id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
17797
<reponame>chop-dbhi/biorepo-portal<filename>brp/formutils.py from django import template from django.forms import widgets register = template.Library() @register.inclusion_tag('formfield.html') def formfield(field): widget = field.field.widget type_ = None if isinstance(widget, widgets.Input): type_ = 'input' elif isinstance(widget, widgets.Textarea): type_ = 'textarea' elif isinstance(widget, widgets.Select): type_ = 'select' elif isinstance(widget, widgets.CheckboxInput): type_ = 'checkbox' elif isinstance(widget, widgets.RadioInput): type_ = 'radio' return {'field': field, 'form': field.form, 'type': type_}
StarcoderdataPython
172233
<gh_stars>10-100 #!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" # from distutils.command.install import INSTALL_SCHEMES from setuptools import setup, find_packages with open("README.rst") as readme_file: readme = readme_file.read() with open("CHANGELOG.rst") as history_file: history = history_file.read() setup_requirements = [ "pytest-runner", # TODO(jawahar273): put setup requirements # (distutils extensions, etc.) here ] def parse_requirements(filename): """ load requirements from a pip requirements file refer: `link <https://stackoverflow.com/questions/25192794/no-module-named-pip-req/>`_ """ lineiter = (line.strip() for line in open(filename)) return [line for line in lineiter if line and not line.startswith("#")] # read the `extras_require.json` for getting # extras_require depencencys. extras_require = { "ujson": parse_requirements("requirements_ujson.txt"), "huey": parse_requirements("requirements_huey.txt"), "xxhash": parse_requirements("requirements_xxhash.txt"), } setup( name="pntl", version="0.3.6", description=( "used to interface with Senna and" " stanford-parser.jar for dependency parsing" ), long_description="\n\n" + readme + "\n\n" + history, author="<NAME>", author_email="<EMAIL>", url="https://github.com/jawahar273/practNLPTools-lite", packages=find_packages(include=["pntl.*"]), entry_points={"console_scripts": ["pntl=pntl.cli:user_test"]}, include_package_data=True, install_requires=parse_requirements("requirements.txt"), license="MIT license", zip_safe=False, keywords="practnlptools-lite senna python pntl".split(), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Topic :: Scientific/Engineering :: Information Analysis", ], test_suite="tests", tests_require=parse_requirements("requirements_dev.txt"), setup_requires=setup_requirements, extras_require=extras_require, )
StarcoderdataPython
1729095
import sys sys.path.append('..') from mtevi.mtevi import * from mtevi.utils import * import numpy as np import torch import argparse import os import math from BayesianDTI.utils import * from torch.utils.data import Dataset, DataLoader from BayesianDTI.datahelper import * from BayesianDTI.model import * from BayesianDTI.predictor import * from scipy.stats import t from BayesianDTI.utils import confidence_interval import matplotlib.pyplot as plt import matplotlib matplotlib.style.use('ggplot') parser = argparse.ArgumentParser() parser.add_argument("-f", "--fold_num", type=int, help="Fold number. It must be one of the {0,1,2,3,4}.") parser.add_argument("-e", "--epochs", type=int, default=200, help="Number of epochs.") parser.add_argument("-o", "--output", help="The output directory.") parser.add_argument("--type", default='None', help="Davis or Kiba; dataset select.") parser.add_argument("--model", help="The trained baseline model. If given, keep train the model.") parser.add_argument("--abl", action='store_true', help="Use the vanilla MSE") parser.add_argument("--evi", action='store_true', help="Use the vanilla evidential network") parser.add_argument("--reg", type=float, default=0.0001, help="Coefficient of evidential regularization") parser.add_argument("--l2", type=float, default=0.0001, help="Coefficient of L2 regularization") parser.add_argument("--cuda", type=int, default=0, help="cuda device number") args = parser.parse_args() torch.cuda.set_device(args.cuda) args.type = args.type.lower() dir = args.output print("Arguments: ########################") print('\n'.join(f'{k}={v}' for k, v in vars(args).items())) print("###################################") try: os.mkdir(args.output) except FileExistsError: print("The output directory {} is already exist.".format(args.output)) ####################################################################### ### Load data FOLD_NUM = int(args.fold_num) # {0,1,2,3,4} class DataSetting: def __init__(self): self.dataset_path = 'data/{}/'.format(args.type) self.problem_type = '1' self.is_log = False if args.type == 'kiba' else True data_setting = DataSetting() dataset = DataSet(data_setting.dataset_path, 1000 if args.type == 'kiba' else 1200, 100 if args.type == 'kiba' else 85) ## KIBA (1000,100) DAVIS (1200, 85) smiles, proteins, Y = dataset.parse_data(data_setting) test_fold, train_folds = dataset.read_sets(data_setting) label_row_inds, label_col_inds = np.where(np.isnan(Y)==False) test_drug_indices = label_row_inds[test_fold] test_protein_indices = label_col_inds[test_fold] train_fold_sum = [] for i in range(5): if i != FOLD_NUM: train_fold_sum += train_folds[i] train_drug_indices = label_row_inds[train_fold_sum] train_protein_indices = label_col_inds[train_fold_sum] valid_drug_indices = label_row_inds[train_folds[FOLD_NUM]] valid_protein_indices = label_col_inds[train_folds[FOLD_NUM]] dti_dataset = DTIDataset(smiles, proteins, Y, train_drug_indices, train_protein_indices) valid_dti_dataset = DTIDataset(smiles, proteins, Y, valid_drug_indices, valid_protein_indices) test_dti_dataset = DTIDataset(smiles, proteins, Y, test_drug_indices, test_protein_indices) dataloader = DataLoader(dti_dataset, batch_size=256, shuffle=True, collate_fn=collate_dataset)#, pin_memory=True) valid_dataloader = DataLoader(valid_dti_dataset, batch_size=256, shuffle=True, collate_fn=collate_dataset)#, pin_memory=True) test_dataloader = DataLoader(test_dti_dataset, batch_size=256, shuffle=True, collate_fn=collate_dataset)#, pin_memory=True) ########################################################################## ### Define models device = 'cuda:{}'.format(args.cuda) dti_model = EvidentialDeepDTA(dropout=True).to(device) objective_fn = EvidentialnetMarginalLikelihood().to(device) objective_mse = torch.nn.MSELoss() regularizer = EvidenceRegularizer(factor=args.reg).to(device) opt = torch.optim.Adam(dti_model.parameters(), lr=0.001, weight_decay=args.l2) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=opt, lr_lambda=lambda epoch: 0.99 ** epoch, last_epoch=-1, verbose=False) total_valid_loss = 0. total_valid_nll = 0. total_nll = 0. train_nll_history = [] valid_loss_history = [] valid_nll_history = [] ########################################################################## ### Training a_history = [] best_nll = 10000 for epoch in range(args.epochs): dti_model.train() for d, p, y in dataloader: y = y.unsqueeze(1).to(device) gamma, nu, alpha, beta = dti_model(d.to(device), p.to(device)) opt.zero_grad() ############################################################### #### NLL training loss = objective_fn(gamma, nu, alpha, beta, y) total_nll += loss.item() loss += regularizer(gamma, nu, alpha, beta, y) if not args.evi: if args.abl: mse = objective_mse(gamma, y) else: mse = modified_mse(gamma, nu, alpha, beta, y) loss += mse.mean() loss.backward() ############################################################### opt.step() scheduler.step() dti_model.eval() for d_v, p_v, y_v in valid_dataloader: y_v = y_v.unsqueeze(1).to(device) gamma, nu, alpha, beta = dti_model(d_v.to(device), p_v.to(device)) nll_v = objective_fn(gamma, nu, alpha, beta, y_v) valid_nll_history.append(nll_v.item()) total_valid_nll += nll_v.item() nll_v = objective_mse(gamma, y_v).mean() valid_loss_history.append(nll_v.item()) total_valid_loss += nll_v.item() train_nll = total_nll/len(dataloader) valid_nll = total_valid_nll/len(valid_dataloader) valid_loss = total_valid_loss/len(valid_dataloader) if math.isnan(valid_nll): break if best_nll >= valid_nll: torch.save(dti_model, dir + '/dti_model_best.model') best_nll = valid_nll print("Epoch {}: Train NLL [{:.5f}] Val MSE [{:.5f}] Val NLL [{:.5f}]".format( epoch+1, train_nll, valid_loss, valid_nll)) total_nll = 0. total_valid_loss = 0. total_valid_nll = 0. ########################################################################## fig = plt.figure(figsize=(15,5)) plt.plot(valid_loss_history, label="MSE") plt.plot(valid_nll_history, label="NLL") plt.title("Validate loss") plt.xlabel("Validate steps") plt.legend(facecolor='white', edgecolor='black') plt.tight_layout() plt.savefig(dir + "/MultitaskLoss.png") ########################################################################## ### Evaluation import torch.distributions.studentT as studentT predictor = EviNetDTIPredictor() eval_model = torch.load(dir + '/dti_model_best.model').to(device) mu_t, std_t, mu_Y_t, freedom_t = predictor(test_dataloader, eval_model) total_t = std_t['total'] epistemic_t = std_t['epistemic'] aleatoric_t = std_t['aleatoric'] predictive_entropy = studentT.StudentT(torch.from_numpy(freedom_t), scale=torch.from_numpy(total_t)).entropy() ########################################################################## from BayesianDTI.utils import plot_predictions plot_predictions(mu_Y_t, mu_t, total_t, title="Mean prediction test with total uncertainty", sample_num=freedom_t, savefig=dir + "/total_uncertainty.png") plot_predictions(mu_Y_t, mu_t, aleatoric_t, title="Mean prediction test with aleatoric uncertainty", sample_num=None, savefig=dir + "/aleatoric_uncertainty.png") plot_predictions(mu_Y_t, mu_t, epistemic_t, title="Mean prediction test with epistemic uncertainty", sample_num=None, savefig=dir + "/epistemic_uncertainty.png") plot_predictions(mu_Y_t, mu_t, predictive_entropy, title="Mean prediction test with predictive entropy", sample_num=freedom_t, savefig=dir + "/total_uncertainty_colored.png", rep_conf='color') ########################################################################## from BayesianDTI.utils import evaluate_model import json eval_results = evaluate_model(mu_Y_t, mu_t, total_t, sample_num=freedom_t) eval_json = json.dumps(eval_results, indent=4) print(eval_json) with open(dir + '/eval_result_prior.json','w') as outfile: json.dump(eval_results, outfile)
StarcoderdataPython
16123
import os import sys import posthoganalytics from django.apps import AppConfig from django.conf import settings from posthog.utils import get_git_branch, get_git_commit, get_machine_id from posthog.version import VERSION class PostHogConfig(AppConfig): name = "posthog" verbose_name = "PostHog" def ready(self): posthoganalytics.api_key = "<KEY>" posthoganalytics.personal_api_key = os.environ.get("POSTHOG_PERSONAL_API_KEY") # Skip plugin sync in manage.py scripts and in tests # (the database tables might not yet be created) if ( not settings.TEST and not "makemigrations" in sys.argv and not "migrate" in sys.argv and not "manage.py" in " ".join(sys.argv) and not "/mypy" in sys.argv[0] ): from posthog.plugins import sync_plugin_config # syncs posthog.json['plugins'] and the Plugin/PluginConfig models sync_plugin_config() if settings.DEBUG: # log development server launch to posthog if os.getenv("RUN_MAIN") == "true": posthoganalytics.capture( get_machine_id(), "development server launched", {"posthog_version": VERSION, "git_rev": get_git_commit(), "git_branch": get_git_branch(),}, ) posthoganalytics.disabled = True elif settings.TEST or os.environ.get("OPT_OUT_CAPTURE"): posthoganalytics.disabled = True
StarcoderdataPython
113522
<filename>src/day2.py # Advent of Code 2021, Day 2 # (c) blu3r4y from aocd.models import Puzzle from dotmap import DotMap from funcy import print_calls from parse import parse @print_calls def part1(instructions): hor, dep = 0, 0 for e in instructions: if e.dir == "forward": hor += e.num elif e.dir == "down": dep += e.num elif e.dir == "up": dep -= e.num return hor * dep @print_calls def part2(instructions): hor, dep, aim = 0, 0, 0 for e in instructions: if e.dir == "forward": hor += e.num dep += aim * e.num elif e.dir == "down": aim += e.num elif e.dir == "up": aim -= e.num return hor * dep def load(data): return [DotMap(parse("{dir:l} {num:d}", line).named) for line in data.split("\n")] if __name__ == "__main__": puzzle = Puzzle(year=2021, day=2) ans1 = part1(load(puzzle.input_data)) # puzzle.answer_a = ans1 ans2 = part2(load(puzzle.input_data)) # puzzle.answer_b = ans2
StarcoderdataPython
1604379
<gh_stars>0 import json from random import randint from time import sleep import uuid from python_liftbridge import Lift, Message, Stream, ErrStreamExists def my_random_string(string_length=10): """Returns a random string of length string_length.""" random = str(uuid.uuid4()) random = random.upper() random = random.replace("-", "") return random[0:string_length] # Create a Liftbridge client. client = Lift(ip_address='localhost:9292', timeout=5) # Create a stream attached to the NATS subject "foo". try: client.create_stream( Stream(subject='test3', name='test4-stream', replication_factor=1)) except ErrStreamExists: print('This stream already exists!') # Publish a message to "foo". while True: msg = {"event_triggered": my_random_string(5)} client.publish(Message(value=json.dumps(msg), stream='test4-stream')) random_us = randint(10, 100) / 1000000.0 sleep(random_us)
StarcoderdataPython
31750
<gh_stars>0 # This code is based on the SOM class library. # # Copyright (c) 2001-2021 see AUTHORS.md file # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the 'Software'), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from benchmark import Benchmark class _TowersDisk: def __init__(self, size): self.size = size self.next = None class Towers(Benchmark): def __init__(self): self._piles = None self._moves_done = 0 def _push_disk(self, disk, pile): top = self._piles[pile] if top is not None and disk.size >= top.size: raise Exception("Cannot put a big disk on a smaller one") disk.next = top self._piles[pile] = disk def _pop_disk_from(self, pile): top = self._piles[pile] if top is None: raise Exception("Attempting to remove a disk from an empty pile") self._piles[pile] = top.next top.next = None return top def _move_top_disk(self, from_pile, to_pile): self._push_disk(self._pop_disk_from(from_pile), to_pile) self._moves_done += 1 def _build_tower_at(self, pile, disks): for i in range(disks, -1, -1): self._push_disk(_TowersDisk(i), pile) def _move_disks(self, disks, from_pile, to_pile): if disks == 1: self._move_top_disk(from_pile, to_pile) else: other_pile = (3 - from_pile) - to_pile self._move_disks(disks - 1, from_pile, other_pile) self._move_top_disk(from_pile, to_pile) self._move_disks(disks - 1, other_pile, to_pile) def benchmark(self): self._piles = [None, None, None] self._build_tower_at(0, 13) self._moves_done = 0 self._move_disks(13, 0, 1) return self._moves_done def verify_result(self, result): return result == 8191
StarcoderdataPython
1702192
from tanim.utils.color import Color from tanim.utils.config_ops import digest_config from tanim.core.mobject.vectorized_mobject import VGroup from tanim.core.mobject.vectorized_mobject import VMobject from tanim.extention.mobject.geometry import Line from tanim.extention.mobject.geometry import Rectangle import tanim.utils.constants as consts class SurroundingRectangle(Rectangle): CONFIG = { "color": Color('YELLOW'), "buff": consts.SMALL_BUFF, } def __init__(self, mobject, **kwargs): digest_config(self, kwargs) kwargs["width"] = mobject.get_width() + 2 * self.buff kwargs["height"] = mobject.get_height() + 2 * self.buff Rectangle.__init__(self, **kwargs) self.move_to(mobject) class BackgroundRectangle(SurroundingRectangle): CONFIG = { "color": Color('BLACK'), "stroke_width": 0, "stroke_opacity": 0, "fill_opacity": 0.75 } def __init__(self, mobject, **kwargs): SurroundingRectangle.__init__(self, mobject, **kwargs) self.original_fill_opacity = self.fill_opacity def pointwise_become_partial(self, mobject, a, b): self.set_fill(opacity=b * self.original_fill_opacity) return self def set_style_data(self, stroke_color=None, stroke_width=None, fill_color=None, fill_opacity=None, family=True ): # Unchangable style, except for fill_opacity VMobject.set_style_data( self, stroke_color=Color('BLACK'), stroke_width=0, fill_color=Color('BLACK'), fill_opacity=fill_opacity ) return self def get_fill_color(self): return Color(self.color) class Cross(VGroup): CONFIG = { "stroke_color": Color('RED'), "stroke_width": 6, } def __init__(self, mobject, **kwargs): VGroup.__init__(self, Line(consts.UP + consts.LEFT, consts.DOWN + consts.RIGHT), Line(consts.UP + consts.RIGHT, consts.DOWN + consts.LEFT), ) self.replace(mobject, stretch=True) self.set_stroke(self.stroke_color, self.stroke_width) class Underline(Line): CONFIG = { "buff": consts.SMALL_BUFF, } def __init__(self, mobject, **kwargs): super().__init__(consts.LEFT, consts.RIGHT, **kwargs) self.match_width(mobject) self.next_to(mobject, consts.DOWN, buff=self.buff)
StarcoderdataPython
3286973
import abc from collections import OrderedDict import numpy as np from gym.spaces import Box from rlkit.core.eval_util import create_stats_ordered_dict from rlkit.envs.wrappers import ProxyEnv from rlkit.core.serializable import Serializable from rlkit.core import logger as default_logger class MultitaskEnv(object, metaclass=abc.ABCMeta): """ An environment with a task that can be specified with a goal. To change the goal, you need to explicitly call ``` goal = env.sample_goal_for_rollout() env.set_goal(goal) env.reset() # optional, but probably for the best ``` If you want to append the goal to the state, do this: ``` env = MyMultitaskEnv() env = MultitaskToFlatEnv(env) ``` The above code will also make the goal change at every reset. See MultitaskToFlatEnv for more detail. If you want to change the goal at every call to reset(), but you do not want the goal to be appended to the state, do this: ``` env = MyMultitaskEnv() env = MultitaskEnvToSilentMultitaskEnv(env) ``` See `MultitaskEnvToSilentMultitaskEnv` for more detail. """ def __init__(self, distance_metric_order=1, goal_dim_weights=None): self.multitask_goal = np.zeros(self.goal_dim) if goal_dim_weights is None: self.goal_dim_weights = np.ones(self.goal_dim) else: self.goal_dim_weights = np.array(goal_dim_weights) self.distance_metric_order = distance_metric_order """ New environments should implement these three functions """ @property @abc.abstractmethod def goal_dim(self) -> int: """ :return: int, dimension of goal vector """ pass @abc.abstractmethod def sample_goals(self, batch_size): pass @abc.abstractmethod def convert_obs_to_goals(self, obs): """ Convert a raw environment observation into a goal (if possible). """ pass """ Helper functions you probably don't need to override. """ def sample_goal_for_rollout(self): """ These goals are fed to a policy when the policy wants to actually do rollouts. :return: """ goal = self.sample_goals(1)[0] return self.modify_goal_for_rollout(goal) def convert_ob_to_goal(self, ob): """ Convert a raw environment observation into a goal (if possible). This observation should NOT include the goal. """ if isinstance(ob, np.ndarray): return self.convert_obs_to_goals( np.expand_dims(ob, 0) )[0] else: return self.convert_obs_to_goals_pytorch( ob.unsqueeze(0) )[0] def compute_reward(self, ob, action, next_ob, goal): return self.compute_rewards( ob[None], action[None], next_ob[None], goal[None] ) """ Check out these default functions below! You may want to override them. """ def set_goal(self, goal): self.multitask_goal = goal def compute_rewards(self, obs, actions, next_obs, goals): return - np.linalg.norm( self.convert_obs_to_goals(next_obs) - goals, axis=1, keepdims=True, ord=self.distance_metric_order, ) def convert_obs_to_goals_pytorch(self, obs): """ PyTorch version of `convert_obs_to_goals`. """ return self.convert_obs_to_goals(obs) def modify_goal_for_rollout(self, goal): """ Modify a goal so that it's appropriate for doing a rollout. Common use case: zero out the goal velocities. :param goal: :return: """ return goal def log_diagnostics(self, paths, logger=default_logger): list_of_goals = _extract_list_of_goals(paths) if list_of_goals is None: return final_differences = [] for path, goals in zip(paths, list_of_goals): reached = self.convert_ob_to_goal(path['next_observations'][-1]) final_differences.append(reached - goals[-1]) statistics = OrderedDict() goals = np.vstack(list_of_goals) observations = np.vstack([path['observations'] for path in paths]) next_observations = np.vstack([path['next_observations'] for path in paths]) actions = np.vstack([path['actions'] for path in paths]) for order in [1, 2]: final_distances = np.linalg.norm( np.array(final_differences), axis=1, ord=order, ) goal_distances = np.linalg.norm( self.convert_obs_to_goals(observations) - np.vstack(goals), axis=1, ord=order, ) statistics.update(create_stats_ordered_dict( 'Multitask L{} distance to goal'.format(order), goal_distances, always_show_all_stats=True, )) statistics.update(create_stats_ordered_dict( 'Multitask Final L{} distance to goal'.format(order), final_distances, always_show_all_stats=True, )) rewards = self.compute_rewards( observations, actions, next_observations, goals, ) statistics.update(create_stats_ordered_dict( 'Multitask Env Rewards', rewards, )) for key, value in statistics.items(): logger.record_tabular(key, value) """ Optional functions to implement, since most of my code doesn't use these any more. """ def cost_fn(self, states, actions, next_states): """ This is added for model-based code. This is COST not reward. So lower is better. :param states: (BATCH_SIZE x state_dim) numpy array :param actions: (BATCH_SIZE x action_dim) numpy array :param next_states: (BATCH_SIZE x state_dim) numpy array :return: (BATCH_SIZE, ) numpy array """ if len(next_states.shape) == 1: next_states = np.expand_dims(next_states, 0) actual = self.convert_obs_to_goals(next_states) desired = self.multitask_goal * np.ones_like(actual) diff = actual - desired diff *= self.goal_dim_weights return (diff**2).sum(1) def _extract_list_of_goals(paths): """ Return list of goals. Each element in list is an array of goals and correspond to the goal from different paths. Returns None if it's not possible to extract goals from the paths. :param paths: :return: """ if len(paths) == 0: return None if 'goals' in paths[0]: return [path['goals'] for path in paths] if 'env_infos' in paths[0]: env_infos = paths[0]['env_infos'] if isinstance(env_infos, dict): # rllab style paths return [path['env_infos']['goal'] for path in paths] elif 'goal' in env_infos[0]: return [ [info['goal'] for info in path['env_infos']] for path in paths ] return None class MultitaskToFlatEnv(ProxyEnv, Serializable): """ This environment tasks a multitask environment and appends the goal to the state. """ def __init__( self, env: MultitaskEnv, give_goal_difference=False, ): # self._wrapped_env needs to be called first because # Serializable.quick_init calls getattr, on this class. And the # implementation of getattr (see below) calls self._wrapped_env. # Without setting this first, the call to self._wrapped_env would call # getattr again (since it's not set yet) and therefore loop forever. self._wrapped_env = env # Or else serialization gets delegated to the wrapped_env. Serialize # this env separately from the wrapped_env. self._serializable_initialized = False self._wrapped_obs_dim = env.observation_space.low.size self.give_goal_difference = give_goal_difference Serializable.quick_init(self, locals()) ProxyEnv.__init__(self, env) wrapped_low = self.observation_space.low low = np.hstack(( wrapped_low, min(wrapped_low) * np.ones(self._wrapped_env.goal_dim) )) wrapped_high = self.observation_space.low high = np.hstack(( wrapped_high, max(wrapped_high) * np.ones(self._wrapped_env.goal_dim) )) self.observation_space = Box(low, high) def step(self, action): ob, reward, done, info_dict = self._wrapped_env.step(action) new_ob = self._add_goal_to_observation(ob) return new_ob, reward, done, info_dict def reset(self): self._wrapped_env.set_goal(self._wrapped_env.sample_goal_for_rollout()) ob = super().reset() new_ob = self._add_goal_to_observation(ob) return new_ob def log_diagnostics(self, paths, logger=default_logger): for path in paths: path['observations'] = ( path['observations'][:, :-self._wrapped_env.goal_dim] ) path['next_observations'] = ( path['next_observations'][:, :-self._wrapped_env.goal_dim] ) return self._wrapped_env.log_diagnostics(paths, logger=default_logger) def _add_goal_to_observation(self, ob): if self.give_goal_difference: goal_difference = ( self._wrapped_env.multitask_goal - self._wrapped_env.convert_ob_to_goal(ob) ) return np.hstack((ob, goal_difference)) else: return np.hstack((ob, self._wrapped_env.multitask_goal)) def cost_fn(self, states, actions, next_states): if len(next_states.shape) == 1: states = states[None] actions = actions[None] next_states = next_states[None] unwrapped_states = states[:, :self._wrapped_obs_dim] unwrapped_next_states = next_states[:, :self._wrapped_obs_dim] return self._wrapped_env.cost_fn( unwrapped_states, actions, unwrapped_next_states, ) class MultitaskEnvToSilentMultitaskEnv(ProxyEnv, Serializable): """ Normally, reset() on a multitask env doesn't change the goal. Now, reset will silently change the goal. """ def reset(self): self._wrapped_env.set_goal(self._wrapped_env.sample_goal_for_rollout()) return super().reset() def cost_fn(self, states, actions, next_states): return self._wrapped_env.cost_fn( states, actions, next_states, ) def sample_goal_for_rollout(self): return self._wrapped_env.sample_goal_for_rollout() def sample_goals(self, batch_size): return self._wrapped_env.sample_goals(batch_size) def sample_states(self, batch_size): return self._wrapped_env.sample_states(batch_size) def convert_ob_to_goal(self, ob): return self._wrapped_env.convert_ob_to_goal(ob) def convert_obs_to_goals(self, obs): return self._wrapped_env.convert_obs_to_goals(obs) @property def multitask_goal(self): return self._wrapped_env.multitask_goal def joints_to_full_state(self, *args, **kwargs): return self._wrapped_env.joints_to_full_state(*args, **kwargs)
StarcoderdataPython
1731433
from .explore_handlers import *
StarcoderdataPython
1767204
<reponame>ipattarapong/dbnd<filename>plugins/dbnd-docker/src/dbnd_docker/docker_ctrl.py from dbnd._core.task_run.task_run_ctrl import TaskRunCtrl class DockerRunCtrl(TaskRunCtrl): def docker_run(self): pass def on_kill(self): pass
StarcoderdataPython
15206
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time: 2020/5/14 20:41 # @Author: Mecthew import time import numpy as np import pandas as pd import scipy from sklearn.svm import LinearSVC from sklearn.linear_model import logistic from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import accuracy_score from sklearn.preprocessing import OneHotEncoder import scipy.sparse as sp from utils.logger import get_logger logger = get_logger("INFO") class SVM: def __init__(self, **kwargs): self.name = "SVM" self._model = CalibratedClassifierCV(LinearSVC(C=1.0, max_iter=500, class_weight=None, random_state=666)) def fit(self, x_train, y_train): self._model.fit(x_train, y_train) def predict(self, x_test): return self._model.predict_proba(x_test) class LR: def __init__(self, **kwargs): self.name = "LR" self._model = logistic.LogisticRegression(C=1.0, solver="liblinear", multi_class="auto", class_weight=None, max_iter=100, random_state=666) def fit(self, x_train, y_train): self._model.fit(x_train, y_train) def predict(self, x_test): return self._model.predict_proba(x_test) def prepredict(graph_df, train_indices, use_valid, use_ohe=False): t1 = time.time() fea_table = graph_df['fea_table'].set_index(keys="node_index") train_indices = train_indices if use_valid: valid_indices = list(set(graph_df['train_indices']) - set(train_indices)) test_indices = graph_df['test_indices'] + valid_indices else: test_indices = graph_df['test_indices'] train_label = graph_df['train_label'].set_index('node_index').loc[train_indices][['label']] x_train, y_train = fea_table.loc[train_indices].to_numpy(), train_label.to_numpy() x_test = fea_table.loc[test_indices].to_numpy() lr = LR() lr.fit(x_train, y_train) if use_ohe: ohe = OneHotEncoder(handle_unknown="ignore").fit(y_train.reshape(-1, 1)) x_train_feat, x_test_feat = ohe.transform(np.argmax(lr.predict(x_train), axis=1).reshape(-1, 1)).toarray(), \ ohe.transform(np.argmax(lr.predict(x_test), axis=1).reshape(-1, 1)).toarray() else: x_train_feat, x_test_feat = lr.predict(x_train), \ lr.predict(x_test) pre_feat = np.concatenate([x_train_feat, x_test_feat], axis=0) total_indices = np.concatenate([train_indices, test_indices], axis=0) train_predict = np.argmax(x_train_feat, axis=1) train_acc = accuracy_score(y_true=y_train, y_pred=train_predict) t2 = time.time() logger.info("Time cost for training {}: {}s, train acc {}".format(lr.name, t2-t1, train_acc)) return pd.DataFrame(data=pre_feat, index=total_indices) def lpa_predict(graph_df, n_class, train_indices, use_valid, max_iter=100, tol=1e-3, use_ohe=False): t1 = time.time() train_indices = train_indices if use_valid: valid_indices = list(set(graph_df['train_indices']) - set(train_indices)) test_indices = graph_df['test_indices'] + valid_indices else: test_indices = graph_df['test_indices'] train_label = graph_df['train_label'].set_index('node_index').loc[train_indices][['label']].to_numpy() print("Train label shape {}".format(train_label.shape)) train_label = train_label.reshape(-1) edges = graph_df['edge_file'][['src_idx', 'dst_idx', 'edge_weight']].to_numpy() edge_index = edges[:, :2].astype(np.int).transpose() # transpose to (2, num_edges) edge_weight = edges[:, 2].astype(np.float) num_nodes = len(train_indices) + len(test_indices) t2 = time.time() total_indices = np.concatenate([train_indices, test_indices], axis=0) adj = sp.coo_matrix((edge_weight, edge_index), shape=(num_nodes, num_nodes)).tocsr() adj = adj[total_indices] # reorder adj = adj[:, total_indices] t3 = time.time() logger.debug("Time cost for transform adj {}s".format(t3 - t2)) row_sum = np.array(adj.sum(axis=1), dtype=np.float) d_inv = np.power(row_sum, -1).flatten() d_inv[np.isinf(d_inv)] = 0. normal_adj = sp.diags(d_inv).dot(adj).tocsr().transpose() Pll = normal_adj[:len(train_indices), :len(train_indices)].copy() Plu = normal_adj[:len(train_indices), len(train_indices):].copy() Pul = normal_adj[len(train_indices):, :len(train_indices)].copy() Puu = normal_adj[len(train_indices):, len(train_indices):].copy() label_mat = np.eye(n_class)[train_label] label_mat_prob = label_mat.copy() print("Pul shape {}, label_mat shape {}".format(Pul.shape, label_mat_prob.shape)) Pul_dot_lable_mat = Pul.dot(label_mat) unlabel_mat = np.zeros(shape=(len(test_indices), n_class)) iter, changed = 0, np.inf t4 = time.time() logger.debug("Time cost for prepare matrix {}s".format(t4-t3)) while iter < max_iter and changed > tol: if iter % 10 == 0: logger.debug("---> Iteration %d/%d, changed: %f" % (iter, max_iter, changed)) iter += 1 pre_unlabel_mat = unlabel_mat unlabel_mat = Puu.dot(unlabel_mat) + Pul_dot_lable_mat label_mat_prob = Pll.dot(label_mat_prob) + Plu.dot(pre_unlabel_mat) changed = np.abs(pre_unlabel_mat - unlabel_mat).sum() logger.debug("Time cost for training lpa {}".format(time.time() - t4)) # preds = np.argmax(np.array(unlabel_mat), axis=1) # unlabel_mat = np.eye(n_class)[preds] train_acc = accuracy_score(y_true=train_label, y_pred=np.argmax(label_mat_prob, axis=1)) logger.info("LPA training acc {}".format(train_acc)) logger.info("Time cost for LPA {}s".format(time.time() - t1)) total_indices = np.concatenate([train_indices, test_indices], axis=0) if use_ohe: ohe = OneHotEncoder(handle_unknown="ignore").fit(train_label.reshape(-1, 1)) label_mat_ohe = ohe.transform(np.argmax(label_mat_prob, axis=1).reshape(-1, 1)).toarray() unlabel_mat_ohe = ohe.transform(np.argmax(unlabel_mat, axis=1).reshape(-1, 1)).toarray() lu_mat_ohe = np.concatenate([label_mat_ohe, unlabel_mat_ohe], axis=0) return pd.DataFrame(data=lu_mat_ohe, index=total_indices), train_acc else: unlabel_mat_prob = unlabel_mat lu_mat_prob = np.concatenate([label_mat_prob, unlabel_mat_prob], axis=0) return pd.DataFrame(data=lu_mat_prob, index=total_indices), train_acc def is_nonnegative_integer(x_feats): is_nonnegative = (x_feats >= 0).all() is_integer = True for feat in x_feats: feat_int_sum = np.array(feat, dtype=np.int).sum() feat_sum = np.array(feat, dtype=np.float).sum() is_integer = (feat_int_sum == feat_sum) if is_integer is False: break return is_nonnegative and is_integer
StarcoderdataPython
1606631
<filename>ensemble_classification_wrapper.py import random import numpy as np from scipy import stats import sys sys.path.insert(0, "../NumPy-based-Logistic-Regression/") from numpy_based_0hl_neural_network import NumPyBased0hlNeuralNetwork sys.path.insert(0, "../NumPy-based-Neural-Network/") from numpy_based_neural_network import NumPyBasedNeuralNetwork class EnsembleClassificationWrapper(object): def __init__(self, type="logistic_regression", configuration=None, number_models=10, debug_mode=False): self.__models = [None for i in range(number_models)] for i in range(number_models): if type == "logistic_regression": self.__models[i] = NumPyBased0hlNeuralNetwork() elif type == "neural_network": L = configuration[0] dimensions = configuration[1] activations = configuration[2] self.__models[i] = NumPyBasedNeuralNetwork(L=L, dimensions=dimensions, activations=activations, debug_mode=debug_mode) else: if debug_mode: print("Error: unsupported type of model") print("\tStack trace: EnsembleClassificationWrapper.__init__()") break def bag(self, X, Y, k, debug_mode=False): if X.shape[1] != Y.shape[1]: if debug_mode: print("Error: inconsistent number of examples") print("\tStack trace: EnsembleClassificationWrapper.bag()") return None # get the number of examples m = Y.shape[1] # sanity check: compare k and m if k > m: k = m if debug_mode: print("Warning: the number of bags, k, cannot be larger than the number of examples, m; k is automatically reset to m") print("\tStack trace: EnsembleClassificationWrapper.bag()") # bag indices of examples randomly without replacement into different bags index_pool = [i for i in range(m)] index_bags = [] for i in range(k - 1): index_bag = [] for j in range(m // k): index_chosen = random.choice(index_pool) index_pool.remove(index_chosen) index_bag.append(index_chosen) index_bags.append(index_bag) index_bags.append(index_pool) # bag examples into different bags based on index_bags X_bags = [] Y_bags = [] for index_bag in index_bags: X_bags.append(X[:, index_bag]) Y_bags.append(Y[:, index_bag]) return (X_bags, Y_bags) def fit(self, X, Y, batch_size=1, debug_mode=False): if X.shape[1] != Y.shape[1]: if debug_mode: print("Error: inconsistent number of examples") print("\tStack trace: EnsembleClassificationWrapper.fit()") return False X_bags, Y_bags = self.bag(X=X, Y=Y, k=len(self.__models), debug_mode=debug_mode) for i in range(len(self.__models)): X_bag = X_bags[i % len(X_bags)] Y_bag = Y_bags[i % len(Y_bags)] self.__models[i].fit(X=X_bag, Y=Y_bag, batch_size=5, debug_mode=debug_mode) return True def predict(self, X, debug_mode=False): # initialize the NumPy array for ensemble prediction Y_ensemble = np.empty((len(self.__models), X.shape[1])) # each internal model make a prediction in regular representation for i in range(len(self.__models)): Y_regular = self.__models[i].predict(X=X, debug_mode=debug_mode) Y_ensemble[i, :] = Y_regular # use majority rule to make the final prediction Y_majority = np.array(stats.mode(Y_ensemble, axis=0)[0]).reshape(1, X.shape[1]) return Y_majority
StarcoderdataPython
1638141
<reponame>raphaeldeimel/phastapromep __all__ = ['_phastapromep'] from ._phastapromep import *
StarcoderdataPython
15740
<filename>trainLib.py import math #constants and globals background = '0' NORTH = 0 EAST = 1 SOUTH = 2 WEST = 3 dirs = {0 : "NORTH", 1 : "EAST", 2 : "SOUTH", 3 : "WEST"} class CellElement(): #CellELement Interface for the subclasses #Subclasses: RegularRoad, Switch, LevelCrossing, Bridge, Station def setPosition(self, x, y): return def setOrientation(self, a): return def switchState(self): return def getDuration(self, entdir): return def getStop(self, entdir): return def nextCell(self,entdir): return def getView(): return # Additional Interface methods added by us def setCwRot(self): return def canEnter(self, entdir): # it checks the availability of the next cell in case of there is another train. return def getPos(self): return class GameGrid(): def __init__ (self, row, col): self.row = row self.col = col self.grid = [] self.view = [] # Train refs to draw them on screen, on top of the tile view. self.activeTrains = [] #default grid creation filled with background for i in range(0, row): self.grid.append([]) self.view.append([]) for j in range(0, col): c = RegularRoad(True, self.grid) #Eventhough it assigns a RegularRoad to every cell, we make it background changing the visuals of the cell. (bkz. CellElement.visuals) #We choose it to implemet that way to avoid a creation for empty subclass for background cells and not to make code more complex. c.visuals = '_' c.setPosition(i,j) self.grid[i].append(c) #view grid is seperate than the actual grid. It keeps the visulas and used for display issues. self.view[i].append(c.visuals) def addElement(self, cellElm, row, col): cellElm.setPosition(row, col) self.grid[row][col] = cellElm self.view[row][col] = cellElm.visuals return def removeElement(self, row, col): empty = RegularRoad(True, self.grid) # (bkz. GameGrid.__init___ (): line 51) empty.visuals = '_' self.grid[row][col] = empty self.view[row][col] = '_' # visual for background return def display(self): for i in range(0,self.row): for j in range(0, self.col): print(self.view[i][j], end=' ') print('\n') def isOutOfBounds(self, i, j): #check whether the given positions exists or not if(i >= self.row or j >= self.col or i < 0 or j < 0): return True return False def updateView(self): # We provide this functionality by updtaing the view grid and display function where it needed. return def startSimulation(self): return def setPauseResume(self): return def stopSimulation(self): return def spawnTrain(self, wagonCount, row, col): # Creates trains at given row and column if(self.isOutOfBounds(row,col)): print("invalid spawn pos for train.", row, col) return spawnCell = self.grid[row][col] t = Train(wagonCount, spawnCell, self) self.registerTrain(t) # register train for the grid. #For the phase1 it is not that functional but when we have more trains in later phases it will be used as it supposed to. return t def registerTrain(self, train): self.activeTrains.append(train) return def trainDisappear(self,train): self.activeTrains.remove(train) return def hasTrain(self, row, col): #it checks whether there is a train in the given cell or not for t in self.activeTrains: if(t.enginePosRow == row and t.enginePosCol == col): return True return False class RegularRoad(CellElement): # RegularRoad can be either a straight road or a right turn. # We class them as this since they both have one entrance and exit. def __init__(self, isStraight, gridRef): self.visuals = '_' self.rotationCount = 0 self.myGrid = gridRef #needs grid reference since we have to reach there to update grid. self.row = -1 self.col = -1 self.isRegular = isStraight # if it is not straigt, it is a right turn. We exclude left turn here since it is the one time rotated version of right turn. # For the sake of simplicity, we define left turn by rotating the right turn. if(isStraight): self.dir1 = SOUTH self.dir2 = NORTH self.visuals = '|' else: # default is a Right turn as in the pdf. # rotate this one time CW to get a left turn if needed self.visuals = 'R' self.dir1 = SOUTH self.dir2 = EAST return def makeLeftTurn(self): # used for make a left turn from a right turn. self.visuals = 'L' self.rotationCount = 0 # When we rotate to get left turn the count has been increased. # rotation count is assigned to 0 again since it should be a base case. self.setOrientation( 1, False) return self def setPosition(self, row, col): self.row = row self.col = col return def setCwRot(self): #it assigns the new directions CW of the roads. self.dir1 = (self.dir1 + 1) % 4 self.dir2 = (self.dir2 + 1) % 4 return def setOrientation(self, rotationAmount, incrRot : bool = True): #if incrRot is given False, it doesn't update the rotation amount. It is used for left turn object orientation. if(incrRot): self.rotationCount = (self.rotationCount + rotationAmount) % 4 # else assign the value in mod 4 to be able to detect new directions correctly. for i in range(0, rotationAmount): self.setCwRot() #does the real job return def switchState(self): return def getDuration(self, entdir): # default 1 for Regular Road return 1 def getStop(self, entdir): # default 0 for Regular Road since not stop there return 0 def nextCell(self,entdir): # if on the edge cells, and dir is outward, train will disappear # calculate exit direction of the cell using dir values. self.exitDir = None #if the given direction is the dir1 assign dir2 as exitDir and vice verca. if(self.dir1 == entdir): self.exitDir = self.dir2 elif self.dir2 == entdir: self.exitDir = self.dir1 else: # if the given direction is not valid, exit return None #According to exitDir, if the nextCell is not out of bounds, return the nextCell if(self.exitDir == NORTH and self.myGrid.isOutOfBounds(self.row-1, self.col) == False): # # row-1, col unchanged return(self.myGrid.grid[self.row-1][self.col] ) elif(self.exitDir == SOUTH and self.myGrid.isOutOfBounds(self.row+1, self.col) == False): # # row+1, col unchanged return(self.myGrid.grid[self.row+1][self.col]) elif(self.exitDir == WEST and self.myGrid.isOutOfBounds(self.row, self.col-1) == False): # # col-1, row unchanged return(self.myGrid.grid[self.row][self.col-1]) elif(self.exitDir == EAST and self.myGrid.isOutOfBounds(self.row, self.col+1) == False): # # col+1, row unchanged return(self.myGrid.grid[self.row][self.col+1]) else: # no available cell is found return None def getPos(self): return self.row, self.col def getView(self): return self.visuals def canEnter(self, entdir): #check the availability / connectivity of nextcell return (self.dir1 == entdir or self.dir2 == entdir) class SwitchRoad(CellElement): #There are three types of switchRoad. Explained in lines:237, 241, 246 def __init__(self, typeofSwitch, gridRef): # create 'pieces' of the switch using RegularRoad since switches are just the combinations of them. self.visuals = 'S' self.myGrid = gridRef self.rotationCount = 0 self.switchType = typeofSwitch # int value 1,2,3 self.pieces = {'direct' : RegularRoad(True, gridRef)} #We kept the pieces of the switches according to its type. #for example, switchType-3 has one direct, one rightTurn and one leftTurn. #since all switches has one RegulaarRoad in common, it is added the dictionary by default. self.activePiece = self.pieces['direct'] # Keeps track of which part of the switch is active. #Changed by switchState(). Defualt straight piece is the active one. self.enter = SOUTH #default switch entrance location is south for all type of switches self.switchDelay = 2 #used for make train slower in switches. if(self.switchType == 1): # straight + right turn self.pieces['rightTurn'] = RegularRoad(False, gridRef) elif(self.switchType == 2): # straight + left turn self.pieces['leftTurn'] = RegularRoad(False, gridRef) #As explained in RegularRoad class, it is cretaed as a right turn first. self.pieces['leftTurn'].setOrientation(1, False) #Then rotate it one time and not update the rotationCount. elif(self.switchType == 3): # straight + right turn + left turn self.pieces['rightTurn'] = RegularRoad(False, gridRef) self.pieces['leftTurn'] = RegularRoad(False, gridRef) self.pieces['leftTurn'].setOrientation(1, False) return def setPosition(self, row, col): self.row = row self.col = col return def setCwRot(self): # straightforward 90 degree rotation: S->W, W -> N and so on. self.enter = (self.enter + 1) % 4 if(self.switchType == 1): self.pieces['rightTurn'].setOrientation(1) self.pieces['direct'].setOrientation(1) elif(self.switchType == 2): self.pieces['leftTurn'].setOrientation(1) self.pieces['direct'].setOrientation(1) else: #switchType is 3 self.pieces['rightTurn'].setOrientation(1) self.pieces['direct'].setOrientation(1) self.pieces['leftTurn'].setOrientation(1) return def setOrientation(self, rotationAmount): # rotate 90 degrees CW, directly change dir variables. self.rotationCount = (self.rotationCount + rotationAmount) % 4 for i in range(0, rotationAmount): self.setCwRot() return def switchState(self): # defined only for switch roads. Changes which piece is active. if(self.switchType == 1): # if the direct is the active one, make the rightTurn active, and vice verca. if(self.activePiece == self.pieces['direct']): self.activePiece = self.pieces['rightTurn'] else: self.activePiece = self.pieces['direct'] elif(self.switchType == 2): # if the direct is the active one, make the leftTurn active, and vice verca. if(self.activePiece == self.pieces['direct']): self.activePiece = self.pieces['leftTurn'] else: self.activePiece = self.pieces['direct'] elif(self.switchType == 3): #change state in CW order starting with direct. direct->rightTurn->leftTurn->direct if(self.activePiece == self.pieces['direct']): self.activePiece = self.pieces['rightTurn'] elif(self.activePiece == self.pieces['rightTurn']): self.activePiece = self.pieces['leftTurn'] else: self.activePiece = self.pieces['direct'] return def getDuration(self, entdir): # add switch delay to default duration of the active piece return self.activePiece.getDuration(entdir) + self.switchDelay def getStop(self, entdir): # Train does NOT stop on this cell. return self.activePiece.getStop(entdir) def nextCell(self,entdir): # if on the edge cells, and dir is outward, train will disappear # use activePiece to decide on exit direction if any # if the entrance is default direction, set exitDir according to active piece # else, if the entrance is one of the NotSwitched directions, treat it as a RegularRoad. if(entdir == self.enter): self.exitDir = None if(self.activePiece.dir1 == entdir): self.exitDir = self.activePiece.dir2 elif(self.activePiece.dir2 == entdir): self.exitDir = self.activePiece.dir1 else: print("invalid entry direction for this cell.") return None else: self.exitDir = self.enter #According to exitDir, if the nextCell is not out of bounds, return the nextCell if(self.exitDir == NORTH and self.myGrid.isOutOfBounds(self.row-1, self.col) == False): # # row-1, col unchanged return(self.myGrid.grid[self.row-1][self.col] ) elif(self.exitDir == SOUTH and self.myGrid.isOutOfBounds(self.row+1, self.col) == False): # # row+1, col unchanged return(self.myGrid.grid[self.row+1][self.col]) elif(self.exitDir == WEST and self.myGrid.isOutOfBounds(self.row, self.col-1) == False): # # col-1, row unchanged return(self.myGrid.grid[self.row][self.col-1]) elif(self.exitDir == EAST and self.myGrid.isOutOfBounds(self.row, self.col+1) == False): # # col+1, row unchanged return(self.myGrid.grid[self.row][self.col+1]) else: #no available cell is found return None def getView(self): return self.visuals def getPos(self): return self.row, self.col def canEnter(self, entdir): #check the availability / connectivity of nextcell canEnter = False res = self.activePiece.canEnter(entdir) canEnter = canEnter or res return canEnter class LevelCrossing(CellElement): # if all are in the '+' shape as shown in pdf, then rotation does not matter for these tiles. def __init__(self, gridRef): self.visuals = '+' self.rotationCount = 0 self.myGrid = gridRef self.row = -1 self.col = -1 # has all 4 directions. # always exit entdir+2 in mod 4. So, no need the assign directions. return def setPosition(self, row, col): self.row = row self.col = col return def setOrientation(self, rotationAmount, incrRot : bool = True): # since rotation does not make sense, just incrementing the rotationCount is enough. if(incrRot): self.rotationCount = (self.rotationCount + rotationAmount) % 4 return def getDuration(self, entdir): return 1 def getStop(self, entdir): # return 0(no waiting) if no other train parts are at this cell # if any trains, calculate upper bound on how long we should wait for them. possible deadlock here # fro Phase1, 0 is enough. Remaining will be impleneted in later phases. return 0 def nextCell(self,entdir): # if on the edge cells, and dir is outward, train will disappear # calculate exit direction of the cell using dir value. # has all 4 directions. always exit entdir+2 in mod 4. self.exitDir = (entdir + 2) % 4 #According to exitDir, if the nextCell is not out of bounds, return the nextCell if(self.exitDir == NORTH and self.myGrid.isOutOfBounds(self.row-1, self.col) == False): # # row-1, col unchanged return(self.myGrid.grid[self.row-1][self.col] ) elif(self.exitDir == SOUTH and self.myGrid.isOutOfBounds(self.row+1, self.col) == False): # # row+1, col unchanged return(self.myGrid.grid[self.row+1][self.col]) elif(self.exitDir == WEST and self.myGrid.isOutOfBounds(self.row, self.col-1) == False): # # col-1, row unchanged return(self.myGrid.grid[self.row][self.col-1]) elif(self.exitDir == EAST and self.myGrid.isOutOfBounds(self.row, self.col+1) == False): # # col+1, row unchanged return(self.myGrid.grid[self.row][self.col+1]) else: #no available cell is found return None def getPos(self): return self.row, self.col def getView(self): return self.visuals def canEnter(self, entdir): # has all 4 directions. can always enter EXCEPT when there is another train here. if(self.myGrid.hasTrain(self.row, self.col)): return False else: return True class BridgeCrossing(CellElement): # if all are in the '+' shape as shown in pdf, then rotation does not matter for these tiles on phase1. def __init__(self, gridRef): self.visuals = '\u03A9' #visual is the omega sign self.rotationCount = 0 self.myGrid = gridRef self.row = -1 self.col = -1 # Bridge is on West-East road segment as default. # other regular road dir can be deduced from these two. self.bridgeDir1 = WEST self.bridgeDir2 = EAST # all 4 directions always exit entdir+2 in mod 4. return def setPosition(self, row, col): self.row = row self.col = col return def setCwRot(self): self.bridgeDir1 = (self.bridgeDir1 + 1) % 4 self.bridgeDir2 = (self.bridgeDir2 + 1) % 4 return def setOrientation(self, rotationAmount, incrRot : bool = True): #rotation makes sense here, we change the bridge's segment. if(incrRot): self.rotationCount = (self.rotationCount + rotationAmount) % 4 for i in range(0, rotationAmount): self.setCwRot() return def getDuration(self, entdir): return 1 def getStop(self, entdir): return 0 def nextCell(self,entdir): # if on the edge cells, and dir is outward, train will disappear # calculate exit direction of the cell using dir value. # has all 4 directions. always exit entdir+2 in mod 4. self.exitDir = (entdir + 2) % 4 #According to exitDir, if the nextCell is not out of bounds, return the nextCell if(self.exitDir == NORTH and self.myGrid.isOutOfBounds(self.row-1, self.col) == False): # # row-1, col unchanged return(self.myGrid.grid[self.row-1][self.col] ) elif(self.exitDir == SOUTH and self.myGrid.isOutOfBounds(self.row+1, self.col) == False): # # row+1, col unchanged return(self.myGrid.grid[self.row+1][self.col]) elif(self.exitDir == WEST and self.myGrid.isOutOfBounds(self.row, self.col-1) == False): # # col-1, row unchanged return(self.myGrid.grid[self.row][self.col-1]) elif(self.exitDir == EAST and self.myGrid.isOutOfBounds(self.row, self.col+1) == False): # # col+1, row unchanged return(self.myGrid.grid[self.row][self.col+1]) else: #no available cell is found return None def getPos(self): return self.row, self.col def getView(self): return self.visuals def canEnter(self, entdir): # has all 4 directions. can always enter since bridge prevents from a collision. return True class Station(CellElement): #It is just like a straight regularRoad, but for simplcity we don't create it using RegularRoad class. def __init__(self, gridRef): self.visuals = '\u0394' #the visual is the delta sign. self.rotationCount = 0 self.myGrid = gridRef self.row = -1 self.col = -1 #default dir values self.dir1 = SOUTH self.dir2 = NORTH return def setPosition(self, row, col): self.row = row self.col= col return def setCwRot(self): self.dir1 = (self.dir1 + 1) % 4 self.dir2 = (self.dir2 + 1) % 4 return def setOrientation(self, rotationAmount, incrRot : bool = True): #like a straight road, increment rotationcount and rotate the directions rotationAmount times. if(incrRot): self.rotationCount = (self.rotationCount + rotationAmount) % 4 for i in range(0, rotationAmount): self.setCwRot() return def switchState(self): return def getDuration(self, entdir): #since it will be stopped in station, add the deault value to the stop value. return 1 + self.getStop(entdir) def getStop(self, entdir): return 10 def nextCell(self,entdir): # if on the edge cells, and dir is outward, train will disappear # calculate exit direction of the cell using dir value. self.exitDir = None if(self.dir1 == entdir): self.exitDir = self.dir2 elif self.dir2 == entdir: self.exitDir = self.dir1 else: return None #According to exitDir, if the nextCell is not out of bounds, return the nextCell if(self.exitDir == NORTH and self.myGrid.isOutOfBounds(self.row-1, self.col) == False): # # row-1, col unchanged return(self.myGrid.grid[self.row-1][self.col] ) elif(self.exitDir == SOUTH and self.myGrid.isOutOfBounds(self.row+1, self.col) == False): # # row+1, col unchanged return(self.myGrid.grid[self.row+1][self.col]) elif(self.exitDir == WEST and self.myGrid.isOutOfBounds(self.row, self.col-1) == False): # # col-1, row unchanged return(self.myGrid.grid[self.row][self.col-1]) elif(self.exitDir == EAST and self.myGrid.isOutOfBounds(self.row, self.col+1) == False): # # col+1, row unchanged return(self.myGrid.grid[self.row][self.col+1]) else: #no available cell is found return None def getPos(self): return self.row, self.col def getView(self): return self.visuals def canEnter(self, entdir): #check the availability / connectivity of nextcell return (self.dir1 == entdir or self.dir2 == entdir) class Train(): #GameGrid takes care of the created trains and their effcts in the grid view. def __init__(self, nWagons, cell : CellElement, gridRef : GameGrid): self.wagonCount = nWagons self.totalLength = nWagons+1 # cars + train engine self.currCell = cell self.wagonCountPerCell = 2 # effectively, each 'car' takes 1/2 of a cell. self.gridRef = gridRef # ref to GameGrid to be in communication. self.coveredCellCount = math.ceil(self.totalLength / self.wagonCountPerCell) # one of: "moving", "movingReverse", "stopped" self.status = "moving" self.enginePosRow, self.enginePosCol = cell.getPos() return def enterCell(self, nextCell : CellElement, entdir): #it locates the train in a given cell position using entdir value. self.currDir = entdir self.enginePosRow, self.enginePosCol = nextCell.getPos() self.currCell = nextCell def advance(self): #it moves the train to the available next cell nextCell = self.currCell.nextCell(self.currDir) self.currDir = (self.currCell.exitDir + 2) % 4 #when we go to nextcell, exitDir of previous cell become the entDir for the current cell. #For example, when we move to cell at south, the entdir becomes the north, which is 2 direction away from the exitDir of previous cell. if(nextCell is None): # self.gridRef.trainDisappear(self), will be implemented return False elif(nextCell.visuals == '_'): #nextcell is background return False else: # update pos self.currCell = nextCell self.enginePosRow, self.enginePosCol = nextCell.getPos() return True def getEnginePos(self): return self.enginePosRow, self.enginePosCol def getStatus(self): return self.status def getGeometry(self): # Gets the geometry of the train path, engine and cars. # Implemented in later phases where full train needs to be displayed on a curve during simulation return
StarcoderdataPython
1752380
# Counter 클래스는 아래와 같이 제너레이터로 변경할 수 있습니다. # yield 는 iterator 를 추상화 하기 위해 Python 2.2 에 추가되었습니다. def gen_1_to_5(): yield 1 yield 2 yield 3 yield 4 yield 5 counter = gen_1_to_5() print(type(counter)) print(next(counter)) print(next(counter)) print(next(counter)) print(next(counter)) print(next(counter)) # StopIteration 발생 # print(next(counter)) # 리스트로 바로 변경할 수 있습니다. print(list(gen_1_to_5()))
StarcoderdataPython
1783395
<filename>example/instagram.py from justgood import imjustgood api = imjustgood("YOUR_APIKEY_HERE") data = api.instagram("the.autobots_corp") print(data) # EXAMPLE GET CERTAIN ATTRIBUTES result = "ID : {}".format(data["result"]["id"]) result += "\nUsername : {}".format(data["result"]["username"]) result += "\nFullname : {}".format(data["result"]["fullname"]) result += "\nBiography : {}".format(data["result"]["biography"]) result += "\nWebsite : {}".format(data["result"]["website"]) result += "\nPrivate : {}".format(data["result"]["private"]) result += "\nVerified : {}".format(data["result"]["verified"]) result += "\nPost : {}".format(data["result"]["post"]) result += "\nFollower : {}".format(data["result"]["follower"]) result += "\nFollowing : {}".format(data["result"]["following"]) result += "\n\nPicture :\n{}".format(data["result"]["picture"]) result += "\n\nProfile :\n{}".format(data["result"]["profile"]) if data["result"]["lastpost"] != []: number = 0 result += "\n\nLastpost" for a in data["result"]["lastpost"]: number += 1 result += "\n{}. {}".format(number, a["caption"]) result += "\n{}".format(a["url"]) result += "\n Like : {}".format(number, a["like"]) result += "\n Comment : {}".format(number, a["comment"]) result += "\n Created : {}".format(a["created"]) result += "\n PageUrl : {}".format(a["page"]) print(result)
StarcoderdataPython
1672876
<filename>eviction_tracker/detainer_warrants/judgment_imports.py from .models import db from .models import Attorney, Courtroom, Defendant, DetainerWarrant, District, Judge, Hearing, Judgment, Plaintiff, detainer_warrant_defendants from .util import get_or_create, normalize, open_workbook, dw_rows, district_defaults from sqlalchemy.exc import IntegrityError, InternalError from sqlalchemy.dialects.postgresql import insert from decimal import Decimal from datetime import date, datetime from dateutil.rrule import rrule, MONTHLY COURT_DATE = "Court Date" DOCKET_ID = "Docket #" COURTROOM = "Courtroom" PLAINTIFF = "Plaintiff" PLAINTIFF_ATTORNEY = "Pltf Lawyer" DEFENDANT = "Defendant" DEFENDANT_ATTORNEY = "Def Lawyer" DEFENDANT_ADDRESS = "Def. Address" REASON = "Reason" AMOUNT = "Amount" MEDIATION_LETTER = "\"Mediation Letter\"" NOTES = "Notes (anything unusual on detainer or in " JUDGEMENT = "Judgement" JUDGE = "Judge" JUDGEMENT_BASIS = "Judgement Basis" def _from_workbook(defaults, court_date, raw_judgment): judgment = {k: normalize(v) for k, v in raw_judgment.items()} docket_id = judgment[DOCKET_ID] if not bool(docket_id): return address = judgment[DEFENDANT_ADDRESS] or "unknown" hearing = Hearing.query.filter_by( docket_id=docket_id, _court_date=court_date).first() if hearing and hearing.address != "unknown": hearing.update(address=address) db.session.commit() def from_workbook(workbook_name, limit=None, service_account_key=None): wb = open_workbook(workbook_name, service_account_key) start_dt = date(2021, 3, 1) end_dt = date(2021, 11, 30) worksheets = [wb.worksheet(datetime.strftime(dt, '%B %Y')) for dt in rrule(MONTHLY, dtstart=start_dt, until=end_dt)] defaults = district_defaults() for ws in worksheets: all_rows = ws.get_all_records() stop_index = int(limit) if limit else all_rows judgments = all_rows[:stop_index] if limit else all_rows court_date = None for judgment in judgments: court_date = judgment[COURT_DATE] if judgment[COURT_DATE] else court_date _from_workbook(defaults, court_date, judgment)
StarcoderdataPython
3202611
<reponame>DhruvKinger/Pointer-Controller ''' This is a sample class for a model. You may choose to use it as-is or make any changes to it. This has been provided just to give you an idea of how to structure your model class. ''' import cv2 import numpy as np from openvino.inference_engine import IECore,IENetwork class FacialLandmarksDetectionModel: ''' Class for the Face Detection Model. ''' def __init__(self, model_name, device='CPU', extensions=None): self.model_name = model_name self.device = device self.extensions = extensions self.model_structure = self.model_name self.model_weights = self.model_name.split('.')[0]+'.bin' self.plugin = None self.network = None self.exec_net = None self.input_name = None self.input_shape = None self.output_names = None self.output_shape = None try: self.model=IENetwork(self.model_structure, self.model_weights) except Exception as e: raise ValueError("Could not Initialise the network. Have you enterred the correct model path?") self.input_name=next(iter(self.model.inputs)) self.input_shape=self.model.inputs[self.input_name].shape self.output_name=next(iter(self.model.outputs)) self.output_shape=self.model.outputs[self.output_name].shape def load_model(self): self.plugin=IECore() supported_layers = self.plugin.query_network(network=self.model, device_name=self.device) unsupported_layers = [l for l in self.model.layers.keys() if l not in supported_layers] if len(unsupported_layers)!=0: print("unsupported layers found") exit(1) self.exec_net=self.plugin.load_network(network=self.model,device_name=self.device,num_requests=1) def predict(self, image): self.processed_image=self.preprocess_input(image) outputs = self.exec_net.infer({self.input_name:self.processed_image}) coords = self.preprocess_output(outputs) h=image.shape[0] w=image.shape[1] coords = coords* np.array([w, h, w, h]) coords = coords.astype(np.int32) l_xmin=coords[0]-10 l_xmax=coords[0]+10 l_ymin=coords[1]-10 l_ymax=coords[1]+10 r_xmin=coords[2]-10 r_xmax=coords[2]+10 r_ymin=coords[3]-10 r_ymax=coords[3]+10 left_eye = image[l_ymin:l_ymax, l_xmin:l_xmax] right_eye = image[r_ymin:r_ymax, r_xmin:r_xmax] eye_coords = [[l_xmin,l_ymin,l_xmax,l_ymax], [r_xmin,r_ymin,r_xmax,r_ymax]] return left_eye, right_eye, eye_coords def check_model(self): raise NotImplementedError def preprocess_input(self, image): image_ct = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) self.image=cv2.resize(image_ct,(self.input_shape[3],self.input_shape[2])) ## cv2.resize(frame, (w, h)) self.image=self.image.transpose((2, 0, 1)) self.image=self.image.reshape(1, *self.image.shape) return self.image def preprocess_output(self, outputs): res=outputs[self.output_name][0] lx = res[0].tolist()[0][0] ly = res[1].tolist()[0][0] rx = res[2].tolist()[0][0] ry = res[3].tolist()[0][0] return(lx,ly,rx,ry)
StarcoderdataPython
172468
<filename>leetcode/easy/1185-Day_of_week.py """ Leetcode #1185 """ class Solution: # if we know that 1/1/1971 was Friday def dayOfTheWeek(self, day: int, month: int, year: int) -> str: isLeapYear = lambda x: 1 if x % 400 == 0 or (x % 4 == 0 and x % 100 != 0) else 0 months = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] days = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"] numDays = -1 # start from 1971-01-01, remove that day for i in range(1971, year): numDays += 365 + isLeapYear(i) numDays += sum(months[:month-1]) + day + isLeapYear(year) # Adding 5 because 1/1/1971 was Friday return days[(5+numDays)%7] # without knowing 1/1/1971 was friday # but we know what today is def dayOfTheWeek_2(self, day: int, month: int, year: int) -> str: # today of 6th june day is saturday # so starting days from Saturday days = ["Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday"] months = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] def isLeapYear(year): return 1 if year % 4 == 0 and year % 100 != 0 or year % 400 == 0 else 0 def getDay(day, month, year): numDays = 0 # get num days till last year for y in range(year-1, 1970, -1): numDays += 365 + isLeapYear(y) numDays += sum(months[:month-1]) numDays += day if month > 2: numDays += isLeapYear(year) return numDays k = getDay(6, 6, 2020) # today is saturday d = getDay(day, month, year) return days[(d-k)%7] if __name__ == "__main__": solution = Solution() assert solution.dayOfTheWeek(31, 8, 2019) == "Saturday" assert solution.dayOfTheWeek(18, 7, 1999) == "Sunday" assert solution.dayOfTheWeek_2(31, 8, 2019) == "Saturday" assert solution.dayOfTheWeek_2(18, 7, 1999) == "Sunday"
StarcoderdataPython
59113
<gh_stars>1-10 from django.shortcuts import render from django.http import HttpResponse from django.template import RequestContext, loader from .models import * def index(request): # latest_question_list = Question.objects.order_by('-pub_date')[:5] template = loader.get_template('core/index.html') context = RequestContext(request) return HttpResponse(template.render(context))
StarcoderdataPython
4808653
#!/usr/bin/python # ex:set fileencoding=utf-8: from __future__ import unicode_literals from django import forms from django.apps import apps from django.conf import settings from django.conf.urls import patterns, url, include from django.contrib.admin.sites import AlreadyRegistered from django.contrib.admin.sites import NotRegistered from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ImproperlyConfigured from django.db.utils import OperationalError from django.utils.module_loading import module_has_submodule from django.utils.module_loading import import_module from django.utils import six from django.utils.text import slugify from .apps import BMFConfig from .models import Configuration from .views import ModuleIndexView from .views import ModuleReportView from .views import ModuleCreateView from .views import ModuleDeleteView from .views import ModuleCloneView from .views import ModuleAutoDetailView from .views import ModuleUpdateView from .views import ModuleWorkflowView from .views import ModuleFormAPI import copy import sys import logging logger = logging.getLogger(__name__) SETTING_KEY = "%s.%s" APP_LABEL = BMFConfig.label class DjangoBMFSetting(object): def __init__(self, app_label, name, field): self.app_label = app_label self.name = name self.field = field @property def key(self): return SETTING_KEY % (self.app_label, self.name) @property def required(self): return self.field.required @property def changed(self): return self.field.initial != self.value @property def label(self): if self.field.label: return self.field.label return self.key @property def default(self): return self.field.initial @property def value(self): try: value = Configuration.objects.get_value(self.app_label, self.name) except Configuration.DoesNotExist: value = self.field.initial return value class DjangoBMFModule(object): index = None create = None delete = None update = None detail = None report = None clone = None urlpatterns = None def __init__(self, model): self.model = model def get_urls(self, **options): index = self.index or options.get('index', None) create = self.create or options.get('create', None) delete = self.delete or options.get('delete', None) update = self.update or options.get('update', None) detail = self.detail or options.get('detail', None) report = self.report or options.get('report', None) clone = self.clone or options.get('clone', None) add_patterns = self.urlpatterns or options.get('urlpatterns', None) urlpatterns = patterns( '', url( # TODO: OLD r'^$', index.as_view(model=self.model), name='index', ), url( r'^(?P<pk>[0-9]+)/$', detail.as_view(model=self.model), name='detail', ), url( r'^(?P<pk>[0-9]+)/update/$', update.as_view(model=self.model), name='update', ), url( r'^(?P<pk>[0-9]+)/delete/$', delete.as_view(model=self.model), name='delete', ), url( r'^(?P<pk>[0-9]+)/update/form-api/$', ModuleFormAPI.as_view( model=self.model, form_view=update, ), name='form-api', ), ) # create view(s) if isinstance(create, dict): for label, view in six.iteritems(create): key = slugify(label) if isinstance(view, (list, tuple)): label = view[0] view = view[1] self.model._bmfmeta.create_views.append((key, label)) urlpatterns += patterns( '', url( r'^create/(?P<key>%s)/$' % key, view.as_view(model=self.model), name='create', ), url( r'^create/(?P<key>%s)/form-api/$' % key, ModuleFormAPI.as_view( model=self.model, form_view=view, ), name='form-api', ), ) else: urlpatterns += patterns( '', url( r'^create/$', create.as_view(model=self.model), name='create', ), url( r'^create/form-api/$', ModuleFormAPI.as_view( model=self.model, form_view=create, ), name='form-api', ), ) # workflow interactions if bool(len(self.model._bmfworkflow._transitions)): urlpatterns += patterns( '', url( r'^(?P<pk>[0-9]+)/workflow/(?P<transition>\w+)/$', ModuleWorkflowView.as_view(model=self.model), name='workflow', ), ) # model reports if report: self.model._bmfmeta.has_report = True urlpatterns += patterns( '', url( r'^(?P<pk>[0-9]+)/report/$', report.as_view(model=self.model), name='report', ), ) # clone model if self.model._bmfmeta.can_clone: urlpatterns += patterns( '', url( r'^(?P<pk>[0-9]+)/clone/$', clone.as_view(model=self.model), name='clone', ), url( r'^(?P<pk>[0-9]+)/clone/form-api/$', ModuleFormAPI.as_view( model=self.model, form_view=clone, ), name='clone-form-api', ), ) # url patterns if add_patterns: urlpatterns += add_patterns return urlpatterns class DjangoBMFSite(object): """ Handle this object like the AdminSite from django.contrib.admin.sites """ def __init__(self, name='djangobmf', app_name=APP_LABEL): self.name = name self.app_name = app_name self.clear() def clear(self): # combine all registered modules here self._registry = {} # all currencies should be stored here self.currencies = {} # all reports should be stored here self.reports = {} # if a module requires a custom setting, it can be stored here self.settings = {} self.settings_valid = False self.register_settings(APP_LABEL, { 'company_name': forms.CharField(max_length=100, required=True,), 'company_email': forms.EmailField(required=True,), 'currency': forms.CharField(max_length=10, required=True,), # TODO add validation / use dropdown }) # --- models -------------------------------------------------------------- def register(self, model, admin=None, **options): self.register_model(model, admin) for view in ['index', 'create', 'detail', 'update', 'delete', 'report', 'clone']: if view in options: self.register_old_view(model, view, options[view]) if 'urlpatterns' in options: self._registry[model]['urlpatterns'] = options['urlpatterns'] def register_model(self, model, admin=None): if not hasattr(model, '_bmfmeta'): raise ImproperlyConfigured( 'The model %s needs to be an BMF-Model in order to be' 'registered with django BMF.' % model.__name__ ) if model in self._registry: raise AlreadyRegistered('The model %s is already registered' % model.__name__) self._registry[model] = { 'admin': (admin or DjangoBMFModule)(model), 'index': ModuleIndexView, 'create': ModuleCreateView, 'detail': ModuleAutoDetailView, 'update': ModuleUpdateView, 'delete': ModuleDeleteView, 'clone': ModuleCloneView, 'report': None, 'urlpatterns': None, } def unregister(self, model): self.unregister_model(model) def unregister_model(self, model): if model not in self._registry: raise NotRegistered('The model %s is not registered' % model.__name__) del self._registry[model] # --- views --------------------------------------------------------------- def register_old_view(self, model, type, view): if type in ['index', 'detail', 'update', 'delete', 'clone']: # TODO check if view is an bmf-view # add the view self._registry[model][type] = view elif type == 'report': if isinstance(view, bool): if view: self._registry[model][type] = ModuleReportView else: # TODO check if view is an bmf-view # add the view self._registry[model][type] = view elif type == 'create': # if isinstance(create, dict): # TODO check if view is an bmf-view # add the view self._registry[model][type] = view def register_genericview(self, dashboard, category, model, view): pass # --- currencies ---------------------------------------------------------- def register_currency(self, currency): if currency.iso in self.currencies: raise AlreadyRegistered('The currency %s is already registered' % currency.__name__) self.currencies[currency.iso] = currency def unregister_currency(self, currency): if currency.iso not in self.currencies: raise NotRegistered('The currency %s is not registered' % currency.__name__) del self.currencies[currency.iso] # --- reports ------------------------------------------------------------- def register_report(self, name, cls): if name in self.reports: raise AlreadyRegistered('The report %s is already registered' % name) self.reports[name] = cls def unregister_report(self, name): if name not in self.reports: raise NotRegistered('The currency %s is not registered' % name) del self.reports[name] # --- settings ------------------------------------------------------------ def register_settings(self, app_label, settings_dict): for setting_name, options in settings_dict.items(): self.register_setting(app_label, setting_name, options) def register_setting(self, app_label, setting_name, options): name = SETTING_KEY % (app_label, setting_name) if name in self.settings: raise AlreadyRegistered('The setting %s is already registered' % name) self.settings[name] = DjangoBMFSetting(app_label, setting_name, options) def unregister_setting(self, app_label, setting_name): name = SETTING_KEY % (app_label, setting_name) if name not in self.settings: raise NotRegistered('The setting %s is not registered' % name) del self.settings[name] def check_settings(self): self.settings_valid = False for key, setting in self.settings: if not setting.value and setting.field.required: self.settings_valid = False return False return True def get_lazy_setting(self, app_label, setting_name): """ will allways return None, if the django apps are not ready """ if apps.ready: return self.get_setting(app_label, setting_name) return None def get_setting(self, app_label, setting_name): name = SETTING_KEY % (app_label, setting_name) try: return self.settings[name].value except KeyError: raise NotRegistered('The setting %s is not registered' % name) # --- workspace ----------------------------------------------------------- def register_dashboard(self, dashboard): obj = dashboard() label = '%s.%s' % (obj.__module__, obj.__class__.__name__) workspace = apps.get_model(APP_LABEL, "Workspace") try: ws, created = workspace.objects.get_or_create(module=label, level=0) except OperationalError: logger.debug('Database not ready, skipping registration of Dashboard %s' % label) return False if created or ws.slug != obj.slug or ws.url != obj.slug: ws.slug = obj.slug ws.url = obj.slug ws.editable = False ws.save() logger.debug('Dashboard %s registered' % label) return True def register_category(self, dashboard, category): parent = dashboard() obj = category() label = '%s.%s' % (obj.__module__, obj.__class__.__name__) parent_label = '%s.%s' % (parent.__module__, parent.__class__.__name__) workspace = apps.get_model(APP_LABEL, "Workspace") try: parent_workspace = workspace.objects.get(module=parent_label) except OperationalError: logger.debug('Database not ready, skipping registration of Category %s' % label) return False except workspace.DoesNotExist: logger.error('%s does not exist - skipping registration of Category %s' % (parent_label, label)) return False ws, created = workspace.objects \ .select_related('parent') \ .get_or_create(module=label, parent=parent_workspace) if created or ws.slug != obj.slug or ws.url != ws.get_url(): ws.slug = obj.slug ws.editable = False ws.update_url() ws.save() logger.debug('Category %s registered' % label) return True def register_view(self, model, category, view): parent = category() obj = view() label = '%s.%s' % (obj.__module__, obj.__class__.__name__) parent_label = '%s.%s' % (parent.__module__, parent.__class__.__name__) workspace = apps.get_model(APP_LABEL, "Workspace") try: parent_workspace = workspace.objects.get(module=parent_label) except OperationalError: logger.debug('Database not ready, skipping registration of View %s' % label) return False except workspace.DoesNotExist: logger.error('%s does not exist - skipping registration of View %s' % (parent_label, label)) return False ct = ContentType.objects.get_for_model(model) ws, created = workspace.objects \ .select_related('parent') \ .get_or_create(module=label, parent=parent_workspace) if created or ws.slug != obj.slug or ws.url != ws.get_url() or ws.ct != ct: ws.ct = ct ws.slug = obj.slug ws.editable = False ws.update_url() ws.save() logger.debug('View %s registered' % label) return True # --- misc methods -------------------------------------------------------- @property def is_ready(self): return apps.get_app_config(APP_LABEL).is_ready @property def urls(self): return self.get_urls(), self.app_name, self.name @property def models(self): models = {} for model in self._registry: ct = ContentType.objects.get_for_model(model) models[ct.pk] = model return models def check_dependencies(self): """ Check that all things needed to run the admin have been correctly installed. The default implementation checks that admin and contenttypes apps are installed, as well as the auth context processor. """ # TODO: Check out django's system checks framework and redo checks # https://docs.djangoproject.com/en/1.7/topics/checks/ if not apps.is_installed('django.contrib.admin'): raise ImproperlyConfigured( "Put 'django.contrib.admin' in " "your INSTALLED_APPS setting in order to use the bmf." ) if not apps.is_installed('django.contrib.contenttypes'): raise ImproperlyConfigured( "Put 'django.contrib.contenttypes' in " "your INSTALLED_APPS setting in order to use the bmf." ) if 'django.contrib.auth.context_processors.auth' not in settings.TEMPLATE_CONTEXT_PROCESSORS: raise ImproperlyConfigured( "Put 'django.contrib.auth.context_processors.auth' " "in your TEMPLATE_CONTEXT_PROCESSORS setting in order to use the bmf." ) def get_urls(self): from djangobmf.urls import urlpatterns if not apps.ready and "migrate" in sys.argv: return urlpatterns if settings.DEBUG: self.check_dependencies() for model in self._registry: data = self._registry[model] urls = data['admin'].get_urls(**{ "index": data['index'], "create": data['create'], "detail": data['detail'], "update": data['update'], "delete": data['delete'], "report": data['report'], "clone": data['clone'], "urlpatterns": data['urlpatterns'], }) info = (model._meta.app_label, model._meta.model_name) urlpatterns += patterns( '', url( r'^module/%s/%s/' % (info[1], info[0]), include((urls, self.app_name, "module_%s_%s" % info)) ) ) return urlpatterns site = DjangoBMFSite() def autodiscover(): for app_config in apps.get_app_configs(): try: # get a copy of old site configuration before_import_r = copy.copy(site._registry) before_import_c = copy.copy(site.currencies) before_import_s = copy.copy(site.settings) before_import_p = copy.copy(site.reports) import_module('%s.%s' % (app_config.name, "bmf_module")) except: # Reset the model registry to the state before the last import # skiping this may result in an AlreadyRegistered Error site._registry = before_import_r site.currencies = before_import_c site.settings = before_import_s site.reports = before_import_p # Decide whether to bubble up this error if module_has_submodule(app_config.module, "bmf_module"): raise
StarcoderdataPython
3307911
<gh_stars>0 ## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: <NAME> # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## ## # This is a base file that is not intended to be overridden. ## ## # uengine is deprecated and will be removed from the system soon. Migrate your # apps to using the Data Access Framework (DAF). ## from java.util import ArrayList from com.raytheon.uf.common.message.response import ResponseMessageGeneric from com.raytheon.uf.edex.database.plugin import PluginFactory from com.raytheon.edex.uengine.tasks.query import TableQuery from gov.noaa.nws.ncep.edex.uengine.utility import GempakConvert class GempakEnsembleTemplateGenerator(): def __init__(self, pluginName): self.pluginName = pluginName self.eventName = None self.perturbationNum = 0 # # create the TableQuery instance # try: className = PluginFactory.getInstance().getPluginRecordClassName(pluginName) except: # # handle the exception if the plugin record class cannot be found # message = "RunTimeError getting the PluginRecordClassName for " + \ pluginName + " " import sys if sys.exc_info()[1] is not None: str = "%s" % sys.exc_info()[1] indx = str.find("\n") if indx > 0: message = message + str[:indx] print "Unexpected error:" + message return self.__makeNullResponse(message) databaseName = "metadata" # # create the TableQuery instance for specified database # and plugin record class # self.query = TableQuery(databaseName,className) self.query.setDistinctField("eventName") def setEnsembleName(self, modelName): self.modelName = modelName self.query.addParameter ("modelName", modelName) def setEnsembleEventName(self, eventName): self.eventName = eventName self.query.addParameter ("eventName", eventName) def setEnsemblePerturbationNumber(self, perturbationNum): self.perturbationNum = perturbationNum self.query.addParameter ("modelInfo.perturbationNumber", perturbationNum) def execute(self): # # execute the set query # try: queryResult = ArrayList() queryResult = self.query.execute() # print "queryResult = ", queryResult except: message = "RunTimeError executing TableQuery " import sys if sys.exc_info()[1] is not None: str = "%s" % sys.exc_info()[1] indx = str.find("\n") if indx > 0: message = message + str[:indx] print "Unexpected error:" + message return self.__makeNullResponse(message) # # process the results of the query # if queryResult is None: return self.__makeNullResponse("Query returned no results") else: return self.__makeResponse(queryResult) def __makeResponse(self, ensArrayList): size = ensArrayList.size() ensList = [] for i in range(size): ensList.append("%s" % ensArrayList.get(i)) commonStart = self.__findCommonStart(ensList) # print "commonStart= ", commonStart # if self.perturbationNum == 0: # ensTemplate = self.modelName + "_db_" + commonStart + "*_YYYYMMDDHHfFFF" # else: ensTemplate = self.modelName + "_db_" + commonStart + "_YYYYMMDDHHfFFF" response = ArrayList() response.add(ResponseMessageGeneric(ensTemplate)) return response def __makeNullResponse(self, aMessage=None): return ResponseMessageGeneric(aMessage) def __findCommonStart (self, strlist): strlist = strlist[:] prev = None while True: common = self.__getCommonLetters(strlist) if common == prev: break strlist.append(common) prev = common return self.__getCommonLetters(strlist) def __getCommonLetters(self, strlist): return ''.join([x[0] for x in zip(*strlist) \ if reduce(lambda a,b:(a == b) and a or None,x)])
StarcoderdataPython
1779427
#!/usr/bin/env python import sys import os sys.path.append(os.getcwd()) import cpmsparse.util as util from cpmsparse.kernels import PatternSparse, CpmSparse import pandas as pd import numpy as np group_id = 'g8788' # event hits: 130 print("We're good to go!") context, cc = util.init_pycuda() # Load data N, x, y, z, ct = util.get_real_input_data(f"sample_data/sample_{group_id}.csv") print("Read", N, "hits from file") # Load Pattern Matrix pattern_file = 'pattern_mtx_50_50_100_100.csv' pattern = np.loadtxt(open(pattern_file, "rb"), delimiter=",") pattern = np.array(pattern.flatten()).astype(np.float32) # Correlation criterion pattern_threshold = 0.01 # the pattern correlation threshold [percent] pattern_time_bin_count = 50 # number of bins for time domain pattern_dist_bin_count = 50 # number of bins for distance domain pattern_time_limit = 100 # pattern time limit - the time multiplied by the speed of light [meters] pattern_dist_limit = 100 # pattern distance limit [meters] pattern_kernel = PatternSparse(N, cc=cc, ptt_threshold=pattern_threshold, ptt_time_bin_count=pattern_time_bin_count, ptt_dist_bin_count=pattern_dist_bin_count, ptt_time_limit=pattern_time_limit, ptt_dist_limit=pattern_dist_limit) d_col_idx, d_prefix_sums, d_degrees, total_hits = pattern_kernel.compute(N, x, y, z, ct, pattern) # Community detection and classification cpm_resolution = 0.1 # CPM resolution parameter cpm_kernel = CpmSparse(N, cc=cc) classified_hits = cpm_kernel.compute(d_col_idx, d_prefix_sums, cpm_resolution) print("Number of classified hits: ", classified_hits)
StarcoderdataPython
23828
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa import json from django import forms from common.forms import BaseComponentForm, TypeCheckField from components.component import Component from .toolkit import configs class GetHostList(Component): """ apiLabel get host list apiMethod GET ### Functional Description Get host list ### Request Parameters {{ common_args_desc }} #### Interface Parameters | Field | Type | Required | Description | |-----------|------------|--------|------------| | app_id | int | Yes | Business ID | | ip_list | array | No | Host IP address, including ip and bk_cloud_id, bk_cloud_id represents cloud area ID | ### Request Parameters Example ```python { "bk_app_code": "esb_test", "bk_app_secret": "xxx", "bk_token": "<PASSWORD>", "bk_biz_id": 1, "ip_list": [ { "ip": "10.0.0.1", "bk_cloud_id": 0 }, { "ip": "10.0.0.2" "bk_cloud_id": 0 } ] } ``` ### Return Result Example ```python { "result": true, "code": 0, "message": "", "data": [ { "inner_ip": "10.0.0.1", "bk_cloud_id": 0, "host_name": "db-1", "maintainer": "admin" }, { "inner_ip": "10.0.0.2", "bk_cloud_id": 2, "host_name": "db-2", "maintainer": "admin" } ] } ``` """ # Name of the system to which the component belongs sys_name = configs.SYSTEM_NAME # Form Processing Parameters Validation class Form(BaseComponentForm): bk_biz_id = forms.CharField(label='Business ID', required=True) ip_list = TypeCheckField(label='Host IP address', promise_type=list, required=False) # The data returned in clean method is available through the component's form_data property def clean(self): return self.get_cleaned_data_when_exist(keys=['<KEY>', 'ip_list']) # Component Processing Access def handle(self): # Get the data processed in Form clean data = self.form_data # Set Current Operator data['operator'] = self.current_user.username # Request System Interface try: response = self.outgoing.http_client.post( host=configs.host, path='/hcp/get_host_list/', data=json.dumps(data), ) except Exception: # TODO: To delete, only fake data for testing response = { 'code': 0, 'data': [ { 'inner_ip': '10.0.0.1', 'bk_cloud_id': 0, 'host_name': 'just_for_test', 'maintainer': 'admin', }, ] } # Analyze the Results code = response['code'] if code == 0: result = { 'result': True, 'data': response['data'], } else: result = { 'result': False, 'message': response['message'] } # Set the component return result, and payload is the actual return result of component self.response.payload = result
StarcoderdataPython
71483
<filename>pythx/middleware/group_data.py<gh_stars>10-100 """This module contains a middleware to fill the :code:`groupId`/:code:`groupName` field.""" import logging from typing import Dict from pythx.types import RESPONSE_MODELS, REQUEST_MODELS from pythx.middleware.base import BaseMiddleware LOGGER = logging.getLogger("GroupDataMiddleware") class GroupDataMiddleware(BaseMiddleware): """This middleware fills the :code:`groupId` and :code:`groupName` fields when submitting a new analysis job. This means that only :code:`process_request` carries business logic, while :code:`process_response` returns the input response object right away without touching it. """ def __init__(self, group_id: str = None, group_name: str = None): LOGGER.debug("Initializing") self.group_id = group_id self.group_name = group_name def process_request(self, req: REQUEST_MODELS) -> Dict: """Add the :code:`groupId` and/or :code:`groupName` field if the request we are making is the submission of a new analysis job. Because we execute the middleware on the request data dictionary, we cannot simply match the domain model type here. However, based on the endpoint and the request method we can determine that a new job has been submitted. In any other case, we return the request right away without touching it. :param req: The request's data dictionary :return: The request's data dictionary, optionally with the group data field(s) filled in """ if not (req["method"] == "POST" and req["url"].endswith("/analyses")): return req if self.group_id: LOGGER.debug("Adding group ID %s to request", self.group_id) req["payload"]["groupId"] = self.group_id if self.group_name: LOGGER.debug("Adding group name %s to request", self.group_name) req["payload"]["groupName"] = self.group_name return req def process_response(self, resp: RESPONSE_MODELS) -> RESPONSE_MODELS: """This method is irrelevant for adding our group data, so we don't do anything here. We still have to define it, though. Otherwise when calling the abstract base class' :code:`process_response` method, we will encounter an exception. :param resp: The response domain model :return: The very same response domain model """ LOGGER.debug("Forwarding the response without any action") return resp
StarcoderdataPython
1684593
<reponame>maykinmedia/maykin-email-templates from django.http import HttpResponse from django.views.generic import View from .utils import variable_help_text class TemplateVariableView(View): def get(self, request, *args, **kwargs): variables = variable_help_text(kwargs.get('template_type')) return HttpResponse(variables)
StarcoderdataPython
3343919
<reponame>LeWeis/captcha-break # coding=utf-8 from __future__ import print_function from gen.gen_captcha import gen_dataset, load_templates import cPickle as pickle from PIL import Image import numpy as np from gen.utils import vec2str def check_dataset(dataset, labels, index): data = np.uint8(dataset[index]).reshape((40, 100)) * 255 im = Image.fromarray(data) im.show() print("label:", vec2str(labels[index])) if __name__ == '__main__': templates = load_templates() dataset, labels = gen_dataset(1, templates) # generate one image check_dataset(dataset, labels, 0)
StarcoderdataPython
3269348
<filename>tests/scidash/tests/observations.py """Observations (experimental facts) used to parameterize tests""" import os, sys import quantities as pq import django path = os.path.realpath(__file__) for i in range(4): path = os.path.split(path)[0] CW_HOME = path sys.path.append(CW_HOME) sys.path.append(os.path.join(CW_HOME,'channelworm')) # Path to 'web_app' os.environ.setdefault( "DJANGO_SETTINGS_MODULE", "web_app.settings" ) django.setup() from django.conf import settings settings.DEBUG = False # Must be imported after Django setup from channelworm.ion_channel.models import GraphData def iv(doi,fig): sample_data = GraphData.objects.get(graph__experiment__reference__doi=doi, graph__figure_ref_address=fig) obs = list(zip(*sample_data.asarray())) iv = {'i/C':obs[1]*pq.A/pq.F, 'v':obs[0]*pq.mV} cell_capacitance = 1e-13 * pq.F # Capacitance is arbitrary if IV curves are scaled. iv['i'] = iv['i/C']*cell_capacitance return iv egl19_iv = iv('10.1083/jcb.200203055','2B') slo2_iv = iv('10.1113/jphysiol.2010.200683','7B')
StarcoderdataPython
3372131
from keras import layers from keras import models from keras.datasets import mnist from keras.utils import to_categorical import tensorflow as tf import os import contextlib import datetime # @contextlib.contextmanager # def options(options): # old_opts = tf.config.optimizer.get_experimental_options() # tf.config.optimizer.set_experimental_options(options) # try: # yield # finally: # tf.config.optimizer.set_experimental_options(old_opts) if __name__ == '__main__': # os.environ['CUDA_VISIBLE_DEVICES'] = '-1' os.environ["XLA_FLAGS"] = '--xla_gpu_cuda_data_dir="D:/Program Files/CUDA/v11.2/development"' os.environ["TF_GPU_THREAD_MODE"] = 'gpu_private' physical_devices = tf.config.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True) # important! # tf.config.experimental.enable_mlir_bridge() # tf.config.experimental.enable_mlir_graph_optimization() tf.config.optimizer.set_jit(True) model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.summary() (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images = train_images.reshape((60000, 28, 28, 1)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28, 28, 1)) test_images = test_images.astype('float32') / 255 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # with options({'constant_folding': True, 'debug_stripper': True}): # print(tf.config.optimizer.get_experimental_options()) logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1, profile_batch = '500,520') model.fit(train_images, train_labels, epochs=5, batch_size=64, callbacks=[tensorboard_callback]) test_loss, test_acc = model.evaluate(test_images, test_labels) print(f'Test Accuracy: {test_acc}') print(f'Test Loss: {test_loss}') print('Demo finished')
StarcoderdataPython
1669599
from django.db import models from django.contrib.auth.models import AbstractUser, UserManager # Create your models here.
StarcoderdataPython
163706
<reponame>eubr-bigsea/tahiti # -*- coding: utf-8 -*-} import logging import os import uuid import requests from flask import request, current_app, g from flask_babel import gettext from flask_restful import Resource from sqlalchemy import or_ from sqlalchemy.orm import joinedload from sqlalchemy.sql.elements import and_ from marshmallow.exceptions import ValidationError from tahiti.app_auth import requires_auth from tahiti.schema import * log = logging.getLogger(__name__) def optimize_workflow_query(workflows): return workflows \ .options(joinedload('tasks')) \ .options(joinedload('tasks.operation')) \ .options(joinedload('tasks.operation.current_translation')) \ .options(joinedload('platform')) \ .options(joinedload('platform.current_translation')) \ .options(joinedload('flows')) def update_port_name_in_flows(session, workflow_id): sql = """ UPDATE flow, operation_port s, operation_port t, operation_port_translation t1, operation_port_translation t2 SET source_port_name = t1.name, target_port_name = t2.name WHERE flow.source_port = s.id AND flow.target_port = t.id AND s.id = t1.id AND t.id = t2.id AND workflow_id = :id""" session.execute(sql, {'id': workflow_id}) def get_workflow(workflow_id): workflows = optimize_workflow_query( Workflow.query.filter_by(id=workflow_id).order_by( Workflow.name)) workflows = filter_by_permissions( workflows, list(PermissionType.values())) workflows = workflows.options( joinedload('tasks.operation.forms')).options( joinedload('tasks.operation.forms')).options( joinedload('tasks.operation.forms.fields')) workflow = workflows.first() if workflow is not None: # Set the json form for operations for task in workflow.tasks: current_form = json.loads(task.forms) if task.forms else {} if task.operation: for form in task.operation.forms: for field in form.fields: if field.name not in current_form: current_form[field.name] = { 'value': field.default} db.session.expunge(task) # in order to avoid unnecessary updates task.forms = json.dumps(current_form) return workflow def filter_by_permissions(workflows, permissions, consider_public=True): if g.user.id not in (0, 1): # It is not a inter service call sub_query = WorkflowPermission.query.with_entities( WorkflowPermission.workflow_id).filter( WorkflowPermission.permission.in_(permissions), WorkflowPermission.user_id == g.user.id) conditions = [ Workflow.user_id == g.user.id, Workflow.id.in_(sub_query) ] if consider_public: conditions.append(Workflow.is_public) workflows = workflows.filter(or_(*conditions)) return workflows def test_and_apply_filter(request, arg, workflow, condition): result = workflow value = request.args.get(arg) if value: result = workflow.filter(condition(value)) return result class WorkflowListApi(Resource): """ REST API for listing class Workflow """ @staticmethod @requires_auth def get(): workflows = Workflow.query try: if request.args.get('fields'): only = [x.strip() for x in request.args.get('fields').split(',')] else: only = ('id', 'name', 'platform.id', 'permissions') workflows = test_and_apply_filter(request, 'platform', workflows, lambda v: Workflow.platform.has(slug=v)) # platform = request.args.get('platform', None) # if platform: # workflows = workflows.filter( # Workflow.platform.has(slug=platform)) workflows = test_and_apply_filter(request, 'track', workflows, lambda v: Workflow.publishing_enabled == (v != 'false')) workflows = test_and_apply_filter(request, 'published', workflows, lambda v: Workflow.publishing_status == PublishingStatus.PUBLISHED) # is_track_filter = request.args.get('track') # if is_track_filter: # workflows = workflows.filter( # Workflow.publishing_enabled == (is_track_filter != 'false')) # is_published = request.args.get('published') # if is_published: # workflows = workflows.filter( # Workflow.publishing_status == PublishingStatus.PUBLISHED) workflows = test_and_apply_filter(request, 'enabled', workflows, lambda v: Workflow.enabled == (v != 'false')) # enabled_filter = request.args.get('enabled') # if enabled_filter: # workflows = workflows.filter( # Workflow.enabled == (enabled_filter != 'false')) workflows = test_and_apply_filter(request, 'template', workflows, lambda v: or_(and_(Workflow.user_id == g.user.id, Workflow.is_template), Workflow.is_system_template)) # template_only = request.args.get('template') # if template_only is not None: # template_only = template_only in ['1', 'true', 'True'] # else: # template_only = False # if template_only: # workflows = workflows.filter( # or_(and_(Workflow.user_id == g.user.id, # Workflow.is_template), # Workflow.is_system_template)) workflows = test_and_apply_filter(request, 'name', workflows, lambda v: Workflow.name.like('%%{}%%'.format(v))) # name_filter = request.args.get('name') # if name_filter: # workflows = workflows.filter( # Workflow.name.like( # '%%{}%%'.format(name_filter))) workflows = filter_by_permissions( workflows, list(PermissionType.values())) sort = request.args.get('sort', 'name') if sort not in ['name', 'id', 'user_name', 'updated', 'created']: sort = 'name' sort_option = getattr(Workflow, sort) if request.args.get('asc', 'true') == 'false': sort_option = sort_option.desc() workflows = optimize_workflow_query( workflows.order_by(sort_option)) page = int(request.args.get('page', 1)) page_size = int(request.args.get('size', 20)) page = int(page) pagination = workflows.paginate(page, page_size, False) if pagination.total < (page - 1) * page_size and page != 1: # Nothing in that specified page, return to page 1 pagination = workflows.paginate(1, page_size, False) result = { 'data': WorkflowListResponseSchema(many=True, only=only).dump( pagination.items), 'pagination': {'page': page, 'size': page_size, 'total': pagination.total, 'pages': pagination.total / page_size + 1}} return result except Exception as e: log.exception(e) result = dict(status="ERROR", message="Internal error") if current_app.debug: result['debug_detail'] = str(e) return result, 500 @staticmethod @requires_auth def post(): result, result_code = dict( status="ERROR", message="Missing json in the request body"), 400 if request.args.get('source'): original = Workflow.query.get(int(request.args.get('source'))) response_schema = WorkflowItemResponseSchema() cloned = response_schema.dump(original) # User field is not present in constructor platform = cloned.pop('platform') cloned['platform'] = Platform.query.get(platform['id']) cloned['user_id'] = g.user.id cloned['user_login'] = g.user.login cloned['user_name'] = g.user.name for task in cloned['tasks']: task['id'] = str(uuid.uuid4()) task['operation_id'] = task['operation']['id'] cloned['platform_id'] = cloned['platform']['id'] request_schema = WorkflowCreateRequestSchema() workflow = request_schema.load(cloned) elif request.json: data = request.json if 'user' in data: data.pop('user') request_schema = WorkflowCreateRequestSchema() response_schema = WorkflowItemResponseSchema() for task in data.get('tasks', {}): task['operation_id'] = task['operation']['id'] task['forms'] = {k: v for k, v in list(task['forms'].items()) if v.get('value') is not None or v.get('publishing_enabled') == True} params = {} params.update(data) params['user_id'] = g.user.id params['user_login'] = g.user.login params['user_name'] = g.user.name params['platform_id'] = params.get('platform', {}).get( 'id') or params.get('platform_id') params['subset_id'] = params.get('subset_id') workflow = request_schema.load(params) else: return result, result_code try: db.session.add(workflow) db.session.flush() update_port_name_in_flows(db.session, workflow.id) result, result_code = response_schema.dump( workflow), 200 if workflow.is_template: workflow.template_code = result db.session.add(workflow) db.session.commit() except ValidationError as e: result = { 'status': 'ERROR', 'message': gettext('Validation error'), 'errors': e.messages } except Exception as e: log.exception('Error in POST') result, result_code = dict(status="ERROR", message="Internal error"), 500 if current_app.debug or True: result['debug_detail'] = str(e) db.session.rollback() return result, result_code class WorkflowDetailApi(Resource): """ REST API for a single instance of class Workflow """ @staticmethod @requires_auth def get(workflow_id): workflow = get_workflow(workflow_id) if workflow is not None: return WorkflowItemResponseSchema().dump(workflow) else: return dict(status="ERROR", message="Not found"), 404 @staticmethod @requires_auth def delete(workflow_id): result, result_code = dict(status="ERROR", message="Not found"), 404 filtered = filter_by_permissions( Workflow.query, [PermissionType.WRITE]) workflow = filtered.filter(Workflow.id == workflow_id).first() if workflow is not None: try: # db.session.delete(workflow) # soft delete workflow.enabled = False db.session.commit() result, result_code = dict(status="OK", message="Deleted"), 200 except Exception as e: log.exception('Error in DELETE') result, result_code = dict(status="ERROR", message="Internal error"), 500 if current_app.debug: result['debug_detail'] = str(e) db.session.rollback() return result, result_code @staticmethod @requires_auth def patch(workflow_id): result = dict(status="ERROR", message="Insufficient data") result_code = 404 try: if request.json: data = request.json save_history = data.get('history', '1') == '1' request_schema = partial_schema_factory( WorkflowCreateRequestSchema) for task in data.get('tasks', {}): task['forms'] = {k: v for k, v in list(task['forms'].items()) if v.get('value') is not None or v.get('publishing_enabled') == True} task['operation_id'] = task['operation']['id'] for variable in data.get('variables', []): variable['parameters'] = json.dumps(variable['parameters']) # Ignore missing fields to allow partial updates params = {} params.update(data) if 'platform_id' in params and params['platform_id'] is None: params.pop('platform_id') if 'user' in params: del params['user'] # Only with permission if not ('ADMINISTRATOR' in g.user.permissions) and \ 'is_system_template' in params: del params['is_system_template'] # Keeps the same owner # params['user_id'] = g.user.id # params['user_login'] = g.user.login # params['user_name'] = g.user.name if params.get('forms') is not None: params['forms'] = json.dumps(params['forms']) else: params['forms'] = '{}' response_schema = WorkflowItemResponseSchema() workflow = request_schema.load(params, partial=True) filtered = filter_by_permissions( Workflow.query, [PermissionType.WRITE]) temp_workflow = filtered.filter( Workflow.id == workflow_id).first() if temp_workflow is not None: workflow.id = workflow_id workflow.updated = datetime.datetime.utcnow() workflow = db.session.merge(workflow) if (workflow.publishing_enabled and workflow.publishing_status is None): workflow.publishing_status = PublishingStatus.EDITING db.session.flush() update_port_name_in_flows(db.session, workflow.id) db.session.commit() historical_data = json.dumps( response_schema.dump(workflow)) # if workflow.is_template: # workflow.template_code = historical_data if save_history: history = WorkflowHistory( user_id=g.user.id, user_name=g.user.name, user_login=g.user.login, version=workflow.version, workflow=workflow, content=historical_data) db.session.add(history) db.session.commit() if workflow is not None: result, result_code = dict( status="OK", message="Updated", data=response_schema.dump( workflow)), 200 else: result = dict(status="ERROR", message="Not found") except ValidationError as e: result = { 'status': 'ERROR', 'message': gettext('Validation error'), 'errors': e.messages } except Exception as e: log.exception('Error in PATCH') result_code = 500 import sys result = {'status': "ERROR", 'message': sys.exc_info()[1]} return result, result_code class WorkflowHistoryApi(Resource): @staticmethod @requires_auth def post(workflow_id): result, result_code = dict(status="ERROR", message="Not found"), 404 params = request.json if 'version' in params: workflow = get_workflow(workflow_id) if workflow.user_id == g.user.id: history = WorkflowHistory.query.filter( WorkflowHistory.workflow_id == workflow_id, WorkflowHistory.version == int(params['version'])).one() # return json.load(history.content), 200 old = json.loads(history.content) old['platform_id'] = old['platform']['id'] old['user_id'] = g.user.id old['user_login'] = g.user.login old['user_name'] = g.user.name del old['user'] for i, task in enumerate(old['tasks']): task['operation_id'] = task['operation']['id'] if not task.get('name'): task['name'] = '{} {}'.format(task['operation']['name'], i) rw = WorkflowCreateRequestSchema().load(old) if rw.errors: result_code = 400 result = dict( status="ERROR", message="Version {} is not compatible anymore.".format( params['version'])) else: result = old result_code = 200 else: result, result_code = dict(status="ERROR", message="Not authorized"), 401 return result, result_code @staticmethod @requires_auth def get(workflow_id): history = WorkflowHistory.query.filter( WorkflowHistory.workflow_id == workflow_id).order_by( WorkflowHistory.date.desc()).limit(20) only = ('id', 'date', 'version', 'user_name') return {'data': WorkflowHistoryListResponseSchema( many=True, only=only).dump(history)} class WorkflowAddFromTemplateApi(Resource): @staticmethod @requires_auth def post(): params = request.json if 'template_id' in params and params.get('template_id'): workflow_id = int(params.get('template_id')) workflow = get_workflow(workflow_id) if workflow.user_id == g.user.id or workflow.is_system_template: # clone workflow response_schema = WorkflowItemResponseSchema() cloned = json.loads( json.dumps(response_schema.dump(workflow))) cloned['platform_id'] = cloned['platform']['id'] cloned['user_id'] = g.user.id cloned['user_login'] = g.user.login cloned['user_name'] = g.user.name cloned['name'] = params.get('name', 'workflow') cloned['is_template'] = False cloned['is_system_template'] = False # Marshmallow converts JSON value to dict and it causes # problems when saving data (issue #136); cloned['forms'] = workflow.forms del cloned['user'] old_task_ids = {} for i, task in enumerate(cloned['tasks']): new_task_id = str(uuid.uuid4()) old_task_ids[task['id']] = new_task_id task['id'] = new_task_id task['operation_id'] = task['operation']['id'] if not task.get('name'): task['name'] = '{} {}'.format(task['operation']['name'], i) for flow in cloned['flows']: flow['source_id'] = old_task_ids[flow['source_id']] flow['target_id'] = old_task_ids[flow['target_id']] request_schema = WorkflowCreateRequestSchema() form = request_schema.load(cloned) if not form.errors: new_workflow = form db.session.add(new_workflow) db.session.flush() db.session.commit() result, result_code = response_schema.dump( new_workflow), 200 else: result, result_code = dict(status="ERROR", message="Not authorized"), 401 else: result, result_code = dict(status="ERROR", message="Not authorized"), 401 else: result, result_code = dict(status="ERROR", message="Not found"), 404 return result, result_code @staticmethod @requires_auth def get(workflow_id): history = WorkflowHistory.query.filter( WorkflowHistory.workflow_id == workflow_id).order_by( WorkflowHistory.date.desc()).limit(20) only = ('id', 'date', 'version', 'user_name') return {'data': WorkflowHistoryListResponseSchema( many=True, only=only).dump(history)} class WorkflowPermissionApi(Resource): """ REST API for sharing a Workflow """ @staticmethod @requires_auth def post(workflow_id, user_id): result, result_code = dict( status="ERROR", message=gettext('Missing json in the request body')), 400 if request.json is not None: form = request.json to_validate = ['permission', 'user_name', 'user_login'] error = False for check in to_validate: if check not in form or form.get(check, '').strip() == '': result, result_code = dict( status="ERROR", message=gettext('Validation error'), errors={'Missing': check}), 400 error = True break if check == 'permission' and form.get( 'permission') not in list(PermissionType.values()): result, result_code = dict( status="ERROR", message=gettext('Validation error'), errors={'Invalid': check}), 400 error = True break if not error: try: filtered = _filter_by_permissions( Workflow.query, [PermissionType.WRITE]) workflow = filtered.filter( Workflow.id == workflow_id).first() if workflow is not None: conditions = [WorkflowPermission.workflow_id == workflow_id, WorkflowPermission.user_id == user_id] permission = WorkflowPermission.query.filter( *conditions).first() action_performed = 'Added' if permission is not None: action_performed = 'Updated' permission.permission = form['permission'] else: permission = WorkflowPermission( workflow=workflow, user_id=user_id, user_name=form['user_name'], user_login=form['user_login'], permission=form['permission']) db.session.add(permission) db.session.commit() result, result_code = {'message': action_performed, 'status': 'OK'}, 200 else: result, result_code = dict( status="ERROR", message=gettext("%(type)s not found.", type=gettext('Data source'))), 404 except Exception as e: log.exception('Error in POST') result, result_code = dict(status="ERROR", message=gettext( "Internal error")), 500 if current_app.debug: result['debug_detail'] = str(e) db.session.rollback() return result, result_code @staticmethod @requires_auth def delete(workflow_id, user_id): result, result_code = dict(status="ERROR", message=gettext("%(type)s not found.", type=gettext( 'Data source'))), 404 filtered = _filter_by_permissions(Workflow.query, [PermissionType.WRITE]) workflow = filtered.filter(Workflow.id == workflow_id).first() if workflow is not None: permission = WorkflowPermission.query.filter( WorkflowPermission.workflow_id == workflow_id, WorkflowPermission.user_id == user_id).first() if permission is not None: try: db.session.delete(permission) db.session.commit() result, result_code = dict( status="OK", message=gettext("%(what)s was successively deleted", what=gettext('Workflow'))), 200 except Exception as e: log.exception('Error in DELETE') result, result_code = dict(status="ERROR", message=gettext( "Internal error")), 500 if current_app.debug: result['debug_detail'] = str(e) db.session.rollback() return result, result_code
StarcoderdataPython
3218915
<filename>Chapter4/Aurora/src/test/python/apache/aurora/client/cli/test_diff.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import contextlib import os import textwrap from mock import Mock, call, patch from pystachio import Empty from apache.aurora.client.api import SchedulerProxy from apache.aurora.client.cli import EXIT_OK from apache.aurora.client.cli.jobs import DiffCommand from apache.aurora.client.cli.options import TaskInstanceKey from apache.aurora.config import AuroraConfig from apache.aurora.config.schema.base import Job from apache.thermos.config.schema_base import MB, Process, Resources, Task from .util import AuroraClientCommandTest, FakeAuroraCommandContext, mock_verb_options from gen.apache.aurora.api.constants import ACTIVE_STATES from gen.apache.aurora.api.ttypes import ( ConfigGroup, GetJobUpdateDiffResult, PopulateJobResult, Range, ResponseCode, Result, ScheduleStatusResult, TaskQuery ) class TestDiffCommand(AuroraClientCommandTest): def setUp(self): self._command = DiffCommand() self._mock_options = mock_verb_options(self._command) self._mock_options.instance_spec = TaskInstanceKey(self.TEST_JOBKEY, [0, 1]) self._fake_context = FakeAuroraCommandContext() self._fake_context.set_options(self._mock_options) self._mock_api = self._fake_context.get_api("test") @classmethod def get_job_config(self, is_cron=False): return AuroraConfig(job=Job( cluster='west', role='bozo', environment='test', name='the_job', service=True if not is_cron else False, cron_schedule='* * * * *' if is_cron else Empty, task=Task( name='task', processes=[Process(cmdline='ls -la', name='process')], resources=Resources(cpu=1.0, ram=1024 * MB, disk=1024 * MB) ), instances=3, )) @classmethod def create_status_response(cls): resp = cls.create_simple_success_response() resp.result = Result( scheduleStatusResult=ScheduleStatusResult(tasks=set(cls.create_scheduled_tasks()))) return resp @classmethod def create_failed_status_response(cls): return cls.create_blank_response(ResponseCode.INVALID_REQUEST, 'No tasks found for query') @classmethod def populate_job_config_result(cls): populate = cls.create_simple_success_response() populate.result = Result(populateJobResult=PopulateJobResult( taskConfig=cls.create_scheduled_tasks()[0].assignedTask.task)) return populate @classmethod def get_job_update_diff_result(cls): diff = cls.create_simple_success_response() task = cls.create_task_config('foo') diff.result = Result(getJobUpdateDiffResult=GetJobUpdateDiffResult( add=set([ConfigGroup( config=task, instances=frozenset([Range(first=10, last=10), Range(first=12, last=14)]))]), remove=frozenset(), update=frozenset([ConfigGroup( config=task, instances=frozenset([Range(first=11, last=11)]))]), unchanged=frozenset([ConfigGroup( config=task, instances=frozenset([Range(first=0, last=9)]))]) )) return diff def test_service_diff(self): config = self.get_job_config() self._fake_context.get_job_config = Mock(return_value=config) self._mock_api.populate_job_config.return_value = self.populate_job_config_result() self._mock_api.get_job_update_diff.return_value = self.get_job_update_diff_result() with contextlib.nested( patch('subprocess.call', return_value=0), patch('json.loads', return_value={})) as (subprocess_patch, _): result = self._command.execute(self._fake_context) assert result == EXIT_OK assert self._mock_api.populate_job_config.mock_calls == [call(config)] assert self._mock_api.get_job_update_diff.mock_calls == [ call(config, self._mock_options.instance_spec.instance) ] assert "\n".join(self._fake_context.get_out()) == textwrap.dedent("""\ This job update will: add instances: [10], [12-14] update instances: [11] with diff:\n\n not change instances: [0-9]""") assert subprocess_patch.call_count == 1 assert subprocess_patch.call_args[0][0].startswith( os.environ.get('DIFF_VIEWER', 'diff') + ' ') def test_service_diff_old_api(self): config = self.get_job_config() query = TaskQuery( jobKeys=[self.TEST_JOBKEY.to_thrift()], statuses=ACTIVE_STATES) self._fake_context.get_job_config = Mock(return_value=config) self._mock_api.populate_job_config.return_value = self.populate_job_config_result() self._mock_api.get_job_update_diff.side_effect = SchedulerProxy.ThriftInternalError("Expected") self._mock_api.query.return_value = self.create_empty_task_result() self._mock_api.build_query.return_value = query with contextlib.nested( patch('subprocess.call', return_value=0), patch('json.loads', return_value={})) as (subprocess_patch, _): result = self._command.execute(self._fake_context) assert result == EXIT_OK assert self._mock_api.populate_job_config.mock_calls == [call(config)] assert self._mock_api.get_job_update_diff.mock_calls == [ call(config, self._mock_options.instance_spec.instance) ] assert self._mock_api.query.mock_calls == [call(query)] assert subprocess_patch.call_count == 1 assert subprocess_patch.call_args[0][0].startswith( os.environ.get('DIFF_VIEWER', 'diff') + ' ') def test_cron_diff(self): config = self.get_job_config(is_cron=True) query = TaskQuery( jobKeys=[self.TEST_JOBKEY.to_thrift()], statuses=ACTIVE_STATES) self._fake_context.get_job_config = Mock(return_value=config) self._mock_api.populate_job_config.return_value = self.populate_job_config_result() self._mock_api.query.return_value = self.create_empty_task_result() self._mock_api.build_query.return_value = query with contextlib.nested( patch('subprocess.call', return_value=0), patch('json.loads', return_value={})) as (subprocess_patch, _): result = self._command.execute(self._fake_context) assert result == EXIT_OK assert self._mock_api.populate_job_config.mock_calls == [call(config)] assert self._mock_api.query.mock_calls == [call(query)] assert subprocess_patch.call_count == 1 assert subprocess_patch.call_args[0][0].startswith( os.environ.get('DIFF_VIEWER', 'diff') + ' ')
StarcoderdataPython
156271
#!/usr/bin/env python3 """ Command line interface for the Ivaldi IoT scientific sensor client. """ # Standard library imports import argparse import sys # Local imports import ivaldi import ivaldi.monitor import ivaldi.link def generate_arg_parser(): """ Generate the argument parser for Ivaldi. Returns ------- arg_parser : argparse.ArgumentParser The generated argument parser instance. """ parser_main = argparse.ArgumentParser( description="A lightweight client for monitoring IoT sensors.", argument_default=argparse.SUPPRESS) parser_main.add_argument( "--version", action="store_true", help="Print the Ivaldi version and exit") subparsers = parser_main.add_subparsers( title="Commands", help="Subcommand to execute", metavar="Command") parser_monitor = subparsers.add_parser( "monitor", help="Monitor the sensor status and print to the terminal", argument_default=argparse.SUPPRESS) parser_monitor.set_defaults(func=ivaldi.monitor.start_monitoring) parser_send = subparsers.add_parser( "send", help="Monitor the connected sensor and send the data via UART", argument_default=argparse.SUPPRESS) parser_send.set_defaults(func=ivaldi.link.send_monitoring_data) parser_recieve = subparsers.add_parser( "recieve", help="Recieve and print the IoT sensor data via UART", argument_default=argparse.SUPPRESS) parser_recieve.set_defaults(func=ivaldi.link.recieve_monitoring_data) for parser in [parser_monitor, parser_send]: parser.add_argument( "pin_rain", type=int, help="GPIO pin to use for rain gauge, in BCM (Broadcom) numbering") parser.add_argument( "pin_wind", type=int, help="GPIO pin to use for wind speed, in BCM (Broadcom) numbering") parser.add_argument( "channel_wind", type=int, help="ADC channel (0-3) to use for the wind direction sensor") parser.add_argument( "channel_soil", type=int, help="ADC channel (0-3) to use for the soil moisture sensor") parser.add_argument( "--period-s", type=float, help="Update period, in s") for parser in [parser_monitor, parser_recieve]: parser.add_argument( "--output-path", help="CSV file to output to, none if not passed") parser.add_argument( "--log", action="store_true", help="Print every update to a new line") for parser in [parser_send, parser_recieve]: parser.add_argument( "--serial-device", help="The UART device to use (e.g. '/dev/ttyAMA0')") return parser_main def main(): """ Parse command line arguments and start the sensor monitor mainloop. Returns ------- None. """ arg_parser = generate_arg_parser() parsed_args = arg_parser.parse_args() if getattr(parsed_args, "version", None): print(f"Ivaldi version {ivaldi.__version__}") sys.exit() func_to_dispatch = parsed_args.func del parsed_args.func func_to_dispatch(**vars(parsed_args)) if __name__ == "__main__": main()
StarcoderdataPython
1783280
# Copyright (C) 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Auto-generated file for BMP180 v0.1.0. # Generated from peripherals/BMP180.yaml using Cyanobyte Codegen v0.1.0 from i2cdevice import Device, Register, BitField I2C_ADDR = 119 CONTROL = Register('CONTROL', 244, read_only=False, bitwidth=8) PRESSURECALAC1 = Register('PRESSURECALAC1', 170, read_only=True, bitwidth=16) PRESSURECALAC2 = Register('PRESSURECALAC2', 172, read_only=True, bitwidth=16) PRESSURECALVB1 = Register('PRESSURECALVB1', 182, read_only=True, bitwidth=16) PRESSURECALVB2 = Register('PRESSURECALVB2', 184, read_only=True, bitwidth=16) RESULT = Register('RESULT', 246, read_only=True, bitwidth=16) TEMPCAL3 = Register('TEMPCAL3', 174, read_only=True, bitwidth=16) TEMPCAL4 = Register('TEMPCAL4', 176, read_only=True, bitwidth=16) TEMPCAL5 = Register('TEMPCAL5', 178, read_only=True, bitwidth=16) TEMPCAL6 = Register('TEMPCAL6', 180, read_only=True, bitwidth=16) TEMPCALMC = Register('TEMPCALMC', 188, read_only=True, bitwidth=16) TEMPCALMD = Register('TEMPCALMD', 190, read_only=True, bitwidth=16) bmp180 = Device(I2C_ADDR, registers=( CONTROL, PRESSURECALAC1, PRESSURECALAC2, PRESSURECALVB1, PRESSURECALVB2, RESULT, TEMPCAL3, TEMPCAL4, TEMPCAL5, TEMPCAL6, TEMPCALMC, TEMPCALMD ))
StarcoderdataPython
184985
# -*- coding: utf-8 -*- """ Created on Mon Oct 24 15:53:51 2016 @author: jdorvinen """ import numpy as np def kriebel_dean(w_cm, B, D, W, m, S, T_d, H_b, gamma=0.78): '''Calculates storm erosion based on the method presented in, <NAME>., and <NAME>., 'Convolution method for time-dependent beach-profile response' J. Waterway, Port, Coastal, Ocean Eng., 1993, 119(2): 204-226 Inputs: REQUIRED \n w_cm = sediment fall velocity (cm/s) \n B = Berm height above mean sea-level (meters) \n D = Dune height (meters) \n W = Width of the back-shore (meters) \n m = Linear beach face slope (m/m) \n S = Water-level rise ('storm-surge') (meters) \n T_d = Storm duration (hours) \n H_b = Breaking wave height (meters) \n OPTIONAL \n gamma = Breaker index, usually taken to be 0.78-1.0 \n Returns: V_max = Maximum shoreline erosion volume (m**3) \n R_max = Maximum shoreline erosion distance (m) ''' # Constants g = 9.8066 # gravitational acceleration (m/s/s) # Sediment data #d_50 = 0.3 # mass-mean sediment grain-size diameter (mm) w_cm = w_cm # sediment fall velocity (cm/s) w = w_cm/100 # m/sec # Profile data # Based on equilibrium profile of the form 'x=(h/A)**(3/2)', where h = the # water depth at a distance x offshore from the still-water level A = 2.25*((w**2)/g)**(1/3) # Eq. 15 'parameter governs profile steepness' # valid for sand where 0.1mm < d_50 < 0.4mm B = B # Berm height above mean sea-level (meters) D = D # Dune height (meters) W = W # Width of the back-shore (meters) m = m # Linear beach face slope (m/m) # Storm data S = S # given water-level rise ('storm-surge') (meters) T_d = T_d # Storm duration (hours) gamma = gamma # Breaker index, usually taken to be 0.78-1.0. H_b = H_b # Breaking wave height (meters) h_b = H_b/gamma # Breaking depth, assumed to remain constant (meters) # Active profile width 'x_b', x_0 = the distance from the still-water # shoreline to the virtual origin of the concave equilibrium profile form, # given by x_0 = h_T/3m, where h_T is the depth at which the linear slope # is tangent to the concave profile, which may be shown to equal # 4A**3/9m**2. h_T = (4/9)*(A**3/m**2) # Eq. 16b_1 x_0 = h_T/(3*m) # Eq. 16b_2 x_b = x_0+(h_b/A)**(3/2) # Eq. 23 # Calculate erosion potential # Maximum erosion potential, 'R_inf', and maximum potential volume eroded, # 'V_inf', based on an equilibrium profile with a linear beach slope. #R_inf = S*(x_b-(h_b/m)) / (B+h_b-(S/2)) # Eq. 22 #V_inf = R_inf*B + (S**2)/(2*m) - (2/5)*(S**(5/2))/(A**(3/2)) # Eq. 24 # Calculate maximum erosion potential 'R_inf' and maximum potential volume # eroded 'V_inf' based on an equilibrium profile with a dune. # Dune with no back-shore. # R_inf = S*(x_b-(h_b/m))/(B+D+h_b-(S/2)) # Eq. 25 # Dune with a wide back-shore. R_inf = (S*(x_b-(h_b/m)) - (W*(B+h_b-(S/2)))) / (B+D+h_b-(S/2)) # Eq. 26 # Volume eroded V_inf = R_inf*D + (R_inf+W)*(B-S) # Eq. 27 --> used in K&D examples # Volume eroded above original sea level #Eq. 28 # V_minf = R_inf*D +(R_inf+W)*B+(S**2)/(2*m)-(2/5)*(S**(5/2))/(A**(3/2)) # Calculate erosion timescale # Time scale of profile response C_1 = 320 # Empirical coefficient from Kriebel and Dean 1993 # Time scale parameter # Eq.31 (sec) T_sec = ((H_b**(3/2))/(g**(1/2) * A**3)) / (1+(h_b/B)+(m*x_b)/h_b) T_s = C_1*T_sec/3600 # convert seconds to hours # Combine erosion potential and timescale # Beach response to idealized storm surge alpha = 1/T_s sigma = np.pi/T_d beta = 2*sigma/alpha # 2*np.pi*(T_s/T_d) # Eq. 10 # R_t/R_inf=0.5*(1 - \ # (beta**2/(1+beta**2))*np.exp(-(2*sigma*t)/beta) - \ # (1/(1+beta**2))*(np.cos(2*sigma*t)+beta*np.sin(2*sigma*t))) # Setting time derivative of Eq. 10 to zero leads to Eq. 12, where t_max is # the time at which maximum erosion will take place. def find_t_max(t_max): """ doc string """ zero = np.cos(2*sigma*t_max) - \ (1/beta)*np.sin(2*sigma*t_max) - \ np.exp(-(2*sigma*t_max)/beta) # Eq. 12 return zero # This can then be solved iteratively to find the time at which maximum # erosion occurs, 't_max' (hrs) import scipy.optimize as opt t_max = opt.brentq(find_t_max, a=T_d/2, b=T_d) # Finally calculate maximum shoreline recession and volumetric erosion for # the given storm parameters. R_max = R_inf*0.5*(1-np.cos(2*sigma*t_max)) # Eq. 13 V_max = V_inf*(R_max/R_inf) # Turn this block on if need to debug ''' print("R_max: {:.1f} (m)".format(R_max)) print("R_inf: {:.1f} (m)".format(R_inf)) print("R_max/R_inf: {:.2f}".format(R_max/R_inf)) print("V_max: {:.1f} (m**3/m)".format(V_max)) print("V_inf: {:.1f} (m**#/m)".format(V_inf)) print("T_s: {:.2f} (h)".format(T_s)) print("t_max: {:.1f} (h)".format(t_max)) print("A: {:.3f}".format(A)) print("alpha: {:.3f} (1/h)".format(alpha)) print("beta: {:.3f}".format(beta)) print("sigma: {:.3f}".format(sigma)) ''' return (V_max, R_max, V_inf, R_inf) def recovery(V_max, interim, T_a=400): '''Calculate eroded sand-volume post recovery during storm interim. Inputs: V_max = Initially erroded volume (m**3) interim = Period of calm between storms (h) T_a = Characteristic accretive timescale (h) Outputs: V_recoverd = Eroded volume remaining after recovery (m**3) ''' from numpy import exp V_recovered = V_max*exp(-1*interim/T_a) # Eq. 28 Callaghan et al. 2008 return V_recovered
StarcoderdataPython
4840484
# Common constants and functions for reverting scripts. import getpass import base64 import logging import re import requests try: from lxml import etree except ImportError: try: import xml.etree.cElementTree as etree except ImportError: import xml.etree.ElementTree as etree try: input = raw_input except NameError: pass API_ENDPOINT = 'https://api.openstreetmap.org/api/0.6/' class HTTPError(Exception): def __init__(self, code, message): self.code = code self.message = message def __str__(self): return 'HTTPError({}, {})'.format(self.code, self.message) class RevertError(Exception): def __init__(self, msg): self.message = msg def __str__(self): return 'RevertError({})'.format(self.message) def api_request(endpoint, method='GET', sysexit_message=None, raw_result=False, headers=None, **kwargs): if not headers: headers = {} headers['Content-Type'] = 'application/xml' try: resp = requests.request(method, API_ENDPOINT + endpoint, headers=headers, **kwargs) resp.encoding = 'utf-8' if resp.status_code != 200: raise HTTPError(resp.status_code, resp.text) if resp.content and not raw_result: return etree.fromstring(resp.content) except Exception as e: if sysexit_message is not None: raise RevertError(': '.join((sysexit_message, str(e)))) raise e return resp.text def read_auth(): """Read login and password from keyboard, and prepare an basic auth header.""" ok = False while not ok: login = input('OSM Login: ') auth_header = 'Basic {0}'.format(base64.b64encode('{0}:{1}'.format( login, getpass.getpass('OSM Password: ')).encode('utf-8')).decode('utf-8')) try: result = api_request('user/details', headers={'Authorization': auth_header}) ok = len(result) > 0 except Exception as e: logging.error(e) if not ok: logging.warning('You must have mistyped. Please try again.') return auth_header def obj_to_dict(obj): """Converts XML object to an easy to use dict.""" if obj is None: return None res = {} res['type'] = obj.tag res['id'] = obj.get('id') res['version'] = int(obj.get('version')) res['deleted'] = obj.get('visible') == 'false' if obj.tag == 'node' and 'lon' in obj.keys() and 'lat' in obj.keys(): res['coords'] = (obj.get('lon'), obj.get('lat')) res['tags'] = {tag.get('k'): tag.get('v') for tag in obj.findall('tag')} if obj.tag == 'way': res['refs'] = [x.get('ref') for x in obj.findall('nd')] elif obj.tag == 'relation': res['refs'] = [(x.get('type'), x.get('ref'), x.get('role')) for x in obj.findall('member')] return res def dict_to_obj(obj): """Converts object dict back to an XML element.""" if obj is None: return None res = etree.Element(obj['type'], {'id': str(obj['id']), 'version': str(obj['version'])}) res.set('visible', 'false' if obj['deleted'] else 'true') if 'coords' in obj: res.set('lon', obj['coords'][0]) res.set('lat', obj['coords'][1]) if 'tags' in obj: for k, v in obj['tags'].items(): res.append(etree.Element('tag', {'k': k, 'v': v})) if not obj['deleted']: if obj['type'] == 'way': for nd in obj['refs']: res.append(etree.Element('nd', {'ref': nd})) elif obj['type'] == 'relation': for member in obj['refs']: res.append(etree.Element('member', {'type': member[0], 'ref': member[1], 'role': member[2]})) return res def changes_to_osc(changes, changeset_id=None): # Set explicit actions for each changed object for c in changes: if 'version' not in c or c['version'] <= 0: c['action'] = 'create' elif 'deleted' in c and c['deleted']: c['action'] = 'delete' else: c['action'] = 'modify' # Sort changes, so created nodes are first, and deleted are last def change_as_key(ch): act = ['create', 'modify', 'delete'].index(ch['action']) typ = ['node', 'way', 'relation'].index(ch['type']) if act == 2: typ = 2 - typ return '{0}{1}{2}'.format(act, typ, ch['id']) changes.sort(key=change_as_key) osc = etree.Element('osmChange', {'version': '0.6'}) for c in changes: act = etree.SubElement(osc, c['action']) el = dict_to_obj(c) if changeset_id: el.set('changeset', str(changeset_id)) act.append(el) try: return etree.tostring(osc, pretty_print=True, encoding='utf-8', xml_declaration=True) except TypeError: # xml.etree.ElementTree does not support pretty printing return etree.tostring(osc, encoding='utf-8') def changeset_xml(changeset_tags): create_xml = etree.Element('osm') ch = etree.SubElement(create_xml, 'changeset') for k, v in changeset_tags.items(): ch.append(etree.Element('tag', {'k': k, 'v': v})) return etree.tostring(create_xml) def upload_changes(changes, changeset_tags): """Uploads a list of changes as tuples (action, obj_dict).""" if not changes: logging.info('No changes to upload.') return False # Now we need the OSM credentials auth_header = read_auth() headers = {'Authorization': auth_header} try: changeset_id = int(api_request( 'changeset/create', 'PUT', raw_result=True, data=changeset_xml(changeset_tags), headers=headers, )) logging.info('Writing to changeset %s', changeset_id) except Exception as e: logging.exception(e) logging.error('Failed to create changeset: %s', e) return False osc = changes_to_osc(changes, changeset_id) ok = True try: api_request( 'changeset/{}/upload'.format(changeset_id), 'POST', data=osc, headers=headers ) except HTTPError as e: logging.error('Server rejected the changeset with code %s: %s', e.code, e.message) if e.code == 412: # Find the culprit for a failed precondition m = re.search(r'Node (\d+) is still used by (way|relation)s ([0-9,]+)', e.message) if m: # Find changeset for the first way or relation that started using that node pass else: m = re.search(r'(Way|The relation) (\d+) is .+ relations? ([0-9,]+)', e.message) if m: # Find changeset for the first relation that started using that way or relation pass else: m = re.search(r'Way (\d+) requires .+ id in \(([0-9,]+\)', e.message) if m: # Find changeset that deleted at least the first node in the list pass else: m = re.search(r'Relation with id (\d+) .+ due to (\w+) with id (\d+)', e.message) if m: # Find changeset that added member to that relation pass except Exception as e: ok = False logging.error('Failed to upload changetset contents: %s', e) # Not returning, since we need to close the changeset try: api_request('changeset/{}/close'.format(changeset_id), 'PUT', headers=headers) except Exception as e: logging.warning( 'Failed to close changeset (it will close automatically in an hour): %s', e) return ok
StarcoderdataPython
1766596
""" Dictionary of standard bond lengths """ from phydat.phycon import ANG2BOHR # Dictionary of A-B single bond lengths LEN_DCT = { ('H', 'H'): 0.74 * ANG2BOHR, ('H', 'C'): 1.09 * ANG2BOHR, ('H', 'N'): 1.01 * ANG2BOHR, ('H', 'O'): 0.95 * ANG2BOHR, ('H', 'Cl'): 1.275 * ANG2BOHR, ('C', 'C'): 1.54 * ANG2BOHR, ('C', 'N'): 1.47 * ANG2BOHR, ('C', 'O'): 1.43 * ANG2BOHR, ('N', 'N'): 1.45 * ANG2BOHR, ('N', 'O'): 1.45 * ANG2BOHR, ('O', 'O'): 1.40 * ANG2BOHR, ('C', 'Cl'): 1.74 * ANG2BOHR, ('Cl', 'Cl'): 2.0 * ANG2BOHR, }
StarcoderdataPython
1754077
from django.core.exceptions import ValidationError class HttpError(Exception): pass class TrustChainHttpError(HttpError): pass class UnknownKid(Exception): pass class MissingJwksClaim(ValidationError): pass class MissingAuthorityHintsClaim(ValidationError): pass class NotDescendant(ValidationError): pass class TrustAnchorNeeded(ValidationError): pass class MetadataDiscoveryException(ValidationError): pass class MissingTrustMark(ValidationError): pass class InvalidRequiredTrustMark(ValidationError): pass class InvalidTrustchain(ValidationError): pass class InvalidEntityConfiguration(ValidationError): pass
StarcoderdataPython
188043
<reponame>yiming107/Pointnet_Pointnet2_pytorch<filename>train_cls.py """ Author: Benny Date: Nov 2019 Modified by: Yiming Main changes: compatible to train other dataset """ from data_utils.ModelNetDataLoader import ModelNetDataLoader from data_utils.ReplicaDataLoader import ReplicaDataLoader import argparse import numpy as np import os import torch import datetime import logging from pathlib import Path from tqdm import tqdm import sys import provider import importlib import shutil from torch.utils.tensorboard import SummaryWriter import torch.nn as nn BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = BASE_DIR sys.path.append(os.path.join(ROOT_DIR, 'models')) def parse_args(): '''PARAMETERS''' parser = argparse.ArgumentParser('PointNet') parser.add_argument('--batch_size', type=int, default=16, help='batch size in training [default: 24]') parser.add_argument('--dataset_name', type=str, default="replica", help='dataset name to use [default: modelnet40]') #modelnet40_normal_resampled parser.add_argument('--model', default='pointnet2_cls_msg', help='model name [default: pointnet_cls]') parser.add_argument('--epoch', default=1000, type=int, help='number of epoch in training [default: 200]') parser.add_argument('--learning_rate', default=0.001, type=float, help='learning rate in training [default: 0.001]') parser.add_argument('--gpu', type=str, default='0', help='specify gpu device [default: 0]') parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 1024]') parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer for training [default: Adam]') parser.add_argument('--log_dir', type=str, default='pointnet2_cls_msg', help='experiment root') parser.add_argument('--decay_rate', type=float, default=1e-4, help='decay rate [default: 1e-4]') parser.add_argument('--normal', action='store_true', default=False, help='Whether to use normal information [default: False]') return parser.parse_args() def test(model, loader, device, num_class): mean_correct = [] class_acc = np.zeros((num_class, 3)) for j, data in tqdm(enumerate(loader), total=len(loader)): points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.to(device), target.to(device) classifier = model.eval() pred, _ = classifier(points) pred_choice = pred.data.max(1)[1] for cat in np.unique(target.cpu()): classacc = pred_choice[target==cat].eq(target[target==cat].long().data).cpu().sum() class_acc[cat,0]+= classacc.item()/float(points[target==cat].size()[0]) class_acc[cat,1]+=1 correct = pred_choice.eq(target.long().data).cpu().sum() mean_correct.append(correct.item()/float(points.size()[0])) class_acc[:,2] = class_acc[:,0]/ class_acc[:,1] class_acc = np.mean(class_acc[:,2]) instance_acc = np.mean(mean_correct) return instance_acc, class_acc def main(args): def log_string(str): logger.info(str) print(str) '''HYPER PARAMETER''' os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu '''CREATE DIR''' timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')) experiment_dir = Path('./log/') experiment_dir.mkdir(exist_ok=True) dataset_name = args.dataset_name experiment_dir = experiment_dir.joinpath('classification_{}'.format(dataset_name)) experiment_dir.mkdir(exist_ok=True) if args.log_dir is None: experiment_dir = experiment_dir.joinpath(timestr) else: experiment_dir = experiment_dir.joinpath(args.log_dir) experiment_dir.mkdir(exist_ok=True) checkpoints_dir = experiment_dir.joinpath('checkpoints/') checkpoints_dir.mkdir(exist_ok=True) log_dir = experiment_dir.joinpath('logs/') log_dir.mkdir(exist_ok=True) '''LOG''' args = parse_args() logger = logging.getLogger("Model") logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model)) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) log_string('PARAMETER ...') log_string(args) '''TENSORBOARD LOG''' writer = SummaryWriter() '''DATA LOADING''' log_string('Load dataset ...') DATA_PATH = os.path.join(ROOT_DIR, 'data', dataset_name) print("loading dataset from {}".format(dataset_name)) if 'modelnet' in dataset_name: TRAIN_DATASET = ModelNetDataLoader(DATA_PATH, split='train', normal_channel=args.normal) TEST_DATASET = ModelNetDataLoader(DATA_PATH, split='test', normal_channel=args.normal) num_class = 40 else: print(DATA_PATH) TRAIN_DATASET = ReplicaDataLoader(DATA_PATH, split='train', uniform=True, normal_channel=False, rot_transform=True) TEST_DATASET = ReplicaDataLoader(DATA_PATH, split='test', uniform=True, normal_channel=False, rot_transform=False) num_class = 31 trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=6) testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=6) '''MODEL LOADING''' print("Number of classes are {:d}".format(num_class)) MODEL = importlib.import_module(args.model) shutil.copy('./models/%s.py' % args.model, str(experiment_dir)) shutil.copy('./models/pointnet_util.py', str(experiment_dir)) print("Obtain GPU device ") train_GPU = True device = torch.device("cuda" if (torch.cuda.is_available() and train_GPU) else "cpu") print(device) print("Load the network to the device ") classifier = MODEL.get_model(num_class, normal_channel=args.normal).to(device) print("Load the loss to the device ") criterion = MODEL.get_loss().to(device) if os.path.exists((str(experiment_dir) + '/checkpoints/best_model.pth')): checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth') start_epoch = checkpoint['epoch'] classifier.load_state_dict(checkpoint['model_state_dict']) # strict set to false to allow using the model trained with modelnet else: start_epoch = 0 if dataset_name == 'replica': log_string('Use pretrain model of Model net') # double check again if there is pretrained modelnet model checkpoint = torch.load(str(experiment_dir).replace("replica", 'modelnet40_normal_resampled')+'/checkpoints/best_model.pth') classifier = MODEL.get_model(40, normal_channel=args.normal).to(device) classifier.load_state_dict(checkpoint['model_state_dict']) classifier.fc3 = nn.Linear(256, num_class).to(device) print(classifier) else: log_string('No existing model, starting training from scratch...') if args.optimizer == 'Adam': print("Using Adam opimizer ") optimizer = torch.optim.Adam( classifier.parameters(), lr=args.learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=args.decay_rate ) else: optimizer = torch.optim.SGD(classifier.parameters(), lr=0.01, momentum=0.9) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.7) global_epoch = 0 global_step = 0 best_instance_acc = 0.0 best_class_acc = 0.0 mean_correct = [] '''TRANING''' logger.info('Start training...') for epoch in range(start_epoch, args.epoch): loss_array = np.zeros((len(trainDataLoader),1)) log_string('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch)) classifier.train() # setting the model to train mode print("Clear GPU cache ...") torch.cuda.empty_cache() scheduler.step() for batch_id, data in tqdm(enumerate(trainDataLoader, 0), total=len(trainDataLoader), smoothing=0.9): points, target = data points = points.data.numpy() points = provider.random_point_dropout(points) points[:, :, 0:3] = provider.random_scale_point_cloud(points[:, :, 0:3]) points[:, :, 0:3] = provider.shift_point_cloud(points[:, :, 0:3]) points = torch.Tensor(points) target = target[:, 0] points = points.transpose(2, 1) points, target = points.to(device), target.to(device) optimizer.zero_grad() pred, trans_feat = classifier(points) ### This is the part of the runtime error: loss = criterion(pred, target.long(), trans_feat) loss_array[batch_id] = loss.cpu().detach().numpy() pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.long().data).cpu().sum() mean_correct.append(correct.item() / float(points.size()[0])) loss.backward() optimizer.step() global_step += 1 train_instance_acc = np.mean(mean_correct) log_string('Train Instance Accuracy: %f' % train_instance_acc) avg_loss = np.mean(loss_array[:]) writer.add_scalar("Loss/train", avg_loss, epoch) ## This is for validation with torch.no_grad(): instance_acc, class_acc = test(classifier.eval(), testDataLoader, device, num_class) writer.add_scalar("ClassAccuracy/test", class_acc, epoch) writer.add_scalar("InstanceAccuracy/test", instance_acc, epoch) if (instance_acc >= best_instance_acc): best_instance_acc = instance_acc best_epoch = epoch + 1 if (class_acc >= best_class_acc): best_class_acc = class_acc log_string('Test Instance Accuracy: %f, Class Accuracy: %f'% (instance_acc, class_acc)) log_string('Best Instance Accuracy: %f, Class Accuracy: %f'% (best_instance_acc, best_class_acc)) if (instance_acc >= best_instance_acc): logger.info('Save model...') savepath = str(checkpoints_dir) + '/best_model.pth'.format(epoch) log_string('Saving at %s'% savepath) state = { 'epoch': best_epoch, 'instance_acc': instance_acc, 'class_acc': class_acc, 'model_state_dict': classifier.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), } torch.save(state, savepath) global_epoch += 1 logger.info('End of training...') writer.flush() writer.close() if __name__ == '__main__': args = parse_args() main(args)
StarcoderdataPython
3223378
<reponame>Dou-Yu-xuan/deep-learning-visal import torch import torch.nn as nn import torch.nn.functional as F class _PositionAttentionModule(nn.Module): """ Position attention module""" def __init__(self, in_channels, **kwargs): super(_PositionAttentionModule, self).__init__() self.conv_b = nn.Conv2d(in_channels, in_channels // 8, 1) self.conv_c = nn.Conv2d(in_channels, in_channels // 8, 1) self.conv_d = nn.Conv2d(in_channels, in_channels, 1) self.alpha = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self, x): batch_size, _, height, width = x.size() feat_b = self.conv_b(x).view(batch_size, -1, height * width).permute(0, 2, 1) feat_c = self.conv_c(x).view(batch_size, -1, height * width) attention_s = self.softmax(torch.bmm(feat_b, feat_c)) feat_d = self.conv_d(x).view(batch_size, -1, height * width) feat_e = torch.bmm(feat_d, attention_s.permute(0, 2, 1)).view(batch_size, -1, height, width) out = self.alpha * feat_e + x return out class _ChannelAttentionModule(nn.Module): """Channel attention module""" def __init__(self, **kwargs): super(_ChannelAttentionModule, self).__init__() self.beta = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self, x): batch_size, _, height, width = x.size() feat_a = x.view(batch_size, -1, height * width) feat_a_transpose = x.view(batch_size, -1, height * width).permute(0, 2, 1) attention = torch.bmm(feat_a, feat_a_transpose) attention_new = torch.max(attention, dim=-1, keepdim=True)[0].expand_as(attention) - attention attention = self.softmax(attention_new) feat_e = torch.bmm(attention, feat_a).view(batch_size, -1, height, width) out = self.beta * feat_e + x return out class _DAHead(nn.Module): def __init__(self, in_channels, nclass, aux=True, norm_layer=nn.BatchNorm2d, norm_kwargs=None, **kwargs): super(_DAHead, self).__init__() self.aux = aux inter_channels = in_channels // 4 self.conv_p1 = nn.Sequential( nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False), norm_layer(inter_channels, **({} if norm_kwargs is None else norm_kwargs)), nn.ReLU(True) ) self.conv_c1 = nn.Sequential( nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False), norm_layer(inter_channels, **({} if norm_kwargs is None else norm_kwargs)), nn.ReLU(True) ) self.pam = _PositionAttentionModule(inter_channels, **kwargs) self.cam = _ChannelAttentionModule(**kwargs) self.conv_p2 = nn.Sequential( nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False), norm_layer(inter_channels, **({} if norm_kwargs is None else norm_kwargs)), nn.ReLU(True) ) self.conv_c2 = nn.Sequential( nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False), norm_layer(inter_channels, **({} if norm_kwargs is None else norm_kwargs)), nn.ReLU(True) ) self.out = nn.Sequential( nn.Dropout(0.1), nn.Conv2d(inter_channels, nclass, 1) ) if aux: self.conv_p3 = nn.Sequential( nn.Dropout(0.1), nn.Conv2d(inter_channels, nclass, 1) ) self.conv_c3 = nn.Sequential( nn.Dropout(0.1), nn.Conv2d(inter_channels, nclass, 1) ) def forward(self, x): feat_p = self.conv_p1(x) feat_p = self.pam(feat_p) feat_p = self.conv_p2(feat_p) feat_c = self.conv_c1(x) feat_c = self.cam(feat_c) feat_c = self.conv_c2(feat_c) feat_fusion = feat_p + feat_c outputs = [] fusion_out = self.out(feat_fusion) outputs.append(fusion_out) if self.aux: p_out = self.conv_p3(feat_p) c_out = self.conv_c3(feat_c) outputs.append(p_out) outputs.append(c_out) return tuple(outputs)
StarcoderdataPython
180941
<gh_stars>1-10 from django.contrib.syndication.views import Feed from django.template.defaultfilters import truncatewords_html from django.utils.safestring import mark_safe from django.utils.html import strip_tags from .models import Post class LatestPostsFeed(Feed): title = 'Bloggable' link = '' description = 'Latest posts of Bloggable' def items(self): return Post.published.all()[:10] def item_title(self, item): return item.title def item_description(self, item): return truncatewords_html(item.content,60)
StarcoderdataPython
3389632
<gh_stars>100-1000 from __future__ import unicode_literals from tests.utils import ConverterTestCase class StructTestCase(ConverterTestCase): def test_typedef_primitives(self): self.assertGeneratedOutput( """ typedef unsigned foo1; typedef unsigned short foo2; typedef unsigned int foo3; typedef unsigned long foo4; typedef unsigned long long foo5; typedef signed foo6; typedef short foo7; typedef int foo8; typedef long foo9; typedef long long foo10; typedef float bar1; typedef double bar2; """, """ foo1 = int foo2 = int foo3 = int foo4 = int foo5 = int foo6 = int foo7 = int foo8 = int foo9 = int foo10 = int bar1 = float bar2 = float """ ) def test_typedef_commutative(self): self.assertGeneratedOutput( """ typedef int foo1; typedef foo1 foo2; """, """ foo1 = int foo2 = foo1 """ ) def test_typedef_struct(self): self.assertGeneratedOutput( """ typedef struct { float x; float y; } Foo; """, """ class Foo: def __init__(self, x=None, y=None): self.x = x self.y = y """ ) def test_typedef_named_struct(self): self.assertGeneratedOutput( """ typedef struct Foo { float x; float y; } Bar; """, """ class Foo: def __init__(self, x=None, y=None): self.x = x self.y = y Bar = Foo """ )
StarcoderdataPython
1684409
import json import os import subprocess import logging logger = logging.getLogger('debug') class ExifTool: """ ExifTool class that is used to get song metadata """ sentinel = b"{ready}" def __init__(self, executable="exiftool"): self.executable = executable self.running = False def start(self): with open('errors.txt', 'a') as err: self._process = subprocess.Popen([self.executable, "-stay_open", "True", "-@", "-", "-common_args", "-n", "-charset", "filename=UTF-8", "-b"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=err) self.running = True def terminate(self): if not self.running: return self._process.stdin.write(b"-stay_open\nFalse\n") self._process.stdin.flush() self._process.communicate() del self._process self.running = False @staticmethod def get_filenames(*files): filenames = [] for file in files: if isinstance(file, bytes): filenames.append(file) elif isinstance(file, str): filenames.append(file.encode('utf-8')) else: raise TypeError('Filename must be bytes or str') return b"\n".join(filenames) def execute(self, *args): if not self.running: print('[ERROR] ExifTool is not running') return args = b"\n".join(args + (b"-execute\n",)) self._process.stdin.write(args) self._process.stdin.flush() output = b"" fd = self._process.stdout.fileno() while not output.strip().endswith(self.sentinel): output += os.read(fd, 4096) return output.strip()[:-len(self.sentinel)] def get_cover_art(self, *files): args = (b"-Picture", b"-j") pics = self.execute(*args, self.get_filenames(*files)).decode('utf-8') try: return json.loads(pics) except Exception as e: logger.info('Could not get metadata. {}\n{}\n{}'.format(', '.join(files), pics, e)) return {} def get_metadata(self, *filenames): args = (b"-j",) js = self.execute(*args, self.get_filenames(*filenames)).decode('utf-8') if js is not None: try: return json.loads(js) except Exception as e: logger.info('Could not get metadata. {}\n{}\n{}'.format(', '.join(filenames), js, e)) return {}
StarcoderdataPython
1637331
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import unicodedata import epitran import argparse def main(code): epi = epitran.Epitran(code) for line in sys.stdin: # pointless line = line.decode('utf-8') line = unicodedata.normalize('NFD', line.lower()) line = epi.transliterate(line) line = line.encode('utf-8') sys.stdout.write(line) if __name__ == '__main__': parser = argparse.ArgumentParser( description=u'Coverts text from STDIN (in the language specified),' + 'into Unicode IPA and emits it to STDOUT.') parser.add_argument('code', help=u'ISO 639-3 code for conversion language') args = parser.parse_args() main(args.code)
StarcoderdataPython
180709
<filename>packages/w3af/w3af/core/ui/gui/tools/manual_requests.py """ manual_requests.py Copyright 2007 <NAME> This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import gtk import gobject import threading from w3af.core.ui.gui import helpers, entries from w3af.core.ui.gui.reqResViewer import ReqResViewer from w3af.core.ui.gui.tools.helpers.threaded_impact import ThreadedURLImpact from w3af.core.controllers.exceptions import (BaseFrameworkException, ScanMustStopException, HTTPRequestException, ProxyException) MANUAL_REQUEST_EXAMPLE = """\ GET http://w3af.org/ HTTP/1.1 Host: w3af.org User-Agent: Firefox """ class ManualRequests(entries.RememberingWindow): """Infrastructure to generate manual HTTP requests. :author: <NAME> <facundobatista =at= taniquetil.com.ar> """ def __init__(self, w3af, initial_request=None): super(ManualRequests, self).__init__(w3af, "manualreq", "w3af - Manual Requests", "Manual_Requests") self.w3af = w3af # # Toolbar # self.send_but = entries.SemiStockButton(_("Send"), gtk.STOCK_MEDIA_PLAY, _("Send HTTP request")) self.send_but.connect("clicked", self._send) self.send_but.show() # Fix content length checkbox self._fix_content_len_cb = gtk.CheckButton('Fix content length header') self._fix_content_len_cb.set_active(True) self._fix_content_len_cb.show() # request-response viewer self.reqresp = ReqResViewer(w3af, [self.send_but.set_sensitive], withManual=False, editableRequest=True) self.reqresp.response.set_sensitive(False) self.vbox.pack_start(self.reqresp, True, True) self.vbox.pack_start(self._fix_content_len_cb, False, False) self.vbox.pack_start(self.send_but, False, False) # Add a default request if initial_request is None: self.reqresp.request.show_raw(MANUAL_REQUEST_EXAMPLE, '') else: initial_up, initial_dn = initial_request self.reqresp.request.show_raw(initial_up, initial_dn) # Show all! self.show() def _send(self, widg): """Actually sends the manual requests. :param widg: who sent the signal. """ tsup, tlow = self.reqresp.request.get_both_texts() busy = gtk.gdk.Window(self.window, gtk.gdk.screen_width(), gtk.gdk.screen_height(), gtk.gdk.WINDOW_CHILD, 0, gtk.gdk.INPUT_ONLY) busy.set_cursor(gtk.gdk.Cursor(gtk.gdk.WATCH)) busy.show() while gtk.events_pending(): gtk.main_iteration() # Get the fix content length value fix_content_len = self._fix_content_len_cb.get_active() # threading game event = threading.Event() impact = ThreadedURLImpact(self.w3af, tsup, tlow, event, fix_content_len) def impact_done(): if not event.isSet(): return True busy.destroy() if impact.ok: self.reqresp.response.set_sensitive(True) self.reqresp.response.show_object(impact.httpResp) self.reqresp.nb.next_page() elif hasattr(impact, 'exception'): known_exceptions = (BaseFrameworkException, ScanMustStopException, HTTPRequestException, ProxyException) if not isinstance(impact.exception, known_exceptions): raise impact.exception else: msg = "Stopped sending requests because of the following"\ " unexpected error:\n\n%s" self.reqresp.response.clear_panes() self.reqresp.response.set_sensitive(False) gtk.gdk.threads_enter() helpers.FriendlyExceptionDlg(msg % impact.exception) gtk.gdk.threads_leave() else: # This is a very strange case, because impact.ok == False # but impact.exception does not exist! self.reqresp.response.clear_panes() self.reqresp.response.set_sensitive(False) gtk.gdk.threads_enter() helpers.FriendlyExceptionDlg('Errors occurred while sending' ' the HTTP request.') gtk.gdk.threads_leave() return False impact.start() gobject.timeout_add(200, impact_done)
StarcoderdataPython
1799414
<reponame>super-goose/orbit import pygame import math class Planet: def __init__(self, surface, color, position, radius, center): self.radius = radius self.surface = surface self.color = color self.setPosition(position) self.center = center self.setOrbitOffset(0) self.setOrbitPeriod(1) self.setOrbitRadius(0) self.year = 0 self.mass = 0 self.velocity = 0 self.angle = 0 self.name = '' def drawPlanet(self): x = int(self.position[0]) y = int(self.position[1]) pygame.draw.circle(self.surface, self.color, (x, y), self.radius) def getRadius(self): return self.radius def setPosition(self, newPos): self.position = newPos return self def getPosition(self): return self.position def setVelocity(self, vel): self.velocity = vel return self def getVelocity(self): return self.velocity def setAngle(self, angle): self.angle = angle return self def getAngle(self): return self.angle def setName(self, name): self.name = name return self def getName(self): return self.name def setGravity(self, gravity): self.gravity = gravity return self def getGravity(self): return self.gravity def setOrbitRadius(self, radius): self.orbitRadius = radius return self def getOrbitRadius(self): return self.orbitRadius def setOrbitOffset(self, offset): self.orbitOffset = offset return self def getOrbitOffset(self): return self.orbitOffset def setOrbitPeriod(self, period): self.orbitPeriod = period return self def getOrbitPeriod(self): return self.orbitPeriod def advancePosition(self, sun): x, y = self.position # get new point with no gravity v = self.velocity angle = self.angle vx = v * math.sin(angle) vy = v * math.cos(angle) # get the pull fromt he sun gravitaionalConstant = 14 # this is the number that made it work well # i don't know why this number and not another sunX, sunY = sun.getPosition() sunX -= x sunY -= y d = math.sqrt(sunX**2 + sunY**2) g = sun.getGravity() * gravitaionalConstant / (d ** 2) ax = (g * sunX) / d ay = (g * sunY) / d # add these vectors together dx = vx + ax dy = vy + ay newV = math.sqrt(dx**2 + dy**2) # using law of cosines to get the angle # by getting the cosine first, then using arccos to find the angle ac = (g**2 - v**2 - newV**2)/(-2 * v * newV) A = math.acos(ac) #update attributes self.angle += A self.velocity = newV x += newV * math.sin(self.angle) y += newV * math.cos(self.angle) self.setPosition((x, y)) return self def distanceFrom(self, pos): x1 = self.position[0] y1 = self.position[1] x2 = pos[0] y2 = pos[1] return math.sqrt((x1 - x2)**2 + (y1 - y2)**2) # EOF for planets
StarcoderdataPython
97669
import numpy as np import redis import json import logging from docopt import docopt from obnl.core.client import ClientNode # This doc is used by docopt to make the wrapper callable by command line and gather easily all the given parameters doc = """>>> IntegrCiTy wrapper command <<< Usage: wrapper.py (<host> <name> <init>) [--i=TO_SET... --o=TO_GET... --first --cmd=CMD] wrapper.py -h | --help wrapper.py --version Options -h --help show this --version show version --i parameters to set --o parameters to get --first node in sequence's first group --cmd optional list of commands to run wrapper """ class Node(ClientNode): """ Node class for the wrapper (model can be called by the container or can be self contained directly in the wrapper) """ def __init__(self, host, input_attributes=None, output_attributes=None, is_first=False): # Implement OBNL client node super(Node, self).__init__(host, 'obnl_vhost', 'obnl', 'obnl', 'config_file.json', input_attributes=input_attributes, output_attributes=output_attributes, is_first=is_first) self.redis = redis.StrictRedis(host=host, port=6379, db=0) # Declare model self.a = 0 self.b = 0 self.c = None # Set initial values / model parameters with open('init_values.json') as json_data: init_values = json.load(json_data) for key, val in init_values.items(): setattr(self, key, val) def step(self, current_time, time_step): """ Run a step for the wrapper/model :param current_time: current simulation time :param time_step: next time step to run :return: nothing :) """ logging.debug('----- ' + self.name + ' -----') logging.debug(self.name, 'time_step', time_step, "s") logging.debug(self.name, 'current_time', current_time - time_step) logging.debug(self.name, 'inputs', self.input_values) # Update input attributes and save input attributes and corresponding simulation time step to Redis DB for key, value in self.input_values.items(): setattr(self, key, value) self.redis.rpush('IN||' + self.name + '||' + key, getattr(self, key)) self.redis.rpush('IN||' + self.name + '||' + key + '||time', current_time) # Compute intern state logging.debug(self.name, "compute new intern state") self.b = self.a + np.random.choice([-1, 1]) * self.c # Send updated output attributes logging.debug(self.name, "outputs", {key: getattr(self, key) for key in self.output_attributes}) for key in self.output_attributes: self.update_attribute(key, getattr(self, key)) # Save output attributes and corresponding simulation time step to Redis DB for key in self.output_attributes: self.redis.rpush('OUT||' + self.name + '||' + key, getattr(self, key)) self.redis.rpush('OUT||' + self.name + '||' + key + '||time', current_time) if __name__ == "__main__": args = docopt(doc, version='0.0.1') node = Node( host=args['<host>'], is_first=args['--first'], input_attributes=args['--i'], output_attributes=args['--o'] ) node.start()
StarcoderdataPython
107271
''' Created on Nov 19, 2013 @author: <NAME> <EMAIL> Department of Geography, UGA ''' ''' Create initial table for tweet storing ''' import dbf table = dbf.Table("Tweet.dbf","TweetID C(20);TweetText C(200);TweetTime C(30); TweetLat C(30);TweetLon C(30);UserID C(30);UserName C(30);UserLoc C(30); CheckTime C(20)") table.close()
StarcoderdataPython
1730688
<filename>BFM17_POM1D_VrsFnl/src/pom/coupling/ModuleForcing.py # WARNING THIS IS A TEST VERSION # (MONTHLY FREQUENCY) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # MODEL BFM - Biogeochemical Flux Model # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= from BFM17_POM1D_VrsFnl.src.BFM.General.ModuleGlobalMem import RLEN from BFM17_POM1D_VrsFnl.src.pom.phys.POMModule import KB from decimal import * import numpy as np getcontext().prec = 12 # 12-digit precision (ilong) # MONTHLY SHORTWAVE RADIATION # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # N.B.! # ALWAYS NEEDED: WHEN THE MODEL IS RUN IN DIAGNOSTIC MODE PROVIDES ONLY PAR TO BFM. # IN PROGNOSTIC CONTRIBUTES TO THE DEFINITION OF THE TEMPERATURE SURFACE BOUNDARY CONDITION. # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= SWRAD1, SWRAD2 = Decimal() # SLUX1, SLUX2 = Decimal() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # N.B.! # THE FOLLOWING SCALARS ARE USED ONLY WHEN THE MODEL IS RUN IN PROGNOSTIC MODE. # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # MONTHLY LOSS TERM OF THE SURFACE HEAT FLUX WTSURF1, WTSURF2 = Decimal() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # N.B.! # THE FOLLOWING ARE ALWAYS USED. # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # PRESCRIBED T&S PROFILES TSTAR, SSTAR = np.empty(KB,dtype=float) # MONTHLY WIND STRESS WSU1, WSU2, WSV1, WSV2 = Decimal() # MONTHLY SURFACE SALINITY SSS1, SSS2 = Decimal() # MONTHLY BOTTOM OXYGEN O2_b1, O2_b2 = Decimal() # MONTHLY SURFACE AND BOTTOM NITRATE NO3_s1, NO3_s2 = Decimal() NO3_b1, NO3_b2 = Decimal() # MONTHLY SURFACE AND BOTTOM PHOSPHATE PO4_s1, PO4_s2 = Decimal() PO4_b1, PO4_b2 = Decimal() # MONTHLY SURFACE AMMONIA NH4_s1, NH4_s2 = Decimal() # MONTHLY BOTTOM PON GRADIENT PON_b1, PON_b2 = Decimal() # MONTHLY SURFACE SILICATE SIO4_s1, SIO4_s2 = Decimal() # MONTHLY PROFILES OF INORGANIC SUSPENDED MATTER ISM1, ISM2 = np.empty(KB,dtype=float) # MONTHLY PROFILES OF T & S TCLIM1,TCLIM2 = np.empty(KB,dtype=float) SCLIM1,SCLIM2 = np.empty(KB,dtype=float) WCLIM1,WCLIM2 = np.empty(KB,dtype=float) WEDDY1,WEDDY2,WEDDY3,WEDDY4 = np.empty(KB,dtype=float) SLUX1, QCORR1, QCORR2 = Decimal() # INTERPOLATORS AND COUNTERS ICOUNTF, IDOUNTF, \ IFCHGE, IFDCHGE, \ IFDINT, IFINT = Decimal() RATIOF, RATIOD = Decimal() def FORCING_MANAGER(): from BFM17_POM1D_VrsFnl.src.BFM.General.ModuleGlobalMem import RLEN, ZERO, PI, ONE, NML_OPEN, NML_READ, error_msg_prn from BFM17_POM1D_VrsFnl.src.BFM.General.ModuleConstants import SEC_PER_DAY from BFM17_POM1D_VrsFnl.src.pom.phys.POMModule import IDIAGN, DTI, intt, RCP, KB, TF, SF, WUSURF, WVSURF, SWRAD, \ WTSURF, WSSURF, TSURF,SSURF, TB, SB from BFM17_POM1D_VrsFnl.src.BFM.General.ModuleService import ISM, savef, PO4SURF, NO3SURF, NH4SURF, SIO4SURF, \ PO4BOTT, NO3BOTT, O2BOTT, PONBOTTgrad, WGEN, WEDDY, wind_input, radiance_input, ism_input, Sprofile_input, W_input, \ Tprofile_input, surfNut_input, bottNut_input, Sal_input, Temp_input, heat_input, surfaceS_input import numpy as np getcontext().prec = 12 # 12-digit precision (ilong) # LOOP COUNTER K = Decimal() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # LOCAL ARRAYS # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= RLENGTH = Decimal() # INITIALISATION AND FIRST FORCING READING # if intt == int(ONE):
StarcoderdataPython
188053
<filename>homoeditdistance/demonstration.py<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """Usage demonstration for the homoeditdistance package.""" import sys import argparse from homoeditdistance import homoEditDistance, backtrack, assemblePaths def get_parser(): """ Returns the argument parser used to parse the command line used for invoking the demo application. Used internally, exists solely for readability. :return: The ArgumentParser. """ parser = argparse.ArgumentParser(description='Given two strings, find their homo-edit distance', fromfile_prefix_chars='@') parser.add_argument('-s', '--string1', required=True, help='first string. Use quotation marks around your string (e.g. "STRING")' 'for the empty string or strings with special characters') parser.add_argument('-t', '--string2', required=True, help='second string') parser.add_argument('-a', '--all', action='store_true', default=False, required=False, help='show all optimal subsequences') parser.add_argument('-b', '--backtrace', action='store_true', default=False, required=False, help='print transformation steps') return parser def run(args): """ The main function of the :param args: The arguments provided by the user and pre-parsed by our argument parser. """ s, t = args.string1, args.string2 requiredBacktrackLevel = 0 if args.backtrace: requiredBacktrackLevel = 2 elif args.all: requiredBacktrackLevel = 1 result = homoEditDistance(s, t, requiredBacktrackLevel) print('The homo-edit distance between {} and {} is {}\n'.format( s if s != '' else 'the empty string', t if t != '' else 'the empty string', result['hed'] ) ) if args.all and args.backtrace: print('The following optimal subsequences were found, and obtained using the listed operations:') subs = backtrack(result['bt'], s, t) txt = dict(assemblePaths(result['bt'], s, t, result['zbt'])) for sup in set(subs): print() if sup == '': print('empty string') else: print(sup) print(txt[sup].strip()) elif args.all: print('The following optimal subsequences were found:') subs = backtrack(result['bt'], s, t) for sup in set(subs): print(sup, end=' ') elif args.backtrace: print('Detailed Backtracking for one possible subsequence:') txt = dict(assemblePaths(result['bt'], s, t, result['zbt'])) key = next(iter(txt)) print(key) print(txt[key]) def main(): """Run the demo.""" run(get_parser().parse_args(sys.argv[1:]))
StarcoderdataPython
1741439
import os import zipfile import shutil import walk def Unpack(set_pack, archive_name): archive_name = set_pack[0] + "/" + archive_name z = zipfile.ZipFile(archive_name, 'r') z.extractall(set_pack[1]) z.close() def Pack(set_pack, archive_name): with zipfile.ZipFile(set_pack[0] + "/" + archive_name, 'w') as myzip: myzip.write(set_pack[0] + "/")
StarcoderdataPython
3372492
<filename>datasets/data-sets/voice-assistant/annotate-data-flows.py<gh_stars>0 #!/usr/bin/env python3 import os import sys import json arguments = len(sys.argv) src_directory = "." dst_directory = "../../annotated-data-sets/voice-assistant/" # read all files in subdirectories for root, dirs, files in os.walk(src_directory): # Skip parent directories if dirs: continue for file in files: # open files in src and dst directories with open(root+"/"+file,encoding="utf-8", mode="r") as flows, open(dst_directory+root[2:]+"/"+file,encoding="utf-8",mode="w+") as dst_file: for flow in flows: # anotate specific flows fields = json.loads(flow) try: if fields["dp"] == 8009 and fields["da"] == "192.168.3.110": fields["flow_type"] = "Local Client TCP Scan" json.dump(fields,dst_file) print(file=dst_file) elif fields["sa"] == "192.168.3.109" or fields["sa"] == "192.168.3.164": fields["flow_type"] = "Local Client Communication" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == 67 and fields["dp"] == 68: fields["flow_type"] = "DHCP" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == 68 and fields["dp"] == 67: fields["flow_type"] = "DHCP (Partial)" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == 53: fields["flow_type"] = "DNS (Google Services)" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == None and fields["dp"] == None and fields["da"].startswith("2"): fields["flow_type"] = "Membership Report Group" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == None and fields["dp"] == None and not fields["da"].startswith("2"): fields["flow_type"] = "ICMP" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == 5353 and fields["dp"] == 5353: fields["flow_type"] = "MDNS" json.dump(fields,dst_file) print(file=dst_file) elif fields["dp"] == 5228: fields["flow_type"] = "TLS (Mtalk Service)" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == 5228: fields["flow_type"] = "TLS (Mtalk Service - Missing TLS Connectivity Establishment)" json.dump(fields,dst_file) print(file=dst_file) elif fields["dp"] == 443: fields["flow_type"] = "TLS (Google Services)" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == 443: fields["flow_type"] = "TLS (Google Services - Missing TLS Connectivity Establishment)" json.dump(fields,dst_file) print(file=dst_file) elif fields["dp"] == 123: fields["flow_type"] = "NTP" json.dump(fields,dst_file) print(file=dst_file) elif fields["dp"] == 80: fields["flow_type"] = "HTTP (Connectivity Check)" json.dump(fields,dst_file) print(file=dst_file) elif fields["sp"] == 80: fields["flow_type"] = "HTTP (Connectivity Check - Missing Flow Beginning)" json.dump(fields,dst_file) print(file=dst_file) else: fields["flow_type"] = "Unknown" json.dump(fields,dst_file) print(file=dst_file) except Exception as e: fields["flow_type"] = "Flow Error" json.dump(fields,dst_file) print(file=dst_file)
StarcoderdataPython
4819843
from setuptools import setup from setuptools import find_packages setup(name='json-test', packages = find_packages(), version='0.1', description='A python library for assisting you in writing tests against a JSON structure.', url='https://github.com/inkmonk/json-test', author='Sibi', author_email='<EMAIL>', license='BSD3', zip_safe=False)
StarcoderdataPython
187293
from osrf_pycommon.process_utils import asyncio from osrf_pycommon.process_utils.async_execute_process import async_execute_process from osrf_pycommon.process_utils import get_loop # allow module to be importable for --cover-inclusive try: from osrf_pycommon.process_utils.async_execute_process_trollius import From except ImportError: TROLLIUS_FOUND = False else: TROLLIUS_FOUND = True from osrf_pycommon.process_utils.async_execute_process_trollius import Return from .impl_aep_protocol import create_protocol loop = get_loop() @asyncio.coroutine def run(cmd, **kwargs): transport, protocol = yield From(async_execute_process( create_protocol(), cmd, **kwargs)) retcode = yield asyncio.From(protocol.complete) raise Return(protocol.stdout_buffer, protocol.stderr_buffer, retcode)
StarcoderdataPython
116022
from django import forms from .models import Job class JobForm(forms.ModelForm): class Meta: model = Job fields = ('publisher', 'company_name', 'title', 'job_type', 'location', 'description', 'post_until', 'is_active', 'apply_link') widgets = { 'publisher': forms.TextInput(attrs={'class': 'form-control', 'value': '', 'id': 'currentUser', 'type': 'hidden'}), 'company_name': forms.TextInput(attrs={'class': 'form-control'}), 'title': forms.TextInput(attrs={'class': 'form-control'}), 'job_type': forms.Select(attrs={'class': 'form-control'}), 'location': forms.Select(attrs={'class': 'form-control'}), 'description': forms.Textarea(attrs={'class': 'form-control'}), 'post_until': forms.SelectDateWidget(attrs={'class': 'form-control'}), 'is_active': forms. CheckboxInput(attrs={'class': 'form-check-input'}), 'apply_link': forms.URLInput(attrs={'class': 'form-control'}) }
StarcoderdataPython
3249410
<gh_stars>0 """QHttp module.""" from PyQt5 import QtCore, QtNetwork from typing import Union, Optional, cast, Dict, List, Any from pineboolib.core import decorators class QHttpRequest(object): """QHttpRequest class.""" _valid: bool _major_ver: int _minor_ver: int _values: Dict[str, Any] _id: int ID: int = 0 def __init__(self): """Initialize.""" self._id = self.ID print("* ID", self._id) self.ID += 1 self._values = {} self._major_ver = 1 self._minor_ver = 1 # self.setValue("Connection", "keep-alive") def majorVersion(self) -> int: """Return major version.""" return self._major_ver def minorVersion(self) -> int: """Return minor version.""" return self._minor_ver def parse(self, text_: str) -> bool: """Parse text.""" list_: List[str] = [] pos = text_.find("\n") if pos > 0 and text_[pos - 1] == "\r": list_ = text_.strip().split("\r\n") else: list_ = text_.strip().split("\n") if not list_: return True lines_: List[str] = [] for it in list_: if it[0].isspace(): if lines_: lines_[len(lines_) - 1] += " " lines_[len(lines_) - 1] += it.strip() else: lines_.append(it) for i in range(len(lines_)): if not self.parseLine(lines_[i], i): self._valid = False return False return True def keys(self) -> str: """Return keys stringlist.""" return ",".join(list(self._values.keys())) def setValue(self, key_: str, value_: Any): """Set key to dict.""" self._values[key_.lower()] = value_ def value(self, key_: str): """Return value.""" if key_.lower() in self._values.keys(): return self._values[key_.lower()] raise ValueError("%s not found in values!" % key_) def removeValue(self, key_: str): """Remove key from dict.""" k_ = key_.lower() if k_ in self._values.keys(): self._values[k_] = None del self._values[k_] def setValid(self, valid_: bool) -> None: """Set if is valid.""" self._valid = valid_ def parseLine(self, line_: str, num_: int = 0) -> bool: """Parse line.""" if line_.find(":") == -1: return False else: list_ = line_.split(":") self._values[list_[0].lower()] = list_[1] return True def __str__(self): """Return string value.""" if not self._valid: return "" ret_ = "" for k, v in self._values: ret_ += "%s:%s\r\n" % (k, v) return ret_ def hasContentLength(self): """Return if content length is avaliable.""" return "content-length" in self._values.keys() def contentLenth(self) -> int: """Return content length.""" if "content-length" in self._values.keys(): return self._values["content-length"] else: return 0 def setContentLength(self, length_: int) -> None: """Set content length.""" self._values["content-length"] = length_ def hasContentType(self): """Return if has content type.""" return "content-type" in self._values.keys() def contentType(self) -> str: """Return content type.""" if "content-type" in self._values.keys(): return self._values["content-type"] else: return "" def setContentType(self, type_: str) -> None: """Set content type.""" self._values["content-type"] = type_ class QHttpResponseHeader(QHttpRequest): """QHttpRespnse class.""" _status_code: int _reason_phr: Optional[str] def __init__(self, *args): """Initialize.""" super().__init__() self.setValid(False) self._status_code = 0 self._reason_phr = "" if len(args) > 1: self._status_code = args[0] self._reason_phr = args[1] or "" if len(args) > 2: self._major_ver = args[2] if len(args) > 3: self._minor_ver = args[3] else: self.parse(args[0]) def setStatusLine(self, code_: int, text_: Optional[str] = None, major_ver_=1, minor_ver_=1): """Set status line.""" self.setValid(True) self._status_code = code_ self._reason_phr = text_ self._major_ver = major_ver_ self._minor_ver = minor_ver_ def statusCode(self) -> int: """Return status code.""" return self._status_code def reasonPhrase(self) -> str: """Return reason.""" return self._reason_phr or "" def parseLine(self, line_: str, number_: int = 0) -> bool: """Parse Line.""" if number_ != 0: return super().parseLine(line_) l_ = line_.strip() if len(l_) < 10: return False if ( l_[0:5] == "HTTP/" and l_[5].isdigit() and l_[6] == "." and l_[7].isdigit() and l_[8] == "." and l_[9].isdigit() ): self._major_ver = int(l_[5]) - 0 self._minor_ver = int(l_[7]) - 0 pos = l_[9:].find(" ") if pos > -1: self._reason_phr = l_[9 + pos :] self._status_code = int(l_[9 : 9 + pos]) else: self._status_code = int(l_[9:]) self._reason_phr = "" else: return False return True def __str__(self): """Return str value.""" return "HTTP/%s.%s %s %s\r\n%s\r\n" % ( self._major_ver, self._minor_ver, self._status_code, self._reason_phr, str(super()), ) class QHttpRequestHeader(QHttpRequest): """QHttpRequestHeader class.""" _method: str _path: str def __init__(self, *args): """Initialize.""" super().__init__() self.setValid(False) self._method = "POS" if len(args) > 1: self._method = args[0] self._path = args[1] if len(args) > 2: self._major_ver: int = args[2] if len(args) > 3: self._minor_ver: int = args[3] elif isinstance(args[0], str): self.parse(args[0]) else: self = args[0] def setRequest(self, method_: str, path_: str, major_ver: int = 1, minor_ver=1): """Set request.""" self.setValid(True) self._method = method_ self._path = path_ self._major_ver = major_ver self._minor_ver = minor_ver def method(self) -> str: """Return method.""" return self._method def path(self) -> str: """Return path.""" return self._path def __str__(self): """Return string value.""" return "%s %s HTTP/%s.%s\r\n%s\r\n" % ( self._method, self._path, self._major_ver, self._minor_ver, str(super()), ) class HttpState(QtCore.QObject): """HttpState class.""" Unconnected = 0 HostLookup = 1 Connecting = 2 Sending = 3 Reading = 4 Connected = 5 Closing = 6 class HttpError(QtCore.QObject): """HttpError class.""" NoError = 0 UnknownError = 1 HostNotFound = 2 ConnectionRefused = 3 UnexpectedClose = 4 InvalidResponseHeader = 5 WrongContentLength = 6 Aborted = 7 class QHttp(HttpState, HttpError): """QHttp class.""" stateChanged = QtCore.pyqtSignal(int) dataSendProgress = QtCore.pyqtSignal(int, int) dataReadProgress = QtCore.pyqtSignal(int, int) requestStarted = QtCore.pyqtSignal(int) requestFinished = QtCore.pyqtSignal(int, bool) responseHeaderReceived = QtCore.pyqtSignal(QHttpResponseHeader) done = QtCore.pyqtSignal(bool) readyRead = QtCore.pyqtSignal(QHttpResponseHeader) _manager: QtNetwork.QNetworkAccessManager _reply: QtNetwork.QNetworkReply _state: int _error: int _host: str _port: int _name: str _error_str: str _parent: Optional[QtCore.QObject] _operation: int _data: Optional[QtCore.QBuffer] _current_id: int def __init__(self, *args): """Initialize.""" super().__init__() self._state = self.Unconnected self._error = self.NoError self._data = None if len(args) == 2: self.initialize2(args[0], args[1]) elif len(args) == 4: self.initialize1(args[0], args[1], args[2], args[3]) self._manager = QtNetwork.QNetworkAccessManager() # self._request = QtNetwork.QNetworkRequest() cast(QtCore.pyqtSignal, self._manager.finished).connect(self._slotNetworkFinished) self._error_str = self.tr("Unknown error") def initialize1( self, host_name: str, port_: int = 80, parent_: Optional[QtCore.QObject] = None, name_: Optional[str] = None, ): """Initialize with kwars.""" self._host = "%s:%s" % (host_name, port_) # self._port = port_ self._parent = parent_ self._name = name_ or "" def initialize2(self, parent_: QtCore.QObject, name_: str = ""): """Initialize with args.""" self._parent = parent_ self._name = name_ def setHost(self, name_: str, port_: int = 80) -> None: """Set host.""" self._name = "%s:%s" % (name_, port_) # self._port = port_ def get(self, full_path: str) -> None: """Get data from url.""" _request = QHttpRequestHeader("GET", full_path) _request.setValue("Connection", "Keep-Alive") self.request(_request) # self._data = QtCore.QBuffer() # _request = QtNetwork.QNetworkRequest() # _request.setUrl(QtCore.QUrl(path_)) # self._state = self.Connecting # self._reply = self._manager.get(_request) # self._state = self.Connected # cast(QtCore.pyqtSignal, self._reply.downloadProgress).connect(self._slotNetworkProgressRead) def post(self, full_path: str, data_: Union[QtCore.QIODevice, QtCore.QByteArray]) -> None: """Send data to url.""" _request = QHttpRequestHeader("POST", full_path) _request.setValue("Connection", "Keep-Alive") self.request(_request, data_) # self._data = QtCore.QBuffer() # _request = QtNetwork.QNetworkRequest() # _request.setUrl(QtCore.QUrl(path_)) # self._state = self.Connecting # self._reply = self._manager.post(_request, data_) # self._state = self.Connected # cast(QtCore.pyqtSignal, self._reply.downloadProgress).connect(self._slotNetworkProgressRead) @decorators.NotImplementedWarn def head(self, path_: str) -> None: """Set head.""" return None # header = QHttpRequestHeader("HEAD", path_) # header.setValue("Connection", "Keep-Alive") # return self.request() def request( self, request_header: QHttpRequestHeader, data_: Optional[Union[QtCore.QIODevice, QtCore.QByteArray]] = None, buffer_: Optional[QtCore.QBuffer] = None, ) -> None: """Send request.""" self._data = None del self._data if buffer_ is None: buffer_ = QtCore.QBuffer() _request = QtNetwork.QNetworkRequest() _tipo = request_header.method().lower() # if request_header.hasContentType(): # _request.setHeader( # QtNetwork.QNetworkRequest.ContentTypeHeader, request_header.contentType() # ) url_ = QtCore.QUrl(request_header.path()) for k in request_header._values.keys(): if k != "host": _request.setRawHeader( str.encode(k), str.encode(str(request_header._values[k]).lower()) ) else: url_ = QtCore.QUrl("%s/%s" % (request_header.value("host"), request_header.path())) if not url_.isValid(): raise Exception("url_ is not a valid URL!") _request.setUrl(url_) method_ = getattr(self._manager, _tipo, None) self._data = buffer_ if self._data is not None: self._data.open(QtCore.QIODevice.ReadWrite) self._state = self.Connecting if _tipo == "get": self._reply = method_(_request) else: self._reply = method_(_request, data_) cast(QtCore.pyqtSignal, self._reply.downloadProgress).connect(self._slotNetworkProgressRead) cast(QtCore.pyqtSignal, self._reply.uploadProgress).connect(self._slotNetworkProgressSend) self._state = self.Connected self._current_id = request_header._id self.requestStarted.emit(request_header._id) @decorators.NotImplementedWarn def closeConnection(self) -> None: """Close Connection.""" self._state = self.Closing self._reply.close() def bytesAvalible(self) -> int: """Return bytes avalible.""" if self._data is not None: return self._data.size() else: return self._reply.size() @decorators.NotImplementedWarn def readBlock(self, data_: str, max_length_: int) -> None: """Read block.""" pass def readAll(self) -> QtCore.QByteArray: """Read all data.""" if self._data is not None: return self._data.readAll() else: return self._reply.readAll() def currentId(self) -> int: """Return id.""" return self._current_id @decorators.NotImplementedWarn def currentSourceDevice(self) -> QtCore.QIODevice: """Return current source device.""" pass @decorators.NotImplementedWarn def currentDestinationDevice(self) -> QtCore.QIODevice: """Return current destination device.""" pass @decorators.NotImplementedWarn def currentRequest(self) -> None: """Return current request.""" return None @decorators.NotImplementedWarn def hasPendingRequests(self) -> bool: """Return if pendidng reuqest exists.""" return True @decorators.NotImplementedWarn def clearPendingRequests(self) -> None: """Clear pending requests.""" pass # for request_ in list(self._pending_request): # self._pending_request.remove(request_) def setState(self, state_: int) -> None: """Set state.""" self._state = state_ def state(self) -> int: """Return state.""" return self._state def error(self) -> int: """Return error.""" return cast(int, self._reply.error()) def errorString(self) -> str: """Return error string.""" return self._reply.errorString() def _slotNetworkFinished(self) -> None: """Send done signal.""" self._state = self.Closing # sender = self.sender() error_ = True if self._error == self.NoError: error_ = False self.done.emit(error_) self.requestFinished.emit(0, error_) self._state = self.Unconnected def _slotNetworkProgressRead(self, b_done: int, b_total: int) -> None: """Send done signal.""" if self._reply is None: raise Exception("No reply in progress") self._state = self.Reading self.dataReadProgress.emit(b_done, b_total) # self.dataSendProgress.emit(b_done, b_total) if self._data is not None: data_ = self._reply.readAll() self._data.write(data_) else: self.readyRead.emit() def _slotNetworkProgressSend(self, b_done: int, b_total: int) -> None: """Send done signal.""" if self._reply is None: raise Exception("No reply in progress") self._state = self.Sending # self.dataReadProgress.emit(b_done, b_total) self.dataSendProgress.emit(b_done, b_total) if self._data is not None: data_ = self._reply.readAll() self._data.write(data_) else: self.readyRead.emit()
StarcoderdataPython
1704596
<gh_stars>1-10 from transferfile.sftp import Sftp from transferfile.scp import Scp from transferfile.ftp import Ftp from transferfile.rsync import Rsync class TransferFactory(object): @classmethod def create(cls, type, host, username, password=None, port=None, **kwargs): if type.lower() == "ftp": return Ftp(host, username, password, port, **kwargs) elif type.lower() == "scp": return Scp(host, username, password, port, **kwargs) elif type.lower() == "sftp": return Sftp(host, username, password, port, **kwargs) elif type.lower() == "rsync": return Rsync(host, username, **kwargs) else: raise Exception(f"Unkonw transfer type: {type}")
StarcoderdataPython
123084
# -*- coding: utf-8 -*- '''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2019, 2020 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' __all__ = ['VirialCorrelationsPitzerCurl', 'VirialGas'] from fluids.numerics import newton from chemicals.utils import log from thermo.heat_capacity import HeatCapacityGas from .phase import Phase from chemicals.virial import BVirial_Pitzer_Curl, Z_from_virial_density_form class VirialCorrelationsPitzerCurl(object): def __init__(self, Tcs, Pcs, omegas): self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.N = len(Tcs) def C_pures(self, T): return [0.0]*self.N def dC_dT_pures(self, T): return [0.0]*self.N def d2C_dT2_pures(self, T): return [0.0]*self.N def C_interactions(self, T): N = self.N Ciij = [[0.0]*N for i in range(N)] Cijj = [[0.0]*N for i in range(N)] # Full return should be (Ciij, Ciji, Cjii), (Cijj, Cjij, Cjji) # but due to symmetry there is only those two matrices return Ciij, Cijj def dC_dT_interactions(self, T): N = self.N Ciij = [[0.0]*N for i in range(N)] Cijj = [[0.0]*N for i in range(N)] return Ciij, Cijj def d2C_dT2_interactions(self, T): N = self.N Ciij = [[0.0]*N for i in range(N)] Cijj = [[0.0]*N for i in range(N)] return Ciij, Cijj def B_pures(self, T): Tcs, Pcs, omegas = self.Tcs, self.Pcs, self.omegas return [BVirial_Pitzer_Curl(T, Tcs[i], Pcs[i], omegas[i]) for i in range(self.N)] def dB_dT_pures(self, T): Tcs, Pcs, omegas = self.Tcs, self.Pcs, self.omegas return [BVirial_Pitzer_Curl(T, Tcs[i], Pcs[i], omegas[i], 1) for i in range(self.N)] def B_interactions(self, T): N = self.N return [[0.0]*N for i in range(N)] def dB_dT_interactions(self, T): N = self.N return [[0.0]*N for i in range(N)] def B_matrix(self, T): N = self.N B_mat = [[0.0]*N for i in range(N)] pures = self.B_pures(T) B_interactions = self.B_interactions(T) for i in range(N): B_mat[i][i] = pures[i] for i in range(N): for j in range(i): B_mat[i][j] = B_interactions[i][j] B_mat[j][i] = B_interactions[j][i] return B_mat def dB_dT_matrix(self, T): N = self.N B_mat = [[0.0]*N for i in range(N)] pures = self.dB_dT_pures(T) B_interactions = self.dB_dT_interactions(T) for i in range(N): B_mat[i][i] = pures[i] for i in range(N): for j in range(i): B_mat[i][j] = B_interactions[i][j] B_mat[j][i] = B_interactions[j][i] return B_mat def d2B_dT2_pures(self, T): Tcs, Pcs, omegas = self.Tcs, self.Pcs, self.omegas return [BVirial_Pitzer_Curl(T, Tcs[i], Pcs[i], omegas[i], 2) for i in range(self.N)] def d2B_dT2_interactions(self, T): N = self.N return [[0.0]*N for i in range(N)] def d2B_dT2_matrix(self, T): N = self.N B_mat = [[0.0]*N for i in range(N)] pures = self.d2B_dT2_pures(T) B_interactions = self.d2B_dT2_interactions(T) for i in range(N): B_mat[i][i] = pures[i] for i in range(N): for j in range(i): B_mat[i][j] = B_interactions[i][j] B_mat[j][i] = B_interactions[j][i] return B_mat class VirialGas(Phase): phase = 'g' force_phase = 'g' is_gas = True is_liquid = False ideal_gas_basis = True pure_references = ('HeatCapacityGases',) pure_reference_types = (HeatCapacityGas, ) def __init__(self, model, HeatCapacityGases=None, Hfs=None, Gfs=None, T=None, P=None, zs=None): self.model = model self.HeatCapacityGases = HeatCapacityGases self.Hfs = Hfs self.Gfs = Gfs if Hfs is not None and Gfs is not None and None not in Hfs and None not in Gfs: self.Sfs = [(Hfi - Gfi)/298.15 for Hfi, Gfi in zip(Hfs, Gfs)] else: self.Sfs = None for i in (zs, HeatCapacityGases, Hfs, Gfs): if i is not None: self.N = len(i) break if zs is not None: self.zs = zs if T is not None: self.T = T if P is not None: self.P = P if T is not None and P is not None and zs is not None: Z = Z_from_virial_density_form(T, P, self.B(), self.C()) self._V = Z*self.R*T/P def V(self): return self._V def dP_dT(self): r''' .. math:: \left(\frac{\partial P}{\partial T}\right)_{V} = \frac{R \left(T \left(V \frac{d}{d T} B{\left(T \right)} + \frac{d}{d T} C{\left(T \right)}\right) + V^{2} + V B{\left(T \right)} + C{\left(T \right)} \right)}{V^{3}} ''' try: return self._dP_dT except: pass T, V = self.T, self._V self._dP_dT = dP_dT = self.R*(T*(V*self.dB_dT() + self.dC_dT()) + V*(V + self.B()) + self.C())/(V*V*V) return dP_dT def dP_dV(self): r''' .. math:: \left(\frac{\partial P}{\partial V}\right)_{T} = - \frac{R T \left(V^{2} + 2 V B{\left(T \right)} + 3 C{\left(T \right)}\right)}{V^{4}} ''' try: return self._dP_dV except: pass T, V = self.T, self._V self._dP_dV = dP_dV = -self.R*T*(V*V + 2.0*V*self.B() + 3.0*self.C())/(V*V*V*V) return dP_dV def d2P_dTdV(self): r''' .. math:: \left(\frac{\partial^2 P}{\partial V\partial T}\right)_{T} = - \frac{R \left(2 T V \frac{d}{d T} B{\left(T \right)} + 3 T \frac{d}{d T} C{\left(T \right)} + V^{2} + 2 V B{\left(T \right)} + 3 C{\left(T \right)}\right)}{V^{4}} ''' try: return self._d2P_dTdV except: pass T, V = self.T, self._V V2 = V*V self._d2P_dTdV = d2P_dTdV = -self.R*(2.0*T*V*self.dB_dT() + 3.0*T*self.dC_dT() + V2 + 2.0*V*self.B() + 3.0*self.C())/(V2*V2) return d2P_dTdV def d2P_dV2(self): r''' .. math:: \left(\frac{\partial^2 P}{\partial V^2}\right)_{T} = \frac{2 R T \left(V^{2} + 3 V B{\left(T \right)} + 6 C{\left(T \right)}\right)}{V^{5}} ''' try: return self._d2P_dV2 except: pass T, V = self.T, self._V V2 = V*V self._d2P_dV2 = d2P_dV2 = 2.0*self.R*T*(V2 + 3.0*V*self.B() + 6.0*self.C())/(V2*V2*V) return d2P_dV2 def d2P_dT2(self): r''' .. math:: \left(\frac{\partial^2 P}{\partial T^2}\right)_{V} = \frac{R \left(T \left(V \frac{d^{2}}{d T^{2}} B{\left(T \right)} + \frac{d^{2}}{d T^{2}} C{\left(T \right)}\right) + 2 V \frac{d}{d T} B{\left(T \right)} + 2 \frac{d}{d T} C{\left(T \right)}\right)}{V^{3}} ''' try: return self._d2P_dT2 except: pass T, V = self.T, self._V V2 = V*V self._d2P_dT2 = d2P_dT2 = self.R*(T*(V*self.d2B_dT2() + self.d2C_dT2()) + 2.0*V*self.dB_dT() + 2.0*self.dC_dT())/(V*V*V) return d2P_dT2 def H_dep(self): r''' .. math:: H_{dep} = \frac{R T^{2} \left(2 V \frac{d}{d T} B{\left(T \right)} + \frac{d}{d T} C{\left(T \right)}\right)}{2 V^{2}} - R T \left(-1 + \frac{V^{2} + V B{\left(T \right)} + C{\left(T \right)}}{V^{2}} \right) ''' ''' from sympy import * Z, R, T, V, P = symbols('Z, R, T, V, P') B, C = symbols('B, C', cls=Function) base =Eq(P*V/(R*T), 1 + B(T)/V + C(T)/V**2) P_sln = solve(base, P)[0] Z = P_sln*V/(R*T) # Two ways to compute H_dep Hdep2 = R*T - P_sln*V + integrate(P_sln - T*diff(P_sln, T), (V, oo, V)) Hdep = -R*T*(Z-1) -integrate(diff(Z, T)/V, (V, oo, V))*R*T**2 ''' try: return self._H_dep except: pass T, V = self.T, self._V V2 = V*V RT = self.R*T self._H_dep = H_dep = RT*(T*(2.0*V*self.dB_dT() + self.dC_dT())/(2.0*V2) - (-1.0 + (V2 + V*self.B() + self.C())/V2)) return H_dep def dH_dep_dT(self): r''' .. math:: \frac{\partial H_{dep}}{\partial T} = \frac{R \left(2 T^{2} V \frac{d^{2}}{d T^{2}} B{\left(T \right)} + T^{2} \frac{d^{2}}{d T^{2}} C{\left(T \right)} + 2 T V \frac{d}{d T} B{\left(T \right)} - 2 V B{\left(T \right)} - 2 C{\left(T \right)}\right)}{2 V^{2}} ''' try: return self._dH_dep_dT except: pass T, V = self.T, self._V self._dH_dep_dT = dH_dep_dT = (self.R*(2.0*T*T*V*self.d2B_dT2() + T*T*self.d2C_dT2() + 2.0*T*V*self.dB_dT() - 2.0*V*self.B() - 2.0*self.C())/(2.0*V*V)) return dH_dep_dT def S_dep(self): r''' .. math:: S_{dep} = \frac{R \left(- T \frac{d}{d T} C{\left(T \right)} + 2 V^{2} \ln{\left(\frac{V^{2} + V B{\left(T \right)} + C{\left(T \right)}} {V^{2}} \right)} - 2 V \left(T \frac{d}{d T} B{\left(T \right)} + B{\left(T \right)}\right) - C{\left(T \right)}\right)}{2 V^{2}} ''' ''' dP_dT = diff(P_sln, T) S_dep = integrate(dP_dT - R/V, (V, oo, V)) + R*log(Z) ''' try: return self._S_dep except: pass T, V = self.T, self._V V2 = V*V self._S_dep = S_dep = (self.R*(-T*self.dC_dT() + 2*V2*log((V2 + V*self.B() + self.C())/V**2) - 2*V*(T*self.dB_dT() + self.B()) - self.C())/(2*V2)) return S_dep def dS_dep_dT(self): r''' .. math:: \frac{\partial S_{dep}}{\partial T} = \frac{R \left(2 V^{2} \left(V \frac{d}{d T} B{\left(T \right)} + \frac{d}{d T} C{\left(T \right)} \right) - \left(V^{2} + V B{\left(T \right)} + C{\left(T \right)} \right) \left(T \frac{d^{2}}{d T^{2}} C{\left(T \right)} + 2 V \left(T \frac{d^{2}}{d T^{2}} B{\left(T \right)} + 2 \frac{d}{d T} B{\left(T \right)}\right) + 2 \frac{d}{d T} C{\left(T \right)} \right)\right)}{2 V^{2} \left(V^{2} + V B{\left(T \right)} + C{\left(T \right)}\right)} ''' try: return self._dS_dep_dT except: pass T, V = self.T, self._V V2 = V*V self._dS_dep_dT = dS_dep_dT = (self.R*(2.0*V2*(V*self.dB_dT() + self.dC_dT()) - (V2 + V*self.B() + self.C())*(T*self.d2C_dT2() + 2.0*V*(T*self.d2B_dT2() + 2.0*self.dB_dT()) + 2.0*self.dC_dT()))/(2.0*V2*(V2 + V*self.B() + self.C()))) return dS_dep_dT def to_TP_zs(self, T, P, zs): new = self.__class__.__new__(self.__class__) new.T = T new.P = P new.zs = zs new.N = self.N new.HeatCapacityGases = self.HeatCapacityGases new.model = self.model new.Hfs = self.Hfs new.Gfs = self.Gfs new.Sfs = self.Sfs Z = Z_from_virial_density_form(T, P, new.B(), new.C()) new._V = Z*self.R*T/P return new def to(self, zs, T=None, P=None, V=None): new = self.__class__.__new__(self.__class__) new.zs = zs new.N = self.N new.HeatCapacityGases = self.HeatCapacityGases new.model = model = self.model new.Hfs = self.Hfs new.Gfs = self.Gfs new.Sfs = self.Sfs if T is not None: new.T = T if P is not None: new.P = P Z = Z_from_virial_density_form(T, P, new.B(), new.C()) new._V = Z*self.R*T/P elif V is not None: P = new.P = self.R*T*(V*V + V*new.B() + new.C())/(V*V*V) new._V = V elif P is not None and V is not None: new.P = P # PV specified, solve for T def err(T): # Solve for P matching; probably there is a better solution here that does not # require the cubic solution but this works for now # TODO: instead of using self.to_TP_zs to allow calculating B and C, # they should be functional new_tmp = self.to_TP_zs(T=T, P=P, zs=zs) B = new_tmp.B() C = new_tmp.C() x2 = V*V + V*B + C x3 = self.R/(V*V*V) P_err = T*x2*x3 - P dP_dT = x3*(T*(V*new_tmp.dB_dT() + new_tmp.dC_dT()) + x2) return P_err, dP_dT T_ig = P*V/self.R # guess T = newton(err, T_ig, fprime=True, xtol=1e-15) new.T = T else: raise ValueError("Two of T, P, or V are needed") return new def B(self): try: return self._B except: pass N = self.N T = self.T if N == 1: return self.model.B_pures(T)[0] zs = self.zs B_matrix = self.model.B_matrix(T) B = 0.0 for i in range(N): B_tmp = 0.0 row = B_matrix[i] for j in range(N): B += zs[j]*row[j] B += zs[i]*B_tmp self._B = B return B def dB_dT(self): try: return self._dB_dT except: pass N = self.N T = self.T if N == 1: return self.model.dB_dT_pures(T)[0] zs = self.zs dB_dT_matrix = self.model.dB_dT_matrix(T) dB_dT = 0.0 for i in range(N): dB_dT_tmp = 0.0 row = dB_dT_matrix[i] for j in range(N): dB_dT += zs[j]*row[j] dB_dT += zs[i]*dB_dT_tmp self._dB_dT = dB_dT return dB_dT def d2B_dT2(self): try: return self._d2B_dT2 except: pass N = self.N T = self.T if N == 1: return self.model.d2B_dT2_pures(T)[0] zs = self.zs d2B_dT2_matrix = self.model.d2B_dT2_matrix(T) d2B_dT2 = 0.0 for i in range(N): d2B_dT2_tmp = 0.0 row = d2B_dT2_matrix[i] for j in range(N): d2B_dT2 += zs[j]*row[j] d2B_dT2 += zs[i]*d2B_dT2_tmp self._d2B_dT2 = d2B_dT2 return d2B_dT2 def C(self): try: return self._C except: pass T = self.T zs = self.zs C_pures = self.model.C_pures(T) Ciij, Cijj = self.model.C_interactions(T) C = 0.0 N = self.N for i in range(N): for j in range(N): # poling 5-4.3b should be able to be used to take out the k loop? for k in range(N): if i == j == k: Cval = C_pures[i] elif i == j: Cval = Ciij[i][j] else: Cval = Cijj[i][j] C += zs[i]*zs[j]*zs[k]*Cval self._C = C return C def dC_dT(self): try: return self._dC_dT except: pass T = self.T zs = self.zs dC_dT_pures = self.model.dC_dT_pures(T) dC_dTiij, dC_dTijj = self.model.dC_dT_interactions(T) dC_dT = 0.0 N = self.N for i in range(N): for j in range(N): # poling 5-4.3b should be able to be used to take out the k loop? for k in range(N): if i == j == k: dC_dTval = dC_dT_pures[i] elif i == j: dC_dTval = dC_dTiij[i][j] else: dC_dTval = dC_dTijj[i][j] dC_dT += zs[i]*zs[j]*zs[k]*dC_dTval self._dC_dT = dC_dT return dC_dT def d2C_dT2(self): try: return self._d2C_dT2 except: pass T = self.T zs = self.zs d2C_dT2_pures = self.model.d2C_dT2_pures(T) d2C_dT2iij, d2C_dT2ijj = self.model.d2C_dT2_interactions(T) d2C_dT2 = 0.0 N = self.N for i in range(N): for j in range(N): # poling 5-4.3b should be able to be used to take out the k loop? for k in range(N): if i == j == k: d2C_dT2val = d2C_dT2_pures[i] elif i == j: d2C_dT2val = d2C_dT2iij[i][j] else: d2C_dT2val = d2C_dT2ijj[i][j] d2C_dT2 += zs[i]*zs[j]*zs[k]*d2C_dT2val self._d2C_dT2 = d2C_dT2 return d2C_dT2
StarcoderdataPython
1728565
<gh_stars>1-10 import pandas as pd import numpy as np ''' This module contains several normalization methods. See ReadMe.md for usage example. ''' def zero_one_normalize(df: pd.DataFrame, excluded_colnames: list = None) -> pd.DataFrame: """ Applies the MinMaxScaler from the module sklearn.preprocessing to find the min and max of each column and transforms the values into the range of [0,1]. The transformation is given by:: X_scaled = (X - X.min(axis=0)) / ranges where:: range = X.max(axis=0) - X.min(axis=0) Note: In case multiple dataframes are used (i.e., several partitions of the dataset in training and testing), make sure that all of them will be passed to this method at once, and as one single dataframe. Otherwise, the normalization will be carried out on local (as opposed to global) extrema, which is incorrect. :param df: The dataframe to be normalized. :param excluded_colnames: The name of non-numeric columns (e.g. TimeStamp, ID etc.) that must be excluded before normalization takes place. They will be added back to the normalized data. :return: The same dataframe as input, with the label column unchanged, except that now the numerical values are transformed into a [0, 1] range. """ from sklearn.preprocessing import MinMaxScaler excluded_colnames = excluded_colnames if excluded_colnames else [] colnames_original_order = list(df) # Separate data (numeric) from those to be excluded (ids and class_labels) included_cnames = [colname for colname in list(df) if colname not in excluded_colnames] # Exclude all non-numeric columns df_numeric = df[included_cnames].select_dtypes(include=np.number) # set-difference between the original and numeric columns excluded_cnames = list(set(colnames_original_order) - set(list(df_numeric))) df_excluded = df[excluded_cnames] # prepare normalizer and normalize scaler = MinMaxScaler() res_ndarray = scaler.fit_transform(df_numeric) df_numeric = pd.DataFrame(res_ndarray, columns=list(df_numeric), dtype=float) # Reset the indices (so that they match) df_excluded.reset_index() df_numeric.reset_index() # Add the excluded columns back df_norm = df_excluded.join(df_numeric) # Restore the original oder of columns df_norm = df_norm[colnames_original_order] return df_norm def negativeone_one_normalize(df: pd.DataFrame, excluded_colnames: list = None) -> pd.DataFrame: """ Applies the `MinMaxScaler` from the module `sklearn.preprocessing` to find the min and max of each column and transforms the values into the range of [-1,1]. The transformation is given by:: X_scaled = scale * X - 1 - X.min(axis=0) * scale where:: scale = 2 / (X.max(axis=0) - X.min(axis=0)) Note: In case multiple dataframes are used (i.e., several partitions of the dataset in training and testing), make sure that all of them will be passed to this method at once, and as one single dataframe. Otherwise, the normalization will be carried out on local (as opposed to global) extrema, which is incorrect. :param df: The dataframe to be normalized. :param excluded_colnames: The name of non-numeric columns (e.g. TimeStamp, ID etc) that must be excluded before normalization takes place. They will be added back to the normalized data. :return: The same dataframe as input, with the label column unchanged, except that now the numerical values are transformed into a [-1, 1] range. """ from sklearn.preprocessing import MinMaxScaler excluded_colnames = excluded_colnames if excluded_colnames else [] colnames_original_order = list(df) # Separate data (numeric) from those to be excluded (ids and class_labels) included_cnames = [colname for colname in list(df) if colname not in excluded_colnames] # Exclude all non-numeric columns df_numeric = df[included_cnames].select_dtypes(include=np.number) # set-difference between the original and numeric columns excluded_cnames = list(set(colnames_original_order) - set(list(df_numeric))) df_excluded = df[excluded_cnames] # prepare normalizer and normalize scaler = MinMaxScaler((-1, 1)) res_ndarray = scaler.fit_transform(df_numeric) df_numeric = pd.DataFrame(res_ndarray, columns=list(df_numeric), dtype=float) # Reset the indices (so that they match) df_excluded.reset_index() df_numeric.reset_index() # Add the excluded columns back df_norm = df_excluded.join(df_numeric) # Restore the original oder of columns df_norm = df_norm[colnames_original_order] return df_norm def standardize(df: pd.DataFrame, excluded_colnames: list = None) -> pd.DataFrame: """ Applies the StandardScaler from the module sklearn.preprocessing by removing the mean and scaling to unit variance. The transformation is given by: .. math:: z = (x - u) / s where `x` is a feature vector, `u` is the mean of the vector, and `s` represents its standard deviation. Note: In case multiple dataframes are used (i.e., several partitions of the dataset in training and testing), make sure that all of them will be passed to this method at once, and as one single dataframe. Otherwise, the normalization will be carried out on local (as opposed to global) extrema, which is incorrect. :param df: The dataframe to be normalized. :param excluded_colnames: The name of non-numeric columns (e.g. TimeStamp, ID etc) that must be excluded before normalization takes place. They will be added back to the normalized data. :return: The same dataframe as input, with the label column unchanged, except that now the numeric values are transformed into a range with mean at 0 and unit standard deviation. """ from sklearn.preprocessing import StandardScaler excluded_colnames = excluded_colnames if excluded_colnames else [] colnames_original_order = list(df) # Separate data (numeric) from those to be excluded (ids and class_labels) included_cnames = [colname for colname in list(df) if colname not in excluded_colnames] # Exclude all non-numeric columns df_numeric = df[included_cnames].select_dtypes(include=np.number) # set-difference between the original and numeric columns excluded_cnames = list(set(colnames_original_order) - set(list(df_numeric))) df_excluded = df[excluded_cnames] # prepare normalizer and normalize scaler = StandardScaler() res_ndarray = scaler.fit_transform(df_numeric) df_numeric = pd.DataFrame(res_ndarray, columns=list(df_numeric), dtype=float) # Reset the indices (so that they match) df_excluded.reset_index() df_numeric.reset_index() # Add the excluded columns back df_norm = df_excluded.join(df_numeric) # Restore the original oder of columns df_norm = df_norm[colnames_original_order] return df_norm def robust_standardize(df: pd.DataFrame, excluded_colnames: list = None) -> pd.DataFrame: """ Applies the RobustScaler from the module sklearn.preprocessing by removing the median and scaling the data according to the quantile range (IQR). This transformation is robust to outliers. Note: In case multiple dataframes are used (i.e., several partitions of the dataset in training and testing), make sure that all of them will be passed to this method at once, and as one single dataframe. Otherwise, the normalization will be carried out on local (as opposed to global) extrema, hence unrepresentative IQR. This is a bad practice. :param df: The dataframe to be normalized. :param excluded_colnames: The name of non-numeric (e.g., TimeStamp, ID etc.) that must be excluded before normalization takes place. They will be added back to the normalized data. :return: The same dataframe as input, with the label column unchanged, except that now the numerical values are transformed into new range determined by IQR. """ from sklearn.preprocessing import RobustScaler excluded_colnames = excluded_colnames if excluded_colnames else [] colnames_original_order = list(df) # Separate data (numeric) from those to be excluded (ids and class_labels) included_cnames = [colname for colname in list(df) if colname not in excluded_colnames] # Exclude all non-numeric columns df_numeric = df[included_cnames].select_dtypes(include=np.number) # set-difference between the original and numeric columns excluded_cnames = list(set(colnames_original_order) - set(list(df_numeric))) df_excluded = df[excluded_cnames] # prepare normalizer and normalize scaler = RobustScaler() res_ndarray = scaler.fit_transform(df_numeric) df_numeric = pd.DataFrame(res_ndarray, columns=list(df_numeric), dtype=float) # Reset the indices (so that they match) df_excluded.reset_index() df_numeric.reset_index() # Add the excluded columns back df_norm = df_excluded.join(df_numeric) # Restore the original oder of columns df_norm = df_norm[colnames_original_order] return df_norm
StarcoderdataPython
3203062
<gh_stars>1-10 from django.urls import path # from django.urls import include from . import views urlpatterns = [ path('index.html',views.index,name='index'), path('',views.index,name='index'), ]
StarcoderdataPython
1713365
<reponame>jaredlwong/sudoku """This solution is a simple bfs with grids being copied using np.array""" from __future__ import annotations from typing import FrozenSet from typing import Iterator from typing import List from typing import NewType from typing import Optional from typing import Tuple import time import sys import numpy as np class SudokuParser(object): @staticmethod def read_from_file(fn): pass @staticmethod def parse_str(s): grid = [[int(c) for c in row] for row in s.split('\n') if row] np_grid = np.zeros(81) for i in range(9): for j in range(9): np_grid[i*9+j] = grid[i][j] return Sudoku(np_grid) class Sudoku(object): indexes = (1, 2, 3, 4, 5, 6, 7, 8, 9) def __init__(self, grid): self._grid = grid def get(self, row: int, col: int) -> int: return self._grid[(row-1)*9+(col-1)] def copy_and_set(self, row: int, col: int, v: int) -> Sudoku: new_grid = self._grid.copy() new_grid[(row-1)*9+(col-1)] = v return Sudoku(new_grid) def row(self, r: int) -> Iterator[int]: """Return row (1-indexed)""" return (self.get(r, c) for c in Sudoku.indexes) def col(self, c: int) -> Iterator[int]: """Return row (1-indexed)""" return (self.get(r, c) for r in Sudoku.indexes) def rows(self) -> Iterator[Iterator[int]]: """Return each row for each yield""" for r in Sudoku.indexes: yield self.row(r) def cols(self) -> Iterator[Iterator[int]]: """Return each col for each yield""" for c in Sudoku.indexes: yield self.col(c) def box(self, b: int) -> Iterator[int]: r_box = (b - 1) // 3 c_box = (b - 1) % 3 for r in range(r_box * 3, r_box * 3 + 3): for c in range(c_box * 3, c_box * 3 + 3): yield self.get(r+1, c+1) def boxes(self) -> Iterator[Iterator[int]]: for b in Sudoku.indexes: yield self.box(b) class SudokuSolver(object): @staticmethod def grp_okay(grp: Iterator[int]) -> bool: grp_minus_zeros = [x for x in grp if x != 0] return len(grp_minus_zeros) == len(set(grp_minus_zeros)) @staticmethod def sudoku_possible(sudoku: Sudoku) -> bool: if not all(SudokuSolver.grp_okay(row) for row in sudoku.rows()): return False if not all(SudokuSolver.grp_okay(col) for col in sudoku.cols()): return False if not all(SudokuSolver.grp_okay(box) for box in sudoku.boxes()): return False return True @staticmethod def sudoku_complete(sudoku: Sudoku) -> bool: return all(c != 0 for row in sudoku.rows() for c in row) @staticmethod def sudoku_gen_next(sudoku: Sudoku) -> List[Sudoku]: position = SudokuSolver.next_open(sudoku) if not position: return [] r, c = position return [sudoku.copy_and_set(r, c, k) for k in range(1, 10)] @staticmethod def next_open(sudoku: Sudoku) -> Optional[Tuple[int, int]]: for i in range(1, 10): for j in range(1, 10): if sudoku.get(i, j) == 0: return i, j return None @staticmethod def sudoku_solve(sudoku: Sudoku) -> Optional[Sudoku]: queue = SudokuSolver.sudoku_gen_next(sudoku) while len(queue) > 0: s = queue.pop() if not SudokuSolver.sudoku_possible(s): continue if SudokuSolver.sudoku_complete(s): return s queue.extend(SudokuSolver.sudoku_gen_next(s)) return None # sudoku_puzzle = ''' # 070050010 # 000028600 # 200000000 # 000006000 # 530000007 # 080090040 # 600000081 # 005300000 # 000009370 # ''' sudoku_puzzle = ''' 801340000 430800107 000060003 208050009 009000700 600070804 300010000 105006042 000024308 ''' if __name__ == '__main__': sudoku: Sudoku = SudokuParser.parse_str(sudoku_puzzle) solved: Optional[Sudoku] = SudokuSolver.sudoku_solve(sudoku) if solved: print(solved._grid) else: print(sudoku._grid)
StarcoderdataPython
1694599
<reponame>polymathnexus5/solid-rotary-phone<filename>src/decision_tree.py from sklearn import datasets from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils import pandas as pd import numpy as np import matrix_plot import matplotlib.pyplot as plt seed = 8 np.random.seed(seed) def feature_normalize(dataset): return (dataset - np.mean(dataset, axis=0))/np.std(dataset, axis=0) df = pd.read_excel('data/all_data_2.xlsx', header=None) input = df.as_matrix() #X=input.reshape((150,25)) X_norm = feature_normalize(input).reshape((150,25)) #X_norm = feature_normalize(input.reshape((150,25))) X = X_norm Y = np.ones((150), np.float32) for i in range(0,Y.shape[0],50): if (i == 0): Y[0:50] = Y[0:50]*0 if (i == 0): Y[100:] = Y[100:]*2 ''' #X=input.reshape((75,50)) X_norm = feature_normalize(input).reshape((75,50)) X = X_norm Y = np.ones((75), np.float32) for i in range(0,Y.shape[0],25): if (i == 0): Y[0:25] = Y[0:25]*0 if (i == 0): Y[50:] = Y[50:]*2 ''' class_names = ['man','hand','eye'] X_train, X_test, y_train, y_test = train_test_split(X, Y) dtree_model = DecisionTreeClassifier(max_depth = 4).fit(X_train, y_train) dtree_predictions = dtree_model.predict(X_test) cm = confusion_matrix(y_test, dtree_predictions) # Plot normalized confusion matrix matrix_plot.plot_confusion_matrix(y_test, dtree_predictions, classes=class_names, normalize=True, title='Decision Tree From Session 1 Data') plt.show() count = 0 for i in range (y_test.shape[0]): if y_test[i] == dtree_predictions[i]: #print(dtree_predictions[i]) #print(y_test[i]) count += 1 #print(count) #print(count) #print(y_test.shape[0]) print("Train Count: ", y_train.shape) print("============================") print("Test Count: ", y_test.shape) print("============================") print("Results: ", dtree_predictions) print("============================") print("True Values: ", y_test) print("============================") print("accuracy: ", count*100/y_test.shape[0]) print("============================") df2 = pd.read_excel('data/all_data.xlsx', header=None) input2 = df2.as_matrix() #X2=input2.reshape((144,25)) X_norm2 = feature_normalize(input2).reshape((144,25)) #X_norm2 = feature_normalize(input2.reshape((144,25))) X2 = X_norm2 Y2 = np.ones((144), np.float32) for i in range(0,Y2.shape[0],48): if (i == 0): Y2[0:48] = Y2[0:48]*2 if (i == 0): Y2[96:] = Y2[96:]*0 ''' #X2=input2.reshape((72,50)) X_norm2 = feature_normalize(input2).reshape((72,50)) X2 = X_norm2 Y2 = np.ones((72), np.float32) for i in range(0,Y2.shape[0],24): if (i == 0): Y2[0:24] = Y2[0:24]*2 if (i == 0): Y2[48:] = Y2[48:]*0 ''' X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, Y2, test_size=0.9) dtree_predictions2 = dtree_model.predict(X_test2) cm2 = confusion_matrix(y_test2, dtree_predictions2) # Plot normalized confusion matrix matrix_plot.plot_confusion_matrix(y_test2, dtree_predictions2, classes=class_names, normalize=True, title='Decision Tree From session 1 Used On Session 2') plt.show() count2 = 0 for i in range (y_test2.shape[0]): if y_test2[i] == dtree_predictions2[i]: #print(dtree_predictions[i]) #print(y_test[i]) count2 += 1 #print(count) #print(count) #print(y_test.shape[0]) print("Results: ", dtree_predictions2) print("============================") print("True Values: ", y_test2) print("============================") print("accuracy: ", count*100/y_test2.shape[0]) print("============================")
StarcoderdataPython
4823122
<reponame>peyang-Celeron/ServerTemplate.py<filename>src/utils/token.py import os from secrets import token_bytes from blake3 import blake3 class Token: def __init__(self, file): self.file = file self.token = None @property def loaded(self): if not os.path.exists(self.file): return False with open(self.file, "rb") as r: self.token = r.read().decode("utf-8") return True def save(self, token): with open(self.file, "w") as r: r.write(token) def generate(self): if self.token is not None: return self.token if os.path.exists(self.file) and self.loaded: return self.token token = token_bytes(32) hash_token = blake3(token).hexdigest() self.save(hash_token) self.token = hash_token return hash_token def validate(self, token): return self.token == blake3(token).hexdigest()
StarcoderdataPython
3356266
#!/usr/bin/env python # encoding: utf-8 # <NAME>, 2008 # <NAME>, 2008 (ita) import TaskGen from TaskGen import taskgen, feature from Constants import * TaskGen.declare_chain( name = 'luac', rule = '${LUAC} -s -o ${TGT} ${SRC}', ext_in = '.lua', ext_out = '.luac', reentrant = False, install = 'LUADIR', # env variable ) @feature('lua') def init_lua(self): self.default_chmod = O755 def detect(conf): conf.find_program('luac', var='LUAC', mandatory = True)
StarcoderdataPython
1741601
from django.contrib import admin from .models import Question, Option admin.site.register(Question) admin.site.register(Option)
StarcoderdataPython
62551
import torch import cv2 as cv import numpy as np from sklearn.neighbors import NearestNeighbors from .model_utils import spread_feature def optimize_image_mask(image_mask, sp_image, nK=4, th=1e-2): mask_pts = image_mask.reshape(-1) xyz_pts = sp_image.reshape(-1, 3) xyz_pts = xyz_pts[mask_pts > 0.5, :] Neighbors = NearestNeighbors(n_neighbors=nK + 1, algorithm='kd_tree').fit(xyz_pts) nn_dist, nn_idx = Neighbors.kneighbors(xyz_pts) # N,nK nn_dist = nn_dist[:, 1:] valid = (np.sum((nn_dist < th).astype(np.float), axis=1) == nK).astype(np.float) optimized_mask = image_mask.reshape(-1) optimized_mask[mask_pts > 0.5] = valid optimized_mask = optimized_mask.reshape(image_mask.shape[0], image_mask.shape[1]) return optimized_mask def generate_final_mask(image_learned_uv, image_mask, image_resize_factor, mask_container_low_res, final_gim): """ Post Process Algorithm to generate mask of the unwrapped chart Parameters ---------- image_learned_uv: [H,W,2] image_mask: [H,W] image_resize_factor: float mask_container_low_res: a predefined tensor with intermediate low resolution final_gim: a predefined tensor with target high resolution """ # resize (larger) rgb and uv with Bi-linear up-sampling resized_uv = cv.resize(image_learned_uv, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_LINEAR) resized_mask = cv.resize(image_mask, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_LINEAR) resized_mask = (resized_mask > 0.5).astype(np.float) # use gradient to remove the edge discontinuous_mask_u = cv.Laplacian(image_learned_uv[..., 0], ddepth=cv.CV_32F) # small gradient map discontinuous_mask_v = cv.Laplacian(image_learned_uv[..., 1], ddepth=cv.CV_32F) # small gradient map # use the max and min in latent u and v to find the threshhold u_max = (image_learned_uv[..., 0] * image_mask).max() v_max = (image_learned_uv[..., 1] * image_mask).max() u_min = (image_learned_uv[..., 0] * image_mask + (1.0 - image_mask)).min() v_min = (image_learned_uv[..., 1] * image_mask + (1.0 - image_mask)).min() u_th = (u_max - u_min) / 30 v_th = (v_max - v_min) / 30 discontinuous_mask_u = (discontinuous_mask_u > u_th).astype(np.float) * image_mask discontinuous_mask_v = (discontinuous_mask_v > v_th).astype(np.float) * image_mask discontinuous_mask = ((discontinuous_mask_u + discontinuous_mask_v) > 0).astype(np.float) # use the mask to remove the boundary boundary_recovery_mask = (cv.Laplacian(image_mask, ddepth=cv.CV_32F) > 0.01).astype(np.float) discontinuous_mask = discontinuous_mask * (1.0 - boundary_recovery_mask) resized_discontinuous_mask = cv.resize(discontinuous_mask, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_NEAREST) # make the small mask & texture high_res_mask = torch.from_numpy(resized_mask * (1.0 - resized_discontinuous_mask)) \ .unsqueeze(0).unsqueeze(0).cuda().float() # 1,1,R,R high_res_uv = torch.from_numpy(resized_uv).permute(2, 0, 1).unsqueeze(0).cuda().float() low_res_mask = mask_container_low_res.cuda() low_res_mask = spread_feature(low_res_mask, high_res_uv, high_res_mask, high_res_mask) # use close to remove the holes in small mask and then resize low_res_mask_closed = low_res_mask.detach().cpu().squeeze(0).squeeze(0).numpy() # R,R close_k_size = int(final_gim.shape[2] / 100) close_kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (close_k_size, close_k_size)) final_mask_np = cv.resize(low_res_mask_closed, dsize=(final_gim.shape[2], final_gim.shape[2]), interpolation=cv.INTER_NEAREST) # R,R,3 final_mask_np = (final_mask_np > 0).astype(np.float) final_mask_np = cv.morphologyEx(final_mask_np, cv.MORPH_OPEN, close_kernel) return final_mask_np def generate_texture(sp_image, full_gim, image_rgb, image_mask, final_mask_np, final_res, nK=4, th=1e-2): # prepare root and query points form the image and from the high-res chart root_xyz_np = sp_image.reshape(-1, 3) # H*W,3 root_rgb_np = image_rgb.reshape(-1, 3) # H*W,3 _image_mask = image_mask.reshape(-1) # H*W root_xyz_np = root_xyz_np[_image_mask > 0.5, :] # M,2 [0,1] root_rgb_np = root_rgb_np[_image_mask > 0.5, :] # M,3 [0,1] query_xyz_np = full_gim.reshape(-1, 3) # R*R,3 _final_mask_np = final_mask_np.reshape(-1) # R*R query_xyz_np = query_xyz_np[_final_mask_np > 0.5, :] # N,3 [0,1] # finding nearest root pixel points Neighbors = NearestNeighbors(n_neighbors=nK, algorithm='kd_tree').fit(root_xyz_np) nn_dist, nn_idx = Neighbors.kneighbors(query_xyz_np) # N,nK # optimize the gim mask valid = (nn_dist[:, 0] < th).astype(np.float) optimized_final_mask_np = final_mask_np.reshape(-1).copy() optimized_final_mask_np[_final_mask_np > 0.5] = valid optimized_final_mask_np = optimized_final_mask_np.reshape(final_mask_np.shape[0], final_mask_np.shape[1]) # do interpolation based on chart distance interpolation_weight = nn_dist.copy() interpolation_weight = 1 - interpolation_weight / np.sum(interpolation_weight, 1, keepdims=True) interpolation_weight = interpolation_weight / np.sum(interpolation_weight, 1, keepdims=True) query_rgb_np = np.zeros((query_xyz_np.shape[0], 3)) for kdx in range(nK): nn_color = root_rgb_np[nn_idx[:, kdx], :] query_rgb_np += nn_color * interpolation_weight[:, kdx][..., np.newaxis] final_texture_np = np.ones((final_res ** 2, 3)) final_texture_np[_final_mask_np > 0.5, :] = query_rgb_np final_texture_np = final_texture_np.reshape(final_res, final_res, 3) return final_texture_np, optimized_final_mask_np
StarcoderdataPython
18466
"""from django.contrib import admin from .models import DemoModel admin.site.register(DemoModel)"""
StarcoderdataPython
3387349
class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: self.result = [] nums.sort() visited = [False] * len(nums) self.dfs(nums, [], visited) return self.result def dfs(self, nums, cur, visited): if len(cur) == len(nums): self.result.append(cur) return for i in range(len(nums)): if i > 0 and nums[i] == nums[i - 1] and not visited[i - 1]: continue elif not visited[i]: visited[i] = True self.dfs(nums, cur + [nums[i]], visited) visited[i] = False return
StarcoderdataPython
178017
<filename>interfaces/python/test/nodes_test.py import ell def test(): print("nodes_test.test -- TBD") return 0
StarcoderdataPython
127208
<filename>Episode3/exploits/exploit_got.py #!/usr/bin/env python2 from pwn import * ip = "192.168.0.13" port = 22 user = "pi" pwd = "<PASSWORD>" libc = ELF('libc-2.24.so') gadget_offset = 0xed748 shell = ssh(user, ip, password=<PASSWORD>, port=port) sh = shell.run('/home/pi/arm/episode3/got_overw') # fill the array sh.recvuntil('array:\n') sh.sendline('1852400175') # "nib/" sh.sendline('6845231') # "hs/" for i in range(0,10): sh.sendline(str(i)) sh.recvuntil('read: \n') # Leak the libc address sh.sendline('-9') # offset to the libc in the GOT section ret = sh.recvline().split() libc_main = int(ret[6]) # libc_base = libc_main - libc_base_offset libc_base = libc_main - libc.symbols['__libc_start_main'] log.info('libcbase: %#x' % libc_base) # address of the system function system_addr = libc_base + libc.symbols['system'] log.info('system address: %#x' % system_addr) sh.recvuntil('[y/n]\n') # do not read other values sh.sendline('n') sh.recvuntil('modify?\n') # send the system function address sh.sendline(str(system_addr)) sh.recvuntil('modify\n') sh.sendline('-10') # offset of the put in the GOT section sh.recvuntil('value\n') # gadget address gadget_address = libc_base + gadget_offset log.info('gadget address: %#x' % gadget_address) # send the gadget address sh.sendline(str(gadget_address)) sh.interactive() shell.close()
StarcoderdataPython
1706177
# The MIT License (MIT) # # Copyright (c) 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from matplotlib import pyplot as plt from collections import deque from threading import Lock, Thread import myo import numpy as np class EmgCollector(myo.DeviceListener): """ Collects EMG data in a queue with *n* maximum number of elements. """ def __init__(self, n): self.n = n self.lock = Lock() self.emg_data_queue = deque(maxlen=n) def get_emg_data(self): with self.lock: return list(self.emg_data_queue) # myo.DeviceListener def on_connected(self, event): event.device.stream_emg(True) def on_emg(self, event): with self.lock: self.emg_data_queue.append((event.timestamp, event.emg)) class Plot(object): def __init__(self, listener): self.n = listener.n self.listener = listener self.fig = plt.figure() self.axes = [self.fig.add_subplot('81' + str(i)) for i in range(1, 9)] [(ax.set_ylim([-100, 100])) for ax in self.axes] self.graphs = [ax.plot(np.arange(self.n), np.zeros(self.n))[0] for ax in self.axes] plt.ion() def update_plot(self): emg_data = self.listener.get_emg_data() emg_data = np.array([x[1] for x in emg_data]).T for g, data in zip(self.graphs, emg_data): if len(data) < self.n: # Fill the left side with zeroes. data = np.concatenate([np.zeros(self.n - len(data)), data]) g.set_ydata(data) plt.draw() def main(self): while True: self.update_plot() plt.pause(1.0 / 30) def main(): ### enter the path to your own MyoSDK package and .dll file here. Download # with Nuget @ https://www.nuget.org/packages/MyoSDK/2.1.0 and insert .dll file within # /bin folder if required. myo.init(sdk_path="C:\\Users\\dicke\\packages\\MyoSDK.2.1.0") hub = myo.Hub() listener = EmgCollector(512) with hub.run_in_background(listener.on_event): Plot(listener).main() if __name__ == '__main__': main()
StarcoderdataPython
3248884
<gh_stars>0 # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.4.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.tree import DecisionTreeClassifier as DTC from sklearn.ensemble import ExtraTreesClassifier as ETC from sklearn.ensemble import RandomForestClassifier as RDF import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import confusion_matrix, accuracy_score # - # ## Pre processing # Based on EDA (see notebook:) data processing will be done below # + # import data data_train = pd.read_csv('data/train.csv') data_test = pd.read_csv('data/test.csv') # Function to obtain information of null data (missing data) def null_info(df): num_null_val = df.isnull().sum() p_null_val = 100*num_null_val/len(df) null_info = pd.concat([num_null_val, p_null_val], axis=1) null_info = null_info.rename(columns = {0: 'Counts of null', 1:'%'}) return null_info data_train['Sex'] = data_train['Sex'].map({"male":0, "female":1}) data_test['Sex'] = data_test['Sex'].map({"male":0, "female":1}) data_train["Age"] = data_train["Age"].fillna(data_train["Age"].median()) data_test["Age"] = data_test["Age"].fillna(data_test["Age"].median()) data_train["Embarked"] = data_train["Embarked"].fillna("S") data_test["Embarked"] = data_test["Embarked"].fillna("S") # Repalce strings in "Embarked" to 0 (S), 1 (C), 2 (Q) data_train["Embarked"] = data_train["Embarked"].map({"S":0, "C":1, "Q":2}) data_test["Embarked"] = data_test["Embarked"].map({"S":0, "C":1, "Q":2}) data_test["Fare"] = data_test["Fare"].fillna(data_test["Fare"].median()) # - PassengerId_test = np.array(data_test['PassengerId']).astype(int) # ## Models colmuns_train = ['Pclass','Sex','Age','Parch'] df_test = data_test[colmuns_train] # ### Data for cross-validation # data_train.columns X = data_train[colmun_train] y = data_train[['Survived']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42) # ### Linear Regression X.columns # #### Cross-validation lm = LinearRegression() lm.fit(X_train, y_train) print(lm.intercept_) lm.coef_ cdf = pd.DataFrame(lm.coef_,index=['Coeff'], columns=X.columns) cdf prediction = lm.predict(X_test) res_predict = np.where(prediction>0.5, 1, 0) accuracy_score(y_test, res_predict) plt.scatter(y_test, prediction) sns.distplot((y_test-prediction)) prediction_linR = lm.predict(df_test) myPrediction_linR = pd.DataFrame(prediction_linR, PassengerId_test, columns=['Survived']) myPrediction_linR['Survived'] = np.where(prediction_linR > 0.5, 1, 0) myPrediction_linR.to_csv("results/Titianic_linR_model.csv", index_label = ["PassengerId"])b myPrediction_linR # ### Decision tree clf_DTC = DTC(max_depth=4) clf_DTC.fit(X_train,y_train) y_pred_test = clf_DTC.predict(X_test) accuracy_score(y_test, y_pred_test) # ### Logistic Regression logi_regg = LogisticRegression() clf_LogiReg = logi_regg.fit(X_train,y_train) clf_LogiReg.coef_ clf_LogiReg.intercept_ y_pred_LogiReg = clf_LogiReg.predict(X_test) accuracy_score(y_test, y_pred_LogiReg)
StarcoderdataPython
3338805
import datetime from apistar import App, Route, exceptions, types, validators from apistar_jwt.token import JWT, JWTUser # Fake user database USERS_DB = {'id': 1, 'email': '<EMAIL>', 'password': 'password'} class UserData(types.Type): email = validators.String() password = validators.String() def welcome(user: JWTUser) -> dict: message = f'Welcome {user.username}#{user.id}, your login expires at {user.token["exp"]}' return {'message': message} def login(data: UserData, jwt: JWT) -> dict: # do some check with your database here to see if the user is authenticated if data.email != USERS_DB['email'] or data.password != USERS_DB['password']: raise exceptions.Forbidden('Incorrect username or password.') payload = { 'id': USERS_DB['id'], 'username': USERS_DB['email'], 'iat': datetime.datetime.utcnow(), 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=60) # ends in 60 minutes } token = jwt.encode(payload) if token is None: # encoding failed, handle error raise exceptions.BadRequest() return {'token': token} routes = [ Route('/', method='GET', handler=welcome), Route('/login', method='POST', handler=login), ] components = [ JWT({ 'JWT_SECRET': '<KEY>', }), ] app = App(routes=routes, components=components) if __name__ == '__main__': app.serve('127.0.0.1', 8080, use_debugger=True, use_reloader=True)
StarcoderdataPython
117571
<reponame>spiralgenetics/biograph # pylint: disable=missing-docstring from __future__ import print_function import unittest import biograph import biograph.variants as bgexvar def vcf_assembly(pos, ref, alt, asm_id): pos = int(pos)-1 if ref and alt and ref[0] == alt[0]: ref = ref[1:] alt = alt[1:] pos = pos + 1 return bgexvar.Assembly(pos, pos + len(ref), alt, asm_id) # Raises an error that F0705 21:53:28.427729 102440 read_cov.cpp:28] Check failed: !m_interior asms = [vcf_assembly('17125234', 'A', 'G', 17125234), vcf_assembly('17125346', 'T', 'C', 17125346), vcf_assembly('17125438', 'A', 'C', 17125438), vcf_assembly('17125626', 'A', 'C', 17125626)] bg = biograph.BioGraph("/share/datasets/HG002/HG002-NA24385-50x.bg/", biograph.CacheStrategy.MMAP) seqset = bg.seqset rm = bg.open_readmap() ref = biograph.Reference("/reference/hs37d5") for pos,asm in enumerate(asms): print(pos) pc = list(bgexvar.generate_read_cov(rm, ref, "1", [asm]))
StarcoderdataPython
141728
#!/usr/bin/python # -*- coding: utf-8 -*- # ProDy: A Python Package for Protein Dynamics Analysis # # Copyright (C) 2010-2012 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> __author__ = '<NAME>' __copyright__ = 'Copyright (C) 2010-2012 <NAME>' from prody.tests import TestCase from prody.utilities import rangeString try: range = xrange except NameError: pass class TestRangeString(TestCase): def testContinuous(self): self.assertEqual(rangeString(list(range(10))), '0 to 9') def testNegative(self): self.assertEqual(rangeString(list(range(-5, 10)), pos=False), '-5 to 9') def testGapped(self): self.assertEqual(rangeString(list(range(-5, 10)) + list(range(15, 20)) + list(range(25, 30)), pos=False), '-5 to 9 15 to 19 25 to 29') def testRepeated(self): self.assertEqual(rangeString(list(range(10, 20)) + list(range(15, 20)) + list(range(30))), '0 to 29')
StarcoderdataPython
14788
# -*- coding: utf-8 -*- ''' :codeauthor: <NAME> <<EMAIL>> ''' # Import Python libs from __future__ import absolute_import, print_function, unicode_literals # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import TestCase from tests.support.mock import ( MagicMock, patch ) # Import Salt Libs import salt.utils.json import salt.states.grafana as grafana from salt.exceptions import SaltInvocationError class GrafanaTestCase(TestCase, LoaderModuleMockMixin): ''' Test cases for salt.states.grafana ''' def setup_loader_modules(self): return {grafana: {}} # 'dashboard_present' function tests: 1 def test_dashboard_present(self): ''' Test to ensure the grafana dashboard exists and is managed. ''' name = 'myservice' rows = ['systemhealth', 'requests', 'title'] row = [{'panels': [{'id': 'a'}], 'title': 'systemhealth'}] ret = {'name': name, 'result': None, 'changes': {}, 'comment': ''} comt1 = ('Dashboard myservice is set to be updated. The following rows ' 'set to be updated: {0}'.format(['systemhealth'])) self.assertRaises(SaltInvocationError, grafana.dashboard_present, name, profile=False) self.assertRaises(SaltInvocationError, grafana.dashboard_present, name, True, True) mock = MagicMock(side_effect=[{'hosts': True, 'index': False}, {'hosts': True, 'index': True}, {'hosts': True, 'index': True}, {'hosts': True, 'index': True}, {'hosts': True, 'index': True}, {'hosts': True, 'index': True}, {'hosts': True, 'index': True}]) mock_f = MagicMock(side_effect=[False, False, True, True, True, True]) mock_t = MagicMock(return_value='') mock_i = MagicMock(return_value=False) source = {'dashboard': '["rows", {"rows":["baz", null, 1.0, 2]}]'} mock_dict = MagicMock(return_value={'_source': source}) with patch.dict(grafana.__salt__, {'config.option': mock, 'elasticsearch.exists': mock_f, 'pillar.get': mock_t, 'elasticsearch.get': mock_dict, 'elasticsearch.index': mock_i}): self.assertRaises(SaltInvocationError, grafana.dashboard_present, name) with patch.dict(grafana.__opts__, {'test': True}): self.assertRaises(SaltInvocationError, grafana.dashboard_present, name) comt = ('Dashboard {0} is set to be created.'.format(name)) ret.update({'comment': comt}) self.assertDictEqual(grafana.dashboard_present(name, True), ret) mock = MagicMock(return_value={'rows': [{'panels': 'b', 'title': 'systemhealth'}]}) with patch.object(salt.utils.json, 'loads', mock): ret.update({'comment': comt1, 'result': None}) self.assertDictEqual(grafana.dashboard_present(name, True, rows=row), ret) with patch.object(salt.utils.json, 'loads', MagicMock(return_value={'rows': {}})): self.assertRaises(SaltInvocationError, grafana.dashboard_present, name, rows_from_pillar=rows) comt = ('Dashboard myservice is up to date') ret.update({'comment': comt, 'result': True}) self.assertDictEqual(grafana.dashboard_present(name, True), ret) mock = MagicMock(return_value={'rows': [{'panels': 'b', 'title': 'systemhealth'}]}) with patch.dict(grafana.__opts__, {'test': False}): with patch.object(salt.utils.json, 'loads', mock): comt = ('Failed to update dashboard myservice.') ret.update({'comment': comt, 'result': False}) self.assertDictEqual(grafana.dashboard_present(name, True, rows=row), ret) # 'dashboard_absent' function tests: 1 def test_dashboard_absent(self): ''' Test to ensure the named grafana dashboard is deleted. ''' name = 'myservice' ret = {'name': name, 'result': None, 'changes': {}, 'comment': ''} mock = MagicMock(side_effect=[{'hosts': True, 'index': False}, {'hosts': True, 'index': True}, {'hosts': True, 'index': True}]) mock_f = MagicMock(side_effect=[True, False]) with patch.dict(grafana.__salt__, {'config.option': mock, 'elasticsearch.exists': mock_f}): self.assertRaises(SaltInvocationError, grafana.dashboard_absent, name) with patch.dict(grafana.__opts__, {'test': True}): comt = ('Dashboard myservice is set to be removed.') ret.update({'comment': comt, 'result': None}) self.assertDictEqual(grafana.dashboard_absent(name), ret) comt = ('Dashboard myservice does not exist.') ret.update({'comment': comt, 'result': True}) self.assertDictEqual(grafana.dashboard_absent(name), ret)
StarcoderdataPython
3320835
<filename>docs/source/conf.py # -*- coding: utf-8 -*- import sys import os sys.path.insert(0, os.path.abspath('../../')) extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', ] templates_path = ['_templates'] source_suffix = '.rst' source_encoding = 'utf-8-sig' master_doc = 'index' project = u'message-queue' copyright = u'2016, Ingresse' author = u'Ingresse' version = u'0.1.1' release = u'0.1.1' language = None exclude_patterns = [] pygments_style = 'sphinx' todo_include_todos = False # -- Options for HTML output ---------------------------------------------- html_theme = 'sphinx_rtd_theme' html_static_path = ['_static'] htmlhelp_basename = 'message-queuedoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = {} latex_documents = [ (master_doc, 'message-queue.tex', u'message-queue Documentation', u'Ingresse', 'manual'), ] # -- Options for manual page output --------------------------------------- man_pages = [ (master_doc, 'message-queue', u'message-queue Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- texinfo_documents = [ (master_doc, 'message-queue', u'message-queue Documentation', author, 'message-queue', 'Message Queue', 'Miscellaneous'), ] intersphinx_mapping = {'https://docs.python.org/': None}
StarcoderdataPython
1631373
<filename>app/database.py import logging import os from typing import Optional import sqlalchemy from slack_sdk.oauth.installation_store import InstallationStore from slack_sdk.oauth.installation_store.sqlalchemy import SQLAlchemyInstallationStore from slack_sdk.oauth.state_store.sqlalchemy import SQLAlchemyOAuthStateStore from sqlalchemy.engine import Engine logger = logging.getLogger(__name__) user_token = os.environ.get("SLACK_USER_TOKEN") engine: Optional[Engine] = None installation_store: Optional[InstallationStore] = None client_id = os.environ["SLACK_CLIENT_ID"] local_database_url = "sqlite:///local_dev.db" database_url = os.environ.get("DATABASE_URL") or local_database_url logger.info(f"database: {database_url}") logging.getLogger("sqlalchemy.engine").setLevel(logging.DEBUG) engine = sqlalchemy.create_engine(database_url) installation_store = SQLAlchemyInstallationStore( client_id=client_id, engine=engine, logger=logger, ) oauth_state_store = SQLAlchemyOAuthStateStore( expiration_seconds=120, engine=engine, logger=logger, ) def run_db_migration(): try: engine.execute("select count(*) from slack_bots") except Exception as _: installation_store.metadata.create_all(engine) oauth_state_store.metadata.create_all(engine) if database_url == local_database_url: run_db_migration()
StarcoderdataPython
3337933
<reponame>adarshd8127/Hacktoberfest-3 import scipy.integrate as spi def arc_length(f,a,b,h=0.001,N=1000): '''Approximate the arc length of y=f(x) from x=a to x=b. Parameters ---------- f : (vectorized) function of one variable a,b : numbers defining the interval [a,b] h : step size to use in difference formulas N : number of subintervals in trapezoid method Returns ------- Approximation of the integral \int_a^b \sqrt{1 + (f'(x))^2} dx representing the arc length of y=f(x) from x=a to x=b. ''' x = np.linspace(a,b,N+1) y = f(x) # Compute central difference formula for x_k for 1 &lt;= k &lt;= N-1 h = np.min([h,(b-a)/N]) # Make sure that h is smaller than the size of the subintervals x_interior = x[1:-1] df_interior = (f(x_interior + h) - f(x_interior - h))/(2*h) # Use forward/backward difference formula at the endpoints df_a = (f(a + h) - f(a))/h df_b = (f(b) - f(b - h))/h df = np.hstack([[df_a],df_interior,[df_b]]) # Compute values of the integrand in arc length formula y = np.sqrt(1 + df**2) # Compute the integral L = spi.trapz(y,x) return L print(arc_length(lambda x: x,0,1))
StarcoderdataPython
27
########################################################################## # # Copyright (c) 2010-2012, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from __future__ import with_statement import os import sys import shutil import unittest import IECore class TestBasicPreset( unittest.TestCase ) : def testCopy( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) p = IECore.BasicPreset( testObj, testObj.parameters() ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) p2 = IECore.BasicPreset( testObj, testObj.parameters(), parameters=( testObj.parameters()["a"], ) ) self.assertTrue( p2.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p2.applicableTo( testObj2, testObj.parameters() ) ) p2( testObj2, testObj2.parameters() ) self.assertEqual( testObj2.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj2.parameters()["c"].getTypedValue(), 0.0 ) def testLoad( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised1" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) messageHandler = IECore.CapturingMessageHandler() with messageHandler : p = IECore.BasicPreset( os.path.join( savePath, "basicPresetLoadTest", "basicPresetLoadTest-1.cob" ) ) self.assertEqual( len( messageHandler.messages ), 0 ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) def testSave( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised1" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) preset = IECore.BasicPreset( testObj, testObj.parameters() ) # Save for the classLoader and check its there, we test the 'loadability' later... preset.save( savePath, "basicPresetTest" ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest", "basicPresetTest-1.cob" ) ) ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest", "basicPresetTest-1.py" ) ) ) # save without the classLoader and check its there preset.save( savePath, "basicPresetTest", classLoadable=False ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest.cob" ) ) ) # reload p = IECore.BasicPreset( os.path.join( savePath, "basicPresetTest.cob" ) ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) preset2 = IECore.BasicPreset( testObj, testObj.parameters(), parameters=( testObj.parameters()["a"], ) ) preset2.save( savePath, "basicPresetTest2", classLoadable=False ) #reload p2 = IECore.BasicPreset( os.path.join( savePath, "basicPresetTest2.cob" ) ) self.assertTrue( p2.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p2.applicableTo( testObj2, testObj.parameters() ) ) p2( testObj2, testObj2.parameters() ) self.assertEqual( testObj2.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj2.parameters()["c"].getTypedValue(), 0.0 ) def testClassLoader( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) preset = IECore.BasicPreset( testObj, testObj.parameters() ) preset.save( savePath, "basicPresetTestClassLoader" ) # make sure that no messages are emitted during loading messageHandler = IECore.CapturingMessageHandler() with messageHandler : loader = IECore.ClassLoader( IECore.SearchPath( savePath ) ) p = loader.load( "basicPresetTestClassLoader" )() self.assertEqual( len( messageHandler.messages ), 0 ) self.assertTrue( isinstance( p, IECore.BasicPreset ) ) p.metadata() def testClasses( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.ClassParameter( "b", "", "IECORE_OP_PATHS", os.path.join( "maths", "multiply" ), 2 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.ClassParameter( "c", "", "IECORE_OP_PATHS" ), ] ) classes1 = testObj.parameters()["b"].getClass( True ) classes2 = testObj2.parameters()["c"].getClass( True ) self.assertNotEqual( classes1[1:], classes2[1:] ) p = IECore.BasicPreset( testObj, testObj.parameters()["b"] ) self.assertTrue( p.applicableTo( testObj, testObj.parameters()["b"] ) ) self.assertFalse( p.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p.applicableTo( testObj2, testObj2.parameters()["c"] ) ) p( testObj2, testObj2.parameters()["c"] ) classes1 = testObj.parameters()["b"].getClass( True ) classes2 = testObj2.parameters()["c"].getClass( True ) self.assertEqual( classes1[1:], classes2[1:] ) def testClassVectors( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.ClassVectorParameter( "b", "", "IECORE_OP_PATHS" ), ] ) testObj.parameters()["b"].setClasses( [ ( "mult", os.path.join( "maths", "multiply" ), 2 ), ( "coIO", "compoundObjectInOut", 1 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.ClassVectorParameter( "c", "", "IECORE_OP_PATHS" ), ] ) classes1 = [ c[1:] for c in testObj.parameters()["b"].getClasses( True ) ] classes2 = [ c[1:] for c in testObj2.parameters()["c"].getClasses( True ) ] self.assertNotEqual( classes1, classes2 ) p = IECore.BasicPreset( testObj, testObj.parameters()["b"] ) self.assertTrue( p.applicableTo( testObj, testObj.parameters()["b"] ) ) self.assertFalse( p.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p.applicableTo( testObj2, testObj2.parameters()["c"] ) ) p( testObj2, testObj2.parameters()["c"] ) classes1 = [ c[1:] for c in testObj.parameters()["b"].getClasses( True ) ] classes2 = [ c[1:] for c in testObj2.parameters()["c"].getClasses( True ) ] self.assertEqual( classes1, classes2 ) def testCompoundVectorParameter( self ) : p = IECore.Parameterised( "test" ) p.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.CompoundVectorParameter( "c", "", members = [ IECore.StringVectorParameter( "s", "", IECore.StringVectorData() ), IECore.BoolVectorParameter( "b", "", IECore.BoolVectorData() ), ] ) ] ) p["c"]["s"].setValue( IECore.StringVectorData( [ "1", "2", "3" ] ) ) p["c"]["b"].setValue( IECore.BoolVectorData( [ True, False, True ] ) ) v = p.parameters().getValue().copy() preset = IECore.BasicPreset( p, p.parameters() ) self.assertTrue( preset.applicableTo( p, p.parameters() ) ) p.parameters().setValue( p.parameters().defaultValue ) self.assertNotEqual( p.parameters().getValue(), v ) preset( p, p.parameters() ) self.assertEqual( p.parameters().getValue(), v ) def tearDown( self ) : savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) paths = ( os.path.join( savePath, "basicPresetTest" ), os.path.join( savePath, "basicPresetTest.cob" ), os.path.join( savePath, "basicPresetTest2.cob" ), os.path.join( savePath, "basicPresetTestClassLoader" ), ) for p in paths : if os.path.isdir( p ) : shutil.rmtree( p ) elif os.path.isfile( p ) : os.remove( p ) if __name__ == "__main__": unittest.main()
StarcoderdataPython
111987
import numpy as np from numba import njit, prange # consav from consav import linear_interp # for linear interpolation from consav import golden_section_search # for optimization in 1D # local modules import utility # a. define objective function @njit def obj_bellman(c,m,interp_w,par): """ evaluate bellman equation """ # a. end-of-period assets a = m-c # b. continuation value w = linear_interp.interp_1d(par.grid_a,interp_w,a) # c. total value value_of_choice = utility.func(c,par) + w return -value_of_choice # we are minimizing # b. solve bellman equation @njit(parallel=True) def solve_bellman(t,sol,par): """solve bellman equation using nvfi""" # unpack (this helps numba optimize) v = sol.v[t] c = sol.c[t] # loop over outer states for ip in prange(par.Np): # in parallel # loop over cash-on-hand for im in range(par.Nm): # a. cash-on-hand m = par.grid_m[im] # b. optimal choice c_low = np.fmin(m/2,1e-8) c_high = m c[ip,im] = golden_section_search.optimizer(obj_bellman,c_low,c_high,args=(m,sol.w[ip],par),tol=par.tol) # note: the above finds the minimum of obj_bellman in range [c_low,c_high] with a tolerance of par.tol # and arguments (except for c) as specified # c. optimal value v[ip,im] = -obj_bellman(c[ip,im],m,sol.w[ip],par)
StarcoderdataPython
170126
<gh_stars>1-10 """ Plot accuracy: python analyze_result.py $path_to_MMI $path_to_peek $path_to_random -l MMI peek random Plot gain over random: python analyze_result.py $path_to_MMI $path_to_peek $path_to_random -l MMI peek random --gain-over-random """ import argparse import glob import numpy as np import os import pylab import subprocess pylab.rcParams['font.size']=20 colors=['r', 'g', 'b', 'c', 'm', 'y', 'k'] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('log_dirs', nargs='+', help='one or multiple dirs, ' 'each contains logs that corresponds to a ' 'ckpt selection method') parser.add_argument('-l', '--label', nargs='+', help='label for each dir') parser.add_argument('--gain-over-random', action='store_true', help='plot the gain of each non-random method ' 'against random') parser.add_argument('-s', help='path to save the figure. If not given, ' 'will show the figure') return parser.parse_args() def grep_result(log_dir): """ Return a numpy array of validation accuracies for all log files under the dir. The logs are due to a certain selection methods of checkpoints. They are named as selection_k${k_ckpts}_t${task_id} Suppose there are T tasks, and we select up to K checkpoints. If random selection with R different random seeds, the returned is R x T x K array If other (determnistic) method, the returned is T x K array """ fs = glob.glob(os.path.join(log_dir, '*_k[1-9]*_t[0-9]*.out')) fs = [f.split('/')[-1] for f in fs] K = max([int(f.split('.')[0].split('_')[1][1:]) for f in fs]) T = max([int(f.split('.')[0].split('_')[2][1:]) for f in fs]) + 1 is_random_selection = 'seed' in fs[0] if is_random_selection: seeds = [int(f.split('_')[0][4:]) for f in fs] seeds = np.unique(seeds) R = len(seeds) Results = np.zeros((R, T, K)) for i, s in enumerate(seeds): for t in range(T): for k in range(1, K+1): fname = os.path.join(log_dir, 'seed{}_k{}_t{}.out'.format(s, k, t)) acc = float( subprocess.check_output( ['./get_acc.sh', fname]).decode('utf-8')\ .strip()) * 100 Results[i, t, k-1] = acc else: method=fs[0].split('_')[0] Results = np.zeros((T, K)) for t in range(T): for k in range(1, K+1): fname = os.path.join(log_dir, '{}_k{}_t{}.out'.format(method, k, t)) acc = float( subprocess.check_output(['./get_acc.sh', fname])\ .decode('utf-8').strip()) * 100 Results[t, k-1] = acc return Results def plot_results(Results, label, color): if len(Results.shape) == 3: # random baseline R, T, K = Results.shape task_average = np.mean(Results, axis=1) q_lower = np.quantile(task_average, 0.05, axis=0) q_upper = np.quantile(task_average, 0.95, axis=0) pylab.fill_between(range(1, K+1), q_lower, q_upper, alpha=0.2, label=label, color=color) else: # deterministic selection method T, K = Results.shape task_average = np.mean(Results, axis=0) pylab.plot(range(1, K+1), task_average, label=label, color=color) def plot_gains(result, random_result, label, color): random_mean = random_result.mean(axis=0) # marginalize over random seed gain_each_task = result - random_mean gain = gain_each_task.mean(axis=0) pylab.plot(range(1, len(gain)+1), gain, label=label, color=color) if __name__ == '__main__': args = parse_args() if args.label: assert len(args.label) == len(args.log_dirs) label = args.label else: label = [str(_) for _ in range(1, len(args.log_dirs)+1)] if args.gain_over_random: Results = [] for i, d in enumerate(args.log_dirs): Result = grep_result(d) if len(Result.shape) == 3: random_index = i random_result = Result else: Results.append(Result) for i, result in enumerate(Results): plot_gains(result, random_result, label[i], colors[i]) pylab.hlines(0, 1, random_result.shape[-1], colors[random_index], 'dashed', label='random') #pylab.ylabel(r'$\mathbb{E}_t[acc_t - acc_t^r]$ (%)') pylab.ylabel('gain over random (%)') else: for i, d in enumerate(args.log_dirs): Results = grep_result(d) plot_results(Results, label[i], colors[i]) pylab.ylabel(r'$\mathbb{E}_t acc_t$ (%)') pylab.xlabel('k checkpoints used') pylab.xticks(range(0, 21, 5), [str(_) for _ in range(0, 21, 5)]) pylab.legend() pylab.tight_layout() if args.s: pylab.savefig(args.s) else: pylab.show()
StarcoderdataPython
1646434
<reponame>microsoft/poultry-cafos """ Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License. Script for running an inference script in parallel over a list of inputs. We split the actual list of filenames we want to run on into NUM_GPUS different batches, save those batches to file, and call `inference.py` multiple times in parallel - pointing it to a different batch each time. """ import subprocess from multiprocessing import Process import numpy as np # list of GPU IDs that we want to use, one job will be started for every ID in the list GPUS = [0, 0, 1, 1] TEST_MODE = False # if False then print out the commands to be run, if True then run # path passed to `--model_fn` in the `inference.py` script MODEL_FN = "output/train-all_unet_0.5_0.01_rotation_best-checkpoint.pt" # path passed to `--output_dir` in the `inference.py` script OUTPUT_DIR = "output/chesapeake-bay-3-18-2021/inference/" # Get the list of files we want our model to run on with open("data/naip_chesapeake_bay_2017-2018.csv", "r") as f: fns = f.read().strip().split("\n")[1:] # Split the list of files up into approximately equal sized batches based on the number # of GPUs we want to use. Each worker will then work on NUM_FILES / NUM_GPUS files in # parallel. Save these batches of the original list to disk (as a simple list of files # to be consumed by the `inference.py` script) num_files = len(fns) num_splits = len(GPUS) num_files_per_split = np.ceil(num_files / num_splits) output_fns = [] for split_idx in range(num_splits): output_fn = "data/runs/chesapeake-bay-3-18-2021_split_%d.csv" % (split_idx) with open(output_fn, "w") as f: start_range = int(split_idx * num_files_per_split) end_range = min(num_files, int((split_idx + 1) * num_files_per_split)) print("Split %d: %d files" % (split_idx + 1, end_range - start_range)) f.write("image_fn\n") for i in range(start_range, end_range): end = "" if i == end_range - 1 else "\n" f.write("%s%s" % (fns[i], end)) output_fns.append(output_fn) # Start NUM_GPUS worker processes, each pointed to one of the lists of files we saved # to disk in the previous step. def do_work(fn, gpu_idx): command = f"python inference.py --input_fn {fn} --model_fn {MODEL_FN}" +f" --output_dir {OUTPUT_DIR} --gpu {gpu_idx} --save_soft" print(command) if not TEST_MODE: subprocess.call(command, shell=True) processes = [] for work, gpu_idx in zip(output_fns, GPUS): p = Process(target=do_work, args=(work, gpu_idx)) processes.append(p) p.start() for p in processes: p.join()
StarcoderdataPython
1640193
def rotate_to_first_in_deque_and_pop(input_deque, predicate): """ Finds the first item in the deque that satisfies the condition by rotating through the deque using popleft(). Faster than doing a sort on the deque. """ for _ in xrange(0, len(input_deque)): item = input_deque.popleft() if predicate(item): return item input_deque.append(item) # Move the item to the end return None def pop_first_from_list_or_end(input_list, predicate): for i in xrange(len(input_list)-1, -1, -1): if predicate(input_list[i]): return input_list.pop(i) return input_list.pop() def count_if(input_list, predicate): c = 0 for item in input_list: if predicate(item): c += 1 return c def convert_dictionary(d, keyConverter, valueConverter): new_dict = {} for key, value in d.iteritems(): new_dict[keyConverter(key) if keyConverter else key] = valueConverter(value) if valueConverter else value return new_dict
StarcoderdataPython
68555
from abc import ABC, abstractmethod class AbstractDisplayService(ABC): @abstractmethod def accept_items(self, items): raise Exception("Not implemented.") @abstractmethod def stop(self): raise Exception("Not implemented.")
StarcoderdataPython
1716137
<gh_stars>0 def countWord(filename, word): line_count = 0 word_count = 0 with open(filename) as f: content = f.read() for line in content.splitlines(): found = line.count(word) if found: line_count += 1 word_count += found return (line_count, word_count) def countNumber(filename, number): line_count = 0 word_count = 0 with open(filename) as f: content = f.read() for line in content.splitlines(): found = line.count(str(number)) if found: line_count += 1 word_count += found return (line_count, word_count) ''' Copy-paste! Having the same or almost the same code in multiple places in project increases amount of code to maintain with no good reason. Above toy example sounds silly, but copy-pastes are harder to find if they exist as private implementation details scattered throughout repository, or repetitive boilerplate code in various places in repository. Or if they are a deeply buried part of large function or class, inaccessible to potential users. ''' def countWord(filename, word): line_count = 0 word_count = 0 with open(filename) as f: content = f.read() for line in content.splitlines(): found = line.count(word) if found: line_count += 1 word_count += found return (line_count, word_count) def countNumber(filename, number): return countWord(filename, str(number)) def countWord(filename, word): line_count = 0 word_count = 0 with open(filename) as f: content = f.read() for line in content.splitlines(): found = line.count(word) if found: line_count += 1 word_count += found return (line_count, word_count) def wordCount(filename, word): def add(acc, line): words, lines = acc found = line.count(word) return words + found, lines + bool(found) with open(filename) as f: return reduce(add, f.readlines(), (0, 0)) ''' This is a less trivial example. Both functions do exactly the same thing, but the language features used are different. Imagine these are in different places in codebase, with different identifier names. No automatic tool for finding code duplication is going to find this kind of superfluous code. Two ways of coping with them would be: - separation of concerns: solve different problems in different places, so that you know where to look for building blocks when you have particular problem. As long as similar logic is in the same place, it's easier to spot reocurring patterns, - code review: someone may spot you're reinventing the wheel (or doing old thing better!), which may result in ending up with only with solution for given problem - the best of the two I pick reduce variant. Seems shorter to me. ''' def countWord(filename, word): def add(acc, line): words, lines = acc found = line.count(word) return words + found, lines + bool(found) with open(filename) as f: return reduce(add, f.readlines(), (0, 0))
StarcoderdataPython
1624910
import arcade import math from miscellaneous import Misc import Constants class Arrow: def __init__(self, x1, y1, x2, y2, x3, y3, color): self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 self.x3 = x3 self.y3 = y3 self.color = color def draw(self): arcade.draw_triangle_filled(self.x1, self.y1, self.x2, self.y2, self.x3, self.y3, self.color) def update(self,x,y): self.x1 = x self.y1 =y intersections = Misc.circle_intersection(self,(Constants.SCREEN_X/2, Constants.SCREEN_Y/2, Constants.CIRCLE_RADIUS), (x,y,math.sqrt(pow(x-Constants.SCREEN_X/2,2)+ pow(y-Constants.SCREEN_Y/2,2)- pow(Constants.CIRCLE_RADIUS,2)))) self.x2 = intersections[0] self.y2= intersections[1] self.x3 = intersections[2] self.y3 = intersections[3]
StarcoderdataPython
3253593
<reponame>phungj/MSOE_Comp_Prog_Py import os file_path = os.path.join(os.path.dirname(__file__), "sanitized_input.txt") with open(file_path, 'r') as input: all_lines = input.readlines() for i in range(len(all_lines)): all_lines[i] = all_lines[i].strip("\n") fields = [] field_ranges = [] index = 0 current_line = all_lines[index] while not current_line == "": colon_index = current_line.index(":") split_current_line = current_line[colon_index + 2:].split(" ") fields.append(current_line[:colon_index]) field_ranges.append((split_current_line[0], split_current_line[2])) index += 1 current_line = all_lines[index] ranges = [] temp_tuple = () for field in field_ranges: temp_tuple = () for interval in field: split_field = interval.split("-") split_field = [int(s) for s in split_field] temp_tuple += (range(split_field[0], split_field[1] + 1),) ranges.append(temp_tuple) index += 2 your_ticket = all_lines[index] index += 3 current_line = all_lines[index] tickets = [your_ticket] while not current_line == "" and index < 220: tickets.append(current_line) index += 1 current_line = all_lines[index] tickets = [i.split(",") for i in tickets] indexed_fields = {f: [] for f in range(len(tickets[0]))} while tickets[0]: for ticket in tickets: for i in range(len(ticket)): indexed_fields.get(i).append(ticket.pop(0)) field_dict = {f: -1 for f in fields} broken = False # while fields: # TODO: Continue here
StarcoderdataPython
3268613
''' @author: <NAME> @summary: Test cases to make sure sequential execution and process based concurrent execution return the same response. ''' from tests.test_concurrency_base import TestBaseConcurrency from batch_requests.concurrent.executor import ProcessBasedExecutor class TestProcessConcurrency(TestBaseConcurrency): ''' Tests sequential and concurrent process based execution. ''' def get_executor(self): ''' Returns the executor to use for running tests defined in this suite. ''' return ProcessBasedExecutor(self.number_workers) def test_thread_concurrency_response(self): ''' Make a request with sequential and process based concurrent executor and compare the response. ''' self.compare_seq_and_concurrent_req() def test_duration(self): ''' Compare that running tests with ProcessBasedConcurreny return faster than running them sequentially. ''' self.compare_seq_concurrent_duration()
StarcoderdataPython
1703891
<filename>models/DeepFill_Models/unfold_test.py import torch import numpy as np in_a = np.arange(16) in_a = np.resize(in_a, (4,4)) in_tensor = np.expand_dims(in_a, 0) in_tensor = np.expand_dims(in_tensor, 0) print("input: ") print(in_tensor) in_t = torch.from_numpy(in_tensor) all_patches = in_t.unfold(2, 2, 1).unfold(3, 2, 1) print("all patches") print(all_patches[0][0][0][1]) print(all_patches.shape)
StarcoderdataPython
3224296
#!/usr/bin/env python3 import requests, json domain = input("Enter the hostname http://") response = requests.get("http://"+domain) print(response.json) print("Status code: "+str(response.status_code)) print("Headers response: ") for header, value in response.headers.items(): print(header, '-->', value) print("Headers request : ") for header, value in response.request.headers.items(): print(header, '-->', value)
StarcoderdataPython
4834901
<reponame>Yuanoung/djg-master #!/usr/bin/env python import os, sys, traceback import unittest import django.contrib as contrib try: set except NameError: from sets import Set as set # For Python 2.3 CONTRIB_DIR_NAME = 'django.contrib' MODEL_TESTS_DIR_NAME = 'modeltests' REGRESSION_TESTS_DIR_NAME = 'regressiontests' TEST_TEMPLATE_DIR = 'templates' CONTRIB_DIR = os.path.dirname(contrib.__file__) MODEL_TEST_DIR = os.path.join(os.path.dirname(__file__), MODEL_TESTS_DIR_NAME) REGRESSION_TEST_DIR = os.path.join(os.path.dirname(__file__), REGRESSION_TESTS_DIR_NAME) ALWAYS_INSTALLED_APPS = [ 'django.contrib.contenttypes', 'django.contrib.auth', 'django.contrib.sites', 'django.contrib.flatpages', 'django.contrib.redirects', 'django.contrib.sessions', 'django.contrib.comments', 'django.contrib.admin', ] def get_test_models(): models = [] for loc, dirpath in (MODEL_TESTS_DIR_NAME, MODEL_TEST_DIR), (REGRESSION_TESTS_DIR_NAME, REGRESSION_TEST_DIR), (CONTRIB_DIR_NAME, CONTRIB_DIR): for f in os.listdir(dirpath): if f.startswith('__init__') or f.startswith('.') or f.startswith('sql') or f.startswith('invalid'): continue models.append((loc, f)) return models def get_invalid_models(): models = [] for loc, dirpath in (MODEL_TESTS_DIR_NAME, MODEL_TEST_DIR), (REGRESSION_TESTS_DIR_NAME, REGRESSION_TEST_DIR), (CONTRIB_DIR_NAME, CONTRIB_DIR): for f in os.listdir(dirpath): if f.startswith('__init__') or f.startswith('.') or f.startswith('sql'): continue if f.startswith('invalid'): models.append((loc, f)) return models class InvalidModelTestCase(unittest.TestCase): def __init__(self, model_label): unittest.TestCase.__init__(self) self.model_label = model_label def runTest(self): from django.core.management.validation import get_validation_errors from django.db.models.loading import load_app from cStringIO import StringIO try: module = load_app(self.model_label) except Exception, e: self.fail('Unable to load invalid model module') # Make sure sys.stdout is not a tty so that we get errors without # coloring attached (makes matching the results easier). We restore # sys.stderr afterwards. orig_stdout = sys.stdout s = StringIO() sys.stdout = s count = get_validation_errors(s, module) sys.stdout = orig_stdout s.seek(0) error_log = s.read() actual = error_log.split('\n') expected = module.model_errors.split('\n') unexpected = [err for err in actual if err not in expected] missing = [err for err in expected if err not in actual] self.assert_(not unexpected, "Unexpected Errors: " + '\n'.join(unexpected)) self.assert_(not missing, "Missing Errors: " + '\n'.join(missing)) def django_tests(verbosity, interactive, test_labels): from django.conf import settings old_installed_apps = settings.INSTALLED_APPS old_test_database_name = settings.TEST_DATABASE_NAME old_root_urlconf = getattr(settings, "ROOT_URLCONF", "") old_template_dirs = settings.TEMPLATE_DIRS old_use_i18n = settings.USE_I18N old_login_url = settings.LOGIN_URL old_language_code = settings.LANGUAGE_CODE old_middleware_classes = settings.MIDDLEWARE_CLASSES # Redirect some settings for the duration of these tests. settings.INSTALLED_APPS = ALWAYS_INSTALLED_APPS settings.ROOT_URLCONF = 'urls' settings.TEMPLATE_DIRS = (os.path.join(os.path.dirname(__file__), TEST_TEMPLATE_DIR),) settings.USE_I18N = True settings.LANGUAGE_CODE = 'en' settings.LOGIN_URL = '/accounts/login/' settings.MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.middleware.common.CommonMiddleware', ) settings.SITE_ID = 1 # Load all the ALWAYS_INSTALLED_APPS. # (This import statement is intentionally delayed until after we # access settings because of the USE_I18N dependency.) from django.db.models.loading import get_apps, load_app get_apps() # Load all the test model apps. for model_dir, model_name in get_test_models(): model_label = '.'.join([model_dir, model_name]) try: # if the model was named on the command line, or # no models were named (i.e., run all), import # this model and add it to the list to test. if not test_labels or model_name in set([label.split('.')[0] for label in test_labels]): if verbosity >= 1: print "Importing model %s" % model_name mod = load_app(model_label) if mod: if model_label not in settings.INSTALLED_APPS: settings.INSTALLED_APPS.append(model_label) except Exception, e: sys.stderr.write("Error while importing %s:" % model_name + ''.join(traceback.format_exception(*sys.exc_info())[1:])) continue # Add tests for invalid models. extra_tests = [] for model_dir, model_name in get_invalid_models(): model_label = '.'.join([model_dir, model_name]) if not test_labels or model_name in test_labels: extra_tests.append(InvalidModelTestCase(model_label)) try: # Invalid models are not working apps, so we cannot pass them into # the test runner with the other test_labels test_labels.remove(model_name) except ValueError: pass # Run the test suite, including the extra validation tests. from django.test.simple import run_tests failures = run_tests(test_labels, verbosity=verbosity, interactive=interactive, extra_tests=extra_tests) if failures: sys.exit(failures) # Restore the old settings. settings.INSTALLED_APPS = old_installed_apps settings.ROOT_URLCONF = old_root_urlconf settings.TEMPLATE_DIRS = old_template_dirs settings.USE_I18N = old_use_i18n settings.LANGUAGE_CODE = old_language_code settings.LOGIN_URL = old_login_url settings.MIDDLEWARE_CLASSES = old_middleware_classes if __name__ == "__main__": from optparse import OptionParser usage = "%prog [options] [model model model ...]" parser = OptionParser(usage=usage) parser.add_option('-v','--verbosity', action='store', dest='verbosity', default='0', type='choice', choices=['0', '1', '2'], help='Verbosity level; 0=minimal output, 1=normal output, 2=all output') parser.add_option('--noinput', action='store_false', dest='interactive', default=True, help='Tells Django to NOT prompt the user for input of any kind.') parser.add_option('--settings', help='Python path to settings module, e.g. "myproject.settings". If this isn\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.') options, args = parser.parse_args() if options.settings: os.environ['DJANGO_SETTINGS_MODULE'] = options.settings elif "DJANGO_SETTINGS_MODULE" not in os.environ: parser.error("DJANGO_SETTINGS_MODULE is not set in the environment. " "Set it or use --settings.") django_tests(int(options.verbosity), options.interactive, args)
StarcoderdataPython
1695526
<gh_stars>1-10 import os import subprocess import pytest from . import util class Git: def __init__(self, repo_dir): super().__init__() self.repo_dir = repo_dir self._run_git('init', self.repo_dir) # If GPG sign is enabled, committing fails because there is no # GPG keys for the used test email addresses. self._run_git('config', 'commit.gpgsign', 'false') def get_local_version_string(self): return self._get_head_sha()[:10] def create_commit(self): with open(os.path.join(self.repo_dir, 'dummy.txt'), 'at+') as dummy_file: dummy_file.seek(0) change_number = len(dummy_file.read().split('\n')) dummy_file.write('Dummy change {}\n'.format(change_number)) self._run_git('add', 'dummy.txt') self._run_git('commit', '-m', 'Dummy change {}'.format(change_number)) def create_tag(self, tag_name): self._run_git( 'tag', '-a', '-m', 'Tag {}'.format(tag_name), tag_name, 'HEAD', ) def _get_head_sha(self): return self._run_git( 'rev-parse', 'HEAD', stdout=subprocess.PIPE, ).stdout.decode().strip() def _run_git(self, *args, **kwargs): kwargs['cwd'] = self.repo_dir kwargs['check'] = True environ = kwargs.get('env') or os.environ.copy() environ['GIT_AUTHOR_NAME'] = 'Setuptools Vcsver Test' environ['GIT_AUTHOR_EMAIL'] = '<EMAIL>' environ['GIT_COMMITTER_NAME'] = 'Setuptools Vcsver Test' environ['GIT_COMMITTER_EMAIL'] = '<EMAIL>' kwargs['env'] = environ return util.run('git', *args, **kwargs) def test_get_version_defined_in_setup_py(test_project): test_project.set_setup_kwargs(version='2.0') test_project.assert_current_version('2.0') vcs = Git(test_project.path) vcs.create_commit() vcs.create_commit() test_project.assert_current_version('2.0') vcs.create_tag('1.0') test_project.assert_current_version('2.0') test_project.set_setup_kwargs(version='2.1') test_project.assert_current_version('2.1') @pytest.mark.parametrize( ('setuptools_kwargs', 'dev_version_format_string'), ( (None, '{tag}.post{dist}+{hash}'), ({'vcsver': {'create_version': 'pep440.post'}}, '{tag}.post{dist}+{hash}'), ({'vcsver': {'create_version': 'pep440.post_with_dev'}}, '{tag}.post0.dev{dist}+{hash}'), ), ) def test_get_version_from_history( test_project, setuptools_kwargs, dev_version_format_string, ): if setuptools_kwargs: test_project.set_setup_kwargs(**setuptools_kwargs) vcs = Git(test_project.path) test_project.assert_current_version('{}+dirty'.format(test_project.root_version)) vcs.create_commit() test_project.assert_current_version( dev_version_format_string.format( tag=test_project.root_version, dist=1, hash=vcs.get_local_version_string(), ), ) vcs.create_commit() vcs.create_commit() test_project.assert_current_version( dev_version_format_string.format( tag=test_project.root_version, dist=3, hash=vcs.get_local_version_string(), ), ) vcs.create_tag('1.0') test_project.assert_current_version('1.0') vcs.create_commit() vcs.create_commit() test_project.assert_current_version( dev_version_format_string.format( tag='1.0', dist=2, hash=vcs.get_local_version_string(), ), ) vcs.create_commit() vcs.create_commit() test_project.assert_current_version( dev_version_format_string.format( tag='1.0', dist=4, hash=vcs.get_local_version_string(), ), ) def test_configuration_having_version_defined_in_setup_py_and_vcsver_enabled(test_project): vcs = Git(test_project.path) test_project.set_setup_kwargs(version='5.0', vcsver=True) vcs.create_commit() vcs.create_tag('6.0') test_project.assert_current_version('6.0')
StarcoderdataPython
3292071
text = '[ Статистика ]<br>Система:<br>&#8195;Процессор:<br>' for idx, cpu in enumerate(psutil.cpu_percent(interval=1, percpu=True)): text += '&#8195;&#8195;Ядро №'+str(idx+1)+': '+str(cpu)+'%<br>' text += '&#8195;&#8195;Температура: '+str(int(open('/sys/class/thermal/thermal_zone0/temp','r').read())/1000)+' °С\n' mem = psutil.virtual_memory() MB = 1024 * 1024 text += '&#8195;ОЗУ:<br>&#8195;&#8195;Всего: '+str(int(mem.total / MB))+'MB<br>&#8195;&#8195;Использовано: '+str(int((mem.total - mem.available) / MB))+'MB<br>&#8195;&#8195;Свободно: '+str(int(mem.available / MB))+'MB<br>&#8195;&#8195;Использовано ботом: '+str(int(psutil.Process().memory_info().vms / MB))+'MB<br>&#8195;' end_time = time.monotonic() text += 'Бот:<br>&#8195;&#8195;Время работы: '+str(datetime.timedelta(seconds=end_time - start_time)) text += '\n&#8195;&#8195;Обращений: '+str(uses_kb) apisay(text,pack['toho'])
StarcoderdataPython
3319969
#!/usr/bin/env python # # MagicaVoxel2MinecraftPi # from voxel_util import create_voxel, post_to_chat, ply_to_positions, reset_area from magicavoxel_axis import axis from all_clear import clear from time import sleep # polygon file format exported from MagicaVoxel ply_files = ['frog1.ply', 'frog2.ply', 'frog3.ply', 'frog4.ply', 'frog5.ply', 'frog4.ply', 'frog3.ply', 'frog2.ply'] # reset_stop reset_stop = 0.01 # create_stop create_stop = 0.1 # repeat repeat_count repeat_count = 50 # reset area reset_size = (-10, 0, -10, 10, 20, 10) # Origin to create (Minecraft) x0 = 0 y0 = 0 z0 = 0 # Rotation degree (MagicaVoxel) alpha = 0 # x-axis beta = 0 # y-axis gamma = 0 # z-axis model_settings = { 'x0': x0, 'y0': y0, 'z0': z0, 'alpha': alpha, 'beta': beta, 'gamma': gamma, } post_to_chat('animation polygon file format model') box_positions_list = [ply_to_positions(ply_file) for ply_file in ply_files] clear() for i in range(repeat_count): print(i) reset_area(*reset_size) sleep(reset_stop) create_voxel(box_positions_list[i % len(ply_files)], model_settings) sleep(create_stop)
StarcoderdataPython
3345740
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Explore hparams on a single machine.""" import time from typing import Any, Callable, Mapping, MutableMapping, Sequence, Tuple import gin from learned_optimization.population import population import numpy as onp BranchingState = Mapping[str, Any] @gin.configurable class BranchingSingleMachine(population.Mutate): r"""Explore hparams on a single machine! This is a simple statemachine based mutator. First, we perturb a hparam in some direction (governed by `mutate_fn`) and try training in this direction for `explore_steps`. Once done, we reset, and explore the opposite direction (also governed by `mutate_fn`) for explore_steps`. Once done, we select the best direction, reset to the end of that corresponding explore phase, and continue training for `exploit\_steps`. This process then repeats. """ # this is a simple state machine. def __init__(self, mutate_fn: Callable[[Any, str, int], Any], exploit_steps: int, explore_steps: int): """Initializer. Args: mutate_fn: A deterministic function mapping from hyper parameters, phase (either "pos" or "neg"), and phase_indx -- or the number of previous branchings. This should return a new hyper-parameter value. exploit_steps: number of steps in exploit phase explore_steps: number of steps in explore phase """ self._mutate_fn = mutate_fn self._exploit_steps = exploit_steps self._explore_steps = explore_steps def init(self) -> BranchingState: return { "neg": None, "pos": None, "center": None, "center_meta_params": None, "branch_checkpoint": None, "start_params": None, "start_exploit": 0, "phase": "explore_center", "phase_idx": 0, } def update( self, state: BranchingState, current_workers: Sequence[population.ActiveWorker], cache: MutableMapping[population.GenerationID, MutableMapping[int, population.Checkpoint]] ) -> Tuple[BranchingState, Sequence[population.ActiveWorker]]: # copy dict to make pytype happy state = {**state} # type: MutableMapping[str, Any] assert len(current_workers) == 1 worker = current_workers[0] steps = cache[worker.generation_id] if not steps: return state, current_workers def add_worker_to_cache(from_checkpoint: population.Checkpoint, worker: population.ActiveWorker): """Helper function to add a new checkpoint to the cache.""" checkpoint = population.Checkpoint( generation_id=worker.generation_id, params=worker.params, meta_params=worker.meta_params, parent=(from_checkpoint.generation_id, from_checkpoint.step), step=worker.step, value=None, time=time.time(), ) if worker.generation_id not in cache: cache[worker.generation_id] = population.IntKeyDict() cache[worker.generation_id][worker.step] = checkpoint if state["branch_checkpoint"] is None: state["branch_checkpoint"] = steps[0] state["center"] = steps[0].generation_id last_checkpoint = steps.values()[-1] if state["phase"] == "exploit": # switch to center. if last_checkpoint.step - state["start_exploit"] >= self._exploit_steps: meta_params = last_checkpoint.meta_params genid = population.make_gen_id() next_workers = [ population.ActiveWorker(last_checkpoint.params, meta_params, genid, last_checkpoint.step) ] state["branch_checkpoint"] = last_checkpoint state["center"] = genid state["phase"] = "explore_center" add_worker_to_cache(state["branch_checkpoint"], next_workers[0]) return state, next_workers else: return state, current_workers else: should_switch = last_checkpoint.step - state[ "branch_checkpoint"].step >= self._explore_steps if should_switch: segment = state["phase"].split("_")[-1] if segment == "center": # next state is neg genid = population.make_gen_id() state["neg"] = genid state["phase"] = "explore_neg" meta_params = state["branch_checkpoint"].meta_params meta_params = self._mutate_fn(meta_params, "pos", state["phase_idx"]) next_workers = [ population.ActiveWorker(state["branch_checkpoint"].params, meta_params, genid, state["branch_checkpoint"].step) ] add_worker_to_cache(state["branch_checkpoint"], next_workers[0]) return state, next_workers elif segment == "neg": # next state is pos genid = population.make_gen_id() state["pos"] = genid state["phase"] = "explore_pos" meta_params = state["branch_checkpoint"].meta_params meta_params = self._mutate_fn(meta_params, "neg", state["phase_idx"]) next_workers = [ population.ActiveWorker(state["branch_checkpoint"].params, meta_params, genid, state["branch_checkpoint"].step) ] add_worker_to_cache(state["branch_checkpoint"], next_workers[0]) return state, next_workers # next state is exploit elif segment == "pos": take_values_from = state[ "branch_checkpoint"].step + self._explore_steps center_steps = cache[state["center"]] neg_steps = cache[state["neg"]] pos_steps = cache[state["pos"]] state["center"] = None state["neg"] = None state["pos"] = None state["start_exploit"] = last_checkpoint.step state["phase"] = "exploit" state["phase_idx"] += 1 if take_values_from not in center_steps: raise ValueError( f"The eval @ step {take_values_from} not there for center? \n {center_steps}" ) if take_values_from not in neg_steps: raise ValueError( f"The eval @ step {take_values_from} not there for neg? \n {neg_steps}" ) if take_values_from not in pos_steps: raise ValueError( f"The eval @ step {take_values_from} not there for pos? \n {pos_steps}" ) center_score = center_steps[take_values_from].value neg_score = neg_steps[take_values_from].value pos_score = pos_steps[take_values_from].value scores = [center_score, neg_score, pos_score] idx = onp.nanargmin(scores) best_checkpoint = [center_steps, neg_steps, pos_steps][idx].values()[-1] meta_params = best_checkpoint.meta_params genid = population.make_gen_id() next_workers = [ population.ActiveWorker(best_checkpoint.params, meta_params, genid, best_checkpoint.step) ] add_worker_to_cache(best_checkpoint, next_workers[0]) return state, next_workers else: raise ValueError(f"unknown phase {state['phase']}") else: return state, current_workers
StarcoderdataPython
9098
<gh_stars>0 from binance.client import Client import PySimpleGUI as sg api_key = "your_binance_apikey" secret_key = "your_binance_secretkey" client = Client(api_key=api_key, api_secret=secret_key) # price def get_price(coin): return round(float(client.get_symbol_ticker(symbol=f"{coin}USDT")['price']), 5) def column_layout_price(coin): col =[[sg.Text(f"{get_price(coin)}", font=("Arial", 9, 'bold'), size=(10,1), pad=(15,10), key=coin)]] return col # 24h percentchange def price_change_24h(coin): return round(float(client.get_ticker(symbol=f"{coin}USDT")["priceChangePercent"]), 2) def column_layout_change(coin): if price_change_24h(coin) == 0: return [[sg.Text(f"{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="black", key=f"{coin}change")]] elif price_change_24h(coin) > 0: return [[sg.Text(f"+{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="green", key=f"{coin}change")]] return [[sg.Text(f"{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="red", key=f"{coin}change")]] def update_24h_change(coin): if price_change_24h(coin) == 0: window[f"{coin}change"].update(f"+{price_change_24h(coin)}%", text_color="black") elif price_change_24h(coin) > 0: window[f"{coin}change"].update(f"+{price_change_24h(coin)}%", text_color="green") elif price_change_24h(coin) < 0: window[f"{coin}change"].update(f"{price_change_24h(coin)}%", text_color="red") # GUI sg.theme('DefaultNoMoreNagging') # Tabs def tabs(coin): tab_layout = [[sg.Image("{}.png".format(coin), size=(50,50)), sg.Text("Price", font=("Arial", 10, 'bold'), size=(7,1), pad=(40,40)), sg.Text("24h change", font=("Arial", 10, 'bold'), size=(10,1), pad=(10,40))], [sg.Text(f"{coin}/USDT", font=("Arial", 9, 'bold')), sg.Column(column_layout_price(coin)), sg.Column(column_layout_change(coin))]] return tab_layout # Layout layout = [[sg.Text("Crypto Currencies", font=("Arial", 10, 'bold'))], [sg.TabGroup([[sg.Tab("BTC", tabs("BTC"), border_width="18"), sg.Tab("XRP", tabs("XRP"), border_width="18"), sg.Tab("DOGE", tabs("DOGE"), border_width="18")]])]] window = sg.Window("NightLeaf Crypto", layout) def coin_window(*coins): for coin in coins: globals()[f"{coin}_last_price"] = 1 while True: event,values = window.read(timeout=600) if event == sg.WIN_CLOSED: break for coin in coins: update_24h_change(coin) price = get_price(coin) if price != globals()[f"{coin}_last_price"]: if price > globals()[f"{coin}_last_price"]: window[f"{coin}"].update(f"{price} 🠕", text_color="green") elif price < globals()[f"{coin}_last_price"]: window[f"{coin}"].update(f"{price} 🠗", text_color="red") globals()[f"{coin}_last_price"] = price a_list =["BTC", "XRP", "DOGE"] coin_window(*a_list)
StarcoderdataPython
1661142
<filename>hyades/determine-cluster-center.py<gh_stars>1-10 """ Determine cluster center with a radius cut as the position where the postional membership within the radius cut does not change. - The radius cut should be large enough to contain substantial number of stars otherwise it will just depend on the statistical fluctuation of the mean of small number of stars. - The radius cut should be not too large as then, it will be subject to larger contamination rate far from the cluster. """ import matplotlib.pyplot as plt import pandas as pd import numpy as np import astropy.coordinates as coord import kinesis as kn import data kn.set_mpl_style() def xyz_icrs_to_galactic(xyz): c = coord.ICRS(*xyz, representation_type="cartesian") return c.transform_to(coord.Galactic).cartesian.xyz.value df = data.load_hyades_dataset() df = df.loc[df["Member_r19"] != "other"].reset_index(drop=True) print(len(df), "rows") cl_gaia = df.loc[df["in_dr2"] == True].copy() b_c_icrs_cl_gaia_mean = cl_gaia.g.icrs.cartesian.xyz.mean(axis=1).value b_c_galactic_cl_gaia_mean = xyz_icrs_to_galactic(b_c_icrs_cl_gaia_mean) xyz = df.g.icrs.cartesian.xyz.value # list storage for boolean flag array; initially consider all stars in_rcut = [np.ones(xyz.shape[1]).astype(bool)] # list storage for boolean flag array; initially set with Gaia Collab DR2 sample r_cut = 10 # pc, radius cut niter = 20 # maximum number of iteration print("N={:d} r_cut={:.2f} max iter={:d}".format(len(df), r_cut, niter)) for i in range(niter): prev = in_rcut[-1] b_c = xyz[:, prev].mean(axis=1) r_c = np.linalg.norm(xyz - b_c[:, None], axis=0) current = r_c < r_cut bool_remove = (~current) & (prev) bool_include = (current) & (~prev) if (current == prev).all(): print("iter {:2d} b_c={} membership converged".format(i, b_c)) break else: print( "iter {:2d} b_c={} removing {:d} including {:d}".format( i, b_c, bool_remove.sum(), bool_include.sum() ) ) in_rcut.append(current) # report final values b_c_icrs_iter_mean = b_c b_c_galactic_iter_mean = xyz_icrs_to_galactic(b_c) r_c = np.linalg.norm(xyz - b_c_icrs_iter_mean[:, None], axis=0) n_r_cut = (r_c < r_cut).sum() n_r_cut_p05 = (r_c < r_cut + 0.5).sum() n_r_cut_m05 = (r_c < r_cut - 0.5).sum() print("final b_c icrs =", b_c_icrs_iter_mean) print("final b_c galactic =", b_c_galactic_iter_mean) print(n_r_cut, n_r_cut_p05, n_r_cut_m05) reino2018 = dict( b_c_galactic=np.array([-44.16, 0.66, -17.76]), # pc b_c_galactic_err=np.array([0.74, 0.39, 0.41]), # pc ) report_df = pd.DataFrame.from_dict( { "final b_c icrs": b_c_icrs_iter_mean, "final b_c galactic": b_c_galactic_iter_mean, "mean of cl gaia icrs": b_c_icrs_cl_gaia_mean, "mean of cl gaia galactic": b_c_galactic_cl_gaia_mean, "Reino 2018 galactic": reino2018["b_c_galactic"], }, orient="index", columns=("x", "y", "z"), ) print(report_df) #%% summary plot: distribution of stars from the center fig, (axhist, axdens) = plt.subplots(1, 2, figsize=(7, 3), sharex=True) bins = np.logspace(-1, 2.5, 32) axhist.hist(r_c, bins) axhist.axvline(r_cut, c="k") axhist.set_xlabel("$r_c$ [pc]") axhist.set_ylabel("count [pc]") axhist.set_xscale("log") s, be = np.histogram(r_c, bins) bc = (be[1:] + be[:-1]) * 0.5 numdens = s / (np.pi * 4 * bc ** 2) / (be[1] - be[0]) axdens.plot(bc, numdens, "o-") axdens.axvline(r_cut, c="k") axdens.set_xscale("log") axdens.set_yscale("log") axdens.set_ylim(1e-3, 200) axdens.set_xlabel("$r_c$ [pc]") axdens.set_ylabel("number density [pc$^{-3}$]") fig.tight_layout() fig.savefig("../report/r_c_dist.pdf") #%% summary plot: distribution of stars in Galactic coordinates fig, (ax_xy, ax_xz) = plt.subplots(2, 1, figsize=(3, 6), sharex=True,) ax_xy.set_aspect("equal") ax_xz.set_aspect("equal") ax_xy.scatter(df["gx"], df["gy"], s=1, c="tab:gray") ax_xz.scatter(df["gx"], df["gz"], s=1, c="tab:gray") def add_circle(center, radius, ax=None): from matplotlib.patches import Circle if ax is None: ax = plt.gca() circle = Circle(center, radius, facecolor="None", edgecolor="k") ax.add_patch(circle) xy_cen = [b_c_galactic_iter_mean[0], b_c_galactic_iter_mean[1]] xz_cen = [b_c_galactic_iter_mean[0], b_c_galactic_iter_mean[2]] add_circle(xy_cen, r_cut, ax=ax_xy) add_circle(xz_cen, r_cut, ax=ax_xz) ax_xy.set_xlabel("$x$ [pc]") ax_xy.set_ylabel("$y$ [pc]") ax_xz.set_xlabel("$x$ [pc]") ax_xz.set_ylabel("$z$ [pc]") fig.suptitle("Galactic") fig.tight_layout() fig.savefig("report/galactic_xyz.pdf") print("check radial velocities") N_rv = (df["radial_velocity"].notna()).sum() N_10 = (r_c < 10).sum() N_10_rv = ((r_c < 10) & (df["radial_velocity"].notna())).sum() print("N rv =", N_rv) print("N(r_c<10) = {} N(r_c<10 and has rv) = {}".format(N_10, N_10_rv)) print("N(r_c>10) = {} N(r_c<10 and has rv) = {}".format(len(df) - N_10, N_rv - N_10_rv))
StarcoderdataPython
3300241
# # Copyright (c) 2021 kumattau # # Use of this source code is governed by a MIT License # from .greetings import __doc__, __all__, __version__ from .greetings import *
StarcoderdataPython