id
stringlengths 1
265
| text
stringlengths 6
5.19M
| dataset_id
stringclasses 7
values |
---|---|---|
1676720 | import numpy as np
from sklearn.metrics.pairwise import euclidean_distances
def gradient_descent(D, x0, loss_f, grad_f, lr, tol, max_iter):
losses = np.zeros(max_iter)
y_old = x0
y = x0
for i in range(max_iter):
g = grad_f(D, y)
y = y_old - lr * g
stress = loss_f(D, y)
losses[i] = stress
if stress < tol:
msg = "\riter: {0}, stress: {1:}".format(i, stress)
print(msg, flush=True, end="\t")
losses = losses[:i]
break
if i % 50 == 0:
msg = "\riter: {0}, stress: {1:}".format(i, stress)
print(msg, flush=True, end="\t")
y_old = y
if i == max_iter-1:
msg = "\riter: {0}, stress: {1:}".format(i, stress)
print(msg, flush=True, end="\t")
print('\n')
return y, losses
'''
input data and output data are col vector (ie :
For X \in R^{NxV} X.shape = (V,N) not (N,V)
)
'''
class MDS:
def __init__(self,
n_dim=2,
input_type='raw'):
if input_type not in ['distance', 'raw']:
raise RuntimeError('Not implement type !')
self.input_type = input_type
self.n_dim = n_dim
def fit(self, X,
method='cmds', # or stress
lr=0.5):
if method == 'cmds':
return self._cmds(X)
else:
return self._stress_based_mds(X, lr=lr)
def _cmds(self, X):
"""
Classical(linear) multidimensional scaling (MDS)
Parameters
----------
X: (d, n) array or (n,n) array
input data. The data are placed in column-major order.
That is, samples are placed in the matrix (X) as column vectors
d: dimension of points
n: number of points
n_dim: dimension of target space
input_type: it indicates whether data are raw or distance
- raw: raw data. (n,d) array.
- distance: precomputed distances between the data. (n,n) array.
Returns
-------
Y: (n_dim, n) array. projected embeddings.
evals: (n_dim) eigen values
evecs: corresponding eigen vectors in column vectors
"""
Y = None
evals = None
evecs = None
if self.input_type == 'distance':
D = X
elif self.input_type == 'raw':
Xt = X.T
D = euclidean_distances(Xt, Xt)
n = len(D)
H = np.eye(n) - (1/n)*np.ones((n, n))
D = (D**2).astype(np.float64)
D = np.nan_to_num(D)
G = -(1/2) * (H.dot(D).dot(H))
evals, evecs = np.linalg.eigh(G)
index = evals.argsort()[::-1]
evals = evals[index]
evecs = evecs[:, index]
evals = evals[:self.n_dim]
evecs = evecs[:, :self.n_dim]
self.eigen_vectors = evecs
self.eigen_values = evals
Y = np.diag(evals**(1/2)) @ evecs.T
assert Y.shape[0] == self.n_dim
return Y
def _loss_sammon(self, D, y):
"""
Loss function (stress) - Sammon
Parameters
----------
D: (n,n) array. distance matrix in original space
This is a symetric matrix
y: (d,n) array
d is the dimensionality of target space.
n is the number of points.
Returns
-------
stress: scalar. stress
"""
yt = y.T
n = D.shape[0]
Delta = euclidean_distances(yt, yt)
stress = 0
for i in range(n):
f = 0
s = 0
for j in range(n):
s += (D[i, j] - Delta[i, j])**2
f += Delta[i, j]
stress += (s/f)
return stress
def _grad_sammon(self, D, y):
"""
Gradient function (first derivative) - Sammonn_dim
Parameters
----------
D: (n,n) array. distance matrix in original space
This is a symetric matrix
y: (d,n) array
d is the dimensionality of target space.
n is the number of points.
Returns
-------
g: (k,n) array.
Gradient matrix.
k is the dimensionality of target space.
n is the number of points.
"""
D2 = euclidean_distances(y.T, y.T)
n = len(D)
def grid(k):
s = np.zeros(y[:, k].shape)
for j in range(n):
if j != k:
s += (D2[k, j] - D[k, j])*(y[:, k] - y[:, j])/(D2[k, j])
return s
N = 1/np.tril(D, -1).sum()
g = np.zeros((y.shape[0], n))
for i in range(n):
g[:, i] = grid(i)
return N*g
def _stress_based_mds(self, x,
lr, tol=1e-9, max_iter=6000):
"""
Stress-based MDS
Parameters
----------
x: (d,n) array or (n,n) array
If it is raw data -> (d,n) array
otherwise, (n,n) array (distance matrix)
n is the number of points
d is the dimensionality of original space
n_dim: dimensionality of target space
loss_f: loss function
grad_f: gradient function
input_type: 'raw' or 'distance'
init: initialisation method
random: Initial y is set randomly
fixed: Initial y is set by pre-defined values
max_iter: maximum iteration of optimization
Returns
-------
y: (n_dim,n) array. Embedded coordinates in target space
losses: (max_iter,) History of stress
"""
# obtain distance
if self.input_type == 'raw':
x_t = x.T
D = euclidean_distances(x_t, x_t)
elif self.input_type == 'distance':
D = x
else:
raise ValueError('inappropriate input_type')
# Remaining initialisation
N = x.shape[1]
np.random.seed(10)
# Initialise y randomly
y = np.random.normal(0.0, 1.0, [self.n_dim, N])
# calculate optimal solution (embedded coordinates)
y, _ = gradient_descent(D, y, self._loss_sammon,
self._grad_sammon, lr, tol, max_iter)
return y
| StarcoderdataPython |
36700 | <filename>slack_sdk/scim/v1/user.py
from typing import Optional, Any, List, Dict, Union
from .default_arg import DefaultArg, NotGiven
from .internal_utils import _to_dict_without_not_given, _is_iterable
from .types import TypeAndValue
class UserAddress:
country: Union[Optional[str], DefaultArg]
locality: Union[Optional[str], DefaultArg]
postal_code: Union[Optional[str], DefaultArg]
primary: Union[Optional[bool], DefaultArg]
region: Union[Optional[str], DefaultArg]
street_address: Union[Optional[str], DefaultArg]
unknown_fields: Dict[str, Any]
def __init__(
self,
*,
country: Union[Optional[str], DefaultArg] = NotGiven,
locality: Union[Optional[str], DefaultArg] = NotGiven,
postal_code: Union[Optional[str], DefaultArg] = NotGiven,
primary: Union[Optional[bool], DefaultArg] = NotGiven,
region: Union[Optional[str], DefaultArg] = NotGiven,
street_address: Union[Optional[str], DefaultArg] = NotGiven,
**kwargs,
) -> None:
self.country = country
self.locality = locality
self.postal_code = postal_code
self.primary = primary
self.region = region
self.street_address = street_address
self.unknown_fields = kwargs
def to_dict(self) -> dict:
return _to_dict_without_not_given(self)
class UserEmail(TypeAndValue):
pass
class UserPhoneNumber(TypeAndValue):
pass
class UserRole(TypeAndValue):
pass
class UserGroup:
display: Union[Optional[str], DefaultArg]
value: Union[Optional[str], DefaultArg]
unknown_fields: Dict[str, Any]
def __init__(
self,
*,
display: Union[Optional[str], DefaultArg] = NotGiven,
value: Union[Optional[str], DefaultArg] = NotGiven,
**kwargs,
) -> None:
self.display = display
self.value = value
self.unknown_fields = kwargs
def to_dict(self) -> dict:
return _to_dict_without_not_given(self)
class UserMeta:
created: Union[Optional[str], DefaultArg]
location: Union[Optional[str], DefaultArg]
unknown_fields: Dict[str, Any]
def __init__(
self,
created: Union[Optional[str], DefaultArg] = NotGiven,
location: Union[Optional[str], DefaultArg] = NotGiven,
**kwargs,
) -> None:
self.created = created
self.location = location
self.unknown_fields = kwargs
def to_dict(self) -> dict:
return _to_dict_without_not_given(self)
class UserName:
family_name: Union[Optional[str], DefaultArg]
given_name: Union[Optional[str], DefaultArg]
unknown_fields: Dict[str, Any]
def __init__(
self,
family_name: Union[Optional[str], DefaultArg] = NotGiven,
given_name: Union[Optional[str], DefaultArg] = NotGiven,
**kwargs,
) -> None:
self.family_name = family_name
self.given_name = given_name
self.unknown_fields = kwargs
def to_dict(self) -> dict:
return _to_dict_without_not_given(self)
class UserPhoto:
type: Union[Optional[str], DefaultArg]
value: Union[Optional[str], DefaultArg]
unknown_fields: Dict[str, Any]
def __init__(
self,
type: Union[Optional[str], DefaultArg] = NotGiven,
value: Union[Optional[str], DefaultArg] = NotGiven,
**kwargs,
) -> None:
self.type = type
self.value = value
self.unknown_fields = kwargs
def to_dict(self) -> dict:
return _to_dict_without_not_given(self)
class User:
active: Union[Optional[bool], DefaultArg]
addresses: Union[Optional[List[UserAddress]], DefaultArg]
display_name: Union[Optional[str], DefaultArg]
emails: Union[Optional[List[TypeAndValue]], DefaultArg]
external_id: Union[Optional[str], DefaultArg]
groups: Union[Optional[List[UserGroup]], DefaultArg]
id: Union[Optional[str], DefaultArg]
meta: Union[Optional[UserMeta], DefaultArg]
name: Union[Optional[UserName], DefaultArg]
nick_name: Union[Optional[str], DefaultArg]
phone_numbers: Union[Optional[List[TypeAndValue]], DefaultArg]
photos: Union[Optional[List[UserPhoto]], DefaultArg]
profile_url: Union[Optional[str], DefaultArg]
roles: Union[Optional[List[TypeAndValue]], DefaultArg]
schemas: Union[Optional[List[str]], DefaultArg]
timezone: Union[Optional[str], DefaultArg]
title: Union[Optional[str], DefaultArg]
user_name: Union[Optional[str], DefaultArg]
unknown_fields: Dict[str, Any]
def __init__(
self,
*,
active: Union[Optional[bool], DefaultArg] = NotGiven,
addresses: Union[
Optional[List[Union[UserAddress, Dict[str, Any]]]], DefaultArg
] = NotGiven,
display_name: Union[Optional[str], DefaultArg] = NotGiven,
emails: Union[
Optional[List[Union[TypeAndValue, Dict[str, Any]]]], DefaultArg
] = NotGiven,
external_id: Union[Optional[str], DefaultArg] = NotGiven,
groups: Union[
Optional[List[Union[UserGroup, Dict[str, Any]]]], DefaultArg
] = NotGiven,
id: Union[Optional[str], DefaultArg] = NotGiven,
meta: Union[Optional[Union[UserMeta, Dict[str, Any]]], DefaultArg] = NotGiven,
name: Union[Optional[Union[UserName, Dict[str, Any]]], DefaultArg] = NotGiven,
nick_name: Union[Optional[str], DefaultArg] = NotGiven,
phone_numbers: Union[
Optional[List[Union[TypeAndValue, Dict[str, Any]]]], DefaultArg
] = NotGiven,
photos: Union[
Optional[List[Union[UserPhoto, Dict[str, Any]]]], DefaultArg
] = NotGiven,
profile_url: Union[Optional[str], DefaultArg] = NotGiven,
roles: Union[
Optional[List[Union[TypeAndValue, Dict[str, Any]]]], DefaultArg
] = NotGiven,
schemas: Union[Optional[List[str]], DefaultArg] = NotGiven,
timezone: Union[Optional[str], DefaultArg] = NotGiven,
title: Union[Optional[str], DefaultArg] = NotGiven,
user_name: Union[Optional[str], DefaultArg] = NotGiven,
**kwargs,
) -> None:
self.active = active
self.addresses = ( # type: ignore
[a if isinstance(a, UserAddress) else UserAddress(**a) for a in addresses]
if _is_iterable(addresses)
else addresses
)
self.display_name = display_name
self.emails = ( # type: ignore
[a if isinstance(a, TypeAndValue) else TypeAndValue(**a) for a in emails]
if _is_iterable(emails)
else emails
)
self.external_id = external_id
self.groups = ( # type: ignore
[a if isinstance(a, UserGroup) else UserGroup(**a) for a in groups]
if _is_iterable(groups)
else groups
)
self.id = id
self.meta = ( # type: ignore
UserMeta(**meta) if meta is not None and isinstance(meta, dict) else meta
)
self.name = ( # type: ignore
UserName(**name) if name is not None and isinstance(name, dict) else name
)
self.nick_name = nick_name
self.phone_numbers = ( # type: ignore
[
a if isinstance(a, TypeAndValue) else TypeAndValue(**a)
for a in phone_numbers
]
if _is_iterable(phone_numbers)
else phone_numbers
)
self.photos = ( # type: ignore
[a if isinstance(a, UserPhoto) else UserPhoto(**a) for a in photos]
if _is_iterable(photos)
else photos
)
self.profile_url = profile_url
self.roles = ( # type: ignore
[a if isinstance(a, TypeAndValue) else TypeAndValue(**a) for a in roles]
if _is_iterable(roles)
else roles
)
self.schemas = schemas
self.timezone = timezone
self.title = title
self.user_name = user_name
self.unknown_fields = kwargs
def to_dict(self):
return _to_dict_without_not_given(self)
def __repr__(self):
return f"<slack_sdk.scim.{self.__class__.__name__}: {self.to_dict()}>"
| StarcoderdataPython |
8130 |
def insert_metatable():
"""SQL query to insert records from table insert into a table on a DB
"""
return """
INSERT INTO TABLE {{ params.target_schema }}.{{ params.target_table }} VALUES
('{{ params.schema }}', '{{ params.table }}', {{ ti.xcom_pull(key='hive_res', task_ids=params.count_inserts)[0][0] }}, current_timestamp(), '{{ params.type }}');
""" | StarcoderdataPython |
44973 | #!/usr/bin/env python
"""
nearest_cloud.py - Version 1.0 2013-07-28
Compute the COG of the nearest object in x-y-z space and publish as a PoseStamped message.
Relies on PCL ROS nodelets in the launch file to pre-filter the
cloud on the x, y and z dimensions.
Based on the follower application by <NAME> at:
http://ros.org/wiki/turtlebot_follower
Created for the Pi Robot Project: http://www.pirobot.org
Copyright (c) 2013 <NAME>. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details at:
http://www.gnu.org/licenses/gpl.html
"""
import rospy
from roslib import message
from sensor_msgs.msg import PointCloud2
from sensor_msgs import point_cloud2
from geometry_msgs.msg import Point, PoseStamped, Quaternion
from tf.transformations import quaternion_from_euler
import numpy as np
import cv2
from math import pi, radians
class NearestCloud():
def __init__(self):
rospy.init_node("nearest_cloud")
self.min_points = rospy.get_param("~min_points", 25)
self.z_percentile = rospy.get_param("~z_percentile", 100)
# Define the target publisher
self.target_pub = rospy.Publisher('target_pose', PoseStamped)
rospy.Subscriber('point_cloud', PointCloud2, self.get_nearest_cloud)
# Wait for the pointcloud topic to become available
rospy.wait_for_message('point_cloud', PointCloud2)
def get_nearest_cloud(self, msg):
points = list()
points_xy = list()
# Get all the points in the visible cloud (may be prefiltered by other nodes)
for point in point_cloud2.read_points(msg, skip_nans=True):
points.append(point[:3])
points_xy.append(point[:2])
# Convert to a numpy array
points_arr = np.float32([p for p in points]).reshape(-1, 1, 3)
# Compute the COG
cog = np.mean(points_arr, 0)
# Convert to a Point
cog_point = Point()
cog_point.x = cog[0][0]
cog_point.y = cog[0][1]
cog_point.z = cog[0][2]
#cog_point.z = 0.35
# Abort if we get an NaN in any component
if np.isnan(np.sum(cog)):
return
# If we have enough points, find the best fit ellipse around them
try:
if len(points_xy) > 6:
points_xy_arr = np.float32([p for p in points_xy]).reshape(-1, 1, 2)
track_box = cv2.fitEllipse(points_xy_arr)
else:
# Otherwise, find the best fitting rectangle
track_box = cv2.boundingRect(points_xy_arr)
angle = pi - radians(track_box[2])
except:
return
#print angle
# Convert the rotation angle to a quaternion
q_angle = quaternion_from_euler(0, angle, 0, axes='sxyz')
q = Quaternion(*q_angle)
q.x = 0.707
q.y = 0
q.z = 0.707
q.w = 0
# Publish the COG and orientation
target = PoseStamped()
target.header.stamp = rospy.Time.now()
target.header.frame_id = msg.header.frame_id
target.pose.position = cog_point
target.pose.orientation = q
# Publish the movement command
self.target_pub.publish(target)
if __name__ == '__main__':
try:
NearestCloud()
rospy.spin()
except rospy.ROSInterruptException:
rospy.loginfo("Nearest cloud node terminated.")
| StarcoderdataPython |
112998 | import colorsys
import numpy as np
def random_colors(N, bright=True):
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
return colors
def apply_mask(image, mask, color, alpha=0.5):
for i in range(3):
image[:, :, i] = np.where(mask == 1, image[:, :, i] * (1 - alpha) + alpha * color[i] * 255, image[:, :, i])
return image
def apply_contour(image, mask, color, thickness=4):
t = thickness // 2
mask = mask.copy()
mask1 = mask[thickness:, thickness:]
mask2 = mask[:-thickness, :-thickness]
mask[t:-t, t:-t] -= mask1 * mask2
mask = np.where(mask == 0, 0., 1.)
image = apply_mask(image, mask, color, alpha=1.)
return image
| StarcoderdataPython |
153905 | <gh_stars>1-10
t = int(input())
for _ in range(t) :
n, k = map(int, input().split())
arr = list(map(int, input().split()))
arr.sort()
if(k > arr[0]) :
print(abs(k-arr[0]))
else :
print(0) | StarcoderdataPython |
1687686 | <reponame>Oumourin/Book-Manager-System
from . import Book
from . import Order
from .. import db
class OrderItem(db.Model):
__tablename__ = 'order_item'
id = db.Column(db.Integer, primary_key=True, autoincrement=True, nullable=False, index=True)
order_id = db.Column(db.Integer, db.ForeignKey(Order.id), nullable=False)
isbn = db.Column(db.String(13), db.ForeignKey(Book.isbn), nullable=False)
amount = db.Column(db.Integer, nullable=False) # ไธไธช่ฎขๅไธญๆ็งไนฆ็ๆฐ็ฎ
def __init__(self, order_id, isbn, amount):
self.order_id = order_id
self.isbn = isbn
self.amount = amount
def __repr__(self):
return '<OrderItem#{}:{}:{}:{}>'.format(self.id, self.order_id, self.isbn, self.amount)
| StarcoderdataPython |
196536 | <reponame>Costopoulos/DeliveryApp<filename>src/store/forms.py
from driver.models import order
from django import forms
from datetimewidget.widgets import DateTimeWidget
class OrderForm(forms.ModelForm):
time_to_pickup = forms.CharField(label='ฮฮผฮตฯฮฟฮผฮทฮฝฮฏฮฑ ฮบฮฑฮน ฯฯฮฑ ฯฮฑฯฮฌฮดฮฟฯฮทฯ',
widget=forms.DateTimeInput(
attrs={
"placeholder": "Yฮฅฮฅฮฅ-ฮฮ-DD HH:MM",
"cols": 20,
"rows": 20
}),
required=True)
adress_to = forms.CharField(
required=True,
label='ฮฮนฮตฯฮธฯ
ฮฝฯฮท ฯฮฑฯฮฌฮดฮฟฯฮทฯ',
widget=forms.Textarea(
attrs={
"placeholder": "ฮฮฌฮปฯฮต ฮดฮนฮตฯฮธฯ
ฮฝฯฮท ฮบฮฑฮน ฯฯฯฮปฮนฮฑ ฯฮฑฯฮฑฮณฮณฮตฮปฮฏฮฑฯ",
# "class": "new-class-name two",
# "id": "my-id-for-textarea",
#"rows": 5,
'cols': 120
}
)
)
price = forms.DecimalField(
required=True,
label='ฮฃฯฮฝฮฟฮปฮฟ',
widget=forms.NumberInput(
attrs={
"placeholder": "ฮฃฮต ฮผฮฟฯฯฮฎ ฮฯ
ฯฯ.Cents",
}
)
)
isPaid = forms.BooleanField(
required=False,
label='ฮฯฮตฮน ฯฯฮฟฯฮปฮทฯฯฮธฮตฮฏ',
# widget=forms.NumberInput(
# attrs={
# "placeholder": "ฮฃฮต ฮผฮฟฯฯฮฎ ฮฯ
ฯฯ.Cents",
# }
# )
)
class Meta:
model = order
fields = [
'time_to_pickup',
'adress_to',
'price',
'isPaid'
]
# widgets = {
# 'datetime':DateTimeWidget(attrs={'id':""}, usel10n=True, bootstrap_version=3)
# } | StarcoderdataPython |
3264545 |
import unittest
from uvm.base.uvm_report_object import UVMReportObject
from uvm.base.uvm_object_globals import (
UVM_INFO, UVM_ERROR, UVM_LOG, UVM_DISPLAY, UVM_COUNT, UVM_MEDIUM, UVM_HIGH)
class TestUVMReportObject(unittest.TestCase):
""" Unit tests for UVMReportObject """
def test_verbosity(self):
obj = UVMReportObject('rpt')
rh = obj.get_report_handler()
verb = rh.get_verbosity_level(UVM_INFO, "")
self.assertEqual(verb, UVM_MEDIUM)
self.assertEqual(obj.uvm_report_enabled(UVM_MEDIUM, UVM_INFO), True)
def test_report_enabled(self):
obj = UVMReportObject('rpt')
is_en = obj.uvm_report_enabled(UVM_MEDIUM, UVM_INFO, id="")
self.assertEqual(is_en, True)
is_en = obj.uvm_report_enabled(UVM_HIGH, UVM_INFO, id="")
self.assertEqual(is_en, False)
def test_report_severity(self):
obj = UVMReportObject('rpt')
act = obj.get_report_action(UVM_ERROR, id="")
self.assertEqual(act, UVM_DISPLAY | UVM_COUNT)
act = obj.get_report_action(UVM_INFO, id="")
self.assertEqual(act, UVM_DISPLAY)
obj.set_report_severity_action(UVM_ERROR, UVM_LOG)
act = obj.get_report_action(UVM_ERROR, id="")
self.assertEqual(act, UVM_LOG)
if __name__ == '__main__':
unittest.main()
| StarcoderdataPython |
4805850 | #!/usr/bin/env python3
from distutils.core import setup
setup(name='Pyromania',
version='0.1',
description='Python facade for a variety of tree models from R',
url='https://github.com/trygvebw/pyromania',
packages=['pyromania'],
install_requires=[
'pandas',
'numpy',
'scipy',
'rpy2',
'scikit-learn',
],
python_requires='>=3.4') | StarcoderdataPython |
1679740 | <filename>backend/bugs/models.py
from django.db import models
from django.contrib.auth.models import User
class Bug(models.Model):
id = models.AutoField(primary_key=True)
user = models.ForeignKey(User, on_delete=models.CASCADE)
title = models.CharField(max_length=50)
description = models.TextField()
resolved = models.BooleanField()
created_at = models.DateTimeField(auto_now_add=True)
updated_at = models.DateTimeField(auto_now=True)
def __str__(self):
return self.title | StarcoderdataPython |
3367599 | <reponame>mrTavas/owasp-fstm-auto
#!/usr/bin/env python3
#
# Cross Platform and Multi Architecture Advanced Binary Emulation Framework
#
from qiling.os.const import *
from ..const import *
from ..fncc import *
from ..ProcessorBind import *
from ..UefiBaseType import *
# @file: MdePkg\Include\Protocol\SmmSwDispatch2.h
class EFI_SMM_SW_REGISTER_CONTEXT(STRUCT):
_fields_ = [
('SwSmiInputValue', UINTN)
]
# @ file: MdePkg\Include\Pi\PiMmCis.h
EFI_SMM_HANDLER_ENTRY_POINT2 = FUNCPTR(EFI_STATUS, EFI_HANDLE, PTR(VOID), PTR(VOID), PTR(UINTN))
class EFI_SMM_SW_DISPATCH2_PROTOCOL(STRUCT):
EFI_SMM_SW_DISPATCH2_PROTOCOL = STRUCT
_fields_ = [
('Register', FUNCPTR(EFI_STATUS, PTR(EFI_SMM_SW_DISPATCH2_PROTOCOL), EFI_SMM_HANDLER_ENTRY_POINT2, PTR(EFI_SMM_SW_REGISTER_CONTEXT), PTR(EFI_HANDLE))),
('UnRegister', FUNCPTR(EFI_STATUS, PTR(EFI_SMM_SW_DISPATCH2_PROTOCOL), EFI_HANDLE)),
('MaximumSwiValue', UINTN)
]
@dxeapi(params = {
"This" : POINTER,
"DispatchFunction" : POINTER,
"RegisterContext" : POINTER,
"DispatchHandle" : POINTER
})
def hook_Register(ql, address, params):
# Let's save the dispatch params, so they can be triggered if needed.
ql.loader.smm_context.swsmi_handlers.append(params)
return EFI_SUCCESS
@dxeapi(params = {
"This" : POINTER,
"DispatchHandle" : POINTER
})
def hook_UnRegister(ql, address, params):
return EFI_SUCCESS
descriptor = {
"guid" : "18a3c6dc-5eea-48c8-a1c1-b53389f98999",
"struct" : EFI_SMM_SW_DISPATCH2_PROTOCOL,
"fields" : (
("Register", hook_Register),
("UnRegister", hook_UnRegister)
)
}
| StarcoderdataPython |
1753318 | #encoding=utf-8
import numpy as np;
import tensorflow as tf
import util;
from dataset_utils import int64_feature, float_feature, bytes_feature, convert_to_example
# encoding = utf-8
import numpy as np
import time
import config
import util
class SynthTextDataFetcher():
def __init__(self, mat_path, root_path):
self.mat_path = mat_path
self.root_path = root_path
self._load_mat()
@util.dec.print_calling
def _load_mat(self):
data = util.io.load_mat(self.mat_path)
self.image_paths = data['imnames'][0]
self.image_bbox = data['wordBB'][0]
self.txts = data['txt'][0]
self.num_images = len(self.image_paths)
def get_image_path(self, idx):
image_path = util.io.join_path(self.root_path, self.image_paths[idx][0])
return image_path
def get_num_words(self, idx):
try:
return np.shape(self.image_bbox[idx])[2]
except: # error caused by dataset
return 1
def get_word_bbox(self, img_idx, word_idx):
boxes = self.image_bbox[img_idx]
if len(np.shape(boxes)) ==2: # error caused by dataset
boxes = np.reshape(boxes, (2, 4, 1))
xys = boxes[:,:, word_idx]
assert(np.shape(xys) ==(2, 4))
return np.float32(xys)
def normalize_bbox(self, xys, width, height):
xs = xys[0, :]
ys = xys[1, :]
min_x = min(xs)
min_y = min(ys)
max_x = max(xs)
max_y = max(ys)
# bound them in the valid range
min_x = max(0, min_x)
min_y = max(0, min_y)
max_x = min(width, max_x)
max_y = min(height, max_y)
# check the w, h and area of the rect
w = max_x - min_x
h = max_y - min_y
is_valid = True
if w < 10 or h < 10:
is_valid = False
if w * h < 100:
is_valid = False
xys[0, :] = xys[0, :] / width
xys[1, :] = xys[1, :] / height
return is_valid, min_x / width, min_y /height, max_x / width, max_y / height, xys
def get_txt(self, image_idx, word_idx):
txts = self.txts[image_idx];
clean_txts = []
for txt in txts:
clean_txts += txt.split()
return str(clean_txts[word_idx])
def fetch_record(self, image_idx):
image_path = self.get_image_path(image_idx)
if not (util.io.exists(image_path)):
return None;
img = util.img.imread(image_path)
h, w = img.shape[0:-1];
num_words = self.get_num_words(image_idx)
rect_bboxes = []
full_bboxes = []
txts = []
for word_idx in range(num_words):
xys = self.get_word_bbox(image_idx, word_idx);
is_valid, min_x, min_y, max_x, max_y, xys = self.normalize_bbox(xys, width = w, height = h)
if not is_valid:
continue;
rect_bboxes.append([min_x, min_y, max_x, max_y])
xys = np.reshape(np.transpose(xys), -1)
full_bboxes.append(xys);
txt = self.get_txt(image_idx, word_idx);
txts.append(txt);
if len(rect_bboxes) == 0:
return None;
return image_path, img, txts, rect_bboxes, full_bboxes
def cvt_to_tfrecords(output_path , data_path, gt_path, records_per_file = 50000):
fetcher = SynthTextDataFetcher(root_path = data_path, mat_path = gt_path)
image_idxes = range(fetcher.num_images)
np.random.shuffle(image_idxes)
record_count = 0;
for image_idx in image_idxes:
if record_count % records_per_file == 0:
fid = record_count / records_per_file
tfrecord_writer = tf.python_io.TFRecordWriter(output_path%(fid))
print "converting image %d/%d"%(record_count, fetcher.num_images)
record = fetcher.fetch_record(image_idx);
if record is None:
print '\nimage %d does not exist'%(image_idx + 1)
continue;
record_count += 1
image_path, image, txts, rect_bboxes, oriented_bboxes = record;
labels = [];
for txt in txts:
if len(txt) < 3:
labels.append(config.ignore_label)
else:
labels.append(config.text_label)
image_data = tf.gfile.FastGFile(image_path, 'r').read()
shape = image.shape
image_name = str(util.io.get_filename(image_path).split('.')[0])
example = convert_to_example(image_data, image_name, labels, txts, rect_bboxes, oriented_bboxes, shape)
tfrecord_writer.write(example.SerializeToString())
if __name__ == "__main__":
mat_path = util.io.get_absolute_path('~/dataset/SynthText/gt.mat')
root_path = util.io.get_absolute_path('~/dataset/SynthText/')
output_dir = util.io.get_absolute_path('~/dataset/pixel_link/SynthText/')
util.io.mkdir(output_dir);
cvt_to_tfrecords(output_path = util.io.join_path(output_dir, 'SynthText_%d.tfrecord'), data_path = root_path, gt_path = mat_path)
| StarcoderdataPython |
1777476 | from Chef import Chef
from ChineseChef import ChineseChef
myChef = Chef()
myChef.make_special_dish()
myChineseChef = ChineseChef()
myChineseChef.make_fried_rice()
| StarcoderdataPython |
136986 | # %%
import sys
sys.path.append("..")
from data import handling as dth
import pandas as pd
import numpy as np
from pathlib import Path
%matplotlib inline
import quantstats as qs
import bar_chart_race as bcr
import seaborn as sns
# extend pandas functionality with metrics, etc.
qs.extend_pandas()
# %%
######
# SETUP
######
render_vids = False
######
# PREPROCESSING
######
# Load stocksdata
stocksdata_fp = Path.cwd().parent / "data" / "stocksdata_all.csv"
stocksdata_all_df = dth.load_data(stocksdata_fp)
*_, stocksdata_df = dth.train_val_test_split(stocksdata_all_df)
# Get tested dates out of stocksdata
dates = stocksdata_df.index.get_level_values(level="date").unique().tolist()
# Get stock prices close and open
stockprices_close_ser = stocksdata_df["close"].copy()
stockprices_close_ser.name = "close"
stockprices_open_ser = stocksdata_df["open"].copy()
stockprices_open_ser.name = "open"
# Get stocks and exchanges
with open(Path.cwd().parent / "etl" / "stocks.txt") as file:
symb_exchange = file.read().splitlines()
stocks_df = pd.DataFrame([item.split(".") for item in symb_exchange], columns=["symbol","exchange"]).set_index("symbol")["exchange"].apply(lambda x: "EU" if x != "US" else x)
# Load indices data
indices_fp = Path.cwd().parent / "data" / "indices_performance.csv"
indices_df = dth.load_data(indices_fp)
*_, indices_df = dth.train_val_test_split(indices_df)
#######
# READ TEST RESULTS
######
# Generate Multiindex DF for all test results over all experiments over all algos
results_dir = Path.cwd().parent / "results"
tests = []
exp_args = []
algo_dirs = [algo_dir for algo_dir in results_dir.iterdir() if algo_dir.is_dir()]
for algo_dir in algo_dirs:
exp_dirs = [exp_dir for exp_dir in algo_dir.iterdir() if exp_dir.is_dir()]
for exp_idx, exp_dir in enumerate(exp_dirs):
exp_args.append(pd.read_json(path_or_buf=exp_dir.joinpath("run_args.json"), typ="ser"))
test_files = [test_file for test_file in exp_dir.rglob("env_info/test/*.json") if test_file.is_file()]
for test_idx, test_file in enumerate(test_files):
test_file_df = pd.read_json(test_file)
data = {
"algo": algo_dir.name,
"exp": exp_idx,
"test": test_idx,
"date": dates,
"totalValues": test_file_df["totalValues"],
"cashes": test_file_df["cashes"],
"numShares": test_file_df["numShares"]
}
tests.append(pd.DataFrame(data=data))
# concatenate all tests to one df
tests_df = pd.concat(tests).set_index(["algo", "exp", "test", "date"])
# and all exp_args to one df
exp_args_df = pd.DataFrame(exp_args)
exp_args_df["exp_idx"] = exp_args_df.groupby(by="algo").cumcount()
exp_args_df = exp_args_df.set_index(["algo","exp_idx"])
###
# Get the best Experiment by Sharpe Ratio
# Get Sharpe ratio for all tests
tests_sharpe = tests_df["totalValues"].groupby(level=["algo", "exp", "test"]).apply(qs.stats.sharpe).rename("sharpe")
# Get mean sharpe over the tests for each run
tests_sharpe_mean = tests_sharpe.groupby(level=["algo", "exp"]).mean()
# save best exp idx to a pandas series
best_exp_idx = pd.Series(dict(tests_sharpe_mean.groupby(level=["algo"]).idxmax().values.tolist())).rename("best_exp_idx")
###
# Creating the best exps_args_df to show it later
temp = [exp_args_df.loc[(algo_name, exp_idx), slice(None)] for algo_name, exp_idx in best_exp_idx.items()]
best_exp_args_df = pd.DataFrame(temp).reset_index()
best_exp_args_df[['algo','exp_idx']] = pd.DataFrame(best_exp_args_df["index"].tolist(), index= best_exp_args_df.index)
best_exp_args_df = best_exp_args_df.drop(columns="index").set_index(["algo","exp_idx"])
######
# BUILD PORTFOLIO DF
######
# Inside the best experiment, calculate the mean totalValue by date over all tests.
temp = [tests_df["totalValues"].loc[(algo_name, exp_idx, slice(None), slice(None))] for algo_name, exp_idx in best_exp_idx.items()]
best_exp_totalValues_df = pd.concat(temp).reset_index(level="exp", drop=True).reorder_levels(["algo","date","test"])
# Now we getting our data to make graphs and other metrics.
best_exp_totalValues_df = best_exp_totalValues_df.groupby(level=["algo","date"]).mean().unstack(level="algo")
### Create indices series
stoxx50e_ser = indices_df[indices_df.index.get_level_values("symbol") == "stoxx50e"]["adjusted_close"]
stoxx50e_ser.index = stoxx50e_ser.index.droplevel(1)
stoxx50e_ser = stoxx50e_ser.pct_change()
stoxx50e_ser = stoxx50e_ser.fillna(0)
stoxx50e_ser = stoxx50e_ser.rename(index="dly_ret").rename_axis("Date")
stoxx50e_ser.name = "stoxx50e"
dji_ser = indices_df[indices_df.index.get_level_values("symbol") == "dji"]["adjusted_close"]
dji_ser.index = dji_ser.index.droplevel(1)
dji_ser = dji_ser.pct_change()
dji_ser = dji_ser.fillna(0)
dji_ser = dji_ser.rename(index="dly_ret").rename_axis("Date")
dji_ser.name = "dji"
# Create a ETF portfolio
etf_df = pd.DataFrame(index=dates)
etf_df = etf_df.join([dji_ser, stoxx50e_ser]).fillna(0)
# Calculate the weighted daily returns of our ETF portfolio
etf_df["dji"] = etf_df["dji"]*(1-(36/63))
etf_df["stoxx50e"] = etf_df["stoxx50e"]*(36/63)
etf_df["portf_ret"] = etf_df["dji"] + etf_df["stoxx50e"]
# Calculate the portfolio value
etf_df["totalValue"] = etf_df["portf_ret"].add(1).cumprod().mul(1e6)
etf_ser = etf_df["totalValue"]
etf_ser.name = "ETF"
###
# Get all TotalValues in one DF
portfolios_df = best_exp_totalValues_df.join(etf_ser)
# %%
######
# SHOW RESULTS
######
# Setup the order
drl_algos = ["DDPG","PPO","A2C"]
basic_algos = ["BUYHOLD","RANDOM"]
# Matrix of Mean Sharpes (Experiment times Algorithms)
mean_sharpes_df = tests_sharpe_mean.unstack(level=["algo"])
# Color Gradient
color_gradient = sns.light_palette("green", as_cmap=True)
# Apply color gradient to columns of mean_sharpes_df
mean_sharpes_df[drl_algos].T.style.background_gradient(cmap=color_gradient, axis=1).set_precision(2)
# %%
# export to .tex file
mean_sharpes_df[drl_algos].to_latex(buf="mean_sharpes.tex", float_format="%.2f", index_names=False, decimal=",", caption="Sharpe-Ratio Mittelwerte aller Experimente รผber 25 Testlรคufe.\\Quelle: Eigene Darstellung.", label="tab:exp-mean-sharpes")
# %%
# Showing the variant args of the best experiments
variant_args = ["cagr", "episodic","num_stacks", "trainsampling"]
best_exp_args_df[variant_args].loc[drl_algos]
# %%
best_exp_args_df[variant_args].loc[drl_algos].droplevel("exp_idx").to_latex(buf="best_exp_args.tex", float_format="%.2f", index_names=False, decimal=",", caption="Umgebungsparameter des besten Experiments je Algorithmus.\\\\Quelle: Eigene Darstellung.", label="tab:best-exp-args")
# %%
# Table for evaluation of best experiments for algos and Bench with:
# Comp. overall Return
# Comp. annual growth rate
# Sharpe ratio
# Volatility (Standard deviation p.a.)
metrics_df = pd.DataFrame(index=["Total return (%)", "CAGR (%)", "Sharpe ratio", "Std. Dev. (%)"])
for column in portfolios_df.columns:
sharpe = qs.stats.sharpe(qs.utils.to_returns(portfolios_df[column]))
ret = qs.stats.comp(qs.utils.to_returns(portfolios_df[column]))
cagr = qs.stats.cagr(qs.utils.to_returns(portfolios_df[column]))
vol = qs.stats.volatility(qs.utils.to_returns(portfolios_df[column]), annualize=False)
metrics_df[column] = [ret*100, cagr*100, sharpe, vol*100]
# Higlight best algorithm
show_portfolios = ["DDPG","PPO","BUYHOLD","A2C","RANDOM","ETF"]
metrics_df[show_portfolios].style.background_gradient(cmap=color_gradient, axis=1).set_precision(3)
###
# Random is better than ETF?
# This is because of the survivor bias.
# We choosed only stocks that lived from 2000 to end 2019
# but the ETF contains loosers.
# %%
metrics_df[show_portfolios].to_latex(buf="best_exp_metrics.tex", float_format="%.2f", index_names=False, decimal=",", caption="Darstellung der Performancemaรe fรผr alle DRL-Algorithmen und die Benchmarks.\\\\Quelle: Eigene Darstellung.", label="tab:best-exp-metrics")
# %%
# ColorBlind/friendly colormap from https://gist.github.com/thriveth/8560036
colors = ['#377eb8', '#ff7f00', '#4daf4a',
'#f781bf', '#a65628', '#984ea3',
'#999999', '#e41a1c', '#dede00']
drl_colors = colors[0:2]+[colors[3]]
# Plot a linechart for all portfolios
portfolios_df[show_portfolios].plot(title=None, legend=True, xlabel="", ylabel=None, color=colors).figure.savefig("img/all_line_totalValues.pdf", bbox_inches="tight")
# %%
# Bar chart race for Portfolio values
if render_vids:
bcr.bar_chart_race(df=portfolios_df.resample("2W").mean(), dpi=330, cmap=[colors[1]]+[colors[0]]+colors[2:],
filename="vids/all_bcr_totalValues.mp4", orientation="v",
fixed_order=True, period_length=1000, interpolate_period=True,
fixed_max=True, steps_per_period=7,
title="Portfolio Values over Time")
# %%
######
# INVESTIGATIONS
######
# We can investigate the following underlying numbers:
# Number and Value of Shares
# Portfolio structure grouped by exchanges (US, EU) and Cash
# Trading Costs
######
# NUMBER AND VALUE OF SHARES
# Get numShares in a multilevel DF
temp = [tests_df["numShares"].loc[(algo_name, exp_idx, slice(None), slice(None))] for algo_name, exp_idx in best_exp_idx.items()]
best_exp_numshares_df = pd.concat(temp).reset_index(level="exp", drop=True).reorder_levels(["algo","date","test"]).to_frame()
# explode list fields to columns
best_exp_numshares_df = pd.DataFrame(data=best_exp_numshares_df["numShares"].values.tolist(), columns=stockprices_close_ser.index.get_level_values(level="symbol").unique().tolist(),index=best_exp_numshares_df.index)
# swap axis of test (index) and algo (column)
best_exp_numshares_df = best_exp_numshares_df.unstack(level="test").stack(level=None)
# reorder index levels
best_exp_numshares_df.index.names = ["algo", "date", "symbol"]
# get mean over tests, round the mean to full numbers and convert it to int.
best_exp_numshares_df = best_exp_numshares_df.mean(axis=1).round().astype("int").unstack(level="algo")
# copy to new df, because we want to have sharesvalues additionally
best_exp_sharesvalues_df = best_exp_numshares_df.copy()
# Get closing price and calculate the stock value in portfolio
best_exp_sharesvalues_df = best_exp_sharesvalues_df.join(stockprices_close_ser)
for algo in drl_algos+basic_algos:
best_exp_sharesvalues_df[algo] = best_exp_sharesvalues_df[algo] * best_exp_sharesvalues_df["close"]
best_exp_sharesvalues_df = best_exp_sharesvalues_df.drop(columns="close")
# %%
for idx,algo in enumerate(drl_algos):
if render_vids:
# Bar chart race for seperate symbol values
bcr.bar_chart_race(df=best_exp_sharesvalues_df[algo].unstack("symbol").resample("2W").mean(), dpi=330,
filename="vids/"+algo+"_bcr_sharesvalues.mp4", orientation="v", interpolate_period=True,
fixed_order=True, period_length=1000, filter_column_colors=True,
fixed_max=True, steps_per_period=7, n_bars=10, cmap=[drl_colors[idx]],
title="Seperate Stock Values of "+algo+" over Time")
# Bar chart race for seperate symbol number of shares
bcr.bar_chart_race(df=best_exp_numshares_df[algo].unstack("symbol").resample("2W").mean(), dpi=330,
filename="vids/"+algo+"_bcr_numshares.mp4", orientation="v", interpolate_period=True,
fixed_order=True, period_length=1000, filter_column_colors=True,
fixed_max=True, steps_per_period=7, n_bars=10, cmap=[drl_colors[idx]],
title="Seperate Stock numbers of "+algo+" over Time")
# Show the mean of each numshares and plot the 10 largest.
best_exp_numshares_df[algo].unstack("symbol").mean().nlargest(10).plot(title="Mean count of Shares in "+algo+" Portfolio", ylabel="Count", xlabel="Symbol", kind="bar",color=drl_colors[idx]).figure.savefig("img/"+algo+"_bar_top10_shares_counts.pdf", bbox_inches="tight")
# %%
######
# PORTFOLIO STRUCTURE
# cash
# Get the Cashes of the Algorithms
temp = [tests_df["cashes"].loc[(algo_name, exp_idx, slice(None), slice(None))] for algo_name, exp_idx in best_exp_idx.items()]
best_exp_cashes_df = pd.concat(temp).reset_index(level="exp", drop=True).reorder_levels(["algo","date","test"])
best_exp_cashes_df = best_exp_cashes_df.groupby(level=["algo","date"]).mean().unstack(level="algo")
######
# Structure
exchange_values_df = best_exp_sharesvalues_df.stack().copy()
exchange_values_df.index.names = ["date","symbol","algo"]
exchange_values_df.name = "value"
temp = best_exp_cashes_df.stack().copy()
temp.name = ("value","Cash")
exchange_values_df = exchange_values_df.reset_index(["date","algo"]).join(stocks_df).reset_index().set_index(["date","algo","exchange"]).drop(columns=["symbol"]).sort_index().groupby(["algo","date","exchange"]).sum().unstack("exchange").join(temp)
exchange_values_df.columns = exchange_values_df.columns.droplevel(None)
# Include ETF portfolio structure
etf_portf_df = pd.concat([dji_ser, stoxx50e_ser], axis=1).fillna(0)
etf_portf_df["EU"] = 1e6*(36/63)
etf_portf_df["US"] = 1e6*(1-(36/63))
etf_portf_df["EU"] = etf_portf_df["stoxx50e"].add(1).cumprod() * etf_portf_df["EU"]
etf_portf_df["US"] = etf_portf_df["dji"].add(1).cumprod() * etf_portf_df["US"]
etf_portf_df["Cash"] = 0
etf_portf_df = etf_portf_df.drop(columns=["dji","stoxx50e"])
etf_portf_df["algo"] = "ETF"
etf_portf_df = etf_portf_df.reset_index().set_index(["algo","Date"])
etf_portf_df.index.names = ["algo","date"]
etf_portf_df.columns.names = ["exchange"]
exchange_values_df = exchange_values_df.append(etf_portf_df).sort_index()
# Show absolute Structure of Portfolios
for algo in exchange_values_df.index.get_level_values(level="algo").unique().tolist():
exchange_values_df.loc[(algo,slice(None)),slice(None)].droplevel("algo").plot(kind="area", title="Portfolio Structure of "+algo, ylabel="Value", xlabel="Date", legend="reverse",color=colors[::-1]).figure.savefig("img/"+algo+"_area_value_portfolio_structure.pdf", bbox_inches="tight")
# %%
# And for better comparison the percentage of total structure
exchange_pct_df = exchange_values_df.copy()
exchange_pct_df["Total"] = exchange_pct_df["US"] + exchange_pct_df["EU"] + exchange_pct_df["Cash"]
for column in exchange_pct_df.columns:
exchange_pct_df[column] = exchange_pct_df.apply(lambda x: x[column]/x["Total"], axis=1)
exchange_pct_df = exchange_pct_df.drop(columns="Total")
# Show it...
for algo in exchange_pct_df.index.get_level_values(level="algo").unique().tolist():
exchange_pct_df.loc[(algo,slice(None)),slice(None)].droplevel("algo").plot(kind="area", title=None, ylabel="", xlabel="", legend="reverse",color=colors[::-1]).figure.savefig("img/"+algo+"_area_pct_portfolio_structure.pdf", bbox_inches="tight")
# %%
######
# TRADING COSTS
######
# A completely different Question is about the produced costs
# What algorithm traded the most cost effective?
# Firstly we need the trades
best_exp_trades_df = best_exp_numshares_df.groupby(by="symbol").diff().fillna(0)
# and secondly we need the costs
best_exp_costs_df = best_exp_trades_df.copy()
best_exp_costs_df = best_exp_costs_df.join(stockprices_open_ser)
for algo in drl_algos+basic_algos:
best_exp_costs_df[algo] = best_exp_costs_df[algo].abs() * best_exp_costs_df["open"] * best_exp_args_df.loc[(algo,slice(None)),"fee"].values[0]
best_exp_costs_df = best_exp_costs_df.drop(columns="open")
# Show the Marginal costs per trade over time
# Marginal costs determine how effective the trades has been made in conjuntion to costs
(best_exp_costs_df.groupby(by="date").sum().cumsum() / best_exp_trades_df.abs().groupby(by="date").sum().cumsum())[show_portfolios[:-1]].plot(ylabel="", title=None, color=colors, xlabel="", legend=False).figure.savefig("img/all_line_marginal_trading_costs.pdf", bbox_inches="tight")
# %%
| StarcoderdataPython |
3326700 | <filename>web/addons/website_hr/__openerp__.py
{
'name': 'Team Page',
'category': 'Website',
'summary': 'Present Your Team',
'version': '1.0',
'description': """
Our Team Page
=============
""",
'author': 'OpenERP SA',
'depends': ['website', 'hr'],
'demo': [
'data/website_hr_demo.xml',
],
'data': [
'data/website_hr_data.xml',
'views/website_hr.xml',
'security/ir.model.access.csv',
'security/website_hr.xml',
],
'qweb': ['static/src/xml/*.xml'],
'installable': True,
}
| StarcoderdataPython |
1603436 | class TestInit(object):
def test_init(self):
assert 1 == True
| StarcoderdataPython |
1649813 | from hallo.inc.input_parser import InputParser
def test_no_args():
p = InputParser("blah blah")
assert p.remaining_text == "blah blah"
assert len(p.args_dict) == 0
def test_multiple_simple_args():
p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3")
assert p.remaining_text == "blah blah"
assert p.args_dict["arg1"] == "val1"
assert p.args_dict["arg2"] == "val2"
assert p.args_dict["arg3"] == "val3"
def test_quoted_args_quoted_values():
p = InputParser("yo 'base unit'=\"hello world\"")
assert p.remaining_text == "yo"
assert p.args_dict["base unit"] == "hello world"
def test_quoted_args_unquoted_values():
p = InputParser("yo 'base unit'=hello world")
assert p.remaining_text == "yo world"
assert p.args_dict["base unit"] == "hello"
def test_unquoted_args_quoted_values():
p = InputParser('yo base unit="hello world"')
assert p.remaining_text == "yo base"
assert p.args_dict["unit"] == "hello world"
def test_unquoted_args_unquoted_values():
p = InputParser("yo base unit=hello world")
assert p.remaining_text == "yo base world"
assert p.args_dict["unit"] == "hello"
def test_mismatched_quotes():
p = InputParser('yo \'base unit"="hello world"')
assert p.remaining_text == "yo 'base"
assert p.args_dict['unit"'] == "hello world"
p = InputParser("yo 'base unit'=\"hello's world\"")
assert p.remaining_text == "yo"
assert p.args_dict["base unit"] == "hello's world"
def test_all_types():
p = InputParser(
"yo 'base unit'=\"hello world\" arg1='value 1' 'arg 2'=val2 arg3=val3"
)
assert p.remaining_text == "yo"
assert p.args_dict["base unit"] == "hello world"
assert p.args_dict["arg1"] == "value 1"
assert p.args_dict["arg 2"] == "val2"
assert p.args_dict["arg3"] == "val3"
def test_remaining_text_start_and_end():
p = InputParser("blah blah arg1=val1 arg2=val2 hey")
assert p.remaining_text == "blah blah hey"
assert p.args_dict["arg1"] == "val1"
assert p.args_dict["arg2"] == "val2"
def test_unstripped_input():
p = InputParser(" blah blah ")
assert p.remaining_text == "blah blah"
def test_get_arg_by_names():
p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3")
assert p.remaining_text == "blah blah"
assert p.get_arg_by_names(["arg2"]) == "val2"
assert p.args_dict["arg1"] == "val1"
assert p.args_dict["arg2"] == "val2"
assert p.args_dict["arg3"] == "val3"
def test_get_arg_by_names_no_match():
p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3")
assert p.remaining_text == "blah blah"
assert p.get_arg_by_names(["arg4"]) is None
assert p.args_dict["arg1"] == "val1"
assert p.args_dict["arg2"] == "val2"
assert p.args_dict["arg3"] == "val3"
def test_get_arg_by_names_one_match():
p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3")
assert p.remaining_text == "blah blah"
assert p.get_arg_by_names(["arg4", "arg5", "arg3"]) == "val3"
assert p.args_dict["arg1"] == "val1"
assert p.args_dict["arg2"] == "val2"
assert p.args_dict["arg3"] == "val3"
def test_get_arg_by_names_first_match():
p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3")
assert p.remaining_text == "blah blah"
assert p.get_arg_by_names(["arg1", "arg2"]) == "val1"
assert p.args_dict["arg1"] == "val1"
assert p.args_dict["arg2"] == "val2"
assert p.args_dict["arg3"] == "val3"
def test_parse_string_no_numbers():
p = InputParser("blah bloo blee")
assert p.remaining_text == "blah bloo blee"
assert len(p.args_dict) == 0
assert len(p.string_words) == 3
assert len(p.number_words) == 0
assert p.string_words == ["blah", "bloo", "blee"]
def test_parse_string_all_numbers():
p = InputParser("5 421 8916 34.5 -3")
assert p.remaining_text == "5 421 8916 34.5 -3"
assert len(p.args_dict) == 0
assert len(p.string_words) == 0
assert len(p.number_words) == 5
assert p.number_words == [5, 421, 8916, 34.5, -3]
def test_parse_string_mix_of_numbers_and_args():
p = InputParser("blah blah arg1=val1 arg2=val2 5")
assert p.remaining_text == "blah blah 5"
assert p.args_dict["arg1"] == "val1"
assert p.args_dict["arg2"] == "val2"
assert p.string_words == ["blah", "blah"]
assert p.number_words == [5]
| StarcoderdataPython |
1792296 | from antarest.study.storage.rawstudy.model.filesystem.config.model import (
FileStudyTreeConfig,
)
from antarest.study.storage.rawstudy.model.filesystem.folder_node import (
FolderNode,
)
from antarest.study.storage.rawstudy.model.filesystem.inode import TREE
from antarest.study.storage.rawstudy.model.filesystem.root.input.areas.item.item import (
InputAreasItem,
)
from antarest.study.storage.rawstudy.model.filesystem.root.input.areas.list import (
InputAreasList,
)
from antarest.study.storage.rawstudy.model.filesystem.root.input.areas.sets import (
InputAreasSets,
)
class InputAreas(FolderNode):
def build(self) -> TREE:
children: TREE = {
a: InputAreasItem(self.context, self.config.next_file(a))
for a in self.config.area_names()
}
children["list"] = InputAreasList(
self.context, self.config.next_file("list.txt")
)
children["sets"] = InputAreasSets(
self.context, self.config.next_file("sets.ini")
)
return children
| StarcoderdataPython |
27020 | <reponame>mingyuexc/huluxia_woman_meitui<filename>tmp/keyword_get.py
#!/usr/bin/python3
# coding = utf-8
"""
@author:m1n9yu3
@file:keyword_get.py
@time:2021/01/13
"""
from get_data import *
import threading
from urllib import parse
def multi_thread(idlist, path):
"""็บฟ็จๆงๅถ ๏ผ ไธๆฌก่ท 1000 ไธช็บฟ็จ"""
# for i in range(start_id, step+start_id):
# parse_json(url, start_id+i)
threads = []
for i in idlist:
threads.append(threading.Thread(target=get_images_url, args=(i, path)))
for i in threads:
i.start()
for i in threads:
i.join()
def ask_url(url, path, number=10):
i = 0
post_ids = []
js = get_json(url.format(i))
while True:
# posts ๆฒกๆๅ
ๅฎนๆถ๏ผ้ๅบ
if not js['posts']:
break
for post_id_i in js['posts']:
post_ids.append(post_id_i['postID'])
i += 1
# ๆๅฎ็ฌๅ้กตๆฐ
# print(post_ids)
number -= 1
if number % 10 == 0:
multi_thread(idlist=post_ids, path=path)
if number == 0:
break
post_ids = []
js = get_json(url.format(js['start']))
print("็ฌๅๅฎๆ, ๅ
ฑ{} ไธชๅธๅญ".format(i))
def search_key(keyword):
# ๆไพไธ็ป _key: <KEY>
# _key = input("่ฏท่พๅ
ฅ _key: ")
_key = "<KEY>"
url = "http://floor.huluxia.com/post/search/ANDROID/2.1?platform=2&market_id=tool_baidu&_key" \
"=%s&start=1&count=20&cat_id=56&keyword=%s&flag=0" % (_key, parse.quote(keyword))
# print(url)
ask_url(url, 'search_result/')
if __name__ == '__main__':
pass | StarcoderdataPython |
1703263 | # Generated by Django 2.0.5 on 2018-09-27 03:39
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('notes', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='NoteBook',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(blank=True, default='ๆฐ็ฌ่ฎฐ', max_length=100, verbose_name='ๆ ้ข')),
('content', models.TextField(blank=True, default='', verbose_name='ๅ
ๅฎน')),
('created_datetime', models.DateTimeField(auto_now_add=True, verbose_name='ๅๅปบๆถ้ด')),
('update_datetime', models.DateTimeField(auto_now=True, verbose_name='ไฟฎๆนๆถ้ด')),
('is_archived', models.BooleanField(default=False, verbose_name='ๆฏๅฆๅฝๆกฃ')),
('cover', models.TextField(blank=True, default='', verbose_name='ๅฐ้ข')),
('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='็จๆท')),
],
options={
'db_table': 'NoteBook',
'ordering': ('update_datetime',),
},
),
migrations.AddField(
model_name='note',
name='render_type',
field=models.IntegerField(choices=[(0, 'ไธๆธฒๆ'), (1, 'Markdown ๆธฒๆ')], default=1, verbose_name='ๆธฒๆ็ฑปๅ'),
),
migrations.AlterField(
model_name='note',
name='title',
field=models.CharField(blank=True, default='ๆฐ็ฌ่ฎฐ', max_length=100, verbose_name='ๆ ้ข'),
),
migrations.AlterModelTable(
name='note',
table='Notes',
),
migrations.AddField(
model_name='note',
name='notebook',
field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='notes.NoteBook', verbose_name='็ฌ่ฎฐๆฌ'),
),
]
| StarcoderdataPython |
1758405 | <gh_stars>1-10
# Imports
from nltk.corpus.reader.wordnet import WordNetError
from nltk.corpus import wordnet
from sqlalchemy import create_engine, Table, Column, BigInteger, Integer, String, Text, DateTime, MetaData, ForeignKey
from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.schema import UniqueConstraint
from sqlalchemy.schema import Sequence
from sqlalchemy.exc import IntegrityError
from optparse import OptionParser
import datetime
import uuid
# Options Parser (note: deprecated since 2.7)
parser = OptionParser()
parser.add_option("-f", "--file", dest="filename", help="file to parse", metavar="FILE")
parser.add_option("-s", "--source", dest="source", help="defined alignment source", metavar="SOURCE", default="wordnet30")
parser.add_option("-t", "--through", dest="through", help="defined through translation", metavar="SOURCE", default=None)
parser.add_option("-n", "--factor", dest="factor", help="syn_set factor for database", metavar="FACTOR", default=1)
parser.add_option("-m", "--factor2", dest="parent_factor", help="parent syn_set factor for database", metavar="FACTOR", default=1)
parser.add_option("-l", "--lang", dest="lang", help="define locale", metavar="LANG", default="en")
parser.add_option("-u", "--uri", dest="uri", help="define instance uri location", metavar="URI", default="")
parser.add_option("-v", "--verbose", action="store_true", dest="verbose")
# FILENAME
# options.filename sample
# $HOME/andreord-public/lib/import/pwn_data/FinWN/corewn-fiwn-sensemap-pwnssids.tsv
# SOURCES
# options.source samples
# wordnet30
# dannet21
# FACTOR
# options.factor sample
# DanNet 1000
(options, args) = parser.parse_args()
if options.source == options.through:
parser.error("Source cannot be the same as Through Source")
# Variables
delimiter = "\t"
PWN_id = "wordnet30"
# Database session
engine = create_engine('postgresql://andreord@localhost/wordties-dannet', echo=False)
Session = sessionmaker(bind=engine)
metadata = MetaData(bind=engine)
# Alignments Table
syn_sets = Table('syn_sets', metadata,
Column('id', BigInteger, primary_key=True),
Column('label', Text, nullable=False),
Column('gloss', Text),
Column('usage', Text),
Column('hyponym_count', Integer)
)
instances = Table('instances', metadata,
Column('id', Integer, Sequence('instances_id_seq'), primary_key=True),
Column('uri', String(255)),
Column('last_uptime', DateTime, onupdate=datetime.datetime.now())
)
sources = Table('sources', metadata,
Column('id', String(255), primary_key=True, unique=True),
Column('instance_id', Integer, ForeignKey('instances.id')),
Column('lang', String(2), default="en")
)
alignments = Table('alignments', metadata,
Column('id', Integer, Sequence('alignments_id_seq'), primary_key=True),
Column('source_id', String(255), ForeignKey('sources.id'), nullable=False),
Column('lemma', Text, nullable=False),
Column('definition', Text, nullable=False),
Column('synonyms', Text, nullable=False),
Column('key', Text, nullable=False),
Column('relation_type_name', Text, nullable=False),
Column('syn_set_id', BigInteger, ForeignKey('syn_sets.id'), nullable=False),
Column('through_source_id', Text, ForeignKey('sources.id')),
Column('ext_syn_set_id', Integer),
UniqueConstraint('source_id', 'key', 'syn_set_id', 'ext_syn_set_id', 'relation_type_name', name='alignments_uniq')
)
metadata.create_all(engine) # Create Alignments, Instances, Sources tables if doesn't exist
session = Session()
# Add Source and Instance records
nextId = engine.execute(Sequence('instances_id_seq'))
if options.source == PWN_id:
engine.execute(instances.insert().values(id=nextId))
engine.execute(sources.insert().values(id=options.source, instance_id=nextId, lang=options.lang))
else:
engine.execute(instances.insert().values(id=nextId, uri=options.uri, last_uptime=datetime.datetime.now()))
engine.execute(sources.insert().values(id=options.source, instance_id=nextId, lang=options.lang))
# Open file
f=open(options.filename)
for line in f.readlines():
record = line.split(delimiter)
relation = record[2] if options.source == PWN_id else record[4]
if relation in ('eq_synonym', 'eq_has_hyponym', 'eq_has_hyperonym', 'eq_near_synonym'):
if options.source == PWN_id:
target, source, parent_source = record[0], record[1], -1
else:
target, source, parent_source = record[0], record[1], record[2]
if target.startswith("EN"):
pass
else:
try:
# load data from NLTK Wordnet package
if options.source == PWN_id:
lemma = wordnet.lemma_from_key(target)
synset = lemma.synset
definition, lemmas, lemma_name = synset.definition, "; ".join(synset.lemma_names), lemma.name
# load data from source file
else:
lemmas, definition, lemma_name = record[3], record[5], record[3].split(";")[0].strip()
#print "input factor: ", options.parent_factor
if parent_source>-1:
ext_syn_set_id = int(parent_source)*int(options.parent_factor)
else:
ext_syn_set_id = None
if options.verbose:
print "Inserting alignment for CorePWN key (" + target + ") with {relation} " + relation, " {parent_source} ", parent_source, " {ext id} ", ext_syn_set_id
# insert statement
ins = alignments.insert().values(source_id=options.source,
lemma=lemma_name,
definition=definition,
synonyms=lemmas,
key=target,
relation_type_name=relation,
syn_set_id=int(source)*int(options.factor),
through_source_id=options.through,
ext_syn_set_id=ext_syn_set_id
)
engine.execute(ins)
except IntegrityError as ie:
print ie
except WordNetError as e:
print e
| StarcoderdataPython |
168174 | <gh_stars>1-10
# Generated by Django 2.2 on 2019-04-24 14:09
import DjangoUeditor.models
import datetime
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
('shop', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='Product',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=30, verbose_name='ๅๅๅ็งฐ')),
('price', models.FloatField(verbose_name='ๅไปท')),
('num', models.IntegerField(verbose_name='ๆฐ้')),
('freight', models.IntegerField(default=0, verbose_name='่ฟ่ดน')),
('origin', models.CharField(max_length=20, verbose_name='ไบงๅฐ')),
('pro_type', models.CharField(choices=[('ncp', 'ๅไบงๅ'), ('sg', 'ๆฐดๆ'), ('gyp', 'ๅทฅ่บๅ'), ('fsp', 'ๅฏ้ฃๅ')], default='ncp', max_length=3, verbose_name='ๅ็ฑป')),
('buyers', models.IntegerField(default=0, verbose_name='่ดญไนฐไบบๆฐ')),
('comments', models.IntegerField(default=0, verbose_name='่ฏ่ฎบไบบๆฐ')),
('details', DjangoUeditor.models.UEditorField(default='', verbose_name='ๅๅ่ฏฆๆ
')),
('mainimg', models.ImageField(default='', upload_to='product/mainimg/%Y/%m', verbose_name='ๅๅไธปๅพ')),
('remind', models.CharField(blank=True, max_length=20, null=True, verbose_name='ๆ้')),
('add_time', models.DateTimeField(default=datetime.datetime.now, verbose_name='ๆทปๅ ๆถ้ด')),
],
options={
'verbose_name': 'ๅๅไฟกๆฏ',
'verbose_name_plural': 'ๅๅไฟกๆฏ',
},
),
migrations.CreateModel(
name='ProPic',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('image', models.ImageField(upload_to='product/%Y/%m', verbose_name='ๅๅๅพ')),
('add_time', models.DateTimeField(default=datetime.datetime.now, verbose_name='ๆทปๅ ๆถ้ด')),
('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shop.Product', verbose_name='ๅๅ')),
],
options={
'verbose_name': 'ๅๅๅพ็',
'verbose_name_plural': 'ๅๅๅพ็',
},
),
]
| StarcoderdataPython |
1769606 | <filename>test/sp_layers_test.py
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
from sp_layers import SPLayer
def fbank_test():
conf = {
"feature_type": "fbank",
"sample_rate": 16000,
"num_mel_bins": 40,
"use_energy": False
}
fn = "file:testdata/100-121669-0000.wav"
pipe = "pipe:flac -c -d -s testdata/103-1240-0005.flac |"
sample_rate, waveform1 = utils.load_wave(fn)
sample_rate, waveform2 = utils.load_wave(pipe)
waveform1 = torch.from_numpy(waveform1)
waveform2 = torch.from_numpy(waveform2)
lengths = [waveform1.shape[0], waveform2.shape[0]]
max_length = max(lengths)
padded_waveforms = torch.zeros(2, max_length)
padded_waveforms[0, :lengths[0]] += waveform1
padded_waveforms[1, :lengths[1]] += waveform2
layer = SPLayer(conf)
features, feature_lengths = layer(padded_waveforms, lengths)
print(features)
print(feature_lengths)
def specaug_fbank_test():
conf = {
"feature_type": "fbank",
"sample_rate": 16000,
"num_mel_bins": 80,
"use_energy": False,
"spec_aug": {
"freq_mask_num": 2,
"freq_mask_width": 27,
"time_mask_num": 2,
"time_mask_width": 100,
}
}
fn = "file:testdata/100-121669-0000.wav"
pipe = "pipe:flac -c -d -s testdata/103-1240-0005.flac |"
sample_rate, waveform1 = utils.load_wave(fn)
sample_rate, waveform2 = utils.load_wave(pipe)
waveform1 = torch.from_numpy(waveform1)
waveform2 = torch.from_numpy(waveform2)
lengths = [waveform1.shape[0], waveform2.shape[0]]
max_length = max(lengths)
print(lengths)
padded_waveforms = torch.zeros(2, max_length)
padded_waveforms[0, :lengths[0]] += waveform1
padded_waveforms[1, :lengths[1]] += waveform2
layer = SPLayer(conf)
features, feature_lengths = layer(padded_waveforms, lengths)
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
plt.imshow(features[1].numpy())
plt.savefig("test.png")
#print(features)
#print(feature_lengths)
def specaug_test():
featconf = {
"feature_type": "fbank",
"sample_rate": 16000,
"num_mel_bins": 40,
"use_energy": False
}
augconf = {
"feature_type": "fbank",
"sample_rate": 16000,
"num_mel_bins": 40,
"use_energy": False,
"spec_aug": {
"freq_mask_width": 10,
"freq_mask_num": 2,
"time_mask_width": 100,
"time_mask_num": 2}
}
fn = "file:testdata/100-121669-0000.wav"
pipe = "pipe:flac -c -d -s testdata/103-1240-0005.flac |"
sample_rate, waveform1 = utils.load_wave(fn)
sample_rate, waveform2 = utils.load_wave(pipe)
waveform1 = torch.from_numpy(waveform1)
waveform2 = torch.from_numpy(waveform2)
lengths = [waveform1.shape[0], waveform2.shape[0]]
max_length = max(lengths)
padded_waveforms = torch.zeros(2, max_length)
padded_waveforms[0, :lengths[0]] += waveform1
padded_waveforms[1, :lengths[1]] += waveform2
splayer = SPLayer(featconf)
auglayer = SPLayer(augconf)
features, feature_lengths = splayer(padded_waveforms, lengths)
features2, feature_lengths2 = auglayer(padded_waveforms, lengths)
print("Before augmentation")
print(features)
print("After augmentation")
print(features2)
if __name__ == "__main__":
fbank_test()
specaug_test()
specaug_fbank_test()
| StarcoderdataPython |
4822659 | <gh_stars>0
from unittest import TestCase
from readconfig import ReadConfig
class TestReadConfig(TestCase):
def test_ReadConfig_with_file(self):
file = "config.yml"
cf = ReadConfig(file)
assert cf.file == file
def test_ReadConfig_with_None(self):
file = "./config/config.yml"
cf = ReadConfig(None)
assert cf.file == file
def test_read_config_file(self):
test_data = "Abbracadabra"
file = "config.yml"
cf = ReadConfig(file)
assert cf.config['data']['test'] == test_data
| StarcoderdataPython |
1634157 | <reponame>sheriffbarrow/production-ecommerce
from django.shortcuts import render, HttpResponseRedirect, redirect, HttpResponse
from django.contrib.auth.models import User, auth
from django.views import generic
from django.conf import settings
from django.contrib.auth.forms import UserCreationForm
from django.core.exceptions import ObjectDoesNotExist
from django.contrib.auth.decorators import login_required
from django.contrib.auth.mixins import LoginRequiredMixin
from django.shortcuts import render, get_object_or_404
from django.views.generic import ListView, DetailView, View
from django.shortcuts import redirect
from django.utils import timezone
from ecommerce.forms import ContactForm, ProductForm, Quick_ServiceForm, VendorForm, VendorImageForm, HouseImageForm, CarImageForm, RentCarForm, ProductImageForm, RentHouseForm, OrderFoodForm
from django.views.generic import TemplateView
from .import forms
from django.contrib.auth import login, authenticate
from django.contrib.auth.decorators import login_required
from ecommerce.models import Vendor, VendorImage, Product, ProductImage, Quick_Service, FoodImage, CarImage, HouseImage, RentCar, RentHouse
from django.contrib.messages.views import SuccessMessageMixin
from django.views.generic.edit import CreateView
from django.forms import modelformset_factory
from django.conf import settings
from django.core import serializers
from account.models import UserVendor
from django.core.mail import send_mail, EmailMessage
from django.conf import settings
from django import template
from django.template.loader import get_template
from django.contrib import messages
import json
from hitcount.views import HitCountDetailView
def create_ref_code():
return ''.join(random.choices(string.ascii_lowercase + string.digits, k=20))
def tr(request):
return render(request, 'ecommerce/base2.html')
class Form_view(TemplateView):
template_name = 'ecommerce/sell.html'
def get(self, request):
form = ProductForm()
return render(request, self.template_name, {'form': form})
class HomeView(ListView):
model = Product
template_name = 'ecommerce/index.html'
context_object_name = 'items'
ordering = ['-posted_date']
def account_fitler(request):
items = Product.objects.filter(vendor=request.user).order_by('-posted_date')
context = {
'items': items,
}
return render(request, 'account/account_settings.html', context)
def admin(request):
return render(request, 'admin/base_site.html')
def slider(request):
# change the time field in all models to posted date for uniformitty
items = Product.objects.all()[:8]
slides = Vendor.objects.all().order_by('-date')[:15]
vendor = Vendor.objects.all().order_by('-date')
cars = RentCar.objects.all().order_by('-pub_date')[:8]
house = RentHouse.objects.all().order_by('-post_date')[:8]
context = {
'house': house,
'cars': cars,
'slides': slides,
'items': items,
'vendor': vendor,
}
return render(request, "ecommerce/index.html", context)
def any_view(request):
posts = Article.objects.all().order_by("-pub_date")[:5]
return render(request, "show/temp.html", {'posts': posts})
class SellMessage(SuccessMessageMixin, CreateView):
template_name = 'ecommerce/sell.html'
form_class = ProductForm
success_url = 'ecommerce:home'
seccess_message = 'be ready to meet your buyers soon!'
class VendorView(ListView):
model = Vendor
template_name = 'ecommerce/index.html'
paginate_by = 10
context_object_name = 'vendor'
def get_queryset(self):
return Vendor.objects.all()
@login_required(login_url='/account/login-required/')
def sell(request):
if request.method == 'POST':
form = ProductForm(request.POST)
imageform = forms.ProductImageForm(request.POST, request.FILES)
img = request.FILES.getlist('productimages')
if form.is_valid() and imageform.is_valid():
instance = form.save(commit=False)
instance.vendor = request.user
instance.save()
for f in img:
image_instance = ProductImage(image=f, vendor=instance)
image_instance.save()
messages.success(request, "Product uploaded successfully and it's ready for purchase!!")
else:
messages.error(request, "Error!!, due to internal error or internet connectivity")
form = VendorForm()
imageform = ProductImageForm()
return render(request, 'ecommerce/sell.html', {'form': ProductForm(), 'imageform': ProductImageForm()})
@login_required(login_url='/account/login-required/')
def vendor_sell(request):
if request.method == 'POST':
form = VendorForm(request.POST)
file_form = forms.VendorImageForm(request.POST, request.FILES)
files = request.FILES.getlist('images')
if form.is_valid() and file_form.is_valid():
instance = form.save(commit=False)
instance.vendor = request.user
instance.save()
for f in files:
file_instance = VendorImage(file=f, vendor=instance)
file_instance.save()
messages.success(request, "Vendor created successfully, Good luck...!!")
else:
messages.error(request, "Error, due to internal or internet connectivity!!")
form = VendorForm()
file_form = VendorImageForm()
return render(request, 'ecommerce/vendor_profile.html', {'form': VendorForm(), 'file_form': VendorImageForm()})
@login_required(login_url='/account/login-required/')
def vendor_sell_multiple(request):
# number of images to be allowed
ImageFormSet = modelformset_factory(VendorImage, fields=('file',), extra=5)
if request.method == "POST":
form = VendorForm(request.POST)
formset = ImageFormSet(request.POST or None, request.FILES or None)
if form.is_valid() and formset.is_valid():
vendor = form.save(commit=False)
vendor.vendor = request.user
vendor.save()
for f in formset:
try:
photo = VendorImage(vendor=vendor, file=f.cleaned_data['file'])
photo.save()
except Exception as e:
break
messages.success(request, 'succeffuly')
return redirect('ecommerce:vendor_options')
# this helps to not crash if the user
# do not upload up to the max.
else:
form = VendorForm()
formset = ImageFormSet(queryset=VendorImage.objects.none())
context = {
'form': form, 'formset': formset,
}
return render(request, 'ecommerce/vendor_profile.html', {'form': form, 'formset': formset})
@login_required(login_url='/account/login-required/')
def rent_car_multiple(request):
# number of images to be allowed
ImageFormSet = modelformset_factory(CarImage, fields=('image',), extra=5)
if request.method == "POST":
form = RentCarForm(request.POST)
formset = ImageFormSet(request.POST or None, request.FILES or None)
if form.is_valid() and formset.is_valid():
vendor = form.save(commit=False)
vendor.vendor = request.user
vendor.save()
for f in formset:
try:
photo = CarImage(vendor=vendor, image=f.cleaned_data['image'])
photo.save()
except Exception as e:
break
messages.success(request, 'succeffuly')
return redirect('ecommerce:home')
# this helps to not crash if the user
# do not upload up to the max.
else:
form = RentCarForm()
formset = ImageFormSet(queryset=CarImage.objects.none())
context = {
'form': form, 'formset': formset,
}
return render(request, 'ecommerce/rent_car.html', {'form': form, 'formset': formset})
@login_required(login_url='/account/login-required/')
def rent_car(request):
if request.method == 'POST':
form = RentCarForm(request.POST)
carimageform = forms.CarImageForm(request.POST, request.FILES)
img = request.FILES.getlist('carimages')
if form.is_valid() and carimageform.is_valid():
instance = form.save(commit=False)
instance.vendor = request.user
instance.save()
for f in img:
image_instance = CarImage(image=f, vendor=instance)
image_instance.save()
messages.success(
request, "Your car has been successfully uploaded and it's ready for buyers!!")
else:
form = RentCarForm()
carimageform = CarImageForm()
return render(request, 'ecommerce/rent_car.html', {'form': RentCarForm(), 'carimageform': CarImageForm()})
@login_required(login_url='/account/login-required/')
def rent_house(request):
if request.method == 'POST':
form = RentHouseForm(request.POST)
houseimageform = forms.HouseImageForm(request.POST, request.FILES)
img = request.FILES.getlist('houseimages')
if form.is_valid() and houseimageform.is_valid():
instance = form.save(commit=False)
instance.vendor = request.user
instance.save()
for f in img:
image_instance = HouseImage(image=f, vendor=instance)
image_instance.save()
messages.success(
request, "Your house/apartments has been successfully uploaded and it's ready for buyers!!")
else:
form = RentHouseForm()
carimageform = HouseImageForm()
return render(request, 'ecommerce/rent_house.html', {'form': RentHouseForm(), 'houseimageform': HouseImageForm()})
@login_required(login_url='/account/login-required/')
def food(request):
if request.method == 'POST':
form = forms.OrderFoodForm(request.POST)
if form.is_valid():
instance = form.save(commit=False)
instance.vendor = request.user
instance.save()
# save to db
return redirect('ecommerce:home')
else:
form = forms.OrderFoodForm()
return render(request, 'ecommerce/food.html', {'form': form})
class Plumber(ListView):
model = Vendor
template_name = 'ecommerce/plumbing.html'
context_object_name = 'vendor'
def get_queryset(self):
return Vendor.objects.filter(category__iexact='PLUMBING')
class Electrical(ListView):
model = Vendor
template_name = 'ecommerce/electrical.html'
context_object_name = 'vendor'
def get_queryset(self):
return Vendor.objects.filter(category__iexact='ELECTRICAL')
class Cleaning(ListView):
model = Vendor
template_name = 'ecommerce/cleaning.html'
context_object_name = 'vendor'
def get_queryset(self):
return Vendor.objects.filter(category__iexact='CLEANING')
class Garden(ListView):
model = Vendor
template_name = 'ecommerce/garden.html'
context_object_name = 'vendor'
def get_queryset(self):
return Vendor.objects.filter(category__iexact='GARDEN')
class Tilin(ListView):
model = Vendor
template_name = 'ecommerce/tilin.html'
context_object_name = 'vendor'
def get_queryset(self):
return Vendor.objects.filter(category__iexact='TILING')
class Laundry(ListView):
model = Vendor
template_name = 'ecommerce/laundry.html'
context_object_name = 'vendor'
def get_queryset(self):
return Vendor.objects.filter(category__iexact='LAUNDRY')
class Carpentry(ListView):
model = Vendor
template_name = 'ecommerce/carpentry.html'
context_object_name = 'vendor'
def get_queryset(self):
return Vendor.objects.filter(category__iexact='CARPENTRY')
class ServiceDetail(HitCountDetailView):
model = Vendor
template_name = 'ecommerce/plumber-detail.html'
context_object_name = 'detail'
pk_url_kwarg = 'vendor_pk'
# set to True to count the hit
count_hit = True
def get_context_data(self, **kwargs):
context = super(ServiceDetail, self).get_context_data(**kwargs)
context.update({
'related_products': Vendor.objects.order_by('-hit_count_generic__hits'),
})
return context
class CarDetail(HitCountDetailView):
model = RentCar
template_name = 'ecommerce/cardetails.html'
context_object_name = 'cardetail'
pk_url_kwarg = 'pk'
# set to True to count the hit
count_hit = True
def get_context_data(self, **kwargs):
context = super(CarDetail, self).get_context_data(**kwargs)
context.update({
'related_products': RentCar.objects.order_by('-hit_count_generic__hits'),
})
return context
class HouseDetail(HitCountDetailView):
model = RentHouse
template_name = 'ecommerce/housedetails.html'
context_object_name = 'housedetail'
pk_url_kwarg = 'pk'
# set to True to count the hit
count_hit = True
def get_context_data(self, **kwargs):
context = super(HouseDetail, self).get_context_data(**kwargs)
context.update({
'related_products': RentHouse.objects.order_by('-hit_count_generic__hits'),
})
return context
def send_mail(request):
if not request.user.is_authenticated:
return redirect("account:login")
Contact_Form = ContactForm
if request.method == 'POST':
form = Contact_Form(request.POST)
if form.is_valid():
name = request.POST.get('name')
service = request.POST.get('service')
email = request.POST.get('email')
phone = request.POST.get('phone')
duration = request.POST.get('duration')
comment = request.POST.get('comment')
template = get_template('ecommerce/contact_form.txt')
context = {
'name': name,
'service': service,
'email': email,
'phone': phone,
'duration': duration,
'comment': comment,
}
content = template.render(context)
email = EmailMessage(
"Request for Service",
content,
"company name" + '',
['<EMAIL>'],
headers={'Reply to': email}
)
email.send()
messages.success(
request, "Request made successfuly, our correspondent will contact you shortly..!!")
else:
messages.error(request, "Error!! Check your internet connection and try again!!..")
form = Contact_Form(
initial={
'email': request.user.email,
'client-name': request.detail.username,
'name': request.user.trade_name,
}
)
return render(request, 'ecommerce/contact.html', {'form': Contact_Form})
class ProductDetail(HitCountDetailView):
model = Product
template_name = 'ecommerce/product.html'
context_object_name = 'details'
pk_url_kwarg = 'item_pk'
# set to True to count the hit
count_hit = True
def get_context_data(self, **kwargs):
context = super(ProductDetail, self).get_context_data(**kwargs)
context.update({
'related_products': Product.objects.order_by('-hit_count_generic__hits')[:3],
})
return context
class Shop(ListView):
model = Product
template_name = 'ecommerce/shop.html'
context_object_name = 'item'
ordering = ['-posted_date']
def electrical(request):
return render(request, 'ecommerce/electrical.html')
def cleaning(request):
return render(request, 'ecommerce/cleaning.html')
def garden(request):
return render(request, 'ecommerce/garden.html')
def laundry(request):
return render(request, 'ecommerce/laundry.html')
def tilin(request):
return render(request, 'ecommerce/tilin.html')
def carpentry(request):
return render(request, 'ecommerce/carpentry.html')
def vendor_profile(request):
return render(request, 'ecommerce/vendor_profile.html')
def profile(request):
if request.session.has_key('username'):
posts = request.session['username']
query = User.objects.filter(username=posts)
return render(request, 'vendorprofile/profile.html', {"query": query})
else:
return render(request, 'vendorprofile/help.html', {})
def vendor_options(request):
return render(request, 'ecommerce/vendor_options.html')
class Vendor_option(ListView):
model = Quick_Service
template_name = 'ecommerce/vendor_options.html'
context_object_name = 'Quick_Service'
def get_queryset(self):
return Quick_Service.objects.all()
def accountSettings(request):
context = {}
return render(request, 'ecommerce/account_settings.html', context)
class Vendor_Detail(DetailView):
model = Vendor
template_name = 'ecommerce/'
def shop(request):
return render(request, 'ecommerce/shop.html')
def forget(request):
return render(request, 'ecommerce/forgot-password.html')
def products(request):
context = {
'items': Item.objects.all()
}
return render(request, "ecommerce/products.html", context)
def is_valid_form(values):
valid = True
for field in values:
if field == '':
valid = False
return valid
class CheckoutView(View):
def get(self, *args, **kwargs):
try:
order = Order.objects.get(user=self.request.user, ordered=False)
form = CheckoutForm()
context = {
'form': form,
'couponform': CouponForm(),
'order': order,
'DISPLAY_COUPON_FORM': True
}
shipping_address_qs = Address.objects.filter(
user=self.request.user,
address_type='S',
default=True
)
if shipping_address_qs.exists():
context.update(
{'default_shipping_address': shipping_address_qs[0]})
billing_address_qs = Address.objects.filter(
user=self.request.user,
address_type='B',
default=True
)
if billing_address_qs.exists():
context.update(
{'default_billing_address': billing_address_qs[0]})
return render(self.request, "checkout.html", context)
except ObjectDoesNotExist:
messages.info(self.request, "You do not have an active order")
return redirect("ecommerce:checkout")
def post(self, *args, **kwargs):
form = CheckoutForm(self.request.POST or None)
try:
order = Order.objects.get(user=self.request.user, ordered=False)
if form.is_valid():
use_default_shipping = form.cleaned_data.get(
'use_default_shipping')
if use_default_shipping:
print("Using the defualt shipping address")
address_qs = Address.objects.filter(
user=self.request.user,
address_type='S',
default=True
)
if address_qs.exists():
shipping_address = address_qs[0]
order.shipping_address = shipping_address
order.save()
else:
messages.info(
self.request, "No default shipping address available")
return redirect('ecommerce:checkout')
else:
print("User is entering a new shipping address")
shipping_address1 = form.cleaned_data.get(
'shipping_address')
shipping_address2 = form.cleaned_data.get(
'shipping_address2')
shipping_country = form.cleaned_data.get(
'shipping_country')
shipping_zip = form.cleaned_data.get('shipping_zip')
if is_valid_form([shipping_address1, shipping_country, shipping_zip]):
shipping_address = Address(
user=self.request.user,
street_address=shipping_address1,
apartment_address=shipping_address2,
country=shipping_country,
zip=shipping_zip,
address_type='S'
)
shipping_address.save()
order.shipping_address = shipping_address
order.save()
set_default_shipping = form.cleaned_data.get(
'set_default_shipping')
if set_default_shipping:
shipping_address.default = True
shipping_address.save()
else:
messages.info(
self.request, "Please fill in the required shipping address fields")
use_default_billing = form.cleaned_data.get(
'use_default_billing')
same_billing_address = form.cleaned_data.get(
'same_billing_address')
if same_billing_address:
billing_address = shipping_address
billing_address.pk = None
billing_address.save()
billing_address.address_type = 'B'
billing_address.save()
order.billing_address = billing_address
order.save()
elif use_default_billing:
print("Using the defualt billing address")
address_qs = Address.objects.filter(
user=self.request.user,
address_type='B',
default=True
)
if address_qs.exists():
billing_address = address_qs[0]
order.billing_address = billing_address
order.save()
else:
messages.info(
self.request, "No default billing address available")
return redirect('ecommerce:checkout')
else:
print("User is entering a new billing address")
billing_address1 = form.cleaned_data.get(
'billing_address')
billing_address2 = form.cleaned_data.get(
'billing_address2')
billing_country = form.cleaned_data.get(
'billing_country')
billing_zip = form.cleaned_data.get('billing_zip')
if is_valid_form([billing_address1, billing_country, billing_zip]):
billing_address = Address(
user=self.request.user,
street_address=billing_address1,
apartment_address=billing_address2,
country=billing_country,
zip=billing_zip,
address_type='B'
)
billing_address.save()
order.billing_address = billing_address
order.save()
set_default_billing = form.cleaned_data.get(
'set_default_billing')
if set_default_billing:
billing_address.default = True
billing_address.save()
else:
messages.info(
self.request, "Please fill in the required billing address fields")
payment_option = form.cleaned_data.get('payment_option')
if payment_option == 'S':
return redirect('ecommerce:payment', payment_option='stripe')
elif payment_option == 'P':
return redirect('ecommerce:payment', payment_option='paypal')
else:
messages.warning(
self.request, "Invalid payment option selected")
return redirect('ecommerce:checkout')
except ObjectDoesNotExist:
messages.warning(self.request, "You do not have an active order")
return redirect("ecommerce:order-summary")
class PaymentView(View):
def get(self, *args, **kwargs):
order = Order.objects.get(user=self.request.user, ordered=False)
if order.billing_address:
context = {
'order': order,
'DISPLAY_COUPON_FORM': False
}
userprofile = self.request.user.userprofile
if userprofile.one_click_purchasing:
# fetch the users card list
cards = stripe.Customer.list_sources(
userprofile.stripe_customer_id,
limit=3,
object='card'
)
card_list = cards['data']
if len(card_list) > 0:
# update the context with the default card
context.update({
'card': card_list[0]
})
return render(self.request, "payment.html", context)
else:
messages.warning(
self.request, "You have not added a billing address")
return redirect("ecommerce:checkout")
def post(self, *args, **kwargs):
order = Order.objects.get(user=self.request.user, ordered=False)
form = PaymentForm(self.request.POST)
userprofile = UserProfile.objects.get(user=self.request.user)
if form.is_valid():
token = form.cleaned_data.get('stripeToken')
save = form.cleaned_data.get('save')
use_default = form.cleaned_data.get('use_default')
if save:
if userprofile.stripe_customer_id != '' and userprofile.stripe_customer_id is not None:
customer = stripe.Customer.retrieve(
userprofile.stripe_customer_id)
customer.sources.create(source=token)
else:
customer = stripe.Customer.create(
email=self.request.user.email,
)
customer.sources.create(source=token)
userprofile.stripe_customer_id = customer['id']
userprofile.one_click_purchasing = True
userprofile.save()
amount = int(order.get_total() * 100)
try:
if use_default or save:
# charge the customer because we cannot charge the token more than once
charge = stripe.Charge.create(
amount=amount, # cents
currency="usd",
customer=userprofile.stripe_customer_id
)
else:
# charge once off on the token
charge = stripe.Charge.create(
amount=amount, # cents
currency="usd",
source=token
)
# create the payment
payment = Payment()
payment.stripe_charge_id = charge['id']
payment.user = self.request.user
payment.amount = order.get_total()
payment.save()
# assign the payment to the order
order_items = order.items.all()
order_items.update(ordered=True)
for item in order_items:
item.save()
order.ordered = True
order.payment = payment
order.ref_code = create_ref_code()
order.save()
messages.success(self.request, "Your order was successful!")
return redirect("/")
except stripe.error.CardError as e:
body = e.json_body
err = body.get('error', {})
messages.warning(self.request, f"{err.get('message')}")
return redirect("/")
except stripe.error.RateLimitError as e:
# Too many requests made to the API too quickly
messages.warning(self.request, "Rate limit error")
return redirect("/")
except stripe.error.InvalidRequestError as e:
# Invalid parameters were supplied to Stripe's API
print(e)
messages.warning(self.request, "Invalid parameters")
return redirect("/")
except stripe.error.AuthenticationError as e:
# Authentication with Stripe's API failed
# (maybe you changed API keys recently)
messages.warning(self.request, "Not authenticated")
return redirect("/")
except stripe.error.APIConnectionError as e:
# Network communication with Stripe failed
messages.warning(self.request, "Network error")
return redirect("/")
except stripe.error.StripeError as e:
# Display a very generic error to the user, and maybe send
# yourself an email
messages.warning(
self.request, "Something went wrong. You were not charged. Please try again.")
return redirect("/")
except Exception as e:
# send an email to ourselves
messages.warning(
self.request, "A serious error occurred. We have been notifed.")
return redirect("/")
messages.warning(self.request, "Invalid data received")
return redirect("/payment/stripe/")
class OrderSummaryView(LoginRequiredMixin, View):
def get(self, *args, **kwargs):
try:
order = Order.objects.get(user=self.request.user, ordered=False)
context = {
'object': order
}
return render(self.request, 'order_summary.html', context)
except ObjectDoesNotExist:
messages.warning(self.request, "You do not have an active order")
return redirect("/")
class ItemDetailView(DetailView):
model = Product
template_name = "ecommerce/product.html"
@login_required
def add_to_cart(request, slug):
item = get_object_or_404(Item, slug=slug)
order_item, created = OrderItem.objects.get_or_create(
item=item,
user=request.user,
ordered=False
)
order_qs = Order.objects.filter(user=request.user, ordered=False)
if order_qs.exists():
order = order_qs[0]
# check if the order item is in the order
if order.items.filter(item__slug=item.slug).exists():
order_item.quantity += 1
order_item.save()
messages.info(request, "This item quantity was updated.")
return redirect("ecommerce:order-summary")
else:
order.items.add(order_item)
messages.info(request, "This item was added to your cart.")
return redirect("ecommerce:order-summary")
else:
ordered_date = timezone.now()
order = Order.objects.create(
user=request.user, ordered_date=ordered_date)
order.items.add(order_item)
messages.info(request, "This item was added to your cart.")
return redirect("ecommerce:order-summary")
@login_required
def remove_from_cart(request, slug):
item = get_object_or_404(Item, slug=slug)
order_qs = Order.objects.filter(
user=request.user,
ordered=False
)
if order_qs.exists():
order = order_qs[0]
# check if the order item is in the order
if order.items.filter(item__slug=item.slug).exists():
order_item = OrderItem.objects.filter(
item=item,
user=request.user,
ordered=False
)[0]
order.items.remove(order_item)
messages.info(request, "This item was removed from your cart.")
return redirect("ecommerce:order-summary")
else:
messages.info(request, "This item was not in your cart")
return redirect("ecommerce:product", slug=slug)
else:
messages.info(request, "You do not have an active order")
return redirect("ecommerce:product", slug=slug)
@login_required
def remove_single_item_from_cart(request, slug):
item = get_object_or_404(Item, slug=slug)
order_qs = Order.objects.filter(
user=request.user,
ordered=False
)
if order_qs.exists():
order = order_qs[0]
# check if the order item is in the order
if order.items.filter(item__slug=item.slug).exists():
order_item = OrderItem.objects.filter(
item=item,
user=request.user,
ordered=False
)[0]
if order_item.quantity > 1:
order_item.quantity -= 1
order_item.save()
else:
order.items.remove(order_item)
messages.info(request, "This item quantity was updated.")
return redirect("ecommerce:order-summary")
else:
messages.info(request, "This item was not in your cart")
return redirect("ecommerce:product", slug=slug)
else:
messages.info(request, "You do not have an active order")
return redirect("ecommerce:product", slug=slug)
def get_coupon(request, code):
try:
coupon = Coupon.objects.get(code=code)
return coupon
except ObjectDoesNotExist:
messages.info(request, "This coupon does not exist")
return redirect("ecommerce:checkout")
class AddCouponView(View):
def post(self, *args, **kwargs):
form = CouponForm(self.request.POST or None)
if form.is_valid():
try:
code = form.cleaned_data.get('code')
order = Order.objects.get(
user=self.request.user, ordered=False)
order.coupon = get_coupon(self.request, code)
order.save()
messages.success(self.request, "Successfully added coupon")
return redirect("ecommerce:checkout")
except ObjectDoesNotExist:
messages.info(self.request, "You do not have an active order")
return redirect("ecommerce:checkout")
class RequestRefundView(View):
def get(self, *args, **kwargs):
form = RefundForm()
context = {
'form': form
}
return render(self.request, "request_refund.html", context)
def post(self, *args, **kwargs):
form = RefundForm(self.request.POST)
if form.is_valid():
ref_code = form.cleaned_data.get('ref_code')
message = form.cleaned_data.get('message')
email = form.cleaned_data.get('email')
# edit the order
try:
order = Order.objects.get(ref_code=ref_code)
order.refund_requested = True
order.save()
# store the refund
refund = Refund()
refund.order = order
refund.reason = message
refund.email = email
refund.save()
messages.info(self.request, "Your request was received.")
return redirect("ecommerce:request-refund")
except ObjectDoesNotExist:
messages.info(self.request, "This order does not exist.")
return redirect("ecommerce:request-refund")
| StarcoderdataPython |
3364687 | import asyncio
import serial_asyncio
import itertools
import logging
from xml.etree import ElementTree
from serial import SerialException
from . import emu2_entities
_LOGGER = logging.getLogger(__name__)
class Emu2:
def __init__(
self,
device
):
self._device = device
self._connected = False
self._callback = None
self._writer = None
self._reader = None
self._writer_lock = asyncio.Lock()
self._data = {}
def get_data(self, klass):
_LOGGER.debug("Requesting data %s", klass)
return self._data.get(klass.tag_name())
def register_process_callback(self, callback):
self._callback = callback
def connected(self) -> bool:
return self._connected
async def test_available(self) -> bool:
if await self.open() == False:
return False
await self.close()
return True
async def wait_connected(self, timeout) -> bool:
count = 0
while self._connected == False:
await asyncio.sleep(1)
count += 1
if (count > timeout):
return False
return True
async def close(self) -> None:
if self._writer is not None:
self._writer.close()
await self._writer.wait_closed()
self._connected = False
async def open(self) -> bool:
if self._connected == True:
return True
try:
self._reader, self._writer = await serial_asyncio.open_serial_connection(
url = self._device,
baudrate = 115200
)
except SerialException as ex:
_LOGGER.error(ex)
return False
return True
async def serial_read(self):
_LOGGER.info("Starting serial_read loop")
if await self.open() == False:
return
response = ''
while True:
try:
line = await self._reader.readline()
except SerialException as ex:
_LOGGER.error(ex)
self._connected = False
break
line = line.decode("utf-8").strip()
_LOGGER.debug("received %s", line)
response += line
if line.startswith('</'):
try:
self._connected = True
self._process_reply(response)
response = ''
except Exception as ex:
_LOGGER.error("something went wrong: %s", ex)
async def issue_command(self, command, params = None) -> bool:
if self._connected == False:
_LOGGER.error("issued command while not connected")
return False
root = ElementTree.Element('Command')
name_field = ElementTree.SubElement(root, 'Name')
name_field.text = command
if params is not None:
for k, v in params.items():
if v is not None:
field = ElementTree.SubElement(root, k)
field.text = v
bin_string = ElementTree.tostring(root)
_LOGGER.debug("XML write %s", bin_string)
try:
async with self._writer_lock:
self._writer.write(bin_string)
await self._writer.drain()
# Throttle time between writes
await asyncio.sleep(1)
except SerialException as ex:
_LOGGER.error(ex)
return False
return True
def _process_reply(self, xml_str: str) -> None:
try:
wrapped = itertools.chain('<Root>', xml_str, '</Root>')
root = ElementTree.fromstringlist(wrapped)
except ElementTree.ParseError:
_LOGGER.debug("Malformed XML: %s", xml_str)
return
for tree in root:
response_type = tree.tag
klass = emu2_entities.Entity.tag_to_class(response_type)
if klass is None:
_LOGGER.debug("Unsupported tag: %s", response_type)
continue
self._data[response_type] = klass(tree)
# trigger callback
if self._callback is not None:
_LOGGER.debug("serial_read callback for response %s", response_type)
self._callback(response_type, klass(tree))
# Convert boolean to Y/N for commands
def _format_yn(self, value):
if value is None:
return None
if value:
return 'Y'
else:
return 'N'
# Convert an integer into a hex string
def _format_hex(self, num, digits=8):
return "0x{:0{digits}x}".format(num, digits=digits)
# Check if an event is a valid value
def _check_valid_event(self, event, allow_none=True):
enum = ['time', 'summation', 'billing_period', 'block_period',
'message', 'price', 'scheduled_prices', 'demand']
if allow_none:
enum.append(None)
if event not in enum:
raise ValueError('Invalid event specified')
# The following are convenience methods for sending commands. Commands
# can also be sent manually using the generic issue_command method.
#################################
# Raven Commands #
#################################
async def restart(self):
return await self.issue_command('restart')
async def get_connection_status(self):
return await self.issue_command('get_connection_status')
async def get_device_info(self):
return await self.issue_command('get_device_info')
async def get_schedule(self, mac=None, event=None):
self._check_valid_event(event)
opts = {'MeterMacId': mac, 'Event': event}
return await self.issue_command('get_schedule', opts)
async def set_schedule(self, mac=None, event=None, frequency=10, enabled=True):
self._check_valid_event(event, allow_none=False)
opts = {
'MeterMacId': mac,
'Event': event,
'Frequency': self._format_hex(frequency),
'Enabled': self._format_yn(enabled)
}
return await self.issue_command('set_schedule', opts)
async def set_schedule_default(self, mac=None, event=None):
self._check_valid_event(event)
opts = {'MeterMacId': mac, 'Event': event}
return await self.issue_command('set_schedule_default', opts)
async def get_meter_list(self):
return await self.issue_command('get_meter_list')
##########################
# Meter Commands #
##########################
async def get_meter_info(self, mac=None):
opts = {'MeterMacId': mac}
return await self.issue_command('get_meter_info', opts)
async def get_network_info(self):
return await self.issue_command('get_network_info')
async def set_meter_info(self, mac=None, nickname=None, account=None, auth=None, host=None, enabled=None):
opts = {
'MeterMacId': mac,
'NickName': nickname,
'Account': account,
'Auth': auth,
'Host': host,
'Enabled': self._format_yn(enabled)
}
return await self.issue_command('set_meter_info', opts)
############################
# Time Commands #
############################
async def get_time(self, mac=None, refresh=True):
opts = {'MeterMacId': mac, 'Refresh': self._format_yn(refresh)}
return await self.issue_command('get_time', opts)
async def get_message(self, mac=None, refresh=True):
opts = {'MeterMacId': mac, 'Refresh': self._format_yn(refresh)}
return await self.issue_command('get_message', opts)
async def confirm_message(self, mac=None, message_id=None):
if message_id is None:
raise ValueError('Message id is required')
opts = {'MeterMacId': mac, 'Id': self._format_hex(message_id)}
return await self.issue_command('confirm_message', opts)
#########################
# Price Commands #
#########################
async def get_current_price(self, mac = None):
opts = {'MeterMacId': mac}
return await self.issue_command('get_current_price', opts)
# Price is in cents, w/ decimals (e.g. "24.373")
async def set_current_price(self, mac=None, price="0.0"):
parts = price.split(".", 1)
if len(parts) == 1:
trailing = 2
price = int(parts[0])
else:
trailing = len(parts[1]) + 2
price = int(parts[0] + parts[1])
opts = {
'MeterMacId': mac,
'Price': self._format_hex(price),
'TrailingDigits': self._format_hex(trailing, digits=2)
}
return await self.issue_command('set_current_price', opts)
###############################
# Simple Metering Commands #
###############################
async def get_instantaneous_demand(self, mac=None, refresh=True):
opts = {'MeterMacId': mac, 'Refresh': self._format_yn(refresh)}
return await self.issue_command('get_instantaneous_demand', opts)
async def get_current_summation_delivered(self, mac=None, refresh=True):
opts = {'MeterMacId': mac, 'Refresh': self._format_yn(refresh)}
return await self.issue_command('get_current_summation_delivered', opts)
async def get_current_period_usage(self, mac = None):
opts = {'MeterMacId': mac}
return await self.issue_command('get_current_period_usage', opts)
async def get_last_period_usage(self, mac=None):
opts = {'MeterMacId': mac}
return await self.issue_command('get_last_period_usage', opts)
async def close_current_period(self, mac=None):
opts = {'MeterMacId': mac}
return await self.issue_command('close_current_period', opts)
async def set_fast_poll(self, mac=None, frequency=4, duration=20):
opts = {
'MeterMacId': mac,
'Frequency': self._format_hex(frequency, digits=4),
'Duration': self._format_hex(duration, digits=4)
}
return await self.issue_command('set_fast_poll', opts)
| StarcoderdataPython |
3332534 | <gh_stars>0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
models
----------------------------------
The basic models
"""
import os
class Concentration(object):
"""
the model holding the charge balance input values
"""
chemical_amount = None
def __init__(self):
super(Concentration, self).__init__()
#: the chemical map from normalized values to chemical representation
self.chemical_map = {'calcium': 'ca',
'dissolved calcium': 'ca',
'dissolved magnesium': 'mg',
'dissolved potassium': 'k',
'dissolved sodium': 'na',
'magnesium': 'mg',
'potassium': 'k',
'sodium': 'na',
'sodium plus potassium': 'na+k',
'total calcium': 'ca',
'total magnesium': 'mg',
'total potassium': 'k',
'total sodium': 'na',
'bicarbonate': 'hco3',
'bicarbonate as hco3': 'hco3',
'carbonate': 'co3',
'carbonate (co3)': 'co3',
'carbonate as co3': 'co3',
'chloride': 'cl',
'sulfate': 'so4',
'nitrate': 'no3',
'dissolved nitrate: no3': 'no3',
'nitrite': 'no2',
'dissolved nitrite: no2': 'no2',
'sulfate as so4': 'so4',
'bicarbonate based on alkalinity': 'hco3',
'carbonate based on alkalinity': 'co3',
'nitrate and nitrite as no3': 'no3',
'sulphate': 'so4'}
#: the tracked chemicals for a charge balance and their concentration
self.chemical_amount = {'ca': None,
'mg': None,
'na': None,
'k': None,
'cl': None,
'hco3': None,
'co3': None,
'so4': None,
'no2': None,
'no3': None,
'na+k': None}
@property
def calcium(self):
return self._get_summed_value('ca')
@property
def magnesium(self):
return self._get_summed_value('mg')
@property
def chloride(self):
return self._get_summed_value('cl')
@property
def bicarbonate(self):
return self._get_summed_value('hco3')
@property
def sulfate(self):
return self._get_summed_value('so4')
@property
def carbonate(self):
return self._get_summed_value('co3')
@property
def nitrate(self):
return self._get_summed_value('no3')
@property
def nitrite(self):
return self._get_summed_value('no2')
@property
def sodium(self):
k = self._get_summed_value('k')
na = self._get_summed_value('na')
na_k = self._get_summed_value('na+k')
if na_k is not None and k is not None and na is None:
return na_k - k
return na
@property
def potassium(self):
k = self._get_summed_value('k')
na = self._get_summed_value('na')
na_k = self._get_summed_value('na+k')
if na_k is not None and na is not None and k is None:
return na_k - na
return k
@property
def sodium_plus_potassium(self):
nak = self._get_summed_value('na+k')
k = self._get_summed_value('k')
na = self._get_summed_value('na')
if nak is not None and na is not None or k is not None:
return 0
return nak
@property
def has_major_params(self):
"""
determines if the concentration can be used in a charge balance
"""
valid_chemicals = 5
num_of_chemicals = 0
if self.calcium is not None:
num_of_chemicals += 1
if self.magnesium is not None:
num_of_chemicals += 1
if self.chloride is not None:
num_of_chemicals += 1
if self.bicarbonate is not None:
num_of_chemicals += 1
if self.sulfate is not None:
num_of_chemicals += 1
valid = num_of_chemicals == valid_chemicals
return valid and (
self.sodium is not None or self.sodium_plus_potassium is not None)
def append(self, concentration, detect_cond=None):
"""
merges the values of two concentrations into one
"""
if not concentration.chemical_amount:
return
new = concentration.chemical_amount
for key in new.keys():
self._set(key, new[key], detect_cond)
def _set(self, chemical, amount, detect_cond=None):
"""
sets the chemical value. Handles duplicate chemicals
"""
# there was a problem with the sample disregard
if detect_cond:
return
# return if amount or chemical is None
if amount is None or chemical is None:
return
chemical = chemical.lower()
# do we care about this chemical?
if chemical in self.chemical_map.keys():
chemical = self.chemical_map[chemical]
if chemical not in self.chemical_amount.keys():
return
# there is more than one sample for this chemical
if self.chemical_amount[chemical] is not None:
try:
self.chemical_amount[chemical].append(amount)
except AttributeError:
# turn into a list for summing
self.chemical_amount[chemical] = [
self.chemical_amount[chemical], amount]
return
self.chemical_amount[chemical] = amount
def _get_summed_value(self, key):
"""
gets value from number or the sum of a list of numbers
"""
value = self.chemical_amount[key]
try:
return sum(value) / float(len(value))
except TypeError:
# value is not an array
pass
return value
class Field(object):
"""
a field model for taking the data in gdoc
and transform it into the data for the addfield gp tool
"""
#: the field name to add to the feature class
field_name = None
#: the fields alias name
field_alias = None
#: the field type
field_type = None
#: the length of the field. Only useful for type String
field_length = None
#: the source of the field mapping
field_source = None
#: the field length default if none is set
length_default = 50
def __init__(self, arg):
""" args should be a set of field options
(column, alias, type, ?length)"""
self.field_name = arg['destination']
self.field_alias = arg['alias']
self.field_type = self._etl_type(arg['type'])
self.field_source = arg['source']
if self.field_type == 'TEXT':
try:
self.field_length = arg['length']
except KeyError:
pass
# print ('{} is of type text and '.format(self.field_name) +
# 'has no limit set.' +
# ' Defaulting to {}'.format(self.length_default))
def _etl_type(self, field_type):
"""Turn schema types into acpy fields types"""
# arcpy wants field types upper case
field_type = field_type.upper()
# fields names are pretty similar if you remove int
field_type = field_type.replace('INT', '').strip()
if field_type == 'STRING':
return 'TEXT'
elif field_type == 'TIME':
return 'DATE'
else:
return field_type
class Schema(object):
"""
The schema for the gdb as well as the ETL mapping
"""
station_gdoc_schema = [
{
'destination': 'OrgId',
'source': 'OrganizationIdentifier',
'alias': 'Organization Id',
'type': 'String',
'length': 20,
'index': 0
},
{
'destination': 'OrgName',
'source': 'OrganizationFormalName',
'alias': 'Organization Name',
'type': 'String',
'length': 100,
'index': 1
},
{
'destination': 'StationId',
'source': 'MonitoringLocationIdentifier',
'alias': 'Monitoring Location Id',
'type': 'String',
'length': 100,
'index': 2
},
{
'destination': 'StationName',
'source': 'MonitoringLocationName',
'alias': 'Monitoring Location Name',
'type': 'String',
'length': 100,
'index': 3
},
{
'destination': 'StationType',
'source': 'MonitoringLocationTypeName',
'alias': 'Monitoring Location Type',
'type': 'String',
'length': 100,
'index': 4
},
{
'destination': 'StationComment',
'source': 'MonitoringLocationDescriptionText',
'alias': 'Monitoring Location Description',
'type': 'String',
'length': 1500,
'index': 5
},
{
'destination': 'HUC8',
'source': 'HUCEightDigitCode',
'alias': 'HUC 8 Digit Code',
'type': 'String',
'length': 8,
'index': 6
},
{
'destination': 'Lon_X',
'source': 'LongitudeMeasure',
'alias': 'Latitude',
'type': 'Double',
'index': 7
},
{
'destination': 'Lat_Y',
'source': 'LatitudeMeasure',
'alias': 'Longitude',
'type': 'Double',
'index': 8
},
{
'destination': 'HorAcc',
'source': 'HorizontalAccuracyMeasure/MeasureValue',
'alias': 'Horizontal Accuracy',
'type': 'Double',
'index': 9
},
{
'destination': 'HorAccUnit',
'source': 'HorizontalAccuracyMeasure/MeasureUnitCode',
'alias': 'Horizontal Accuracy Unit',
'type': 'String',
'length': 10,
'index': 10
},
{
'destination': 'HorCollMeth',
'source': 'HorizontalCollectionMethodName',
'alias': 'Horizontal Collection Method',
'type': 'String',
'length': 100,
'index': 11
},
{
'destination': 'HorRef',
'source': 'HorizontalCoordinateReferenceSystemDatumName',
'alias': 'Horizontal Reference Datum',
'type': 'String',
'length': 10,
'index': 12
},
{
'destination': 'Elev',
'source': 'VerticalMeasure/MeasureValue',
'alias': 'Elevation',
'type': 'Double',
'index': 13
},
{
'destination': 'ElevUnit',
'source': 'VerticalMeasure/MeasureUnitCode',
'alias': 'Elevation Unit',
'type': 'String',
'length': 15,
'index': 14
},
{
'destination': 'ElevAcc',
'source': 'VerticalAccuracyMeasure/MeasureValue',
'alias': 'Elevation Accuracy',
'type': 'Double',
'index': 15
},
{
'destination': 'ElevAccUnit',
'source': 'VerticalAccuracyMeasure/MeasureUnitCode',
'alias': 'Elevation Accuracy Units',
'type': 'String',
'length': 4,
'index': 16
},
{
'destination': 'ElevMeth',
'source': 'VerticalCollectionMethodName',
'alias': 'Elevation Collection Method',
'type': 'String',
'length': 100,
'index': 17
},
{
'destination': 'ElevRef',
'source': 'VerticalCoordinateReferenceSystemDatumName',
'alias': 'Elevation Reference Datum',
'type': 'String',
'length': 12,
'index': 18
},
{
'destination': 'StateCode',
'source': 'StateCode',
'alias': 'State Code',
'type': 'Short Int',
'index': 19
},
{
'destination': 'CountyCode',
'source': 'CountyCode',
'alias': 'County Code',
'type': 'Short Int',
'index': 20
},
{
'destination': 'Aquifer',
'source': 'AquiferName',
'alias': 'Aquifer',
'type': 'String',
'length': 100,
'index': 21
},
{
'destination': 'FmType',
'source': 'FormationTypeText',
'alias': 'Formation Type',
'type': 'String',
'length': 100,
'index': 22
},
{
'destination': 'AquiferType',
'source': 'AquiferTypeName',
'alias': 'Aquifer Type',
'type': 'String',
'length': 100,
'index': 23
},
{
'destination': 'ConstDate',
'source': 'ConstructionDateText',
'alias': 'Construction Date',
'type': 'Date',
'length': 8,
'index': 24
},
{
'destination': 'Depth',
'source': 'WellDepthMeasure/MeasureValue',
'alias': 'Well Depth',
'type': 'Double',
'index': 25
},
{
'destination': 'DepthUnit',
'source': 'WellDepthMeasure/MeasureUnitCode',
'alias': 'Well Depth Units',
'type': 'String',
'length': 10,
'index': 26
},
{
'destination': 'HoleDepth',
'source': 'WellHoleDepthMeasure/MeasureValue',
'alias': 'Hole Depth',
'type': 'Double',
'index': 27
},
{
'destination': 'HoleDUnit',
'source': 'WellHoleDepthMeasure/MeasureUnitCode',
'alias': 'Hole Depth Units',
'type': 'String',
'length': 10,
'index': 28
},
{
'destination': 'demELEVm',
'source': None,
'alias': 'DEM Elevation m',
'type': 'Double',
'index': 29
},
{
'destination': 'DataSource',
'source': None,
'alias': 'Database Source',
'type': 'String',
'length': 20,
'index': 30
},
{
'destination': 'WIN',
'source': None,
'alias': 'WR Well Id',
'type': 'Long Int',
'index': 31
}
]
result_gdoc_schema = [
{
'destination': 'AnalysisDate',
'source': 'AnalysisStartDate',
'alias': 'Analysis Start Date',
'type': 'Date',
'index': 0
},
{
'destination': 'AnalytMeth',
'source': 'ResultAnalyticalMethod/MethodName',
'alias': 'Analytical Method Name',
'type': 'Text',
'length': 150,
'index': 1
},
{
'destination': 'AnalytMethId',
'source': 'ResultAnalyticalMethod/MethodIdentifier',
'alias': 'Analytical Method Id',
'type': 'Text',
'length': 50,
'index': 2
},
{
'destination': 'AutoQual',
'source': None,
'alias': 'Auto Quality Check',
'type': 'Text',
'index': 3
},
{
'destination': 'CAS_Reg',
'source': None,
'alias': 'CAS Registry',
'type': 'Text',
'length': 50,
'index': 4
},
{
'destination': 'Chrg',
'source': None,
'alias': 'Charge',
'type': 'Float',
'index': 5
},
{
'destination': 'DataSource',
'source': None,
'alias': 'Database Source',
'type': 'Text',
'index': 6
},
{
'destination': 'DetectCond',
'source': 'ResultDetectionConditionText',
'alias': 'Result Detection Condition',
'type': 'Text',
'length': 50,
'index': 7
},
{
'destination': 'IdNum',
'source': None,
'alias': 'Unique Id',
'type': 'Long Int',
'index': 8
},
{
'destination': 'LabComments',
'source': 'ResultLaboratoryCommentText',
'alias': 'Laboratory Comment',
'type': 'Text',
'length': 500,
'index': 9
},
{
'destination': 'LabName',
'source': 'LaboratoryName',
'alias': 'Laboratory Name',
'type': 'Text',
'length': 100,
'index': 10
},
{
'destination': 'Lat_Y',
'source': None,
'alias': 'Latitude',
'type': 'Double',
'index': 11
},
{
'destination': 'LimitType',
'source': 'DetectionQuantitationLimitTypeName',
'alias': 'Detection Limit Type',
'type': 'Text',
'length': 250,
'index': 12
},
{
'destination': 'Lon_X',
'source': None,
'alias': 'Longitude',
'type': 'Double',
'index': 13
},
{
'destination': 'MDL',
'source': 'DetectionQuantitationLimitMeasure/MeasureValue',
'alias': 'Detection Quantitation Limit',
'type': 'Double',
'index': 14
},
{
'destination': 'MDLUnit',
'source': 'DetectionQuantitationLimitMeasure/MeasureUnitCode',
'alias': 'Detection Quantitation Limit Unit',
'type': 'Text',
'length': 50,
'index': 15
},
{
'destination': 'MethodDescript',
'source': 'MethodDescriptionText',
'alias': 'Method Description',
'type': 'Text',
'length': 100,
'index': 16
},
{
'destination': 'OrgId',
'source': 'OrganizationIdentifier',
'alias': 'Organization Id',
'type': 'Text',
'length': 50,
'index': 17
},
{
'destination': 'OrgName',
'source': 'OrganizationFormalName',
'alias': 'Organization Name',
'type': 'Text',
'length': 150,
'index': 18
},
{
'destination': 'Param',
'source': 'CharacteristicName',
'alias': 'Parameter',
'type': 'Text',
'length': 500,
'index': 19
},
{
'destination': 'ParamGroup',
'source': None,
'alias': 'Parameter Group',
'type': 'Text',
'index': 20
},
{
'destination': 'ProjectId',
'source': 'ProjectIdentifier',
'alias': 'Project Id',
'type': 'Text',
'length': 50,
'index': 21
},
{
'destination': 'QualCode',
'source': 'MeasureQualifierCode',
'alias': 'Measure Qualifier Code',
'type': 'Text',
'length': 50,
'index': 22
},
{
'destination': 'ResultComment',
'source': 'ResultCommentText',
'alias': 'Result Comment',
'type': 'Text',
'length': 1500,
'index': 23
},
{
'destination': 'ResultStatus',
'source': 'ResultStatusIdentifier',
'alias': 'Result Status',
'type': 'Text',
'length': 50,
'index': 24
},
{
'destination': 'ResultValue',
'source': 'ResultMeasureValue',
'alias': 'Result Measure Value',
'type': 'Double',
'index': 25
},
{
'destination': 'SampComment',
'source': 'ActivityCommentText',
'alias': 'Sample Comment',
'type': 'Text',
'index': 26,
'length': 500
},
{
'destination': 'SampDepth',
'source': 'ActivityDepthHeightMeasure/MeasureValue',
'alias': 'Sample Depth',
'type': 'Double',
'index': 27
},
{
'destination': 'SampDepthRef',
'source': 'ActivityDepthAltitudeReferencePointText',
'alias': 'Sample Depth Reference',
'type': 'Text',
'length': 50,
'index': 28
},
{
'destination': 'SampDepthU',
'source': 'ActivityDepthHeightMeasure/MeasureUnitCode',
'alias': 'Sample Depth Units',
'type': 'Text',
'length': 50,
'index': 29
},
{
'destination': 'SampEquip',
'source': 'SampleCollectionEquipmentName',
'alias': 'Collection Equipment',
'type': 'Text',
'length': 75,
'index': 30
},
{
'destination': 'SampFrac',
'source': 'ResultSampleFractionText',
'alias': 'Result Sample Fraction',
'type': 'Text',
'length': 50,
'index': 31
},
{
'destination': 'SampleDate',
'source': 'ActivityStartDate',
'alias': 'Sample Date',
'type': 'Date',
'index': 32
},
{
'destination': 'SampleTime',
'source': 'ActivityStartTime/Time',
'alias': 'Sample Time',
'type': 'Time',
'index': 33
},
{
'destination': 'SampleId',
'source': 'ActivityIdentifier',
'alias': 'Sample Id',
'type': 'Text',
'length': 100,
'index': 34
},
{
'destination': 'SampMedia',
'source': 'ActivityMediaSubdivisionName',
'alias': 'Sample Media',
'type': 'Text',
'length': 50,
'index': 35
},
{
'destination': 'SampMeth',
'source': 'SampleCollectionMethod/MethodIdentifier',
'alias': 'Collection Method',
'type': 'Text',
'length': 50,
'index': 36
},
{
'destination': 'SampMethName',
'source': 'SampleCollectionMethod/MethodName',
'alias': 'Collection Method Name',
'type': 'Text',
'length': 75,
'index': 37
},
{
'destination': 'SampType',
'source': 'ActivityTypeCode',
'alias': 'Sample Type',
'type': 'Text',
'length': 75,
'index': 38
},
{
'destination': 'StationId',
'source': 'MonitoringLocationIdentifier',
'alias': 'Station Id',
'type': 'Text',
'length': 50,
'index': 39
},
{
'destination': 'Unit',
'source': 'ResultMeasure/MeasureUnitCode',
'alias': 'Result Measure Unit',
'type': 'Text',
'length': 50,
'index': 40
},
{
'destination': 'USGSPCode',
'source': 'USGSPCode',
'alias': 'USGS P Code',
'type': 'Text',
'length': 50,
'index': 41
}
]
@property
def station(self):
return self.station_gdoc_schema
@property
def result(self):
return self.result_gdoc_schema
class TableInfo(object):
def __init__(self, location, name):
self.location = os.path.join(location, name)
self.name = name
| StarcoderdataPython |
1722779 | <gh_stars>1-10
"""Checkers list."""
from padpo.checkers.empty import EmptyChecker
from padpo.checkers.fuzzy import FuzzyChecker
from padpo.checkers.glossary import GlossaryChecker
from padpo.checkers.grammalecte import GrammalecteChecker
from padpo.checkers.linelength import LineLengthChecker
from padpo.checkers.nbsp import NonBreakableSpaceChecker
checkers = [
EmptyChecker(),
FuzzyChecker(),
GrammalecteChecker(),
GlossaryChecker(),
LineLengthChecker(),
NonBreakableSpaceChecker(),
]
| StarcoderdataPython |
3362342 | <gh_stars>1-10
# Copyright (c) 2018 Dolphin Emulator Website Contributors
# SPDX-License-Identifier: MIT
from django.conf import settings
from django.db import models
class NewsArticle(models.Model):
"""A news article which can be linked to a forum post for comments"""
title = models.CharField(max_length=64)
slug = models.SlugField()
author = models.CharField(max_length=64)
posted_on = models.DateTimeField(auto_now_add=True)
forum_pid = models.IntegerField(null=True)
text = models.TextField()
published = models.BooleanField(default=False)
def __str__(self):
return self.title
@property
def forum_url(self):
return settings.FORUM_URL + 'showthread.php?tid=%d' % self.forum_pid
@models.permalink
def get_absolute_url(self):
return ('news_article', [self.slug])
| StarcoderdataPython |
1745410 | from django.core.management.base import NoArgsCommand
from django.db import connection
from django.core.management import call_command
class Command(NoArgsCommand):
help = "Deletes all tables in the 'default' database."
option_list = NoArgsCommand.option_list + tuple()
def handle_noargs(self, **options):
cursor = connection.cursor()
tables = connection.introspection.django_table_names(
only_existing=True)
for table in tables:
command = "DROP TABLE %s CASCADE;" % table
cursor.execute(command)
self.stderr.write("Executed ... %s" % command)
cursor.execute("COMMIT;")
self.stderr.write("Running syncdbmigrate ...")
call_command("syncdbmigrate", **options)
| StarcoderdataPython |
4822353 | class Solution:
def isPalindrome(self, s):
"""
:type s: str
:rtype: bool
"""
if s is None or len(s) < 2:
return True
i, j = 0, len(s) - 1
while True:
while i < len(s) and not self.isAlpha(s[i]):
i += 1
while j >= 0 and not self.isAlpha(s[j]):
j -= 1
if i < j and s[i].lower() != s[j].lower():
return False
i += 1
j -= 1
if i >= j:
break
return True
def isAlpha(self, c):
if (ord(c) >= ord('a') and ord(c) <= ord('z')) or (ord(c) >= ord('A') and ord(c) <= ord('Z')) or (ord(c) >= ord('0') and ord(c) <= ord('9')):
return True
return False
solution = Solution()
print(solution.isPalindrome("0P")) | StarcoderdataPython |
3292292 | from nose2.tests._common import FunctionalTestCase
class TestDunderTestPlugin(FunctionalTestCase):
def test_dunder(self):
proc = self.runIn(
'scenario/dundertest_attribute',
'-v')
self.assertTestRunOutputMatches(proc, stderr='Ran 0 tests')
| StarcoderdataPython |
46332 | # -*- coding: utf-8 -*-
# Copyright (c) 2016, KOL
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the <organization> nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from urlparse import urlparse
from updater import Updater
PREFIX = '/video/torrserver'
ART = 'art-default.jpg'
ICON = 'icon-default.png'
TITLE = 'TorrServer'
SERVER_RE = Regex('^https?://[^/:]+(:[0-9]{1,5})?$')
def Start():
HTTP.CacheTime = 0
def ValidatePrefs():
if (ValidateServer()):
return MessageContainer(
header=u'%s' % L('Success'),
message=u'%s' % L('Preferences was changed')
)
else:
return MessageContainer(
header=u'%s' % L('Error'),
message=u'%s' % L('Bad server address')
)
def ValidateServer():
return Prefs['server'] and SERVER_RE.match(Prefs['server'])
def GetLink(file):
if 'Play' in file:
return file['Play']
return file['Link']
@handler(PREFIX, TITLE, thumb=ICON)
def MainMenu():
oc = ObjectContainer(title2=TITLE, no_cache=True)
Updater(PREFIX+'/update', oc)
if not ValidateServer():
return MessageContainer(
header=u'%s' % L('Error'),
message=u'%s' % L('Please specify server address in plugin preferences')
)
items = GetItems()
if not items:
return NoContents()
server = GetServerUrl()
for item in items:
if len(item['Files']) > 1:
oc.add(DirectoryObject(
key=Callback(
List,
hash=item['Hash']
),
title=u'%s' % item['Name']
))
else:
file = item['Files'][0]
oc.add(GetVideoObject(server+GetLink(file), file['Name']))
return oc
@route(PREFIX + '/list')
def List(hash):
found = False
items = GetItems()
if not items:
return NoContents()
for item in items:
if item['Hash'] == hash:
found = True
break
if not found:
return NoContents()
oc = ObjectContainer(
title2=u'%s' % item['Name'],
replace_parent=False,
)
server = GetServerUrl()
for file in item['Files']:
oc.add(GetVideoObject(server+GetLink(file), file['Name']))
if not len(oc):
return NoContents()
return oc
@route(PREFIX + '/play')
def VideoPlay(uri, title, **kwargs):
return ObjectContainer(
objects=[GetVideoObject(uri, title)],
content=ContainerContent.GenericVideos
)
def GetVideoObject(uri, title):
uri = u'%s' % uri
title = u'%s' % title
return VideoClipObject(
key=Callback(
VideoPlay,
uri=uri,
title=title
),
rating_key=uri,
title=title,
source_title=TITLE,
items=[
MediaObject(
parts=[PartObject(key=uri)],
container=Container.MP4,
video_codec=VideoCodec.H264,
audio_codec=AudioCodec.AAC,
optimized_for_streaming=True
)
]
)
def GetItems():
try:
res = JSON.ObjectFromURL(GetServerUrl()+'/torrent/list', method='POST')
except Exception as e:
Log.Error(u'%s' % e)
return None
if not len(res):
return None
return res
def GetServerUrl():
url = Prefs['server']
if url[-1] == '/':
return url[0:-1]
return url
def NoContents():
return ObjectContainer(
header=u'%s' % L('Error'),
message=u'%s' % L('No entries found')
)
| StarcoderdataPython |
51785 | <reponame>andreasala98/pykeen
# -*- coding: utf-8 -*-
"""Inductive models in PyKEEN."""
| StarcoderdataPython |
28696 | <reponame>chelunike/trust_me_i_am_an_engineer
# -*- encoding:utf-8 -*-
impar = lambda n : 2 * n - 1
header = """
Demostrar que es cierto:
1 + 3 + 5 + ... + (2*n)-1 = n ^ 2
Luego con este programa se busca probar dicha afirmacion.
"""
def suma_impares(n):
suma = 0
for i in range(1, n+1):
suma += impar(i)
return suma
def main():
print(header)
num = int(input('Numero: '))
suma = suma_impares(num)
cuadrado = num ** 2
print('Suma de los ', num, ' primeros impares = ', suma)
print('Cuadrado del numero: ', cuadrado)
if suma == cuadrado:
print('Son iguales, luego se cumple la afirmacion')
else:
print('No son iguales, luego no se cumple la afirmacion')
if __name__ == '__main__':
main()
| StarcoderdataPython |
1655425 | import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
# Hyper parameters
n_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001
interval = 100
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../../_data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='../../../_data', train=False, transform=transforms.ToTensor(), download=True)
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
def display_multiple_img(images, predictions, rows=1, cols=1):
figure, ax = plt.subplots(nrows=rows, ncols=cols)
for i, image in enumerate(images):
ax[i].imshow(image[0])
ax[i].set_title(f"{predictions[i]}")
ax[i].set_axis_off()
plt.tight_layout()
plt.show()
# Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7*7*32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
model = ConvNet(num_classes)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_loader)
for epoch in range(n_epochs):
loss_batch = 0
for i, (images, labels) in enumerate(train_loader):
images = images
labels = labels
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_batch += loss.item()
print (f'\rEpoch [{epoch+1}/{n_epochs}], loss: {loss_batch}', end="")
# get accucy
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
# result network
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
maximum = min(10, len(images))
display_multiple_img(images[:maximum], predicted[:maximum], 1, maximum)
break | StarcoderdataPython |
169358 | # -*- coding: utf-8 -*-
# Visigoth: A lightweight Python3 library for rendering data visualizations in SVG
# Copyright (C) 2020-2021 Visigoth Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
# and associated documentation files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or
# substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import random
import sys
import math
class Silhouette(object):
"""
Silhouette Cluster Evaluation
Arguments:
data(list) : list of (lon,lat) pairs to evaluate
model : a cluster model implementing the score method
"""
def __init__(self, data, model):
self.data = data
self.model = model
def computeMeanDistance(self,point,otherpoints):
totaldist = 0.0
if len(otherpoints) == 0:
return 0.0
for otherpoint in otherpoints:
totaldist += self.model.computeDistance(point,otherpoint)
return totaldist/len(otherpoints)
def compute(self):
clusters = self.model.getClusterCount()
assignments = {cluster:[] for cluster in range(clusters)}
for point in self.data:
cluster = self.model.score(point)
assignments[cluster].append(point)
s_tot = 0
for point in self.data:
cluster = self.model.score(point)
sameclusterpoints = assignments[cluster][:]
sameclusterpoints.remove(point)
if not len(sameclusterpoints):
continue
sil_a = self.computeMeanDistance(point,sameclusterpoints)
otherclusters = list(range(clusters))
otherclusters.remove(cluster)
sil_b = None
for othercluster in otherclusters:
otherclusterpoints = assignments[othercluster]
b_cand = self.computeMeanDistance(point,otherclusterpoints)
if b_cand > 0.0 and (sil_b == None or b_cand < sil_b):
sil_b = b_cand
s_tot += (sil_b - sil_a)/max(sil_a,sil_b)
return s_tot / len(self.data) | StarcoderdataPython |
144562 | <filename>tronn/interpretation/inference.py<gh_stars>1-10
"""description: wrappers for inference runs
"""
import os
import h5py
import json
from tronn.datalayer import setup_data_loader
from tronn.models import setup_model_manager
from tronn.util.utils import DataKeys
def _setup_input_skip_keys(args):
"""reduce tensors pulled from data files to save time/space
"""
if (args.subcommand_name == "dmim") or (args.subcommand_name == "synergy") or (args.subcommand_name == "mutatemotifs"):
skip_keys = [
DataKeys.ORIG_SEQ_SHUF,
DataKeys.ORIG_SEQ_ACTIVE_SHUF,
DataKeys.ORIG_SEQ_PWM_SCORES,
DataKeys.ORIG_SEQ_PWM_SCORES_THRESH,
DataKeys.ORIG_SEQ_SHUF_PWM_SCORES,
DataKeys.ORIG_SEQ_PWM_DENSITIES,
DataKeys.ORIG_SEQ_PWM_MAX_DENSITIES,
DataKeys.WEIGHTED_SEQ_SHUF,
DataKeys.WEIGHTED_SEQ_ACTIVE_SHUF,
DataKeys.WEIGHTED_SEQ_PWM_HITS,
DataKeys.WEIGHTED_SEQ_PWM_SCORES,
DataKeys.WEIGHTED_SEQ_PWM_SCORES_THRESH,
DataKeys.WEIGHTED_SEQ_SHUF_PWM_SCORES,
DataKeys.MUT_MOTIF_ORIG_SEQ,
"{}.string".format(DataKeys.MUT_MOTIF_ORIG_SEQ),
DataKeys.MUT_MOTIF_WEIGHTED_SEQ,
DataKeys.WEIGHTED_PWM_SCORES_POSITION_MAX_VAL_MUT,
DataKeys.WEIGHTED_PWM_SCORES_POSITION_MAX_IDX_MUT,
DataKeys.MUT_MOTIF_POS,
DataKeys.MUT_MOTIF_PRESENT,
DataKeys.MUT_MOTIF_WEIGHTED_SEQ_CI,
DataKeys.MUT_MOTIF_WEIGHTED_SEQ_CI_THRESH,
DataKeys.MUT_MOTIF_LOGITS,
DataKeys.MUT_MOTIF_LOGITS_SIG,
DataKeys.MUT_MOTIF_LOGITS_MULTIMODEL,
DataKeys.DFIM_SCORES,
DataKeys.DFIM_SCORES_DX,
DataKeys.DMIM_SCORES,
DataKeys.DMIM_SCORES_SIG,
DataKeys.FEATURES]
for key in skip_keys:
prevent_null_skip = [
"{}.string".format(DataKeys.MUT_MOTIF_ORIG_SEQ),
DataKeys.MUT_MOTIF_POS]
if key in prevent_null_skip:
continue
if "motif_mut" in key:
skip_keys.append(key.replace("motif_mut", "null_mut"))
elif (args.subcommand_name == "scanmotifs"):
skip_keys = []
else:
skip_keys = []
return skip_keys
def _setup_output_skip_keys(args):
"""reduce tensors pulled from data files to save time/space
"""
if (args.subcommand_name == "dmim") or (args.subcommand_name == "synergy"):
skip_keys = []
elif (args.subcommand_name == "mutatemotifs"):
skip_keys = [
DataKeys.OR<KEY>,
DataKeys.MUT_MOTIF_ORIG_SEQ,
DataKeys.MUT_MOTIF_POS,
DataKeys.MUT_MOTIF_MASK]
for key in skip_keys:
if "motif_mut" in key:
skip_keys.append(key.replace("motif_mut", "null_mut"))
elif args.subcommand_name == "scanmotifs":
skip_keys = [
DataKeys.ORIG_SEQ_SHUF,
DataKeys.ORIG_SEQ_ACTIVE_SHUF,
DataKeys.ORIG_SEQ_PWM_SCORES,
DataKeys.WEIGHTED_SEQ_SHUF,
DataKeys.WEIGHTED_SEQ_ACTIVE_SHUF,
DataKeys.WEIGHTED_SEQ_PWM_SCORES,
DataKeys.WEIGHTED_SEQ_PWM_HITS,
DataKeys.FEATURES,
DataKeys.LOGITS_SHUF]
if args.lite:
# add other tensors to skip
lite_keys = [
DataKeys.IMPORTANCE_GRADIENTS,
DataKeys.WEIGHTED_SEQ,
DataKeys.ORIG_SEQ_PWM_SCORES_THRESH,
DataKeys.ORIG_SEQ_PWM_HITS,
DataKeys.ORIG_SEQ_PWM_DENSITIES,
DataKeys.ORIG_SEQ_PWM_MAX_DENSITIES,
DataKeys.WEIGHTED_SEQ_PWM_SCORES_THRESH,
DataKeys.WEIGHTED_SEQ_PWM_HITS]
skip_keys += lite_keys
elif args.subcommand_name == "simulategrammar":
skip_keys = [
DataKeys.ORIG_SEQ_SHUF,
DataKeys.ORIG_SEQ_ACTIVE_SHUF,
DataKeys.ORIG_SEQ_PWM_SCORES,
DataKeys.ORIG_SEQ_PWM_SCORES_THRESH,
DataKeys.ORIG_SEQ_PWM_HITS,
DataKeys.WEIGHTED_SEQ_SHUF,
DataKeys.WEIGHTED_SEQ_ACTIVE_SHUF,
DataKeys.WEIGHTED_SEQ_PWM_SCORES,
DataKeys.WEIGHTED_SEQ_PWM_SCORES_THRESH,
DataKeys.WEIGHTED_SEQ_PWM_HITS,
DataKeys.FEATURES,
DataKeys.LOGITS_SHUF,
DataKeys.ORIG_SEQ_PWM_DENSITIES,
DataKeys.ORIG_SEQ_PWM_MAX_DENSITIES]
elif args.subcommand_name == "analyzevariants":
skip_keys = [
DataKeys.ORIG_SEQ_SHUF,
DataKeys.ORIG_SEQ_ACTIVE_SHUF,
DataKeys.ORIG_SEQ_PWM_SCORES,
DataKeys.ORIG_SEQ_PWM_SCORES_THRESH,
DataKeys.WEIGHTED_SEQ_SHUF,
DataKeys.WEIGHTED_SEQ_ACTIVE_SHUF,
DataKeys.WEIGHTED_SEQ_PWM_SCORES,
DataKeys.WEIGHTED_SEQ_PWM_SCORES_THRESH,
DataKeys.WEIGHTED_SEQ_PWM_HITS,
DataKeys.FEATURES,
DataKeys.LOGITS_SHUF,
DataKeys.ORIG_SEQ_PWM_DENSITIES,
DataKeys.ORIG_SEQ_PWM_MAX_DENSITIES]
elif args.subcommand_name == "buildtracks":
skip_keys = [
DataKeys.ORIG_SEQ,
DataKeys.ORIG_SEQ_ACTIVE,
DataKeys.PROBABILITIES,
DataKeys.LOGITS_CI,
DataKeys.LOGITS_CI_THRESH,
DataKeys.LOGITS_SHUF,
DataKeys.LOGITS_MULTIMODEL,
DataKeys.LOGITS_MULTIMODEL_NORM,
DataKeys.IMPORTANCE_GRADIENTS,
#DataKeys.WEIGHTED_SEQ,
DataKeys.WEIGHTED_SEQ_ACTIVE_CI,
DataKeys.WEIGHTED_SEQ_ACTIVE_CI_THRESH,
DataKeys.WEIGHTED_SEQ_ACTIVE_SHUF,
DataKeys.WEIGHTED_SEQ_THRESHOLDS,
DataKeys.ORIG_SEQ_ACTIVE_SHUF,
DataKeys.FEATURES]
else:
skip_keys = []
return skip_keys
def run_inference(args, warm_start=False):
"""convenience wrapper to mask away multi model vs single model runs
"""
# adjust prefix and inference fn if doing a prediction warm start
if warm_start:
out_prefix = "{}/{}.{}.prediction_sample".format(
args.out_dir, args.prefix, args.subcommand_name)
real_inference_fn = args.inference_params["inference_fn_name"]
args.inference_params["inference_fn_name"] = "empty_net"
# now adjust the prefix if there was a prediction sample
# this way, since file exists, inference won't run
if args.prediction_sample is not None:
out_prefix = args.prediction_sample.split(".h5")[0]
else:
out_prefix = None
# run all files together or run rotation of models
if args.model["name"] == "kfold_models":
inference_files = run_multi_model_inference(
args, out_prefix=out_prefix, positives_only=True)
else:
inference_files = run_single_model_inference(
args, out_prefix=out_prefix, positives_only=True)
if warm_start:
args.model["params"]["prediction_sample"] = inference_files[0]
args.inference_params["inference_fn_name"] = real_inference_fn
args.inference_params["prediction_sample"] = inference_files[0] # TODO fix this later
return inference_files
def run_single_model_inference(
args,
out_prefix=None,
positives_only=True,
kfold=False,
yield_single_examples=False): # adjust here for single vs batch output
"""wrapper for inference
"""
# set up out_file
if out_prefix is None:
out_file = "{}/{}.{}.h5".format(
args.out_dir, args.prefix, args.subcommand_name)
else:
out_file = "{}.h5".format(out_prefix)
# set up dataloader
data_loader = setup_data_loader(args)
# set up model, add to inference params
model_manager = setup_model_manager(args)
args.inference_params.update({"model": model_manager})
# adjust for positives (normally only run inference on positives)
if positives_only:
data_loader = data_loader.setup_positives_only_dataloader()
# adjust for kfold in model (normally no)
if kfold:
keep_chromosomes = model_manager.model_dataset["test"]
data_loader = data_loader.filter_for_chromosomes(
keep_chromosomes)
# data file adjustments done, set up input fn
input_fn = data_loader.build_input_fn(
args.batch_size,
shuffle=not args.fifo if args.fifo is not None else True,
targets=args.targets,
target_indices=args.target_indices,
filter_targets=args.filter_targets,
examples_subset=args.dataset_examples,
use_queues=True,
skip_keys=_setup_input_skip_keys(args))
# skip some outputs
args.inference_params.update(
{"skip_outputs": _setup_output_skip_keys(args)})
# also check if processed inputs, if processed then remove model
# and replace with empty net (just send tensors through)
if args.processed_inputs:
args.model["name"] = "empty_net"
args.inference_params.update({"model_reuse": False})
model_manager = setup_model_manager(args)
else:
args.inference_params.update({"model_reuse": True})
# set up inference generator
inference_generator = model_manager.infer(
input_fn,
args.out_dir,
args.inference_params,
checkpoint=model_manager.model_checkpoint,
yield_single_examples=yield_single_examples)
# run inference and save out
if not os.path.isfile(out_file):
model_manager.infer_and_save_to_h5(
inference_generator,
out_file,
args.sample_size,
batch_size=args.batch_size,
h5_saver_batch_size=args.h5_saver_batch_size,
yield_single_examples=yield_single_examples,
debug=args.debug)
# get chrom tags and transfer in
with h5py.File(out_file, "a") as hf:
hf["/"].attrs["chromosomes"] = data_loader.get_chromosomes()
return [out_file]
def run_multi_model_inference(
args,
out_prefix=None,
positives_only=True):
"""run inference on one model
"""
if out_prefix is None:
out_prefix = "{}/{}.{}".format(
args.out_dir, args.prefix, args.subcommand_name)
# get the model jsons
model_jsons = args.model["params"]["models"]
out_files = []
for model_idx in xrange(len(model_jsons)):
# load the model json into args.model
model_json = model_jsons[model_idx]
with open(model_json, "r") as fp:
args.model = json.load(fp)
# generate the out file
out_file = "{}.model-{}.h5".format(out_prefix, model_idx)
out_files.append(out_file)
# run inference
run_inference(
args,
out_file=out_file,
positives_only=positives_only,
kfold=True)
return out_files
| StarcoderdataPython |
1784705 | <gh_stars>1-10
from intake.tests.base_testcases import (
IntakeDataTestCase, ALL_APPLICATION_FIXTURES)
from user_accounts import models, exceptions
from user_accounts.tests import mock
class TestOrganization(IntakeDataTestCase):
fixtures = ALL_APPLICATION_FIXTURES
def test_has_a_pdf(self):
self.assertTrue(self.sf_pubdef.has_a_pdf())
self.assertFalse(self.cc_pubdef.has_a_pdf())
def test_get_referral_emails_even_if_no_users(self):
expected_email = "<EMAIL>"
# we need an org
org = models.Organization(name="Acme Nonprofit Services Inc.")
org.save()
user = mock.fake_superuser()
models.Invitation.create(
expected_email,
organization=org,
inviter=user)
emails = org.get_referral_emails()
self.assertListEqual(emails, [expected_email])
def test_get_referral_emails_raises_error_with_no_emails(self):
org = models.Organization(name="Acme Nonprofit Services Inc.")
org.save()
with self.assertRaises(exceptions.NoEmailsForOrgError):
org.get_referral_emails()
def test_transfer_partners_returns_correct_org(self):
ebclc = self.ebclc
a_pubdef = self.a_pubdef
self.assertIn(a_pubdef, ebclc.transfer_partners.all())
self.assertIn(ebclc, a_pubdef.transfer_partners.all())
def test_get_transfer_org_returns_none(self):
sf_pubdef = self.sf_pubdef
cc_pubdef = self.cc_pubdef
self.assertFalse(sf_pubdef.transfer_partners.all())
self.assertFalse(cc_pubdef.transfer_partners.all())
| StarcoderdataPython |
4837545 | import logging
import re
from copy import copy
from typing import Optional
import xlsxwriter
from RISparser import readris
from RISparser.config import TAG_KEY_MAPPING
from . import utils
class RisImporter:
@classmethod
def get_mapping(cls):
mapping = copy(TAG_KEY_MAPPING)
mapping.update(
{"AT": "accession_type", "PM": "pubmed_id", "N2": "abstract2", "SV": "serial_volume"}
)
return mapping
@classmethod
def file_readable(cls, f):
# ensure that file can be successfully parsed
try:
reader = readris(f, mapping=cls.get_mapping())
[content for content in reader]
f.seek(0)
return True
except IOError as err:
logging.warning(err)
return False
def __init__(self, f):
if isinstance(f, str):
f = open(f, "r")
else:
f = f
reader = readris(f, mapping=self.get_mapping())
contents = [content for content in reader]
f.close()
self.raw_references = contents
@property
def references(self):
if not hasattr(self, "_references"):
self._references = self._format()
return self._references
def _format(self):
formatted_content = []
for content in self.raw_references:
parser = ReferenceParser(content)
formatted_content.append(parser.format())
return formatted_content
def to_excel(self, fn):
header = ReferenceParser.EXTRACTED_FIELDS
data_rows = []
for ref in self.references:
data_rows.append([ref[fld] for fld in header])
wb = xlsxwriter.Workbook(fn)
ws = wb.add_worksheet()
bold = wb.add_format({"bold": True})
for c, txt in enumerate(header):
ws.write(0, c, txt, bold)
for r, row in enumerate(data_rows):
for c, txt in enumerate(row):
try:
ws.write(r + 1, c, txt)
except AttributeError:
ws.write(r + 1, c, txt)
wb.close()
class ReferenceParser:
PLACEHOLDER_TEXT = "<ADD>"
# field types
TITLE_FIELDS = (
"translated_title",
"title",
"primary_title",
"secondary_title",
"tertiary_title",
"short_title",
)
AUTHOR_LIST_FIELDS = (
"authors",
"first_authors",
"secondary_authors",
"tertiary_authors",
"subsidiary_authors",
)
ABSTRACT_FIELDS = ("abstract", "abstract2")
YEAR_FIELDS = ("year", "publication_year")
# Extract the scopus EID
re_scopus_eid = re.compile(r"eid=([-\.\w]+)(?:&|$)", flags=re.UNICODE)
EXTRACTED_FIELDS = [
"authors_short",
"authors",
"title",
"year",
"citation",
"abstract",
"PMID",
"doi",
"accession_number",
"accession_db",
"reference_type",
"id",
"json",
]
# Match any number (some PMIDs contain number and/or URL)
re_pmid = re.compile(r"([\d]+)")
def __init__(self, content):
self.content = content
def format(self):
if not hasattr(self, "_formatted"):
self._formatted = dict(
authors_short=self._get_authors_short(),
authors=self._authors,
title=self._get_field(self.TITLE_FIELDS, self.PLACEHOLDER_TEXT),
year=self._get_field(self.YEAR_FIELDS, None),
citation=self._get_citation(),
abstract=self._get_field(self.ABSTRACT_FIELDS, ""),
PMID=self._get_pmid(),
doi=self.content.get("doi", None),
accession_number=self._get_accession_number(),
accession_db=self.content.get("name_of_database", None),
reference_type=self.content.get("type_of_reference", None),
id=utils.try_int(self.content["id"]),
json=self.content,
)
return self._formatted
def _get_field(self, fields, default):
for fld in fields:
if fld in self.content:
return self.content.get(fld)
return default
def _get_pmid(self) -> Optional[int]:
# get PMID if specified in that field
if "pubmed_id" in self.content:
pubmed_id = self.content["pubmed_id"]
if type(pubmed_id) is int:
return pubmed_id
else:
m = self.re_pmid.findall(pubmed_id)
if len(m) > 0:
# no try/catch req'd; return first matching int
return int(m[0])
# get value accession number is NLM
if self.content.get("name_of_database", "") == "NLM" and "accession_number" in self.content:
try:
return int(self.content["accession_number"])
except ValueError:
pass
return None
def _get_accession_number(self):
number = self.content.get("accession_number", None)
# extract the Scopus EID
if number and isinstance(number, str) and "eid=" in number:
m = self.re_scopus_eid.findall(number)
if len(m) > 0:
number = m[0]
return number
def _clean_authors(self):
authors = []
for fld in self.AUTHOR_LIST_FIELDS:
if fld in self.content:
authors.extend([author for author in self.content[fld]])
self._authors = utils.normalize_authors(authors)
def _get_authors_short(self):
if not hasattr(self, "_authors"):
self._clean_authors()
return utils.get_author_short_text(self._authors)
def _get_journal_citation(self):
# volume is sometimes blank; only add parens if non-blank
volume = str(self.content.get("volume", ""))
if len(volume) > 0:
volume = f"; {volume}"
# issue is sometimes blank; only add parens if non-blank
issue = str(self.content.get("note", ""))
if len(issue) > 0:
issue = f" ({issue})"
# pages is sometimes blank; only add colon if non-blank
pages = str(self.content.get("start_page", ""))
if len(pages) > 0:
pages = f":{pages}"
sec_title = str(self.content.get("secondary_title", "")) # journal
year = self.content.get("year", "") # year
return f"{sec_title} {year}{volume}{issue}{pages}"
def _get_book_citation(self):
vals = []
if "secondary_title" in self.content:
vals.append(f"{self.content['secondary_title']}.")
if "year" in self.content:
vals.append(f"{self.content['year']}.")
if "start_page" in self.content:
vals.append(f"Pages {self.content['start_page']}.")
if "issn" in self.content:
vals.append(f"{self.content['issn']}")
return " ".join(vals)
def _get_citation(self):
refType = self.content.get("type_of_reference", "")
citation = self.PLACEHOLDER_TEXT
if refType in ("JFULL", "JOUR"):
citation = self._get_journal_citation()
elif refType in ("BOOK", "CHAP"):
citation = self._get_book_citation()
elif refType == "SER":
citation = self.content.get("alternate_title1", "")
elif refType == "CONF":
citation = self.content.get("short_title", "")
else:
id_ = self.content.get("id", None)
logging.warning(f'Unknown type: "{refType}", id="{id_}"')
return citation
| StarcoderdataPython |
1604884 | <reponame>AsM0DeUz/leapp-repository
import os
import shutil
import sys
from leapp.libraries.common.utils import makedirs
from leapp.libraries.stdlib import api
LEAPP_HOME = '/root/tmp_leapp_py3'
def _get_python_dirname():
# NOTE: I thought about the static value: python2.7 for el7, python3.6 for
# el8; but in the end I've ratcher switched to this generic solution.
return 'python{}.{}'.format(sys.version_info.major, sys.version_info.minor)
def _get_orig_leapp_path():
return os.path.join('/usr/lib', _get_python_dirname(), 'site-packages/leapp')
def apply_python3_workaround():
py3_leapp = os.path.join(LEAPP_HOME, 'leapp3')
if os.path.exists(LEAPP_HOME):
try:
shutil.rmtree(LEAPP_HOME)
except OSError as e:
api.current_logger().error('Could not remove {} directory: {}'.format(LEAPP_HOME, str(e)))
makedirs(LEAPP_HOME)
leapp_lib_symlink_path = os.path.join(LEAPP_HOME, 'leapp')
os.symlink(_get_orig_leapp_path(), leapp_lib_symlink_path)
with open(py3_leapp, 'w') as f:
f_content = [
'#!/usr/bin/python3',
'import sys',
'sys.path.append(\'{}\')'.format(LEAPP_HOME),
'',
'import leapp.cli',
'sys.exit(leapp.cli.main())',
]
f.write('{}\n\n'.format('\n'.join(f_content)))
os.chmod(py3_leapp, 0o770)
| StarcoderdataPython |
1669714 | import numpy as np
import gym
import cv2
from baselines.common.atari_wrappers import FrameStack
from retro_contest.local import make as make_local
cv2.ocl.setUseOpenCL(False) # No GPU use
class PreprocessFrame(gym.ObservationWrapper):
"""
Grayscales and resizes Frame
"""
def __init__(self, env, width=96, height=96):
super().__init__(self, env)
self.width = width
self.height = height
self.observation_space = gym.spaces.Box(
low=0, high=255,
shape=(self.height, self.width, 1), dtype=np.uint8)
def observation(self, frame):
"""
Returns preprocessed frame
"""
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(frame, (self.width, self.height),
interpolation=cv2.INTER_AREA)
frame = frame[:, :, None]
return frame
class ActionDiscretizer(gym.ActionWrapper):
"""
Wraps a retro environment to make it use
discrete actions for the game
"""
def __init__(self, env):
super(ActionDiscretizer, self).__init__(env)
buttons = ['B', 'A', 'MODE', 'START',
'UP', 'DOWN', 'LEFT', 'RIGHT',
'C', 'Y', 'X', 'Z'
]
actions = [['LEFT'], ['RIGHT'], ['LEFT', 'DOWN'], [
'RIGHT', 'DOWN'], ['DOWN'], ['DOWN', 'B'], ['B']]
self.actions_ = []
"""
For each action:
- create an array of 12[buttons] False
For each button in action:
- make button index True
Creates arrays of actions, where each True element
is the clicked button
"""
for action in actions:
arr = np.array([False] * 12)
for button in action:
arr[buttons.index(button)] = True
self.actions_.append(arr)
self.action_space = gym.spaces.Discrete(len(self.actions_))
def action(self, a_id):
"""
Retrieves an action
"""
return self.actions_[a_id].copy()
class RewardScaler(gym.RewardWrapper):
"""
Rescales the rewards for PPO.
Effects Perfomance
"""
def reward(self, reward):
return reward * 0.01
class AllowBackTracking(gym.Wrapper):
"""
Use deltas in max(X) rather than deltas in X
Agents are not discouraged heavily from
exploring backwards if there is no way to
advance forward directly.
"""
def __init__(self, env):
super(AllowBackTracking, self).__init__(env)
self._cur_x = 0
self._max_x = 0
def reset(self, **kwargs):
self._cur_x = 0
self._max_x = 0
return self.env.reset(**kwargs)
def step(self, action):
obs, reward, done, info = self.env.step(action)
self._cur_x += reward
reward = max(0, self._cur_x - self._max_x)
self._max_x = max(self._cur_x, self._max_x)
return obs, reward, done, info
def create_env(env_idx):
"""
Creates an environment with standard wrappers
"""
wrappers = [
{'game': 'SonicTheHedgehog-Genesis', 'state': 'SpringYardZone.Act3'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'SpringYardZone.Act2'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'GreenHillZone.Act3'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'GreenHillZone.Act1'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'StarLightZone.Act2'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'StarLightZone.Act1'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'MarbleZone.Act2'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'MarbleZone.Act1'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'MarbleZone.Act3'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'ScrapBrainZone.Act2'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'LabyrinthZone.Act2'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'LabyrinthZone.Act1'},
{'game': 'SonicTheHedgehog-Genesis', 'state': 'LabyrinthZone.Act3'}
]
print(wrappers[env_idx]['game'], wrappers[env_idx]['state'], flush=True)
env = make_local(game=wrappers[env_idx]['game'],
state=wrappers[env_idx]['state'],
bk2dir='/records')
# Build actions array
env = ActionDiscretizer(env)
# Scale rewards
env = RewardScaler(env)
# Preprocess frames and Stack
env = PreprocessFrame(env)
env = FrameStack(env, 4)
env = AllowBackTracking(env)
return env
def make_train(env_indices=[0], all_=False):
"""
Returns a list of environments with given indices
"""
env_indices = np.arange(0, 13) if all_ else env_indices
return [create_env(idx) for idx in env_indices]
| StarcoderdataPython |
3387061 | <filename>ktane/vanilla.py<gh_stars>1-10
"Solver scripts for all vanilla modules."
from typing import Final, List, NamedTuple, Tuple, Dict, Counter
from ktane.directors import ModuleSolver, EdgeFlag, Port
from ktane.ask import talk
from ktane import ask
from ktane.solverutils import morse, maze, grid # MorseCode, Maze
__all__ = [
"Wires",
"TheButton",
"Keypad",
"SimonSays",
"WhosOnFirst",
"Memory",
"MorseCode",
"ComplicatedWires",
"WireSequence",
"Maze",
"Password"
]
class Wires(ModuleSolver):
"Solver for vanilla Wires."
name: Final = "Wires"
id: Final = "Wires"
required_edgework: Final = (EdgeFlag.SERIAL,)
def stage(self) -> None:
talk("What color wires are on the module, from top to bottom?")
talk("Type R for red, Y for yellow, B for blue, W for white, and K for black.")
wirelist = ask.str_from_regex(r"[rybwk]{3,6}").lower()
wire: str
if len(wirelist) == 3:
if 'r' not in wirelist:
wire = "second"
elif wirelist[-1] == 'w':
wire = "last"
elif wirelist.count('b') > 1:
wire = "last blue"
else:
wire = "last"
elif len(wirelist) == 4:
if wirelist.count('r') > 1 and self.bomb.serial_odd:
wire = "last red"
elif wirelist[-1] == 'y' and 'r' not in wirelist:
wire = "first"
elif wirelist.count('b') == 1:
wire = "first"
elif wirelist.count('y') > 1:
wire = "last"
else:
wire = "second"
elif len(wirelist) == 5:
if wirelist[-1] == 'k' and self.bomb.serial_odd:
wire = "fourth"
elif wirelist.count('r') == 1 and wirelist.count('y') > 1:
wire = "first"
elif 'k' not in wirelist:
wire = "second"
else:
wire = "first"
elif len(wirelist) == 6:
if 'y' not in wirelist and self.bomb.serial_odd:
wire = "third"
elif wirelist.count('y') == 1 and wirelist.count('w') > 1:
wire = "fourth"
elif 'r' not in wirelist:
wire = "last"
else:
wire = "fourth"
talk(f"Cut the {wire} wire.")
class TheButton(ModuleSolver):
"Solver for vanilla The Button."
name: Final = "The Button"
id: Final = "BigButton"
required_edgework: Final = (EdgeFlag.BATTERIES, EdgeFlag.INDICATORS)
valid_colors: Final = {"red", "yellow", "blue", "white"}
valid_labels: Final = {"abort", "detonate", "hold", "press"}
def stage(self) -> None:
talk("What color is the button?")
talk('Type one of "red", "yellow", "blue", or "white", without quotes.')
color = ask.str_from_set(self.valid_colors)
talk("What is the text on the label?")
talk('Type one of "abort", "detonate", "hold", or "press", without quotes.')
label = ask.str_from_set(self.valid_labels)
if color == "blue" and label == "abort":
self._hold()
elif self.bomb.batteries > 1 and label == "detonate":
talk("Press and immediately release the button.")
elif color == "white" and ('car', True) in self.bomb.indicators:
self._hold()
elif self.bomb.batteries > 2 and ('frk', True) in self.bomb.indicators:
talk("Press and immediately release the button.")
elif color == "yellow":
self._hold()
elif color == "red" and label == "hold":
talk("Press and immediately release the button.")
else:
self._hold()
def _hold(self) -> None:
talk("Hold down the button. What color is the strip on the right?")
talk('Type one of "red", "yellow", "blue", or "white", without quotes.')
strip = ask.str_from_set(self.valid_colors)
digit: int
if strip == "blue":
digit = 4
elif strip == "yellow":
digit = 5
else:
digit = 1
talk(f"Release the button when the countdown timer has a {digit} "
"in any position.")
class Keypad(ModuleSolver):
"Solver for vanilla Keypad."
name: Final = "Keypad"
id: Final = "Keypad"
required_edgework: Final = ()
valid_symbols: Final = {
"copyright", "filled star", "hollow star", "smiley face", "double k", "omega",
"squidknife", "pumpkin", "hook n", "six", "squiggly n", "at", "ae",
"melted three", "euro", "n with hat", "dragon", "question mark", "paragraph",
"right c", "left c", "pitchfork", "cursive", "tracks", "balloon",
"upside down y", "bt"
}
columns: Final = {
("balloon", "at", "upside down y", "squiggly n", "squidknife", "hook n",
"left c"),
("euro", "balloon", "left c", "cursive", "hollow star", "hook n",
"question mark"),
("copyright", "pumpkin", "cursive", "double k", "melted three",
"upside down y", "hollow star"),
("six", "paragraph", "bt", "squidknife", "double k", "question mark",
"smiley face"),
("pitchfork", "smiley face", "bt", "right c", "paragraph", "dragon",
"filled star"),
("six", "euro", "tracks", "ae", "pitchfork", "n with hat", "omega")
}
def stage(self) -> None:
talk("What symbols are on the keypad?")
symbols = ask.list_from_set(self.valid_symbols, print_options=True,
expected_len=4)
while all(any(sym not in col for sym in symbols) for col in self.columns):
talk("I couldn't find a solution for those symbols.")
talk("Please ensure you typed them correctly.")
talk("What symbols are on the keypad?")
symbols = ask.list_from_set(self.valid_symbols, print_options=True,
expected_len=4)
for col in self.columns:
if all(sym in col for sym in symbols):
talk("Press the keys in the following order:")
for symbol in [sym for sym in col if sym in symbols]:
talk(symbol.upper())
class SimonSays(ModuleSolver):
"Solver for vanilla Simon Says."
name: Final = "<NAME>"
id: Final = "Simon"
required_edgework: Final = (EdgeFlag.SERIAL, EdgeFlag.STRIKES)
total_stages = 5 # max number of stages
valid_colors: Final = {"red", "blue", "green", "yellow"}
color_sequence: List[str]
def stage(self) -> None:
if self.current_stage == 1:
talk("What color is flashing?")
else:
talk("What color is now flashing at the end of the sequence?")
talk('Type one of "red", "blue", "green", or "yellow", without quotes.')
new_color = ask.str_from_set(self.valid_colors)
self.color_sequence.append(new_color)
if self.bomb.serial_vowel:
if self.bomb.strikes == 0:
simon_key = {"red": "Blue", "blue": "Red",
"green": "Yellow", "yellow": "Green"}
elif self.bomb.strikes == 1:
simon_key = {"red": "Yellow", "blue": "Green",
"green": "Blue", "yellow": "Red"}
else:
simon_key = {"red": "Green", "blue": "Red",
"green": "Yellow", "yellow": "Blue"}
else:
if self.bomb.strikes == 0:
simon_key = {"red": "Blue", "blue": "Yellow",
"green": "Green", "yellow": "Red"}
elif self.bomb.strikes == 1:
simon_key = {"red": "Red", "blue": "Blue",
"green": "Yellow", "yellow": "Green"}
else:
simon_key = {"red": "Yellow", "blue": "Green",
"green": "Blue", "yellow": "Red"}
talk("Press the following colors in order:")
for color in self.color_sequence:
talk(simon_key[color])
def custom_data_init(self) -> None:
self.color_sequence = []
def custom_data_clear(self) -> None:
self.color_sequence = []
def solve(self) -> None:
self.announce()
while self.do_stage():
self.stage()
self.check_strike()
if self.current_stage >= 3:
if self.check_solve():
return
self.reset_stages()
def on_this_struck(self) -> None:
super().on_this_struck()
self.color_sequence.pop()
class WhosOnFirst(ModuleSolver):
"Solver for vanilla Who's On First."
name: Final = "Who's on First"
id: Final = "WhosOnFirst"
required_edgework: Final = ()
total_stages = 3
valid_displays: Final = {
"yes", "first", "display", "okay", "says", "nothing", "empty", "blank", "no",
"led", "lead", "read", "red", "reed", "leed", "hold on", "you", "you are", "your",
"you're", "ur", "there", "they're", "their", "they are", "see", "c", "cee"
}
valid_labels: Final = {
"ready", "first", "no", "blank", "nothing", "yes", "what", "uhhh", "left",
"right", "middle", "okay", "wait", "press", "you", "you are", "your", "you're",
"ur", "u", "uh huh", "uh uh", "what?", "done", "next", "hold", "sure", "like"
}
display_to_index: Final = {
"yes": 2,
"first": 1,
"display": 5,
"okay": 1,
"says": 5,
"nothing": 2,
"empty": 4, # no text on display
"blank": 3,
"no": 5,
"led": 2,
"lead": 5,
"read": 3,
"red": 3,
"reed": 4,
"leed": 4,
"hold on": 5,
"you": 3,
"you are": 5,
"your": 3,
"you're": 3,
"ur": 0,
"there": 5,
"they're": 4,
"their": 3,
"they are": 2,
"see": 5,
"c": 1,
"cee": 5
}
label_to_buttons: Final = {
"ready": ("yes", "okay", "what", "middle", "left", "press", "right", "blank"),
"first": ("left", "okay", "yes", "middle", "no", "right", "nothing",
"uhhh", "wait", "ready", "blank", "what", "press"),
"no": ("blank", "uhhh", "wait", "first", "what", "ready", "right",
"yes", "nothing", "left", "press", "okay"),
"blank": ("wait", "right", "okay", "middle"),
"nothing": ("uhhh", "right", "okay", "middle", "yes", "blank", "no",
"press", "left", "what", "wait", "first"),
"yes": ("okay", "right", "uhhh", "middle", "first", "what", "press",
"ready", "nothing"),
"what": ("uhhh",),
"uhhh": ("ready", "nothing", "left", "what", "okay", "yes", "right",
"no", "press", "blank"),
"left": ("right",),
"right": ("yes", "nothing", "ready", "press", "no", "wait", "what"),
"middle": ("blank", "ready", "okay", "what", "nothing", "press", "no",
"wait", "left"),
"okay": ("middle", "no", "first", "yes", "uhhh", "nothing", "wait"),
"wait": ("uhhh", "no", "blank", "okay", "yes", "left", "first", "press", "what"),
"press": ("right", "middle", "yes", "ready"),
"you": ("sure", "you are", "your", "you're", "next", "uh huh", "ur",
"hold", "what?"),
"you are": ("your", "next", "like", "uh huh", "what?", "done", "uh uh",
"hold", "you", "u", "you're", "sure", "ur"),
"your": ("uh uh", "you are", "uh huh"),
"you're": ("you",),
"ur": ("done", "u"),
"u": ("uh huh", "sure", "next", "what?", "you're", "ur", "uh uh", "done"),
"uh huh": (),
"uh uh": ("ur", "u", "you are", "you're", "next"),
"what?": ("you", "hold", "you're", "your", "u", "done", "uh uh", "like",
"you are", "uh huh", "ur", "next"),
"done": ("sure", "uh huh", "next", "what?", "your", "ur", "you're",
"hold", "like", "you", "u", "you are", "uh uh"),
"next": ("what?", "uh huh", "uh uh", "your", "hold", "sure"),
"hold": ("you are", "u", "done", "uh uh", "you", "ur", "sure", "what?",
"you're", "next"),
"sure": ("you are", "done", "like", "you're", "you", "hold", "uh huh", "ur"),
"like": ("you're", "next", "u", "ur", "hold", "done", "uh uh", "what?",
"uh huh", "you")
}
def stage(self) -> None:
talk('What text is on the display? '
'(If there is no text, type "Empty".)')
display = ask.str_from_set(self.valid_displays)
talk("What are the button labels, in reading order?")
labels = ask.list_from_set(self.valid_labels, expected_len=6)
label_index = self.display_to_index[display]
key_label = labels[label_index]
answer_label = key_label
for button in self.label_to_buttons[key_label]:
if button in labels:
answer_label = button
break
talk(f"Press the button labeled {answer_label.upper()}.")
class _MemoryItem(NamedTuple):
label: str
position: int
class Memory(ModuleSolver):
"Solver for vanilla Memory."
name: Final = "Memory"
id: Final = "Memory"
required_edgework: Final = ()
total_stages = 5
reset_stages_on_strike = True
presses: List[_MemoryItem]
def custom_data_init(self) -> None:
self.presses = []
def custom_data_clear(self) -> None:
self.presses = []
def stage(self) -> None:
talk("What number is on the display?")
display = int(ask.str_from_regex(r'[1-4]'))
talk("What numbers are on the buttons, in reading order?")
buttons = ask.str_from_regex(r'[1-4]{4}')
while any(c not in buttons for c in '1234'):
talk("There should be one of each number on the buttons.")
talk("What numbers are on the buttons, in reading order?")
buttons = ask.str_from_regex(r'[1-4]{4}')
item: _MemoryItem
if self.current_stage == 1:
item = self._stage_1(display, buttons)
elif self.current_stage == 2:
item = self._stage_2(display, buttons)
elif self.current_stage == 3:
item = self._stage_3(display, buttons)
elif self.current_stage == 4:
item = self._stage_4(display, buttons)
else: # self.current_stage == 5
item = self._stage_5(display, buttons)
talk(f"Press the button labeled {item.label}.")
self.presses.append(item)
# region stage helpers
def _in_position(self, position: int, buttons: str) -> _MemoryItem:
return _MemoryItem(buttons[position-1], position)
def _with_label(self, label: str, buttons: str) -> _MemoryItem:
return _MemoryItem(label, buttons.index(label)+1)
def _stage_1(self, display: int, buttons: str) -> _MemoryItem:
if display in {1, 2}:
return self._in_position(2, buttons)
if display == 3:
return self._in_position(3, buttons)
# display == 4
return self._in_position(4, buttons)
def _stage_2(self, display: int, buttons: str) -> _MemoryItem:
if display == 1:
return self._with_label('4', buttons)
if display in {2, 4}:
return self._in_position(self.presses[0].position, buttons)
# display == 3
return self._in_position(1, buttons)
def _stage_3(self, display: int, buttons: str) -> _MemoryItem:
if display == 1:
return self._with_label(self.presses[1].label, buttons)
if display == 2:
return self._with_label(self.presses[0].label, buttons)
if display == 3:
return self._in_position(3, buttons)
# display == 4
return self._with_label('4', buttons)
def _stage_4(self, display: int, buttons: str) -> _MemoryItem:
if display == 1:
return self._in_position(self.presses[0].position, buttons)
if display == 2:
return self._in_position(1, buttons)
# display in {3, 4}
return self._in_position(self.presses[1].position, buttons)
def _stage_5(self, display: int, buttons: str) -> _MemoryItem:
if display == 1:
return self._with_label(self.presses[0].label, buttons)
if display == 2:
return self._with_label(self.presses[1].label, buttons)
if display == 3:
return self._with_label(self.presses[3].label, buttons)
# display == 4
return self._with_label(self.presses[2].label, buttons)
# endregion
class MorseCode(ModuleSolver):
"Solver for vanilla Morse Code."
name: Final = "Morse Code"
id: Final = "Morse"
required_edgework: Final = ()
word_to_freq: Final = {
"shell": "505",
"halls": "515",
"slick": "522",
"trick": "532",
"boxes": "535",
"leaks": "542",
"strobe": "545",
"bistro": "552",
"flick": "555",
"bombs": "565",
"break": "572",
"brick": "575",
"steak": "582",
"sting": "592",
"vector": "595",
"beats": "600"
}
def stage(self) -> None:
talk("What Morse Code sequence is flashing?")
word = morse.ask_word()
while word not in self.word_to_freq:
talk("That word isn't in my table.")
talk("What Morse Code sequence is flashing?")
word = morse.ask_word()
talk(f"Respond at frequency 3.{self.word_to_freq[word]} MHz.")
class ComplicatedWires(ModuleSolver):
"Solver for vanilla Complicated Wires."
name: Final = "Complicated Wires"
id: Final = "Venn"
required_edgework: Final = (EdgeFlag.SERIAL, EdgeFlag.PORTS, EdgeFlag.BATTERIES)
venn_diagram: Final = (
# no red
(
# no blue
# none L S SL
((('C'), ('D')), (('C'), ('B'))),
# blue
# none L S SL
((('S'), ('P')), (('D'), ('P'))),
),
# red
(
# no blue
# none L S SL
((('S'), ('B')), (('C'), ('B'))),
# blue
# none L S SL
((('S'), ('S')), (('P'), ('D'))),
)
)
def stage(self) -> None:
talk("What wires are on the module?")
talk("For each wire, include its colors, any of (R)ed, (B)lue, or (W)hite,")
talk("whether the LED above it is (L)it, and whether a (S)tar is present.")
talk("Input each wire as a string of the parenthesized letters above.")
wirelist = ask.list_from_regex(r"[rbwls]+")
for wire in wirelist:
if self.cut(wire):
talk(f"Cut wire {wire.upper()}.")
else:
talk(f"Do not cut wire {wire.upper()}.")
def cut(self, wire: str) -> bool:
"Determine whether a given wire must be cut."
action = self.venn_diagram['r' in wire]['b' in wire]['s' in wire]['l' in wire]
if action == 'C':
return True
if action == 'D':
return False
if action == 'S':
return not self.bomb.serial_odd
if action == 'P':
return self.bomb.has_port(Port.PARALLEL)
if action == 'B':
return self.bomb.batteries >= 2
raise RuntimeError("Invalid Venn Diagram action letter")
class _SequenceWire(NamedTuple):
color: str
label: str
class WireSequence(ModuleSolver):
"Solver for vanilla Wire Sequence."
name: Final = "Wire Sequence"
id: Final = "WireSequence"
required_edgework: Final = ()
total_stages = 4
cut_table: Final[Dict[str, Tuple[str, ...]]] = {
'red': ('c', 'b', 'a', 'ac', 'b', 'ac', 'abc', 'ab', 'b'),
'blue': ('b', 'ac', 'b', 'a', 'b', 'bc', 'c', 'ac', 'a'),
'black': ('abc', 'ac', 'b', 'ac', 'b', 'bc', 'ab', 'c', 'c')
}
wire_counts: Counter[str]
last_stage_counts: Counter[str]
def custom_data_init(self) -> None:
self.wire_counts = Counter()
self.last_stage_counts = Counter()
def custom_data_clear(self) -> None:
self.wire_counts.clear()
self.last_stage_counts.clear()
def on_this_struck(self) -> None:
self.last_stage_counts.clear()
@classmethod
def _check_wire_text(cls, text: str) -> bool:
if len(text.split()) != 2:
return False
if text.split()[0] not in cls.cut_table:
return False
if text.split()[1] not in 'abc':
return False
return True
def ask_wires(self) -> Tuple[_SequenceWire, ...]:
"Get a set of wires from the user."
talk("What wires are on the panel, in order by their left plug?")
talk("Input their color followed by the letter")
talk('they\'re plugged into, like "red C".')
wirelist = ask.list_from_func(self._check_wire_text)
converted_wirelist = tuple(_SequenceWire._make(wire.split()) for wire in wirelist)
return converted_wirelist
def stage(self) -> None:
# canonize last_stage_counts before starting new stage
self.wire_counts.update(self.last_stage_counts)
self.last_stage_counts.clear()
wires = self.ask_wires()
for wire in wires:
self.last_stage_counts[wire.color] += 1
wire_count = self.wire_counts[wire.color] + self.last_stage_counts[wire.color]
if wire.label in self.cut_table[wire.color][wire_count-1]:
talk(f"Cut the {wire.color} wire "
f"connected to label {wire.label.upper()}.")
else:
talk(f"Do not cut the {wire.color} wire "
f"connected to label {wire.label.upper()}.")
talk("Press the down arrow to finish this panel.")
class Maze(ModuleSolver):
"Solver for vanilla Maze."
name: Final = "Maze"
id: Final = "Maze"
required_edgework: Final = ()
mazes: Final[Tuple[Tuple[maze.Wall, ...], ...]] = (
(maze.Wall(0, 5), maze.Wall(1, 2), maze.Wall(1, 8), maze.Wall(1, 10),
maze.Wall(2, 1), maze.Wall(2, 5), maze.Wall(3, 4), maze.Wall(3, 6),
maze.Wall(3, 8), maze.Wall(4, 1), maze.Wall(4, 5), maze.Wall(5, 2),
maze.Wall(5, 8), maze.Wall(6, 1), maze.Wall(6, 7), maze.Wall(7, 2),
maze.Wall(7, 4), maze.Wall(7, 6), maze.Wall(7, 8), maze.Wall(8, 5),
maze.Wall(8, 9), maze.Wall(9, 2), maze.Wall(9, 8), maze.Wall(10, 3),
maze.Wall(10, 7)),
(maze.Wall(0, 5), maze.Wall(1, 0), maze.Wall(1, 4), maze.Wall(1, 10),
maze.Wall(2, 3), maze.Wall(2, 7), maze.Wall(3, 2), maze.Wall(3, 6),
maze.Wall(3, 8), maze.Wall(4, 1), maze.Wall(4, 5), maze.Wall(5, 4),
maze.Wall(5, 8), maze.Wall(6, 3), maze.Wall(6, 7), maze.Wall(6, 9),
maze.Wall(7, 2), maze.Wall(7, 6), maze.Wall(8, 1), maze.Wall(8, 3),
maze.Wall(8, 5), maze.Wall(8, 9), maze.Wall(9, 8), maze.Wall(10, 1),
maze.Wall(10, 5)),
(maze.Wall(0, 5), maze.Wall(0, 7), maze.Wall(1, 2), maze.Wall(2, 1),
maze.Wall(2, 3), maze.Wall(2, 5), maze.Wall(2, 9), maze.Wall(3, 0),
maze.Wall(3, 6), maze.Wall(3, 8), maze.Wall(4, 3), maze.Wall(4, 5),
maze.Wall(4, 9), maze.Wall(6, 1), maze.Wall(6, 3), maze.Wall(6, 5),
maze.Wall(6, 7), maze.Wall(6, 9), maze.Wall(8, 1), maze.Wall(8, 5),
maze.Wall(8, 7), maze.Wall(8, 9), maze.Wall(9, 2), maze.Wall(9, 4),
maze.Wall(10, 7)),
(maze.Wall(0, 3), maze.Wall(1, 4), maze.Wall(1, 6), maze.Wall(1, 8),
maze.Wall(2, 1), maze.Wall(2, 3), maze.Wall(3, 6), maze.Wall(3, 8),
maze.Wall(4, 1), maze.Wall(4, 5), maze.Wall(4, 9), maze.Wall(5, 2),
maze.Wall(5, 4), maze.Wall(5, 8), maze.Wall(6, 1), maze.Wall(7, 2),
maze.Wall(7, 4), maze.Wall(7, 6), maze.Wall(7, 8), maze.Wall(8, 9),
maze.Wall(9, 2), maze.Wall(9, 4), maze.Wall(9, 6), maze.Wall(10, 5),
maze.Wall(10, 9)),
(maze.Wall(1, 0), maze.Wall(1, 2), maze.Wall(1, 4), maze.Wall(1, 6),
maze.Wall(2, 9), maze.Wall(3, 2), maze.Wall(3, 4), maze.Wall(3, 8),
maze.Wall(3, 10), maze.Wall(4, 3), maze.Wall(4, 7), maze.Wall(5, 4),
maze.Wall(5, 6), maze.Wall(6, 1), maze.Wall(6, 7), maze.Wall(6, 9),
maze.Wall(7, 2), maze.Wall(7, 4), maze.Wall(7, 8), maze.Wall(8, 1),
maze.Wall(8, 9), maze.Wall(9, 4), maze.Wall(9, 6), maze.Wall(9, 8),
maze.Wall(10, 1)),
(maze.Wall(0, 1), maze.Wall(0, 5), maze.Wall(1, 6), maze.Wall(2, 1),
maze.Wall(2, 3), maze.Wall(2, 5), maze.Wall(2, 9), maze.Wall(3, 8),
maze.Wall(4, 3), maze.Wall(4, 5), maze.Wall(4, 7), maze.Wall(5, 2),
maze.Wall(5, 4), maze.Wall(5, 10), maze.Wall(6, 3), maze.Wall(6, 7),
maze.Wall(6, 9), maze.Wall(7, 0), maze.Wall(8, 3), maze.Wall(8, 5),
maze.Wall(8, 7), maze.Wall(9, 2), maze.Wall(9, 4), maze.Wall(9, 8),
maze.Wall(10, 7)),
(maze.Wall(0, 7), maze.Wall(1, 2), maze.Wall(1, 4), maze.Wall(2, 1),
maze.Wall(2, 5), maze.Wall(2, 9), maze.Wall(3, 4), maze.Wall(3, 6),
maze.Wall(3, 8), maze.Wall(4, 3), maze.Wall(4, 7), maze.Wall(5, 0),
maze.Wall(5, 2), maze.Wall(5, 6), maze.Wall(5, 10), maze.Wall(6, 3),
maze.Wall(6, 9), maze.Wall(7, 6), maze.Wall(7, 8), maze.Wall(8, 1),
maze.Wall(8, 3), maze.Wall(8, 9), maze.Wall(9, 2), maze.Wall(9, 4),
maze.Wall(9, 6)),
(maze.Wall(0, 1), maze.Wall(0, 7), maze.Wall(1, 4), maze.Wall(2, 5),
maze.Wall(2, 9), maze.Wall(3, 2), maze.Wall(3, 4), maze.Wall(3, 6),
maze.Wall(3, 8), maze.Wall(4, 1), maze.Wall(4, 9), maze.Wall(5, 4),
maze.Wall(5, 6), maze.Wall(6, 1), maze.Wall(6, 5), maze.Wall(7, 2),
maze.Wall(7, 6), maze.Wall(7, 8), maze.Wall(7, 10), maze.Wall(8, 1),
maze.Wall(8, 3), maze.Wall(9, 4), maze.Wall(9, 6), maze.Wall(9, 8),
maze.Wall(9, 10)),
(maze.Wall(0, 1), maze.Wall(1, 4), maze.Wall(1, 6), maze.Wall(2, 1),
maze.Wall(2, 3), maze.Wall(2, 7), maze.Wall(2, 9), maze.Wall(3, 6),
maze.Wall(4, 5), maze.Wall(4, 9), maze.Wall(5, 2), maze.Wall(5, 4),
maze.Wall(5, 8), maze.Wall(6, 1), maze.Wall(6, 3), maze.Wall(6, 7),
maze.Wall(7, 6), maze.Wall(7, 8), maze.Wall(8, 1), maze.Wall(8, 3),
maze.Wall(8, 5), maze.Wall(8, 9), maze.Wall(9, 10), maze.Wall(10, 3),
maze.Wall(10, 7))
)
mark_to_maze: Dict[grid.Coord, Tuple[maze.Wall, ...]] = {
grid.Coord(1, 0): mazes[0],
grid.Coord(2, 5): mazes[0],
grid.Coord(3, 1): mazes[1],
grid.Coord(1, 4): mazes[1],
grid.Coord(3, 3): mazes[2],
grid.Coord(3, 5): mazes[2],
grid.Coord(0, 0): mazes[3],
grid.Coord(3, 0): mazes[3],
grid.Coord(2, 4): mazes[4],
grid.Coord(5, 3): mazes[4],
grid.Coord(0, 4): mazes[5],
grid.Coord(4, 2): mazes[5],
grid.Coord(0, 1): mazes[6],
grid.Coord(5, 1): mazes[6],
grid.Coord(0, 3): mazes[7],
grid.Coord(3, 2): mazes[7],
grid.Coord(1, 2): mazes[8],
grid.Coord(4, 0): mazes[8],
}
def stage(self) -> None:
while True:
talk("What coordinate contains the white light?")
start = maze.Node._make(grid.ask_coord())
talk("What coordinate contains the red triangle?")
goal = maze.Node._make(grid.ask_coord())
talk("What coordinate contains a circular marking?")
talk("(You may use either one.)")
marking = grid.ask_coord()
while marking not in self.mark_to_maze:
talk("That doesn't fit any of the mazes.")
talk("What coordinate contains a circular marking?")
talk("(You may use either one.)")
marking = grid.ask_coord()
walls = self.mark_to_maze[marking]
path = maze.solve_maze(grid.Dimensions(6, 6), start, goal, walls)
if not path:
talk("Something went wrong and I couldn't find a path.")
continue
talk("Press the following directions in order:")
for direction in path:
talk(direction)
return
class Password(ModuleSolver):
"Solver for vanilla Password."
name: Final = "Password"
id: Final = "Password"
required_edgework: Final = ()
valid_words: Final = {
"about", "after", "again", "below", "could", "every", "first", "found", "great",
"house", "large", "learn", "never", "other", "place", "plant", "point", "right",
"small", "sound", "spell", "still", "study", "their", "there", "these", "thing",
"think", "three", "water", "where", "which", "world", "would", "write"
}
def stage(self) -> None:
while True:
possible_words: List[str] = list(self.valid_words)
for column_index in range(5):
talk(f"What letters are in column {column_index + 1}?")
letters = ask.str_from_regex(r"[a-z]{6}")
while len(set(letters)) != 6: # all letters should be unique
talk("There should be 6 unique letters in the column.")
talk(f"What letters are in column {column_index + 1}?")
letters = ask.str_from_regex(r"[a-z]{6}")
possible_words = [word for word in possible_words
if word[column_index] in letters] # filter
if len(possible_words) == 1:
answer = possible_words[0].upper()
talk(f'Enter the password "{answer}".')
return
if len(possible_words) == 0:
break
# no valid word or multiple valid words
talk("Something went wrong. Let's start over.")
| StarcoderdataPython |
100244 | # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT-0
import math
import numpy as np
import states.area
import states.face
import states.fail
import states.success
from challenge import Challenge
class NoseState:
MAXIMUM_DURATION_IN_SECONDS = 10
AREA_BOX_TOLERANCE = 0.05
NOSE_BOX_TOLERANCE = 0.55
TRAJECTORY_ERROR_THRESHOLD = 0.01
HISTOGRAM_BINS = 3
MIN_DIST = 0.10
ROTATION_THRESHOLD = 5.0
MIN_DIST_FACTOR_ROTATED = 0.75
MIN_DIST_FACTOR_NOT_ROTATED = 1.5
def __init__(self, challenge, original_frame):
self.challenge = challenge
self.image_width = challenge['imageWidth']
self.image_height = challenge['imageHeight']
# Applying tolerance
area_width_tolerance = challenge['areaWidth'] * NoseState.AREA_BOX_TOLERANCE
area_height_tolerance = challenge['areaHeight'] * NoseState.AREA_BOX_TOLERANCE
self.area_box = (challenge['areaLeft'] - area_width_tolerance,
challenge['areaTop'] - area_height_tolerance,
challenge['areaWidth'] + 2*area_width_tolerance,
challenge['areaHeight'] + 2*area_height_tolerance)
nose_width_tolerance = challenge['noseWidth'] * NoseState.NOSE_BOX_TOLERANCE
nose_height_tolerance = challenge['noseHeight'] * NoseState.NOSE_BOX_TOLERANCE
self.nose_box = (challenge['noseLeft'] - nose_width_tolerance,
challenge['noseTop'] - nose_height_tolerance,
challenge['noseWidth'] + 2*nose_width_tolerance,
challenge['noseHeight'] + 2*nose_height_tolerance)
self.challenge_in_the_right = challenge['noseLeft'] + Challenge.NOSE_BOX_SIZE/2 > self.image_width/2
self.original_frame = original_frame
self.original_landmarks = original_frame['rekMetadata'][0]['Landmarks']
self.nose_trajectory = []
def process(self, frame):
rek_metadata = frame['rekMetadata'][0]
rek_face_bbox = [
self.image_width * rek_metadata['BoundingBox']['Left'],
self.image_height * rek_metadata['BoundingBox']['Top'],
self.image_width * rek_metadata['BoundingBox']['Width'],
self.image_height * rek_metadata['BoundingBox']['Height']
]
if not states.area.AreaState.is_inside_area_box(self.area_box, rek_face_bbox):
return False
rek_landmarks = rek_metadata['Landmarks']
rek_pose = rek_metadata['Pose']
if self.is_inside_nose_box(rek_landmarks):
verified = self.verify_challenge(rek_landmarks, rek_pose, self.challenge_in_the_right)
return verified
return None
def is_inside_nose_box(self, landmarks):
for landmark in landmarks:
if landmark['Type'] == 'nose':
nose_left = self.image_width * landmark['X']
nose_top = self.image_height * landmark['Y']
self.nose_trajectory.append((landmark['X'], landmark['Y']))
return (self.nose_box[0] <= nose_left <= self.nose_box[0] + self.nose_box[2] and
self.nose_box[1] <= nose_top <= self.nose_box[1] + self.nose_box[3])
return False
def get_next_state_failure(self):
return states.fail.FailState()
def get_next_state_success(self):
return states.success.SuccessState()
def verify_challenge(self, current_landmarks, pose, challenge_in_the_right):
# Validating continuous and linear nose trajectory
nose_trajectory_x = [nose[0] for nose in self.nose_trajectory]
nose_trajectory_y = [nose[1] for nose in self.nose_trajectory]
_, residuals, _, _, _ = np.polyfit(nose_trajectory_x, nose_trajectory_y, 2, full=True)
trajectory_error = math.sqrt(residuals/len(self.nose_trajectory))
if trajectory_error > NoseState.TRAJECTORY_ERROR_THRESHOLD:
return False
# Plotting landmarks from the first frame in a histogram
original_landmarks_x = [self.image_width * landmark['X'] for landmark in self.original_landmarks]
original_landmarks_y = [self.image_height * landmark['Y'] for landmark in self.original_landmarks]
original_histogram, _, _ = np.histogram2d(original_landmarks_x,
original_landmarks_y,
bins=NoseState.HISTOGRAM_BINS)
original_histogram = np.reshape(original_histogram, NoseState.HISTOGRAM_BINS**2) / len(original_landmarks_x)
# Plotting landmarks from the last frame in a histogram
current_landmarks_x = [self.image_width * landmark['X'] for landmark in current_landmarks]
current_landmarks_y = [self.image_height * landmark['Y'] for landmark in current_landmarks]
current_histogram, _, _ = np.histogram2d(current_landmarks_x,
current_landmarks_y,
bins=NoseState.HISTOGRAM_BINS)
current_histogram = np.reshape(current_histogram, NoseState.HISTOGRAM_BINS**2) / len(current_landmarks_x)
# Calculating the Euclidean distance between histograms
dist = np.linalg.norm(original_histogram - current_histogram)
# Estimating left and right rotation
yaw = pose['Yaw']
rotated_right = yaw > NoseState.ROTATION_THRESHOLD
rotated_left = yaw < - NoseState.ROTATION_THRESHOLD
rotated_face = rotated_left or rotated_right
# Validating distance according to rotation
if (rotated_right and challenge_in_the_right) or (rotated_left and not challenge_in_the_right):
min_dist = NoseState.MIN_DIST * NoseState.MIN_DIST_FACTOR_ROTATED
elif not rotated_face:
min_dist = NoseState.MIN_DIST * NoseState.MIN_DIST_FACTOR_NOT_ROTATED
else:
return False
if dist > min_dist:
return True
return False
| StarcoderdataPython |
3354080 | import datetime
import decimal
import uuid
from dateutil.relativedelta import relativedelta
from django.db import transaction
from django.db.models import Sum
from django.http import HttpResponse
from django.utils.translation import ugettext_lazy as _
from django_filters.rest_framework import DjangoFilterBackend
from rest_framework import exceptions, status
from rest_framework.decorators import action
from rest_framework.response import Response
from waldur_core.core import validators as core_validators
from waldur_core.core import views as core_views
from waldur_core.structure import filters as structure_filters
from waldur_core.structure import models as structure_models
from waldur_core.structure import permissions as structure_permissions
from waldur_mastermind.common.utils import quantize_price
from . import filters, log, models, serializers, tasks, utils
class InvoiceViewSet(core_views.ReadOnlyActionsViewSet):
queryset = models.Invoice.objects.order_by('-year', '-month')
serializer_class = serializers.InvoiceSerializer
lookup_field = 'uuid'
filter_backends = (
structure_filters.GenericRoleFilter,
structure_filters.CustomerAccountingStartDateFilter,
DjangoFilterBackend,
)
filterset_class = filters.InvoiceFilter
def _is_invoice_created(invoice):
if invoice.state != models.Invoice.States.CREATED:
raise exceptions.ValidationError(
_('Notification only for the created invoice can be sent.')
)
@action(detail=True, methods=['post'])
def send_notification(self, request, uuid=None):
invoice = self.get_object()
tasks.send_invoice_notification.delay(invoice.uuid.hex)
return Response(
{
'detail': _(
'Invoice notification sending has been successfully scheduled.'
)
},
status=status.HTTP_200_OK,
)
send_notification_permissions = [structure_permissions.is_staff]
send_notification_validators = [_is_invoice_created]
@action(detail=True)
def pdf(self, request, uuid=None):
invoice = self.get_object()
file = utils.create_invoice_pdf(invoice)
file_response = HttpResponse(file, content_type='application/pdf')
filename = invoice.get_filename()
file_response[
'Content-Disposition'
] = 'attachment; filename="{filename}"'.format(filename=filename)
return file_response
@transaction.atomic
@action(detail=True, methods=['post'])
def paid(self, request, uuid=None):
invoice = self.get_object()
if request.data:
serializer = serializers.PaidSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
try:
profile = models.PaymentProfile.objects.get(
is_active=True, organization=invoice.customer
)
except models.PaymentProfile.DoesNotExist:
raise exceptions.ValidationError(
_('The active profile for this customer does not exist.')
)
payment = models.Payment.objects.create(
date_of_payment=serializer.validated_data['date'],
sum=invoice.total_current,
profile=profile,
invoice=invoice,
)
proof = serializer.validated_data.get('proof')
if proof:
payment.proof = proof
payment.save()
log.event_logger.invoice.info(
'Payment for invoice ({month}/{year}) has been added."',
event_type='payment_created',
event_context={
'month': invoice.month,
'year': invoice.year,
'customer': invoice.customer,
},
)
invoice.state = models.Invoice.States.PAID
invoice.save(update_fields=['state'])
return Response(status=status.HTTP_200_OK)
paid_permissions = [structure_permissions.is_staff]
paid_validators = [core_validators.StateValidator(models.Invoice.States.CREATED)]
@action(detail=True)
def stats(self, request, uuid=None):
invoice = self.get_object()
offerings = {}
for item in invoice.items.all():
if not item.resource:
continue
resource = item.resource
offering = resource.offering
customer = offering.customer
service_category_title = offering.category.title
service_provider_name = customer.name
service_provider_uuid = customer.serviceprovider.uuid.hex
if offering.uuid.hex not in offerings.keys():
offerings[offering.uuid.hex] = {
'offering_name': offering.name,
'aggregated_cost': item.total,
'service_category_title': service_category_title,
'service_provider_name': service_provider_name,
'service_provider_uuid': service_provider_uuid,
}
else:
offerings[offering.uuid.hex]['aggregated_cost'] += item.total
queryset = [dict(uuid=key, **details) for (key, details) in offerings.items()]
for item in queryset:
item['aggregated_cost'] = quantize_price(
decimal.Decimal(item['aggregated_cost'])
)
page = self.paginate_queryset(queryset)
return self.get_paginated_response(page)
@action(detail=False)
def growth(self, request):
if not self.request.user.is_staff and not request.user.is_support:
raise exceptions.PermissionDenied()
customers = structure_models.Customer.objects.all()
customers = structure_filters.AccountingStartDateFilter().filter_queryset(
request, customers, self
)
customers_count = 4
if 'customers_count' in request.query_params:
try:
customers_count = int(request.query_params['customers_count'])
except ValueError:
raise exceptions.ValidationError('customers_count is not a number')
if customers_count > 20:
raise exceptions.ValidationError(
'customers_count should not be greater than 20'
)
is_accounting_mode = request.query_params.get('accounting_mode') == 'accounting'
today = datetime.date.today()
current_month = today - relativedelta(months=12)
majors = list(
models.Invoice.objects.filter(
customer__in=customers, created__gte=current_month
)
.values('customer_id')
.annotate(total=Sum('current_cost'))
.order_by('-total')
.values_list('customer_id', flat=True)[:customers_count]
)
minors = customers.exclude(id__in=majors)
customer_periods = {}
total_periods = {}
other_periods = {}
for i in range(13):
invoices = models.Invoice.objects.filter(
year=current_month.year, month=current_month.month,
)
key = f'{current_month.year}-{current_month.month}'
row = customer_periods[key] = {}
subtotal = 0
for invoice in invoices.filter(customer_id__in=majors):
value = is_accounting_mode and invoice.price or invoice.total
subtotal += value
row[invoice.customer.uuid.hex] = value
other_periods[key] = sum(
is_accounting_mode and invoice.price or invoice.total
for invoice in invoices.filter(customer_id__in=minors)
)
total_periods[key] = subtotal + other_periods[key]
current_month += relativedelta(months=1)
result = {
'periods': total_periods.keys(),
'total_periods': total_periods.values(),
'other_periods': other_periods.values(),
'customer_periods': [
{
'name': customer.name,
'periods': [
customer_periods[period].get(customer.uuid.hex, 0)
for period in total_periods.keys()
],
}
for customer in structure_models.Customer.objects.filter(id__in=majors)
],
}
return Response(result, status=status.HTTP_200_OK)
@action(detail=True, methods=['post'])
def set_backend_id(self, request, uuid=None):
invoice = self.get_object()
serializer = self.get_serializer(data=request.data)
serializer.is_valid(raise_exception=True)
backend_id = serializer.validated_data['backend_id']
invoice.backend_id = backend_id
invoice.save()
return Response(status=status.HTTP_200_OK)
set_backend_id_permissions = [structure_permissions.is_staff]
set_backend_id_serializer_class = serializers.BackendIdSerializer
class InvoiceItemViewSet(core_views.ActionsViewSet):
disabled_actions = ['create']
queryset = models.InvoiceItem.objects.all()
serializer_class = serializers.InvoiceItemDetailSerializer
lookup_field = 'uuid'
def get_queryset(self):
qs = super().get_queryset()
if self.request.user.is_staff:
return qs
else:
return qs.none()
@transaction.atomic
@action(detail=True, methods=['post'])
def create_compensation(self, request, **kwargs):
invoice_item = self.get_object()
serializer = self.get_serializer_class()(data=request.data)
serializer.is_valid(raise_exception=True)
offering_component_name = serializer.validated_data['offering_component_name']
if invoice_item.unit_price < 0:
return Response(
'Can not create compensation for invoice item with negative unit price.',
status=status.HTTP_400_BAD_REQUEST,
)
year, month = utils.get_current_year(), utils.get_current_month()
invoice, _ = models.Invoice.objects.get_or_create(
customer=invoice_item.invoice.customer, month=month, year=year,
)
# Fill new invoice item details
if not invoice_item.details:
invoice_item.details = {}
invoice_item.details['original_invoice_item_uuid'] = invoice_item.uuid.hex
invoice_item.details['offering_component_name'] = offering_component_name
# Save new invoice item to database
invoice_item.invoice = invoice
invoice_item.pk = None
invoice_item.uuid = uuid.uuid4()
invoice_item.unit_price *= -1
invoice_item.save()
return Response(
{'invoice_item_uuid': invoice_item.uuid.hex},
status=status.HTTP_201_CREATED,
)
create_compensation_serializer_class = serializers.InvoiceItemCompensationSerializer
update_serializer_class = serializers.InvoiceItemUpdateSerializer
partial_update_serializer_class = serializers.InvoiceItemUpdateSerializer
create_compensation_permissions = (
update_permissions
) = partial_update_permissions = destroy_permissions = [
structure_permissions.is_staff
]
class PaymentProfileViewSet(core_views.ActionsViewSet):
lookup_field = 'uuid'
filter_backends = (
structure_filters.GenericRoleFilter,
DjangoFilterBackend,
filters.PaymentProfileFilterBackend,
)
filterset_class = filters.PaymentProfileFilter
create_permissions = (
update_permissions
) = partial_update_permissions = destroy_permissions = enable_permissions = [
structure_permissions.is_staff
]
queryset = models.PaymentProfile.objects.all().order_by('name')
serializer_class = serializers.PaymentProfileSerializer
@action(detail=True, methods=['post'])
def enable(self, request, uuid=None):
profile = self.get_object()
profile.is_active = True
profile.save(update_fields=['is_active'])
return Response(
{'detail': _('Payment profile has been enabled.')},
status=status.HTTP_200_OK,
)
class PaymentViewSet(core_views.ActionsViewSet):
lookup_field = 'uuid'
filter_backends = (
structure_filters.GenericRoleFilter,
DjangoFilterBackend,
)
filterset_class = filters.PaymentFilter
create_permissions = (
update_permissions
) = (
partial_update_permissions
) = (
destroy_permissions
) = link_to_invoice_permissions = unlink_from_invoice_permissions = [
structure_permissions.is_staff
]
queryset = models.Payment.objects.all().order_by('created')
serializer_class = serializers.PaymentSerializer
@action(detail=True, methods=['post'])
def link_to_invoice(self, request, uuid=None):
payment = self.get_object()
serializer = self.get_serializer_class()(data=request.data)
serializer.is_valid(raise_exception=True)
invoice = serializer.validated_data['invoice']
if invoice.customer != payment.profile.organization:
raise exceptions.ValidationError(
_('The passed invoice does not belong to the selected customer.')
)
payment.invoice = invoice
payment.save(update_fields=['invoice'])
log.event_logger.invoice.info(
'Payment for invoice ({month}/{year}) has been added.',
event_type='payment_created',
event_context={
'month': invoice.month,
'year': invoice.year,
'customer': invoice.customer,
},
)
return Response(
{'detail': _('An invoice has been linked to payment.')},
status=status.HTTP_200_OK,
)
def _link_to_invoice_exists(payment):
if payment.invoice:
raise exceptions.ValidationError(_('Link to an invoice exists.'))
link_to_invoice_validators = [_link_to_invoice_exists]
link_to_invoice_serializer_class = serializers.LinkToInvoiceSerializer
def _link_to_invoice_does_not_exist(payment):
if not payment.invoice:
raise exceptions.ValidationError(_('Link to an invoice does not exist.'))
@action(detail=True, methods=['post'])
def unlink_from_invoice(self, request, uuid=None):
payment = self.get_object()
invoice = payment.invoice
payment.invoice = None
payment.save(update_fields=['invoice'])
log.event_logger.invoice.info(
'Payment for invoice ({month}/{year}) has been removed.',
event_type='payment_removed',
event_context={
'month': invoice.month,
'year': invoice.year,
'customer': invoice.customer,
},
)
return Response(
{'detail': _('An invoice has been unlinked from payment.')},
status=status.HTTP_200_OK,
)
unlink_from_invoice_validators = [_link_to_invoice_does_not_exist]
def perform_create(self, serializer):
super(PaymentViewSet, self).perform_create(serializer)
payment = serializer.instance
log.event_logger.payment.info(
'Payment for {customer_name} in the amount of {amount} has been added.',
event_type='payment_added',
event_context={
'amount': payment.sum,
'customer': payment.profile.organization,
},
)
def perform_destroy(self, instance):
customer = instance.profile.organization
amount = instance.sum
super(PaymentViewSet, self).perform_destroy(instance)
log.event_logger.payment.info(
'Payment for {customer_name} in the amount of {amount} has been removed.',
event_type='payment_removed',
event_context={'amount': amount, 'customer': customer,},
)
| StarcoderdataPython |
36431 | <filename>setup.py
# -*- coding: utf-8 -*-
from setuptools import setup, find_packages
with open('README.md') as f:
readme = f.read()
with open('LICENSE') as f:
license = f.read()
setup(
name='vindinium-client',
version='0.1.0',
description='Client for Vindinium.org',
long_description=readme,
author='<NAME>',
author_email='<EMAIL>',
url='https://github.com/halfstrik/vendinium-client',
license=license,
packages=find_packages(),
install_requires=['requests==2.18.4'],
)
| StarcoderdataPython |
3371488 | import swap
#import compare_SWAP_GZ2 as utils
from simulation import Simulation
import os, sys, subprocess, getopt
from argparse import ArgumentParser
from astropy.table import Table
import pdb
import datetime as dt
import numpy as np
import cPickle
def MachineShop(args):
# Buh. I never built in the ability to change directories on the fly
#machine_sim_directory = 'sims_Machine/redo_with_circular_morphs'
"""
Sometimes you just need to the run the Machine on a bunch of already
made SWAP-runs / simulations.
If so, this script is for you!
"""
# Get parameters from the SWAP run of interest
the = swap.Configuration(args.config)
params = the.parameters
# This pulls up the FIDUCIAL SWAP simulation
sim = Simulation(config=args.config, directory='sims_SWAP/S_PLPD5_p5_ff_norand', variety='feat_or_not')
# this was originally set to 2/17/09 which is WRONG
# 11/2/17: WHY?? Fuck you, <NAME>. What am I supposed to do here??
first_day = dt.datetime(2009, 2, 12)
today = dt.datetime.strptime(params['start'], '%Y-%m-%d_%H:%M:%S')
start_day = dt.datetime(2009, 2, 17)
last_day = dt.datetime.strptime(params['end'], '%Y-%m-%d_%H:%M:%S')
yesterday = None
run_machine = False
SWAP_retired = 0
notfound = 0
last_night = None
for idx, filename in enumerate(sim.retiredFileList[(today-first_day).days:]):
print ""
print "----------------------- The Machine Shop ----------------------------"
print "Today is {}".format(today)
if today >= last_day:
print "Get outta the machine shop!"
exit()
# ---------------------------------------------------------------------
# OPEN METADATA PICKLE (updated each time MachineClassifier is run)
# ---------------------------------------------------------------------
backup_meta_file = params['metadatafile'].replace('.pickle', '_orig.pickle')
if today == first_day:
try:
storage = swap.read_pickle(backup_meta_file,'metadata')
except:
print "MachineShop: Backup metadata pickle not yet created."
print "MachineShop: Opening original metadata pickle file instead"
storage = swap.read_pickle(params['metadatafile'],'metadata')
if 'retired_date' not in storage.subjects.colnames:
storage.subjects['retired_date'] = '2016-09-10'
if 'valid' not in np.unique(storage.subjects['MLsample']):
expert = (storage.subjects['Expert_label']!=-1)
storage.subjects['MLsample'][expert] = 'valid'
# save an untouched copy for reference later
print "MachineShop: Creating a backup metadata pickle"
swap.write_pickle(storage, backup_meta_file)
else:
storage = swap.read_pickle(params['metadatafile'],'metadata')
# Regardless of which metadata you open, make sure it has these columns
# (old metadata files WON'T have them!)
if 'retired_date' not in storage.subjects.colnames:
storage.subjects['retired_date'] = '2016-09-10'
if 'valid' not in np.unique(storage.subjects['MLsample']):
expert = (storage.subjects['Expert_label']!=-1)
storage.subjects['MLsample'][expert] = 'valid'
subjects = storage.subjects
# I just need to know what was retired TONIGHT --
# compare what's retired UP TILL tonight with what was
# retired up till LAST NIGHT
SWAP_retired_by_tonight = sim.fetchCatalog(filename)
# If we're picking up where we left off, grab previous training sample
#if today>start_day and last_night is None:
# print 'MachineShop: getting previous training sample'
# last_night = subjects[subjects['MLsample']=='train']
# last_night['zooid'] = last_night['SDSS_id']
try:
ids_retired_tonight = set(SWAP_retired_by_tonight['zooid']) - \
set(last_night['zooid'])
except:
ids_retired_tonight = set(SWAP_retired_by_tonight['zooid'])
print "Newly retired subjects: {}".format(len(ids_retired_tonight))
# Now that I have the ids from the previous night, adjust the
# metadata file to reflect what was retired / add SWAP info
for ID in list(ids_retired_tonight):
# Locate this subject in the metadata file
mask = subjects['SDSS_id'] == int(ID)
# Update them in metadata file as training sample for MC
# DOUBLE CHECK THAT IT HAS NOT BEEN RETIRED BY MACHINE!!!
#if subjects['MLsample'][mask] == 'test ':
if subjects['MLsample'][mask] == 'test':
SWAP_retired+=1
subjects['MLsample'][mask] = 'train'
subjects['retired_date'][mask] = dt.datetime.strftime(today, '%Y-%m-%d')
subjects['SWAP_prob'][mask] = SWAP_retired_by_tonight['P'][SWAP_retired_by_tonight['zooid']==ID]
run_machine = True
else:
notfound +=1
if len(subjects[subjects['MLsample']=='train'])>=10000:
run_machine = True
last_night = SWAP_retired_by_tonight
print "Retired by this day:", len(last_night)
print ""
print "MachineShop: Found {0} subjects retired by SWAP on {1}"\
.format(SWAP_retired, today)
print "MachineShop: {0} total subjects retired so far"\
.format(np.sum(subjects['MLsample']=='train'))
print "MachineShop: Found {0} subjects retired by Machine."\
.format(np.sum(subjects['MLsample']=='mclas'))
print "MachineShop: Saving updated StorageLocker."
params['dir'] = os.getcwd()
# Save our new metadata file -- MC needs this -- save to NOT the original
params['metadatafile'] = params['dir']+'/'+params['survey']+'_metadata.pickle'
swap.write_pickle(storage, params['metadatafile'])
if run_machine:
# Need to doctor the config to refect the "correct date"
params['start'] = today.strftime('%Y-%m-%d_%H:%M:%S')
swap.write_config(args.config, params)
# Run MachineClassifier.py using this subject file
os.system("python MachineClassifier.py -c %s"%args.config)
"""os.system("python test_Machine.py -c {0}".format(args.config))"""
# MachineClassifier updates the configfile so now we need to open the NEW one
the = swap.Configuration(args.config)
params = the.parameters
# Update date (since we're not running SWAP)
today += dt.timedelta(days=1)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("config")
parser.add_argument("-o", "--old", dest='old_run', action='store_true',
default=False)
args = parser.parse_args()
MachineShop(args)
""" This whole approach is stupid.
# Determine amount of SWAP output
# If there was a successful run, there should be
# -- directories beginning with params['survey']
# -- pickle files beginning with params['trunk']
detectfilelist = utils.fetch_filelist(params, kind='detected')
if args.old_run:
rejectfilelist = utils.fetch_filelist(params, kind='retired')
else:
rejectfilelist = utils.fetch_filelist(params, kind='rejected')
train_detected_ids = set()
train_rejected_ids = set()
for dfile, rfile in zip(detectfilelist, rejectfilelist):
detected = utils.fetch_classifications(dfile)
rejected = utils.fetch_classifications(rfile)
detect_ids = set(detected['zooid'])
reject_ids = set(rejected['zooid'])
# Grab only the new ones
new_detected = detect_ids.difference(train_detected_ids)
print "%i new detected subjects"%len(new_detected)
new_rejected = reject_ids.difference(train_rejected_ids)
print "%i new rejected subjects"%len(new_rejected)
# Loop through the new ids and switch from 'test' to 'train'
for new in new_detected:
if subjects['MLsample'][subjects['SDSS_id']==new] != 'valid':
subjects['MLsample'][subjects['SDSS_id']==new] = 'train'
subjects['SWAP_prob'][subjects['SDSS_id']==new] = 1.
for new in new_rejected:
if subjects['MLsample'][subjects['SDSS_id']==new] != 'valid':
subjects['MLsample'][subjects['SDSS_id']==new] = 'train'
subjects['SWAP_prob'][subjects['SDSS_id']==new] = 0.
# ---------------------------------------------------------------------
# OPEN COLLECTION PICKLE (updated each time MachineClassifier is run)
# ---------------------------------------------------------------------
backup_col_file = params['samplefile'].replace('.pickle','_orig.pickle')
if today == start_day:
try:
# If we're starting fresh, we want to open the original file, if it exists
collection = swap.read_pickle(backup_col_file,'collection')
except:
# If it doesn't exist, open up the regular file and ...
print "MachineShop: backup collection pickle has not been made yet"
print "MachineShop: opening original collection file"
collection = swap.read_pickle(params['samplefile'],'collection')
# Save the original collection file for comparison later
if not os.path.isfile(backup_col_file):
print "MachineShop: creating a backup collection pickle"
swap.write_pickle(collection, backup_col_file)
else:
# If we're in the middle of the run, we want to open the file that's
# constantly being updated by MachineClassifier
collection = swap.read_pickle(params['samplefile'],'collection')
# ---------------------------------------------------------------------
# ISOLATE TRAINING SAMPLE -- SWAP-RETIRED BY "TODAY"
# ---------------------------------------------------------------------
for subjectID in collection.list():
subject = collection.member[subjectID]
if subject.retiredby == 'machine':
machine_retired+=1
if subject.retirement_time != 'not yet':
date = dt.datetime.strptime(subject.retirement_time,'%Y-%m-%d_%H:%M:%S')
yesterday = today-dt.timedelta(days=1)
if (date < today) and (date >= yesterday) and (subject.retiredby == 'swap'):
mask = subjects['SDSS_id'] == int(subject.ZooID)
# Update them in metadata file as training sample for MC
# DOUBLE CHECK THAT IT HAS NOT BEEN RETIRED BY MACHINE!!!
if subjects['MLsample'][mask] == 'test ':
SWAP_retired+=1
subjects['MLsample'][mask] = 'train'
subjects['retired_date'][mask] = dt.datetime.strftime(yesterday, '%Y-%m-%d')
subjects['SWAP_prob'][mask] = subject.mean_probability
run_machine = True
""" | StarcoderdataPython |
3296605 | <gh_stars>100-1000
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from parlai.mturk.core.agents import MTurkAgent, TIMEOUT_MESSAGE
from parlai.mturk.core.agents import AssignState
import parlai.mturk.core.shared_utils as shared_utils
class MockTurkAgent(MTurkAgent):
"""Mock turk agent that can act in a parlai mturk world"""
def __init__(self, opt, mturk_manager, hit_id, assignment_id, worker_id):
super().__init__(opt, mturk_manager, hit_id, assignment_id, worker_id)
self.db_logger = None
self.mock_status = AssignState.STATUS_NONE
self.wants_message = False
self.unread_messages = []
self.timed_out = False
def get_update_packet(self):
"""Produce an update packet that represents the state change
of this agent"""
send_messages = []
while len(self.unread_messages) > 0:
pkt = self.unread_messages.pop(0)
send_messages.append(pkt.data)
done_text = None
if self.state.is_final() and \
self.get_status() != AssignState.STATUS_DONE:
done_text = self.state.get_inactive_command_text()[0]
return {
'new_messages': send_messages,
'all_messages': self.state.get_messages(),
'wants_message': self.wants_message,
'disconnected': self.disconnected,
'agent_id': self.id,
'worker_id': self.worker_id,
'conversation_id': self.conversation_id,
'task_done': self.state.is_final(),
'done_text': done_text,
'status': self.state.get_status(),
}
def log_reconnect(self):
"""We aren't logging behavior in the mock"""
pass
def is_in_task(self):
return self.status == AssignState.STATUS_IN_TASK
def put_data(self, id, data):
"""Put data into the message queue"""
self.msg_queue.put(data)
def flush_msg_queue(self):
"""Clear all messages in the message queue"""
if self.msg_queue is None:
return
while not self.msg_queue.empty():
self.msg_queue.get()
def prepare_timeout(self):
"""Log a timeout event, tell mturk manager it occurred, return message
to return for the act call
"""
shared_utils.print_and_log(
logging.INFO,
'{} timed out before sending.'.format(self.id)
)
self.timed_out = True
return self._get_episode_done_msg(TIMEOUT_MESSAGE)
def request_message(self):
if not (self.disconnected or self.some_agent_disconnected or
self.hit_is_expired):
self.wants_message = True
def act(self, timeout=None, blocking=True):
"""Retrieve an act in the normal expected way (out of the queue), but
clear the act request if we do end up getting an act."""
gotten_act = super().act(timeout, blocking)
if gotten_act is not None:
self.wants_message = False
gotten_act['episode_done'] = gotten_act.get('episode_done', False)
return gotten_act
def episode_done(self):
"""Return whether or not this agent believes the conversation to
be done"""
if self.get_status() == AssignState.STATUS_DONE:
return False
else:
return True
def approve_work(self):
print('[mock] Worker {} approved'.format(self.worker_id))
def reject_work(self, reason='unspecified'):
print('[mock] Worker {} rejected for reason {}'.format(
self.worker_id, reason))
def block_worker(self, reason='unspecified'):
print('[mock] Worker {} blocked for reason {}'.format(
self.worker_id, reason))
def pay_bonus(self, bonus_amount, reason='unspecified'):
print('[mock] Worker {} bonused {} for reason {}'.format(
self.worker_id, bonus_amount, reason))
def email_worker(self, subject, message_text):
return True
def set_hit_is_abandoned(self):
self.hit_is_abandoned = True
def wait_for_hit_completion(self, timeout=None):
pass
def shutdown(self, timeout=None, direct_submit=False):
pass
def update_agent_id(self, agent_id):
"""State is sent directly from the agent, so no need to send like
MTurkAgent does in the full version
"""
self.id = agent_id
| StarcoderdataPython |
3363734 | <gh_stars>10-100
#!/usr/bin/env python
'''Provision Static Routes'''
#
# Copyright (c) 2013 Juniper Networks, Inc. All rights reserved.
#
__version__ = '1.0'
import re
import sys
import time
import os.path
import logging
import platform
import argparse
import socket
import struct
import subprocess
from netaddr import IPNetwork
from tempfile import NamedTemporaryFile
from distutils.version import LooseVersion
logging.basicConfig(format='%(asctime)-15s:: %(funcName)s:%(levelname)s:: %(message)s',
level=logging.INFO)
log = logging.getLogger(__name__)
(PLATFORM, VERSION, EXTRA) = platform.linux_distribution()
class StaticRoute(object):
'''Base class containing common methods for configuring static routes
'''
def __init__(self, **kwargs):
self.device = kwargs.get('device', [])
self.netw = kwargs.get('network', [])
self.gw = kwargs.get('gw', [])
self.mask = kwargs.get('netmask', [])
self.vlan = kwargs.get('vlan', None)
self.no_restart_network = kwargs.get('no_restart_network', False)
self.cmd = []
self.nwfile = []
self.tempfile = NamedTemporaryFile(delete=False)
self.config_route_list = []
def write_network_script(self):
'''Create an interface config file in network-scripts with given
config
'''
i = 0
for destination in self.netw:
#Open the file in append mode to handle the case of single interface having multiple
#static routes. Remember in CentOS each interace will have a separate route file
with open(self.nwfile[i], 'a') as fd:
fd.write(self.cmd[i])
fd.write('\n')
i += 1
def restart_service(self):
'''Restart network service'''
log.info('Restarting Network Services...')
os.system('sudo service network restart')
time.sleep(3)
def pre_config(self):
'''Setup env before static route configuration'''
if self.vlan:
self.device += "."+self.vlan
i = 0
#Loop through the number of routes specified
for destination in self.netw:
filename = 'route-%s' %self.device[i]
#Check if the filename exists. If not create new filename
if not os.path.isfile(filename):
self.nwfile.append(os.path.join(os.path.sep, 'etc', 'sysconfig',
'network-scripts', '%s' %(filename)))
prefix = IPNetwork('%s/%s' %(destination, self.mask[i])).prefixlen
self.cmd += ['%s/%s via %s dev %s' %(
destination, prefix, self.gw[i], self.device[i])]
self.config_route_list.append('%s %s %s' %(destination, self.mask[i], self.gw[i]))
i+=1
def verify_route(self):
'''verify configured static routes'''
actual_list = []
for route in open('/proc/net/route', 'r').readlines():
route_fields = route.split()
if route_fields[0].strip() in self.device:
flags = int(route_fields[3], 16)
destination = socket.inet_ntoa(struct.pack('I', int(route_fields[1], 16)))
if flags & 0x2:
gateway = socket.inet_ntoa(struct.pack('I', int(route_fields[2], 16)))
mask = socket.inet_ntoa(struct.pack('I', int(route_fields[7], 16)))
actual_list.append('%s %s %s' %(destination, mask, gateway))
if cmp(sorted(actual_list), sorted(self.config_route_list)):
raise RuntimeError('Seems Routes are not properly configured')
def post_config(self):
'''Execute commands after static route configuration'''
if not self.no_restart_network:
self.restart_service()
self.verify_route()
def setup(self):
'''High level method to call individual methods to configure
static routes
'''
self.pre_config()
self.write_network_script()
self.post_config()
os.unlink(self.tempfile.name)
class UbuntuStaticRoute(StaticRoute):
'''Configure Static Route in Ubuntu'''
def restart_service(self):
'''Restart network service for Ubuntu'''
log.info('Restarting Network Services...')
if LooseVersion(VERSION) < LooseVersion("14.04"):
subprocess.call('sudo /etc/init.d/networking restart', shell=True)
else:
subprocess.call('sudo ifdown -a && sudo ifup -a', shell=True)
time.sleep(5)
def write_network_script(self):
'''Add route to ifup-parts dir and set the correct permission'''
if os.path.isfile(self.nwfile):
tmpfile = os.path.join(os.path.join(os.path.sep, 'tmp'),
'moved-%s' %os.path.basename(self.nwfile))
log.info('Backup existing file %s to %s' %(self.nwfile, tmpfile))
os.system('sudo cp %s %s'%(self.nwfile, tmpfile))
# read existing file
with open(self.tempfile.name, 'w') as fd:
i = 0
fd.write('#!/bin/bash\n')
for interface in self.device:
fd.write('[ "$IFACE" == "%s" ] &&\n' %interface)
fd.write(self.cmd[i])
fd.write('\n')
i += 1
os.system('sudo cp -f %s %s'%(self.tempfile.name, self.nwfile))
os.system('sudo chmod 755 %s'%(self.nwfile))
with open(self.tempfile.name, 'w') as fd:
i = 0
fd.write('#!/bin/bash\n')
for interface in self.device:
fd.write('[ "$IFACE" == "%s" ] &&\n' %interface)
fd.write(self.downcmd[i])
fd.write('\n')
i += 1
os.system('sudo cp -f %s %s'%(self.tempfile.name, self.downfile))
os.system('sudo chmod 755 %s'%(self.downfile))
def pre_config(self):
'''Setup env before static route configuration in Ubuntu'''
# Any changes to the file/logic with static routes has to be
# reflected in setup.py too
if self.vlan:
self.device = 'vlan'+self.vlan
i = 0
for destination in self.netw:
prefix = IPNetwork('%s/%s' %(destination, self.mask[i])).prefixlen
self.cmd += ['%s/%s via %s dev %s' %(
destination, prefix, self.gw[i], self.device[i])]
self.config_route_list.append('%s %s %s' %(destination, self.mask[i], self.gw[i]))
i+=1
self.downfile = os.path.join(os.path.sep, 'etc', 'network', 'if-down.d', 'routes')
self.downcmd = ['ip route del '+x for x in self.cmd]
self.nwfile = os.path.join(os.path.sep, 'etc', 'network', 'if-up.d', 'routes')
self.cmd = ['ip route add '+x for x in self.cmd]
def parse_cli(args):
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--version', '-v',
action='version',
version=__version__,
help='Display version and exit')
parser.add_argument('--device',
action='store',
default=[],
nargs='+',
metavar='INTERFACE',
help='Interface Name')
parser.add_argument('--network',
action='store',
default=[],
nargs='+',
metavar='DESTINATION',
help='Network address of the Static route')
parser.add_argument('--netmask',
action='store',
default=[],
nargs='+',
metavar='NETMASK',
help='Netmask of the Static route')
parser.add_argument('--gw',
action='store',
default=[],
nargs='+',
metavar='GATEWAY',
help='Gateway Address of the Static route')
parser.add_argument('--vlan',
action='store',
help='vLAN ID')
parser.add_argument('--no-restart-network',
action='store_true',
default=False,
help='Disable network restart after configuring interfaces')
pargs = parser.parse_args(args)
if len(args) == 0:
parser.print_help()
sys.exit(2)
return dict(pargs._get_kwargs())
def main():
pargs = parse_cli(sys.argv[1:])
if PLATFORM.lower() != 'ubuntu':
route = StaticRoute(**pargs)
else:
route = UbuntuStaticRoute(**pargs)
route.setup()
if __name__ == '__main__':
main()
| StarcoderdataPython |
3295323 | #!/usr/bin/env python
#from distutils.core import setup
from setuptools import setup, find_packages
setup(name='Fraunhofer',
version='1.0.0',
description='Generic Steller Abundance Determination Software',
author='<NAME>',
author_email='<EMAIL>',
url='https://github.com/dnidever/fraunhofer',
packages=find_packages(exclude=["tests"]),
scripts=['bin/hofer'],
install_requires=['numpy','astropy(>=4.0)','scipy','dlnpyutils(>=1.0.3)','doppler @ git+https://github.com/dnidever/[email protected]#egg=doppler',
'the-cannon @ git+https://github.com/dnidever/[email protected]#egg=the-cannon',
'synple @ git+https://github.com/dnidever/[email protected]#egg=synple'],
dependency_links=['http://github.com/dnidever/doppler/tarball/v1.1.0#egg=doppler','https://github.com/dnidever/AnniesLasso/tarball/v1.0.0#egg=the-cannon',
'http://github.com/dnidever/synple/tarball/v1.0.0#egg=synple'],
include_package_data=True,
)
| StarcoderdataPython |
3215254 | pg_schema_sql = '''
CREATE TABLE male(
id serial PRIMARY KEY,
name text
);
CREATE TABLE female(
id serial PRIMARY KEY,
name text,
husband integer UNIQUE DEFERRABLE REFERENCES male(id) DEFERRABLE
);
CREATE TABLE child(
id serial PRIMARY KEY,
name text,
father integer REFERENCES male(id) DEFERRABLE,
mother integer REFERENCES female(id) DEFERRABLE
);
'''
| StarcoderdataPython |
198438 | <reponame>eeshashetty/VisualCryptography
import cv2
import numpy as np
from watermark_generator import wm_gen
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--image')
parser.add_argument('--watermark')
parser.add_argument('--owner')
args = parser.parse_args()
template = cv2.imread(args.watermark,0)
PATH = args.image
owner = args.owner
final = wm_gen(PATH, owner)
res = cv2.matchTemplate(final,template,cv2.TM_CCOEFF_NORMED)
if(res[0] > 0.8):
print("The Picture is Authentic! [%0.2f Percent Similar]"%(res[0]*100))
else:
print("The Picture is Fake! [%0.2f Percent Similar]"%(res[0]*100))
| StarcoderdataPython |
3395462 | from flash.text.seq2seq.translation.data import TranslationData # noqa: F401
from flash.text.seq2seq.translation.model import TranslationTask # noqa: F401
| StarcoderdataPython |
3347677 | import numpy as np
import pandas as pd
def growth_event_annotate(df, threshold=0.5):
'''This function adds a "divison event" column
to the passed DataFrame and fills it based on the
change in the areas between the previous and the
next index in the data frame. If that change is
above a certain threshold, the subsequent times are
delineated as the next division event.
-----
Parameters:
df - DataFrame containing columns "time (min)",
"area (ยตmยฒ)", and "bacterium".
-----
kwargs:
threshold - the value that determines if the area
change is a fluctuation in data analysis/acquisition
or a true division event. Default is 0.5.
-----
Returns:
df - the altered DataFrame, now with a filled "division
event" column.'''
event_id = 1
start_of_event = 0
df['division event'] = np.nan
indices = np.arange(df.shape[0] - 1)
for index in indices:
area_change = np.abs(df.loc[index, 'area (ยตmยฒ)'] - df.loc[index + 1, 'area (ยตmยฒ)'])
if area_change > threshold:
end_of_event = index
for ind in range(start_of_event, end_of_event + 1):
df.loc[ind, 'division event'] = event_id
start_of_event = index + 1
event_id += 1
if index >= 10283:
df.loc[index, 'division event'] = 107.0
df.loc[10320, 'division event'] = 107.0
return df
| StarcoderdataPython |
1777751 | """Module with implementation of the Data class."""
import os
import string
import random
import shutil
import numpy
import dask.array as dsarray
import pyarrow
import zarr
import cbox.lib.boost as cbox
class Data(cbox.create.Data):
"""Default class to store data"""
type_ = "default"
def __init__(self, **attributes):
"""Initialize the class object
Parameters
----------
attributes : dictionary
{ 'nblocks' : total number of blocks,
'nxb' : number of grid points per block in x dir,
'nyb' : number of grid points per block in y dir,
'nzb' : number of grid points per block in z dir,
'xguard' : number of guard cells in x dir,
'yguard' : number of guard cells in y dir,
'zguard' : number of guard cells in z dir,
'inputfile' : hdf5 inputfile default (None),
'variables' : dictionary of variables default ({})
'storage' : 'numpy', 'zarr', 'dask', 'pyarrow' }
"""
super().__init__()
self._set_attributes(attributes)
self._set_data()
def __repr__(self):
"""
Return a representation of the object
"""
return ("Data:\n" +
" - type : {}\n".format(type(self)) +
" - keys : {}\n".format(self.varlist))
def __getitem__(self,varkey):
"""
Get variable data
"""
return self.variables[varkey]
def __setitem__(self,varkey,value):
"""
Set variable data
"""
self.variables[varkey] = value
def _set_attributes(self,attributes):
"""
Private method for intialization
"""
default_attributes = {'nblocks' : 1,
'inputfile' : None,
'boxmem' : None,
'variables' : {},
'nxb' : 1, 'nyb' : 1, 'nzb' : 1,
'xguard' : 0, 'yguard' : 0, 'zguard' : 0,
'storage' : 'numpy-memmap'}
for key in attributes:
if key in default_attributes:
default_attributes[key] = attributes[key]
else:
raise ValueError('[bubblebox.library.create.Data] '+
'Attribute "{}" not present in class Data'.format(key))
for key, value in default_attributes.items(): setattr(self, key, value)
def _set_data(self):
"""
Private method for setting new data
"""
self.varlist = list(self.variables.keys())
if self.storage == 'numpy':
self._create_numpy_arrays()
elif self.storage == 'numpy-memmap':
self._create_numpy_memmap()
elif self.storage == 'zarr':
self._create_zarr_objects()
elif self.storage == 'dask':
self._create_numpy_memmap()
self._create_dask_objects()
else:
raise NotImplementedError('[bubblebox.library.create.Data] '+
'Storage format "{}" not implemented'.format(self.storage))
def _create_numpy_memmap(self):
"""
Create numpy memory maps for empty keys in variables dictionary
"""
emptykeys = [key for key,value in self.variables.items() if type(value) is type(None)]
if not emptykeys: return
if not self.boxmem:
namerandom = ''.join(random.choice(string.ascii_lowercase) for i in range(5))
self.boxmem = "".join(['./boxmem_',namerandom])
try:
os.mkdir(self.boxmem)
except FileExistsError:
pass
for varkey in emptykeys:
outputfile = os.path.join(self.boxmem,varkey)
outputshape = (self.nblocks, self.nzb+2*self.zguard, self.nyb+2*self.yguard, self.nxb+2*self.xguard)
self.variables[varkey] = numpy.memmap(outputfile, dtype=float, shape=outputshape, mode='w+')
def _create_zarr_objects(self):
"""
Create zarr objects
"""
emptykeys = [key for key,value in self.variables.items() if type(value) is type(None)]
if not emptykeys: return
if not self.boxmem:
namerandom = ''.join(random.choice(string.ascii_lowercase) for i in range(5))
self.boxmem = "".join(['./boxmem_',namerandom])
try:
os.mkdir(self.boxmem)
except FileExistsError:
pass
for varkey in emptykeys:
outputfile = os.path.join(self.boxmem,varkey)
outputshape = (self.nblocks, self.nzb+2*self.zguard, self.nyb+2*self.yguard, self.nxb+2*self.xguard)
self.variables[varkey] = zarr.open(outputfile, mode='w', shape=outputshape,
chunks=(1, self.nzb+2*self.zguard,
self.nyb+2*self.yguard, self.nxb+2*self.xguard),dtype=float)
def _create_numpy_arrays(self):
"""
Create numpy arrays for empty keys in variables dictionary
"""
emptykeys = [key for key,value in self.variables.items() if type(value) is type(None)]
if not emptykeys: return
for varkey in emptykeys:
outputshape = (self.nblocks, self.nzb+2*self.zguard, self.nyb+2*self.yguard, self.nxb+2*self.xguard)
self.variables[varkey] = numpy.ndarray(dtype=float, shape=outputshape)
def _create_dask_objects(self):
"""
Create dask array representation of data
"""
emptykeys = [key for key,value in self.variables.items() if type(value) is type(None)]
if not emptykeys: return
for varkey in emptykeys:
if type(self.variables[varkey]) is not dsarray.core.Array:
self.variables[varkey] = dsarray.from_array(self.variables[varkey],
chunks=(1, self.nzb+2*self.zguard,
self.nyb+2*self.yguard, self.nxb+2*self.xguard))
def _create_pyarrow_objects(self):
"""
Create a pyarrow tensor objects
"""
emptykeys = [key for key,value in self.variables.items() if type(value) is type(None)]
if not emptykeys: return
for varkey in emptykeys:
if type(self.variables[varkey]) is not pyarrow.lib.Tensor:
templist = []
for lblock in range(self.nblocks):
templist.append(pyarrow.Tensor.from_numpy(self.variables[varkey][lblock]))
self.variables[varkey] = templist
def purge(self,purgeflag='all'):
"""
Clean up data and close it
"""
if self.boxmem and (purgeflag == 'all' or purgeflag == 'boxmem'):
try:
shutil.rmtree(self.boxmem)
except:
pass
if self.inputfile and (purgeflag == 'all' or purgeflag == 'inputfile'):
self.inputfile.close()
def addvar(self,varkey):
"""
Add a variables to data
"""
self.variables[varkey] = None
self._set_data()
def delvar(self,varkey):
"""
Delete a variable
"""
del self.variables[varkey]
if self.boxmem:
outputfile = os.path.join(self.boxmem,varkey)
try:
shutil.rmtree(outputfile)
except:
pass
self.varlist = list(self.variables.keys())
| StarcoderdataPython |
3350213 | <filename>sessions/migrations/0003_alter_session_public_key.py
# Generated by Django 3.2.8 on 2021-10-13 01:07
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('sessions', '0002_auto_20211011_1511'),
]
operations = [
migrations.AlterField(
model_name='session',
name='public_key',
field=models.BinaryField(max_length=255),
),
]
| StarcoderdataPython |
3380155 | <filename>scripts/gatherResults_kASA.py
import os, sys
path = sys.argv[1]
numberOfTools = 1
numberOfMuts = int(sys.argv[2])
outfilePath = sys.argv[3]
resultMatrixSens = [[""] * (numberOfMuts + 1) for i in range(numberOfTools + 1)]
resultMatrixPrec = [[""] * (numberOfMuts + 1) for i in range(numberOfTools + 1)]
resultMatrixSpecificity = [[""] * (numberOfMuts + 1) for i in range(numberOfTools + 1)]
resultMatrixF1 = [[""] * (numberOfMuts + 1) for i in range(numberOfTools + 1)]
resultMatrixMCC = [[""] * (numberOfMuts + 1) for i in range(numberOfTools + 1)]
toolNames = set()
toolNames.add("kASA")
mutationrates = set()
for file in os.listdir(path):
if "result" in file:
filenameArr = file.split("_")
if "kASA" in filenameArr:
#tool = filenameArr[0] + "_" + filenameArr[1]
#mutationrate = filenameArr[3]
tool = filenameArr[0]
mutationrate = filenameArr[2]
mutationrates.add(int(mutationrate))
tools = {}
mutationrates = sorted(list(mutationrates))
mutations = {}
counter = 1
for entry in toolNames:
tools[entry] = counter
resultMatrixSens[counter][0] = entry
resultMatrixPrec[counter][0] = entry
resultMatrixSpecificity[counter][0] = entry
resultMatrixF1[counter][0] = entry
resultMatrixMCC[counter][0] = entry
counter += 1
counter = 1
for entry in mutationrates:
entry = str(entry)
mutations[entry] = counter
resultMatrixSens[0][counter] = entry
resultMatrixPrec[0][counter] = entry
resultMatrixSpecificity[0][counter] = entry
resultMatrixF1[0][counter] = entry
resultMatrixMCC[0][counter] = entry
counter += 1
for file in os.listdir(path):
if "result" in file:
filenameArr = file.split("_")
if "kASA" in filenameArr:
#tool = filenameArr[0] + "_" + filenameArr[1]
#mutationrate = filenameArr[3]
tool = filenameArr[0]
mutationrate = filenameArr[2]
row = tools[tool]
col = mutations[mutationrate]
resultFile = open(path+file)
next(resultFile)
resultMatrixSens[row][col] = (((next(resultFile)).split(" "))[1]).rstrip("\n\r")
resultMatrixPrec[row][col] = (((next(resultFile)).split(" "))[1]).rstrip("\n\r")
resultMatrixSpecificity[row][col] = (((next(resultFile)).split(" "))[1]).rstrip("\n\r")
resultMatrixF1[row][col] = (((next(resultFile)).split(" "))[1]).rstrip("\n\r")
resultMatrixMCC[row][col] = (((next(resultFile)).split(" "))[1]).rstrip("\n\r")
outfile = open(outfilePath + "kASA_GatheredResults.txt", 'w')
outfile.write("Sensitivity\n")
outfile.write(resultMatrixSens[0][0])
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixSens[0][j])
outfile.write("\n")
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixSens[1][j])
outfile.write("\n")
outfile.write("Precision\n")
outfile.write(resultMatrixPrec[0][0])
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixPrec[0][j])
outfile.write("\n")
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixPrec[1][j])
outfile.write("\n")
outfile.write("F1\n")
outfile.write(resultMatrixF1[0][0])
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixF1[0][j])
outfile.write("\n")
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixF1[1][j])
outfile.write("\n")
outfile.write("Specificity\n")
outfile.write(resultMatrixSpecificity[0][0])
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixSpecificity[0][j])
outfile.write("\n")
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixSpecificity[1][j])
outfile.write("\n")
outfile.write("MCC\n")
outfile.write(resultMatrixMCC[0][0])
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixMCC[0][j])
outfile.write("\n")
for j in range(1,numberOfMuts + 1):
outfile.write("," + resultMatrixMCC[1][j])
| StarcoderdataPython |
4841796 | <filename>0-encapsulation/python/main.py
# loose control of object attributes
class Without:
def __init__(self):
self.age = 0
print("Without object is created")
# get control of object attributes
class With:
def __init__(self):
self.__age = 0
print("With object is created")
def set_age(self, v):
if v < 0 or v > 150:
print("Input value {} is impossible for human".format(v))
return
self.__age = v
def get_age(self) -> int:
return self.__age
def main():
wo = Without()
print(wo.age)
wo.age = -100
print(wo.age)
ww = With()
"""
print(ww.__age)
Traceback (most recent call last):
File "D:\workspace\oop\encapsulation\python\main.py", line 16, in <module>
main()
File "D:\workspace\oop\encapsulation\python\main.py", line 13, in main
print(ww.__age)
AttributeError: 'With' object has no attribute '__age'
"""
ww.set_age(160)
print(ww.get_age())
ww.set_age(40)
print(ww.get_age())
if __name__ == '__main__':
main()
| StarcoderdataPython |
171558 | <reponame>simmsbra/quickcell
from random import randrange, Random
from card import Card
from cell import Cell
from cascade import Cascade, get_dependent_cards, is_dependent_card_of
from foundation import Foundation
from game_exception import EmptyOriginException, FullDestinationException, CompatibilityException, TooFewSlotsException
class Board:
def __init__(self, seed=None):
if seed is None:
self.seed = randrange(1000000)
else:
self.seed = seed
suits = ['clubs', 'spades', 'hearts', 'diamonds']
deck = []
for suit in suits:
for rank in range(1, 14):
deck.append(Card(suit, rank))
Random(self.seed).shuffle(deck)
# Fill the cascades with the shuffled deck of cards
self.cascades = []
place = 0
for c in range(8):
if c <= 3:
end = place + 7
else:
end = place + 6
self.cascades.append(Cascade(deck[place:end]))
place = end
self.foundations = {}
for suit in suits:
self.foundations[suit] = (Foundation(suit))
self.cells = []
for i in range(4):
self.cells.append(Cell())
def move(self, origin, destination):
tmp = origin.view()
destination.accept(tmp)
origin.remove()
def cell_to_foundations(self, index):
card = self.cells[index].view()
self.move(self.cells[index], self.foundations[card.suit])
def cell_to_row(self, cell_index, row_index):
self.move(self.cells[cell_index], self.cascades[row_index])
def row_to_foundations(self, index):
card = self.cascades[index].view()
self.move(self.cascades[index], self.foundations[card.suit])
def row_to_cell(self, index):
for i, cell in enumerate(self.cells):
try:
self.move(self.cascades[index], self.cells[i])
break
except EmptyOriginException:
raise
except FullDestinationException:
continue
else:
raise FullDestinationException('The cells are full.')
def row_to_row(self, orig, dest):
from_row = self.cascades[orig]
to_row = self.cascades[dest]
from_row.view() # makes sure it's not empty
movable_stack_index = from_row.movable_stack_index()
if to_row.is_empty():
for i in range(movable_stack_index, len(from_row.cards)):
if (len(from_row.cards) - i) <= self.calc_move_capacity(to_row):
movable_stack_index = i
break
else:
for i in range(movable_stack_index, len(from_row.cards)):
if is_dependent_card_of(from_row.cards[i], to_row.cards[-1]):
movable_stack_index = i
break
else:
raise CompatibilityException('The card(s) in the origin row cannot sit on the destination row.')
if self.calc_move_capacity(to_row) < (len(from_row.cards) - movable_stack_index):
raise TooFewSlotsException('There are not enough open slots to move that stack.')
tmp = from_row.view(movable_stack_index)
to_row.accept(tmp)
from_row.remove(movable_stack_index)
# return how big of a stack of cards can be moved to given cascade
def calc_move_capacity(self, to_row):
empty_cells = 0
for cell in self.cells:
if cell.card is None:
empty_cells += 1
empty_cascades = 0
for cascade in self.cascades:
if cascade.is_empty():
empty_cascades += 1
if to_row.is_empty():
empty_cascades -= 1
return (empty_cells + 1) * 2**empty_cascades
def should_foundations_accept_card(self, card):
# should not accept if cannot accept
if not self.foundations[card.suit].can_accept(card):
return False
# accept only if none of the dependent cards may need to sit
# in the cascades on the given card
for dependent_card in get_dependent_cards(card):
if (not self.foundations[dependent_card.suit].contains(dependent_card)
and not self.should_foundations_accept_card(dependent_card)):
return False
return True
# automatically move cards to the foundations that should move there
def auto_move(self):
while True:
has_moved = False
for i in range(len(self.cells)):
try:
if self.should_foundations_accept_card(self.cells[i].view()):
self.cell_to_foundations(i)
has_moved = True
except EmptyOriginException:
pass
for i in range(len(self.cascades)):
try:
if self.should_foundations_accept_card(self.cascades[i].view()):
self.row_to_foundations(i)
has_moved = True
except EmptyOriginException:
pass
if not has_moved:
break
| StarcoderdataPython |
1670873 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# =============================================================================
# Copyright Ostap developers
# =============================================================================
# 1.5.99.0 (Sep 13, 2020, 13:46 [UTC])
# .oooooo. .
# d8P' `Y8b .o8
# 888 888 .oooo.o .o888oo .oooo. oo.ooooo.
# 888 888 d88( "8 888 `P )88b 888' `88b
# 888 888 `"Y88b. 888 .oP"888 888 888
# `88b d88' o. )88b 888 . d8( 888 888 888
# `Y8bood8P' 8""888P' "888" `Y888""8o 888bod8P'
# 888
# o888o
#
# Simple interactive PyRoot-based analysis environment to provide access
# to zillions useful decorators for ROOT (and not only ROOT!) objects&classes
#
# - https://github.com/OstapHEP/ostap
# - https://ostaphep.github.io/ostap-tutorials
# - https://github.com/OstapHEP/ostap-tutorials
#
# =============================================================================
__all__ = (
'banner' , ## Ostap banner
'version' , ## Ostap version
'version_int' , ## Ostap version as integer
'version_info' , ## version info as named tuple
'build_date' , ## Ostap build/reelase date (as string)
'build_time' , ## Ostap build/release time (as datetime)
)
# =============================================================================
## the actual version of Ostap
__version__ = "1.5.99.0"
__date__ = "Sep 13, 2020, 13:46 [UTC]"
# =============================================================================
import datetime
from collections import namedtuple
# =============================================================================
version = __version__
VersionInfo = namedtuple("VersionInfo", ('major','minor','patch','tweak' ) )
version_info = VersionInfo ( 1 ,
5 ,
99 ,
0 )
build_date = __date__
build_time = datetime.datetime.utcfromtimestamp ( 1600004784 )
version_int = version_info.tweak +\
version_info.patch * 100 +\
version_info.minor * 100 * 100 +\
version_info.major * 100 * 100 * 100
# =============================================================================
##
import ostap.fixes.fixes
# =============================================================================
## Banner
banner = r"""
1.5.99.0 (Sep 13, 2020, 13:46 [UTC])
.oooooo. .
d8P' `Y8b .o8
888 888 .oooo.o .o888oo .oooo. oo.ooooo.
888 888 d88( "8 888 `P )88b 888' `88b
888 888 `"Y88b. 888 .oP"888 888 888
`88b d88' o. )88b 888 . d8( 888 888 888
`Y8bood8P' 8""888P' "888" `Y888""8o 888bod8P'
888
o888o
- https://github.com/OstapHEP/ostap
- https://ostaphep.github.io/ostap-tutorials
- https://github.com/OstapHEP/ostap-tutorials
"""
# =============================================================================
## The END
# =============================================================================
| StarcoderdataPython |
10620 | #! /usr/bin/env python
from __future__ import print_function
import pandas as pd
import numpy as np
import argparse
def generate_csv(start_index, fname):
cols = [
str('A' + str(i)) for i in range(start_index, NUM_COLS + start_index)
]
data = []
for i in range(NUM_ROWS):
vals = (np.random.choice(NUM_DISTINCT_VALS) for j in range(NUM_COLS))
data.append(vals)
df = pd.DataFrame(data=data, columns=cols)
df.to_csv(fname, index=False, header=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Generate sample tables to test joins.')
parser.add_argument('--num-rows', '-r', type=int, default=100)
parser.add_argument('--num-cols', '-c', type=int, required=True)
parser.add_argument('--num-distinct-vals', '-d', type=int, required=True)
parser.add_argument('--num-cols-overlap', '-o', type=int, default=1)
args = parser.parse_args()
NUM_ROWS = args.num_rows
NUM_COLS = args.num_cols
NUM_DISTINCT_VALS = args.num_distinct_vals
num_overlap = args.num_cols_overlap
if num_overlap > NUM_COLS:
print('--num-cols-overlap cannot be greater than --num-cols')
import sys
sys.exit(1)
generate_csv(0, 'table_a.csv')
generate_csv(NUM_COLS - num_overlap, 'table_b.csv')
| StarcoderdataPython |
82154 | <filename>wagtail/wagtailimages/api/admin/serializers.py
from __future__ import absolute_import, unicode_literals
from ..fields import ImageRenditionField
from ..v2.serializers import ImageSerializer
class AdminImageSerializer(ImageSerializer):
thumbnail = ImageRenditionField('max-165x165', source='*', read_only=True)
| StarcoderdataPython |
1700037 | <filename>68-text-justification/text-justification.py
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 23 23:52:34 2021
@author: nacer
"""
"""
Problem link : https://leetcode.com/problems/text-justification/
"""
class Solution:
def fullJustify(self, words: List[str], maxWidth: int) -> List[str]:
output = []
line = []
j = 0
for i in range(len(words)):
if line == [] :
line += [words[i]]
elif lenLine(line) + len(words[i]) + 1 <= maxWidth :
line += [' ', words[i]]
else :
line = addSpace(line,maxWidth)
output += [fuseLine(line)]
line = [words[i]]
line += [' ' * (maxWidth - lenLine(line))]
output += [fuseLine(line)]
return output
def lenLine(L):
s = 0
for i in range(len(L)):
s+=len(L[i])
return s
def addSpace(line, width):
if len(line) == 1:
return line + [' ' * (width - lenLine(line))]
while(lenLine(line)!=width):
spacesToAdd = width - lenLine(line)
for i in range(1,len(line),2):
if spacesToAdd>0:
line[i] = line[i] + ' '
spacesToAdd -= 1
return line
def fuseLine(L):
s = ""
for word in L:
s+=word
return s | StarcoderdataPython |
1659966 | import pandas as pd
import numpy as np
import nltk
import collections
import pickle
import pyhanlp
from collections import Iterable
from collections import Counter
from pandas import DataFrame
from sklearn.decomposition import PCA
from pyhanlp import *
"""
ไธใๅ ่ฝฝๆฐๆฎ๏ผ
1.ๅ ่ฝฝ้ฎ็ญๅฏน
2.ๅ ่ฝฝ้ข่ฎญ็ป็่ฏๅ้ๆจกๅ
ไบใ้ฎ้ข็ๅ้ๅ๏ผ
1.้ฎ้ขๅ่ฏ๏ผๅพๅฐ่ฏญๆๅบ
2.ๅฐ่ฏ่ฝฌๅไธบๅ้
3.ๅฐ้ฎ้ข็ฑ่ฏๅ้็ฉ้ต่ฝฌๅไธบ้ฎ้ขๅ้
4.ๅฐ้ฎ้ขๅ้็ปๅๅพๅฐ้ฎ้ขๅ้็ฉ้ต
ไธใๅฐ็ปๆไฟๅญ
"""
#ๆฐๆฎ่พๅ
ฅ
"""
่พๅ
ฅ๏ผcsvๆไปถ็่ทฏๅพ
่พๅบ๏ผDataframe๏ผ ๅๅ็งฐไธบQuestion Answer
"""
def load_data(data_path):
"""
data = pd.read_excel(data_path)
new_data = data.iloc[:, 0:2]
new_data.columns = [["Question", "Answers"]]
new_data = new_data[:-1]"""
data = pd.read_csv(data_path)
return data
#ๆธ
ๆดๆฐๆฎ๏ผๅ่ฏ๏ผ ๅ ้คๅ็จ่ฏ๏ผ
"""
่พๅ
ฅ๏ผstrๅๅง้ฎ้ข๏ผๅ็จ่ฏ๏ผๅ่ฏๅจ
่พๅบ๏ผstr[]๏ผๅๅฅฝ่ฏ็ๅ่กจ
"""
def clean(sentence, stop_words, segment):
#words_list = jieba.lcut(sentence, cut_all=True)
clean_words = []
words_list = segment.segment(sentence)
for word in words_list:
if str(word) not in stop_words:
clean_words.append(str(word))
"""
words_list = segment.segment(sentence)
clean_words = [str(word) for word in words_list if str(word) not in stop_words]
"""
return clean_words
#่ทๅพ่พๅ
ฅๆๆฌ
"""
่พๅ
ฅ๏ผๅฏผๅ
ฅ็ๆไปถ Dataframe๏ผ ๅฏนๅบ็columnๅ็งฐ, stop_wordsๅ็จ่ฏ
่พๅบ๏ผlist๏ผ ๆๆฌ้
"""
def get_corpus(source, column, stop_words):
HanLP.Config.ShowTermNature = False
newSegment = JClass("com.hankcs.hanlp.tokenizer.NLPTokenizer")
corpus = []
for i in source[column]:
tmp_Q = clean(i, stop_words, newSegment)
corpus.append(tmp_Q)
return corpus
#raw sentence vector
"""
่พๅ
ฅ๏ผ่ฏๅ้ๆจกๅ๏ผ ๅๅฅฝ่ฏ็ๅฅๅญ
่พๅบ๏ผๅฅๅญๅฏนๅบ็ๅ้
ๆณจๆ๏ผ็ฑไบๆไบ่ฏ็่ฏ้ข่ฟไฝ๏ผ ๅฏนไบkeyerror๏ผ่ฟ้ๅฐไปฅ0ๅ้ไปฃๆฟ
"""
def s2v(model, sentence):
vec = []
for word in sentence:
try:
tmp = model[word]
except KeyError:
tmp = [0 for _ in range(300)]
#print("missing word:%s \n" %(word))
vec.append(tmp)
return vec
#่ทๅพ้ฎ้ข็ฉ้ต
def get_Question_matrix(model, corpus, pattern = 'SIF', SIF_weight = 0.0001):
if pattern == 'AVG':
Q = []
for query in corpus:
tmp_vec = np.array(s2v(model, query))
Q_vec = tmp_vec.mean(axis = 0)
Q.append(Q_vec)
Q_matrix = np.array(Q)
return (Q_matrix, 0, 0)
elif pattern == 'SIF':
Q = []
raw = []
merge = []
weight = []
for i in range(len(corpus)):
merge.extend(corpus[i])
fdist = nltk.probability.FreqDist(merge)
count = 0
for query in corpus:
tmp_vec = np.array(s2v(model, query))
weight_matrix = np.array([[SIF_weight/(SIF_weight + fdist[word]/fdist.N()) for word in query]])
tmp = tmp_vec * weight_matrix.T
Q_vec = tmp.mean(axis = 0)
Q.append(Q_vec)
weight.append(weight_matrix)
raw.append(tmp_vec)
#print(weight[3455])
#print(raw[3455])
Q_matrix = np.array(Q)
#print(Q_matrix[3455])
pca = PCA(n_components = 1)
u = pca.fit_transform(Q_matrix.T)
res = Q_matrix - np.dot(Q_matrix, np.dot(u, u.T))
#print(res[3455])
return (res, fdist, u)
class question_database():
def __init__(self, Q_matrix, fdist, singular_v):
self.Q_matrix = Q_matrix
self.fdist = fdist
self.singular_v = singular_v
def main():
stop_words = {'ใ', ',', '๏ผ', 'ๅนด', '็', ''}
path = "C:/Users/leo/Desktop/knowledge_quiz"
#model = Word2Vec.load("trained_on_wiki.model")
model = np.load('simplified_model.npy').item()
print("load model successfully")
data = load_data(path + "/DATA/clean.csv")
print("load data successfully")
corpus = get_corpus(data, "Question", stop_words)
print("generate corpus successfully")
Q_matrix, fdist, singular_v = get_Question_matrix(model, corpus, 'SIF')
print("generate question matrix successfully")
#print(Q_matrix)
QD = question_database(Q_matrix, fdist, singular_v)
with open(path+"/DATA/QD.txt", 'wb') as f:
pickle.dump(QD, f, 0)
print("question database saved successfully")
return 0
if __name__ == '__main__':
main()
| StarcoderdataPython |
4818988 | <gh_stars>10-100
import random
import queue
import csv
import os
from sklearn.model_selection import ParameterGrid
def average(lst):
return sum(lst) / float(len(lst))
# --- Hyperparameters based off of assumptions --- #
# Assume reviewers have an independent 75% probability of choosing the better application
HUMAN_COMPARISON_SUCCESS_RATE = 0.75
# --- Toggles --- #
NUM_RUNS = 100
LOG_DIR = "../../log"
def simulate_and_compute_params(bonus=2, penalty=2, threshold=-7, apps_total=250, apps_cutoff=50, runs=10):
class AppMeta:
def __init__(self, rank, wins, losses):
self.rank = rank
self.wins = wins
self.losses = losses
@property
def score(self):
return self.wins * bonus - self.losses * penalty
@property
def alive(self):
return self.score > threshold
def __lt__(self, other):
# Add nondeterministic factor to __lt__ for random retrieval of equal W/L items from heap
return ((self.wins + self.losses), random.random()) < ((other.wins + other.losses), random.random())
class Statistics:
def __init__(self):
self.num_comparisons = []
self.false_negatives_top_10 = []
self.false_negatives_top_20 = []
self.false_negatives_top_40 = []
def update(self, nc, fn10, fn20, fn40):
self.num_comparisons.append(nc)
self.false_negatives_top_10.append(fn10)
self.false_negatives_top_20.append(fn20)
self.false_negatives_top_40.append(fn40)
@property
def aggregate(self):
return {
"NUM COMPARISONS": average(self.num_comparisons),
"FALSE NEGATIVES TOP 10": average(self.false_negatives_top_10),
"FALSE NEGATIVES TOP 20": average(self.false_negatives_top_20),
"FALSE NEGATIVES TOP 40": average(self.false_negatives_top_40),
}
statistics = Statistics()
for i in range(runs):
# Create scoreboard objects
app_metadata = { j: AppMeta(j, 0, 0) for j in range(apps_total) }
num_comparisons = 0
num_remaining = apps_total
# Construct heap that returns apps with min total comparisons
comparison_heap = queue.PriorityQueue(apps_total)
for _, app_meta in app_metadata.items():
comparison_heap.put(app_meta)
# Continue running simulation until the number of remaining apps is apps_cutoff
while num_remaining > apps_cutoff:
# By preserving rank order, left is always stronger than right
left, right = comparison_heap.get(), comparison_heap.get()
left, right = sorted([left, right], key=lambda a: a.rank)
choose_correct_ranking = random.random() <= HUMAN_COMPARISON_SUCCESS_RATE
if choose_correct_ranking:
left.wins += 1
right.losses += 1
else:
left.losses += 1
right.wins += 1
# Only add back to heap if score is above threshold
if left.alive:
comparison_heap.put(left)
else:
num_remaining -= 1
if right.alive:
comparison_heap.put(right)
else:
num_remaining -= 1
num_comparisons += 1
# Evaluate results
final_ranking = []
while not comparison_heap.empty():
final_ranking.append(comparison_heap.get())
final_ranking.sort(key=lambda a: (a.score, a.wins), reverse=True)
final_set = { a.rank for a in final_ranking }
fn10 = len([1 for j in range(10) if j not in final_set])
fn20 = len([1 for j in range(20) if j not in final_set])
fn40 = len([1 for j in range(40) if j not in final_set])
statistics.update(num_comparisons, fn10, fn20, fn40)
return statistics
def grid_search():
param_grid = {
"bonus": list(range(1, 3, 1)),
"penalty": list(range(2, 3, 1)),
"threshold": list(range(-5, -13, -2)),
"apps_total": list(range(200, 350, 50)),
"apps_cutoff": list(range(50, 150, 50)),
"runs": [NUM_RUNS],
}
param_grid = ParameterGrid(param_grid)
aggregate_list = []
# Grid search to collect all statistics
for params in param_grid:
print("Simulating %d runs with params %s" % (NUM_RUNS, params))
statistics = simulate_and_compute_params(**params)
aggregate = statistics.aggregate
combined = { **params, **aggregate }
aggregate_list.append(combined)
# Write all data to csv log
outfile_name = "compare_sim.csv"
outpath = os.path.join(LOG_DIR, outfile_name)
with open(outpath, "w") as f:
csvwriter = csv.DictWriter(f, aggregate_list[0].keys())
csvwriter.writeheader()
csvwriter.writerows(aggregate_list)
print("Done! Find the output summary at %s" % os.path.abspath(outpath))
if __name__ == "__main__":
grid_search() | StarcoderdataPython |
3319429 | # Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import namedtuple
import itertools as it
import numpy as onp
import six
from six.moves import reduce
from .. import core
from .. import ad_util
from .. import tree_util
from .. import linear_util as lu
from ..abstract_arrays import ShapedArray
from ..util import partial, unzip2, concatenate, safe_map, prod
from ..lib import xla_bridge as xb
from .xla import (xla_shape, xla_destructure, translation_rule,
xla_shape_to_result_shape, jaxpr_computation)
from .partial_eval import trace_to_subjaxpr, merge_pvals, JaxprTrace, PartialVal
from .batching import dimsize, broadcast
from . import partial_eval as pe
from . import parallel
from . import xla
from . import ad
map = safe_map
### util
def shard_arg(arg):
sz = arg.shape[0]
shards = [arg[i] for i in range(sz)]
return [xb.device_put(shards[i], n) for n, i in enumerate(assign_shards(sz))]
def unshard_output(axis_size, out_shards):
_, ids = onp.unique(assign_shards(axis_size), return_index=True)
return onp.stack([out_shards[i] for i in ids])
def assign_shards(size):
groupsize, ragged = divmod(xb.get_replica_count(), size)
assert not ragged
indices = onp.tile(onp.arange(size)[:, None], (1, groupsize))
return tuple(indices.ravel())
def replica_groups(mesh_spec, mesh_axis):
mesh_spec = mesh_spec + [xb.get_replica_count() // prod(mesh_spec)]
groups = onp.split(onp.arange(prod(mesh_spec)).reshape(mesh_spec),
mesh_spec[mesh_axis], axis=mesh_axis)
groups = map(onp.ravel, groups)
return tuple(tuple(group) for group in zip(*groups))
### xla_pcall
AxisEnv = namedtuple("AxisEnv", ["names", "sizes"])
def axis_read(axis_env, axis_name):
return max(i for i, name in enumerate(axis_env.names) if name == axis_name)
def compile_replicated(jaxpr, axis_name, axis_size, consts, *abstract_args):
axis_env = AxisEnv([axis_name], [axis_size])
arg_shapes = list(map(xla_shape, abstract_args))
built_c = replicated_comp(jaxpr, axis_env, consts, (), *arg_shapes)
result_shape = xla_shape_to_result_shape(built_c.GetReturnValueShape())
return built_c.Compile(arg_shapes, xb.get_compile_options()), result_shape
def replicated_comp(jaxpr, axis_env, const_vals, freevar_shapes, *arg_shapes):
c = xb.make_computation_builder("replicated_computation")
def read(v):
return env[v]
def write(v, node):
assert node is not None
env[v] = node
def axis_env_extend(name, size):
return AxisEnv(axis_env.names + [name], axis_env.sizes + [size])
env = {}
write(core.unitvar, c.Tuple())
if const_vals:
map(write, jaxpr.constvars, map(c.Constant, const_vals))
map(write, jaxpr.freevars, map(c.ParameterWithShape, freevar_shapes))
else:
all_freevars = it.chain(jaxpr.constvars, jaxpr.freevars)
map(write, all_freevars, map(c.ParameterWithShape, freevar_shapes))
map(write, jaxpr.invars, map(c.ParameterWithShape, arg_shapes))
for eqn in jaxpr.eqns:
in_nodes = map(read, eqn.invars)
if eqn.primitive in parallel_translation_rules:
name = eqn.params['axis_name']
device_groups = replica_groups(axis_env.sizes, axis_read(axis_env, name))
params = {k: eqn.params[k] for k in eqn.params if k != 'axis_name'}
rule = parallel_translation_rules[eqn.primitive]
ans = rule(c, *in_nodes, device_groups=device_groups, **params)
elif eqn.bound_subjaxprs:
if eqn.primitive is xla_pcall_p:
name = eqn.params['axis_name']
new_env = axis_env_extend(name, eqn.params['axis_size'])
in_nodes = map(partial(xla_split, c, new_env.sizes), in_nodes)
in_shapes = map(c.GetShape, in_nodes)
(subjaxpr, const_bindings, freevar_bindings), = eqn.bound_subjaxprs
subc = replicated_comp(
subjaxpr, new_env, (),
map(c.GetShape, map(read, const_bindings + freevar_bindings)),
*in_shapes)
subfun = (subc, tuple(map(read, const_bindings + freevar_bindings)))
sharded_result = xla.xla_call_translation_rule(c, subfun, *in_nodes)
device_groups = replica_groups(new_env.sizes, axis_read(new_env, name))
ans = xla_join(c, device_groups, sharded_result)
else:
in_shapes = map(c.GetShape, in_nodes)
subcs = [
jaxpr_computation(
subjaxpr, (),
map(c.GetShape, map(read, const_bindings + freevar_bindings)),
*in_shapes)
for subjaxpr, const_bindings, freevar_bindings in eqn.bound_subjaxprs]
subfuns = [(subc, tuple(map(read, const_bindings + freevar_bindings)))
for subc, (_, const_bindings, freevar_bindings)
in zip(subcs, eqn.bound_subjaxprs)]
ans = translation_rule(eqn.primitive)(c, *(subfuns + in_nodes), **eqn.params)
else:
ans = translation_rule(eqn.primitive)(c, *in_nodes, **eqn.params)
out_nodes = xla_destructure(c, ans) if eqn.destructure else [ans]
map(write, eqn.outvars, out_nodes)
return c.Build(read(jaxpr.outvar))
def xla_split(c, axis_sizes, x):
def _xla_split(shape, x):
if shape.is_tuple():
elts = map(_xla_split, shape.tuple_shapes(), xla_destructure(c, x))
return c.Tuple(*elts)
else:
size = onp.array(prod(axis_sizes), onp.uint32)
idx = c.Rem(c.ReplicaId(), c.Constant(size))
dims = list(shape.dimensions())
zero = onp.zeros(len(dims) - 1, onp.uint32)
start_indices = c.Concatenate([c.Reshape(idx, None, [1]),
c.Constant(zero)], 0)
return c.Reshape(c.DynamicSlice(x, start_indices, [1] + dims[1:]),
None, dims[1:])
return _xla_split(c.GetShape(x), x)
# TODO(b/110096942): more efficient gather
def xla_join(c, device_groups, x):
def _xla_join(shape, x):
if shape.is_tuple():
elts = map(_xla_join, shape.tuple_shapes(), xla_destructure(c, x))
return c.Tuple(*elts)
else:
group_size = len(device_groups[0])
broadcasted = c.Broadcast(x, (group_size,))
return c.AllToAll(broadcasted, 0, 0, device_groups)
return _xla_join(c.GetShape(x), x)
def xla_pcall_impl(fun, *args, **params):
axis_name = params.pop('axis_name')
axis_size = params.pop('axis_size')
assert not params
flat_args, in_trees = unzip2(map(xla.tree_flatten, args))
flat_args = concatenate(flat_args)
fun, out_tree = xla.flatten_fun(fun, in_trees)
abstract_args = map(partial(abstractify, axis_size), flat_args)
compiled_fun = parallel_callable(fun, axis_name, axis_size, *abstract_args)
flat_ans = compiled_fun(out_tree(), *flat_args)
if out_tree() is xla.leaf:
return flat_ans
else:
return xla.build_tree(iter(flat_ans), out_tree())
def abstractify(axis_size, x):
assert onp.shape(x)[0] == axis_size
aval = xla.abstractify(x)
return ShapedArray(aval.shape[1:], aval.dtype)
@lu.memoize
def parallel_callable(fun, axis_name, axis_size, *avals):
pvals = [PartialVal((aval, core.unit)) for aval in avals]
with core.new_master(JaxprTrace, True) as master:
jaxpr, (pval, consts, env) = trace_to_subjaxpr(fun, master).call_wrapped(pvals)
assert not env
compiled, _ = compile_replicated(jaxpr, axis_name, axis_size, consts, *avals)
del master, consts, jaxpr, env
return partial(execute_replicated, compiled, pval, axis_size)
def execute_replicated(compiled, pval, axis_size, out_tree, *args):
input_bufs = zip(*map(shard_arg, args)) if args else [[]] * xb.get_replica_count()
out_bufs = compiled.ExecutePerReplica(input_bufs)
out_shards = [merge_pvals(buf.to_py(), pval) for buf in out_bufs]
if out_tree is xla.leaf:
return unshard_output(axis_size, out_shards)
else:
return map(partial(unshard_output, axis_size), zip(*out_shards))
xla_pcall_p = core.Primitive('xla_pcall')
xla_pcall = partial(core.call_bind, xla_pcall_p)
xla_pcall_p.def_custom_bind(xla_pcall)
xla_pcall_p.def_impl(xla_pcall_impl)
ad.primitive_transposes[xla_pcall_p] = partial(ad.call_transpose, xla_pcall_p)
# xla.translations[xla_pcall_p] = xla.xla_call_translation_rule # TODO(mattjj)
pe.map_primitives.add(xla_pcall_p)
parallel_translation_rules = {}
| StarcoderdataPython |
3384158 | <gh_stars>100-1000
import unittest
from main import *
class ConditionalsTests(unittest.TestCase):
def test_main(self):
self.assertIsInstance(value, str)
self.assertIs(value, 'y', "program must print 'yes'") | StarcoderdataPython |
1766878 | #!/usr/bin/env python
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action_chains import ActionChains
from pytesseract import image_to_string
from urllib.request import urlretrieve
from PIL import Image
from io import BytesIO
from getpass import getpass
import sys,time
user = input('''Enter your Roll No in the format
BE/10xxx/1x :
''')
passwd = getpass('Enter your password : ')
browser = webdriver.Firefox()
browser.get('http://erp.bitmesra.ac.in')
user_name = browser.find_element_by_id('txt_username')
user_name.send_keys(user)
pwd = browser.find_element_by_id('txt_password')
pwd.send_keys(<PASSWORD>)
time.sleep(2)
captcha = browser.find_element_by_xpath('//*[@id="frmDefault"]/div[3]/div/div[4]/div[1]/div[2]/img')
src = captcha.get_attribute('src')
location = captcha.location
size = captcha.size
png = browser.get_screenshot_as_png()
im = Image.open(BytesIO(png))
left = location['x']
top = location['y']
right = location['x'] + size['width']
bottom = location['y'] + size['height']
im = im.crop((left, top, right, bottom))
im.save('screenshot.png')
cp_txt = image_to_string(Image.open('screenshot.png'))
captcha_box = browser.find_element_by_id('txtcaptcha')
captcha_box.send_keys(cp_txt)
time.sleep(1)
login = browser.find_element_by_id('btnSubmit')
login.click()
| StarcoderdataPython |
1717054 | #!/usr/bin/env python
# bcast2.py
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:
data = {'key1' : [7, 2.72, 2+3j],
'key2' : ( 'abc', 'xyz')}
else:
data = None
data = comm.bcast(data, root=0)
print ("process %s" % (rank))
print (rank,data) | StarcoderdataPython |
3289408 | #!/usr/bin/env python
"""Parsers for Linux PAM configuration files."""
import os
import re
from builtins import zip # pylint: disable=redefined-builtin
from grr_response_core.lib import parser
from grr_response_core.lib.parsers import config_file
from grr_response_core.lib.rdfvalues import config_file as rdf_config_file
class PAMParser(parser.FileParser, config_file.FieldParser):
"""Parser for PAM configurations."""
output_types = ["PamConfig"]
supported_artifacts = ["LinuxPamConfigs"]
process_together = True
# The syntax is based on:
# http://linux.die.net/man/5/pam.d
PAMDIR = "/etc/pam.d"
OLD_PAMCONF_FILENAME = "/etc/pam.conf"
PAMCONF_RE = re.compile(
r"""
(\S+) # The "type".
\s+ # separator
( # Now match the "control" argument.
\[[^\]]*\] # Complex form. e.g. [success=ok default=die] etc.
| \w+ # Or a single word form.
) # End of the "control" argument.
\s+ # separator
(\S+) # The "module-path".
(?:\s+(.*))? # And the optional "module-arguments" is anything else.
""", re.VERBOSE)
def _FixPath(self, path):
# Anchor any relative paths in the PAMDIR
if not os.path.isabs(path):
return os.path.join(self.PAMDIR, path)
else:
return path
def EnumerateAllConfigs(self, stats, file_objects):
"""Generate RDFs for the fully expanded configs.
Args:
stats: A list of RDF StatEntries corresponding to the file_objects.
file_objects: A list of file handles.
Returns:
A tuple of a list of RDFValue PamConfigEntries found & a list of strings
which are the external config references found.
"""
# Convert the stats & file_objects into a cache of a
# simple path keyed dict of file contents.
cache = {}
for stat_obj, file_obj in zip(stats, file_objects):
cache[stat_obj.pathspec.path] = file_obj.read()
result = []
external = []
# Check to see if we have the old pam config file laying around.
if self.OLD_PAMCONF_FILENAME in cache:
# The PAM documentation says if it contains config data, then
# it takes precedence over the rest of the config.
# If it doesn't, the rest of the PAMDIR config counts.
result, external = self.EnumerateConfig(None, self.OLD_PAMCONF_FILENAME,
cache)
if result:
return result, external
# If we made it here, there isn't a old-style pam.conf file worth
# speaking of, so process everything!
for path in cache:
# PAM uses the basename as the 'service' id.
service = os.path.basename(path)
r, e = self.EnumerateConfig(service, path, cache)
result.extend(r)
external.extend(e)
return result, external
def EnumerateConfig(self, service, path, cache, filter_type=None):
"""Return PamConfigEntries it finds as it recursively follows PAM configs.
Args:
service: A string containing the service name we are processing.
path: A string containing the file path name we want.
cache: A dictionary keyed on path, with the file contents (list of str).
filter_type: A string containing type name of the results we want.
Returns:
A tuple of a list of RDFValue PamConfigEntries found & a list of strings
which are the external config references found.
"""
result = []
external = []
path = self._FixPath(path)
# Make sure we only look at files under PAMDIR.
# Check we have the file in our artifact/cache. If not, our artifact
# didn't give it to us, and that's a problem.
# Note: This should only ever happen if it was referenced
# from /etc/pam.conf so we can assume that was the file.
if path not in cache:
external.append("%s -> %s", self.OLD_PAMCONF_FILENAME, path)
return result, external
for tokens in self.ParseEntries(cache[path]):
if path == self.OLD_PAMCONF_FILENAME:
# We are processing the old style PAM conf file. It's a special case.
# It's format is "service type control module-path module-arguments"
# i.e. the 'service' is the first arg, the rest is line
# is like everything else except for that addition.
try:
service = tokens[0] # Grab the service from the start line.
tokens = tokens[1:] # Make the rest of the line look like "normal".
except IndexError:
continue # It's a blank line, skip it.
# Process any inclusions in the line.
new_path = None
filter_request = None
try:
# If a line starts with @include, then include the entire referenced
# file.
# e.g. "@include common-auth"
if tokens[0] == "@include":
new_path = tokens[1]
# If a line's second arg is an include/substack, then filter the
# referenced file only including entries that match the 'type'
# requested.
# e.g. "auth include common-auth-screensaver"
elif tokens[1] in ["include", "substack"]:
new_path = tokens[2]
filter_request = tokens[0]
except IndexError:
# It's not a valid include line, so keep processing as normal.
pass
# If we found an include file, enumerate that file now, and
# included it where we are in this config file.
if new_path:
# Preemptively check to see if we have a problem where the config
# is referencing a file outside of the expected/defined artifact.
# Doing it here allows us to produce a better context for the
# problem. Hence the slight duplication of code.
new_path = self._FixPath(new_path)
if new_path not in cache:
external.append("%s -> %s" % (path, new_path))
continue # Skip to the next line of the file.
r, e = self.EnumerateConfig(service, new_path, cache, filter_request)
result.extend(r)
external.extend(e)
else:
# If we have been asked to filter on types, skip over any types
# we are not interested in.
if filter_type and tokens[0] != filter_type:
continue # We can skip this line.
# If we got here, then we want to include this line in this service's
# config.
# Reform the line and break into the correct fields as best we can.
# Note: ParseEntries doesn't cope with what we need to do.
match = self.PAMCONF_RE.match(" ".join(tokens))
if match:
p_type, control, module_path, module_args = match.group(1, 2, 3, 4)
# Trim a leading "-" from the type field if present.
if p_type.startswith("-"):
p_type = p_type[1:]
result.append(
rdf_config_file.PamConfigEntry(
service=service,
type=p_type,
control=control,
module_path=module_path,
module_args=module_args))
return result, external
def ParseMultiple(self, stats, file_objects, knowledge_base):
_ = knowledge_base
results, externals = self.EnumerateAllConfigs(stats, file_objects)
yield rdf_config_file.PamConfig(entries=results, external_config=externals)
| StarcoderdataPython |
3276534 | <filename>apps/menuplans/dbaccess.py
import datetime
from uuid import uuid4
import xml.etree.ElementTree as et
from basex.basex import recipe_db
from recipes.dbaccess import get_random_recipes
GET_MENUPLANS_QUERY = '''
import module namespace paging="custom/pagination";
declare variable $query as xs:string external;
declare variable $offset as xs:integer external;
declare variable $limit as xs:integer external;
let $upperQuery := upper-case($query)
let $selection :=
for $menuplan in collection("recipe")//menuplan
where $menuplan//recipe[matches(upper-case(name), $upperQuery)] or
$menuplan//recipe//ingredient[matches(upper-case(name), $upperQuery)] or
$menuplan[matches(upper-case(name), $upperQuery)]
order by xs:dateTime($menuplan/creationDate) descending
return $menuplan
let $result := paging:paged($selection, 'menuplans', $offset, $limit, true())
return $result
'''
GET_MENUPLAN_DISPLAY_QUERY = '''
declare variable $pk as xs:string external;
<menuplan>{
let $doc := //menuplan[pk=$pk]
return
(<days>{
for $recipe at $recipeIndex in $doc//recipe
return <day>
<number>{$recipeIndex}</number>
<recipe>{$recipe/name/text()}</recipe>
</day>
}</days>,
<recipes>{
$doc//recipe
}</recipes>,
<shoppingList>{
for $ingredient in distinct-values($doc//ingredient/name/text())
order by $ingredient ascending
return
for $unit in distinct-values($doc//ingredient[name=$ingredient]/amount/unit)
let $numericAmounts := $doc//ingredient[name=$ingredient]/amount[string(number(value)) != 'NaN' and unit=$unit]/value
let $alphaAmounts := $doc//ingredient[name=$ingredient]/amount[string(number(value)) = 'NaN' and unit=$unit]/value/text()
return <shoppingListItem>
<name>{$ingredient}</name>
<unit>{$unit}</unit>
<amount>{sum($numericAmounts)}</amount>
<alphaAmounts>{
for $a in $alphaAmounts
return <value>{$a}</value>
}</alphaAmounts>
</shoppingListItem>
}</shoppingList>)
}</menuplan>
'''
def get_menuplan_display(pk):
with recipe_db() as db:
q = db.query(GET_MENUPLAN_DISPLAY_QUERY)
q.bind('$pk', pk)
menuplans = q.execute()
return menuplans.encode('utf8')
def get_menuplans(query=None, offset=0, limit=500):
with recipe_db() as db:
q = db.query(GET_MENUPLANS_QUERY)
q.bind('$offset', str(offset))
q.bind('$limit', str(limit))
q.bind('$query', str(query or ''))
menuplans = q.execute()
return menuplans.encode('utf8')
def create_menuplan(people, num_recipes):
pk = str(uuid4())
people = int(people)
current_date = datetime.datetime.now().isoformat('T')
erecipes = et.fromstring(get_random_recipes(number_of_recipes=num_recipes,
rating='good'))
for erecipe in erecipes:
rpeople = erecipe.findtext('people')
if rpeople:
rpeople = float(rpeople)
for evalue in erecipe.findall('.//amount/value'):
if evalue.text and evalue.text.isdigit():
new_value = '%.2f' % (float(evalue.text) * float(people) / rpeople)
if new_value.endswith('.00'):
new_value = new_value.replace('.00', '')
evalue.text = new_value
eroot = et.Element('menuplans')
emenuplan = et.SubElement(eroot, 'menuplan')
emenuplan.append(erecipes)
ename = et.SubElement(emenuplan, 'name')
ecreationDate = et.SubElement(emenuplan, 'creationDate')
epeople = et.SubElement(emenuplan, 'people')
epk = et.SubElement(emenuplan, 'pk')
epk.text = pk
ename.text = current_date
ecreationDate.text = current_date
epeople.text = str(people)
return pk, eroot
def menuplan_path(pk):
return 'menuplans/%s.xml' % pk
def add_menuplan(pk, menuplan):
with recipe_db() as db:
db.add(menuplan_path(pk), menuplan)
| StarcoderdataPython |
4822309 | <reponame>citReyJoshua/supplie<gh_stars>0
from django.contrib import admin
from backend.product.models import Product, ProductImage
admin.site.register(Product)
admin.site.register(ProductImage)
| StarcoderdataPython |
92113 | # -*- coding: utf-8 -*-
"""
@date: 2021/5/4 ไธๅ7:11
@file: torchvision_resnet_to_zcls_resnet.py
@author: zj
@description: Transform torchvision pretrained model into zcls format
"""
import os
from torchvision.models.resnet import resnet18, resnet34, resnet50, resnet101, resnet152, resnext50_32x4d, \
resnext101_32x8d
from zcls.model.recognizers.resnet.resnet import ResNet
from zcls.config import cfg
from zcls.util.checkpoint import CheckPointer
def convert(torchvision_resnet, zcls_resnet):
torchvision_resnet_dict = torchvision_resnet.state_dict()
zcls_resnet_dict = zcls_resnet.state_dict()
for k, v in torchvision_resnet_dict.items():
if 'downsample' in k:
zcls_resnet_dict[f"backbone.{k.replace('downsample', 'down_sample')}"] = v
elif 'layer' in k:
zcls_resnet_dict[f'backbone.{k}'] = v
elif 'fc' in k:
zcls_resnet_dict[f'head.{k}'] = v
elif 'conv1.weight' == k:
zcls_resnet_dict['backbone.stem.0.weight'] = v
elif 'bn1' in k:
zcls_resnet_dict[k.replace('bn1', 'backbone.stem.1')] = v
else:
raise ValueError("{k} doesn't exist")
return zcls_resnet_dict
def process(item, cfg_file):
if item == 'resnet18':
torchvision_resnet = resnet18(pretrained=True)
elif item == 'resnet34':
torchvision_resnet = resnet34(pretrained=True)
elif item == 'resnet50':
torchvision_resnet = resnet50(pretrained=True)
elif item == 'resnet101':
torchvision_resnet = resnet101(pretrained=True)
elif item == 'resnet152':
torchvision_resnet = resnet152(pretrained=True)
elif item == 'resnext50_32x4d':
torchvision_resnet = resnext50_32x4d(pretrained=True)
elif item == 'resnext101_32x8d':
torchvision_resnet = resnext101_32x8d(pretrained=True)
else:
raise ValueError(f"{item} doesn't exists")
cfg.merge_from_file(cfg_file)
zcls_resnet = ResNet(cfg)
zcls_resnet_dict = convert(torchvision_resnet, zcls_resnet)
zcls_resnet.load_state_dict(zcls_resnet_dict)
res_dir = 'outputs/converters/'
if not os.path.exists(res_dir):
os.makedirs(res_dir)
checkpoint = CheckPointer(model=zcls_resnet, save_dir=res_dir, save_to_disk=True)
checkpoint.save(f'{item}_imagenet')
if __name__ == '__main__':
item_list = ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d']
cfg_file_list = [
'r18_zcls_imagenet_224.yaml',
'r34_zcls_imagenet_224.yaml',
'r50_zcls_imagenet_224.yaml',
'r101_zcls_imagenet_224.yaml',
'r152_zcls_imagenet_224.yaml',
'rxt50_32x4d_zcls_imagenet_224.yaml',
'rxt101_32x8d_zcls_imagenet_224.yaml'
]
prefix_path = 'configs/benchmarks/resnet'
for item, cfg_file in zip(item_list, cfg_file_list):
config_path = os.path.join(prefix_path, cfg_file)
print(config_path)
process(item, config_path)
| StarcoderdataPython |
3229719 | <filename>foo.py
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 15 09:15:09 2016
@author: ericgrimson
"""
x = 6
if x != 5:
print('i am here')
else:
print('no I am not') | StarcoderdataPython |
1704650 | <filename>tests/v1/test_organizations_api.py
# coding: utf-8
# Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License.
# This product includes software developed at Datadog (https://www.datadoghq.com/).
# Copyright 2019-Present Datadog, Inc.
from __future__ import absolute_import
import unittest
import datadog_api_client.v1
from datadog_api_client.v1.api.organizations_api import OrganizationsApi # noqa: E501
class TestOrganizationsApi(unittest.TestCase):
"""OrganizationsApi unit test stubs"""
def setUp(self):
self.api = OrganizationsApi() # noqa: E501
def tearDown(self):
pass
def test_create_child_org(self):
"""Test case for create_child_org
Create a child organization # noqa: E501
"""
pass
def test_get_org(self):
"""Test case for get_org
Get organization information # noqa: E501
"""
pass
def test_list_orgs(self):
"""Test case for list_orgs
List your managed organizations # noqa: E501
"""
pass
def test_update_org(self):
"""Test case for update_org
Update your organization # noqa: E501
"""
pass
def test_upload_id_p_for_org(self):
"""Test case for upload_id_p_for_org
Upload IdP metadata # noqa: E501
"""
pass
if __name__ == '__main__':
unittest.main()
| StarcoderdataPython |
1632817 | <reponame>ATrain951/01.python-com_Qproject
"""
# Sample code to perform I/O:
name = input() # Reading input from STDIN
print('Hi, %s.' % name) # Writing output to STDOUT
# Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail
"""
# Write your code here
import sys
t = int(sys.stdin.readline())
for _ in range(t):
n, m, x, y = map(int, sys.stdin.readline().strip().split())
ans = min((y * n + m) // (x + y), n)
print(ans)
| StarcoderdataPython |
1703042 | <filename>MyTools/lightup.py
import sys
import Image
import colorsys
import ImageDraw
import math
def convert(img):
rgb_img = img.convert('RGBA')
img = Image.new('RGBA', rgb_img.size, (0x00,0x00,0x00,0xff))
draw = ImageDraw.Draw(img)
x,y = rgb_img.size
for i in range(0,x):
for j in range(0,y):
r, g, b, a = rgb_img.getpixel((i, j))
h,s,v = colorsys.rgb_to_hsv(r/255.,g/255.,b/255.)
r0 = max(0xff, r * 4);
g0 = max(0xff, g * 4);
b0 = max(0xff, b * 4);
draw.point((i, j), (r0, g0, b0, a))
return img
def make_image(file):
img = Image.open(file, 'r')
img = convert(img)
img.save('new/'+file)
if __name__ == '__main__':
for arg in sys.argv:
print arg
if arg.endswith('.png'):
make_image(arg)
#EOF
| StarcoderdataPython |
4805565 | # -*- coding: utf-8 -*-
import scrapy
from scrapy.contrib.spiders import CrawlSpider
from scrapy.http import Request
from scrapy.selector import Selector
from douban.items import DoubanItem
class Douban(CrawlSpider):
name = "douban"
redis_key = 'douban:start_urls'
start_urls = ['http://movie.douban.com/top250']
url = 'http://movie.douban.com/top250'
def parse(self,response):
#print response.body
item = DoubanItem()
selector = Selector(response)
Movies = selector.xpath('//div[@class="info"]')
for eachMovie in Movies:
title = eachMovie.xpath('div[@class="hd"]/a/span/text()').extract()
fullTitle = ''
for each in title:
fullTitle += each
movieInfo = eachMovie.xpath('div[@class="bd"]/p[@class=""]/text()').extract()
star = eachMovie.xpath('div[@class="bd"]/div[@class="star"]/span[@class="rating_num"]/text()').extract()[0]
quote = eachMovie.xpath('div[@class="bd"]/p[@class="quote"]/span/text()').extract()
#quoteๅฏ่ฝไธบ็ฉบ๏ผ้่ฆๅ
่ฟ่กๅคๆญ
if quote:
quote = quote[0]
else:
quote = ''
item['title'] = fullTitle
item['movieInfo'] = ';'.join(movieInfo)
item['star'] = star
item['quote'] = quote
yield item
nextLink = selector.xpath('//span[@class="next"]/link/@href').extract()
#็ฌฌๅ้กตๆฏๆๅไธ้กต๏ผๆฒกๆไธไธ้กต็้พๆฅ
if nextLink:
nextLink = nextLink[0]
#print nextLink
yield Request(self.url + nextLink,callback=self.parse)
| StarcoderdataPython |
3347180 | # Generated by Django 2.0.6 on 2018-08-24 13:48
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('products', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='ProductPriceOffer',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('status', models.PositiveIntegerField(choices=[(0, 'Not reviewed'), (1, 'Processing'), (2, 'Canceled'), (3, 'Completed')], default=0, verbose_name='Status')),
('name', models.CharField(max_length=255, verbose_name='Name')),
('mobile', models.CharField(max_length=255, verbose_name='Mobile phone')),
('email', models.EmailField(max_length=255, verbose_name='Email')),
('text', models.TextField(max_length=1000, verbose_name='Offer')),
('date_created', models.DateTimeField(auto_now_add=True, verbose_name='Date created')),
('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='price_offers', to='products.Product', verbose_name='Product')),
('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='offers', to=settings.AUTH_USER_MODEL, verbose_name='User')),
],
options={
'verbose_name': 'Product price offer',
'verbose_name_plural': 'Product price offers',
'ordering': ['-date_created'],
},
),
]
| StarcoderdataPython |
3322274 | from pyderman.util import downloader
import re
import json
def get_url(version='latest', _os=None, _os_bit=None):
beta = True
pattern = version
bit = ''
if not version or version == 'latest':
beta = False
pattern = ''
if _os == 'linux':
bit = '64' if _os_bit == '64' else 'i686'
for release in _releases():
name = release['name'].lower()
if not beta and 'beta' in name:
continue
if _os in name and pattern in name and bit in name:
ver = re.search(r'(\d{1,2}\.\d{1,2}\.\d{1,2})', name).group(1)
return 'phantomjs.*/bin/phantomjs', release['links']['self']['href'], ver
def _releases():
page = 'https://api.bitbucket.org/2.0/repositories/ariya/phantomjs/downloads/'
while page:
data = json.loads(downloader.raw(page))
for release in data['values']:
yield release
page = data['next'] if 'next' in data else None
if __name__ == "__main__":
print(get_url('latest', 'win', '64'))
| StarcoderdataPython |
3392911 | """
test_QuerySet
"""
from AzureODM.QuerySet import (
QuerySet, obj_to_query_value, Q, QCombination, AndOperator, OrOperator)
from AzureODM.Entity import Entity
from AzureODM.Fields import GenericField, FloatField, KeyField
import pytest
import re
from datetime import datetime, timezone
regex = re.compile(QuerySet.cmp_exp)
class Test_QCombination:
"""test QCombination"""
@pytest.fixture()
def fake_entity(self):
class FakeEntity(Entity):
metas = {
'table_name': 'lolol'
}
PartitionKey = KeyField()
RowKey = KeyField()
return FakeEntity
def test_q1_q_q2_q(self):
q1 = Q(PartitionKey='p1')
q2 = Q(RowKey='r1')
a = QCombination(AndOperator, q1, q2)
assert a.subquires[0].k == 'PartitionKey'
assert a.subquires[0].v == 'p1'
assert a.subquires[1].__name__ == 'AndOperator'
assert a.subquires[2].k == 'RowKey'
assert a.subquires[2].v == 'r1'
def test_q1_qcom_q2_q(self):
q1 = Q(PartitionKey='p1')
q2 = Q(RowKey='r1')
qc = QCombination(AndOperator, q1, q2)
assert len(qc.subquires) == 3
a = QCombination(AndOperator, qc, Q(Temp='lol'))
print('---------{}'.format(a.subquires))
assert len(a.subquires) == 5
def test_q1_qcom_q2_qcom(self):
q1 = Q(PartitionKey='p1')
q2 = Q(RowKey='r1')
q3 = Q(PartitionKey='p1')
q4 = Q(RowKey='r1')
qc = QCombination(AndOperator, q1, q2)
qc2 = QCombination(AndOperator, q3, q4)
a = QCombination(OrOperator, qc, qc2)
assert len(a.subquires) == 7
assert a.subquires[1] is AndOperator
assert a.subquires[3] is OrOperator
assert a.subquires[5] is AndOperator
def test_compile(self, fake_entity):
a = Q(PartitionKey='p1') | Q(RowKey='r1') & Q(RowKey='r3')
qs = a.compile(entity=fake_entity)
expected = "(PartitionKey eq 'p1' or RowKey eq 'r1' and RowKey eq 'r3')"
assert expected == qs
class Test_Q:
"""Test q"""
def test_two_combine_and(self):
a = (Q(PartitionKey='p1') & Q(RowKey='r1'))
assert isinstance(a, QCombination)
assert len(a.subquires) == 3
assert a.subquires[0].k == 'PartitionKey'
assert a.subquires[0].v == 'p1'
assert a.subquires[1].__name__ == 'AndOperator'
assert a.subquires[2].k == 'RowKey'
assert a.subquires[2].v == 'r1'
def test_two_combine_or(self):
a = (Q(PartitionKey='p1') | Q(RowKey='r1'))
assert isinstance(a, QCombination)
assert len(a.subquires) == 3
assert a.subquires[0].k == 'PartitionKey'
assert a.subquires[0].v == 'p1'
assert a.subquires[1].__name__ == 'OrOperator'
assert a.subquires[2].k == 'RowKey'
assert a.subquires[2].v == 'r1'
def test_three_combine_and_or(self):
a = (Q(PartitionKey='p1') | Q(RowKey='r1') & Q(RowKey='r3'))
assert isinstance(a, QCombination)
assert len(a.subquires) == 5
assert a.subquires[0].k == 'PartitionKey'
assert a.subquires[0].v == 'p1'
assert a.subquires[1].__name__ == 'OrOperator'
assert a.subquires[2].k == 'RowKey'
assert a.subquires[2].v == 'r1'
@pytest.fixture()
def fake_entity(self):
class FakeEntity(Entity):
metas = {
'table_name': 'lolol'
}
PartitionKey = KeyField()
RowKey = KeyField()
return FakeEntity
def test_in_query(self, fake_entity):
a = Q(RowKey__in=[123, 124, '412'])
query_string = a.compile(entity=fake_entity)
expected = "(RowKey eq 123 or RowKey eq 124 or RowKey eq '412')"
assert query_string == expected
class Test_obj_to_query_value:
"""test obj_to_query_value"""
@pytest.mark.parametrize('obj,expected', [
('thisisgood', "'thisisgood'"),
(123456, '123456'),
(123.456, '123.456'),
(True, 'true'),
(False, 'false'),
(datetime(2014, 1, 1, 0, 0, 0, tzinfo=timezone.utc),
"datetime'2014-01-01T00:00:00Z'")
])
def test_obj_conversion(self, obj, expected):
assert obj_to_query_value(obj) == expected
def test_raises_ValueError_if_datetime_is_naive(self):
with pytest.raises(ValueError) as e:
obj_to_query_value(datetime(2014, 1, 1, 1, 1, 1, 1))
assert 'only timezone awared datetime is accpeted' in str(e)
def test_type_not_match(self):
with pytest.raises(Exception) as e:
obj_to_query_value(None)
assert 'obj type is unknown, ' in str(e)
class Test_q_regexp:
"""test q_regexp"""
@pytest.mark.parametrize('query_string,expected_field,expected_operator', [
('thisisgood', 'thisisgood', None),
('thisisgood__gt', 'thisisgood', 'gt'),
('thisisgood__ge', 'thisisgood', 'ge'),
('thisisgood__lt', 'thisisgood', 'lt'),
('thisisgood__le', 'thisisgood', 'le'),
('thisisgood__ne', 'thisisgood', 'ne')
])
def test_regexp(self, query_string, expected_field, expected_operator):
m = regex.match(query_string)
assert m is not None
assert m.group('field') == expected_field
if expected_operator is not None:
assert m.group('operator') == expected_operator
else:
assert m.group('operator') is None
@pytest.mark.parametrize('query_string', [
'',
'__gt',
'__',
'_asdf__gt',
'.'
])
def test_should_not_match(self, query_string):
m = regex.match(query_string)
assert m is None
class Test_query_parser:
"""test query_parser"""
@pytest.fixture()
def fake_entity(self):
class FakeEntity(Entity):
metas = {
'table_name': 'lolol'
}
PartitionKey = KeyField()
RowKey = KeyField()
return FakeEntity
@pytest.fixture()
def fake_entity_selected(self, fake_entity):
a = fake_entity.select(fields=None)
return a
def test_query_parser_wrap_where(self, fake_entity_selected):
a = fake_entity_selected.where(PartitionKey='lol')
expected = "PartitionKey eq 'lol'"
assert a.filter == expected
a.andWhere(RowKey__gt='r1')
expected += " and RowKey gt 'r1'"
assert a.filter == expected
a.orWhere(RowKey__ge='o1')
expected += " or RowKey ge 'o1'"
assert a.filter == expected
a.notWhere(RowKey__ne=True)
expected += " not RowKey ne true"
assert a.filter == expected
def test_query_parser_wrap_raises_when_args(self, fake_entity_selected):
a = fake_entity_selected
with pytest.raises(Exception) as e:
a.where('lol')
assert 'you cannot put args into query function' in str(e)
def test_raises_when_more_than_one_kwargs(self, fake_entity_selected):
a = fake_entity_selected
with pytest.raises(Exception) as e:
a.where(RowKey='lol', PartitionKey='lll')
assert 'you cannot put more than one args into query function' in str(
e)
def test_raises_when_no_target_entity(self, fake_entity_selected):
a = fake_entity_selected
a._targeted_entity = None
with pytest.raises(Exception) as e:
a.where(RowKey='lol')
assert 'please call select before using query' in str(e)
def test_raises_when_value_is_None(self, fake_entity_selected):
with pytest.raises(Exception) as e:
fake_entity_selected.where(RowKey=None)
assert 'comparison value cannot be None' in str(e)
def test_raises_when_query_is_not_valid(self, fake_entity_selected):
with pytest.raises(ValueError) as e:
fake_entity_selected.where(RowKey__xx='lol')
assert 'is not a valid query' in str(e)
def test_raises_when_field_is_not_defined(self, fake_entity_selected):
with pytest.raises(KeyError) as e:
fake_entity_selected.where(XXXX__lt='lol')
assert 'field is not defined, ' in str(e)
def test_limit_raises_if_not_None_or_int(self, fake_entity_selected):
with pytest.raises(TypeError) as e:
fake_entity_selected.limit(limit='lol')
assert 'limit is not an int, ' in str(e)
def test_limit_will_set__limit_attr(self, fake_entity_selected):
fake_entity_selected.limit(limit=123)
assert fake_entity_selected._limit == 123
fake_entity_selected.limit(limit=None)
assert fake_entity_selected._limit is None
class Test_select:
"""test select"""
def test_raise_if_entity_not_Entity(self):
q = QuerySet()
with pytest.raises(TypeError):
q.select(entity={}, fields=None)
def test_raise_if_fields_not_None_not_list_not_star(self):
q = QuerySet()
with pytest.raises(TypeError) as e:
q.select(entity=Entity, fields=123)
assert 'fields can only be list or None' in str(e)
def test_stringify_fields_for_select(self):
q = QuerySet()
q.select(entity=Entity, fields=['PartitionKey', 'RowKey', 'f1'])
assert q._select == 'PartitionKey,RowKey,f1'
def test_stringify_fields_None_for_select(self):
q = QuerySet()
q.select(entity=Entity, fields=None)
assert q._select == '*'
def test_fields_accept_star(self):
q = QuerySet()
q.select(entity=Entity, fields='*')
assert q._select == '*'
def test_added_PartitionKey_RowKey_to_Fields_if_not_existed(self):
q = QuerySet()
q.select(entity=Entity, fields=['f1'])
assert q._select == 'f1,PartitionKey,RowKey'
def test_save_values_to_attributes(self):
q = QuerySet()
q.select(entity=Entity, fields=['PartitionKey', 'RowKey', 'f1'])
assert q._targeted_entity == Entity
class Test_go:
"""test select"""
def test_raise_if__target_entity_is_None(self):
q = QuerySet()
with pytest.raises(Exception) as e:
q.go()
assert 'you must call select before call go' in str(e)
def test_call_and_return__targeted_entity_find(self, monkeypatch):
class FakeEntity(Entity):
metas = {
'table_name': 'lolol'
}
PartitionKey = KeyField()
RowKey = KeyField()
def fake_find(*args, **kwargs):
assert kwargs['filter'] == "PartitionKey eq 'lol'"
assert kwargs['select'] == 'PartitionKey,RowKey,f1'
assert kwargs['limit'] == 10
raise MemoryError('called fake_find')
monkeypatch.setattr(FakeEntity, 'find', fake_find)
q = QuerySet()
q.select(entity=FakeEntity, fields=['PartitionKey', 'RowKey', 'f1'])
q.where(PartitionKey='lol').limit(10)
with pytest.raises(MemoryError) as e:
q.go()
assert 'called fake_find' in str(e)
| StarcoderdataPython |
3205478 | #!/usr/bin/env python
"""
Python implementation of vic2nc
This module facilitates the conversion of ascii VIC output files into 3 or 4
dimenstional netcdf files.
References:
- VIC: http://www.hydro.washington.edu/Lettenmaier/Models/VIC/index.shtml
- netCDF: http://www.unidata.ucar.edu/software/netcdf/
- Python netCDF4: https://code.google.com/p/netcdf4-python/
- NetCDF Climate and Forecast (CF) Metadata Convention:
http://cf-pcmdi.llnl.gov/
- Pandas: http://pandas.pydata.org/
"""
# Imports
from __future__ import print_function
from os import path
from glob import glob
from re import findall
from collections import deque
from bisect import bisect_left
from getpass import getuser
from datetime import datetime, timedelta
from pandas import read_table, DataFrame
from netCDF4 import Dataset, date2num, num2date, default_fillvals
import socket
import subprocess
import dateutil.relativedelta as relativedelta
import os
import sys
import numpy as np
import time as tm
from tonic.io import read_config, SafeConfigParser
from tonic.tonic import calc_grid, get_grid_inds, NcVar
from tonic.pycompat import pyzip, pyrange
description = 'Convert a set of VIC ascii outputs to gridded netCDF'
help = 'Convert a set of VIC ascii outputs to gridded netCDF'
# -------------------------------------------------------------------- #
SECSPERDAY = 86400.0
REFERENCE_STRING = '0001-01-01 00:00:00'
TIMEUNITS = 'days since {0}'.format(REFERENCE_STRING) # (MUST BE DAYS)!
TIMESTAMPFORM = '%Y-%m-%d-%H'
# Precision
NC_DOUBLE = 'f8'
NC_FLOAT = 'f4'
NC_INT = 'i4'
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
# Default configuration
default_config = {'OPTIONS': {'out_file_format': 'NETCDF3_64BIT',
'precision': 'single',
'calendar': 'standard',
'time_segment': 'month',
'snow_bands': False,
'veg_tiles': False,
'soil_layers': False},
'DOMAIN': {'longitude_var': 'longitude',
'latitude_var': 'latitude',
'y_x_dims': ['y', 'x']}}
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
class Point(object):
'''Creates a point class for intellegently
storing coordinate information'''
def __init__(self, lat='', lon='', x='', y='', filename=''):
'''Defines x and y variables'''
self.lat = lat
self.lon = lon
self.x = x
self.y = y
self.filename = filename
def _open_binary(self):
print('opening binary file: {0}'.format(self.filename))
self.f = open(self.filename, 'rb')
def _open_ascii(self):
print('opening ascii file: {0}'.format(self.filename))
# return an iterator
self._reader = read_table(self.filename,
sep=self.delimeter,
header=None,
iterator=True,
usecols=self.usecols,
names=self.names)
def _open_netcdf(self):
print('opening netcdf file: {0}'.format(self.filename))
self.f = Dataset(self.filename, 'r')
def _read_ascii(self, count=None):
self.df = self._reader.get_chunk(count)
return
def _read_binary(self, count=-1):
d = np.fromfile(self.f, dtype=self.dt, count=count)
data = {}
for i, name in enumerate(self.names):
data[name] = np.array(d[name], dtype=self.dtypes[i],
copy=True) / float(self.bin_mults[i])
self.df = DataFrame(data)
return
def _read_netcdf(self):
data = {}
for key in self.names:
data[key] = np.squeeze(self.f.variables[key][:])
self.df = DataFrame(data)
def close(self):
print('closing file: {0}'.format(self.filename))
try:
self.f.close()
except:
pass
def __str__(self):
return "Point({0},{1},{2},{3})".format(self.lat, self.lon,
self.y, self.x)
def __repr__(self):
return "Point(lat={0}, lon={1}, \
y={2}, x={3}, \
filename={4})".format(self.lat,
self.lon,
self.y,
self.x,
self.filename)
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
class Plist(deque):
'''List subclass that has a few helper methods for adding and
obtaining coordinates'''
def get_lons(self):
return np.array([p.lon for p in self])
def get_lats(self):
return np.array([p.lat for p in self])
def add_xs(self, xinds):
for i in pyrange(len(self)):
self[i].x = xinds[i]
return
def add_ys(self, yinds):
for i in pyrange(len(self)):
self[i].y = yinds[i]
return
def get_ys(self):
return np.array([p.y for p in self])
def get_xs(self):
return np.array([p.x for p in self])
def get_data(self, name, data_slice):
return np.array([p.df[name].values[data_slice] for p in self])
def set_fileformat(self, fileformat):
"""sets and assigns fileformat specific attributes and methods"""
if fileformat == 'ascii':
delimeter = r'\t' # VIC ascii files are tab seperated
else:
delimeter = r',' # true csv
for p in self:
p.fileformat = fileformat
if fileformat in ['ascii', 'csv']:
p.open = p._open_ascii
p.delimeter = delimeter
p.read = p._read_ascii
elif fileformat == 'binary':
p.open = p._open_binary
p.read = p._read_binary
p.dt = np.dtype(list(pyzip(p.names, p.bin_dtypes)))
elif fileformat == 'netcdf':
p.open = p._open_netcdf
p.read = p._read_netcdf
else:
raise ValueError('Unknown file format: {0}'.format(fileformat))
return
def set_names(self, names):
for p in self:
p.names = names
return
def set_usecols(self, usecols):
for p in self:
p.usecols = usecols
return
def set_dtypes(self, dtypes):
for p in self:
p.dtypes = dtypes
return
def set_bin_dtypes(self, bin_dtypes):
for p in self:
p.bin_dtypes = bin_dtypes
return
def set_bin_mults(self, bin_mults):
for p in self:
p.bin_mults = bin_mults
return
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
class Segment(object):
def __init__(self, num, i0, i1, nc_format, filename,
memory_mode='original'):
'''Class used for holding segment information '''
self.num = num
self.i0 = i0
self.i1 = i1
self.filename = filename
self.fields = {}
self.memory_mode = memory_mode
self.nc_write(nc_format)
# Set slice
if memory_mode == 'original':
self.slice = slice(None)
else:
self.slice = slice(i0, i1)
def nc_globals(self,
title='VIC netCDF file',
history='Created: {0} by {1}'.format(tm.ctime(tm.time()),
getuser()),
institution='University of Washington',
source=sys.argv[0],
references=(
'Primary Historical Reference for VIC: Liang,'
'X., <NAME>, <NAME>, and <NAME>,'
'1994: A Simple hydrologically Based Model of Land'
'Surface Water and Energy Fluxes for GSMs, J. Geophys.'
'Res., 99(D7), 14,415-14,428.'),
comment=(
'Output from the Variable Infiltration Capacity'
'(VIC) Macroscale Hydrologic Model'),
conventions='CF-1.6',
target_grid_file='unknown',
username=None,
hostname=None,
version=None,
**kwargs):
self.f.title = title.encode()
self.f.history = history.encode()
self.f.institution = institution.encode()
self.f.source = source.encode()
self.f.references = references.encode()
self.f.comment = comment.encode()
self.f.conventions = conventions.encode()
if hostname:
self.f.hostname = hostname
else:
self.f.hostname = socket.gethostname()
self.f.hostname = self.f.hostname.encode()
if username:
self.f.username = username
else:
self.f.username = getuser()
self.f.username = self.f.username.encode()
if version:
self.f.version = version
else:
try:
self.f.version = subprocess.check_output(["git",
"describe"]).rstrip()
except:
self.f.version = 'unknown'
self.f.version = self.f.version.encode()
for attribute, value in kwargs.items():
if hasattr(self.f, attribute):
print(
'WARNING: Attribute {0} already exists'.format(attribute))
print('Renaming to g_{0} to avoid '
'overwriting.'.format(attribute))
attribute = 'g_{0}'.format(attribute)
if isinstance(value, str):
value = value.encode()
setattr(self.f, attribute, value)
return
def __str__(self):
return "Segment Object({0})".format(self.filename)
def __repr__(self):
return """
-------------------------- Segment {0} --------------------------
Filename: {1}
Start Index: {2}
End Index: {3}
Start Date: {4}
End Date: {5}
------------------------------------------------------------------
""".format(self.num, self.filename, self.i0, self.i1, self.startdate,
self.enddate)
def nc_time(self, t0, t1, times, calendar):
""" define time dimension (and write data) """
self.f.createDimension('time', len(times[self.i0:self.i1]))
time = self.f.createVariable('time', 'f8', ('time', ))
time[:] = times[self.i0:self.i1]
time.long_name = 'time'.encode()
time.units = TIMEUNITS.encode()
time.calendar = calendar.encode()
self.count = len(time)
self.startdate = t0
self.enddate = t1
def nc_domain(self, domain):
""" define the coordinate dimension (and write data) """
# Setup dimensions
dimensions = []
for name, ncvar in domain.items():
# Setup dimensions
for dim in ncvar.dimensions:
if dim not in dimensions:
dimensions.append(dim)
self.f.createDimension(dim, getattr(ncvar, dim))
# Create variable
if "_FillValue" in ncvar.attributes:
fill_val = ncvar.attributes['_FillValue']
del ncvar.attributes['_FillValue']
else:
fill_val = None
self.fields[name] = self.f.createVariable(name, NC_DOUBLE,
ncvar.dimensions,
fill_value=fill_val)
# Apply the data
self.fields[name][:] = ncvar
# Add the attributes
for key, val in ncvar.attributes.items():
if isinstance(val, str):
val = val.encode()
setattr(self.fields[name], key, val)
return
def nc_dimensions(self, snow_bands=False, veg_tiles=False,
soil_layers=False):
""" Define 4th dimensions """
if snow_bands:
self.f.createDimension('snow_bands', snow_bands)
if veg_tiles:
self.f.createDimension('veg_tiles', veg_tiles)
if soil_layers:
self.f.createDimension('soil_layers', soil_layers)
return
def nc_fields(self, fields, y_x_dims, precision):
""" define each field """
coords = ('time',) + tuple(y_x_dims)
if precision == 'single':
prec_global = NC_FLOAT
elif precision == 'double':
prec_global = NC_DOUBLE
else:
raise ValueError('Unkown value for OPTIONS[precision] \
field: {0}'.format(precision))
self.three_dim_vars = []
self.four_dim_vars = []
for name, field in fields.items():
write_out_var = True
if 'write_out_var' in field:
if not field['write_out_var']:
write_out_var = False
if write_out_var:
if 'dim4' in field:
ncols = len(self.f.dimensions[field['dim4']])
if len(field['column']) == ncols:
# 4d var
coords = ('time',) + tuple([field['dim4']]) \
+ tuple(y_x_dims)
self.four_dim_vars.append(name)
else:
raise ValueError('Number of columns for variable {0}'
'does not match the length ({1}) of '
'the {2} dimension'.format(
name, ncols, field['dim4']))
else:
# standard 3d var
coords = ('time',) + tuple(y_x_dims)
self.three_dim_vars.append(name)
if 'type' in field:
prec = field['type']
else:
prec = prec_global
fill_val = default_fillvals[prec]
self.fields[name] = self.f.createVariable(name, prec, coords,
fill_value=fill_val,
zlib=False)
if 'units' in field:
self.fields[name].long_name = name.encode()
self.fields[name].coordinates = 'lon lat'.encode()
for key, val in field.items():
if isinstance(val, str):
val = val.encode()
setattr(self.fields[name], key, val)
else:
raise ValueError('Field {0} missing units \
attribute'.format(name))
return
def allocate(self):
self.data = {}
for name, field in self.fields.items():
self.data[name] = np.atleast_3d(np.zeros_like(field))
if hasattr(field, '_FillValue'):
self.data[name][:] = field._FillValue
def nc_add_data_to_array(self, point):
for name in self.three_dim_vars:
self.data[name][:, point.y, point.x] = \
point.df[name].values[self.slice]
for name in self.four_dim_vars:
varshape = self.f.variables[name].shape[1]
for i in pyrange(varshape):
subname = name + str(i)
self.data[name][:, i, point.y,
point.x] = point.df[subname].values[self.slice]
def nc_add_data_standard(self, points):
ys = points.get_ys()
xs = points.get_xs()
for p in points:
for name in self.three_dim_vars:
data = points.get_data(name, self.slice)
self.f.variables[name][:, ys, xs] = data
for name in self.four_dim_vars:
varshape = self.f.variables[name].shape[1]
for i in pyrange(varshape):
sn = name + str(i)
self.f.variables[name][:, i, ys,
xs] = p.df[sn].values[self.slice]
def nc_write_data_from_array(self):
""" write completed data arrays to disk """
for name in self.three_dim_vars:
self.f.variables[name][:, :, :] = self.data[name]
for name in self.four_dim_vars:
self.f.variables[name][:, :, :, :] = self.data[name]
def nc_write(self, nc_format):
self.f = Dataset(self.filename, mode="w", clobber=True,
format=nc_format)
self.f.set_fill_on()
def nc_close(self):
self.f.close()
print('Closed: {0}'.format(self.filename))
# -------------------------------------------------------------------- #
def _run(args):
"""Top level driver"""
print('running now...')
if args.create_batch:
# ------------------------------------------------------------ #
# Create batch files and exit
batch(args.config_file, args.create_batch, args.batch_dir)
# ------------------------------------------------------------ #
else:
# ------------------------------------------------------------ #
# Read Configuration files
config_dict = read_config(args.config_file,
default_config=default_config)
options = config_dict.pop('OPTIONS')
global_atts = config_dict.pop('GLOBAL_ATTRIBUTES')
if not options['regular_grid']:
domain_dict = config_dict.pop('DOMAIN')
else:
domain_dict = None
# set aside fields dict
fields = config_dict
vic2nc(options, global_atts, domain_dict, fields)
# ------------------------------------------------------------ #
return
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
def vic2nc(options, global_atts, domain_dict, fields):
""" Convert ascii VIC files to netCDF format"""
# determine run mode
if (options['memory_mode'] == 'standard') \
and (options['chunksize'] in ['all', 'All', 'ALL', 0]):
memory_mode = 'big_memory'
else:
memory_mode = options['memory_mode']
print("\n-------------------------------")
print("Configuration File Options")
print("-------------OPTIONS-------------")
for pair in options.items():
print("{0}: {1}".format(*pair))
print('Fields: {0}'.format(", ".join(fields.keys())))
if domain_dict:
print("-------------DOMAIN--------------")
for pair in domain_dict.items():
print("{0}: {1}".format(*pair))
print("--------GLOBAL_ATTRIBUTES--------")
for pair in global_atts.items():
print("{0}: {1}".format(*pair))
print("--------RUN MODE--------")
print('Memory Mode: {0}'.format(memory_mode))
if memory_mode == 'standard':
print('Chunksize={0}'.format(options['chunksize']))
print("---------------------------------\n")
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
# Make output directory
if not os.path.exists(options['out_directory']):
os.makedirs(options['out_directory'])
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
# Make pairs (i.e. find inds)
files = glob(options['input_files'])
points = get_file_coords(files)
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
# Get target grid information
if domain_dict:
domain = read_domain(domain_dict)
target_grid_file = path.split(domain_dict['filename'])[1]
global_atts['target_grid_file'] = target_grid_file
else:
# must be a regular grid, build from file names
domain = calc_grid(points.get_lats(), points.get_lons())
target_grid_file = None
domain_dict = {'y_x_dims': ['lat', 'lon']}
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
# Get grid index locations
points = get_grid_inds(domain, points)
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
# Get timestamps
if options['input_file_format'].lower() == 'ascii':
if ('bin_start_date' in options
and 'bin_end_date' in options
and 'bin_dt_sec' in options):
vic_datelist, vic_ordtime = make_dates(
options['bin_start_date'],
options['bin_end_date'],
options['bin_dt_sec'],
calendar=options['calendar'])
else:
vic_datelist = get_dates(files[0])
vic_ordtime = date2num(vic_datelist, TIMEUNITS,
calendar=options['calendar'])
elif options['input_file_format'].lower() in ['binary', 'netcdf']:
vic_datelist, vic_ordtime = make_dates(options['bin_start_date'],
options['bin_end_date'],
options['bin_dt_sec'],
calendar=options['calendar'])
else:
raise ValueError('Unknown input file format: {}. Valid options are \
ascii or binary'.format(options['input_file_format']))
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
# Determine time segmentation
if options['start_date']:
start_date = datetime.strptime(options['start_date'], TIMESTAMPFORM)
if start_date < vic_datelist[0]:
print("WARNING: Start date in configuration file is before "
"first date in file.")
start_date = vic_datelist[0]
print('WARNING: New start date is {0}'.format(start_date))
else:
start_date = vic_datelist[0]
if options['end_date']:
end_date = datetime.strptime(options['end_date'], TIMESTAMPFORM)
if end_date > vic_datelist[-1]:
print("WARNING: End date in configuration file is after "
"last date in file.")
end_date = vic_datelist[-1]
print('WARNING: New end date is {0}'.format(end_date))
else:
end_date = vic_datelist[-1]
# Ordinal Time
start_ord = date2num(start_date, TIMEUNITS, calendar=options['calendar'])
end_ord = date2num(end_date, TIMEUNITS, calendar=options['calendar'])
print("netCDF Start Date: {0}".format(start_date))
print("netCDF End Date: {0}".format(end_date))
segment_dates = []
if options['time_segment'] == 'day':
# calendar insensitive
num_segments = np.ceil(end_ord - start_ord)
if start_date.hour == 0:
segment_dates = num2date(np.arange(start_ord, end_ord + 1, 1),
TIMEUNITS, calendar=options['calendar'])
else:
# allow start at time other than 0
temp = [start_ord].append(np.arange(np.ceil(start_ord),
end_ord + 1, 1))
segment_dates = num2date(temp, TIMEUNITS,
calendar=options['calendar'])
elif options['time_segment'] == 'month':
num_segments = (end_date.year - start_date.year) * 12 \
+ end_date.month - start_date.month + 1
month = start_date.month
year = start_date.year
for i in pyrange(num_segments + 1):
segment_dates.append(datetime(year, month, 1))
month += 1
if month == 13:
month = 1
year += 1
elif options['time_segment'] == 'year':
num_segments = end_date.year - start_date.year + 1
year = start_date.year
for i in pyrange(num_segments + 1):
segment_dates.append(datetime(year, 1, 1))
year += 1
elif options['time_segment'] == 'decade':
num_segments = (end_date.year - start_date.year) / 10 + 1
year = start_date.year
for i in pyrange(num_segments + 1):
segment_dates.append(datetime(year, 1, 1))
year += 10
elif options['time_segment'] == 'all':
num_segments = 1
segment_dates = [start_date, end_date]
else:
raise ValueError('Unknown timesegment options \
{0}'.format(options['time_segment']))
print("Number of files: {0}".format(len(segment_dates) - 1))
assert len(segment_dates) == num_segments + 1
# Make sure the first and last dates are start/end_date
segment_dates[0] = start_date
segment_dates[-1] = end_date + timedelta(minutes=1)
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
# Setup Segments
segments = deque()
for num in pyrange(num_segments):
# Segment time bounds
t0 = segment_dates[num]
t1 = segment_dates[num + 1]
# Get segment inds
i0 = bisect_left(vic_datelist, t0)
i1 = bisect_left(vic_datelist, t1)
# Make segment filename (with path)
if options['time_segment'] == 'day':
filename = "{0}.{1}.nc".format(options['out_file_prefix'],
t0.strftime('%Y-%m-%d'))
elif options['time_segment'] == 'month':
filename = "{0}.{1}.nc".format(options['out_file_prefix'],
t0.strftime('%Y-%m'))
elif options['time_segment'] == 'year':
filename = "{0}.{1}.nc".format(options['out_file_prefix'],
t0.strftime('%Y'))
elif options['time_segment'] == 'all':
filename = "{0}.{1}-{2}.nc".format(options['out_file_prefix'],
t0.strftime('%Y%m%d'),
t1.strftime('%Y%m%d'))
filename = path.join(options['out_directory'], filename)
# Setup segment and initialize netcdf
segment = Segment(num, i0, i1, options['out_file_format'],
filename, memory_mode=memory_mode)
segment.nc_globals(**global_atts)
segment.nc_time(t0, t1, vic_ordtime, options['calendar'])
segment.nc_dimensions(snow_bands=options['snow_bands'],
veg_tiles=options['veg_tiles'],
soil_layers=options['soil_layers'])
segment.nc_domain(domain)
segment.nc_fields(fields,
domain_dict['y_x_dims'], options['precision'])
print(repr(segment))
segments.append(segment)
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
# Get column numbers and names (will help speed up reading)
names = []
usecols = []
dtypes = []
bin_dtypes = []
bin_mults = []
if options['precision'] == 'double':
prec = NC_DOUBLE
else:
prec = NC_FLOAT
for name, field in fields.items():
if not np.isscalar(field['column']):
# multiple levels
for i, col in enumerate(field['column']):
names.append(name + str(i))
usecols.append(col)
if 'type' in field:
if type(field['type']) == list:
dtypes.extend(field['type'])
else:
dtypes.extend([field['type']] * len(field['column']))
else:
dtypes.append([prec] * len(field['column']))
if options['input_file_format'].lower() == 'binary':
if 'bin_dtype' in field:
if type(field['bin_dtype']) == list:
bin_dtypes.extend(field['bin_dtype'])
else:
bin_dtypes.extend([field['bin_dtype']] *
len(field['column']))
else:
raise ValueError('bin_dtype not in field: {}'.format(name))
if 'bin_mult' in field:
if type(field['bin_mult']) == list:
bin_mults.extend(field['bin_mult'])
else:
bin_mults.extend([field['bin_mult']] *
len(field['column']))
else:
bin_mults.extend([1.0] * len(field['column']))
else:
# no levels
names.append(name)
usecols.append(field['column'])
if 'type' in field:
dtypes.append(field['type'])
else:
dtypes.append(prec)
if options['input_file_format'].lower() == 'binary':
if 'bin_dtype' in field:
bin_dtypes.append(field['bin_dtype'])
else:
raise ValueError('bin_dtype not in field: {}'.format(name))
if 'bin_mult' in field:
bin_mults.append(field['bin_mult'])
else:
bin_mults.append(1.0)
print('setting point attributes (fileformat, names, usecols, and dtypes)')
# pandas.read_table does not 'honor' the order of the columns in usecols
# it simply uses them in ascending order. So the names need to be sorted
# the same way. For example, if the columns in the VIC file are:
# 3: prcp; 4: evap; 5: runoff; 6; baseflow; 7: sm1; 8: sm2; 9: sm3; 10: swe
# and this is parsed from the configuration file as
# usecols = [3, 4, 5, 6, 10, 7, 8, 9]
# names=['prcp', 'evap', 'runoff', 'baseflow', 'swe', 'sm1', 'sm2', 'sm3']
# then without sorting, the netcdf file will have the wrong variables:
# nc_swe will contain sm1, nc_sm1 will contain sm2, nc_sm2: sm3 and
# nc_swe: sm3
# the following will ensure that the names are sorted in increasing column
# order. Note that sorted(usecols) is not strictly necessary, since
# apparently that is done in read_table, but it keeps the names and columns
# in the same order
names = [x for (y, x) in sorted(pyzip(usecols, names))]
usecols = sorted(usecols)
points.set_names(names)
points.set_usecols(usecols)
points.set_dtypes(dtypes)
# set binary attributes
if options['input_file_format'].lower() == 'binary':
points.set_bin_dtypes(bin_dtypes)
points.set_bin_mults(bin_mults)
points.set_fileformat(options['input_file_format'])
print('done')
# ---------------------------------------------------------------- #
# ---------------------------------------------------------------- #
if memory_mode == 'big_memory':
# ------------------------------------------------------------ #
# run in big memory mode
for i, segment in enumerate(segments):
segments[i].allocate()
while points:
point = points.popleft()
point.open()
point.read()
point.close()
for segment in segments:
segment.nc_add_data_to_array(point)
for segment in segments:
segment.nc_write_data_from_array()
segment.nc_close()
# ------------------------------------------------------------ #
elif memory_mode == 'standard':
# ------------------------------------------------------------ #
# Open VIC files and put data into netcdfs
chunk = Plist()
while points:
point = points.popleft()
point.open()
point.read()
point.close()
chunk.append(point)
if len(chunk) > int(options['chunksize']) or len(points) == 0:
for segment in segments:
segment.nc_add_data_standard(chunk)
chunk = Plist()
del point
# ------------------------------------------------------------ #
# ------------------------------------------------------------ #
# Close the netcdf files
for segment in segments:
segment.nc_close()
# ------------------------------------------------------------ #
elif memory_mode == 'original':
# ------------------------------------------------------------ #
# Run in original memory mode (a.k.a. vic2nc.c mode)
# Open all files
for point in points:
point.open()
while segments:
segment = segments.popleft()
segment.allocate()
count = segment.count
for point in points:
point.read(count)
segment.nc_add_data_to_array(point)
segment.nc_write_data_from_array()
segment.nc_close()
for point in points:
point.close()
# ------------------------------------------------------------ #
return
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
def get_file_coords(files):
"""
Get list of Point objects
"""
points = Plist()
for i, filename in enumerate(files):
# fname = path.split(f)[1][-16:] # just look at last 16 characters
f = filename[-22:] # just look at last 16 characters
lat, lon = list(map(float, findall(r"[-+]?\d*\.\d+|\d+", f)))[-2:]
points.append(Point(lat=lat, lon=lon, filename=filename))
return points
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
def get_dates(file):
"""
Read the first file in the input directory and create a ordinal based
timeseries.
Also find the indicies to split the time series into months and years
"""
hours = (0, 1, 2, 3)
days = (0, 1, 2)
try:
data = np.loadtxt(file, usecols=hours, dtype=int)
datelist = [datetime(*d) for d in data]
except (ValueError, TypeError):
data = np.loadtxt(file, usecols=days, dtype=int)
datelist = [datetime(*d) for d in data]
# check to make sure we haven't used used daily by mistake
# (creating a bunch of duplicate times)
newlist = []
for i in datelist:
if i not in newlist:
newlist.append(i)
else:
raise ValueError('Found duplicate datetimes in datelist')
print('VIC startdate: {0}'.format(datelist[0]))
print('VIC enddate: {0}'.format(datelist[-1]))
return datelist
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
def make_dates(start, end, dt, calendar='standard'):
"""
Return a list of datetime object from inputs of
start - python date string (i.e. 1989-01-01-00)
end - python date string (i.e. 1989-01-01-23)
dt - int or float timestep in seconds
"""
start = map(int, start.split('-'))
end = map(int, end.split('-'))
start_ord = date2num(datetime(*start), TIMEUNITS, calendar=calendar)
end_ord = date2num(datetime(*end), TIMEUNITS, calendar=calendar)
step = float(dt) / SECSPERDAY
ordlist = np.arange(start_ord, end_ord + step, step)
datelist = num2date(ordlist, TIMEUNITS, calendar=calendar)
return datelist, ordlist
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
def read_domain(domain_dict):
print('reading domain file: {0}'.format(domain_dict['filename']))
f = Dataset(domain_dict['filename'])
domain = {'lon': NcVar(f, domain_dict['longitude_var']),
'lat': NcVar(f, domain_dict['latitude_var'])}
if domain_dict['copy_vars']:
for varname in domain_dict['copy_vars']:
domain[varname] = NcVar(f, varname)
f.close()
return domain
# -------------------------------------------------------------------- #
# -------------------------------------------------------------------- #
def batch(config_file, create_batch, batch_dir):
"""Create a set of batch configuration files"""
# Read Configuration files
config_dict = read_config(config_file)
options = config_dict.pop('OPTIONS')
global_atts = config_dict.pop('GLOBAL_ATTRIBUTES')
domain_dict = config_dict.pop('DOMAIN', None)
fields = config_dict
config = SafeConfigParser()
config.optionxform = str
# Figure out what to call the new files
nameprefix = os.path.splitext(os.path.split(config_file)[1])[0]
if create_batch == 'variables':
# batch by variables
# options section
config.add_section('OPTIONS')
for option, value in options.items():
if type(value) == list:
try:
value = ", ".join(value)
except TypeError:
value = ", ".join(repr(e) for e in value)
elif type(value) != str:
value = str(value)
config.set('OPTIONS', option, str(value))
# global_atts section
config.add_section('GLOBAL_ATTRIBUTES')
for option, value in global_atts.items():
if type(value) == list:
try:
value = ", ".join(value)
except TypeError:
value = ", ".join(repr(e) for e in value)
elif type(value) != str:
value = str(value)
config.set('GLOBAL_ATTRIBUTES', option, str(value))
# domain dict section
if domain_dict:
config.add_section('DOMAIN')
for option, value in domain_dict.items():
if type(value) == list:
try:
value = ", ".join(value)
except TypeError:
value = ", ".join(repr(e) for e in value)
elif type(value) != str:
value = str(value)
config.set('DOMAIN', option, value.strip("'"))
for var, field in fields.items():
suffix = "_{0}.cfg".format(var)
new_cfg_file = os.path.join(batch_dir, nameprefix + suffix)
# this var
config.add_section(var)
for option, value in field.items():
if type(value) == list:
try:
value = ", ".join(value)
except TypeError:
value = ", ".join(repr(e) for e in value)
elif type(value) != str:
value = str(value)
config.set(var, option, str(value))
# write that config
with open(new_cfg_file, 'wb') as cf:
config.write(cf)
# clear the var section
config.remove_section(var)
else:
# start with existing config
config.read(config_file)
# by time
start_date = datetime.strptime(options['start_date'], TIMESTAMPFORM)
end_date = datetime.strptime(options['end_date'], TIMESTAMPFORM)
t0 = start_date
if create_batch == 'years':
td = relativedelta.relativedelta(years=1)
t1 = datetime(t0.year, 12, 31, end_date.hour)
elif create_batch == 'months':
td = relativedelta.relativedelta(months=1)
elif create_batch == 'days':
# days option is only valid for gregorian calendar
td = relativedelta.relativedelta(days=1)
hour = relativedelta.relativedelta(hours=-1)
i = 0
while t0 < end_date:
i += 1
t1 = t0 + td
if t1 > end_date:
t1 = end_date
else:
t1 += hour
suffix = '_{0}'.format(i)
new_cfg_file = os.path.join(batch_dir, nameprefix + suffix)
# Write config replacing start and end dates
config.set('OPTIONS', 'start_date', t0.strftime(TIMESTAMPFORM))
config.set('OPTIONS', 'end_date', t1.strftime(TIMESTAMPFORM))
with open(new_cfg_file, 'wb') as cf:
config.write(cf)
t0 += td
return
# -------------------------------------------------------------------- #
| StarcoderdataPython |
3291543 | # exercise 43 was sort of a demonstration of how he created his own game | StarcoderdataPython |
1628454 | #!/usr/bin/python
# _*_ coding:utf-8 _*_
import flickrapi
import json
import time
import os
statei = os.path.isfile("done_time_ids.txt")
statef = os.path.isfile("raw_time_data.csv")
if statei == False:
stateicreate = open("done_time_ids.txt", "w")
stateicreate.close()
else:
pass
if statef == False:
statefcreate = open("raw_time_data.csv", "w")
statefcreate.close()
else:
pass
#Flickrapi documentation: https://stuvel.eu/flickrapi-doc/2-calling.html
#FIRST: get your own API-keys!
api_key = u"YOUR_API_KEY_HERE" #Request your own key and place the key inside the quotes.
api_secret = u"YOUR_API_SECRET_HERE" #Request your own key and place the secret inside the quotes.
raw_time_file = open("raw_time_data.csv", "a") #where your datapoints will be stored at
history = open("done_time_ids.txt", "r") #all photo_ID's that have been added in the past.
donepre = history.readlines() #Preventing adding the same photo twice.
history.close()
done = []
for item in donepre:
item = item.strip()
done.append(item)
donepids = open("done_time_ids.txt", "a")
all_photos = open("done_ids.txt", "r")
all_pids = all_photos.readlines()
print str(len(all_pids)) + " + photos will be checked"
print "Ready loading history."
flickr = flickrapi.FlickrAPI(api_key, api_secret, format='json')
flickr.authenticate_via_browser(perms='read') #Requires read authentification: https://www.flickr.com/services/api/flickr.photos.getWithGeoData.html (Needs to be done once per Computer running this)
add_data = True #needed for the while loop
d = 0
d = d +len(done)
tot = str(len(all_pids))
while int(d) != int(len(all_pids)):
pid = str(all_pids[d])
pid = pid.strip()
if pid not in donepre:
try:
print "Processing photo-id: " + str(pid) +" at: " + str(d+1) + " of " + tot +"."
timeframe = flickr.photos.getInfo(photo_id=pid)
parsed = json.loads(timeframe.decode("utf-8")) #returns a dictionary
data = parsed["photo"]
uploadtime = data["dateuploaded"]
shottime = data["dates"]
shottakentime = shottime["taken"]
donepre.append(pid)
donepids.write(pid + "\n")
raw_time_file.write('"' + pid + '";"' + shottakentime + '";"' + uploadtime + '" \n')
except:
print "Error with photo " + str(pid) +"."
raw_time_file.write('"' + pid + '";"null"' + '";null" \n')
d = d+1
#
raw_time_file.close() #Closing the CSV file
print "Process complete"
ext = raw_input("Press enter to terminate the program")
| StarcoderdataPython |
3264362 | # -*- coding: utf-8 -*-
# visigoth: A lightweight Python3 library for rendering data visualizations in SVG
# Copyright (C) 2020 Visigoth Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
# and associated documentation files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or
# substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import unittest
import datetime
from visigoth import Diagram
from visigoth.internal.utils.test_utils import TestUtils
from visigoth.charts.area import Area
from visigoth.utils import DiscreteHueManager
from visigoth.common import DiscreteHueLegend, Text
from visigoth.containers import Grid,Sequence
class TestArea(unittest.TestCase):
def test_basic(self):
d = Diagram(fill="white")
dp = DiscreteHueManager()
data = [
(1,12,"A"),
(2,14,"A"),
(3,11,"A"),
(4,9,"A"),
(5,7,"A"),
(1,2,"B"),
(2,4,"B"),
(3,7,"B"),
(4,10,"B"),
(5,11,"B"),
(1,2,"C"),
(2,3,"C"),
(3,1,"C"),
(4,3,"C"),
(5,2,"C")
]
d.add(Text("Individual areas"))
g = Grid()
row = 0
col = 0
for cat in ["A","B","C"]:
s = Sequence()
s.add(Text(cat))
area0 = Area([d for d in data if d[2] == cat], x=0, y=1, hue_manager=dp, height=300, width=300)
s.add(area0)
g.add(row,col,s)
col += 1
if col == 2:
row += 1
col = 0
d.add(g)
d.add(Text("Smoothing"))
d.add(Text("Stacked areas"))
area1 = Area(data, x=0, y=1, size=1, hue=2, height=600, hue_manager=dp, width=600)
area1.getMarkerManager().setMaxRadius(10)
d.add(area1)
legend1 = DiscreteHueLegend(dp,400,legend_columns=2)
d.add(legend1)
d.add(Text("Stepped"))
area1a = Area(data, x=0, y=1, size=1, hue=2, height=600, hue_manager=dp, width=600, stepping=True)
area1a.getMarkerManager().setMaxRadius(10)
d.add(area1a)
legend1 = DiscreteHueLegend(dp, 400, legend_columns=2)
d.add(legend1)
for smoothing in [0.1,0.3,0.5]:
d.add(Text("Smoothing=%f"%(smoothing)))
area2 = Area(data, x=0, y=1, hue=2, height=400, smoothing=smoothing, hue_manager=dp, width=400)
d.add(area2)
data3 = [{"y": i, "x": datetime.datetime(1999, 9, 3) + (i ** 1.5) * datetime.timedelta(days=1)} for i in
range(0, 20)]
hue_manager3 = DiscreteHueManager()
hue_manager3.setDefaultHue("purple")
line3 = Area(data3, x="x", y="y", hue_manager=hue_manager3, width=600, height=600, smoothing=0.0)
d.add(line3)
data4 = [{"x": i, "y": (i ** 0.6) * datetime.timedelta(days=1)} for i in range(0, 20)]
hue_manager4 = DiscreteHueManager()
hue_manager4.setDefaultHue("red")
line4 = Area(data4, x="x", y="y", hue_manager=hue_manager4, width=600, height=600, smoothing=00)
d.add(line4)
TestUtils.draw_output(d,"test_area")
if __name__ == "__main__":
unittest.main() | StarcoderdataPython |
1631437 |
from dataclasses import dataclass
from .. import Command, ParsedCommand, Parser
from ...nodes import PositionNode
from ...parser_types import Position
@dataclass()
class ParsedSetworldspawnCommand(ParsedCommand):
command: str
position: PositionNode = None
def __str__(self):
if self.position is not None:
return f'{self.command} {self.position}'
return self.command
setworldspawn = Command('setworldspawn', parsed=ParsedSetworldspawnCommand)
# setworldspawn [<pos>]
# - setworldspawn <pos>
setworldspawn.add_variation(
Parser(Position(), 'position'),
)
# - setworldspawn
setworldspawn.add_variation()
| StarcoderdataPython |
72897 | <reponame>Alejandro-sin/Learning_Notebooks
'''
Voy a tratar de atrapar diferentes errores con try except.
El try captura un error especifico en el ejemplo un Type Error y retorna un mensaje predeterminado.
Try solo funciona con Type Errrors.
'''
def palindrome(word):
if word == word[::-1]:
return print(f'{word} es un Palindromo')
palindrome('ana')
try:
#palindrome(1) # TypeError: 'int' object is not subscriptable
palindrome("ana")
except TypeError:
print('Solo es posible ingresar strings')
else:
print('Todo estรก bien')
finally:
print('Se ejecutรณ todo')
| StarcoderdataPython |
3221499 | <filename>systemrdl/core/value_normalization.py
import hashlib
from typing import Any, Optional, Union, List
from .. import rdltypes
from .. import node
def normalize(value: Any, owner_node: Optional[node.Node]=None) -> str:
"""
Flatten an RDL value into a unique string that is used for type
normalization.
"""
# Determine what type is being flattened
if isinstance(value, bool):
return normalize_boolean(value)
elif isinstance(value, int):
return normalize_scalar(value)
elif isinstance(value, str):
return normalize_string(value)
elif isinstance(value, list):
return normalize_array(value)
elif isinstance(value, (rdltypes.BuiltinEnum, rdltypes.UserEnum)):
return normalize_enum(value)
elif isinstance(value, rdltypes.UserStruct):
return normalize_struct(value)
elif isinstance(value, node.Node):
return normalize_component_ref(value, owner_node)
elif isinstance(value, rdltypes.PropertyReference):
return normalize_property_ref(value, owner_node)
elif rdltypes.is_user_enum(value):
return normalize_user_enum_type(value)
else:
# Should never get here
raise RuntimeError(value)
def normalize_scalar(value: int) -> str:
"""
5.1.1.4 - c.1:
Scalar values shall be rendered using their hexadecimal representation.
"""
return "%x" % value
def normalize_boolean(value: bool) -> str:
"""
5.1.1.4 - c.2:
Boolean values shall be rendered using either t for true or f for false.
"""
if value:
return "t"
else:
return "f"
def normalize_string(value: str) -> str:
"""
5.1.1.4 - c.3:
String values shall be rendered using the first eight characters of
their md5 (Message-Digest Algorithm) checksum.
"""
md5 = hashlib.md5(value.encode('utf-8')).hexdigest()
return md5[:8]
def normalize_enum(value: Union[rdltypes.BuiltinEnum, rdltypes.UserEnum]) -> str:
"""
5.1.1.4 - c.4:
Enum values shall be rendered using their enumerator literal.
"""
return value.name
def normalize_array(value: List[Any]) -> str:
"""
5.1.1.4 - c.5:
Arrays shall be rendered by:
1. generating the normalized values of its elements,
2. joining these elements with single underscores (_) into a single
character sequence, and
3. using the first eight characters of the md5 checksum of this
character sequence
... which can be semi-formalized as:
subsequence( md5( join( normalized_values, '_' ), 0, 8 )
"""
norm_elements = []
for element in value:
norm_elements.append(normalize(element))
norm_str = "_".join(norm_elements)
md5 = hashlib.md5(norm_str.encode('utf-8')).hexdigest()
return md5[:8]
def normalize_struct(value: rdltypes.UserStruct) -> str:
"""
5.1.1.4 - c.6:
Structs shall be rendered by:
1. generating the normalized value of each member,
2. joining each memberโs name with its normalized value, separated by
a single underscore (_),
3. joining the member character sequences with single underscores,
4. using the first eight characters of the md5 checksum of this
character sequence
... which can be semi-formalized as:
member_normalization = concat( member_name, '_', normalized_member_value )
subsequence( md5( join( apply( struct_members, member_normalization ) ), 0, 8)
"""
norm_elements = []
for member_name, member_value in value._values.items():
norm_elements.append("%s_%s" % (member_name, normalize(member_value)))
norm_str = "_".join(norm_elements)
md5 = hashlib.md5(norm_str.encode('utf-8')).hexdigest()
return md5[:8]
def normalize_component_ref(value: node.Node, owner_node: node.Node) -> str:
"""
Hash of relative path from owner of the property to the target component
"""
path = value.get_rel_path(owner_node)
md5 = hashlib.md5(path.encode('utf-8')).hexdigest()
return md5[:8]
def normalize_property_ref(value: rdltypes.PropertyReference, owner_node: node.Node) -> str:
"""
Hash of relative path from owner of the property to the target component's
property
"""
path = "%s->%s" % (value.node.get_rel_path(owner_node), value.name)
md5 = hashlib.md5(path.encode('utf-8')).hexdigest()
return md5[:8]
def normalize_user_enum_type(value: type) -> str:
"""
Enum type references shall be rendered using their enumeration type name.
"""
return value.__name__
| StarcoderdataPython |
1654412 |
number = int(input('how much number of element you want to sum : '))
lst = []
for i in range(number):
element = int(input('enter your number : ')) #123
lst.append(element)
print('sum of element is = ' , sum(lst))
print('max number of element is = ' , max(lst)) | StarcoderdataPython |
73482 | # -*- coding: utf-8 -*-
from functools import partial
s_open = partial(open, mode='r')
| StarcoderdataPython |
1610996 | <filename>carsus/io/tests/test_ionization.py<gh_stars>10-100
import pytest
import pandas as pd
from pandas.util.testing import assert_series_equal
from numpy.testing import assert_almost_equal
from sqlalchemy.orm import joinedload
from carsus.model import Ion
from carsus.io.nist.ionization import (NISTIonizationEnergiesParser,
NISTIonizationEnergiesIngester,
NISTIonizationEnergies)
test_data = """
<h2> Be specta </h2>
<pre>
--------------------------------------------------------------------------------------------
At. num | Ion Charge | Ground Shells | Ground Level | Ionization Energy (a) (eV) |
--------|------------|---------------|--------------|--------------------------------------|
4 | 0 | 1s2.2s2 | 1S0 | 9.3226990(70) |
4 | +1 | 1s2.2s | 2S*<1/2> | 18.211153(40) |
4 | +2 | 1s2 | (1,3/2)<2> | <a class=bal>[</a>153.8961980(40)<a class=bal>]</a> |
4 | +3 | 1s | 2S<1/2> | <a class=bal>(</a>217.7185766(10)<a class=bal>)</a> |
--------------------------------------------------------------------------------------------
</pre>
"""
expected_at_num = [4, 4, 4, 4]
expected_ion_charge = [0, 1, 2, 3]
expected_indices = list(zip(expected_at_num, expected_ion_charge))
expected_ground_shells = ('ground_shells',
['1s2.2s2', '1s2.2s', '1s2', '1s']
)
expected_ground_level = ('ground_level',
['1S0', '2S*<1/2>', '(1,3/2)<2>', '2S<1/2>']
)
expected_j = ('J', [0.0, 0.5, 2.0, 0.5])
expected_ioniz_energy_value = ('ionization_energy_value',
[9.3226990, 18.211153, 153.8961980, 217.7185766]
)
expected_ioniz_energy_uncert = ('ionization_energy_uncert',
[7e-6, 4e-5, 4e-6, 1e-6]
)
expected_ioniz_energy_method = ('ionization_energy_method',
['meas', 'meas', 'intrpl', 'theor']
)
@pytest.fixture
def ioniz_energies_parser():
parser = NISTIonizationEnergiesParser(input_data=test_data)
return parser
@pytest.fixture
def ioniz_energies(ioniz_energies_parser):
return ioniz_energies_parser.prepare_ioniz_energies()
@pytest.fixture
def ground_levels(ioniz_energies_parser):
return ioniz_energies_parser.prepare_ground_levels()
@pytest.fixture
def ioniz_energies_ingester(memory_session):
ingester = NISTIonizationEnergiesIngester(memory_session)
ingester.parser(test_data)
return ingester
@pytest.fixture(params=[expected_ground_shells,
expected_ground_level, expected_ioniz_energy_value,
expected_ioniz_energy_uncert, expected_ioniz_energy_method])
def expected_series_ioniz_energies(request):
index = pd.MultiIndex.from_tuples(tuples=expected_indices,
names=['atomic_number', 'ion_charge'])
name, data = request.param
return pd.Series(data=data, name=name, index=index)
@pytest.fixture(params=[expected_j])
def expected_series_ground_levels(request):
index = pd.MultiIndex.from_tuples(tuples=expected_indices,
names=['atomic_number', 'ion_charge'])
name, data = request.param
return pd.Series(data=data, name=name, index=index)
def test_prepare_ioniz_energies_null_values(ioniz_energies):
assert all(pd.notnull(ioniz_energies["ionization_energy_value"]))
def test_prepare_ioniz_energies(ioniz_energies, expected_series_ioniz_energies):
series = ioniz_energies[expected_series_ioniz_energies.name]
assert_series_equal(series, expected_series_ioniz_energies)
def test_prepare_ground_levels(ground_levels, expected_series_ground_levels):
series = ground_levels[expected_series_ground_levels.name]
assert_series_equal(series, expected_series_ground_levels)
@pytest.mark.parametrize("index, value, uncert",
zip(expected_indices,
expected_ioniz_energy_value[1],
expected_ioniz_energy_uncert[1]))
def test_ingest_ionization_energies(index, value, uncert, memory_session, ioniz_energies_ingester):
ioniz_energies_ingester.ingest(ionization_energies=True, ground_levels=False)
atomic_number, ion_charge = index
ion = memory_session.query(Ion).options(joinedload('ionization_energies')).get((atomic_number, ion_charge))
ion_energy = ion.ionization_energies[0]
assert_almost_equal(ion_energy.quantity.value, value)
assert_almost_equal(ion_energy.uncert, uncert)
@pytest.mark.parametrize("index, exp_j", zip(expected_indices, expected_j[1]))
def test_ingest_ground_levels(index, exp_j, memory_session, ioniz_energies_ingester):
ioniz_energies_ingester.ingest(ionization_energies=True, ground_levels=True)
atomic_number, ion_charge = index
ion = memory_session.query(Ion).options(joinedload('levels')).get((atomic_number, ion_charge))
ground_level = ion.levels[0]
assert_almost_equal(ground_level.J, exp_j)
@pytest.mark.remote_data
def test_ingest_nist_asd_ion_data(memory_session):
ingester = NISTIonizationEnergiesIngester(memory_session, spectra="h-uuh")
ingester.ingest(ionization_energies=True, ground_levels=True)
@pytest.mark.remote_data
def test_ground_levels_missing_j():
ionization_energies = NISTIonizationEnergies(spectra="Nd")
ground_levels = ionization_energies.get_ground_levels()
ground_levels = ground_levels.set_index(['atomic_number', 'ion_charge'])
assert ground_levels.loc[(60, 5)]['g'] == 1
assert ground_levels.loc[(60, 6)]['g'] == 1
assert ground_levels.loc[(60, 7)]['g'] == 1
assert ground_levels.loc[(60, 8)]['g'] == 1
assert ground_levels.loc[(60, 9)]['g'] == 1
assert ground_levels.loc[(60, 10)]['g'] == 1
def test_nist_asd_version():
nist_ionization = NISTIonizationEnergies('H')
version = nist_ionization.version
version_split = version.split('.')
assert len(version_split) > 1
to_int = [ int(i) for i in version_split ]
| StarcoderdataPython |
1631195 | <filename>test/unit/factories/NetworkFactoryTest.py
import os
import unittest
from typing import Any
from src.shapeandshare.dicebox.config.dicebox_config import DiceboxConfig
from src.shapeandshare.dicebox.factories.network_factory import NetworkFactory
from src.shapeandshare.dicebox.models.network import Network
from src.shapeandshare.dicebox.models.optimizers import Optimizers
class NetworkFactoryTest(unittest.TestCase):
TEST_DATA_BASE = "test/fixtures"
local_config_file = "%s/dicebox.config" % TEST_DATA_BASE
dicebox_config: DiceboxConfig = DiceboxConfig(config_file=local_config_file)
network_factory: NetworkFactory = NetworkFactory(config=dicebox_config)
def setUp(self):
self.maxDiff = None
def test_create_random_network(self):
new_network_one: Network = self.network_factory.create_random_network()
new_network_two: Network = self.network_factory.create_random_network()
self.assertNotEqual(new_network_one.decompile(), new_network_two.decompile())
def test_create_network(self):
new_network_one: Network = self.network_factory.create_random_network()
decompiled_network_one: Any = new_network_one.decompile()
new_network_two: Network = self.network_factory.create_network(decompiled_network_one)
decompiled_network_two: Any = new_network_two.decompile()
self.assertEqual(decompiled_network_one, decompiled_network_two)
def test_should_throw_exception_when_asked_to_create_an_unknown_layer_type(self):
os.environ["LAYER_TYPES"] = '["random", "unsupported"]'
local_dicebox_config: DiceboxConfig = DiceboxConfig(config_file=self.local_config_file)
local_network_factory: NetworkFactory = NetworkFactory(config=local_dicebox_config)
definition = {
"input_shape": 1,
"output_size": 1,
"optimizer": Optimizers.ADAM.value,
"layers": [{"type": "random"}],
}
try:
local_network_factory.create_network(network_definition=definition)
self.assertTrue(False, "Expected exception not seen.")
except Exception:
self.assertTrue(True, "Expected exception seen.")
del os.environ["LAYER_TYPES"]
if __name__ == "__main__":
runner = unittest.TextTestRunner()
runner.run(NetworkFactoryTest())
| StarcoderdataPython |
3257608 | <filename>blackbook/models/transaction.py
from django.db import models
from django.utils import timezone
from django.utils.functional import cached_property
from djmoney.models.fields import MoneyField
from djmoney.money import Money
from .base import get_default_currency
from .account import Account
from .category import Category
from .budget import BudgetPeriod
import uuid
class TransactionJournal(models.Model):
class TransactionType(models.TextChoices):
DEPOSIT = "deposit", "Deposit"
START = "start", "Opening balance"
RECONCILIATION = "reconciliation", "Reconciliation"
TRANSFER = "transfer", "Transfer"
WITHDRAWAL = "withdrawal", "Withdrawal"
type = models.CharField(max_length=50, choices=TransactionType.choices, default=TransactionType.WITHDRAWAL)
date = models.DateField(default=timezone.localdate)
short_description = models.CharField(max_length=150)
description = models.TextField(blank=True, null=True)
uuid = models.UUIDField("UUID", default=uuid.uuid4, editable=False, db_index=True, unique=True)
budget = models.ForeignKey(BudgetPeriod, on_delete=models.SET_NULL, blank=True, null=True, related_name="transactions")
category = models.ForeignKey(Category, on_delete=models.SET_NULL, blank=True, null=True, related_name="transactions")
source_accounts = models.JSONField(null=True)
destination_accounts = models.JSONField(null=True)
amount = MoneyField("amount", max_digits=15, decimal_places=2, default_currency=get_default_currency(), default=0)
created = models.DateTimeField(auto_now_add=True)
modified = models.DateTimeField(auto_now=True)
class Meta:
ordering = ["date", "created"]
get_latest_by = "date"
def __str__(self):
return self.short_description
def _verify_transaction_type(self, type, transactions):
if type in [self.TransactionType.START, self.TransactionType.RECONCILIATION]:
return type
owned_accounts = [Account.AccountType.ASSET_ACCOUNT, Account.AccountType.LIABILITIES_ACCOUNT]
source_accounts = []
destination_accounts = []
for transaction in transactions:
if transaction["amount"].amount > 0:
destination_accounts.append(transaction["account"])
else:
source_accounts.append(transaction["account"])
source_accounts = list(set(source_accounts))
destination_accounts = list(set(destination_accounts))
source_accounts_owned = True
destination_accounts_owned = True
if len(source_accounts) > 0:
for account in source_accounts:
if account.type not in owned_accounts:
source_accounts_owned = False
if len(destination_accounts) > 0:
for account in destination_accounts:
if account.type not in owned_accounts:
destination_accounts_owned = False
if len(source_accounts) > 0:
if source_accounts_owned:
if len(destination_accounts) > 0 and destination_accounts_owned:
return self.TransactionType.TRANSFER
return self.TransactionType.WITHDRAWAL
else:
if len(destination_accounts) > 0 and destination_accounts_owned:
return self.TransactionType.DEPOSIT
return self.TransactionType.WITHDRAWAL
return self.TransactionType.DEPOSIT
def _create_transactions(self, transactions):
source_accounts = []
destination_accounts = []
for transaction in transactions:
if transaction["amount"].amount > 0:
destination_accounts.append(transaction["account"])
else:
source_accounts.append(transaction["account"])
if self.type in [self.TransactionType.START, self.TransactionType.DEPOSIT, self.TransactionType.RECONCILIATION]:
if len(destination_accounts) == 0:
raise AttributeError("There should be at least one receiving transaction for this transaction type %s" % self.type)
elif self.type == self.TransactionType.WITHDRAWAL:
if len(source_accounts) == 0:
raise AttributeError("There should be at least one spending transaction for this transaction type %s" % self.type)
for transaction in transactions:
if str(transaction["amount"].currency) != str(transaction["account"].currency):
raise AttributeError("Amount should be in the same currency as the account it relates to (%s)" % transaction)
self.transactions.create(
account=transaction["account"], amount=transaction["amount"], foreign_amount=transaction.get("foreign_amount", None)
)
@classmethod
def create(cls, transactions):
"""Transactions should be in a fixed format
{
"short_description", "description", "date", "type", "category", "budget", "transactions" [{
"account", "amount", "foreign_amount"
}]
}"""
journal = cls.objects.create(
date=transactions["date"],
short_description=transactions["short_description"],
type=transactions["type"],
description=transactions.get("description", None),
category=transactions.get("category", None),
budget=transactions.get("budget", None),
)
journal.type = journal._verify_transaction_type(type=transactions["type"], transactions=transactions["transactions"])
journal._create_transactions(transactions=transactions["transactions"])
journal.update_accounts()
return journal
def update(self, transactions):
self.short_description = transactions["short_description"]
self.description = transactions["description"]
self.date = transactions["date"]
self.type = transactions["type"]
self.category = transactions.get("category", None)
self.budget = transactions.get("budget", None)
self.save()
self.transactions.all().delete()
self._create_transactions(transactions=transactions["transactions"])
self.update_accounts()
def update_accounts(self):
source_accounts = self.get_source_accounts()
destination_accounts = self.get_destination_accounts()
self.source_accounts = [
{"account": account.name, "slug": account.slug, "type": account.get_type_display(), "link_type": account.type, "icon": account.icon}
for account in source_accounts
]
self.destination_accounts = [
{"account": account.name, "slug": account.slug, "type": account.get_type_display(), "link_type": account.type, "icon": account.icon}
for account in destination_accounts
]
self.amount = self.transactions.first().amount
if self.type == self.TransactionType.WITHDRAWAL:
self.amount = self.transactions.get(amount__lte=0).amount
if self.type == self.TransactionType.DEPOSIT or type == self.TransactionType.TRANSFER:
self.amount = self.transactions.get(amount__gte=0).amount
if self.type == self.TransactionType.TRANSFER:
self.amount = abs(self.amount)
self.save()
def get_source_accounts(self):
accounts = Account.objects.filter(transactions__journal=self, transactions__amount__lte=0).distinct()
return [account for account in accounts]
def get_destination_accounts(self):
accounts = Account.objects.filter(transactions__journal=self, transactions__amount__gte=0).distinct()
return [account for account in accounts]
class Transaction(models.Model):
account = models.ForeignKey(Account, on_delete=models.SET_NULL, blank=True, null=True, related_name="transactions")
amount = MoneyField("amount", max_digits=15, decimal_places=2, default_currency=get_default_currency(), default=0)
foreign_amount = MoneyField(
"foreign amount", max_digits=15, decimal_places=2, default_currency=get_default_currency(), default=0, blank=True, null=True
)
uuid = models.UUIDField("UUID", default=uuid.uuid4, editable=False, db_index=True, unique=True)
journal = models.ForeignKey(TransactionJournal, on_delete=models.CASCADE, related_name="transactions")
created = models.DateTimeField(auto_now_add=True)
modified = models.DateTimeField(auto_now=True)
def __str__(self):
return self.journal.short_description | StarcoderdataPython |
1637667 | <gh_stars>0
# Generated by Django 2.2 on 2020-09-20 00:18
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('users', '0002_auto_20200919_2337'),
]
operations = [
migrations.AddField(
model_name='machines',
name='instance_name',
field=models.TextField(default=0),
preserve_default=False,
),
]
| StarcoderdataPython |
15534 | def lcs(x, y):
"""
Longest Common Subsequence
"""
n = len(x) + 1
m = len(y) + 1
table = [ [0]*m for i in range(n) ]
for i in range(n):
for j in range(m):
# If either string is empty, then lcs = 0
if i == 0 or j == 0:
table[i][j] = 0
elif x[i - 1] == y[j - 1]:
table[i][j] = 1 + table[i-1][j-1]
else:
table[i][j] = max(table[i-1][j], table[i][j-1])
return table[len(x)][len(y)]
if __name__ == '__main__':
x = "AGGTAB"
y = "GXTXAYB"
print lcs(x, y)
| StarcoderdataPython |
81043 | #
# @lc app=leetcode id=4 lang=python3
#
# [4] Median of Two Sorted Arrays
#
# https://leetcode.com/problems/median-of-two-sorted-arrays/description/
#
# algorithms
# Hard (30.86%)
# Likes: 9316
# Dislikes: 1441
# Total Accepted: 872.2K
# Total Submissions: 2.8M
# Testcase Example: '[1,3]\n[2]'
#
# Given two sorted arrays nums1 and nums2 of size m and n respectively, return
# the median of the two sorted arrays.
#
#
# Example 1:
#
#
# Input: nums1 = [1,3], nums2 = [2]
# Output: 2.00000
# Explanation: merged array = [1,2,3] and median is 2.
#
#
# Example 2:
#
#
# Input: nums1 = [1,2], nums2 = [3,4]
# Output: 2.50000
# Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
#
#
# Example 3:
#
#
# Input: nums1 = [0,0], nums2 = [0,0]
# Output: 0.00000
#
#
# Example 4:
#
#
# Input: nums1 = [], nums2 = [1]
# Output: 1.00000
#
#
# Example 5:
#
#
# Input: nums1 = [2], nums2 = []
# Output: 2.00000
#
#
#
# Constraints:
#
#
# nums1.length == m
# nums2.length == n
# 0 <= m <= 1000
# 0 <= n <= 1000
# 1 <= m + n <= 2000
# -10^6 <= nums1[i], nums2[i] <= 10^6
#
#
#
# Follow up: The overall run time complexity should be O(log (m+n)).
#
# @lc code=start
class Solution_QuickSelect:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums = nums1[:] + nums2[:]
length = len(nums)
if length % 2 == 0:
return (self._quick_select(nums, 0, length - 1, length // 2 + 1) + self._quick_select(nums, 0, length - 1, (length - 1) // 2 + 1)) / 2
else:
return self._quick_select(nums, 0, length - 1, length // 2 + 1)
def _quick_select(self, nums, start, end, k):
left, right = start, end
pivot = nums[(left + right) // 2]
while left <= right:
while left <= right and nums[left] > pivot:
left += 1
while left <= right and nums[right] < pivot:
right -= 1
if left <= right:
nums[left], nums[right] = nums[right], nums[left]
left += 1
right -= 1
if start + k - 1 <= right:
return self._quick_select(nums, start, right, k)
if start + k - 1 >= left:
return self._quick_select(nums, left, end, k - (left - start))
return nums[right + 1]
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
if len(nums1) > len(nums2):
return self.findMedianSortedArrays(nums2, nums1)
l1, l2 = len(nums1), len(nums2)
left, right = 0, l1
while left <= right:
position_x = (left + right) // 2
position_y = (l1 + l2 + 1) // 2 - position_x
max_left_x = nums1[position_x - 1] if position_x != 0 else float('-inf')
max_left_y = nums2[position_y - 1] if position_y != 0 else float('-inf')
min_right_x = nums1[position_x] if position_x < l1 else float('inf')
min_right_y = nums2[position_y] if position_y < l2 else float('inf')
if (max_left_x <= min_right_y and max_left_y <= min_right_x):
# we found the partition
if (l1 + l2) % 2 == 0:
return (max(max_left_x, max_left_y) + min(min_right_x, min_right_y)) / 2
else:
return max(max_left_x, max_left_y)
elif max_left_x > min_right_y:
# we should move left
right = position_x - 1
else:
left = position_x + 1
return 0
# @lc code=end
| StarcoderdataPython |
1732204 | import logging
from typing import List
from opyoid.bindings import Binding, BindingToProviderAdapter, ClassBindingToProviderAdapter, \
InstanceBindingToProviderAdapter, MultiBindingToProviderAdapter, ProviderBindingToProviderAdapter, \
SelfBindingToProviderAdapter
from opyoid.bindings.registered_binding import RegisteredBinding
from opyoid.exceptions import BindingError
from opyoid.injection_context import InjectionContext
from opyoid.injection_state import InjectionState
from opyoid.provider import Provider
from opyoid.utils import InjectedT
class FromRegisteredBindingProviderFactory:
"""Creates Providers, one per binding."""
logger = logging.getLogger(__name__)
def __init__(self) -> None:
self._binding_to_provider_adapters: List[BindingToProviderAdapter] = [
SelfBindingToProviderAdapter(),
InstanceBindingToProviderAdapter(),
ClassBindingToProviderAdapter(),
ProviderBindingToProviderAdapter(),
MultiBindingToProviderAdapter(self),
]
def create(self,
binding: RegisteredBinding[Binding[InjectedT]],
context: InjectionContext[InjectedT],
cache_provider: bool = True) -> Provider[InjectedT]:
module_path = binding.source_path
while module_path:
state = context.injection_state
if module_path[0] not in state.state_by_module:
state.state_by_module[module_path[0]] = InjectionState(
state.provider_creator,
module_path[0].binding_registry,
state.options,
state,
)
context = context.get_new_state_context(state.state_by_module[module_path[0]])
module_path = module_path[1:]
if cache_provider:
return context.get_provider()
return self._create_from_binding(binding, context)
def _create_from_binding(self,
binding: RegisteredBinding[Binding[InjectedT]],
context: InjectionContext[InjectedT]) -> Provider[InjectedT]:
for adapter in self._binding_to_provider_adapters:
if adapter.accept(binding.raw_binding, context):
return adapter.create(binding, context)
raise BindingError(f"Could not find a BindingToProviderAdapter for {binding!r}")
| StarcoderdataPython |
1776199 | <filename>Modulo1/script/hola.py
# control + s -> guardar cambios
# control + n -> crear nuevo archivo
nombre = input("Introduce tu nombre: ")
num = int(input("Ingrese un numero entero: "))
# print("valor de numero es: " + num)
print("Hola de nuevo {} de edad {}".format(nombre, num))
print(f"Hola por tercera vez {nombre} y tienes {num} aรฑos") | StarcoderdataPython |
1684857 | <filename>pysaint/api.py
"""
End User๋ฅผ ์ํ ๊ฐ๋จํ api
"""
from .constants import Line
from .saint import Saint
import copy
from tqdm import tqdm
from datetime import datetime
def get(course_type, year_range, semesters, line=Line.FIVE_HUNDRED, **kwargs):
"""
THIS IS THE END POINT OF pysaint API
USAGE::
>>> import pysaint
>>> res = pysaint.get('์ ๊ณต', ['2018'], ['2 ํ๊ธฐ'])
>>> print(res)
>>> res = pysaint.get('๊ต์ํ์', range(2015, 2017), ['1 ํ๊ธฐ', '์ฌ๋ฆํ๊ธฐ', '2 ํ๊ธฐ', '๊ฒจ์ธํ๊ธฐ'])
>>> print(res)
>>> res = pysaint.get('๊ต์์ ํ', (2016, 2017, 2018), ('1 ํ๊ธฐ', ))
>>> print(res)
>>> res = pysaint.get('์ ๊ณต', ['2018'], ['2 ํ๊ธฐ'], line=200)
>>> print(res)
:param course_type:
:type course_type: str
example )
'๊ต์ํ์'
'์ ๊ณต'
'์ฐ๊ณ์ ๊ณต'
'๊ต์์ ํ'
'๊ต์ง'
'์ฑํ'
:param year_range:
:type year_range: list or tuple or range or str or int
example )
'2018'
['2018']
[2018]
['2017', '2018']
[2017, 2018]
(2015, 2016, 2017)
('2016', '2017', '2018')
range(2015, 2019)
:param semesters:
:type semesters: list or tuple or str
example )
'1 ํ๊ธฐ'
['1 ํ๊ธฐ', '์ฌ๋ฆํ๊ธฐ', '2 ํ๊ธฐ', '๊ฒจ์ธํ๊ธฐ']
('1 ํ๊ธฐ', '2 ํ๊ธฐ', )
:param line:
:type line: int
example )
10
20
50
100
200
500
:param silent: decide progress bar silent or not
:return: dict
"""
if type(year_range) not in (tuple, list, range, str, int):
raise ValueError("get() got wrong arguments year_range: {}\n"
"expected tuple type or list, or range type but got {} type".format(year_range, type(year_range)))
if type(semesters) not in (tuple, list, str):
raise ValueError("get() got wrong arguments semesters: {}\n"
"expected tuple type or list type but got {} type".format(semesters, type(semesters)))
if type(year_range) in (str, int):
year_range = [year_range]
if type(semesters) is str:
semesters = [semesters]
if not Line.has_value(line):
raise ValueError("get() got wrong arguments line: {}\n"
"line should be one of {}".format(line, Line.list()))
reformed_year_range = []
current_year = datetime.now().year
for year in year_range:
if 2000 < int(year) <= current_year:
pass
else:
raise ValueError("get() got wrong arguments year_range: {}\n"
"expected to be in year range(2000, 2021) but got {}".format(year_range, int(year)))
reformed_year_range.append("{}".format(year))
if course_type == '๊ต์ํ์':
return _liberal_arts(year_range=reformed_year_range, semesters=semesters, line=line, **kwargs)
elif course_type == '์ ๊ณต':
return _major(year_range=reformed_year_range, semesters=semesters, line=line,**kwargs)
elif course_type == '๊ต์์ ํ':
return _selective_liberal(year_range=reformed_year_range, semesters=semesters, line=line, **kwargs)
elif course_type == '์ฐ๊ณ์ ๊ณต':
return _related_major(year_range=reformed_year_range, semesters=semesters, line=line, **kwargs)
elif course_type == '์ตํฉ์ ๊ณต':
return _fusion_major(year_range=reformed_year_range, semesters=semesters, line=line, **kwargs)
elif course_type == '๊ต์ง':
return _teaching(year_range=reformed_year_range, semesters=semesters, line=line, **kwargs)
elif course_type == '์ฑํ':
return _chapel(year_range=reformed_year_range, semesters=semesters, line=line, **kwargs)
else:
raise ValueError("get() got wrong arguments course_type: {} \n"
"expected to get '๊ต์ํ์', '์ ๊ณต', '๊ต์์ ํ'".format(course_type))
def grade(id, password=None):
"""
get grade card from saint.ssu.ac.kr
:param id: student id
e.g.) 2015xxxx
:param password: <PASSWORD>
:return:
list
"""
saint = login(id, password)
grade_card = saint.get_grade()
return grade_card
def _liberal_arts(year_range=[], semesters=[], line=int(Line.FIVE_HUNDRED), silent=False):
"""
๊ต์ํ์ ๊ณผ๋ชฉ๋ค์ ํ๊ธฐ ๋จ์๋ก ๋ฌถ์ด์ ๋ฐํํ๋ค.
:param year_range:
:type year_range: list or tuple
example input )
[2013, 2014, 2015, 2016, 2017, 2018]
or
(2017, 2018)
:param semesters:
:type semesters: list or tuple
example input )
['1 ํ๊ธฐ', '์ฌ๋ฆํ๊ธฐ', '2 ํ๊ธฐ', '๊ฒจ์ธํ๊ธฐ']
or
('1 ํ๊ธฐ')
:param line:
:type line: int
example )
10
20
50
100
200
500
:return:
{
2013: {
'์ ์ฒดํ๋
': {
'CHAPEL': [
{
dictionary which has
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)',
'์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)', '๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ',
'๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
',
'๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์',
'์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
],
'์ปดํจํฐํ์ฉ1(Excel)': [],
'์ปดํจํฐํ์ฉ2(PPT)': [],
'Practical Reading ๏ผ Writing': [],
'ํ๋์ธ๊ณผ์ฑ์2': []
}
}
'1ํ๋
': {...},
'2ํ๋
': {...},
'3ํ๋
': {...},
'4ํ๋
': {...},
'5ํ๋
': {...}
},
year: {
grade: {
course_name: [] <- list which has dictionaries as it's elements
}
}
}
"""
ret = {year: {} for year in year_range}
saint = Saint()
saint.select_course_section('๊ต์ํ์')
def __get_whole_course(year, semester, _line=line):
saint.select_year(year)
saint.select_semester(semester)
saint.select_line(_line)
liberal_map = saint.get_liberal_arts_map()
course_map = {name: [] for name in liberal_map}
pbar = tqdm(liberal_map, disable=silent)
for course_name in pbar:
pbar.set_description("Processing {:8s}".format(course_name))
course_map[course_name] = saint.select_on_liberal_arts(course_name)
return course_map
year_bar = tqdm(year_range, disable=silent)
for year in year_bar:
year_bar.set_description("Year: {:4s}".format(year))
semester_bar = tqdm(semesters, disable=silent)
for semester in semester_bar:
semester_bar.set_description("Semester: {:6s}".format(semester))
course_bunch = __get_whole_course(year, semester)
ret[year][semester] = course_bunch
return ret
def _major(year_range=[], semesters=[], line=Line.FIVE_HUNDRED, silent=False):
"""
์ ๊ณต ๊ณผ๋ชฉ๋ค์ ํ๊ธฐ ๋จ์๋ก ๋ฌถ์ด์ ๋ฐํํ๋ค.
:param year_range:
:type year_range: list or tuple
:param semesters:
:type semesters: list or tuple
:param line:
:type line: int
:return:
{
'2017': {
'1 ํ๊ธฐ': {
'์ธ๋ฌธ๋ํ': {
'์ค์ด์ค๋ฌธํ๊ณผ': {
'์ค์ด์ค๋ฌธํ๊ณผ': [
{
'๊ณํ': '\xa0',
'์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)': '์ ์ -์ค๋ฌธ',
'์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)': '๋ณต์ -์ค๋ฌธ/๋ถ์ -์ค๋ฌธ',
'๊ณตํ์ธ์ฆ': '\xa0',
'๊ต๊ณผ์์ญ': '7+1๊ต๊ณผ๋ชฉ\n์ธํด์ฝ(์ฅ๊ธฐ๊ณผ์ )\n์ธํด์ฝ',
'๊ณผ๋ชฉ๋ฒํธ': '5010611601',
'๊ณผ๋ชฉ๋ช
': '๊ตญ๋ด์ฅ๊ธฐํ์ฅ์ค์ต(3)',
'๋ถ๋ฐ': '\xa0',
'๊ต์๋ช
': '\xa0',
'๊ฐ์คํ๊ณผ': '๊ฒฝ๋ ฅ๊ฐ๋ฐํ',
'์๊ฐ/ํ์ (์ค๊ณ)': '3.00 /3',
'์๊ฐ์ธ์': '1',
'์ฌ์': '199',
'๊ฐ์์๊ฐ(๊ฐ์์ค)': '\xa0',
'์๊ฐ๋์': '์ ์ฒด'
},
{
...
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)', '์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)', '๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ',
'๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
', '๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์',
'์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
]
},
'๊ตญ์ด๊ตญ๋ฌธํ๊ณผ': {},
'์ผ์ด์ผ๋ฌธํ๊ณผ': {},
'์์ด์๋ฌธํ๊ณผ': {},
'๋ถ์ด๋ถ๋ฌธํ๊ณผ': {},
'์ฒ ํ๊ณผ': {},
'์ฌํ๊ณผ': {},
'๊ธฐ๋
๊ตํ๊ณผ': {},
},
'์์ฐ๊ณผํ๋ํ': {},
'๋ฒ๊ณผ๋ํ': {},
'์ฌํ๊ณผํ๋ํ': {},
'๊ฒฝ์ ํต์๋ํ': {},
'๊ฒฝ์๋ํ': {},
'๊ณต๊ณผ๋ํ': {},
'IT๋ํ': {},
'๋ฒ ์ด๋ํ๋ถ๋ํ': {},
'์์ ์ฐฝ์ํ๋ถ': {},
'์คํฌ์ธ ํ๋ถ': {},
'์ตํฉํน์ฑํ์์ ์ ๊ณตํ๋ถ': {}
}
},
'year': {
'semester': {
'college': {
'faculty': {
'major': [
{
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)', '์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)', '๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ',
'๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
', '๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์',
'์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
]
}
}
}
}
}
"""
ret = {year: {} for year in year_range}
saint = Saint()
def __get_whole_course(year, semester, _line=line):
saint.select_year(year)
saint.select_semester(semester)
saint.select_line(_line)
major_map = saint.get_major_map()
course_map = copy.deepcopy(major_map)
for college in major_map:
for faculty in major_map[college]:
course_map[college][faculty] = {key: [] for key in major_map[college][faculty]}
college_bar = tqdm(major_map, disable=silent)
for college in college_bar:
college_bar.set_description("Processing {:8s}".format(college))
faculty_bar = tqdm(major_map[college], disable=silent)
for faculty in faculty_bar:
faculty_bar.set_description_str("Processing {:8s}".format(faculty))
for major in major_map[college][faculty]:
course_map[college][faculty][major] = saint.select_on_major(college, faculty, major)
return course_map
year_bar = tqdm(year_range, disable=silent)
for year in year_bar:
year_bar.set_description("Year: {:4}".format(year))
semester_bar = tqdm(semesters, disable=silent)
for semester in semester_bar:
semester_bar.set_description_str("Semester: {:6}".format(semester))
course_bunch = __get_whole_course(year, semester)
ret[year][semester] = course_bunch
return ret
def _selective_liberal(year_range=[], semesters=[], line=Line.FIVE_HUNDRED, silent=False):
"""
๊ต์์ ํ ๊ณผ๋ชฉ๋ค์ ํ๊ธฐ ๋จ์๋ก ๋ฌถ์ด์ ๋ฐํํ๋ค.
:param year_range:
:param semesters:
:param line:
:return: dict
{
2017: {
'1 ํ๊ธฐ': {
์ ์ฒด: [
{
'๊ณํ': '\xa0',
'์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)': '๊ต์ ',
'์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)': '\xa0',
'๊ณตํ์ธ์ฆ': '\xa0',
'๊ต๊ณผ์์ญ': '*์ธ๊ณ์์ธ์ด(ํต์ฌ-์ฐฝ์)\n(๊ธฐ์ด์ญ๋-๊ตญ์ ์ด๋ฌธ)์์ด',
'๊ณผ๋ชฉ๋ฒํธ': '2150017601',
'๊ณผ๋ชฉ๋ช
': 'Advanced Writing and speaking English I',
'๋ถ๋ฐ': '\xa0',
'๊ต์๋ช
': '์ด์ข
์ผ\n์ด์ข
์ผ\n์ด์ข
์ผ',
'๊ฐ์คํ๊ณผ': '๋ฒค์ฒ๊ฒฝ์ํ๊ณผ(๊ณ์ฝํ๊ณผ)',
'์๊ฐ/ํ์ (์ค๊ณ)': '3.00 /3',
'์๊ฐ์ธ์': '11',
'์ฌ์': '39',
'๊ฐ์์๊ฐ(๊ฐ์์ค)': '์ 19:00-19:50 (์กฐ๋ง์๊ธฐ๋
๊ด 12530-์ด์ข
์ผ)\n์ 20:00-20:50 (์กฐ๋ง์๊ธฐ๋
๊ด 12530-์ด์ข
์ผ)\n์ 21:00-21:50 (์กฐ๋ง์๊ธฐ๋
๊ด 12530-์ด์ข
์ผ)',
'์๊ฐ๋์': '์ ์ฒดํ๋
๋ฒค์ฒ๊ฒฝ์ํ๊ณผ(๊ณ์ฝํ๊ณผ) (๋์์ธ์๊ฐ์ ํ)(๋์์ธ์๊ฐ์ ํ)'
},
{
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)', '์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)',
'๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ', '๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
',
'๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์', '์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
]
*๋ฌธํ๊ณผ ์์ (์ตํฉ-์ธ๋ฌธ): []
*์ญ์ฌ์์ฒ ํ(์ตํฉ-์ธ๋ฌธ): []
*์ ๋ณด์๊ธฐ์ (์ตํฉ-์์ฐ): []
*์ฐฝ์์ฑ๊ณผ์์ฌ์ํต๋ฅ๋ ฅ(ํต์ฌ-์ฐฝ์): []
*์ธ๊ณ์์ธ์ด(ํต์ฌ-์ฐฝ์): []
*์ธ๊ณ์๋ฌธํ์๊ตญ์ ๊ด๊ณ(ํต์ฌ-์ฐฝ์): []
*์ธ๊ฐ๊ณผ์ฌํ(์ตํฉ-์ฌํ): []
*์ ์น์๊ฒฝ์ (์ตํฉ-์ฌํ): []
*์์ฐ๊ณผํ๊ณผ์๋ฆฌ(์ตํฉ-์์ฐ): []
*์ํ๊ณผ๊ฑด๊ฐ(์ค์ฉ-์ํ): []
*ํ๋ฌธ๊ณผ์ง๋กํ์(์ค์ฉ-์ํ): []
*์ธ์ฑ๊ณผ๋ฆฌ๋์ฝ(ํต์ฌ-์ฐฝ์): []
์ญ์คํ์ฑ(์ธ์ฑ-์ข
๊ต๊ฐ์น์ธ์ฑ๊ต์ก): []
์ญ์คํ์ฑ(์ธ์ฑ-๊ฐ์น๊ด๋ฐ์ค๋ฆฌ๊ต์ก): []
์ญ์คํ์ฑ(์ธ์ฑ-๊ณต๋์ฒด์ธ์ฑ๊ต์ก): []
์ญ์คํ์ฑ(๋ฆฌ๋์ญ-ํต์ผ๋ฆฌ๋์ญ): []
์ญ์คํ์ฑ(๋ฆฌ๋์ญ-๋ฆฌ๋์ญ์ด๋ก ๋ฐ์ค์ฒ): []
๊ธฐ์ด์ญ๋(์ฌ๊ณ ๋ ฅ-๋
ผ๋ฆฌ๋ฐ๋นํ์ ์ฌ๊ณ ): []
๊ธฐ์ด์ญ๋(์ฌ๊ณ ๋ ฅ-์ฐฝ์๋ฐ์ตํฉ์ ์ฌ๊ณ ): []
๊ธฐ์ด์ญ๋(์ฌ๊ณ ๋ ฅ-์๋ฆฌ์ ์ฌ๊ณ ): []
๊ธฐ์ด์ญ๋(ํ๊ตญ์ด์์ฌ์ํต-์ฝ๊ธฐ์์ฐ๊ธฐ): []
๊ธฐ์ด์ญ๋(ํ๊ตญ์ด์์ฌ์ํต-์์ฌ์ํต): []
(๊ธฐ์ด์ญ๋-๊ตญ์ ์ด๋ฌธ)์์ด: []
๊ธฐ์ด์ญ๋(๊ตญ์ ์ด๋ฌธ-๊ตญ์ ์ด): []
๊ธฐ์ด์ญ๋(๊ตญ์ ์ด๋ฌธ-๊ณ ์ ์ด๋ฌธ ): []
๊ธฐ์ด์ญ๋(๊ณผํ์ ๋ณด๊ธฐ์ -๊ณผํ): []
๊ธฐ์ด์ญ๋(๊ณผํ์ ๋ณด๊ธฐ์ -์ ๋ณด๊ธฐ์ ): []
๊ท ํ๊ต์(์ธ๋ฌธํ-๋ฌธํ/์ดํ/์์ ): []
๊ท ํ๊ต์(์ธ๋ฌธํ-์ญ์ฌ): []
๊ท ํ๊ต์(์ธ๋ฌธํ-์ฒ ํ/์ฌ์): []
๊ท ํ๊ต์(์ฌํ๊ณผํ-์ฌํ/์ ์น/๊ฒฝ์ ): []
๊ท ํ๊ต์(์ฌํ๊ณผํ-๋ฌธํ๋ฐ๋ฌธ๋ช
): []
๊ท ํ๊ต์(์์ฐ๊ณผํ-์์ฐ๊ณผํ): []
์ค์ฉ๊ต์(๊ฐ์ธ๊ณผ๊ฐ์กฑ์ํ): []
์ค์ฉ๊ต์(๊ฒฝ์ ๊ฒฝ์): []
์ค์ฉ๊ต์(๊ณต๊ณต์ํ): []
์ค์ฉ๊ต์(๊ธฐ์ ์ํ): []
์ค์ฉ๊ต์(์๊ธฐ๊ฐ๋ฐ๊ณผ์ง๋กํ์)
}
},
year: {
'semester': {
'section': [
{
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)', '์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)',
'๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ', '๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
',
'๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์', '์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
]
}
}
}
"""
ret = {year: {} for year in year_range}
saint = Saint()
saint.select_course_section('๊ต์์ ํ')
# is this necessary job?
saint.select_year('2017')
saint.select_semester('2 ํ๊ธฐ')
def __get_whole_course(year, semester, _line=line):
saint.select_year(year)
saint.select_semester(semester)
saint.select_line(_line)
selective_map = saint.get_selective_liberal_map()
course_map = {course_name: {} for course_name in selective_map}
pbar = tqdm(selective_map, disable=silent)
for course_name in pbar:
pbar.set_description("Processing {:8s}".format(course_name))
if course_name != '':
course_map[course_name] = saint.select_on_selective_liberal(course_name)
return course_map
year_bar = tqdm(year_range, disable=silent)
for year in year_bar:
year_bar.set_description("Year: {:4s}".format(year))
semester_bar = tqdm(semesters, disable=silent)
for semester in semester_bar:
semester_bar.set_description("semester: {:6s}".format(semester))
course_bunch = __get_whole_course(year, semester)
ret[year][semester] = course_bunch
return ret
def _related_major(year_range=[], semesters=[], line=Line.FIVE_HUNDRED, silent=False):
"""
๊ต์์ ํ ๊ณผ๋ชฉ๋ค์ ํ๊ธฐ ๋จ์๋ก ๋ฌถ์ด์ ๋ฐํํ๋ค.
:param year_range:
:param semesters:
:param line:
:return: dict
{
2017: {
'1 ํ๊ธฐ': {
"์ค๊ตญ์ด๊ฒฝ์ ๊ตญ์ ํต์์ฐ๊ณ์ ๊ณต": [
{
"๊ณํ": "ย ",
"์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)": "์ ์ -๊ฒฝ์ ",
"์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)": "๋ณต์ -๊ฒฝ์ /๋ถ์ -๊ฒฝ์ /์ฐ๊ณ2-๋ฒค์ฒ์๋ณธ๊ฒฝ์ ํ/์ฐ๊ณ2-์ผ๋ณธ์ด๊ฒฝ์ ํต์/์ฐ๊ณ2-์ค๊ตญ์ด๊ฒฝ์ ํต์",
"๊ณตํ์ธ์ฆ": "ย ",
"๊ต๊ณผ์์ญ": "ย ",
"๊ณผ๋ชฉ๋ฒํธ": "2150191901",
"๊ณผ๋ชฉ๋ช
": "๊ณต๊ณต๊ฒฝ์ ํ(์ค์๊ฐํ์๊ฐ์) (์จ๋ผ์ธ)",
"๋ถ๋ฐ": "ย ",
"๊ต์๋ช
": "์ฐ์งํฌ\n์ฐ์งํฌ",
"๊ฐ์คํ๊ณผ": "๊ฒฝ์ ํ๊ณผ",
"์๊ฐ/ํ์ (์ค๊ณ)": "3.00 /3.0 (0 )",
"์๊ฐ์ธ์": "0",
"์ฌ์": "35",
"๊ฐ์์๊ฐ(๊ฐ์์ค)": "์ 15:00-16:15 (-์ฐ์งํฌ)\n์ 13:30-14:45 (์ญ๋๊ฒฝ์๊ด 02109-์ฐ์งํฌ)",
"์๊ฐ๋์": "3ํ๋
๊ฒฝ์ ,๋ฒค์ฒ์๋ณธ๊ฒฝ์ ํ,์ผ๋ณธ์ด๊ฒฝ์ ํต์,์ค๊ตญ์ด๊ฒฝ์ ํต์"
}
]
์ผ๋ณธ์ด๊ฒฝ์ ๊ตญ์ ํต์์ฐ๊ณ์ ๊ณต: []
๊ธ์ต๊ณตํยท๋ณดํ๊ณ๋ฆฌ์ฐ๊ณ์ ๊ณต: []
์์ดยท์ค๊ตญ์ด์ฐ๊ณ์ ๊ณต: []
PreMed์ฐ๊ณ์ ๊ณต: []
๋ฒค์ฒ์๋ณธ๊ฒฝ์ ํ์ฐ๊ณ์ ๊ณต: []
๋ณดํ๊ณ๋ฆฌยท๋ฆฌ์คํฌ์ฐ๊ณ์ ๊ณต: []
์ตํฉ์ฐฝ์
์ฐ๊ณ: []
}
},
year: {
'semester': {
'section': [
{
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)', '์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)',
'๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ', '๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
',
'๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์', '์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
]
}
}
}
"""
ret = {year: {} for year in year_range}
saint = Saint()
saint.select_course_section('์ฐ๊ณ์ ๊ณต')
# is this necessary job?
saint.select_year('2017')
saint.select_semester('2 ํ๊ธฐ')
def __get_whole_course(year, semester, _line=line):
saint.select_year(year)
saint.select_semester(semester)
saint.select_line(_line)
related_major_map = saint.get_related_major_map()
course_map = {course_name: {} for course_name in related_major_map}
pbar = tqdm(related_major_map, disable=silent)
for course_name in pbar:
pbar.set_description("Processing {:8s}".format(course_name))
if course_name != '':
course_map[course_name] = saint.select_on_related_major(course_name)
return course_map
year_bar = tqdm(year_range, disable=silent)
for year in year_bar:
year_bar.set_description("Year: {:4s}".format(year))
semester_bar = tqdm(semesters, disable=silent)
for semester in semester_bar:
semester_bar.set_description("semester: {:6s}".format(semester))
course_bunch = __get_whole_course(year, semester)
ret[year][semester] = course_bunch
return ret
def _fusion_major(year_range=[], semesters=[], line=Line.FIVE_HUNDRED, silent=False):
"""
์ตํฉ์ ๊ณต ๊ณผ๋ชฉ๋ค์ ํ๊ธฐ ๋จ์๋ก ๋ฌถ์ด์ ๋ฐํํ๋ค.
:param year_range:
:param semesters:
:param line:
:return: dict
{
2021: {
'1 ํ๊ธฐ': {
"๋น
๋ฐ์ดํฐ์ตํฉ": [
{
"๊ณํ": "ย ",
"์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)": "์ ํ-์ํํธ",
"์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)": "๋ณตํ-์ํํธ/์ต์ -๋น
๋ฐ์ดํฐ์ตํฉ",
"๊ณตํ์ธ์ฆ": "๊ณตํ์ฃผ์ -์ํํธ๊ณต์ธ์ฆ/์ธํ-์ํํธ๊ณต์ธ์ฆ",
"๊ต๊ณผ์์ญ": "ย ",
"๊ณผ๋ชฉ๋ฒํธ": "2150013201",
"๊ณผ๋ชฉ๋ช
": "๋ฐ์ดํฐ๋ฒ ์ด์ค(์ค์๊ฐํ์+์ฌ์ ๋
นํ๊ฐ์) (์จ๋ผ์ธ) ( ๊ฐ๋ฐ )",
"๋ถ๋ฐ": "ย ",
"๊ต์๋ช
": "ย ",
"๊ฐ์คํ๊ณผ": "์ํํธ์จ์ดํ๋ถ",
"์๊ฐ/ํ์ (์ค๊ณ)": "3.00 /3.0",
"์๊ฐ์ธ์": "0",
"์ฌ์": "40",
"๊ฐ์์๊ฐ(๊ฐ์์ค)": "์ 15:00-16:15 (-)",
"์๊ฐ๋์": "3ํ๋
์ํํธ,๋น
๋ฐ์ดํฐ์ตํฉ"
}
]
๋น
๋ฐ์ดํฐ์ปดํจํ
์ตํฉ: []
์ค๋งํธ์์ฌ/์ ํ์ตํฉ: []
์ค๋งํธ์ด๋์ฒด์ตํฉ: []
์์๋๋
ธ์ตํฉ: []
์๋์ง๊ณตํ์ตํฉ: []
ํต์ผ์ธ๊ต๋ฐ๊ฐ๋ฐํ๋ ฅ์ตํฉ: []
์ค๋งํธ์๋์ฐจ์ตํฉ: []
์ ๋ณด๋ณดํธ์ตํฉ: []
ICT์ ํต๋ฌผ๋ฅ์ตํฉ: []
๋ฌธํ์๋น์ค์ฐ์
์ตํฉ: []
์คํฌ์ธ ๋ง์ผํ
์ตํฉ: []
์ฌ๋ฌผ์ธํฐ๋ท์์คํ
์ตํฉ: []
๊ณผํ์ฒ ํ์ตํฉ: []
์ธ๊ฐ๋ฐ์ฌํํต์ญ์ตํฉ: []
ํฌ์ค์ผ์ด๋น
๋ฐ์ดํฐ์ตํฉ: []
๋์์ธํ๋๋์ตํฉ: []
์ฌํ์ ๊ธฐ์
๊ณผ์ฌํํ์ ์ตํฉ: []
์คํฌ์ธ ๋งค๋์ง๋จผํธ์ตํฉ: []
IT์คํํธ์
์์
๋ฌ๋ ์ดํฐ์ตํฉ: []
AI๋ก๋ด์ตํฉ: []
๋ด๋ฏธ๋์ด์ฝํ
์ธ ์ตํฉ: []
๋ฌธํ์ฝํ
์ธ ๋น์ฆ๋์ค์ตํฉ: [],
์ฃผ๊ฑฐ๋ณต์ง๋์ํ์ ์ตํฉ: [],
๋ฉ์นดํธ๋ก๋์ค๊ณตํ์ตํฉ: [],
ํ๋ ์/์ฌํ์ด์๊ธฐํ์ตํฉ: [],
์ฌํ๊ณต๋์ฒดํ์ ์ตํฉ: [],
๋ค๋ฌํฐ๋ธ๋์งํธ์ํธ์ตํฉ: [],
์ฌํ๋ถ์๋ฐ์ดํฐ๋ง์ผํ
์ตํฉ: [],
ํจ์
๋ฏธ๋์ด๋ง์ผํ
์ตํฉ: [],
๊ตญ์ ๋์๊ณํโ
ํ์ ์ตํฉ: [],
ํ ํ๋์์ธ๋ธ๋๋ฉ์ตํฉ: [],
AI-์ธ์ง์ธ์ด์ตํฉ: [],
๋ด๋ฏธ๋์ด๋ง์ผํ
์ตํฉ: [],
๋์์์๊ฒฝ์ ํต์์ตํฉ: [
AI๋ชจ๋น๋ฆฌํฐ์ตํฉ: [],
์ค๋งํธ์์ ๋ณด๊ฑดํ๊ฒฝ์ตํฉ: [],
๋ฐ์ดํฐ๋ง์ผํ
์ตํฉ: [],
์ง์๊ฐ๋ฅ๋์์ธ์ตํฉ: []
}
},
year: {
'semester': {
'section': [
{
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)', '์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)',
'๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ', '๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
',
'๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์', '์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
]
}
}
}
"""
ret = {year: {} for year in year_range}
saint = Saint()
saint.select_course_section('์ตํฉ์ ๊ณต')
# is this necessary job?
saint.select_year('2017')
saint.select_semester('2 ํ๊ธฐ')
def __get_whole_course(year, semester, _line=line):
saint.select_year(year)
saint.select_semester(semester)
saint.select_line(_line)
fusion_major_map = saint.get_fusion_major_map()
course_map = {course_name: {} for course_name in fusion_major_map}
pbar = tqdm(fusion_major_map, disable=silent)
for course_name in pbar:
pbar.set_description("Processing {:8s}".format(course_name))
if course_name != '':
course_map[course_name] = saint.select_on_fusion_major(course_name)
return course_map
year_bar = tqdm(year_range, disable=silent)
for year in year_bar:
year_bar.set_description("Year: {:4s}".format(year))
semester_bar = tqdm(semesters, disable=silent)
for semester in semester_bar:
semester_bar.set_description("semester: {:6s}".format(semester))
course_bunch = __get_whole_course(year, semester)
ret[year][semester] = course_bunch
return ret
def _teaching(year_range=[], semesters=[], line=Line.FIVE_HUNDRED, silent=False):
"""
๊ต์ง ๊ณผ๋ชฉ๋ค์ ํ๊ธฐ ๋จ์๋ก ๋ฌถ์ด์ ๋ฐํํ๋ค.
:param year_range:
:param semesters:
:param line:
:return: dict
{
2021: {
'1 ํ๊ธฐ': {
"๊ต์ง": [
{
"๊ณํ": "ย ",
"์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)": "๊ต์ง",
"์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)": "ย ",
"๊ณตํ์ธ์ฆ": "ย ",
"๊ต๊ณผ์์ญ": "๊ต์ง์ด๋ก ์์ญ",
"๊ณผ๋ชฉ๋ฒํธ": "5011868701",
"๊ณผ๋ชฉ๋ช
": "๊ต์ก๊ณผ์ (์ค์๊ฐํ์๊ฐ์) (์จ๋ผ์ธ)",
"๋ถ๋ฐ": "ย ",
"๊ต์๋ช
": "์กฐํธ์ ",
"๊ฐ์คํ๊ณผ": "๊ต์งํ",
"์๊ฐ/ํ์ (์ค๊ณ)": "2.00 /2.0 (0 )",
"์๊ฐ์ธ์": "0",
"์ฌ์": "30",
"๊ฐ์์๊ฐ(๊ฐ์์ค)": "๊ธ 18:00-19:50 (-์กฐํธ์ )",
"์๊ฐ๋์": "์ ์ฒด"
}
]
}
},
year: {
'semester': {
'section': [
{
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)', '์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)',
'๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ', '๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
',
'๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์', '์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
]
}
}
}
"""
ret = {year: {} for year in year_range}
saint = Saint()
saint.select_course_section('๊ต์ง')
# is this necessary job?
saint.select_year('2017')
saint.select_semester('2 ํ๊ธฐ')
def __get_whole_course(year, semester, _line=line):
saint.select_year(year)
saint.select_semester(semester)
saint.select_line(_line)
teaching_map = ['๊ต์ง']
course_map = {course_name: {} for course_name in teaching_map}
pbar = tqdm(teaching_map, disable=silent)
for course_name in pbar:
pbar.set_description("Processing {:8s}".format(course_name))
if course_name != '':
course_map[course_name] = saint.select_on_teaching()
return course_map
year_bar = tqdm(year_range, disable=silent)
for year in year_bar:
year_bar.set_description("Year: {:4s}".format(year))
semester_bar = tqdm(semesters, disable=silent)
for semester in semester_bar:
semester_bar.set_description("semester: {:6s}".format(semester))
course_bunch = __get_whole_course(year, semester)
ret[year][semester] = course_bunch
return ret
def _chapel(year_range=[], semesters=[], line=Line.FIVE_HUNDRED, silent=False):
"""
์ฑํ ๊ณผ๋ชฉ๋ค์ ํ๊ธฐ ๋จ์๋ก ๋ฌถ์ด์ ๋ฐํํ๋ค.
:param year_range:
:param semesters:
:param line:
:return: dict
{
2021: {
'1 ํ๊ธฐ': {
"๊ต์์ํจ๊ปํ๋์ฑํ": [
{
"๊ณํ": "ย ",
"์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)": "์ฑํ",
"์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)": "ย ",
"๊ณตํ์ธ์ฆ": "ย ",
"๊ต๊ณผ์์ญ": "์ฑํ๊ณผ๋ชฉ",
"๊ณผ๋ชฉ๋ฒํธ": "2150051501",
"๊ณผ๋ชฉ๋ช
": "๊ต์์ํจ๊ปํ๋์ฑํ",
"๋ถ๋ฐ": "ย ",
"๊ต์๋ช
": "๊ฐ์๋",
"๊ฐ์คํ๊ณผ": "ํ์์ ๊ตํ",
"์๊ฐ/ํ์ (์ค๊ณ)": "1.00 /0.5",
"์๊ฐ์ธ์": "0",
"์ฌ์": "15",
"๊ฐ์์๊ฐ(๊ฐ์์ค)": "ํ 15:00-15:50 (์ง๋ฆฌ๊ด 11111-๊ฐ์๋)",
"์๊ฐ๋์": "์ ์ฒด"
}
],
"CHAPEL": []
}
},
year: {
'semester': {
'section': [
{
dict_keys(['๊ณํ', '์ด์๊ตฌ๋ถ(์ฃผ์ ๊ณต)', '์ด์๊ตฌ๋ถ(๋ค์ ๊ณต)',
'๊ณตํ์ธ์ฆ', '๊ต๊ณผ์์ญ', '๊ณผ๋ชฉ๋ฒํธ', '๊ณผ๋ชฉ๋ช
', '๋ถ๋ฐ', '๊ต์๋ช
',
'๊ฐ์คํ๊ณผ', '์๊ฐ/ํ์ (์ค๊ณ)', '์๊ฐ์ธ์', '์ฌ์', '๊ฐ์์๊ฐ(๊ฐ์์ค)', '์๊ฐ๋์'])
}
]
}
}
}
"""
ret = {year: {} for year in year_range}
saint = Saint()
saint.select_course_section('์ฑํ')
# is this necessary job?
saint.select_year('2017')
saint.select_semester('2 ํ๊ธฐ')
def __get_whole_course(year, semester, _line=line):
saint.select_year(year)
saint.select_semester(semester)
saint.select_line(_line)
chapel_map = saint.get_chapel_map()
course_map = {course_name: {} for course_name in chapel_map}
pbar = tqdm(chapel_map, disable=silent)
for course_name in pbar:
pbar.set_description("Processing {:8s}".format(course_name))
if course_name != '':
course_map[course_name] = saint.select_on_chapel(course_name)
return course_map
year_bar = tqdm(year_range, disable=silent)
for year in year_bar:
year_bar.set_description("Year: {:4s}".format(year))
semester_bar = tqdm(semesters, disable=silent)
for semester in semester_bar:
semester_bar.set_description("semester: {:6s}".format(semester))
course_bunch = __get_whole_course(year, semester)
ret[year][semester] = course_bunch
return ret
def _cyber(year_range=[], semesters=[], silent=False):
"""
TODO:
์๊ฐ๋๋ฉด ๋ง๋ค๊ธฐ
:param year_range:
:param semesters:
:return:
"""
def login(user_id, password=<PASSWORD>):
"""
log in saint.ssu.ac.kr
:param user_id: student id
:param password: <PASSWORD>
:return:
"""
if password is None:
import getpass
password = getpass.getpass("PASSWORD for {}: ".format(user_id))
else:
password = password
saint = Saint()
saint.login(user_id, password)
return saint
| StarcoderdataPython |
Subsets and Splits