id
stringlengths 1
265
| text
stringlengths 6
5.19M
| dataset_id
stringclasses 7
values |
---|---|---|
1762195 | <filename>Alice/Sorting/Insertion_Sort.py<gh_stars>1-10
class InsertionSort:
def __init__(self,array):
self.array = array
def result(self):
for i in range(1,len(self.array)):
for j in range(i-1,-1,-1):
if self.array[j] > self.array[j+1]:
self.array[j],self.array[j+1] = self.array[j+1],self.array[j]
return self.array
test = list(map(int,input().split(' ')))
t = InsertionSort(test)
print(t.result())
| StarcoderdataPython |
3226610 | <gh_stars>0
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
from tqdm import tqdm
class EvolutionaryParameterOptimizer:
"""
Evolutionary Algorithm Optimizer for arbitrary parameter_discretization which allows it to solve integer optimizations
"""
def __init__(self, parameter_ranges, parameter_discretization, fitness_function, population_size=20,
replacement_proportion=0.5, generations=20, minimize=False, show_evolution=False,
random_variation_probability=0.1, crossover_probability=0.7):
self.minimize = minimize
self.show_evolution = show_evolution
if self.show_evolution:
plt.ion()
self.cb = None
self.population_size = population_size
assert 0 < self.population_size
self.replacement_proportion = replacement_proportion
assert 0.0 < self.replacement_proportion <= 1.0
self.parameter_ranges = np.array(parameter_ranges)
self.parameter_discretization = np.array(parameter_discretization)
assert len(self.parameter_ranges) == len(self.parameter_discretization)
self.fitness_function = fitness_function
self.best_individual = None
self.best_fitness = float("inf") if self.minimize else -float("inf")
self.fitnesses = np.zeros(self.population_size)
self.parameter_interval = self.parameter_ranges[:, 1] - self.parameter_ranges[:, 0]
self.population = np.random.random((self.population_size, len(self.parameter_ranges))) *\
self.parameter_interval + self.parameter_ranges[:, 0]
self.population -= (self.population % self.parameter_discretization)
self.generations = generations
assert 0 < self.generations
self.random_variation_probability = random_variation_probability
assert 0.0 <= self.random_variation_probability <= 1.0
self.crossover_probability = self.random_variation_probability + crossover_probability
assert 0.0 <= self.crossover_probability <= 1.0
self.fitness_cache = dict()
self.best_fitnesses = []
self.optimize()
def evaluate_fitness(self):
fitnesses = []
for individual in self.population:
if tuple(individual) in self.fitness_cache:
fitness = self.fitness_cache[tuple(individual)]
else:
fitness = self.fitness_function(*individual)
self.fitness_cache[tuple(individual)] = fitness
fitnesses.append(fitness)
if (self.minimize and fitness < self.best_fitness) or (not self.minimize and fitness > self.best_fitness):
self.best_fitness = fitness
self.best_individual = individual
self.fitnesses = np.array(fitnesses)
self.best_fitnesses.append(self.best_fitness)
def replacement(self):
population_fitness_variation = self.get_population_fitness_variation(noise_level=0.01)
survivors_inx = sorted(range(self.population_size),
key=lambda x: population_fitness_variation[x],
reverse=True)[0:int(self.population_size * self.replacement_proportion)]
self.population = self.population[survivors_inx]
self.fitnesses = self.fitnesses[survivors_inx]
def get_population_fitness_variation(self, noise_level=0.0):
population_fitness_variation = -1 * self.fitnesses if self.minimize else self.fitnesses
population_fitness_variation += np.random.normal(0, noise_level, population_fitness_variation.shape)
population_fitness_variation -= population_fitness_variation.min()
return population_fitness_variation
def population_variation(self):
population_fitness_variation = self.get_population_fitness_variation(noise_level=0.01)
new_population = list(self.population)
total_fitness_variation = sum(population_fitness_variation)
_selection_weights = (population_fitness_variation / total_fitness_variation)
while len(new_population) < self.population_size:
rnd = np.random.random()
if rnd < self.random_variation_probability: # go random (random_variation_probability of time)
child = np.random.random((len(self.parameter_ranges))) * self.parameter_interval + self.parameter_ranges[:, 0]
child -= (child % self.parameter_discretization)
elif rnd < self.crossover_probability: # sexual reproduction (crossover_probability of time)
father_index, mother_index = np.random.choice(range(len(self.population)), 2,
replace=False, p=_selection_weights)
father, mother = self.population[father_index], self.population[mother_index]
child = (father + mother) / 2
child -= (child % self.parameter_discretization)
else: # asexual reproduction (rest of time)
parent_index = np.random.choice(range(len(self.population)), 1,
replace=False, p=_selection_weights)[0]
parent = self.population[parent_index]
child = []
for i in range(len(parent)):
s = int(np.std(self.population[:, i]) + 1)
d = s * int(np.random.normal(0, 10)) * self.parameter_discretization[i]
child_param = parent[i] + d
child_param = min(self.parameter_ranges[i][1], child_param)
child_param = max(self.parameter_ranges[i][0], child_param)
child.append(child_param)
new_population.append(np.array(child))
self.population = np.array(new_population)
def optimize(self):
for _ in tqdm(range(self.generations)):
self.population_variation()
self.evaluate_fitness()
if self.show_evolution:
self.show()
self.replacement()
def show(self):
if len(self.best_individual) == 2:
plt.cla()
xs = self.population
x, y = xs[:, 0], xs[:, 1]
z = self.fitnesses
sc = plt.scatter(x, y, c=z, marker='o', cmap=cm.jet, label="all_fitnesses")
if self.best_individual is not None:
plt.scatter(self.best_individual[0], self.best_individual[1], c='r', marker='^', label="best_fitness")
if self.cb is None:
self.cb = plt.colorbar(sc)
plt.xlim(*self.parameter_ranges[0])
plt.ylim(*self.parameter_ranges[1])
plt.pause(0.00001)
else:
plt.cla()
plt.plot(self.best_fitnesses)
plt.pause(0.00001)
| StarcoderdataPython |
3356701 | <gh_stars>10-100
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
@version: ??
@author: li
@file: rnn_model_attention.py
@time: 2018/3/27 下午5:41
"""
import tensorflow as tf
from attention import attention
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
class TRNNConfig(object):
embedding_dim = 64 # 词向量维度
seq_length = 600 # 序列长度
num_classes = 10 # 类别数
vocab_size = 5000 # 词汇表大小
num_layers = 2 # 隐藏层层数
hidden_dim = 128 # 隐藏神经单元个数
rnn = 'gru' # lstm 或 gru
attention = True
attention_size = 50
dropout_keep_prob = 0.8
learning_rate = 1e-3
batch_size = 128
num_epochs = 10
print_per_batch = 100
save_per_batch = 10
class TextRNN(object):
def __init__(self, config):
self.config = config
self._build_graph()
def lstm_cell(self):
return tf.contrib.rnn.BasicLSTMCell(self.config.hidden_dim, state_is_tuple=True)
def gru_cell(self):
return tf.contrib.rnn.GRUCell(self.config.hidden_dim)
def dropout(self):
if self.config.rnn == 'lstm':
cell = self.lstm_cell()
else:
cell = self.gru_cell()
return tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=self.dropout_keep_prob)
def _build_graph(self):
with tf.variable_scope("InputData"):
# input_x:[batch_size, seq_length]
self.input_x = tf.placeholder(tf.int32, [None, self.config.seq_length], name='input_x')
# input_y:[batch_size, num_classes]
self.input_y = tf.placeholder(tf.int32, [None, self.config.num_classes], name='input_y')
self.dropout_keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob')
with tf.device('/cpu:0'), tf.name_scope('embedding_layer'):
# embedding:[vocab_size, embedding_dim]
self.embedding = tf.get_variable('embedding', [self.config.vocab_size, self.config.embedding_dim])
embedding_inputs = tf.nn.embedding_lookup(self.embedding, self.input_x)
with tf.name_scope("RNN"):
cells = [self.dropout() for _ in range(self.config.num_layers)]
rnn_cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)
self._outputs, _ = tf.nn.dynamic_rnn(cell=rnn_cell, inputs=embedding_inputs, dtype=tf.float32)
print('shape_of_outputs: %s' % self._outputs.get_shape())
if self.config.attention is True:
with tf.name_scope('AttentionLayer'):
# Attention layer
attention_output, self.alphas = attention(self._outputs, self.config.attention_size, return_alphas=True)
last = tf.nn.dropout(attention_output, self.dropout_keep_prob)
else:
last = self._outputs[:, -1, :] # 取最后一个时序输出作为结果
# print('shape_of_outputs: %s' % last.get_shape())
with tf.name_scope("ScoreLayer"):
# Fully connected layer
fc = tf.layers.dense(last, self.config.hidden_dim, name='fc1')
fc = tf.contrib.layers.dropout(fc, self.dropout_keep_prob)
fc = tf.nn.relu(fc)
self.logits = tf.layers.dense(fc, self.config.num_classes, name='fc2')
self.y_pred_cls = tf.argmax(tf.nn.softmax(self.logits), 1)
with tf.name_scope("OptimizerLayer"):
# 损失函数,交叉熵
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y)
self.loss = tf.reduce_mean(cross_entropy)
# 优化器
self.optim = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate).minimize(self.loss)
with tf.name_scope("Accuracy"):
correct_pred = tf.equal(tf.argmax(self.input_y, 1), self.y_pred_cls)
self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
| StarcoderdataPython |
1730111 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Helper functions to train a model."""
| StarcoderdataPython |
2500 | # -*- coding: utf-8 -*-
__author__ = """<NAME>"""
__email__ = '<EMAIL>'
__version__ = '0.1.0'
| StarcoderdataPython |
3229433 | from .produces import *
from .dependencies import * | StarcoderdataPython |
107326 | <reponame>utsavdey/Fundamentals_Of_Deep_Learning_Assignments<filename>Assignment1/grad.py<gh_stars>0
import numpy as np
def cross_entropy_grad(y_hat, label):
# grad w.r.t out activation
temp = np.zeros_like(y_hat)
# If the initial guess is very wrong. This gradient will explode. This places a limit on that.
if y_hat[label] < 10 ** -8:
y_hat[label] = 10 ** -8
temp[label] = -1 / (y_hat[label])
norm = np.linalg.norm(temp)
if norm > 100.0:
return temp * 100.0 / norm
else:
return temp
def squared_error_grad(y_hat, label):
# grad w.r.t out activation
temp = np.copy(y_hat)
temp[label] -= 1
temp = 2 * temp
temp = temp / len(y_hat)
norm = np.linalg.norm(temp)
if norm > 100.0:
return temp * 100.0 / norm
else:
return temp
def output_grad(y_hat, label, loss_type):
if loss_type == 'cross_entropy':
return cross_entropy_grad(y_hat=y_hat, label=label)
elif loss_type == 'squared_error':
return squared_error_grad(y_hat=y_hat, label=label)
def last_grad(y_hat, label):
# grad w.r.t out last layer
temp = np.copy(y_hat)
temp[label] = temp[label] - 1
norm = np.linalg.norm(temp)
if norm > 100.0:
return temp * 100.0 / norm
else:
return temp
# this function helps in calculation of gradient w.r.t 'a_i''s when activation function is sigmoid.We have passed h_is
def sigmoid_grad(post_activation):
return np.multiply(post_activation, 1 - post_activation)
# this function helps in calculation of gradient w.r.t 'a_i''s when activation function is tanh. We have passed h_is
def tanh_grad(post_activation):
return 1 - np.power(post_activation, 2)
# this function helps in calculation of gradient w.r.t 'a_i''s when activation function is relu.
def relu_grad(pre_activation_vector):
grad = np.copy(pre_activation_vector)
# making +ve and 0 component 1
grad[grad >= 0] = 1
# making -ve component 0
grad[grad < 0] = 0
return grad
def a_grad(network, transient_gradient, layer):
# grad w.r.t a_i's layer
if network[layer]['context'] == 'sigmoid':
active_grad_ = sigmoid_grad(network[layer]['h'])
elif network[layer]['context'] == 'tanh':
active_grad_ = tanh_grad(network[layer]['h'])
elif network[layer]['context'] == 'relu':
active_grad_ = relu_grad(network[layer]['a'])
temp = np.multiply(transient_gradient[layer]['h'], active_grad_)
norm = np.linalg.norm(temp)
if norm > 100.0:
return temp * 100.0 / norm
else:
return temp
# hadamard multiplication
def h_grad(network, transient_gradient, layer):
# grad w.r.t out h_i layer
network[layer]['weight'].transpose()
temp = network[layer + 1]['weight'].transpose() @ transient_gradient[layer + 1]['a']
norm = np.linalg.norm(temp)
if norm > 100.0:
return temp * 100.0 / norm
else:
return temp
def w_grad(network, transient_gradient, layer, x):
if layer == 0:
temp = transient_gradient[layer]['a'] @ x.transpose()
else:
temp = transient_gradient[layer]['a'] @ network[layer - 1]['h'].transpose()
norm = np.linalg.norm(temp)
if norm > 10000.0:
return temp * 10000.0 / norm
else:
return temp
| StarcoderdataPython |
1696441 | import logging
from requests import request
import json
logger = logging.getLogger("ghproject")
def post_request(url: str, data: dict, headers: dict):
"""Send data to GitHub API
Parameters
----------
url : str
url to request
data : dict
data to be send to url
headers : dict
GitHub authentication details
Returns
-------
list
content of request
"""
payload = json.dumps(data)
r = request("POST", url=url, data=payload, headers=headers)
if r.status_code in [201, 202]:
logger.debug("Successfully executed the POST request")
return json.loads(r.content)
elif r.status_code == 401:
logger.warning("Status: 401 Unauthorized")
else:
logger.warning(json.loads(r.content)["errors"][0]["message"])
def get_request(url: str, headers: dict):
"""Retrieve data from GitHub API
Parameters
----------
url : str
url to request
headers : dict
authentication details
Returns
-------
list
content of request
"""
r = request("GET", url=url, headers=headers)
if r.status_code == 200:
logger.debug("Successfully executed the GET request")
return json.loads(r.content)
elif r.status_code == 401:
logger.warning("Status: 401 Unauthorized")
return None
else:
logger.error(json.loads(r.content)["errors"][0]["message"])
return None
def verify_authentication(url, headers):
"""Verify authentication to GitHub repository
Parameters
----------
url : str
url to request
headers : dict
authentication details
"""
r = request("GET", url=url, headers=headers)
if r.status_code == 200:
logger.info(f"Authentication successful to {url}")
elif r.status_code == 401:
logger.warning("Status: 401 Unauthorized")
else:
logger.error(f"Status {r.status_code}, {json.loads(r.content)}")
| StarcoderdataPython |
1654194 | from app import app
from .routes import france_routes
app.register_blueprint(france_routes) | StarcoderdataPython |
4820516 | import pytest
def test_get_sample_ecommerce_dataset():
from relevanceai.datasets import get_ecommerce_1_dataset
assert len(get_ecommerce_1_dataset(number_of_documents=100)) == 100
def test_get_games_dataset_subset():
from relevanceai.datasets import get_games_dataset
assert len(get_games_dataset(number_of_documents=100)) == 100
@pytest.mark.skip(reason="Min time to insight")
def test_get_games_dataset_full():
from relevanceai.datasets import get_games_dataset
assert len(get_games_dataset(number_of_documents=None)) == 365
@pytest.mark.skip(reason="Skipping as large file in memory")
def test_get_online_retail_dataset_subset():
from relevanceai.datasets import get_online_retail_dataset
assert len(get_online_retail_dataset(number_of_documents=1000)) == 1000
@pytest.mark.skip(reason="Skipping as large file in memory")
def test_get_online_retail_dataset_full():
from relevanceai.datasets import get_online_retail_dataset
assert len(get_online_retail_dataset(number_of_documents=None)) == 406829
def test_get_news_dataset_subset():
from relevanceai.datasets import get_news_dataset
assert len(get_news_dataset(number_of_documents=100)) == 100
@pytest.mark.skip(reason="Min time to insight")
def test_get_news_dataset_full():
from relevanceai.datasets import get_news_dataset
assert len(get_news_dataset(number_of_documents=None)) == 250
def test_get_ecommerce_dataset_subset():
from relevanceai.datasets import get_ecommerce_3_dataset
assert len(get_ecommerce_3_dataset(number_of_documents=1000)) == 1000
@pytest.mark.skip(reason="Min time to insight")
def test_get_ecommerce_dataset_full():
from relevanceai.datasets import get_ecommerce_3_dataset
assert len(get_ecommerce_3_dataset(number_of_documents=None)) == 15528
| StarcoderdataPython |
1764786 | <filename>lowhaio.py
import asyncio
import contextlib
import ipaddress
import logging
import urllib.parse
import ssl
import socket
from aiodnsresolver import (
TYPES,
DnsError,
Resolver,
ResolverLoggerAdapter,
)
class HttpError(Exception):
pass
class HttpConnectionError(HttpError):
pass
class HttpDnsError(HttpConnectionError):
pass
class HttpTlsError(HttpConnectionError):
pass
class HttpDataError(HttpError):
pass
class HttpConnectionClosedError(HttpDataError):
pass
class HttpHeaderTooLong(HttpDataError):
pass
class HttpLoggerAdapter(logging.LoggerAdapter):
def process(self, msg, kwargs):
return \
('[http] %s' % (msg,), kwargs) if not self.extra else \
('[http:%s] %s' % (','.join(str(v) for v in self.extra.values()), msg), kwargs)
def get_logger_adapter_default(extra):
return HttpLoggerAdapter(logging.getLogger('lowhaio'), extra)
def get_resolver_logger_adapter_default(http_extra):
def _get_resolver_logger_adapter_default(resolver_extra):
http_adapter = HttpLoggerAdapter(logging.getLogger('aiodnsresolver'), http_extra)
return ResolverLoggerAdapter(http_adapter, resolver_extra)
return _get_resolver_logger_adapter_default
async def empty_async_iterator():
while False:
yield
get_current_task = \
asyncio.current_task if hasattr(asyncio, 'current_task') else \
asyncio.Task.current_task
def streamed(data):
async def _streamed():
yield data
return _streamed
async def buffered(data):
return b''.join([chunk async for chunk in data])
def get_nonblocking_sock():
sock = socket.socket(family=socket.AF_INET, type=socket.SOCK_STREAM, proto=socket.IPPROTO_TCP)
sock.setsockopt(socket.SOL_TCP, socket.TCP_NODELAY, 1)
sock.setblocking(False)
return sock
def set_tcp_cork(sock):
sock.setsockopt(socket.SOL_TCP, socket.TCP_CORK, 1) # pylint: disable=no-member
def unset_tcp_cork(sock):
sock.setsockopt(socket.SOL_TCP, socket.TCP_CORK, 0) # pylint: disable=no-member
async def send_body_async_gen_bytes(logger, loop, sock, socket_timeout,
body, body_args, body_kwargs):
logger.debug('Sending body')
num_bytes = 0
async for chunk in body(*body_args, **dict(body_kwargs)):
num_bytes += len(chunk)
await send_all(loop, sock, socket_timeout, chunk)
logger.debug('Sent body bytes: %s', num_bytes)
async def send_header_tuples_of_bytes(logger, loop, sock, socket_timeout,
http_version, method, parsed_url, params, headers):
logger.debug('Sending header')
outgoing_qs = urllib.parse.urlencode(params, doseq=True).encode()
outgoing_path = urllib.parse.quote(parsed_url.path).encode()
outgoing_path_qs = outgoing_path + \
((b'?' + outgoing_qs) if outgoing_qs != b'' else b'')
host_specified = any(True for key, value in headers if key == b'host')
headers_with_host = \
headers if host_specified else \
((b'host', parsed_url.hostname.encode('idna')),) + headers
await send_all(loop, sock, socket_timeout, b'%s %s %s\r\n%s\r\n' % (
method, outgoing_path_qs, http_version, b''.join(
b'%s:%s\r\n' % (key, value)
for (key, value) in headers_with_host
)
))
logger.debug('Sent header')
def Pool(
get_dns_resolver=Resolver,
get_sock=get_nonblocking_sock,
get_ssl_context=ssl.create_default_context,
sock_pre_message=set_tcp_cork if hasattr(socket, 'TCP_CORK') else lambda _: None,
sock_post_message=unset_tcp_cork if hasattr(socket, 'TCP_CORK') else lambda _: None,
send_header=send_header_tuples_of_bytes,
send_body=send_body_async_gen_bytes,
http_version=b'HTTP/1.1',
keep_alive_timeout=15,
recv_bufsize=16384,
max_header_length=16384,
socket_timeout=10,
get_logger_adapter=get_logger_adapter_default,
get_resolver_logger_adapter=get_resolver_logger_adapter_default,
):
loop = \
asyncio.get_running_loop() if hasattr(asyncio, 'get_running_loop') else \
asyncio.get_event_loop()
ssl_context = get_ssl_context()
logger_extra = {}
logger = get_logger_adapter({})
dns_resolve, dns_resolver_clear_cache = get_dns_resolver(
get_logger_adapter=get_resolver_logger_adapter_default(logger_extra),
)
pool = {}
async def request(method, url, params=(), headers=(),
body=empty_async_iterator, body_args=(), body_kwargs=(),
get_logger_adapter=get_logger_adapter,
get_resolver_logger_adapter=get_resolver_logger_adapter,
):
parsed_url = urllib.parse.urlsplit(url)
logger_extra = {'lowhaio_method': method.decode(), 'lowhaio_url': url}
logger = get_logger_adapter(logger_extra)
try:
ip_addresses = (ipaddress.ip_address(parsed_url.hostname),)
except ValueError:
try:
ip_addresses = await dns_resolve(
parsed_url.hostname, TYPES.A,
get_logger_adapter=get_resolver_logger_adapter(logger_extra),
)
except DnsError as exception:
raise HttpDnsError() from exception
key = (parsed_url.scheme, parsed_url.netloc)
sock = get_from_pool(logger, key, ip_addresses)
if sock is None:
sock = get_sock()
try:
logger.debug('Connecting: %s', sock)
await connect(sock, parsed_url, str(ip_addresses[0]))
logger.debug('Connected: %s', sock)
except asyncio.CancelledError:
sock.close()
raise
except Exception as exception:
sock.close()
raise HttpConnectionError() from exception
except BaseException:
sock.close()
raise
try:
if parsed_url.scheme == 'https':
logger.debug('TLS handshake started')
sock = tls_wrapped(sock, parsed_url.hostname)
await tls_complete_handshake(loop, sock, socket_timeout)
logger.debug('TLS handshake completed')
except asyncio.CancelledError:
sock.close()
raise
except Exception as exception:
sock.close()
raise HttpTlsError() from exception
except BaseException:
sock.close()
raise
try:
sock_pre_message(sock)
await send_header(logger, loop, sock, socket_timeout, http_version,
method, parsed_url, params, headers)
await send_body(logger, loop, sock, socket_timeout, body, body_args, body_kwargs)
sock_post_message(sock)
code, version, response_headers, unprocessed = await recv_header(sock)
logger.debug('Received header with code: %s', code)
connection, body_length, body_handler = connection_length_body_handler(
logger, method, version, response_headers)
response_body = response_body_generator(
logger, sock, unprocessed, key, connection, body_length, body_handler)
except asyncio.CancelledError:
sock.close()
raise
except Exception as exception:
sock.close()
if isinstance(exception, HttpDataError):
raise
raise HttpDataError() from exception
except BaseException:
sock.close()
raise
return code, response_headers, response_body
def get_from_pool(logger, key, ip_addresses):
try:
socks = pool[key]
except KeyError:
logger.debug('Connection not in pool: %s', key)
return None
while socks:
_sock, close_callback = next(iter(socks.items()))
close_callback.cancel()
del socks[_sock]
try:
connected_ip = ipaddress.ip_address(_sock.getpeername()[0])
except OSError:
logger.debug('Unable to get peer name: %s', _sock)
_sock.close()
continue
if connected_ip not in ip_addresses:
logger.debug('Not current for domain, closing: %s', _sock)
_sock.close()
continue
logger.debug('Reusing connection %s', _sock)
if _sock.fileno() != -1:
return _sock
del pool[key]
def add_to_pool(key, sock):
try:
key_pool = pool[key]
except KeyError:
key_pool = {}
pool[key] = key_pool
key_pool[sock] = loop.call_later(keep_alive_timeout, close_by_keep_alive_timeout,
key, sock)
def close_by_keep_alive_timeout(key, sock):
logger.debug('Closing by timeout: %s,%s', key, sock)
sock.close()
del pool[key][sock]
if not pool[key]:
del pool[key]
async def connect(sock, parsed_url, ip_address):
scheme = parsed_url.scheme
_, _, port_specified = parsed_url.netloc.partition(':')
port = \
port_specified if port_specified != '' else \
443 if scheme == 'https' else \
80
address = (ip_address, port)
await loop.sock_connect(sock, address)
def tls_wrapped(sock, host):
return ssl_context.wrap_socket(sock, server_hostname=host, do_handshake_on_connect=False)
async def recv_header(sock):
unprocessed = b''
while True:
unprocessed += await recv(loop, sock, socket_timeout, recv_bufsize)
try:
header_end = unprocessed.index(b'\r\n\r\n')
except ValueError:
if len(unprocessed) >= max_header_length:
raise HttpHeaderTooLong()
continue
else:
break
header_bytes, unprocessed = unprocessed[:header_end], unprocessed[header_end + 4:]
lines = header_bytes.split(b'\r\n')
code = lines[0][9:12]
version = lines[0][5:8]
response_headers = tuple(
(key.strip().lower(), value.strip())
for line in lines[1:]
for (key, _, value) in (line.partition(b':'),)
)
return code, version, response_headers, unprocessed
async def response_body_generator(
logger, sock, unprocessed, key, connection, body_length, body_handler):
try:
generator = body_handler(logger, sock, body_length, unprocessed)
unprocessed = None # So can be garbage collected
logger.debug('Receiving body')
num_bytes = 0
async for chunk in generator:
yield chunk
num_bytes += len(chunk)
logger.debug('Received transfer-decoded body bytes: %s', num_bytes)
except BaseException:
sock.close()
raise
else:
if connection == b'keep-alive':
logger.debug('Keeping connection alive: %s', sock)
add_to_pool(key, sock)
else:
logger.debug('Closing connection: %s', sock)
sock.close()
def connection_length_body_handler(logger, method, version, response_headers):
headers_dict = dict(response_headers)
transfer_encoding = headers_dict.get(b'transfer-encoding', b'identity')
logger.debug('Effective transfer-encoding: %s', transfer_encoding)
connection = \
b'close' if keep_alive_timeout == 0 else \
headers_dict.get(b'connection', b'keep-alive').lower() if version == b'1.1' else \
headers_dict.get(b'connection', b'close').lower()
logger.debug('Effective connection: %s', connection)
body_length = \
0 if method == b'HEAD' else \
0 if connection == b'keep-alive' and b'content-length' not in headers_dict else \
None if b'content-length' not in headers_dict else \
int(headers_dict[b'content-length'])
uses_identity = (method == b'HEAD' or transfer_encoding == b'identity')
body_handler = \
identity_handler_known_body_length if uses_identity and body_length is not None else \
identity_handler_unknown_body_length if uses_identity else \
chunked_handler
return connection, body_length, body_handler
async def identity_handler_known_body_length(logger, sock, body_length, unprocessed):
logger.debug('Expected incoming body bytes: %s', body_length)
total_remaining = body_length
if unprocessed and total_remaining:
total_remaining -= len(unprocessed)
yield unprocessed
while total_remaining:
unprocessed = None # So can be garbage collected
unprocessed = await recv(loop, sock, socket_timeout,
min(recv_bufsize, total_remaining))
total_remaining -= len(unprocessed)
yield unprocessed
async def identity_handler_unknown_body_length(logger, sock, _, unprocessed):
logger.debug('Unknown incoming body length')
if unprocessed:
yield unprocessed
unprocessed = None # So can be garbage collected
try:
while True:
yield await recv(loop, sock, socket_timeout, recv_bufsize)
except HttpConnectionClosedError:
pass
async def chunked_handler(_, sock, __, unprocessed):
while True:
# Fetch until have chunk header
while b'\r\n' not in unprocessed:
if len(unprocessed) >= max_header_length:
raise HttpHeaderTooLong()
unprocessed += await recv(loop, sock, socket_timeout, recv_bufsize)
# Find chunk length
chunk_header_end = unprocessed.index(b'\r\n')
chunk_header_hex = unprocessed[:chunk_header_end]
chunk_length = int(chunk_header_hex, 16)
# End of body signalled by a 0-length chunk
if chunk_length == 0:
while b'\r\n\r\n' not in unprocessed:
if len(unprocessed) >= max_header_length:
raise HttpHeaderTooLong()
unprocessed += await recv(loop, sock, socket_timeout, recv_bufsize)
break
# Remove chunk header
unprocessed = unprocessed[chunk_header_end + 2:]
# Yield whatever amount of chunk we have already, which
# might be nothing
chunk_remaining = chunk_length
in_chunk, unprocessed = \
unprocessed[:chunk_remaining], unprocessed[chunk_remaining:]
if in_chunk:
yield in_chunk
chunk_remaining -= len(in_chunk)
# Fetch and yield rest of chunk
while chunk_remaining:
unprocessed += await recv(loop, sock, socket_timeout, recv_bufsize)
in_chunk, unprocessed = \
unprocessed[:chunk_remaining], unprocessed[chunk_remaining:]
chunk_remaining -= len(in_chunk)
yield in_chunk
# Fetch until have chunk footer, and remove
while len(unprocessed) < 2:
unprocessed += await recv(loop, sock, socket_timeout, recv_bufsize)
unprocessed = unprocessed[2:]
async def close(
get_logger_adapter=get_logger_adapter,
get_resolver_logger_adapter=get_resolver_logger_adapter,
):
logger_extra = {}
logger = get_logger_adapter(logger_extra)
logger.debug('Closing pool')
await dns_resolver_clear_cache(
get_logger_adapter=get_resolver_logger_adapter(logger_extra),
)
for key, socks in pool.items():
for sock, close_callback in socks.items():
logger.debug('Closing: %s,%s', key, sock)
close_callback.cancel()
sock.close()
pool.clear()
return request, close
async def send_all(loop, sock, socket_timeout, data):
try:
latest_num_bytes = sock.send(data)
except (BlockingIOError, ssl.SSLWantWriteError):
latest_num_bytes = 0
else:
if latest_num_bytes == 0:
raise HttpConnectionClosedError()
if latest_num_bytes == len(data):
return
total_num_bytes = latest_num_bytes
def writer():
nonlocal total_num_bytes
try:
latest_num_bytes = sock.send(data_memoryview[total_num_bytes:])
except (BlockingIOError, ssl.SSLWantWriteError):
pass
except Exception as exception:
loop.remove_writer(fileno)
if not result.done():
result.set_exception(exception)
else:
total_num_bytes += latest_num_bytes
if latest_num_bytes == 0 and not result.done():
loop.remove_writer(fileno)
result.set_exception(HttpConnectionClosedError())
elif total_num_bytes == len(data) and not result.done():
loop.remove_writer(fileno)
result.set_result(None)
else:
reset_timeout()
result = asyncio.Future()
fileno = sock.fileno()
loop.add_writer(fileno, writer)
data_memoryview = memoryview(data)
try:
with timeout(loop, socket_timeout) as reset_timeout:
return await result
finally:
loop.remove_writer(fileno)
async def recv(loop, sock, socket_timeout, recv_bufsize):
incoming = await _recv(loop, sock, socket_timeout, recv_bufsize)
if not incoming:
raise HttpConnectionClosedError()
return incoming
async def _recv(loop, sock, socket_timeout, recv_bufsize):
try:
return sock.recv(recv_bufsize)
except (BlockingIOError, ssl.SSLWantReadError):
pass
def reader():
try:
chunk = sock.recv(recv_bufsize)
except (BlockingIOError, ssl.SSLWantReadError):
pass
except Exception as exception:
loop.remove_reader(fileno)
if not result.done():
result.set_exception(exception)
else:
loop.remove_reader(fileno)
if not result.done():
result.set_result(chunk)
result = asyncio.Future()
fileno = sock.fileno()
loop.add_reader(fileno, reader)
try:
with timeout(loop, socket_timeout):
return await result
finally:
loop.remove_reader(fileno)
async def tls_complete_handshake(loop, ssl_sock, socket_timeout):
try:
return ssl_sock.do_handshake()
except (ssl.SSLWantReadError, ssl.SSLWantWriteError):
pass
def handshake():
try:
ssl_sock.do_handshake()
except (ssl.SSLWantReadError, ssl.SSLWantWriteError):
reset_timeout()
except Exception as exception:
loop.remove_reader(fileno)
loop.remove_writer(fileno)
if not done.done():
done.set_exception(exception)
else:
loop.remove_reader(fileno)
loop.remove_writer(fileno)
if not done.done():
done.set_result(None)
done = asyncio.Future()
fileno = ssl_sock.fileno()
loop.add_reader(fileno, handshake)
loop.add_writer(fileno, handshake)
try:
with timeout(loop, socket_timeout) as reset_timeout:
return await done
finally:
loop.remove_reader(fileno)
loop.remove_writer(fileno)
@contextlib.contextmanager
def timeout(loop, max_time):
cancelling_due_to_timeout = False
current_task = get_current_task()
def cancel():
nonlocal cancelling_due_to_timeout
cancelling_due_to_timeout = True
current_task.cancel()
def reset():
nonlocal handle
handle.cancel()
handle = loop.call_later(max_time, cancel)
handle = loop.call_later(max_time, cancel)
try:
yield reset
except asyncio.CancelledError:
if cancelling_due_to_timeout:
raise asyncio.TimeoutError()
raise
finally:
handle.cancel()
| StarcoderdataPython |
1738392 | #!/usr/bin/env python2
"""
builtin_process.py - Builtins that deal with processes or modify process state.
This is sort of the opposite of builtin_pure.py.
"""
from __future__ import print_function
import signal # for calculating numbers
from _devbuild.gen import arg_types
from _devbuild.gen.runtime_asdl import (
cmd_value, cmd_value__Argv,
wait_status_e, wait_status__Proc, wait_status__Pipeline,
wait_status__Cancelled,
)
from _devbuild.gen.syntax_asdl import source
from asdl import runtime
from core import alloc
from core import dev
from core import error
from core.pyerror import e_usage
from core import main_loop
from core.pyutil import stderr_line
from core import vm
from core.pyerror import log
from frontend import args
from frontend import flag_spec
from frontend import reader
from frontend import signal_def
from frontend import typed_args
from mycpp import mylib
from mycpp.mylib import iteritems, tagswitch
import posix_ as posix
from typing import List, Dict, Optional, Any, cast, TYPE_CHECKING
if TYPE_CHECKING:
from _devbuild.gen.syntax_asdl import command_t
from core.process import ExternalProgram, FdState, JobState, Waiter
from core.pyos import SignalState
from core.state import Mem, SearchPath
from core.ui import ErrorFormatter
from frontend.parse_lib import ParseContext
if mylib.PYTHON:
EXEC_SPEC = flag_spec.FlagSpec('exec')
class Exec(vm._Builtin):
def __init__(self, mem, ext_prog, fd_state, search_path, errfmt):
# type: (Mem, ExternalProgram, FdState, SearchPath, ErrorFormatter) -> None
self.mem = mem
self.ext_prog = ext_prog
self.fd_state = fd_state
self.search_path = search_path
self.errfmt = errfmt
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
arg_r = args.Reader(cmd_val.argv, spids=cmd_val.arg_spids)
arg_r.Next() # skip 'exec'
_ = args.Parse(EXEC_SPEC, arg_r) # no flags now, but accepts --
# Apply redirects in this shell. # NOTE: Redirects were processed earlier.
if arg_r.AtEnd():
self.fd_state.MakePermanent()
return 0
environ = self.mem.GetExported()
i = arg_r.i
cmd = cmd_val.argv[i]
argv0_path = self.search_path.CachedLookup(cmd)
if argv0_path is None:
self.errfmt.Print_('exec: %r not found' % cmd,
span_id=cmd_val.arg_spids[1])
raise SystemExit(127) # exec builtin never returns
# shift off 'exec'
c2 = cmd_value.Argv(cmd_val.argv[i:], cmd_val.arg_spids[i:],
cmd_val.typed_args)
self.ext_prog.Exec(argv0_path, c2, environ) # NEVER RETURNS
assert False, "This line should never be reached" # makes mypy happy
class Wait(vm._Builtin):
"""
wait: wait [-n] [id ...]
Wait for job completion and return exit status.
Waits for each process identified by an ID, which may be a process ID or a
job specification, and reports its termination status. If ID is not
given, waits for all currently active child processes, and the return
status is zero. If ID is a a job specification, waits for all processes
in that job's pipeline.
If the -n option is supplied, waits for the next job to terminate and
returns its exit status.
Exit Status:
Returns the status of the last ID; fails if ID is invalid or an invalid
option is given.
"""
def __init__(self, waiter, job_state, mem, tracer, errfmt):
# type: (Waiter, JobState, Mem, dev.Tracer, ErrorFormatter) -> None
self.waiter = waiter
self.job_state = job_state
self.mem = mem
self.tracer = tracer
self.errfmt = errfmt
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
with dev.ctx_Tracer(self.tracer, 'wait', cmd_val.argv):
return self._Run(cmd_val)
def _Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
attrs, arg_r = flag_spec.ParseCmdVal('wait', cmd_val)
arg = arg_types.wait(attrs.attrs)
job_ids, arg_spids = arg_r.Rest2()
if arg.n:
#log('*** wait -n')
# wait -n returns the exit status of the JOB.
# You don't know WHICH process, which is odd.
# TODO: this should wait for the next JOB, which may be multiple
# processes.
# Bash has a wait_for_any_job() function, which loops until the jobs
# table changes.
#
# target_count = self.job_state.NumRunning() - 1
# while True:
# if not self.waiter.WaitForOne():
# break
#
# if self.job_state.NumRunning == target_count:
# break
#
#log('wait next')
result = self.waiter.WaitForOne(False)
if result == 0: # OK
return self.waiter.last_status
elif result == -1: # nothing to wait for
return 127
else:
return result # signal
if len(job_ids) == 0:
#log('*** wait')
i = 0
while True:
# BUG: If there is a STOPPED process, this will hang forever, because
# we don't get ECHILD.
# Not sure it matters since you can now Ctrl-C it.
result = self.waiter.WaitForOne(False)
if result != 0:
break # nothing to wait for, or interrupted
i += 1
if self.job_state.NoneAreRunning():
break
return 0 if result == -1 else result
# Get list of jobs. Then we need to check if they are ALL stopped.
# Returns the exit code of the last one on the COMMAND LINE, not the exit
# code of last one to FINISH.
status = 1 # error
for i, job_id in enumerate(job_ids):
span_id = arg_spids[i]
# The % syntax is sort of like ! history sub syntax, with various queries.
# https://stackoverflow.com/questions/35026395/bash-what-is-a-jobspec
if job_id.startswith('%'):
raise error.Usage(
"doesn't support bash-style jobspecs (got %r)" % job_id,
span_id=span_id)
# Does it look like a PID?
try:
pid = int(job_id)
except ValueError:
raise error.Usage('expected PID or jobspec, got %r' % job_id,
span_id=span_id)
job = self.job_state.JobFromPid(pid)
if job is None:
self.errfmt.Print_("%s isn't a child of this shell" % pid,
span_id=span_id)
return 127
wait_status = job.JobWait(self.waiter)
UP_wait_status = wait_status
with tagswitch(wait_status) as case:
if case(wait_status_e.Proc):
wait_status = cast(wait_status__Proc, UP_wait_status)
status = wait_status.code
elif case(wait_status_e.Pipeline):
wait_status = cast(wait_status__Pipeline, UP_wait_status)
# TODO: handle PIPESTATUS? Is this right?
status = wait_status.codes[-1]
elif case(wait_status_e.Cancelled):
wait_status = cast(wait_status__Cancelled, UP_wait_status)
status = wait_status.code
else:
raise AssertionError()
return status
class Jobs(vm._Builtin):
"""List jobs."""
def __init__(self, job_state):
# type: (JobState) -> None
self.job_state = job_state
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
attrs, arg_r = flag_spec.ParseCmdVal('jobs', cmd_val)
arg = arg_types.jobs(attrs.attrs)
# note: we always use 'jobs -l' format, so -l is a no-op
self.job_state.DisplayJobs()
if arg.debug:
self.job_state.DebugPrint()
return 0
class Fg(vm._Builtin):
"""Put a job in the foreground"""
def __init__(self, job_state, waiter):
# type: (JobState, Waiter) -> None
self.job_state = job_state
self.waiter = waiter
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
# Note: 'fg' currently works with processes, but not pipelines. See issue
# #360. Part of it is that we should use posix.killpg().
pid = self.job_state.GetLastStopped()
if pid == -1:
log('No job to put in the foreground')
return 1
# TODO: Print job ID rather than the PID
log('Continue PID %d', pid)
posix.kill(pid, signal.SIGCONT)
return self.job_state.WhenContinued(pid, self.waiter)
class Bg(vm._Builtin):
"""Put a job in the background"""
def __init__(self, job_state):
# type: (JobState) -> None
self.job_state = job_state
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
# How does this differ from 'fg'? It doesn't wait and it sets controlling
# terminal?
raise error.Usage("isn't implemented")
class _TrapHandler(object):
"""A function that is called by Python's signal module.
Similar to process.SubProgramThunk."""
def __init__(self, node, nodes_to_run, sig_state, tracer):
# type: (command_t, List[command_t], SignalState, dev.Tracer) -> None
self.node = node
self.nodes_to_run = nodes_to_run
self.sig_state = sig_state
self.tracer = tracer
def __call__(self, sig_num, unused_frame):
# type: (int, Any) -> None
"""For Python's signal module."""
self.tracer.PrintMessage(
'Received signal %d. Will run handler in main loop' % sig_num)
self.sig_state.last_sig_num = sig_num # for interrupted 'wait'
self.nodes_to_run.append(self.node)
def __str__(self):
# type: () -> str
# Used by trap -p
# TODO: Abbreviate with fmt.PrettyPrint?
return '<Trap %s>' % self.node
def _GetSignalNumber(sig_spec):
# type: (str) -> int
# POSIX lists the numbers that are required.
# http://pubs.opengroup.org/onlinepubs/9699919799/
#
# Added 13 for SIGPIPE because autoconf's 'configure' uses it!
if sig_spec.strip() in ('1', '2', '3', '6', '9', '13', '14', '15'):
return int(sig_spec)
# INT is an alias for SIGINT
if sig_spec.startswith('SIG'):
sig_spec = sig_spec[3:]
return signal_def.GetNumber(sig_spec)
_HOOK_NAMES = ['EXIT', 'ERR', 'RETURN', 'DEBUG']
# TODO:
#
# bash's default -p looks like this:
# trap -- '' SIGTSTP
# trap -- '' SIGTTIN
# trap -- '' SIGTTOU
#
# CPython registers different default handlers. The C++ rewrite should make
# OVM match sh/bash more closely.
class Trap(vm._Builtin):
def __init__(self, sig_state, traps, nodes_to_run, parse_ctx, tracer, errfmt):
# type: (SignalState, Dict[str, _TrapHandler], List[command_t], ParseContext, dev.Tracer, ErrorFormatter) -> None
self.sig_state = sig_state
self.traps = traps
self.nodes_to_run = nodes_to_run
self.parse_ctx = parse_ctx
self.arena = parse_ctx.arena
self.tracer = tracer
self.errfmt = errfmt
def _ParseTrapCode(self, code_str):
# type: (str) -> command_t
"""
Returns:
A node, or None if the code is invalid.
"""
line_reader = reader.StringLineReader(code_str, self.arena)
c_parser = self.parse_ctx.MakeOshParser(line_reader)
# TODO: the SPID should be passed through argv.
src = source.ArgvWord('trap', runtime.NO_SPID)
with alloc.ctx_Location(self.arena, src):
try:
node = main_loop.ParseWholeFile(c_parser)
except error.Parse as e:
self.errfmt.PrettyPrintError(e)
return None
return node
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
attrs, arg_r = flag_spec.ParseCmdVal('trap', cmd_val)
arg = arg_types.trap(attrs.attrs)
if arg.p: # Print registered handlers
for name, value in iteritems(self.traps):
# The unit tests rely on this being one line.
# bash prints a line that can be re-parsed.
print('%s %s' % (name, value.__class__.__name__))
return 0
if arg.l: # List valid signals and hooks
for name in _HOOK_NAMES:
print(' %s' % name)
for name, int_val in signal_def.AllNames():
print('%2d %s' % (int_val, name))
return 0
code_str = arg_r.ReadRequired('requires a code string')
sig_spec, sig_spid = arg_r.ReadRequired2('requires a signal or hook name')
# sig_key is NORMALIZED sig_spec: a signal number string or string hook
# name.
sig_key = None # type: Optional[str]
sig_num = None
if sig_spec in _HOOK_NAMES:
sig_key = sig_spec
elif sig_spec == '0': # Special case
sig_key = 'EXIT'
else:
sig_num = _GetSignalNumber(sig_spec)
if sig_num is not None:
sig_key = str(sig_num)
if sig_key is None:
self.errfmt.Print_("Invalid signal or hook %r" % sig_spec,
span_id=cmd_val.arg_spids[2])
return 1
# NOTE: sig_spec isn't validated when removing handlers.
if code_str == '-':
if sig_key in _HOOK_NAMES:
try:
del self.traps[sig_key]
except KeyError:
pass
return 0
if sig_num is not None:
try:
del self.traps[sig_key]
except KeyError:
pass
self.sig_state.RemoveUserTrap(sig_num)
return 0
raise AssertionError('Signal or trap')
# Try parsing the code first.
# TODO: If simple_trap is on (for oil:basic), then it must be a function
# name? And then you wrap it in 'try'?
node = self._ParseTrapCode(code_str)
if node is None:
return 1 # ParseTrapCode() prints an error for us.
# Register a hook.
if sig_key in _HOOK_NAMES:
if sig_key in ('ERR', 'RETURN', 'DEBUG'):
stderr_line("osh warning: The %r hook isn't implemented", sig_spec)
self.traps[sig_key] = _TrapHandler(node, self.nodes_to_run,
self.sig_state, self.tracer)
return 0
# Register a signal.
if sig_num is not None:
handler = _TrapHandler(node, self.nodes_to_run, self.sig_state,
self.tracer)
# For signal handlers, the traps dictionary is used only for debugging.
self.traps[sig_key] = handler
if sig_num in (signal.SIGKILL, signal.SIGSTOP):
self.errfmt.Print_("Signal %r can't be handled" % sig_spec,
span_id=sig_spid)
# Other shells return 0, but this seems like an obvious error
return 1
self.sig_state.AddUserTrap(sig_num, handler)
return 0
raise AssertionError('Signal or trap')
# Example:
# trap -- 'echo "hi there" | wc ' SIGINT
#
# Then hit Ctrl-C.
class Umask(vm._Builtin):
def __init__(self):
# type: () -> None
"""Dummy constructor for mycpp."""
pass
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
argv = cmd_val.argv[1:]
if len(argv) == 0:
# umask() has a dumb API: you can't get it without modifying it first!
# NOTE: dash disables interrupts around the two umask() calls, but that
# shouldn't be a concern for us. Signal handlers won't call umask().
mask = posix.umask(0)
posix.umask(mask) #
print('0%03o' % mask) # octal format
return 0
if len(argv) == 1:
a = argv[0]
try:
new_mask = int(a, 8)
except ValueError:
# NOTE: This happens if we have '8' or '9' in the input too.
stderr_line("osh warning: umask with symbolic input isn't implemented")
return 1
else:
posix.umask(new_mask)
return 0
e_usage('umask: unexpected arguments')
class Fork(vm._Builtin):
def __init__(self, shell_ex):
# type: (vm._Executor) -> None
self.shell_ex = shell_ex
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
attrs, arg_r = flag_spec.ParseCmdVal('fork', cmd_val)
arg, span_id = arg_r.Peek2()
if arg is not None:
e_usage('got unexpected argument %r' % arg, span_id=span_id)
block = typed_args.GetOneBlock(cmd_val.typed_args)
if block is None:
e_usage('expected a block')
return self.shell_ex.RunBackgroundJob(block)
class ForkWait(vm._Builtin):
def __init__(self, shell_ex):
# type: (vm._Executor) -> None
self.shell_ex = shell_ex
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
attrs, arg_r = flag_spec.ParseCmdVal('forkwait', cmd_val)
arg, span_id = arg_r.Peek2()
if arg is not None:
e_usage('got unexpected argument %r' % arg, span_id=span_id)
block = typed_args.GetOneBlock(cmd_val.typed_args)
if block is None:
e_usage('expected a block')
return self.shell_ex.RunSubshell(block)
| StarcoderdataPython |
162937 | # Generated by Django 2.2.13 on 2020-10-09 17:57
import django.db.models.deletion
import django.utils.timezone
import model_utils.fields
from django.db import migrations, models
import waldur_core.core.fields
import waldur_core.core.models
import waldur_core.core.shims
import waldur_core.core.validators
import waldur_core.structure.models
class Migration(migrations.Migration):
dependencies = [
('taggit', '0003_taggeditem_add_unique_index'),
('openstack', '0005_error_traceback'),
]
operations = [
migrations.CreateModel(
name='Router',
fields=[
(
'id',
models.AutoField(
auto_created=True,
primary_key=True,
serialize=False,
verbose_name='ID',
),
),
(
'created',
model_utils.fields.AutoCreatedField(
default=django.utils.timezone.now,
editable=False,
verbose_name='created',
),
),
(
'modified',
model_utils.fields.AutoLastModifiedField(
default=django.utils.timezone.now,
editable=False,
verbose_name='modified',
),
),
(
'description',
models.CharField(
blank=True, max_length=2000, verbose_name='description'
),
),
(
'name',
models.CharField(
max_length=150,
validators=[waldur_core.core.validators.validate_name],
verbose_name='name',
),
),
('uuid', waldur_core.core.fields.UUIDField()),
('backend_id', models.CharField(blank=True, max_length=255)),
(
'service_project_link',
models.ForeignKey(
on_delete=django.db.models.deletion.PROTECT,
related_name='routers',
to='openstack.OpenStackServiceProjectLink',
),
),
(
'tags',
waldur_core.core.shims.TaggableManager(
blank=True,
help_text='A comma-separated list of tags.',
related_name='router_router_openstack',
through='taggit.TaggedItem',
to='taggit.Tag',
verbose_name='Tags',
),
),
(
'tenant',
models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
related_name='routers',
to='openstack.Tenant',
),
),
],
options={'abstract': False,},
bases=(
waldur_core.core.models.DescendantMixin,
waldur_core.core.models.BackendModelMixin,
waldur_core.structure.models.StructureLoggableMixin,
models.Model,
),
),
]
| StarcoderdataPython |
160587 | <gh_stars>0
from . import immix
CACHEABLE = True
methods = ("imagesforperson")
def run(args, method):
if "q" not in args:
raise Exception("No query given")
q = args.get("q")
if method == "imagesforperson":
return immix.imagesforperson(q) | StarcoderdataPython |
3367183 | # -*- coding: utf-8 -*-
#
# Copyright (c) 2019~2999 - Cologler <<EMAIL>>
# ----------
#
# ----------
from typing import Tuple
import click
from click.testing import CliRunner
from click_anno import command, click_app, attrs
def test_basic_arguments():
@command
def touch(filename):
click.echo(filename)
result = CliRunner().invoke(touch, ['foo.txt'])
assert result.exit_code == 0
assert result.output == 'foo.txt\n'
def test_variadic_arguments():
@command
def copy(src: tuple, dst):
for fn in src:
click.echo('move %s to folder %s' % (fn, dst))
result = CliRunner().invoke(copy, ['foo.txt', 'bar.txt', 'my_folder'])
assert result.exit_code == 0
assert result.output == 'move foo.txt to folder my_folder\nmove bar.txt to folder my_folder\n'
def test_basic_value_options():
@command
def dots(n=1):
click.echo('.' * n)
result = CliRunner().invoke(dots, [])
assert result.exit_code == 0
assert result.output == '.\n'
result_5 = CliRunner().invoke(dots, ['--n', '5'])
assert result_5.exit_code == 0
assert result_5.output == '.....\n'
def test_required_value_options():
@command
def dots(*, n: int):
click.echo('.' * n)
result = CliRunner().invoke(dots, ['--n=2'])
assert result.exit_code == 0
assert result.output == '..\n'
def test_multi_value_options():
@command
def findme(*, pos: Tuple[float, float]):
click.echo('%s / %s' % pos)
result = CliRunner().invoke(findme, ['--pos', '2.0', '3.0'])
assert result.exit_code == 0
assert result.output == '2.0 / 3.0\n'
def test_tuples_as_multi_value_options():
@command
def putitem(*, item: (str, int)):
click.echo('name=%s id=%d' % item)
result = CliRunner().invoke(putitem, ['--item', 'peter', '1338'])
assert result.exit_code == 0
assert result.output == 'name=peter id=1338\n'
@command
def putitem(*, item: Tuple[str, int]):
click.echo('name=%s id=%d' % item)
result = CliRunner().invoke(putitem, ['--item', 'peter', '1338'])
assert result.exit_code == 0
assert result.output == 'name=peter id=1338\n'
def test_boolean_flags():
import click
from click_anno import command
from click_anno.types import flag
@command
def func(shout: flag):
click.echo(f'{shout!r}')
result = CliRunner().invoke(func, ['--shout'])
assert result.exit_code == 0
assert result.output == 'True\n'
def test_inject_context():
@command
def sync(a, ctx: click.Context, b): # `ctx` can be any location
assert isinstance(ctx, click.Context)
click.echo(f'{a}, {b}')
result = CliRunner().invoke(sync, ['1', '2'])
assert result.exit_code == 0
assert result.output == '1, 2\n'
def test_group():
@click_app
class App:
def __init__(self):
click.echo('Running')
def sync(self):
click.echo('Syncing')
result = CliRunner().invoke(App, ['sync'])
assert result.exit_code == 0
assert result.output == 'Running\nSyncing\n'
def test_group_invocation_without_command():
@click_app
@attrs(invoke_without_command=True)
class App:
def __init__(self, ctx: click.Context):
if ctx.invoked_subcommand is None:
click.echo('I was invoked without subcommand')
else:
click.echo('I am about to invoke %s' % ctx.invoked_subcommand)
def sync(self):
click.echo('The subcommand')
result = CliRunner().invoke(App, [])
assert result.exit_code == 0
assert result.output == 'I was invoked without subcommand\n'
result = CliRunner().invoke(App, ['sync'])
assert result.exit_code == 0
assert result.output == 'I am about to invoke sync\nThe subcommand\n'
def test_alias():
@click_app
class App:
def sync(self):
click.echo('Syncing')
alias = sync
result = CliRunner().invoke(App, ['sync'])
assert result.exit_code == 0
assert result.output == 'Syncing\n'
result = CliRunner().invoke(App, ['alias'])
assert result.exit_code == 0
assert result.output == 'Syncing\n'
def test_enum():
import click
from click_anno import command
from enum import Enum, auto
class HashTypes(Enum):
md5 = auto()
sha1 = auto()
@command
def digest(hash_type: HashTypes):
assert isinstance(hash_type, HashTypes)
click.echo(hash_type)
result = CliRunner().invoke(digest, ['md5'])
assert result.exit_code == 0
assert result.output == 'HashTypes.md5\n'
| StarcoderdataPython |
3264657 | <filename>modules/Eventlog/lv1_os_win_event_logs_shared_folder.py
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import os, sys, re
from datetime import datetime
from utility import database
class Shared_Folder_Information:
par_id = ''
case_id = ''
evd_id = ''
task = ''
time = ''
user_sid = ''
event_id = ''
source = ''
event_id_description = ''
def EVENTLOGSHAREDFOLDER(configuration):
#db = database.Database()
#db.open()
shared_folder_list = []
shared_folder_count = 0
query = f"SELECT data, event_id, time_created, source, user_sid FROM lv1_os_win_evt_total WHERE (evd_id='{configuration.evidence_id}') and (event_id like '4656' and source like '%Security.evtx%') or (event_id like '4663' and source like '%Security.evtx%') or (event_id like '5140' and source like '%Security.evtx%') or (event_id like '30804' and source like '%SMBClient%') or (event_id like '30805' and source like '%SMBClient%') or (event_id like '30806' and source like '%SMBClient%') or (event_id like '30807' and source like '%SMBClient%') or (event_id like '30808' and source like '%SMBClient%')"
#result_query = db.execute_query_mul(query)
result_query = configuration.cursor.execute_query_mul(query)
for result_data in result_query:
shared_folder_information = Shared_Folder_Information()
try:
shared_folder_list.append(shared_folder_information)
shared_folder_list[shared_folder_count].event_id = result_data[1]
shared_folder_list[shared_folder_count].time = result_data[2]
shared_folder_list[shared_folder_count].source = result_data[3]
shared_folder_list[shared_folder_count].user_sid = result_data[4]
shared_folder_list[shared_folder_count].task = 'File Shared'
if result_data[1] == '4656':
shared_folder_list[shared_folder_count].event_id_description = 'Request a handle to an object'
elif result_data[1] == '4663':
shared_folder_list[
shared_folder_count].event_id_description = 'Attempt to access an object'
elif result_data[1] == '5140':
shared_folder_list[
shared_folder_count].event_id_description = 'A network share object was accessed'
elif result_data[1] == '30804':
shared_folder_list[
shared_folder_count].event_id_description = 'A network connection was disconnected'
elif result_data[1] == '30805':
shared_folder_list[
shared_folder_count].event_id_description = 'The client lost its session to the server'
elif result_data[1] == '30806':
shared_folder_list[
shared_folder_count].event_id_description = 'The client re-established its session to the server'
elif result_data[1] == '30807':
shared_folder_list[
shared_folder_count].event_id_description = 'The connection to the share was lost'
elif result_data[1] == '30808':
shared_folder_list[
shared_folder_count].event_id_description = 'The connection to the share was re-established'
shared_folder_count = shared_folder_count + 1
except:
print("EVENT LOG SHARED FOLDER ERROR")
#db.close()
return shared_folder_list
| StarcoderdataPython |
105971 | <gh_stars>0
from dataclasses import dataclass
from typing import Optional
from torch.utils.data import DataLoader
@dataclass
class DataLoaderCollection:
train_loader: DataLoader
test_loader: DataLoader
valid_loader: Optional[DataLoader] = None
| StarcoderdataPython |
4801934 | ''' corpusからwordデータを抜き出して、model作成するための前処理 '''
import re
from collections import Counter
import MeCab
from tqdm import tqdm
from modules.models.DbModel import DbModel
from modules.corpus_processing.WikiProcessing import WikiProcessing
from config.config import CONFIG
class WordProcessing():
''' 文章から単語の出現頻度を求めたり、単語をindexにしたりするclass '''
def __init__(self, corpus, docs_files):
self.corpus = corpus
self.docs_files = docs_files
self.file_num = len(docs_files)
# 日本語の表層系でなく、基本形を使用するためにOchasenを使用
self.tagger = MeCab.Tagger('-Ochasen')
def extract_words_fequency(self):
words_frequency = Counter({})
unnecessary_words = []
pbar = tqdm(total=self.file_num)
pbar.set_description('extract words fequency')
for docs_file in self.docs_files:
pbar.update(1)
with open(docs_file) as doc:
paragraph_sentence_list =\
self.corpus.separate_paragraph_array(doc)
words_list = []
for paragraph_sentence in paragraph_sentence_list:
node = self.tagger.parseToNode(paragraph_sentence)
paragraph_words = []
while node:
word = node.feature.split(",")[6]
# 日本語の表現だけを抽出
if re.search(r'[ぁ-んァ-ヶ一-龥]+', word):
paragraph_words.append(word)
else:
if word not in unnecessary_words:
unnecessary_words.append(word)
node = node.next
words_list.extend(paragraph_words)
words_frequency += Counter(words_list)
pbar.close()
return words_frequency
def _create_word2idx_dict(self, words_info):
word_stoi = {}
for word_info in words_info:
word_stoi[word_info[1]] = word_info[0]
return word_stoi
def transfer_sentence_word2idx(self, words_info, db_model):
word_stoi = self._create_word2idx_dict(words_info)
pbar = tqdm(total=self.file_num)
pbar.set_description('transfer sentence word2idx')
for wiki_file in self.docs_files:
pbar.update(1)
with open(wiki_file) as doc:
inserted_info = []
paragraph_sentence_list =\
self.corpus.separate_paragraph_array(doc)
for paragraph_sentence in paragraph_sentence_list:
node = self.tagger.parseToNode(paragraph_sentence)
paragraph_words = ''
# paragraph_words = []
while node:
word = node.feature.split(",")[6]
# 日本語の表現だけを抽出
if re.search(r'[ぁ-んァ-ヶ一-龥]+', word):
paragraph_words += str(word_stoi[word]) + ', '
node = node.next
# if len(paragraph_words) > 0:
if paragraph_words:
paragraph_words = paragraph_words[:-2]
inserted_info.append((
wiki_file, paragraph_sentence, paragraph_words
))
# 文章情報のDB登録
db_model.insert_records_sentences_table(inserted_info)
pbar.close()
def preprocess():
wiki = WikiProcessing()
wiki_files = wiki.get_files()
wiki_word_processing = WordProcessing(wiki, wiki_files)
wiki_words_frequency = wiki_word_processing.extract_words_fequency()
# 単語情報のDB登録
db_model = DbModel(CONFIG['db_file_name'], True)
db_model.insert_records_words_table(wiki_words_frequency)
words_info = db_model.select_all_records_words_table()
wiki_word_processing.transfer_sentence_word2idx(words_info, db_model)
db_model.close_connection()
| StarcoderdataPython |
4842171 | <filename>src/graph/visu_sol.py
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from itertools import product, combinations
fig = plt.figure()
ax = None
def create_subfig(row, col, place):
global ax
ax = fig.add_subplot(row, col, place, projection="3d")
def wiresphere_spere(
resolution_theta: int = 20j, resolution_phi: int = 10j, color="black"
) -> None:
# draw sphere
u, v = np.mgrid[0 : 2 * np.pi : resolution_theta, 0 : np.pi : resolution_phi]
x = np.cos(u) * np.sin(v)
y = np.sin(u) * np.sin(v)
z = np.cos(v)
ax.plot_wireframe(x, y, z, color=color)
def surface_spere(
r=1, alpha=1, resolution_theta=20j, resolution_phi=10j, color="black"
) -> None:
# draw sphere
u, v = np.mgrid[0 : 2 * np.pi : resolution_theta, 0 : np.pi : resolution_phi]
x = r * np.cos(u) * np.sin(v)
y = r * np.sin(u) * np.sin(v)
z = r * np.cos(v)
ax.plot_surface(x, y, z, color=color, alpha=alpha)
def add_point(x, y, z, color="g", size=50,alpha=1):
ax.scatter(x, y, z, color=color, s=size,alpha=alpha)
def kugelkappe(x, y, z, r, resolution=20j, color="g"):
M = np.array([x, y, z])
if y == 0 and z == 0:
e1 = np.array([0, 1, 0])
e2 = np.array([0, 0, 1])
else:
e1 = np.array([0, z, -y])
A = np.array([M, e1, [1, 0, 0]])
B = np.array([0, 0, 1])
e2 = np.linalg.solve(A, B)
M = M * np.cos(r)
e1 = e1 / (np.sum(e1 ** 2) ** 0.5)
e2 = e2 / (np.sum(e2 ** 2) ** 0.5)
a = np.sin(r)
phi_arr = np.mgrid[0 : 2 * np.pi : resolution]
px = M[0] + a * np.cos(phi_arr) * e1[0] + a * np.sin(phi_arr) * e2[0]
py = M[1] + a * np.cos(phi_arr) * e1[1] + a * np.sin(phi_arr) * e2[1]
pz = M[2] + a * np.cos(phi_arr) * e1[2] + a * np.sin(phi_arr) * e2[2]
ax.scatter(px, py, pz, color=color, s=10)
def plot_show():
plt.show()
| StarcoderdataPython |
1713660 | """Module that defines the message class."""
class Message(object):
"""Defines the message to be added in the response."""
def __init__(self, message: str) -> None:
"""
Instances the Message Class.
Args:
message: Aditional information of the response.
"""
self.msg = message
def serialize(self) -> dict:
"""
Serialize the Message object into a dictionary.
Returns:
A dictionary with the msg of the Message object.
"""
return {
'msg': self.msg,
}
| StarcoderdataPython |
3312458 | from ._circuit_conversions import export_to_qiskit, import_from_qiskit
from ._openfermion_conversions import qiskitpauli_to_qubitop, qubitop_to_qiskitpauli
| StarcoderdataPython |
3359624 | <reponame>itsyaboyrocket/ttleveleditor<filename>leveleditor/ObjectMgr.py
"""
Defines ObjectMgr
"""
from ObjectMgrBase import *
class ObjectMgr(ObjectMgrBase):
""" ObjectMgr will create, manage, update objects in the scene """
def __init__(self, editor):
ObjectMgrBase.__init__(self, editor)
| StarcoderdataPython |
3235790 | <filename>tests/test_connection_spid.py
import ctds
from .base import TestExternalDatabase
from .compat import long_
class TestConnectionSpid(TestExternalDatabase):
'''Unit tests related to the Connection.spid attribute.
'''
def test___doc__(self):
self.assertEqual(
ctds.Connection.spid.__doc__,
'''\
The SQL Server Session Process ID (SPID) for the connection or
:py:data:`None` if the connection is closed.
:rtype: int
'''
)
def test_read(self):
with self.connect() as connection:
self.assertTrue(isinstance(connection.spid, long_))
with connection.cursor() as cursor:
cursor.execute('SELECT @@SPID;')
spid = cursor.fetchone()[0]
if self.freetds_version >= (1, 0, 0): # pragma: nocover
self.assertEqual(connection.spid, spid)
self.assertEqual(connection.spid, None)
def test_write(self):
with self.connect() as connection:
try:
connection.spid = 9
except AttributeError:
pass
else:
self.fail('.spid did not fail as expected') # pragma: nocover
try:
connection.spid = None
except AttributeError:
pass
else:
self.fail('.spid did not fail as expected') # pragma: nocover
| StarcoderdataPython |
1654803 | import cv2
import numpy
def merge_rectangle_contours(rectangle_contours):
merged_contours = [rectangle_contours[0]]
for rec in rectangle_contours[1:]:
for i in range(len(merged_contours)):
x_min = rec[0][0]
y_min = rec[0][1]
x_max = rec[2][0]
y_max = rec[2][1]
merged_x_min = merged_contours[i][0][0]
merged_y_min = merged_contours[i][0][1]
merged_x_max = merged_contours[i][2][0]
merged_y_max = merged_contours[i][2][1]
if x_min >= merged_x_min and y_min >= merged_y_min and x_max <= merged_x_max and y_max <= merged_y_max:
break
else:
if i == len(merged_contours)-1:
merged_contours.append(rec)
return merged_contours
def get_image_text(img, engine='cnocr'):
text = 'cnocr'
return text
def contour_area_filter(binary, contours, thresh=1500):
rectangle_contours =[]
h, w = binary.shape
for contour in contours:
if thresh < cv2.contourArea(contour) < 0.2*h*w:
rectangle_contours.append(contour)
return rectangle_contours
def get_roi_image(img, rectangle_contour):
roi_image = img[rectangle_contour[0][1]:rectangle_contour[2][1],
rectangle_contour[0][0]:rectangle_contour[1][0]]
return roi_image
def get_pop_v(image):
"""
calculate value if a pop window exit
:param image: image path
:return: mean of v channel
"""
img = cv2.imread('capture/'+image)
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(img_hsv)
return numpy.mean(v)
def get_rectangle_contours(binary):
_, contours, _ = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
rectangle_contours = []
for counter in contours:
x, y, w, h = cv2.boundingRect(counter)
cnt = numpy.array([[x, y], [x + w, y], [x + w, y + h], [x, y + h]])
rectangle_contours.append(cnt)
rectangle_contours = sorted(rectangle_contours, key=cv2.contourArea, reverse=True)[:100]
rectangle_contours = contour_area_filter(binary, rectangle_contours)
rectangle_contours = merge_rectangle_contours(rectangle_contours)
return rectangle_contours
def get_center_pos(contour):
x = int((contour[0][0]+contour[1][0])/2)
y = int((contour[1][1]+contour[2][1])/2)
return [x, y]
def get_label_pos(contour):
center = get_center_pos(contour)
x = int((int((center[0]+contour[2][0])/2)+contour[2][0])/2)
y = int((int((center[1]+contour[2][1])/2)+contour[2][1])/2)
return [x, y]
def draw_contours(img, contours, color="info"):
if color == "info":
cv2.drawContours(img, contours, -1, (255, 145, 30), 3)
| StarcoderdataPython |
199353 | <reponame>toyoshi/myCobotROS
#!/usr/bin/env python2
# license removed for brevity
import time, subprocess
import rospy
from sensor_msgs.msg import JointState
from std_msgs.msg import Header
from visualization_msgs.msg import Marker
from pymycobot.mycobot import MyCobot
def talker():
pub = rospy.Publisher('joint_states', JointState, queue_size=10)
pub_marker = rospy.Publisher('visualization_marker', Marker, queue_size=10)
rospy.init_node('display', anonymous=True)
rate = rospy.Rate(30) # 30hz
# pub joint state
joint_state_send = JointState()
joint_state_send.header = Header()
joint_state_send.name = [
'joint2_to_joint1',
'joint3_to_joint2',
'joint4_to_joint3',
'joint5_to_joint4',
'joint6_to_joint5',
'joint6output_to_joint6'
]
joint_state_send.velocity = [0]
joint_state_send.effort = []
marker_ = Marker()
marker_.header.frame_id = '/joint1'
marker_.ns = 'my_namespace'
while not rospy.is_shutdown():
joint_state_send.header.stamp = rospy.Time.now()
angles = mycobot.get_radians()
data_list = []
for index, value in enumerate(angles):
if index != 2:
value *= -1
data_list.append(value)
joint_state_send.position = data_list
pub.publish(joint_state_send)
coords = mycobot.get_coords()
rospy.loginfo('{}'.format(coords))
#marker
marker_.header.stamp = rospy.Time.now()
marker_.type = marker_.SPHERE
marker_.action = marker_.ADD
marker_.scale.x = 0.04
marker_.scale.y = 0.04
marker_.scale.z = 0.04
#marker position initial
# print(coords)
if not coords:
coords = [0,0,0,0,0,0]
rospy.loginfo('error [101]: can not get coord values')
marker_.pose.position.x = coords[1] / 1000 * -1
marker_.pose.position.y = coords[0] / 1000
marker_.pose.position.z = coords[2] / 1000
marker_.color.a = 1.0
marker_.color.g = 1.0
pub_marker.publish(marker_)
rate.sleep()
if __name__ == '__main__':
port = subprocess.check_output(['echo -n /dev/ttyUSB*'],
shell=True).decode()
mycobot = MyCobot(port)
try:
talker()
except rospy.ROSInterruptException:
pass
| StarcoderdataPython |
1704987 | <reponame>raminjafary/ethical-hacking<gh_stars>0
#!/usr/bin/python2.7
#discover urls in the domain by extract the href link in the content and crawl recursively to get all urls
import requests
import re
import urlparse
target_url = "http://192.168.44.101"
target_links = []
def extract_links_from(url):
response = requests.get(url)
return re.findall('(?:href=")(.*?)"',response.content)
def crawl(url):
href_links = extract_links_from(url)
for link in href_links:
link = urlparse.urljoin(url,link)
if "#" in link: # # refers to original page so avoid duplicate page again and again
link = link.split("#")[0]
if target_url in link and link not in target_links: #to avoid repeating the same url
target_links.append(link)
print "[+]urls --->",link
crawl(link) #recursively crawling
crawl(target_url) | StarcoderdataPython |
3251438 | from aiogram import types
from aiogram.dispatcher import FSMContext
from tortoise.exceptions import IntegrityError
from keyboards import inline
from keyboards.inline import back_callback, faculties, delete_callback, create_callback
from keyboards.inline.admin import cancel, cancel_or_delete, cancel_or_create
from loader import dp, bot
from models import Admin, subgroup, User, Subgroup
from states.admin import AdminStates
from states.admin.edit_subgroup import EditSubgroupStates
from utils.misc import get_current_admin, get_current_user
from middlewares import _
@get_current_admin()
@dp.callback_query_handler(delete_callback.filter(category='subgroup'), state=EditSubgroupStates.edit)
async def delete_subgroup(callback: types.CallbackQuery, admin: Admin, state: FSMContext):
data = await state.get_data()
subgroup_id = data.get('subgroup')
subgroup = await Subgroup.filter(id=subgroup_id).first()
await subgroup.delete()
await state.update_data(subgroup=None)
await callback.answer(_('Подгруппа была успешно удалена'))
await admin.fetch_related('group')
keyboard = await inline.admin.edit_subgroups.get_keyboard(admin.group.id)
await callback.message.edit_text(_('Выбери подгруппу или добавь новую:'), reply_markup=keyboard)
await AdminStates.subgroups.set()
@get_current_admin()
@dp.callback_query_handler(back_callback.filter(category='cancel'), state=[AdminStates.subgroups, EditSubgroupStates.create, EditSubgroupStates.edit])
async def back_from_subgroup(callback: types.CallbackQuery, admin: Admin, state: FSMContext):
await callback.answer()
await admin.fetch_related("group")
keyboard = await inline.admin.edit_subgroups.get_keyboard(admin.group.id)
await callback.message.edit_text(_('Выбери подгруппу или добавь новую:'), reply_markup=keyboard)
await AdminStates.subgroups.set()
@get_current_admin()
@get_current_user()
@dp.callback_query_handler(create_callback.filter(category='subgroup'), state=EditSubgroupStates.edit)
async def save_subgroup(callback: types.CallbackQuery, state: FSMContext, user: User, admin: Admin):
data = await state.get_data()
subgroup_id = data.get('subgroup')
subgroup = await Subgroup.filter(id=subgroup_id).first()
subgroup.title = data.get('new_subgroup') if data.get('new_subgroup') else None
await subgroup.save()
await admin.fetch_related('group')
keyboard = await inline.admin.edit_subgroups.get_keyboard(admin.group.id)
await callback.answer(_("Подгруппа успешно переименована"))
await bot.edit_message_text(_("Выбери подгруппу или добавь новую"), reply_markup=keyboard, chat_id=user.tele_id,
message_id=data.get("current_msg"))
await AdminStates.subgroups.set()
@get_current_user()
@get_current_admin()
@dp.message_handler(state=EditSubgroupStates.create)
async def create_subgroup(msg: types.Message, state: FSMContext, user: User, admin: Admin):
data = await state.get_data()
await msg.delete()
await admin.fetch_related('group')
await Subgroup.create(title=msg.text, group=admin.group)
keyboard = await inline.admin.edit_subgroups.get_keyboard(admin.group.id)
await bot.edit_message_text(_("Выбери подгруппу или добавь новую:"), reply_markup=keyboard, chat_id=user.tele_id,
message_id=data.get("current_msg"))
await AdminStates.subgroups.set()
@get_current_user()
@dp.message_handler(state=EditSubgroupStates.edit)
async def edit_subgroup(msg: types.Message, state: FSMContext, user: User):
data = await state.get_data()
subgroup_id = data.get('subgroup')
await msg.delete()
if subgroup_id:
subgroup = await Subgroup.filter(id=subgroup_id).first()
keyboard = await cancel_or_create.get_keyboard("subgroup")
await state.update_data(new_subgroup=msg.text)
await bot.edit_message_text(
_('Ты пытаешься изменить название подгруппы "{}" на "{}"'.format(subgroup.title, msg.text)),
reply_markup=keyboard, chat_id=user.tele_id, message_id=data.get("current_msg"))
@get_current_admin()
@dp.callback_query_handler(state=AdminStates.subgroups)
async def edit_subgroups(callback: types.CallbackQuery, admin: Admin, state: FSMContext):
await callback.answer()
if callback.data == "add-subgroup":
await callback.message.edit_text(_('Введи название для новой подгруппы:'), reply_markup=cancel.keyboard)
await EditSubgroupStates.create.set()
elif callback.data.startswith("subgroup-"):
subgroup_id = callback.data.split('-')[-1]
subgroup = await Subgroup.filter(id=int(subgroup_id)).first()
keyboard = await cancel_or_delete.get_keyboard("subgroup")
await callback.message.edit_text(_('Напиши название для подгруппы - {}, чтобы изменить'.format(subgroup.title)),
reply_markup=keyboard)
await EditSubgroupStates.edit.set()
await state.update_data(subgroup=int(subgroup_id))
@dp.message_handler(state=AdminStates.subgroups)
async def clear(msg: types.Message):
await msg.delete() | StarcoderdataPython |
3307459 | import numpy as np
from PIL import Image
def rebuild(dir):
images = np.zeros([7, 168, 168])
lvector = np.zeros([7, 3]) # the direction of light
for num in range(7):
image = Image.open(dir + '/train/' + str(num + 1) + '.bmp')
images[num] = np.asarray(image)
for line in open(dir + '/train.txt'):
i, ang1, ang2 = line.strip().split(",")
i = int(i)
ang1 = int(ang1)
ang2 = int(ang2)
lvector[i - 1] = (np.sin(np.pi * ang1 / 180) * np.cos(np.pi * ang2 / 180), np.sin(np.pi * ang2 / 180),
np.cos(np.pi * ang1 / 180) * np.cos(np.pi * ang2 / 180))
lvector = -lvector
vector = np.zeros([3, 168, 168])
alpha = np.zeros([168, 168])
b = np.zeros([3, 168, 168])
for j in range(168):
for k in range(168):
b[:, j, k] = np.linalg.solve(np.dot(lvector.T, lvector), np.dot(lvector.T, images[:, j, k]))
alpha[j, k] = np.linalg.norm(b[:, j, k], ord=2)
temp = b[:, j, k] / alpha[j, k]
if b[:, j, k][-1] > 0:
vector[:, j, k] = -temp
else:
vector[:, j, k] = temp
while True:
pred = np.clip(np.einsum('ij,jkl->ikl', lvector, b), 0, 255)
grad_b = (2 / 7) * np.sum(
np.einsum('ijk,il->iljk', (pred - images), lvector) * ((pred > 0)[:, np.newaxis, :, :]), axis=0)
b = b - grad_b
if np.abs(np.max(grad_b)) <= 0.1:
break
return vector, b | StarcoderdataPython |
134965 | from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from django.contrib.auth.models import User
# from .models import Profile
#
# class ProfileInline(admin.StackedInline):
# """
#
# """
# model = Profile
# can_delete = False
# verbose_name_plural = 'Profile'
# fk_name = 'user'
#
# class CustomUserAdmin(UserAdmin):
# inlines = (ProfileInline, )
#
# def get_inline_instances(self, request, obj=None):
# if not obj:
# return list()
# return super(CustomUserAdmin, self).get_inline_instances(request, obj)
#
#
# admin.site.unregister(User)
# admin.site.register(User, CustomUserAdmin)
# class UserStripeAdmin(admin.ModelAdmin):
# class Meta:
# model = UserStripe
#
# admin.site.register(UserStripe, UserStripeAdmin)
| StarcoderdataPython |
1652681 | # Generated by Django 2.2.2 on 2019-08-31 20:05
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('source_optics', '0020_statistic_days_before_joined'),
]
operations = [
migrations.AddField(
model_name='statistic',
name='days_active',
field=models.IntegerField(blank=True, default=0),
),
migrations.AddField(
model_name='statistic',
name='longevity',
field=models.IntegerField(blank=True, default=0),
),
]
| StarcoderdataPython |
4823341 | from urllib.error import URLError, HTTPError
import logging
from time import time, sleep
from .configuration import config
from .jsonapi import JsonApi
from .util import random_secret
log = logging.getLogger(__name__)
class Vault(JsonApi):
def __init__(self, endpoint, token=None):
super().__init__(endpoint + '/v1/')
self.token = token
def request(self, *args, headers=None, **kwargs):
headers = dict(headers or {})
if self.token:
headers['X-Vault-Token'] = self.token
return super().request(*args, headers=headers, **kwargs)
def ensure_engine(self, timeout=30):
t0 = time()
while time() - t0 < int(timeout):
try:
mounts = self.get('sys/mounts')
break
except URLError as e:
log.warning('vault GET sys/mounts: %s', e)
sleep(2)
else:
raise RuntimeError(f"Vault is down after {timeout}s")
if 'liquid/' not in mounts['data']:
log.info("Creating kv secrets engine `liquid`")
self.post('sys/mounts/liquid', {'type': 'kv'})
def list(self, prefix=''):
return self.get(f'{prefix}?list=true')['data']['keys']
def read(self, path):
try:
return self.get(path)['data']
except HTTPError as e:
if e.code == 404:
return None
raise
def set(self, path, payload):
return self.put(path, payload)
def ensure_secret(self, path, get_value):
if not self.read(path):
log.info(f"Generating value for {path}")
self.set(path, get_value())
def ensure_secret_key(self, path):
self.ensure_secret(path, lambda: {'secret_key': random_secret()})
vault = Vault(config.vault_url, config.vault_token)
| StarcoderdataPython |
1784515 | import click
def print_buckets(buckets):
click.echo(' buckets')
for bucket in buckets:
frozen = '[frozen]' if bucket['frozen'] else ''
click.echo(' + %-25s' % (bucket['name'] + frozen), nl=False)
if bucket['urls']:
urls = '(%s)' % ', '.join(bucket['urls'].keys())
else:
urls = 'empty'
click.echo(urls)
def print_bucket(bucket):
frozen = '[frozen]' if bucket['frozen'] else ''
click.echo(' bucket: %-25s' % (bucket['name'] + frozen))
click.echo(' Caches:')
for name, info in bucket['urls'].items():
click.echo(' %10s => %s' % (name, info['url']))
def print_objects(info):
objects = info.get('objects')
if not objects:
click.echo(' No sources in this bucket')
return
for obj in objects:
click.echo(' - {}'.format(obj['source']))
| StarcoderdataPython |
1656173 | <filename>11/aoc_11.py
import os
import numpy as np
INPUT = os.path.join(os.path.dirname(__file__), "input.txt")
with open(INPUT) as f:
lines = f.readlines()
lines = [list(l.rstrip()) for l in lines]
lines_arr = np.array(lines).astype(int)
def within_bounds(x, y, lower, upper):
full = np.transpose(np.vstack((x, y)))
r = [np.all(n >= lower) and np.all(n <= upper) for n in full]
return np.where(np.invert(r))
def flash(octo_field, flash_count=0, flash_field=None):
if flash_field is None:
flash_field = np.ones_like(octo_field)
flashing = np.where(octo_field > 9)
n_flashing = flashing[0].size
if n_flashing == 0:
return flash_count, octopi
flash_count += n_flashing
octo_field[flashing] = 0
flash_field[flashing] = 0
# Generate all Neighbors
for x_offset in range(-1, 2):
for y_offset in range(-1, 2):
x, y = flashing[0] + x_offset, flashing[1] + y_offset
# Remove Indices Out of Bounds - Literal Edge cases
illegal_indices = within_bounds(x, y, 0, 9)
x = np.delete(x, illegal_indices)
y = np.delete(y, illegal_indices)
octo_field[x, y] += 1
# Already flashed octopi stay 0
octo_field *= flash_field
return flash(octo_field, flash_count, flash_field)
# Part 1
octopi = lines_arr.copy()
sum = 0
for t in range(100):
octopi += 1
flash_count, octopi = flash(octopi)
sum += flash_count
print(sum)
# Part 2
octopi = lines_arr.copy()
step = 0
while True:
octopi += 1
step += 1
flash_count, octopi = flash(octopi)
if flash_count == 100:
break
print(step)
| StarcoderdataPython |
1749100 | <gh_stars>0
from lx16a import *
"""
# This is the port that the controller board is connected to
# This will be different for different computers
# On Windows, try the ports COM1, COM2, COM3, etc...
# On Raspbian, try each port in /dev/
LX16A.initialize('/dev/ttyUSB0')
servo1 = LX16A(1)
servo2 = LX16A(2)
servo3 = LX16A(3)
servo4 = LX16A(4)
servo5 = LX16A(5)
servo6 = LX16A(6)
servo7 = LX16A(7)
servo8 = LX16A(8)
t = 0
"""
def HealthCheck(servo1, servo2, servo3, servo4, servo5, servo6, servo7, servo8):
#Query Initial Motor position
init1 = servo1.getPhysicalPos()
init2 = servo2.getPhysicalPos()
init3 = servo3.getPhysicalPos()
init4 = servo4.getPhysicalPos()
init5 = servo5.getPhysicalPos()
init6 = servo6.getPhysicalPos()
init7 = servo7.getPhysicalPos()
#init8 = servo8.getPhysicalPos()
#Check that each motor is receiving sufficient power
lock = 0
if max(servo1.vInLimitRead()) > servo1.vInRead() > min(servo1.vInLimitRead()):
volt = 0
else:
volt = 1
print('Voltage Error: servo 1:', servo1.vInRead())
if servo1.tempRead() > servo1.tempMaxLimitRead():
temp = 1
print('Temperature Error: servo 1')
else:
temp = 0
servo1.LEDErrorWrite(temp,volt,lock)
if max(servo2.vInLimitRead()) > servo2.vInRead() > min(servo2.vInLimitRead()):
volt = 0
else:
volt = 1
print('Voltage Error: servo 2:', servo2.vInRead())
if servo2.tempRead() > servo2.tempMaxLimitRead():
temp = 1
print('Temperature Error: servo 2')
else:
temp = 0
servo2.LEDErrorWrite(temp,volt,lock)
if max(servo3.vInLimitRead()) > servo3.vInRead() > min(servo3.vInLimitRead()):
volt = 0
else:
volt = 1
print('Voltage Error: servo 3:', servo3.vInRead())
if servo3.tempRead() > servo3.tempMaxLimitRead():
temp = 1
print('Temperature Error: servo 3')
else:
temp = 0
servo3.LEDErrorWrite(temp,volt,lock)
if max(servo4.vInLimitRead()) > servo4.vInRead() > min(servo4.vInLimitRead()):
volt = 0
else:
volt = 1
print('Voltage Error: servo 4:', servo4.vInRead())
if servo4.tempRead() > servo4.tempMaxLimitRead():
temp = 1
print('Temperature Error: servo 4')
else:
temp = 0
servo4.LEDErrorWrite(temp,volt,lock)
if max(servo5.vInLimitRead()) > servo5.vInRead() > min(servo5.vInLimitRead()):
volt = 0
else:
volt = 1
print('Voltage Error: servo 5:', servo5.vInRead())
if servo5.tempRead() > servo5.tempMaxLimitRead():
temp = 1
print('Temperature Error: servo 5')
else:
temp = 0
servo5.LEDErrorWrite(temp,volt,lock)
if max(servo6.vInLimitRead()) > servo6.vInRead() > min(servo6.vInLimitRead()):
volt = 0
else:
volt = 1
print('Voltage Error: servo 6:', servo6.vInRead())
if servo6.tempRead() > servo6.tempMaxLimitRead():
temp = 1
print('Temperature Error: servo 6')
else:
temp = 0
servo6.LEDErrorWrite(temp,volt,lock)
if max(servo7.vInLimitRead()) > servo7.vInRead() > min(servo7.vInLimitRead()):
volt = 0
else:
volt = 1
print('Voltage Error: servo 7:', servo7.vInRead())
if servo7.tempRead() > servo7.tempMaxLimitRead():
temp = 1
print('Temperature Error: servo 7')
else:
temp = 0
servo7.LEDErrorWrite(temp,volt,lock)
if max(servo8.vInLimitRead()) > servo8.vInRead() > min(servo8.vInLimitRead()):
volt = 0
else:
volt = 1
print('Voltage Error: servo 8:', servo8.vInRead())
if servo8.tempRead() > servo8.tempMaxLimitRead():
temp = 1
print('Temperature Error: servo 8')
else:
temp = 0
servo8.LEDErrorWrite(temp,volt,lock)
#Checksum / COM errors
#if servo1.checksum()
| StarcoderdataPython |
1799719 | __version__ = '0.4.0.dev0+git'
| StarcoderdataPython |
3206805 | import logging
import pygame
from ._game_scene_manager import IProvideGameScenes
from ._game_session import IGameSession
logger = logging.getLogger(__name__)
class BlockingGameSession(IGameSession):
_scene_manager: IProvideGameScenes
def __init__(self, scene_manager: IProvideGameScenes) -> None:
self._scene_manager = scene_manager
def start(self) -> None:
logger.debug("starting game session")
pygame.display.set_caption("Our Game")
scene = self._scene_manager.get_scene()
scene.start()
while not scene.should_quit():
scene.tick()
logger.debug("exiting game session")
def wait_for_completion(self) -> None:
pass
def stop(self) -> None:
pass
| StarcoderdataPython |
1628868 | # coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Test for nigt optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import test
from nigt_optimizer.nigt_optimizer import NIGTOptimizer
class NIGTOptimizerTest(test.TestCase):
def testRunsMinimize(self):
nigt = NIGTOptimizer(1.0)
w = tf.Variable([3.0])
loss = tf.square(w)
update_op = nigt.minimize(loss, var_list=[w])
if not tf.executing_eagerly():
self.evaluate(tf.initializers.global_variables())
for _ in range(3):
self.evaluate(update_op)
if __name__ == '__main__':
test.main()
| StarcoderdataPython |
3244468 | # Copyright L.P.Klyne 2013
# Licenced under 3 clause BSD licence
# $Id: TestHttpAction.py 3499 2010-02-02 08:55:42Z philipp.schuster $
#
# Unit testing for WebBrick library functions (WbAccess.py)
# See http://pyunit.sourceforge.net/pyunit.html
#
# NOTE: this is not strictly a unit test, in that it requires a WebBrick to be
# available at the specified IP address
import sys, logging, time
import unittest
from MiscLib.DomHelpers import *
from EventLib.Event import Event, makeEvent
from EventHandlers.BaseHandler import *
from EventHandlers.EventRouterLoad import EventRouterLoader
import EventHandlers.tests.TestEventLogger as TestEventLogger
import Events
from Utils import *
# NOTE
# *******
# This only does a single twisted test as there seems to be an issue stopping and starting twisted
# during tests.
#
# Configuration for the tests
testConfigHttpAction = """<?xml version="1.0" encoding="utf-8"?>
<eventInterfaces>
<eventInterface module='EventHandlers.tests.TestEventLogger' name='TestEventLogger'>
<eventtype type="">
<eventsource source="" >
<event>
<!-- interested in all events of this type -->
</event>
</eventsource>
</eventtype>
</eventInterface>
<eventInterface module='EventHandlers.TwistedReactor' name='TwistedReactor' debug="yes" />
<eventInterface module='EventHandlers.HttpAction' name='HttpAction' usetwisted='1'>
<eventtype type="http://id.webbrick.co.uk/events/webbrick/TD">
<!-- events from a source of a specific type -->
<eventsource source="webbrick/100/TD/0" >
<!-- all events from a single source -->
<event>
<params>
</params>
<url cmd="GET" address="localhost:20999" uri="/test?medianame=ITunes&mediacmd=volup" />
Test
</event>
</eventsource>
</eventtype>
</eventInterface>
</eventInterfaces>
"""
testConfigTwisted = """<?xml version="1.0" encoding="utf-8"?>
<eventInterfaces>
<eventInterface module='EventHandlers.tests.TestEventLogger' name='TestEventLogger'>
<eventtype type="">
<eventsource source="" >
<event>
<!-- interested in all events of this type -->
</event>
</eventsource>
</eventtype>
</eventInterface>
<eventInterface module='EventHandlers.TwistedReactor' name='TwistedReactor' debug="yes" />
<eventInterface module='EventHandlers.HttpAction' name='HttpAction' usetwisted='1'>
<eventtype type="http://id.webbrick.co.uk/events/webbrick/TD">
<eventsource source="webbrick/100/TD/0" >
<event>
<url cmd="GET" address="localhost:20999" uri="/test?medianame=ITunes&mediacmd=volup" />
</event>
</eventsource>
</eventtype>
</eventInterface>
</eventInterfaces>
"""
testConfigError = """<?xml version="1.0" encoding="utf-8"?>
<eventInterfaces>
<eventInterface module='EventHandlers.tests.TestEventLogger' name='TestEventLogger'>
<eventtype type="">
<eventsource source="" >
<event>
<!-- interested in all events of this type -->
</event>
</eventsource>
</eventtype>
</eventInterface>
<eventInterface module='EventHandlers.TwistedReactor' name='TwistedReactor' debug="yes" />
<eventInterface module='EventHandlers.HttpAction' name='HttpAction' usetwisted='0'>
<eventtype type="http://id.webbrick.co.uk/events/webbrick/TD">
<!-- events from a source of a specific type -->
<eventsource source="webbrick/100/TD/0" >
<!-- all events from a single source -->
<event>
<params>
</params>
<url cmd="GET" address="localhost:59999" uri="/test?medianame=ITunes&mediacmd=volup" />
Test
</event>
</eventsource>
</eventtype>
</eventInterface>
</eventInterfaces>
"""
testConfigHttpAction2 = """<?xml version="1.0" encoding="utf-8"?>
<eventInterfaces>
<eventInterface module='EventHandlers.tests.TestEventLogger' name='TestEventLogger'>
<eventtype type="">
<eventsource source="" >
<event>
<!-- interested in all events of this type -->
</event>
</eventsource>
</eventtype>
</eventInterface>
<eventInterface module='EventHandlers.TwistedReactor' name='TwistedReactor' debug="yes" />
<eventInterface module='EventHandlers.HttpAction' name='HttpAction' usetwisted='0'>
<eventtype type="http://id.webbrick.co.uk/events/webbrick/DO">
<!-- events from a source of a specific type -->
<eventsource source="webbrick/100/DO/0" >
<!-- all events from a single source -->
<event>
<url cmd="GET" address="localhost:20999" uri="/test?state=%(state)s" />
</event>
</eventsource>
</eventtype>
</eventInterface>
</eventInterfaces>
"""
testConfigWebbrickRedirect = """<?xml version="1.0" encoding="utf-8"?>
<eventInterfaces>
<eventInterface module='EventHandlers.tests.TestEventLogger' name='TestEventLogger'>
<eventtype type="">
<eventsource source="" >
<event>
<!-- interested in all events of this type -->
</event>
</eventsource>
</eventtype>
</eventInterface>
<eventInterface module='EventHandlers.TwistedReactor' name='TwistedReactor' debug="yes" />
<eventInterface module='EventHandlers.HttpAction' name='HttpAction' usetwisted='0'>
<eventtype type="http://id.webbrick.co.uk/events/webbrick/TD">
<!-- events from a source of a specific type -->
<eventsource source="webbrick/100/TD/0" >
<!-- all events from a single source -->
<event>
<url cmd="GET" address="localhost:20999" uri="/hid.spi?COM=DO0N:" />
</event>
</eventsource>
</eventtype>
</eventInterface>
</eventInterfaces>
"""
class TestHttpAction(unittest.TestCase):
def setUp(self):
self._log = logging.getLogger( "TestHttpAction" )
self._log.debug( "\n\nsetUp" )
self.httpServer = None
self.httpServer = TestHttpServer()
self.httpServer.start()
self.router = None
self.loader = None
def tearDown(self):
self._log.debug( "\n\ntearDown" )
if self.loader:
self.loader.stop() # all tasks
self.loader = None
self.router = None
if self.httpServer:
self.httpServer.stop()
self.httpServer = None
time.sleep(5)
# Actual tests follow
def testHttpAction(self):
self._log.debug( "\n\ntestHttpAction" )
self.loader = EventRouterLoader()
self.loader.loadHandlers( getDictFromXmlString(testConfigHttpAction) )
self.loader.start() # all tasks
self.router = self.loader.getEventRouter()
time.sleep(1)
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD0 ) # 0 Off
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD1 ) # 1 Off
maxTime = 10
while (len(self.httpServer.requests()) < 1) and (maxTime > 0):
maxTime -= 1
time.sleep(1)
TestEventLogger.logEvents()
# now look for correct url requests
self._log.debug( "testHttpAction %s", self.httpServer.requests() )
self.assertEqual( len(self.httpServer.requests()), 1)
self.assertEqual( self.httpServer.requests()[0], "/test?medianame=ITunes&mediacmd=volup" )
def testHttpAction2Requests(self):
self._log.debug( "\ntestHttpAction2Requests" )
self.loader = EventRouterLoader()
self.loader.loadHandlers( getDictFromXmlString(testConfigHttpAction) )
self.loader.start() # all tasks
self.router = self.loader.getEventRouter()
time.sleep(1)
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD0 ) # 0 Off
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD0 ) # 0 Off
maxTime = 10
while (len(self.httpServer.requests()) < 2) and (maxTime > 0):
maxTime -= 1
time.sleep(1)
TestEventLogger.logEvents()
# now look for correct url requests
self._log.debug( "testHttpAction %s", self.httpServer.requests() )
self.assertEqual( len(self.httpServer.requests()), 2)
self.assertEqual( self.httpServer.requests()[0], "/test?medianame=ITunes&mediacmd=volup" )
self.assertEqual( self.httpServer.requests()[1], "/test?medianame=ITunes&mediacmd=volup" )
def testHttpAction2RequestsSpaced(self):
self._log.debug( "\ntestHttpAction2RequestsSpaced" )
self.loader = EventRouterLoader()
self.loader.loadHandlers( getDictFromXmlString(testConfigHttpAction) )
self.loader.start() # all tasks
self.router = self.loader.getEventRouter()
time.sleep(1)
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD0 ) # 0 Off
maxTime = 10
while (len(self.httpServer.requests()) < 1) and (maxTime > 0):
maxTime -= 1
time.sleep(1)
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD0 ) # 0 Off
maxTime = 10
while (len(self.httpServer.requests()) < 2) and (maxTime > 0):
maxTime -= 1
time.sleep(1)
TestEventLogger.logEvents()
# now look for correct url requests
self._log.debug( "testHttpAction %s", self.httpServer.requests() )
self.assertEqual( len(self.httpServer.requests()), 2)
self.assertEqual( self.httpServer.requests()[0], "/test?medianame=ITunes&mediacmd=volup" )
self.assertEqual( self.httpServer.requests()[1], "/test?medianame=ITunes&mediacmd=volup" )
def testTwisted(self):
self._log.debug( "\ntestTwisted" )
self.loader = EventRouterLoader()
self.loader.loadHandlers( getDictFromXmlString(testConfigTwisted) )
self.loader.start() # all tasks
self.router = self.loader.getEventRouter()
time.sleep(1)
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD0 ) # 0 Off
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD1 ) # 1 Off
maxTime = 10
while (len(self.httpServer.requests()) < 1) and (maxTime > 0):
maxTime -= 1
time.sleep(1)
TestEventLogger.logEvents()
# now look for correct url requests
self._log.debug( "testTwisted %s", self.httpServer.requests() )
self.assertEqual( len(self.httpServer.requests()), 1)
self.assertEqual( self.httpServer.requests()[0], "/test?medianame=ITunes&mediacmd=volup" )
def testHttpError(self):
# TODO grab error log
self._log.debug( "\ntestHttpError" )
'''
NOTE: This is expected to trow an Error!
'''
self.loader = EventRouterLoader()
self.loader.loadHandlers( getDictFromXmlString(testConfigError) )
self.loader.start() # all tasks
self.router = self.loader.getEventRouter()
time.sleep(1)
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD0 ) # 0 Off
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD1 ) # 1 Off
time.sleep(5)
TestEventLogger.logEvents()
# now look for correct url requests, no responses
self._log.debug( "testHttpAction %s", self.httpServer.requests() )
self.assertEqual( len(self.httpServer.requests()), 0)
def testHttpAction2(self):
self._log.debug( "\n\ntestHttpAction2" )
self.loader = EventRouterLoader()
self.loader.loadHandlers( getDictFromXmlString(testConfigHttpAction2) )
self.loader.start() # all tasks
self.router = self.loader.getEventRouter()
time.sleep(1)
self.router.publish( EventAgent("TestHttpAction"), Events.evtDO_0_on ) # 0 Off
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD1 ) # 1 Off
maxTime = 10
while (len(self.httpServer.requests()) < 1) and (maxTime > 0):
maxTime -= 1
time.sleep(1)
TestEventLogger.logEvents()
# now look for correct url requests
self._log.debug( "testHttpAction2 %s", self.httpServer.requests() )
self.assertEqual( len(self.httpServer.requests()), 1)
self.assertEqual( self.httpServer.requests()[0], "/test?state=1" )
def testWebbrickRedirect(self):
self._log.debug( "\ntestWebbrickRedirect" )
self.loader = EventRouterLoader()
self.loader.loadHandlers( getDictFromXmlString(testConfigWebbrickRedirect) )
self.loader.start() # all tasks
self.router = self.loader.getEventRouter()
time.sleep(1)
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD0 ) # 0 Off
self.router.publish( EventAgent("TestHttpAction"), Events.evtTD1 ) # 1 Off
maxTime = 10
while (len(self.httpServer.requests()) < 1) and (maxTime > 0):
maxTime -= 1
time.sleep(1)
TestEventLogger.logEvents()
# now look for correct url requests
self._log.debug( "testWebbrickRedirect %s", self.httpServer.requests() )
self.assertEqual( len(self.httpServer.requests()), 1)
self.assertEqual( self.httpServer.requests()[0], "/hid.spi?COM=DO0N:" )
def testDummy(self):
return
from MiscLib import TestUtils
def getTestSuite(select="unit"):
"""
Get test suite
select is one of the following:
"unit" return suite of unit tests only
"component" return suite of unit and component tests
"all" return suite of unit, component and integration tests
"pending" return suite of pending tests
name a single named test to be run
"""
testdict = {
"unit":
[ "testHttpAction"
, "testHttpAction2Requests"
, "testHttpAction2RequestsSpaced"
, "testHttpError"
, "testHttpAction2"
, "testTwisted"
, "testWebbrickRedirect"
],
"component":
[ "testDummy"
],
"integration":
[ "testDummy"
],
"pending":
[ "testDummy"
]
}
return TestUtils.getTestSuite(TestHttpAction, testdict, select=select)
# Run unit tests directly from command line
if __name__ == "__main__":
TestUtils.runTests("TestHttpAction.log", getTestSuite, sys.argv)
| StarcoderdataPython |
1729342 | #!/usr/bin/env python3
"""
Day 8
for Advent of Code 2015
Link to problem description:
http://adventofcode.com/day/8
author:
<NAME>
(nitsas)
language:
Python 3.4.2
date:
December, 2015
usage:
$ python3 runme.py input.txt
or
$ runme.py input.txt
(where input.txt is the input file and $ the prompt)
"""
import sys
import re
def clean_up(line):
# remove leading and trailing quotes
line = line[1:-1]
# convert escaped backslash character to 'a'
line = line.replace(r'\\', 'a')
# convert escaped double quote character to 'a'
line = line.replace(r'\"', 'a')
# convert any valid ascii code to 'a'
line = re.sub(r'\\x[0-9a-fA-F]{2}', 'a', line)
return line
def unclean_up(line):
# replace leading and trailing quotes with 'aa' each
line = 'aa' + line[1:-1] + 'aa'
# add more a's to account for the extra leading and trailing quotes
line = 'a' + line + 'a'
# replace backslashes with 'aa'
line = line.replace('\\', 'aa')
# replace double quote characters with 'aa'
line = line.replace('"', 'aa')
return line
def solve_part_1(lines):
total_code_length = sum(len(line) for line in lines)
total_in_memory_length = sum(len(clean_up(line)) for line in lines)
return total_code_length - total_in_memory_length
def solve_part_2(lines):
total_code_length = sum(len(line) for line in lines)
total_escaped_length = sum(len(unclean_up(line)) for line in lines)
return total_escaped_length - total_code_length
def main(filename=None):
# get the input file
if filename is None:
if len(sys.argv) == 2:
# get the filename from the command line
filename = sys.argv[1]
else:
# no filename given
print('Usage: runme.py input_file')
return 1
with open(filename, 'r') as file_:
lines = file_.read().splitlines()
print('part 1:', solve_part_1(lines))
print('part 2:', solve_part_2(lines))
return 0
# run function 'main' if this file is being run in the command line
# (vs being imported as a module)
if __name__ == "__main__":
status = main()
sys.exit(status)
| StarcoderdataPython |
1711692 |
class PkgTypeEnum:
REQUIREMENT, DEPENDENCY = range(2)
| StarcoderdataPython |
166575 | import logging
from typing import Optional, Dict, List
import pysolr
import serpy
from manifest_server.helpers.fields import StaticField
from manifest_server.helpers.identifiers import get_identifier, IIIF_V3_CONTEXT
from manifest_server.helpers.metadata import v3_metadata_block, get_links
from manifest_server.helpers.serializers import ContextDictSerializer
from manifest_server.helpers.solr import SolrManager, SolrResult
from manifest_server.helpers.solr_connection import SolrConnection
from manifest_server.iiif.v3.manifests.canvas import Canvas
from manifest_server.iiif.v3.manifests.structure import create_v3_structures
log = logging.getLogger(__name__)
def create_v3_manifest(request, manifest_id: str, config: Dict) -> Optional[Dict]:
fq: List = ["type:object", f"id:{manifest_id}"]
record: pysolr.Results = SolrConnection.search("*:*", fq=fq, rows=1)
if record.hits == 0:
return None
object_record = record.docs[0]
manifest: Manifest = Manifest(object_record, context={"request": request,
"config": config})
return manifest.data
class Manifest(ContextDictSerializer):
"""
The main class for constructing a IIIF Manifest. Implemented as a serpy
serializer. This docstring will serve as the documentation for this class, as well as the
other serializer classes.
The ContextDictSerializer superclass provides a 'context' object on this class. This
can be used to pass values down through the various child classes, provided they are also given the same
context. This lets us pass along things like the original request object, and the
server configuration object, without needing to resolve it externally.
For classes that implement de-referenceable objects, they provide a method field that will return
None if that object is being embedded in a manifest, or the IIIF v3 context array if it's being
de-referenced directly.
When the values of this class are serialized, any fields that have a value of None will not
be emitted in the output. Refer to the `to_value` method on the superclass for the implementation
and docstring for this function.
"""
ctx = StaticField(
value=IIIF_V3_CONTEXT,
label="@context"
)
mid = serpy.MethodField(
label="id"
)
mtype = StaticField(
value="Manifest",
label="type"
)
label = serpy.MethodField()
summary = serpy.MethodField()
metadata = serpy.MethodField()
homepage = serpy.MethodField()
provider = serpy.MethodField()
nav_date = serpy.MethodField(
label='navDate'
)
logo = serpy.MethodField()
thumbnail = serpy.MethodField()
required_statement = serpy.MethodField(
label="requiredStatement"
)
part_of = serpy.MethodField(
label="partOf"
)
behaviour = serpy.MethodField(
label="behavior"
)
items = serpy.MethodField()
structures = serpy.MethodField()
viewing_direction = serpy.StrField(
attr="viewing_direction_s",
label="viewingDirection",
required=False
)
def get_mid(self, obj: SolrResult) -> str:
req = self.context.get('request')
conf = self.context.get('config')
manifest_tmpl: str = conf['templates']['manifest_id_tmpl']
return get_identifier(req, obj.get('id'), manifest_tmpl)
def get_label(self, obj: SolrResult) -> Dict:
return {"en": [f"{obj.get('full_shelfmark_s')}"]}
def get_summary(self, obj: SolrResult) -> Dict:
return {"en": [f"{obj.get('summary_s')}"]}
def get_required_statement(self, obj: SolrResult) -> Dict:
return {
"label": {"en": ["Terms of Use"]},
"value": {"en": [obj.get("use_terms_sni", None)]}
}
def get_part_of(self, obj: SolrResult) -> Optional[List]:
colls: List[str] = obj.get('all_collections_link_smni')
if not colls:
return None
req = self.context.get('request')
cfg = self.context.get('config')
tmpl: str = cfg['templates']['collection_id_tmpl']
ret: List[Dict] = []
for collection in colls:
cid, label = collection.split("|")
ret.append({
"id": get_identifier(req, cid, tmpl),
"type": "Collection",
"label": {"en": [label]}
})
return ret
def get_homepage(self, obj: SolrResult) -> List:
req = self.context.get('request')
cfg = self.context.get('config')
tmpl: str = cfg['templates']['digital_bodleian_permalink_tmpl']
uuid: str = obj.get("id")
conn: SolrManager = SolrManager(SolrConnection)
fq: List = ['type:link', f"object_id:{uuid}"]
conn.search("*:*", fq=fq)
links: List = [{
'id': get_identifier(req, uuid, tmpl),
'type': "Text",
"label": {"en": ["View on Digital Bodleian"]},
"format": "text/html",
"language": ["en"]
}]
if conn.hits > 0:
for r in conn.results:
links.append({
'id': r.get('target_s'),
'type': "Text",
"label": {"en": [r.get('label_s')]},
"format": "text/html",
"language": ["en"]
})
return links
def get_logo(self, obj: SolrResult) -> Optional[List]:
logo_uuid: str = obj.get("logo_id")
if not logo_uuid:
return None
req = self.context.get('request')
cfg = self.context.get('config')
image_tmpl: str = cfg['templates']['image_id_tmpl']
logo_ident: str = get_identifier(req, logo_uuid, image_tmpl)
thumbsize: str = cfg['common']['thumbsize']
logo_service: List = [{
"id": f"{logo_ident}/full/{thumbsize},/0/default.jpg",
"type": "Image",
"service": {
"type": "ImageService2",
"profile": "level1",
"id": logo_ident
}
}]
return logo_service
def get_provider(self, obj: SolrResult) -> Optional[List]:
"""
If a URI for the organization is not provided, we will not show any
information about the organization.
:param obj: A Solr record.
:return: A 'provider' block.
"""
uri: Optional[str] = obj.get("institution_uri_s", None)
if not uri:
return None
org_name: Optional[str] = obj.get("holding_institution_s", None)
org_homepage: Optional[str] = obj.get("institution_homepage_sni", None)
provider_block: List = [{
"id": uri,
"type": "Agent",
"label": {"en": [org_name]},
"homepage": {
"id": org_homepage,
"type": "Text",
"label": {"en": [org_name]},
"format": "text/html"
},
}]
return provider_block
def get_thumbnail(self, obj: SolrResult) -> Optional[List]:
image_uuid: str = obj.get('thumbnail_id')
if not image_uuid:
return None
req = self.context.get('request')
cfg = self.context.get('config')
image_tmpl: str = cfg['templates']['image_id_tmpl']
image_ident: str = get_identifier(req, image_uuid, image_tmpl)
thumbsize: str = cfg['common']['thumbsize']
thumb_service: List = [{
"id": f"{image_ident}/full/{thumbsize},/0/default.jpg",
"service": {
"type": "ImageService2",
"profile": "level1",
"id": image_ident
}
}]
return thumb_service
def get_behaviour(self, obj: SolrResult) -> List:
vtype = obj.get('viewing_type_s')
if vtype and vtype in ["map", "sheet", "binding", "photo"]:
return ["individuals"]
return ["paged"]
def get_metadata(self, obj: SolrResult) -> Optional[List[Dict]]:
# description_sm is already included in the summary
metadata: List = get_links(obj, 3)
metadata += v3_metadata_block(obj)
return metadata
def get_items(self, obj: SolrResult) -> Optional[List]:
req = self.context.get('request')
cfg = self.context.get('config')
obj_id: str = obj.get('id')
# Check if the canvases have annotations. We don't actually
# need to retrieve them, just get the number of hits.
has_annotations_res = SolrConnection.search(
"*:*",
fq=["type:annotationpage", f"object_id:{obj_id}"],
rows=0
)
has_annotations = has_annotations_res.hits > 0
manager: SolrManager = SolrManager(SolrConnection)
fq: List = ["type:surface", f"object_id:{obj_id}"]
sort: str = "sort_i asc"
fl: List = ["*,[child parentFilter=type:surface childFilter=type:image]"]
rows: int = 100
manager.search("*:*", fq=fq, fl=fl, sort=sort, rows=rows)
if manager.hits == 0:
return None
return Canvas(manager.results, context={"request": req,
"config": cfg,
"has_annotations": has_annotations}, many=True).data
def get_structures(self, obj: SolrResult) -> Optional[List[Dict]]:
return create_v3_structures(self.context.get("request"),
obj.get("id"),
self.context.get("config"))
def get_nav_date(self, obj: SolrResult) -> Optional[str]:
year: Optional[int] = obj.get('start_date_i') or obj.get('end_date_i')
if year is None:
return None
return f"{year}-01-01T00:00:00Z"
| StarcoderdataPython |
139325 | <gh_stars>1-10
from flask import Blueprint
project = Blueprint("project", __name__)
from app.project import routes # noqa: E402, F401
| StarcoderdataPython |
3367290 | from db import words
def test_get_id_for_word(db_conn):
cursor = db_conn.cursor()
assert words.get_id_for_word(cursor, '&c') == (1,)
# Should also test when the word *doesn't* exist in the database
assert words.get_id_for_word(cursor, 'rgnthm') is None
def test_get_word_for_id(db_conn):
cursor = db_conn.cursor()
# Test the affirmative case
assert words.get_word_for_id(cursor, 35810) == ('boogaloo',)
# Let's test on a few that obviously aren't valid ids
assert words.get_word_for_id(cursor, -1) is None
assert words.get_word_for_id(cursor, 1.5) is None
assert words.get_word_for_id(cursor, 'wjksjksjkadbf') is None
def test_word_exists(db_conn):
cursor = db_conn.cursor()
assert words.word_exists(cursor, 'boogaloo')
assert words.word_exists(cursor, '&c')
assert not words.word_exists(cursor, 'rgnthm')
assert not words.word_exists(cursor, 4)
def test_get_word_list(db_conn):
cursor = db_conn.cursor()
dct = words.get_word_list(cursor)
assert len(dct) == 354971
assert 'boogaloo' in dct
assert 'rgnthm' not in dct
dct = words.get_word_list(cursor, ids=True)
assert all(len(value) == 2 for value in dct.values())
def test_append_word(db_conn):
cursor = db_conn.cursor()
words.append_word(cursor, 'rgnthm')
assert words.word_exists(cursor, 'rgnthm')
| StarcoderdataPython |
1794891 | n = int(input())
numbers = list(map(int, input().split()))
weights = list(map(int, input().split()))
result = 0
for index in range(n):
result += numbers[index] * weights[index]
result /= sum(weights)
print(round(result, 1))
| StarcoderdataPython |
19776 | <reponame>paulkramme/mit-license-adder
#!/usr/bin/python2
import tempfile
import sys
import datetime
mit_license = ("""\
/*
MIT License
Copyright (c) 2016 <NAME>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
""")
class FileModifierError(Exception):
pass
class FileModifier(object):
def __init__(self, fname):
self.__write_dict = {}
self.__filename = fname
self.__tempfile = tempfile.TemporaryFile()
with open(fname, 'rb') as fp:
for line in fp:
self.__tempfile.write(line)
self.__tempfile.seek(0)
def write(self, s, line_number = 'END'):
if line_number != 'END' and not isinstance(line_number, (int, float)):
raise FileModifierError("Line number %s is not a valid number" % line_number)
try:
self.__write_dict[line_number].append(s)
except KeyError:
self.__write_dict[line_number] = [s]
def writeline(self, s, line_number = 'END'):
self.write('%s\n' % s, line_number)
def writelines(self, s, line_number = 'END'):
for ln in s:
self.writeline(s, line_number)
def __popline(self, index, fp):
try:
ilines = self.__write_dict.pop(index)
for line in ilines:
fp.write(line)
except KeyError:
pass
def close(self):
self.__exit__(None, None, None)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
with open(self.__filename,'w') as fp:
for index, line in enumerate(self.__tempfile.readlines()):
self.__popline(index, fp)
fp.write(line)
for index in sorted(self.__write_dict):
for line in self.__write_dict[index]:
fp.write(line)
self.__tempfile.close()
filename = sys.argv[1]
#license = sys.argv[1]
print "Licenseadder by <NAME>"
with FileModifier(filename) as fp:
fp.writeline(mit_license, 0)
| StarcoderdataPython |
4843267 | <gh_stars>1-10
import os
import sys
try:
from balsam.core import models
from balsam.core.models import ApplicationDefinition, BalsamJob
from balsam.service import service
except:
pass
from deephyper.core.cli.utils import generate_other_arguments
from deephyper.core.exceptions import DeephyperRuntimeError
from deephyper.problem import BaseProblem, NaProblem
from deephyper.search.util import banner, generic_loader
APPS = {
"HPS": {
"AMBS": f"{sys.executable} -m deephyper.search.hps.ambs",
},
"NAS": {
"AMBS": f"{sys.executable} -m deephyper.search.nas.ambs",
"RANDOM": f"{sys.executable} -m deephyper.search.nas.random",
"REGEVO": f"{sys.executable} -m deephyper.search.nas.regevo",
"AGEBO": f"{sys.executable} -m deephyper.search.nas.agebo",
},
}
def add_subparser(subparsers):
subparser_name = "balsam-submit"
function_to_call = main
subparser = subparsers.add_parser(
subparser_name, help="Create and submit an HPS or NAS job directly via Balsam."
)
subparser.add_argument("mode", choices=["nas", "hps"], help="Type of search")
subparser.add_argument(
"search",
choices=["ambs", "regevo", "random", "agebo", "ambsmixed", "regevomixed"],
help="Search strategy",
)
subparser.add_argument("workflow", help="Unique workflow name")
subparser.add_argument(
"-p", "--problem", required=True, help="Problem definition path or object"
)
subparser.add_argument(
"-r", "--run", required=False, help="Run function path or object"
)
subparser.add_argument(
"-t", "--time-minutes", type=int, required=True, help="Job walltime (minutes)"
)
subparser.add_argument(
"-n", "--nodes", type=int, required=True, help="Number of nodes"
)
subparser.add_argument("-q", "--queue", required=True, help="Queue to submit into")
subparser.add_argument("-A", "--project", required=True, help="Project Name")
subparser.add_argument(
"-j",
"--job-mode",
required=True,
help="Launcher job mode",
choices=["mpi", "serial"],
)
subparser.add_argument(
"--num-evals-per-node",
default=1,
type=int,
help="Number of evaluations performed on each node. Only valid if evaluator==balsam and balsam job-mode is 'serial'.",
)
subparser.set_defaults(func=function_to_call)
def main(mode: str, search: str, workflow: str, problem: str, run: str, **kwargs) -> None:
"""Create & submit the DH search via Balsam"""
job = pre_submit(mode, search, workflow, problem, run)
if os.path.exists(problem): # the problem was given as a PATH
problem = os.path.abspath(problem)
if run and os.path.exists(run): # the run function was given as a PATH
run = os.path.abspath(run)
print(
f"Creating BalsamJob using application {job.application}...", end="", flush=True
)
setup_job(job, problem, run, **kwargs)
print("OK")
print("Performing job submission...")
submit_qlaunch(
kwargs["project"],
kwargs["queue"],
kwargs["nodes"],
kwargs["time_minutes"],
kwargs["job_mode"],
workflow,
)
banner(f"Success. The search will run at: {job.working_directory}")
def validate(mode: str, search: str, workflow: str, problem: str, run: str) -> str:
"""Validate problem, run, and workflow"""
# validate the mode
if not (mode.upper() in APPS):
raise DeephyperRuntimeError(f"The mode '{mode}' is not valid!")
# validate the search
if not (search.upper()in APPS[mode.upper()]):
raise DeephyperRuntimeError(f"The search '{search}' is not valid!")
app = f"{mode.upper()}-{search.upper()}"
print(f"Validating Problem({problem})...", end="", flush=True)
prob = generic_loader(problem, "Problem")
assert isinstance(prob, (NaProblem, BaseProblem)), f"{prob} is not a Problem instance"
print("OK", flush=True)
# validate run
if run: # it is not mandatory to pass a run function for NAS
print("Validating run...", end="", flush=True)
run = generic_loader(run, "run")
assert callable(run), f"{run} must be a a callable"
print("OK", flush=True)
else:
if mode == "hps":
raise DeephyperRuntimeError(f"No '--run' was passed for the mode 'hps'")
qs = BalsamJob.objects.filter(workflow=workflow)
if qs.exists():
raise DeephyperRuntimeError(
f"There are already jobs matching workflow {workflow}"
f"Please remove these, or use a unique workflow name"
)
return app
def bootstrap_apps():
"""Ensure Balsam ApplicationDefinitions are populated"""
for mode, mode_apps in APPS.items():
for app_name, app_exe in mode_apps.items():
app, created = ApplicationDefinition.objects.get_or_create(
name=f"{mode}-{app_name}", defaults={"executable": app_exe}
)
if not created:
app.executable = app_exe
app.save()
def pre_submit(
mode: str, search: str, workflow: str, problem: str, run: str
):
"""Validate command line; prepare apps"""
app = validate(mode, search, workflow, problem, run)
# creating the APPS in the balsam DB
print("Bootstrapping apps...", end="", flush=True)
bootstrap_apps()
print("OK")
job = BalsamJob(name=workflow, workflow=workflow, application=app)
return job
def setup_job(job, problem, run, **kwargs):
job.args = f"--evaluator balsam --problem {problem}"
#! it is not required for NAS to pass a run function
if run:
job.args += f" --run {run}"
invalid_keys = ["time_minutes", "nodes", "queue", "project", "job_mode"]
for k in invalid_keys:
kwargs.pop(k)
args = generate_other_arguments(**kwargs)
if len(args) > 0:
job.args += f" {args}"
job.save()
return job
def submit_qlaunch(project, queue, nodes, time_minutes, job_mode, wf_filter):
"""Submit Balsam launcher job to batch scheduler"""
QueuedLaunch = models.QueuedLaunch
qlaunch = QueuedLaunch(
project=project,
queue=queue,
nodes=nodes,
wall_minutes=time_minutes,
job_mode=job_mode,
wf_filter=wf_filter,
prescheduled_only=False,
)
qlaunch.save()
service.submit_qlaunch(qlaunch, verbose=True)
| StarcoderdataPython |
1666306 | <filename>onmt/encoders/__init__.py<gh_stars>10-100
"""Module defining encoders."""
from onmt.encoders.encoder import EncoderBase
from onmt.encoders.transformer import TransformerEncoder
from onmt.encoders.rnn_encoder import RNNEncoder
from onmt.encoders.cnn_encoder import CNNEncoder
from onmt.encoders.mean_encoder import MeanEncoder
from onmt.encoders.audio_encoder import AudioEncoder
from onmt.encoders.image_encoder import ImageEncoder
str2enc = {"rnn": RNNEncoder, "brnn": RNNEncoder, "cnn": CNNEncoder,
"transformer": TransformerEncoder, "img": ImageEncoder,
"audio": AudioEncoder, "mean": MeanEncoder}
__all__ = ["EncoderBase", "TransformerEncoder", "RNNEncoder", "CNNEncoder",
"MeanEncoder", "str2enc"]
| StarcoderdataPython |
88279 | def foo():
"""
Parameters:
a: foo
Returns:
None
""" | StarcoderdataPython |
3373995 | <reponame>jhoe123/Elastos.Hive.Node<gh_stars>1-10
# -*- coding: utf-8 -*-
URL_V2 = '/api/v2'
URL_SIGN_IN = '/did/signin'
URL_AUTH = '/did/auth'
URL_BACKUP_AUTH = '/did/backup_auth'
URL_SERVER_INTERNAL_BACKUP = '/vault-backup-service/backup'
URL_SERVER_INTERNAL_RESTORE = '/vault-backup-service/restore'
URL_SERVER_INTERNAL_STATE = '/vault-backup-service/state'
BACKUP_FILE_SUFFIX = '.backup'
DID = 'did'
USR_DID = 'user_did'
APP_DID = 'app_did'
OWNER_ID = 'owner_id'
CREATE_TIME = 'create_time'
MODIFY_TIME = 'modify_time'
SIZE = 'size'
STATE = 'state'
STATE_RUNNING = 'running'
STATE_FINISH = 'finish'
STATE_FAILED = 'failed'
ORIGINAL_SIZE = 'original_size'
IS_UPGRADED = 'is_upgraded'
CID = 'cid'
COUNT = 'count'
COL_ORDERS = 'vault_order'
COL_ORDERS_SUBSCRIPTION = 'subscription'
COL_ORDERS_PRICING_NAME = 'pricing_name'
COL_ORDERS_ELA_AMOUNT = 'ela_amount'
COL_ORDERS_ELA_ADDRESS = 'ela_address'
COL_ORDERS_PROOF = 'proof'
COL_ORDERS_STATUS = 'status'
COL_ORDERS_STATUS_NORMAL = 'normal'
COL_ORDERS_STATUS_PAID = 'paid'
COL_ORDERS_STATUS_ARCHIVE = 'archive'
COL_RECEIPTS = 'vault_receipt'
COL_RECEIPTS_ID = 'receipt_id'
COL_RECEIPTS_ORDER_ID = 'order_id'
COL_RECEIPTS_TRANSACTION_ID = 'transaction_id'
COL_RECEIPTS_PAID_DID = 'paid_did'
COL_IPFS_FILES = 'ipfs_files'
COL_IPFS_FILES_PATH = 'path'
COL_IPFS_FILES_SHA256 = 'sha256'
COL_IPFS_FILES_IS_FILE = 'is_file'
COL_IPFS_FILES_IPFS_CID = 'ipfs_cid'
COL_IPFS_CID_REF = 'ipfs_cid_ref'
COL_IPFS_BACKUP_CLIENT = 'ipfs_backup_client'
COL_IPFS_BACKUP_SERVER = 'ipfs_backup_server'
BACKUP_TARGET_TYPE = 'type'
BACKUP_TARGET_TYPE_HIVE_NODE = 'hive_node'
BACKUP_TARGET_TYPE_GOOGLE_DRIVER = 'google_driver'
BACKUP_REQUEST_ACTION = 'action'
BACKUP_REQUEST_ACTION_BACKUP = 'backup'
BACKUP_REQUEST_ACTION_RESTORE = 'restore'
BACKUP_REQUEST_STATE = 'state'
BACKUP_REQUEST_STATE_STOP = 'stop'
BACKUP_REQUEST_STATE_INPROGRESS = 'process'
BACKUP_REQUEST_STATE_SUCCESS = 'success'
BACKUP_REQUEST_STATE_FAILED = 'failed'
BACKUP_REQUEST_STATE_MSG = 'state_msg'
BACKUP_REQUEST_TARGET_HOST = 'target_host'
BACKUP_REQUEST_TARGET_DID = 'target_did'
BACKUP_REQUEST_TARGET_TOKEN = 'target_token'
# For backup subscription.
BKSERVER_REQ_ACTION = 'req_action'
BKSERVER_REQ_STATE = 'req_state'
BKSERVER_REQ_STATE_MSG = 'req_state_msg'
BKSERVER_REQ_CID = 'req_cid'
BKSERVER_REQ_SHA256 = 'req_sha256'
BKSERVER_REQ_SIZE = 'req_size'
# @deprecated
URL_BACKUP_SERVICE = '/api/v2/internal_backup/service'
URL_BACKUP_FINISH = '/api/v2/internal_backup/finished_confirmation'
URL_BACKUP_FILES = '/api/v2/internal_backup/files'
URL_BACKUP_FILE = '/api/v2/internal_backup/file'
URL_BACKUP_PATCH_HASH = '/api/v2/internal_backup/patch_hash'
URL_BACKUP_PATCH_DELTA = '/api/v2/internal_backup/patch_delta'
URL_BACKUP_PATCH_FILE = '/api/v2/internal_backup/patch_file'
URL_RESTORE_FINISH = '/api/v2/internal_restore/finished_confirmation'
URL_IPFS_BACKUP_PIN_CIDS = '/api/v2/ipfs-backup-internal/pin_cids'
URL_IPFS_BACKUP_GET_DBFILES = '/api/v2/ipfs-backup-internal/get_dbfiles'
URL_IPFS_BACKUP_STATE = '/api/v2/ipfs-backup-internal/state'
def get_unique_dict_item_from_list(dict_list: list):
if not dict_list:
return list()
return list({frozenset(item.items()): item for item in dict_list}.values())
| StarcoderdataPython |
3384011 |
from dispy.types.User import User
import asyncio
class Guild:
# no support for threads
def __init__(self, args: dict) -> None:
self.id = int(args['id'])
self.name = args['name']
self.icon = args.get('icon', None)
self.icon_hash = args.get('icon_hash', None)
self.splash = args.get('splash', None)
self.discovery_splash = args.get('discovery_splash', None)
self.owner = args.get('owner', False) == 'true'
self.owner_id = int(args['owner_id'])
self.permissions = args.get('permissions', None)
self.region = args.get('region', None)
self.afk_channel_id = int(args.get('afk_channel_id', None))
self.afk_timeout = int(args.get('afk_timeout', None))
self.widget_enabled = args.get('widget_enabled', False) == True
self.widget_channel_id = int(args.get('widget_channel_id', 0))
self.verification_level = int(args['verification_level'])
self.default_message_notifications = int(args['default_me'])
self.explicit_content_filter = int(args['explicit_content_filter'])
self.roles = args['roles']
self.emojis = args['emoji']
self.features = args['features']
self.mfa_level = int(args['mfa_level'])
self.application_id = int(args.get('application_id', 0))
self.system_channel_id = int(args.get('system_channel_id', 0))
self.system_channel_flags = int(args['system_channel_flags'])
self.rules_channel_id = int(args.get('rules_channel_id', 0))
self.joined_at = args.get('joined_at', None) # ISO8601 timestamp
self.large = args.get('large', False) == 'true'
self.unavailable = args.get('unavailable', False) == 'true'
self.member_count = int(args.get('member_count', 0))
self.voice_states = args.get('voice_states', None)
self.members = args.get('members', None)
self.channels = args.get('channels', None)
self.presences = args.get('presences', None)
self.max_presences = int(args.get('max_presences', None))
self.max_members = int(args.get('max_members', None))
self.vanity_url_code = args.get('vanity_url_code', None)
self.description = args.get('description', None)
self.banner = args.get('banner', None)
self.premium_tier = int(args['premium_tier'])
self.premium_subscription_count = int(args.get('premium_subscription_count', 0))
self.preferred_locale = args['preffered_locale']
self.public_updates_channel_id = int(args.get('public_updates_channel_id', 0))
self.max_video_channel_users = int(args.get('max_video_channel_users', 0))
self.approximate_member_count = int(args.get('approximate_member_count', 0))
self.approximate_presence_count = int(args.get('approximate_precense_count', 0))
self.welcome_screen = args.get('welcome_screen', None)
self.nsfw_level = int(args['nsfw_level'])
self.stage_instances = args.get('stage_instances', None)
self.stage_instances = args.get('stage_instances', None)
async def create_guild(guild_dict) -> Guild:
# API: POST /guilds
pass
async def get_guild(guild_id) -> Guild:
# API: GET /guilds/{guild.id}
pass
async def get_guild_preview(guid_id): # returns guild preview object
# API: GET /guilds/{guild.id}/preview
pass
async def modify_guild(guild_dict) -> Guild:
# API: PATCH /guilds/{guild.id}
pass
async def delete_guild(guild_id):
# API: DELETE /guilds/{guild.id}
pass
async def get_guild_channels(guild_id): # returns a list of channels
# API: GET /guilds/{guild.id}/channels
pass
async def create_guild_channel(guild_id, channel): # returns a channel
# API: POST /guilds/{guild.id}/channels
pass
async def modify_guild_channel_positions(guild_id, channels): # returns empty 204
# API: PATCH /guilds/{guild.id}/channels
pass
async def get_guild_member(guild_id, user_id) -> User:
# API: GET /guilds/{guild.id}/members/{user.id}
pass
async def list_guild_members(guild_id): # returns a list fo guild member objects
# API: GET /guilds/{guild.id}/members
pass
async def search_guild_members(guild_id, query): # returns a list of guild members
# API: GET /guilds/{guild.id}/members/search
pass
async def add_guild_member(guild_id, user_id): # returns 201 created or 204 no content
# API: PUT /guilds/{guild.id}/members/{user.id}
pass
async def modify_guild_member(guild_id, user_id): # returns a 200 ok
# API: PATCH /guilds/{guild.id}/members/{user.id}
pass
async def modify_self_nickname(guild_id): # 200 on success
# API: PATCH /guilds/{guild.id}/members/@me/nick
pass
async def add_guild_member_role(guild_id, user_id, role_id): #204 empty on success
# API: PUT /guilds/{guild.id}/members/{user.id}/roles/{role.id}
pass
async def remove_guild_member_role(guild_id, user_id, role_id): # 204 empty on success
# API: DELETE /guilds/{guild.id}/members/{user.id}/roles/{role.id}
pass
async def remove_guild_member(guild_id, user_id): #204 empty on success
# API: DELETE /guilds/{guild.id}/member/{user.id}
pass
async def get_guild_bans(guild_id): # list of ban objects
# API: GET /guilds/{guild.id}/bans
pass
async def get_guild_ban(guild_id, user_id): # ban object or 404
# API: GET /guilds/{guild.id}/bans/{user.id}
pass
async def create_guild_ban(guild_id, user_id): #204 empty on success
# API: PUT /guilds/{guild.id}/bans/{user.id}
pass
async def remove_guild_ban(guild_id, user_id): #204 empty on success
# API: DELETE /guilds/{guild.id}/bans/{user.id}
pass
async def get_guild_roles(guild_id): # returns a list of role objects
# API: GET /guilds/{guild.id}/roles
pass
async def create_guild_role(guild_id, role): # returns role oobject
# API: POST /guilds/{guild.id}/roles
pass
async def modify_guild_role_positions(guild_id, params): # returns list of guild's role objects
# API: PATCH /guilds/{guild.id}/roles
pass
async def modify_guild_role(guild_id, role): # returns updated role
# API: GET /guilds/{guild.id}/roles/{role.id}
pass
async def delete_guild_role(guild_id, role_id): # returns 204 on success
# API: DELETE /guilds/{guild.id}/roles/{role.id}
pass
async def get_guild_prune_count(guild_id, params):
# GET /guilds/{guild.id}/prune
pass
async def begin_guild_prune(guild_id, params):
# POST /guilds/{guild.id}/prune
pass
async def get_guild_voice_regions(guild_id):
# GET /guilds/{guild.id}/regions
pass
async def get_guild_invites(guild_id):
# GET /guilds/{guild.id}/invites
pass
async def get_guild_integrations(guild_id):
# GET /guilds/{guild.id}/integrations
pass
async def delete_guild_integration(guild_id, integration):
# DELETE /guilds/{guild.id}/integrations/{integration.id}
pass
async def get_guild_widget_settings(guild_id):
# GET /guilds/{guild.id}/widget
pass
async def modify_guild_widget(guild_id, widget):
# PATCH /guilds/{guild.id}/widget
pass
async def get_guild_widget(guild_id):
# GET /guilds/{guild.id}/widget.json
pass
async def get_guild_vanity_url(guild_id):
# GET /guilds/{guild.id}/vanity-url
pass
async def get_guild_widget_image(guild_id):
# GET /guilds/{guild.id}/widget.png
pass
async def get_guild_welcome_screen(guild_id):
# GET /guilds/{guild.id}/welcome-screen
pass
async def modify_guild_welcome_screen(guild_id, params):
# PATCH /guilds/{guild.id}/welcome-screen
pass
async def modify_self_user_state(guild_id, params):
# PATCH /guilds/{guild.id}/voice-states/@me
pass
async def modify_user_voice_state(guild_id, user, params):
# PATCH /guilds/{guild.id}/voice-states/{user.id}
pass | StarcoderdataPython |
3392101 | <gh_stars>10-100
#!/usr/bin/env python3
# This file is Copyright (c) 2016-2020 <NAME> <<EMAIL>>
# This file is Copyright (c) 2018-2019 <NAME> <<EMAIL>>
# License: BSD
import argparse
from migen import *
from migen.genlib.resetsync import AsyncResetSynchronizer
from litex.build.generic_platform import *
from litex.soc.cores.clock import *
from litex.soc.integration.soc_core import *
from litex.soc.integration.builder import *
from litex.soc.interconnect import stream
from litex.soc.cores.uart import UARTWishboneBridge
from litex.soc.cores.usb_fifo import phy_description
from litepcie.phy.s7pciephy import S7PCIEPHY
from gateware.usb import USBCore
from gateware.etherbone import Etherbone
from gateware.tlp import TLP
from gateware.msi import MSI
from gateware.ft601 import FT601Sync
from litescope import LiteScopeAnalyzer
# CRG ----------------------------------------------------------------------------------------------
class _CRG(Module):
def __init__(self, platform, sys_clk_freq):
self.clock_domains.cd_sys = ClockDomain()
self.clock_domains.cd_usb = ClockDomain()
# # #
# sys
sys_clk_100 = platform.request("clk100")
platform.add_period_constraint(sys_clk_100, 1e9/100e6)
self.submodules.pll = pll = S7PLL(speedgrade=-1)
pll.register_clkin(sys_clk_100, 100e6)
pll.create_clkout(self.cd_sys, sys_clk_freq)
# usb
usb_clk100 = platform.request("usb_fifo_clock")
platform.add_period_constraint(usb_clk100, 1e9/100e6)
self.comb += self.cd_usb.clk.eq(usb_clk100)
self.specials += AsyncResetSynchronizer(self.cd_usb, ResetSignal("pcie"))
# PCIeScreamer -------------------------------------------------------------------------------------
class PCIeScreamer(SoCMini):
usb_map = {
"wishbone": 0,
"tlp": 1
}
def __init__(self, platform, with_analyzer=True, with_loopback=False):
sys_clk_freq = int(100e6)
# SoCMini ----------------------------------------------------------------------------------
SoCMini.__init__(self, platform, sys_clk_freq, ident="PCIe Screamer", ident_version=True)
# CRG --------------------------------------------------------------------------------------
self.submodules.crg = _CRG(platform, sys_clk_freq)
# Serial Wishbone Bridge -------------------------------------------------------------------
self.submodules.bridge = UARTWishboneBridge(platform.request("serial"), sys_clk_freq, baudrate=3e6)
self.add_wb_master(self.bridge.wishbone)
# PCIe PHY ---------------------------------------------------------------------------------
self.submodules.pcie_phy = S7PCIEPHY(platform, platform.request("pcie_x1"))
self.add_csr("pcie_phy")
# USB FT601 PHY ----------------------------------------------------------------------------
self.submodules.usb_phy = FT601Sync(platform.request("usb_fifo"), dw=32, timeout=1024)
# USB Loopback -----------------------------------------------------------------------------
if with_loopback:
self.submodules.usb_loopback_fifo = stream.SyncFIFO(phy_description(32), 2048)
self.comb += [
self.usb_phy.source.connect(self.usb_loopback_fifo.sink),
self.usb_loopback_fifo.source.connect(self.usb_phy.sink)
]
# USB Core ---------------------------------------------------------------------------------
else:
self.submodules.usb_core = USBCore(self.usb_phy, sys_clk_freq)
# USB <--> Wishbone --------------------------------------------------------------------
self.submodules.etherbone = Etherbone(self.usb_core, self.usb_map["wishbone"])
self.add_wb_master(self.etherbone.master.bus)
# USB <--> TLP -------------------------------------------------------------------------
self.submodules.tlp = TLP(self.usb_core, self.usb_map["tlp"])
self.comb += [
self.pcie_phy.source.connect(self.tlp.sender.sink),
self.tlp.receiver.source.connect(self.pcie_phy.sink)
]
# Wishbone --> MSI -------------------------------------------------------------------------
self.submodules.msi = MSI()
self.comb += self.msi.source.connect(self.pcie_phy.msi)
self.add_csr("msi")
# Led blink --------------------------------------------------------------------------------
usb_counter = Signal(32)
self.sync.usb += usb_counter.eq(usb_counter + 1)
self.comb += platform.request("user_led", 0).eq(usb_counter[26])
pcie_counter = Signal(32)
self.sync.pcie += pcie_counter.eq(pcie_counter + 1)
self.comb += platform.request("user_led", 1).eq(pcie_counter[26])
# Analyzer ---------------------------------------------------------------------------------
if with_analyzer:
analyzer_signals = [
self.pcie_phy.sink,
self.pcie_phy.source,
]
self.submodules.analyzer = LiteScopeAnalyzer(analyzer_signals, 1024, csr_csv="test/analyzer.csv")
self.add_csr("analyzer")
# Build --------------------------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(description="PCIe Screamer Test Gateware")
parser.add_argument("--m2", action="store_true", help="use M2 variant of PCIe Screamer")
parser.add_argument("--with-analyzer", action="store_true", help="enable Analyzer")
parser.add_argument("--with-loopback", action="store_true", help="enable USB Loopback")
parser.add_argument("--build", action="store_true", help="Build bitstream")
parser.add_argument("--load", action="store_true", help="Load bitstream")
parser.add_argument("--flash", action="store_true", help="Flash bitstream")
args = parser.parse_args()
if args.m2:
from platforms.pcie_screamer_m2 import Platform
else:
from platforms.pcie_screamer import Platform
platform = Platform()
soc = PCIeScreamer(platform, args.with_analyzer, args.with_loopback)
builder = Builder(soc, csr_csv="test/csr.csv")
builder.build(run=args.build)
if args.load:
prog = soc.platform.create_programmer()
prog.load_bitstream(os.path.join(builder.gateware_dir, soc.build_name + ".bit"))
if args.flash:
prog = soc.platform.create_programmer()
prog.load_bitstream(os.path.join(builder.gateware_dir, soc.build_name + ".bin"))
if __name__ == "__main__":
main()
| StarcoderdataPython |
55858 | <filename>program1.py
#This is my first program in python. Trying various things and capabilities of python
from datetime import datetime
import getpass
todaysDate = datetime.today().strftime('%d-%m-%Y')
welcomeMessage = "Hello " + getpass.getuser() + ' , welcome!'
userActions = 0
print('\n-------------------------------------------------------------------')
print('Date: ', todaysDate)
print(welcomeMessage)
print('This program is just an introduction to Python programming language')
print('-------------------------------------------------------------------')
userName = input('What\'s your name dear: ')
userActions = userActions + 1
print('\nOkay ',userName,' let\'s start!')
userAge = int(input('What\'s your age: '))
userActions = userActions + 1
if(userAge < 18):
print('>>So you are not an adult yet.\n')
else:
print('>>Oh you are an adult.\n')
print('You did a total of ',userActions,' actions. Perfect job!')
print('Goodbye, ', getpass.getuser(), ' || Program exiting...')
| StarcoderdataPython |
1657683 | <reponame>cedadev/cloudhands-provider-iface<gh_stars>0
"""JASMIN Cloud
JASMIN Cloud Provider Interface package - command line client for Edge Gateway
interface
"""
__author__ = "<NAME>"
__date__ = "24/03/14"
__copyright__ = "(C) 2014 Science and Technology Facilities Council"
__license__ = "BSD - see LICENSE file in top-level directory"
__revision__ = "$Id$"
import os
import logging
import argparse
import getpass
import xml.etree.ElementTree as ET
from jasmincloud.provider.vcloud.network.client import EdgeGatewayClient
log = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(
description='vCloud Director Edge Gateway interface')
parser.add_argument('--config-file', '-f', dest='config_filepath',
help='Path to Configuration file which sets connection '
'parameters and which command to execute.')
parser.add_argument('--log-level', '-l', dest='log_level',
help='Set log level for output to stdout. Choose one '
'of %r, default is silent mode.' %
[logging.getLevelName(i)
for i in range(logging.DEBUG,
logging.CRITICAL+1,
10)])
args = parser.parse_args()
if args.log_level is not None:
logging.basicConfig(format='%(asctime)s %(message)s',
level=logging.getLevelName(args.log_level))
if args.config_filepath is None:
raise SystemExit('Error: no configuration file set.%s%s' %
(os.linesep, parser.format_help()))
edgegateway_clnt = EdgeGatewayClient.from_settings_file(
args.config_filepath)
global_settings = edgegateway_clnt.settings[
EdgeGatewayClient.SETTINGS_GLOBAL]
if global_settings['password'] is None:
# Prompt for password from command line if not set in settings file
global_settings['password'] = <PASSWORD>(
'Enter password for user %r: ' %
global_settings['username'])
# Connect to vCloud Director service
edgegateway_clnt.connect_from_settings()
# Check actions to execute from settings file section - allow one connection
# section followed by an action section - first filter out connect section
action_name = None
for section_name in list(edgegateway_clnt.settings.keys()):
if section_name != EdgeGatewayClient.SETTINGS_GLOBAL:
action_name = section_name
break
# Retrieving the current configuration settings applies to all actions
edgegateway_configs = edgegateway_clnt.get_config(
vdc_name=global_settings['vdc_name'],
names=global_settings['edgegateway_name'])
if action_name is None:
# Default to display the current configuration
print((ET.tostring(edgegateway_configs[0]._elem)))
elif action_name == EdgeGatewayClient.SETTINGS_ROUTE_HOST:
settings = edgegateway_clnt.settings[action_name]
# NAT host IP from VDC to outside
edgegateway_clnt.set_host_routing(edgegateway_configs[0],
settings['iface_name'],
settings['internal_ip'],
settings['external_ip'])
result = edgegateway_clnt.post_config(edgegateway_configs[0])
elif action_name == EdgeGatewayClient.SETTINGS_RM_NAT_RULES:
settings = edgegateway_clnt.settings[action_name]
# Remove NAT rules by identifier
edgegateway_clnt.remove_nat_rules(edgegateway_configs[0],
settings['nat_rule_ids'])
result = edgegateway_clnt.post_config(edgegateway_configs[0])
log.debug(ET.tostring(result._elem))
elif action_name == EdgeGatewayClient.SETTINGS_CANCEL_TASKS:
settings = edgegateway_clnt.settings[action_name]
# Purge tasks waiting to be executed
result = edgegateway_clnt.cancel_tasks(edgegateway_configs[0],
task_uris=settings['task_uris'])
if __name__ == '__main__':
main()
| StarcoderdataPython |
1613456 | <reponame>miiiingi/algorithmstudy
import re
p = re.compile('a[e]c')
m = p.match('adec')
print(m.group()) | StarcoderdataPython |
3212051 | <filename>Examples/study/chain_genetic_algorithm_multinode/compute_execution_time_multinode.py<gh_stars>0
import Source.io_util as io
import json
def get_n_maximum(iteration_partial_results, n_nodes):
time = [r['exec_time'] for n, r in iteration_partial_results.items() if n != 'selection']
time.sort(reverse=True)
return time[:n_nodes]
if __name__ == "__main__":
import os
multinode_meta_file = os.path.join(os.environ['FCM'], 'Examples', 'compute', 'genetic_algorithm_multinode',
'results', 'sota_models_cifar10-40-dev_validation', 'cifar10_8nodes_800population_400offspring_0',
'multinode_metainfo.json')
execution_time = 0
n_nodes = 8
R_all = {}
with open(multinode_meta_file, 'r') as handle:
results = json.load(handle)
for i, iteration in enumerate(results):
max_exec_offspring_time = sum(get_n_maximum(iteration, 1))
selection_time = iteration['selection']['exec_time']
execution_time += max_exec_offspring_time + selection_time
# Gather the results
R_iter = io.read_pickle(os.path.join(os.environ['FCM'], iteration['selection']['R']))
R_all.update(R_iter)
print("Iteration %d: Offspring+evaluate %f, Selection %f" % (i, max_exec_offspring_time, selection_time))
print(R_all.keys())
print("Execution time: %f" % execution_time)
# Plot solutions
import Examples.study.plot as myplt
myplt.plot_accuracy_time_old(R_all)
myplt.show() | StarcoderdataPython |
3285605 | <filename>broffeact/__init__.py<gh_stars>0
#!/usr/bin/python3
import datetime as dt
import os
import re
import argparse
from jinja2 import Template
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
class Status:
NOT_STARTED, PARSING, DONE = range(3)
def printWarning(msg):
print(bcolors.WARNING + "WARNING:" + bcolors.ENDC, msg)
def printFAIL(msg):
print(bcolors.FAIL + "FAIL:" + bcolors.ENDC, msg)
def printOK(word, msg):
print(bcolors.OKBLUE + word + bcolors.ENDC, msg)
# --------------------------------
class AgDoc:
"""Documentation generator."""
defaults = {
'template_filename': 'default',
'prefix_module': 'M',
'prefix_comment': '#',
'prefix_export': 'exp',
'file_output': 'doc.html',
'extensions': ['coffee'],
'directories': ['.'],
'component_terms': ['createFactory'],
'proptypes_term': 'React.PropTypes',
}
STATS = {
"nbr_exported": 0,
"nbr_commented": 0,
"nbr_modules_unused": 0,
}
def __init__(self, defaults):
self.defaults.update(defaults)
self.init_output_dir()
def init_output_dir(self):
dir = os.path.dirname(self.defaults["file_output"])
if not os.path.exists(dir) and dir != "":
os.makedirs(dir)
def genDoc(self):
self.writeHTMLDoc(self.walk())
def isValidExtension(self, name):
"""Check if a file has a valid extension to parse"""
file_ext = os.path.splitext(name)[1]
return file_ext and file_ext[1:] in self.defaults["extensions"]
def walk(self):
"""A little promenade into the application returning
the comments into a list of dict"""
print("SCANNING IN:", self.defaults["directories"])
a, d, j = os.path.abspath, os.path.dirname, os.path.join
main_root_len = len(a((d(d(d(os.path.realpath(__file__)))))))
values = []
for dirname in self.defaults["directories"]:
for root, dirs, files in os.walk(dirname, topdown=True):
files = sorted(f for f in files if self.isValidExtension(f))
for name in files:
parsed = self.parse(a(j(root, name)), main_root_len)
if len(parsed[1])+len(parsed[2])+len(parsed[3]) > 0:
values.append(parsed)
return values
def parse(self, file_name, strip_len):
"""Parse the file"""
printOK("PARSING:", file_name)
p_module = self.defaults['prefix_module']
with open(file_name, 'r') as f:
comments_dic = {}
prev_lines, modules, used_modules = [], set(), set()
status = Status.NOT_STARTED
for line in f:
line = line.strip()
if status == Status.NOT_STARTED:
if line.lstrip().startswith(p_module):
status = Status.PARSING
elif status == Status.PARSING:
module, sep, rest = line.partition(':')
if sep == ':':
modules.add(module)
else:
status = Status.DONE
else:
used_modules |= set(
re.findall(
r'\b{}\.([\w\d_]+)\b'.format(p_module),
line
)
)
# Export part
if self.isExportedLine(line):
exported_name = self.getExportedName(line)
printOK("FOUND EXPORTED: ", exported_name)
self.STATS["nbr_exported"] += 1
comment = self.getComment(line, prev_lines)
comments_dic[exported_name] = comment
if comment[2]:
self.STATS["nbr_commented"] += 1
else:
printWarning("'{}' not commented in {}".format(
exported_name, file_name
))
prev_lines.append(line)
# Check for unused module
unused_modules = modules - used_modules
for unused in unused_modules:
self.STATS["nbr_modules_unused"] += 1
printWarning("Unused module: '" + unused + "'")
return (
file_name[strip_len:].lstrip('/'), modules,
unused_modules, comments_dic
)
def getComment(self, line, prev_lines):
"""Get the comment(s) from prevLines of a component"""
isComponent = any(
term in line
for term in self.defaults['component_terms']
)
if isComponent:
com, isCommented = self.getCompComments(line, prev_lines)
comment = ("c", com, isCommented)
else:
com, isCommented = self.getFuncComments(line, prev_lines)
comment = ("f", com, isCommented)
return comment
def getCompComments(self, line, prev_lines):
comments, ignore_lines, propTypes = '', True, []
for prev_line in reversed(prev_lines):
comment = prev_line
if ignore_lines:
if self.defaults["proptypes_term"] in comment:
propTypes.append(
comment.replace(
self.defaults["proptypes_term"] + ".", ""
).replace(".isRequired", " (required)")
)
ignore_lines = 'createClass' not in comment
continue
if not comment.startswith(self.defaults["prefix_comment"]):
break
comments = comment + '\n' + comments
if propTypes and comments:
comments = (
"PropTypes:\n-" +
"\n-".join(propTypes) +
"\n" + comments
)
return comments, comments != ""
def getFuncComments(self, line, prev_lines):
comments = ''
for prev_line in reversed(prev_lines):
if not prev_line.startswith(self.defaults["prefix_comment"]):
break
comments = prev_line + '\n' + comments
# Adding args if there is a comment
if comments:
m = re.search(r'\((.*)\)', line)
if m:
comments = "ARGS: {}\n".format(m.group(1)) + comments
return comments, comments != ""
def isExportedLine(self, line):
"""Check if the line contains the exportPrefix"""
return line.startswith(self.defaults["prefix_export"] + ".")
def getExportedName(self, line):
export, sep, rest = line.partition('=')
assert sep == '=', 'Should be "=" found "{}"'.format(sep)
prefix_export, sep, export = export.partition('.')
assert sep == '.', 'Should be "." found "{}"'.format(sep)
assert prefix_export.strip() == self.defaults['prefix_export'],\
'Should be {} found {}'.format(
self.defaults['prefix_export'], prefix_export
)
return export
def writeHTMLDoc(self, values):
""" values=(file_name, modules, modules_unused, comments_dic)"""
tpl_filename = os.path.dirname(os.path.realpath(__file__)) + \
"/templates/"+self.defaults["template_filename"]+".html"
try:
t = Template(open(tpl_filename, 'r').read())
except:
printFAIL("Couldn't open template: " +
self.defaults["template_filename"])
return
params = {
'values': values,
'exported_cnt': self.STATS['nbr_exported'],
'commented_cnt': self.STATS['nbr_commented'],
'unused_cnt': self.STATS['nbr_modules_unused'],
'commented_percentage': (
0 if self.STATS['nbr_exported'] == 0 else
self.STATS['nbr_commented'] * 100 / self.STATS['nbr_exported']
),
'last_modification': dt.datetime.strftime(
dt.datetime.utcnow(), '%A, %d %B %Y %H:%M:%S'
)
}
f = open(self.defaults['file_output'], 'w')
f.write(t.render(**params))
f.close()
if __name__ == '__main__':
main()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-v", "--verbosity", help="increase output verbosity")
parser.add_argument("-o", "--output",
help="output filename", default="doc/index.html")
parser.add_argument("-i", "--input", default="app/",
help="input directories (eg: app/,extra/")
parser.add_argument("-t", "--template", default="default",
help="HTML template file (eg: default)")
args = parser.parse_args()
options = {}
options["file_output"] = args.output
options["directories"] = args.input.split(",")
options["template_filename"] = args.template
AgDoc(options).genDoc()
| StarcoderdataPython |
3351090 | <gh_stars>10-100
from .chargen import CharGen
| StarcoderdataPython |
1731309 | from aiogram import types
from ..services.database import RedisDB
from ..utils import text
async def command_reset(message: types.Message, database: RedisDB):
await database.clear_received_urls(user_id=message.from_user.id)
await message.reply(
text=text.get_text(
language_code=message.from_user.language_code,
text_name="urls_reset",
)
)
| StarcoderdataPython |
1771762 | from typing import List
import numpy as np
from .mexpress import native_parse_f64, native_parse_f32
def _transform_x(x):
x = np.asarray(x)
# since we want to have both options f(*x) and f(x) we need to check the dimension
return x if x.ndim == 1 else x.squeeze()
class Mexpress:
def __init__(self, interfex, dtype) -> None:
self.interfex = interfex
self._grad = None
self._hess = None
self.dtype = dtype
self.n_vars = self.interfex.n_vars()
def _make_grad(self):
if self._grad is None:
self._grad = [
self.interfex.partial(i) for i in range(self.interfex.n_vars())
]
return self._grad
def __call__(self, *x):
return self.interfex(_transform_x(x))
def partial(self, i: int) -> "Mexpress":
return Mexpress(self.interfex.partial(i), self.dtype)
def grad(self, *x) -> np.ndarray:
grad_ = self._make_grad()
x = _transform_x(x)
return np.array([di(x) for di in grad_], dtype=self.dtype)
def hess(self, *x) -> np.ndarray:
grad_ = self._make_grad()
if self._hess is None:
self._hess = [
[grad_i.partial(c) for c in range(r, self.interfex.n_vars())]
for r, grad_i in enumerate(grad_)
]
x = _transform_x(x)
hess = np.zeros((self.n_vars, self.n_vars), dtype=self.dtype)
for r in range(self.n_vars):
for c in range(r, self.n_vars):
hess[r, c] = self._hess[r][c - r](x)
for c in range(0, r):
hess[r, c] = hess[c, r]
return hess
def __str__(self) -> str:
return self.interfex.unparse()
def parse_f64(s: str) -> Mexpress:
return Mexpress(native_parse_f64(s.replace("**", "^")), dtype=np.float64)
def parse_f32(s: str) -> Mexpress:
return Mexpress(native_parse_f32(s.replace("**", "^")), dtype=np.float32)
| StarcoderdataPython |
3287556 | #!/usr/bin/env python
# import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
import matplotlib.patches as mpatches
import matplotlib
import os
# import random
# import time
ext = ".eps"
matplotlib.rcParams.update({'font.size': 17})
def activityDayCount():
labels = "2", "3", "4", "5", "6~9", "> 9"
data = [474334, 192039, 97792, 56249, 81316, 25208]
colors = [
'lightcoral', 'lightblue', 'yellowgreen', 'gold', 'pink', 'orange'
]
# labels = "2", "3", "4", "5", "6", "7", "8", "9", "> 9"
# data = [474334, 192039, 97792, 56249, 34578, 22223, 14902, 9613, 25208]
# colors = [
# 'lightcoral', 'lightblue', 'yellowgreen', 'gold', 'green',
# 'blue', 'purple', 'pink', 'orange', 'grey'
# ]
# cmap = plt.cm.prism
# colors = cmap(np.linspace(0., 1., len(labels)))
plt.axis('equal')
plt.pie(
data,
labels=labels,
autopct='%1.1f%%',
shadow=True,
colors=colors,
startangle=90,
pctdistance=0.81
# labeldistance=0.9
)
filename = "./ActivityDay" + ext
plt.savefig(filename)
# os.system("open " + filename)
def powerActivityInterval():
labels = "2", "3", "4", "5", "6~8", "> 8"
data = [
302574, 206186, 63559, 49204,
21519 + 18555 + 9879,
8945 + 5526 + 4941 + 3319 + 2873 + 2137 + 1825 + 912 + 1188 + 944
+ 1022 + 828 + 701 + 542 + 655 + 474 + 419 + 253 + 283 + 275 + 374
+ 358 + 623
# 449895, 135273, 54127, 26426,
# 14913 + 8692 + 5768,
# 3788 + 2737 + 1947 + 1551 + 1249 + 937 + 766 + 694 + 515
# + 431 + 272 + 227 + 194 + 135 + 88 + 110 + 52 + 41 + 38 + 15 + 10 + 1
# + 1
]
colors = [
'lightcoral', 'lightblue', 'yellowgreen', 'gold', '#FF7BAC',
'#8B9FC0', 'purple', 'pink'
]
# colors = [
# 'lightcoral', 'lightblue', 'yellowgreen', 'gold', 'pink',
# 'orange'
# ]
plt.axis('equal')
plt.pie(
data,
labels=labels,
autopct='%1.1f%%',
shadow=True,
colors=colors,
startangle=90,
pctdistance=0.83
)
filename = "./ActivityInterval" + ext
plt.savefig(filename)
os.system("open " + filename)
def continusActivity():
labels = "2", "3", "4", "5", "6~8", "> 8"
data = [
339315, 227716, 80042, 44103,
21721 + 12851 + 7419, 4782 + 10453
]
colors = [
'lightcoral', 'lightblue', 'yellowgreen', 'gold', '#FF7BAC',
'#8B9FC0', 'purple', 'pink'
]
# colors = [
# 'lightcoral', 'lightblue', 'yellowgreen', 'gold', 'pink',
# 'orange'
# ]
plt.axis('equal')
plt.pie(
data,
labels=labels,
autopct='%1.1f%%',
shadow=True,
colors=colors,
startangle=90,
pctdistance=0.8
)
filename = "./ActivityDay" + ext
plt.savefig(filename)
# os.system("open " + filename)
def numberIterations():
x = [
1, 2, 3,
5, 8, 10,
12, 15
]
y = [
0.5, 0.63141093174, 0.697941532851,
0.689625707331, 0.677482215081, 0.67721843094,
0.677048542104, 0.679407512327
]
plt.plot(x, y, marker='.')
plt.axis([0, 16, 0.45, 0.75])
plt.xlabel("# of iterations")
plt.ylabel("AUC")
filename = "./NumberIterations" + ext
plt.savefig(filename)
# os.system("open " + filename)
def parameterNumTrees():
x = [3, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90]
auc = [
0.535178949203,
0.542328048322,
0.53965360195,
0.540522688697,
0.539786324703,
0.538543954391,
0.538709940309,
0.538486978138,
0.538511488698,
0.53841030334,
0.537832963885,
0.537795069212,
0.538533024443
]
plt.xlabel("\# of trees in Random Forest")
plt.ylabel("Measurement of prediction result")
plt.plot(x, auc, 'r')
rc('text', usetex=True)
filename = "./ParameterNumTrees" + ext
plt.savefig(filename)
# os.system("open " + filename)
def parameterMaxDepth():
x = [1, 3, 6, 9, 10, 12, 15, 18]
auc = [
0.5,
0.530167110714,
0.534175309461,
0.537991447336,
0.538511488698,
0.538747477529,
0.53919721591,
0.538927390763
]
plt.xlabel("Max tree depth in Random Forest")
plt.ylabel("Measurement of prediction result")
plt.plot(x, auc, 'r')
rc('text', usetex=True)
filename = "./ParameterMaxDepth" + ext
plt.savefig(filename)
os.system("open " + filename)
def parameterGamma():
x = [
0, 0.025, 0.05, 0.075,
0.1, 0.125, 0.15, 0.175,
0.2, 0.225, 0.25, 0.275,
0.3
]
auc = [
0.801180577625, 0.803572573946, 0.80489984546, 0.80377223374,
0.813605079096, 0.813130073065, 0.813966457008, 0.816743640758,
0.816091040286, 0.8112706937, 0.813802511038, 0.804321627593,
0.798891057248
]
precision = [
0.653261933302, 0.602246598249, 0.630421127424, 0.6117061573,
0.471436915914, 0.467027128287, 0.4620003597, 0.454860270582,
0.438033756609, 0.373874506211, 0.370803143271, 0.310969203119,
0.281924350052
]
recall = [
0.64107751479, 0.656484733573, 0.653340275095, 0.654794689601,
0.724548740985, 0.719634026102, 0.723789756312, 0.733451003213,
0.741407202533, 0.769272115752, 0.777675255774, 0.813956968845,
0.841884015142
]
plt.plot(x, auc, 'r-', label="AUC", marker='s')
plt.plot(x, precision, 'b--', label="Precision", marker='o')
plt.plot(x, recall, 'g-.', label="Recall", marker='x')
rc('text', usetex=True)
plt.xlabel("Parameter $\gamma$")
plt.ylabel("Measurement of prediction result")
plt.legend(
bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
ncol=3, mode="expand", borderaxespad=0.
)
# handles = [
# mpatches.Patch(color='red', label='AUC'),
# mpatches.Patch(color='blue', label='Precision'),
# mpatches.Patch(color='green', label='Recall')
# ]
# plt.legend(
# handles=handles, bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
# ncol=3, mode="expand", borderaxespad=0.
# )
filename = "./ParameterGamma" + ext
plt.savefig(filename)
# os.system("open " + filename)
def fixedSampleActivities():
x = range(0, 32)
u1 = [
0, 0, 3, 9, 3,
0, 0, 0, 0, 0,
1, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0
]
u2 = [
0, 0, 0, 0, 8,
0, 0, 3, 1, 5,
0, 0, 1, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0
]
u3 = [
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 6, 3, 0,
0, 0, 0, 3, 0,
0, 0, 0, 0, 0,
0, 0, 0, 4, 3,
2, 0
]
plt.plot(x, u1, 'r-', label="User a", marker='s')
plt.plot(x, u2, 'g--', label="User b", marker='o')
plt.plot(x, u3, 'b-.', label="User c", marker='x')
plt.axis([0, 35, 0, 10])
rc('text', usetex=True)
plt.xlabel("Day")
plt.ylabel("Number of Activities")
plt.legend(
bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
ncol=3, mode="expand", borderaxespad=0.
)
filename = "./FixedSampleActivities" + ext
plt.savefig(filename)
# os.system("open " + filename)
# fixedSampleActivities()
# parameterMaxDepth()
# parameterNumTrees()
# powerActivityInterval()
parameterGamma()
# numberIterations()
# continusActivity()
# activityDayCount()
# plt.show()
| StarcoderdataPython |
125330 | import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import pdb, time
from torch.autograd import Variable
torch.manual_seed(12)
SIGMA = 1
EPSILON = 1e-5
class GatedConv1d(nn.Module):
def __init__(self, input_channels, output_channels,
kernel_size, stride, padding=0, dilation=1, activation=None):
super(GatedConv1d, self).__init__()
self.activation = activation
self.sigmoid = nn.Sigmoid()
self.h = nn.Conv1d(input_channels, output_channels, kernel_size,
stride, padding, dilation)
self.g = nn.Conv1d(input_channels, output_channels, kernel_size,
stride, padding, dilation)
def forward(self, x):
if self.activation is None:
h = self.h(x)
else:
h = self.activation(self.h(x))
g = self.sigmoid(self.g(x))
return h * g
class GatedConvTranspose1d(nn.Module):
def __init__(self, input_channels, output_channels,
kernel_size, stride, padding=0, output_padding=0, dilation=1,
activation=None):
super(GatedConvTranspose1d, self).__init__()
self.activation = activation
self.sigmoid = nn.Sigmoid()
self.h = nn.ConvTranspose1d(input_channels, output_channels,
kernel_size, stride, padding, output_padding,
dilation=dilation)
self.g = nn.ConvTranspose1d(input_channels, output_channels,
kernel_size, stride, padding, output_padding,
dilation=dilation)
def forward(self, x):
#start_time = time.time()
if self.activation is None:
h = self.h(x)
else:
h = self.activation(self.h(x))
#print ("here:", time.time()-start_time)
g = self.sigmoid(self.g(x))
#print ("here1:", time.time()-start_time)
return h * g
class ConvTranspose1d(nn.Module):
def __init__(self, input_channels, output_channels,
kernel_size, stride, padding=0, output_padding=0, dilation=1,
activation=None):
super(ConvTranspose1d, self).__init__()
self.activation = activation
self.sigmoid = nn.Sigmoid()
self.h = nn.ConvTranspose1d(input_channels, output_channels,
kernel_size, stride, padding, output_padding,
dilation=dilation)
def forward(self, x):
#start_time = time.time()
if self.activation is None:
h = self.h(x)
else:
h = self.activation(self.h(x))
#print ("here:", time.time()-start_time)
#print ("here1:", time.time()-start_time)
return h
class edgeGNN(nn.Module):
def __init__(self, nfeat, nhid, nOut,nNodes, dropout, nEdgF=1):
super(edgeGNN, self).__init__()
self.fc_node_1_1 = nn.Linear(nfeat, nhid)
self.fc_node_1_2 = nn.Linear(nhid, nhid)
self.fc_edge_1_1 = nn.Linear(nhid * 2+nEdgF, nhid)
self.fc_edge_1_2 = nn.Linear(nhid, nhid)
self.fc_node_2_1 = nn.Linear(nhid * 2, nhid)
self.fc_node_2_2 = nn.Linear(nhid, nhid)
self.fc_edge_2_1 = nn.Linear(nhid * 2+nEdgF, nhid)
self.fc_edge_2_2 = nn.Linear(nhid, nhid)
self.ln1 = LayerNorm(nhid)
self.ln2 = LayerNorm(nhid)
self.dropout = dropout
self.act = nn.ReLU()
self.n2e = nn.Linear(2*nhid,nOut)
self.g2e = nn.Sequential(nn.Conv1d(nNodes,int(nNodes/2),1),nn.ReLU(),
nn.Conv1d(int(nNodes/2),1,1))
self.sparseMM = SparseMM.apply
def forward(self, x, n2e_in, n2e_out, xE):
#pdb.set_trace()
## First GNN layer
# Node MLP
x = self.act(self.fc_node_1_1(x))
x = F.dropout(x, self.dropout, training=self.training)
x = self.act(self.fc_node_1_2(x))
# Node to edge
x_in = self.sparseMM(n2e_in, x)
x_out = self.sparseMM(n2e_out, x)
x = torch.cat([x_in, x_out, xE], 1)
# Edge MLP
x = self.act(self.fc_edge_1_1(x))
x = F.dropout(x, self.dropout, training=self.training)
x = self.act(self.fc_edge_1_2(x))
#x = self.fc_edge_1_2(x)
# Edge to node
x_in = self.sparseMM(n2e_in.transpose(0, 1), x)
x_out = self.sparseMM(n2e_out.transpose(0, 1), x)
x = torch.cat([x_in, x_out], 1)
### Second GNN layer
# Node MLP
x = self.act(self.fc_node_2_1(x))
x = F.dropout(x, self.dropout, training=self.training)
x = self.act(self.fc_node_2_2(x))
# Node to edge
x_in = self.sparseMM(n2e_in, x)
x_out = self.sparseMM(n2e_out, x)
x = torch.cat([x_in, x_out, xE], 1)
# Edge MLP
x = self.act(self.fc_edge_2_1(x))
x = F.dropout(x, self.dropout, training=self.training)
x = self.act(self.fc_edge_2_2(x))
#x = self.fc_edge_2_2(x)
# Edge to node
x_in = self.sparseMM(n2e_in.transpose(0, 1), x)
x_out = self.sparseMM(n2e_out.transpose(0, 1), x)
x = torch.cat([x_in, x_out], 1)
x = self.n2e(x.unsqueeze(0))
z = self.g2e(x)
return z.squeeze(1)
class recEdgeGNN(nn.Module):
def __init__(self, nfeat, nhid, nOut, dropout, niter):
super(recEdgeGNN, self).__init__()
self.fc_node_1_1 = nn.Linear(nfeat, 2*nhid)
self.fc_node_1_2 = nn.Linear(nhid, nhid)
self.fc_edge_1_1 = nn.Linear(nhid * 2, nhid)
self.fc_edge_1_2 = nn.Linear(nhid, nhid)
self.fc_node_2_1 = nn.Linear(nhid * 2, nhid)
self.fc_node_2_2 = nn.Linear(nhid, nhid)
self.ln1 = LayerNorm(nhid)
self.ln2 = LayerNorm(nhid)
self.dropout = dropout
self.niter = niter
self.e2p = nn.Linear(2*nhid,nOut) # embedding to prediction
def forward(self, x, n2e_in, n2e_out):
x = F.relu(self.fc_node_1_1(x))
for _ in range(self.niter):
# Node MLP
x = F.relu(self.fc_node_2_1(x))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.fc_node_2_2(x))
# Node to edge
x_in = SparseMM()(n2e_in, x)
x_out = SparseMM()(n2e_out, x)
x = torch.cat([x_in, x_out], 1)
# Edge MLP
x = F.relu(self.fc_edge_1_1(x))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.fc_edge_1_2(x))
# Edge to node
x_in = SparseMM()(n2e_in.transpose(0, 1), x)
x_out = SparseMM()(n2e_out.transpose(0, 1), x)
x = torch.cat([x_in, x_out], 1)
# pdb.set_trace()
return x, self.e2p(x.mean(0).view(1,-1))
class GraphAttentionLayer(nn.Module):
"""
Simple Graph Attention Layer, with separate processing of self-connection.
Equation format from https://docs.dgl.ai/en/latest/tutorials/models/1_gnn/9_gat.html
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphAttentionLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight_neighbor = nn.Parameter(
torch.Tensor(in_features, out_features))
self.weight_self = nn.Parameter(torch.Tensor(in_features, out_features))
self.a = nn.Parameter(torch.Tensor(2*out_features,1))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
self.alpha = 0.2
self.leakyRelu = nn.LeakyReLU(self.alpha, inplace=True)
self.softmax = nn.Softmax(dim=1)
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight_neighbor.size(1))
self.weight_neighbor.data.uniform_(-stdv, stdv)
self.weight_self.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj, n2e_in, n2e_out):
N = adj.shape[0]
act_self = torch.mm(input, self.weight_self)
# Transform node activations Eq. (1)
h = torch.mm(input, self.weight_neighbor)
# Compute pairwise edge features (Terms inside Eq. (2))
h_in = torch.mm(n2e_in, h)
h_out = torch.mm(n2e_out,h)
hEdge = torch.cat([h_in, h_out],1)
# Apply leakyReLU and weights for attention coefficients Eq.(2)
e = self.leakyRelu(torch.matmul(hEdge, self.a))
# Apply Softmax per node Eq.(3)
# Sparse implementation
idx = adj.coalesce().indices()
# val = adj.coalesce().values()
numNgbrs = (idx[0] == 0).sum()
attention = self.softmax(e.view(-1,numNgbrs)).view(-1)
#pdb.set_trace()
# Weigh nodes with attention; done by weighting the adj entries
# alpha = torch.sparse.FloatTensor(idx,val*attention,(N,N))
adj._values = adj._values * attention
# Compute node updates with attention Eq. (4)
act_neighbor = SparseMM()(adj,h)
output = act_self + act_neighbor
if self.bias is not None:
return output + self.bias
else:
return output
class MLP(nn.Module):
def __init__(self, nfeat, nNodes, nhid, nOut,dropout):
super(MLP, self).__init__()
self.fc1 = nn.Linear(nfeat, nhid)
self.fc2 = nn.Linear(nhid, nhid)
self.fc3 = nn.Linear(nhid, nhid)
self.fc4 = nn.Linear(nhid, nhid)
self.dropout = dropout
# self.ln1 = LayerNorm(nhid)
self.bn1 = nn.BatchNorm1d(nNodes)
# self.g2e = nn.Linear(nhid,nhid) #graph to embedding
self.e2p = nn.Linear(nhid,nOut,bias=True) # embedding to prediction
self.act = nn.LeakyReLU()
# self.act = nn.ReLU()
def forward(self, inputs, adj):
x = self.act(self.fc1(inputs))
x = self.bn1(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.act(self.fc2(x))
# x = F.dropout(x, self.dropout, training=self.training)
# x = self.act(self.fc3(x))
# x = F.dropout(x, self.dropout, training=self.training)
# x = self.act(self.fc4(x))
return x, self.e2p(x.mean(1))
class GAT(nn.Module):
def __init__(self, nfeat, nNodes, nhid, nOut,dropout):
super(GAT, self).__init__()
# self.fc1 = nn.Linear(nfeat, nhid)
# self.fc2 = nn.Linear(nhid, nhid)
self.gc1 = GraphAttentionLayer(nfeat, nhid)
self.gc2 = GraphAttentionLayer(nhid, nhid)
self.dropout = dropout
# self.ln1 = LayerNorm(nhid)
# self.g2e = nn.Linear(nhid,1) #graph to embedding
self.e2p = nn.Linear(nhid,nOut) # embedding to prediction
def encode(self, x, adj, n2e_in, n2e_out):
# pdb.set_trace()
x = F.relu(self.gc1(x, adj, n2e_in, n2e_out))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc2(x, adj, n2e_in, n2e_out))
return x
def forward(self, inputs, adj, n2e_in, n2e_out):
z = self.encode(inputs, adj, n2e_in, n2e_out)
# z = self.g2e(z)
# return z, self.e2p(z.transpose(0,1))
return z, self.e2p(z.mean(0).view(1,-1))
class nodeGNN(nn.Module):
def __init__(self, nfeat, nNodes, nhid, nOut,dropout):
super(nodeGNN, self).__init__()
self.fc1 = nn.Linear(nfeat, nhid)
# self.fc2 = nn.Linear(nhid, nhid)
self.gc1 = GraphConvolution(nhid, nhid)
self.gc2 = GraphConvolution(nhid, nhid)
# self.gc3 = GraphConvolutionFirstOrder(nhid, nhid)
# self.gc4 = GraphConvolutionFirstOrder(nhid, nhid)
self.dropout = dropout
# self.ln1 = LayerNorm(nhid)
# self.g2e = nn.Linear(nhid,1) #graph to embedding
self.e2p = nn.Linear(nhid,nOut) # embedding to prediction
def encode(self, x, adj):
# pdb.set_trace()
x = F.relu(self.fc1(x))
# x = F.dropout(x, self.dropout, training=self.training)
# x = F.relu(self.fc2(x))
# x = self.ln1(x)
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc2(x, adj))
# x = F.dropout(x, self.dropout, training=self.training)
# x = F.relu(self.gc3(x, adj))
# x = F.dropout(x, self.dropout, training=self.training)
# x = F.relu(self.gc4(x, adj))
return x
def forward(self, inputs, adj):
# pdb.set_trace()
z = self.encode(inputs, adj)
# z = self.g2e(z)
# return z, self.e2p(z.transpose(0,1))
return z, self.e2p(z.mean(1))
class gatedGNN(nn.Module):
def __init__(self, nfeat, nNodes, nhid, nOut,dropout):
super(gatedGNN, self).__init__()
self.gate1 = nn.Linear(nhid, 1)
self.gate2 = nn.Linear(nhid, 1)
self.gc1 = GraphConvolutionFirstOrder(nfeat, nhid)
self.gc2 = GraphConvolutionFirstOrder(nhid, nhid)
self.gc3 = GraphConvolutionFirstOrder(nhid, nhid)
# self.gc4 = GraphConvolutionFirstOrder(nhid, nhid)
self.dropout = dropout
# self.ln1 = LayerNorm(nhid)
# self.g2e = nn.Linear(nhid,1) #graph to embedding
self.e2p = nn.Linear(nhid,nOut) # embedding to prediction
def encode(self, x, adj):
# pdb.set_trace()
# x = F.relu(self.fc1(x))
# x = F.dropout(x, self.dropout, training=self.training)
# x = F.relu(self.fc2(x))
# x = self.ln1(x)
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x_in = x
r = F.softmax(self.gate1(x), dim=0)
z = F.softmax(self.gate2(x), dim=0)
x = F.relu(self.gc2(x*r, adj))
# x = F.relu(r * x_in)
x = (1-z) * x_in + z * x
# x = F.relu(self.gc3(x, adj))
return x
def forward(self, inputs, adj):
z = self.encode(inputs, adj)
# pdb.set_trace()
# z = self.g2e(z)
# return z, self.e2p(z.transpose(0,1))
return z, self.e2p(z.mean(0).view(1,-1))
class recGNN(nn.Module):
def __init__(self, nfeat, nNodes, nhid, nOut,dropout,nIter,idxRange):
super(recGNN, self).__init__()
self.iter = nIter
self.fc1 = nn.Linear(nfeat, nhid)
self.fc2 = nn.Linear(nhid, nhid)
# self.gc = GraphConvolutionFirstOrder(nhid, nhid)
self.gc = GraphConvolution(nhid, nhid)
self.dropout = dropout
# self.e2p = nn.Linear(nhid,nOut) # embedding to prediction
self.e2p = nn.Linear(nhid,nOut) # embedding to regression output
self.g2e = nn.Linear(8,1)
self.idxRange = idxRange
self.ln1 = LayerNorm(nhid)
self.ln2 = LayerNorm(nhid)
self.bn1 = nn.BatchNorm1d(nhid)
# self.act = nn.ELU()
# self.act = nn.LeakyReLU()
self.act = nn.ReLU()
# self.outAct = nn.Hardtanh()
def encode(self, x, adj):
# pdb.set_trace()
x = self.act(self.fc1(x))
x = F.dropout(x, self.dropout, training=self.training)
# x = self.ln1(x)
x = self.act(self.fc2(x))
for _ in range(self.iter):
x = self.act(self.gc(x, adj))
return x
def decode(self,x):
return (self.e2p(x.mean(1)))
def multiGraphDecode(self,x):
lIdx = self.idxRange[0,0]
uIdx = self.idxRange[1,0]
z = x[lIdx:uIdx].mean(1).view(1,-1)
# pdb.set_trace()
for i in range(1,self.idxRange.shape[1]):
lIdx = self.idxRange[0,i]
uIdx = self.idxRange[1,i]
z = torch.cat((z, x[lIdx:uIdx].mean(0).view(1,-1)))
z = self.ln2(z)
z = F.relu(self.g2e(z.transpose(0,1)).transpose(0,1))
return self.e2p(z).view(1,-1)
def forward(self, inputs, adj):
# pdb.set_trace()
emb = self.encode(inputs, adj)
z = self.decode(emb)
# z = self.multiGraphDecode(emb)
return emb, z
class SparseMM(torch.autograd.Function):
"""
Sparse x dense matrix multiplication with autograd support.
Implementation by <NAME>:
https://discuss.pytorch.org/t/
does-pytorch-support-autograd-on-sparse-matrix/6156/7
"""
@staticmethod
def forward(ctx, matrix1, matrix2):
ctx.save_for_backward(matrix1, matrix2)
return torch.mm(matrix1, matrix2)
@staticmethod
def backward(ctx, grad_output):
matrix1, matrix2 = ctx.saved_tensors
grad_matrix1 = grad_matrix2 = None
if ctx.needs_input_grad[0]:
grad_matrix1 = torch.mm(grad_output, matrix2.t())
if ctx.needs_input_grad[1]:
grad_matrix2 = torch.mm(matrix1.t(), grad_output)
return grad_matrix1, grad_matrix2
class SparseMMnonStat(torch.autograd.Function):
"""
Sparse x dense matrix multiplication with autograd support.
Implementation by <NAME>:
https://discuss.pytorch.org/t/
does-pytorch-support-autograd-on-sparse-matrix/6156/7
"""
def forward(self, matrix1, matrix2):
self.save_for_backward(matrix1, matrix2)
return torch.mm(matrix1, matrix2)
def backward(self, grad_output):
matrix1, matrix2 = self.saved_tensors
grad_matrix1 = grad_matrix2 = None
if self.needs_input_grad[0]:
grad_matrix1 = torch.mm(grad_output, matrix2.t())
if self.needs_input_grad[1]:
grad_matrix2 = torch.mm(matrix1.t(), grad_output)
return grad_matrix1, grad_matrix2
class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.Tensor(in_features, out_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
# if input.dim() == 3:
support = torch.mm(input.view(-1,input.shape[-1]),self.weight)
#output = SparseMM()(adj, support)
sparseMM = SparseMM.apply
output = sparseMM(adj,support)
output = output.view(input.shape)
# else:
# support = torch.mm(input, self.weight)
# output = SparseMM()(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
class GraphConvolutionFirstOrder(nn.Module):
"""
Simple GCN layer, with separate processing of self-connection
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolutionFirstOrder, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight_neighbor = nn.Parameter(
torch.Tensor(in_features, out_features))
self.weight_self = nn.Parameter(torch.Tensor(in_features, out_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight_neighbor.size(1))
self.weight_neighbor.data.uniform_(-stdv, stdv)
self.weight_self.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
act_self = torch.mm(input, self.weight_self)
support_neighbor = torch.mm(input, self.weight_neighbor)
act_neighbor = SparseMM()(adj, support_neighbor)
output = act_self + act_neighbor
if self.bias is not None:
return output + self.bias
else:
return output
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(features))
self.beta = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta | StarcoderdataPython |
1688617 | import balanced
balanced.configure('<KEY>')
api_key = balanced.APIKey()
api_key.save() | StarcoderdataPython |
182570 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
def TagNumDict(version_file_path):
tag_num_dict = {}
with open(version_file_path, 'r') as file:
for line in file.readlines():
line = line.strip()
tag = line.split('=')[0]
num = line.split('=')[1]
if not num.isdigit():
raise ValueError("version number must be digit!")
tag_num_dict[tag] = int(num)
return tag_num_dict
def CurrentVersion(version_file_path):
nums_list = list(TagNumDict(version_file_path).values())
return _VersionStr(nums_list)
def _IncreaseVersion(nums_list, index):
if not nums_list or index <= 0:
raise Exception('nums list is empty or index < 0')
index = index - 1
if index >= len(nums_list):
index = len(nums_list) - 1
nums_list[index] += 1
for i in range(index+1, len(nums_list)):
nums_list[i] = 0
def _ToFile(version_dict, version_file_path):
with open(version_file_path, 'w') as file:
for key in version_dict:
line = '%s=%s\n' % (key, version_dict[key])
file.write(line)
def _VersionStr(num_list):
version = ''
for num in num_list:
version += '%s.' % num
if not version:
raise ValueError("version string is empty")
return version[:-1]
def Handle(version_index, version_file_path):
tag_num_dict = TagNumDict(version_file_path)
version_nums = list(tag_num_dict.values())
if version_index <= 0:
return _VersionStr(version_nums)
logging.debug('before change: ' + str(version_nums))
_IncreaseVersion(version_nums, version_index)
logging.debug('after change: ' + str(version_nums))
version_dict = dict(zip(tag_num_dict.keys(), version_nums))
_ToFile(version_dict, version_file_path)
return _VersionStr(version_nums)
if __name__ == "__main__":
print(CurrentVersion('version.properties'))
| StarcoderdataPython |
3320569 | from django.urls import path
from petstagram.pets.views import *
urlpatterns = [
path('', AllPetsView.as_view(), name='list pets'),
path('create/', CreatePetView.as_view(), name='create pet'),
path('edit/<int:pk>', EditPetView.as_view(), name='edit pet'),
path('delete/<int:pk>', DeletePetView.as_view(), name='delete pet'),
path('details/<int:pk>', PetDetailsView.as_view(), name='pet details'),
path('like/<int:pk>', like_pet, name='like pet'),
path('comment/<int:pk>', comment_pet, name='comment pet'),
]
| StarcoderdataPython |
98468 | <reponame>jankokk/zoo
from setuptools import setup
with open('requirements.txt', 'r') as f:
requirements = f.read().splitlines()
setup_config = {
'name': 'pylfire',
'version': 0.1,
'packages': ['pylfire'],
'install_requires': requirements,
'author': '<NAME>',
'author_email': '<EMAIL>',
'url': 'https://github.com/elfi-dev/zoo/pylfire',
'licence': 'BSD'
}
setup(**setup_config)
| StarcoderdataPython |
1636646 | # -*- coding: utf-8 -*-
"""快代理自定义异常"""
import sys
class KdlException(Exception):
"""异常类"""
def __init__(self, code=None, message=None):
self.code = code
if sys.version_info[0] < 3 and isinstance(message, unicode):
message = message.encode("utf8")
self.message = message
self._hint_message = "[KdlException] code: {} message: {}".format(self.code, self.message)
@property
def hint_message(self):
return self._hint_message
@hint_message.setter
def hint_message(self, value):
self._hint_message = value
def __str__(self):
if sys.version_info[0] < 3 and isinstance(self.hint_message, unicode):
self.hint_message = self.hint_message.encode("utf8")
return self.hint_message
class KdlStatusError(KdlException):
"""状态码异常类"""
def __init__(self, code, message):
super(KdlStatusError, self).__init__(code, message)
self.hint_message = "[KdlStatusError] status_code: {}, message: {}".format(self.code, self.message)
class KdlNameError(KdlException):
"""参数异常类"""
def __init__(self, message, code=-2):
super(KdlNameError, self).__init__(code, message)
self.hint_message = "[KdlNameError] message: {}".format(self.message)
class KdlTypeError(KdlException):
"""类型异常类"""
def __init__(self, message, code=-1):
super(KdlTypeError, self).__init__(code, message)
self.hint_message = "[KdlTypeError] message: {}".format(self.message)
| StarcoderdataPython |
90046 | <reponame>QualiSystems/Ixia-IxChariotController-Shell<filename>src/driver.py
from cloudshell.shell.core.session.cloudshell_session import CloudShellSessionContext
from cloudshell.traffic.driver import TrafficControllerDriver
from ixc_handler import IxcHandler
class IxChariotControllerDriver(TrafficControllerDriver):
def __init__(self):
super(self.__class__, self).__init__()
self.handler = IxcHandler()
def load_config(self, context, ixc_config):
""" Load IxChariot configuration and select end points.
:type context: cloudshell.shell.core.driver_context.ResourceRemoteCommandContext
:param ixc_config: IxChariot configuration name.
"""
session_id = self.handler.load_config(context, ixc_config)
my_api = CloudShellSessionContext(context).get_api()
my_api.WriteMessageToReservationOutput(context.reservation.reservation_id,
ixc_config + ' loaded, endpoints reserved')
return session_id
def start_test(self, context, blocking):
"""
:type context: cloudshell.shell.core.driver_context.ResourceRemoteCommandContext
"""
self.handler.start_test(blocking)
def stop_test(self, context):
"""
:type context: cloudshell.shell.core.driver_context.ResourceRemoteCommandContext
"""
self.handler.stop_test()
def get_statistics(self, context, view_name, output_type):
""" Get statistics for specific view.
:type context: cloudshell.shell.core.driver_context.ResourceRemoteCommandContext
:param view_name: requested statistics view name.
:param output_type: CSV/PDF.
"""
return self.handler.get_statistics(context, view_name, output_type)
def end_session(self, context):
self.handler.end_session()
def del_session(self, context):
self.handler.del_session()
#
# Parent commands are not visible so we re define them in child.
#
def initialize(self, context):
super(self.__class__, self).initialize(context)
def cleanup(self):
super(self.__class__, self).cleanup()
def keep_alive(self, context, cancellation_context):
super(self.__class__, self).keep_alive(context, cancellation_context)
| StarcoderdataPython |
3204127 | import threading
from threading import*
import time
f={}
def create(key,value,timeout=0):
if key in f:
print("key already exists")
else:
if(key.isalpha()):
if len(f)<(1024*1024*1024) and value<=(16*1024*1024):
if timeout==0:
l=[value,timeout]
else:
l=[value,time.time()+timeout]
if len(key)<=32:
f[key]=l
else:
print("Memory limit exceeded")
else:
print("Invalind key_name")
def read(key):
if key not in f:
print("Please enter a valid key. Not in database")
else:
b=f[key]
if b[1]!=0:
if time.time()<b[1]:
result=str(key)+":"+str(b[0])
return result
else:
print("time-to-live of",key,"has expired")
else:
result=str(key)+":"+str(b[0])
return result
| StarcoderdataPython |
129979 | <reponame>neural-reckoning/decoding_sound_location
from brian import *
from brian.hears import *
from matplotlib import cm, rcParams
import sys, os, glob
sys.path = [os.path.normpath(os.path.join(os.path.split(__file__)[0], '../'))]+sys.path
from common import *
| StarcoderdataPython |
1643761 | <gh_stars>0
# -*- coding: utf-8 -*-
"""
@author: guqiuyang
@description: 封装用户类
@create time: 2018/12/18
"""
import json
import logging
import usertable
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from hashlib import sha1
class User(object):
def __init__(self, sql_json=None):
self.sql_json = sql_json
def LoadInfo(self): #辅助函数
print('get user info from mysql')
def logger(self):
"""日志函数"""
logging.basicConfig(level = logging.INFO,format =
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)
return log
def session(self):
"""创建数据库连接的session"""
f = open(self.sql_json)
sql_dict = json.load(f)
engine = create_engine('mysql+pymysql://' + sql_dict['user'] +
':' + sql_dict['password'] + '@' + sql_dict['host'] +
':3306/' + sql_dict['database'], encoding='utf-8', echo=True)
# 创建DBSession类型:
DBSession = sessionmaker(bind=engine)
sion = DBSession()
return sion
def register(self, user_json):
"""用户注册"""
f = open(user_json)
user_dict = json.load(f)
session = self.session()
try:
self.session().query(usertable.UserInfo).filter(usertable.UserInfo.u_phonenumber
== user_dict['phone']).one()
self.logger().info("该手机号码已注册")
except:
user_pwd = sha1(user_dict['pwd'].encode('utf-8')).hexdigest()
print(user_pwd, len(user_pwd))
user = usertable.UserInfo(u_userpassword=<PASSWORD>, u_sex=user_dict['sex'],
u_birthday=user_dict['birthday'], u_mail=user_dict['mail'],
u_phonenumber=user_dict['phone'])
session.add(user)
session.commit()
session.close()
self.logger().info("用户注册成功")
def SignOut(self):
"""用户退出"""
pass
def Login(self, user_json):
"""用户登录"""
f = open(user_json)
user_dict = json.load(f)
user_input_pwd = <PASSWORD>1(user_dict['pwd'].encode('utf-8')).hexdigest()
# print(user_input_pwd)
try:
userinfo = self.session().query(usertable.UserInfo.u_userpassword).filter(
usertable.UserInfo.u_phonenumber == user_dict['phone'])
print(userinfo)
if userinfo.u_userpassword == user_input_pwd:
self.logger().info("登录成功")
return True
else:
self.logger().info("登录失败")
except:
self.logger().info("请检查账号密码是否出错")
def DeleteUser(self, name, passwd):
print('delete a user')
def test(self):
self.session().query(usertable.UserInfo)
self.session().close()
if __name__ == '__main__':
user_json="E:\\Project\\easydo\\scripts\\userinfo.json"
user = User(sql_json="E:\\Project\\easydo\\scripts\\sqlinfo.json")
#user.register(user_json)
#user.Login(user_json)
print(user.test())
| StarcoderdataPython |
3239643 | """ Services model module. """
# Django imports
from django.db import models
from django.utils.translation import gettext_lazy as _
from django.core.validators import MaxValueValidator
# Utils Abstract model
from hisitter.utils.abstract_users import HisitterModel
class Service(HisitterModel):
""" This model hast the main activity in the application
recieving the user-client, and the user-bbs, on the
service of attention to the child or children.
"""
user_client = models.ForeignKey(
"users.Client",
verbose_name=_("Customer"),
related_name='client_service',
on_delete=models.CASCADE
)
user_bbs = models.ForeignKey(
"users.Babysitter",
verbose_name=_("Babysitter"),
related_name='bbs_service',
on_delete=models.CASCADE
)
date = models.DateField(
auto_now=False,
auto_now_add=False,
)
SHIFTS = [
('morning', 'morning'),
('afternoon', 'afternoon'),
('evening', 'evening'),
('night', 'night')
]
shift = models.CharField(
max_length=10,
choices=SHIFTS,
default='morning'
)
duration = models.DurationField(
blank=True,
null=True
)
address = models.CharField(
_("Address"),
max_length=255
)
lat = models.DecimalField(
_("Latitude"),
max_digits=10,
decimal_places=6,
blank=True,
null=True
)
long = models.DecimalField(
_("Latitude"),
max_digits=10,
decimal_places=6,
blank=True,
null=True
)
max_validator = MaxValueValidator(
limit_value=10,
message='The maximum number of children per babysitter must be 10'
)
count_children = models.PositiveSmallIntegerField(validators=[max_validator])
special_cares = models.CharField(
_("Special Cares"),
max_length=255,
help_text='Write the special cares to consider for each child',
blank=True,
null=True
)
is_active = models.BooleanField(
_("Service Active"),
default=True
)
service_start = models.DateTimeField(
_("Datetime service starts"),
auto_now=False,
auto_now_add=False,
blank=True,
null=True
)
service_end = models.DateTimeField(
_("Datetime service ends"),
auto_now=False,
auto_now_add=False,
blank=True,
null=True
)
total_cost = models.DecimalField(
_("Total service cost"),
max_digits=7,
decimal_places=2,
blank=True,
null=True
)
def __str__(self):
return 'id ' + str(self.id) + ', ' + str(self.user_client) + f'{str(self.user_bbs)}, {str(self.date)}' | StarcoderdataPython |
1631807 | # Iterate over two lists
alist = ["Red", "Blue", "Green"]
blist = [22, 33, 44]
for ii, jj in zip(alist, blist):
print(f"There are {jj} {ii} balls.")
# Update the counts
for idx, val in enumerate(alist):
if val == "Blue":
blist[idx] *= 100
for ii, jj in zip(alist, blist):
print(f"There are {jj} {ii} balls.") | StarcoderdataPython |
88189 | <filename>packages/gtmapi/lmsrvlabbook/api/mutations/bundledapp.py
import graphene
from gtmcore.inventory.inventory import InventoryManager
from lmsrvcore.auth.user import get_logged_in_username, get_logged_in_author
from lmsrvlabbook.api.objects.environment import Environment
from gtmcore.environment.bundledapp import BundledAppManager
class SetBundledApp(graphene.relay.ClientIDMutation):
"""Mutation to add or update a bundled app configuration to a project
"""
class Input:
owner = graphene.String(required=True, description="Owner of the labbook")
labbook_name = graphene.String(required=True, description="Name of the labbook")
app_name = graphene.String(required=True, description="Name of the bundled app")
description = graphene.String(required=True, description="Description of the bundled app")
port = graphene.Int(required=True, description="Port internally exposed")
command = graphene.String(description="Optional command run to start the bundled app if needed")
environment = graphene.Field(Environment)
@classmethod
def mutate_and_get_payload(cls, root, info, owner, labbook_name, app_name, description, port, command=None,
client_mutation_id=None):
username = get_logged_in_username()
lb = InventoryManager().load_labbook(username, owner, labbook_name,
author=get_logged_in_author())
bam = BundledAppManager(lb)
with lb.lock():
bam.add_bundled_app(port, app_name, description, command)
return SetBundledApp(environment=Environment(name=labbook_name, owner=owner))
class RemoveBundledApp(graphene.relay.ClientIDMutation):
"""Mutation to remove a bundled app from a container"""
class Input:
owner = graphene.String(required=True, description="Owner of the labbook")
labbook_name = graphene.String(required=True, description="Name of the labbook")
app_name = graphene.String(required=True, description="Name of the bundled app")
environment = graphene.Field(Environment)
@classmethod
def mutate_and_get_payload(cls, root, info, owner, labbook_name, app_name,
client_mutation_id=None):
username = get_logged_in_username()
lb = InventoryManager().load_labbook(username, owner, labbook_name,
author=get_logged_in_author())
bam = BundledAppManager(lb)
with lb.lock():
bam.remove_bundled_app(app_name)
return SetBundledApp(environment=Environment(name=labbook_name, owner=owner))
| StarcoderdataPython |
3207975 | <filename>tests/test_sudo.py
# -*- coding: utf-8 -*-
import pytest
import plumbum
from plumbum import local
from plumbum._testtools import skip_on_windows
# This is a seperate file to make seperating (ugly) sudo command easier
# For example, you can now run test_local direcly without typing a password
class TestSudo:
@skip_on_windows
def test_as_user(self):
with local.as_root():
local["date"]()
| StarcoderdataPython |
123513 | <gh_stars>1-10
import json
import os
import sys
import time
from multiprocessing import Process
import requests
import websocket
from .objects import Key, Object
class ResponseError(Exception):
pass
class Client():
def __init__(self, callback):
self.callback = callback
self.host = os.getenv('GIMULATOR_HOST')
if self.host is None:
raise EnvironmentError
self.id = os.getenv('CLIENT_ID')
if self.id is None:
raise EnvironmentError
self.session = requests.Session()
self.session.headers = {"Content-Type": "application/json"}
self.register()
self.ws_header = 'Cookie: token=' + \
self.session.cookies.get_dict()['token']
self.ws = websocket.WebSocket()
self.p = Process(target=self.on_message)
self.p.start()
def on_message(self):
while True:
while True:
try:
self.ws.connect(url=self.get_url('socket'),
header=[self.ws_header])
except ConnectionRefusedError:
self.p.terminate()
except:
time.sleep(2)
else:
break
while True:
try:
json_result = self.ws.recv()
result = json.loads(json_result)
self.callback(Object.from_dict(result))
except KeyboardInterrupt:
self.p.terminate()
sys.exit(0)
except:
break
def get_url(self, endpoint):
if endpoint == 'socket':
return 'ws://' + self.host + '/' + endpoint
return 'http://' + self.host + '/' + endpoint
def register(self):
data = json.dumps({"ID": self.id})
response = self.session.post(
self.get_url('register'), data=data)
if response.status_code < 200 or response.status_code > 299:
raise ResponseError(response.text)
self.session.cookies = response.cookies
def get(self, key: Key) -> Object:
data = {
'Key': key.__dict__,
'Value': None
}
response = self.session.post(self.get_url(
'get'), data=json.dumps(data))
if response.status_code < 200 or response.status_code > 299:
raise ResponseError(response.text)
return Object.from_dict(json.loads(response.text))
def set(self, obj: Object):
data = {
'Key': obj.Key.__dict__,
'Value': obj.Value
}
response = self.session.post(self.get_url(
'set'), data=json.dumps(data))
if response.status_code < 200 or response.status_code > 299:
raise ResponseError(response.text)
def delete(self, obj: Object):
data = {
'Key': obj.Key.__dict__,
'Value': obj.Value
}
response = self.session.post(self.get_url(
'delete'), data=json.dumps(data))
if response.status_code < 200 or response.status_code > 299:
raise ResponseError(response.text)
def find(self, key: Key) -> list:
data = {
'Key': key.__dict__,
'Value': None
}
response = self.session.post(self.get_url(
'find'), data=json.dumps(data))
if response.status_code < 200 or response.status_code > 299:
raise ResponseError(response.text)
response = json.loads(response)
result = []
for item in response:
result.append(Object.from_dict(item))
return result
def watch(self, key: Key):
data = {
'Key': key.__dict__,
'Value': None
}
response = self.session.post(self.get_url(
'watch'), data=json.dumps(data))
if response.status_code < 200 or response.status_code > 299:
raise ResponseError(response.text)
| StarcoderdataPython |
1798071 | from django.contrib.auth.decorators import login_required
from django.shortcuts import render
# Create your views here.
@login_required
def checkout(request):
context = {}
template = 'checkout.html'
return render(request,template,context) | StarcoderdataPython |
165511 | <reponame>PvrpleBlvck/Python_Learning_Journey
import tweepy
import os
TWITTER_API_KEY = os.getenv('TWITTER_API_KEY')
TWITTER_API_KEY_SECRET = os.getenv('TWITTER_API_KEY_SECRET')
TWITTER_ACCESS_TOKEN = os.getenv('TWITTER_ACCESS_TOKEN')
TWITTER_ACCESS_TOKEN_SECRET = os.getenv('TWITTER_ACCESS_TOKEN_SECRET')
# Authenticate to Twitter
auth = tweepy.OAuthHandler("TWITTER_API_KEY", "TWITTER_API_KEY_SECRET")
auth.set_access_token("TWITTER_ACCESS_TOKEN", "TWITTER_ACCESS_TOKEN_SECRET")
# Create API object
api = tweepy.API(auth)
try:
api.verify_credentials()
print("Authentication OK")
except:
print("Error during authentication")
api = tweepy.API(auth, wait_on_rate_limit=True,
wait_on_rate_limit_notify=True)
timeline = api.home_timeline()
for tweet in timeline:
print(f"{tweet.user.name} said {tweet.text}")
# Create a tweet
#api.update_status("Hello Pvrple Bot Test three by Tweepy")
user = api.get_user("MikezGarcia")
print("User details:")
print(user.name)
print(user.description)
print(user.location)
print("Last 20 Followers:")
for follower in user.followers():
print(follower.name)
#api.create_friendship("pvrple_blvck_sa")
api.update_profile(description="I AM Pvrple Blvck.by TweepyBot")
#Like most recent tweet
'''tweets = api.home_timeline(count=1)
tweet = tweets[0]
print(f"Liking tweet {tweet.id} of {tweet.author.name}")
api.create_favorite(tweet.id)'''
#See blocked contacts
for block in api.blocks():
print(block.name)
#Search Tweets
for tweet in api.search(q="Bitcoin", lang="en", rpp=10):
print(f"{tweet.user.name}:{tweet.text}")
#Trends
trends_result = api.trends_place(1)
for trend in trends_result[0]["trends"]:
print(trend["name"])
| StarcoderdataPython |
1673935 | # python3
# Copyright 2021 InstaDeep Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import abstractmethod
from typing import Any, Iterator, List
import dm_env
class ParallelEnvWrapper(dm_env.Environment):
"""
Abstract class for parallel environment wrappers.
"""
@abstractmethod
def env_done(self) -> bool:
"""
Returns a bool indicating if all agents in env are done.
"""
@property
@abstractmethod
def agents(self) -> List:
"""
Returns the active agents in the env.
"""
@property
@abstractmethod
def possible_agents(self) -> List:
"""
Returns all the possible agents in the env.
"""
class SequentialEnvWrapper(ParallelEnvWrapper):
"""
Abstract class for sequential environment wrappers.
"""
@abstractmethod
def agent_iter(self, max_iter: int) -> Iterator:
"""
Returns an iterator that yields the current agent in the env.
max_iter: Maximum number of iterations (to limit infinite loops/iterations).
"""
@property
@abstractmethod
def current_agent(self) -> Any:
"""
Returns the current selected agent.
"""
| StarcoderdataPython |
3277063 | <reponame>pirofti/SSPG
# Copyright (c) 2019-2020 <NAME> <<EMAIL>>
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import cvxpy as cp
import numpy as np
from numpy import linalg
def sr_proxgd(sample, dictionary, Delta, alpha, lam, x0, eps, xstar):
x_old = 0
x_new = x0
x_list, err_list = [x_new], []
m = dictionary.shape[0]
n = dictionary.shape[1]
In = np.eye(n)
E = np.real(linalg.eigvals((1/m)*dictionary.T@dictionary + alpha*In))
L = E.max()
eta = 1/L
iter = 0
while np.linalg.norm(x_new - xstar)**2 > eps:
x_old = x_new
iter = iter + 1
# y = x_old - eta * ((dictionary.T@dictionary + alpha*In)@x_old
# - dictionary.T @ sample)
y = x_old - eta * ((1/m)*(dictionary.T@(dictionary@x_old - sample))
+ alpha*x_old)
z = cp.Variable(shape=n)
cost = (L/2)*cp.sum_squares(z - y) + lam*cp.norm(Delta@z, 1)
prob = cp.Problem(cp.Minimize(cost))
prob.solve(solver=cp.CVXOPT, verbose=False)
# print('Solver status: {}'.format(prob.status))
# Check for error.
if prob.status != cp.OPTIMAL:
raise Exception("Solver did not converge!")
x_new = z.value
x_list.append(x_new)
err_list.append(np.linalg.norm(x_new - xstar))
# print("[", iter, "] Error", np.linalg.norm(x_new - xstar))
return x_list[-1], x_list, err_list
| StarcoderdataPython |
3221042 | #
# This file is part of pysnmp-apps software.
#
# Copyright (c) 2005-2017, <NAME> <<EMAIL>>
# License: http://snmplabs.com/pysnmp/license.html
#
from pysnmp_apps.cli import base
from pysnmp.entity import config
from pysnmp import error
authProtocols = {
'MD5': config.usmHMACMD5AuthProtocol,
'SHA': config.usmHMACSHAAuthProtocol,
'SHA224': config.usmHMAC128SHA224AuthProtocol,
'SHA256': config.usmHMAC192SHA256AuthProtocol,
'SHA384': config.usmHMAC256SHA384AuthProtocol,
'SHA512': config.usmHMAC384SHA512AuthProtocol,
'NONE': config.usmNoAuthProtocol
}
privProtocols = {
'DES': config.usmDESPrivProtocol,
'3DES': config.usm3DESEDEPrivProtocol,
'AES': config.usmAesCfb128Protocol,
'AES128': config.usmAesCfb128Protocol,
'AES192': config.usmAesCfb192Protocol,
'AES192BLMT': config.usmAesBlumenthalCfb192Protocol,
'AES256': config.usmAesCfb256Protocol,
'AES256BLMT': config.usmAesBlumenthalCfb256Protocol,
'NONE': config.usmNoPrivProtocol
}
def getUsage():
return """\
SNMPv1/v2c security options:
-c COMMUNITY SNMP community string (e.g. public)
SNMPv3 security options:
-u SECURITY-NAME SNMP USM user security name (e.g. bert)
-l SECURITY-LEVEL security level (noAuthNoPriv|authNoPriv|authPriv)
-a AUTH-PROTOCOL authentication protocol ID (%s)
-A PASSPHRASE authentication protocol pass phrase (8+ chars)
-x PRIV-PROTOCOL privacy protocol ID (%s)
-X PASSPHRASE privacy protocol pass phrase (8+ chars)
-E CONTEXT-ENGINE-ID context engine ID (e.g. 800000020109840301)
-e ENGINE-ID security SNMP engine ID (e.g. 800000020109840301)
-n CONTEXT-NAME SNMP context name (e.g. bridge1)
-Z BOOTS,TIME destination SNMP engine boots/time
""" % ('|'.join(sorted([x for x in authProtocols if x != 'NONE'])),
'|'.join(sorted([x for x in privProtocols if x != 'NONE'])))
# Scanner
class SMScannerMixIn:
# SNMPv1/v2
def t_community(self, s):
r' -c '
self.rv.append(base.ConfigToken('community'))
# SNMPv3
def t_authProtocol(self, s):
r' -a '
self.rv.append(base.ConfigToken('authProtocol'))
def t_authKey(self, s):
r' -A '
self.rv.append(base.ConfigToken('authKey'))
def t_privProtocol(self, s):
r' -x '
self.rv.append(base.ConfigToken('privProtocol'))
def t_privKey(self, s):
r' -X '
self.rv.append(base.ConfigToken('privKey'))
def t_securityName(self, s):
r' -u '
self.rv.append(base.ConfigToken('securityName'))
def t_securityLevel(self, s):
r' -l '
self.rv.append(base.ConfigToken('securityLevel'))
def t_engineID(self, s):
r' -e '
self.rv.append(base.ConfigToken('engineID'))
def t_contextEngineId(self, s):
r' -E '
self.rv.append(base.ConfigToken('contextEngineId'))
def t_contextName(self, s):
r' -n '
self.rv.append(base.ConfigToken('contextName'))
def t_engineBoots(self, s):
r' -Z '
self.rv.append(base.ConfigToken('engineBoots'))
# Parser
class SMParserMixIn:
def p_smSpec(self, args):
'''
Option ::= SnmpV1Option
Option ::= SnmpV3Option
SnmpV1Option ::= Community
Community ::= community string
Community ::= community whitespace string
SnmpV3Option ::= AuthProtocol
SnmpV3Option ::= AuthKey
SnmpV3Option ::= PrivProtocol
SnmpV3Option ::= PrivKey
SnmpV3Option ::= SecurityName
SnmpV3Option ::= SecurityLevel
SnmpV3Option ::= EngineID
SnmpV3Option ::= ContextEngineId
SnmpV3Option ::= ContextName
SnmpV3Option ::= EngineBoots
AuthProtocol ::= authProtocol string
AuthProtocol ::= authProtocol whitespace string
AuthKey ::= authKey string
AuthKey ::= authKey whitespace string
PrivProtocol ::= privProtocol string
PrivProtocol ::= privProtocol whitespace string
PrivKey ::= privKey string
PrivKey ::= privKey whitespace string
SecurityName ::= securityName string
SecurityName ::= securityName whitespace string
SecurityLevel ::= securityLevel string
SecurityLevel ::= securityLevel whitespace string
EngineID ::= engineID string
EngineID ::= engineID whitespace string
ContextEngineId ::= contextEngineId string
ContextEngineId ::= contextEngineId whitespace string
ContextName ::= contextName string
ContextName ::= contextName whitespace string
EngineBoots ::= engineBoots string
EngineBoots ::= engineBoots whitespace string
'''
# Generator
class __SMGenerator(base.GeneratorTemplate):
# SNMPv1/v2
def n_Community(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
ctx['communityName'] = node[2].attr
else:
ctx['communityName'] = node[1].attr
# SNMPv3
def n_AuthProtocol(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
p = node[2].attr.upper()
else:
p = node[1].attr.upper()
try:
ctx['authProtocol'] = authProtocols[p]
except KeyError:
raise error.PySnmpError('Unknown authentication protocol "%s"' % p)
def n_AuthKey(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
p = node[2].attr
else:
p = node[1].attr
if len(p) < 8:
raise error.PySnmpError('Short authentication key (8+ chars required)')
ctx['authKey'] = p
def n_PrivProtocol(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
p = node[2].attr.upper()
else:
p = node[1].attr.upper()
try:
ctx['privProtocol'] = privProtocols[p]
except KeyError:
raise error.PySnmpError('Unknown privacy protocol "%s"' % p)
def n_PrivKey(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
p = node[2].attr
else:
p = node[1].attr
if len(p) < 8:
raise error.PySnmpError('Short privacy key (8+ chars required)')
ctx['privKey'] = p
def n_SecurityName(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
ctx['securityName'] = node[2].attr
else:
ctx['securityName'] = node[1].attr
def n_SecurityLevel(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
ctx['securityLevel'] = node[2].attr
else:
ctx['securityLevel'] = node[1].attr
def n_EngineID(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
ctx['engineID'] = node[2].attr
else:
ctx['engineID'] = node[1].attr
def n_ContextEngineId(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
ctx['contextEngineId'] = node[2].attr
else:
ctx['contextEngineId'] = node[1].attr
def n_ContextName(self, cbCtx, node):
snmpEngine, ctx = cbCtx
if len(node) > 2:
ctx['contextName'] = node[2].attr
else:
ctx['contextName'] = node[1].attr
def n_EngineBoots(self, cbCtx, node): # XXX
snmpEngine, ctx = cbCtx
if len(node) > 2:
ctx['engineBoots'] = node[2].attr
else:
ctx['engineBoots'] = node[1].attr
if ',' in ctx['engineBoots']:
ctx['engineBoots'], ctx['engineTime'] = ctx['engineBoots'].split(',', 1)
else:
ctx['engineTime'] = 0
def generator(cbCtx, ast):
snmpEngine, ctx = cbCtx
__SMGenerator().preorder(cbCtx, ast)
# Commit collected data
if ctx['versionId'] == 3:
if 'securityName' not in ctx:
raise error.PySnmpError('Security name not specified')
if 'securityLevel' not in ctx:
raise error.PySnmpError('Security level not specified')
if ctx['securityLevel'] == 'noAuthNoPriv':
if 'authKey' in ctx:
del ctx['authKey']
if 'privKey' in ctx:
del ctx['privKey']
elif ctx['securityLevel'] == 'authNoPriv':
if 'privKey' in ctx:
del ctx['privKey']
if 'authKey' in ctx:
if 'authProtocol' not in ctx:
ctx['authProtocol'] = config.usmHMACMD5AuthProtocol
else:
ctx['authProtocol'] = config.usmNoAuthProtocol
ctx['authKey'] = None
if 'privKey' in ctx:
if 'privProtocol' not in ctx:
ctx['privProtocol'] = config.usmDESPrivProtocol
else:
ctx['privProtocol'] = config.usmNoPrivProtocol
ctx['privKey'] = None
config.addV3User(
snmpEngine,
ctx['securityName'],
ctx['authProtocol'],
ctx['authKey'],
ctx['privProtocol'],
ctx['privKey']
)
# edit SNMP engine boots/uptime
if 'engineBoots' in ctx:
snmpEngineBoots, = snmpEngine.msgAndPduDsp.mibInstrumController.mibBuilder.importSymbols('__SNMP-FRAMEWORK-MIB', 'snmpEngineBoots')
snmpEngineBoots.setSyntax(
snmpEngineBoots.getSyntax().clone(ctx['engineBoots'])
)
if 'engineTime' in ctx:
snmpEngineTime, = snmpEngine.msgAndPduDsp.mibInstrumController.mibBuilder.importSymbols('__SNMP-FRAMEWORK-MIB', 'snmpEngineTime')
snmpEngineTime.setSyntax(
snmpEngineTime.getSyntax().clone(ctx['engineTime'])
)
else: # SNMPv1/v2c
if 'communityName' not in ctx:
raise error.PySnmpError('Community name not specified')
ctx['securityName'] = 'my-agent'
ctx['securityLevel'] = 'noAuthNoPriv'
config.addV1System(
snmpEngine,
ctx['securityName'],
ctx['communityName']
)
ctx['paramsName'] = '%s-params' % ctx['securityName']
config.addTargetParams(
snmpEngine, ctx['paramsName'], ctx['securityName'],
ctx['securityLevel'], ctx['versionId']
)
| StarcoderdataPython |
17194 | #poly_gauss_coil model
#conversion of Poly_GaussCoil.py
#converted by <NAME>, Mar 2016
r"""
This empirical model describes the scattering from *polydisperse* polymer
chains in theta solvents or polymer melts, assuming a Schulz-Zimm type
molecular weight distribution.
To describe the scattering from *monodisperse* polymer chains, see the
:ref:`mono-gauss-coil` model.
Definition
----------
.. math::
I(q) = \text{scale} \cdot I_0 \cdot P(q) + \text{background}
where
.. math::
I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 \\
P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] \\
Z &= [(q R_g)^2] / (1 + 2U) \\
U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 \\
V &= M / (N_A \delta)
Here, $\phi_\text{poly}$, is the volume fraction of polymer, $V$ is the
volume of a polymer coil, $M$ is the molecular weight of the polymer,
$N_A$ is Avogadro's Number, $\delta$ is the bulk density of the polymer,
$\rho_\text{poly}$ is the sld of the polymer, $\rho_\text{solv}$ is the
sld of the solvent, and $R_g$ is the radius of gyration of the polymer coil.
The 2D scattering intensity is calculated in the same way as the 1D,
but where the $q$ vector is redefined as
.. math::
q = \sqrt{q_x^2 + q_y^2}
References
----------
.. [#] O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982) Page 404
.. [#] <NAME>, <NAME>, *Polymers and Neutron Scattering*, Oxford Science Publications, (1996)
.. [#] <NAME>, *Small Angle Neutron Scattering* in *Modern Techniques for Polymer Characterisation*, Wiley, (1999)
.. [#] http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:**
* **Last Reviewed by:**
"""
import numpy as np
from numpy import inf, expm1, power
name = "poly_gauss_coil"
title = "Scattering from polydisperse polymer coils"
description = """
Evaluates the scattering from
polydisperse polymer chains.
"""
category = "shape-independent"
# pylint: disable=bad-whitespace, line-too-long
# ["name", "units", default, [lower, upper], "type", "description"],
parameters = [
["i_zero", "1/cm", 70.0, [0.0, inf], "", "Intensity at q=0"],
["rg", "Ang", 75.0, [0.0, inf], "", "Radius of gyration"],
["polydispersity", "None", 2.0, [1.0, inf], "", "Polymer Mw/Mn"],
]
# pylint: enable=bad-whitespace, line-too-long
# NB: Scale and Background are implicit parameters on every model
def Iq(q, i_zero, rg, polydispersity):
# pylint: disable = missing-docstring
u = polydispersity - 1.0
z = q**2 * (rg**2 / (1.0 + 2.0*u))
# need to trap the case of the polydispersity being 1 (ie, monodisperse!)
if polydispersity == 1.0:
result = 2.0 * (expm1(-z) + z)
index = q != 0.
result[index] /= z[index]**2
result[~index] = 1.0
else:
# Taylor series around z=0 of (2*(1+uz)^(-1/u) + z - 1) / (z^2(u+1))
p = [
#(-1 - 20*u - 155*u**2 - 580*u**3 - 1044*u**4 - 720*u**5) / 2520.,
#(+1 + 14*u + 71*u**2 + 154*u**3 + 120*u**4) / 360.,
#(-1 - 9*u - 26*u**2 - 24*u**3) / 60.,
(+1 + 5*u + 6*u**2) / 12.,
(-1 - 2*u) / 3.,
(+1),
]
result = 2.0 * (power(1.0 + u*z, -1.0/u) + z - 1.0) / (1.0 + u)
index = z > 1e-4
result[index] /= z[index]**2
result[~index] = np.polyval(p, z[~index])
return i_zero * result
Iq.vectorized = True # Iq accepts an array of q values
def random():
"""Return a random parameter set for the model."""
rg = 10**np.random.uniform(0, 4)
#rg = 1e3
polydispersity = 10**np.random.uniform(0, 3)
pars = dict(
#scale=1, background=0,
i_zero=1e7, # i_zero is a simple scale
rg=rg,
polydispersity=polydispersity,
)
return pars
demo = dict(scale=1.0,
i_zero=70.0,
rg=75.0,
polydispersity=2.0,
background=0.0)
# these unit test values taken from SasView 3.1.2
tests = [
[{'scale': 1.0, 'i_zero': 70.0, 'rg': 75.0,
'polydispersity': 2.0, 'background': 0.0},
[0.0106939, 0.469418], [57.6405, 0.169016]],
]
| StarcoderdataPython |
27639 | import abc
from typing import List
from utils.datatypes import Source
class DataLoaderInterface(object):
@abc.abstractmethod
def get_name() -> str:
'''Returns an internal name for this loader'''
raise NotImplementedError("users must define a name for this loader")
@staticmethod
@abc.abstractmethod
def get_filetypes() -> List[str]:
'''Returns a list of file types supported by this data loader'''
raise NotImplementedError('users must define a list of supported filetypes.')
@abc.abstractmethod
def load_data_from_file(self, filepath: str) -> Source:
'''Reads file and extracts lines of texts. Returns one section per page'''
raise NotImplementedError("userers must define a function to load data from a file.") | StarcoderdataPython |
3368881 | import os
import torch
import pickle
import pandas as pd
import numpy as np
from torch.utils.data import Dataset
import tqdm
def createDataCSV(dataset):
labels = []
texts = []
dataType = []
label_map = {}
name_map = {'wiki31k': 'Wiki10-31K',
'wiki500k': 'Wiki-500K',
'amazoncat13k': 'AmazonCat-13K',
'amazon670k': 'Amazon-670K',
'eurlex4k': 'Eurlex-4K'}
assert dataset in name_map
dataset = name_map[dataset]
fext = '_texts.txt' if dataset == 'Eurlex-4K' else '_raw_texts.txt'
with open(f'../data/{dataset}/train{fext}', encoding="utf-8") as f:
for i in tqdm.tqdm(f):
texts.append(i.replace('\n', ''))
dataType.append('train')
with open(f'../data/{dataset}/test{fext}', encoding="utf-8") as f:
for i in tqdm.tqdm(f):
texts.append(i.replace('\n', ''))
dataType.append('test')
with open(f'../data/{dataset}/train_labels.txt', encoding="utf-8") as f:
for i in tqdm.tqdm(f):
for l in i.replace('\n', '').split():
label_map[l] = 0
labels.append(i.replace('\n', ''))
with open(f'../data/{dataset}/test_labels.txt', encoding="utf-8") as f:
print(len(label_map))
for i in tqdm.tqdm(f):
for l in i.replace('\n', '').split():
label_map[l] = 0
labels.append(i.replace('\n', ''))
print(len(label_map))
assert len(texts) == len(labels) == len(dataType)
df_row = {'text': texts, 'label': labels, 'dataType': dataType}
for i, k in enumerate(sorted(label_map.keys())):
label_map[k] = i
df = pd.DataFrame(df_row)
print('label map', len(label_map))
return df, label_map
class MDataset(Dataset):
def __init__(self, df, mode, tokenizer, label_map, max_length,
token_type_ids=None, group_y=None, candidates_num=None):
assert mode in ["train", "valid", "test"]
self.mode = mode
self.df, self.n_labels, self.label_map = df[df.dataType == self.mode], len(label_map), label_map
self.len = len(self.df)
self.tokenizer, self.max_length, self.group_y = tokenizer, max_length, group_y
self.multi_group = False
self.token_type_ids = token_type_ids
self.candidates_num = candidates_num
if group_y is not None:
# group y mode
self.candidates_num, self.group_y, self.n_group_y_labels = candidates_num, [], group_y.shape[0]
self.map_group_y = np.empty(len(label_map), dtype=np.long)
for idx, labels in enumerate(group_y):
self.group_y.append([])
for label in labels:
self.group_y[-1].append(label_map[label])
self.map_group_y[self.group_y[-1]] = idx
self.group_y[-1] = np.array(self.group_y[-1])
self.group_y = np.array(self.group_y)
def __getitem__(self, idx):
max_len = self.max_length
review = self.df.text.values[idx].lower()
labels = [self.label_map[i] for i in self.df.label.values[idx].split() if i in self.label_map]
review = ' '.join(review.split()[:max_len])
text = review
if self.token_type_ids is not None:
input_ids = self.token_type_ids[idx]
if input_ids[-1] == 0:
input_ids = input_ids[input_ids != 0]
input_ids = input_ids.tolist()
elif hasattr(self.tokenizer, 'encode_plus'):
input_ids = self.tokenizer.encode(
'filling empty' if len(text) == 0 else text,
add_special_tokens=True,
max_length=max_len
)
else:
# fast
input_ids = self.tokenizer.encode(
'filling empty' if len(text) == 0 else text,
add_special_tokens=True
).ids
if len(input_ids) == 0:
print('zero string')
assert 0
if len(input_ids) > self.max_length:
input_ids[self.max_length-1] = input_ids[-1]
input_ids = input_ids[:self.max_length]
attention_mask = [1] * len(input_ids)
token_type_ids = [0] * len(input_ids)
padding_length = self.max_length - len(input_ids)
input_ids = input_ids + ([0] * padding_length)
attention_mask = attention_mask + ([0] * padding_length)
token_type_ids = token_type_ids + ([0] * padding_length)
input_ids = torch.tensor(input_ids)
attention_mask = torch.tensor(attention_mask)
token_type_ids = torch.tensor(token_type_ids)
if self.group_y is not None:
label_ids = torch.zeros(self.n_labels)
label_ids = label_ids.scatter(0, torch.tensor(labels),
torch.tensor([1.0 for i in labels]))
group_labels = self.map_group_y[labels]
if self.multi_group:
group_labels = np.concatenate(group_labels)
group_label_ids = torch.zeros(self.n_group_y_labels)
group_label_ids = group_label_ids.scatter(0, torch.tensor(group_labels),
torch.tensor([1.0 for i in group_labels]))
candidates = np.concatenate(self.group_y[group_labels], axis=0)
if len(candidates) < self.candidates_num:
sample = np.random.randint(self.n_group_y_labels, size=self.candidates_num - len(candidates))
candidates = np.concatenate([candidates, sample])
elif len(candidates) > self.candidates_num:
candidates = np.random.choice(candidates, self.candidates_num, replace=False)
if self.mode == 'train':
return input_ids, attention_mask, token_type_ids,\
label_ids[candidates], group_label_ids, candidates
else:
return input_ids, attention_mask, token_type_ids,\
label_ids, group_label_ids, candidates
# root fc layer
group_labels = layers_group_labels[0]
group_label_ids = torch.zeros(len(self.map_children[0]))
group_label_ids = group_label_ids.scatter(0, torch.tensor(group_labels),
torch.tensor([1.0 for i in group_labels]))
layers_group_labels_ids.append(group_label_ids)
if self.mode == 'train':
return input_ids, attention_mask, token_type_ids, \
layers_group_labels_ids[::-1], layers_candidates[::-1]
else:
return input_ids, attention_mask, token_type_ids, layers_group_labels + [labels]
label_ids = torch.zeros(self.n_labels)
label_ids = label_ids.scatter(0, torch.tensor(labels),
torch.tensor([1.0 for i in labels]))
return input_ids, attention_mask, token_type_ids, label_ids
def __len__(self):
return self.len
| StarcoderdataPython |
3304157 | # 2021 - <NAME> - www.manualdocodigo.com.br
import sys
from PyQt5 import QtCore, QtWidgets, uic
from PyQt5.QtCore import QFile, QTextStream
class MainWindow(QtWidgets.QMainWindow):
def __init__(self, *args, **kwargs):
super(MainWindow, self).__init__(*args, **kwargs)
self.filename = ""
# Load the UI Page
uic.loadUi("mainwindow.ui", self)
self.actionopen.triggered.connect(self.open)
self.actionsave.triggered.connect(self.save)
self.actionsave_as.triggered.connect(self.saveAs)
self.lineEditAddress.textChanged.connect(self.serCursorPosition)
def open(self):
fName, filter = QtWidgets.QFileDialog.getOpenFileName(self, "OpenFile")
f = QtCore.QFile(fName)
f.open(QtCore.QFile.ReadOnly)
data = f.readAll()
self.hexwidget.setData(data)
self.filename = fName
def save(self):
if self.filename:
data = self.hexwidget.getData()
f = open(self.filename, "wb")
f.write(data)
f.close()
print("Saved successfully...")
else:
print("No file to save")
def saveAs(self):
fName, _ = QtWidgets.QFileDialog.getSaveFileName(self, "Save File")
if fName:
self.filename = fName
self.save()
else:
print("Invalid File")
def serCursorPosition(self):
try:
address = int(self.lineEditAddress.text(), 16)
self.hexwidget.setCursorPosition(address)
except:
print("Invalid hexadecimal number")
def main():
app = QtWidgets.QApplication(sys.argv)
# Theme test from:
# https://github.com/Alexhuszagh/BreezeStyleSheets
if False:
file = QFile("./dark.qss")
file.open(QFile.ReadOnly | QFile.Text)
stream = QTextStream(file)
app.setStyleSheet(stream.readAll())
main = MainWindow()
main.show()
sys.exit(app.exec_())
if __name__ == "__main__":
main()
| StarcoderdataPython |
130254 | <reponame>johnnoone/django-admincommand<gh_stars>10-100
def generate_instance_name(name):
out = name[0].lower()
for char in name[1:]:
if char.isupper():
out += "_%s" % char.lower()
else:
out += char
return out
def generate_human_name(name):
out = name[0]
for char in name[1:]:
if char.isupper():
out += " %s" % char.lower()
else:
out += char
return out
| StarcoderdataPython |
3387690 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import json
import math
import string
import collections
import numpy as np
from keras import backend
from six.moves import xrange
from nets.layers import BatchNormalization
from keras import layers
BASE_WEIGHTS_PATH = (
'https://github.com/Callidior/keras-applications/'
'releases/download/efficientnet/')
WEIGHTS_HASHES = {
'efficientnet-b0': ('163292582f1c6eaca8e7dc7b51b01c61'
'5b0dbc0039699b4dcd0b975cc21533dc',
'c1421ad80a9fc67c2cc4000f666aa507'
'89ce39eedb4e06d531b0c593890ccff3'),
'efficientnet-b1': ('d0a71ddf51ef7a0ca425bab32b7fa7f1'
'6043ee598ecee73fc674d9560c8f09b0',
'75de265d03ac52fa74f2f510455ba64f'
'9c7c5fd96dc923cd4bfefa3d680c4b68'),
'efficientnet-b2': ('bb5451507a6418a574534aa76a91b106'
'f6b605f3b5dde0b21055694319853086',
'433b60584fafba1ea3de07443b74cfd3'
'2ce004a012020b07ef69e22ba8669333'),
'efficientnet-b3': ('03f1fba367f070bd2545f081cfa7f3e7'
'6f5e1aa3b6f4db700f00552901e75ab9',
'c5d42eb6cfae8567b418ad3845cfd63a'
'a48b87f1bd5df8658a49375a9f3135c7'),
'efficientnet-b4': ('98852de93f74d9833c8640474b2c698d'
'b45ec60690c75b3bacb1845e907bf94f',
'<KEY>'
'd9d91ea64877e8d9c38b6c1e0767c411'),
'efficientnet-b5': ('30172f1d45f9b8a41352d4219bf930ee'
'3339025fd26ab314a817ba8918fefc7d',
'9d197bc2bfe29165c10a2af8c2ebc675'
'07f5d70456f09e584c71b822941b1952'),
'efficientnet-b6': ('f5270466747753485a082092ac9939ca'
'a546eb3f09edca6d6fff842cad938720',
'1d0923bb038f2f8060faaf0a0449db4b'
'96549a881747b7c7678724ac79f427ed'),
'efficientnet-b7': ('876a41319980638fa597acbbf956a82d'
'10819531ff2dcb1a52277f10c7aefa1a',
'60b56ff3a8daccc8d96edfd40b204c11'
'3e51748da657afd58034d54d3cec2bac')
}
BlockArgs = collections.namedtuple('BlockArgs', [
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
'expand_ratio', 'id_skip', 'strides', 'se_ratio'
])
# defaults will be a public argument for namedtuple in Python 3.7
# https://docs.python.org/3/library/collections.html#collections.namedtuple
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
DEFAULT_BLOCKS_ARGS = [
BlockArgs(kernel_size=3, num_repeat=1, input_filters=32, output_filters=16,
expand_ratio=1, id_skip=True, strides=[1, 1], se_ratio=0.25),
BlockArgs(kernel_size=3, num_repeat=2, input_filters=16, output_filters=24,
expand_ratio=6, id_skip=True, strides=[2, 2], se_ratio=0.25),
BlockArgs(kernel_size=5, num_repeat=2, input_filters=24, output_filters=40,
expand_ratio=6, id_skip=True, strides=[2, 2], se_ratio=0.25),
BlockArgs(kernel_size=3, num_repeat=3, input_filters=40, output_filters=80,
expand_ratio=6, id_skip=True, strides=[2, 2], se_ratio=0.25),
BlockArgs(kernel_size=5, num_repeat=3, input_filters=80, output_filters=112,
expand_ratio=6, id_skip=True, strides=[1, 1], se_ratio=0.25),
BlockArgs(kernel_size=5, num_repeat=4, input_filters=112, output_filters=192,
expand_ratio=6, id_skip=True, strides=[2, 2], se_ratio=0.25),
BlockArgs(kernel_size=3, num_repeat=1, input_filters=192, output_filters=320,
expand_ratio=6, id_skip=True, strides=[1, 1], se_ratio=0.25)
]
CONV_KERNEL_INITIALIZER = {
'class_name': 'VarianceScaling',
'config': {
'scale': 2.0,
'mode': 'fan_out',
# EfficientNet actually uses an untruncated normal distribution for
# initializing conv layers, but keras.initializers.VarianceScaling use
# a truncated distribution.
# We decided against a custom initializer for better serializability.
'distribution': 'normal'
}
}
DENSE_KERNEL_INITIALIZER = {
'class_name': 'VarianceScaling',
'config': {
'scale': 1. / 3.,
'mode': 'fan_out',
'distribution': 'uniform'
}
}
def get_swish():
def swish(x):
return x * backend.sigmoid(x)
return swish
def get_dropout():
class FixedDropout(layers.Dropout):
def _get_noise_shape(self, inputs):
if self.noise_shape is None:
return self.noise_shape
symbolic_shape = backend.shape(inputs)
noise_shape = [symbolic_shape[axis] if shape is None else shape
for axis, shape in enumerate(self.noise_shape)]
return tuple(noise_shape)
return FixedDropout
def round_filters(filters, width_coefficient, depth_divisor):
filters *= width_coefficient
new_filters = int(filters + depth_divisor / 2) // depth_divisor * depth_divisor
new_filters = max(depth_divisor, new_filters)
if new_filters < 0.9 * filters:
new_filters += depth_divisor
return int(new_filters)
def round_repeats(repeats, depth_coefficient):
return int(math.ceil(depth_coefficient * repeats))
def mb_conv_block(inputs, block_args, activation, drop_rate=None, prefix='', freeze_bn=False):
has_se = (block_args.se_ratio is not None) and (0 < block_args.se_ratio <= 1)
bn_axis = 3
Dropout = get_dropout()
filters = block_args.input_filters * block_args.expand_ratio
if block_args.expand_ratio != 1:
x = layers.Conv2D(filters, 1,
padding='same',
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'expand_conv')(inputs)
x = layers.BatchNormalization(axis=bn_axis, name=prefix + 'expand_bn')(x)
x = layers.Activation(activation, name=prefix + 'expand_activation')(x)
else:
x = inputs
# Depthwise Convolution
x = layers.DepthwiseConv2D(block_args.kernel_size,
strides=block_args.strides,
padding='same',
use_bias=False,
depthwise_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'dwconv')(x)
x = layers.BatchNormalization(axis=bn_axis, name=prefix + 'bn')(x)
x = layers.Activation(activation, name=prefix + 'activation')(x)
# Squeeze and Excitation phase
if has_se:
num_reduced_filters = max(1, int(
block_args.input_filters * block_args.se_ratio
))
se_tensor = layers.GlobalAveragePooling2D(name=prefix + 'se_squeeze')(x)
target_shape = (1, 1, filters) if backend.image_data_format() == 'channels_last' else (filters, 1, 1)
se_tensor = layers.Reshape(target_shape, name=prefix + 'se_reshape')(se_tensor)
se_tensor = layers.Conv2D(num_reduced_filters, 1,
activation=activation,
padding='same',
use_bias=True,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'se_reduce')(se_tensor)
se_tensor = layers.Conv2D(filters, 1,
activation='sigmoid',
padding='same',
use_bias=True,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'se_expand')(se_tensor)
if backend.backend() == 'theano':
# For the Theano backend, we have to explicitly make
# the excitation weights broadcastable.
pattern = ([True, True, True, False] if backend.image_data_format() == 'channels_last'
else [True, False, True, True])
se_tensor = layers.Lambda(
lambda x: backend.pattern_broadcast(x, pattern),
name=prefix + 'se_broadcast')(se_tensor)
x = layers.multiply([x, se_tensor], name=prefix + 'se_excite')
# Output phase
x = layers.Conv2D(block_args.output_filters, 1,
padding='same',
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'project_conv')(x)
# x = BatchNormalization(freeze=freeze_bn, axis=bn_axis, name=prefix + 'project_bn')(x)
x = layers.BatchNormalization(axis=bn_axis, name=prefix + 'project_bn')(x)
if block_args.id_skip and all(
s == 1 for s in block_args.strides
) and block_args.input_filters == block_args.output_filters:
if drop_rate and (drop_rate > 0):
x = Dropout(drop_rate,
noise_shape=(None, 1, 1, 1),
name=prefix + 'drop')(x)
x = layers.add([x, inputs], name=prefix + 'add')
return x
def EfficientNet(width_coefficient,
depth_coefficient,
default_resolution,
dropout_rate=0.2,
drop_connect_rate=0.2,
depth_divisor=8,
blocks_args=DEFAULT_BLOCKS_ARGS,
model_name='efficientnet',
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
freeze_bn=False,
**kwargs):
features = []
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
img_input = input_tensor
bn_axis = 3
activation = get_swish(**kwargs)
# Build stem
x = img_input
x = layers.Conv2D(round_filters(32, width_coefficient, depth_divisor), 3,
strides=(2, 2),
padding='same',
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name='stem_conv')(x)
# x = BatchNormalization(freeze=freeze_bn, axis=bn_axis, name='stem_bn')(x)
x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x)
x = layers.Activation(activation, name='stem_activation')(x)
# Build blocks
num_blocks_total = sum(block_args.num_repeat for block_args in blocks_args)
block_num = 0
for idx, block_args in enumerate(blocks_args):
assert block_args.num_repeat > 0
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(block_args.input_filters,
width_coefficient, depth_divisor),
output_filters=round_filters(block_args.output_filters,
width_coefficient, depth_divisor),
num_repeat=round_repeats(block_args.num_repeat, depth_coefficient))
# The first block needs to take care of stride and filter size increase.
drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
x = mb_conv_block(x, block_args,
activation=activation,
drop_rate=drop_rate,
prefix='block{}a_'.format(idx + 1),
freeze_bn=freeze_bn
)
block_num += 1
if block_args.num_repeat > 1:
# pylint: disable=protected-access
block_args = block_args._replace(
input_filters=block_args.output_filters, strides=[1, 1])
# pylint: enable=protected-access
for bidx in xrange(block_args.num_repeat - 1):
drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
block_prefix = 'block{}{}_'.format(
idx + 1,
string.ascii_lowercase[bidx + 1]
)
x = mb_conv_block(x, block_args,
activation=activation,
drop_rate=drop_rate,
prefix=block_prefix,
freeze_bn=freeze_bn
)
block_num += 1
if idx < len(blocks_args) - 1 and blocks_args[idx + 1].strides[0] == 2:
features.append(x)
elif idx == len(blocks_args) - 1:
features.append(x)
return features
def EfficientNetB0(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.0, 1.0, 224, 0.2,
model_name='efficientnet-b0',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB1(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.0, 1.1, 240, 0.2,
model_name='efficientnet-b1',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB2(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.1, 1.2, 260, 0.3,
model_name='efficientnet-b2',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB3(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.2, 1.4, 300, 0.3,
model_name='efficientnet-b3',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB4(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.4, 1.8, 380, 0.4,
model_name='efficientnet-b4',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB5(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.6, 2.2, 456, 0.4,
model_name='efficientnet-b5',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB6(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.8, 2.6, 528, 0.5,
model_name='efficientnet-b6',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB7(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(2.0, 3.1, 600, 0.5,
model_name='efficientnet-b7',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
| StarcoderdataPython |
3259341 |
class Environment(object):
def __init__(self, loader, autoescape):
pass
class Template(object):
def __init__(self, source, autoescape):
pass
def select_autoescape(files=[]):
def autoescape(template_name):
pass
return autoescape
class FileSystemLoader(object):
def __init__(self, searchpath):
pass
| StarcoderdataPython |
3376188 | <gh_stars>0
"""Start game"""
from Skier import Game
def main():
game = Game()
# if "keyboard_game=False", need to use "step(action)" to play
game.start(keyboard_game=True, increase_speed=1, low_speed=6, max_speed=15)
if __name__ == '__main__':
main()
| StarcoderdataPython |
3332411 | <reponame>bigfoolliu/liu_aistuff<gh_stars>1-10
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# author: bigfoolliu
"""
问题8: 100w个数中找出最大的100个数。时间复杂度尽可能的小
方案1:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后每次取出剩余的元素集合中的一个元素,与排好序的100个元素中最小的元素比,
如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。
依次循环,直到扫描了所有的元素。复杂度为O(100w*100)。
方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,直到比轴大的一部分在比100多的时候,采用传统排序算法排序,
取前100个。复杂度为O(100w*100)。
方案3:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。
代码实现如下:
"""
import heapq # 引入堆模块
import random # 产生随机数
test_list = [] # 测试列表
for i in range(1000000): # 产生100w个数,每个数在【0,1000w】之间
test_list.append(random.random() * 100000000)
ret1 = heapq.nlargest(10, test_list) # 求100w个数最大的10个数
ret2 = heapq.nsmallest(10, test_list) # 求100w个数最小的10个数
print(ret1, ret2)
| StarcoderdataPython |
51117 | def is_string(thing):
try:
return isinstance(thing, basestring)
except NameError:
return isinstance(thing, str)
| StarcoderdataPython |
3318167 | from django.shortcuts import render
from .tasks import add
def calc(req):
if req.method == "POST":
add.send(float(req.POST["a"]), float(req.POST["b"]))
return render(req, "calc.html")
| StarcoderdataPython |
3217966 | <filename>input_data/mnist/mnist_input.py
# Copyright 2018 <NAME> All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
import numpy as np
import os
import random
def _single_process(image, label, specs, cropped_size):
"""Map function to process single instance of dataset object.
Args:
image: numpy array image object, (28, 28), 0 ~ 255 uint8;
label: numpy array label, (,);
specs: dataset specifications;
cropped_size: image size after cropping;
Returns:
feature: a dictionary contains image, label, recons_image, recons_label.
"""
if specs['distort']:
if cropped_size <= specs['image_size']:
if specs['split'] == 'train':
# random cropping
image = tf.random_crop(image, [cropped_size, cropped_size])
# random rotation within -15° ~ 15°
image = tf.contrib.image.rotate(
image, random.uniform(-0.26179938779, 0.26179938779))
# expand image dimensions into (HWC)
image = tf.expand_dims(image, -1)
elif specs['split'] == 'test':
# expand image dimensions into (HWC)
image = tf.expand_dims(image, -1)
# central cropping (requires HWC)
image = tf.image.resize_image_with_crop_or_pad(
image, cropped_size, cropped_size)
else:
# expand image dimensions into (HWC)
image = tf.expand_dims(image, -1) # (HWC)
# convert from 0 ~ 255 to 0. ~ 1.
image = tf.cast(image, tf.float32) * (1. / 255.)
# transpose image into (CHW)
image = tf.transpose(image, [2, 0, 1]) # (CHW)
feature = {
'image': image,
'label': tf.one_hot(label, 10)
}
return feature
def _feature_process(feature):
"""Map function to process batched data inside feature dictionary.
Args:
feature: a dictionary contains image, label, recons_image, recons_label.
Returns:
batched_feature: a dictionary contains images, labels, recons_images, recons_labels.
"""
batched_feature = {
'images': feature['image'],
'labels': feature['label'],
}
return batched_feature
def inputs(total_batch_size, num_gpus, max_epochs, cropped_size,
data_dir, split, distort=True):
"""Construct inputs for mnist dataset.
Args:
total_batch_size: total number of images per batch;
num_gpus: number of GPUs available to use;
max_epochs: maximum epochs to go through the model;
cropped_size: image size after cropping;
data_dir: path to the mnist tfrecords data directory;
split: 'train' or 'test', which split of dataset to read from;
distort: whether to distort the images, including random cropping, rotations.
Returns:
batched_dataset: Dataset object each instance is a feature dictionary
specs: dataset specifications.
"""
assert split == 'train' or split == 'test'
"""Dataset specs"""
specs = {
'split': split,
'total_size': None, # total size of one epoch
'steps_per_epoch': None, # number of steps per epoch
'total_batch_size': int(total_batch_size),
'num_gpus': int(num_gpus),
'batch_size': int(total_batch_size / num_gpus),
'max_epochs': int(max_epochs), # number of epochs to repeat
'image_size': 28,
'depth': 1,
'num_classes': 10,
'distort': distort
}
if cropped_size == None:
cropped_size = specs['image_size']
assert cropped_size <= specs['image_size']
"""Load data from numpy array file"""
with np.load(os.path.join(data_dir, 'mnist.npz')) as f:
images, labels = f['x_%s' % split], f['y_%s' % split]
# image: 0 ~ 255 uint8
# labels 0 ~ 9 uint8
assert images.shape[0] == labels.shape[0]
specs['total_size'] = int(images.shape[0])
specs['steps_per_epoch'] = int(specs['total_size'] // specs['total_batch_size'])
"""Process dataset object"""
# read from numpy array
dataset = tf.data.Dataset.from_tensor_slices((images, labels)) # ((28, 28), (,))
# prefetch examples
dataset = dataset.prefetch(
buffer_size=specs['batch_size']*specs['num_gpus']*2)
# shuffle (if 'train') and repeat `max_epochs`
if split == 'train':
dataset = dataset.apply(tf.contrib.data.shuffle_and_repeat(
buffer_size=specs['batch_size']*specs['num_gpus']*10,
count=specs['max_epochs']))
else:
dataset = dataset.repeat(specs['max_epochs'])
# process single example
dataset = dataset.map(
lambda image, label: _single_process(image, label, specs, cropped_size),
num_parallel_calls=3)
specs['image_size'] = cropped_size # after processed single example, the image size
# will be cropped into cropped_size.
# stack into batches
batched_dataset = dataset.batch(specs['batch_size'])
# process into feature
batched_dataset = batched_dataset.map(
_feature_process,
num_parallel_calls=3)
# prefetch to improve the performance
batched_dataset = batched_dataset.prefetch(specs['num_gpus'])
return batched_dataset, specs
| StarcoderdataPython |
1769181 | """
udf.py
written in Python3
author: <NAME> <<EMAIL>>
"""
import numpy as np
from refunction import Refunction
# Ensure that pandas DataFrame columns are not changed
def required_dataframe_columns(columns):
"""
Specify required columns in pandas DataFrames
Parameters
----------
columns : list of str
Column names to ensure are represented.
Returns
-------
bool
Whether or not the requirement columns are in the DataFrame
"""
def _required_dataframe_columns(df, columns):
return np.isin(columns, df.columns).all()
return Refunction(_required_dataframe_columns, columns=columns)
| StarcoderdataPython |
3380454 | <gh_stars>1-10
from unittest import main
from .helpers import api, test_base
request_dynamic_parts = ["1337", "3.141592653589793", "dynamic_part_of_url"]
request_dynamic = "/".join(str(x) for x in request_dynamic_parts)
class RouteDynamicCases:
class RouteDynamicBase(test_base.TestBase):
def test_dynamicint_in_json(self):
json = self.res.json()
arg = 'dynamic_int'
self.assertIn(arg, json)
self.assertEqual(json[arg], request_dynamic_parts[0])
def test_dynamic_float_in_json(self):
json = self.res.json()
arg = 'dynamic_float'
self.assertIn(arg, json)
self.assertEqual(json[arg], request_dynamic_parts[1])
def test_dynamic_path_in_json(self):
json = self.res.json()
arg = 'dynamic_path'
self.assertIn(arg, json)
self.assertEqual(json[arg], request_dynamic_parts[2])
class TestRouteDynamicGet(RouteDynamicCases.RouteDynamicBase, test_base.TestBase, api.APITests):
@classmethod
def setup(cls):
cls.res = api.get(
cls.v['AGW'] + '/test_route_dynamic_get/' + request_dynamic
)
class TestRouteDynamicPost(RouteDynamicCases.RouteDynamicBase, test_base.TestBase, api.APITests):
@classmethod
def setup(cls):
cls.res = api.post(
cls.v['AGW'] + '/test_route_dynamic_post/' + request_dynamic,
json={"empty": "content"}
)
class TestRouteDynamicPut(RouteDynamicCases.RouteDynamicBase, test_base.TestBase, api.APITests):
@classmethod
def setup(cls):
cls.res = api.put(
cls.v['AGW'] + '/test_route_dynamic_put/' + request_dynamic,
json={"empty": "content"}
)
class TestRouteDynamicPatch(RouteDynamicCases.RouteDynamicBase, test_base.TestBase, api.APITests):
@classmethod
def setup(cls):
cls.res = api.patch(
cls.v['AGW'] + '/test_route_dynamic_patch/' + request_dynamic,
json={"empty": "content"}
)
class TestRouteDynamicMissingArgs(test_base.TestBase, api.APITests):
@classmethod
def setup(cls):
cls.res = api.get(
cls.v['AGW'] + '/test_route_dynamic_get/1234/'
)
cls.expected_status_code = 404
cls.expected_content_type = "text/html; charset=UTF-8"
if __name__ == '__main__':
main()
| StarcoderdataPython |
4832090 | <reponame>emcannaert/CMSSW
import FWCore.ParameterSet.Config as cms
primitiveRPCProducer = cms.EDProducer("L1TMuonRPCTriggerPrimitivesProducer",
Primitiverechitlabel = cms.InputTag("rpcdigis"),
Mapsource = cms.string('L1Trigger/L1TMuon/data/rpc/Linkboard_rpc_roll_mapping_lb_chamber2.txt'),
ApplyLinkBoardCut = cms.bool(True),
LinkBoardCut = cms.int32(2), # Number of clusters per linkboard greater than (default >2) are rejected
ClusterSizeCut = cms.int32(3), # Clustersize greater than (default >3) is rejected
maskSource = cms.string('File'),
maskvecfile = cms.FileInPath('RecoLocalMuon/RPCRecHit/data/RPCMaskVec.dat'),
deadSource = cms.string('File'),
deadvecfile = cms.FileInPath('RecoLocalMuon/RPCRecHit/data/RPCDeadVec.dat'),
recAlgoConfig = cms.PSet(),
recAlgo = cms.string('RPCRecHitStandardAlgo')
)
from Configuration.Eras.Modifier_phase2_muon_cff import phase2_muon
phase2_muon.toModify(primitiveRPCProducer, ApplyLinkBoardCut = cms.bool(False))
phase2_muon.toModify(primitiveRPCProducer, ClusterSizeCut = cms.int32(4))
| StarcoderdataPython |
1614772 | <reponame>Hvass-Labs/SwarmOps
########################################################################
# SwarmOps - Heuristic optimization for Python.
# Copyright (C) 2003-2016 <NAME>.
# See the file README.md for instructions.
# See the file LICENSE.txt for license details.
# SwarmOps on the internet: http://www.Hvass-Labs.org/
########################################################################
########################################################################
# Parent-classes for doing optimization. These provide various logistics,
# printing of status messages, running multiple optimizations, etc.
########################################################################
import numpy as np
from swarmops.FitnessTrace import FitnessTrace
from swarmops import tools
##################################################
class SingleRun:
"""
Parent-class for performing a single optimization run.
The class provides various logistics that are common to all
optimizers. If you make a new optimizer, then you should derive
from this class.
"""
def __init__(self, max_evaluations, run_number=0, trace_len=0, display_interval=0):
"""
Create object instance and initialize variables for keeping track
of the optimization progress.
Then call self._optimize() to perform the actual optimization.
:param max_evaluations:
Maximum number of fitness evaluations for the problem.
:param run_number:
The optimization run number, if performing multiple optimization runs.
:param trace_len:
Approximate length of the fitness-trace.
Default is zero which means that no fitness-trace will be created.
:param display_interval:
Approximate interval between printing status messages.
Default is zero which means that no status messages will be printed.
:return:
Object instance.
"""
# Copy arguments to instance variables.
self.max_evaluations = max_evaluations
self.run_number = run_number
self.display_interval = display_interval
# Initialize the counter for the next status-display.
self.display_next = 0
# Create an object used for tracing the fitness at regular intervals.
self.fitness_trace = FitnessTrace(trace_len, max_evaluations)
# Initialize best-known position and fitness.
self.best = None
self.best_fitness = np.inf
# Print status at the beginning of the optimization run.
self._start_run()
# Perform the actual optimization iterations.
self._optimize()
# Print status at the end of the optimization run.
self._end_run()
def _optimize(self):
"""
Perform the actual optimization.
This function should be implemented by the child-class.
The function does not return anything, instead it will
call self._update_best() to update the best-known solution
during optimization.
"""
# Raise an exception if the child-class has not implemented this function.
raise NotImplementedError
def _start_run(self):
"""
Print status at the beginning of the optimization run.
"""
if self.display_interval > 0:
msg = "Starting optimization run {0} using {1} ..."
print(msg.format(self.run_number, self.name))
def _iteration(self, i):
"""
Print status and trace fitness during optimization.
This function should be called regularly during optimization.
"""
if self.display_interval > 0 and i >= self.display_next:
# Print the status.
msg = "Run: {0}, Iteration: {1}, Best Fitness: {2:.4e}"
print(msg.format(self.run_number, i, self.best_fitness))
# Increment the counter for the next status-display.
self.display_next = i + self.display_interval
# Trace the fitness.
self.fitness_trace.trace(i, self.best_fitness)
def _end_run(self):
"""
Print status at the end of the optimization run.
"""
if self.display_interval > 0:
# Print the status.
msg = "Finished optimization run {0}, Best fitness: {1:.4e}"
print(msg.format(self.run_number, self.best_fitness))
def _update_best(self, fitness, x):
"""
Update the best-known solution and fitness if an improvement.
WARNING: This function does NOT copy the array x so you must
ensure that the optimizer does not modify the array you pass
in as x here.
:param fitness: New fitness.
:param x: New solution.
:return: Boolean whether the fitness was an improvement.
"""
# If the fitness is an improvement over the best-known fitness.
improvement = fitness < self.best_fitness
if improvement:
# Update the best-known fitness and position.
self.best_fitness = fitness
self.best = x
return improvement
##################################################
class MultiRun:
"""
Perform multiple optimization runs with an optimizer and
calculate statistics on the results.
This has been separated into its own class for the sake of
modularity so it is easier to read and maintain. There is only a
tiny overhead of instantiating the SingleRun-class for each run.
"""
def __init__(self, optimizer, num_runs, problem, parallel=True, *args, **kwargs):
"""
Create object instance and perform multiple optimization runs.
To retrieve the results, access the object variables afterwards.
The parameters are the same as for the Optimize-class,
except for the following:
:param optimizer:
Class for the optimizer e.g. PSO or DE.
:param num_runs:
Number of optimization runs to perform.
:param problem:
The problem to be optimized. Instance of Problem-class.
:param parallel:
Perform the optimization runs in parallel (True) or serial (False).
:param args:
Arguments to pass along to the Optimize-class.
:param kwargs:
Arguments to pass along to the Optimize-class.
:return:
Object instance. Get the optimization results from the object's variables.
- best_solution is the best-found solution.
- best_fitness is the associated fitness of the best-found solution.
- fitness_trace is a 2-d numpy array with the fitness trace of each run.
"""
# Copy arguments to instance variables.
self.problem = problem
self.optimizer = optimizer
# Store the args and kwargs to be passed on to the optimizer.
self.args = args
self.kwargs = kwargs
if not parallel:
# Run the optimizer multiple times on one processor.
self.runs = [self._optimize(run_number=i) for i in range(num_runs)]
else:
import multiprocessing as mp
# Create a pool of workers sized according to the CPU cores available.
pool = mp.Pool()
# Run the optimizer multiple times in parallel.
# We must use a helper-function for this.
self.runs = pool.map(self._optimize_parallel, range(num_runs))
# Close the pool of workers and wait for them all to finish.
pool.close()
pool.join()
# Put the best solutions from all the optimization runs into an array.
self.solution = np.array([run.best for run in self.runs])
# Put the best fitness from all the optimization runs into an array.
self.fitness = np.array([run.best_fitness for run in self.runs])
# Put the fitness traces from all the optimization runs into an array.
# This only works when the fitness-traces are all the same length.
# If you make changes to the optimizers so they can stop early, then
# you may have to change this.
self.fitness_trace = np.array([run.fitness_trace.fitness for run in self.runs])
# Index for the best fitness (minimization).
i = np.argmin(self.fitness)
# Best optimization run. This is an instance of the SingleRun-class.
self.best_run = self.runs[i]
# Best fitness of all the optimization runs.
self.best_fitness = self.fitness[i]
# Best solution of all the optimization runs.
self.best = self.solution[i]
def _optimize(self, run_number):
"""
Helper-function used for execution of an optimization run. Non-parallel.
:param run_number: Counter for the optimization run.
:return: Instance of the SingleRun-class.
"""
return self.optimizer(problem=self.problem, run_number=run_number,
*self.args, **self.kwargs)
def _optimize_parallel(self, run_number):
"""
Helper-function used for parallel execution of an optimization run.
:param run_number: Counter for the optimization run.
:return: Instance of the SingleRun-class.
"""
# Create a new Pseudo-Random Number Generator for the thread.
tools.new_prng()
# Do the optimization.
return self._optimize(run_number=run_number)
def refine(self):
"""
Refine the best result from heuristic optimization using SciPy's L-BFGS-B method.
This may significantly improve the results on some optimization problems,
but it is sometimes very slow to execute.
NOTE: This function imports SciPy, which should make it possible
to use the rest of this source-code library even if SciPy is not installed.
SciPy should first be loaded when calling this function.
:return:
A tuple with:
- The best fitness found.
- The best solution found.
"""
# SciPy requires bounds in another format.
bounds = list(zip(self.problem.lower_bound, self.problem.upper_bound))
# Start SciPy optimization at best found solution.
import scipy.optimize
res = scipy.optimize.minimize(fun=self.problem.fitness,
x0=self.best,
method="L-BFGS-B",
bounds=bounds)
# Get best fitness and parameters.
refined_fitness = res.fun
refined_solution = res.x
return refined_fitness, refined_solution
def print_statistics(self):
"""
Print statistics for the fitness.
"""
# Print header.
print("{0} - Optimized by {1}".format(self.problem.name_full, self.optimizer.name))
print("Fitness Statistics:")
# Print mean and standard deviation.
print("- Mean:\t\t{0:.4e}".format(self.fitness.mean()))
print("- Std.:\t\t{0:.4e}".format(self.fitness.std()))
# Print quartiles.
print("- Min:\t\t{0:.4e}".format(self.fitness.min()))
print("- 1st Qrt.:\t{0:.4e}".format(np.percentile(self.fitness, 0.25)))
print("- Median:\t{0:.4e}".format(np.percentile(self.fitness, 0.5)))
print("- 3rd Qrt.:\t{0:.4e}".format(np.percentile(self.fitness, 0.75)))
print("- Max:\t\t{0:.4e}".format(self.fitness.max()))
def plot_fitness_trace(self, y_log_scale=True, filename=None):
"""
Plot the fitness traces.
NOTE: This function imports matplotlib, which should make it possible
to use the rest of this source-code library even if it is not installed.
matplotlib should first be loaded when calling this function.
:param y_log_scale: Use log-scale for y-axis.
:param filename: Output filename e.g. "foo.svg". If None then plot to screen.
:return: Nothing.
"""
import matplotlib.pyplot as plt
# Setup plotting.
plt.grid()
# Axis labels.
plt.xlabel("Iteration")
plt.ylabel("Fitness (Lower is better)")
# Title.
title = "{0} - Optimized by {1}".format(self.problem.name_full, self.optimizer.name)
plt.title(title)
# Use log-scale for Y-axis.
if y_log_scale:
plt.yscale("log", nonposy="clip")
# Plot the fitness-trace for each optimization run.
for run in self.runs:
# Array with iteration counter for the optimization run.
iteration = run.fitness_trace.iteration
# Array with fitness-trace for the optimization run.
fitness_trace = run.fitness_trace.fitness
# Plot the fitness-trace.
plt.plot(iteration, fitness_trace, 'r-', color='black', alpha=0.25)
# Plot to screen or file.
if filename is None:
# Plot to screen.
plt.show()
else:
# Plot to file.
plt.savefig(filename, bbox_inches='tight')
plt.close()
##################################################
| StarcoderdataPython |
4840940 | #!/usr/bin/env python3
#
# Authors: <NAME>
import sys
import json
import itertools
import logging
from hypertrace import do_hypertrace, mkabs
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logger = logging.getLogger(__name__)
clean = False
if len(sys.argv) > 1:
configfile = sys.argv[1]
if "--clean" in sys.argv:
clean = True
else:
configfile = "./config.json"
configfile = mkabs(configfile)
logger.info("Using config file `%s`", configfile)
with open(configfile) as f:
config = json.load(f)
wavelength_file = mkabs(config["wavelength_file"])
reflectance_file = mkabs(config["reflectance_file"])
if "libradtran_template_file" in config:
raise Exception("`libradtran_template_file` is deprecated. Use `rtm_template_file` instead.")
rtm_template_file = mkabs(config["rtm_template_file"])
lutdir = mkabs(config["lutdir"])
outdir = mkabs(config["outdir"])
if clean and outdir.exists():
import shutil
shutil.rmtree(outdir)
isofit_config = config["isofit"]
hypertrace_config = config["hypertrace"]
# Make RTM paths absolute
vswir_settings = isofit_config["forward_model"]["radiative_transfer"]["radiative_transfer_engines"]["vswir"]
for key in ["lut_path", "template_file", "engine_base_dir"]:
if key in vswir_settings:
vswir_settings[key] = str(mkabs(vswir_settings[key]))
# Create iterable config permutation object
ht_iter = itertools.product(*hypertrace_config.values())
logger.info("Starting Hypertrace workflow.")
for ht in ht_iter:
argd = dict()
for key, value in zip(hypertrace_config.keys(), ht):
argd[key] = value
logger.info("Running config: %s", argd)
do_hypertrace(isofit_config, wavelength_file, reflectance_file,
rtm_template_file, lutdir, outdir,
**argd)
logging.info("Workflow completed successfully.")
| StarcoderdataPython |
141659 | <filename>examples/simple.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
.. codeauthor:: <NAME> <<EMAIL>>
"""
import os
from flask import Flask
from flask_tat.engine import TATClient
os.environ.setdefault('TAT_URL', 'http://1192.168.3.11')
os.environ.setdefault('TAT_USERNAME', 'test')
os.environ.setdefault('TAT_PASSWORD', '<PASSWORD>')
os.environ.setdefault("TAT_TOPIC", "MyTopic")
app = Flask(__name__)
app.config.update(dict(
TAT_URL=os.getenv('TAT_URL'),
TAT_USERNAME=os.getenv('TAT_USERNAME'),
TAT_PASSWORD=os.getenv('TAT_PASSWORD'),
))
app.app_context().push()
tat_client = TATClient(app)
print(tat_client.message_list(
topic=os.getenv('TAT_TOPIC'),
limit=5
))
| StarcoderdataPython |
4842565 | <gh_stars>10-100
from qtools.qtpy import QtCore, QtGui
from qtools.qtpy.QtCore import Qt
from galry import Manager, ordict
import numpy as np
__all__ = ['BindingManager', 'Bindings']
class BindingManager(Manager):
"""Manager several sets of bindings (or interaction modes) and allows
to switch between several modes.
"""
def reset(self):
"""Reset the modes."""
self.bindings = []
self.index = 0
def add(self, *bindings):
"""Add one or several bindings to the binding manager.
Arguments:
* bindings: a list of classes deriving from UserActionBinding.
"""
bindings = [b for b in bindings if b not in self.bindings]
self.bindings.extend(bindings)
def remove(self, binding):
"""Remove a binding.
Arguments:
* binding: the binding to remove.
"""
if binding in self.bindings:
self.bindings.remove(binding)
def set(self, binding):
"""Set the given binding as the active one.
Arguments:
* binding: the current binding.
"""
if not isinstance(binding, Bindings):
# here, we assume that binding is a class, so we take the first
# existing binding that is an instance of this class
binding = [b for b in self.bindings if isinstance(b, binding)][0]
self.add(binding)
self.index = self.bindings.index(binding)
return self.get()
def get(self):
"""Return the current binding."""
if self.index < len(self.bindings):
return self.bindings[self.index]
else:
return None
def switch(self):
"""Switch the active binding. The bindings cycle through all bindings.
"""
self.index = np.mod(self.index + 1, len(self.bindings))
return self.get()
class Bindings(object):
"""Base class for action-events bindings set.
An instance of this class contains all bindings between user actions, and
interaction events, that are possible within a given interaction mode.
An interaction mode is entirely defined by such set of bindings.
The GalryWidget provides a mechanism for switching between successive
modes.
"""
def __init__(self):
self.base_cursor = 'ArrowCursor'
self.text = None
self.binding = ordict()
self.descriptions = ordict()
self.initialize_default()
self.initialize()
def set_base_cursor(self, cursor=None):
"""Define the base cursor in this mode."""
if cursor is None:
cursor = 'OpenHandCursor'
# set the base cursor
self.base_cursor = cursor
def get_base_cursor(self):
return self.base_cursor
def initialize_default(self):
"""Set bindings that are common to any interaction mode."""
self.set('KeyPress', 'SwitchInteractionMode', key='I')
def initialize(self):
"""Registers all bindings through commands to self.set().
To be overriden.
"""
pass
def set(self, action, event, key_modifier=None, key=None,
param_getter=None, description=None):
"""Register an action-event binding.
Arguments:
* action: a UserAction string.
* event: a InteractionEvent string.
* key_modifier=None: the key modifier as a string.
* key=None: when the action is KeyPress, the key that was
pressed.
* param_getter=None: a function that takes an ActionParameters dict
as argument and returns a parameter object that will be passed
to InteractionManager.process_event(event, parameter)
"""
if isinstance(key, basestring):
key = getattr(Qt, 'Key_' + key)
if isinstance(key_modifier, basestring):
key_modifier = getattr(Qt, 'Key_' + key_modifier)
# if param_getter is a value and not a function, we convert it
# to a constant function
if not hasattr(param_getter, '__call__'):
param = param_getter
param_getter = lambda p: param
self.binding[(action, key_modifier, key)] = (event, param_getter)
if description:
self.descriptions[(action, key_modifier, key)] = description
def get(self, action, key_modifier=None, key=None):
"""Return the event and parameter getter function associated to
a function.
Arguments:
* action: the user action.
* key_modifier=None: the key modifier.
* key=None: the key if the action is `KeyPress`.
"""
return self.binding.get((action, key_modifier, key), (None, None))
def get_description(self, action, key_modifier=None, key=None):
return self.descriptions.get((action, key_modifier, key), None)
# Help methods
# ------------
def generate_text(self):
special_keys = {
None: '',
QtCore.Qt.Key_Control: 'CTRL',
QtCore.Qt.Key_Shift: 'SHIFT',
QtCore.Qt.Key_Alt: 'ALT',
}
texts = {}
for (action, key_modifier, key), (event, _) in self.binding.iteritems():
desc = self.get_description(action, key_modifier, key)
# key string
if key:
key = QtGui.QKeySequence(key).toString()
else:
key = ''
# key modifier
key_modifier = special_keys[key_modifier]
if key_modifier:
key_modifier = key_modifier + ' + '
# get binding text
if action == 'KeyPress':
bstr = 'Press ' + key_modifier + key + ' : ' + event
else:
bstr = key_modifier + action + ' : ' + event
if desc:
bstr += ' ' + desc
if event not in texts:
texts[event] = []
texts[event].append(bstr)
# sort events
self.text = "\n".join(["\n".join(sorted(texts[key])) for key in sorted(texts.iterkeys())])
def get_text(self):
if not self.text:
self.generate_text()
return self.text
def __repr__(self):
return self.get_text()
| StarcoderdataPython |
4819357 | from typing import Optional
import sys
import click
from PyInquirer import prompt, Separator
from contxt.cli.clients import Clients
from contxt.utils.serializer import Serializer
from contxt.utils.config import ContextException
@click.group()
def env() -> None:
"""Contxt Environment Functions"""
@env.command()
@click.pass_obj
def current(clients: Clients) -> None:
"""Get current environment settings"""
contxt_env = clients.contxt_env
print('=== Defaults ===')
for key, val in contxt_env.config.defaults.items():
print(f' {key} -> {val}')
print('=== Context ====')
for service, environment in contxt_env.config.currentContext.items():
print(f' {service} -> {environment.environment}')
try:
service_env = contxt_env.get_config_for_service_name(service)
print(f' {service_env.clientId}, {service_env.apiEnvironment.baseUrl}, {service_env.apiEnvironment.authProvider}')
except ContextException:
print(f'Context not found for service {service} and env {environment.environment}')
@env.command()
@click.argument('SERVICE_NAME')
@click.pass_obj
def detail(clients: Clients, service_name: str) -> None:
contxt_env = clients.contxt_env
service_env = contxt_env.get_config_for_service_name(service_name)
if not service_env:
print(f'Service not found for: {service_name}')
sys.exit(1)
print(Serializer.to_pretty_cli(service_env))
@env.command()
@click.argument('SERVICE_NAME')
@click.pass_obj
def add(clients: Clients, service_name: str) -> None:
contxt_env = clients.contxt_env
cli_or_machine = {
'type': 'list',
'name': 'selected_type',
'message': f'Choose authentication method for new context for {service_name}',
'choices': ['CLI Auth', 'Machine Auth']
}
answers = prompt.prompt(cli_or_machine)
if answers['selected_type'] == 'CLI Auth':
questions = [
{
'type': 'input',
'name': 'auth_provider',
'message': 'Enter your auth provider (X.auth0.com usually)'
},
{
'type': 'input',
'name': 'base_url',
'message': 'Enter base URL for service'
},
{
'type': 'input',
'name': 'client_id',
'message': 'Enter Client ID for service'
},
{
'type': 'input',
'name': 'environment',
'message': 'What name would you like to use for this environment?'
}
]
answers = prompt.prompt(questions)
print(answers)
# Machine auth
else:
pass
@env.command()
@click.pass_obj
@click.argument('SERVICE_NAME')
def set_context(clients: Clients, service_name: str) -> None:
"""Set context for a particular service"""
contxt_env = clients.contxt_env
service_envs = contxt_env.get_possible_configs_for_service_name(service_name)
if not len(service_envs):
print(f'No environments found for service: {service_name}')
sys.exit(1)
choices = {
'type': 'list',
'name': 'selected_context',
'message': f'Choose context for {service_name}',
'choices': [f'{env.environment}' for env in service_envs]
}
answers = prompt.prompt(choices)
contxt_env.set_context_for_service_name(service_name, answers['selected_context'])
print(answers)
| StarcoderdataPython |
Subsets and Splits