id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
1621876
<filename>hello_world/test_main.py """Tests main.py.""" from hello_world.main import message def test_message() -> None: """Tests hello message.""" assert message() == "Hi world"
StarcoderdataPython
1627928
#!/usr/bin/python import cookielib import urllib import urllib2 import urllib3 import time import json import sys import traceback from atlas import measure_baseclass login_url = 'https://access.ripe.net' udm_url = 'https://atlas.ripe.net/atlas/udm.html' data_url = 'https://atlas.ripe.net/atlas/udmgrid.json' cookie_filename = '/tmp/ripeatlas.cookie' login_test_url = '/atlas/user' new_url = 'https://atlas.ripe.net/atlas/newudm.json' class Atlas: def __init__(self, username, password, inputfile, connection_pool_size=10): self.username = username self.password = password self.inputfile = inputfile self.sleep = 60 self.pool = urllib3.connection_from_url('https://atlas.ripe.net', maxsize=connection_pool_size) self.headers = [('User-agent', 'Mozilla/5.0'), ('Referer', 'https://atlas.ripe.net/atlas/udm.html'), ('Host', 'atlas.ripe.net'), ('Origin', 'https://atlas.ripe.net'), ('X-Requested-With', 'XMLHttpRequest')] self.login() self.target_dict = measure_baseclass.load_input(self.inputfile) """ self.target_list = [] f = open(self.inputfile) for line in f: line = line.strip() chunks = line.split() target = chunks[0] probes = chunks[1:] #if target in self.target_list: # sys.stderr.write('Already saw target %s\n' % target) # continue self.target_list.append((target, probes)) f.close() """ """ f = open(self.inputfile) for line in f: line = line.strip() chunks = line.split(' ') nodeid = chunks[0] targetip = chunks[1] self.target_list.append((nodeid, targetip)) f.close() """ def login(self): self.cookiejar = cookielib.LWPCookieJar() self.opener = urllib2.build_opener( urllib2.HTTPRedirectHandler(), urllib2.HTTPHandler(debuglevel=0), urllib2.HTTPSHandler(debuglevel=0), urllib2.HTTPCookieProcessor(self.cookiejar)) self.opener.addheaders = self.headers login_data = urllib.urlencode({ 'username' : self.username, 'password' : <PASSWORD>, }) self.opener.open(login_url, login_data) for cookie in self.cookiejar: if cookie.name == 'crowd.token_key': self.token = cookie.value elif cookie.name == 'JSESSIONID': self.session_id = cookie.value if self.token and self.session_id: self.headers.append(('Cookie', 'JSESSIONID='+self.session_id+'; crowd.token_key='+self.token+'; csrftoken='+self.token)) def runall(self, req, description, interval): timestr = time.strftime('%Y-%m-%d %H:%M:%S') target_len = len(self.target_dict) targets = self.target_dict.keys() i = 0 while i < target_len: target = targets[i] probe_list = self.target_dict[target] url = 'http://'+target+'/'+req """ The maxmimum number of probes per requet is 500 so we need to break this is up into several requests. """ probe_list_chunks = [probe_list[x:x+500] for x in xrange(0, len(probe_list), 500)] for probe_list_chunk in probe_list_chunks: try: response = self.run(probe_list_chunk, url, description, interval) except: traceback.print_exc(file=sys.stderr) sys.stderr.write('Got some kind of network exception. Sleeping for '+str(self.sleep)+'\n') time.sleep(self.sleep) continue if not response['success']: if 'Not authenticated or session is expired' in response['errorMessage']: self.login() sys.stderr.write(response['errorMessage']+'\n') sys.stderr.write('Sleeping for '+str(self.sleep)+'\n') time.sleep(self.sleep) else: i += 1 sys.stderr.write(str(i)+'/'+str(target_len)+'\n') def run(self, probe_list, url, description, interval): probe_list_str = ','.join(probe_list) isoneoff = '"oneoff":"on",' if interval == '-1' else '' if interval == '-1': interval = '900' #change to something valid """ Without oneoff {"types":[{"intvl":"900","method":"method_get","httpver":"httpver11","headbytes":"","useragent":"httpget for atlas.ripe.net","url":"http://fi-hel-as3292.anchors.atlas.ripe.net","public":"1","descr":"http://fi-hel-as3292.anchors.atlas.ripe.net","typeid":"httpget"}],"sources":[{"probesreqlist":[4788,4906],"typeid":"probes"}]} """ """ With oneoff data:{"oneoff":"on","types":[{"intvl":"900","method":"method_get","httpver":"httpver11","headbytes":"","useragent":"httpget for atlas.ripe.net","url":"http://gr-ath-as5408.anchors.atlas.ripe.net","public":"1","descr":"http://gr-ath-as5408.anchors.atlas.ripe.net","typeid":"httpget"}],"sources":[{"probesreqlist":[3775,3992],"typeid":"probes"}]} """ data = {} data['csrfmiddlewaretoken'] = self.token data['data'] = '{%s"types":[{"intvl":"%s","method":"method_get","httpver":"httpver11","headbytes":"","useragent":"Mozilla","url":"%s","public":"1","descr":"%s","typeid":"httpget"}],"sources":[{"probesreqlist":[%s],"typeid":"probes"}]}' % (isoneoff, interval, url, description, probe_list_str) response = self.pool.request('POST', new_url, data, self.headers) response_str = response.data return json.loads(response_str) if __name__ == '__main__': if len(sys.argv) != 7: sys.stderr.write('Usage: <username> <password> <probeid-ip-file> <request (search?q=dogs)> <collection-identifier> <repeat-interval-secs (-1 for one off)>\n') sys.exit(1) user = sys.argv[1] password = sys.argv[2] probe_file = sys.argv[3] req = sys.argv[4] description = sys.argv[5] repeat_interval = sys.argv[6] http = Atlas(user, password, probe_file) http.runall(req, description, repeat_interval)
StarcoderdataPython
116853
from rest_framework import viewsets, permissions, status from rest_framework.response import Response class HealthViewSet(viewsets.ViewSet): # uncomment this to make the endpoint require authentication # permission_classes = [permissions.IsAuthenticated] def list(self, request, *args, **kwargs): """Displays "healthy" """ return Response({'health': 'healthy'}, status=status.HTTP_200_OK)
StarcoderdataPython
1730975
#!/usr/bin/env python """Contains the Data Model for the MAC Address(es) Resource. Represents the data model for the IEEE MA-L Public Assignments Listing data. The three-octet MA-L can be used as a lookup to help identify a provided Organizationally Unique Identifier (OUI) which identifies a vendor, manufacturer or other org globally/worldwide. ref: http://standards.ieee.org/develop/regauth/oui/public.html """ __author__ = "<NAME>" __copyright__ = "IBM Copyright 2015" __credits__ = ["<NAME>"] __license__ = "Apache 2.0" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Prototype" schema = { 'schema': { 'cloudhost': { 'type': 'string', 'default': 'Powered by IBM Bluemix and Python Eve' }, 'base16': { 'type': 'string', 'default': '######' }, 'hex': { 'type': 'string', 'default': '##-##-##' }, 'organization': { 'type': 'string', 'default': 'Doh!MissingOrg' } }, 'allow_unknown': True }
StarcoderdataPython
3334053
import zerorpc import pandas as pd import logging import numpy as np logging.basicConfig() def rand_weights(n): k = np.random.rand(n) return k / sum(k) def calcMuSigma(returns): p = np.asmatrix(np.mean(returns, axis=1)) w = np.asmatrix(rand_weights(len(returns))) C = np.asmatrix(np.cov(returns)) mu = w * p.T sigma = np.sqrt(w * C * w.T) # This recursion reduces outliers to keep plots pretty if sigma > 2: return calcMuSigma(returns) return mu, sigma class ServerRPC(object): def getReturns(self, prices): columns = [] for x in prices['columns']: columns.append(x['name']) dataframes = {} prices = pd.DataFrame(prices['data'],columns=columns) # Calculate Returns for item in prices['ticker'].unique(): dataframes[item] = prices.loc[prices['ticker']==item] dataframes[item]['returns'] = dataframes[item]['close'].pct_change(1) dataframes[item] = dataframes[item].dropna(subset=['returns']) return_vec = [ list(dataframes[x]['returns']) for x in dataframes.keys() ] n_portfolios = 500 means, stds = np.column_stack([ calcMuSigma(return_vec) for _ in xrange(n_portfolios) ]) prices = {} means = [ i[0] for i in means ] stds = [ i[0] for i in stds ] prices['means'] = means prices['stds'] = stds print(prices['stds']) return prices s = zerorpc.Server(ServerRPC()) s.bind("tcp://0.0.0.0:4242") s.run()
StarcoderdataPython
3318536
from .action import default_kwargs, plot_action, generate_arg_and_kwags, get_value, get_subset from .action import DataSource, AxPlot def _hist_plotter(df: DataSource, y, *arg, **kwargs): _y = get_subset()(df, y) def plot(ax): ax.hist(_y, **kwargs) return ax return plot def hist(**presetting): return plot_action( _hist_plotter, ["y"], default_kwargs.get("hist") )(**presetting)
StarcoderdataPython
1743858
from rx.core import Observer, ObservableBase, Disposable from rx.subjects import Subject from rx.disposables import AnonymousDisposable from rx.concurrency import current_thread_scheduler from rx.core.notification import OnCompleted, OnError, OnNext class ControlledSubject(ObservableBase, Observer): def __init__(self, enable_queue=True, scheduler=None): super(ControlledSubject, self).__init__() self.subject = Subject() self.enable_queue = enable_queue self.queue = [] if enable_queue else None self.requested_count = 0 self.requested_disposable = Disposable.empty() self.error = None self.has_failed = False self.has_completed = False self.scheduler = scheduler or current_thread_scheduler def _subscribe_core(self, observer, scheduler=None): return self.subject.subscribe(observer, scheduler) def on_completed(self): self.has_completed = True if not self.enable_queue or len(self.queue) == 0: self.subject.on_completed() self.dispose_current_request() else: self.queue.append(OnCompleted()) def on_error(self, error): self.has_failed = True self.error = error if not self.enable_queue or len(self.queue) == 0: self.subject.on_error(error) self.dispose_current_request() else: self.queue.append(OnError(error)) def on_next(self, value): if self.requested_count <= 0: self.enable_queue and self.queue.append(OnNext(value)) else: self.requested_count -= 1 if self.requested_count == 0: self.dispose_current_request() self.subject.on_next(value) def _process_request(self, number_of_items): if self.enable_queue: while len(self.queue) > 0 and (number_of_items > 0 or self.queue[0].kind != 'N'): first = self.queue.pop(0) first.accept(self.subject) if first.kind == 'N': number_of_items -= 1 else: self.dispose_current_request() self.queue = [] return number_of_items def request(self, number): self.dispose_current_request() def action(scheduler, i): remaining = self._process_request(i) stopped = self.has_completed and self.has_failed if not stopped and remaining > 0: self.requested_count = remaining def dispose(): self.requested_count = 0 return AnonymousDisposable(dispose) # Scheduled item is still in progress. Return a new # disposable to allow the request to be interrupted # via dispose. self.requested_disposable = self.scheduler.schedule(action, state=number) return self.requested_disposable def dispose_current_request(self): if self.requested_disposable: self.requested_disposable.dispose() self.requested_disposable = None
StarcoderdataPython
1669095
<filename>courses/migrations/0004_auto_20190414_2045.py<gh_stars>0 # Generated by Django 2.2 on 2019-04-14 19:45 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('courses', '0003_auto_20190414_1910'), ] operations = [ migrations.AlterField( model_name='content', name='module', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='contents', to='courses.Module'), ), ]
StarcoderdataPython
1743512
<reponame>hritools/faceR<filename>faceR/tracking/dlib_tracking.py<gh_stars>0 """ A stateful tracker of arbitrary objects """ import logging import dlib from multiprocessing import Pool name_list = list() d_trackers = list() class ReusablePool: """ Manage reusable tracker objects for use by client. """ def __init__(self, size): logging.debug('Creating ' + str(size) + ' trackers!') self._reusables = [dlib.correlation_tracker() for _ in range(size)] def acquire(self, frame, bbox): if len(self._reusables) == 0: tracker = dlib.correlation_tracker() logging.debug('No spare trackers! Created new.') else: tracker = self._reusables.pop() tracker.start_track(frame, dlib.rectangle( bbox[0], bbox[1], bbox[2], bbox[3])) return tracker def release(self, reusable): self._reusables.append(reusable) tracker_pool = ReusablePool(0) def reset_trackers(): """ Resets trackers. """ global d_trackers for tracker in d_trackers: tracker_pool.release(tracker) d_trackers = list() def start_track(frame, face_pos): """ Starts new trackers. :param frame: frame from which to start :param face_pos: positions of faces at the image """ d_tracker = tracker_pool.acquire(frame, face_pos) d_trackers.append(d_tracker) def update(d_tracker, frame): d_tracker.update(frame) return d_tracker.get_position() def track(frame_gen): """ Updates trackers. :param frame_gen: generator feeding frames """ for frame in frame_gen: pos_list = list() for d_tracker in d_trackers: d_tracker.update(frame) pos = d_tracker.get_position() pos_list.append((int(pos.left()), int(pos.top()), int(pos.right()), int(pos.bottom()))) yield pos_list logging.debug('exiting dlib tracking') # TODO: finalize multiprocessed tracking def track_multiprocess(frame_gen, conf): """ Updates trackers. :param conf: configs :param frame_gen: generator feeding frames """ pool = Pool(conf['processes']) for frame in frame_gen: pos_list = list() # result = { # d_tracker: pool.apply_async(lambda x: x.update(frame)) # for d_tracker in d_trackers # } results = [pool.apply_async(update, args=(d_tracker, frame)) for d_tracker in d_trackers] for res in results: pos = res.get() # d_tracker.update(frame) # pos = d_tracker.get_position() pos_list.append((int(pos.left()), int(pos.top()), int(pos.right()), int(pos.bottom()))) yield pos_list logging.debug('exiting dlib tracking')
StarcoderdataPython
3349681
import distutils.util import cv2 import numpy as np import paddle from tqdm import tqdm def print_arguments(args): print("----------- Configuration Arguments -----------") for arg, value in sorted(vars(args).items()): print("%s: %s" % (arg, value)) print("------------------------------------------------") def add_arguments(argname, type, default, help, argparser, **kwargs): type = distutils.util.strtobool if type == bool else type argparser.add_argument("--" + argname, default=default, type=type, help=help + ' 默认: %(default)s.', **kwargs) # 获取lfw全部路径 def get_lfw_list(pair_list): with open(pair_list, 'r') as fd: pairs = fd.readlines() data_list = [] for pair in pairs: splits = pair.split() if splits[0] not in data_list: data_list.append(splits[0]) if splits[1] not in data_list: data_list.append(splits[1]) return data_list # 加载图片并预处理 def load_image(img_path): image = cv2.imread(img_path) if image is None: return None image = cv2.resize(image, (112, 112)) image_flip = np.fliplr(image) image = np.array([image, image_flip], dtype='float32') image = image.transpose((0, 3, 1, 2)) image = image.astype(np.float32, copy=False) image = (image - 127.5) / 127.5 return image # 获取图像特征 def get_features(model, test_list, batch_size=32): images = None features = None for i, img_path in enumerate(tqdm(test_list)): image = load_image(img_path) assert image is not None, '{} 图片错误'.format(img_path) if images is None: images = image else: images = np.concatenate((images, image), axis=0) if images.shape[0] % batch_size == 0 or i == len(test_list) - 1: data = paddle.to_tensor(images, dtype='float32') output = model(data) output = output.numpy() feature_1 = output[0::2] feature_2 = output[1::2] feature = np.hstack((feature_1, feature_2)) if features is None: features = feature else: features = np.vstack((features, feature)) images = None return features # 将文件路径名跟模型输出的图像特征打包成字典 def get_feature_dict(test_list, features): feature_dict = {} for i, each in enumerate(test_list): feature_dict[each] = features[i] return feature_dict # 计算对角余弦值 def cosin_metric(x1, x2): return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2)) # 根据对角余弦值计算准确率 def cal_accuracy(y_score, y_true): y_score = np.asarray(y_score) y_true = np.asarray(y_true) best_accuracy = 0 best_threshold = 0 for i in range(len(y_score)): threshold = y_score[i] y_test = (y_score >= threshold) acc = np.mean((y_test == y_true).astype(int)) if acc > best_accuracy: best_accuracy = acc best_threshold = threshold return best_accuracy, best_threshold # 计算lfw每一对的相似度 def test_performance(feature_dict, lfw_data_list): with open(lfw_data_list, 'r') as fd: pairs = fd.readlines() sims = [] labels = [] for pair in pairs: splits = pair.split() feature_1 = feature_dict[splits[0]] feature_2 = feature_dict[splits[1]] label = int(splits[2]) sim = cosin_metric(feature_1, feature_2) sims.append(sim) labels.append(label) accuracy, threshold = cal_accuracy(sims, labels) return accuracy, threshold
StarcoderdataPython
72882
from textbox.data.dataloader.abstract_dataloader import AbstractDataLoader from textbox.data.dataloader.single_sent_dataloader import SingleSentenceDataLoader from textbox.data.dataloader.paired_sent_dataloader import PairedSentenceDataLoader from textbox.data.dataloader.attr_sent_dataloader import AttributedSentenceDataLoader from textbox.data.dataloader.kg_sent_dataloader import KGSentenceDataLoader from textbox.data.dataloader.wikibio_sent_dataloader import WikiBioSentenceDataLoader from textbox.data.dataloader.rotowire_sent_dataloader import RotoWireSentenceDataLoader
StarcoderdataPython
4841815
<gh_stars>1-10 City = [ { "热门城市": [ { "name": "北京", "key": "热门" }, { "name": "上海", "key": "热门" }, { "name": "广州", "key": "热门" }, { "name": "深圳", "key": "热门" }, { "name": "成都", "key": "热门" }, { "name": "重庆", "key": "热门" }, { "name": "天津", "key": "热门" }, { "name": "杭州", "key": "热门" }, { "name": "南京", "key": "热门" }, { "name": "苏州", "key": "热门" }, { "name": "武汉", "key": "热门" }, { "name": "西安", "key": "热门" } ], "A": [ { "name": "阿坝", "key": "A" }, { "name": "阿拉善", "key": "A" }, { "name": "阿里", "key": "A" }, { "name": "安康", "key": "A" }, { "name": "安庆", "key": "A" }, { "name": "鞍山", "key": "A" } , { "name": "安顺", "key": "A" } , { "name": "安阳", "key": "A" } , { "name": "澳门", "key": "A" } ], "B": [ { "name": "北京", "key": "B" }, { "name": "白银", "key": "B" }, { "name": "保定", "key": "B" }, { "name": "宝鸡", "key": "B" }, { "name": "保山", "key": "B" }, { "name": "包头", "key": "B" }, { "name": "巴中", "key": "B" } , { "name": "北海", "key": "B" } , { "name": "蚌埠", "key": "B" } , { "name": "本溪", "key": "B" } , { "name": "毕节", "key": "B" } , { "name": "滨州", "key": "B" } , { "name": "百色", "key": "B" } , { "name": "亳州", "key": "B" } ], "C": [ { "name": "重庆", "key": "C" }, { "name": "成都", "key": "C" }, { "name": "长沙", "key": "C" }, { "name": "长春", "key": "C" }, { "name": "沧州", "key": "C" }, { "name": "常德", "key": "C" }, { "name": "昌都", "key": "C" } , { "name": "长治", "key": "C" } , { "name": "常州", "key": "C" } , { "name": "巢湖", "key": "C" } , { "name": "潮州", "key": "C" } , { "name": "承德", "key": "C" } , { "name": "郴州", "key": "C" } , { "name": "赤峰", "key": "C" } , { "name": "池州", "key": "C" } , { "name": "崇左", "key": "C" } , { "name": "楚雄", "key": "C" } , { "name": "滁州", "key": "C" } , { "name": "朝阳", "key": "C" } ], "D": [ { "name": "大连", "key": "D" }, { "name": "东莞", "key": "D" }, { "name": "大理", "key": "D" }, { "name": "丹东", "key": "D" }, { "name": "大庆", "key": "D" }, { "name": "大同", "key": "D" }, { "name": "大兴安岭", "key": "D" } , { "name": "德宏", "key": "D" } , { "name": "德阳", "key": "D" } , { "name": "德州", "key": "D" } , { "name": "定西", "key": "D" } , { "name": "迪庆", "key": "D" } , { "name": "东营", "key": "D" } ], "E": [ { "name": "鄂尔多斯", "key": "E" } , { "name": "恩施", "key": "E" } , { "name": "鄂州", "key": "E" } ], "F": [ { "name": "福州", "key": "F" } , { "name": "防城港", "key": "F" } , { "name": "佛山", "key": "F" } , { "name": "抚顺", "key": "F" } , { "name": "抚州", "key": "F" } , { "name": "阜新", "key": "F" } , { "name": "阜阳", "key": "F" } ] , "G": [ { "name": "广州", "key": "G" }, { "name": "赣州", "key": "G" }, { "name": "桂林", "key": "G" }, { "name": "贵阳", "key": "G" }, { "name": "甘南", "key": "G" }, { "name": "甘孜", "key": "G" }, { "name": "广安", "key": "G" } , { "name": "广元", "key": "G" } , { "name": "果洛", "key": "G" } , { "name": "贵港", "key": "G" } ], "H": [ { "name": "杭州", "key": "H" }, { "name": "哈尔滨", "key": "H" }, { "name": "合肥", "key": "H" }, { "name": "海口", "key": "H" }, { "name": "海东", "key": "H" }, { "name": "海北", "key": "H" }, { "name": "海南", "key": "H" } , { "name": "海西", "key": "H" } , { "name": "邯郸", "key": "H" } , { "name": "汉中", "key": "H" } , { "name": "鹤壁", "key": "H" } , { "name": "河池", "key": "H" } , { "name": "鹤岗", "key": "H" } , { "name": "黑河", "key": "H" } , { "name": "衡水", "key": "H" } , { "name": "衡阳", "key": "H" } , { "name": "河源", "key": "H" } , { "name": "贺州", "key": "H" } , { "name": "红河", "key": "H" } , { "name": "淮安", "key": "H" } , { "name": "淮北", "key": "H" } , { "name": "怀化", "key": "H" } , { "name": "淮南", "key": "H" } , { "name": "黄冈", "key": "H" } , { "name": "黄南", "key": "H" } , { "name": "黄山", "key": "H" }, { "name": "黄石", "key": "H" }, { "name": "惠州", "key": "H" }, { "name": "葫芦岛", "key": "H" }, { "name": "呼伦贝尔", "key": "H" }, { "name": "湖州", "key": "H" } , { "name": "菏泽", "key": "H" } ], "J": [ { "name": "济南", "key": "J" }, { "name": "佳木斯", "key": "J" }, { "name": "吉安", "key": "J" }, { "name": "江门", "key": "J" }, { "name": "焦作", "key": "J" }, { "name": "嘉兴", "key": "J" }, { "name": "嘉峪关", "key": "J" } , { "name": "揭阳", "key": "J" } , { "name": "吉林", "key": "J" } , { "name": "金昌", "key": "J" } , { "name": "晋城", "key": "J" } , { "name": "景德镇", "key": "J" } , { "name": "荆门", "key": "J" } , { "name": "荆州", "key": "J" } , { "name": "金华", "key": "J" } , { "name": "济宁", "key": "J" } , { "name": "晋中", "key": "J" } , { "name": "锦州", "key": "J" } , { "name": "九江", "key": "J" } , { "name": "酒泉", "key": "J" } ] , "K": [ { "name": "昆明", "key": "K" } , { "name": "开封", "key": "K" } ] , "L": [ { "name": "兰州", "key": "L" }, { "name": "拉萨", "key": "L" }, { "name": "来宾", "key": "L" }, { "name": "莱芜", "key": "L" }, { "name": "廊坊", "key": "L" }, { "name": "乐山", "key": "L" }, { "name": "凉山", "key": "L" } , { "name": "连云港", "key": "L" } , { "name": "聊城", "key": "L" } , { "name": "辽阳", "key": "L" } , { "name": "辽源", "key": "L" } , { "name": "丽江", "key": "L" } , { "name": "临沧", "key": "L" } , { "name": "临汾", "key": "L" } , { "name": "临夏", "key": "L" } , { "name": "临沂", "key": "L" } , { "name": "林芝", "key": "L" } , { "name": "丽水", "key": "L" } , { "name": "六安", "key": "L" } , { "name": "六盘水", "key": "L" } , { "name": "柳州", "key": "L" } , { "name": "陇南", "key": "L" } , { "name": "龙岩", "key": "L" } , { "name": "娄底", "key": "L" } , { "name": "漯河", "key": "L" } , { "name": "洛阳", "key": "L" }, { "name": "泸州", "key": "L" }, { "name": "吕梁", "key": "L" } ], "M": [ { "name": "马鞍山", "key": "M" } , { "name": "茂名", "key": "M" } , { "name": "眉山", "key": "M" } , { "name": "梅州", "key": "M" } , { "name": "绵阳", "key": "M" } , { "name": "牡丹江", "key": "M" } ], "N": [ { "name": "南京", "key": "N" }, { "name": "南昌", "key": "N" }, { "name": "南宁", "key": "N" }, { "name": "南充", "key": "N" }, { "name": "南平", "key": "N" }, { "name": "南通", "key": "N" }, { "name": "南阳", "key": "N" } , { "name": "那曲", "key": "N" } , { "name": "内江", "key": "N" } , { "name": "宁德", "key": "N" } , { "name": "怒江", "key": "N" } ], "P": [ { "name": "盘锦", "key": "P" } , { "name": "攀枝花", "key": "P" } , { "name": "平顶山", "key": "P" } , { "name": "平凉", "key": "P" } , { "name": "萍乡", "key": "P" } , { "name": "莆田", "key": "P" } , { "name": "濮阳", "key": "P" } ], "Q": [ { "name": "青岛", "key": "Q" }, { "name": "黔东南", "key": "Q" }, { "name": "黔南", "key": "Q" }, { "name": "黔西南", "key": "Q" }, { "name": "庆阳", "key": "Q" }, { "name": "清远", "key": "Q" }, { "name": "秦皇岛", "key": "Q" } , { "name": "钦州", "key": "Q" } , { "name": "齐齐哈尔", "key": "Q" } , { "name": "泉州", "key": "Q" } , { "name": "曲靖", "key": "Q" } , { "name": "衢州", "key": "Q" } ], "R": [ { "name": "日喀则", "key": "R" }, { "name": "日照", "key": "R" } ] , "S": [ { "name": "上海", "key": "S" }, { "name": "深圳", "key": "S" }, { "name": "苏州", "key": "S" }, { "name": "沈阳", "key": "S" }, { "name": "石家庄", "key": "S" }, { "name": "三门峡", "key": "S" }, { "name": "三明", "key": "S" } , { "name": "三亚", "key": "S" } , { "name": "商洛", "key": "S" } , { "name": "商丘", "key": "S" } , { "name": "上饶", "key": "S" } , { "name": "山南", "key": "S" } , { "name": "汕头", "key": "S" } , { "name": "汕尾", "key": "S" } , { "name": "韶关", "key": "S" } , { "name": "绍兴", "key": "S" } , { "name": "邵阳", "key": "S" } , { "name": "十堰", "key": "S" } , { "name": "朔州", "key": "S" } , { "name": "四平", "key": "S" } , { "name": "绥化", "key": "S" } , { "name": "遂宁", "key": "S" } , { "name": "随州", "key": "S" } , { "name": "娄底", "key": "S" } , { "name": "宿迁", "key": "S" } , { "name": "宿州", "key": "S" } ], "T": [ { "name": "天津", "key": "T" }, { "name": "太原", "key": "T" }, { "name": "泰安", "key": "T" }, { "name": "泰州", "key": "T" }, { "name": "唐山", "key": "T" }, { "name": "天水", "key": "T" }, { "name": "铁岭", "key": "T" } , { "name": "铜川", "key": "T" } , { "name": "通化", "key": "T" } , { "name": "通辽", "key": "T" } , { "name": "铜陵", "key": "T" } , { "name": "铜仁", "key": "T" } , { "name": "台湾", "key": "T" } ] , "W": [ { "name": "武汉", "key": "W" }, { "name": "乌鲁木齐", "key": "W" }, { "name": "无锡", "key": "W" }, { "name": "威海", "key": "W" }, { "name": "潍坊", "key": "W" }, { "name": "文山", "key": "W" }, { "name": "温州", "key": "W" } , { "name": "乌海", "key": "W" } , { "name": "芜湖", "key": "W" } , { "name": "乌兰察布", "key": "W" } , { "name": "武威", "key": "W" } , { "name": "梧州", "key": "W" } ], "X": [ { "name": "厦门", "key": "X" }, { "name": "西安", "key": "X" }, { "name": "西宁", "key": "X" }, { "name": "襄樊", "key": "X" }, { "name": "湘潭", "key": "X" }, { "name": "湘西", "key": "X" }, { "name": "咸宁", "key": "X" } , { "name": "咸阳", "key": "X" } , { "name": "孝感", "key": "X" } , { "name": "邢台", "key": "X" } , { "name": "新乡", "key": "X" } , { "name": "信阳", "key": "X" } , { "name": "新余", "key": "X" } , { "name": "忻州", "key": "X" } , { "name": "西双版纳", "key": "X" } , { "name": "宣城", "key": "X" } , { "name": "许昌", "key": "X" } , { "name": "徐州", "key": "X" } , { "name": "香港", "key": "X" } , { "name": "锡林郭勒", "key": "X" } , { "name": "兴安", "key": "X" } ] , "Y": [ { "name": "银川", "key": "Y" }, { "name": "雅安", "key": "Y" }, { "name": "延安", "key": "Y" }, { "name": "延边", "key": "Y" }, { "name": "盐城", "key": "Y" }, { "name": "阳江", "key": "Y" }, { "name": "阳泉", "key": "Y" } , { "name": "扬州", "key": "Y" } , { "name": "烟台", "key": "Y" } , { "name": "宜宾", "key": "Y" } , { "name": "宜昌", "key": "Y" } , { "name": "宜春", "key": "Y" } , { "name": "营口", "key": "Y" } , { "name": "益阳", "key": "Y" } , { "name": "永州", "key": "Y" } , { "name": "岳阳", "key": "Y" } , { "name": "榆林", "key": "Y" } , { "name": "运城", "key": "Y" } , { "name": "云浮", "key": "Y" } , { "name": "玉树", "key": "Y" } , { "name": "玉溪", "key": "Y" } , { "name": "玉林", "key": "Y" } ], "Z": [ { "name": "杂多县", "key": "Z" }, { "name": "赞皇县", "key": "Z" }, { "name": "枣强县", "key": "Z" }, { "name": "枣阳市", "key": "Z" }, { "name": "枣庄", "key": "Z" }, { "name": "泽库县", "key": "Z" }, { "name": "增城", "key": "Z" } , { "name": "曾都区", "key": "Z" } , { "name": "泽普县", "key": "Z" } , { "name": "泽州县", "key": "Z" } , { "name": "札达县", "key": "Z" } , { "name": "扎赉特旗", "key": "Z" } , { "name": "扎兰屯", "key": "Z" } , { "name": "扎鲁特旗", "key": "Z" } , { "name": "扎囊县", "key": "Z" } , { "name": "张北县", "key": "Z" } , { "name": "张店区", "key": "Z" } , { "name": "章贡区", "key": "Z" } , { "name": "张家港", "key": "Z" } , { "name": "张家界", "key": "Z" } , { "name": "张家口", "key": "Z" } , { "name": "漳平", "key": "Z" } , { "name": "漳浦县", "key": "Z" } , { "name": "章丘", "key": "Z" } , { "name": "樟树", "key": "Z" } , { "name": "张湾区", "key": "Z" }, { "name": "彰武县", "key": "Z" }, { "name": "漳县", "key": "Z" }, { "name": "张掖", "key": "Z" }, { "name": "漳州", "key": "Z" }, { "name": "长子县", "key": "Z" } , { "name": "湛河区", "key": "Z" } , { "name": "湛江", "key": "Z" } , { "name": "站前区", "key": "Z" } , { "name": "沾益县", "key": "Z" } , { "name": "诏安县", "key": "Z" }, { "name": "召陵区", "key": "Z" }, { "name": "昭平县", "key": "Z" }, { "name": "肇庆", "key": "Z" }, { "name": "昭通", "key": "Z" }, { "name": "赵县", "key": "Z" } ] } ]
StarcoderdataPython
47755
from pathlib import Path from shutil import copyfile import logging def move_files(dir_from: Path, dir_to: Path): logging.info(f"Moving files from '{dir_from}' to '{dir_to}'") p = dir_from.glob("**/*") input_paths = [x for x in p if x.is_file()] for input_path in input_paths: filename = input_path.name output_path = dir_to / filename copyfile(input_path, output_path) logging.info(f"Moved file: {filename}")
StarcoderdataPython
191032
"""add sol associated wallet Revision ID: f64a484f1496 Revises: <PASSWORD> Create Date: 2021-07-21 15:58:05.108372 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "f64a484f1496" down_revision = "<PASSWORD>" branch_labels = None depends_on = None def upgrade(): op.add_column( "user_balances", sa.Column( "associated_sol_wallets_balance", sa.String(), server_default="0", nullable=False, ), ) wallet_chain = postgresql.ENUM("eth", "sol", name="wallet_chain") wallet_chain.create(op.get_bind()) op.add_column( "associated_wallets", sa.Column( "chain", sa.Enum("eth", "sol", name="wallet_chain"), server_default="eth", nullable=False, ), ) op.alter_column("associated_wallets", "chain", server_default=None) def downgrade(): op.drop_column("user_balances", "associated_sol_wallets_balance") op.drop_column("associated_wallets", "chain") wallet_chain = postgresql.ENUM("eth", "sol", name="wallet_chain") wallet_chain.drop(op.get_bind())
StarcoderdataPython
3397564
import numba import numpy as np from math import sqrt, sin, cos, acos, atan2 @numba.njit def residual(t, yin, yp, R, L1, L2, H, Ct, Cdv, Cd, St, Sv, rho, Ma, Mv, Iv, theta): """Calculates the residual of the system of equations G(t, y, yp) == 0.""" x,y,p,x1,y1,p1 = yin x2,y2,p2 = yp[3:6] t1,dt1,ddt1,t2,dt2,ddt2 = theta(t) # Test direction of Vn1 r1 = 0.5*L1 Vn1 = (-R*sin(p)*p1 - r1*(p1 + dt1)*sin(p + t1) + x1)*sin(p + t1) - (R*cos(p)*p1 + r1*(p1 + dt1)*cos(p + t1) + y1)*cos(p + t1) s1 = 1.0 if Vn1 > 0 else -1.0 # Test direction of Vn2 r2 = 0.5*L2 Vn2 = (-L1*(p1 + dt1)*sin(p + t1) - R*sin(p)*p1 - r2*(p1 + dt1 + dt2)*sin(p + t1 + t2) + x1)*sin(p + t1 + t2) - (L1*(p1 + dt1)*cos(p + t1) + R*cos(p)*p1 + r2*(p1 + dt1 + dt2)*cos(p + t1 + t2) + y1)*cos(p + t1 + t2) s2 = 1.0 if Vn2 > 0 else -1.0 s3 = 1.0 if p1 > 0 else -1.0 Z1 = 0.5*rho*Cd*H Z2 = 0.5*rho*Cdv*Sv Z3 = 0.5*rho*Ct*St # Now calculate the residuals f = np.empty(6) f[0] = yp[0] - x1; f[1] = yp[1] - y1; f[2] = yp[2] - p1; # First calculate the common sub-expressions term0 = x1**2 term1 = y1**2 term2 = Z2*sqrt(term0 + term1) term3 = L1**2 term4 = p + t1 term5 = sin(term4) term6 = term5**3 term7 = (1/2)*Ma term8 = term6*term7 term9 = Ma*dt1 term10 = cos(term4) term11 = term10**3 term12 = p1*term11 term13 = dt1**2 term14 = term11*term7 term15 = p1**2 term16 = term10**2 term17 = term16*term5 term18 = term17*term7 term19 = p1*term9 term20 = term5**2 term21 = term10*term20 term22 = term13*term7 term23 = term15*term7 term24 = term3*(ddt1*term18 + ddt1*term8 + p2*term18 + p2*term8 + term12*term9 + term13*term14 + term14*term15 + term19*term21 + term21*term22 + term21*term23) term25 = L1**3 term26 = Z1*s1 term27 = term26*term5**5 term28 = (2/3)*dt1 term29 = p1*term28 term30 = (1/3)*term13 term31 = (1/3)*term15 term32 = term10**4*term26 term33 = term32*term5 term34 = dt1*term16 term35 = term26*term6 term36 = (4/3)*p1 term37 = (2/3)*term13 term38 = term16*term35 term39 = (2/3)*term15 term40 = term25*(-term27*term29 - term27*term30 - term27*term31 - term29*term33 - term30*term33 - term31*term33 - term34*term35*term36 - term37*term38 - term38*term39) term41 = Z1*term0 term42 = s1*term41 term43 = sin(p) term44 = R*term43 term45 = p1*x1 term46 = 2*term45 term47 = term44*term46 term48 = term21*term26 term49 = 2*x1 term50 = term49*y1 term51 = Z1*term1 term52 = s1*term51 term53 = cos(p) term54 = R*term53 term55 = term46*term54 term56 = p1*y1 term57 = 2*term56 term58 = term20*term44 term59 = term26*term58 term60 = term10*term59 term61 = term17*term26 term62 = 2*term54 term63 = term56*term62 term64 = R**2*term15 term65 = term43**2*term64 term66 = term53**2*term64 term67 = 2*term43*term53*term64 term68 = L1*(-term17*term52 + term35*term47 - term35*term65 - term42*term6 + term48*term50 + term48*term55 - term48*term67 - term57*term60 - term61*term63 - term61*term66) term69 = Ma*x2 term70 = Ma*y1 term71 = p1*term70 term72 = dt1*term70 term73 = Ma*y2 term74 = term10*term5 term75 = Ma*p2 term76 = term9*x1 term77 = 2*term74 term78 = Ma*p1 term79 = term78*x1 term80 = term34*term78 term81 = Ma*term15 term82 = term16*term54 term83 = term19*term54 term84 = term54*term75 term85 = term44*term81 term86 = term19*term44 term87 = L1*(term16*term71 - term20*term69 - term20*term71 - term20*term72 - term20*term83 + term34*term70 + term54*term80 + term58*term75 + term73*term74 + term74*term84 + term74*term85 - term76*term77 - term77*term79 + term77*term86 + term81*term82) term88 = L2**2 term89 = t2 + term4 term90 = sin(term89) term91 = term90**3 term92 = term7*term91 term93 = cos(term89) term94 = term93**3 term95 = term9*term94 term96 = dt2*term94 term97 = term7*term94 term98 = dt2**2 term99 = term93**2 term100 = term90*term99 term101 = term100*term7 term102 = term90**2 term103 = term102*term93 term104 = dt2*term103 term105 = term103*term7 term106 = term88*(ddt1*term101 + ddt1*term92 + ddt2*term101 + ddt2*term92 + dt2*term95 + p1*term95 + p2*term101 + p2*term92 + term103*term19 + term103*term22 + term103*term23 + term104*term78 + term104*term9 + term105*term98 + term13*term97 + term15*term97 + term78*term96 + term97*term98) term107 = dt1*x1 term108 = term26*term5**4 term109 = p1*term44 term110 = dt1*term109 term111 = term15*term44 term112 = dt1*y1 term113 = term26*term5 term114 = term11*term113 term115 = term10*term35 term116 = term113*term12 term117 = term20*term26 term118 = term117*term34 term119 = term117*term16 term120 = dt1*term116 term121 = p1*term54 term122 = dt1*term121 term123 = term15*term54 term124 = p1*term34 term125 = term3*(term107*term108 - term108*term110 - term108*term111 + term108*term45 - term112*term114 - term112*term115 - term114*term123 - term115*term122 - term115*term123 - term115*term56 - term116*y1 + term118*x1 + term119*term45 - term120*term54 - term124*term59 - term15*term16*term59) term126 = L2**3 term127 = Z1*s2 term128 = term127*term90**5 term129 = dt2*term128 term130 = (2/3)*p1 term131 = (1/3)*term98 term132 = term127*term93**4 term133 = term132*term90 term134 = dt2*term133 term135 = dt2*term91 term136 = term127*term99 term137 = term135*term136 term138 = (4/3)*dt1 term139 = term127*term91 term140 = term139*term99 term141 = dt1*term36 term142 = (2/3)*term98 term143 = term126*(-term128*term131 - term128*term29 - term128*term30 - term128*term31 - term129*term130 - term129*term28 - term130*term134 - term131*term133 - term133*term29 - term133*term30 - term133*term31 - term134*term28 - term137*term138 - term137*term36 - term140*term141 - term140*term142 - term140*term37 - term140*term39) term144 = dt2*term70 term145 = term90*term93 term146 = term102*term44 term147 = term54*term99 term148 = dt2*term78 term149 = L1*term5 term150 = term102*term149 term151 = Ma*ddt1 term152 = 2*term145 term153 = Ma*x1 term154 = dt2*term153 term155 = term148*term54 term156 = L1*term10 term157 = term156*term99 term158 = dt2*term157 term159 = Ma*term13 term160 = term102*term156 term161 = dt2*term9 term162 = 2*term19 term163 = term145*term156 term164 = term148*term152 term165 = term145*term149 term166 = term149*term152 term167 = L2*(-term102*term144 - term102*term155 - term102*term69 - term102*term71 - term102*term72 - term102*term83 + term144*term99 + term145*term73 + term145*term84 + term145*term85 + term146*term75 + term147*term148 + term147*term19 + term147*term81 - term148*term160 + term148*term166 + term150*term151 + term150*term75 + term151*term163 - term152*term154 - term152*term76 - term152*term79 + term152*term86 + term157*term159 + term157*term162 + term157*term81 + term158*term78 + term158*term9 + term159*term165 - term160*term161 + term161*term166 + term163*term75 + term164*term44 + term165*term81 + term166*term19 + term71*term99 + term72*term99) term168 = s2*term41 term169 = term127*y1 term170 = term169*term49 term171 = term139*term149 term172 = 2*term171 term173 = s2*term51 term174 = term103*term127 term175 = term127*term93 term176 = term146*term175 term177 = term100*term127 term178 = term139*term3 term179 = dt1*p1 term180 = 2*term179 term181 = term180*term20 term182 = term13*term20 term183 = term15*term20 term184 = term107*term127 term185 = 2*term184 term186 = term156*term185 term187 = term150*term175 term188 = 2*term187 term189 = 2*term177 term190 = term112*term189 term191 = term156*term177 term192 = term156*term180 term193 = term156*term189 term194 = term124*term3 term195 = term15*term156 term196 = term123*term189 term197 = term16*term3 term198 = term177*term197 term199 = term174*term3 term200 = 4*term179*term74 term201 = term199*term77 term202 = L2*(-term100*term173 + term103*term170 + term103*term186 + term107*term172 - term110*term172 - term111*term172 - term112*term188 - term122*term188 - term122*term193 - term123*term188 - term13*term198 - term13*term201 + term139*term47 - term139*term65 - term15*term198 - term15*term201 + term156*term174*term46 - term156*term190 - term156*term196 - term168*term91 + term171*term46 + term174*term55 - term174*term67 - term176*term192 - 2*term176*term195 - term176*term57 - term177*term63 - term177*term66 - term178*term181 - term178*term182 - term178*term183 - term187*term57 - term189*term194 - term191*term57 - term199*term200) term203 = term127*term90**4 term204 = dt2*x1 term205 = term127*term90 term206 = term205*term94 term207 = term139*term93 term208 = term205*term96 term209 = term135*term93 term210 = term149*term203 term211 = dt2*term210 term212 = term102*term99 term213 = term127*term212 term214 = term127*term209 term215 = dt1*term156 term216 = p1*term156 term217 = term136*term146 term218 = dt2*p1 term219 = term13*term156 term220 = term136*term150 term221 = dt2*term220 term222 = term88*(-dt1*term211 - dt1*term221 - dt2*term109*term203 - p1*term211 - p1*term221 + term107*term203 - term110*term203 - term111*term203 - term112*term206 - term112*term207 - term121*term208 - term121*term214 - term122*term206 - term122*term207 - term123*term206 - term123*term207 - term13*term210 - term13*term220 - term15*term210 - term15*term217 - term15*term220 - term169*term209 - term179*term217 - term180*term210 - term180*term220 + term184*term212 - term192*term206 - term192*term207 - term195*term206 - term195*term207 + term203*term204 + term203*term45 + term204*term213 - term206*term219 - term206*term56 - term207*term219 - term207*term56 - term208*term215 - term208*term216 - term208*y1 + term213*term45 - term214*term215 - term214*term216 - term217*term218) term223 = term21*term7 term224 = term3*(-ddt1*term14 - ddt1*term223 - p2*term14 - p2*term223 + term13*term18 + term13*term8 + term15*term18 + term15*term8 + term19*term6 + term5*term80) term225 = term10**5*term26 term226 = term10*term108 term227 = term11*term26 term228 = (2/3)*term227 term229 = term25*(term117*term12*term138 + term182*term228 + term183*term228 + term225*term29 + term225*term30 + term225*term31 + term226*term29 + term226*term30 + term226*term31) term230 = term44*term57 term231 = L1*(term11*term52 + term12*term26*term62*y1 + term21*term42 + term227*term66 + term230*term61 - term46*term60 + term48*term65 - term50*term61 - term55*term61 + term61*term67) term232 = term44*term75 term233 = term54*term81 term234 = L1*(term153*term34 - term16*term73 + term16*term79 + term19*term58 - term20*term76 - term20*term79 - term232*term74 + term233*term74 - term44*term80 + term58*term81 + term69*term74 + term71*term77 + term72*term77 - term75*term82 + term77*term83) term235 = dt2*term100 term236 = term88*(-ddt1*term105 - ddt1*term97 - ddt2*term105 - ddt2*term97 - p2*term105 - p2*term97 + term100*term19 + term100*term22 + term100*term23 + term101*term98 + term13*term92 + term135*term78 + term135*term9 + term15*term92 + term19*term91 + term235*term78 + term235*term9 + term92*term98) term237 = term3*(-term107*term114 - term107*term115 + term110*term115 + term111*term114 + term111*term115 + term112*term32 - term115*term45 - term116*x1 + term118*term121 + term118*y1 + term119*term56 + term120*term44 + term122*term32 + term123*term32 + term183*term26*term82 + term32*term56) term238 = term127*term93**5 term239 = dt2*term238 term240 = term203*term93 term241 = dt2*term240 term242 = term102*term127 term243 = term242*term96 term244 = term127*term94 term245 = term102*term244 term246 = term126*(term130*term239 + term130*term241 + term131*term238 + term131*term240 + term138*term243 + term141*term245 + term142*term245 + term238*term29 + term238*term30 + term238*term31 + term239*term28 + term240*term29 + term240*term30 + term240*term31 + term241*term28 + term243*term36 + term245*term37 + term245*term39) term247 = term44*term99 term248 = term149*term99 term249 = term152*term156 term250 = L2*(-term102*term154 - term102*term76 - term102*term79 + term144*term152 - term145*term232 + term145*term233 + term145*term69 + term146*term148 + term146*term19 + term146*term81 - term147*term75 + term148*term150 - term148*term247 - term148*term248 + term150*term159 + term150*term161 + term150*term162 + term150*term81 - term151*term157 - term151*term165 + term152*term155 + term152*term71 + term152*term72 + term152*term83 + term154*term99 + term156*term164 - term157*term75 + term159*term163 - term161*term248 + term161*term249 + term163*term81 - term165*term75 - term19*term247 + term19*term249 - term73*term99 + term76*term99 + term79*term99) term251 = 2*term244 term252 = term156*term251 term253 = term197*term244 term254 = term177*term3 term255 = term254*term77 term256 = L2*(-term100*term170 - term100*term186 + term103*term168 + term110*term188 + term110*term193 + term111*term188 + term111*term193 + term112*term252 + term122*term149*term189 + term122*term252 + term123*term252 + term13*term253 + term13*term255 + term149*term177*term57 + term149*term190 + term149*term196 + term15*term253 + term15*term255 - term150*term185*term93 + term173*term94 + term174*term65 - term176*term46 + term177*term230 - term177*term55 + term177*term67 + term181*term199 + term182*term199 + term183*term199 - term187*term46 - term191*term46 + term194*term251 + term200*term254 + term244*term63 + term244*term66 + term252*term56) term257 = dt2*y1 term258 = term132*term156 term259 = dt2*term258 term260 = dt1*term149 term261 = p1*term149 term262 = term147*term242 term263 = term13*term149 term264 = term149*term15 term265 = term149*term180 term266 = term158*term242 term267 = term157*term242 term268 = term88*(dt1*term259 + dt1*term266 + dt2*term121*term132 + p1*term259 + p1*term266 - term107*term207 + term109*term208 + term109*term214 + term110*term206 + term110*term207 + term111*term206 + term111*term207 + term112*term132 + term112*term213 + term122*term132 + term123*term132 + term13*term258 + term13*term267 + term132*term257 + term132*term56 + term15*term258 + term15*term262 + term15*term267 + term179*term262 + term180*term258 + term180*term267 - term184*term90*term94 + term206*term263 + term206*term264 + term206*term265 - term206*term45 + term207*term263 + term207*term264 + term207*term265 - term207*term45 + term208*term260 + term208*term261 - term208*x1 + term213*term257 + term213*term56 + term214*term260 + term214*term261 - term214*x1 + term218*term262) term269 = (3/4)*L2 term270 = term149 + term269*term90 + term44 term271 = sqrt(term270**2 + (term156 + term269*term93 + term54)**2) # Now the remaining elements of `f` f[3] = Mv*x2 - term106 - term125 - term143 - term167 + term2*x1 - term202 - term222 - term24 - term40 - term68 - term87 f[4] = Mv*y2 + term2*y1 - term224 - term229 - term231 - term234 - term236 - term237 - term246 - term250 - term256 - term268 f[5] = Iv*p2 + Z3*s3*term15 - s1*((3/4)*L1 + R*cos(t1))*sqrt((term125 + term24 + term40 + term68 + term87)**2 + (term224 + term229 + term231 + term234 + term237)**2) - s2*term271*sqrt((term106 + term143 + term167 + term202 + term222)**2 + (term236 + term246 + term250 + term256 + term268)**2)*sin(term89 + acos(term270/term271)) return f
StarcoderdataPython
3291866
<filename>examples/mnist.py from __future__ import absolute_import, division, print_function import os import time import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from tensorflow import keras from odin.training import Trainer os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' tf.random.set_seed(8) np.random.seed(8) # =========================================================================== # Load data # =========================================================================== train, valid, test = tfds.load('fashion_mnist:3.0.0', split=['train[:80%]', 'train[80%:]', 'test'], read_config=tfds.ReadConfig( shuffle_seed=1, shuffle_reshuffle_each_iteration=True)) input_shape = tf.data.experimental.get_structure(train)['image'].shape def process(data): image = tf.cast(data['image'], tf.float32) label = tf.cast(data['label'], tf.float32) image = (image / 255. - 0.5) * 2. return image, label # =========================================================================== # Test # =========================================================================== network = keras.Sequential([ keras.layers.Flatten(input_shape=input_shape), keras.layers.Dropout(0.3), keras.layers.Dense(512, activation='relu'), keras.layers.Dense(256, activation='relu'), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax'), ]) opt = tf.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False) def optimize(inputs, training): X, y_true = inputs with tf.GradientTape(watch_accessed_variables=bool(training)) as tape: y_pred = network(X, training=training) loss = tf.reduce_mean( tf.losses.sparse_categorical_crossentropy(y_true, y_pred)) acc = tf.cast(y_true == tf.cast(tf.argmax(y_pred, axis=-1), tf.float32), tf.float32) acc = tf.reduce_sum(acc) / tf.cast(tf.shape(y_true)[0], tf.float32) if training: Trainer.apply_gradients(tape, opt, loss, network) return loss, acc def callback(): signal = Trainer.early_stop(trainer.valid_loss, threshold=0.25, verbose=True) if signal == Trainer.SIGNAL_BEST: print(" - Save the best weights!") Trainer.save_weights(network) elif signal == Trainer.SIGNAL_TERMINATE: print(" - Restore the best weights!") Trainer.restore_weights(network) return signal trainer = Trainer() start_time = time.time() trainer.fit(Trainer.prepare(train, postprocess=process, parallel_postprocess=False, shuffle=True, epochs=32), optimize, valid_ds=Trainer.prepare(valid, postprocess=process), valid_freq=2500, autograph=True, logging_interval=2, on_valid_end=callback) print("Total:", time.time() - start_time)
StarcoderdataPython
1726388
<reponame>zauberzeug/rosys from .communication import Communication from .communication_factory import CommunicationFactory from .serial_communication import SerialCommunication from .web_communication import WebCommunication
StarcoderdataPython
1733198
if __name__ == "__main__": final_answer = 0 lookup_values = {')':3,']':57,'}':1197,'>':25137} lookup_opens = {')':'(',']':'[','}':'{','>':'<'} with open("10input.txt") as f: lines = f.readlines() for line in lines: stripped_line = list(line.rstrip("\n")) # The entries here represent, respectively, (paren), [bracket], {curly}, and <tick> opens_stack = [] for char in stripped_line: if(char=='(' or char=='[' or char=='{' or char=='<'): opens_stack.append(char) elif(char==')' or char==']' or char=='}' or char=='>'): open = opens_stack.pop() if(open != lookup_opens[char]): final_answer += lookup_values[char] else: print("I messed up my soup") print(final_answer)
StarcoderdataPython
1728056
<filename>flowserv/controller/worker/manager.py<gh_stars>1-10 # This file is part of the Reproducible and Reusable Data Analysis Workflow # Server (flowServ). # # Copyright (C) 2019-2021 NYU. # # flowServ is free software; you can redistribute it and/or modify it under the # terms of the MIT License; see LICENSE file for more details. """Factory for workers that implement the :class:`flowserv.controller.worker.base.Worker` class. Workers are used to initiate and control the excution of workflow steps using different execution backends and implementations. Instances of worker classes are created from a configuration specifications that follow the following schema: .. code-block:: yaml definitions: keyValuePair: description: Key-value pair object. properties: key: description: Value key. type: string value: anyOf: - type: integer - type: string description: Scalar value associated with the key. required: - key - value type: object workerSpec: description: Specification for a worker engine instance. properties: env: description: Key-value pairs for environment variables. items: $ref: '#/definitions/keyValuePair' type: array name: description: Unique worker identifier. type: string type: description: Worker type identifier enum: - code - docker - subprocess type: string vars: description: Key-value pairs for template string variables. items: $ref: '#/definitions/keyValuePair' type: array volume: description: Storage volume the worker has access to. type: string required: - name - type type: object """ from typing import Dict, List, Optional from flowserv.controller.worker.base import Worker from flowserv.controller.worker.code import CodeWorker, CODE_WORKER from flowserv.controller.worker.config import java_jvm, python_interpreter from flowserv.controller.worker.docker import DockerWorker, DOCKER_WORKER from flowserv.controller.worker.docker import NotebookDockerWorker, NOTEBOOK_DOCKER_WORKER from flowserv.controller.worker.notebook import NotebookEngine, NOTEBOOK_WORKER from flowserv.controller.worker.subprocess import SubprocessWorker, SUBPROCESS_WORKER from flowserv.model.workflow.step import WorkflowStep import flowserv.error as err import flowserv.util as util """Create an instance of the sub-process worker that is used as the default worker for container steps that do not have a responsible worker defined for them. """ default_container_worker = SubprocessWorker( variables={'python': python_interpreter(), 'java': java_jvm()} ) """Serialization label for worker identifier.""" WORKER_ID = 'name' class WorkerPool(object): """Manager for a pool of worker instances. Workers are responsible for the initiation and control of the execution of steps in a serial workflow. Workers are instantiated from a dictionary serializations that follows the `workerSpec` schema defined in the `schema.json` file. """ def __init__( self, workers: Optional[List[Dict]] = list(), managers: Optional[Dict] = None ): """Initialize the specifications for the workers that are managed by this worker pool and the optional list of task managers for individual workflow steps. Parameters ---------- workers: list, default=list List of worker specifications. managers: dict, default=None Mapping from workflow step identifier to worker identifier that defines the worker that is responsible for the execution of the respective workflow step. """ # Index of worker specifications. self._workerspecs = {doc['name']: doc for doc in workers} # Cache for created engine instance. self._workers = dict() self.managers = managers if managers is not None else dict() def get(self, step: WorkflowStep) -> Worker: """Get the instance of the worker that is associated with the given workflow step. If no worker specification exists for the given step a default worker is returned. The type of the default worker depends on the type of the workflow step. For code steps, currently only one type of worker exists. For container steps, a sub-process worker is used as the default worker. Parameters ---------- step: flowserv.model.workflow.step.WorkflowStep Step in a serial workflow. Returns ------- flowserv.controller.worker.base.Worker """ # Return the worker that is associated with the given step via the # manager mapping (if defined). identifier = self.managers.get(step.name) if identifier is None: return self.get_default_worker(step) # Return the worker from the cache if it exists. if identifier in self._workers: return self._workers[identifier] # Get the worker specification for the container image. Raise an error # if the identifier is unknown. if identifier not in self._workerspecs: raise err.UnknownObjectError(obj_id=identifier, type_name='worker') # Create the worker and add it to the cache before returning it. worker = create_worker(self._workerspecs[identifier]) self._workers[identifier] = worker return worker def get_default_worker(self, step: WorkflowStep) -> Worker: """Return the default worker depending on the type of the given workflow step. Parameters ---------- step: flowserv.model.workflow.step.WorkflowStep Step in a serial workflow. Returns ------- flowserv.controller.worker.base.Worker """ if step.is_code_step(): return CodeWorker() elif step.is_container_step(): return default_container_worker elif step.is_notebook_step(): return NotebookEngine() raise ValueError(f"unknown step type '{step.step_type}'") # -- Helper Functions for Worker configurations ------------------------------- def create_worker(doc: Dict) -> Worker: """Factory pattern for workers. Create an instance of a worker implementation from a given worker serialization. Parameters ---------- doc: dict Dictionary serialization for a worker. Returns ------- flowserv.controller.worker.base.Worker """ identifier = doc['name'] worker_type = doc['type'] env = util.to_dict(doc.get('env', [])) vars = util.to_dict(doc.get('variables', [])) volume = doc.get('volume') if worker_type == SUBPROCESS_WORKER: return SubprocessWorker( variables=vars, env=env, identifier=identifier, volume=volume ) elif worker_type == DOCKER_WORKER: return DockerWorker( variables=vars, env=env, identifier=identifier, volume=volume ) elif worker_type == CODE_WORKER: return CodeWorker(identifier=identifier, volume=volume) elif worker_type == NOTEBOOK_WORKER: return NotebookEngine(identifier=identifier, volume=volume) elif worker_type == NOTEBOOK_DOCKER_WORKER: return NotebookDockerWorker(identifier=identifier, env=env, volume=volume) raise ValueError(f"unknown worker type '{worker_type}'") def WorkerSpec( worker_type: str, identifier: Optional[str] = None, variables: Optional[Dict] = None, env: Optional[Dict] = None, volume: Optional[str] = None ) -> Dict: """Get a serialization for a worker specification. Parameters ---------- worker_type: string Unique worker type identifier. identifier: string, default=None Unique worker identifier. If no identifier is given, a new unique identifier will be generated. variables: dict, default=None Mapping with default values for placeholders in command template strings. env: dict, default=None Default settings for environment variables when executing workflow steps. These settings can get overridden by step-specific settings. volume: string, default=None Identifier for the storage volume that the worker has access to. Returns ------- dict """ # Set optional environment and variables dictionaries if not given. env = env if env is not None else dict() variables = variables if variables is not None else dict() doc = { WORKER_ID: identifier if identifier is not None else util.get_unique_identifier(), 'type': worker_type, 'env': [util.to_kvp(key=k, value=v) for k, v in env.items()], 'variables': [util.to_kvp(key=k, value=v) for k, v in variables.items()] } if volume: doc['volume'] = volume return doc def Code(identifier: Optional[str] = None, volume: Optional[str] = None) -> Dict: """Get base configuration serialization for a code worker. Parameters ---------- identifier: string, default=None Unique worker identifier. If no identifier is given, a new unique identifier will be generated. volume: string, default=None Identifier for the storage volume that the worker has access to. Returns ------- dict """ return WorkerSpec( worker_type=CODE_WORKER, identifier=identifier, volume=volume ) def Docker( identifier: Optional[str] = None, variables: Optional[Dict] = None, env: Optional[Dict] = None, volume: Optional[str] = None ) -> Dict: """Get base configuration for a subprocess worker with the given optional arguments. Parameters ---------- identifier: string, default=None Unique worker identifier. If no identifier is given, a new unique identifier will be generated. variables: dict, default=None Mapping with default values for placeholders in command template strings. env: dict, default=None Default settings for environment variables when executing workflow steps. These settings can get overridden by step-specific settings. volume: string, default=None Identifier for the storage volume that the worker has access to. Returns ------- dict """ return WorkerSpec( worker_type=DOCKER_WORKER, identifier=identifier, variables=variables, env=env, volume=volume ) def Notebook(identifier: Optional[str] = None, volume: Optional[str] = None) -> Dict: """Get base configuration serialization for a notebook worker. Parameters ---------- identifier: string, default=None Unique worker identifier. If no identifier is given, a new unique identifier will be generated. volume: string, default=None Identifier for the storage volume that the worker has access to. Returns ------- dict """ return WorkerSpec( worker_type=NOTEBOOK_WORKER, identifier=identifier, volume=volume ) def Subprocess( identifier: Optional[str] = None, variables: Optional[Dict] = None, env: Optional[Dict] = None, volume: Optional[str] = None ) -> Dict: """Get base configuration for a subprocess worker with the given optional arguments. Parameters ---------- identifier: string, default=None Unique worker identifier. If no identifier is given, a new unique identifier will be generated. variables: dict, default=None Mapping with default values for placeholders in command template strings. env: dict, default=None Default settings for environment variables when executing workflow steps. These settings can get overridden by step-specific settings. volume: string, default=None Identifier for the storage volume that the worker has access to. Returns ------- dict """ return WorkerSpec( worker_type=SUBPROCESS_WORKER, variables=variables, env=env, identifier=identifier, volume=volume )
StarcoderdataPython
1724326
<filename>tests/detections/test_detections.py ''' Test that computes detections for all entries in the database that do not have a `labels_path` column populated. The column is populated with the path to the labels on disk. Copyright 2020 Voxel51, Inc. voxel51.com ''' import pandemic51.core.detections as pand pand.detect_objects_in_unprocessed_images()
StarcoderdataPython
180663
<reponame>DanSava/showmewhatyougot<gh_stars>0 import requests import re import json import sched import time from email.mime.text import MIMEText import smtplib import logging import os class Scraper(object): def __init__(self): self.logger = logging.getLogger('croller') self.processed_urls = [] self.words_to_find_regex = None self.main_url = 'https://beneficiar.fonduri-ue.ro:8080' self.anunturi_url = '{}/anunturi'.format(self.main_url) self.desc_regex = r'(\/desc-lot\?d=.*?)"' self.matchObj = None self.scheduler = sched.scheduler(time.time, time.sleep) self.scheduler.enter(1, 1, self.run, []) def find_in_text(self, text): return len(re.findall(self.words_to_find_regex, text, re.M | re.I)) > 0 def process_url(self, url): if url not in self.processed_urls: self.processed_urls.insert(0, url) if len(self.processed_urls) > 30: self.processed_urls.pop() def send_email(self, url): self.logger.info("Found something interesting: {}".format(url)) # Send the new url as email notification if url: sender = os.environ.get('FONDURI_SENDER') password = os.environ.get('<PASSWORD>') target = os.environ.get('FONDURI_TARGET') msg = MIMEText('Posibila postare interesanta: {}\n'.format(url)) msg['Subject'] = 'Postari interesante' msg['From'] = sender msg['To'] = target server = smtplib.SMTP_SSL('smtp.gmail.com', 465) # Next, log in to the server server.login(sender, password) # Send the mail self.logger.info("Sending email to %s" % target) server.sendmail(sender, target, msg.as_string()) server.quit() def load_key_words(self): with open('key_words.json', 'r') as f: loaded_words = json.load(f) self.words_to_find_regex = r'({})'.format(loaded_words['words']) def run(self): self.logger.info("Starting new run") try: self.load_key_words() response = requests.get(self.anunturi_url) text = response.text.encode('utf-8').decode('utf-8') if response.status_code == 200: for url_part in re.findall(r'a href="/anunturi(/details.*?)"', text, re.M | re.I): anunt_url ='{}{}'.format(self.anunturi_url, url_part).encode("utf-8") if anunt_url not in self.processed_urls: anunt_resp = requests.get(anunt_url) if anunt_resp.status_code == 200: self.logger.info("Processing url {}".format(anunt_url.decode('utf-8'))) anunt_text = anunt_resp.text.encode('utf-8').decode('utf-8') # Find interesting words in anunt page if self.find_in_text(anunt_text): self.send_email(anunt_url) else: for match in re.findall(self.desc_regex, anunt_text, re.M | re.I): response = requests.get('{}{}'.format(self.main_url, match)) desc_text = response.text.encode('utf-8').decode('utf-8') if self.find_in_text(desc_text): self.send_email(anunt_url) self.process_url(anunt_url) except Exception as e: self.logger.error(e) self.scheduler.enter(600, 1, self.run, []) def start(self): self.scheduler.run() def setup_logger(): logger = logging.getLogger('croller') logger.setLevel(logging.INFO) # create console handler and set level to info ch = logging.StreamHandler() ch.setLevel(logging.INFO) # create formatter formatter = logging.Formatter('[%(levelname)s]-%(asctime)s: %(message)s') # add formatter to ch ch.setFormatter(formatter) logger.addHandler(ch) if __name__ == '__main__': setup_logger() x = Scraper() x.start()
StarcoderdataPython
1711931
from portality import models # these are the ids of the journal and the issn of the erroneous continuation id = "d241030fda0b419f9aaaf542d57a61af" issn = "0049-3449" # details to create the new journal record name = "<NAME>" email = "<EMAIL>" owner = "00493449" # get the journal and the other journal's bibjson from the history para = models.Journal.pull(id) vida = para.get_history_for(issn) # create a new journal record from the bibjson, and set some default values new = models.Journal() new.set_bibjson(vida) new.set_in_doaj(True) new.set_application_status("accepted") new.add_note("Journal separated from erroneous continuation by CL") new.add_contact(name, email) new.set_owner(owner) new.save() print "Created new record with id", new.id # remove the erroneous journal from the history, add a note, and re-save the original journal para.remove_history(issn) para.add_note("CL removed journal " + issn + " from continuations history; was there erroneously") para.save() print "Removed erroneous record from", id
StarcoderdataPython
1629406
<filename>Arithmetic Formatter/arithmetic_arranger.py def arithmetic_arranger(problems, print_ans = False): count = 1 if len(problems)>5: return "Error: Too many problems." line_1 = "" line_2 = "" dash_line = "" ans_line = "" for problem in problems: chars = problem.split() try : num1 = int(chars[0]) operator = chars[1] num2 = int(chars[2]) except : return "Error: Numbers must only contain digits." if len(chars[0])>4 or len(chars[2])>4 : return "Error: Numbers cannot be more than four digits." if chars[1] not in ["+", "-"]: return "Error: Operator must be '+' or '-'." if print_ans: if operator == "+": answer = num1 + num2 else: answer = num1 - num2 maxx = num1 if num2>num1: maxx = num2 str_num1 = str(num1).rjust(len(str(maxx))+2) str_num2 = operator + str(num2).rjust(len(str(maxx))+1) line_1 = line_1 + str_num1 line_2 = line_2 + str_num2 dash_line = dash_line + ("-"*(2+len(str(maxx)))) if print_ans: ans_line = ans_line + str(answer).rjust(len(str(maxx))+2) if count<len(problems) : line_1 += " " line_2 += " " dash_line += " " if print_ans: ans_line += " " count += 1 if print_ans: arranged_problems = line_1 + "\n" + line_2 + "\n" + dash_line + "\n" + ans_line else: arranged_problems = line_1 + "\n" + line_2 + "\n" + dash_line return arranged_problems
StarcoderdataPython
1638421
"""File IO for Flickr 30K images and text captions. Author: <NAME> Contact: <EMAIL> Date: September 2019 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import logging import numpy as np def load_flickr30k_splits(splits_dir="data/splits/flickr30k", flickr8k_splits=None): """Load train-dev-test splits from Flicker 30k text caption corpus.""" set_dict = {} for subset in ["train", "dev", "test"]: if subset not in set_dict: set_dict[subset] = [] subset_path = os.path.join( splits_dir, "{}.txt".format(subset)) assert os.path.exists(subset_path) logging.log(logging.INFO, "Loading Flickr 30k {} split: {}".format( subset, subset_path)) with open(subset_path) as f: for line in f: set_dict[subset].append(os.path.splitext(line.strip())[0]) if flickr8k_splits is not None: # remove flickr 8k images from 30k splits set_dict = remove_flickr8k_splits(set_dict, flickr8k_splits) return set_dict def remove_flickr8k_splits(flickr30k_splits, flickr8k_splits): """Remove Flickr 8k images from Flickr 30k train-dev-test splits.""" flickr8k_all = [] for _, uids in flickr8k_splits.items(): flickr8k_all.extend(list(map(lambda uid: uid.split("_")[0], uids))) flickr30_removed = {} for subset, uids in flickr30k_splits.items(): uids_removed = [] for uid in uids: if uid not in flickr8k_all: uids_removed.append(uid) flickr30_removed[subset] = uids_removed return flickr30_removed def _load_flickr30k_unrelated_captions(splits_dir="data/splits/flickr30k"): """Load unrelated image captions from the Flickr 30k text caption corpus.""" path = os.path.join(splits_dir, "UNRELATED_CAPTIONS") assert os.path.exists(path) image_uids, caption_numbers = [], [] with open(path, "rb") as f: next(f) # skip header line for line in f: image_uid, caption_number = line.decode("utf8").strip().split(" ") image_uids.append(image_uid) caption_numbers.append(str(int(caption_number) - 1)) image_uids = np.asarray(image_uids) caption_numbers = np.asarray(caption_numbers) return image_uids, caption_numbers def load_flickr30k_captions(captions_dir, splits_dir="data/splits/flickr30k", flickr8k_splits=None): """Load Flickr 30k text caption corpus.""" train, val, test = None, None, None split_dict = load_flickr30k_splits(splits_dir, flickr8k_splits) captions_path = os.path.join( captions_dir, "results_20130124.token") assert os.path.exists(captions_path) logging.log(logging.INFO, "Loading Flickr 30k text caption corpus: {}".format( captions_path)) image_uids, captions, caption_numbers = [], [], [] with open(captions_path, "rb") as f: for line in f: caption_image, caption = line.decode("utf8").split("\t") image_uid, caption_number = caption_image.split("#") image_uid = image_uid.split(".jpg")[0] image_uids.append(image_uid) captions.append(str(caption).strip().lower()) caption_numbers.append(caption_number) # remove unrelated captions flickr30k_unrelated = _load_flickr30k_unrelated_captions(splits_dir) def filter_remove_unrelated(index): unrelated_idx = np.where(flickr30k_unrelated[0] == image_uids[index])[0] return caption_numbers[index] not in flickr30k_unrelated[1][unrelated_idx] filter_idx = list(filter(filter_remove_unrelated, range(len(image_uids)))) image_uids = np.asarray(image_uids)[filter_idx] captions = np.asarray(captions)[filter_idx] caption_numbers = np.asarray(caption_numbers)[filter_idx] # split into train-dev-test train_idx = np.isin(image_uids, split_dict["train"]) val_idx = np.isin(image_uids, split_dict["dev"]) test_idx = np.isin(image_uids, split_dict["test"]) train = (image_uids[train_idx], captions[train_idx], caption_numbers[train_idx]) val = (image_uids[val_idx], captions[val_idx], caption_numbers[val_idx]) test = (image_uids[test_idx], captions[test_idx], caption_numbers[test_idx]) return train, val, test def fetch_flickr30k_image_paths(images_dir, splits_dir="data/splits/flickr30k", flickr8k_splits=None): """Fetch Flickr 30k image paths corresponding to the caption corpus splits.""" train, val, test = None, None, None split_dict = load_flickr30k_splits(splits_dir, flickr8k_splits) image_paths = np.asarray([ os.path.join(images_dir, name) for name in os.listdir(images_dir)]) image_uids = np.asarray([ os.path.splitext(os.path.split(path)[-1])[0] for path in image_paths]) train_idx = np.isin(image_uids, split_dict["train"]) val_idx = np.isin(image_uids, split_dict["dev"]) test_idx = np.isin(image_uids, split_dict["test"]) train = (image_uids[train_idx], image_paths[train_idx]) val = (image_uids[val_idx], image_paths[val_idx]) test = (image_uids[test_idx], image_paths[test_idx]) return train, val, test
StarcoderdataPython
1704261
<reponame>indigo-dc/dogs_breed_det<filename>dogs_breed_det/config.py # -*- coding: utf-8 -*- """ Module to define CONSTANTS used across the project """ import os from webargs import fields from marshmallow import Schema, INCLUDE # identify basedir for the package BASE_DIR = os.path.dirname(os.path.normpath(os.path.dirname(__file__))) # default location for input and output data, e.g. directories 'data' and 'models', # is either set relative to the application path or via environment setting IN_OUT_BASE_DIR = BASE_DIR if 'APP_INPUT_OUTPUT_BASE_DIR' in os.environ: env_in_out_base_dir = os.environ['APP_INPUT_OUTPUT_BASE_DIR'] if os.path.isdir(env_in_out_base_dir): IN_OUT_BASE_DIR = env_in_out_base_dir else: msg = "[WARNING] \"APP_INPUT_OUTPUT_BASE_DIR=" + \ "{}\" is not a valid directory! ".format(env_in_out_base_dir) + \ "Using \"BASE_DIR={}\" instead.".format(BASE_DIR) print(msg) DATA_DIR = os.path.join(IN_OUT_BASE_DIR, 'data') MODELS_DIR = os.path.join(IN_OUT_BASE_DIR, 'models') Dog_RemoteSpace = 'rshare:/deep-oc-apps/dogs_breed_det/' Dog_RemoteShare = 'https://nc.deep-hybrid-datacloud.eu/s/D7DLWcDsRoQmRMN/download?path=%2F&files=' Dog_DataDir = 'dogImages' Dog_WeightsPattern = 'weights.best.NETWORK.3layers.hdf5' Dog_LabelsFile = os.path.join(DATA_DIR, 'dog_names.txt') REMOTE_DATA_DIR = os.path.join(Dog_RemoteSpace, 'data') REMOTE_MODELS_DIR = os.path.join(Dog_RemoteSpace, 'models') # FLAAT needs a list of trusted OIDC Providers. Here is an extended example: #[ #'https://b2access.eudat.eu/oauth2/', #'https://b2access-integration.fz-juelich.de/oauth2', #'https://unity.helmholtz-data-federation.de/oauth2/', #'https://login.helmholtz-data-federation.de/oauth2/', #'https://login-dev.helmholtz.de/oauth2/', #'https://login.helmholtz.de/oauth2/', #'https://unity.eudat-aai.fz-juelich.de/oauth2/', #'https://services.humanbrainproject.eu/oidc/', #'https://accounts.google.com/', #'https://aai.egi.eu/oidc/', #'https://aai-dev.egi.eu/oidc/', #'https://login.elixir-czech.org/oidc/', #'https://iam-test.indigo-datacloud.eu/', #'https://iam.deep-hybrid-datacloud.eu/', #'https://iam.extreme-datacloud.eu/', #'https://oidc.scc.kit.edu/auth/realms/kit/', #'https://proxy.demo.eduteams.org' #] # # we select following three providers: Flaat_trusted_OP_list = [ 'https://aai.egi.eu/oidc/', 'https://iam.deep-hybrid-datacloud.eu/', 'https://iam.extreme-datacloud.eu/', ] machine_info = { 'cpu': '', 'gpu': '', 'memory_total': '', 'memory_available': '' } cnn_list = ['Resnet50', 'InceptionV3', 'VGG16', 'VGG19'] # class / place to describe arguments for predict() class PredictArgsSchema(Schema): class Meta: unknown = INCLUDE # supports extra parameters network = fields.Str( required=False, missing=cnn_list[0], enum=cnn_list, description="Neural model to use for prediction" ) files = fields.Field( required=False, missing=None, type="file", data_key="data", location="form", description="Select the image you want to classify." ) urls = fields.Url( required=False, missing=None, description="Select an URL of the image you want to classify." ) # class / place to describe arguments for train() class TrainArgsSchema(Schema): class Meta: unknown = INCLUDE # supports extra parameters num_epochs = fields.Integer( required=False, missing=1, description="Number of training epochs") network = fields.Str( required=False, missing=cnn_list[0], enum=cnn_list, description="Neural model to use") sys_info = fields.Boolean( required=False, missing=False, enum=[True, False], description="Print information about the system (e.g. cpu, gpu, memory)")
StarcoderdataPython
1603549
"""Compare Pulsar and HabCat coordinates""" import csv import astropy.units as u from astropy.coordinates import SkyCoord, Angle from astropy import coordinates as coord def flipra(coordinate): """Flips RA coordinates by 180 degrees""" coordinate = coordinate + 180 if coordinate > 360: coordinate = coordinate - 360 return coordinate def flipde(coordinate): """Flips RA coordinates by 90 degrees""" return coordinate * (-1.) # Load HabCat habcat_id = [] habcat_ra = [] habcat_de = [] with open('habcat.csv', 'rb') as csvfile: dataset = csv.reader(csvfile, delimiter=';') for row in dataset: habcat_id.append(row[0]) ra = coord.Angle(row[1], unit=u.hour) # Define as hours habcat_ra.append(ra.degree) # Convert to degree de = coord.Angle(row[2], unit=u.deg) habcat_de.append(de.degree) print len(habcat_id), 'HabCat datalines loaded' # Load Pulsar catalogue pulsar_id = [] pulsar_ra = [] pulsar_de = [] pulsar_period = [] with open('pulsar_16msec.csv', 'rb') as csvfile: dataset = csv.reader(csvfile, delimiter=';') for row in dataset: pulsar_id.append(row[0]) ra = coord.Angle(row[1], unit=u.hour) # Define as hours pulsar_ra.append(ra.degree) # Convert to degree de = coord.Angle(row[2], unit=u.deg) pulsar_de.append(de.degree) pulsar_period.append(row[3]) print len(pulsar_id), 'Pulsar datalines loaded' # Nested loop through all Pulsars to find closest 180deg HabCat for each for currentpulsar in range(len(pulsar_id)): # Pulsar loop shortest_distance = 180 * 60 # set to max, in arcminutes for currenthabcat in range(len(habcat_id)): # HabCat loop habcat_coordinate = SkyCoord( habcat_ra[currenthabcat], habcat_de[currenthabcat], unit="deg") pulsar_coordinate_flipped = SkyCoord( # flip pulsar coordinates flipra(pulsar_ra[currentpulsar]), flipde(pulsar_de[currentpulsar]), unit="deg") distance = pulsar_coordinate_flipped.separation(habcat_coordinate) if distance.arcminute < shortest_distance: shortest_distance = distance.arcminute # New best found bestfit_pulsar_id = pulsar_id[currentpulsar] bestfit_habcat_id = habcat_id[currenthabcat] print bestfit_pulsar_id, bestfit_habcat_id, shortest_distance / 60. # deg with open('result.csv', 'a') as fp: # Append each result to CSV a = csv.writer(fp, delimiter=';') a.writerow([ bestfit_pulsar_id, bestfit_habcat_id, shortest_distance / 60.]) # degrees print 'Done.'
StarcoderdataPython
3284562
<filename>scripts/backup-tool.py #! /usr/bin/python """Create a backup. """ import archive.bt archive.bt.backup_tool()
StarcoderdataPython
1701740
<reponame>datavaluepeople/tentaclio """HTTP Stream client.""" import io from typing import Optional from urllib import parse import requests from tentaclio import protocols from . import base_client, decorators, exceptions __all__ = ["HTTPClient"] DEFAULT_TIMEOUT = 10.0 DEFAULT_HEADERS = {"Accept": "application/json"} class HTTPClient( base_client.BaseClient["HTTPClient"] ): """HTTP stream client. This client is useful when dealing inputs that may change from local files to http, or from s3 to http in simple usecases. We're not intending to wrap requests or rewrite it. """ allowed_schemes = ["http", "https"] conn: requests.Session timeout: float headers: dict protocol: str username: Optional[str] password: Optional[str] hostname: str port: Optional[int] endpoint: str def __init__( self, url: str, default_timeout: float = None, default_headers: dict = None ) -> None: """Create a new http/https client based on the passed url and extra params.""" # Default connection timeout at 10'' self.timeout = default_timeout or DEFAULT_TIMEOUT # Default JSON response back self.headers = default_headers or DEFAULT_HEADERS super().__init__(url) self.protocol = self.url.scheme if self.url.hostname is None: raise exceptions.HTTPError("Missing URL hostname") self.hostname = self.url.hostname self.port = self.url.port self.endpoint = self.url.path # Enforce no empty credentials self.username = None if self.url.username == "" else self.url.username self.password = None if self.url.password == "" else self.url.password # Connection methods: def _connect(self) -> requests.Session: session = requests.Session() # credentials provided if self.username and self.password: session.auth = (self.username, self.password) # Non-empty header if self.headers: session.headers.update(self.headers) return session # Stream methods: @decorators.check_conn def get( self, writer: protocols.ByteWriter, endpoint: str = None, params: dict = None, options: dict = None, ) -> None: """Read the contents from the url and write them into the provided writer. Arguments: :end_point: Path to append to the url passed in the constructor. :params: Url params to add :options: More options for the request library. """ url = self._fetch_url(endpoint or "") request = self._build_request("GET", url, default_params=params) response = self._send_request(request, default_options=options) writer.write(response.content) @decorators.check_conn def put( self, reader: protocols.ByteReader, endpoint: str = None, params: dict = None, options: dict = None, ) -> None: """Write the contents of the provided reader into the url using POST. Arguments: :end_point: Path to append to the url passed in the constructor. :params: Url params to add :options: More options for the request library. """ url = self._fetch_url(endpoint or "") buff = io.StringIO(bytes(reader.read()).decode(encoding="utf-8")) request = self._build_request("POST", url, default_data=buff, default_params=params) self._send_request(request, default_options=options) # Helpers: def _fetch_url(self, endpoint: str) -> str: if endpoint == "" and self.endpoint == "": raise exceptions.HTTPError("Missing URL end point") # Fetch full base URL base_url = parse.urlunparse((self.protocol, self.hostname, self.endpoint, "", "", "")) return parse.urljoin(base_url, endpoint) def _build_request( self, method: str, url: str, default_data: protocols.Reader = None, default_params: dict = None, ): data = default_data or [] params = default_params or {} if method == "GET": # GET uses params request = requests.Request(method, url, params=params, headers=self.headers) elif method == "POST": # POST uses data & params request = requests.Request(method, url, data=data, params=params, headers=self.headers) else: raise NotImplementedError return self.conn.prepare_request(request) def _send_request(self, request: requests.PreparedRequest, default_options: dict = None): options = default_options or {} response = self.conn.send( request, stream=options.get("stream", False), verify=options.get("verify", False), proxies=options.get("proxies", {}), cert=options.get("cert"), timeout=options.get("timeout", self.timeout), allow_redirects=options.get("allow_redirects", True), ) if options.get("check_response", True): self._check_response(response) return response @staticmethod def _check_response(response: requests.Response) -> None: try: response.raise_for_status() except requests.exceptions.HTTPError: raise exceptions.HTTPError(f"{response.status_code}: {response.reason}")
StarcoderdataPython
77578
# small helper script to check results import fnmatch import os import shutil import time import json import sys liste = [] CHECKFOLDER = sys.argv[1] """ # we do not need the pickle files here for root, dirnames, filenames in os.walk(CHECKFOLDER): for filename in fnmatch.filter(filenames, 'scenario.pickle'): #os.remove(os.path.join(root, 'result.pdf')) print("remove", os.path.join(root, 'scenario.pickle')) os.remove(os.path.join(root, 'scenario.pickle')) os.system("rm -rf pdfs") os.system("mkdir pdfs") """ missing = [] for root, dirnames, filenames in os.walk(CHECKFOLDER): if not 'errors' in root: for filename in fnmatch.filter(filenames, 'config.json'): #print("found", filename) if not os.path.exists(os.path.join(root, 'statistics.json')): missing.append(root) error_folder = os.path.join(CHECKFOLDER, 'errors') if not os.path.exists(error_folder): os.makedirs(error_folder) for path in missing: new_path = path.replace(CHECKFOLDER, '').replace('/custom', '').replace('/run0001', '') if new_path.startswith('/'): new_path = new_path[1:] new_path = os.path.join(error_folder, new_path) if not os.path.exists(new_path): os.makedirs(new_path) print("add errorreport: %s" % new_path) outfile = os.path.join(path, 'out.txt') outfile2 = os.path.join(new_path, 'out.txt') if os.path.exists(outfile): shutil.copyfile(outfile, outfile2) config = os.path.join(path, 'config.json') config2 = os.path.join(new_path, 'config.json') if os.path.exists(config): shutil.copyfile(config, config2) importstring = "" with open(config, "r") as file: data = json.loads(file.read()) for k, v in data.items(): if k.startswith('param_'): importstring += '%s %d\n' % (k, v) if len(importstring) > 0: importstring_path = os.path.join(new_path, 'import.txt') with open(importstring_path, 'wb') as file: file.write(importstring) scenario = os.path.join(path, 'scenario.pdf') scenario2 = os.path.join(new_path, 'scenario.pdf') if os.path.exists(scenario): shutil.copyfile(scenario, scenario2) exit(0)
StarcoderdataPython
1740190
<reponame>UCLCheminformatics/ScaffoldGraph """ scaffoldgraph tests.vis.test_vis_utils """ import scaffoldgraph.vis.utils as vis_utils import matplotlib.pyplot as plt import random import pytest import re from rdkit.Chem.Draw import rdMolDraw2D from rdkit import Chem from scaffoldgraph.utils import suppress_rdlogger from . import long_test_network SVG_PATTERN = r'(?:<\?xml\b[^>]*>[^<]*)?(?:<!--.*?-->[^<]*)*(?:<svg|<!DOCTYPE svg)\b' SVG_REGEX = re.compile(SVG_PATTERN, re.DOTALL) SVG_DIM_PATTERN = r"width='(\d+px)'\s+height='(\d+px)" SVG_DIM_REGEX = re.compile(SVG_DIM_PATTERN) HEX_PATTERN = r'^#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$' HEX_REGEX = re.compile(HEX_PATTERN) def naive_svg_check(svg_string): """Validate SVG format (naive).""" return SVG_REGEX.match(svg_string) is not None def svg_dimensions(svg_string): """Return dimensions of an (rdkit) SVG string.""" matches = SVG_DIM_REGEX.findall(svg_string) if not matches: return (None, None) dims = map(lambda x: int(x.replace('px', '')), matches[0]) return tuple(dims) def insert_random_node_attribute(graph, key, high=1, low=0): """Add a random attribute to nodes in a graph.""" for _, data in graph.nodes(data=True): value = random.uniform(low, high) data[key] = value def is_valid_hex(hex): """Validate hexadecimal color code.""" if hex is None: return False if HEX_REGEX.search(hex): return True return False def test_smiles_to_svg(): smi = 'Cc1ccc(NC(=O)c2ccc(CN3CCN(C)CC3)cc2)cc1Nc1nccc(-c2cccnc2)n1' img = vis_utils.smiles_to_svg(smi) # smiles to SVG assert img is not None assert naive_svg_check(img) is True # Check size updates. dims = (450, 400) img = vis_utils.smiles_to_svg(smi, size=dims) assert svg_dimensions(img) == dims # Check drawing options (clear background). drawOpts = rdMolDraw2D.MolDrawOptions() drawOpts.clearBackground = True img = vis_utils.smiles_to_svg(smi, draw_options=drawOpts) assert '</rect>' in img # <rect> exists with background drawOpts.clearBackground = False img = vis_utils.smiles_to_svg(smi, draw_options=drawOpts) assert '</rect>' not in img @suppress_rdlogger() def test_smiles_to_image(): # These aren't paticularly great tests for this function... smi = 'Cc1ccc(NC(=O)c2ccc(CN3CCN(C)CC3)cc2)cc1Nc1nccc(-c2cccnc2)n1' img = vis_utils.smiles_to_image(smi) # smiles to SVG assert img is not None assert img != 'data:image/svg+xml;charset=utf-8,' null_smi = 'xxx' img = vis_utils.smiles_to_image(null_smi) assert img == 'data:image/svg+xml;charset=utf-8,' def test_embed_node_mol_images(network): # Embed images into node attributes. vis_utils.embed_node_mol_images(network) for _, data in network.nodes(data=True): img = data.get('img', None) assert img is not None # Remove images from node attributes. vis_utils.remove_node_mol_images(network) for _, data in network.nodes(data=True): img = data.get('img', None) assert img is None def test_color_nodes_by_attribute(network): key = 'attr' insert_random_node_attribute(network, key) # Color scaffold nodes. vis_utils.color_scaffold_nodes_by_attribute(network, key, 'BuPu') for _, data in network.get_scaffold_nodes(data=True): c = data.get('color', None) assert c is not None assert is_valid_hex(c) # Color molecule nodes. cmap = plt.get_cmap('hot') vis_utils.color_molecule_nodes_by_attribute(network, key, cmap, 'col') for _, data in network.get_molecule_nodes(data=True): c = data.get('col', None) assert c is not None assert is_valid_hex(c) def test_root_node(network): vis_utils.add_root_node(network) assert network.has_node('root') is True assert network.in_degree('root') == 0 vis_utils.remove_root_node(network) assert network.has_node('root') is False
StarcoderdataPython
3278382
<reponame>wilkeraziz/smtutils """ Extracts minimal phrases from symmetrized word alignments """ from collections import defaultdict, deque def as_words(phrase, id2word): return tuple(id2word[i] for i in phrase) def try_expand(f, f2e, f_min, f_max, e_min, e_max): """ Try to expand the boundaries of a phrase pair based on the alignment points in f2e[f] :param f: a position in the source :param f2e: maps source positions into a sorted list of aligned target positions :param f_min, f_max: source phrase boundary :param e_min, e_max: target phrase boundary :returns: f_min, f_max, e_min, e_max, discovered target positions """ # retrieve the target positions reachable from f es = f2e.get(f, None) extra = [] # if there is any if es is not None: if f_min is None: # we just discovered that we know something about the source phrase f_min = f_max = f if e_min is None: # thus e_max is also None # we just learnt the first thing about the target phrase e_min = es[0] e_max = es[-1] # basically, we discovered the positions [e_min .. e_max] extra.extend(xrange(e_min, e_max + 1)) else: # we have the chance to update our target phrase if e_min > es[0]: # we discovered a few extra words on the left extra.extend(xrange(es[0], e_min)) # and update e_min e_min = es[0] if e_max < es[-1]: # update e_max # we discovered a few extra words to the right extra.extend(xrange(e_max + 1, es[-1] + 1)) # and update e_max e_max = es[-1] return f_min, f_max, e_min, e_max, extra def minimal_biphrases(f_words, e_words, links): """ Returns the minimal phrase pairs :param f_words: list of source words :param e_words: list of target words :param links: list of alignment points :return: list of tuples (source phrase, target phrase) where a phrase is a list of positions in f_words or e_words """ # 1) organise alignment points # first we group them f2e = defaultdict(set) e2f = defaultdict(set) for i, j in links: f2e[i].add(j) e2f[j].add(i) # then we sort them f2e = {f:sorted(es) for f, es in f2e.iteritems()} e2f = {e:sorted(fs) for e, fs in e2f.iteritems()} # biphrases biphrases = set() # 2) find minimal phrase pairs f_done = set() e_done = set() # iterate investigating words in the source # TODO: sort alignment points as to visit adjacent points first for fi, ej in links: # check if row or column have alread been done, if so, the minimal phrase consistent with this alignment point has already been found if fi in f_done or ej in e_done: continue else: # flag row and column as processed f_done.add(fi) e_done.add(ej) # source phrase boundaries f_min, f_max = fi, fi # target phrase boundaries e_min, e_max = ej, ej # queue of words whose alignment points need be investigated f_queue = deque([f_min]) e_queue = deque([e_min]) # for as long as there are words to be visited while f_queue or e_queue: if f_queue: # get a source word f = f_queue.popleft() # try to expand the boundaries f_min, f_max, e_min, e_max, extra = try_expand(f, f2e, f_min, f_max, e_min, e_max) # book discovered target words e_queue.extend(extra) if e_queue: # get a target word e = e_queue.popleft() # try to expand the boundaries (the logic is the same, only transposed) e_min, e_max, f_min, f_max, extra = try_expand(e, e2f, e_min, e_max, f_min, f_max) # book discovered source words f_queue.extend(extra) # store the minimal phrase f_phrase = tuple(range(f_min, f_max + 1)) e_phrase = tuple(range(e_min, e_max + 1)) biphrases.add((f_phrase, e_phrase)) return biphrases def unaligned_words(f_words, e_words, biphrases): """Find unaligned words :param f_words: source words :param e_words: target words :param biphrases: list of phrase pairs (check `minimal_biphrases`) :returns: set of unaligned source words, set of unaligned target words """ fs = set() es = set() for fp, ep in biphrases: fs.update(fp) es.update(ep) return frozenset(range(len(f_words))) - fs, frozenset(range(len(e_words))) - es def parse_strings(fstr, estr, astr): """ :param fstr: source string :param estr: target string :param astr: alingment string :return: list of source words, a list of target words and list of alignment points where an alignment point is a pair of integers (i, j) """ f = fstr.split() e = estr.split() a = [map(int, link.split('-')) for link in astr.split()] return f, e, a def parse_line(line, separator = ' ||| '): """returns the source words, the target words and the alignment points""" return parse_strings(*line.split(separator)) def read_corpus(istream, separator=' ||| '): """ Reads a file containing lines like this: source sentence ||| taget sentence ||| alignment points and returns a list where each element is a triple (source, target, alignment) and source is a list of source words target is a list of target words alignment is a list of pairs (each pair represents an alignment point of the kind (f,e)) """ return [parse_line(line.strip()) for line in istream]
StarcoderdataPython
4804265
import humanize import pathlib from typing import Coroutine async def async_progress(path: pathlib.Path, reader: Coroutine) -> bytes: def progress(loaded, total, bar_len=30): filled_len = int(round(bar_len * loaded / total)) empty_len = bar_len - filled_len loaded = humanize.naturalsize(loaded).replace(" ", "") total = humanize.naturalsize(total).replace(" ", "") bar = "=" * filled_len + " " * empty_len print(f"[{bar}] {loaded}/{total}\r", end="", flush=True) total = path.stat().st_size loaded = 0 progress(loaded, total) async for chunk in reader: yield chunk loaded += len(chunk) progress(loaded, total) progress(loaded, total) print("", flush=True)
StarcoderdataPython
105817
# Copyright 2015 Palo Alto Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FT Redis tests Unit tests for minemeld.ft.redis """ import gevent.monkey gevent.monkey.patch_all(thread=False, select=False) import unittest import mock import redis import time import minemeld.ft.redis FTNAME = 'testft-%d' % int(time.time()) class MineMeldFTRedisTests(unittest.TestCase): def setUp(self): SR = redis.StrictRedis() SR.delete(FTNAME) def tearDown(self): SR = redis.StrictRedis() SR.delete(FTNAME) def test_init(self): config = {} chassis = mock.Mock() b = minemeld.ft.redis.RedisSet(FTNAME, chassis, config) self.assertEqual(b.name, FTNAME) self.assertEqual(b.chassis, chassis) self.assertEqual(b.config, config) self.assertItemsEqual(b.inputs, []) self.assertEqual(b.output, None) self.assertEqual(b.redis_skey, FTNAME) self.assertNotEqual(b.SR, None) self.assertEqual(b.redis_host, '127.0.0.1') self.assertEqual(b.redis_port, 6379) self.assertEqual(b.redis_password, None) self.assertEqual(b.redis_db, 0) def test_connect_io(self): config = {} chassis = mock.Mock() chassis.request_sub_channel.return_value = None ochannel = mock.Mock() chassis.request_pub_channel.return_value = ochannel chassis.request_rpc_channel.return_value = None b = minemeld.ft.redis.RedisSet(FTNAME, chassis, config) inputs = ['a', 'b', 'c'] output = True b.connect(inputs, output) b.mgmtbus_initialize() self.assertItemsEqual(b.inputs, inputs) self.assertEqual(b.output, None) icalls = [] for i in inputs: icalls.append( mock.call( FTNAME, b, i, allowed_methods=[ 'update', 'withdraw', 'checkpoint' ] ) ) chassis.request_sub_channel.assert_has_calls( icalls, any_order=True ) chassis.request_rpc_channel.assert_called_once_with( FTNAME, b, allowed_methods=[ 'update', 'withdraw', 'checkpoint', 'get', 'get_all', 'get_range', 'length' ] ) chassis.request_pub_channel.assert_not_called() def test_uw(self): config = {} chassis = mock.Mock() chassis.request_sub_channel.return_value = None ochannel = mock.Mock() chassis.request_pub_channel.return_value = ochannel chassis.request_rpc_channel.return_value = None rpcmock = mock.Mock() rpcmock.get.return_value = {'error': None, 'result': 'OK'} chassis.send_rpc.return_value = rpcmock b = minemeld.ft.redis.RedisSet(FTNAME, chassis, config) inputs = ['a', 'b', 'c'] output = False b.connect(inputs, output) b.mgmtbus_initialize() b.start() time.sleep(1) SR = redis.StrictRedis() b.filtered_update('a', indicator='testi', value={'test': 'v'}) sm = SR.zrange(FTNAME, 0, -1) self.assertEqual(len(sm), 1) self.assertIn('testi', sm) b.filtered_withdraw('a', indicator='testi') sm = SR.zrange(FTNAME, 0, -1) self.assertEqual(len(sm), 0) b.stop() self.assertNotEqual(b.SR, None) def test_stats(self): config = {} chassis = mock.Mock() chassis.request_sub_channel.return_value = None ochannel = mock.Mock() chassis.request_pub_channel.return_value = ochannel chassis.request_rpc_channel.return_value = None rpcmock = mock.Mock() rpcmock.get.return_value = {'error': None, 'result': 'OK'} chassis.send_rpc.return_value = rpcmock b = minemeld.ft.redis.RedisSet(FTNAME, chassis, config) inputs = ['a', 'b', 'c'] output = False b.connect(inputs, output) b.mgmtbus_reset() b.start() time.sleep(1) b.filtered_update('a', indicator='testi', value={'test': 'v'}) self.assertEqual(b.length(), 1) status = b.mgmtbus_status() self.assertEqual(status['statistics']['added'], 1) b.filtered_update('a', indicator='testi', value={'test': 'v2'}) self.assertEqual(b.length(), 1) status = b.mgmtbus_status() self.assertEqual(status['statistics']['added'], 1) self.assertEqual(status['statistics']['removed'], 0) b.filtered_withdraw('a', indicator='testi') self.assertEqual(b.length(), 0) status = b.mgmtbus_status() self.assertEqual(status['statistics']['removed'], 1) b.stop() def test_store_value(self): config = {'store_value': True} chassis = mock.Mock() chassis.request_sub_channel.return_value = None ochannel = mock.Mock() chassis.request_pub_channel.return_value = ochannel chassis.request_rpc_channel.return_value = None rpcmock = mock.Mock() rpcmock.get.return_value = {'error': None, 'result': 'OK'} chassis.send_rpc.return_value = rpcmock b = minemeld.ft.redis.RedisSet(FTNAME, chassis, config) inputs = ['a', 'b', 'c'] output = False b.connect(inputs, output) b.mgmtbus_reset() b.start() time.sleep(1) SR = redis.StrictRedis() b.filtered_update('a', indicator='testi', value={'test': 'v'}) sm = SR.zrange(FTNAME, 0, -1) self.assertEqual(len(sm), 1) self.assertIn('testi', sm) sm = SR.hlen(FTNAME+'.value') self.assertEqual(sm, 1) b.filtered_withdraw('a', indicator='testi') sm = SR.zrange(FTNAME, 0, -1) self.assertEqual(len(sm), 0) sm = SR.hlen(FTNAME+'.value') self.assertEqual(sm, 0) b.stop() self.assertNotEqual(b.SR, None) def test_store_value_overflow(self): config = {'store_value': True} chassis = mock.Mock() chassis.request_sub_channel.return_value = None ochannel = mock.Mock() chassis.request_pub_channel.return_value = ochannel chassis.request_rpc_channel.return_value = None rpcmock = mock.Mock() rpcmock.get.return_value = {'error': None, 'result': 'OK'} chassis.send_rpc.return_value = rpcmock b = minemeld.ft.redis.RedisSet(FTNAME, chassis, config) b.max_entries = 1 inputs = ['a', 'b', 'c'] output = False b.connect(inputs, output) b.mgmtbus_reset() b.start() time.sleep(1) SR = redis.StrictRedis() b.filtered_update('a', indicator='testi', value={'test': 'v'}) sm = SR.zrange(FTNAME, 0, -1) self.assertEqual(len(sm), 1) self.assertIn('testi', sm) sm = SR.hlen(FTNAME+'.value') self.assertEqual(sm, 1) b.filtered_update('a', indicator='testio', value={'test': 'v'}) self.assertEqual(b.statistics['drop.overflow'], 1) sm = SR.zrange(FTNAME, 0, -1) self.assertEqual(len(sm), 1) self.assertIn('testi', sm) sm = SR.hlen(FTNAME+'.value') self.assertEqual(sm, 1) b.filtered_withdraw('a', indicator='testi') sm = SR.zrange(FTNAME, 0, -1) self.assertEqual(len(sm), 0) sm = SR.hlen(FTNAME+'.value') self.assertEqual(sm, 0) b.filtered_update('a', indicator='testio', value={'test': 'v'}) self.assertEqual(b.statistics['drop.overflow'], 1) sm = SR.zrange(FTNAME, 0, -1) self.assertEqual(len(sm), 1) self.assertIn('testio', sm) sm = SR.hlen(FTNAME+'.value') self.assertEqual(sm, 1) b.stop() self.assertNotEqual(b.SR, None)
StarcoderdataPython
3254930
from api import celery as celery_app from api.models import Device as DeviceModel from api.async.base import DeviceTask from api.async import celery_logger from api import device_refresh_redis_conection import orangengine REDIS_DEV_REF_INTV_COUNT_PREFIX = 'dev:refresh:interval:count:' CELERY_BEAT_INTERVAL = 5 @celery_app.task(base=DeviceTask) def init_devices(): """Do the first (for full) refresh on all devices and schedule their periodic refreshes """ celery_logger.debug('Running device init') device_models = init_devices.device_factory.get_all_device_models() for device_model in device_models: # no delay here beceaue we should already be run as a task # and we do not want to schedule if the refresh fails refresh_device.delay(device_model.hostname) if device_model.refresh_interval > 0: # only some devices wish to be periodically refreshed schedule_device_refresh(device_model.hostname, device_model.refresh_interval) @celery_app.task(base=DeviceTask) def refresh_device(hostname, reschedule=False): """Call the orangengine refresh method on the device""" device = refresh_device.device_factory.get_device(hostname) if reschedule: device_model = refresh_device.device_factory.get_device_model(hostname) schedule_device_refresh(hostname, device_model.refresh_interval) celery_logger.info('Refreshing device: %s', hostname) device.refresh() def schedule_device_refresh(hostname, device_interval): """Set the device refresh interval for the given hostname and device_interval """ device_key = REDIS_DEV_REF_INTV_COUNT_PREFIX + hostname unschedule_device_refresh(hostname) celery_logger.info('Scheduling device refresh interval for %s', hostname) interval = int(CELERY_BEAT_INTERVAL * round(float(device_interval)/CELERY_BEAT_INTERVAL)) device_refresh_redis_conection.set(device_key, int(interval / CELERY_BEAT_INTERVAL) - 1) def unschedule_device_refresh(hostname): """Remove the device from the refresh schedule """ celery_logger.info("Unscheduling refresh for %s" % hostname) device_key = REDIS_DEV_REF_INTV_COUNT_PREFIX + hostname device_refresh_redis_conection.delete(device_key) @celery_app.task(base=DeviceTask) def beat_interval_runner(): """Process the beat periodic task to check device refresh interval status Spin off the refresh task if called for. """ celery_logger.info('Running beat interval checks') device_keys = device_refresh_redis_conection.keys(REDIS_DEV_REF_INTV_COUNT_PREFIX + "*") for hostname_key in device_keys: value = int(device_refresh_redis_conection.get(hostname_key)) if value <= 0: # due for a refresh hostname = hostname_key.split(REDIS_DEV_REF_INTV_COUNT_PREFIX)[1] refresh_device.delay(hostname) device_interval = beat_interval_runner.device_factory.get_device_model(hostname) device_interval = device_interval.refresh_interval schedule_device_refresh(hostname, device_interval) else: # not due for a refresh, so just decrement the counter device_refresh_redis_conection.set(hostname_key, value - 1) @celery_app.task(base=DeviceTask) def deprovision_device(hostname): """End the lifecycle for the device with the given hostname Signal the factory, and unschedule the device """ celery_logger.info("Deprovisioning device %s" % hostname) unschedule_device_refresh(hostname) deprovision_device.device_factory.delete_device(hostname) @celery_app.task(base=DeviceTask) def get_candidate_policy(hostname, profile_name, match_criteria): """Generate a candidate policy """ celery_logger.debug("get_candidate_policy: match_criteria: %s", match_criteria) device = get_candidate_policy.device_factory.get_device(hostname) if isinstance(device, orangengine.drivers.PaloAltoPanoramaDriver): cp = device.candidate_policy_match(match_criteria, device_group=profile_name) else: cp = device.candidate_policy_match(match_criteria) return cp.serialize() @celery_app.task(base=DeviceTask) def apply_candidate_policy(hostname, candidate_policy, commit=False): """Apply the candidate policy to the device """ celery_logger.debug("apply_candidate_policy: applying candidate policy: %s", candidate_policy) device = apply_candidate_policy.device_factory.get_device(hostname) passed = False #try: # device.apply_candidate_policy(candidate_policy, commit) # passed = True #except Exception as e: # celery_logger.error(e) device.apply_candidate_policy(candidate_policy, commit) return passed
StarcoderdataPython
196336
# Copyright 2016 NTT DATA. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from masakari.api.validation import parameter_types _base = { 'type': 'object', 'properties': { 'segment': { 'type': 'object', 'properties': { 'name': parameter_types.name, 'description': parameter_types.description, 'recovery_method': { 'type': 'string', 'enum': ["auto", "reserved_host", "auto_priority", "rh_priority"] }, 'service_type': parameter_types.name }, 'additionalProperties': False } }, 'required': ['segment'], 'additionalProperties': False } create = copy.deepcopy(_base) create['properties']['segment']['required'] = ['name', 'recovery_method', 'service_type'] update = copy.deepcopy(_base) update['properties']['segment']['anyOf'] = [{'required': ['name']}, {'required': ['description']}, {'required': ['recovery_method']}, {'required': ['service_type']}, ]
StarcoderdataPython
117137
from django import forms from sysrev.api import PubMed from sysrev.models import * from widgets import * class ProfileForm(forms.ModelForm): class Meta: model = User fields = ("email",) def clean_email(self): email = self.cleaned_data.get('email') if self.instance and self.instance.email == email: return email if User.objects.filter(email=email).count(): raise forms.ValidationError('That email address is already taken.') return email class ReviewCreateStep1(forms.Form): title = forms.CharField(max_length=128, label="Review Title") description = forms.CharField(widget=forms.Textarea, required=False) invited = forms.CharField(widget=forms.Textarea, required=False, label="Invite Participants", help_text="Enter the email address or username of each participant, one per line") def clean_invited(self): invited = self.cleaned_data.get('invited') invlist = filter(lambda i: i, map(lambda l: str.strip(str(l)), invited.splitlines())) for invitee in invlist: try: if invitee.find("@") == -1: User.objects.get(username=invitee) else: User.objects.get(email=invitee) except User.DoesNotExist: raise forms.ValidationError('User '+invitee+' not found.') return invited class ReviewCreateStep2(forms.Form): query = forms.CharField(widget=QueryWidget) def clean_query(self): query = self.cleaned_data.get('query') data = PubMed.get_data_from_query(query) count = int(data["Count"]) limit = PubMed.get_query_limit() if count >= limit: raise forms.ValidationError("""Your query returned %d papers. It must return fewer than %d papers. Modify your query and try again.""" % (count, limit)) elif count == 0: raise forms.ValidationError("Your query did not return any papers.") return query class ReviewUpdate(forms.ModelForm): class Meta: model = Review fields = ("title", "description", "query", "participants") widgets = { 'query': QueryWidget } help_texts = { 'query': """Changing the query will remove from or add to the current abstract pool. Papers in the document, final, and rejected pools will not be affected.""" } def clean(self): query = self.cleaned_data.get('query') data = PubMed.get_data_from_query(query) count = int(data["Count"]) limit = PubMed.get_query_limit() if count >= limit: raise forms.ValidationError("""Your query returned %d papers. It must return fewer than %d papers. Modify your query and try again.""" % (count, limit)) elif count == 0: raise forms.ValidationError("Your query did not return any papers.") return self.cleaned_data
StarcoderdataPython
1606408
from ..titanic import digital from ..titanic import gmpmath from ..titanic.ops import OP class MPNum(digital.Digital): # must be implemented in subclasses @classmethod def _select_context(cls, *args, ctx=None): raise ValueError('virtual method: unimplemented') @classmethod def _round_to_context(cls, unrounded, ctx=None, strict=False): raise ValueError('virtual method: unimplemented') # most operations def add(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.add, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def sub(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.sub, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def mul(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.mul, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def div(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.div, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def sqrt(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.sqrt, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def fma(self, other1, other2, ctx=None): ctx = self._select_context(self, other1, other2, ctx=ctx) result = gmpmath.compute(OP.fma, self, other1, other2, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def neg(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.neg, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def copysign(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.copysign, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def fabs(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.fabs, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def fdim(self, other, ctx=None): # emulated ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.sub, self, other, prec=ctx.p) zero = digital.Digital(negative=False, c=0, exp=0) if result < zero: return type(self)(negative=False, c=0, exp=0, inexact=False, rc=0) else: # never return negative zero rounded = self._round_to_context(result, ctx=ctx, strict=True) return type(self)(rounded, negative=False) def fmax(self, other, ctx=None): # emulated ctx = self._select_context(self, other, ctx=ctx) if self.isnan: return self._round_to_context(other, ctx=ctx, strict=False) elif other.isnan: return self._round_to_context(self, ctx=ctx, strict=False) else: return self._round_to_context(max(self, other), ctx=ctx, strict=False) def fmin(self, other, ctx=None): # emulated ctx = self._select_context(self, other, ctx=ctx) if self.isnan: return self._round_to_context(other, ctx=ctx, strict=False) elif other.isnan: return self._round_to_context(self, ctx=ctx, strict=False) else: return self._round_to_context(min(self, other), ctx=ctx, strict=False) def fmod(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.fmod, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def remainder(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.remainder, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def ceil(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.ceil, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def floor(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.floor, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def nearbyint(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.nearbyint, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def round(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.round, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def trunc(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.trunc, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def acos(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.acos, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def acosh(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.acosh, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def asin(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.asin, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def asinh(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.asinh, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def atan(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.atan, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def atan2(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.atan2, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def atanh(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.atanh, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def cos(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.cos, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def cosh(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.cosh, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def sin(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.sin, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def sinh(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.sinh, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def tan(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.tan, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def tanh(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.tanh, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def exp_(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.exp, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def exp2(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.exp2, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def expm1(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.expm1, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def log(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.log, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def log10(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.log10, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def log1p(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.log1p, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def log2(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.log2, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def cbrt(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.cbrt, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def hypot(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) result = gmpmath.compute(OP.hypot, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def pow(self, other, ctx=None): ctx = self._select_context(self, other, ctx=ctx) if other.is_zero(): # avoid possibly passing nan to gmpmath.compute return type(self)(negative=False, c=1, exp=0, inexact=False, rc=0) result = gmpmath.compute(OP.pow, self, other, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def erf(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.erf, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def erfc(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.erfc, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def lgamma(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.lgamma, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def tgamma(self, ctx=None): ctx = self._select_context(self, ctx=ctx) result = gmpmath.compute(OP.tgamma, self, prec=ctx.p) return self._round_to_context(result, ctx=ctx, strict=True) def isfinite(self): return not (self.isinf or self.isnan) # isinf and isnan are properties # isnormal is implementation specific - override if necessary def isnormal(self): return not ( self.is_zero() or self.isinf or self.isnan ) def signbit(self): return self.negative
StarcoderdataPython
186048
<reponame>vhn0912/python-snippets<filename>notebook/pypdf2_split.py import PyPDF2 merger = PyPDF2.PdfFileMerger() merger.append('data/src/pdf/sample1.pdf', pages=PyPDF2.pagerange.PageRange(':2')) merger.write('data/temp/sample_split1.pdf') merger.close() merger = PyPDF2.PdfFileMerger() merger.append('data/src/pdf/sample1.pdf', pages=PyPDF2.pagerange.PageRange('2:')) merger.write('data/temp/sample_split2.pdf') merger.close()
StarcoderdataPython
3320312
<reponame>zStartKiller/BotDiscordPython<filename>main.py # Importações import discord import os import asyncio import datetime from discord.ext import commands from config import settings intents=intents=discord.Intents.all() intents.members = True bot = commands.Bot(intents=intents, command_prefix =commands.when_mentioned_or(settings['prefix']), help_command=None) bot.remove_command('help') bot.load_extension('manager') bot.load_extension('joguinhos') bot.load_extension('member_join') global now now = datetime.datetime.now() now = now.strftime("%d/%m/%Y | %H:%M") @bot.event async def on_ready(): try: version = "BETA" print("=============COGS================\n") print(" " + now) print("\n=================================") print(f"Meu nome é: {bot.user}") print(f"Versão: {version}") print("Ligado e sem erros!") print("=================================") while True: prefix = (settings['prefix']) await bot.change_presence(activity=discord.Activity(type=discord.ActivityType.watching, name=f"Estou sendo programado ainda!")) await asyncio.sleep(10) await bot.change_presence(activity=discord.Game(name=f'📢 | /help')) await asyncio.sleep(10) except Exception as erro: print(f"Erro: {erro}") # Pegar Cogs for filename in os.listdir('./cogs'): if filename.endswith('.py'): bot.load_extension(f'cogs.{filename[:-3]}') bot.run(settings['token'])
StarcoderdataPython
1760036
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import math from functools import partial import time __all__ = ['ResNeXt', 'resnet50', 'resnet101'] def conv3x3x3(in_planes, out_planes, stride=1): # 3x3x3 convolution with padding return nn.Conv3d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def downsample_basic_block(x, planes, stride): out = F.avg_pool3d(x, kernel_size=1, stride=stride) zero_pads = torch.Tensor( out.size(0), planes - out.size(1), out.size(2), out.size(3), out.size(4)).zero_() if isinstance(out.data, torch.cuda.FloatTensor): zero_pads = zero_pads.cuda() out = Variable(torch.cat([out.data, zero_pads], dim=1)) return out class ResNeXtBottleneck(nn.Module): expansion = 2 def __init__(self, inplanes, planes, cardinality, stride=1, downsample=None): super(ResNeXtBottleneck, self).__init__() mid_planes = cardinality * int(planes / 32) self.conv1 = nn.Conv3d(inplanes, mid_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm3d(mid_planes) self.conv2 = nn.Conv3d( mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn2 = nn.BatchNorm3d(mid_planes) self.conv3 = nn.Conv3d( mid_planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm3d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNeXt(nn.Module): def __init__(self, block, layers, sample_size, sample_duration, shortcut_type='B', cardinality=16, num_classes=400): self.inplanes = 64 super(ResNeXt, self).__init__() self.conv1 = nn.Conv3d( in_channels=2, out_channels=32, kernel_size=3, stride=(1, 1, 1), padding=1, bias=False) self.bn1 = nn.BatchNorm3d(32) self.bn2 = nn.BatchNorm3d(128) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=1, padding=1) self.conv2 = nn.Conv3d( in_channels=32, out_channels=64, kernel_size=3, stride=(1, 2, 2), padding=1, bias=False) self.conv3 = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=3, stride=(2, 2, 2), padding=1, bias=False) self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type, cardinality) self.layer2 = self._make_layer( block, 64, layers[1], shortcut_type, cardinality, stride=1) self.layer3 = self._make_layer( block, 32, layers[1], shortcut_type, cardinality, stride=2) self.layer4 = self._make_layer( block, 128, layers[1], shortcut_type, cardinality, stride=2) last_duration = int(math.ceil(sample_duration / 16)) last_size = int(math.ceil(sample_size / 32)) self.avgpool = nn.AvgPool3d( (last_duration, last_size, last_size), stride=1) self.conv3d_8 = nn.Conv3d(in_channels=128, out_channels=128, kernel_size=3, stride=(1, 1, 1), padding=1) self.conv3d_9 = nn.Conv3d(in_channels=128, out_channels=16, kernel_size=5, stride=(1, 1, 1), padding=0) self.fc = nn.Linear(cardinality * 32 * block.expansion, num_classes) self.fc_layer1 = nn.Linear(36864, 128) self.fc_layer2 = nn.Linear(128, 6) self.fc1 = nn.Linear(76800, 128) self.fc2 = nn.Linear(128, 32) self.fc3 = nn.Linear(32, 6) for m in self.modules(): if isinstance(m, nn.Conv3d): m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out') elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, shortcut_type, cardinality, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: if shortcut_type == 'A': downsample = partial( downsample_basic_block, planes=planes * block.expansion, stride=stride) else: downsample = nn.Sequential( nn.Conv3d( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm3d(planes * block.expansion)) layers = [] layers.append( block(self.inplanes, planes, cardinality, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, cardinality)) return nn.Sequential(*layers) def forward(self, x): diary = False # diary = True if diary: print('network input {}'.format(x.shape)) x = self.conv1(x) print('conv1 {}'.format(x.shape)) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) print('maxpool {}'.format(x.shape)) x = self.conv2(x) print('conv2 {}'.format(x.shape)) x_0 = self.conv3(x) print('conv3 {}'.format(x_0.shape)) # time.sleep(30) x = self.layer1(x) print('layer1 {}'.format(x.shape)) x = self.layer2(x) print('layer2 {}'.format(x.shape)) x_1 = self.layer3(x) print('layer3 {}'.format(x_1.shape)) x_01 = torch.cat((x_0, x_1), 1) x = self.bn2(x_01) print('10_bn {}'.format(x.shape)) print('x_0 {}, x_1 {}'.format(x_0.shape, x_1.shape)) x = self.conv3d_8(x) x = self.relu(x) print('11_3d {}'.format(x.shape)) x = self.conv3d_9(x) # x = self.relu(x) print('12_3d {}'.format(x.shape)) x = x.view(x.size()[0], -1) x = self.relu(x) print('13_fl {}'.format(x.shape)) x = self.fc1(x) x = self.relu(x) print('15_fc {}'.format(x.shape)) x = self.fc2(x) x = self.relu(x) print('17_fc {}'.format(x.shape)) x = self.fc3(x) print('19_fc {}'.format(x.shape)) time.sleep(30) else: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.conv2(x) x_0 = self.conv3(x) x = self.layer1(x) x = self.layer2(x) x_1 = self.layer3(x) x_01 = torch.cat((x_0, x_1), 1) x = self.bn2(x_01) x = self.conv3d_8(x) x = self.relu(x) x = self.conv3d_9(x) x = x.view(x.size()[0], -1) x = self.relu(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) # x = self.conv1(x) # x = self.bn1(x) # x = self.relu(x) # x = self.maxpool(x) # # x = self.layer1(x) # x = self.layer2(x) # x = self.layer3(x) # x = self.layer4(x) # x = self.avgpool(x) # # x = x.view(x.size(0), -1) # x = self.fc_layer1(x) # x = self.relu(x) # x = self.fc_layer2(x) # print('output size {}'.format(x.shape)) # time.sleep(30) # print('we are in resnext101') return x class PrevostNet(nn.Module): def __init__(self): self.inplanes = 64 super(PrevostNet, self).__init__() self.conv1 = nn.Conv2d(2, 64, kernel_size=5, stride=2, padding=2, bias=False) self.conv2 = nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2, bias=False) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(576, 6) def forward(self, x): show_size = False # show_size = True if show_size: print('input shape {}'.format(x.shape)) x = self.conv1(x) print('conv1 shape {}'.format(x.shape)) x = self.relu(x) print('relu shape {}'.format(x.shape)) x = self.conv2(x) print('conv2 shape {}'.format(x.shape)) x = self.relu(x) print('relu shape {}'.format(x.shape)) x = self.maxpool(x) print('maxpool shape {}'.format(x.shape)) x = self.conv3(x) print('conv3 shape {}'.format(x.shape)) x = self.relu(x) print('relu shape {}'.format(x.shape)) x = self.conv4(x) print('conv4 shape {}'.format(x.shape)) x = self.relu(x) print('relu shape {}'.format(x.shape)) x = self.maxpool(x) print('maxpool shape {}'.format(x.shape)) x = x.view(x.size(0), -1) print('view before fc {}'.format(x.shape)) x = self.fc(x) print('fc {}'.format(x.shape)) time.sleep(30) else: x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.relu(x) x = self.maxpool(x) x = self.conv3(x) x = self.relu(x) x = self.conv4(x) x = self.relu(x) x = self.maxpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x, x class My3DNet(nn.Module): def __init__(self): self.inplanes = 64 super(My3DNet, self).__init__() self.conv1 = nn.Conv3d(in_channels=1, out_channels=64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False) self.bn1 = nn.BatchNorm3d(64) self.layer1 = nn.Sequential( nn.Conv3d(in_channels=64, out_channels=64, kernel_size=3, stride=(1, 1, 1), padding=(0, 1, 1), bias=False), nn.BatchNorm3d(64), nn.ReLU() ) self.conv2 = nn.Conv3d(in_channels=64, out_channels=128, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), bias=False) self.bn2 = nn.BatchNorm3d(128) self.layer2 = nn.Sequential( nn.Conv3d(in_channels=128, out_channels=128, kernel_size=3, stride=(1, 1, 1), padding=(0, 1, 1), bias=False), nn.BatchNorm3d(128), nn.ReLU() ) self.conv3 = nn.Conv3d(in_channels=128, out_channels=64, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), bias=False) self.layer3 = nn.Sequential( nn.Conv3d(in_channels=64, out_channels=64, kernel_size=3, stride=(1, 1, 1), padding=(0, 1, 1), bias=False), nn.BatchNorm3d(64), nn.ReLU() ) self.maxpool1 = nn.MaxPool3d(kernel_size=(2, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)) self.conv4 = nn.Conv3d(in_channels=64, out_channels=32, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), bias=False) self.maxpool2 = nn.MaxPool3d(kernel_size=(1, 7, 7), stride=(1, 1, 1), padding=0) self.relu = nn.ReLU(inplace=True) self.fc = nn.Linear(64, 6) def forward(self, x): show_size = False # show_size = True if show_size: print('input shape {}'.format(x.shape)) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) print('conv1 shape {}'.format(x.shape)) at1 = self.layer1(x) print('at1 shape {}'.format(at1.shape)) x = x * at1 print('x shape {}'.format(x.shape)) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) print('conv2 shape {}'.format(x.shape)) at2 = self.layer2(x) print('at2 shape {}'.format(at2.shape)) x = x * at2 print('x shape {}'.format(x.shape)) x = self.conv3(x) x = self.bn1(x) x = self.relu(x) print('conv3 shape {}'.format(x.shape)) at2 = self.layer3(x) print('at2 shape {}'.format(at2.shape)) x = x * at2 print('x shape {}'.format(x.shape)) x = self.maxpool1(x) print('maxpool1 shape {}'.format(x.shape)) x = self.conv4(x) print('conv4 shape {}'.format(x.shape)) x = self.maxpool2(x) print('maxpool2 shape {}'.format(x.shape)) x = x.view(x.size(0), -1) print('view before fc {}'.format(x.shape)) x = self.fc(x) print('fc {}'.format(x.shape)) time.sleep(30) else: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) at1 = self.layer1(x) x = x * at1 x = self.conv2(x) x = self.bn2(x) x = self.relu(x) at2 = self.layer2(x) x = x * at2 x = self.conv3(x) x = self.bn1(x) x = self.relu(x) at2 = self.layer3(x) x = x * at2 x = self.maxpool1(x) x = self.conv4(x) x = self.maxpool2(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def get_fine_tuning_parameters(model, ft_begin_index): if ft_begin_index == 0: return model.parameters() ft_module_names = [] for i in range(ft_begin_index, 5): ft_module_names.append('layer{}'.format(i)) ft_module_names.append('fc') parameters = [] for k, v in model.named_parameters(): for ft_module in ft_module_names: if ft_module in k: parameters.append({'params': v}) break else: parameters.append({'params': v, 'lr': 0.0}) return parameters def resnet50(**kwargs): """Constructs a ResNet-50 model. """ model = ResNeXt(ResNeXtBottleneck, [3, 4, 6, 3], **kwargs) return model def resnet101(**kwargs): """Constructs a ResNet-101 model. """ model = ResNeXt(ResNeXtBottleneck, [3, 4, 23, 3], **kwargs) return model def resnet152(**kwargs): """Constructs a ResNet-101 model. """ model = ResNeXt(ResNeXtBottleneck, [3, 8, 36, 3], **kwargs) return model class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.bn1 = nn.BatchNorm3d(32) self.bn2 = nn.BatchNorm3d(128) self.relu = nn.ReLU(inplace=True) self.conv3d_1 = nn.Conv3d(in_channels=2, out_channels=32, kernel_size=3, stride=(1, 1, 1), padding=1) self.conv3d_2 = nn.Conv3d(in_channels=32, out_channels=32, kernel_size=3, stride=(1, 2, 2), padding=1) self.conv3d_3 = nn.Conv3d(in_channels=32, out_channels=64, kernel_size=3, stride=(1, 1, 1), padding=1) self.conv3d_4 = nn.Conv3d(in_channels=64, out_channels=64, kernel_size=3, stride=(2, 2, 2), padding=1) self.conv3d_5 = nn.Conv3d(in_channels=64, out_channels=128, kernel_size=3, stride=(1, 1, 1), padding=1) self.conv3d_6 = nn.Conv3d(in_channels=128, out_channels=128, kernel_size=3, stride=(1, 1, 1), padding=1) self.conv3d_7 = nn.Conv3d(in_channels=128, out_channels=64, kernel_size=3, stride=(1, 1, 1), padding=1) self.conv3d_8 = nn.Conv3d(in_channels=128, out_channels=128, kernel_size=3, stride=(1, 1, 1), padding=1) self.conv3d_9 = nn.Conv3d(in_channels=128, out_channels=16, kernel_size=5, stride=(1, 1, 1), padding=0) # self.conv3d_10 = nn.Conv3d(in_channels=16, out_channels=8, kernel_size=3, stride=(1, 1, 1), padding=1) self.drop3d_1 = nn.Dropout3d(0.25) self.drop2d_1 = nn.Dropout2d(0.25) self.drop2d_2 = nn.Dropout2d(0.1) # self.fc1 = nn.Linear(38400, 128) self.fc1 = nn.Linear(76800, 128) self.fc2 = nn.Linear(128, 32) self.fc3 = nn.Linear(32, 6) def forward(self, x): # diary = True diary = False if diary == True: print('give {}'.format(x.shape)) x = self.conv3d_1(x) x = self.relu(x) print('1_3d {}'.format(x.shape)) x = self.conv3d_2(x) x = self.relu(x) print('2_3d {}'.format(x.shape)) x = self.bn1(x) print('3_bn {}'.format(x.shape)) x = self.conv3d_3(x) x = self.relu(x) print('4_3d {}'.format(x.shape)) x = self.conv3d_4(x) x_0 = self.relu(x) print('5_3d {}'.format(x_0.shape)) x = self.conv3d_5(x_0) x = self.relu(x) print('6_3d {}'.format(x.shape)) x = self.conv3d_6(x) x = self.relu(x) print('7_3d {}'.format(x.shape)) x = self.conv3d_7(x) x_1 = self.relu(x) print('8_3d {}'.format(x_1.shape)) x_01 = torch.cat((x_0, x_1), 1) print('9_cn {}'.format(x_01.shape)) x = self.bn2(x_01) print('10_bn {}'.format(x.shape)) x = self.conv3d_8(x) x = self.relu(x) print('11_3d {}'.format(x.shape)) x = self.conv3d_9(x) # x = self.relu(x) print('12_3d {}'.format(x.shape)) x = x.view(x.size()[0], -1) x = self.relu(x) x = self.drop3d_1(x) print('13_fl {}'.format(x.shape)) x = self.fc1(x) x = self.relu(x) # x = self.drop2d_1(x) print('15_fc {}'.format(x.shape)) x = self.fc2(x) x = self.relu(x) # x = self.drop2d_2(x) print('17_fc {}'.format(x.shape)) x = self.fc3(x) print('19_fc {}'.format(x.shape)) time.sleep(30) else: x = self.conv3d_1(x) x = self.relu(x) x = self.conv3d_2(x) x = self.relu(x) x = self.bn1(x) x = self.conv3d_3(x) x = self.relu(x) x = self.conv3d_4(x) x_0 = self.relu(x) x = self.conv3d_5(x_0) x = self.relu(x) x = self.conv3d_6(x) x = self.relu(x) x = self.conv3d_7(x) x_1 = self.relu(x) x_01 = torch.cat((x_0, x_1), 1) x = self.bn2(x_01) x = self.conv3d_8(x) x = self.relu(x) x = self.conv3d_9(x) x = x.view(x.size()[0], -1) x = self.relu(x) x = self.drop3d_1(x) x = self.fc1(x) x = self.relu(x) x = self.drop2d_1(x) x = self.fc2(x) x = self.relu(x) x = self.drop2d_2(x) x = self.fc3(x) # time.sleep(30) return x
StarcoderdataPython
3291757
<reponame>adeutscher/core-tools #!/usr/bin/env python from __future__ import print_function import csv, getopt, json, os, sys format_name = "YAML" # # Common Colours and Message Functions ### def _print_message(header_colour, header_text, message, stderr=False): f=sys.stdout if stderr: f=sys.stderr print("%s[%s]: %s" % (colour_text(header_text, header_colour), colour_text(os.path.basename(sys.argv[0]), COLOUR_GREEN), message), file=f) def colour_text(text, colour = None): if not colour: colour = COLOUR_BOLD # A useful shorthand for applying a colour to a string. return "%s%s%s" % (colour, text, COLOUR_OFF) def enable_colours(force = False): global COLOUR_PURPLE global COLOUR_RED global COLOUR_GREEN global COLOUR_YELLOW global COLOUR_BLUE global COLOUR_BOLD global COLOUR_OFF if force or sys.stdout.isatty(): # Colours for standard output. COLOUR_PURPLE = '\033[1;35m' COLOUR_RED = '\033[1;91m' COLOUR_GREEN = '\033[1;92m' COLOUR_YELLOW = '\033[1;93m' COLOUR_BLUE = '\033[1;94m' COLOUR_BOLD = '\033[1m' COLOUR_OFF = '\033[0m' else: # Set to blank values if not to standard output. COLOUR_PURPLE = '' COLOUR_RED = '' COLOUR_GREEN = '' COLOUR_YELLOW = '' COLOUR_BLUE = '' COLOUR_BOLD = '' COLOUR_OFF = '' enable_colours() error_count = 0 def print_error(message): global error_count error_count += 1 _print_message(COLOUR_RED, "Error", message, True) def print_notice(message): _print_message(COLOUR_BLUE, "Notice", message, True) def print_usage(message): _print_message(COLOUR_PURPLE, "Usage", message, True) def print_warning(message): _print_message(COLOUR_YELLOW, "Warning", message, True) # # Script Functions ### def convert_list_to_csv(l): if isinstance(l, dict): print_warning("Content is a %s object and not a list. Converting as a single-entry CSV." % format_name) l = [l] elif not isinstance(l, list): print_error("Must provide a list of objects.") return a = [] for list_count, item in enumerate(l): if not isinstance(item, dict): print_error("Row %s is not a %s object." % (colour_text("#%d" % list_count), format_name)) continue a.append(flattenjson(item, '__')) if not a: # No rows to print, immediately return. print_error("No valid CSV rows detected.") return columns = [ x for row in a for x in row.keys() ] columns = sorted( list( set( columns ) ) ) csv_w = csv.writer( sys.stdout ) csv_w.writerow( columns ) for output_count, i_r in enumerate(a): try: csv_w.writerow( map( lambda x: i_r.get( x, "" ), columns ) ) except Exception as e: print_error("Problem (item %s): %s" % (colour_text("#%d" % output_count), e)) def flattenjson( b, delim ): val = {} for i in b.keys(): if isinstance( b[i], dict ): get = flattenjson( b[i], delim ) for j in get.keys(): val[ i + delim + j ] = get[j] else: val[i] = b[i] return val def get_content(file_handle, title): try: return yaml.load(file_handle.read()) except yaml.error.MarkedYAMLError as e: # Conveniently, Python's pyyaml module gives a more informative error printout than the JSON module. if title == "standard input": print_error("Content of standard input is not in readable %s format: %s (line %d, column %d)" % (format_name, e.problem, e.problem_mark.line + 1, e.problem_mark.column + 1)) else: print_error("Content of input (%s) is not in readable %s format: %s (line %d, column %d)" % (colour_text(title, COLOUR_GREEN), format_name, e.problem, e.problem_mark.line + 1, e.problem_mark.column + 1)) return None def main(): file_handle = False if len(sys.argv) >= 2: source_file = sys.argv[1] if source_file == "-": file_handle = sys.stdin print_notice("Reading %s content from standard input." % format_name) elif not os.path.isfile(source_file): print_error("%s file does not exist: %s" % (format_name, colour_text(source_file, COLOUR_GREEN))) elif not os.access(source_file, os.R_OK): print_error("%s file could not be read: %s" % (format_name, colour_text(source_file, COLOUR_GREEN))) else: print_error("No %s file path provided." % format_name) # Quit if there was an argument error. global error_count if error_count: hexit(1) # Get our content content = None try: if file_handle: # File handle was already set (stdin) content = get_content(file_handle, "standard input") else: with open(source_file) as file_handle: content = get_content(file_handle, source_file) except Exception: # Unexpected problem print_error("Problem with getting %s data." % format_name) # Quit if there was a loading error. if error_count or not content: exit(1) convert_list_to_csv(content) # Quit with non-zero if there was a problem with list conversion if error_count: exit(1) def hexit(code = 0): print_usage("%s %s-file" % (colour_text("./%s" % os.path.basename(sys.argv[0]), COLOUR_GREEN), format_name.lower())) exit(code) try: import yaml except ImportError: print_error("YAML module for Python is not installed.") if __name__ == "__main__": main()
StarcoderdataPython
1736118
<reponame>minhongqi/federated # Copyright 2018, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Federated EMNIST dataset utilities.""" import collections import numpy as np import tensorflow as tf import tensorflow_federated as tff from gans.experiments.emnist import emnist_data_utils BATCH_SIZE = 7 def _summarize_model(model): model.summary() print('\n\n\n') def _get_example_client_dataset(): client_data = tff.simulation.datasets.emnist.get_synthetic() return client_data.create_tf_dataset_for_client(client_data.client_ids[0]) def _get_example_client_dataset_containing_lowercase(): example_ds = _get_example_client_dataset() example_image = next(iter(example_ds))['pixels'].numpy() num_labels = 62 image_list = [example_image for _ in range(num_labels)] label_list = list(range(num_labels)) synthetic_data = collections.OrderedDict([ ('label', label_list), ('pixels', image_list), ]) return tf.data.Dataset.from_tensor_slices(synthetic_data) def _compute_dataset_length(dataset): return dataset.reduce(0, lambda x, _: x + 1) class EmnistTest(tf.test.TestCase): def test_preprocessed_img_inversion(self): raw_images_ds = _get_example_client_dataset() # Inversion turned off, average pixel is dark. standard_images_ds = emnist_data_utils.preprocess_img_dataset( raw_images_ds, invert_imagery=False, batch_size=BATCH_SIZE) for batch in iter(standard_images_ds): for image in batch: self.assertLessEqual(np.average(image), -0.7) # Inversion turned on, average pixel is light. inverted_images_ds = emnist_data_utils.preprocess_img_dataset( raw_images_ds, invert_imagery=True, batch_size=BATCH_SIZE) for batch in iter(inverted_images_ds): for image in batch: self.assertGreaterEqual(np.average(image), 0.7) def test_preprocessed_img_labels_are_case_agnostic(self): total_num_labels = 62 raw_dataset = _get_example_client_dataset_containing_lowercase() raw_dataset_iterator = iter(raw_dataset) num_raw_images = _compute_dataset_length(raw_dataset) self.assertEqual(num_raw_images, total_num_labels) processed_dataset = emnist_data_utils.preprocess_img_dataset( raw_dataset, include_label=True, batch_size=None, shuffle=False) processed_dataset_iterator = iter(processed_dataset) num_processed_images = _compute_dataset_length(processed_dataset) self.assertEqual(num_processed_images, total_num_labels) for _ in range(total_num_labels): raw_label = next(raw_dataset_iterator)['label'] if raw_label > 35: raw_label = raw_label - 26 # Convert from lowercase to capital processed_label = next(processed_dataset_iterator)[1] self.assertEqual(raw_label, processed_label) if __name__ == '__main__': tf.test.main()
StarcoderdataPython
40444
# This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os LSBLK_OUTPUT = b""" /dev/sda /dev/sda1 32caaec3-ef40-4691-a3b6-438c3f9bc1c0 /dev/sda2 66Ojcd-ULtu-1cZa-Tywo-mx0d-RF4O-ysA9jK /dev/mapper/fedora_dhcp129--186-swap eae6059d-2fbe-4d1c-920d-a80bbeb1ac6d /dev/mapper/fedora_dhcp129--186-root d34cf5e3-3449-4a6c-8179-a1feb2bca6ce /dev/mapper/fedora_dhcp129--186-home 2d3e4853-fa69-4ccf-8a6a-77b05ab0a42d /dev/sr0 /dev/loop0 0f031512-ab15-497d-9abd-3a512b4a9390 /dev/loop1 7c1b0f30-cf34-459f-9a70-2612f82b870a /dev/loop9 0f031512-ab15-497d-9abd-3a512b4a9390 /dev/loop9 7c1b4444-cf34-459f-9a70-2612f82b870a /dev/mapper/docker-253:1-1050967-pool /dev/loop2 /dev/mapper/docker-253:1-1050967-pool """ LSBLK_OUTPUT_2 = b""" /dev/sda /dev/sda1 32caaec3-ef40-4691-a3b6-438c3f9bc1c0 /dev/sda2 66Ojcd-ULtu-1cZa-Tywo-mx0d-RF4O-ysA9jK /dev/mapper/fedora_dhcp129--186-swap eae6059d-2fbe-4d1c-920d-a80bbeb1ac6d /dev/mapper/fedora_dhcp129--186-root d34cf5e3-3449-4a6c-8179-a1feb2bca6ce /dev/mapper/fedora_dhcp129--186-home 2d3e4853-fa69-4ccf-8a6a-77b05ab0a42d /dev/mapper/an-example-mapper with a space in the name 84639acb-013f-4d2f-9392-526a572b4373 /dev/sr0 /dev/loop0 0f031512-ab15-497d-9abd-3a512b4a9390 """ LSBLK_UUIDS = {'/dev/sda1': '66Ojcd-ULtu-1cZa-Tywo-mx0d-RF4O-ysA9jK'} UDEVADM_UUID = 'N/A' UDEVADM_OUTPUT = """ UDEV_LOG=3 DEVPATH=/devices/pci0000:00/0000:00:07.0/virtio2/block/vda/vda1 MAJOR=252 MINOR=1 DEVNAME=/dev/vda1 DEVTYPE=partition SUBSYSTEM=block MPATH_SBIN_PATH=/sbin ID_PATH=pci-0000:00:07.0-virtio-pci-virtio2 ID_PART_TABLE_TYPE=dos ID_FS_UUID=57b1a3e7-9019-4747-9809-7ec52bba9179 ID_FS_UUID_ENC=57b1a3e7-9019-4747-9809-7ec52bba9179 ID_FS_VERSION=1.0 ID_FS_TYPE=ext4 ID_FS_USAGE=filesystem LVM_SBIN_PATH=/sbin DEVLINKS=/dev/block/252:1 /dev/disk/by-path/pci-0000:00:07.0-virtio-pci-virtio2-part1 /dev/disk/by-uuid/57b1a3e7-9019-4747-9809-7ec52bba9179 """ MTAB = """ sysfs /sys sysfs rw,seclabel,nosuid,nodev,noexec,relatime 0 0 proc /proc proc rw,nosuid,nodev,noexec,relatime 0 0 devtmpfs /dev devtmpfs rw,seclabel,nosuid,size=8044400k,nr_inodes=2011100,mode=755 0 0 securityfs /sys/kernel/security securityfs rw,nosuid,nodev,noexec,relatime 0 0 tmpfs /dev/shm tmpfs rw,seclabel,nosuid,nodev 0 0 devpts /dev/pts devpts rw,seclabel,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000 0 0 tmpfs /run tmpfs rw,seclabel,nosuid,nodev,mode=755 0 0 tmpfs /sys/fs/cgroup tmpfs ro,seclabel,nosuid,nodev,noexec,mode=755 0 0 cgroup /sys/fs/cgroup/systemd cgroup rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-agent,name=systemd 0 0 pstore /sys/fs/pstore pstore rw,seclabel,nosuid,nodev,noexec,relatime 0 0 cgroup /sys/fs/cgroup/devices cgroup rw,nosuid,nodev,noexec,relatime,devices 0 0 cgroup /sys/fs/cgroup/freezer cgroup rw,nosuid,nodev,noexec,relatime,freezer 0 0 cgroup /sys/fs/cgroup/memory cgroup rw,nosuid,nodev,noexec,relatime,memory 0 0 cgroup /sys/fs/cgroup/pids cgroup rw,nosuid,nodev,noexec,relatime,pids 0 0 cgroup /sys/fs/cgroup/blkio cgroup rw,nosuid,nodev,noexec,relatime,blkio 0 0 cgroup /sys/fs/cgroup/cpuset cgroup rw,nosuid,nodev,noexec,relatime,cpuset 0 0 cgroup /sys/fs/cgroup/cpu,cpuacct cgroup rw,nosuid,nodev,noexec,relatime,cpu,cpuacct 0 0 cgroup /sys/fs/cgroup/hugetlb cgroup rw,nosuid,nodev,noexec,relatime,hugetlb 0 0 cgroup /sys/fs/cgroup/perf_event cgroup rw,nosuid,nodev,noexec,relatime,perf_event 0 0 cgroup /sys/fs/cgroup/net_cls,net_prio cgroup rw,nosuid,nodev,noexec,relatime,net_cls,net_prio 0 0 configfs /sys/kernel/config configfs rw,relatime 0 0 /dev/mapper/fedora_dhcp129--186-root / ext4 rw,seclabel,relatime,data=ordered 0 0 selinuxfs /sys/fs/selinux selinuxfs rw,relatime 0 0 systemd-1 /proc/sys/fs/binfmt_misc autofs rw,relatime,fd=24,pgrp=1,timeout=0,minproto=5,maxproto=5,direct 0 0 debugfs /sys/kernel/debug debugfs rw,seclabel,relatime 0 0 hugetlbfs /dev/hugepages hugetlbfs rw,seclabel,relatime 0 0 tmpfs /tmp tmpfs rw,seclabel 0 0 mqueue /dev/mqueue mqueue rw,seclabel,relatime 0 0 /dev/loop0 /var/lib/machines btrfs rw,seclabel,relatime,space_cache,subvolid=5,subvol=/ 0 0 /dev/sda1 /boot ext4 rw,seclabel,relatime,data=ordered 0 0 /dev/mapper/fedora_dhcp129--186-home /home ext4 rw,seclabel,relatime,data=ordered 0 0 tmpfs /run/user/1000 tmpfs rw,seclabel,nosuid,nodev,relatime,size=1611044k,mode=700,uid=1000,gid=1000 0 0 gvfsd-fuse /run/user/1000/gvfs fuse.gvfsd-fuse rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0 fusectl /sys/fs/fuse/connections fusectl rw,relatime 0 0 grimlock.g.a: /home/adrian/sshfs-grimlock fuse.sshfs rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0 grimlock.g.a:test_path/path_with'single_quotes /home/adrian/sshfs-grimlock-single-quote fuse.sshfs rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0 grimlock.g.a:path_with'single_quotes /home/adrian/sshfs-grimlock-single-quote-2 fuse.sshfs rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0 grimlock.g.a:/mnt/data/foto's /home/adrian/fotos fuse.sshfs rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0 """ MTAB_ENTRIES = [ [ 'sysfs', '/sys', 'sysfs', 'rw,seclabel,nosuid,nodev,noexec,relatime', '0', '0' ], ['proc', '/proc', 'proc', 'rw,nosuid,nodev,noexec,relatime', '0', '0'], [ 'devtmpfs', '/dev', 'devtmpfs', 'rw,seclabel,nosuid,size=8044400k,nr_inodes=2011100,mode=755', '0', '0' ], [ 'securityfs', '/sys/kernel/security', 'securityfs', 'rw,nosuid,nodev,noexec,relatime', '0', '0' ], ['tmpfs', '/dev/shm', 'tmpfs', 'rw,seclabel,nosuid,nodev', '0', '0'], [ 'devpts', '/dev/pts', 'devpts', 'rw,seclabel,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000', '0', '0' ], ['tmpfs', '/run', 'tmpfs', 'rw,seclabel,nosuid,nodev,mode=755', '0', '0'], [ 'tmpfs', '/sys/fs/cgroup', 'tmpfs', 'ro,seclabel,nosuid,nodev,noexec,mode=755', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/systemd', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-agent,name=systemd', '0', '0' ], [ 'pstore', '/sys/fs/pstore', 'pstore', 'rw,seclabel,nosuid,nodev,noexec,relatime', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/devices', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,devices', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/freezer', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,freezer', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/memory', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,memory', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/pids', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,pids', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/blkio', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,blkio', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/cpuset', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,cpuset', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/cpu,cpuacct', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,cpu,cpuacct', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/hugetlb', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,hugetlb', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/perf_event', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,perf_event', '0', '0' ], [ 'cgroup', '/sys/fs/cgroup/net_cls,net_prio', 'cgroup', 'rw,nosuid,nodev,noexec,relatime,net_cls,net_prio', '0', '0' ], ['configfs', '/sys/kernel/config', 'configfs', 'rw,relatime', '0', '0'], [ '/dev/mapper/fedora_dhcp129--186-root', '/', 'ext4', 'rw,seclabel,relatime,data=ordered', '0', '0' ], ['selinuxfs', '/sys/fs/selinux', 'selinuxfs', 'rw,relatime', '0', '0'], [ 'systemd-1', '/proc/sys/fs/binfmt_misc', 'autofs', 'rw,relatime,fd=24,pgrp=1,timeout=0,minproto=5,maxproto=5,direct', '0', '0' ], ['debugfs', '/sys/kernel/debug', 'debugfs', 'rw,seclabel,relatime', '0', '0'], [ 'hugetlbfs', '/dev/hugepages', 'hugetlbfs', 'rw,seclabel,relatime', '0', '0' ], ['tmpfs', '/tmp', 'tmpfs', 'rw,seclabel', '0', '0'], ['mqueue', '/dev/mqueue', 'mqueue', 'rw,seclabel,relatime', '0', '0'], [ '/dev/loop0', '/var/lib/machines', 'btrfs', 'rw,seclabel,relatime,space_cache,subvolid=5,subvol=/', '0', '0' ], ['/dev/sda1', '/boot', 'ext4', 'rw,seclabel,relatime,data=ordered', '0', '0'], # A 'none' fstype ['/dev/sdz3', '/not/a/real/device', 'none', 'rw,seclabel,relatime,data=ordered', '0', '0'], # lets assume this is a bindmount ['/dev/sdz4', '/not/a/real/bind_mount', 'ext4', 'rw,seclabel,relatime,data=ordered', '0', '0'], [ '/dev/mapper/fedora_dhcp129--186-home', '/home', 'ext4', 'rw,seclabel,relatime,data=ordered', '0', '0' ], [ 'tmpfs', '/run/user/1000', 'tmpfs', 'rw,seclabel,nosuid,nodev,relatime,size=1611044k,mode=700,uid=1000,gid=1000', '0', '0' ], [ 'gvfsd-fuse', '/run/user/1000/gvfs', 'fuse.gvfsd-fuse', 'rw,nosuid,nodev,relatime,user_id=1000,group_id=1000', '0', '0' ], ['fusectl', '/sys/fs/fuse/connections', 'fusectl', 'rw,relatime', '0', '0']] STATVFS_INFO = {'/': {'block_available': 10192323, 'block_size': 4096, 'block_total': 12868728, 'block_used': 2676405, 'inode_available': 3061699, 'inode_total': 3276800, 'inode_used': 215101, 'size_available': 41747755008, 'size_total': 52710309888}, '/not/a/real/bind_mount': {}, '/home': {'block_available': 1001578731, 'block_size': 4096, 'block_total': 105871006, 'block_used': 5713133, 'inode_available': 26860880, 'inode_total': 26902528, 'inode_used': 41648, 'size_available': 410246647808, 'size_total': 433647640576}, '/var/lib/machines': {'block_available': 10192316, 'block_size': 4096, 'block_total': 12868728, 'block_used': 2676412, 'inode_available': 3061699, 'inode_total': 3276800, 'inode_used': 215101, 'size_available': 41747726336, 'size_total': 52710309888}, '/boot': {'block_available': 187585, 'block_size': 4096, 'block_total': 249830, 'block_used': 62245, 'inode_available': 65096, 'inode_total': 65536, 'inode_used': 440, 'size_available': 768348160, 'size_total': 1023303680} } # ['/dev/sdz4', '/not/a/real/bind_mount', 'ext4', 'rw,seclabel,relatime,data=ordered', '0', '0'], BIND_MOUNTS = ['/not/a/real/bind_mount'] CPU_INFO_TEST_SCENARIOS = [ { 'architecture': 'armv61', 'nproc_out': 1, 'sched_getaffinity': set([0]), 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/armv6-rev7-1cpu-cpuinfo')).readlines(), 'expected_result': { 'processor': ['0', 'ARMv6-compatible processor rev 7 (v6l)'], 'processor_cores': 1, 'processor_count': 1, 'processor_nproc': 1, 'processor_threads_per_core': 1, 'processor_vcpus': 1}, }, { 'architecture': 'armv71', 'nproc_out': 4, 'sched_getaffinity': set([0, 1, 2, 3]), 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/armv7-rev4-4cpu-cpuinfo')).readlines(), 'expected_result': { 'processor': [ '0', 'ARMv7 Processor rev 4 (v7l)', '1', 'ARMv7 Processor rev 4 (v7l)', '2', 'ARMv7 Processor rev 4 (v7l)', '3', 'ARMv7 Processor rev 4 (v7l)', ], 'processor_cores': 1, 'processor_count': 4, 'processor_nproc': 4, 'processor_threads_per_core': 1, 'processor_vcpus': 4}, }, { 'architecture': 'aarch64', 'nproc_out': 4, 'sched_getaffinity': set([0, 1, 2, 3]), 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/aarch64-4cpu-cpuinfo')).readlines(), 'expected_result': { 'processor': [ '0', 'AArch64 Processor rev 4 (aarch64)', '1', 'AArch64 Processor rev 4 (aarch64)', '2', 'AArch64 Processor rev 4 (aarch64)', '3', 'AArch64 Processor rev 4 (aarch64)', ], 'processor_cores': 1, 'processor_count': 4, 'processor_nproc': 4, 'processor_threads_per_core': 1, 'processor_vcpus': 4}, }, { 'architecture': 'x86_64', 'nproc_out': 4, 'sched_getaffinity': set([0, 1, 2, 3]), 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/x86_64-4cpu-cpuinfo')).readlines(), 'expected_result': { 'processor': [ '0', 'AuthenticAMD', 'Dual-Core AMD Opteron(tm) Processor 2216', '1', 'AuthenticAMD', 'Dual-Core AMD Opteron(tm) Processor 2216', '2', 'AuthenticAMD', 'Dual-Core AMD Opteron(tm) Processor 2216', '3', 'AuthenticAMD', 'Dual-Core AMD Opteron(tm) Processor 2216', ], 'processor_cores': 2, 'processor_count': 2, 'processor_nproc': 4, 'processor_threads_per_core': 1, 'processor_vcpus': 4}, }, { 'architecture': 'x86_64', 'nproc_out': 4, 'sched_getaffinity': set([0, 1, 2, 3]), 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/x86_64-8cpu-cpuinfo')).readlines(), 'expected_result': { 'processor': [ '0', 'GenuineIntel', 'Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz', '1', 'GenuineIntel', 'Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz', '2', 'GenuineIntel', 'Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz', '3', 'GenuineIntel', 'Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz', '4', 'GenuineIntel', 'Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz', '5', 'GenuineIntel', 'Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz', '6', 'GenuineIntel', 'Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz', '7', 'GenuineIntel', 'Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz', ], 'processor_cores': 4, 'processor_count': 1, 'processor_nproc': 4, 'processor_threads_per_core': 2, 'processor_vcpus': 8}, }, { 'architecture': 'arm64', 'nproc_out': 4, 'sched_getaffinity': set([0, 1, 2, 3]), 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/arm64-4cpu-cpuinfo')).readlines(), 'expected_result': { 'processor': ['0', '1', '2', '3'], 'processor_cores': 1, 'processor_count': 4, 'processor_nproc': 4, 'processor_threads_per_core': 1, 'processor_vcpus': 4}, }, { 'architecture': 'armv71', 'nproc_out': 8, 'sched_getaffinity': set([0, 1, 2, 3, 4, 5, 6, 7]), 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/armv7-rev3-8cpu-cpuinfo')).readlines(), 'expected_result': { 'processor': [ '0', 'ARMv7 Processor rev 3 (v7l)', '1', 'ARMv7 Processor rev 3 (v7l)', '2', 'ARMv7 Processor rev 3 (v7l)', '3', 'ARMv7 Processor rev 3 (v7l)', '4', 'ARMv7 Processor rev 3 (v7l)', '5', 'ARMv7 Processor rev 3 (v7l)', '6', 'ARMv7 Processor rev 3 (v7l)', '7', 'ARMv7 Processor rev 3 (v7l)', ], 'processor_cores': 1, 'processor_count': 8, 'processor_nproc': 8, 'processor_threads_per_core': 1, 'processor_vcpus': 8}, }, { 'architecture': 'x86_64', 'nproc_out': 2, 'sched_getaffinity': set([0, 1]), 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/x86_64-2cpu-cpuinfo')).readlines(), 'expected_result': { 'processor': [ '0', 'GenuineIntel', 'Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz', '1', 'GenuineIntel', 'Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz', ], 'processor_cores': 1, 'processor_count': 2, 'processor_nproc': 2, 'processor_threads_per_core': 1, 'processor_vcpus': 2}, }, { 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/ppc64-power7-rhel7-8cpu-cpuinfo')).readlines(), 'architecture': 'ppc64', 'nproc_out': 8, 'sched_getaffinity': set([0, 1, 2, 3, 4, 5, 6, 7]), 'expected_result': { 'processor': [ '0', 'POWER7 (architected), altivec supported', '1', 'POWER7 (architected), altivec supported', '2', 'POWER7 (architected), altivec supported', '3', 'POWER7 (architected), altivec supported', '4', 'POWER7 (architected), altivec supported', '5', 'POWER7 (architected), altivec supported', '6', 'POWER7 (architected), altivec supported', '7', 'POWER7 (architected), altivec supported' ], 'processor_cores': 1, 'processor_count': 8, 'processor_nproc': 8, 'processor_threads_per_core': 1, 'processor_vcpus': 8 }, }, { 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/ppc64le-power8-24cpu-cpuinfo')).readlines(), 'architecture': 'ppc64le', 'nproc_out': 24, 'sched_getaffinity': set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]), 'expected_result': { 'processor': [ '0', 'POWER8 (architected), altivec supported', '1', 'POWER8 (architected), altivec supported', '2', 'POWER8 (architected), altivec supported', '3', 'POWER8 (architected), altivec supported', '4', 'POWER8 (architected), altivec supported', '5', 'POWER8 (architected), altivec supported', '6', 'POWER8 (architected), altivec supported', '7', 'POWER8 (architected), altivec supported', '8', 'POWER8 (architected), altivec supported', '9', 'POWER8 (architected), altivec supported', '10', 'POWER8 (architected), altivec supported', '11', 'POWER8 (architected), altivec supported', '12', 'POWER8 (architected), altivec supported', '13', 'POWER8 (architected), altivec supported', '14', 'POWER8 (architected), altivec supported', '15', 'POWER8 (architected), altivec supported', '16', 'POWER8 (architected), altivec supported', '17', 'POWER8 (architected), altivec supported', '18', 'POWER8 (architected), altivec supported', '19', 'POWER8 (architected), altivec supported', '20', 'POWER8 (architected), altivec supported', '21', 'POWER8 (architected), altivec supported', '22', 'POWER8 (architected), altivec supported', '23', 'POWER8 (architected), altivec supported', ], 'processor_cores': 1, 'processor_count': 24, 'processor_nproc': 24, 'processor_threads_per_core': 1, 'processor_vcpus': 24 }, }, { 'cpuinfo': open(os.path.join(os.path.dirname(__file__), '../fixtures/cpuinfo/sparc-t5-debian-ldom-24vcpu')).readlines(), 'architecture': 'sparc64', 'nproc_out': 24, 'sched_getaffinity': set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]), 'expected_result': { 'processor': [ 'UltraSparc T5 (Niagara5)', ], 'processor_cores': 1, 'processor_count': 24, 'processor_nproc': 24, 'processor_threads_per_core': 1, 'processor_vcpus': 24 }, }, ]
StarcoderdataPython
3223084
<gh_stars>1-10 import re import enchant from wb_nlp import dir_manager en_dict = enchant.Dict("en_US") VALID_TOKEN_PAT = re.compile('^[a-z]+$') with open(dir_manager.get_data_dir("whitelists", "whitelists", "wordfreq-enwiki-latest-pages-articles.xml.bz2.txt")) as fl: with open(dir_manager.get_data_dir("whitelists", "whitelists", "wordfreq-enwiki-latest-pages-articles.xml.bz2.pwl.txt"), "w") as wfl: with open(dir_manager.get_data_dir("whitelists", "whitelists", "wordfreq-enwiki-latest-pages-articles.xml.bz2.non_en.txt"), "w") as nfl: for l in fl: w, c = l.strip().split() if VALID_TOKEN_PAT.match(w): wfl.write(w.strip() + "\n") if not en_dict.check(w): nfl.write(w.strip() + "\n")
StarcoderdataPython
4817939
# -*- coding: utf-8 -*- """ Created on Mon Apr 03 11:30:20 2017 @author: <NAME> Index forward/backward neighbors and admissibility for monotone sets. """ import numpy as np def admissible_neighbors(index, index_set): """Given an index and a monotone index set, find admissible neighboring indices""" for_neighbors = forward_neighbors(index) # find admissible neighbors for_truefalse = [is_admissible(fn, index_set) for fn in for_neighbors] adm_neighbors = np.array(for_neighbors)[for_truefalse].tolist() return adm_neighbors def is_admissible(index, index_set): """Given an index and a monotone index set, check index admissibility""" back_neighbors = backward_neighbors(index) for ind_b in back_neighbors: if ind_b not in index_set: return False return True def forward_neighbors(index): """Given a multiindex, return its forward neighbors as a list of multiindices, e.g. (2,1) --> (3,1), (2,2)""" N = len(index) for_neighbors = [] for i in xrange(N): index_tmp = index[:] index_tmp[i] = index_tmp[i] + 1 for_neighbors.append(index_tmp) return for_neighbors def backward_neighbors(index): """Given a multiindex, return its backward neighbors as a list of multiindices, e.g. (2,2) --> (1,2), (2,1)""" N = len(index) back_neighbors = [] for i in xrange(N): index_tmp = index[:] if index_tmp[i] > 0: index_tmp[i] = index_tmp[i] - 1 back_neighbors.append(index_tmp) return back_neighbors
StarcoderdataPython
3382441
<reponame>InterstellarLabs/dca<filename>dca/templates/view.py """ DCA view template. It's used to generate views for a model. """ # App imports. from dca.utils import default
StarcoderdataPython
102516
""" TODO: doc for init """ __version__ = '1.0.0' __author__ = '<NAME>' __email__ = '<EMAIL>' __license__ = 'MIT' __copyright__ = 'Copyright 2015 <NAME>' from .timeline import Timeline from .schemas import DocumentError
StarcoderdataPython
1650991
from enum import Enum, unique from .color import Color @unique class BrightColor(Enum): """Options for bright colors.""" GREEN = "\033[92m" YELLOW = "\033[93m" RED = "\033[91m" MAGENTA = "\033[95m" BLUE = "\033[94m" CYAN = "\033[96m" WHITE = "\033[97m" BLACK = "\033[90m" DEFAULT = Color.DEFAULT OFF = Color.OFF def __str__(self) -> str: return str(self.value)
StarcoderdataPython
36630
""" Compartmentalize: [ ascii art input ] --------------- | maybe some | | sort of auxillary | | drawing program | | | \ / v [ lex/parser ] --> [ translater ] --------- ---------- | grammar | | notes literals| | to numerical | | patterns with | | timestamps | | and midi meta | | data | | ,------------------------' | `--> [ sequencer ] ----------- | do the | | sequencing | | duh | | | \ / v [ midi sender ] ---------- | communicate to | | midi external | """
StarcoderdataPython
1751340
import enum import construct from construct import Struct, Int32ub, Switch, Float32b, Byte, PrefixedArray, Int64ub from retro_data_structures.adapters.enum_adapter import EnumAdapter from retro_data_structures.common_types import String, AssetId64, AssetId32 class MetaAnimationType(enum.IntEnum): Play = 0 Blend = 1 PhaseBlend = 2 Random = 3 Sequence = 4 CharAnimTime = Struct( time=Float32b, differential_state=Int32ub, # TODO: use enum ) def create(asset_id): meta_bodies = {} meta = Struct( type=EnumAdapter(MetaAnimationType), body=Switch(construct.this.type, meta_bodies), ) meta_bodies[MetaAnimationType.Play] = Struct( asset_id=asset_id, primitive_id=Int32ub, name=String, unknown=CharAnimTime, ) meta_bodies[MetaAnimationType.Blend] = meta_bodies[MetaAnimationType.PhaseBlend] = Struct( anim_a=meta, anim_b=meta, unknown_1=Float32b, unknown_2=Byte, ) meta_bodies[MetaAnimationType.Random] = PrefixedArray( Int32ub, Struct( animation=meta, probability=Int32ub, ), ) meta_bodies[MetaAnimationType.Sequence] = PrefixedArray(Int32ub, meta) return meta MetaAnimation_AssetId32 = create(AssetId32) MetaAnimation_AssetId64 = create(AssetId64) by_asset_type = { Int32ub: MetaAnimation_AssetId32, Int64ub: MetaAnimation_AssetId64, } def dependencies_for(obj, target_game): if obj.type == MetaAnimationType.Play: yield "ANIM", obj.body.asset_id elif obj.type in (MetaAnimationType.Blend, MetaAnimationType.PhaseBlend): yield from dependencies_for(obj.body.anim_a, target_game) yield from dependencies_for(obj.body.anim_b, target_game) elif obj.type == MetaAnimationType.Random: for anim in obj.body: yield from dependencies_for(anim.animation, target_game) elif obj.type == MetaAnimationType.Sequence: for item in obj.body: yield from dependencies_for(item, target_game)
StarcoderdataPython
1667500
"""Data module.""" import math import os from typing import Collection, Dict, Iterable, List import numpy as np import pandas as pd import torch from gsea_api.molecular_signatures_db import ( GeneSet, GeneSets, MolecularSignaturesDatabase, ) from spexlvm import config # logging stuff logger = config.logger class Pathways(GeneSets): """A collection of pathways/gene sets, wraps GeneSets.""" def __init__(self, gene_sets: Collection[GeneSet], **kwargs): """Initialise Pathways. Parameters ---------- gene_sets : Collection[GeneSet] """ super().__init__(gene_sets=gene_sets, **kwargs) def info(self, verbose: int = 0): """Get an overview of this pathway collection. Parameters ---------- verbose : int, optional Level of verbosity, by default 0 Returns ------- str Raises ------ ValueError Raised on negative verbosity level """ if verbose < 0: raise ValueError("Invalid verbosity level of %s, please use 0, 1 or 2." % verbose) info = str(self) + "\n" if verbose == 1: info += "Following gene sets are stored:\n" info += "\n".join([gs.name for gs in self.gene_sets]) elif verbose == 2: info += "Following gene sets (with genes) are stored:\n" # double list comprehension is not readable for gene_sets in self.gene_sets: info += gene_sets.name + ": " + ", ".join([gene for gene in gene_sets.genes]) + "\n" return info def find(self, partial_gene_set_names: Iterable[str]): """Perform a simple search given a list of (partial) gene set names. Parameters ---------- partial_gene_set_names : Iterable[str] Collection of gene set names Returns ------- dict Search results as a dictionary of {partial_gene_set_names[0]: [GeneSet], ...} """ search_results = {partial_gsn: [] for partial_gsn in partial_gene_set_names} for partial_gsn in partial_gene_set_names: search_results[partial_gsn] = [ full_gs for full_gs in self.gene_sets if partial_gsn in full_gs.name ] return search_results def remove(self, gene_set_names: Iterable[str]): """Remove specific pathways. Parameters ---------- gene_sets : Iterable[str] List of names (str) of unwanted pathways Returns ------- Pathways """ return Pathways( { GeneSet(name=gene_set.name, genes=gene_set.genes) for gene_set in self.gene_sets if gene_set.name not in gene_set_names } ) def subset( self, genes: Iterable[str], fraction_available: float = 0.5, min_gene_count: int = 0, max_gene_count: int = 0, keep: Iterable[str] = None, ): """Extract a subset of pathways available in a collection of genes. Parameters ---------- genes : Iterable[str] List of genes fraction_available : float, optional What fraction of the pathway genes should be available in the genes collection to insert the pathway into the subset, by default 0.5 (half of genes of a pathway must be present) min_gene_count : int, optional Minimal number of pathway genes available in the data for the pathway to be considered in the subset max_gene_count : int, optional Maximal number of pathway genes available in the data for the pathway to be considered in the subset keep : Iterable[str] List of pathways to keep regardless of filters Returns ------- Pathways """ if keep is None: keep = [] if not isinstance(genes, set): genes = set(genes) pathways_subset = set() for gene_set in self.gene_sets: gene_intersection = gene_set.genes & genes # intersection available_genes = len(gene_intersection) gene_fraction = available_genes / len(gene_set.genes) if gene_set.name in keep: logger.info( "Keeping a %s out of %s genes (%.2f) from the special gene set '%s'.", available_genes, len(gene_set.genes), gene_fraction, gene_set.name, ) if gene_set.name in keep or ( gene_fraction >= fraction_available and available_genes >= min_gene_count ): if max_gene_count == 0 or available_genes <= max_gene_count: pathways_subset.add( GeneSet( name=gene_set.name, genes=gene_intersection, warn_if_empty=False, ) ) return Pathways(pathways_subset) def to_mask(self, genes: Iterable[str], sort: bool = False): """Generate a binary matrix of pathways x genes. Parameters ---------- genes : Iterable[str] List of genes sort : bool, optional Whether to sort alphabetically, by default False Returns ------- torch.Tensor """ gene_sets_list = list(self.gene_sets) if sort: gene_sets_list = sorted(gene_sets_list, key=lambda gs: gs.name) # probably faster than calling list.index() for every gene in the pathways gene_to_idx = {k: v for k, v in zip(genes, range(len(genes)))} mask = torch.zeros(len(gene_sets_list), len(genes)) for i, gene_sets in enumerate(gene_sets_list): for gene in gene_sets.genes: mask[i, gene_to_idx[gene]] = 1.0 return mask, gene_sets_list def load_pathways(keep=None): """Load pathways from the existing msigdb. Parameters ---------- keep : list, optional List of gene set collections, by default None Returns ------- Pathways """ if keep is None: keep = ["hallmark", "reactome"] # load msigdb files located at ./msigdb (.gmt extension) msigdb = MolecularSignaturesDatabase(os.path.join("..", "msigdb"), version=7.4) print(msigdb) # relevant gene sets dictionary gene_sets = { "hallmark": "h.all", "kegg": "c2.cp.kegg", "reactome": "c2.cp.reactome", } # gene_sets = {"hallmark": "h.all"} # load relevant pathways pathway_dict = {k: msigdb.load(v, "symbols") for k, v in gene_sets.items() if k in keep} # concatenate pathways pathways = Pathways(sum([pathway_dict[k].gene_sets for k in pathway_dict.keys()], ())) return pathways def load_dataset(dataset, subsample_size=0, n_top_genes=0, center=True): # lambda allows for lazy loading.. dataset_dict = { "mesc": lambda: load_mesc, "retina_small": lambda: load_retina_small, "retina_rod": lambda: load_retina_rod, "retina_large": lambda: load_retina_large, } Y, labels, batch = dataset_dict.get(dataset)()() if n_top_genes > 0: Y_var = Y.var() top_var_col_indices = Y_var.argsort()[-n_top_genes:] logger.info("Using %s most variable genes", n_top_genes) Y = Y.iloc[:, top_var_col_indices] if center: Y_mean = Y.mean() if subsample_size > 0: logger.info("Using a random subsample of %s", subsample_size) subsample_indices = np.random.choice(Y.shape[0], subsample_size, replace=False) Y = Y.iloc[subsample_indices] labels = labels[subsample_indices] if batch is not None: batch = batch[subsample_indices] # center data column-wise, ignoring last columns (labels) if center: Y = Y - Y_mean # all genes have uppercase in pathways Y.columns = Y.columns.str.upper() # Y = Y.rename(str.upper, axis='columns') return Y, labels, batch def load_mesc(): Y = pd.read_csv(os.path.join(config.DATASET_DIR, "Buettneretal.csv.gz"), compression="gzip") return Y, Y.index, None def load_retina_large(): # https://data.humancellatlas.org/explore/projects/8185730f-4113-40d3-9cc3-929271784c2b/project-matrices # load data from storage dataset_dir = os.path.join( "/", "data", "aqoku", "projects", "spexlvm", "processed", ) Y = pd.read_pickle( os.path.join( dataset_dir, "retina.pkl", ) ) labels = pd.read_csv( os.path.join( dataset_dir, "WongRetinaCelltype.csv", ) ) labels = labels["annotated_cell_identity.ontology_label"] batch = Y["batch"] return Y.drop("batch", axis=1), labels.values, batch.values def load_retina_rod(): Y, labels, batch = load_retina_large() # remove dominant cluster subsample_indices = labels == "retinal rod cell" Y = Y.iloc[subsample_indices, :] if batch is not None: batch = batch[subsample_indices] labels = labels[subsample_indices] return Y, labels, batch def load_retina_small(): Y, labels, batch = load_retina_large() # remove dominant cluster subsample_indices = labels != "retinal rod cell" Y = Y.iloc[subsample_indices, :] if batch is not None: batch = batch[subsample_indices] labels = labels[subsample_indices] return Y, labels, batch def generate_toy_dataset( n_samples: int = 10000, n_features: int = 200, n_factors: int = 40, n_active_features: float = 0.1, n_active_factors: float = 0.5, constant_weight: float = 4.0, ): """Generate toy dataset for simulated evaluation. Parameters ---------- n_samples : int, optional Number of samples, by default 10000 n_features : int, optional Number of features (genes), by default 200 n_factors : int, optional Number of factors, by default 40 n_active_features : float, optional Number or fraction of active genes per factor, by default 0.1 n_active_factors : float, optional Number of fraction of active factors, by default 0.5 constant_weight : float, optional A constant weight to fill in the non-zero elements, by default 4.0 Returns ------- tuple w, mask, active factor indices, x, y """ if isinstance(n_active_features, float): n_active_features = (n_active_features, n_active_features) # convert active features and factors into fractions if > 1.0 n_active_features = tuple( naft / n_features if naft > 1.0 else naft for naft in n_active_features ) min_n_active_features, max_n_active_features = n_active_features if n_active_factors > 1.0: n_active_factors /= n_factors w_shape = [n_factors, n_features] x_shape = [n_samples, n_factors] true_mask = torch.zeros(w_shape) constant_w = constant_weight * torch.ones(w_shape) for factor_idx, naft in enumerate( np.random.uniform(min_n_active_features, max_n_active_features, n_factors) ): true_mask[factor_idx] = torch.multinomial( torch.tensor([1 - naft, naft]), w_shape[1], replacement=True, ) # generate small random values around 0 random_noise = torch.normal( mean=torch.zeros(w_shape), std=constant_weight / 50 * torch.ones(w_shape) ) true_w = true_mask * constant_w + random_noise true_x = torch.normal(mean=torch.zeros(x_shape), std=torch.ones(x_shape)) active_factor_indices = sorted( np.random.choice( range(n_factors), size=math.ceil(n_factors * n_active_factors), replace=False, ) ) for row_idx in range(n_factors): if row_idx not in active_factor_indices: true_w[row_idx, :] = torch.normal( torch.zeros(n_features), std=constant_weight / 50 * torch.ones(n_features), ) return ( true_w, true_mask, active_factor_indices, true_x, torch.matmul(true_x, true_w), )
StarcoderdataPython
11285
<filename>src/algoritmia/problems/binpacking/firstfitbinpacker.py<gh_stars>1-10 from algoritmia.problems.binpacking.nextfitbinpacker import NextFitBinPacker class FirstFitBinPacker(NextFitBinPacker):#[full def pack(self, w: "IList<Real>", C: "Real") -> "IList<int>": x = [None] * len(w) free = [] for i in range(len(w)): for j in range(len(free)): if free[j] >= w[i]: x[i] = j free[j] -= w[i] break if x[i] == None: x[i] = len(free) free.append(C-w[i]) return x#]full
StarcoderdataPython
3292716
<reponame>pasta96/django-drf-react-example from django.contrib.auth import get_user_model from rest_framework import serializers from . import models class UserSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() fields = ('id', get_user_model().USERNAME_FIELD) class PostSerializer(serializers.ModelSerializer): class Meta: model = models.Post fields = ('id', 'owner', 'title', 'image', 'uploaded_at') owner = UserSerializer() class UserPostSerializer(serializers.ModelSerializer): class Meta: model = models.Post fields = ('id', 'owner', 'title', 'image', 'uploaded_at') owner = UserSerializer(read_only=True)
StarcoderdataPython
17542
''' ' Python Regular Expression 正则表达式 ' ''' import re def test_match(): s = 'hello python Hello' p = 'hello' o = re.match(p, s) print(o) print(dir(o)) print(o.group()) # 返回匹配的字符串 print(o.span()) # 范围 print(o.start()) # 开始处 print('*' * 30, 'flags参数的使用') o2 = re.match(p, s, re.L) print(o2.group()) # 返回匹配的字符串 # 常用字符的使用 def test_match_character(): print('-' * 30, ' . 匹配任意一个字符') print(re.match('.', 'abv')) print(re.match('.', '12')) print(re.match('.', '\n')) print('-' * 30, ' \d 匹配数字 0-9') print(re.match('\d', 'abc456')) print(re.match('\d', '234svd')) print('-' * 30, ' \D 匹配非数字 0-9') print(re.match('\D', 'abc456')) print(re.match('\D', '234svd')) print('-' * 30, ' \s 匹配空白字符') print(re.match('\s', '\n12\t')) print(re.match('\s', '\t')) print(re.match('\s', 'addd')) print('-' * 30, ' \S 匹配非空白字符') print(re.match('\S', '\n12\t')) print(re.match('\S', '\t')) print(re.match('\S', 'addd')) print('-' * 30, ' \w 匹配字母、数字') print(re.match('\w', 'AB')) print(re.match('\w', 'ab')) print(re.match('\w', '12')) print(re.match('\w', '__')) print(re.match('\w', '##')) print('-' * 30, ' \W 匹配非 字母、数字') print(re.match('\W', 'AB')) print(re.match('\W', 'ab')) print(re.match('\W', '12')) print(re.match('\W', '__')) print(re.match('\W', '##')) print('-' * 30, ' \[] 匹配列表中的字符') print(re.match('[2468]', '22')) print(re.match('[2468]', '33')) print(re.match('[2468]', '83')) print(re.match('[2468]', '38')) def test_match_phone(): print('-' * 30, ' 匹配手机号') patten = '\d\d\d\d\d\d\d\d\d\d\d' print(re.match(patten, '13466669999')) print(re.match('1[345789]\d\d\d\d\d\d\d\d\d', '13466669999')) # 限定符 def test_match_qualifier(): print('-' * 30, ' * 匹配零次或多次') print(re.match('\d*', '123abc')) # 匹配开头的数字 print(re.match('\d*', 'abc')) print('-' * 30, ' + |匹配一次或多次') print(re.match('\d+', '123abc')) # 匹配开头的数字 print(re.match('\d+', 'abc')) print('-' * 30, ' ? |匹配一次或零次') print(re.match('\d?', '1abc')) print(re.match('\d?', '123abc')) # 匹配开头的数字 print(re.match('\d?', 'abc')) print('-' * 30, ' {m} |重复m次') print(re.match('\d{2}', '123abc')) # 匹配开头2个数字 print(re.match('\d{2}', '12abc')) print(re.match('\d{2}', '1abc')) print(re.match('\d{2}', 'abc')) print('-' * 30, '{m,n}|重复m到n次') print(re.match('\d{1,3}', '1234abc')) # 匹配开头2个数字 print(re.match('\d{1,3}', '123abc')) print(re.match('\d{1,3}', '12abc')) print(re.match('\d{1,3}', '1abc')) print(re.match('\d{1,3}', 'abc')) print('-' * 30, '{m,}|至少m次') print(re.match('\d{2,}', '1234abc')) # 匹配开头2个数字 print(re.match('\d{2,}', '123abc')) print(re.match('\d{2,}', '12abc')) print(re.match('\d{2,}', '1abc')) print(re.match('\d{2,}', 'abc')) print('-' * 30, '案例1 首字母为大写字符,其他小写字符') print(re.match('[A-Z][a-z]*', 'abc')) print(re.match('[A-Z][a-z]*', 'ABC')) print(re.match('[A-Z][a-z]*', 'Abc')) print(re.match('[A-Z][a-z]*', 'AbC')) print('-' * 30, '案例2 有效变量名 字母数字下划线,数字不开头') print(re.match('[a-zA-Z_][a-zA-Z0-9_]*', 'abc')) print(re.match('[a-zA-Z_]\w*', 'abc')) print(re.match('[a-zA-Z_][a-zA-Z0-9_]*', 'abc123')) print(re.match('[a-zA-Z_]\w*', '123abc')) print(re.match('[a-zA-Z_]\w*', '_123abc')) print('-' * 30, '案例2 1-99的数字') print(re.match('[1-9]\d?', '23abc')) print(re.match('[1-9]\d?', '100')) print(re.match('[1-9]\d?', '11')) print(re.match('[1-9]\d?', '1')) print(re.match('[1-9]\d?', '0')) print(re.match('[1-9]\d?', '09')) print('-' * 30, '案例2 8-20随机密码 大写,小写,下划线,数字') print(re.match('\w{8,20}', '1234567')) print(re.match('\w{8,20}', '1234567$$')) print(re.match('\w{8,20}', '1234567abc_')) print(re.match('\w{8,20}', '1234567abc#')) print(re.match('\w{8,20}', '12345678901234567890zx')) # 转义字符 原生字符 def escape_character(): print('C:\t\d\e') print('C:\\t\\d\\e') print(r'C:\t\d\e') # 边界字符 def boundary(): print('-' * 30, '$ 匹配字符串结尾') print(re.match('[1-9]\d{4,<EMAIL>', '<EMAIL>')) print(re.match('[1-9]\d{4,9}@qq.<EMAIL>', '<EMAIL>')) print(re.match(r'[1-9]\d{4,9}@qq.<EMAIL>$', '<EMAIL>')) print(re.match(r'[1-9]\d{<EMAIL>$', '<EMAIL>')) print('-' * 30, ' ^ 匹配字符串开头') print(re.match(r'^hello.*', 'hello abc')) print(re.match(r'^hello.*', 'abc hello abc')) print('-' * 30, ' \b 匹配单词的边界') print(re.match(r'.*\bab', '123 aabc')) # 单词 ab 开始 print(re.match(r'.*\bab', '123 abcd')) print(re.match(r'.*\bab', '123 aaa')) print(re.match(r'.*\bab', '123 abcd cdab')) print(re.match(r'.*ab\b', '123 abc')) # 单词 ab 结尾 print(re.match(r'.*ab\b', '123 aaa')) print(re.match(r'.*ab\b', '123 ab')) print(re.match(r'.*ab\b', '123 cdab')) print(re.match(r'.*ab\b', '123 abcd cdab')) def test_search(): print(re.match(r'hello', 'hello python')) print(re.search(r'hello', 'hello python')) print(re.match(r'hello', 'python hello')) print(re.search(r'hello', 'python hello ')) print(re.match('aa|bb|cc', 'aa')) print(re.match('aa|bb|cc', 'bbb')) print(re.match('aa|bb|cc', 'ccc')) print(re.match('aa|bb|cc', 'a bb ccc')) print(re.search('aa|bb|cc', 'a bb ccc')) # 多个字符 def test_multi_character(): print('-' * 30, '案例 0-100之间的数字: 0-99 | 100') print(re.match('[1-9]?\d|100', '1')) print(re.match('[1-9]?\d|100', '11')) print(re.match('[1-9]?\d|100', '100')) print(re.match('[1-9]?\d$|100$', '100')) print(re.match('[1-9]?\d$|100$', '1000')) print('-' * 30, '案例 ') print(re.match('[ab][cd]', 'ab')) print(re.match('[ab][cd]', 'ac')) print(re.match('[ab][cd]', 'ad')) print(re.match('ab|cd', 'abc')) print(re.match('ab|cd', 'ac')) # 匹配分组 def test_group(): print('-' * 30, '座机号码 区号{3,4} 号码{5,8} 010-0000 0791-222222') print(re.match(r'\d{3,4}-[1-9]\d{4,7}', '010-10086')) print(re.match(r'\d{3,4}-[1-9]\d{4,7}', '010-88888888')) print(re.match(r'\d{3,4}-[1-9]\d{4,7}', '1111-10086')) print(re.match(r'\d{3,4}-[1-9]\d{4,7}', '1111-88888888')) print('-' * 30, ' 匹配分组') o = re.match(r'(\d{3,4})-([1-9]\d{4,7})', '1111-88888888') print(o) print(o.group(0), o.group(1), o.group(2)) print(o.groups(), o.groups()[0], o.groups()[1]) print('-' * 30, 'html 标签') print(re.match(r'<.+><.+>.+</.+></.+>', '<html><a>abc</a></html>')) print(re.match(r'<.+><.+>.+</.+></.+>', '<html><a>abc</b></html>')) print(re.match(r'<(.*)><(.*)>.*</\2></\1>', '<html><a>abc</b></html>')) print(re.match(r'<(.*)><(.*)>.*</\2></\1>', '<html><d>abc</d></html>')) print('-' * 30, 'html 标签 - 别名') print(re.match(r'<(?P<k_html>.+)><(?P<k_head>.+)>.*</(?P=k_head)></(?P=k_html)>', '<html><d>abc</d></html>')) ## 搜索与替换 def test_sub(): print('-' * 30, ' 替换') print(re.sub(r'#.*$', '', '2004-222-23322 # 这是个什么')) # 替换#开头的部分 print(re.sub(r'#\D*', '', '2004-222-23322 # 这是个什么')) print('-' * 30, ' 替换 subn') print(re.subn(r'#\D*', '', '2004-222-23322 # 这是个什么')) print(re.subn(r'#.*$', '', '2004-222-23322 # 这是个什么')) def test_compile(): print('-' * 30, ' compile的使用') regex = re.compile(r'\w+') # 匹配字母或数字 print(regex.match('1223dfdf')) print(regex.match('##1223dfdf')) def test_findall(): print('-' * 30, ' findall 返回数组') print(re.findall(r'\w', '##1223dfdf')) # 匹配字母或数字 f print(re.findall(r'\w+', '## 1223 df df 1')) print('-' * 30, ' finditer 返回迭代器') print(re.finditer(r'\w+', '## 1223 df df 1')) for i in re.finditer(r'\w+', '## 1223 df df 1'): print(i, i.group()) def test_split(): print('-' * 30, ' split 返回数组') print(re.split(r'\d+', '123abc123abc')) print(re.split(r'\d+', '123 abc 123 abc')) print(re.split(r'\d+', 'abc123 abc 123 abc')) print(re.split(r'\d+', 'abc 123 abc 123 abc',1)) def greedy_mode(): print('-' * 30, ' 贪婪模式') result = re.match(r'(.+)(\d+-\d+-\d+)', 'this is my tel: 122-1244-1242') print(result.group(1)) print(result.group(2)) print('-' * 30, ' 非贪婪模式 尽可能少的匹配') result = re.match(r'(.+?)(\d+-\d+-\d+)', 'this is my tel: 122-1244-1242') print(result.group(1)) print(result.group(2)) print('-' * 30, ' 贪婪模式') print(re.match(r'abc(\d+)', 'abc123456')) print(re.match(r'abc(\d+?)', 'abc123456')) if __name__ == '__main__': # test_match() # test_match_character() # test_match_phone() # test_match_qualifier() # escape_character() # boundary() # test_search() # test_multi_character() # test_group() # test_sub() # test_compile() # test_findall() # test_split() # greedy_mode() # <.+><.+>.+</.+></.+> s = '<link href="../assets/css/app.css?t=20112455" type="text/css" rel="stylesheet">' mathched = re.findall(r'\S+assets/css/\S+.css\S+"', s) for m in mathched: print(m, m.index('.css')) s = s.replace(m, m[:m.index('.css')] + '.css?t=00000"') print(s)
StarcoderdataPython
1627053
import FWCore.ParameterSet.Config as cms fftjetVertexAdder = cms.EDProducer( "FFTJetVertexAdder", # # Label for the beam spot info beamSpotLabel = cms.InputTag("offlineBeamSpot"), # # Label for an existing collection of primary vertices existingVerticesLabel = cms.InputTag("offlinePrimaryVertices"), # # Label for the output collection outputLabel = cms.string("FFTJetFudgedVertices"), # # Do we want to use the beam spot info from the event data #in order to generate the vertices? useBeamSpot = cms.bool(True), # # Do we want to an existing collection (labeled by "existingVerticesLabel" # defined above) to the fake vertices? addExistingVertices = cms.bool(False), # # If we are not using the beam spot, what would be the average # position of the generated vertices? fixedX = cms.double(0.0), fixedY = cms.double(0.0), fixedZ = cms.double(0.0), # # If we are not using the beam spot, what would be the vertex spread? sigmaX = cms.double(0.0014), sigmaY = cms.double(0.0014), sigmaZ = cms.double(6.0), # # Parameters of the vertex to generate (these are not varied) nDof = cms.double(10.0), chi2 = cms.double(10.0), errX = cms.double(0.001), errY = cms.double(0.001), errZ = cms.double(0.01), # # How many fake vertices should we make? nVerticesToMake = cms.uint32(1) )
StarcoderdataPython
3284037
<reponame>ResonantGeoData/ResonantGeoData # Generated by Django 3.2.5 on 2021-07-13 10:17 import django.contrib.postgres.fields.ranges from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('rgd_imagery', '0001_initial'), ] operations = [ migrations.AddField( model_name='bandmeta', name='band_range', field=django.contrib.postgres.fields.ranges.DecimalRangeField( help_text='The spectral range of the band (in micrometers).', null=True ), ), ]
StarcoderdataPython
3273438
import os import random from typing import Any, Dict import numpy as np # from mmcls.models.losses import accuracy, f1_score, precision, recall # from mmcls.models.losses.eval_metrics import class_accuracy from .base_dataset import BaseDataset from .builder import DATASETS # 0 1 2 3 4 5 6 7 FER_CLASSES = ['Anger', 'Disgust', 'Fear', 'Sadness', 'Happiness', 'Surprise', 'Neutral', 'Contempt'] def gen_class_map(dataset_class): """ generate the convert map from DATASET_CLASSES to FER_CLASSES """ convert_map = [] for i in dataset_class: convert_map.append(FER_CLASSES.index(i)) assert sum(convert_map) == sum([i for i in range(len(dataset_class))]) return convert_map @DATASETS.register_module() class ABAW3(BaseDataset): CLASSES = [ 'Neutral', 'Anger', 'Disgust', 'Fear', 'Happiness', 'Sadness', 'Surprise', 'Other' ] COARSE_CLASSES = [ 'Neutral', 'Happiness', 'Surprise', 'Other', 'Negative' ] coarse_map = [0, 4, 4, 4, 1, 4, 2, 3] NEGATIVE_CLASSES = [ 'Anger', 'Disgust', 'Fear', 'Sadness', ] negative_map = [-1, 0, 1, 2, -1, 3, -1, -1] task = 'all' # 'all', coarse', 'negative' def __init__(self, data_prefix, pipeline, classes=None, ann_file=None, test_mode=False): super().__init__(data_prefix, pipeline, classes, ann_file, test_mode) self.CLASSES = self.update_classes() def update_classes(self): if self.task_type == 'EXPR': return self.CLASSES elif self.task_type == 'AU': return [f'AU{i+1}' for i in range(12)] elif self.task_type == 'VA': return ['V', 'A'] def process_one_ann(self, dir, ann_file:str): with open(os.path.join(dir, ann_file), 'r') as f: data = f.read().strip().split('\n')[1:] return data def list_txt_files(self, dir): files = os.listdir(dir) files = [i for i in files if i.endswith('.txt')] return files def load_annotations(self, label_file=None): if 'EXPR_' in self.ann_file: self.task_type = 'EXPR' return self.load_ce_annotations(label_file) elif 'AU_' in self.ann_file: self.task_type = 'AU' return self.load_au_annotations() elif 'VA_' in self.ann_file: self.task_type = 'VA' return self.load_va_annotations() else: raise ValueError('invalid task') def load_ce_annotations(self, label_file=None): """Load CE annotations""" if label_file is None: label_file = self.ann_file if isinstance(label_file, str): # is a folder ann_files = os.listdir(label_file) ann_files = [i for i in ann_files if i.endswith('.txt')] else: raise TypeError('ann_file must be a str') # label_map = gen_class_map(self.DATASET_CLASSES) data_infos = [] for ann_file in ann_files: # xxx.txt ce_labels = self.process_one_ann(label_file, ann_file) for i, label in enumerate(ce_labels): label = int(label) if label == -1: continue if self.task == 'coarse': label = self.coarse_map[label] self.CLASSES = self.COARSE_CLASSES elif self.task == 'negative': label = self.negative_map[label] self.CLASSES = self.NEGATIVE_CLASSES if label == -1: # Only negative has -1 continue img_prefix = os.path.join(self.data_prefix, ann_file.replace('.txt', '')) filename = f'{str(i).zfill(5)}.jpg' if not os.path.isfile(os.path.join(img_prefix, filename)): continue info = {'img_prefix': img_prefix} info['img_info'] = {'filename': filename} info['gt_label'] = np.array(label, dtype=np.int64) data_infos.append(info) return data_infos def load_au_annotations(self,): """Load the AU annotations""" label_file = self.ann_file if isinstance(label_file, str): # is a folder ann_files = os.listdir(label_file) ann_files = [i for i in ann_files if i.endswith('.txt')] else: raise TypeError('ann_file must be a str') data_infos = [] for ann_file in ann_files: # xxx.txt # ce_labels = self.process_one_ann(label_file, ann_file) au_labels = self.process_one_ann(self.ann_file, ann_file) for i, label in enumerate(au_labels): if label == '-1': continue img_prefix = os.path.join(self.data_prefix, ann_file.replace('.txt', '')) filename = f'{str(i).zfill(5)}.jpg' if not os.path.isfile(os.path.join(img_prefix, filename)): continue info = {'img_prefix': img_prefix} info['img_info'] = {'filename': filename} # label = label_map[int(label)] # info['gt_label'] = np.array(label, dtype=np.int64) info['gt_label'] = np.array(au_labels[i].split(','), dtype=np.int64) data_infos.append(info) return data_infos def load_va_annotations(self,): """Load the VA annotations""" label_file = self.ann_file if isinstance(label_file, str): # is a folder ann_files = os.listdir(label_file) ann_files = [i for i in ann_files if i.endswith('.txt')] else: raise TypeError('ann_file must be a str') data_infos = [] for ann_file in ann_files: # xxx.txt va_labels = self.process_one_ann(self.ann_file, ann_file) for i, label in enumerate(va_labels): if float(label.split(',')[0]) < -1. or float(label.split(',')[1]) < -1: # skip -5 continue img_prefix = os.path.join(self.data_prefix, ann_file.replace('.txt', '')) filename = f'{str(i).zfill(5)}.jpg' if not os.path.isfile(os.path.join(img_prefix, filename)): continue info = {'img_prefix': img_prefix} info['img_info'] = {'filename': filename} info['gt_label'] = np.array(label.split(','), dtype=np.float32) assert info['gt_label'].max() <= 1 and info['gt_label'].min() >= -1 data_infos.append(info) return data_infos def load_exp_and_au_annotations(self): if 'Train_Set' not in self.ann_file: return self.load_annotations() label_map = gen_class_map(self.DATASET_CLASSES) assert 'EXPR_Set' in self.ann_file au_file = self.ann_file.replace('EXPR_Set', 'AU_Set') ce_files = self.list_txt_files(self.ann_file) au_files = self.list_txt_files(au_file) samples = dict() # key: filename, value: [ce, au] for file in ce_files: samples[file] = [self.process_one_ann(self.ann_file, file), None] for file in au_files: au_labels = self.process_one_ann(au_file, file) if file in samples: samples[file][1] = au_labels # 都保留 # if len(au_labels) == len(samples[file][0]): # samples[file][1] = au_labels # else: # # samples[file] = [None, au_labels] # 这里有两种可能,CE和AU冲突时保留谁 # samples[file][1] = None else: samples[file] = [None, au_labels] # va_path = self.ann_file.replace('EXPR_Set', 'VA_Set') # va_files = self.list_txt_files(va_path) # for file in va_files: # va_labels = self.process_one_ann(va_path, file) # if file in samples: # else: # samples[file] = [None, None, va_labels] # build data_infos data_infos = [] for ann_file, labels in samples.items(): have_ce_label = labels[0] is not None have_au_label = labels[1] is not None frame_num = len(labels[0]) if have_ce_label else len(labels[1]) for i in range(frame_num): img_prefix = os.path.join(self.data_prefix, ann_file.replace('.txt', '')) filename = f'{str(i).zfill(5)}.jpg' if not os.path.isfile(os.path.join(img_prefix, filename)): continue info = {'img_prefix': img_prefix} info['img_info'] = {'filename': filename} # info['ann_file'] = self.ann_file if have_ce_label: origin_label = labels[0][i] if origin_label != '-1': label = label_map[int(origin_label)] info['gt_label'] = np.array(label, dtype=np.int64) else: info['gt_label'] = np.array(255, dtype=np.int64) else: info['gt_label'] = np.array(255, dtype=np.int64) if have_au_label: try: origin_label = labels[1][i].split(',') except IndexError: # i > len(labels[1]) info['au_label'] = np.array([255]*12, dtype=np.int64) else: if origin_label[0] != '-1': info['au_label'] = np.array(origin_label, dtype=np.int64) else: info['au_label'] = np.array([255]*12, dtype=np.int64) else: info['au_label'] = np.array([255]*12, dtype=np.int64) data_infos.append(info) return data_infos
StarcoderdataPython
1645592
<reponame>govind794/all-programming<filename>python/String/add_string.py<gh_stars>0 # Write a python program to add 'ing' at the end of a givan string(length should be at least 3). # if the givan string already ends with 'ing' then add 'ly' instead if the string length of the givan string # is less then 3, leave it unchanged. # Sample String : 'abc' # Expected Result : 'abcing' # Sample String : 'string' # Expected Result : 'stringly' def add_string(st): if len(st) > 2: if st.endswith('ing'): st += 'ly' else: st += 'ing' print(st) if __name__ == '__main__': add_string('abcing') add_string('sting') add_string('ab')
StarcoderdataPython
1710270
<filename>tests/test_00_dxf_low_level_structs/test_016_encoding.py # Created: 26.03.2016 # Copyright (C) 2016-2019, <NAME> # License: MIT License import pytest import codecs from ezdxf.lldxf.encoding import dxf_backslash_replace codecs.register_error('dxfreplace', dxf_backslash_replace) # setup DXF unicode encoder -> '\U+nnnn' from ezdxf.lldxf.encoding import encode from ezdxf.lldxf.const import DXFEncodingError DEFAULT_ENC = 'utf-8' class TestEncoding: def test_ascii_encoding(self): assert b'123' == encode(u'123', 'ascii') def test_ascii_encoding_error(self): with pytest.raises(DXFEncodingError): encode(u'123Ä', 'ascii') def test_ignore_ascii_encoding_error(self): assert u'123Ä'.encode(DEFAULT_ENC) == encode(u'123Ä', 'ascii', ignore_error=True) def test_cp1252_encoding(self): assert u'123ÄÜÖ'.encode('cp1252') == encode(u'123ÄÜÖ', 'cp1252') def test_cp1252_encoding_error(self): with pytest.raises(DXFEncodingError): encode(u'更改', 'cp1252') def test_cp1252_ignore_encoding_error(self): assert u'更改'.encode(DEFAULT_ENC) == encode(u'更改', 'cp1252', ignore_error=True) class TestACADEncoding: def test_ascii_encoding(self): assert b'123\\U+6539' == u'123改'.encode('ascii', errors='dxfreplace')
StarcoderdataPython
1645003
# AUTHOR: whisperain (https://github.com/memset0) from my_array import Array STEP = 1.5 class List: def __len__(self): return self.len def __getitem__(self, index): return self.arr[index if index >= 0 else index + self.len] def __setitem__(self, index, value): self.arr[index if index >= 0 else index + self.len] = value def __delitem__(self, index): for i in range(index, self.len - 1): self.arr[i] = self.arr[i + 1] self.len -= 1 def __str__(self): return str(self._list()) def _list(self): return [self.__getitem__(i) for i in range(self.len)] def _malloc(self, inneed): if inneed > self.lim: data = self._list() self.lim = int(inneed * STEP) del self.arr self.arr = Array(self.lim) for i in range(self.len): self.arr[i] = data[i] def append(self, value): self._malloc(self.len + 1) self.arr[self.len] = value self.len += 1 def pop(self, index=-1): if index == -1: self.len -= 1 return self.arr[self.len] else: result = self.arr[index] for i in range(index, self.len - 1): self.arr[i] = self.arr[i + 1] return result def extend(self, iterables): source = [item for item in iterables] self._malloc(self.len + len(source)) for value in source: self.arr[self.len] = value self.len += 1 def index(self, value, start=None, end=None): start = 0 if start == None else start end = self.len if end == None else end for i in range(start, end): if self.arr[i] == value: return i raise ValueError(str(value) + ' is not in list') def insert(self, index, value): self._malloc(self.len + 1) for i in range(self.len - 1, index, -1): self.arr[i] = self.arr[i - 1] self.arr[index] = value def remove(self, value): for i in range(self.len): if self.arr[i] == value: while i < self.len: self.arr[i] = self.arr[i + 1] i += 1 self.len -= 1 def reverse(self): for i in range(self.len // 2): temp = self.arr[i] self.arr[i] = self.arr[self.len - 1 - i] self.arr[self.len - 1 - i] = temp def __init__(self, iterables=None): if iterables == None: source = [] else: source = [item for item in iterables] self.len = len(source) self.lim = self.len self.arr = Array(self.len) for i in range(self.len): self.arr[i] = source[i]
StarcoderdataPython
3389664
import re daysOfWeek = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] ScheduleType = { "Понедельник": daysOfWeek[0], "Вторник": daysOfWeek[1], "Среда": daysOfWeek[2], "Четверг": daysOfWeek[3], "Пятница": daysOfWeek[4], "Суббота": daysOfWeek[5], "Воскресенье": daysOfWeek[6], "Сегодня": "Today", "Завтра": "Tomorrow", "Вся неделя": daysOfWeek } romanDigit = { 'I': 1, 'II': 2, 'III': 3, 'IV': 4, 'V': 5, 'VI': 6, 'VII': 7, 'VIII': 8, 'IX': 9, 'X': 10 } def parse_day(cell_value): if cell_value != '': return ScheduleType[cell_value] else: return None def parse_time(cell_value): time_start = '' time_end = '' try: result = re.findall(r'\d{1,2}:\d{2}', cell_value) except: result = [] if len(result) == 2: time_start = result[0] time_end = result[1] return time_start, time_end def parse_lesson_number(cell_value): try: result = re.findall(r'^\w{1,3}', cell_value) except: result = [] if len(result) == 1: return romanDigit[result[0]] else: return None def parse_title(cell_value): try: result = re.split(r'(\w{1,2}\s?\d[_-]\d{3}|\d[_-]\d{3}|\w\.\d)', cell_value) except: result = [] if len(result) >= 3: return result[0] else: return cell_value def parse_lecturer(cell_value): try: result = re.split(r'(\w{1,2}\s?\d[_-]\d{3}|\d[_-]\d{3}|\w\.\d)', cell_value) except: result = [] if len(result) >= 3: return result[len(result) - 1] else: return '' def parse_classroom(cell_value): classroom = '' try: result = re.findall(r'\w{1,2}\s?\d[_-]\d{3}|\d[_-]\d{3}|\w\.\d', cell_value) except: result = [] if len(result) >= 1: # Кабинет for room in result: classroom += room + '' return classroom def parse_date(cell_value): try: result = re.findall(r'\d\d.\d\d.\d\d\d\d', cell_value) except: result = [] if len(result) == 1: return result[0] else: return 0 def parse_exam_data(cell_value): return cell_value.split('\n')
StarcoderdataPython
93624
<reponame>Steinbeck-Lab/RanDepict import os import pathlib import numpy as np import io from skimage import io as sk_io from skimage.color import rgba2rgb, rgb2gray from skimage.util import img_as_ubyte, img_as_float from PIL import Image, ImageFont, ImageDraw, ImageStat from multiprocessing import set_start_method, get_context import imgaug.augmenters as iaa import random from copy import deepcopy from typing import Tuple, List, Dict, Any from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem.rdAbbreviations import CondenseMolAbbreviations from rdkit.Chem.rdAbbreviations import GetDefaultAbbreviations from rdkit.Chem.Draw import rdMolDraw2D from rdkit import DataStructs from rdkit.SimDivFilters.rdSimDivPickers import MaxMinPicker from itertools import product from indigo import Indigo from indigo.renderer import IndigoRenderer from jpype import startJVM, getDefaultJVMPath from jpype import JClass, JVMNotFoundException, isJVMStarted import base64 class RandomDepictor: """ This class contains everything necessary to generate a variety of random depictions with given SMILES strings. An instance of RandomDepictor can be called with a SMILES str and returns an np.array that represents the RGB image with the given chemical structure. """ def __init__(self, seed: int = 42): """ Load the JVM only once, load superatom list (OSRA), set context for multiprocessing """ self.HERE = pathlib.Path(__file__).resolve().parent.joinpath("assets") # Start the JVM to access Java classes try: self.jvmPath = getDefaultJVMPath() except JVMNotFoundException: print( "If you see this message, for some reason JPype", "cannot find jvm.dll.", "This indicates that the environment varibale JAVA_HOME", "is not set properly.", "You can set it or set it manually in the code", "(see __init__() of RandomDepictor)", ) self.jvmPath = "Define/path/or/set/JAVA_HOME/variable/properly" if not isJVMStarted(): self.jar_path = self.HERE.joinpath("jar_files/cdk_2_5.jar") startJVM(self.jvmPath, "-ea", "-Djava.class.path=" + str(self.jar_path)) self.seed = seed random.seed(self.seed) # Load list of superatoms for label generation with open(self.HERE.joinpath("superatom.txt")) as superatoms: superatoms = superatoms.readlines() self.superatoms = [s[:-2] for s in superatoms] # Define PIL resizing methods to choose from: self.PIL_resize_methods = [ Image.NEAREST, Image.BOX, Image.BILINEAR, Image.HAMMING, Image.BICUBIC, Image.LANCZOS, ] self.from_fingerprint = False self.depiction_features = False # Set context for multiprocessing but make sure this only happens once try: set_start_method("spawn") except RuntimeError: pass def __call__( self, smiles: str, shape: Tuple[int, int, int] = (299, 299), grayscale: bool = False, ): # Depict structure with random parameters depiction = self.random_depiction(smiles, shape) # Add augmentations depiction = self.add_augmentations(depiction) if grayscale: return self.to_grayscale_float_img(depiction) return depiction def __enter__(self): return self def __exit__(self, type, value, tb): # I'd like to automatically close the JVM # But if it is closed once, you cannot reopen it # (for example when someone works in a IPython notebook) # Shutdown the JVM # shutdownJVM() pass def random_choice(self, iterable: List, log_attribute: str = False): """ This function takes an iterable, calls random.choice() on it, increases random.seed by 1 and returns the result. This way, results produced by RanDepict are replicable. Additionally, this function handles the generation of depictions and augmentations from given fingerprints by handling all random decisions according to the fingerprint template. Args: iterable (List): iterable to pick from log_attribute (str, optional): ID for fingerprint. Defaults to False. Returns: Any: "Randomly" picked element """ # Keep track of seed and change it with every pseudo-random decision. self.seed += 1 random.seed(self.seed) # Generation from fingerprint: if self.from_fingerprint and log_attribute: # Get dictionaries that define positions and linked conditions pos_cond_dicts = self.active_scheme[log_attribute] for pos_cond_dict in pos_cond_dicts: pos = pos_cond_dict["position"] cond = pos_cond_dict["one_if"] if self.active_fingerprint[pos]: # If the condition is a range: adapt iterable and go on if isinstance(cond, tuple): iterable = [ item for item in iterable if item > cond[0] - 0.001 if item < cond[1] + 0.001 ] break # Otherwise, simply return the condition value else: return cond # Pseudo-randomly pick an element from the iterable result = random.choice(iterable) return result def random_image_size(self, shape: Tuple[int, int]) -> Tuple[int, int]: """ This function takes a random image shape and returns an image shape where the first two dimensions are slightly distorted (90-110% of original value). Args: shape (Tuple[int, int]): original shape Returns: Tuple[int, int]: distorted shape """ # Set random depiction image shape (to cause a slight distortion) y = int(shape[0] * self.random_choice(np.arange(0.9, 1.1, 0.02))) x = int(shape[1] * self.random_choice(np.arange(0.9, 1.1, 0.02))) return y, x def get_random_indigo_rendering_settings( self, shape: Tuple[int, int] = (299, 299) ) -> Indigo: """ This function defines random rendering options for the structure depictions created using Indigo. It returns an Indigo object with the settings. Args: shape (Tuple[int, int], optional): im shape. Defaults to (299, 299) Returns: Indigo: Indigo object that contains depictions settings """ # Define random shape for depiction (within boundaries);) indigo = Indigo() renderer = IndigoRenderer(indigo) # Get slightly distorted shape y, x = self.random_image_size(shape) indigo.setOption("render-image-width", x) indigo.setOption("render-image-height", y) # Set random bond line width bond_line_width = float( self.random_choice( np.arange( 0.5, 2.5, 0.1), log_attribute="indigo_bond_line_width")) indigo.setOption("render-bond-line-width", bond_line_width) # Set random relative thickness relative_thickness = float( self.random_choice( np.arange( 0.5, 1.5, 0.1), log_attribute="indigo_relative_thickness")) indigo.setOption("render-relative-thickness", relative_thickness) # Set random bond length # Changing the bond length does not change the bond length relative to # other elements. Instead, the whole molecule is scaled down! # bond_length = self.random_choice(range(int(shape[0]/19), # int(shape[0]/6))) # indigo.setOption("render-bond-length", bond_length) # Output_format: PNG indigo.setOption("render-output-format", "png") # Set random atom label rendering model # (standard is rendering terminal groups) if self.random_choice( [True] + [False] * 19, log_attribute="indigo_labels_all"): # show all atom labels indigo.setOption("render-label-mode", "all") elif self.random_choice( [True] + [False] * 3, log_attribute="indigo_labels_hetero" ): indigo.setOption( "render-label-mode", "hetero" ) # only hetero atoms, no terminal groups # Set random depiction colour / not necessary for us as we binarise # everything anyway # if self.random_choice([True, False, False, False, False]): # R = str(self.random_choice(np.arange(0.1, 1.0, 0.1))) # G = str(self.random_choice(np.arange(0.1, 1.0, 0.1))) # B = str(self.random_choice(np.arange(0.1, 1.0, 0.1))) # indigo.setOption("render-base-color", ", ".join([R,G,B])) # Render bold bond for Haworth projection if self.random_choice([True, False], log_attribute="indigo_render_bold_bond"): indigo.setOption("render-bold-bond-detection", "True") # Render labels for stereobonds stereo_style = self.random_choice( ["ext", "old", "none"], log_attribute="indigo_stereo_label_style" ) indigo.setOption("render-stereo-style", stereo_style) # Collapse superatoms (default: expand) if self.random_choice( [True, False], log_attribute="indigo_collapse_superatoms" ): indigo.setOption("render-superatom-mode", "collapse") return indigo, renderer def depict_and_resize_indigo( self, smiles: str, shape: Tuple[int, int] = (299, 299) ) -> np.array: """ This function takes a smiles str and an image shape. It renders the chemical structures using Indigo with random rendering/depiction settings and returns an RGB image (np.array) with the given image shape. Args: smiles (str): SMILES representation of molecule shape (Tuple[int, int], optional): im shape. Defaults to (299, 299) Returns: np.array: Chemical structure depiction """ # Instantiate Indigo with random settings and IndigoRenderer indigo, renderer = self.get_random_indigo_rendering_settings() # Load molecule molecule = indigo.loadMolecule(smiles) # Kekulize in 67% of cases if not self.random_choice( [True, True, False], log_attribute="indigo_kekulized" ): molecule.aromatize() molecule.layout() # Write to buffer temp = renderer.renderToBuffer(molecule) temp = io.BytesIO(temp) depiction = sk_io.imread(temp) depiction = self.resize(depiction, (shape[0], shape[1])) depiction = rgba2rgb(depiction) depiction = img_as_ubyte(depiction) return depiction def get_random_rdkit_rendering_settings( self, shape: Tuple[int, int] = (299, 299) ) -> rdMolDraw2D.MolDraw2DCairo: """ This function defines random rendering options for the structure depictions created using rdkit. It returns an MolDraw2DCairo object with the settings. Args: shape (Tuple[int, int], optional): im_shape. Defaults to (299, 299) Returns: rdMolDraw2D.MolDraw2DCairo: Object that contains depiction settings """ # Get slightly distorted shape y, x = self.random_image_size(shape) # Instantiate object that saves the settings depiction_settings = rdMolDraw2D.MolDraw2DCairo(y, x) # Stereo bond annotation if self.random_choice( [True, False], log_attribute="rdkit_add_stereo_annotation" ): depiction_settings.drawOptions().addStereoAnnotation = True if self.random_choice( [True, False], log_attribute="rdkit_add_chiral_flag_labels" ): depiction_settings.drawOptions().includeChiralFlagLabel = True # Atom indices if self.random_choice( [True, False, False, False], log_attribute="rdkit_add_atom_indices" ): depiction_settings.drawOptions().addAtomIndices = True # Bond line width bond_line_width = self.random_choice( range(1, 5), log_attribute="rdkit_bond_line_width" ) depiction_settings.drawOptions().bondLineWidth = bond_line_width # Draw terminal methyl groups if self.random_choice( [True, False], log_attribute="rdkit_draw_terminal_methyl" ): depiction_settings.drawOptions().explicitMethyl = True # Label font type and size font_dir = self.HERE.joinpath("fonts/") font_path = os.path.join( str(font_dir), self.random_choice( os.listdir(str(font_dir)), log_attribute="rdkit_label_font" ), ) depiction_settings.drawOptions().fontFile = font_path min_font_size = self.random_choice( range(10, 20), log_attribute="rdkit_min_font_size" ) depiction_settings.drawOptions().minFontSize = min_font_size depiction_settings.drawOptions().maxFontSize = 30 # Rotate the molecule depiction_settings.drawOptions().rotate = self.random_choice(range(360)) # Fixed bond length fixed_bond_length = self.random_choice( range(30, 45), log_attribute="rdkit_fixed_bond_length" ) depiction_settings.drawOptions().fixedBondLength = fixed_bond_length # Comic mode (looks a bit hand drawn) if self.random_choice( [True, False, False, False, False], log_attribute="rdkit_comic_style" ): depiction_settings.drawOptions().comicMode = True # Keep it black and white depiction_settings.drawOptions().useBWAtomPalette() return depiction_settings def depict_and_resize_rdkit( self, smiles: str, shape: Tuple[int, int] = (299, 299) ) -> np.array: """ This function takes a smiles str and an image shape. It renders the chemical structuresusing Rdkit with random rendering/depiction settings and returns an RGB image (np.array) with the given image shape. Args: smiles (str): SMILES representation of molecule_ shape (Tuple[int, int], optional): im shape. Defaults to (299, 299) Returns: np.array: Chemical structure depiction """ # Generate mol object from smiles str mol = Chem.MolFromSmiles(smiles) if mol: AllChem.Compute2DCoords(mol) # Abbreviate superatoms if self.random_choice( [True, False], log_attribute="rdkit_collapse_superatoms" ): abbrevs = GetDefaultAbbreviations() mol = CondenseMolAbbreviations(mol, abbrevs) # Get random depiction settings depiction_settings = self.get_random_rdkit_rendering_settings() # Create depiction # TODO: Figure out how to depict without kekulization here # The following line does not prevent the molecule from being # depicted kekulized: # mol = rdMolDraw2D.PrepareMolForDrawing(mol, kekulize = False) # The molecule must get kekulized somewhere "by accident" rdMolDraw2D.PrepareAndDrawMolecule(depiction_settings, mol) depiction = depiction_settings.GetDrawingText() depiction = sk_io.imread(io.BytesIO(depiction)) # Resize image to desired shape depiction = self.resize(depiction, shape) depiction = img_as_ubyte(depiction) return np.asarray(depiction) else: print("RDKit was unable to read SMILES: {}".format(smiles)) def get_random_cdk_rendering_settings(self, rendererModel, molecule): """ This function defines random rendering options for the structure depictions created using CDK. It takes a cdk.renderer.AtomContainerRenderer.2DModel and a cdk.AtomContainer and returns the 2DModel object with random rendering settings and the AtomContainer. I followed https://github.com/cdk/cdk/wiki/Standard-Generator while creating this. Args: rendererModel (cdk.renderer.AtomContainerRenderer.2DModel) molecule (cdk.AtomContainer): Atom container Returns: rendererModel, molecule: Objects that hold depiction parameters """ cdk_base = "org.openscience.cdk" StandardGenerator = JClass( cdk_base + ".renderer.generators.standard.StandardGenerator" ) # Define visibility of atom/superatom labels symbol_visibility = self.random_choice( ["iupac_recommendation", "no_terminal_methyl", "show_all_atom_labels"], log_attribute="cdk_symbol_visibility", ) SymbolVisibility = JClass( "org.openscience.cdk.renderer.SymbolVisibility") if symbol_visibility == "iupac_recommendation": rendererModel.set( StandardGenerator.Visibility.class_, SymbolVisibility.iupacRecommendations(), ) elif symbol_visibility == "no_terminal_methyl": # only hetero atoms, no terminal alkyl groups rendererModel.set( StandardGenerator.Visibility.class_, SymbolVisibility.iupacRecommendationsWithoutTerminalCarbon(), ) elif symbol_visibility == "show_all_atom_labels": rendererModel.set( StandardGenerator.Visibility.class_, SymbolVisibility.all() ) # show all atom labels # Define bond line stroke width stroke_width = self.random_choice( np.arange(0.8, 2.0, 0.1), log_attribute="cdk_stroke_width" ) rendererModel.set(StandardGenerator.StrokeRatio.class_, stroke_width) # Define symbol margin ratio margin_ratio = self.random_choice( [0, 1, 2, 2, 2, 3, 4], log_attribute="cdk_margin_ratio" ) rendererModel.set( StandardGenerator.SymbolMarginRatio.class_, JClass("java.lang.Double")(margin_ratio), ) # Define bond properties double_bond_dist = self.random_choice( np.arange(0.11, 0.25, 0.01), log_attribute="cdk_double_bond_dist" ) rendererModel.set( StandardGenerator.BondSeparation.class_, double_bond_dist) wedge_ratio = self.random_choice( np.arange(4.5, 7.5, 0.1), log_attribute="cdk_wedge_ratio" ) rendererModel.set( StandardGenerator.WedgeRatio.class_, JClass("java.lang.Double")(wedge_ratio)) if self.random_choice([True, False], log_attribute="cdk_fancy_bold_wedges"): rendererModel.set(StandardGenerator.FancyBoldWedges.class_, True) if self.random_choice([True, False], log_attribute="cdk_fancy_hashed_wedges"): rendererModel.set(StandardGenerator.FancyHashedWedges.class_, True) hash_spacing = self.random_choice( np.arange(4.0, 6.0, 0.2), log_attribute="cdk_hash_spacing" ) rendererModel.set(StandardGenerator.HashSpacing.class_, hash_spacing) # Add CIP labels labels = False if self.random_choice([True, False], log_attribute="cdk_add_CIP_labels"): labels = True JClass("org.openscience.cdk.geometry.cip.CIPTool").label(molecule) for atom in molecule.atoms(): label = atom.getProperty( JClass("org.openscience.cdk.CDKConstants").CIP_DESCRIPTOR ) atom.setProperty(StandardGenerator.ANNOTATION_LABEL, label) for bond in molecule.bonds(): label = bond.getProperty( JClass("org.openscience.cdk.CDKConstants").CIP_DESCRIPTOR ) bond.setProperty(StandardGenerator.ANNOTATION_LABEL, label) # Add atom indices to the depictions if self.random_choice( [True, False, False, False], log_attribute="cdk_add_atom_indices" ): labels = True for atom in molecule.atoms(): label = JClass("java.lang.Integer")( 1 + molecule.getAtomNumber(atom)) atom.setProperty(StandardGenerator.ANNOTATION_LABEL, label) if labels: # We only need black rendererModel.set( StandardGenerator.AnnotationColor.class_, JClass("java.awt.Color")(0x000000), ) # Font size of labels font_scale = self.random_choice( np.arange(0.5, 0.8, 0.1), log_attribute="cdk_label_font_scale" ) rendererModel.set( StandardGenerator.AnnotationFontScale.class_, font_scale) # Distance between atom numbering and depiction annotation_distance = self.random_choice(np.arange( 0.15, 0.30, 0.05), log_attribute="cdk_annotation_distance") rendererModel.set( StandardGenerator.AnnotationDistance.class_, annotation_distance) # Abbreviate superatom labels in half of the cases # TODO: Find a way to define Abbreviations object as a class attribute. # Problem: can't be pickled. # Right now, this is loaded every time when a structure is depicted. # That seems inefficient. if self.random_choice([True, False], log_attribute="cdk_collapse_superatoms"): cdk_superatom_abrv = JClass( "org.openscience.cdk.depict.Abbreviations")() abbreviation_path = str(self.HERE.joinpath("smiles_list.smi")) abbreviation_path = abbreviation_path.replace("\\", "/") abbreviation_path = JClass("java.lang.String")(abbreviation_path) cdk_superatom_abrv.loadFromFile(abbreviation_path) cdk_superatom_abrv.apply(molecule) return rendererModel, molecule def depict_and_resize_cdk( self, smiles: str, shape: Tuple[int, int] = (299, 299) ) -> np.array: """ This function takes a smiles str and an image shape. It renders the chemical structures using CDK with random rendering/depiction settings and returns an RGB image (np.array) with the given image shape. The general workflow here is a JPype adaptation of code published by <NAME> in 'Groovy Cheminformatics with the Chemistry Development Kit': https://egonw.github.io/cdkbook/ctr.html#depict-a-compound-as-an-image with additional adaptations to create all the different depiction types from https://github.com/cdk/cdk/wiki/Standard-Generator Args: smiles (str): SMILES representation of molecule shape (Tuple[int, int], optional): im shape. Defaults to (299, 299) Returns: np.array: Chemical structure depiction """ cdk_base = "org.openscience.cdk" # Read molecule from SMILES str SCOB = JClass(cdk_base + ".silent.SilentChemObjectBuilder") SmilesParser = JClass( cdk_base + ".smiles.SmilesParser")( SCOB.getInstance()) if self.random_choice([True, False, False], log_attribute="cdk_kekulized"): SmilesParser.kekulise(False) molecule = SmilesParser.parseSmiles(smiles) # Add hydrogens for coordinate generation (to make it look nicer/ # avoid overlaps) matcher = JClass( cdk_base + ".atomtype.CDKAtomTypeMatcher").getInstance( molecule.getBuilder()) for atom in molecule.atoms(): atom_type = matcher.findMatchingAtomType(molecule, atom) JClass( cdk_base + ".tools.manipulator.AtomTypeManipulator").configure( atom, atom_type) adder = JClass(cdk_base + ".tools.CDKHydrogenAdder").getInstance( molecule.getBuilder() ) adder.addImplicitHydrogens(molecule) AtomContainerManipulator = JClass( cdk_base + ".tools.manipulator.AtomContainerManipulator" ) AtomContainerManipulator.convertImplicitToExplicitHydrogens(molecule) # Instantiate StructureDiagramGenerator, determine coordinates sdg = JClass(cdk_base + ".layout.StructureDiagramGenerator")() sdg.setMolecule(molecule) sdg.generateCoordinates(molecule) molecule = sdg.getMolecule() # Remove explicit hydrogens again AtomContainerManipulator.suppressHydrogens(molecule) # Rotate molecule randomly point = JClass( cdk_base + ".geometry.GeometryTools").get2DCenter(molecule) rot_degrees = self.random_choice(range(360)) JClass(cdk_base + ".geometry.GeometryTools").rotate( molecule, point, rot_degrees ) # Get Generators generators = JClass("java.util.ArrayList")() BasicSceneGenerator = JClass( "org.openscience.cdk.renderer.generators.BasicSceneGenerator" )() generators.add(BasicSceneGenerator) font_size = self.random_choice( range(10, 20), log_attribute="cdk_atom_label_font_size" ) Font = JClass("java.awt.Font") font_name = self.random_choice( ["Verdana", "Times New Roman", "Arial", "Gulliver Regular"], # log_attribute='cdk_atom_label_font' ) font_style = self.random_choice( [Font.PLAIN, Font.BOLD], # log_attribute='cdk_atom_label_font_style' ) font = Font(font_name, font_style, font_size) StandardGenerator = JClass( cdk_base + ".renderer.generators.standard.StandardGenerator" )(font) generators.add(StandardGenerator) # Instantiate renderer AWTFontManager = JClass(cdk_base + ".renderer.font.AWTFontManager") renderer = JClass(cdk_base + ".renderer.AtomContainerRenderer")( generators, AWTFontManager() ) # Create an empty image of the right size y, x = self.random_image_size(shape) # Workaround for structures that are cut off at edged of images: # Make image twice as big, reduce Zoom factor, then remove white # areas at borders and resize to originally desired shape # TODO: Find out why the structures are cut off in the first place y = y * 3 x = x * 3 drawArea = JClass("java.awt.Rectangle")(x, y) BufferedImage = JClass("java.awt.image.BufferedImage") image = BufferedImage(x, y, BufferedImage.TYPE_INT_RGB) # Draw the molecule renderer.setup(molecule, drawArea) model = renderer.getRenderer2DModel() # Get random rendering settings model, molecule = self.get_random_cdk_rendering_settings( model, molecule) double = JClass("java.lang.Double") model.set( JClass( cdk_base + ".renderer.generators.BasicSceneGenerator.ZoomFactor"), double(0.75), ) g2 = image.getGraphics() g2.setColor(JClass("java.awt.Color").WHITE) g2.fillRect(0, 0, x, y) AWTDrawVisitor = JClass( "org.openscience.cdk.renderer.visitor.AWTDrawVisitor") renderer.paint(molecule, AWTDrawVisitor(g2)) # Write the image into a format that can be read by skimage ImageIO = JClass("javax.imageio.ImageIO") os = JClass("java.io.ByteArrayOutputStream")() Base64 = JClass("java.util.Base64") ImageIO.write( image, JClass("java.lang.String")("PNG"), Base64.getEncoder().wrap(os)) depiction = bytes(os.toString("UTF-8")) depiction = base64.b64decode(depiction) # Read image in skimage depiction = sk_io.imread(depiction, plugin="imageio") # Normalise padding and get non-distorted image of right size depiction = self.normalise_padding(depiction) depiction = self.central_square_image(depiction) depiction = self.resize(depiction, shape) depiction = img_as_ubyte(depiction) return depiction def normalise_padding(self, im: np.array) -> np.array: """This function takes an RGB image (np.array) and deletes white space at the borders. Then 0-10% of the image width/height is added as padding again. The modified image is returned Args: im: input image (np.array) Returns: output: the modified image (np.array) """ # Remove white space at borders mask = im > 200 all_white = mask.sum(axis=2) > 0 rows = np.flatnonzero((~all_white).sum(axis=1)) cols = np.flatnonzero((~all_white).sum(axis=0)) crop = im[rows.min(): rows.max() + 1, cols.min(): cols.max() + 1, :] # Add padding again. pad_range = np.arange(5, int(crop.shape[0] * 0.2), 1) if len(pad_range) > 0: pad = self.random_choice(np.arange(5, int(crop.shape[0] * 0.2), 1)) else: pad = 5 crop = np.pad( crop, pad_width=((pad, pad), (pad, pad), (0, 0)), mode="constant", constant_values=255, ) return crop def central_square_image(self, im: np.array) -> np.array: """ This function takes image (np.array) and will add white padding so that the image has a square shape with the width/height of the longest side of the original image. Args: im (np.array): Input image Returns: np.array: Output image """ # Create new blank white image max_wh = max(im.shape) new_im = 255 * np.ones((max_wh, max_wh, 3), np.uint8) # Determine paste coordinates and paste image upper = int((new_im.shape[0] - im.shape[0]) / 2) lower = int((new_im.shape[0] - im.shape[0]) / 2) + im.shape[0] left = int((new_im.shape[1] - im.shape[1]) / 2) right = int((new_im.shape[1] - im.shape[1]) / 2) + im.shape[1] new_im[upper:lower, left:right] = im return new_im def random_depiction( self, smiles: str, shape: Tuple[int, int] = (299, 299) ) -> np.array: """ This function takes a SMILES and depicts it using Rdkit, Indigo or CDK. The depiction method and the specific parameters for the depiction are chosen completely randomly. The purpose of this function is to enable depicting a diverse variety of chemical structure depictions. Args: smiles (str): SMILES representation of molecule shape (Tuple[int, int], optional): im shape. Defaults to (299, 299) Returns: np.array: Chemical structure depiction """ depiction_functions = [ self.depict_and_resize_rdkit, self.depict_and_resize_indigo, self.depict_and_resize_cdk, ] depiction_function = self.random_choice(depiction_functions) depiction = depiction_function(smiles, shape) # RDKit sometimes has troubles reading SMILES. If that happens, # use Indigo or CDK if depiction is False or depiction is None: depiction_function = self.random_choice( [self.depict_and_resize_indigo, self.depict_and_resize_cdk] ) depiction = depiction_function(smiles, shape) return depiction def resize(self, image: np.array, shape: Tuple[int]) -> np.array: """ This function takes an image (np.array) and a shape and returns the resized image (np.array). It uses Pillow to do this, as it seems to have a bigger variety of scaling methods than skimage. The up/downscaling method is chosen randomly. Args: image (np.array): the input image shape (Tuple[int, int], optional): im shape. Defaults to (299, 299) ___ Returns: np.array: the resized image """ image = Image.fromarray(image) shape = (shape[0], shape[1]) image = image.resize( shape, resample=self.random_choice(self.PIL_resize_methods) ) return np.asarray(image) def imgaug_augment( self, image: np.array, ) -> np.array: """ This function applies a random amount of augmentations to a given image (np.array) using and returns the augmented image (np.array). Args: image (np.array): input image Returns: np.array: output image (augmented) """ original_shape = image.shape # Choose number of augmentations to apply (0-2); # return image if nothing needs to be done. aug_number = self.random_choice(range(0, 3)) if not aug_number: return image # Add some padding to avoid weird artifacts after rotation image = np.pad(image, ((1, 1), (1, 1), (0, 0)), mode="constant", constant_values=255) def imgaug_rotation(): # Rotation between -10 and 10 degrees if not self.random_choice( [True, True, False], log_attribute="has_imgaug_rotation" ): return False rot_angle = self.random_choice(np.arange(-10, 10, 1)) aug = iaa.Affine(rotate=rot_angle, mode="edge", fit_output=True) return aug def imgaug_black_and_white_noise(): # Black and white noise if not self.random_choice( [True, True, False], log_attribute="has_imgaug_salt_pepper" ): return False coarse_dropout_p = self.random_choice( np.arange(0.0002, 0.0015, 0.0001)) coarse_dropout_size_percent = self.random_choice( np.arange(1.0, 1.1, 0.01)) replace_elementwise_p = self.random_choice( np.arange(0.01, 0.3, 0.01)) aug = iaa.Sequential( [ iaa.CoarseDropout( coarse_dropout_p, size_percent=coarse_dropout_size_percent), iaa.ReplaceElementwise( replace_elementwise_p, 255), ]) return aug def imgaug_shearing(): # Shearing if not self.random_choice( [True, True, False], log_attribute="has_imgaug_shearing" ): return False shear_param = self.random_choice(np.arange(-5, 5, 1)) aug = self.random_choice( [ iaa.geometric.ShearX( shear_param, mode="edge", fit_output=True), iaa.geometric.ShearY( shear_param, mode="edge", fit_output=True), ]) return aug def imgaug_imgcorruption(): # Jpeg compression or pixelation if not self.random_choice( [True, True, False], log_attribute="has_imgaug_corruption" ): return False imgcorrupt_severity = self.random_choice(np.arange(1, 2, 1)) aug = self.random_choice( [ iaa.imgcorruptlike.JpegCompression( severity=imgcorrupt_severity), iaa.imgcorruptlike.Pixelate( severity=imgcorrupt_severity), ]) return aug def imgaug_brightness_adjustment(): # Brightness adjustment if not self.random_choice( [True, True, False], log_attribute="has_imgaug_brightness_adj" ): return False brightness_adj_param = self.random_choice(np.arange(-50, 50, 1)) aug = iaa.WithBrightnessChannels(iaa.Add(brightness_adj_param)) return aug def imgaug_colour_temp_adjustment(): # Colour temperature adjustment if not self.random_choice( [True, True, False], log_attribute="has_imgaug_col_adj" ): return False colour_temp = self.random_choice(np.arange(1100, 10000, 1)) aug = iaa.ChangeColorTemperature(colour_temp) return aug # Define list of available augmentations aug_list = [ imgaug_rotation, imgaug_black_and_white_noise, imgaug_shearing, imgaug_imgcorruption, imgaug_brightness_adjustment, imgaug_colour_temp_adjustment, ] # Every one of them has a 1/3 chance of returning False aug_list = [fun() for fun in aug_list] aug_list = [fun for fun in aug_list if fun] aug = iaa.Sequential(aug_list) augmented_image = aug.augment_images([image])[0] augmented_image = self.resize(augmented_image, original_shape) augmented_image = augmented_image.astype(np.uint8) return augmented_image def add_augmentations(self, depiction: np.array) -> np.array: """ This function takes a chemical structure depiction (np.array) and returns the same image with added augmentation elements Args: depiction (np.array): chemical structure depiction Returns: np.array: chemical structure depiction with added augmentations """ if self.random_choice( [True, False, False, False, False, False], log_attribute="has_curved_arrows" ): depiction = self.add_curved_arrows_to_structure(depiction) if self.random_choice( [True, False, False], log_attribute="has_straight_arrows" ): depiction = self.add_straight_arrows_to_structure(depiction) if self.random_choice( [True, False, False, False, False, False], log_attribute="has_id_label" ): depiction = self.add_chemical_label(depiction, "ID") if self.random_choice( [True, False, False, False, False, False], log_attribute="has_R_group_label" ): depiction = self.add_chemical_label(depiction, "R_GROUP") if self.random_choice( [True, False, False, False, False, False], log_attribute="has_reaction_label", ): depiction = self.add_chemical_label(depiction, "REACTION") if self.random_choice([True, False, False]): depiction = self.imgaug_augment(depiction) return depiction def get_random_label_position( self, width: int, height: int) -> Tuple[int, int]: """ Given the width and height of an image (int), this function determines a random position in the outer 15% of the image and returns a tuple that contain the coordinates (y,x) of that position. Args: width (int): image width height (int): image height Returns: Tuple[int, int]: Random label position """ if self.random_choice([True, False]): y_range = range(0, height) x_range = list(range(0, int(0.15 * width))) + list( range(int(0.85 * width), width) ) else: y_range = list(range(0, int(0.15 * height))) + list( range(int(0.85 * height), height) ) x_range = range(0, width) return self.random_choice(y_range), self.random_choice(x_range) def ID_label_text(self) -> str: """ This function returns a string that resembles a typical chemical ID label Returns: str: Label text """ label_num = range(1, 50) label_letters = [ "a", "b", "c", "d", "e", "f", "g", "i", "j", "k", "l", "m", "n", "o", ] options = [ "only_number", "num_letter_combination", "numtonum", "numcombtonumcomb", ] option = self.random_choice(options) if option == "only_number": return str(self.random_choice(label_num)) if option == "num_letter_combination": return str(self.random_choice(label_num)) + self.random_choice( label_letters ) if option == "numtonum": return ( str(self.random_choice(label_num)) + "-" + str(self.random_choice(label_num)) ) if option == "numcombtonumcomb": return ( str(self.random_choice(label_num)) + self.random_choice(label_letters) + "-" + self.random_choice(label_letters) ) def new_reaction_condition_elements(self) -> Tuple[str, str, str]: """ Randomly redefine reaction_time, solvent and other_reactand. Returns: Tuple[str, str, str]: Reaction time, solvent, reactand """ reaction_time = self.random_choice( [str(num) for num in range(30)] ) + self.random_choice([" h", " min"]) solvent = self.random_choice( [ "MeOH", "EtOH", "CHCl3", "DCM", "iPrOH", "MeCN", "DMSO", "pentane", "hexane", "benzene", "Et2O", "THF", "DMF", ] ) other_reactand = self.random_choice( [ "HF", "HCl", "HBr", "NaOH", "Et3N", "TEA", "Ac2O", "DIBAL", "DIBAL-H", "DIPEA", "DMAP", "EDTA", "HOBT", "HOAt", "TMEDA", "p-TsOH", "Tf2O", ] ) return reaction_time, solvent, other_reactand def reaction_condition_label_text(self) -> str: """ This function returns a random string that looks like a reaction condition label. Returns: str: Reaction condition label text """ reaction_condition_label = "" label_type = self.random_choice(["A", "B", "C", "D"]) if label_type in ["A", "B"]: for n in range(self.random_choice(range(1, 5))): ( reaction_time, solvent, other_reactand, ) = self.new_reaction_condition_elements() if label_type == "A": reaction_condition_label += ( str(n + 1) + " " + other_reactand + ", " + solvent + ", " + reaction_time + "\n" ) elif label_type == "B": reaction_condition_label += ( str(n + 1) + " " + other_reactand + ", " + solvent + " (" + reaction_time + ")\n" ) elif label_type == "C": ( reaction_time, solvent, other_reactand, ) = self.new_reaction_condition_elements() reaction_condition_label += ( other_reactand + "\n" + solvent + "\n" + reaction_time ) elif label_type == "D": reaction_condition_label += self.random_choice( self.new_reaction_condition_elements() ) return reaction_condition_label def make_R_group_str(self) -> str: """ This function returns a random string that looks like an R group label. It generates them by inserting randomly chosen elements into one of five templates. Returns: str: R group label text """ rest_variables = [ "X", "Y", "Z", "R", "R1", "R2", "R3", "R4", "R5", "R6", "R7", "R8", "R9", "R10", "Y2", "D", ] # Load list of superatoms (from OSRA) superatoms = self.superatoms label_type = self.random_choice(["A", "B", "C", "D", "E"]) R_group_label = "" if label_type == "A": for _ in range(1, self.random_choice(range(2, 6))): R_group_label += ( self.random_choice(rest_variables) + " = " + self.random_choice(superatoms) + "\n" ) elif label_type == "B": R_group_label += " " + \ self.random_choice(rest_variables) + "\n" for n in range(1, self.random_choice(range(2, 6))): R_group_label += str(n) + " " + \ self.random_choice(superatoms) + "\n" elif label_type == "C": R_group_label += ( " " + self.random_choice(rest_variables) + " " + self.random_choice(rest_variables) + "\n" ) for n in range(1, self.random_choice(range(2, 6))): R_group_label += ( str(n) + " " + self.random_choice(superatoms) + " " + self.random_choice(superatoms) + "\n" ) elif label_type == "D": R_group_label += ( " " + self.random_choice(rest_variables) + " " + self.random_choice(rest_variables) + " " + self.random_choice(rest_variables) + "\n" ) for n in range(1, self.random_choice(range(2, 6))): R_group_label += ( str(n) + " " + self.random_choice(superatoms) + " " + self.random_choice(superatoms) + " " + self.random_choice(superatoms) + "\n" ) if label_type == "E": for n in range(1, self.random_choice(range(2, 6))): R_group_label += ( str(n) + " " + self.random_choice(rest_variables) + " = " + self.random_choice(superatoms) + "\n" ) return R_group_label def add_chemical_label( self, image: np.array, label_type: str, foreign_fonts: bool = True ) -> np.array: """ This function takes an image (np.array) and adds random text that looks like a chemical ID label, an R group label or a reaction condition label around the structure. It returns the modified image. The label type is determined by the parameter label_type (str), which needs to be 'ID', 'R_GROUP' or 'REACTION' Args: image (np.array): Chemical structure depiction label_type (str): 'ID', 'R_GROUP' or 'REACTION' foreign_fonts (bool, optional): Defaults to True. Returns: np.array: Chemical structure depiction with label """ im = Image.fromarray(image) orig_image = deepcopy(im) width, height = im.size # Choose random font if self.random_choice([True, False]) or not foreign_fonts: font_dir = self.HERE.joinpath("fonts/") # In half of the cases: Use foreign-looking font to generate # bigger noise variety else: font_dir = self.HERE.joinpath("foreign_fonts/") fonts = os.listdir(str(font_dir)) # Choose random font size font_sizes = range(10, 20) size = self.random_choice(font_sizes) # Generate random string that resembles the desired type of label if label_type == "ID": label_text = self.ID_label_text() if label_type == "R_GROUP": label_text = self.make_R_group_str() if label_type == "REACTION": label_text = self.reaction_condition_label_text() try: font = ImageFont.truetype( str(os.path.join(str(font_dir), self.random_choice(fonts))), size=size ) except OSError: font = ImageFont.load_default() draw = ImageDraw.Draw(im, "RGBA") # Try different positions with the condition that the label´does not # overlap with non-white pixels (the structure) for _ in range(50): y_pos, x_pos = self.get_random_label_position(width, height) bounding_box = draw.textbbox( (x_pos, y_pos), label_text, font=font ) # left, up, right, low paste_region = orig_image.crop(bounding_box) try: mean = ImageStat.Stat(paste_region).mean except ZeroDivisionError: return np.asarray(im) if sum(mean) / len(mean) == 255: draw.text((x_pos, y_pos), label_text, font=font, fill=(0, 0, 0, 255)) break return np.asarray(im) def add_curved_arrows_to_structure(self, image: np.array) -> np.array: """ This function takes an image of a chemical structure (np.array) and adds between 2 and 4 curved arrows in random positions in the central part of the image. Args: image (np.array): Chemical structure depiction Returns: np.array: Chemical structure depiction with curved arrows """ height, width, _ = image.shape image = Image.fromarray(image) orig_image = deepcopy(image) # Determine area where arrows are pasted. x_min, x_max = (int(0.1 * width), int(0.9 * width)) y_min, y_max = (int(0.1 * height), int(0.9 * height)) arrow_dir = os.path.normpath( str(self.HERE.joinpath("arrow_images/curved_arrows/")) ) for _ in range(self.random_choice(range(2, 4))): # Load random curved arrow image, resize and rotate it randomly. arrow_image = Image.open( os.path.join( str(arrow_dir), self.random_choice( os.listdir( str(arrow_dir))))) new_arrow_image_shape = int( (x_max - x_min) / self.random_choice(range(3, 6)) ), int((y_max - y_min) / self.random_choice(range(3, 6))) arrow_image = self.resize( np.asarray(arrow_image), new_arrow_image_shape) arrow_image = Image.fromarray(arrow_image) arrow_image = arrow_image.rotate( self.random_choice(range(360)), resample=self.random_choice( [Image.BICUBIC, Image.NEAREST, Image.BILINEAR] ), expand=True, ) # Try different positions with the condition that the arrows are # overlapping with non-white pixels (the structure) for _ in range(50): x_position = self.random_choice( range(x_min, x_max - new_arrow_image_shape[0]) ) y_position = self.random_choice( range(y_min, y_max - new_arrow_image_shape[1]) ) paste_region = orig_image.crop( ( x_position, y_position, x_position + new_arrow_image_shape[0], y_position + new_arrow_image_shape[1], ) ) mean = ImageStat.Stat(paste_region).mean if sum(mean) / len(mean) < 252: image.paste( arrow_image, (x_position, y_position), arrow_image) break return np.asarray(image) def get_random_arrow_position( self, width: int, height: int) -> Tuple[int, int]: """ Given the width and height of an image (int), this function determines a random position to paste a reaction arrow in the outer 15% frame of the image Args: width (_type_): image width height (_type_): image height Returns: Tuple[int, int]: Random arrow position """ if self.random_choice([True, False]): y_range = range(0, height) x_range = list(range(0, int(0.15 * width))) + list( range(int(0.85 * width), width) ) else: y_range = list(range(0, int(0.15 * height))) + list( range(int(0.85 * height), height) ) x_range = range(0, int(0.5 * width)) return self.random_choice(y_range), self.random_choice(x_range) def add_straight_arrows_to_structure(self, image: np.array) -> np.array: """ This function takes an image of a chemical structure (np.array) and adds between 1 and 2 straight arrows in random positions in the image (no overlap with other elements) Args: image (np.array): Chemical structure depiction Returns: np.array: Chemical structure depiction with straight arrow """ height, width, _ = image.shape image = Image.fromarray(image) arrow_dir = os.path.normpath( str(self.HERE.joinpath("arrow_images/straight_arrows/")) ) for _ in range(self.random_choice(range(1, 3))): # Load random curved arrow image, resize and rotate it randomly. arrow_image = Image.open( os.path.join( str(arrow_dir), self.random_choice( os.listdir( str(arrow_dir))))) # new_arrow_image_shape = (int(width * # self.random_choice(np.arange(0.9, 1.5, 0.1))), # int(height/10 * self.random_choice(np.arange(0.7, 1.2, 0.1)))) # arrow_image = arrow_image.resize(new_arrow_image_shape, # resample=Image.BICUBIC) # Rotate completely randomly in half of the cases and in 180° steps # in the other cases (higher probability that pasting works) if self.random_choice([True, False]): arrow_image = arrow_image.rotate( self.random_choice(range(360)), resample=self.random_choice( [Image.BICUBIC, Image.NEAREST, Image.BILINEAR] ), expand=True, ) else: arrow_image = arrow_image.rotate( self.random_choice([180, 360])) new_arrow_image_shape = arrow_image.size # Try different positions with the condition that the arrows are # overlapping with non-white pixels (the structure) for _ in range(50): y_position, x_position = self.get_random_arrow_position( width, height) x2_position = x_position + new_arrow_image_shape[0] y2_position = y_position + new_arrow_image_shape[1] # Make sure we only check a region inside of the image if x2_position > width: x2_position = width - 1 if y2_position > height: y2_position = height - 1 paste_region = image.crop( (x_position, y_position, x2_position, y2_position) ) try: mean = ImageStat.Stat(paste_region).mean if sum(mean) / len(mean) == 255: image.paste( arrow_image, (x_position, y_position), arrow_image) break except ZeroDivisionError: pass return np.asarray(image) def to_grayscale_float_img(self, image: np.array) -> np.array: """ This function takes an image (np.array), converts it to grayscale and returns it. Args: image (np.array): image Returns: np.array: grayscale float image """ return img_as_float(rgb2gray(image)) def depict_save( self, smiles: str, images_per_structure: int, output_dir: str, augment: bool, ID: str, shape: Tuple[int, int] = (299, 299), seed: int = 42, ): """ This function takes a SMILES str, the amount of images to create per SMILES str and the path of an output directory. It then creates images_per_structure depictions of the chemical structure that is represented by the SMILES str and saves it as PNG images in output_dir. If augment == True, it adds augmentations to the structure depiction. If an ID is given, it is used as the base filename. Otherwise, the SMILES str is used. Args: smiles (str): SMILES representation of molecule images_per_structure (int): Number of images to create per SMILES output_dir (str): output directory path augment (bool): Add augmentations (if True) ID (str): ID (used for name of saved image) shape (Tuple[int, int], optional): im shape. Defaults to (299, 299) seed (int, optional): Seed. Defaults to 42. """ depictor = RandomDepictor(seed + 13) if not ID: name = smiles else: name = ID for n in range(images_per_structure): if augment: image = depictor(smiles, shape) else: image = depictor.random_depiction(smiles, shape) output_file_path = os.path.join( output_dir, name + "_" + str(n) + ".png") sk_io.imsave(output_file_path, img_as_ubyte(image)) def batch_depict_save( self, smiles_list: List[str], images_per_structure: int, output_dir: str, augment: bool, ID_list: List[str], shape: Tuple[int, int] = (299, 299), processes: int = 4, seed: int = 42, ) -> None: """ Batch generation of chemical structure depictions without usage of fingerprints. The images are saved at a given path. Args: smiles_list (List[str]): List of SMILES str images_per_structure (int): Amount of images to create per SMILES output_dir (str): Output directory augment (bool): indicates whether or not to use augmentations ID_list (List[str]): List of IDs (should be as long as smiles_list) shape (Tuple[int, int], optional): Defaults to (299, 299). processes (int, optional): Number of threads. Defaults to 4. seed (int, optional): Seed for random decisions. Defaults to 42. """ starmap_tuple_generator = ( ( smiles_list[n], images_per_structure, output_dir, augment, ID_list[n], shape, (seed * n + 1) * len(smiles_list), # individual seed ) for n in range(len(smiles_list)) ) with get_context("spawn").Pool(processes) as p: p.starmap(self.depict_save, starmap_tuple_generator) def depict_from_fingerprint( self, smiles: str, fingerprints: List[np.array], schemes: List[Dict], shape: Tuple[int, int] = (299, 299), seed: int = 42, ) -> np.array: """ This function takes a SMILES representation of a molecule, a list of one or two fingerprints and a list of the corresponding fingerprint schemes and generates a chemical structure depiction that fits the fingerprint. ___ If only one fingerprint/scheme is given, we assume that they contain information for a depiction without augmentations. If two are given, we assume that the first one contains information about the depiction and the second one contains information about the augmentations. ___ All this function does is set the class attributes in a manner that random_choice() knows to not to actually pick parameters randomly. Args: fingerprints (List[np.array]): List of one or two fingerprints schemes (List[Dict]): List of one or two fingerprint schemes shape (Tuple[int,int]): Desired output image shape Returns: np.array: Chemical structure depiction """ # This needs to be done to ensure that the Java Virtual Machine is # running when working with multiproessing depictor = RandomDepictor(seed=seed) self.from_fingerprint = True self.active_fingerprint = fingerprints[0] self.active_scheme = schemes[0] # Depict molecule if "indigo" in list(schemes[0].keys())[0]: depiction = depictor.depict_and_resize_indigo(smiles, shape) elif "rdkit" in list(schemes[0].keys())[0]: depiction = depictor.depict_and_resize_rdkit(smiles, shape) elif "cdk" in list(schemes[0].keys())[0]: depiction = depictor.depict_and_resize_cdk(smiles, shape) # Add augmentations if len(fingerprints) == 2: self.active_fingerprint = fingerprints[1] self.active_scheme = schemes[1] depiction = self.add_augmentations(depiction) self.from_fingerprint, self.active_fingerprint, self.active_scheme = ( False, False, False, ) return depiction def depict_save_from_fingerprint( self, smiles: str, fingerprints: List[np.array], schemes: List[Dict], output_dir: str, filename: str, shape: Tuple[int, int] = (299, 299), seed: int = 42, ) -> None: """ This function takes a SMILES representation of a molecule, a list of one or two fingerprints and a list of the corresponding fingerprint schemes, generates a chemical structure depiction that fits the fingerprint and saves the resulting image at a given path. ___ If only one fingerprint/scheme is given, we assume that they contain information for a depiction without augmentations. If two are given, we assume that the first one contains information about the depiction and the second one contains information about the augmentations. ___ All this function does is set the class attributes in a manner that random_choice() knows to not to actually pick parameters randomly. Args: smiles (str): SMILES representation of molecule fingerprints (List[np.array]): List of one or two fingerprints schemes (List[Dict]): List of one or two fingerprint schemes output_dir (str): output directory filename (str): filename shape (Tuple[int,int]): output image shape Defaults to (299,299). seed (int): Seed for remaining random decisions Returns: np.array: Chemical structure depiction """ # Generate chemical structure depiction image = self.depict_from_fingerprint( smiles, fingerprints, schemes, shape, seed) # Save at given_path: output_file_path = os.path.join(output_dir, filename + ".png") sk_io.imsave(output_file_path, img_as_ubyte(image)) def batch_depict_save_with_fingerprints( self, smiles_list: List[str], images_per_structure: int, output_dir: str, ID_list: List[str], indigo_proportion: float = 0.15, rdkit_proportion: float = 0.3, cdk_proportion: float = 0.55, aug_proportion: float = 0.5, shape: Tuple[int, int] = (299, 299), processes: int = 4, seed: int = 42, ) -> None: """ Batch generation of chemical structure depictions with usage of fingerprints. This takes longer than the procedure with batch_depict_save but the diversity of the depictions and augmentations is ensured. The images are saved in the given output_directory Args: smiles_list (List[str]): List of SMILES str images_per_structure (int): Amount of images to create per SMILES output_dir (str): Output directory ID_list (List[str]): IDs (len: smiles_list * images_per_structure) indigo_proportion (float): Indigo proportion. Defaults to 0.15. rdkit_proportion (float): RDKit proportion. Defaults to 0.3. cdk_proportion (float): CDK proportion. Defaults to 0.55. aug_proportion (float): Augmentation proportion. Defaults to 0.5. shape (Tuple[int, int]): [description]. Defaults to (299, 299). processes (int, optional): Number of threads. Defaults to 4. """ # Duplicate elements in smiles_list images_per_structure times smiles_list = [ smi for smi in smiles_list for _ in range(images_per_structure)] # Generate corresponding amount of fingerprints dataset_size = len(smiles_list) FR = DepictionFeatureRanges() fingerprint_tuples = FR.generate_fingerprints_for_dataset( dataset_size, indigo_proportion, rdkit_proportion, cdk_proportion, aug_proportion, ) starmap_tuple_generator = ( ( smiles_list[n], fingerprint_tuples[n], [ FR.FP_length_scheme_dict[len(element)] for element in fingerprint_tuples[n] ], output_dir, ID_list[n], shape, n * 100 * seed, ) for n in range(len(fingerprint_tuples)) ) with get_context("spawn").Pool(processes) as p: p.starmap( self.depict_save_from_fingerprint, starmap_tuple_generator) return None def batch_depict_with_fingerprints( self, smiles_list: List[str], images_per_structure: int, indigo_proportion: float = 0.15, rdkit_proportion: float = 0.3, cdk_proportion: float = 0.55, aug_proportion: float = 0.5, shape: Tuple[int, int] = (299, 299), processes: int = 4, seed: int = 42, ) -> None: """ Batch generation of chemical structure depictions with usage of fingerprints. This takes longer than the procedure with batch_depict_save but the diversity of the depictions and augmentations is ensured. The images are saved in the given output_directory Args: smiles_list (List[str]): List of SMILES str images_per_structure (int): Amount of images to create per SMILES output_dir (str): Output directory ID_list (List[str]): IDs (len: smiles_list * images_per_structure) indigo_proportion (float): Indigo proportion. Defaults to 0.15. rdkit_proportion (float): RDKit proportion. Defaults to 0.3. cdk_proportion (float): CDK proportion. Defaults to 0.55. aug_proportion (float): Augmentation proportion. Defaults to 0.5. shape (Tuple[int, int]): [description]. Defaults to (299, 299). processes (int, optional): Number of threads. Defaults to 4. """ # Duplicate elements in smiles_list images_per_structure times smiles_list = [ smi for smi in smiles_list for _ in range(images_per_structure)] # Generate corresponding amount of fingerprints dataset_size = len(smiles_list) FR = DepictionFeatureRanges() fingerprint_tuples = FR.generate_fingerprints_for_dataset( dataset_size, indigo_proportion, rdkit_proportion, cdk_proportion, aug_proportion, ) starmap_tuple_generator = ( ( smiles_list[n], fingerprint_tuples[n], [ FR.FP_length_scheme_dict[len(element)] for element in fingerprint_tuples[n] ], shape, n * 100 * seed, ) for n in range(len(fingerprint_tuples)) ) with get_context("spawn").Pool(processes) as p: depictions = p.starmap( self.depict_from_fingerprint, starmap_tuple_generator ) return list(depictions) class DepictionFeatureRanges(RandomDepictor): """Class for depiction feature fingerprint generation""" def __init__(self): super().__init__() # Fill ranges. By simply using all the depiction and augmentation # functions, the available features are saved by the overwritten # random_choice function. We just have to make sure to run through # every available decision once to get all the information about the # feature space that we need. smiles = "CN1C=NC2=C1C(=O)N(C(=O)N2C)C" # Call every depiction function depiction = self(smiles) depiction = self.depict_and_resize_cdk(smiles) depiction = self.depict_and_resize_rdkit(smiles) depiction = self.depict_and_resize_indigo(smiles) # Call augmentation function depiction = self.add_augmentations(depiction) # Generate schemes for Fingerprint creation self.schemes = self.generate_fingerprint_schemes() ( self.CDK_scheme, self.RDKit_scheme, self.Indigo_scheme, self.augmentation_scheme, ) = self.schemes # Generate the pool of all valid fingerprint combinations self.generate_all_possible_fingerprints() self.FP_length_scheme_dict = { len(self.CDK_fingerprints[0]): self.CDK_scheme, len(self.RDKit_fingerprints[0]): self.RDKit_scheme, len(self.Indigo_fingerprints[0]): self.Indigo_scheme, len(self.augmentation_fingerprints[0]): self.augmentation_scheme, } def random_choice(self, iterable: List, log_attribute: str = False) -> Any: """ In RandomDepictor, this function would take an iterable, call random_choice() on it, increase the seed attribute by 1 and return the result. ___ Here, this function is overwritten, so that it also sets the class attribute $log_attribute_range to contain the iterable. This way, a DepictionFeatureRanges object can easily be filled with all the iterables that define the complete depiction feature space. ___ Args: iterable (List): iterable to pick from log_attribute (str, optional): ID for fingerprint. Defaults to False. Returns: Any: "Randomly" picked element """ if log_attribute: setattr(self, "{}_range".format(log_attribute), iterable) self.seed += 1 random.seed(self.seed) result = random.choice(iterable) # Add result(s) to augmentation_logger if log_attribute and self.depiction_features: found_logged_attribute = getattr( self.augmentation_logger, log_attribute) # If the attribute is not saved in a list, simply write it, # otherwise append it if not isinstance(found_logged_attribute, list): setattr(self.depiction_features, log_attribute, result) else: setattr( self.depiction_features, log_attribute, found_logged_attribute + [result], ) return result def generate_fingerprint_schemes(self) -> List[Dict]: """ Generates fingerprint schemes (see generate_fingerprint_scheme()) for the depictions with CDK, RDKit and Indigo as well as the augmentations. ___ Returns: List[Dict]: [cdk_scheme: Dict, rdkit_scheme: Dict, indigo_scheme: Dict, augmentation_scheme: Dict] """ fingerprint_schemes = [] range_IDs = [att for att in dir(self) if "range" in att] # Generate fingerprint scheme for our cdk, indigo and rdkit depictions depiction_toolkits = ["cdk", "rdkit", "indigo", ""] for toolkit in depiction_toolkits: toolkit_range_IDs = [att for att in range_IDs if toolkit in att] # Delete toolkit-specific ranges # (The last time this loop runs, only augmentation-related ranges # are left) for ID in toolkit_range_IDs: range_IDs.remove(ID) toolkit_range_dict = { attr[:-6]: list(set(getattr(self, attr))) for attr in toolkit_range_IDs } fingerprint_scheme = self.generate_fingerprint_scheme( toolkit_range_dict) fingerprint_schemes.append(fingerprint_scheme) return fingerprint_schemes def generate_fingerprint_scheme(self, ID_range_map: Dict) -> Dict: """ This function takes the ID_range_map and returns a dictionary that defines where each feature is represented in the depiction feature fingerprint. ___ Example: >> example_ID_range_map = {'thickness': [0, 1, 2, 3], 'kekulized': [True, False]} >> generate_fingerprint_scheme(example_ID_range_map) >>>> {'thickness': [{'position': 0, 'one_if': 0}, {'position': 1, 'one_if': 1}, {'position': 2, 'one_if': 2}, {'position': 3, 'one_if': 3}], 'kekulized': [{'position': 4, 'one_if': True}]} Args: ID_range_map (Dict): dict that maps an ID (str) of a feature range to the feature range itself (iterable) Returns: Dict: Map of feature ID (str) and dictionaries that define the fingerprint position and a condition """ fingerprint_scheme = {} position = 0 for feature_ID in ID_range_map.keys(): feature_range = ID_range_map[feature_ID] # Make sure numeric ranges don't take up more than 5 positions # in the fingerprint if ( type(feature_range[0]) in [int, float, np.float64, np.float32] and len(feature_range) > 5 ): subranges = self.split_into_n_sublists(feature_range, n=3) position_dicts = [] for subrange in subranges: subrange_minmax = (min(subrange), max(subrange)) position_dict = { "position": position, "one_if": subrange_minmax} position_dicts.append(position_dict) position += 1 fingerprint_scheme[feature_ID] = position_dicts # Bools take up only one position in the fingerprint elif isinstance(feature_range[0], bool): assert len(feature_range) == 2 position_dicts = [{"position": position, "one_if": True}] position += 1 fingerprint_scheme[feature_ID] = position_dicts else: # For other types of categorical data: Each category gets one # position in the FP position_dicts = [] for feature in feature_range: position_dict = {"position": position, "one_if": feature} position_dicts.append(position_dict) position += 1 fingerprint_scheme[feature_ID] = position_dicts return fingerprint_scheme def split_into_n_sublists(self, iterable, n: int) -> List[List]: """ Takes an iterable, sorts it, splits it evenly into n lists and returns the split lists. Args: iterable ([type]): Iterable that is supposed to be split n (int): Amount of sublists to return Returns: List[List]: Split list """ iterable = sorted(iterable) iter_len = len(iterable) sublists = [] for i in range(0, iter_len, int(np.ceil(iter_len / n))): sublists.append(iterable[i: i + int(np.ceil(iter_len / n))]) return sublists def get_number_of_possible_fingerprints(self, scheme: Dict) -> int: """ This function takes a fingerprint scheme (Dict) as returned by generate_fingerprint_scheme() and returns the number of possible fingerprints for that scheme. Args: scheme (Dict): Output of generate_fingerprint_scheme() Returns: int: Number of possible fingerprints """ comb_count = 1 for feature_key in scheme.keys(): if len(scheme[feature_key]) != 1: # n fingerprint positions -> n options # (because only one position can be [1]) # n = 3 --> [1][0][0] or [0][1][0] or [0][0][1] comb_count *= len(scheme[feature_key]) else: # One fingerprint position -> two options: [0] or [1] comb_count *= 2 return comb_count def get_FP_building_blocks(self, scheme: Dict) -> List[List[List]]: """ This function takes a fingerprint scheme (Dict) as returned by generate_fingerprint_scheme() and returns a list of possible building blocks. Example: scheme = {'thickness': [{'position': 0, 'one_if': 0}, {'position': 1, 'one_if': 1}, {'position': 2, 'one_if': 2}, {'position': 3, 'one_if': 3}], 'kekulized': [{'position': 4, 'one_if': True}]} --> Output: [[[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]], [[1], [0]]] Args: scheme (Dict): Output of generate_fingerprint_scheme() Returns: List that contains the valid fingerprint parts that represent the different features """ FP_building_blocks = [] for feature_key in scheme.keys(): position_condition_dicts = scheme[feature_key] FP_building_blocks.append([]) # Add every single valid option to the building block for position_index in range(len(position_condition_dicts)): # Add list of zeros FP_building_blocks[-1].append([0] * len(position_condition_dicts)) # Replace one zero with a one FP_building_blocks[-1][-1][position_index] = 1 # If a feature is described by only one position in the FP, # make sure that 0 and 1 are listed options if FP_building_blocks[-1] == [[1]]: FP_building_blocks[-1].append([0]) return FP_building_blocks def flatten_fingerprint( self, unflattened_list: List[List], ) -> List: """ This function takes a list of lists and returns a list. ___ Looks like this could be one line elsewhere but this function used for parallelisation of FP generation and consequently needs to be wrapped up in a separate function. Args: unflattened_list (List[List[X,Y,Z]]) Returns: flattened_list (List[X,Y,Z]): """ flattened_list = [ element for sublist in unflattened_list for element in sublist ] return flattened_list def generate_all_possible_fingerprints_per_scheme( self, scheme: Dict, ) -> List[List[int]]: """ This function takes a fingerprint scheme (Dict) as returned by generate_fingerprint_scheme() and returns a List of all possible fingerprints for that scheme. Args: scheme (Dict): Output of generate_fingerprint_scheme() name (str): name that is used for filename of saved FPs Returns: List[List[int]]: List of fingerprints """ # Determine valid building blocks for fingerprints FP_building_blocks = self.get_FP_building_blocks(scheme) # Determine cartesian product of valid building blocks to get all # valid fingerprints FP_generator = product(*FP_building_blocks) flattened_fingerprints = list( map(self.flatten_fingerprint, FP_generator)) return flattened_fingerprints def generate_all_possible_fingerprints(self) -> None: """ This function generates all possible valid fingerprint combinations for the four available fingerprint schemes if they have not been created already. Otherwise, they are loaded from files. This function returns None but saves the fingerprint pools as a class attribute $ID_fingerprints """ exists_already = False FP_names = ["CDK", "RDKit", "Indigo", "augmentation"] for scheme_index in range(len(self.schemes)): n_FP = self.get_number_of_possible_fingerprints( self.schemes[scheme_index]) # Load fingerprint pool from file (if it exists) FP_filename = "{}_fingerprints.npz".format(FP_names[scheme_index]) FP_file_path = self.HERE.joinpath(FP_filename) if os.path.exists(FP_file_path): fps = np.load(FP_file_path)["arr_0"] if len(fps) == n_FP: exists_already = True # Otherwise, generate the fingerprint pool if not exists_already: print("No saved fingerprints found. This may take a minute.") fps = self.generate_all_possible_fingerprints_per_scheme( self.schemes[scheme_index] ) np.savez_compressed(FP_file_path, fps) print( "{} fingerprints were saved in {}.".format( FP_names[scheme_index], FP_file_path ) ) setattr( self, "{}_fingerprints".format( FP_names[scheme_index]), fps) return def convert_to_int_arr( self, fingerprints: List[List[int]] ) -> List[DataStructs.cDataStructs.ExplicitBitVect]: """ Takes a list of fingerprints (List[int]) and returns them as a list of rdkit.DataStructs.cDataStructs.ExplicitBitVect so that they can be processed by RDKit's MaxMinPicker. Args: fingerprints (List[List[int]]): List of fingerprints Returns: List[DataStructs.cDataStructs.ExplicitBitVect]: Converted arrays """ converted_fingerprints = [] for fp in fingerprints: bitstring = "".join(np.array(fp).astype(str)) fp_converted = DataStructs.cDataStructs.CreateFromBitString( bitstring) converted_fingerprints.append(fp_converted) return converted_fingerprints def pick_fingerprints( self, fingerprints: List[List[int]], n: int, ) -> np.array: """ Given a list of fingerprints and a number n of fingerprints to pick, this function uses RDKit's MaxMin Picker to pick n fingerprints and returns them. Args: fingerprints (List[List[int]]): List of fingerprints n (int): Number of fingerprints to pick Returns: np.array: Picked fingerprints """ converted_fingerprints = self.convert_to_int_arr(fingerprints) """TODO: I don't like this function definition in the function but according to the RDKit Documentation, the fingerprints need to be given in the distance function as the default value.""" def dice_dist( fp_index_1: int, fp_index_2: int, fingerprints: List[ DataStructs.cDataStructs.ExplicitBitVect ] = converted_fingerprints, ) -> float: """ Returns the dice similarity between two fingerprints. Args: fp_index_1 (int): index of first fingerprint in fingerprints fp_index_2 (int): index of second fingerprint in fingerprints fingerprints (List[cDataStructs.ExplicitBitVect]): fingerprints Returns: float: Dice similarity between the two fingerprints """ return 1 - DataStructs.DiceSimilarity( fingerprints[fp_index_1], fingerprints[fp_index_2] ) n_fingerprints = len(fingerprints) # If we want to pick more fingerprints than there are in the pool, # simply distribute the complete pool as often as possible and pick # the amount that is not dividable by the size of the pool if n > n_fingerprints: oversize_factor = int(n / n_fingerprints) picked_fingerprints = fingerprints * oversize_factor n = n - n_fingerprints * oversize_factor else: picked_fingerprints = False picker = MaxMinPicker() pick_indices = picker.LazyPick(dice_dist, n_fingerprints, n, seed=42) if isinstance(picked_fingerprints, bool): picked_fingerprints = np.array([fingerprints[i] for i in pick_indices]) else: picked_fingerprints = np.concatenate((picked_fingerprints, np.array([fingerprints[i] for i in pick_indices]))) return picked_fingerprints def generate_fingerprints_for_dataset( self, size: int, indigo_proportion: float = 0.15, rdkit_proportion: float = 0.3, cdk_proportion: float = 0.55, aug_proportion: float = 0.5, ) -> List[List[int]]: """Given a dataset size (int) and (optional) proportions for the different types of fingerprints, this function returns Args: size (int): Desired dataset size, number of returned fingerprints indigo_proportion (float): Indigo proportion. Defaults to 0.15. rdkit_proportion (float): RDKit proportion. Defaults to 0.3. cdk_proportion (float): CDK proportion. Defaults to 0.55. aug_proportion (float): Augmentation proportion. Defaults to 0.5. Raises: ValueError: - If the sum of Indigo, RDKit and CDK proportions is not 1 - If the augmentation proportion is > 1 Returns: List[List[int]]: List of lists containing the fingerprints. ___ Depending on augmentation_proportion, the depiction fingerprints are paired with augmentation fingerprints or not. Example output: [[$some_depiction_fingerprint, $some augmentation_fingerprint], [$another_depiction_fingerprint] [$yet_another_depiction_fingerprint]] """ # Make sure that the given proportion arguments make sense if sum((indigo_proportion, rdkit_proportion, cdk_proportion)) != 1: raise ValueError( "Sum of Indigo, CDK and RDKit proportion arguments has to be 1" ) if aug_proportion > 1: raise ValueError( "The proportion of augmentation fingerprints can't be > 1." ) # Pick and return diverse fingerprints picked_Indigo_fingerprints = self.pick_fingerprints( self.Indigo_fingerprints, int(size * indigo_proportion) ) picked_RDKit_fingerprints = self.pick_fingerprints( self.RDKit_fingerprints, int(size * rdkit_proportion) ) picked_CDK_fingerprints = self.pick_fingerprints( self.CDK_fingerprints, int(size * cdk_proportion) ) picked_augmentation_fingerprints = self.pick_fingerprints( self.augmentation_fingerprints, int(size * aug_proportion) ) # Distribute augmentation_fingerprints over depiction fingerprints fingerprint_tuples = self.distribute_elements_evenly( picked_augmentation_fingerprints, picked_Indigo_fingerprints, picked_RDKit_fingerprints, picked_CDK_fingerprints, ) # Shuffle fingerprint tuples randomly to avoid the same smiles # always being depicted with the same cheminformatics toolkit random.seed(self.seed) random.shuffle(fingerprint_tuples) return fingerprint_tuples def distribute_elements_evenly( self, elements_to_be_distributed: List[Any], *args: List[Any] ) -> List[List[Any]]: """ This function distributes the elements from elements_to_be_distributed evenly over the lists of elements given in args. It can be used to link augmentation fingerprints to given lists of depiction fingerprints. Example: distribute_elements_evenly(["A", "B", "C", "D"], [1, 2, 3], [4, 5, 6]) Output: [[1, "A"], [2, "B"], [3], [4, "C"], [5, "D"], [6]] --> see test_distribute_elements_evenly() in ../Tests/test_functions.py Args: elements_to_be_distributed (List[Any]): elements to be distributed args: Every arg is a list of elements (B) Returns: List[List[Any]]: List of Lists (B, A) where the elements A are distributed evenly over the elements B according to the length of the list of elements B """ # Make sure that the input is valid args_total_len = len( [element for sublist in args for element in sublist]) if len(elements_to_be_distributed) > args_total_len: raise ValueError( "Can't take more elements to be distributed than in args.") output = [] start_index = 0 for element_list in args: # Define part of elements_to_be_distributed that belongs to this # element_sublist sublist_len = len(element_list) end_index = start_index + int( sublist_len / args_total_len * len(elements_to_be_distributed) ) select_elements_to_be_distributed = elements_to_be_distributed[ start_index:end_index ] for element_index in range(len(element_list)): if element_index < len(select_elements_to_be_distributed): output.append( [ element_list[element_index], select_elements_to_be_distributed[element_index], ] ) else: output.append([element_list[element_index]]) start_index = start_index + int( sublist_len / args_total_len * len(elements_to_be_distributed) ) return output class DepictionFeatures: """ A DepictionFeatures objects simply holds all depiction parameters of a chemical structure depiction generated with RanDepict """ def __init__(self): pass
StarcoderdataPython
3326976
<filename>SRT/reservation.py from .constants import * class SRTTicket: SEAT_TYPE = {"1": "일반실", "2": "특실"} PASSENGER_TYPE = { "1": "어른/청소년", "2": "장애 1~3급", "3": "장애 4~6급", "4": "경로", "5": "어린이", } def __init__(self, data): self.car = data["scarNo"] self.seat = data["seatNo"] self.seat_type_code = data["psrmClCd"] self.seat_type = self.SEAT_TYPE[self.seat_type_code] self.passenger_type_code = data["psgTpCd"] self.passenger_type = self.PASSENGER_TYPE[self.passenger_type_code] self.price = int(data["rcvdAmt"]) self.original_price = int(data["stdrPrc"]) self.discount = int(data["dcntPrc"]) def __str__(self): return self.dump() def __repr__(self): return self.dump() def dump(self): d = ( "{car}호차 {seat} ({seat_type}) {passenger_type} " "[{price}원({discount}원 할인)]" ).format( car=self.car, seat=self.seat, seat_type=self.seat_type, passenger_type=self.passenger_type, price=self.price, discount=self.discount, ) return d class SRTReservation: def __init__(self, train, pay, tickets): self.reservation_number = train["pnrNo"] self.total_cost = train["rcvdAmt"] self.seat_count = train["tkSpecNum"] self.train_code = pay["stlbTrnClsfCd"] self.train_name = TRAIN_NAME[self.train_code] self.train_number = pay["trnNo"] self.dep_date = pay["dptDt"] self.dep_time = pay["dptTm"] self.dep_station_code = pay["dptRsStnCd"] self.dep_station_name = STATION_NAME[self.dep_station_code] self.arr_time = pay["arvTm"] self.arr_station_code = pay["arvRsStnCd"] self.arr_station_name = STATION_NAME[self.arr_station_code] self.payment_date = pay["iseLmtDt"] self.payment_time = pay["iseLmtTm"] self._tickets = tickets def __str__(self): return self.dump() def __repr__(self): return self.dump() def dump(self): d = ( "[{name}] " "{month}월 {day}일, " "{dep}~{arr}" "({dep_hour}:{dep_min}~{arr_hour}:{arr_min}) " "{cost}원({seats}석), " "구입기한 {pay_month}월 {pay_day}일 {pay_hour}:{pay_min}" ).format( name=self.train_name, month=self.dep_date[4:6], day=self.dep_date[6:8], dep=self.dep_station_name, arr=self.arr_station_name, dep_hour=self.dep_time[0:2], dep_min=self.dep_time[2:4], arr_hour=self.arr_time[0:2], arr_min=self.arr_time[2:4], cost=self.total_cost, seats=self.seat_count, pay_month=self.payment_date[4:6], pay_day=self.payment_date[6:8], pay_hour=self.payment_time[0:2], pay_min=self.payment_time[2:4], ) return d @property def tickets(self): return self._tickets
StarcoderdataPython
4814702
<gh_stars>0 #!/usr/bin/env python import math n = 325489 square = n while True: root = math.sqrt(square) if root%1 == 0 and root%2 == 1: break square = square + 1 diff = (square - n)%root middle = root//2 ans = abs(diff - middle) + (root//2)
StarcoderdataPython
111044
<gh_stars>1-10 """ Tools for working with files and file systems """ import os import re import itertools import functools import calendar import contextlib import logging import datetime import glob import tempfile import platform import ctypes import importlib import pathlib from typing import Dict, Union from singledispatch import singledispatch log = logging.getLogger(__name__) def get_unique_pathname(path, root=''): """Return a pathname possibly with a number appended to it so that it is unique in the directory.""" path = os.path.join(root, path) # consider the path supplied, then the paths with numbers appended potentialPaths = itertools.chain((path,), __get_numbered_paths(path)) potentialPaths = itertools.filterfalse(os.path.exists, potentialPaths) return next(potentialPaths) def __get_numbered_paths(filepath): """Append numbers in sequential order to the filename or folder name Numbers should be appended before the extension on a filename.""" format = '%s (%%d)%s' % splitext_files_only(filepath) return map(lambda n: format % n, itertools.count(1)) def splitext_files_only(filepath): "Custom version of splitext that doesn't perform splitext on directories" return (filepath, '') if os.path.isdir(filepath) else os.path.splitext(filepath) def set_time(filename, mod_time): """ Set the modified time of a file """ log.debug('Setting modified time to %s', mod_time) mtime = calendar.timegm(mod_time.utctimetuple()) # utctimetuple discards microseconds, so restore it (for consistency) mtime += mod_time.microsecond / 1000000 atime = os.stat(filename).st_atime os.utime(filename, (atime, mtime)) def get_time(filename): """ Get the modified time for a file as a datetime instance """ ts = os.stat(filename).st_mtime return datetime.datetime.utcfromtimestamp(ts) def insert_before_extension(filename, content): """ Given a filename and some content, insert the content just before the extension. >>> insert_before_extension('pages.pdf', '-old') 'pages-old.pdf' """ parts = list(os.path.splitext(filename)) parts[1:1] = [content] return ''.join(parts) class DirectoryStack(list): r""" ... DirectoryStack includes a context manager function that can be used to easily perform an operation in a separate directory. >>> orig_dir = os.getcwd() >>> stack = DirectoryStack() >>> with stack.context('/'): context_dir = os.getcwd() >>> orig_dir == os.getcwd() True >>> orig_dir == context_dir False >>> len(stack) 0 >>> stack.pushd('/') >>> len(stack) 1 >>> os.getcwd() == os.path.abspath('/') True >>> last_dir = stack.popd() >>> last_dir == context_dir True >>> os.getcwd() == orig_dir True """ def pushd(self, new_dir): self.append(os.getcwd()) os.chdir(new_dir) def popd(self): res = os.getcwd() os.chdir(self.pop()) return res @contextlib.contextmanager def context(self, new_dir): self.pushd(new_dir) try: yield finally: self.popd() def recursive_glob(root, spec): """ Like iglob, but recurse directories >>> any('path.py' in result for result in recursive_glob('.', '*.py')) True >>> all(result.startswith('.') for result in recursive_glob('.', '*.py')) True >>> len(list(recursive_glob('.', '*.foo'))) 0 """ specs = ( os.path.join(dirpath, dirname, spec) for dirpath, dirnames, filenames in os.walk(root) for dirname in dirnames ) return itertools.chain.from_iterable(glob.iglob(spec) for spec in specs) def encode(name, system='NTFS'): """ Encode the name for a suitable name in the given filesystem >>> encode('Test :1') 'Test _1' """ assert system == 'NTFS', 'unsupported filesystem' special_characters = r'<>:"/\|?*' + ''.join(map(chr, range(32))) pattern = '|'.join(map(re.escape, special_characters)) pattern = re.compile(pattern) return pattern.sub('_', name) class save_to_file: """ A context manager for saving some content to a file, and then cleaning up the file afterward. >>> with save_to_file(b'foo') as filename: ... assert 'foo' == open(filename).read() """ def __init__(self, content): self.content = content def __enter__(self): tf = tempfile.NamedTemporaryFile(delete=False) tf.write(self.content) tf.close() self.filename = tf.name return tf.name def __exit__(self, type, value, traceback): os.remove(self.filename) @contextlib.contextmanager def tempfile_context(*args, **kwargs): """ A wrapper around tempfile.mkstemp to create the file in a context and delete it after. """ fd, filename = tempfile.mkstemp(*args, **kwargs) os.close(fd) try: yield filename finally: os.remove(filename) def replace_extension(new_ext, filename): """ >>> replace_extension('.pdf', 'myfile.doc') 'myfile.pdf' """ return os.path.splitext(filename)[0] + new_ext def ExtensionReplacer(new_ext): """ A reusable function to replace a file's extension with another >>> repl = ExtensionReplacer('.pdf') >>> repl('myfile.doc') 'myfile.pdf' >>> repl('myfile.txt') 'myfile.pdf' >>> repl('myfile') 'myfile.pdf' """ return functools.partial(replace_extension, new_ext) def ensure_dir_exists(func): "wrap a function that returns a dir, making sure it exists" @functools.wraps(func) def make_if_not_present(): dir = func() if not os.path.isdir(dir): os.makedirs(dir) return dir return make_if_not_present def read_chunks(file, chunk_size=2048, update_func=lambda x: None): """ Read file in chunks of size chunk_size (or smaller). If update_func is specified, call it on every chunk with the amount read. """ while True: res = file.read(chunk_size) if not res: break update_func(len(res)) yield res def is_hidden(path): """ Check whether a file is presumed hidden, either because the pathname starts with dot or because the platform indicates such. >>> is_hidden('.') False """ full_path = os.path.abspath(path) name = os.path.basename(full_path) def no(path): return False platform_hidden = globals().get('is_hidden_' + platform.system(), no) return name.startswith('.') or platform_hidden(full_path) def is_hidden_Windows(path): res = ctypes.windll.kernel32.GetFileAttributesW(path) assert res != -1 return bool(res & 2) def is_hidden_Darwin(path): Foundation = importlib.import_module('Foundation') url = Foundation.NSURL.fileURLWithPath_(path) res = url.getResourceValue_forKey_error_(None, Foundation.NSURLIsHiddenKey, None) return res[1] FilesSpec = Dict[str, Union[str, bytes, 'FilesSpec']] # type: ignore def build(spec: FilesSpec, prefix=pathlib.Path()): """ Build a set of files/directories, as described by the spec. Each key represents a pathname, and the value represents the content. Content may be a nested directory. >>> spec = { ... 'README.txt': "A README file", ... "foo": { ... "__init__.py": "", ... "bar": { ... "__init__.py": "", ... }, ... "baz.py": "# Some code", ... } ... } >>> tmpdir = getfixture('tmpdir') >>> build(spec, tmpdir) """ for name, contents in spec.items(): create(contents, pathlib.Path(prefix) / name) @singledispatch def create(content: dict, path): path.mkdir(exist_ok=True) build(content, prefix=path) @create.register def _(content: bytes, path): path.write_bytes(content) @create.register # type: ignore[no-redef] def _(content: str, path): path.write_text(content)
StarcoderdataPython
4807547
<filename>tests/bot/test_handle_message.py """Test handle_message.""" import pytest from phial import Message, Phial from phial.errors import ArgumentValidationError def test_handle_message_handles_none_correctly() -> None: """Test handle_message handle None correctly.""" def command() -> None: raise Exception("Should not be called") def middleware(message: Message) -> None: raise Exception("Should not be called") bot = Phial("token") bot.add_command("test", command) bot.add_middleware(middleware) bot._handle_message(None) def test_message_passed_to_middleware() -> None: """Test handle_message passes to middleware.""" def command() -> None: raise Exception("Should not be called") middleware_calls = [0] def middleware(message: Message) -> None: middleware_calls[0] += 1 bot = Phial("token") bot.add_command("test", command) bot.add_middleware(middleware) message = Message("text", "channel", "user", "timestamp", "team") bot._handle_message(message) assert middleware_calls[0] == 1 def test_message_ignored_if_no_prefix() -> None: """Test message is ignored if it has no prefix.""" middleware_calls = [0] command_calls = [0] def command() -> None: command_calls[0] += 1 def middleware(message: Message) -> Message: middleware_calls[0] += 1 return message bot = Phial("token") bot.add_command("test", command) bot.add_middleware(middleware) message = Message("text", "channel", "user", "timestamp", "team") bot._handle_message(message) assert middleware_calls[0] == 1 assert command_calls[0] == 0 def test_message_calls_command_correctly() -> None: """Test message invokes a command correctly.""" middleware_calls = [0] command_calls = [0] def command() -> None: command_calls[0] += 1 def middleware(message: Message) -> Message: middleware_calls[0] += 1 return message bot = Phial("token") bot.add_command("test", command) bot.add_middleware(middleware) message = Message("!test", "channel", "user", "timestamp", "team") bot._handle_message(message) assert middleware_calls[0] == 1 assert command_calls[0] == 1 def test_message_calls_command_correctly_when_no_prefix() -> None: """Test message invokes a command correctly with no prefix.""" middleware_calls = [0] command_calls = [0] def command() -> None: command_calls[0] += 1 def middleware(message: Message) -> Message: middleware_calls[0] += 1 return message bot = Phial("token", {"prefix": ""}) bot.add_command("test", command) bot.add_middleware(middleware) message = Message("test", "channel", "user", "timestamp", "team") bot._handle_message(message) assert middleware_calls[0] == 1 assert command_calls[0] == 1 def test_message_falls_back_correctly() -> None: """Test message hits fallback command correctly.""" middleware_calls = [0] command_calls = [0] fallback_calls = [0] def command() -> None: command_calls[0] += 1 def middleware(message: Message) -> Message: middleware_calls[0] += 1 return message def fallback(message: Message) -> None: fallback_calls[0] += 1 bot = Phial("token") bot.add_command("test", command) bot.add_middleware(middleware) bot.add_fallback_command(fallback) message = Message("!test-fallback", "channel", "user", "timestamp", "team") bot._handle_message(message) assert middleware_calls[0] == 1 assert command_calls[0] == 0 assert fallback_calls[0] == 1 def test_argument_validation_works_correctly() -> None: """Test argument validation works correctly.""" command_calls = [0] def command(name: str) -> None: command_calls[0] += 1 bot = Phial("token") bot.add_command("test", command) message = Message("!test", "channel", "user", "timestamp", "team") with pytest.raises(ArgumentValidationError): bot._handle_message(message) assert command_calls[0] == 0 def test_type_validation_works_correctly() -> None: """Test type validation works correctly.""" command_calls = [0] def command(age: int) -> None: command_calls[0] += 1 bot = Phial("token") bot.add_command("test <age>", command) message = Message("!test string", "channel", "user", "timestamp", "team") bot._handle_message(message) assert command_calls[0] == 0
StarcoderdataPython
1784413
<filename>refla/db.py<gh_stars>0 from copy import copy data = [ { 'id': 1, 'title': u'Discuss report with John', 'done': False }, { 'id': 2, 'title': u'Get a haircut', 'done': True }, { 'id': 3, 'title': u'Pay electricity bill', 'done': True }, { 'id': 4, 'title': u'Check gym hours', 'done': False } ] def get_all(): return data def get(item_id): items = [item for item in data if item['id'] == item_id] return items[0] if len(items) > 0 else None def insert(item): item = copy(item) item['id'] = data[-1]['id'] + 1 data.append(item) return item def update(item_id, item): new_item = copy(item) new_item['id'] = item_id globals()['data'] = map(lambda x: new_item if x['id'] == item_id else x, data) return new_item def delete(item_id): data.remove(get(item_id))
StarcoderdataPython
1665032
from auth.validate import validade client = validade() def status_update(tweet): updateStatusRequest = client.request( f'https://api.twitter.com/1.1/statuses/update.json?status={tweet}', method='POST' ) return updateStatusRequest def home_timeline(): homeTimelineRequest = client.request( 'https://api.twitter.com/1.1/statuses/home_timeline.json' ) return homeTimelineRequest
StarcoderdataPython
3309628
<reponame>PureFunctor/amalgam-lisp from __future__ import annotations from contextlib import contextmanager from typing import ( cast, Dict, Iterable, Mapping, Optional, TYPE_CHECKING, ) if TYPE_CHECKING: # pragma: no cover from amalgam.amalgams import Amalgam from amalgam.engine import Engine Bindings = Mapping[str, Amalgam] class TopLevelPop(Exception): """Raised at :meth:`Environment.env_pop`.""" class Environment: """ Class that manages and represents nested execution environments. Attributes: bindings (:class:`Dict[str, Amalgam]`): A mapping of :class:`str` keys to :class:`.amalgams.Amalgam` values. parent (:class:`Optional[Environment]`): The parent :class:`Environment` instance to search into, forming a linked list. level (:class:`int`): The current length of the :class:`Environment` linked list. If a :attr:`~.Environment.parent` is provided, sets the current value to the parent's :attr:`~.Environment.level` + 1. search_depth (:class:`int`): The search depth when traversing the :class:`Environment` linked list in the :meth:`~.Environment.__contains__`, :meth:`~.Environment.__delitem__`, :meth:`~.Environment.__getitem__`, and :meth:`~.Environment.__setitem__` methods. name (:class:`str`): The name of the execution environment. engine (:class:`Engine`): A reference to the engine managing the :class:`.parser.Parser` instance and the global :class:`.Environment` instance. """ def __init__( self, bindings: Bindings = None, parent: Environment = None, name: str = "unknown", engine: Engine = None, ) -> None: self.bindings: Dict[str, Amalgam] = {**bindings} if bindings else {} self.parent: Optional[Environment] = parent self.level: int = parent.level + 1 if parent else 0 self.search_depth: int = 0 self.name = name self.engine = cast("Engine", engine) @property def search_chain(self) -> Iterable[Dict[str, Amalgam]]: """ Yields :attr:`bindings` of nested :class:`Environment` instances. """ yield self.bindings if self.parent is None: return if self.search_depth >= 0: depth = self.search_depth else: depth = self.level _self = self.parent for _ in range(depth): yield _self.bindings _self = _self.parent def __getitem__(self, item: str) -> Amalgam: """ Attempts to recursively obtain the provided `item`. Searches with respect to the current :attr:`search_depth` of the calling :class:`Environment` instance. If an existing `item` is encountered at a certain depth less than the target depth, returns that `item`, otherwise, raises :class:`SymbolNotFound`. """ for bindings in self.search_chain: if item in bindings: return bindings[item] raise KeyError(item) def __setitem__(self, item: str, value: Amalgam) -> None: """ Attempts to recursively set the provided `value` to an `item`. Searches with respect to the current :attr:`search_depth` of the calling :class:`Environment` instance. If an existing `item` is encountered at a certain depth less than the target depth, overrides that `item` instead. """ _search_chain = list(self.search_chain) for bindings in _search_chain: if item in bindings: bindings[item] = value break else: _search_chain[-1][item] = value def __delitem__(self, item: str) -> None: """ Attempts to recursively delete the provided `item`. Searches with respect to the current :attr:`search_depth` of the calling :class:`Environment` instance. If an existing `item` is encountered at a certain depth less than the target depth, deletes that `item` instead. """ for bindings in self.search_chain: if item in bindings: del bindings[item] break else: raise KeyError(item) def __contains__(self, item: str) -> bool: """ Recursively checks whether an `item` exists. Searches with respect to the current :attr:`search_depth` of the calling :class:`Environment` instance. If the target `item` is encountered at a certain depth less than the target depth, immediately returns `True`, otherwise, returns `False`. """ for bindings in self.search_chain: if item in bindings: return True return False @contextmanager def search_at(self, *, depth=0): """ Context manager for temporarily setting the lookup depth. The provided `depth` argument must not exceed the :attr:`level` of the calling :class:`Environment` instance, and will raise a :class:`ValueError` if done so. >>> env = Environment(FUNCTIONS) >>> >>> with env.search_at(depth=42): ... env["+"] # Raises ValueError Any negative integer can be passed as a `depth` to signify an infinite lookup until the top-most environment. >>> env = Environment(FUNCTIONS) >>> cl_env = env.env_push({...}) >>> >>> with cl_env.search_at(depth=-1): ... cl_env["+"] # Searches `env` """ if depth > self.level: exc = ValueError( f"depth {depth} is greater than maximum level {self.level}" ) raise exc self.search_depth = depth try: yield self finally: self.search_depth = 0 def env_push(self, bindings: Bindings = None, name: str = None) -> Environment: """ Creates a new :class:`Environment` and binds the calling instance as its parent environment. """ if name is None: name = f"{self.name}-child" return Environment( bindings=bindings, parent=self, name=name, engine=self.engine, ) def env_pop(self) -> Environment: """ Discards the current :class:`Environment` and returns the parent :class:`Environment`. """ if self.parent is not None: return self.parent else: raise TopLevelPop("cannot discard top-level Environment") def __repr__(self) -> str: # pragma: no cover return f"<Environment \"name={self.name}\" @ {hex(id(self))}>"
StarcoderdataPython
1773029
""" Author: <NAME> Date: Nov 25, 2020 Retrieve datasets from a URL, file of URLs, or GitHub directory URL Usage: get_datasets.py -i=<input> -o=<output> [-u] [-f] [-g] [-v] Options: -i <input>, --input <input> Input URL -o <output>, --output <output> The local output location to transfer the datasets [-u] (Default) Retrieve the input file from the given URL [-f] Retrieve the list of file URLs specified in the input file [-g] Retrieve the entire file contents of a github directory [-v] Report verbose output of dataset retrieval process """ import os import sys import json import urllib.request from docopt import docopt args = docopt(__doc__) def get_datasets(): # Starting dataset retrieval print("\n\n##### get_datasets: Retrieving datasets") if verbose: print(f"Running get_dataset with arguments: \n {args}") assert input, "Empty input argument provided" if not os.path.exists(output_path): os.makedirs(output_path) assert os.path.exists(output_path), "Invalid output path provided" download_urls = [] if args['-g'] is True: # If this is a github repo, construct GET api request to # retrieve all repo directory datafiles github_api_url = "https://api.github.com/repos/" repo_url = args["--input"].split("/") # These magic numbers parse out the unnecessary github url branch info github_api_url = github_api_url + \ ("/").join(repo_url[3:5] + ["contents"] + repo_url[7:]) try: if verbose: print(f"Attempting to connect to: {github_api_url}") response = urllib.request.urlopen(github_api_url).read() except ConnectionError: print(f"Failed to connect to: {github_api_url}. \nExiting") sys.exit(os.EX_NOHOST) if verbose: print("Connection Success!") git_files = json.loads(response.decode('utf-8')) for file in git_files: download_urls.append(file["download_url"]) elif args['-f'] is True: assert os.path.exists(input), "Input file is not valid" input_fh = open(input, "r") for line in input_fh: download_urls.append(line.strip()) else: download_urls.append(input) # Download all files requested for file_url in download_urls: output_file = output_path + os.path.sep + os.path.basename(file_url) try: if verbose: print(f"Attempting to retrieve {file_url}") transfer = urllib.request.urlretrieve(file_url, output_file) if verbose: print(f"Successfully transferred to {output_file}") except ConnectionError: print(f"Unable to retrieve: {file_url}, continuing") print("\n##### get_datasets: Finished retrieval") if __name__ == "__main__": input = args["--input"] output_path = args["--output"] verbose = args["-v"] get_datasets()
StarcoderdataPython
4800490
<gh_stars>1-10 from unittest.mock import Mock from dagster import build_init_resource_context, ResourceDefinition from hca_orchestration.contrib.data_repo.data_repo_service import DataRepoService from hca_orchestration.resources.config.datasets import find_or_create_project_dataset from hca_orchestration.models.hca_dataset import TdrDataset def test_find_or_create_project_dataset_returns_existing_dataset(): data_repo_service = Mock(spec=DataRepoService) data_repo_service.find_dataset = Mock( return_value=TdrDataset( dataset_name="fake_name", dataset_id="fake_dataset_id", project_id="fake_gcp_proj_id", billing_profile_id="fake_billing_prof_id", bq_location="fake_bq_location" ) ) init_context = build_init_resource_context( config={ "env": "dev", "region": "US", "policy_members": ["<EMAIL>"], "billing_profile_id": "fake_billing_profile_id", "qualifier": None }, resources={ "hca_project_id": ResourceDefinition.hardcoded_resource("08BCA7FF-A15A-4D58-806B-7CD45979768B"), "data_repo_service": ResourceDefinition.hardcoded_resource(data_repo_service), "run_start_time": ResourceDefinition.hardcoded_resource(1639494828) } ) result = find_or_create_project_dataset(init_context) data_repo_service.find_dataset.assert_called_once_with( "hca_dev_08bca7ffa15a4d58806b7cd45979768b", None ) assert result.dataset_id == "fake_dataset_id", "Should receive the matching dataset" def test_find_or_create_project_dataset_creates_new_dataset(): data_repo_service = Mock(spec=DataRepoService) data_repo_service.find_dataset = Mock(return_value=None) init_context = build_init_resource_context( config={ "env": "dev", "region": "US", "policy_members": ["<EMAIL>"], "billing_profile_id": "fake_billing_profile_id", "qualifier": None }, resources={ "hca_project_id": ResourceDefinition.hardcoded_resource("08BCA7FF-A15A-4D58-806B-7CD45979768B"), "data_repo_service": ResourceDefinition.hardcoded_resource(data_repo_service), "run_start_time": ResourceDefinition.hardcoded_resource(1639494828) } ) find_or_create_project_dataset(init_context) data_repo_service.find_dataset.assert_called_once_with( "hca_dev_08bca7ffa15a4d58806b7cd45979768b", None ) data_repo_service.create_dataset.assert_called_once_with( 'hca_dev_08bca7ffa15a4d58806b7cd45979768b__20211214', 'dev', 'fake_billing_profile_id', ['<EMAIL>'], 'US', '{"hca_project_id": "08bca7ffa15a4d58806b7cd45979768b"}' ) def test_find_or_create_project_dataset_creates_new_dataset_with_qualifier(): data_repo_service = Mock(spec=DataRepoService) data_repo_service.find_dataset = Mock(return_value=None) init_context = build_init_resource_context( config={ "env": "dev", "region": "US", "policy_members": ["<EMAIL>"], "billing_profile_id": "fake_billing_profile_id", "qualifier": "test_qualifier" }, resources={ "hca_project_id": ResourceDefinition.hardcoded_resource("08BCA7FF-A15A-4D58-806B-7CD45979768B"), "data_repo_service": ResourceDefinition.hardcoded_resource(data_repo_service), "run_start_time": ResourceDefinition.hardcoded_resource(1639494828) } ) find_or_create_project_dataset(init_context) data_repo_service.find_dataset.assert_called_once_with( "hca_dev_08bca7ffa15a4d58806b7cd45979768b", "test_qualifier" ) data_repo_service.create_dataset.assert_called_once_with( 'hca_dev_08bca7ffa15a4d58806b7cd45979768b__20211214_test_qualifier', 'dev', 'fake_billing_profile_id', ['<EMAIL>'], 'US', '{"hca_project_id": "08bca7ffa15a4d58806b7cd45979768b"}' ) def test_find_or_create_project_dataset_transforms_real_prod_to_prod(): data_repo_service = Mock(spec=DataRepoService) init_context = build_init_resource_context( config={ "env": "real_prod", "region": "US", "policy_members": ["<EMAIL>"], "billing_profile_id": "fake_billing_profile_id", "qualifier": None }, resources={ "hca_project_id": ResourceDefinition.hardcoded_resource("08BCA7FF-A15A-4D58-806B-7CD45979768B"), "data_repo_service": ResourceDefinition.hardcoded_resource(data_repo_service), "run_start_time": ResourceDefinition.hardcoded_resource(1639494828) } ) find_or_create_project_dataset(init_context) data_repo_service.find_dataset.assert_called_once_with( "hca_prod_08bca7ffa15a4d58806b7cd45979768b", None )
StarcoderdataPython
187875
<gh_stars>1-10 # coding=utf-8 # Copyright 2011 Foursquare Labs Inc. All Rights Reserved from __future__ import (nested_scopes, generators, division, absolute_import, with_statement, print_function, unicode_literals) import unittest from foursquare.source_code_analysis.scala.scala_import_sorter import ScalaImportSorter class ScalaImportRewriterTest(unittest.TestCase): def _do_test_sorter(self, input_text, expected_text): sorter = ScalaImportSorter(False, fancy=True) sorted_text = sorter.apply_to_text('test.scala', input_text).new_text self.assertEqual(expected_text, sorted_text) def test_rewriter(self): self._do_test_sorter( """ import scala.foo.Foo import com.baz.Baz import java.bar.Bar """, """ import java.bar.Bar import scala.foo.Foo import com.baz.Baz """) self._do_test_sorter( """ import com.foursquare.base.{Foo, Bar} import scala.foo.Foo import javax.bar.Bar import com.foursquare.base.Baz import scalax.baz.Baz import java.quux.{Quuux => Quux2} import org.foo.bar.Baz import scala.qux.Qux import java.quux.Quux """, """ import java.quux.{Quuux => Quux2, Quux} import javax.bar.Bar import scala.foo.Foo import scala.qux.Qux import scalax.baz.Baz import com.foursquare.base.{Bar, Baz, Foo} import org.foo.bar.Baz """) self._do_test_sorter( """ // Random stuff package foo.bar import scala.foo.{Foo => Foo1, Foo2} import com.baz.Baz import java.bar.Bar blah blah blah blah if (cond) { import javax.foo.Foo import java.bar.Bar } more blah """, """ // Random stuff package foo.bar import java.bar.Bar import scala.foo.{Foo => Foo1, Foo2} import com.baz.Baz blah blah blah blah if (cond) { import java.bar.Bar import javax.foo.Foo } more blah """) self._do_test_sorter( """ import com.baz.{Baz2, Baz3} import java.bar.Bar import com.baz.Baz """, """ import java.bar.Bar import com.baz.{Baz, Baz2, Baz3} """) self._do_test_sorter( """ import com.baz.{Baz2, Baz3} import java.bar.Bar import com.baz.Baz.Qux._ """, """ import java.bar.Bar import com.baz.{Baz2, Baz3} import com.baz.Baz.Qux._ """) self._do_test_sorter( """ import com.foursquare.legacyconfig.LegacyDynamicConfigDirectory import net.liftweb.common.{Box, Empty} import net.liftweb.http.Req import com.foursquare.base.IpHelpers """, """ import com.foursquare.base.IpHelpers import com.foursquare.legacyconfig.LegacyDynamicConfigDirectory import net.liftweb.common.{Box, Empty} import net.liftweb.http.Req """) # Note that string is deliberately over the 120 column mark, to test that it gets shortened properly. self._do_test_sorter( """ import com.foursquare.record.{BaseUserForeignKey, BitFlagEnum => BitFlagEnumAlias, OptionalLongBitFlagField, FSMongoRecord,FSMongoMetaRecord, FSPhoneField, FSOptionalStringField, FSOptionalPhotoField, GeolocationMongo} import com.foursquare.record.MongoPoint import com.foursquare.record.{JodaDateTimeField, UserForeignKey, MongoEmbeddedObjectField, MongoEnumField, NamedMongoIdentifier, OptionalJodaDateTimeField, PhoneFormatMode => PhoneFormatModeAlias, RandomStringField, SaltedPasswordField, UpdateableRecord, UnpersistedFK} """, """ import com.foursquare.record.{BaseUserForeignKey, BitFlagEnum => BitFlagEnumAlias, FSMongoMetaRecord, FSMongoRecord, FSOptionalPhotoField, FSOptionalStringField, FSPhoneField, GeolocationMongo, JodaDateTimeField, MongoEmbeddedObjectField, MongoEnumField, MongoPoint, NamedMongoIdentifier, OptionalJodaDateTimeField, OptionalLongBitFlagField, PhoneFormatMode => PhoneFormatModeAlias, RandomStringField, SaltedPasswordField, UnpersistedFK, UpdateableRecord, UserForeignKey} """)
StarcoderdataPython
1682583
#!/usr/bin/env python2 import string import sys _KEYWORDS = dict([ (j, i) for i, j in enumerate([ 'for', 'while', 'until', 'if', 'unless', 'elif', 'else', 'switch', 'case', '{', '}', '(', ')', ';', ',', '.', '=' ] )]) def keywords_substitution(tokens): """ Transforms an array of tokens (str) into array of recognized tokens (str, int). """ return [_KEYWORDS[t] if t in _KEYWORDS else t for t in tokens]
StarcoderdataPython
3210676
"""test_extensions.py.""" # Import a minimal text loader class, the functions for scrubber pipelines, # and the scrubber function registry from lexos.io.basic import Loader from lexos.tokenizer import extensions, make_doc # Load a text data = ["tests/test_data/Austen_Pride.txt"] loader = Loader() loader.load(data) # Make a spaCy doc doc = make_doc(loader.texts[0][0:50]) for token in doc[0:5]: print((token._.is_fruit, token._.get("is_fruit")))
StarcoderdataPython
1717794
<reponame>ankitsumitg/python-projects<filename>gas_mileage/test_milesPerGallon.py<gh_stars>1-10 """ Do Not Edit this file. You may and are encouraged to look at it for reference. """ import unittest import gas_mileage class TestMilesPerGallon(unittest.TestCase): def test001_milesPerGallonExists(self): self.assertTrue('milesPerGallon' in dir(gas_mileage), 'Function "milesPerGallon" is not defined, check your spelling') return def test002_milesPerGallonCalculate(self): expected = 30.0 actual = gas_mileage.milesPerGallon(30.0, 1.0) self.assertAlmostEqual(expected, actual, 2, 'Your milesToGallon function returned %s which is not close enough to %s' % (actual, expected)) return def test003_milesPerGallonCalculate(self): expected = 0.0 actual = gas_mileage.milesPerGallon(30.0, 0.0) self.assertAlmostEqual(expected, actual, 2, 'Your milesToGallon function returned %s which is not close enough to %s' % (actual, expected)) return def test004_milesPerGallonCalculate(self): expected = 4.66 actual = gas_mileage.milesPerGallon(317.0, 68.0) self.assertAlmostEqual(expected, actual, 2, 'Your milesToGallon function returned %s which is not close enough to %s' % (actual, expected)) return def test005_milesPerGallonCalculate(self): expected = 26.42 actual = gas_mileage.milesPerGallon(317.0, 12.0) self.assertAlmostEqual(expected, actual, 2, 'Your milesToGallon function returned %s which is not close enough to %s' % (actual, expected)) return def test006_milesPerGallonCalculate(self): expected = 0.0 actual = gas_mileage.milesPerGallon(0.0, 0.0) self.assertAlmostEqual(expected, actual, 2, 'Your milesToGallon function returned %s which is not close enough to %s' % (actual, expected)) return def test007_milesPerGallonCalculate(self): expected = 0.0 actual = gas_mileage.milesPerGallon(0.0, 1.0) self.assertAlmostEqual(expected, actual, 2, 'Your milesToGallon function returned %s which is not close enough to %s' % (actual, expected)) return if __name__ == '__main__': unittest.main()
StarcoderdataPython
1756221
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-04-25 18:26 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Plink', fields=[ ('plink_id', models.CharField(max_length=64, primary_key=True, serialize=False)), ('description', models.CharField(blank=True, default=b'', max_length=256)), ('prefab_path', models.CharField(blank=True, default=b'', max_length=256)), ('options_str', models.CharField(blank=True, default=b'{}', max_length=256)), ], ), migrations.CreateModel( name='PlinkJob', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, default=b'', max_length=128, null=True)), ('status', models.CharField(choices=[(b'0', b'Job Not Ready'), (b'101', b'Job Pending'), (b'111', b'Job Ready'), (b'121', b'Job Scheduled'), (b'131', b'Job Processing'), (b'141', b'Job Error'), (b'888', b'Cancelled'), (b'999', b'All Completed')], default=b'0', max_length=64)), ('plink_id', models.CharField(blank=True, default=b'', max_length=64)), ('result_text', models.CharField(blank=True, default=b'', max_length=2048)), ], ), migrations.CreateModel( name='PlinkOption', fields=[ ('key', models.CharField(max_length=64, primary_key=True, serialize=False, unique=True)), ('value', models.CharField(blank=True, default=b'', max_length=255, null=True)), ('plink_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='plink.Plink')), ], ), migrations.CreateModel( name='PlinkPrefabs', fields=[ ('config_id', models.CharField(max_length=264, primary_key=True, serialize=False)), ('selected_prefab_id', models.CharField(max_length=64)), ('selected_prefab_path', models.CharField(max_length=264)), ], ), ]
StarcoderdataPython
165886
<reponame>INDElab/conversationkg # -*- coding: utf-8 -*- import pickle from urllib.parse import urlparse from process_emails import extract_meta, parse_header, url_pattern,\ email_address_pattern, group_into_convos class Ledger(dict): def __init__(self): super().__init__(self) self.duplicate_entries = set() def store(self, entity_or_fact, origin, mode=None): if mode: key = (entity_or_fact, mode) else: key = entity_or_fact if key in self: self.duplicate_entries.add(key) self[key].append(origin) else: self[key] = [origin] def recall(self, entity_or_fact, mode=None): if mode: key = (entity_or_fact, mode) else: key = entity_or_fact return self[key] def invert(self): inverted_d = {} for k, v in self.items(): for item in v: if not item in inverted_d: inverted_d[item] = [] inverted_d[item].append(k) return inverted_d def pickle(self, filename="ledger.pkl"): with open(filename, "wb") as handle: pickle.dump(self, handle) @classmethod def from_pickle(cls, filename="ledger.pkl"): with open(filename, "rb") as handle: loaded = pickle.load(handle) return loaded class Person: def __init__(self, name, address, ledger): self.name = name if name else "" self.address = address if address else "" self.org = Org.from_person(self) ledger.store(self.org, self, mode="evidencedBy") def __str__(self): return self.name + " <" + self.address + ">" def __repr__(self): return str(self) def __hash__(self): return hash(str(self)) def __eq__(self, other): if not isinstance(other, Person): return False return hash(other) == hash(self) class Org: @classmethod def from_address(cls, email_addr): extracted_org = email_addr[email_addr.rfind("@")+1:] return extracted_org if extracted_org else None @classmethod def from_person(cls, person): if not person.address: return None return cls.from_address(person.address) def __init__(self, domain_name, provenance=None): self.domain_name = domain_name def __hash__(self): return hash(self.domain_name) def __eq__(self, other): if not isinstance(other, Org): return False return hash(self) == hash(other) class Link: def __init__(self, url): self.url = url try: parsed = urlparse(url) self.domain = parsed.netloc self.path = parsed.path except ValueError: self.domain = None self.path = None def __str__(self): return str(self.url) def __repr__(self): return str(self) def __hash__(self): return hash(str(self)) class Address: def __init__(self, addr): self.address = addr self.org = self.extract_org() def extract_org(self): if self.address: return self.address[self.address.rfind("@")+1:] else: None def __str__(self): return str(self.address) def __repr__(self): return str(self.address) def __hash__(self): return hash(str(self)) class Email: def __init__(self, raw_text, ledger): header_d, mail_body_raw = extract_meta(raw_text) header_d = parse_header(header_d) if header_d: self.has_header = True for k, v in header_d.items(): setattr(self, k, v) self.sender = Person(self.name, self.email, ledger) self.receiver = Person(*self.to, ledger) ledger.store(self.sender, self, mode="EvidencedBy") ledger.store(self.receiver, self, mode="EvidencedBy") if self.cc: self.cc = Person(*self.cc, ledger) ledger.store(self.cc, self, mode="EvidencedBy") else: self.has_header = False self.body_raw = mail_body_raw self.links = self.extract_links() for l in self.links: ledger.store(l, self, mode="MentionedBy") self.addresses = self.extract_addresses() for e in self.addresses: ledger.store(e, self, mode="MentionedBy") def extract_from_to(self): return (Person(self.name, self.email), Person(*self.to)) def extract_links(self): return [Link(l) for l in url_pattern.findall(self.body_raw)] def extract_addresses(self): return [Address(e) for e in email_address_pattern.findall(self.body_raw)] def __hash__(self): if self.has_header: return hash(self.id) else: return hash(self.body_raw) class Conversation: @classmethod def conversations_from_sorted_emails(cls, emails_in_temp_order, ledger): convos = group_into_convos(emails_in_temp_order) return [cls(mail_ls, ledger) for mail_ls in convos] def __init__(self, list_of_emails, ledger): if len(list_of_emails) > 1: first, *_, last = list_of_emails else: first = last = list_of_emails[0] self.start_time = first.sent self.end_time = last.sent self.emails = tuple(mail.id for mail in list_of_emails) ledger.store(self, self.emails, mode="EvidencedBy") self.senders = [m.sender for m in list_of_emails] self.receivers = [m.receiver for m in list_of_emails] self.interlocutors = set(self.senders + self.receivers) self.observers = tuple(mail.cc for mail in list_of_emails) self.orgs = tuple(person.org for person in self.interlocutors) self.mentioned_links = tuple(l for mail in list_of_emails for l in mail.links) self.mentioned_addresses = tuple(e for mail in list_of_emails for e in mail.addresses) self.topic = "\n".join((m.subject for m in list_of_emails)) def __len__(self): return len(self.emails) def __hash__(self): prod = 1 for mail_id in self.emails: prod *= hash(mail_id) return prod
StarcoderdataPython
3250544
<reponame>rsdoherty/azure-sdk-for-python # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import os from azure.identity import DefaultAzureCredential from azure.core.exceptions import HttpResponseError from azure.digitaltwins.core import DigitalTwinsClient # Scenario example of how to: # - create a DigitalTwins Service Client using the DigitalTwinsClient constructor # - create two models, one model and one component model # - get created models by modelIds one by one # - list all models by listing them using the paginated API # - decomission the created models # - delete the created models # # Preconditions: # - Environment variables have to be set # - DigitalTwins enabled device must exist on the ADT hub # # For the purpose of this example we will create temporary model and a temporay component model using random Ids. # We have to make sure these model Ids are unique within the DT instance so we use generated UUIDs. try: model_id = 'dtmi:samples:examplemodel;1' component_id = 'dtmi:samples:examplecomponent;1' temporary_component = { "@id": component_id, "@type": "Interface", "@context": "dtmi:dtdl:context;2", "displayName": "Component1", "contents": [ { "@type": "Property", "name": "ComponentProp1", "schema": "string" }, { "@type": "Telemetry", "name": "ComponentTelemetry1", "schema": "integer" } ] } temporary_model = { "@id": model_id, "@type": "Interface", "@context": "dtmi:dtdl:context;2", "displayName": "TempModel", "contents": [ { "@type": "Property", "name": "Prop1", "schema": "string" }, { "@type": "Component", "name": "Component1", "schema": component_id }, { "@type": "Telemetry", "name": "Telemetry1", "schema": "integer" } ] } # DefaultAzureCredential supports different authentication mechanisms and determines # the appropriate credential type based of the environment it is executing in. # It attempts to use multiple credential types in an order until it finds a working credential. # - AZURE_URL: The tenant ID in Azure Active Directory url = os.getenv("AZURE_URL") # DefaultAzureCredential expects the following three environment variables: # - AZURE_TENANT_ID: The tenant ID in Azure Active Directory # - AZURE_CLIENT_ID: The application (client) ID registered in the AAD tenant # - AZURE_CLIENT_SECRET: The client secret for the registered application credential = DefaultAzureCredential() service_client = DigitalTwinsClient(url, credential) # Create models new_models = [temporary_component, temporary_model] models = service_client.create_models(new_models) print('Created Models:') print(models) # Get created models get_component_model = service_client.get_model(component_id) print('Get Component Models:') print(get_component_model) get_model = service_client.get_model(model_id) print('Get Model:') print(get_model) # List all models listed_models = service_client.list_models() for model in listed_models: print(model) # Decomission models service_client.decommission_model(model_id) service_client.decommission_model(component_id) # Delete models service_client.delete_model(model_id) service_client.delete_model(component_id) except HttpResponseError as e: print("\nThis sample has caught an error. {0}".format(e.message))
StarcoderdataPython
3352476
<reponame>kyawmyomin/nornir from typing import ( Any, Callable, Dict, List, Optional, Set, Union, KeysView, ValuesView, ItemsView, Iterator, TypeVar, ) from nornir.core.configuration import Config from nornir.core.plugins.connections import ( ConnectionPlugin, ConnectionPluginRegister, ) from nornir.core.exceptions import ConnectionAlreadyOpen, ConnectionNotOpen from mypy_extensions import Arg, KwArg HostOrGroup = TypeVar("HostOrGroup", "Host", "Group") class BaseAttributes(object): __slots__ = ("hostname", "port", "username", "password", "platform") def __init__( self, hostname: Optional[str] = None, port: Optional[int] = None, username: Optional[str] = None, password: Optional[str] = None, platform: Optional[str] = None, ) -> None: self.hostname = hostname self.port = port self.username = username self.password = password self.platform = platform @classmethod def schema(cls) -> Dict[str, Any]: return { "hostname": "str", "port": "int", "username": "str", "password": "<PASSWORD>", "platform": "str", } def dict(self) -> Dict[str, Any]: return { "hostname": self.hostname, "port": self.port, "username": self.username, "password": <PASSWORD>, "platform": self.platform, } class ConnectionOptions(BaseAttributes): __slots__ = ("extras",) def __init__( self, hostname: Optional[str] = None, port: Optional[int] = None, username: Optional[str] = None, password: Optional[str] = None, platform: Optional[str] = None, extras: Optional[Dict[str, Any]] = None, ) -> None: self.extras = extras super().__init__( hostname=hostname, port=port, username=username, password=password, platform=platform, ) @classmethod def schema(self) -> Dict[str, Any]: return { "extras": {"$key": "$value"}, **super().schema(), } def dict(self) -> Dict[str, Any]: return { "extras": self.extras, **super().dict(), } class ParentGroups(List["Group"]): def __contains__(self, value: object) -> bool: if isinstance(value, str): return any([value == g.name for g in self]) else: return any([value == g for g in self]) class InventoryElement(BaseAttributes): __slots__ = ("groups", "data", "connection_options") def __init__( self, hostname: Optional[str] = None, port: Optional[int] = None, username: Optional[str] = None, password: Optional[str] = None, platform: Optional[str] = None, groups: Optional[ParentGroups] = None, data: Optional[Dict[str, Any]] = None, connection_options: Optional[Dict[str, ConnectionOptions]] = None, ) -> None: self.groups = groups or ParentGroups() self.data = data or {} self.connection_options = connection_options or {} super().__init__( hostname=hostname, port=port, username=username, password=password, platform=platform, ) @classmethod def schema(self) -> Dict[str, Any]: return { "groups": ["$group_name"], "data": {"$key": "$value"}, "connection_options": {"$connection_type": ConnectionOptions.schema()}, **super().schema(), } def dict(self) -> Dict[str, Any]: return { "groups": [g.name for g in self.groups], "data": self.data, "connection_options": { k: v.dict() for k, v in self.connection_options.items() }, **super().dict(), } class Defaults(BaseAttributes): __slots__ = ("data", "connection_options") def __init__( self, hostname: Optional[str] = None, port: Optional[int] = None, username: Optional[str] = None, password: Optional[str] = None, platform: Optional[str] = None, data: Optional[Dict[str, Any]] = None, connection_options: Optional[Dict[str, ConnectionOptions]] = None, ) -> None: self.data = data or {} self.connection_options = connection_options or {} super().__init__( hostname=hostname, port=port, username=username, password=password, platform=platform, ) @classmethod def schema(self) -> Dict[str, Any]: return { "data": {"$key": "$value"}, "connection_options": {"$connection_type": ConnectionOptions.schema()}, **super().schema(), } def dict(self) -> Dict[str, Any]: return { "data": self.data, "connection_options": { k: v.dict() for k, v in self.connection_options.items() }, **super().dict(), } class Host(InventoryElement): __slots__ = ("name", "connections", "defaults") def __init__( self, name: str, hostname: Optional[str] = None, port: Optional[int] = None, username: Optional[str] = None, password: Optional[str] = None, platform: Optional[str] = None, groups: Optional[ParentGroups] = None, data: Optional[Dict[str, Any]] = None, connection_options: Optional[Dict[str, ConnectionOptions]] = None, defaults: Optional[Defaults] = None, ) -> None: self.name = name self.defaults = defaults or Defaults(None, None, None, None, None, None, None) self.connections: Dict[str, ConnectionPlugin] = {} super().__init__( hostname=hostname, port=port, username=username, password=password, platform=platform, groups=groups, data=data, connection_options=connection_options, ) def _resolve_data(self) -> Dict[str, Any]: processed = [] result = {} for k, v in self.data.items(): processed.append(k) result[k] = v for g in self.groups: for k, v in g.items(): if k not in processed: processed.append(k) result[k] = v for k, v in self.defaults.data.items(): if k not in processed: processed.append(k) result[k] = v return result @classmethod def schema(cls) -> Dict[str, Any]: return { "name": "str", "connection_options": {"$connection_type": ConnectionOptions.schema()}, **super().schema(), } def dict(self) -> Dict[str, Any]: return { "name": self.name, "connection_options": { k: v.dict() for k, v in self.connection_options.items() }, **super().dict(), } def keys(self) -> KeysView[str]: """Returns the keys of the attribute ``data`` and of the parent(s) groups.""" return self._resolve_data().keys() def values(self) -> ValuesView[Any]: """Returns the values of the attribute ``data`` and of the parent(s) groups.""" return self._resolve_data().values() def items(self) -> ItemsView[str, Any]: """ Returns all the data accessible from a device, including the one inherited from parent groups """ return self._resolve_data().items() def has_parent_group(self, group: Union[str, "Group"]) -> bool: """Returns whether the object is a child of the :obj:`Group` ``group``""" if isinstance(group, str): return self._has_parent_group_by_name(group) else: return self._has_parent_group_by_object(group) def _has_parent_group_by_name(self, group: str) -> bool: for g in self.groups: if g.name == group or g.has_parent_group(group): return True return False def _has_parent_group_by_object(self, group: "Group") -> bool: for g in self.groups: if g is group or g.has_parent_group(group): return True return False def __getitem__(self, item: str) -> Any: try: return self.data[item] except KeyError: for g in self.groups: try: r = g[item] return r except KeyError: continue r = self.defaults.data.get(item) if r is not None: return r raise def __getattribute__(self, name: str) -> Any: if name not in ("hostname", "port", "username", "password", "platform"): return object.__getattribute__(self, name) v = object.__getattribute__(self, name) if v is None: for g in self.groups: r = getattr(g, name) if r is not None: return r return object.__getattribute__(self.defaults, name) else: return v def __bool__(self) -> bool: return bool(self.name) def __setitem__(self, item: str, value: Any) -> None: self.data[item] = value def __len__(self) -> int: return len(self._resolve_data().keys()) def __iter__(self) -> Iterator[str]: return self.data.__iter__() def __str__(self) -> str: return self.name def __repr__(self) -> str: return "{}: {}".format(self.__class__.__name__, self.name or "") def get(self, item: str, default: Any = None) -> Any: """ Returns the value ``item`` from the host or hosts group variables. Arguments: item(``str``): The variable to get default(``any``): Return value if item not found """ if hasattr(self, item): return getattr(self, item) try: return self.__getitem__(item) except KeyError: return default def get_connection_parameters( self, connection: Optional[str] = None ) -> ConnectionOptions: if not connection: d = ConnectionOptions( hostname=self.hostname, port=self.port, username=self.username, password=<PASSWORD>, platform=self.platform, extras={}, ) else: r = self._get_connection_options_recursively(connection) if r is not None: d = ConnectionOptions( hostname=r.hostname if r.hostname is not None else self.hostname, port=r.port if r.port is not None else self.port, username=r.username if r.username is not None else self.username, password=<PASSWORD> if r.password is not None else self.password, platform=r.platform if r.platform is not None else self.platform, extras=r.extras if r.extras is not None else {}, ) else: d = ConnectionOptions( hostname=self.hostname, port=self.port, username=self.username, password=<PASSWORD>, platform=self.platform, extras={}, ) return d def _get_connection_options_recursively( self, connection: str ) -> Optional[ConnectionOptions]: p = self.connection_options.get(connection) if p is None: p = ConnectionOptions(None, None, None, None, None, None) for g in self.groups: sp = g._get_connection_options_recursively(connection) if sp is not None: p.hostname = p.hostname if p.hostname is not None else sp.hostname p.port = p.port if p.port is not None else sp.port p.username = p.username if p.username is not None else sp.username p.password = p.password if p.password is not None else sp.password p.platform = p.platform if p.platform is not None else sp.platform p.extras = p.extras if p.extras is not None else sp.extras sp = self.defaults.connection_options.get(connection, None) if sp is not None: p.hostname = p.hostname if p.hostname is not None else sp.hostname p.port = p.port if p.port is not None else sp.port p.username = p.username if p.username is not None else sp.username p.password = p.password if p.password is not None else sp.password p.platform = p.platform if p.platform is not None else sp.platform p.extras = p.extras if p.extras is not None else sp.extras return p def get_connection(self, connection: str, configuration: Config) -> Any: """ The function of this method is twofold: 1. If an existing connection is already established for the given type return it 2. If none exists, establish a new connection of that type with default parameters and return it Raises: AttributeError: if it's unknown how to establish a connection for the given type Arguments: connection: Name of the connection, for instance, netmiko, paramiko, napalm... Returns: An already established connection """ if connection not in self.connections: conn = self.get_connection_parameters(connection) self.open_connection( connection=connection, configuration=configuration, hostname=conn.hostname, port=conn.port, username=conn.username, password=<PASSWORD>, platform=conn.platform, extras=conn.extras, ) return self.connections[connection].connection def open_connection( self, connection: str, configuration: Config, hostname: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, port: Optional[int] = None, platform: Optional[str] = None, extras: Optional[Dict[str, Any]] = None, default_to_host_attributes: bool = True, ) -> ConnectionPlugin: """ Open a new connection. If ``default_to_host_attributes`` is set to ``True`` arguments will default to host attributes if not specified. Raises: AttributeError: if it's unknown how to establish a connection for the given type Returns: An already established connection """ conn_name = connection existing_conn = self.connections.get(conn_name) if existing_conn is not None: raise ConnectionAlreadyOpen(conn_name) plugin = ConnectionPluginRegister.get_plugin(conn_name) conn_obj = plugin() if default_to_host_attributes: conn_params = self.get_connection_parameters(conn_name) hostname = hostname if hostname is not None else conn_params.hostname username = username if username is not None else conn_params.username password = password if password is not None else conn_params.password port = port if port is not None else conn_params.port platform = platform if platform is not None else conn_params.platform extras = extras if extras is not None else conn_params.extras conn_obj.open( hostname=hostname, username=username, password=password, port=port, platform=platform, extras=extras, configuration=configuration, ) self.connections[conn_name] = conn_obj return conn_obj def close_connection(self, connection: str) -> None: """ Close the connection""" conn_name = connection if conn_name not in self.connections: raise ConnectionNotOpen(conn_name) conn_obj = self.connections.pop(conn_name) if conn_obj is not None: conn_obj.close() def close_connections(self) -> None: # Decouple deleting dictionary elements from iterating over connections dict existing_conns = list(self.connections.keys()) for connection in existing_conns: self.close_connection(connection) class Group(Host): pass class Hosts(Dict[str, Host]): pass class Groups(Dict[str, Group]): pass TransformFunction = Callable[[Arg(Host), KwArg(Any)], None] FilterObj = Callable[[Arg(Host), KwArg(Any)], bool] class Inventory(object): __slots__ = ("hosts", "groups", "defaults") def __init__( self, hosts: Hosts, groups: Optional[Groups] = None, defaults: Optional[Defaults] = None, transform_function: TransformFunction = None, transform_function_options: Optional[Dict[str, Any]] = None, ) -> None: self.hosts = hosts self.groups = groups or Groups() self.defaults = defaults or Defaults(None, None, None, None, None, None, None) def filter( self, filter_obj: FilterObj = None, filter_func: FilterObj = None, **kwargs: Any ) -> "Inventory": filter_func = filter_obj or filter_func if filter_func: filtered = Hosts( {n: h for n, h in self.hosts.items() if filter_func(h, **kwargs)} ) else: filtered = Hosts( { n: h for n, h in self.hosts.items() if all(h.get(k) == v for k, v in kwargs.items()) } ) return Inventory(hosts=filtered, groups=self.groups, defaults=self.defaults) def __len__(self) -> int: return self.hosts.__len__() def children_of_group(self, group: Union[str, Group]) -> Set[Host]: """ Returns set of hosts that belongs to a group including those that belong indirectly via inheritance """ hosts: Set[Host] = set() for host in self.hosts.values(): if host.has_parent_group(group): hosts.add(host) return hosts @classmethod def schema(cls) -> Dict[str, Any]: """ Return serialized dictionary of inventory """ return { "hosts": {"$name": Host.schema()}, "groups": {"$group": Group.schema()}, "defaults": Defaults.schema(), } def dict(self) -> Dict[str, Any]: """ Return serialized dictionary of inventory """ return { "hosts": {n: h.dict() for n, h in self.hosts.items()}, "groups": {n: g.dict() for n, g in self.groups.items()}, "defaults": self.defaults.dict(), }
StarcoderdataPython
3350282
<reponame>wearpants/scrapi import logging import functools from itertools import islice from datetime import date, timedelta from celery import Celery from scrapi import util from scrapi import events from scrapi import settings from scrapi import registry from scrapi import processing from scrapi.util import timestamp from scrapi.base.helpers import null_on_error app = Celery() app.config_from_object(settings) logger = logging.getLogger(__name__) def task_autoretry(*args_task, **kwargs_task): def actual_decorator(func): @app.task(*args_task, **kwargs_task) @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except kwargs_task.get('autoretry_on', Exception) as exc: logger.info('Retrying with exception {}'.format(exc)) raise wrapper.retry(exc=exc) return wrapper return actual_decorator @app.task @events.creates_task(events.HARVESTER_RUN) def run_harvester(harvester_name, start_date=None, end_date=None): logger.info('Running harvester "{}"'.format(harvester_name)) start_date = start_date or date.today() - timedelta(settings.DAYS_BACK) end_date = end_date or date.today() normalization = begin_normalization.s(harvester_name) start_harvest = harvest.si(harvester_name, timestamp(), start_date=start_date, end_date=end_date) # Form and start a celery chain (start_harvest | normalization).apply_async() @app.task @events.logged(events.HARVESTER_RUN) def harvest(harvester_name, job_created, start_date=None, end_date=None): harvest_started = timestamp() harvester = registry[harvester_name] start_date = start_date or date.today() - timedelta(settings.DAYS_BACK) end_date = end_date or date.today() logger.info('Harvester "{}" has begun harvesting'.format(harvester_name)) result = harvester.harvest(start_date=start_date, end_date=end_date) # result is a list of all of the RawDocuments harvested return result, { 'harvestFinished': timestamp(), 'harvestTaskCreated': job_created, 'harvestStarted': harvest_started, } @app.task def begin_normalization(raw_docs_timestamps, harvester_name): '''harvest_ret is harvest return value: a tuple contaiing list of rawDocuments and a dictionary of timestamps ''' (raw_docs, timestamps) = raw_docs_timestamps logger.info('Normalizing {} documents for harvester "{}"' .format(len(raw_docs), harvester_name)) # raw is a single raw document for raw in raw_docs: spawn_tasks(raw, timestamps, harvester_name) @events.creates_task(events.PROCESSING) @events.creates_task(events.NORMALIZATION) def spawn_tasks(raw, timestamps, harvester_name): raw['timestamps'] = timestamps raw['timestamps']['normalizeTaskCreated'] = timestamp() chain = (normalize.si(raw, harvester_name) | process_normalized.s(raw)) chain.apply_async() process_raw.delay(raw) @task_autoretry(default_retry_delay=settings.CELERY_RETRY_DELAY, max_retries=settings.CELERY_MAX_RETRIES) @events.logged(events.PROCESSING, 'raw') def process_raw(raw_doc, **kwargs): processing.process_raw(raw_doc, kwargs) @task_autoretry(default_retry_delay=settings.CELERY_RETRY_DELAY, max_retries=settings.CELERY_MAX_RETRIES, throws=events.Skip) @events.logged(events.NORMALIZATION) def normalize(raw_doc, harvester_name): normalized_started = timestamp() harvester = registry[harvester_name] normalized = null_on_error(harvester.normalize)(raw_doc) if not normalized: raise events.Skip('Did not normalize document with id {}'.format(raw_doc['docID'])) normalized['timestamps'] = util.stamp_from_raw(raw_doc, normalizeStarted=normalized_started) return normalized # returns a single normalized document @task_autoretry(default_retry_delay=settings.CELERY_RETRY_DELAY, max_retries=settings.CELERY_MAX_RETRIES, throws=events.Skip) @events.logged(events.PROCESSING, 'normalized') def process_normalized(normalized_doc, raw_doc, **kwargs): if not normalized_doc: raise events.Skip('Not processing document with id {}'.format(raw_doc['docID'])) processing.process_normalized(raw_doc, normalized_doc, kwargs) @app.task def migrate(migration, source_db=None, sources=tuple(), async=False, dry=True, group_size=1000, **kwargs): source_db = source_db or settings.CANONICAL_PROCESSOR documents = processing.get_processor(source_db).documents doc_sources = sources or registry.keys() docs = documents(*doc_sources) if async: segment = list(islice(docs, group_size)) while segment: migration.s(segment, sources=sources, dry=dry, source_db=source_db, **kwargs).apply_async() segment = list(islice(docs, group_size)) else: for doc in docs: migration((doc,), sources=sources, dry=dry, **kwargs) if dry: logger.info('Dry run complete') logger.info('Documents processed for migration {}'.format(str(migration)))
StarcoderdataPython
1675232
import re import sqlite3 from json import load, loads from django.db import models # Create your models here. class ChoiceQuestions(models.Model): def __init__(self, data): self.data = str(data) def _remove_non_alphanum_char(self, string): return re.sub(r'\W+', ' ', string) def _translate_numbers(self, current, new, string): translation_table = str.maketrans(current, new) return string.translate(translation_table) def normalize_string(self, student_data, intorstr=False): """gets a string and standardize it as following: >> converts(removes others) all chars to persionChar or >> converts(removes others) all chars to EnglishDigits""" student_data = self._remove_non_alphanum_char(str(student_data)) student_data = student_data.upper() persian_numerals = '۱۲۳۴۵۶۷۸۹۰' arabic_numerals = '١٢٣٤٥٦٧٨٩٠' english_numerals = '1234567890' student_data = self._translate_numbers( persian_numerals, english_numerals, student_data) student_data = self._translate_numbers( arabic_numerals, english_numerals, student_data) if intorstr != False: all_digit = "".join(re.findall("\d", student_data)) return int(all_digit) else: all_alpha = "".join(re.findall("[آ-ی- ]", student_data)) return all_alpha def cmp(self, first_dict, second_dict): """Comparison first_dict and second_dict and scoreing Input's""" try: # If The user enters something other then dictionary, # the program says: Please Enter the dictionary. score = 0 for num in first_dict: if first_dict[num] == second_dict[num]: score += 1 return score except ValueError: return "ValueError. Please Enter The dictionary" def json_render_score(self, test_input): """json read in parent_file and Comparison """ # TODO: The User it self make this Json parent_file = open("quez/json/valed.json", "r") parent = load(parent_file)["test"] return self.cmp(parent, test_input) def get_data_json(self): """This Func work is get json data in client and proccesing data. In the End, return Procced data's""" try: # call data's in json data = f'{self.data}' data = data.replace("'", '"') data = loads(data) # add data to varble num = self.normalize_string(data["num"], intorstr=True) user_name = self.normalize_string(data["stdudent_name"]) if " " in user_name: user_name = None test_input = data["test"] print(num, user_name) score = self.json_render_score(test_input) # connect sqlite DB conn = sqlite3.connect("score.db") cur = conn.cursor() # create DataBase and add data to DataBase cur.execute('''CREATE TABLE IF NOT EXISTS students( num INTEGER PRIMARY KEY, user_name TEXT, test_input JSON, socre TEXT); ''') # Add json File and socre to DB query = f'INSERT INTO students VALUES("{num}", "{user_name}", "{test_input}", "{score}")' cur.execute(query) conn.commit() conn.close() return f"{num}, {user_name}, {test_input}, {score}" except: return '{"Success":"False"}'
StarcoderdataPython
1663169
<reponame>blurks/wold2 # coding=utf-8 """fix poly word Revision ID: 28959d50de6 Revises: 207db8b425a8 Create Date: 2015-08-04 12:39:04.468959 """ # revision identifiers, used by Alembic. revision = '28959d50de6' down_revision = '207db8b425a8' import datetime from alembic import op import sqlalchemy as sa def upgrade(): update_pmtype(['unit'], 'base', 'custom') def downgrade(): update_pmtype(['unit'], 'custom', 'base') def update_pmtype(tablenames, before, after): for table in tablenames: op.execute(sa.text('UPDATE %s SET polymorphic_type = :after ' 'WHERE polymorphic_type = :before' % table ).bindparams(before=before, after=after))
StarcoderdataPython
62102
<reponame>Kanavoy/UODS # filepaths, except with dots instead of slashes and no file extension from Algorithms.Update.relative_agreement import perform_update as wrapped_update from Algorithms.Intervention.degree import intervene as wrapped_intervene # make sure you set opts.intervention.numb to 0, otherwise # it'll execute the interventions at the start as well count = 0 def perform_update(graph, opts, agents): global count count += 1 if count == 1000: wrapped_intervene(graph, opts) wrapped_update(graph, opts, agents)
StarcoderdataPython
116314
import sympy as sp x, y, z = sp.symbols('x y z') sp.init_printing() # Here we simply give the input needed as The Following: # ( X0 ) & ( X1 ) & ( X2 ) # ( Fx ) is the equation of the function # ( n ) is the number of Iterations needed x0 = 4.5 x1 = 5.5 x2 = 5 Fx = x**3 - 13*x - 12 n = 3 print("____________________________________________________________________________________________________________\n " "Iteration | X3 | H0 | H1 | D0 | D1 | A | B | C | Error " "\n------------------------------------------------------------------------------------------------------------") for i in range(n): # Finding F(x0) & F(x1) & F(x2) fx0 = Fx.subs(x, x0).evalf(); fx1 = Fx.subs(x, x1).evalf(); fx2 = Fx.subs(x, x2).evalf(); # Finding H 0 & 1 H0 = x1 - x0; H1 = x2 - x1; # Finding Delta 0 & 1 d0 = (fx1 - fx0)/(x1 - x0); d1 = (fx2 - fx1)/(x2 - x1); # Finding A & B & C A = (d1 - d0)/(H1 + H0); B = A*H1 + d1; C = fx2; # To Calculate X3 we have two solutions one is when delta is positive and the other is when its negative DeltaPos = (B + sp.sqrt(B**2 - (4*A*C))) DeltaNeg = (B - sp.sqrt(B**2 - (4*A*C))) if (abs(DeltaPos) > abs(DeltaNeg)): x3 = x2 + ((- 2*C)/DeltaPos) else: x3 = x2 + ((- 2*C)/DeltaNeg) Error = abs(((x3 - x2)/x3)*100) print(" {0:2d} | {1:.5f} | {2:.5f} | {3:.5f} | {4:.5f} | {5:.4f} | {6:.4f} | {7:.4f} | {8:.4f} | {9:.6f} \n" .format(i+1, x3, H0, H1, d0, d1, A, B, C, Error)) # Changing Variables for The Next Iteration x0 = x1; x1 = x2; x2 = x3; # Finally displaying the output with the value of every rule that was needed in order to get the final answer and the percentage of error after each iteration
StarcoderdataPython
1717243
import json import os from distutils.dir_util import copy_tree from unittest import TestCase from osbot_aws.apis.Secrets import Secrets from osbot_gsuite.apis.GDrive import GDrive from osbot_gsuite.apis.GSheets import GSheets from osbot_gsuite.apis.GSuite_Setup import GSuite_Setup from osbot_utils.utils.Dev import Dev from osbot_utils.utils.Files import file_contents class test_GSuite_Setup(TestCase): def setUp(self): self.gsuite_setup = GSuite_Setup() self.filename_with_gsuite_client_secret = 'client_secret_538397666918-ftcpk1s9u8gbgmc47c7ocb9kdll4m7j3.apps.googleusercontent.com.json' self.file_with_credentials = f'{os.getenv("HOME")}/Downloads/{self.filename_with_gsuite_client_secret}' self.scopes = [ 'https://www.googleapis.com/auth/calendar' , 'https://www.googleapis.com/auth/documents' , 'https://www.googleapis.com/auth/drive' , 'https://www.googleapis.com/auth/presentations' , 'https://www.googleapis.com/auth/spreadsheets' ] def test_save_gsuite_client_secret_in_aws(self): self.gsuite_setup.save_gsuite_client_secret_in_aws(self.file_with_credentials) def test_create_auth_token_using_web_browser_flow(self): self.gsuite_setup.create_auth_token_using_web_browser_flow(self.scopes) def test_check_secret_works(self): os.environ['AWS_REGION'] = 'london' # simulate AWS environment gdrive = GDrive(self.gsuite_setup.secret_id_gsuite_token) files = gdrive.files_all(10) Dev.pprint(files) #GSheets(self.gsuite_setup.secret_id_gsuite_token) #assert len(GSheets(self.gsuite_setup.secret_id_gsuite_token).all_spreadsheets()) > 0
StarcoderdataPython
1638011
from scapy.all import sniff from threading import Thread, Event class Sniffer(Thread): ''' Thread for incommig dns requests ''' def __init__(self, interface, sniff_filter, packet_handler, fin_action): super().__init__() self.interface = interface self.SNIFF_FILTER = sniff_filter self.packet_handler = packet_handler self.stop_sniffer = Event() self.fin_action = fin_action def run(self): ''' Run Thread ''' sniff(prn=self.packet_handler, filter=self.SNIFF_FILTER, store=False, stop_filter=self.is_stopped, iface=self.interface) def stop(self, timeout=None): ''' Stop Thread ''' self.stop_sniffer.set() self.fin_action() super().join(timeout) def is_stopped(self, packet): return self.stop_sniffer.isSet()
StarcoderdataPython
3354476
<reponame>dmccloskey/SBaaS_quantification<filename>SBaaS_quantification/stage01_quantification_MQResultsTable_io.py #system import json #SBaaS from .stage01_quantification_MQResultsTable_query import stage01_quantification_MQResultsTable_query #from .stage01_quantification_analysis_query import stage01_quantification_analysis_query from ddt_python.ddt_container import ddt_container from SBaaS_base.sbaas_template_io import sbaas_template_io # Resources from io_utilities.base_importData import base_importData from io_utilities.base_exportData import base_exportData from quantification_analysis.MQResultsTable import MQResultsTable from ddt_python.ddt_container_filterMenuAndChart2dAndTable import ddt_container_filterMenuAndChart2dAndTable import copy class stage01_quantification_MQResultsTable_io(stage01_quantification_MQResultsTable_query, sbaas_template_io): def import_dataStage01MQResultsTable_add(self,filename): '''table adds''' ##OPTION1: #data = base_importData(); #data.read_csv(filename); #data.format_data(); #self.add_dataStage01MQResultsTable(data.data); #data.clear_data(); #OPTION2: resultstable = MQResultsTable(); resultstable.import_resultsTable(filename); self.add_dataStage01MQResultsTable(resultstable.resultsTable); def import_dataStage01MQResultsTable_update(self,filename): '''table updates''' data = base_importData(); data.read_csv(filename); data.format_data(); self.update_dataStage01MQResultsTable(data.data); data.clear_data(); def export_dataStage01MQResultsTable_csv(self): pass; def export_dataStage01MQResultsTable_metricPlot_js(self,experiment_id_I,sample_names_I=[],component_names_I=[],measurement_I='calculated_concentration',data_dir_I="tmp"): ''' export a metric plot INPUT: experiment_id_I = experiment_id sample_names_I = sample_names component_names_I = component names measurement_I = measurement to plot, supports calculated_concentration, height_ratio, area_ratio, height, area, rt''' # get the data: data_O = []; cnt = 0; #Query unique sample_name/component_name for the analysis # get sample names if sample_names_I: sample_names = sample_names_I; else: sample_names = []; sample_types = ['Quality Control','Unknown','Standard','Blank']; for st in sample_types: sample_names_tmp = []; sample_names_tmp = self.get_sampleNames_experimentIDAndSampleType(experiment_id_I,st); sample_names.extend(sample_names_tmp); # create database table for sn in sample_names: # get component names if component_names_I: component_names = component_names_I; else: component_names = []; component_names = self.get_componentsNames_experimentIDAndSampleName(experiment_id_I,sn); for cn in component_names: # get the row rows = {}; rows = self.get_row_sampleNameAndComponentName(sn,cn); if rows: rows['acquisition_date_and_time'] = self.convert_datetime2string(rows['acquisition_date_and_time']) rows['index_'] = cnt; rows['experiment_id']=experiment_id_I; data_O.append(rows); cnt+=1; # get the sample_names_I # dump chart parameters to a js files data1_keys = [ 'experiment_id', 'sample_name', 'component_name', measurement_I, 'acquisition_date_and_time', 'sample_type', ]; data1_nestkeys = ['component_name']; data1_keymap = {'xdata':'index_', 'ydata':measurement_I, 'serieslabel':'component_name', 'featureslabel':'sample_name'}; parameters = {"chart1margin":{ 'top': 50, 'right': 150, 'bottom': 50, 'left': 50 }, "chart1width":500,"chart1height":350, "chart1title":"Metric Plot", "chart1x1axislabel":"sample_name","chart1y1axislabel":"measurement"} # make the data object dataobject_O = [{"data":data_O,"datakeys":data1_keys,"datanestkeys":data1_nestkeys},{"data":data_O,"datakeys":data1_keys,"datanestkeys":data1_nestkeys}]; # make the tile parameter objects formtileparameters_O = {'tileheader':'Filter menu','tiletype':'html','tileid':"filtermenu1",'rowid':"row1",'colid':"col1", 'tileclass':"panel panel-default",'rowclass':"row",'colclass':"col-sm-4"}; formparameters_O = {'htmlid':'filtermenuform1','htmltype':'form_01',"formsubmitbuttonidtext":{'id':'submit1','text':'submit'},"formresetbuttonidtext":{'id':'reset1','text':'reset'},"formupdatebuttonidtext":{'id':'update1','text':'update'}}; formtileparameters_O.update(formparameters_O); svgparameters_O = {"svgtype":'scatterlineplot2d_01',"svgkeymap":[data1_keymap,data1_keymap], 'svgid':'svg1', "svgmargin":{ 'top': 50, 'right': 150, 'bottom': 50, 'left': 50 }, "svgwidth":500,"svgheight":350, "svgx1axislabel":"sample_name","svgy1axislabel":"measurement_value", 'svgformtileid':'filtermenu1','svgresetbuttonid':'reset1','svgsubmitbuttonid':'submit1'}; svgtileparameters_O = {'tileheader':'Metric Plot','tiletype':'svg','tileid':"tile2",'rowid':"row1",'colid':"col2", 'tileclass':"panel panel-default",'rowclass':"row",'colclass':"col-sm-8"}; svgtileparameters_O.update(svgparameters_O); tableparameters_O = {"tabletype":'responsivetable_01', 'tableid':'table1', "tablefilters":None, "tableclass":"table table-condensed table-hover", 'tableformtileid':'filtermenu1','tableresetbuttonid':'reset1','tablesubmitbuttonid':'submit1'}; tabletileparameters_O = {'tileheader':'Metric plot','tiletype':'table','tileid':"tile3",'rowid':"row2",'colid':"col1", 'tileclass':"panel panel-default",'rowclass':"row",'colclass':"col-sm-12"}; tabletileparameters_O.update(tableparameters_O); parametersobject_O = [formtileparameters_O,svgtileparameters_O,tabletileparameters_O]; tile2datamap_O = {"filtermenu1":[0],"tile2":[0,1],"tile3":[0]}; # dump the data to a json file ddtutilities = ddt_container(parameters_I = parametersobject_O,data_I = dataobject_O,tile2datamap_I = tile2datamap_O,filtermenu_I = None); if data_dir_I=='tmp': filename_str = self.settings['visualization_data'] + '/tmp/ddt_data.js' elif data_dir_I=='data_json': data_json_O = ddtutilities.get_allObjects_js(); return data_json_O; with open(filename_str,'w') as file: file.write(ddtutilities.get_allObjects()); def export_dataStage01MQResultsTable_js( self,analysis_id_I, features_I=[ 'calculated_concentration', 'height_ratio', 'retention_time'], include_IS_I=False, data_dir_I="tmp"): ''' export a metric plot INPUT: experiment_id_I = experiment_id sample_names_I = sample_names component_names_I = component names features_I = features to plot, supports calculated_concentration, height_ratio, area_ratio, height, area, retention_time ''' #quantification_analysis_query = stage01_quantification_analysis_query(self.session,self.engine,self.settings) # get the data: data_O = []; data_dict_O = {}; data_tmp = []; data_tmp = self.getRowsJoin_analysisID_dataStage01QuantificationMQResultsTable(analysis_id_I); # make a unique index for each component component_names = list(set([d['component_name'] for d in data_tmp])); component_names_dict = {d:0 for d in component_names}; for d in data_tmp: tmp = {}; tmp['acquisition_date_and_time'] = self.convert_datetime2string(d['acquisition_date_and_time']) tmp['sample_name'] = d['sample_name']; tmp['sample_type'] = d['sample_type']; #tmp['experiment_id'] = d['experiment_id']; #tmp['analysis_id'] = d['analysis_id']; tmp['analysis_id']=analysis_id_I; tmp['component_name'] = d['component_name']; tmp['component_group_name'] = d['component_group_name']; tmp['component_index'] = component_names_dict[d['component_name']]; for m in features_I: if not m in data_dict_O: data_dict_O[m]=[]; if m in d.keys() and not d[m] is None: tmp1 = copy.copy(tmp); tmp1['feature_name'] = m; tmp1['feature_value'] = d[m]; data_dict_O[m].append(tmp1); data_O.append(tmp1); component_names_dict[d['component_name']]+=1; # dump chart parameters to a js files data1_keys = [ 'analysis_id', 'sample_name', 'component_name', 'feature_name', 'acquisition_date_and_time', 'sample_type', ]; data1_nestkeys = ['component_name']; data1_keymap = {'xdata':'component_index', 'ydata':'feature_value', 'serieslabel':'component_name', 'featureslabel':'sample_name'}; svgkeymap1 = [[data1_keymap,data1_keymap] for k in data_dict_O.keys()] parameters = {"chart1margin":{ 'top': 50, 'right': 150, 'bottom': 50, 'left': 50 }, "chart1width":500,"chart1height":350, "chart1title":"Metric Plot", "chart1x1axislabel":"sample_name","chart1y1axislabel":"measurement"} ## make the data object #dataobject_O = [{"data":data_O,"datakeys":data1_keys,"datanestkeys":data1_nestkeys},{"data":data_O,"datakeys":data1_keys,"datanestkeys":data1_nestkeys}]; ## make the tile parameter objects #formtileparameters_O = {'tileheader':'Filter menu','tiletype':'html','tileid':"filtermenu1",'rowid':"row1",'colid':"col1", # 'tileclass':"panel panel-default",'rowclass':"row",'colclass':"col-sm-4"}; #formparameters_O = {'htmlid':'filtermenuform1','htmltype':'form_01',"formsubmitbuttonidtext":{'id':'submit1','text':'submit'},"formresetbuttonidtext":{'id':'reset1','text':'reset'},"formupdatebuttonidtext":{'id':'update1','text':'update'}}; #formtileparameters_O.update(formparameters_O); #svgparameters_O = {"svgtype":'scatterlineplot2d_01',"svgkeymap":[data1_keymap,data1_keymap], # 'svgid':'svg1', # "svgmargin":{ 'top': 50, 'right': 150, 'bottom': 50, 'left': 50 }, # "svgwidth":500,"svgheight":350, # "svgx1axislabel":"sample_name","svgy1axislabel":"measurement_value", # 'svgformtileid':'filtermenu1','svgresetbuttonid':'reset1','svgsubmitbuttonid':'submit1'}; #svgtileparameters_O = {'tileheader':'Metric Plot','tiletype':'svg','tileid':"tile2",'rowid':"row1",'colid':"col2", # 'tileclass':"panel panel-default",'rowclass':"row",'colclass':"col-sm-8"}; #svgtileparameters_O.update(svgparameters_O); #tableparameters_O = {"tabletype":'responsivetable_01', # 'tableid':'table1', # "tablefilters":None, # "tableclass":"table table-condensed table-hover", # 'tableformtileid':'filtermenu1','tableresetbuttonid':'reset1','tablesubmitbuttonid':'submit1'}; #tabletileparameters_O = {'tileheader':'Metric plot','tiletype':'table','tileid':"tile3",'rowid':"row2",'colid':"col1", # 'tileclass':"panel panel-default",'rowclass':"row",'colclass':"col-sm-12"}; #tabletileparameters_O.update(tableparameters_O); #parametersobject_O = [formtileparameters_O,svgtileparameters_O,tabletileparameters_O]; #tile2datamap_O = {"filtermenu1":[0],"tile2":[0,1],"tile3":[0]}; ## dump the data to a json file #ddtutilities = ddt_container(parameters_I = parametersobject_O,data_I = dataobject_O,tile2datamap_I = tile2datamap_O,filtermenu_I = None); #if data_dir_I=='tmp': # filename_str = self.settings['visualization_data'] + '/tmp/ddt_data.js' #elif data_dir_I=='data_json': # data_json_O = ddtutilities.get_allObjects_js(); # return data_json_O; #with open(filename_str,'w') as file: # file.write(ddtutilities.get_allObjects()); nsvgtable = ddt_container_filterMenuAndChart2dAndTable(); nsvgtable.make_filterMenuAndChart2dAndTable( data_filtermenu=data_O, data_filtermenu_keys=data1_keys, data_filtermenu_nestkeys=data1_nestkeys, data_filtermenu_keymap=data1_keymap, data_svg_keys=None, data_svg_nestkeys=None, data_svg_keymap=None, data_table_keys=None, data_table_nestkeys=None, data_table_keymap=None, data_svg=data_dict_O, data_table=None, #svgtype='scatterlineplot2d_01', svgtype='scatterplot2d_01', tabletype='responsivetable_01', svgx1axislabel='', svgy1axislabel='', tablekeymap = [data1_keymap], svgkeymap = [], #calculated on the fly formtile2datamap=[0], tabletile2datamap=[0], svgtile2datamap=[], #calculated on the fly svgfilters=None, svgtileheader='Metric Plot', tablefilters=None, tableheaders=None, svgparameters_I = parameters ); if data_dir_I=='tmp': filename_str = self.settings['visualization_data'] + '/tmp/ddt_data.js' elif data_dir_I=='data_json': data_json_O = nsvgtable.get_allObjects_js(); return data_json_O; with open(filename_str,'w') as file: file.write(nsvgtable.get_allObjects());
StarcoderdataPython
4831133
# Generated by Django 3.1.6 on 2021-03-27 20:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('information_sharing', '0004_auto_20210327_2105'), ] operations = [ migrations.CreateModel( name='Discoverymethod', fields=[ ('discovery_method_id', models.AutoField(db_column='DiscoveryMethodID', primary_key=True, serialize=False)), ('discovery_method', models.CharField(db_column='DiscoveryMethod', max_length=128)), ('modify_time', models.DateTimeField(auto_now=True, db_column='ModifyTime', null=True)), ], options={ 'verbose_name': 'Discovery Method', 'verbose_name_plural': 'Discovery Methods', 'db_table': 'DiscoveryMethod', 'managed': False, }, ), ]
StarcoderdataPython
3320314
""" Script to get fragment size distribution @author: <NAME> """ ##### IMPORT MODULES ##### # import necessary for python import os #import matplotlib as mpl #mpl.use('PS') import matplotlib.pyplot as plt from pyatac.fragmentsizes import FragmentSizes from pyatac.chunk import ChunkList def get_sizes(args): """function to get fragment sizes """ if args.out is None: args.out = '.'.join(os.path.basename(args.bam).split('.')[0:-1]) sizes = FragmentSizes(lower = args.lower, upper = args.upper, atac = args.atac) if args.bed: chunks = ChunkList.read(args.bed) chunks.merge() sizes.calculateSizes(args.bam, chunks) else: sizes.calculateSizes(args.bam) sizes.save(args.out+'.fragmentsizes.txt') if not args.no_plot: #make figure fig = plt.figure() plt.plot(list(range(sizes.lower,sizes.upper)),sizes.get(sizes.lower,sizes.upper),label = args.out) plt.xlabel("Fragment Size") plt.ylabel("Frequency") fig.savefig(args.out+'.fragmentsizes.pdf') plt.close(fig)
StarcoderdataPython
1788714
<reponame>djfkahn/MemberHubDirectoryTools import unittest from unittest.mock import patch import os import family import hub_map_tools import roster import person data_file_path = os.path.abspath("./family_tests/") hub_file_name = data_file_path + "/hub_map.csv" common_hub_map = hub_map_tools.ReadHubMapFromFile(hub_file_name) with patch('builtins.input', side_effect=['y']): common_RosterC = roster.Roster() class UT_01_AddAdultsFromCombinedField(unittest.TestCase): def test_01_two_parents(self): result = family.RosterFamily(adults_raw_name='A and B C') result.AddAdultsFromCombinedField('<NAME>', 'A and B C', common_hub_map, common_RosterC) self.assertEqual(2, len(result.adults)) self.assertEqual('A', result.adults[0].first_name) self.assertEqual('C', result.adults[0].last_name) self.assertEqual(['0000'],result.adults[0].hubs) self.assertEqual('Adult',result.adults[0].family_relation) self.assertEqual('B', result.adults[1].first_name) self.assertEqual('C', result.adults[1].last_name) self.assertEqual(['0000'],result.adults[1].hubs) self.assertEqual('Adult2',result.adults[1].family_relation) self.assertEqual(0, len(result.children)) def test_02_one_parent(self): result = family.RosterFamily(adults_raw_name='A C') result.AddAdultsFromCombinedField('<NAME>', 'A C', common_hub_map, common_RosterC) self.assertEqual(1, len(result.adults)) self.assertEqual('A', result.adults[0].first_name) self.assertEqual('C', result.adults[0].last_name) self.assertEqual(['1111'],result.adults[0].hubs) self.assertEqual('Adult',result.adults[0].family_relation) self.assertEqual(0, len(result.children)) class UT_02_Roster_AddToFamily(unittest.TestCase): def test_01_two_parents(self): result = family.RosterFamily(adults_raw_name='A and B C') result.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A and B C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertEqual(2, len(result.adults)) self.assertEqual('A', result.adults[0].first_name) self.assertEqual('C', result.adults[0].last_name) self.assertEqual(['0000'],result.adults[0].hubs) self.assertEqual('Adult',result.adults[0].family_relation) self.assertEqual('B', result.adults[1].first_name) self.assertEqual('C', result.adults[1].last_name) self.assertEqual(['0000'],result.adults[1].hubs) self.assertEqual('Adult2',result.adults[1].family_relation) self.assertEqual(1, len(result.children)) self.assertEqual('D', result.children[0].first_name) self.assertEqual('C', result.children[0].last_name) self.assertEqual(['0000'],result.children[0].hubs) self.assertEqual('Child1',result.children[0].family_relation) def test_02_one_parent(self): result = family.RosterFamily(adults_raw_name='A C') result.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertEqual(1, len(result.adults)) self.assertEqual('A', result.adults[0].first_name) self.assertEqual('C', result.adults[0].last_name) self.assertEqual(['1111'],result.adults[0].hubs) self.assertEqual('Adult',result.adults[0].family_relation) self.assertEqual(1, len(result.children)) self.assertEqual('D', result.children[0].first_name) self.assertEqual('C', result.children[0].last_name) self.assertEqual(['1111'],result.children[0].hubs) self.assertEqual('Child1',result.children[0].family_relation) def test_03_6th_grader(self): result = family.RosterFamily(adults_raw_name='A C') result.AddToFamily(child_first = 'D', child_last = 'C', grade = '6', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertEqual(1, len(result.adults)) self.assertEqual('A', result.adults[0].first_name) self.assertEqual('C', result.adults[0].last_name) self.assertEqual(['6666'],result.adults[0].hubs) self.assertEqual('Adult',result.adults[0].family_relation) self.assertEqual(1, len(result.children)) self.assertEqual('D', result.children[0].first_name) self.assertEqual('C', result.children[0].last_name) self.assertEqual(['6666'],result.children[0].hubs) self.assertEqual('Child1',result.children[0].family_relation) def test_04_8th_grader(self): result = family.RosterFamily(adults_raw_name='A C') result.AddToFamily(child_first = 'D', child_last = 'C', grade = '8', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertEqual(1, len(result.adults)) self.assertEqual('A', result.adults[0].first_name) self.assertEqual('C', result.adults[0].last_name) self.assertEqual(['8888'],result.adults[0].hubs) self.assertEqual('Adult',result.adults[0].family_relation) self.assertEqual(1, len(result.children)) self.assertEqual('D', result.children[0].first_name) self.assertEqual('C', result.children[0].last_name) self.assertEqual(['8888'],result.children[0].hubs) self.assertEqual('Child1',result.children[0].family_relation) def test_05_9th_grader(self): result = family.RosterFamily(adults_raw_name='A C') result.AddToFamily(child_first = 'D', child_last = 'C', grade = '9', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertEqual(0, len(result.adults)) self.assertEqual(0, len(result.children)) def test_06_Unknown_Teacher(self): result = family.RosterFamily(adults_raw_name='A C') result.AddToFamily(child_first = 'D', child_last = 'C', grade = '5', adult_names = 'A C', teacher_name = 'Unknown Teacher', hub_map = common_hub_map, rosterC = common_RosterC) self.assertEqual(0, len(result.adults)) self.assertEqual(0, len(result.children)) class UT_03_Directory_AddToFamily(unittest.TestCase): def test_01_adult_input(self): result = family.DirectoryFamily('5678') result.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertEqual(1, len(result.adults)) self.assertEqual('A', result.adults[0].first_name) self.assertEqual('C', result.adults[0].last_name) self.assertEqual('1234', result.adults[0].person_id) self.assertEqual('5678', result.adults[0].family_id) self.assertEqual('Adult',result.adults[0].family_relation) self.assertEqual('email',result.adults[0].email) self.assertEqual(['0000'],result.adults[0].hubs) self.assertEqual(0, len(result.children)) def test_02_child_input(self): result = family.DirectoryFamily('5678') result.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertEqual(0, len(result.adults)) self.assertEqual(1, len(result.children)) def test_03_adult_lower_input(self): result = family.DirectoryFamily('5678') result.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertEqual(1, len(result.adults)) self.assertEqual(0, len(result.children)) def test_04_child_lower_input(self): result = family.DirectoryFamily('5678') result.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertEqual(0, len(result.adults)) self.assertEqual(1, len(result.children)) def test_05_other_input(self): result = family.DirectoryFamily('5678') result.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Other', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertEqual(0, len(result.adults)) self.assertEqual(0, len(result.children)) class UT_04_IsSameFamily(unittest.TestCase): def test_01_same_family(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertTrue(this.IsSameFamily(that)) def test_02_same_adult_different_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = '<NAME>', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertTrue(this.IsSameFamily(that)) def test_03_directory_orphan(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertFalse(this.IsSameFamily(that)) def test_04_roster_orphan(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name=' ') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = ' ', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertFalse(this.IsSameFamily(that)) def test_05_different_adult_same_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='E C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'E C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertFalse(this.IsSameFamily(that)) def test_06_more_adults_in_directory(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1236', last_name = 'C', first_name = 'B', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = '<NAME>', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertTrue(this.IsSameFamily(that)) def test_07_more_adults_in_roster(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertTrue(this.IsSameFamily(that)) class UT_05_HasNewChildren(unittest.TestCase): def test_01_same_family(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertFalse(this.HasNewChildren(that)) def test_02_same_adult_different_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertTrue(this.HasNewChildren(that)) def test_03_directory_orphan(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertTrue(this.HasNewChildren(that)) def test_04_roster_orphan(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertTrue(this.HasNewChildren(that)) def test_05_different_adult_same_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = '<NAME>', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertFalse(this.HasNewChildren(that)) def test_06_more_adults_in_directory(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1236', last_name = 'C', first_name = 'B', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertFalse(this.HasNewChildren(that)) def test_07_more_adults_in_roster(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) self.assertFalse(this.HasNewChildren(that)) class UT_06_FormFamilyWithNewChildren(unittest.TestCase): def test_01_family_with_new_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) result = family.Family() result.FormFamilyWithNewChildren(this, that) self.assertEqual(result.adults, this.adults) self.assertEqual(1,len(result.children)) self.assertEqual('E',result.children[0].first_name) self.assertEqual('C',result.children[0].last_name) def test_02_family_without_new_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) result = family.Family() result.FormFamilyWithNewChildren(this, that) self.assertEqual(result.adults, this.adults) self.assertEqual(0,len(result.children)) class UT_07_CombineWith(unittest.TestCase): def test_01_add_new_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) this.CombineWith(that) self.assertEqual(2,len(this.children)) self.assertEqual('D',this.children[0].first_name) self.assertEqual('C',this.children[0].last_name) self.assertEqual('E',this.children[1].first_name) self.assertEqual('C',this.children[1].last_name) def test_02_existing_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A C') that.AddToFamily(child_first = 'D', child_last = 'C', grade = '0', adult_names = 'A C', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) this.CombineWith(that) self.assertEqual(1,len(this.children)) self.assertEqual('D',this.children[0].first_name) self.assertEqual('C',this.children[0].last_name) def test_03_different_family(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'B', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) that = family.RosterFamily(adults_raw_name='A D') that.AddToFamily(child_first = 'E', child_last = 'C', grade = '0', adult_names = 'A D', teacher_name = '<NAME>', hub_map = common_hub_map, rosterC = common_RosterC) this.CombineWith(that) self.assertEqual(1,len(this.children)) self.assertEqual('B',this.children[0].first_name) self.assertEqual('C',this.children[0].last_name) class UT_08_IsChildless(unittest.TestCase): def test_01_parent_and_chlid(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertFalse(this.IsChildless()) def test_02_parent_no_chlid(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertTrue(this.IsChildless()) def test_03_teacher(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Teachers'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertFalse(this.IsChildless()) def test_04_Staff(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Staff'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertFalse(this.IsChildless()) def test_05_volunteer(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Volunteers'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertFalse(this.IsChildless()) class UT_09_IsOrphan(unittest.TestCase): def test_01_child_and_parent(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertFalse(this.IsOrphan()) def test_02_child_no_parent(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) self.assertTrue(this.IsOrphan()) class UT_10_FindAdultInFamily(unittest.TestCase): def test_01_one_adult_one_match(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'A', 'Adult', '<NAME>', common_hub_map) self.assertIsNotNone(this.FindAdultInFamily(to_find)) def test_02_two_adult_one_match(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'A', 'Adult', '<NAME>', common_hub_map) self.assertIsNotNone(this.FindAdultInFamily(to_find)) def test_03_three_adult_one_match(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1236', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'A', 'Adult', '<NAME>', common_hub_map) self.assertIsNotNone(this.FindAdultInFamily(to_find)) def test_04_two_adult_no_match(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'E', 'Adult', '<NAME>', common_hub_map) self.assertIsNone(this.FindAdultInFamily(to_find)) def test_05_no_adult(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'A', 'Adult', '<NAME>', common_hub_map) self.assertIsNone(this.FindAdultInFamily(to_find)) class UT_11_FindChildInFamily(unittest.TestCase): def test_01_one_child_one_match(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'A', 'Child', '<NAME>', common_hub_map) self.assertIsNotNone(this.FindChildInFamily(to_find)) def test_02_two_child_one_match(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'B', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'A', 'Child', '<NAME>', common_hub_map) self.assertIsNotNone(this.FindChildInFamily(to_find)) def test_03_three_child_one_match(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'B', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1236', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'A', 'Child', '<NAME>', common_hub_map) self.assertIsNotNone(this.FindChildInFamily(to_find)) def test_04_three_child_no_match(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'B', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1236', last_name = 'C', first_name = 'D', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Child', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'E', 'Child', '<NAME>', common_hub_map) self.assertIsNone(this.FindChildInFamily(to_find)) def test_05_no_child(self): this = family.DirectoryFamily('5678') this.AddToFamily(person_id = '1234', last_name = 'C', first_name = 'A', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) this.AddToFamily(person_id = '1235', last_name = 'C', first_name = 'B', middle_name = '', suffix = '', email = 'email', family_id = '5678', family_relation = 'Adult', hub_name_list = 'Kinder (Room 0)'.split(';'), account_created = '', account_updated = '', hub_map = common_hub_map) to_find = person.RosterPerson('C', 'A', 'Child', '<NAME>', common_hub_map) self.assertIsNone(this.FindChildInFamily(to_find)) if __name__ == '__main__': unittest.main()
StarcoderdataPython
3354940
import datetime import great_expectations as ge import great_expectations.jupyter_ux from great_expectations.checkpoint import LegacyCheckpoint from great_expectations.data_context.types.resource_identifiers import ValidationResultIdentifier context = ge.data_context.DataContext() # Feel free to change the name of your suite here. Renaming this will not # remove the other one. expectation_suite_name = "taxi.demo" suite = context.get_expectation_suite(expectation_suite_name) suite.expectations = [] batch_kwargs = {'path': '/Users/kevinkho/Work/demos/conferences/dremio-subsurface/great_expectations/.././test-file.csv', 'datasource': '.__dir', 'data_asset_name': 'test-file'} batch = context.get_batch(batch_kwargs, suite) batch.save_expectation_suite(discard_failed_expectations=False) results = LegacyCheckpoint( name="_temp_checkpoint", data_context=context, batches=[ { "batch_kwargs": batch_kwargs, "expectation_suite_names": [expectation_suite_name] } ] ).run() run_info_at_end = True validation_results_page_renderer = ( ge.render.renderer.ValidationResultsPageRenderer( run_info_at_end=run_info_at_end ) ) rendered_document_content_list = ( validation_results_page_renderer.render_validation_operator_result( validation_operator_result=results ) ) markdown_artifact = " ".join( ge.render.view.DefaultMarkdownPageView().render( rendered_document_content_list ) )
StarcoderdataPython
3202311
<filename>research/multi_representation_adversary/multi_representation_adversary/trainer.py # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training loop for adversarial training in multiple representation spaces.""" from absl import logging import gin from multi_representation_adversary import data from multi_representation_adversary import helper from multi_representation_adversary import resnet from multi_representation_adversary import selectors import tensorflow.compat.v2 as tf @gin.configurable def learning_rate_scheduler(epoch, values=(0.1, 0.01, 0.001), breakpoints=(100, 150)): """Piecewise constant schedule for learning rate.""" idx = sum(1 if epoch > b else 0 for b in breakpoints) return values[idx] @gin.configurable def train(ckpt_dir=None, summary_dir=None, epochs=200, steps_per_epoch=351, # 45000 / 128 for CIFAR-10 global_batch_size=128, model_fn=resnet.build_resnet_v1, lr_scheduler=learning_rate_scheduler, representation_list=(("identity", "none"),)): """Train a model with adversarial training in multiple representation spaces. Args: ckpt_dir: The directory to store model checkpoints. summary_dir: The directory to store training summaries. epochs: Maximum number of epochs to train for. steps_per_epoch: Number of training steps in each epoch. global_batch_size: Batch size across all processors/accelerators for each training step. model_fn: A callable which builds the model structure. lr_scheduler: A callable which returns the learning rate at any given epoch. representation_list: A list of (transform, attack) tuples representing the adversaries that this model should consider. """ # Set up distributed training strategy first because all variables (model, # optimizer, etc) have to be created in the strategy's scope. strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = model_fn(return_logits=True) # Other params are set in gin optimizer = tf.keras.optimizers.SGD(learning_rate=lr_scheduler(0), momentum=0.9) loss_obj = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=tf.keras.losses.Reduction.NONE) def loss_fn(label, logit): # Normalize by global_batch_size, which is different from usual # (per-replica) batch size in a distributed training environment. return tf.nn.compute_average_loss(loss_obj(label, logit), global_batch_size=global_batch_size) metrics = [ tf.keras.metrics.SparseCategoricalCrossentropy("loss", from_logits=True), tf.keras.metrics.SparseCategoricalAccuracy("accuracy")] # Compile a tf.function for training and eval (validation) steps for each # (transform, attack) tuple. representation_names = [] train_step_fns, eval_step_fns = [], [] for transform_name, attack_name in representation_list: representation_names.append(f"{transform_name}_{attack_name}") attack_fn = helper.build_attack_fn(model, transform_name, attack_name) train_step_fns.append(helper.build_train_step_fn( model, optimizer, loss_fn, metrics, attack_fn)) eval_step_fns.append(helper.build_eval_step_fn(model, metrics, attack_fn)) selector = selectors.construct_representation_selector(representation_names) # Create checkpoint object for saving model weights and selector state. checkpoint = tf.train.Checkpoint(model=model, selector=selector) ckpt_mgr = tf.train.CheckpointManager(checkpoint, ckpt_dir, max_to_keep=None) restored_path = ckpt_mgr.restore_or_initialize() if restored_path: logging.info("Restored checkpoint %s", restored_path) start_epoch = int(restored_path.rsplit("-", 1)[-1]) # path like "ckpt-N" total_steps = start_epoch * steps_per_epoch else: logging.info("Model initialized") start_epoch, total_steps = 0, 0 ckpt_mgr.save(0) train_dataset = data.get_training_dataset(global_batch_size) valid_dataset = data.get_validation_dataset(global_batch_size) with tf.summary.create_file_writer(summary_dir).as_default(): for epoch in range(start_epoch + 1, epochs + 1): logging.info("Epoch %d", epoch) # Learning rate decay if lr_scheduler(epoch) != optimizer.learning_rate: optimizer.learning_rate = lr_scheduler(epoch) logging.info("New learning rate: %g", optimizer.learning_rate) # Training dist_dataset = strategy.experimental_distribute_dataset( train_dataset.take(steps_per_epoch)) for x, y in dist_dataset: selected_idx = selector.select(total_steps) train_step_fn = train_step_fns[selected_idx] per_replica_loss = strategy.run(train_step_fn, args=(x, y)) loss_value = strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_loss, axis=None) if total_steps % 50 == 0: tf.summary.scalar("train/batch_loss", loss_value, step=total_steps) total_steps += 1 for metric in metrics: tf.summary.scalar(f"train/{metric.name}", metric.result(), step=epoch) metric.reset_states() # Maybe update the selector's state if selector.should_update(epoch): logging.info("Evaluate on validation set and update selector state") validation_losses = [] dist_val_dataset = strategy.experimental_distribute_dataset( valid_dataset) for i, eval_step_fn in enumerate(eval_step_fns): for x, y in dist_val_dataset: strategy.run(eval_step_fn, args=(x, y)) validation_losses.append(metrics[0].result()) # Crossentropy loss for metric in metrics: name = f"validation/{metric.name}/{representation_names[i]}" tf.summary.scalar(name, metric.result(), step=epoch) metric.reset_states() selector.update(epoch, validation_losses) # Save a checkpoint ckpt_mgr.save(epoch)
StarcoderdataPython
3349706
import nextcord async def option_management(game, player_list): def check(msg): return msg.author == game.mj while True: em = nextcord.Embed(title="Option", description="```diff\noption:\n{}```".format( "\n".join("{} {} : {}".format('+' if j else '-', i, repr(j)) for i, j in game.option.items()))) em.set_footer(text="\"OK\" pour valider, \"{option}={valeur}\" pour modifier") notif = await game.channel.send(embed=em) message = await game.client.wait_for('message', check=check) await message.delete() if message.content == 'OK': em.set_footer(text="Options verrouillées") await notif.edit(embed=em) break av = message.content.split('=') if len(av) != 2: await game.channel.send("Syntaxe invalide\nAttendu: ``option=valeur``", delete_after=10) await notif.delete() continue if av[0] not in game.option: await game.channel.send("Syntaxe invalide\nL'option demandé n'existe pas``", delete_after=10) await notif.delete() continue value = av[1] if value.isdigit(): value = int(value) elif value.lower() == 'true': value = True elif value.lower() == 'false': value = False game.option[av[0]] = value await game.channel.send("Option modifiée o7", delete_after=10) await notif.delete() if game.option['death_channel_id']: game.death_channel = game.client.get_channel(game.option['death_channel_id'])
StarcoderdataPython
1632015
<filename>server.py<gh_stars>0 from object import Object OK = 1 NOK = 0 class Server(): def __init__(self, name): self.name = name self.counter = 0 self.objects = [] def sync_to_client(self, counter): objects = [o for o in self.objects if o.lastupdate_counter > counter] result = { 'statuscode': OK, 'servercounter': self.counter, 'objects': objects } return result def sync_from_client(self, objects): result = {} for sob in objects: exists = False conflict = False for o in self.objects: if o.guid == sob.guid: exists = True o.value = sob.value o.deleted = sob.deleted self.counter += 1 o.lastupdate_counter = self.counter elif o.pk == sob.pk: # pk conflict: do nothing because this should not occur on server # client will always sync from server to client first and handle # any pk conflicts before syncing from client to server exists = True conflict = True result['statuscode'] = NOK if not exists: no = Object(pk=sob.pk, name=sob.name, value=sob.value, guid=sob.guid) no.deleted = sob.deleted self.counter += 1 no.lastupdate_counter = self.counter self.objects.append(no) if 'statuscode' not in result: result['statuscode'] = OK result['servercounter'] = self.counter return result def add_object(self, pk, name, value): ''' Create object on server (do not use this function to add object from a client sync ''' obj = Object(pk=pk, name=name, value=value) self.counter += 1 obj.lastupdate_counter = self.counter self.objects.append(obj) def update_object(self, pk, value): ''' Update object on server (do not use this function to update object from a client sync ''' for o in self.objects: if o.pk == pk: o.update(value) self.counter += 1 o.lastupdate_counter = self.counter def delete_object(self, pk): ''' Delete object on server (do not use this function to delete object from a client sync ''' for o in self.objects: if o.pk == pk: o.delete() self.counter += 1 o.lastupdate_counter = self.counter def display(self): text = [] text.append(" State of server: " + self.name + " - ") text.append("Counter: " + str(self.counter) + "\n") self.debug_output("".join(text), self.objects) def debug_output(self, text, objects=None): print "{}\n".format(text) for o in self.objects: o.display() print " -----------------------------------" print ""
StarcoderdataPython
3249565
<filename>quadpy/sphere/stroud.py # -*- coding: utf-8 -*- # import numpy import sympy from .helpers import cartesian_to_spherical from .albrecht_collatz import AlbrechtCollatz from .mclaren import McLaren from ..nsphere.stroud1969 import Stroud1969 class Stroud(object): """ <NAME>, Approximate Calculation of Multiple Integrals, Prentice Hall, 1971. """ def __init__(self, index, symbolic=False): self.name = "Stroud_U3({})".format(index) if index == "U3 3-1": self.set_data(McLaren(1, symbolic=symbolic)) elif index == "U3 5-1": self.set_data(AlbrechtCollatz(1, symbolic=symbolic)) elif index == "U3 5-2": self.set_data(AlbrechtCollatz(2, symbolic=symbolic)) elif index == "U3 5-3": self.set_data(AlbrechtCollatz(3, symbolic=symbolic)) elif index == "U3 5-4": self.set_data(AlbrechtCollatz(4, symbolic=symbolic)) elif index == "U3 5-5": self.set_data(McLaren(2, symbolic=symbolic)) elif index == "U3 7-1": self.set_data(McLaren(3, symbolic=symbolic)) elif index == "U3 7-2": self.set_data(AlbrechtCollatz(5, symbolic=symbolic)) elif index == "U3 8-1": self.set_data(McLaren(4, symbolic=symbolic)) elif index == "U3 9-1": self.set_data(McLaren(5, symbolic=symbolic)) elif index == "U3 9-2": self.set_data(McLaren(6, symbolic=symbolic)) elif index == "U3 9-3": self.set_data(McLaren(7, symbolic=symbolic)) elif index == "U3 11-1": self.set_data(McLaren(8, symbolic=symbolic)) elif index == "U3 11-2": scheme = Stroud1969(3, symbolic=symbolic) self.degree = scheme.degree self.weights = scheme.weights pi = sympy.pi if symbolic else numpy.pi self.weights /= 4 * pi self.points = scheme.points self.azimuthal_polar = cartesian_to_spherical(self.points) elif index == "U3 11-3": self.set_data(McLaren(9, symbolic=symbolic)) else: assert index == "U3 14-1", "Illegal index {}.".format(index) self.set_data(McLaren(10, symbolic=symbolic)) return def set_data(self, scheme): self.degree = scheme.degree self.weights = scheme.weights self.points = scheme.points self.azimuthal_polar = scheme.azimuthal_polar return
StarcoderdataPython
1686014
<filename>callnumber_app/tests.py # -*- coding: utf-8 -*- import logging, pprint from django.test import TestCase log = logging.getLogger(__name__) TestCase.maxDiff = None class ClientTest( TestCase ): """ Tests views via Client. """ def test_callnumber_response(self): """ Checks two submitted callnumbers. """ response = self.client.get( '/v2/', { 'callnumber': 'TP1085,PJ 1001'} ) log.debug( 'response.__dict__, ```%s```' % pprint.pformat(response.__dict__) ) self.assertEqual( 200, response.status_code ) content = response.content.decode('utf-8') self.assertTrue( '"normalized_call_number": "TP 1085"' in content ) self.assertTrue( '"normalized_call_number": "PJ 1001"' in content ) def test_problematic_callnumber_response(self): """ Checks callnumber request that generated an error. """ response = self.client.get( '/v2/', { 'callnumber': 'BB .S7333 1777 5'} ) log.debug( 'response.__dict__, ```%s```' % pprint.pformat(response.__dict__) ) self.assertEqual( 200, response.status_code ) content = response.content.decode('utf-8') self.assertTrue( '"normalized_call_number": "BB 0000000S7333 000 000 17775"' in content ) ## end class ClientTest() class RootUrlTest( TestCase ): """ Checks root urls. """ def test_root_url_no_slash(self): """ Checks '/root_url'. """ response = self.client.get( '' ) # project root part of url is assumed self.assertEqual( 302, response.status_code ) # permanent redirect redirect_url = response._headers['location'][1] self.assertEqual( '/info/', redirect_url ) def test_root_url_slash(self): """ Checks '/root_url/'. """ response = self.client.get( '/' ) # project root part of url is assumed self.assertEqual( 302, response.status_code ) # permanent redirect redirect_url = response._headers['location'][1] self.assertEqual( '/info/', redirect_url ) # end class RootUrlTest() ## TODO: ## - test views_helper.DumpParamHandler.prep_points()
StarcoderdataPython
1767547
<reponame>FarmVivi/kodihikvision import xbmcaddon def getSettingString(setting_id): return xbmcaddon.Addon(id='plugin.farmvivi.hikvision').getSettingString(setting_id) def getSettingInt(setting_id): return xbmcaddon.Addon(id='plugin.farmvivi.hikvision').getSettingInt(setting_id)
StarcoderdataPython
6619
#!/usr/bin/python """ Firewall for munkireport. By Tuxudo Will return all details about how the firewall is configured """ import subprocess import os import sys import platform import re import plistlib import json sys.path.insert(0,'/usr/local/munki') sys.path.insert(0, '/usr/local/munkireport') from munkilib import FoundationPlist def get_firewall_info(): '''Uses system profiler to get firewall info for the machine.''' cmd = ['/usr/sbin/system_profiler', 'SPFirewallDataType', '-xml'] proc = subprocess.Popen(cmd, shell=False, bufsize=-1, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (output, unused_error) = proc.communicate() try: plist = plistlib.readPlistFromString(output) # system_profiler xml is an array firewall_dict = plist[0] items = firewall_dict['_items'] return items except Exception: return {} def flatten_firewall_info(array): '''Un-nest firewall info, return array with objects with relevant keys''' firewall = {} for obj in array: for item in obj: if item == '_items': out = out + flatten_firewall_info(obj['_items']) elif item == 'spfirewall_services': for service in obj[item]: if obj[item][service] == "spfirewall_allow_all": obj[item][service] = 1 else: obj[item][service] = 0 firewall['services'] = json.dumps(obj[item]) elif item == 'spfirewall_applications': for application in obj[item]: if obj[item][application] == "spfirewall_allow_all": obj[item][application] = 1 else: obj[item][application] = 0 firewall['applications'] = json.dumps(obj[item]) return firewall def get_alf_preferences(): pl = FoundationPlist.readPlist("/Library/Preferences/com.apple.alf.plist") firewall = {} for item in pl: if item == 'allowdownloadsignedenabled': firewall['allowdownloadsignedenabled'] = to_bool(pl[item]) elif item == 'allowsignedenabled': firewall['allowsignedenabled'] = to_bool(pl[item]) elif item == 'firewallunload': firewall['firewallunload'] = to_bool(pl[item]) elif item == 'globalstate': firewall['globalstate'] = to_bool(pl[item]) elif item == 'stealthenabled': firewall['stealthenabled'] = to_bool(pl[item]) elif item == 'loggingenabled': firewall['loggingenabled'] = to_bool(pl[item]) elif item == 'loggingoption': firewall['loggingoption'] = pl[item] elif item == 'version': firewall['version'] = pl[item] return firewall def to_bool(s): if s == True: return 1 else: return 0 def merge_two_dicts(x, y): z = x.copy() z.update(y) return z def main(): """Main""" # Skip manual check if len(sys.argv) > 1: if sys.argv[1] == 'manualcheck': print 'Manual check: skipping' exit(0) # Create cache dir if it does not exist cachedir = '%s/cache' % os.path.dirname(os.path.realpath(__file__)) if not os.path.exists(cachedir): os.makedirs(cachedir) # Set the encoding # The "ugly hack" :P reload(sys) sys.setdefaultencoding('utf8') # Get results result = dict() info = get_firewall_info() result = merge_two_dicts(flatten_firewall_info(info), get_alf_preferences()) # Write firewall results to cache output_plist = os.path.join(cachedir, 'firewall.plist') FoundationPlist.writePlist(result, output_plist) #print FoundationPlist.writePlistToString(result) if __name__ == "__main__": main()
StarcoderdataPython
3256977
<filename>app/models.py from . import login_manager from . import database from .exceptions import ValidationError from datetime import datetime, timezone from itsdangerous import BadHeader, SignatureExpired from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy import and_, not_ from flask import current_app, url_for from flask_login import UserMixin, AnonymousUserMixin from functools import partial from werkzeug.security import generate_password_hash, check_password_hash utc_now = partial(datetime.now, tz=timezone.utc) @login_manager.user_loader def load_user(user_id): """ Set up current user. """ return User.query.get(int(user_id)) def format_date(date): """ Return a string representation of the given date. :param date: DateTime instance :returns: string """ date_format = '%A, %B %d %Y %H:%M' return date.strftime(date_format) def add_test_users(): """ Load data to the database for testing purposes. """ database.create_all() arthur = User(username='Arthur', email='<EMAIL>', password='<PASSWORD>', confirmed=True) morgain = User(username='Morgain', email='<EMAIL>', password='<PASSWORD>', confirmed=True) clair = User(username='Clair', email='<EMAIL>', password='<PASSWORD>', confirmed=True) merlin = User(username='Merlin', email='<EMAIL>', password='<PASSWORD>', confirmed=True) ophelia = User(username='Ophelia', email='<EMAIL>', password='<PASSWORD>', confirmed=True) lancelot = User(username='Lancelot', email='<EMAIL>', password='<PASSWORD>', confirmed=True) guinevere = User(username='Guinevere', email='<EMAIL>', password='<PASSWORD>', confirmed=True) uther = User(username='Uther', email='<EMAIL>', password='<PASSWORD>', confirmed=True) mordred = User(username='Mordred', email='<EMAIL>', password='<PASSWORD>', confirmed=True) percival = User(username='Percival', email='<EMAIL>', password='<PASSWORD>', confirmed=True) dinadan = User(username='Dinadan', email='<EMAIL>', password='<PASSWORD>', confirmed=True) gingalain = User(username='Gingalain', email='<EMAIL>', password='<PASSWORD>', confirmed=True) galahad = User(username='Galahad', email='<EMAIL>', password='<PASSWORD>', confirmed=True) pelleas = User(username='Pelleas', email='<EMAIL>', password='<PASSWORD>', confirmed=True) pellinore = User(username='Pellinore', email='<EMAIL>', password='<PASSWORD>', confirmed=True) tristan = User(username='Tristan', email='<EMAIL>', password='<PASSWORD>', confirmed=True) branor = User(username='Branor', email='<EMAIL>', password='<PASSWORD>', confirmed=True) accolon = User(username='Accolon', email='<EMAIL>', password='<PASSWORD>', confirmed=True) blanchefleur = User(username='Blanchefleur', email='<EMAIL>ur', password='<PASSWORD>', confirmed=True) brangaine = User(username='Brangaine', email='<EMAIL>', password='<PASSWORD>', confirmed=True) cailia = User(username='Caelia', email='<EMAIL>', password='<PASSWORD>', confirmed=True) dindrane = User(username='Dindrane', email='<EMAIL>', password='<PASSWORD>', confirmed=True) enide = User(username='Enide', email='<EMAIL>', password='<PASSWORD>', confirmed=True) database.session.add_all([arthur, morgain, clair, merlin, ophelia, lancelot, guinevere, mordred, percival, dinadan, gingalain, galahad, pelleas, pellinore, tristan, branor, accolon, cailia, blanchefleur, brangaine, dindrane, enide, uther]) database.session.commit() # association table for many-to-many relationship # between User model and Chat model UserChatTable = database.Table( 'user_chat_link', database.Column('user_id', database.Integer, database.ForeignKey('users.id', ondelete="CASCADE"), primary_key=True), database.Column('chat_id', database.Integer, database.ForeignKey('chats.id', ondelete="CASCADE"), primary_key=True) ) class RemovedChat(database.Model): """ Association table to keep track of which users mark which chats as removed. """ __tablename__ = 'removed_chats' user_id = database.Column(database.Integer, database.ForeignKey('users.id', ondelete="CASCADE"), primary_key=True) chat_id = database.Column(database.Integer, database.ForeignKey('chats.id', ondelete="CASCADE"), primary_key=True) class Role(database.Model): """ Represents user role for managing permission. Static methods defined here: insert_roles(roles=None) """ __tablename__ = 'roles' id = database.Column(database.Integer, primary_key=True) name = database.Column(database.String(64), unique=True) is_default = database.Column(database.Boolean, default=False, index=True, nullable=False) permissions = database.Column(database.Integer) users = database.relationship('User', backref='role', lazy='dynamic') def __repr__(self): return f'Role(id={self.id}, name={self.name}' # TODO # change admin permissions to the disjunction of all the available # permissions @staticmethod def insert_roles(roles=None): """ Insert the given roles to the database. Insert a default set of roles if called with no parameters. :param roles: dictionary of roles in the form {'role_name': {'permissions': int, 'is_default': bool}} """ if roles is None: roles = {'Admin': {'permissions': 0xff, 'is_default': False}, 'User': {'permissions': 0, 'is_default': True} } for role in roles: new_role = Role.query.filter_by(name=role).first() if new_role is None: new_role = Role(name=role) new_role.permissions = roles[role]['permissions'] new_role.is_default = roles[role]['is_default'] database.session.add(new_role) database.session.commit() class Contact(database.Model): """ Association table representing many-to-many relationship among User model instances. """ __tablename__ = 'contacts' user_id = database.Column(database.Integer, database.ForeignKey('users.id'), primary_key=True) contact_id = database.Column(database.Integer, database.ForeignKey('users.id'), primary_key=True) contact_group = database.Column(database.String(16), nullable=True) _date_created = database.Column(database.DateTime(timezone=True), default=utc_now) @hybrid_property def date_created(self): return self._date_created.astimezone(timezone.utc) @date_created.expression def date_created(self): return self._date_created @date_created.setter def date_created(self, value): self._data_created = value class Chat(database.Model): """ Represents a chat, which is defined as a collection of users and messages. Methods defined here: to_json(user) get_name(user) add_users(users) delete_users(users) Static methods defined here: from_json(json_object) search_chats_query(chat_name, user) Class methods defined here: get_chat(users) """ __tablename__ = 'chats' id = database.Column(database.Integer, primary_key=True) name = database.Column(database.String(64)) is_group_chat = database.Column(database.Boolean, default=False) _date_created = database.Column(database.DateTime(timezone=True), default=utc_now) _date_modified = database.Column(database.DateTime(timezone=True), default=utc_now, onupdate=utc_now) removed_users = database.relationship('RemovedChat', backref='chat', lazy='dynamic', cascade='all, delete-orphan') @hybrid_property def date_created(self): return self._date_created.astimezone(timezone.utc) @date_created.expression def date_created(self): return self._date_created @date_created.setter def date_created(self, value): self._date_created = value @hybrid_property def date_modified(self): return self._date_modified.astimezone(timezone.utc) @date_modified.expression def date_modified(self): return self._date_modified @date_modified.setter def date_modified(self, value): self._date_modified = value def to_json(self, user): """ Return a JSON representation of current chat. :param user: current user (needed to get chat name) :returns: Chat model instance turned to dictionary """ chat = {'chat_name': self.get_name(user), 'is_group_chat': self.is_group_chat, 'date_created': self.date_created, 'date_modified': self.date_modified, 'messages': url_for('api.get_messages', chat_id=self.id, _external=True) } return chat def get_name(self, user): """ Return current chat's 'name' if present, otherwise return 'username' of the first user of current chat's 'users' attribute which is not equal to the given user's username. :param user: User model instance :returns: string """ if self.name: return self.name recipient = (self .users .filter(User.username != user.username) .first()) return recipient.username def add_users(self, users): """ Add the given users to current chat. :param users: sequence of User model instances """ for user in users: if not user in self.users.all(): self.users.append(user) database.session.commit() def remove_users(self, users): """ Delete the given users from current chat. :param users: sequence of User model instances """ for user in users: self.users.remove(user) database.session.commit() @staticmethod def from_json(json_chat, current_user): """ Return a Chat model instance created from the given json_chat dictionary. :param json_chat: dictionary :param current_user: current user (needed to get chat name) :returns: Message model instance """ chat = Chat() chat_name = json_chat.get('chat_name') usernames = json_chat.get('users') users = User.query.filter(User.username.in_(usernames)).all() if len(users) > 1: chat.is_group_chat = True if not chat_name: raise ValidationError('Chat name or recipient name\ must be present.') chat.add_users(users) chat.add_users([current_user]) return chat @staticmethod def search_chats_query(chat_name, user): """ Return a query of chats where each chat either: - contains the given chat_name in 'name' column; - has only two users ('is_group_chat' is False and 'name' is None), and the user with 'username' not equal to (the given user).username contains the given chat_name in 'username'. :param chat_name: string to search for :param user: user whose 'username' is excluded from search, i.e. if chat.users == [User(username='bob'), User(username='arthur')] and chat.name == None, then search_chats('bob', User(username='bob')) :returns: Chat model query """ subquery_current = (User .query .filter(User .username == user.username) .subquery()) subquery_pattern = (User .query .filter(User.username != user.username, User .username .ilike('%' + chat_name + '%')) .subquery()) subquery_current_chats = (database .session .query(UserChatTable.c.chat_id) .join(subquery_current, UserChatTable .c .user_id == subquery_current.c.id) .subquery()) subquery_pattern_chats = (database .session .query(UserChatTable.c.chat_id) .join(subquery_pattern, UserChatTable .c .user_id == subquery_pattern.c.id) .subquery()) chats = (database .session .query(Chat) .join(subquery_current_chats, Chat.id == subquery_current_chats.c.chat_id) .join(subquery_pattern_chats, subquery_current_chats .c .chat_id == subquery_pattern_chats.c.chat_id)) return (database .session .query(Chat) .filter(Chat.users.contains(user), Chat.name.ilike('%' + chat_name + '%')) .union(chats)) @classmethod def get_chat(cls, users): """ Return the chat of users in the given sequence. :param user: sequence of User model instances :returns: Chat model instance """ chat = cls.query for user in users: chat = chat.filter(cls.users.contains(user)) return chat.first() class User(UserMixin, database.Model): """ User model. Implements UserMixin, used as a default authentication model by Flask-Login. Methods defined here: get_updated_chats(current_user, session) get_chat_query(user_ids) get_removed_query(chat_query=None) get_removed_chats_query(user_ids) mark_chats_as_removed(chats) unmark_chats_as_removed(chats) has_permission(permission) verify_password(password) generate_auth_token(expiration=3600) generate_confirmation_token(expiration=3600) confirm(token) has_contact(user) is_contacted_by(user) add_contacts(users, contact_group=None) delete_contacts(users) get_other_users_query() get_available_chats_query() get_messages(chat) get_unread_messages_query(chat) search_users_query(username, users_query) Static methods defined here: verify_auth_token(token) """ __tablename__ = 'users' id = database.Column(database.Integer, primary_key=True) confirmed = database.Column(database.Boolean, default=False) last_seen = database.Column(database.DateTime(timezone=True), nullable=True) role_id = database.Column(database.Integer, database.ForeignKey('roles.id')) _date_created = database.Column(database.DateTime(timezone=True), nullable=False, default=utc_now) username = database.Column(database.String(64), unique=True, index=True, nullable=False) email = database.Column(database.String(64), unique=True, index=True, nullable=False) password_hash = database.Column(database.String(128), nullable=False) contacts = database.relationship('Contact', foreign_keys=[Contact.user_id], backref=database.backref('user', lazy='joined'), lazy='dynamic', cascade='all, delete-orphan') contacted = database.relationship('Contact', foreign_keys=[Contact.contact_id], backref=database.backref('contact', lazy='joined'), lazy='dynamic', cascade='all, delete-orphan') messages_from = (database .relationship('Message', primaryjoin='User.id==Message.sender_id')) messages_to = (database .relationship('Message', primaryjoin='User.id==Message.recipient_id')) chats = database.relationship('Chat', secondary=UserChatTable, backref=database.backref('users', lazy='dynamic')) removed_chats = database.relationship('RemovedChat', backref='user', lazy='dynamic', cascade='all, delete-orphan') def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.role is None: if self.email == current_app.config['ADMIN_MAIL']: self.role = Role.query.filter_by(permissions = 0xff).first() else: self.role = Role.query.filter_by(is_default=True).first() def __repr__(self): return (f'User(id={self.id}, username={self.username}, ' + f'date_created={self.date_created}, ' + f'confirmed={self.confirmed})') @hybrid_property def date_created(self): return self._date_created.astimezone(timezone.utc) @date_created.expression def date_created(self): return self._date_created @date_created.setter def date_created(self, value): self._date_created = value @property def is_admin(self): """ Check if current user has admin permissions. :returns: True if current user has admin permission, False otherwise """ return self.role and self.has_permission(Permission.ADMINISTRATION) @property def password(self): raise AttributeError('Password is not a readable attribute') @password.setter def password(self, password): """ Assign the given password to current user. :param password: string """ self.password_hash = generate_password_hash(password) def get_updated_chats(self, current_user, session): """ Return information about the user's updated chats, if there are any. :param current_user: the user currently logged in :param session: flask session :returns: dictionary with the keys 'chats', 'current_chat_messages', 'current_username' or None """ available_chats = self.get_available_chats_query().all() chats = [] messages = [] for chat in available_chats: unread_messages_query = self.get_unread_messages_query(chat) count = unread_messages_query.count() if count: chats.append({'chat_id': str(chat.id), 'unread_messages_count': count, 'chat_name': chat.get_name(self)}) current_chat_id = session.get((current_user.id, 'current_chat_id')) if current_chat_id == chat.id: messages = (Message .get_messages_list(unread_messages_query)) if chats: data = {'chats': chats, 'current_chat_messages': messages, 'current_username': self.username} return data def get_chat_query(self, user_ids): """ Return a query of current user's chats with users identified by the given user_ids. :param user_ids: sequence of integers :returns: Chat model query """ return (Chat .query .filter(Chat.users.contains(self)) .join(UserChatTable, and_(UserChatTable.c.chat_id == Chat.id, UserChatTable.c.user_id.in_(user_ids) ) ) ) def get_removed_query(self, chat_query=None): """ Return RemovedChat query for currrent user (based on the chat query, if given). :param chat_query: Chat model query :returns: RemovedChat model query """ if chat_query: return (RemovedChat .query .filter(RemovedChat.user == self, RemovedChat .chat_id .in_([chat.id for chat in chat_query.all()] ) ) ) else: return (RemovedChat .query .filter(RemovedChat.user==self)) def get_removed_chats_query(self, user_ids): """ Return a query of chats with users having the given user_ids which are marked as removed by current user. :param user_ids: sequence of integers :returns: Chat model query """ chat_query = self.get_chat_query(user_ids) removed_chat_query = self.get_removed_query(chat_query) result = (chat_query .join(removed_chat_query.subquery(), Chat .id .in_([removed.chat_id for removed in removed_chat_query] ) ) ) return result def mark_chats_as_removed(self, chats): """ Add RemovedChat record for each chat in the given chats. :param chats: sequence of Chat model instances """ for chat in chats: removed_chat = RemovedChat() removed_chat.user = self removed_chat.chat = chat database.session.add(removed_chat) database.session.commit() def unmark_chats_as_removed(self, chats): """ Delete RemovedChat record for each chat in the given chats. :param chats: sequence of Chat model instances """ chat_ids = [chat.id for chat in chats] removed_chats_query = (RemovedChat .query .filter(RemovedChat.chat_id.in_(chat_ids), RemovedChat.user_id == self.id)) removed_chats_query.delete(synchronize_session='fetch') def has_permission(self, permission): """ Check if current user has the given permission. :param permission: integer representing permission :returns: True if current user has a role and the role has permission, False otherwise """ return (self.role is not None and (self.role.permissions & permission == permission)) def verify_password(self, password): """ Check if the given password matches current user's password. :param password: string :returns: True if password matches current user's password, False otherwise """ return check_password_hash(self.password_hash, password) def generate_auth_token(self, expiration=3600): """ Return an authentication token for current user. :param expiration: Time in seconds after which token expires :returns: TimedJSONWebSignature """ serializer = Serializer(current_app.config['SECRET_KEY'], expiration) return serializer.dumps({'id': self.id}) def generate_confirmation_token(self, expiration=3600): """ Return a confirmation token for current user. :param expiration: Time in seconds after which token expires :returns: TimedJSONWebSignature """ serializer = Serializer(current_app.config['SECRET_KEY'], expiration) return serializer.dumps({'confirm': self.id}) def confirm(self, token): """ Check that the given token belongs to current user and set current user's 'confirmed' column to True if it does. :param token: TimedJSONWebSignature instance or string :returns: True if the given token belongs to current user, False otherwise """ serializer = Serializer(current_app.config['SECRET_KEY']) try: data = serializer.loads(token) except (BadHeader, SignatureExpired): return False if data.get('confirm') != self.id: return False self.confirmed = True database.session.add(self) return True def has_contact(self, user): """ Check if current user has the given user as a contact. :param user: User model instance :returns: True if current user has user as a contact, False otherwise """ return bool(self.contacts.filter_by(contact_id=user.id).first()) def is_contacted_by(self, user): """ Check if the given user has current user as a contact. :param user: User model instance :returns: True if user has current user as a contact, False otherwise """ return bool(self.contacted.filter_by(user_id=user.id).first()) def add_contacts(self, users, contact_group=None): """ Add the given users to current user's contacts. :param users: list of User model instances :param contact_group: name of contact group """ for user in users: if not self.has_contact(user): relation = Contact(user=self, contact=user, contact_group=contact_group) database.session.add(relation) def delete_contacts(self, users): """ Delete the given users from contacts of current user. :param users: sequence of User model instances """ for user in users: if self.has_contact(user): relation = self.contacts.filter_by(contact_id=user.id).first() database.session.delete(relation) def get_other_users_query(self): """ Return a query of users not including current user ordered by column 'username' in ascending order. :returns: User model query """ return (User .query .filter(User.id != self.id) .order_by(User.username)) def get_available_chats_query(self): """ Return a query of current user's chats not marked as removed ordered by modification date in descending order. :returns: User model query """ removed_chats = self.get_removed_query() return (Chat .query .filter(Chat.users.contains(self)) .filter(not_(Chat .id .in_(removed_chats .with_entities(RemovedChat.chat_id)))) .order_by(Chat.date_modified.desc())) def get_messages(self, chat): """ Return a list of dictionaries with keys 'text', 'date_created', 'sender_username', 'recipient_username' sorted by creation date in ascending order. :param chat: Chat model instance :returns: list of dictionaries """ messages = chat.messages.order_by(Message.date_created).all() message_dict_list = [] for message in messages: sender = message.sender recipient = message.recipient sender_name = sender.username if sender else None recipient_name = recipient.username if recipient else None message_dict = {'text': message.text, 'date_created': message.date_created.isoformat(), 'sender_username': sender_name, 'recipient_username': recipient_name} message_dict_list.append(message_dict) return message_dict_list def get_unread_messages_query(self, chat): """ Return a query of unread messages from the given chat. :param chat: Chat model instance :returns: Message model query """ return (chat .messages .filter(Message.sender != self, not_(Message.was_read))) def search_users_query(self, username, users_query): """ Return a query of users (except current user) from the given users_query containing the given username string in the 'username' column in ascending lexicographical order by 'username'. :param username: string to search in 'username' columns :param users_query: User model query to search :returns: User model query """ query = (users_query .filter(User.username.ilike('%' + username + '%'))) return query @staticmethod def verify_auth_token(token): """ Check the valididty of given token. :param token: <PASSWORD> :returns: True if token is valid, False otherwise """ print('user verify function') serializer = Serializer(current_app.config['SECRET_KEY']) try: print('hey') data = serializer.loads(token) print('data', data) except Exception as exception: print(exception) return None print(data) return User.query.get(data['id']) class Message(database.Model): """ Message model. Methods defined here: to_json(user) Static methods defined here: get_messages_list(message_query) from_json(json_message) flush_messages(message_query) """ __tablename__ = 'messages' id = database.Column(database.Integer, primary_key = True) was_read = database.Column(database.Boolean, default=False) text = database.Column(database.Text) _date_created = database.Column(database.DateTime(timezone=True), nullable=False, default=utc_now) sender_id = database.Column(database.Integer, database.ForeignKey('users.id'), nullable=False) recipient_id = database.Column(database.Integer, database.ForeignKey('users.id'), nullable=False) chat_id = database.Column(database.Integer, database.ForeignKey('chats.id'), nullable=False) sender = database.relationship('User', foreign_keys=[sender_id]) recipient = database.relationship('User', foreign_keys=[recipient_id]) chat = database.relationship('Chat', backref=database.backref('messages', lazy='dynamic'), foreign_keys=[chat_id]) def __repr__(self): return (f'Message(id={self.id}, text={self.text}, ' + f'sender={self.sender}, ' + f'recipient={self.recipient}, ' + f'was_read={self.was_read}, ' + f'text={self.text}, ' + f'chat={self.chat}, ' + f'date_created={self.date_created})' ) @hybrid_property def date_created(self): return self._date_created.astimezone(timezone.utc) @date_created.expression def date_created(self): return self._date_created @date_created.setter def date_created(self, value): self._date_created = value def to_json(self, user): """ Return a dictionary representation of current message. :param user: current user (needed to get the chat name) :returns: Message model instance turned into a dictionary """ if not self.recipient: recipient_username = '' else: recipient_username = self.recipient.username message = {'id': self.id, 'chat_id': self.chat_id, 'was_read': self.was_read, 'date_created': self.date_created, 'text': self.text, 'sender_username': self.sender.username, 'recipient_username': recipient_username, 'chat_name': self.chat.get_name(user)} return message @staticmethod def get_messages_list(message_query): """ Return a list of dictionaries with keys 'text', 'sender_username', 'date_created' for the messages from the given message_query sorted by modification date in ascending order. :param message_query: Message model query :returns: list of dictionaries """ message_dict_list = [] for message in message_query.order_by(Message.date_created).all(): sender = message.sender sender_username = sender.username if sender else None date_created = message.date_created message_dict = {'text': message.text, 'sender_username': sender_username, 'date_created': date_created.isoformat()} message_dict_list.append(message_dict) return message_dict_list @staticmethod def from_json(json_message): """ Return a Message model instance created from the give json_message dictionary. :param json_message: dictionary :returns: Message model instance """ try: text = str(json_message.get('text')).rstrip() if text: message = Message() message.text = text[:current_app.config['MAX_STRING_LENGTH']] return message except (LookupError, ValueError): pass @staticmethod def flush_messages(message_query): """ Set 'was_read' column to True for all messages from the given message_query. :param message_query: Message model query """ message_query.update({'was_read': True}, synchronize_session=False) database.session.commit() class AnonymousUser(AnonymousUserMixin): def has_permission(self, permission): return False @property def is_admin(self): return False class Permission: ADMINISTRATION = 1 login_manager.anonymous_user = AnonymousUser
StarcoderdataPython
3309450
<reponame>th2-net/th2-common-py<gh_stars>0 # Copyright 2020-2021 Exactpro (Exactpro Systems Limited) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from th2_common.schema.configuration.abstract_configuration import AbstractConfiguration from typing import List from th2_common.schema.message.configuration.message_configuration import FieldFilterConfiguration, \ RouterFilterConfiguration class GrpcRawRobinStrategy: def __init__(self, endpoints, name) -> None: self.endpoints = endpoints self.name = name class GrpcServiceConfiguration(AbstractConfiguration): pass class GrpcServerConfiguration(AbstractConfiguration): def __init__(self, attributes, host, port, workers, **kwargs) -> None: self.attributes = attributes self.host = host self.port = port self.workers = workers self.check_unexpected_args(kwargs) class GrpcEndpointConfiguration(AbstractConfiguration): def __init__(self, host, port, attributes, **kwargs) -> None: self.host = host self.port = port self.attributes = attributes self.check_unexpected_args(kwargs) class GrpcConfiguration(AbstractConfiguration): def __init__(self, services, server=None, **kwargs) -> None: self.services = services if server is not None: self.serverConfiguration = GrpcServerConfiguration(**server) self.check_unexpected_args(kwargs) class GrpcRouterFilterConfiguration(RouterFilterConfiguration): def __init__(self, endpoint: str, metadata, message, **kwargs) -> None: self.metadata = metadata self.message = message self.endpoint = endpoint self.check_unexpected_args(kwargs) def get_metadata(self) -> List[FieldFilterConfiguration]: return self.metadata def get_message(self) -> List[FieldFilterConfiguration]: return self.message class GrpcRawFilterStrategy: def __init__(self, filters) -> None: self.filters = [GrpcRouterFilterConfiguration(**filter_configuration) for filter_configuration in filters] class GrpcRouterConfiguration(AbstractConfiguration): def __init__(self, workers=5): self.workers = int(workers)
StarcoderdataPython