOL = Tool.Any VHDL_VERSION = VHDLVersion.VHDL2008 class __Directories__: Working = None PoCRoot = None def __init__(self, host : IHost, dryRun): ILogable.__init__(self, host.Logger if isinstance(host, ILogable) else None) self._host = host self._dryRun = dryRun self._pocProject = None self._directories = self.__Directories__() self._toolChain = None self._vhdlVersion = self.VHDL_VERSION self._vhdlGenerics = None self._testSuite = None self._startAt = datetime.now() self._endAt = None self._lastEvent = self._startAt self._prepareTime = None # class properties # ============================================================================ @property def Host(self): return self._host @property def DryRun(self): return self._dryRun @property def VHDLVersion(self): return self._vhdlVersion @property def PoCProject(self): return self._pocProject @property def Directories(self): return self._directories def _GetTimeDeltaSinceLastEvent(self): now = datetime.now() result = now - self._lastEvent self._lastEvent = now return result def _PrepareEnvironment(self): # create fresh temporary directory self.LogVerbose("Creating fresh temporary directory.") if (self.Directories.Working.exists()): self._PrepareEnvironment_PurgeDirectory() # self.LogDebug("Purging temporary directory: {0!s}".format(self.Directories.Working)) # for item in self.Directories.Working.iterdir(): # try: # if item.is_dir(): # shutil.rmtree(str(item)) # elif item.is_file(): # item.unlink() # except OSError as ex: # raise CommonException("Error while deleting '{0!s}'.".format(item)) from ex else: self._PrepareEnvironment_CreatingDirectory() # self.LogDebug("Creating temporary directory: {0!s}".format(self.Directories.Working)) # try: # self.Directories.Working.mkdir(parents=True) # except OSError as ex: # raise CommonException("Error while creating '{0!s}'.".format(self.Directories.Working)) from ex self._PrepareEnvironment_ChangeDirectory() # change working directory to temporary path # self.LogVerbose("Changing working directory to temporary directory.") # self.LogDebug("cd \"{0!s}\"".format(self.Directories.Working)) # try: # chdir(str(self.Directories.Working)) # except OSError as ex: # raise CommonException("Error while changing to '{0!s}'.".format(self.Directories.Working)) from ex def _PrepareEnvironment_PurgeDirectory(self): self.LogDebug("Purging temporary directory: {0!s}".format(self.Directories.Working)) for item in self.Directories.Working.iterdir(): try: if item.is_dir(): shutil.rmtree(str(item)) elif item.is_file(): item.unlink() except OSError as ex: raise CommonException("Error while deleting '{0!s}'.".format(item)) from ex def _PrepareEnvironment_CreatingDirectory(self): self.LogDebug("Creating temporary directory: {0!s}".format(self.Directories.Working)) try: self.Directories.Working.mkdir(parents=True) except OSError as ex: raise CommonException("Error while creating '{0!s}'.".format(self.Directories.Working)) from ex def _PrepareEnvironment_ChangeDirectory(self): """Change working directory to temporary path 'temp/<tool>'.""" self.LogVerbose("Changing working directory to temporary directory.") self.LogDebug("cd \"{0!s}\"".format(self.Directories.Working)) try: chdir(str(self.Directories.Working)) except OSError as ex: raise CommonException("Error while changing to '{0!s}'.".format(self.Directories.Working)) from ex def _Prepare(self): self.LogNormal("Preparing {0}.".format(self.TOOL.LongName)) def _CreatePoCProject(self, projectName, board): # create a PoCProject and read all needed files self.LogVerbose("Creating PoC project '{0}'".format(projectName)) pocProject = VirtualProject(projectName) # configure the project pocProject.RootDirectory = self.Host.Directories.Root pocProject.Environment = self.ENVIRONMENT pocProject.ToolChain = self.TOOL_CHAIN pocProject.Tool = self.TOOL pocProject.VHDLVersion = self._vhdlVersion pocProject.Board = board self._pocProject = pocProject def _AddFileListFile(self, fileListFilePath): self.LogVerbose("Reading filelist '{0!s}'".format(fileListFilePath)) # add the *.files file, parse and evaluate it # if (not fileListFilePath.exists()): raise SimulatorException("Files file '{0!s}' not found.".format(fileListFilePath)) from FileNotFoundError(str(fileListFilePath)) try: fileListFile = self._pocProject.AddFile(FileListFile(fileListFilePath)) fileListFile.Parse(self._host) fileListFile.CopyFilesToFileSet() fileListFile.CopyExternalLibraries() self._pocProject.ExtractVHDLLibrariesFromVHDLSourceFiles() except (ParserException, CommonException) as ex: raise SkipableCommonException("Error while parsing '{0!s}'.".format(fileListFilePath)) from ex self.LogDebug("=" * 78) self.LogDebug("Pretty printing the PoCProject...") self.LogDebug("{DARK_RED}Disabled{NOCOLOR}".format(**Init.Foreground)) # self.LogDebug(self._pocProject.pprint(2)) self.LogDebug("=" * 78) if (len(fileListFile.Warnings) > 0): for warn in fileListFile.Warnings: self.LogWarning(warn) raise SkipableCommonException("Found critical warnings while parsing '{0!s}'".format(fileListFilePath)) def _GetHDLParameters(self, configSectionName): """Parse option 'HDLParameters' for Verilog Parameters / VHDL Generics.""" result = {} hdlParameters = self.Host.PoCConfig[configSectionName]["HDLParameters"] if (len(hdlParameters) > 0): for keyValuePair in hdlParameters.split(";"): try: key,value = keyValuePair.split("=") except ValueError: raise CommonException("Syntax error in option 'HDLParameters' within section {section}.".format(section=configSectionName)) result[key.strip()] = value.strip() return result
StarcoderdataPython
125312
<reponame>dynamicguy/photomatic __author__ = 'ferdous' import celery from celery.task import PeriodicTask from datetime import timedelta, datetime from celery.utils.log import get_task_logger logger = get_task_logger(__name__) @celery.task class AlbumTask(PeriodicTask): """ A periodic task that import photos from facebook """ run_every = timedelta(minutes=100) TODAY = datetime.now() name = "photomatic.tasks.AlbumTask" def run(self, **kwargs): logger.info("Running fb album periodic task.") return True
StarcoderdataPython
1731031
from jchart import Chart from .models import Customer class TaxSubPieChart(Chart): chart_type = 'pie' responsive = False def get_datasets(self, **kwargs): print(f'{kwargs}') tax_pay = Customer.objects.filter(vat__in=['ctvrtletne', 'mesicne']) submitted = tax_pay.filter(submitted_tax=True) return [{ 'label': 'Podaná přiznání', 'data': [len(submitted), len(tax_pay) - len(submitted)], 'backgroundColor': ["#FF6384", "#36A2EB"], 'hoverBackgroundColor': ["#FF6384", "#36A2EB"], }] def get_labels(self, **kwargs): return ['Podaná přiznání', 'Nepodaná přiznání'] class PapersPieChart(Chart): chart_type = 'pie' responsive = False def get_datasets(self, **kwargs): all_customers_cnt = len(Customer.objects.filter(papers__isnull=False)) papers_cnt = len(Customer.objects.filter(papers=True)) return [{ 'label': 'Donesené doklady', 'data': [papers_cnt, all_customers_cnt - papers_cnt], 'backgroundColor': ["#FF6384", "#36A2EB"], 'hoverBackgroundColor': ["#FF6384", "#36A2EB"], }] def get_labels(self, **kwargs): return ['Donesené doklady', 'Nedonesené doklady']
StarcoderdataPython
1748406
import sys import os currentdir = os.path.dirname(__file__) homedir = os.path.join(currentdir,"..") sys.path.append(homedir)
StarcoderdataPython
3249948
<gh_stars>1-10 # coding=utf-8 from django.conf.urls import include, url from django.contrib import admin urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^login/$', 'oecloud_dashboard.views.login'), ]
StarcoderdataPython
132700
<reponame>adrianboratyn/TripRecommendations import pandas as pd import os.path from django.core.management.base import BaseCommand, CommandError import logging from travels.models import Trip, TripDates import datetime import random class Command(BaseCommand): """ Klasa do tworzenia typów wycieczek """ help = "Creating fields in Trips" trips = Trip.objects.all().filter(country="Wyspy Zielonego Przylądka") def handle(self, *args, **options): """ Metoda do tworzenia typów wycieczek Args: *args (): **options (): """ for trip in self.trips: trip.countryEN = "United Arab Emirates" trip.currency = "CVE" trip.climate = "Morski" trip.rating = random.uniform(1, 6) trip.save()
StarcoderdataPython
103541
import os import cv2 as cv import numpy as np import tensorflow as tf CWD_PATH = os.getcwd() MODEL_NAME = "scribbler_graph_board_v3/" # PATH_TO_CKPT = '{}frozen_inference_graph.pb'.format(MODEL_NAME) PATH_TO_CKPT = "{}opt_graph.pb".format(MODEL_NAME) PATH_TO_LABELS = "object-detection.pbtxt" cvNet = cv.dnn.readNetFromTensorflow(PATH_TO_CKPT, "graph.pbtxt") img = cv.imread("example.jpg") rows = img.shape[0] cols = img.shape[1] cvNet.setInput(cv.dnn.blobFromImage(img, size=(300, 300), swapRB=True, crop=False)) cvOut = cvNet.forward() for detection in cvOut[0, 0, :, :]: score = float(detection[2]) if score > 0.3: left = detection[3] * cols top = detection[4] * rows right = detection[5] * cols bottom = detection[6] * rows cv.rectangle( img, (int(left), int(top)), (int(right), int(bottom)), (23, 230, 210), thickness=2, ) cv.imshow("img", img) cv.waitKey()
StarcoderdataPython
3337350
import abc from zipline import protocol from zipline.finance import asset_restrictions from pluto.coms.utils import conversions from pluto.control.controllable import synchronization_states as ss from protos import clock_pb2 class Market(abc.ABC): @abc.abstractmethod def add_blotter(self, session_id): raise NotImplementedError @abc.abstractmethod def get_transactions(self, dt, evt, signals): raise NotImplementedError @abc.abstractmethod def get_blotter(self, session_id): ''' Parameters ---------- session_id Returns ------- ''' raise NotImplementedError class NoopMarket(Market): def add_blotter(self, session_id): pass def get_transactions(self, dt, evt, signals): return def get_blotter(self, session_id): return class LiveSimulationMarket(Market): def __init__(self, data_portal, data_frequency, universe, calendar, blotter_factory): ''' Parameters ---------- data_portal calendars universe blotter_factory: pluto.control.modes.market.blotter_factory.SimulationBlotterFactory ''' self._dp = dtp = data_portal self._sst = sst = ss.Tracker(universe.calendars) sst.state = sst.out_session self._blotter_factory = blotter_factory self._current_dt = None self._universe = universe self._current_data = protocol.BarData( data_portal=dtp, simulation_dt_func=self.current_dt, data_frequency=data_frequency, trading_calendar=calendar, # restrictions are assumed to be included in the universe restrictions=asset_restrictions.NoRestrictions() ) self._data_frequency = data_frequency super(LiveSimulationMarket, self).__init__() def current_dt(self): return self._current_dt def get_transactions(self, dt, evt, signals): s = self._sst.aggregate(dt, evt, signals) if s: dt, e, exchanges = s self._current_dt = t = conversions.to_datetime(dt) if e == clock_pb2.TRADE_END: for blotter in self._blotter_factory.blotters: new_transactions, new_commissions, closed_orders = \ blotter.get_transactions(self._current_data) blotter.prune_orders(closed_orders) yield new_transactions, new_commissions elif e == clock_pb2.BAR and self._data_frequency == 'minute': for blotter in self._blotter_factory.blotters: new_transactions, new_commissions, closed_orders = \ blotter.get_transactions(self._current_data) blotter.prune_orders(closed_orders) yield new_transactions, new_commissions elif e == clock_pb2.SESSION_START: assets = [] blotters = self._blotter_factory.blotters for blotter in self._blotter_factory.blotters: assets.extend(blotter.open_orders.keys()) if assets: splits = self._dp.get_splits(assets, t) if splits: for blotter in blotters: blotter.process_splits(splits) def add_blotter(self, session_id): self._blotter_factory.add_blotter( session_id, self._universe) def get_blotter(self, session_id): return self._blotter_factory.get_blotter(session_id) # whats this? class MarketAggregate(Market): def __init__(self): self._markets = [] def add_market(self, market): self._markets.append(market) def get_transactions(self, dt, evt, signals): for market in self._markets: yield market.get_transactions(dt, evt, signals) def add_blotter(self, session_id): for market in self._markets: market.add_blotter(session_id)
StarcoderdataPython
3261956
from django.contrib import admin from .models import Post,reviewsData,reportPost,Comments # Register your models here. admin.site.register(Post) admin.site.register(reviewsData) admin.site.register(reportPost) admin.site.register(Comments)
StarcoderdataPython
3366989
# Define the application directory import os # Statement for enabling the development environment DEBUG = True BASE_DIR = os.path.abspath(os.path.dirname(__file__)) # Define the database - we are working with DATABASE = { "engine": "mysql", "database": "app", "host": "localhost", "port": "3306", "username": "root", "password": "", } # Application threads. A common general assumption is # using 2 per available processor cores - to handle # incoming requests using one and performing background # operations using the other. THREADS_PER_PAGE = 2 # Enable protection agains *Cross-site Request Forgery (CSRF)* CSRF_ENABLED = True # Use a secure, unique and absolutely secret key for # signing the data. CSRF_SESSION_KEY = "secret" # Secret key for signing cookies SECRET_KEY = "secret"
StarcoderdataPython
112281
<reponame>telefonicaid/fiware-cloto<gh_stars>1-10 #!/usr/bin/env python # -*- encoding: utf-8 -*- # # Copyright 2014 Telefónica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with <EMAIL> # __author__ = 'arobres' REST_PATH = '../../../../manage.py' POLICY_MANAGER_IP = 'fiwarecloto' POLICY_MANAGER_PORT = 8000 FACTS_IP = 'fiwarecloto' FACTS_PORT = 5000 RABBIT_IP = 'rabbitmq' AUTH_TOKEN_OLD = '' KEYSTONE_URL = '' TENANT_ID = '' TENANT_NAME = '' USER = '' PASSWORD = '' CONTENT_TYPE = 'application/json' HEADERS = {'content-type': CONTENT_TYPE, 'X-Auth-Token': ''} DB_PATH = '../../../../cloto.db' MOCK_IP = u'127.0.0.1' MOCK_PORT = 8080 MOCK_PATH = u'commons/server_mock.py'
StarcoderdataPython
3273
from typing import * import attr from dlms_cosem.hdlc import validators @attr.s(auto_attribs=True) class HdlcAddress: """ A client address shall always be expressed on one byte. To enable addressing more than one logical device within a single physical device and to support the multi-drop configuration the server address may be divided in two parts– may be divided into two parts: The logical address to address a logical device (separate addressable entity within a physical device) makes up the upper HDLC address The logical address must always be present. The physical address is used to address a physical device ( a physical device on a multi-drop) The physical address can be omitted it not used. """ logical_address: int = attr.ib(validator=[validators.validate_hdlc_address]) physical_address: Optional[int] = attr.ib( default=None, validator=[validators.validate_hdlc_address] ) address_type: str = attr.ib( default="client", validator=[validators.validate_hdlc_address_type] ) @property def length(self): """ The number of bytes the address makes up. :return: """ return len(self.to_bytes()) def to_bytes(self): out: List[Optional[int]] = list() if self.address_type == "client": # shift left 1 bit and set the lsb to mark end of address. out.append(((self.logical_address << 1) | 0b00000001)) else: # server address type logical_higher, logical_lower = self._split_address(self.logical_address) if self.physical_address: physical_higher, physical_lower = self._split_address( self.physical_address ) # mark physical lower as end physical_lower = physical_lower | 0b00000001 out.extend( [logical_higher, logical_lower, physical_higher, physical_lower] ) else: # no physical address so mark the logial as end. logical_lower = logical_lower | 0b00000001 out.extend([logical_higher, logical_lower]) out_bytes = list() for address in out: if address: out_bytes.append(address.to_bytes(1, "big")) return b"".join(out_bytes) @staticmethod def _split_address(address: int) -> Tuple[Optional[int], int]: higher: Optional[int] lower: int if address > 0b01111111: lower = (address & 0b0000000001111111) << 1 higher = (address & 0b0011111110000000) >> 6 else: lower = address << 1 higher = None return higher, lower @staticmethod def _address_to_byte(address: int) -> bytes: return address.to_bytes(1, "big") @classmethod def destination_from_bytes(cls, frame_bytes: bytes, address_type: str): destination_address_data, _ = HdlcAddress.find_address_in_frame_bytes( frame_bytes ) ( destination_logical, destination_physical, destination_length, ) = destination_address_data return cls(destination_logical, destination_physical, address_type) @classmethod def source_from_bytes(cls, frame_bytes: bytes, address_type: str): _, source_address_data = HdlcAddress.find_address_in_frame_bytes(frame_bytes) source_logical, source_physical, source_length = source_address_data return cls(source_logical, source_physical, address_type) @staticmethod def find_address_in_frame_bytes( hdlc_frame_bytes: bytes, ) -> Tuple[Tuple[int, Optional[int], int], Tuple[int, Optional[int], int]]: """ address can be 1, 2 or 4 bytes long. the end byte is indicated by the of the last byte LSB being 1 The first address is the destination address and the seconds is the source address. :param frame_bytes: :return: """ # Find destination address. destination_length: int = 1 destination_logical: int = 0 destination_physical: Optional[int] = 0 destination_positions_list: List[Tuple[int, int]] = [(3, 1), (4, 2), (6, 4)] address_bytes: bytes for pos, _length in destination_positions_list: end_byte = hdlc_frame_bytes[pos] if bool(end_byte & 0b00000001): # Found end byte: destination_length = _length break continue if destination_length == 1: address_bytes = hdlc_frame_bytes[3].to_bytes(1, "big") destination_logical = address_bytes[0] >> 1 destination_physical = None elif destination_length == 2: address_bytes = hdlc_frame_bytes[3:5] destination_logical = address_bytes[0] >> 1 destination_physical = address_bytes[1] >> 1 elif destination_length == 4: address_bytes = hdlc_frame_bytes[3:7] destination_logical = HdlcAddress.parse_two_byte_address(address_bytes[:2]) destination_physical = HdlcAddress.parse_two_byte_address(address_bytes[3:]) # Find source address source_length: int = 1 source_logical: int = 0 source_physical: Optional[int] = 0 source_position_list: List[Tuple[int, int]] = [ (item[0] + destination_length, item[1]) for item in destination_positions_list ] for pos, _length in source_position_list: end_byte = hdlc_frame_bytes[pos] if bool(end_byte & 0b00000001): # Found end byte: source_length = _length break continue if source_length == 1: address_bytes = hdlc_frame_bytes[3 + destination_length].to_bytes(1, "big") source_logical = address_bytes[0] >> 1 source_physical = None elif source_length == 2: address_bytes = hdlc_frame_bytes[3 + destination_length : 5 + source_length] source_logical = address_bytes[0] >> 1 source_physical = address_bytes[1] >> 1 elif destination_length == 4: address_bytes = hdlc_frame_bytes[3 + destination_length : 7 + source_length] source_logical = HdlcAddress.parse_two_byte_address(address_bytes[:2]) source_physical = HdlcAddress.parse_two_byte_address(address_bytes[3:]) return ( (destination_logical, destination_physical, destination_length), (source_logical, source_physical, source_length), ) @staticmethod def parse_two_byte_address(address_bytes: bytes): if address_bytes != 2: raise ValueError(f"Can only parse 2 bytes for address") upper = address_bytes[0] >> 1 lower = address_bytes[1] >> 1 return lower + (upper << 7)
StarcoderdataPython
48916
from typing import Callable, Awaitable CoroutineFunction = Callable[..., Awaitable]
StarcoderdataPython
198197
<gh_stars>0 """ settings.py ----------- Implements functions for reading and writing UI configuration using a QSettings object. """ from PyQt5 import QtWidgets from instruments import triggering import re MPTS_trigger_file = ".config/MPTS_config.txt" regex = re.compile('(\S+)[\s*]=[\s*]"(\S+)"') def read_settings(config, ui): """Reads configuration from the ini-file. Uses default values if no settings are found. """ # General ui.comboBoxOperationMode.setCurrentIndex(config.value("OperationMode", 3, type=int)) ui.checkBoxContinuouslyUpdate.setChecked(config.value("ContinuouslyUpdate", True, type=bool)) ui.CamerasFrameRate.setValue(config.value("CamerasFrameRate", 10900, type=int)) ui.CamerasExposureTime.setValue(config.value("CamerasExposureTime", 100, type=int)) ui.Operator.setText(config.value("Operator", "", type=str)) ui.Email.setText(config.value("Email", "", type=str)) ui.Aim.setText(config.value("Aim", "", type=str)) ui.Comments.setPlainText(config.value("Comments", "", type=str)) # Laser PS ui.LaserPSSerialPort.setText(config.value("LaserPS/SerialPort", "COM1", type=str)) ui.LaserPSMainVoltage.setValue(config.value("LaserPS/MainVoltage", None, type=int)) ui.LaserPSAux1Voltage.setValue(config.value("LaserPS/Aux1Voltage", None, type=int)) ui.LaserPSAux2Voltage.setValue(config.value("LaserPS/Aux2Voltage", None, type=int)) ui.LaserPSAux3Voltage.setValue(config.value("LaserPS/Aux3Voltage", None, type=int)) ui.LaserPSAuxDelay.setValue(config.value("LaserPS/AuxDelay", None, type=float)) ui.LaserPSSimmerDelay.setValue(config.value("LaserPS/SimmerDelay", None, type=int)) ui.LaserPSBurstNumber.setValue(config.value("LaserPS/BurstNumber", None, type=int)) ui.LaserPSBurstSeperation.setValue(config.value("LaserPS/BurstSeparation", None, type=float)) ui.LaserPSResMainVoltage.setValue(config.value("LaserPS/ResMainVoltage", None, type=int)) ui.LaserPSResAuxVoltage.setValue(config.value("LaserPS/ResAuxVoltage", None, type=int)) ui.LaserPSMaxBurstNumber.setValue(config.value("LaserPS/MaxBurstNumber", None, type=int)) ui.LaserPSMaxBurstDuration.setValue(config.value("LaserPS/MaxBurstDuration", None, type=int)) ui.LaserPSMaxExplosionEnergy.setCurrentIndex(config.value("LaserPS/MaxExplosionEnergy", 0, type=int)) ui.LaserPSAccurChargeV.setValue(config.value("LaserPS/AccurChargeV", None, type=float)) ui.LaserPSMaxDelayFlash.setValue(config.value("LaserPS/MaxDelayFlash", None, type=int)) ui.LaserPSTriggerSimmer.setValue(config.value("LaserPS/TriggerSimmer", None, type=int)) ui.LaserPSSignalReady.setValue(config.value("LaserPS/SignalReady", None, type=int)) ui.LaserPSModeBanks.setValue(config.value("LaserPS/BankMode", None, type=int)) # Phantom1 ui.Phantom1IP.setText(config.value("Phantom1/IP", "192.168.127.12", type=str)) index = ui.Phantom1FrameSync.findText(config.value("Phantom1/FrameSync", "", type=str)) ui.Phantom1FrameSync.setCurrentIndex(index if index > 0 else 0) index = ui.Phantom1ImageFormat.findText(config.value("Phantom1/ImageFormat", "", type=str)) ui.Phantom1ImageFormat.setCurrentIndex(index if index > 0 else 0) # Phantom2 ui.Phantom2IP.setText(config.value("Phantom2/IP", "172.16.58.3", type=str)) index = ui.Phantom1FrameSync.findText(config.value("Phantom2/FrameSync", "", type=str)) ui.Phantom2FrameSync.setCurrentIndex(index if index > 0 else 0) index = ui.Phantom1ImageFormat.findText(config.value("Phantom2/ImageFormat", "", type=str)) ui.Phantom2ImageFormat.setCurrentIndex(index if index > 0 else 0) # I2PS ui.comboBoxI2PSSelectPS.setCurrentIndex(config.value("I2PS/SelectPS", 0, type=int)) ui.I2PSIP.setText(config.value("I2PS/IP", "127.0.0.1", type=str)) ui.I2PSVoltagePPMCP.setValue(config.value("I2PS/VoltagePPMCP", 0, type=int)) ui.I2PSVoltageMCP.setValue(config.value("I2PS/VoltageMCP", 0, type=int)) ui.I2PSVoltagePCHighSide.setValue(config.value("I2PS/VoltagePCHighSide", 0, type=int)) ui.I2PSVoltagePCLowSide.setValue(config.value("I2PS/VoltagePCLowSide", 0, type=int)) ui.I2PSPulseDuration.setValue(config.value("I2PS/PulseDuration", 0, type=int)) ui.I2PSTriggerDelay.setValue(config.value("I2PS/TriggerDelay", 0, type=int)) ui.II_Coarse.setCurrentIndex(config.value("I2PS/Coarse", 0, type=int)) ui.II_Fine.setValue(config.value("I2PS/Fine", 0, type=float)) ui.II_Gain.setValue(config.value("I2PS/Gain", 0, type=float)) # Ophir ui.OphirSerialPort.setText(config.value("Ophir/SerialPort", "COM2", type=str)) # ADC ui.ADCRecordLength.setValue(config.value("ADC/RecordLength", 131072, type=int)) index = ui.ADCSampleRate.findText(config.value("ADC/SampleRate", "", type=str)) ui.ADCSampleRate.setCurrentIndex(index if index > 0 else 11) index = ui.ADCInputRange.findText(config.value("ADC/InputRange", "", type=str)) ui.ADCInputRange.setCurrentIndex(index if index > 0 else 11) ui.ADCCH1Name.setText(config.value("ADC/CH1Name", "", type=str)) ui.ADCCH2Name.setText(config.value("ADC/CH2Name", "", type=str)) ui.ADCCH1Enable.setChecked(config.value("ADC/CH1Enable", True, type=bool)) ui.ADCCH2Enable.setChecked(config.value("ADC/CH2Enable", True, type=bool)) # Scope ui.ScopeSerialPort.setText(config.value("Scope/SerialPort", "COM3", type=str)) ui.ScopeIP.setText(config.value("Scope/IP", "10.182.5.8", type=str)) ui.ScopeCH1Name.setText(config.value("Scope/CH1Name", "", type=str)) ui.ScopeCH2Name.setText(config.value("Scope/CH2Name", "", type=str)) ui.ScopeCH3Name.setText(config.value("Scope/CH3Name", "", type=str)) ui.ScopeCH4Name.setText(config.value("Scope/CH4Name", "", type=str)) ui.ScopeCH1Enable.setChecked(config.value("Scope/CH1Enable", True, type=bool)) ui.ScopeCH2Enable.setChecked(config.value("Scope/CH2Enable", True, type=bool)) ui.ScopeCH3Enable.setChecked(config.value("Scope/CH3Enable", True, type=bool)) ui.ScopeCH4Enable.setChecked(config.value("Scope/CH4Enable", True, type=bool)) # Triggering ui.TriggerIP.setText(config.value("Triggering/IP", "127.0.0.1", type=str)) ui.TriggerPort.setValue(config.value("Triggering/Port", "15000", type=int)) # Triggering/times f = open(MPTS_trigger_file, 'r') data = f.readlines() f.close() read_trigger_settings(data, ui) def save_settings(config, ui): """Saves current UI configuration to ini file, called when exiting the main application""" config.setValue("OperationMode", ui.comboBoxOperationMode.currentIndex()) config.setValue("CamerasFrameRate", ui.CamerasFrameRate.value()) config.setValue("CamerasExposureTime", ui.CamerasExposureTime.value()) config.setValue("ContinuouslyUpdate", ui.checkBoxContinuouslyUpdate.isChecked()) config.setValue("Operator", ui.Operator.text()) config.setValue("Email", ui.Email.text()) config.setValue("Aim", ui.Aim.text()) config.setValue("Comments", ui.Comments.toPlainText()) config.beginGroup("LaserPS") config.setValue("SerialPort", ui.LaserPSSerialPort.text()) config.setValue("MainVoltage", ui.LaserPSMainVoltage.value()) config.setValue("Aux1Voltage", ui.LaserPSAux1Voltage.value()) config.setValue("Aux2Voltage", ui.LaserPSAux2Voltage.value()) config.setValue("Aux3Voltage", ui.LaserPSAux3Voltage.value()) config.setValue("AuxDelay", ui.LaserPSAuxDelay.value()) config.setValue("SimmerDelay", ui.LaserPSSimmerDelay.value()) config.setValue("BurstNumber", ui.LaserPSBurstNumber.value()) config.setValue("BurstSeparation", round(ui.LaserPSBurstSeperation.value(), 1)) config.setValue("ResMainVoltage", ui.LaserPSResMainVoltage.value()) config.setValue("ResAuxVoltage", ui.LaserPSResAuxVoltage.value()) config.setValue("MaxBurstNumber", ui.LaserPSMaxBurstNumber.value()) config.setValue("MaxBurstDuration", ui.LaserPSMaxBurstDuration.value()) config.setValue("MaxExplosionEnergy", ui.LaserPSMaxExplosionEnergy.currentIndex()) config.setValue("PSAccurChargeV", ui.LaserPSAccurChargeV.value()) config.setValue("MaxDelayFlash", ui.LaserPSMaxDelayFlash.value()) config.setValue("TriggerSimmer", ui.LaserPSTriggerSimmer.value()) config.setValue("SignalReady", ui.LaserPSSignalReady.value()) config.setValue("BankMode", ui.LaserPSModeBanks.value()) config.endGroup() config.beginGroup("Phantom1") config.setValue("IP", ui.Phantom1IP.text()) config.setValue("FrameSync", ui.Phantom1FrameSync.currentText()) config.setValue("ImageFormat", ui.Phantom1ImageFormat.currentText()) config.endGroup() config.beginGroup("Phantom2") config.setValue("IP", ui.Phantom2IP.text()) config.setValue("FrameSync", ui.Phantom2FrameSync.currentText()) config.setValue("ImageFormat", ui.Phantom2ImageFormat.currentText()) config.endGroup() config.beginGroup("I2PS") config.setValue("SelectPS", ui.comboBoxI2PSSelectPS.currentIndex()) config.setValue("IP", ui.I2PSIP.text()) config.setValue("VoltagePPMCP", ui.I2PSVoltagePPMCP.value()) config.setValue("VoltageMCP", ui.I2PSVoltageMCP.value()) config.setValue("VoltagePCHighSide", ui.I2PSVoltagePCHighSide.value()) config.setValue("VoltagePCLowSide", ui.I2PSVoltagePCLowSide.value()) config.setValue("PulseDuration", ui.I2PSPulseDuration.value()) config.setValue("TriggerDelay", ui.I2PSTriggerDelay.value()) config.setValue("Coarse", ui.II_Coarse.currentIndex()) config.setValue("Fine", ui.II_Fine.value()) config.setValue("Gain", ui.II_Gain.value()) config.endGroup() config.beginGroup("Ophir") config.setValue("SerialPort", ui.OphirSerialPort.text()) config.endGroup() config.beginGroup("ADC") config.setValue("RecordLength", ui.ADCRecordLength.value()) config.setValue("SampleRate", ui.ADCSampleRate.currentText()) config.setValue("InputRange", ui.ADCInputRange.currentText()) config.setValue("CH1Name", ui.ADCCH1Name.text()) config.setValue("CH2Name", ui.ADCCH2Name.text()) config.setValue("CH1Enable", ui.ADCCH1Enable.isChecked()) config.setValue("CH2Enable", ui.ADCCH2Enable.isChecked()) config.endGroup() config.beginGroup("Scope") config.setValue("SerialPort", ui.ScopeSerialPort.text()) config.setValue("IP", ui.ScopeIP.text()) config.setValue("CH1Name", ui.ScopeCH1Name.text()) config.setValue("CH2Name", ui.ScopeCH2Name.text()) config.setValue("CH3Name", ui.ScopeCH3Name.text()) config.setValue("CH4Name", ui.ScopeCH4Name.text()) config.setValue("CH1Enable", ui.ScopeCH1Enable.isChecked()) config.setValue("CH2Enable", ui.ScopeCH2Enable.isChecked()) config.setValue("CH3Enable", ui.ScopeCH3Enable.isChecked()) config.setValue("CH4Enable", ui.ScopeCH4Enable.isChecked()) config.endGroup() config.beginGroup("Triggering") config.setValue("IP", ui.TriggerIP.text()) config.setValue("Port", ui.TriggerPort.value()) config.endGroup() # Triggering/times write_trigger_settings(MPTS_trigger_file, ui) def read_trigger_settings(data, ui): for command in data: match = regex.search(command) if match.group(1) == "End_of_file": break widget = ui.centralwidget.findChild(QtWidgets.QSpinBox, triggering.logical_names[match.group(1)]) if widget: widget.setValue(int(match.group(2))) else: widget = ui.centralwidget.findChild(QtWidgets.QCheckBox, triggering.logical_names[match.group(1)]) widget.setChecked(int(match.group(2))) def write_trigger_settings(filename, ui): f = open(filename, 'w') for logical_name in triggering.physical_names: widget = ui.centralwidget.findChild(QtWidgets.QSpinBox, logical_name) if widget: f.write('%s = "%s"\n' % (triggering.physical_names[logical_name], widget.value())) else: widget = ui.centralwidget.findChild(QtWidgets.QCheckBox, logical_name) f.write('%s = "%s"\n' % (logical_name, int(widget.isChecked()))) f.write('End_of_file = "empty"\n') f.close()
StarcoderdataPython
184661
<filename>AC-OhmsLaw/polar.py # This is a partial program to run interactively from the command line, e.g. # linux: python3 -i polar.py # win: python -i polar.py import numpy # Euler's Formula for Polar (magnitude, degrees) to Rectangular (x, yj) on complex plane. def Pd2R(A, deg): return A*( numpy.cos(numpy.deg2rad(deg)) + 1.0j*numpy.sin(numpy.deg2rad(deg)) ) # Display Polar format def R2Pd(x): string2return = ('{:0.3g}'.format(numpy.abs(x)) + "<" + '{:0.3g}'.format(numpy.rad2deg(numpy.angle(x))) + "deg") return string2return # Display Polar format with unit def R2PdU(x, unit): string2return = ('{:0.3g}'.format(numpy.abs(x)) + unit + "<" + '{:0.3g}'.format(numpy.rad2deg(numpy.angle(x))) + "deg") return string2return
StarcoderdataPython
1768710
<filename>Evernote_Django/evernote/forms.py from django import forms from django.contrib.auth.forms import UserCreationForm, AuthenticationForm from django.core.files.uploadedfile import InMemoryUploadedFile from .models import * class AddNoteForm(forms.ModelForm): class Meta: model = Note fields = ('name', 'text', 'file') widgets = { 'name': forms.TextInput(attrs={'class': 'noteTitle', 'placeholder': 'Новая заметка'}), 'text': forms.Textarea( attrs={'class': 'noteBody', 'cols': 100, 'rows': 20, 'placeholder': 'Текст заметки'}), } class AddTagForm(forms.ModelForm): class Meta: model = Tag fields = ('name',) widgets = { 'name': forms.TextInput(attrs={'class': 'noteTags'}), } class FilterForm(forms.Form): date = forms.DateField(widget=forms.DateInput(attrs={'type': 'date', 'class': 'filterForms'}), required=False, label='По дате') tag = forms.CharField(widget=forms.TextInput(attrs={'class': 'filterForms'}), max_length=45, required=False, label='По тегу') class LoginUserForm(AuthenticationForm): username = forms.CharField(widget=forms.TextInput(attrs={'class': 'loginForm', 'placeholder': 'Username'})) password = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'loginForm', 'placeholder': '<PASSWORD>'})) class Meta: widgets = { 'username': forms.TextInput(attrs={'class': 'loginForm', 'placeholder': 'Username'}), 'password': forms.PasswordInput(attrs={'class': 'loginForm', 'placeholder': 'Username'}), } class RegisterUserForm(UserCreationForm): password1 = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'regForm', 'placeholder': '<PASSWORD>'})) password2 = forms.CharField( widget=forms.PasswordInput(attrs={'class': 'regForm', 'placeholder': 'Подтвердите пароль'})) class Meta: model = User fields = ('first_name', 'last_name', 'username', '<PASSWORD>', '<PASSWORD>') widgets = { 'first_name': forms.TextInput(attrs={'class': 'regForm', 'placeholder': 'Имя'}), 'last_name': forms.TextInput(attrs={'class': 'regForm', 'placeholder': 'Фамилия'}), 'username': forms.TextInput(attrs={'class': 'regForm', 'placeholder': 'Username'}), 'password1': forms.PasswordInput(attrs={'class': 'regForm', 'placeholder': 'Пароль'}), 'password2': forms.PasswordInput(attrs={'class': 'regForm', 'placeholder': 'Подтвердите пароль'}), } help_texts = { 'username': '', 'password1': '', 'password2': '', }
StarcoderdataPython
3294533
from pathlib import Path import random import numpy from pyrr import matrix44 import moderngl import moderngl_window from moderngl_window.opengl.vao import VAO class Boids(moderngl_window.WindowConfig): """ An attempt to make something boid-list with GL3.3. Not currently working as intended, but still creates and interesting result. For this to properly work we need to split the calculations into several passes. We are doing this the O(n^2) way with the gpu using transform feedback. To make the data avaialble to the vertex shader (looping through it) we copy the vertex buffer every frame to a texture. A better way in the future is to use compute shader. """ title = "Boids" resource_dir = (Path(__file__) / '../../resources').absolute() aspect_ratio = 3440 / 1440 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) MAX_TEX_WIDTH = 8192 N = MAX_TEX_WIDTH * 1 def gen_initial_data(n, x_area=2.0, y_area=2.0): for n in range(n): # position yield (random.random() - 0.5) * x_area yield (random.random() - 0.5) * y_area # Velocity yield (random.random() - 0.5) yield (random.random() - 0.5) # Create geometry data gen = gen_initial_data(N, x_area=self.aspect_ratio * 2 * 0.9, y_area=2.0 * 0.95) data = numpy.fromiter(gen, count=N * 4, dtype='f4') self.boids_buffer_1 = self.ctx.buffer(data.tobytes()) self.boids_buffer_2 = self.ctx.buffer(data=self.boids_buffer_1.read()) self.boids_vao_1 = VAO(name='boids_1', mode=moderngl.POINTS) self.boids_vao_1.buffer(self.boids_buffer_1, '2f 2f', ['in_position', 'in_velocity']) self.boids_vao_2 = VAO(name='boids_2', mode=moderngl.POINTS) self.boids_vao_2.buffer(self.boids_buffer_2, '2f 2f', ['in_position', 'in_velocity']) self.boids_texture = self.ctx.texture((MAX_TEX_WIDTH, N * 2 // MAX_TEX_WIDTH), components=2, dtype='f4') # Programs self.boids_render_program = self.load_program('programs/boids/boids_render.glsl') self.boids_transform_program = self.load_program('programs/boids/boids_transform.glsl') # Prepare for rendering self.m_proj = matrix44.create_orthogonal_projection( -self.aspect_ratio, self.aspect_ratio, -1.0, 1.0, -1.0, 1.0, dtype='f4', ) self.boids_render_program['m_proj'].write(self.m_proj.tobytes()) self.boids_transform_program['data'].value = 0 self.boids_transform_program['num_boids'].value = N self.boids_transform_program['tex_width'].value = MAX_TEX_WIDTH def render(self, time, frame_time): self.boids_texture.use(location=0) self.boids_transform_program['timedelta'].value = frame_time # max(frame_time, 1.0 / 60.0) self.boids_vao_1.transform(self.boids_transform_program, self.boids_buffer_2) self.boids_vao_2.render(self.boids_render_program) # Swap around .. self.boids_vao_1, self.boids_vao_2 = self.boids_vao_2, self.boids_vao_1 self.boids_buffer_1, self.boids_buffer_2 = self.boids_buffer_2, self.boids_buffer_1 # Write vertex data into texture so we can interate it in shader self.boids_texture.write(self.boids_buffer_1.read()) if __name__ == '__main__': moderngl_window.run_window_config(Boids)
StarcoderdataPython
108198
<gh_stars>1-10 num = int(input('Type a number between 0 and 9999: ')) u = num % 10 t = num // 10 % 10 h = num // 100 % 10 th = num // 1000 % 10 print(f'Unity: {u} \n' f'Ten: {t} \n' f'Hundred: {h} \n' f'Thousand: {th}')
StarcoderdataPython
1629975
<gh_stars>10-100 # coding: utf-8 from asyncio import Protocol, get_event_loop from config import cg_end_mark, cg_bytes_encoding class TcpServer(): def __init__(self): self.transports = set() self.server = None def register(self, transport): self.transports.add(transport) def unregister(self, transport): self.transports.remove(transport) def wrap(self, server): self.server = server tcpserver_singleton = TcpServer() class TcpProtocol(Protocol): """ asyncio.Protocol 继承类 不要手动实例化\n 每个protocol 匹配一个transport\n 每个client连接会创建一个新的protocol(同时匹配一个transport) """ def __init__(self): super().__init__() self._transport = None self.received = [] self.rev_totals = 0 self.send_totals = 0 self.state = None def connection_made(self, transport): self.state = "connected" self._transport = transport tcpserver_singleton.register(self._transport) peername = transport.get_extra_info('peername') print(type(peername)) print('Connection from {}'.format(peername)) def data_received(self, data): self.received.append(data) last_index = len(cg_end_mark) if cg_end_mark.encode(cg_bytes_encoding) == data[-last_index:]: complete_bdata = b"".join(self.received) print("++++++++",len(complete_bdata),"+++++++") from gateway import gateway_singleton gateway_singleton.handle_tcp_request(self._transport, complete_bdata) self.received = [] else: print("split TCP data") def connection_lost(self, exc): from gateway import gateway_singleton from utils import del_dict_item_by_value self.state = "closed" tcpserver_singleton.unregister(self._transport) self._transport.close() print("Connection lost", exc) del_dict_item_by_value(gateway_singleton.tcp_pk_dict, self._transport) del self def pause_writing(self): print(self._transport.get_write_buffer_size()) self.state = "paused" def resume_writing(self): print(self._transport.get_write_buffer_size()) self.state = "resumed" class TcpService(): """ tcp 服务抽象 """ @staticmethod async def create(addr): """ 返回一个coro object """ loop = get_event_loop() server = await loop.create_server(TcpProtocol, addr[0], addr[1]) tcpserver_singleton.wrap(server) return tcpserver_singleton
StarcoderdataPython
1713680
<gh_stars>1-10 import lark from lark.visitors import Transformer # pip3 install lark-parser # EBNF grammar = r""" start : value ?value : "true" -> true | "false" -> false | "null" -> null | array | object | NUMBER | STRING array : "[" (value ("," value)*)? "]" object : "{" (pair ("," pair)*)? "}" pair : STRING ":" value %import common.ESCAPED_STRING -> STRING %import common.SIGNED_NUMBER -> NUMBER """ class JSONTransformer(lark.Transformer): def null(self, children): return None def false(self, children): return False def true(self, children): return True def NUMBER(self, st): return int(st) def STRING(self, st): return st[1:-1] def array(self, children): return children def object(self, children): return dict(children) def pair(self, children): return tuple(children) def start(self, children): return children[0] parser = lark.Lark(grammar) def loads(text: str) -> object: """ Carrega um documento JSON e retorna o valor Python correspondente. """ tree = parser.parse(text) transformer = JSONTransformer() tree = transformer.transform(tree) if hasattr(tree, "pretty"): return tree.pretty() return tree # Exemplos print(loads("true")) print(loads("false")) print(loads("null")) print(loads("42")) print(loads('"Hello World"')) print(loads("[true,false,null,[1,2,3,[]]]")) print(loads('{"answer":[1,2,[]]}'))
StarcoderdataPython
1657627
<filename>combine_files.py<gh_stars>1-10 import glob2 ####################################################################### # find all file names with a .txt extension filenames = glob2.glob('data/political_news/fake_headlines/*.txt') # concatenate all individual files into one file with open("fake_headlines.txt", "w", encoding="ISO-8859-1") as f: for file in filenames: with open(file, encoding="ISO-8859-1") as infile: # append 'fake' parameter at end of each line f.write(infile.read()+"\t"+"fake"+"\n") ######################################################################## # find all file names with a .txt extension filenames = glob2.glob('data/political_news/real_headlines/*.txt') # concatenate all individual files into one file with open("real_headlines.txt", "w", encoding="ISO-8859-1") as f: for file in filenames: with open(file, encoding="ISO-8859-1") as infile: # append 'fake' parameter at end of each line f.write(infile.read()+"\t"+"real"+"\n") ########################################################################
StarcoderdataPython
3370508
""" Functionality for declaring and cross-referencing `Sphinx events <https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx-core-events>`_. Sphinx events occur at specific points in the Sphinx build. When an event is reached a signal is emitted with `sphinx.application.Sphinx.emit` that causes the build to "pause" and allow any connected functionality to do the desired processing. New functionality can be connected to an event with `sphinx.application.Sphinx.connect` and new events can be created using `sphinx.application.Sphinx.add_event`. The code contained in this module was taken and adapted from the ``conf.py`` file of `Sphinx's documentation <https://github.com/sphinx-doc/sphinx/blob/ 8653ceca0021f6ac6ff0aac6c26e2a455c6d4b21/doc/conf.py#L123-L138>`_. .. rst:directive:: .. event:: name (signature) A directive used for documenting Sphinx events. While this directive is not provided by Sphinx, it is usd by Sphinx and, thus, cross-linking is provided through the :confval:`intersphinx_mapping` configuration value with the `sphinx.ext.intersphinx` extension. The directive is used like... .. code-block:: rst .. event:: name (signature) Event documentation. | where ``name`` is the event name and ``signature`` represents what the connected function's signature should look like. .. rubric:: Example The following example illustrates how to document the ``dummy-event`` event. .. code-block:: rst .. event:: dummy-event (app, node) :param app: Instance of the Sphinx applications. :param node: The pending node to be resolved. This is just a dummy event for demonstration purposes. The code renders like... .. event:: dummy-event (app, node) :param app: Instance of the Sphinx applications. :param node: The pending node to be resolved. This is just a dummy event for demonstration purposes. .. rst:role:: event This role is provided for easy cross-linking to an event's definition. For example, doing ``:event:`dummy-event``` will cross-link to the ``dummy-event`` definition like :event:`dummy-event`. Or, a link to Sphinx's ``builder-inited`` event goes like ``:event:`builder-inited``` -> :event:`builder-inited`. *Linking to external packages is made possible when using* `sphinx.ext.intersphinx`. """ import re from sphinx import addnodes from sphinx.application import Sphinx from sphinx.util.docfields import GroupedField def parse_event(env, sig, signode): """ Used to set up the ``event`` directive and role for documenting Sphinx events. Taken from the ``conf.py`` file of `Sphinx's documentation <https://github.com/sphinx-doc/sphinx/blob/ 8653ceca0021f6ac6ff0aac6c26e2a455c6d4b21/doc/conf.py#L123-L138>`_. Parameters ---------- env : sphinx.environment.BuildEnvironment Instance of the Sphinx's build environment. sig : str The "signature" given the the event directive or role. For example, .. code-block:: rst .. event:: foo(bar) :event:`foo` in the directive case ``foo(bar)`` would be the signature and in the role case ``foo`` would be the signature. signode : sphinx.addnodes.desc_signature A `docutils` Node for the object signatures. """ event_sig_re = re.compile(r"([a-zA-Z-_]+)\s*\((.*)\)") match = event_sig_re.match(sig) if not match: signode += addnodes.desc_name(sig, sig) return sig name, args = match.groups() signode += addnodes.desc_name(name, name) plist = addnodes.desc_parameterlist() for arg in args.split(","): arg = arg.strip() plist += addnodes.desc_parameter(arg, arg) signode += plist return name def setup(app: Sphinx) -> None: """ A `sphinx` ``setup()`` function setting up the :rst:dir:`event` directive and :rst:role:`event` role. """ # this was taken from the sphinx conf.py file and creates the documenting # directive `.. event::` and role `:event:` for documenting sphinx events app.add_object_type( directivename="event", rolename="event", indextemplate="pair: %s; event", parse_node=parse_event, doc_field_types=[ GroupedField( "parameter", label="Parameters", names=("param",), can_collapse=True, ) ], )
StarcoderdataPython
3261265
<gh_stars>1-10 #!/usr/bin/env python import asyncio import click from nempy.sym.network import NodeSelector @click.command() @click.option('-h', '--host', 'hosts', default=tuple('google.com'), type=str, multiple=True, help='host to check latency') @click.option('-p', '--port', default=443, help='port to check') @click.option('-r', '--runs', default=3, help='port to check') def main(hosts, port, runs): loop = asyncio.get_event_loop() for i, host in enumerate(hosts): latency = loop.run_until_complete(NodeSelector.measure_latency(host=host, port=port, runs=runs)) if None in latency: print(print(f'{i+1}. {host}:{port} - --')) continue print(f'{i+1}. {host}:{port} - {sum(latency)/runs}') if __name__ == '__main__': main()
StarcoderdataPython
6581
<reponame>rodlukas/UP-admin<filename>admin/migrations/0041_course_color.py # Generated by Django 2.2.3 on 2019-07-31 13:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("admin", "0040_auto_20190718_0938")] operations = [ migrations.AddField( model_name="course", name="color", field=models.CharField(default="#000", max_length=7) ) ]
StarcoderdataPython
191262
import numpy as np from ccgowl.models.functions.function import Function from ccgowl.models.functions.owl import OWL def _get_off_diagonal_entries(x): lt_indices = np.tril_indices_from(x, -1) lt_indices = list(zip(*lt_indices)) return lt_indices, np.array([x[i][j] for i, j in lt_indices]) class GOWL(Function): def eval(self, x, weights): """ g(X) = sum_{i=1}^p rho_i * |x|_[i] :param x: (p x p) matrix :param weights: weights for owl penalty """ nsfunc = OWL() _, off_diagonal_entries = _get_off_diagonal_entries(x) return nsfunc.eval(off_diagonal_entries, weights) def gradient(self, beta, weights): raise NotImplementedError("The OWL function is a non-smooth function. \n" "Please call the prox function.") def prox(self, x, weights): """ :param x: (p x p) matrix :param weights: weights for owl penalty """ nsfunc = OWL() lt_indices, off_diagonal_entries = _get_off_diagonal_entries(x) prox_x = nsfunc.prox(off_diagonal_entries, weights) for i, pair in enumerate(lt_indices): x[pair] = prox_x[i] return np.tril(x, -1) + np.tril(x).T def hessian(self): raise NotImplementedError("The OWL function is a non-smooth function. \n" "Please call the prox function.")
StarcoderdataPython
3227514
<reponame>netcadlabs/ndu-gate<gh_stars>1-10 import math import cv2 import numpy as np def is_inside_polygon(polygon, point): # ref:https://stackoverflow.com/a/2922778/1266873 # int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy) # { # int i, j, c = 0; # for (i = 0, j = nvert-1; i < nvert; j = i++) { # if ( ((verty[i]>testy) != (verty[j]>testy)) && # (testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) ) # c = !c; # } # return c; # } def pnpoly(nvert, vertx, verty, testx, testy): i = 0 j = nvert - 1 c = False while True: j = i i += 1 if i >= nvert: break if (verty[i] > testy) != (verty[j] > testy) and testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / ( verty[j] - verty[i]) + vertx[i]: c = not c return c vertx = [] verty = [] for p in polygon: vertx.append(p[0]) verty.append(p[1]) if polygon[-1] is not polygon[0]: p = polygon[0] vertx.append(p[0]) verty.append(p[1]) return pnpoly(len(vertx), vertx, verty, point[0], point[1]) def is_inside_rect(rect, point): e = 0.001 x = point[0] if x < rect[1] - e: return False elif x > rect[3] + e: return False y = point[1] if y < rect[0] - e: return False elif y > rect[2] + e: return False return True def rects_intersect(rect1, rect2): class Rectangle: def intersects(self, other): a, b = self, other x1 = max(min(a.x1, a.x2), min(b.x1, b.x2)) y1 = max(min(a.y1, a.y2), min(b.y1, b.y2)) x2 = min(max(a.x1, a.x2), max(b.x1, b.x2)) y2 = min(max(a.y1, a.y2), max(b.y1, b.y2)) return x1 < x2 and y1 < y2 def _set(self, x1, y1, x2, y2): if x1 > x2 or y1 > y2: raise ValueError("Coordinates are invalid") self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 def __init__(self, bbox): self._set(bbox[0], bbox[1], bbox[2], bbox[3]) return Rectangle(rect1).intersects(Rectangle(rect2)) def rects_overlap(rect1, rect2, min_ratio): w1 = rect1[2] - rect1[0] w2 = rect2[2] - rect2[0] w_min = min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]) if (w_min / w1) >= min_ratio or (w_min / w2) >= min_ratio: h1 = rect1[3] - rect1[1] h2 = rect2[3] - rect2[1] h_min = min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]) return (h_min / h1) >= min_ratio or (h_min / h2) >= min_ratio return False def add_padding_rect(rect, padding): x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3] dw = (x2 - x1) * padding dh = (y2 - y1) * padding return [x1 - dw, y1 - dh, x2 + dw, y2 + dh] def distance(p1, p2): return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) def get_rect_values(rect): # y1, x1, y2, x2 return rect[0], rect[1], rect[2], rect[3] def get_rect_pnts(rect): # p1, p2 return (rect[1], rect[0]), (rect[3], rect[2]) def get_rect(p1, p2): return [p1[1], p1[0], p2[1], p2[0]] def get_rect_bottom_center(rect): r1 = rect[1] r2 = rect[2] r3 = rect[3] return int(r1 + (r3 - r1) * 0.5), r2 # bottom center def get_dist_sq(p1, p2): d1 = p2[0] - p1[0] d2 = p2[1] - p1[1] return d1 * d1 + d2 * d2 def get_center_int(pnts): x = 0 y = 0 for pnt in pnts: x += pnt[0] y += pnt[1] length = float(len(pnts)) return [int(x / length), int(y / length)]
StarcoderdataPython