id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
1639987
import pytest from ciphers import vignere def test_encrypt(): plaintext ="ATTACKATDAWN" key = "LEMON" assert vignere.encrypt(plaintext, key) == "LXFOPVEFRNHR" def test_decrypt(): ciphertext ="LXFOPVEFRNHR" key = "LEMON" assert vignere.decrypt(ciphertext, key) == "ATTACKATDAWN" def test_encypt_1(): """ Test w/ keylength of 1, should be identical to a shift of 1 """ plaintext = "ABCDEFG" key = "B" assert vignere.encrypt(plaintext, key) == "BCDEFGH" def test_decrypt_1(): """ Test w/ keylength of 1, should be identical to a shift of 1 """ plaintext = "BCDEFGH" key = "B" assert vignere.decrypt(plaintext, key) == "ABCDEFG" def test_non_alpha_text(): """ """ plaintext = "ATTACK AT DAWN" key = "LEMON" assert vignere.encrypt(plaintext, key) == "LXFOPV EF RNHR" assert vignere.decrypt("LXFOPV EF RNHR", key) == plaintext def test_non_alpha_key(): with pytest.raises(ValueError): vignere.encrypt("ATTACKATDAWN", "LEMON MELON") def test_non_cap_text(): """ """ plaintext = "attackatdawn" key = "LEMON" assert vignere.encrypt(plaintext, key) == "LXFOPVEFRNHR" assert vignere.decrypt("LXFOPVEFRNHR".lower(), key) == plaintext.upper() def test_non_cap_key(): """ """ plaintext = "ATTACKATDAWN" key = "lemon" assert vignere.encrypt(plaintext, key) == "LXFOPVEFRNHR" assert vignere.decrypt("LXFOPVEFRNHR".lower(), key) == plaintext
StarcoderdataPython
1776891
#!/usr/bin/env python import os import sys import unittest from random import randint from concurrent.futures import ProcessPoolExecutor, as_completed pkg_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) # noqa sys.path.insert(0, pkg_root) # noqa from getm.concurrent import SharedBufferArray def _write(sb_name, chunk_id, chunk_content): with SharedBufferArray(sb_name) as sb: sb[chunk_id][:] = chunk_content class TestSharedBufferArray(unittest.TestCase): def test_foo(self): num_chunks, chunk_size = 4, 5 expected = b"".join([os.urandom(chunk_size) for _ in range(num_chunks)]) with SharedBufferArray(chunk_size=chunk_size, num_chunks=num_chunks, create=True) as sb: with ProcessPoolExecutor(max_workers=num_chunks) as e: futures = [None] * num_chunks for i in range(num_chunks): chunk = expected[i * chunk_size: (i + 1) * chunk_size] futures[i] = e.submit(_write, sb.name, i, chunk) for f in as_completed(futures): f.result() self.assertEqual(expected, bytes(sb._shared_memory.buf[:num_chunks * chunk_size])) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1696304
<gh_stars>0 import torch import cv2 def time_synchronized(): torch.cuda.synchronize() if torch.cuda.is_available() else None return time.time() class VideoCamera(object): def __init__(self): global res; self.video = cv2.VideoCapture(sys.argv[1]) res = f"{int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH))} x {int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT))}" def __del__(self): self.video.release() cv2.destroyAllWindows() def get_frame(self): global fps; success, image = self.video.read() if success: t1 = time_synchronized() fps = f"{int((1./(time_synchronized()-t1)))}" ret, jpeg = cv2.imencode('.jpg', image) return jpeg.tobytes() else: return "Video is Completed !!!" def gen(camera): fps = 0.0 while True: frame = camera.get_frame() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n') @server.route('/video_feed') def video_feed(): return Response(gen(VideoCamera()), mimetype='multipart/x-mixed-replace; boundary=frame') # ---------------------------------------------------------------------------------------------------#
StarcoderdataPython
3205166
# -*- coding: UTF-8 -*- import M2Crypto from Crypto.PublicKey import RSA import base64 import sys #私钥加密 def pri_encrypt(msg, file_name): rsa_pri = M2Crypto.RSA.load_key(file_name) output = '' while msg: input = msg[:117] msg = msg[117:] out = rsa_pri.private_encrypt(input, M2Crypto.RSA.pkcs1_padding) #解密 output = output + out output64 = output.encode('base64') print('密文:\n%s' % output64) return output64 #公钥加密 def pub_encrypt(msg, file_name): rsa_pub = M2Crypto.RSA.load_pub_key(file_name) output = '' while msg: input = msg[:117] msg = msg[117:] out = rsa_pub.public_encrypt(input, M2Crypto.RSA.pkcs1_padding) #解密 output = output + out output64 = output.encode('base64') print('密文:\n%s' % output64) return output64 #公钥解密 def pub_decrypt_with_pubkeyfile(msg, file_name): rsa_pub = M2Crypto.RSA.load_pub_key(file_name) pub_decrypt(msg, rsa_pub) def pub_decrypt(msg, rsa_pub): ctxt_pri = msg.decode("base64") # 先将str转成base64 maxlength = 128 output = '' while ctxt_pri: input = ctxt_pri[:128] ctxt_pri = ctxt_pri[128:] out = rsa_pub.public_decrypt(input, M2Crypto.RSA.pkcs1_padding) #解密 output = output + out print('明文:%s'% output) #私钥解密 def pri_decrypt_with_prikeyfile(msg, file_name): rsa_pub = M2Crypto.RSA.load_key(file_name) pri_decrypt(msg, rsa_pub) def pri_decrypt(msg, rsa_pub): ctxt_pri = msg.decode("base64") # 先将str转成base64 maxlength = 128 output = '' while ctxt_pri: input = ctxt_pri[:128] ctxt_pri = ctxt_pri[128:] out = rsa_pub.private_decrypt(input, M2Crypto.RSA.pkcs1_padding) #解密 output = output + out print('明文:%s'% output) ################################################################################ if __name__ == "__main__": prikey_file = '/home/kiya/Desktop/rsa_private_key.pem' pubkey_file = '/home/kiya/Desktop/rsa_public_key.pem' msg = 'hello' pub_encrypt(msg,pubkey_file) # primsg = pri_encrypt(msg, prikey_file) # pub_decrypt_with_pubkeyfile(primsg, pubkey_file)
StarcoderdataPython
3328037
<gh_stars>0 import json from data_visualysis import DataModeler def main(): filename = 'covid_turkey.json' with open(filename, 'r') as f_obj: contents = json.load(f_obj) daily_results = [] tests_list = [] cases_list = [] deaths_list = [] healed_list = [] result_lists = [tests_list, cases_list, deaths_list, healed_list] for daily_result in contents.values(): tests_list.append(daily_result['Tests']) cases_list.append(daily_result['Cases']) deaths_list.append(daily_result['Deaths']) healed_list.append(daily_result['Healed']) data_modeler = DataModeler(dataset=[1]) title_num = 0 for result_list in result_lists: title_num += 1 if title_num == 1: title = "Tests" elif title_num == 2: title = "Cases" elif title_num == 3: title = "Deaths" else: title = "Healed" data_modeler.dataset = result_list data_modeler.calculate.dataset = result_list print("\nNow analyzing", title, "results:\n") data_modeler.show_results(True) data_modeler.line_graph(title=title) new_dataset = [] for test, case in zip(tests_list, cases_list): new_dataset.append(test / case) data_modeler.dataset = new_dataset data_modeler.line_graph(title="Test/Case Per Day") if __name__ == '__main__': main() # write_covid_results()
StarcoderdataPython
3329677
# -*- coding: utf-8 -*- __version__ = "2.11.2" # version bump; deviates from divio/master which is at 1.11.0
StarcoderdataPython
179193
# # Explicit model for potential drop across a lithium metal electrode # from .base_ohm import BaseModel class LithiumMetalExplicit(BaseModel): """Explicit model for potential drop across a lithium metal electrode. Parameters ---------- param : parameter class The parameters to use for this submodel options : dict, optional A dictionary of options to be passed to the model. **Extends:** :class:`pybamm.electrode.ohm.BaseModel` """ def __init__(self, param, options=None): super().__init__(param, "Negative", options=options) def get_coupled_variables(self, variables): param = self.param i_boundary_cc = variables["Current collector current density"] T_n = variables["Negative current collector temperature"] l_n = param.l_n delta_phi_s = i_boundary_cc * l_n / param.sigma_n(T_n) delta_phi_s_dim = param.potential_scale * delta_phi_s variables.update( { "Negative electrode potential drop": delta_phi_s, "Negative electrode potential drop [V]": delta_phi_s_dim, "X-averaged negative electrode ohmic losses": delta_phi_s / 2, "X-averaged negative electrode ohmic losses [V]": delta_phi_s_dim / 2, } ) return variables def set_boundary_conditions(self, variables): pass
StarcoderdataPython
3359381
<gh_stars>100-1000 """ Implementação do algoritmo passeio do cavalo """ def aceitavel(x, y): """ Aceitavel se estiver dentro do tabuleiro e a casa ainda nao tiver sido visitada Retorna True ou False """ if ( x >= 0 and x <= num - 1 and y >= 0 and y <= num - 1 and tabuleiro[x][y] == 0 ): return True else: return False def tenta_mover(i, x, y): """ Tenta o i-esimo movimento em (x,y), 1 <= i <= n^2 """ done = i > numSqr # True ou False k = 0 while not done and k < 8: u = x + dx[k] # Coordenadas dos 8 movimentos possiveis do cavalo v = y + dy[k] # Coordenadas dos 8 movimentos possiveis do cavalo if aceitavel(u, v): tabuleiro[u][v] = i done = tenta_mover(i + 1, u, v) # Tenta outro movimento if not done: tabuleiro[u][v] = 0 # Sem sucesso, descarta movimento k += 1 # Passa ao proximo movimento possivel return done def mostra_movimento(x, y): tabuleiro[x][y] = 1 done = tenta_mover(2, x, y) string = "" if done: for x in range(0, num): for y in range(0, num): if tabuleiro[x][y] < 10: string += "0" + str(tabuleiro[x][y]) + " " else: string += str(tabuleiro[x][y]) + " " string += "\n" print(string) else: print("Nao ha passeio possivel\n") dx = [2, 1, -1, -2, -2, -1, 1, 2] dy = [1, 2, 2, 1, -1, -2, -2, -1] print("Digite o num de posicoes do tabuleiro: (ex.: 6) <= 10") num = int(input()) # Numero de posicoes do tabuleiro print("Digite a posicao x onde o cavalo deve iniciar: (ex.: 1) >= 0") x = int(input()) # Numero de posicoes do tabuleiro print("Digite a posicao y onde o cavalo deve iniciar: (ex.: 2) >= 0") y = int(input()) # Numero de posicoes do tabuleiro numSqr = num * num # Numero total de casas print() tabuleiro = [[], [], [], [], [], [], [], [], [], []] # Tabuleiro maximo 20x20 for x in range(0, num): for y in range(0, num): tabuleiro[x].append(0) # print tabuleiro mostra_movimento(x, y)
StarcoderdataPython
3234942
from django.dispatch import receiver from django.urls import resolve, reverse from django.utils.translation import ugettext_lazy as _ from pretix.presale.signals import sass_postamble from pretix.control.signals import nav_event_settings @receiver(nav_event_settings, dispatch_uid="custom_css_settings") def custom_css_settings(sender, request, **kwargs): url = resolve(request.path_info) return [ { "label": _("Custom CSS"), "url": reverse( "plugins:pretix_custom_css:settings", kwargs={ "event": request.event.slug, "organizer": request.organizer.slug, }, ), "active": url.namespace == "plugins:pretix_custom_css" and url.url_name == "settings", } ] @receiver(sass_postamble, dispatch_uid="custom_css_sass_postamble") def custom_css_sass_postamble(sender, filename=None, **kwargs): if sender.settings.custom_css_code: return sender.settings.custom_css_code else: return ""
StarcoderdataPython
3381873
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-09 20:13 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('showings', '0005_auto_20170809_1859'), ] operations = [ migrations.AddField( model_name='show', name='cooldown_period', field=models.IntegerField(default=0, help_text=b'Will be filled when saving according to type of show. Input the value manually to set override.'), ), migrations.AddField( model_name='show', name='show_type', field=models.CharField(choices=[(b'ms', b'Main series'), (b'mc', b'Main series candidate'), (b'ex', b'Exec choice'), (b'an', b'Allnighter'), (b'ot', b'Other')], default='ot', max_length=2), preserve_default=False, ), ]
StarcoderdataPython
4822179
"""Day 4 challenge""" # Built-in import re # Personal from _shared import read_input # -------------------------------------------------------------------------------- # > Helpers # -------------------------------------------------------------------------------- class PassportForm: LINE_REGEX = r"([a-z]{3}):([^ ]+)" FIELDS = [ ("byr", True), # field_name, required ("iyr", True), ("eyr", True), ("hgt", True), ("hcl", True), ("ecl", True), ("pid", True), ("cid", False), ] def __init__(self, line): """ Read the passport info to fill a PassportForm :param str line: Passport data from the input file """ self.line = line self.fill_form() self.find_invalid_fields() def fill_form(self): """Parses the input file to set our form fields/values""" for match in re.finditer(self.LINE_REGEX, self.line): field = match.group(1) value = match.group(2) setattr(self, field, value) def find_invalid_fields(self): """ Checks for missing fields :return: The required fields that are missing from our form :rtype: set """ invalid_fields = set() for field_name, required in self.FIELDS: value = getattr(self, field_name, None) # Check required if required and value is None: invalid_fields.add(field_name) # Custom validation if value is not None: function_name = f"validate_{field_name}" field_validation_function = getattr(self, function_name) if not field_validation_function(): invalid_fields.add(field_name) self.invalid_fields = invalid_fields @property def is_valid(self): """ :return: Whether the form is valid :rtype: bool """ return len(self.invalid_fields) == 0 def validate_byr(self): """ :return: Whether BYR is within the range :rtype: bool """ value = int(self.byr) return 1920 <= value <= 2002 def validate_iyr(self): """ :return: Whether IYR is within the range :rtype: bool """ value = int(self.iyr) return 2010 <= value <= 2020 def validate_eyr(self): """ :return: Whether EYR is within the range :rtype: bool """ value = int(self.eyr) return 2020 <= value <= 2030 def validate_hgt(self): """ Checks the HGT is valid and within the right range, depending on the unit of measure :return: Whether HGT is within the range :rtype: bool """ regex = r"^(\d+)(cm|in)$" match = re.match(regex, self.hgt) if match is not None: value = int(match.group(1)) units = match.group(2) if units == "cm": return 150 <= value <= 193 else: return 59 <= value <= 76 return False def validate_hcl(self): """ :return: Whether the HCL format is valid :rtype: bool """ regex = r"^#[a-f0-9]{6}$" return not re.match(regex, self.hcl) is None def validate_ecl(self): """ :return: Whether the ECL value is in the list of accepted values :rtype: bool """ return self.ecl in { "amb", "blu", "brn", "gry", "grn", "hzl", "oth", } def validate_pid(self): """ :return: Whether PID is a chain of 9 digits :rtype: bool """ regex = r"^\d{9}$" return not re.match(regex, self.pid) is None @staticmethod def validate_cid(): """ :return: No custom validation. Always valid :rtype: bool """ return True def get_passport_info_from_input(): """ Fetches the input file and rebuilds passport info as a one-liner :return: List string of passport info :rtype: [str] """ passport_list = [] text = "" for line in read_input("day_04.txt"): if line != "": text += f" {line}" else: passport_list.append(text[1:]) text = "" passport_list.append(text[1:]) # Adding the last one return passport_list # -------------------------------------------------------------------------------- # > Main # -------------------------------------------------------------------------------- passport_info = get_passport_info_from_input() passport_forms = [PassportForm(line) for line in passport_info] valid_forms = [form for form in passport_forms if form.is_valid] print(len(valid_forms))
StarcoderdataPython
1657015
from logger import log_info from Classes.Metadata import Metadata from Classes.PortablePacket import PortablePacket from timeit import default_timer as timer from extension import write, write_debug from colorama import Fore from zip_utils import * import os import sys home = os.path.expanduser('~') def install_portable(packet: PortablePacket, metadata: Metadata): if find_existing_installation(f'{packet.extract_dir}@{packet.latest_version}'): log_info( f'Detected an existing installation of {packet.display_name}', metadata.logfile) write( f'Found Existing Installation Of {packet.display_name}', 'bright_yellow', metadata) continue_installation = confirm( f'Would you like to reinstall {packet.display_name}?') if not continue_installation: sys.exit() if packet.dependencies: log_info( f'Installing dependencies for {packet.display_name}', metadata.logfile) install_dependencies(packet, metadata) changes_environment = False shortcuts = packet.shortcuts extract_dir = packet.extract_dir write_debug( f'Downloading {packet.json_name}{packet.file_type} from {packet.url}', metadata) log_info( f'Downloading {packet.json_name}{packet.file_type} from {packet.url}', metadata.logfile) show_progress_bar = not metadata.silent and not metadata.no_progress if isinstance(packet.url, str): download(packet, packet.url, packet.file_type, rf'{home}\electric\\' + f'{packet.extract_dir}@{packet.latest_version}', metadata, show_progress_bar=show_progress_bar, is_zip=True) if packet.checksum: verify_checksum( rf'{home}\electric\\' + f'{packet.extract_dir}@{packet.latest_version}{packet.file_type}', packet.checksum, metadata) unzip_dir = unzip_file(f'{packet.extract_dir}@{packet.latest_version}' + packet.file_type, f'{extract_dir}@{packet.latest_version}', packet.file_type, metadata) elif isinstance(packet.url, list): for idx, url in enumerate(packet.url): if idx == 0: download(packet, url['url'], '.zip', rf'{home}\electric\\' + f'{packet.extract_dir}@{packet.latest_version}', metadata, show_progress_bar=show_progress_bar, is_zip=True) unzip_dir = unzip_file( f'{packet.extract_dir}@{packet.latest_version}' + '.zip', extract_dir, url['file-type'], metadata) else: write( f'Downloading {url["file-name"]}{url["file-type"]}', 'cyan', metadata) download(packet, url['url'], url['file-type'], rf'{home}\electric\extras\{packet.extract_dir}@{packet.latest_version}\\{url["file-name"]}', metadata, show_progress_bar=False, is_zip=False) if packet.pre_install: log_info('Executing pre install code', metadata.logfile) if packet.pre_install['type'] == 'powershell': packet.pre_install['code'] = [l.replace('<dir>', unzip_dir.replace( '\\\\', '\\')) for l in packet.pre_install['code']] packet.pre_install['code'] = [l.replace('<extras>', rf'{home}\electric\extras\{packet.extract_dir}@{packet.latest_version}'.replace( '\\\\', '\\')) for l in packet.pre_install['code']] if not os.path.isdir(rf'{home}\electric\temp\Scripts'): try: os.mkdir(rf'{home}\electric\temp') except: # temp directory already exists pass os.mkdir(rf'{home}\electric\temp\Scripts') with open(rf'{home}\electric\temp\Scripts\temp.ps1', 'w+') as f: for line in packet.pre_install['code']: f.write(f'\n{line}') os.system( rf'powershell -executionpolicy bypass -File {home}\electric\temp\Scripts\temp.ps1') write('Successfully Executed Pre-Install Code', 'bright_green', metadata) if packet.pre_install['type'] in ['bat', 'cmd']: packet.pre_install['code'] = [l.replace('<dir>', unzip_dir.replace( '\\\\', '\\')) for l in packet.pre_install['code']] packet.pre_install['code'] = [l.replace('<extras>', rf'{home}\electric\extras\{packet.extract_dir}@{packet.latest_version}'.replace( '\\\\', '\\')) for l in packet.pre_install['code']] if not os.path.isdir(rf'{home}\electric\temp\Scripts'): try: os.mkdir(rf'{home}\electric\temp') except: # temp directory already exists pass os.mkdir(rf'{home}\electric\temp\Scripts') with open(rf'{home}\electric\temp\Scripts\temp.bat', 'w+') as f: for line in packet.pre_install['code']: f.write(f'\n{line}') os.system( rf'{home}\electric\temp\Scripts\temp.bat') write('Successfully Executed Pre-Install Code', 'bright_green', metadata) if packet.pre_install['type'] == 'python': code = ''''''.join(l + '\n' for l in packet.pre_install['code']) exec(code) if packet.chdir: dir = packet.chdir.replace('<version>', packet.latest_version) unzip_dir += f'\\{dir}\\' if packet.bin and isinstance(packet.bin, list): for binary in packet.bin: if isinstance(binary, str): shim_dir = unzip_dir shim = ''.join(binary.split('.')[:-1]) shim_ext = binary.split('.')[-1] if '\\' in binary: shim = ''.join(binary.split('\\')[-1]) shim = ''.join(shim.split('.')[:-1]) shim_ext = binary.split('.')[-1] shim_dir += ' '.join(binary.split('\\') [:-1]).replace(' ', '\\') shim = shim.replace('<version>', packet.latest_version) shim_dir = shim_dir.replace('<version>', packet.latest_version) start = timer() generate_shim(f'{shim_dir}', shim, shim_ext) end = timer() write( f'{Fore.LIGHTCYAN_EX}Successfully Generated {shim} Shim In {round(end - start, 5)} seconds{Fore.RESET}', 'white', metadata) else: val = binary['file-name'] shim_dir = unzip_dir shim = ''.join(val.split('.')[:-1]) shim_ext = val.split('.')[-1] if '\\' in val: shim = ''.join(val.split('\\')[-1]) shim = ''.join(shim.split('.')[:-1]) shim_ext = val.split('.')[-1] shim_dir += ' '.join(val.split('\\') [:-1]).replace(' ', '\\') shim = shim.replace('<version>', packet.latest_version) shim_dir = shim_dir.replace('<version>', packet.latest_version) val = val.replace('<version>', packet.latest_version) start = timer() generate_shim(f'{shim_dir}', val.split( '\\')[-1].split('.')[0], shim_ext, overridefilename=binary['shim-name']) end = timer() write( f'{Fore.LIGHTCYAN_EX}Successfully Generated {binary["shim-name"]} Shim In {round(end - start, 5)} seconds{Fore.RESET}', 'white', metadata) if shortcuts: for shortcut in shortcuts: shortcut_name = shortcut['shortcut-name'] file_name = shortcut['file-name'] log_info( f'Creating shortcuts for {packet.display_name}', metadata.logfile) create_start_menu_shortcut(unzip_dir, file_name, shortcut_name) if packet.set_env: if isinstance(packet.set_env, list): changes_environment = True for obj in packet.set_env: log_info( f'Setting environment variables for {packet.display_name}', metadata.logfile) write( f'Setting Environment Variable {obj["name"]}', 'bright_green', metadata) set_environment_variable(obj['name'], obj['value'].replace( '<install-directory>', unzip_dir).replace('\\\\', '\\')) else: changes_environment = True log_info( f'Setting environment variables for {packet.display_name}', metadata.logfile) write( f'Setting Environment Variable {packet.set_env["name"]}', 'bright_green', metadata) set_environment_variable(packet.set_env['name'], packet.set_env['value'].replace( '<install-directory>', unzip_dir).replace('\\\\', '\\')) if changes_environment: log_info( 'Detected change in PATH variable. Requesting `refreshenv` to be run', metadata.logfile) write( f'{Fore.LIGHTGREEN_EX}The PATH environment variable has changed. Run `refreshenv` to refresh your environment variables.{Fore.RESET}', 'white', metadata) if packet.post_install: log_info('Executing post installation code', metadata.logfile) for line in packet.post_install: exec(line.replace('<install-directory>', unzip_dir).replace('<extras>', rf'{home}\electric\extras\{packet.extract_dir}@{packet.latest_version}')) if packet.install_notes: log_info('Found Installation Notes, Writing To Console.', metadata.logfile) display_notes(packet, unzip_dir, metadata) write( f'Successfully Installed {packet.display_name}', 'bright_magenta', metadata)
StarcoderdataPython
3386972
<reponame>TroyWilliams3687/fuel_tracker #!/usr/bin/env python3 # -*- coding:utf-8 -*- # ----------- # SPDX-License-Identifier: MIT # Copyright (c) 2021 <NAME> # uuid: 81ef08b8-0503-11ec-b7e5-a9913e95621d # author: <NAME> # email: <EMAIL> # date: 2021-08-24 # ----------- """ Perform bulk operations on the database. """ # ------------ # System Modules - Included with Python from pathlib import Path from datetime import date # ------------ # 3rd Party - From PyPI import click import pandas as pd from pandas import ExcelWriter from sqlalchemy import delete # ------------ # Custom Modules from .models import ( Vehicle, FuelRecord, select_vehicle_by_id, select_vehicle_by_name, ) from .common import is_int # ------------- @click.group("bulk") @click.pass_context def bulk(*args, **kwargs): """ Perform bulk operations on the database such as adding new vehicles and records or deleting existing vehicles and records. # Usage $ ft bulk add ./data/vw-passat-2015.ods """ pass @bulk.command("add") @click.pass_context @click.argument( "spreadsheet", nargs=-1, # accept an unlimited number of arguments. This makes it an iterable type=click.Path( exists=True, dir_okay=False, readable=True, path_type=Path, ), ) def add(*args, **kwargs): """ Add a new vehicle and fuel records from a spreadsheet to the database. You must specify the path to the spreadsheet. This methods assumes that the vehicle does not exist in the database and none of the fuel records exist either. Support for `.ods` Open Office Format and `.xlsx` Excel format. The spreadsheet should have the following columns: - name - make - model - year - tank_capacity - initial_odometer - fill_date - mileage - fuel - cost - partial - comment NOTE: The order doesn't matter. # Usage \b $ ft bulk add ./data/vw-passat-2015.ods $ ft bulk add ./data/vw-passat-2015.ods ./data/dodge-intrepid-1997.ods $ ft bulk add ./data/*.ods """ ctx = args[0] config = ctx.obj["config"] for spreadsheet in kwargs["spreadsheet"]: click.echo(f"Processing {spreadsheet}...") df = pd.read_excel(spreadsheet, parse_dates=["fill_date"]) # Fill NaN with 0, before casting to bool. Otherwise we end up # with a lot of True values. df["partial"] = df["partial"].fillna(0) df = df.astype({"partial": bool}) vehicles = {} vehicle_columns = [ "name", "make", "model", "year", "tank_capacity", "initial_odometer", ] for vehicle_values, group in df.groupby(vehicle_columns): new_vehicle = Vehicle( **{k: v for k, v in zip(vehicle_columns, vehicle_values)} ) # remove the vehicle columns from the dataframe fr = group.drop(vehicle_columns, axis=1) new_vehicle.fuel_records = [ FuelRecord(**fuel_record) for fuel_record in fr.to_dict("records") ] with config["db"].begin() as session: session.add(new_vehicle) session.flush() # get the new id click.echo(new_vehicle) # create a vehicle format function that can handle the # units (liters and kilometers) click.echo(f"Fuel Records: {len(new_vehicle.fuel_records)}") click.echo() @bulk.command("delete") @click.pass_context @click.argument( "vehicles", nargs=-1, type=str, ) def delete(*args, **kwargs): """ Delete the vehicle (by name or id) from the database along with all of its fuel records. # Usage \b $ ft bulk delete passat 2 """ ctx = args[0] config = ctx.obj["config"] with config["db"].begin() as session: for vid in kwargs["vehicles"]: click.echo(f"Deleting {vid}...") if is_int(vid): statement = select_vehicle_by_id(vid) else: statement = select_vehicle_by_name(vid) selected_vehicle = session.execute(statement).first() # NOTE: session.execute returns an iterable. Deal with it # appropriately if len(selected_vehicle) == 1: delete_query = delete(Vehicle).where(Vehicle.vehicle_id == vid) session.execute(delete_query) elif len(selected_vehicle) == 0: click.secho(f"No matches for: {vid}", fg="cyan") else: click.secho( f"More than one vehicle returned ({len(selected_vehicle)})! Doing Nothing!", fg="red", ) click.secho("Here are the returned Vehicles:", fg="red") for v in selected_vehicle: click.secho(v, fg="red") click.echo() @bulk.command("export") @click.pass_context @click.argument( "vehicles", nargs=-1, type=str, ) @click.option( "--excel", type=click.Path( exists=False, dir_okay=False, readable=False, path_type=Path, ), help="Write the vehicle(s) and fuel records to an excel spreadsheet.", ) @click.option( "--ods", type=click.Path( exists=False, dir_okay=False, readable=False, path_type=Path, ), help="Write the vehicle(s) and fuel records to an Open Office spreadsheet (*.ods).", ) @click.option( "--csv", type=click.Path( exists=False, dir_okay=False, readable=False, path_type=Path, ), help="Write the vehicle(s) and fuel records to a csv file.", ) def export(*args, **kwargs): """ bulk export the specified vehicles by name or id separated by spaces on the command line to: \b - csv - excel - ods - open office format - stdout The vehicle and fuel records will be combined into one table and exported to the file. If an output format isn't selected, it will be displayed in the terminal. # Usage $ ft bulk export passat 2 $ ft bulk export passat interpid --excel=file.xlsx $ ft bulk export passat interpid --ods=file.ods $ ft bulk export passat interpid --csv=file.csv $ ft bulk export passat interpid --excel=file.xlsx --ods=file.ods --csv=file.csv $ ft bulk export passat intrepid 2 --ods=./output/file.ods $ ft bulk export passat intrepid soul matrix --ods=./output/data.ods --csv=./output/data.csv """ ctx = args[0] config = ctx.obj["config"] output = [] with config["db"].begin() as session: for vid in kwargs["vehicles"]: click.echo(f"Exporting {vid}...") click.echo() if is_int(vid): statement = select_vehicle_by_id(vid, join=True) else: statement = select_vehicle_by_name(vid, join=True) page_name = f"{vid}" df = pd.read_sql(statement, session.connection()) df = df.drop(["vehicle_id", "vehicle_id_1"], axis=1) if kwargs.get("csv", False): csv_file = kwargs.get("csv") df.to_csv(csv_file.parent / Path(f"{csv_file.stem}_{page_name}.csv")) output.append((page_name, df)) if kwargs.get("excel", False): with ExcelWriter(kwargs.get("excel")) as writer: for page_name, df in output: df.to_excel(writer, page_name, index=False) writer.save() if kwargs.get("ods", False): with ExcelWriter( kwargs.get("ods"), engine="odf", ) as writer: for page_name, df in output: # for some reason, export the fill_date as a datetime to # ods assigns the cell formatting as a number. In the # spreadsheet we can change the format to date and the # value is displayed correctly, but the user shouldn't # have to do that. We'll convert it to a string and leave it at that. df["fill_date"] = pd.to_datetime(df["fill_date"]).dt.strftime( "%Y-%m-%d" ) df.to_excel(writer, page_name, index=False) writer.save() if not kwargs.get("excel", False) and kwargs.get("ods", False): for page_name, df in output: click.echo( df.to_markdown( index=False, tablefmt="pretty", ) ) click.echo() click.secho("Completed!", fg="cyan")
StarcoderdataPython
1657875
<filename>src/MidiConnector.py #!/usr/bin/env python # -*- coding: utf-8 -*- # # JMMidiBassPedalController v3.0 # File: src/MidiConnector.py # By: <NAME> <<EMAIL>> @ 28.10.2020 # This project is licensed under the MIT License. Please see the LICENSE.md file # on the main folder of this code. An online version can be found here: # https://github.com/jmeile/JMMidiBassPedalController/blob/master/LICENSE.md # """ Connects to the MIDI ports """ from __future__ import print_function import traceback import sys import fnmatch from rtmidi import MidiIn, MidiOut from rtmidi.midiutil import open_midiport from MidiProcessor import MidiProcessor from CustomLogger import CustomLogger, PrettyFormat import logging from autologging import logged import xmlschema import platform VIRTUAL_PREFFIX = "Virtual:" #Creates a logger for this module. logger = logging.getLogger(CustomLogger.get_module_name()) #Setups the logger with default settings logger.setup() #Register the logger with this class @logged(logger) class MidiConnector: """ Opens the MIDI ports and process the incomming connections """ def __init__(self, args, xsd_schema = 'conf/MidiBassPedalController.xsd'): """ Initializes the MidiConnector class Parameters: * args: command-line arguments * xsd_schema: path to the xsd schema """ self.__log.debug("Initializing MidiConnector") self._args = args self._xsd_schema = xsd_schema self._midi_in = None self._midi_out = None self._in_ports = [] self._in_port = 0 self._use_virtual_in = False self._out_ports = [] self._out_port = 0 self._use_virtual_out = False self._xml_dict = {} self.__log.debug("MidiConnector was initialized:\n%s", PrettyFormat(self.__dict__)) def start(self): """ Starts the processing requests Remarks: * It will either list the available MIDI ports, run in interative or silent mode, according to the passed command line options Returns: * A status string; either: "Quit", "Reload", "Reboot", or "Shutdown" """ self.__log.info("Starting MidiConnector") status = None self._get_all_ports() exit = False if len(self._in_ports) == 0: self.__log.info("No MIDI IN ports were found. Please connect your MIDI " "device and run the script again") exit = True if len(self._out_ports) == 0: self.__log.info("No MIDI OUT ports were found. Please connect your MIDI " "device and run the script again") exit = True if not exit: if self._args.list: self.__log.debug("--list switch was passed") self._list_ports() else: self._parse_xml_config() self._parse_ports() self._open_ports() midi_processor = MidiProcessor( self._xml_dict, self._midi_in, self._midi_out, ignore_sysex = False, ignore_timing = False, ignore_active_sense = False, ) midi_processor.parse_xml() status = midi_processor.read_midi() self.__log.info("Exiting") self._close_ports() self._free_midi() self.__log.debug("MidiConnector has been ended") return status def _parse_xml_config(self): """ Parses the specified xml configuration file """ self.__log.info("Parsing XML config: %s", self._xsd_schema) exit = False self.__log.debug("Calling XMLSchema11 api") try: xsd_schema = xmlschema.XMLSchema11(self._xsd_schema) except: exit = True error = traceback.format_exc() self.__log.info("Error while parsing xsd file:\n%s\n\n%s", self._xsd_schema, error) if not exit: self.__log.debug("Converting XML schema to dict") try: xml_dict = xsd_schema.to_dict(self._args.config) #A last manual validation must be done here: the InitialBank value must #be less or equal than the total number of banks if xml_dict['@InitialBank'] > len(xml_dict['Bank']): raise Exception("InitialBank is higher than the possible number of " "banks / maximum: " + str(len(xml_dict['Bank'])) + \ ", given value: " + str(xml_dict['@InitialBank'])) self.__log.debug("Got: \n%s", PrettyFormat(xml_dict)) except: exit = True error = traceback.format_exc() message = "Error while parsing xml file:\n%s\n\n%s" % ( self._args.config, error ) self.__log.info(message) if exit: self.__log.debug("Unexpected error occured, aborting...") self._free_midi() sys.exit() self._xml_dict = xml_dict def _open_port(self, interface_type, midi_port, is_virtual = False): """ Opens the specified MIDI port for the entered midi_callback Parameters: * interface_type: which interface to open: 'input' or 'output' * midi_port: MIDI port used to open the MIDI interface * is_virtual: whether or not the port is virtual Returns: * In case of opening a virtual port, it will return a MIDI interface """ if not is_virtual: self.__log.debug("Opening MIDI port: %s", PrettyFormat(midi_port)) port_name = None client_name = None else: self.__log.debug("Opening Virtual MIDI port") port_name = midi_port midi_port = None client_name = VIRTUAL_PREFFIX[:-1] try: midi_interface = open_midiport(port = midi_port, type_ = interface_type, use_virtual = is_virtual, interactive = False, client_name = client_name, port_name = port_name)[0] except: error = traceback.format_exc() self.__log.info(error) self._free_midi() sys.exit() return midi_interface def _open_ports(self): """ Opens the entered MIDI ports """ self._midi_in = self._open_port("input", self._in_port, self._use_virtual_in) if self._use_virtual_in: port_name = self._in_port else: port_name = self._in_ports[self._in_port] self.__log.info("MIDI IN Port: '%s' was opened", port_name) self._midi_out = self._open_port("output", self._out_port, self._use_virtual_out) if self._use_virtual_out: port_name = self._out_port else: port_name = self._out_ports[self._out_port] self.__log.info("MIDI OUT Port: '%s' was opened", port_name) def _close_port(self, midi_interface): """ Closes the specified MIDI interface Parameters: * midi_interface: MIDI interface that will be closed """ self.__log.debug("Closing MIDI port") try: midi_interface.close_port() except: error = traceback.format_exc() self.__log.info(error) def _close_ports(self): """ Closes all opened MIDI ports """ self._close_port(self._midi_in) if self._use_virtual_in: port_name = self._in_port else: port_name = self._in_ports[self._in_port] self.__log.info("MIDI IN Port: '%s' was closed", port_name) self._close_port(self._midi_out) if self._use_virtual_out: port_name = self._out_port else: port_name = self._out_ports[self._out_port] self.__log.info("MIDI OUT Port: '%s' was closed", port_name) def _parse_port(self, port_list, arg_name): """ Gets the specified port from command line Parameters: * port_list: List of available MIDI ports * arg_name: name of the argument to get. It can be: InPort or OutPort Returns: * A tupple containing: - either a port index or a virtual port string name - either if using a virtual or a real port """ self.__log.debug("Getting: %s from:\n%s", arg_name, PrettyFormat(port_list)) use_virtual = False num_ports = len(port_list) port_value = self._xml_dict.get('@'+arg_name, num_ports) self.__log.debug("Port value: %s", port_value) if (type(port_value) == str) and port_value.isdigit(): port_value = int(port_value) elif type(port_value) == str: is_windows = (platform.system() == "Windows") if port_value.startswith(VIRTUAL_PREFFIX): if not is_windows: #Virtual port only work unser MACOS and Linux. Windows doesn't #supports this. On the last operating system, the Virtual part will be #removed and it will be threatened as a normal port. You can assure #compatibilty between Windows and other OS by creating first the ports #with loopMIDI use_virtual = True elif port_value[-1] != '*': port_value += '*' port_value = port_value[len(VIRTUAL_PREFFIX):] if not use_virtual: self.__log.debug("Searching port") #On this case, a string with part of the name was given, so, it #will be searched in the available ports port_index = 0 port_found = False for port_name in port_list: filtered = fnmatch.filter([port_name], port_value) if filtered != []: port_found = True break port_index += 1 if not port_found: self.__log.info("The %s: %s wasn't found.", arg_name, port_value) self._free_midi() self.__log.debug("Port wasn't found, exiting") sys.exit() port_value = port_index + 1 self.__log.debug("Port was found, index: %d", port_value) else: self.__log.debug("Virutal Port will be used") if not use_virtual: #Internally, port numbers start from 0 because they are in an array port_value -= 1 if port_value >= num_ports: self.__log.info("Invalid port number was supplied") self._free_midi() self.__log.debug("Exiting after getting invalid port") sys.exit() return port_value, use_virtual def _parse_ports(self): """ Gets the passed ports to the command line """ self.__log.debug("Parsing ports") self._in_port, self._use_virtual_in = self._parse_port(self._in_ports, 'InPort') self._out_port, self._use_virtual_out = self._parse_port(self._out_ports, 'OutPort') self.__log.debug("Ports were parsed") def _open_midi(self): """Starts MIDI without opening a port""" self.__log.info("Opening MIDI interfaces") try: self._midi_out = MidiOut() self._midi_in = MidiIn() #Note: if you need to catch SysEx, MIDI clock, and active sense #messages, then use the method: ignore_types as follows: #self._midi_in.ignore_types(sysex = False, timing = False, # active_sense = False) #They are ignored by default. I don't need this right now, so the #standard behaviour is OK for me except: error = traceback.format_exc() self.__log.info(error) self._free_midi() return False self.__log.debug("MIDI interfaces were opened") return True def _free_midi(self): """Frees MIDI resources""" self.__log.debug("Releasing MIDI") if hasattr(self, '_midi_in'): del self._midi_in if hasattr(self, '_midi_out'): del self._midi_out self.__log.info("MIDI was released") def _get_midi_ports(self, midi_interface): """ Gets the available ports for the specified MIDI interface Parameters: * midi_interface: interface used for listing the ports. It can be either _midi_in or _midi_out. """ self.__log.debug("Getting available MIDI ports") ports = midi_interface.get_ports() self.__log.debug("Got:\n%s", PrettyFormat(ports)) port_index = 0 for port in ports: port_index_str = str(port_index) ports[port_index] = port port_index += 1 self.__log.debug("Fixed port indexes:\n%s", PrettyFormat(ports)) return ports def _get_all_ports(self): """ Gets all the available MIDI IN and Out ports. """ in_ports = [] out_ports = [] if self._open_midi(): self.__log.debug("Getting all MIDI IN ports") in_ports = self._get_midi_ports(self._midi_in) self.__log.debug("Got:\n%s", PrettyFormat(in_ports)) self.__log.debug("Getting all MIDI OUT ports") out_ports = self._get_midi_ports(self._midi_out) self.__log.debug("Got:\n%s", PrettyFormat(out_ports)) self._in_ports = in_ports self._out_ports = out_ports self._free_midi() def _get_formatted_port_list(self, port_list): """ Gets the port list as follows: <port_index>: <port_name> """ self.__log.debug("Getting formatted port list") port_list_tuples = [] for port_index, port_name in enumerate(port_list): port_list_tuples.append(str(port_index + 1) + ": " + port_name) self.__log.debug("Got: %s", PrettyFormat(port_list_tuples)) return '\n\r'.join(port_list_tuples) def _list_ports(self): """ Lists all the available MIDI IN and Out ports. """ self.__log.info("\nAvailable MIDI IN ports:") self.__log.info(self._get_formatted_port_list(self._in_ports)) self.__log.info("\nAvailable MIDI OUT ports:") self.__log.info(self._get_formatted_port_list(self._out_ports))
StarcoderdataPython
1683768
import os import sys import re import matplotlib as mpl from jupyter_core.paths import jupyter_config_dir # path to install (~/.jupyter/custom/) jupyter_custom = os.path.join(jupyter_config_dir(), 'custom') # path to local site-packages/jupyterthemes package_dir = os.path.dirname(os.path.realpath(__file__)) # theme colors, layout, and font directories styles_dir = os.path.join(package_dir, 'styles') # text file containing name of currently installed theme theme_name_file = os.path.join(jupyter_custom, 'current_theme.txt') # base style params base_style = { 'axes.axisbelow': True, 'figure.autolayout': True, 'grid.linestyle': u'-', 'lines.solid_capstyle': u'round', 'legend.frameon': False, "legend.numpoints": 1, "legend.scatterpoints": 1, 'font.family': u'sans-serif', 'font.sans-serif': [u'Helvetica', u'Arial', u'Bitstream Vera Sans', u'sans-serif']} # base context params base_context = { 'axes.linewidth': 1.4, "grid.linewidth": 1.4, "lines.linewidth": 1.5, "patch.linewidth": .2, "lines.markersize": 7, "lines.markeredgewidth": 0, "xtick.major.width": 1, "ytick.major.width": 1, "xtick.minor.width": .5, "ytick.minor.width": .5, "xtick.major.pad": 7, "ytick.major.pad": 7, "xtick.major.size": 0, "ytick.major.size": 0, "xtick.minor.size": 0, "ytick.minor.size": 0} # base font params base_font = { "font.size": 11, "axes.labelsize": 12, "axes.titlesize": 12, "xtick.labelsize": 10.5, "ytick.labelsize": 10.5, "legend.fontsize": 10.5} def remove_non_colors(clist): checkHex = r'^#(?:[0-9a-fA-F]{3}){1,2}$' return [clr for clr in clist if re.search(checkHex, clr)] def infer_theme(): """ checks jupyter_config_dir() for text file containing theme name (updated whenever user installs a new theme) """ if os.path.exists(theme_name_file): with open(theme_name_file) as f: theme = f.readlines()[0] else: theme = 'default' return theme def style(theme=None, context='paper', grid=True, gridlines=u'-', ticks=False, spines=True, fscale=1.2, figsize=(8., 7.)): """ main function for styling matplotlib according to theme ::Arguments:: theme (str): 'oceans16', 'grade3', 'chesterish', 'onedork', 'monokai', 'solarizedl', 'solarizedd'. If no theme name supplied the currently installed notebook theme will be used. context (str): 'paper' (Default), 'notebook', 'talk', or 'poster' grid (bool): removes axis grid lines if False gridlines (str): set grid linestyle (e.g., '--' for dashed grid) ticks (bool): make major x and y ticks visible spines (bool): removes x (bottom) and y (left) axis spines if False fscale (float): scale font size for axes labels, legend, etc. figsize (tuple): default figure size of matplotlib figures """ # set context and font rc parameters, return rcdict rcdict = set_context(context=context, fscale=fscale, figsize=figsize) # read in theme name from ~/.jupyter/custom/current_theme.txt if theme is None: theme = infer_theme() # combine context & font rcparams with theme style set_style(rcdict, theme=theme, grid=grid, gridlines=gridlines, ticks=ticks, spines=spines) def set_style(rcdict, theme=None, grid=True, gridlines=u'-', ticks=False, spines=True): """ This code has been modified from seaborn.rcmod.set_style() ::Arguments:: rcdict (str): dict of "context" properties (filled by set_context()) theme (str): name of theme to use when setting color properties grid (bool): turns off axis grid if False (default: True) ticks (bool): removes x,y axis ticks if True (default: False) spines (bool): removes axis spines if False (default: True) """ # extract style and color info for theme styleMap, clist = get_theme_style(theme) # extract style variables figureFace = styleMap['figureFace'] axisFace = styleMap['axisFace'] textColor = styleMap['textColor'] edgeColor = styleMap['edgeColor'] gridColor = styleMap['gridColor'] if not spines: edgeColor = 'none' style_dict = { 'figure.edgecolor': figureFace, 'figure.facecolor': figureFace, 'axes.facecolor': axisFace, 'axes.edgecolor': edgeColor, 'axes.labelcolor': textColor, 'axes.grid': grid, 'grid.linestyle': gridlines, 'grid.color': gridColor, 'text.color': textColor, 'xtick.color': textColor, 'ytick.color': textColor, 'patch.edgecolor': axisFace, 'patch.facecolor': gridColor, 'savefig.facecolor': figureFace, 'savefig.edgecolor': figureFace} # update rcdict with style params rcdict.update(style_dict) # Show or hide the axes ticks if ticks: rcdict.update({ "xtick.major.size": 6, "ytick.major.size": 6, "xtick.minor.size": 3, "ytick.minor.size": 3}) base_style.update(rcdict) # update matplotlib with rcdict (incl. context, font, & style) mpl.rcParams.update(rcdict) try: from cycler import cycler # set color cycle to jt-style color list mpl.rcParams['axes.prop_cycle'] = cycler(color=clist) except Exception: pass # replace default blue, green, etc. with jt colors for code, color in zip("bgrmyck", clist[:7]): rgb = mpl.colors.colorConverter.to_rgb(color) mpl.colors.colorConverter.colors[code] = rgb mpl.colors.colorConverter.cache[code] = rgb def set_context(context='paper', fscale=1., figsize=(8., 7.)): """ Most of this code has been copied/modified from seaborn.rcmod.plotting_context() ::Arguments:: context (str): 'paper', 'notebook', 'talk', or 'poster' fscale (float): font-size scalar applied to axes ticks, legend, labels, etc. """ # scale all the parameters by the same factor depending on the context scaling = dict(paper=.8, notebook=1, talk=1.3, poster=1.6)[context] context_dict = {k: v * scaling for k, v in base_context.items()} # scale default figsize figX, figY = figsize context_dict["figure.figsize"] = (figX*scaling, figY*scaling) # independently scale the fonts font_dict = {k: v * fscale for k, v in base_font.items()} context_dict.update(font_dict) return context_dict def figsize(x=8, y=7., aspect=1.): """ manually set the default figure size of plots ::Arguments:: x (float): x-axis size y (float): y-axis size aspect (float): aspect ratio scalar """ # update rcparams with adjusted figsize params mpl.rcParams.update({'figure.figsize': (x*aspect, y)}) def get_theme_style(theme): """ read-in theme style info and populate styleMap (dict of with mpl.rcParams) and clist (list of hex codes passed to color cylcler) ::Arguments:: theme (str): theme name ::Returns:: styleMap (dict): dict containing theme-specific colors for figure properties clist (list): list of colors to replace mpl's default color_cycle """ styleMap, clist = get_default_jtstyle() if theme == 'default': return styleMap, clist syntaxVars = ['@yellow:', '@orange:', '@red:', '@magenta:', '@violet:', '@blue:', '@cyan:', '@green:'] get_hex_code = lambda line: line.split(':')[-1].split(';')[0][-7:] themeFile = os.path.join(styles_dir, theme+'.less') with open(themeFile) as f: for line in f: for k, v in styleMap.items(): if k in line.strip(): styleMap[k] = get_hex_code(line) for c in syntaxVars: if c in line.strip(): syntaxVars[syntaxVars.index(c)] = get_hex_code(line) # remove duplicate hexcolors syntaxVars = list(set(syntaxVars)) clist.extend(syntaxVars) clist = remove_non_colors(clist) return styleMap, clist def get_default_jtstyle(): styleMap = {'axisFace': 'white', 'figureFace': 'white', 'textColor': '.15', 'edgeColor': '.8', 'gridColor': '.8'} return styleMap, get_color_list() def get_color_list(): return ['#3572C6', '#83a83b', '#c44e52', '#8172b2', "#ff914d", "#77BEDB", "#222222", "#4168B7", "#27ae60", "#e74c3c",'#cc89e0', "#ff711a", "#3498db", '#6C7A89'] def reset(): """ full reset of matplotlib default style and colors """ colors = [(0., 0., 1.), (0., .5, 0.), (1., 0., 0.), (.75, .75, 0.), (.75, .75, 0.), (0., .75, .75), (0., 0., 0.)] for code, color in zip("bgrmyck", colors): rgb = mpl.colors.colorConverter.to_rgb(color) mpl.colors.colorConverter.colors[code] = rgb mpl.colors.colorConverter.cache[code] = rgb mpl.rcParams.update(mpl.rcParamsDefault) mpl.rcParams['figure.facecolor'] = 'white' mpl.rcParams['axes.facecolor'] = 'white'
StarcoderdataPython
3338348
<reponame>abal2051/Amwal from amwal.cache import JsonCache, cached from amwal.extract import RawExtractor from amwal.log import logger class Engine: def __init__(self, downloader): self.downloader = downloader @cached([JsonCache()]) def daily_bulletin(self, date, ): # should validate date here with dateutil.parsing date = date.replace("_", "/") res = self.downloader.daily_bulletin(date) res = RawExtractor.daily_bulletin(res) return res @cached([JsonCache()]) def listing(self, ): res = self.downloader.listing() res = RawExtractor.listing(res) return res @cached([JsonCache()]) def income_statement(self, stock_number, ): res = self.downloader.income_statement(stock_number) res = RawExtractor.income_statement(res) return res @cached([JsonCache()]) def price_history(self, stock_symbol, ): #changing the logger too late since cache runs first res = self.downloader.price_history(stock_symbol) res = RawExtractor.price_history(res) return res
StarcoderdataPython
137273
import os import tempfile import mock import numpy as np from yt.testing import assert_equal, fake_random_ds from yt.units.unit_object import Unit def setup(): from yt.config import ytcfg ytcfg["yt", "__withintesting"] = "True" def teardown_func(fns): for fn in fns: try: os.remove(fn) except OSError: pass @mock.patch("yt.visualization._mpl_imports.FigureCanvasAgg.print_figure") def test_slice(pf): fns = [] grid_eps = np.finfo(np.float64).eps for nprocs in [8, 1]: # We want to test both 1 proc and 8 procs, to make sure that # parallelism isn't broken ds = fake_random_ds(64, nprocs=nprocs) dims = ds.domain_dimensions xn, yn, zn = ds.domain_dimensions dx = ds.arr(1.0 / (ds.domain_dimensions * 2), "code_length") xi, yi, zi = ds.domain_left_edge + dx xf, yf, zf = ds.domain_right_edge - dx coords = np.mgrid[xi : xf : xn * 1j, yi : yf : yn * 1j, zi : zf : zn * 1j] uc = [np.unique(c) for c in coords] slc_pos = 0.5 # Some simple slice tests with single grids for ax in range(3): xax = ds.coordinates.x_axis[ax] yax = ds.coordinates.y_axis[ax] slc = ds.slice(ax, slc_pos) shifted_slc = ds.slice(ax, slc_pos + grid_eps) assert_equal(slc["ones"].sum(), slc["ones"].size) assert_equal(slc["ones"].min(), 1.0) assert_equal(slc["ones"].max(), 1.0) assert_equal(np.unique(slc["px"]), uc[xax]) assert_equal(np.unique(slc["py"]), uc[yax]) assert_equal(np.unique(slc["pdx"]), 0.5 / dims[xax]) assert_equal(np.unique(slc["pdy"]), 0.5 / dims[yax]) pw = slc.to_pw(fields="density") for p in pw.plots.values(): tmpfd, tmpname = tempfile.mkstemp(suffix=".png") os.close(tmpfd) p.save(name=tmpname) fns.append(tmpname) for width in [(1.0, "unitary"), 1.0, ds.quan(0.5, "code_length")]: frb = slc.to_frb(width, 64) shifted_frb = shifted_slc.to_frb(width, 64) for slc_field in ["ones", "density"]: fi = ds._get_field_info(slc_field) assert_equal(frb[slc_field].info["data_source"], slc.__str__()) assert_equal(frb[slc_field].info["axis"], ax) assert_equal(frb[slc_field].info["field"], slc_field) assert_equal(frb[slc_field].units, Unit(fi.units)) assert_equal(frb[slc_field].info["xlim"], frb.bounds[:2]) assert_equal(frb[slc_field].info["ylim"], frb.bounds[2:]) assert_equal(frb[slc_field].info["center"], slc.center) assert_equal(frb[slc_field].info["coord"], slc_pos) assert_equal(frb[slc_field], shifted_frb[slc_field]) teardown_func(fns) def test_slice_over_edges(): ds = fake_random_ds(64, nprocs=8, fields=["density"], negative=[False]) slc = ds.slice(0, 0.0) slc["density"] slc = ds.slice(1, 0.5) slc["density"] def test_slice_over_outer_boundary(): ds = fake_random_ds(64, nprocs=8, fields=["density"], negative=[False]) slc = ds.slice(2, 1.0) slc["density"] assert_equal(slc["density"].size, 0)
StarcoderdataPython
3354103
<reponame>thevirtualbuddy/Python-freecodecamp class Category: #Constructor def __init__(self, name): self.name= name self.ledger=list() #Deposit method def deposit(self, amount, description=""): # We append an object to the ledger list # in the form of # {"amount": amount, "description": description} #Initialising a dictionary self.depositDetail = dict() #Adding the amount and description to dictionary self.depositDetail["amount"] = amount self.depositDetail["description"]=description #Adding the deposit to the ledger list self.ledger.append(self.depositDetail) #Check_fund method def check_funds(self,amount): fundAvailable = 0 n = len(self.ledger) for i in range(n): fundAvailable += self.ledger[i]["amount"] if fundAvailable<amount: return False else: return True #Withdraw method def withdraw(self,amount,description=""): # We need to check if the amount to be withdrawn # is greater than or equal to the total amount check = self.check_funds(amount) if check: self.withdrawDetail = dict() self.withdrawDetail["amount"]=-(amount) self.withdrawDetail["description"]=description self.ledger.append(self.withdrawDetail) return True else: return False # get balance method that returns the current balance # of the budget category based on the deposits # and withdrawals that have occurred. def get_balance(self): fundAvailable = 0 n = len(self.ledger) for i in range(n): fundAvailable += self.ledger[i]["amount"] return fundAvailable #Transfer method def transfer(self, amount, objName): objectName = "" objectName = objName.name a=self.withdraw(amount,f"Transfer to {objectName}") if(a==True): objName.deposit(amount,f"Transfer from {self.name}") return True else: return False ### Withdrawl method for chart def get_withdrawls(self): fundAvailable = 0 n = len(self.ledger) for i in range(n): amt = self.ledger[i]["amount"] if amt<0: fundAvailable += amt return fundAvailable def __str__(self): title = f"{self.name:*^30}\n" items = "" total = 0 for i in range(len(self.ledger)): desc = f"{self.ledger[i]['description'][0:23]:23}" amt = f"{self.ledger[i]['amount']:>7.2f}" items += desc + amt + '\n' total += self.ledger[i]['amount'] output = title + items + "Total: " + str(total) return output ### def truncate(n): multiplier = 10 return int(n * multiplier) / multiplier def getTotalCat(categories): total = 0 breakdown = [] for category in categories: total += category.get_withdrawls() breakdown.append(category.get_withdrawls()) #Breakdown of spending rounded down to nearest 10th rounded = list(map(lambda x: truncate(x/total), breakdown)) return rounded def create_spend_chart(categories): title="" title = "Percentage spent by category\n" i = 100 totals = getTotalCat(categories) for i in range(100, -1, -10): cat_spaces = " " for total in totals: if total * 100 >= i: cat_spaces += "o " else: cat_spaces += " " title+= str(i).rjust(3) + "|" + cat_spaces + ("\n") dashes = "-" + "---"*len(categories) names = [] cat_names = "" for category in categories: names.append(category.name) maxLen = max(names, key=len) for x in range(len(maxLen)): nameStr = ' ' i=0 nameslen = len(names) for name in names: if i<nameslen: if x >= len(name): nameStr += " " else: nameStr += name[x] + " " else: if x >= len(name): nameStr += "" else: nameStr += name[x] + "" i=i+1 cat_names += '\n' +nameStr title+= dashes.rjust(len(dashes)+4) + cat_names return title
StarcoderdataPython
150619
######################################################################## # written by : <NAME>, <NAME>, CS, # # Im<NAME> AlFaisal University # #----------------------------------------------------------------------# # # # This interface is the user main menu where the users can # # create new delivery task and change their passwords # # # ######################################################################## import sqlite3 from common import id_generator,send_email import gi gi.require_version('Gtk', '3.0') from gi.repository import Gtk import login import changePass import ScanTape import ChooseDestination class userHome(): builder =None window = None Username=None userType=None #staring function def __init__(self,username,kind): #connect to the desired window from glade file self.builder = Gtk.Builder() self.builder.add_from_file("HomeUser.glade") self.window = self.builder.get_object("window1") #get username+type self.Username=username self.userType=kind #get all objects createTaskBtn=self.builder.get_object("createTaskBtn") changePasswordBtn=self.builder.get_object("changePasswordBtn") createTaskBtn.connect("clicked",self.createTask) changePasswordBtn.connect("clicked",self.changePassword) logoutBtn=self.builder.get_object("logoutBtn1") logoutBtn.connect("clicked",self.onLogoutButtonPressedButtonPressed) self.window.show() #go to Scan Tape interface def createTask(self,button): self.window.destroy() self.window=ScanTape.ScanTape(list(),self.Username,self.userType) #go to change password interface def changePassword(self,button): self.window.destroy() window2 = changePass.change_password(self.Username,self.userType) #Logout def onLogoutButtonPressedButtonPressed(self, button): self.window.destroy() self.window=login.loginClass() class tapeInfo(): builder =None window = None projectName = None tapeName = None rackName = None slotNumber = None tapesList = None barcode = None hint = None userType=None Username=None #starting function def __init__(self,volser, tl,username, kind): # tl = tape list #connect to the desired window from glade file self.builder = Gtk.Builder() self.builder.add_from_file("HomeUser.glade") self.window = self.builder.get_object("window2") #get the username+type self.userType=kind self.Username=username #get all the objects scanBtn=self.builder.get_object("scanBtn") logoutBtn=self.builder.get_object("logoutBtn2") logoutBtn.connect("clicked",self.onLogoutButtonPressedButtonPressed) proceedBtn=self.builder.get_object("proceedBtn") cancelBtn=self.builder.get_object("cancelBtn") self.projectName=self.builder.get_object("projectName") self.tapeName=self.builder.get_object("tapeName") self.rackName=self.builder.get_object("rackName") self.slotNumber=self.builder.get_object("slotNumber") self.hint=self.builder.get_object("hint") scanBtn.connect("clicked",self.scan) proceedBtn.connect("clicked",self.proceed) cancelBtn.connect("clicked",self.cancel) self.tapesList= tl self.barcode = volser #if tapeslist.count() == 3 disable scann btn and hover or hint maxmam 3 tape if self.tapesList!= None and len(self.tapesList) == 2: scanBtn.set_sensitive(False) self.hint.set_text("You reached the maximmum number of tapes") #connect to db+bring the volser info db = sqlite3.connect('SaedRobot.db') c = db.cursor() c.execute('SELECT * from inventory WHERE volser= ?' , (volser,)) data=c.fetchone() #valid volser if data !=None and len(data)>0: self.projectName.set_text(data[1]) self.tapeName.set_text(data[0]) self.rackName.set_text(data[2]) self.slotNumber.set_text(str(data[3])) self.tapesList.append(self.barcode) self.window.show() def scan(self,button): # this method will append the barcode to the list and send the list back to ScanTape Interface self.window.destroy() self.window=ScanTape.ScanTape(self.tapesList,self.Username,self.userType) def proceed(self,button): self.window.destroy() # Go ahead to next interface with the tapelist >> Zainab's interface Choose distnation self.window=ChooseDestination.ChooseDes(self.tapesList,self.Username,self.userType) def cancel(self,button): #Go to ScanTape interface with the TapeList with no further changes self.window.destroy() index = len(self.tapesList) del self.tapesList[index - 1] self.window=ScanTape.ScanTape(self.tapesList,self.Username,self.userType) #Logout def onLogoutButtonPressedButtonPressed(self, button): self.window.destroy() self.window=login.loginClass()
StarcoderdataPython
58746
# Copyright (c) 2017-2018 Wind River Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.conf.urls import url from rest_framework.urlpatterns import format_suffix_patterns from titanium_cloud.swagger.views import SwaggerJsonViewDepreciated from titanium_cloud.swagger.views import APIv1SwaggerJsonViewDepreciated from titanium_cloud.swagger.views import SwaggerJsonView from titanium_cloud.swagger.views import APIv1SwaggerJsonView URLPATTERNS = [ # API v0, depreciated url(r'^api/multicloud-titanium_cloud/v0/swagger.json$', SwaggerJsonViewDepreciated.as_view()), # API v1, depreciated url(r'^api/multicloud-titanium_cloud/v1/swagger.json$', APIv1SwaggerJsonViewDepreciated.as_view()), # API v0, new namespace: MULTICLOUD-335 url(r'^api/multicloud-titaniumcloud/v0/swagger.json$', SwaggerJsonView.as_view()), # API v1, new namespace: MULTICLOUD-335 url(r'^api/multicloud-titaniumcloud/v1/swagger.json$', APIv1SwaggerJsonView.as_view()), ] urlpatterns = format_suffix_patterns(URLPATTERNS)
StarcoderdataPython
4834545
<reponame>wedwardbeck/ibase from django.urls import path from itembase.core.views.staffing_views import ProjectManagerListView, TeamLeadListView, TeamListView, \ TeamMemberCreateView, TeamMemberClientCreateView, TeamMemberDetailView, TeamMemberUpdateView app_name = "staff" urlpatterns = [ # Client URL Patterns path('', TeamListView.as_view(), name='team-list'), path('pm/', ProjectManagerListView.as_view(), name='pm-list'), path('tl/', TeamLeadListView.as_view(), name='teamlead-list'), path('newtm/', TeamMemberCreateView.as_view(), name='team-new'), path('newtm/<slug:slug>/', TeamMemberClientCreateView.as_view(), name='client-team-new'), path('<int:pk>/', TeamMemberDetailView.as_view(), name='team-view'), path('edittm/', TeamMemberUpdateView.as_view(), name='team-edit'), ]
StarcoderdataPython
44904
<reponame>boomsbloom/dtm-fmri ''' ============================================== ====== DYNAMIC TOPIC MODELING FOR FMRI ======= ============================================== Assumes subject timeseries have been processed through: 1) binning 2) text creation (corr matrix as docs) ============================================== ============================================== ============================================== ''' import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pickle from subprocess import call from gensim import models from bct import community_louvain from utilities import * def main(): # set arguments # OPTO # args = {'num_topics': 20, # number of topics to estimate # 'num_samples': 480, # length of timeseries # 'num_subjects': 3, # number of subjects # 'parent_dir': 'opto', # data directory # 'run_model': False, # False assumes model has been previously run # 'stim_design': 'topics/opto_k20/stim_design.txt', # Location of stimulus design file # } #WORKING MEMORY # args = {'num_topics': 20, # number of topics to estimate # 'num_samples': 405, # length of timeseries # 'num_subjects': 120, # number of subjects #121 # 'parent_dir': 'WM_RL', # data directory #WM_LR # 'run_model': False, # False assumes model has been previously run # 'stim_design': 'stim_designs/WM_RL_stimdesign.txt', # Location of stimulus design file # } #MATH LEARNING args = {'num_topics': 20, # number of topics to estimate 'num_samples': 4, # length of timeseries 'num_subjects': 398, # number of subjects #388 'parent_dir': 'math2', # data directory #math1 'run_model': False, # False assumes model has been previously run } # run model if args['run_model']: dtm = runDTM(args) save_dynamics(dtm,args) else: try: fit_model = 'fit_models/dtm_fit_%s_%sk'%(args['parent_dir'],args['num_topics']) dtm = models.wrappers.DtmModel.load(fit_model) except : print('No model fit could be found.') raise gammas = dtm.gamma_ topic_sums = np.sum(gammas,axis=0)/np.sum(gammas) #get the topics with meaningful information gammas_clean, sig_topics = clean_gammas(gammas) s = 0 e = args['num_samples'] grp_gammas = np.zeros([args['num_subjects'],args['num_samples'],np.shape(gammas_clean)[1]]) #grp_gammas = np.zeros([args['num_subjects'],12,args['num_topics']]) for sub in range(args['num_subjects']): grp_gammas[sub,:,:] = gammas_clean[s:e,:] s=e e+=args['num_samples'] group_gammas = np.transpose(np.mean(grp_gammas,axis=0)) #behavioral_analysis(topic_labels,grp_gammas,'RL') topic_labels, topic_ids = cluster_group(group_gammas,args['parent_dir']) if 'math' not in args['parent_dir']: group_gammas = merge_gammas(gammas_clean,topic_labels,args) stim_design = np.loadtxt(args['stim_design']) # add stimulus design to final matrix if args['parent_dir'] == 'opto': #Fixes error in how this data was saved stim_design = np.roll(stim_design,6) group_gammas = np.vstack([group_gammas,stim_design]) else: # grab the individual gamma matrix group_gammas = merge_gammas_nomax(gammas_clean,topic_labels,args) indiv_gammas = merge_indiv_gammas(gammas_clean,topic_labels,args) with open('gammas_out/%s_indiv_gammas.pkl'%(args['parent_dir']),'wb') as f: pickle.dump(indiv_gammas, f, pickle.HIGHEST_PROTOCOL) # save grouped topic probabilities, cluster labels, and original topic ids with open('gammas_out/%s_k%s_group_gammas.pkl'%(args['parent_dir'],args['num_topics']), 'wb') as out: output = Output(sig_topics, topic_labels, group_gammas, topic_sums) pickle.dump(output, out, pickle.HIGHEST_PROTOCOL) class Output: def __init__(self, ids, labels, gammas, topic_sums): self.ids = ids self.labels = labels self.gammas = gammas self.topic_sums = topic_sums if __name__ == '__main__': main()
StarcoderdataPython
3286357
<filename>goose.py # SPDX-FileCopyrightText: 2021 <NAME> # # SPDX-License-Identifier: MIT # A simple example of how to set up a keymap and HID keyboard on Keybow 2040. # You'll need to connect Keybow 2040 to a computer, as you would with a regular # USB keyboard. # Drop the keybow2040.py file into your `lib` folder on your `CIRCUITPY` drive. # NOTE! Requires the adafruit_hid CircuitPython library also! import board from keybow2040 import Keybow2040 import usb_hid from adafruit_hid.keyboard import Keyboard from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS from adafruit_hid.keycode import Keycode # Set up Keybow i2c = board.I2C() keybow = Keybow2040(i2c) keys = keybow.keys # Set up the keyboard and layout keyboard = Keyboard(usb_hid.devices) layout = KeyboardLayoutUS(keyboard) # A map of keycodes that will be mapped sequentially to each of the keys, 0-15 keymap = [Keycode.SHIFT, Keycode.C, Keycode.LEFT_ARROW, Keycode.Z, Keycode.RIGHT_SHIFT, Keycode.RIGHT_SHIFT, Keycode.DOWN_ARROW, Keycode.UP_ARROW, Keycode.RIGHT_SHIFT, Keycode.RIGHT_SHIFT, Keycode.RIGHT_ARROW, Keycode.SPACE, Keycode.RIGHT_SHIFT, Keycode.RIGHT_SHIFT, Keycode.RIGHT_SHIFT, Keycode.RIGHT_SHIFT] # Th e colour to set the keys when pressed, cyan. cyan = (0, 255, 255) purple = (153, 102, 255) green = (51, 204, 0) white = (200, 200, 255) yellow = (255, 255, 0) orange = (255, 55, 0) pink = (255, 102, 204) colourMap = [ green, cyan, white, cyan, green, orange, white, white, green, cyan, white, orange, green, cyan, cyan, cyan ] holdStatus = [ False for _ in range(16)] # Attach handler functions to all of the keys for index, key in enumerate(keys): # A press handler that sends the keycode and turns on the LED @keybow.on_press(key) def press_handler(key): keycode = keymap[key.number] keyboard.send(keycode) key.set_led(*pink) holdStatus[index] = True # A release handler that turns off the LED @keybow.on_release(key) def release_handler(key): rgb = colourMap[key.number] key.set_led(*rgb) #key.led_off() holdStatus[index] = False # A hold handler @keybow.on_hold(key) def hold_handler(key): keycode = keymap[key.number] keyboard.send(keycode) key.set_led(*purple) for key in keys: rgb = colourMap[key.number] key.set_led(*rgb) if key.number != 3: key.hold_time = 0.1 while True: # Always remember to call keybow.update()! keybow.update() for key in keys: if key.held: keycode = keymap[key.number] keyboard.send(keycode)
StarcoderdataPython
3220357
import os if __name__ == '__main__': amplxe_cl_path = '/opt/intel/vtune_amplifier/bin64/amplxe-cl' # dataset and parameters dataset_dir_path = '/home/yche/GitRepos/ScanOptimizing/dataset/' dataset_path_lst = map(lambda file_name: dataset_dir_path + file_name, ['snap_orkut', 'webgraph_webbase', 'webgraph_twitter', 'snap_friendster']) eps_lst = map(str, [float(i + 1) / 10 for i in range(9)]) # exec path ppscan0_path = '/home/yche/GitRepos/ScanOptimizing/pSCAN-refactor/build/pSCANParallelExp0' ppscan1_path = '/home/yche/GitRepos/ScanOptimizing/pSCAN-refactor/build/pSCANParallelExp1' exec_path_lst = [ppscan0_path, ppscan1_path] # profiler tag, and filter list profiler_tag_lst = ['advanced-hotspots', 'memory-access', 'general-exploration'] advanced_hotspots_tag_lst = ['-column="CPU Time:Self"', '-column="Instructions Retired:Self"'] memory_access_tag_lst = ['-column="CPU Time:Self"', '-column="Loads:Self"'] general_exploration_tag_lst = ['-column="Front-End Bound:Self"', '-column="Bad Speculation:Self"', '-column="Back-End Bound:Core Bound:Self"', '-column="Back-End Bound:Memory Bound:Self"', '-column="Retiring:Self"'] profiler_filter_lst = [' '.join(advanced_hotspots_tag_lst), ' '.join(memory_access_tag_lst), ' '.join(general_exploration_tag_lst)] profiler_tag_abbr_lst = ['ah', 'macc', 'ge'] # result file root folder result_dir = '/home/yche/workspace/vtune_data/' csv_report_root_dir = '/home/yche/workspace/vtune_report/' for dataset_path in dataset_path_lst: dataset_name = dataset_path.split(os.sep)[-1].split('_')[-1] my_folder_prefix = csv_report_root_dir + dataset_name os.system('mkdir -p ' + my_folder_prefix) for eps in eps_lst: for exec_path in exec_path_lst: exec_name = exec_path.split(os.sep)[-1] for idx, profiler_tag in enumerate(profiler_tag_lst): profiler_filter_tag = profiler_filter_lst[idx] result_path = result_dir + '-'.join([dataset_name, exec_name, eps, profiler_tag]) csv_file_path = my_folder_prefix + os.sep + '-'.join( [eps, exec_name, profiler_tag_abbr_lst[idx]]) my_cmd = ' '.join([ amplxe_cl_path, '-R top-down', '-result-dir', result_path, '-group-by function', '-filter function=GraphParallelExp::IntersectNeighborSets', profiler_filter_tag, '-report-output', csv_file_path, '-format csv -csv-delimiter comma']) print my_cmd os.system(my_cmd)
StarcoderdataPython
3205030
<filename>ae_service/main.py # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START app] from flask import Flask from flask_restful import reqparse, abort, Api, Resource app = Flask(__name__) api = Api(app) ALGORITHM_EXECUTIONS = { 'execution1': {'algorithm': 'build an API'}, 'execution2': {'algorithm': '?????'}, 'execution3': {'algorithm': 'profit!'}, } def abort_if_execution_doesnt_exist(execution_id): if execution_id not in ALGORITHM_EXECUTIONS: abort(404, message="Execution {} doesn't exist".format(execution_id)) parser = reqparse.RequestParser() parser.add_argument('algorithm') # Todo # shows a single todo item and lets you delete a todo item class Execution(Resource): def get(self, execution_id): abort_if_execution_doesnt_exist(execution_id) return ALGORITHM_EXECUTIONS[execution_id] def delete(self, execution_id): abort_if_execution_doesnt_exist(execution_id) del ALGORITHM_EXECUTIONS[execution_id] return '', 204 def put(self, execution_id): args = parser.parse_args() execution = {'execution': args['execution']} ALGORITHM_EXECUTIONS[execution_id] = execution return execution, 201 # TodoList # shows a list of all todos, and lets you POST to add new tasks class ExecutionList(Resource): def get(self): return ALGORITHM_EXECUTIONS def post(self): args = parser.parse_args() execution_id = int(max(ALGORITHM_EXECUTIONS.keys()).lstrip('execution')) + 1 execution_id = 'execution%i' % execution_id ALGORITHM_EXECUTIONS[execution_id] = {'algorithm': args['algorithm']} return ALGORITHM_EXECUTIONS[execution_id], 201 ## ## Actually setup the Api resource routing here ## api.add_resource(ExecutionList, '/executions') api.add_resource(Execution, '/executions/<execution_id>') if __name__ == '__main__': app.run(debug=True)
StarcoderdataPython
3312618
import gym import time import os import sys import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from gym import wrappers from gym.wrappers.monitoring import stats_recorder, video_recorder from datetime import datetime import tensorflow as tf import random from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Embedding from tensorflow.keras.optimizers import SGD, RMSprop, Adam, Adamax from tensorflow.keras.models import load_model from tensorflow.keras import backend as K from pprint import pprint import cv2 import datetime from collections import deque import glob from shutil import copyfile import pickle as pkl import json import ringbuffer import argparse def plot_running_avg(totalrewards, filename): N = len(totalrewards) running_avg = np.empty(N) for t in range(N): running_avg[t] = totalrewards[max(0, t-100):(t+1)].mean() plt.plot(running_avg) plt.title("Running Average") plt.savefig(filename) plt.close() def reset_video_recorder_filename(filename,env): if env.video_recorder: env._close_video_recorder() print("FILENAME IN VR:{}/{} ".format(env.directory, filename)) env.video_recorder = video_recorder.VideoRecorder( env=env, path=os.path.join(env.directory,filename), metadata={'episode_id': env.episode_id}, enabled=env._video_enabled(), ) env.video_recorder.capture_frame() def transform(s): bottom_black_bar = s[84:, 12:] img = cv2.cvtColor(bottom_black_bar, cv2.COLOR_RGB2GRAY) bottom_black_bar_bw = cv2.threshold(img, 1, 255, cv2.THRESH_BINARY)[1] bottom_black_bar_bw = cv2.resize(bottom_black_bar_bw, (84, 12), interpolation = cv2.INTER_NEAREST) upper_field = s[:84, 6:90] # we crop side of screen as they carry little information img = cv2.cvtColor(upper_field, cv2.COLOR_RGB2GRAY) upper_field_bw = cv2.threshold(img, 120, 255, cv2.THRESH_BINARY)[1] upper_field_bw = cv2.resize(upper_field_bw, (10, 10), interpolation = cv2.INTER_NEAREST) # re scaled to 7x7 pixels upper_field_bw = upper_field_bw.astype('float')/255 car_field = s[66:78, 43:53] img = cv2.cvtColor(car_field, cv2.COLOR_RGB2GRAY) car_field_bw = cv2.threshold(img, 80, 255, cv2.THRESH_BINARY)[1] car_field_t = [car_field_bw[:, 3].mean()/255, car_field_bw[:, 4].mean()/255, car_field_bw[:, 5].mean()/255, car_field_bw[:, 6].mean()/255] return bottom_black_bar_bw, upper_field_bw, car_field_t # this function uses the bottom black bar of the screen and extracts steering setting, speed and gyro data def compute_steering_speed_gyro_abs(a): right_steering = a[6, 36:46].mean()/255 left_steering = a[6, 26:36].mean()/255 steering = (right_steering - left_steering + 1.0)/2 left_gyro = a[6, 46:60].mean()/255 right_gyro = a[6, 60:76].mean()/255 gyro = (right_gyro - left_gyro + 1.0)/2 speed = a[:, 0][:-2].mean()/255 # if speed>0: # print("speed element: ", speed) abs1 = a[:, 6][:-2].mean()/255 abs2 = a[:, 8][:-2].mean()/255 abs3 = a[:, 10][:-2].mean()/255 abs4 = a[:, 12][:-2].mean()/255 return [steering, speed, gyro, abs1, abs2, abs3, abs4] vector_size = 10*10 + 7 + 4 def create_nn(model_to_load, stack_len, freeze_hidden=False, lr = 0.01): try: m = load_model(model_to_load) print("Loaded pretrained model " + model_to_load) init_weights = m.get_weights() # only do this if loading a saved model. why would we freeze weights on a trained model? if freeze_hidden == True: m.layers[1].trainable = False # not sure if this is the right way to do this m.compile(loss='mse', optimizer=Adamax(lr=0.01)) return m, init_weights except Exception as e: print("No model loaded, generating new") model = Sequential() model.add(Dense(512, input_shape=(stack_len*111,), kernel_initializer="lecun_uniform"))# 7x7 + 3. or 14x14 + 3 # a model.add(Activation('relu')) model.add(Dense(11, kernel_initializer="lecun_uniform")) adamax = Adamax(lr=lr) model.compile(loss='mse', optimizer=adamax) if model_to_load: model.save(model_to_load) return model, model.get_weights() class DQNAgent(): ''' This class is modified from https://gist.github.com/lmclupr/b35c89b2f8f81b443166e88b787b03ab#file-race-car-cv2-nn-network-td0-15-possible-actions-ipynb ''' def __init__(self, num_episodes, model_name=None, carConfig=None, replay_freq=20, freeze_hidden=False, lr=0.01, video_callable=None, train_dir="train_logs_testing"): K.clear_session() env = gym.make('CarRacing-v0') env = wrappers.Monitor(env, 'flaskapp/static', force=False, resume = True, video_callable= video_callable, mode='evaluation', write_upon_reset=False) self.carConfig = carConfig self.curr_pointer = 0 self.env = env self.gamma = 0.99 self.K = 10 self.stack_len = 4 # number of continuous frames to stack self.model_name = model_name self.train_dir = train_dir self.model, self.init_weights = create_nn(model_name, self.stack_len, freeze_hidden, lr) # consecutive steps, 111-element vector for each state self.target_models = [] for _ in range(self.K): target_model, _ = create_nn(model_name, self.stack_len) target_model.set_weights(self.init_weights) self.target_models.append(target_model) self.model.summary() self.replay_freq = replay_freq if not model_name: MEMORY_SIZE = 10000 self.memory = ringbuffer.RingBuffer(MEMORY_SIZE) else: MEMORY_SIZE = 5000 # smaller memory for retraining self.memory = ringbuffer.RingBuffer(MEMORY_SIZE) self.num_episodes = num_episodes def predict(self, s): return self.model.predict(np.reshape(s, (1, self.stack_len*111)), verbose=0)[0] def target_predict(self, s): total_pred = self.target_models[0].predict(np.reshape(s, (1, self.stack_len*111)), verbose=0)[0] for i in range(1, self.K): pred = self.target_models[i].predict(np.reshape(s, (1, self.stack_len*111)), verbose=0)[0] total_pred += pred next_pred = total_pred/self.K return next_pred def update_targets(self): model_weights = self.model.get_weights() self.target_models[self.curr_pointer%self.K].set_weights(model_weights) def update(self, s, G, B): self.model.fit(s, np.array(G).reshape(-1, 11), batch_size=B, epochs=1, use_multiprocessing=True, verbose=0) def sample_action(self, s, eps): qval = self.predict(s) if np.random.random() < eps: return random.randint(0, 10), qval else: return np.argmax(qval), qval def convert_argmax_qval_to_env_action(self, output_value): # to reduce the action space, gas and brake cannot be applied at the same time. # as well, steering input and gas/brake cannot be applied at the same time. # similarly to real life drive, you brake/accelerate in straight line, you coast while sterring. gas = 0.0 brake = 0.0 steering = 0.0 # output value ranges from 0 to 10 if output_value <= 8: # steering. brake and gas are zero. output_value -= 4 steering = float(output_value)/4 elif output_value >= 9 and output_value <= 9: output_value -= 8 gas = float(output_value)/3 # 33% elif output_value >= 10 and output_value <= 10: output_value -= 9 brake = float(output_value)/2 # 50% brakes else: print("error") white = np.ones((round(brake * 100), 10)) black = np.zeros((round(100 - brake * 100), 10)) brake_display = np.concatenate((black, white))*255 white = np.ones((round(gas * 100), 10)) black = np.zeros((round(100 - gas * 100), 10)) gas_display = np.concatenate((black, white))*255 control_display = np.concatenate((brake_display, gas_display), axis=1) return [steering, gas, brake] def replay(self, batch_size): batch = self.memory.sample(batch_size) old_states = [] old_state_preds = [] for (old_state, argmax_qval, reward, next_state) in batch: next_state_pred = self.target_predict(next_state) max_next_pred = np.max(next_state_pred) old_state_pred = self.predict(old_state) target_q_value = reward + self.gamma * max_next_pred y = old_state_pred[:] y[argmax_qval] = target_q_value old_states.append(old_state) old_state_preds.append(y.reshape(1, 11)) old_states = np.reshape(old_states, (batch_size, 111*self.stack_len)) old_state_preds = np.array(old_state_preds).reshape(batch_size, 11) self.model.fit(old_states, old_state_preds, batch_size=batch_size, epochs=1, verbose=0, workers=10, use_multiprocessing=True) def play_one(self, eps,train=True,video_path=None): if self.carConfig: observation = self.env.reset(config=self.carConfig) else: observation = self.env.reset() if video_path is not None: print("Setting video path to: {}".format(video_path)) reset_video_recorder_filename(video_path,self.env) done = False full_reward_received = False totalreward = 0 iters = 0 a, b, c = transform(observation) state = np.concatenate((np.array([compute_steering_speed_gyro_abs(a)]).reshape(1,-1).flatten(), b.reshape(1,-1).flatten(), c), axis=0) # this is 3 + 7*7 size vector. all scaled in range 0..1 stacked_state = np.array([state]*self.stack_len, dtype='float32') while not done: argmax_qval, qval = self.sample_action(stacked_state, eps) prev_state = stacked_state action = self.convert_argmax_qval_to_env_action(argmax_qval) observation, reward, done, info = self.env.step(action) a, b, c = transform(observation) curr_state = np.concatenate((np.array([compute_steering_speed_gyro_abs(a)]).reshape(1,-1).flatten(), b.reshape(1,-1).flatten(), c), axis=0) # this is 3 + 7*7 size vector. all scaled in range 0..1 curr_state.astype('float32') stacked_state = np.append(stacked_state[1:], [curr_state], axis=0) # appending the lastest frame, pop the oldest if train == True: self.memory.append((prev_state, argmax_qval, reward, stacked_state)) if iters%250==0: self.curr_pointer += 1 self.update_targets() # replay batch from memory every n steps if self.replay_freq!=0 and train==True: if iters % self.replay_freq==0 and iters>10: try: self.replay(32) except Exception as e: # will error if the memory size not enough for minibatch yet print("error when replaying: ", e) raise e totalreward += reward iters += 1 self.env.render() if iters > 1500: print("This episode is stuck") break return totalreward, iters def train(self, retrain=False, eps_mode='dynamic'): self.timestamp = time.strftime("%m%d_%H%M") if retrain: self.timestamp += "_retrain" #create directory for this training run dir_name = os.path.join(os.getcwd(), "{}/{}".format(self.train_dir,self.timestamp)) if not os.path.exists(dir_name): os.makedirs(dir_name) totalrewards = np.empty(self.num_episodes) for n in range(self.num_episodes): print("training ", str(n)) if eps_mode == 'dynamic': if not self.model_name: eps = 1/np.sqrt(n + 100) else: # want to use a very small eps during retraining eps = 0.01 else: eps = eps_mode totalreward, iters = self.play_one(eps) totalrewards[n] = totalreward print("episode:", n, "iters", iters, "total reward:", totalreward, "eps:", eps, "avg reward (last 100):", totalrewards[max(0, n-100):(n+1)].mean()) if n>=0 and n%50==0 and not self.model_name: # save model (assuming this is NOT the flask app, which WILL pass a model name) trained_model = os.path.join(os.getcwd(),"{}/{}/avg_dqn_ep_{}.h5".format(self.train_dir,self.timestamp, str(n))) with open(os.path.join(os.getcwd(), "{}/{}/avg_dqn_ep_{}.pkl".format(self.train_dir,self.timestamp, str(n))),'wb+') as outfile: pkl.dump(totalrewards, outfile) self.model.save(trained_model) if self.model_name: # we assume that this IS the flask app; if you are trying to retrain FROM an h5, put it in the flask_model directory for now model_name_no_extension = os.path.basename(self.model_name) new_model_name = os.path.join(os.getcwd(), "{}/{}/{}".format(self.train_dir,self.timestamp, model_name_no_extension)) print('saving: ', new_model_name) self.model.save(new_model_name) rp_name = os.path.join(os.getcwd(), "{}/{}/rewards_plot_{}.png".format(self.train_dir,self.timestamp, model_name_no_extension)) plt.plot(totalrewards, label='retraining reward') plt.title("Rewards") plt.savefig(rp_name) plt.close() rap_name = os.path.join(os.getcwd(), "{}/{}/ra_plot_{}.png".format(self.train_dir,self.timestamp, model_name_no_extension)) plot_running_avg(totalrewards, rap_name) with open(os.path.join(os.getcwd(), "{}/{}/{}_rewards_flask.pkl".format(self.train_dir,self.timestamp, model_name_no_extension)),'wb+') as outfile: pkl.dump(totalrewards, outfile) with open(os.path.join(os.getcwd(), "{}/{}/{}_car_config.json".format(self.train_dir,self.timestamp, model_name_no_extension)),'w+') as outfile: json.dump(self.carConfig, outfile) if not self.model_name: plt.plot(totalrewards) # rp_name = os.path.join(os.getcwd(), "train_logs/avg_dqn_lr001_replay20_cpweights250.png") rp_name = os.path.join(os.getcwd(), "{}/{}/rewards_plot.png".format(self.train_dir,self.timestamp)) plt.title("Rewards") plt.savefig(rp_name) plt.close() rap_name = os.path.join(os.getcwd(), "{}/{}/ra_plot.png".format(self.train_dir,self.timestamp)) plot_running_avg(totalrewards, rap_name) # with open(os.path.join(os.getcwd(), "train_logs/avg_dqn_total_rewards_final_lr001_replay20_cpweights250.pkl"),'wb+') as outfile: with open(os.path.join(os.getcwd(), "{}/{}/total_rewards.pkl".format(self.train_dir,self.timestamp)),'wb+') as outfile: pkl.dump(totalrewards, outfile) with open(os.path.join(os.getcwd(), "{}/{}/car_config.json".format(self.train_dir,self.timestamp)),'w+') as outfile: json.dump(self.carConfig, outfile) self.model.save(os.path.join(os.getcwd(), "{}/{}.h5".format(self.train_dir,self.timestamp))) copyfile(rap_name, "{}/reward_plot.png".format(self.train_dir)) self.env.close() return totalrewards if __name__ == "__main__": parser = argparse.ArgumentParser(description='CarRacing DQN Agent') parser.add_argument('--train', help='number of episodes to train for') parser.add_argument('--videos', help='number of videos to generate') args = parser.parse_args() if args.train: n_episodes = int(args.train) trainer = DQNAgent(n_episodes, None, replay_freq=50, lr=0.001, train_dir="flaskapp/static/default")#, carConfig=car_config) trainer.train() elif args.videos: agents = glob.glob('flaskapp/static/default/*.h5') # get the most recent agent by timestamp agents.sort(reverse=True) agent = agents[0] tester = DQNAgent(0, agent, video_callable=lambda x: True) n_videos = int(args.videos) for i in range(n_videos): video_path = f"default/test_drive_{i}.mp4" result = tester.play_one(train=False,video_path=video_path,eps=0.01)
StarcoderdataPython
1716406
import cloudinary import cloudinary.uploader import cloudinary.api cloudinary.config( cloud_name="grupo-dasa", api_key="677559119568421", api_secret="<KEY>" ) def create_file(file): return cloudinary.uploader.upload(file)
StarcoderdataPython
1647121
<filename>gs/profile/status/change/interfaces.py # -*- coding: utf-8 -*- ############################################################################ # # Copyright © 2015 OnlineGroups.net and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################ from __future__ import absolute_import, print_function, unicode_literals from zope.interface import Interface from zope.schema import Bool from . import GSMessageFactory as _ class ToggleStatusCommand(Interface): skip = Bool( title=_('skip-label', 'Skip the monthly profile-status'), description=_('skip-help', 'Skip receiving the profile-status notification that ' 'is sent out once a month'), default=False, required=True)
StarcoderdataPython
116971
<filename>tests/test_annotation.py # OBSS SAHI Tool # Code written by <NAME>, 2020. import unittest class TestAnnotation(unittest.TestCase): def test_bounding_box(self): from sahi.annotation import BoundingBox bbox_minmax = [30, 30, 100, 150] shift_amount = [50, 40] bbox = BoundingBox(bbox_minmax, shift_amount=[0, 0]) expanded_bbox = bbox.get_expanded_box(ratio=0.1) bbox = BoundingBox(bbox_minmax, shift_amount=shift_amount) shifted_bbox = bbox.get_shifted_box() # compare self.assertEqual(expanded_bbox.to_coco_bbox(), [18, 23, 94, 134]) self.assertEqual(expanded_bbox.to_voc_bbox(), [18, 23, 112, 157]) self.assertEqual(shifted_bbox.to_voc_bbox(), [80, 70, 150, 190]) def test_category(self): from sahi.annotation import Category category_id = 1 category_name = "car" category = Category(id=category_id, name=category_name) self.assertEqual(category.id, category_id) self.assertEqual(category.name, category_name) def test_mask(self): from sahi.annotation import Mask coco_segmentation = [[1, 1, 325, 125, 250, 200, 5, 200]] full_shape_height, full_shape_width = 500, 600 full_shape = [full_shape_height, full_shape_width] mask = Mask.from_coco_segmentation(segmentation=coco_segmentation, full_shape=full_shape) self.assertEqual(mask.full_shape_height, full_shape_height) self.assertEqual(mask.full_shape_width, full_shape_width) self.assertEqual(mask.bool_mask[11, 2], True) def test_object_annotation(self): from sahi.annotation import ObjectAnnotation if __name__ == "__main__": unittest.main()
StarcoderdataPython
3344349
from threading import RLock from typing import Optional from rx.core import typing from rx.core.typing import Disposable class SerialDisposable(Disposable): """Represents a disposable resource whose underlying disposable resource can be replaced by another disposable resource, causing automatic disposal of the previous underlying disposable resource. """ def __init__(self) -> None: self.current: Optional[Disposable] = None self.is_disposed = False self.lock = RLock() super().__init__() def get_disposable(self) -> Optional[Disposable]: return self.current def set_disposable(self, value) -> None: """If the SerialDisposable has already been disposed, assignment to this property causes immediate disposal of the given disposable object. Assigning this property disposes the previous disposable object.""" old: Optional[Disposable] = None with self.lock: should_dispose = self.is_disposed if not should_dispose: old = self.current self.current = value if old is not None: old.dispose() if should_dispose and value is not None: value.dispose() disposable = property(get_disposable, set_disposable) def dispose(self) -> None: """Disposes the underlying disposable as well as all future replacements.""" old: Optional[Disposable] = None with self.lock: if not self.is_disposed: self.is_disposed = True old = self.current self.current = None if old is not None: old.dispose()
StarcoderdataPython
1784772
from __future__ import annotations from ...distributed.options import Options from ...distributed.unit import Unit from ...domain.sensor_type import SensorType from ...domain.sensor_type_repository import SensorTypeRepository from ...domain.options import Options as DomainOptions from ..base_command import BaseCommand from ..container import Container from ...domain.unit_factory import UnitFactory class RegisterSensorType(BaseCommand): name: str options: Options factory: callable unit: Unit def __init__(self, name: str, options: Options, factory: callable, unit: Unit): self.name = name self.options = options self.factory = factory self.unit = unit def get_handler(self, container: Container): sensor_types = container.get_service('sensor_types') return self.Handler(sensor_types) class Handler: _sensor_types: SensorTypeRepository _unit_factory: UnitFactory def __init__(self, sensor_types: SensorTypeRepository): self._sensor_types = sensor_types self._unit_factory = UnitFactory() async def handle(self, command: RegisterSensorType): unit = self._unit_factory.create_unit(command.unit.get_unit_type()) options = DomainOptions.from_dict(command.options.to_dict()) sensor_type = SensorType( command.name, options, command.factory, unit ) return await self._sensor_types.register_sensor_type(command.name, sensor_type)
StarcoderdataPython
3287856
""" https://github.com/FrederikSchorr/sign-language Train a pre-trained I3D convolutional network to classify videos """ import os import glob import time import sys import numpy as np import pandas as pd import keras from keras import backend as K from datagenerator import VideoClasses, FramesGenerator from model_i3d import Inception_Inflated3d, add_i3d_top def layers_freeze(keModel:keras.Model) -> keras.Model: print("Freeze all %d layers in Model %s" % (len(keModel.layers), keModel.name)) for layer in keModel.layers: layer.trainable = False return keModel def layers_unfreeze(keModel:keras.Model) -> keras.Model: print("Unfreeze all %d layers in Model %s" % (len(keModel.layers), keModel.name)) for layer in keModel.layers: layer.trainable = True return keModel def count_params(keModel:keras.Model): trainable_count = int( np.sum([K.count_params(p) for p in set(keModel.trainable_weights)])) non_trainable_count = int( np.sum([K.count_params(p) for p in set(keModel.non_trainable_weights)])) print('Total params: {:,}'.format(trainable_count + non_trainable_count)) print('Trainable params: {:,}'.format(trainable_count)) print('Non-trainable params: {:,}'.format(non_trainable_count)) return def train_I3D_oflow_end2end(diVideoSet): """ * Loads pretrained I3D model, * reads optical flow data generated from training videos, * adjusts top-layers adequately for video data, * trains only news top-layers, * then fine-tunes entire neural network, * saves logs and models to disc. """ # directories sFolder = "%03d-%d"%(diVideoSet["nClasses"], diVideoSet["nFramesNorm"]) sClassFile = "data-set/%s/%03d/class.csv"%(diVideoSet["sName"], diVideoSet["nClasses"]) #sVideoDir = "data-set/%s/%03d"%(diVideoSet["sName"], diVideoSet["nClasses"]) #sImageDir = "data-temp/%s/%s/image"%(diVideoSet["sName"], sFolder) #sImageFeatureDir = "data-temp/%s/%s/image-i3d"%(diVideoSet["sName"], sFolder) sOflowDir = "data-temp/%s/%s/oflow"%(diVideoSet["sName"], sFolder) #sOflowFeatureDir = "data-temp/%s/%s/oflow-i3d"%(diVideoSet["sName"], sFolder) sModelDir = "model" diTrainTop = { "fLearn" : 1e-3, "nEpochs" : 3} diTrainAll = { "fLearn" : 1e-4, "nEpochs" : 17} nBatchSize = 4 print("\nStarting I3D end2end training ...") print(os.getcwd()) # read the ChaLearn classes oClasses = VideoClasses(sClassFile) # Load training data genFramesTrain = FramesGenerator(sOflowDir + "/train", nBatchSize, diVideoSet["nFramesNorm"], 224, 224, 2, oClasses.liClasses) genFramesVal = FramesGenerator(sOflowDir + "/val", nBatchSize, diVideoSet["nFramesNorm"], 224, 224, 2, oClasses.liClasses) # Load pretrained i3d model and adjust top layer print("Load pretrained I3D flow model ...") keI3DOflow = Inception_Inflated3d( include_top=False, weights='flow_imagenet_and_kinetics', input_shape=(diVideoSet["nFramesNorm"], 224, 224, 2)) print("Add top layers with %d output classes ..." % oClasses.nClasses) keI3DOflow = layers_freeze(keI3DOflow) keI3DOflow = add_i3d_top(keI3DOflow, oClasses.nClasses, dropout_prob=0.5) # Prep logging sLog = time.strftime("%Y%m%d-%H%M", time.gmtime()) + \ "-%s%03d-oflow-i3d"%(diVideoSet["sName"], diVideoSet["nClasses"]) # Helper: Save results csv_logger = keras.callbacks.CSVLogger("log/" + sLog + "-acc.csv", append = True) # Helper: Save the model os.makedirs(sModelDir, exist_ok=True) cpTopLast = keras.callbacks.ModelCheckpoint(filepath = sModelDir + "/" + sLog + "-above-last.h5", verbose = 0) cpTopBest = keras.callbacks.ModelCheckpoint(filepath = sModelDir + "/" + sLog + "-above-best.h5", verbose = 1, save_best_only = True) cpAllLast = keras.callbacks.ModelCheckpoint(filepath = sModelDir + "/" + sLog + "-entire-last.h5", verbose = 0) cpAllBest = keras.callbacks.ModelCheckpoint(filepath = sModelDir + "/" + sLog + "-entire-best.h5", verbose = 1, save_best_only = True) # Fit top layers print("Fit I3D top layers with generator: %s" % (diTrainTop)) optimizer = keras.optimizers.Adam(lr = diTrainTop["fLearn"]) keI3DOflow.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) count_params(keI3DOflow) keI3DOflow.fit_generator( generator = genFramesTrain, validation_data = genFramesVal, epochs = diTrainTop["nEpochs"], workers = 4, use_multiprocessing = True, max_queue_size = 8, verbose = 1, callbacks=[csv_logger, cpTopLast, cpTopBest]) # Fit entire I3D model print("Finetune all I3D layers with generator: %s" % (diTrainAll)) keI3DOflow = layers_unfreeze(keI3DOflow) optimizer = keras.optimizers.Adam(lr = diTrainAll["fLearn"]) keI3DOflow.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) count_params(keI3DOflow) keI3DOflow.fit_generator( generator = genFramesTrain, validation_data = genFramesVal, epochs = diTrainAll["nEpochs"], workers = 4, use_multiprocessing = True, max_queue_size = 8, verbose = 1, callbacks=[csv_logger, cpAllLast, cpAllBest]) return if __name__ == '__main__': """diVideoSet = {"sName" : "ledasila", "nClasses" : 21, # number of classes "nFramesNorm" : 40, # number of frames per video "nMinDim" : 240, # smaller dimension of saved video-frames "tuShape" : (288, 352), # height, width "nFpsAvg" : 25, "nFramesAvg" : 75, "fDurationAvg" : 3.0} # seconds """ diVideoSet = {"sName" : "chalearn", "nClasses" : 20, # number of classes "nFramesNorm" : 40, # number of frames per video "nMinDim" : 240, # smaller dimension of saved video-frames "tuShape" : (240, 320), # height, width "nFpsAvg" : 10, "nFramesAvg" : 50, "fDurationAvG" : 5.0} # seconds train_I3D_oflow_end2end(diVideoSet)
StarcoderdataPython
1700707
<gh_stars>1-10 from polecat.project import Project as BaseProject from .models import * # noqa class Project(BaseProject): pass
StarcoderdataPython
156376
from __future__ import print_function, absolute_import from .video_datasets import *
StarcoderdataPython
3304322
#!/usr/bin/python3 from ast import parse from types import new_class from typing import DefaultDict import config #copy config-example.py to config.py and set values from datetime import datetime import paho.mqtt.client as mqtt from smip import graphql import requests import uuid import argparse import json import sys #print(sys.argv) mqtt_broker = config.mqtt["broker"] uuid = str(uuid.uuid4())[:8] mqtt_clientid = config.mqtt["clientprefix"] + "GW" + uuid mqtt_topic = "" #This should be enumerated, not hard coded tanks_dic = {} # {tank_name: tank_id} attributes_dic = {} # {tank_name: {attribute:attritube_id}} type_id = config.type_id parent_id = config.parent_id # Connection information for your SMIP Instance GraphQL endpoint graphql = graphql(config.smip["authenticator"], config.smip["password"], config.smip["name"], config.smip["role"], config.smip["url"]) mqtt_topic = graphql.args.modeltype print (f"Listening for MQTT messages on topic: {mqtt_topic} ...") def delete_all(): for item in tanks_dic: print(item) delete_equipment(tanks_dic[item]) def delete_equipment(equipment_id): smp_mutation = f''' mutation MyNewEquipmentMutation {{ deleteEquipment( input: {{ id: "{equipment_id}" }} ){{ equipment {{ id displayName }} }} }} ''' smp_response = "" try: print("start deletion") smp_response = graphql.post(smp_mutation) print(smp_response) except requests.exceptions.HTTPError as e: print("An error occured accessing the SM Platform!") print(e) def get_tank_info(equipment_type_id): smp_query = f'''query get_id {{ equipments( filter: {{typeId: {{equalTo: "{equipment_type_id}"}}}} ) {{ displayName id attributes {{ displayName id }} }} }}''' smp_response = "" try: smp_response = graphql.post(smp_query) equipments = smp_response['data']['equipments'] #print(equipments) for ele in equipments: tank_id = ele['id'] tank_name = ele['displayName'] tanks_dic[tank_name] = tank_id attributes_dic[tank_name] = {'id': tank_id} for attribute in ele['attributes']: attributes_dic[tank_name][attribute['displayName']] = attribute['id'] print(attributes_dic) print(tanks_dic) except requests.exceptions.HTTPError as e: print("An error occured accessing the SM Platform!") print(e) def create_new_equipment(equipment_name, equipment_id, parent_id): print("im in") smp_mutation = f''' mutation MyNewEquipmentMutation {{ createEquipment( input: {{ equipment: {{ displayName: "{equipment_name}" typeId: "{equipment_id}" partOfId: "{parent_id}" }} }} ) {{ equipment {{ id displayName attributes {{ displayName id }} }} }} }} ''' smp_response = "" try: smp_response = graphql.post(smp_mutation) print(smp_response) equipment = smp_response['data']['createEquipment']['equipment'] equipment_id = equipment['id'] tanks_dic[equipment_name] = equipment_id attributes = equipment['attributes'] attributes_dic[equipment_name] = {} for each in attributes: attr_name = each['displayName'] attr_id = each['id'] attributes_dic[equipment_name][attr_name] = attr_id print(tanks_dic) print(attributes_dic) return int(equipment_id) except requests.exceptions.HTTPError as e: print("An error occured accessing the SM Platform!") print(e) #create_new_equipment("test2") def make_datetime_utc(): utc_time = str(datetime.utcnow()) time_parts = utc_time.split(" ") utc_time = "T".join(time_parts) time_parts = utc_time.split(".") utc_time = time_parts[0] + "Z" return utc_time def update_smip(sample_value): print("Posting Data to CESMII Smart Manufacturing Platform...") print("in update") sample_value = json.loads(sample_value) tank_id = 0 tank_name = sample_value["tank_name"] if tank_name in tanks_dic: tank_id = tanks_dic[tank_name] else: tank_id = create_new_equipment(tank_name, type_id, parent_id) tanks_dic[tank_name] = tank_id for attribute in sample_value: if attribute == 'tank_name': continue value_send = str(sample_value[attribute]) # Value to be sent to the attribute ID write_attribute_id = attributes_dic[tank_name][attribute] #The Equipment Attribute ID to be updated in your SMIP model smp_query = f""" mutation updateTimeSeries {{ replaceTimeSeriesRange( input: {{attributeOrTagId: "{write_attribute_id}", entries: [ {{timestamp: "{make_datetime_utc()}", value: "{value_send}", status: "1"}} ] }} ) {{ clientMutationId, json }} }} """ smp_response = "" try: smp_response = graphql.post(smp_query) except requests.exceptions.HTTPError as e: print("An error occured accessing the SM Platform!") print(e) print("Response from SM Platform was...") #print(json.dumps(smp_response, indent=2)) print() def on_message(client, userdata, message): msg = str(message.payload.decode("utf-8")) print("Received MQTT message: " + msg) update_smip(msg) # python3 ga if mqtt_topic=="clean": get_tank_info(type_id) delete_all() quit() mqtt_client = mqtt.Client(mqtt_clientid) mqtt_client.connect(mqtt_broker) print ("MQTT Broker: " + mqtt_broker) print ("MQTT Client ID: " + mqtt_clientid) print ("Publish Topic: " + mqtt_topic) get_tank_info(type_id) mqtt_client.subscribe('#') mqtt_client.on_message=on_message mqtt_client.loop_forever()
StarcoderdataPython
3262596
#! /bin/python3 import json import pandas import numpy class mark_mandatory: def __init__(self): pass # This class at the 'identifier' to the name of the mandatory fields, def mark_as_mandatory(self, names_list, mandatory_list, mand_ident, identifier): print('#-1') print(numpy.nonzero(mandatory_list)) print('#0') print(mand_ident) ind = numpy.where(mandatory_list == mand_ident) print('#1') print(ind) new_list = names_list print('#2') print(new_list) new_list[ind]=[str(identifier)+ item for item in new_list[ind]] print('#3') print(new_list) return(new_list)
StarcoderdataPython
1709687
# Copyright 2021 <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from humanfriendly import parse_timespan from playhouse import db_url from . import tokens from . import tools from ..database.database import database_proxy from webapp.common import Reactor from webapp.settings import get_secret from webapp.settings import settings_pool as settings class CodeCLI(Reactor): def __init__(self, parent): self.name = 'code' self.parser = parent.add_parser(self.name, help='Actions with access codes') group = self.parser.add_mutually_exclusive_group(required=True) group.add_argument( '-i', '--info', help='propagates changes to models in the database schema.', metavar='<code>', type=str, ) group.add_argument( '-c', '--create', help='Create a new access code', nargs=2, metavar=('<code>', '<desc>'), type=str, ) group.add_argument( '-r', '--revoke', help='Shows the current version of the database schema', metavar='<code>', type=str, ) @staticmethod def init_db(): database_url = get_secret('AUTH_DATABASE_URL') database_proxy.initialize(db_url.connect(database_url)) @staticmethod def info(code): code = tools.validate_code(code) if code is None: print('Error: code not found.') return print('UUID: %s' % code.uuid) print('CODE: %s' % code.code) print('DESC: %s' % code.desc) print('EXPIRE DATE: %s' % code.expire) print('REVOKED: %s' % code.revoke) print('ISSUE DATE: %s' % code.date) def process(self, args): self.init_db() if args.create: tools.register_code(args.create[0], args.create[1]) elif args.info: self.info(args.info) else: self.parser.print_help() class TokenCLI(Reactor): def __init__(self, parent): self.name = 'token' self.parser = parent.add_parser(self.name, help='Actions with tokens') group = self.parser.add_mutually_exclusive_group(required=True) group.add_argument( '-d', '--decode', help='Check if a token is valid, decode it and show its content.', metavar='<token>', type=str, ) group.add_argument( '-c', '--create', help='Generate a new access token.', metavar='<resource>', type=str, ) group.add_argument( '-r', '--revoke', help='Add a token to the blacklist.', metavar='<token>', type=str, ) @staticmethod def create_token(resource, **kwargs): print(tokens.create_access_token(resource=resource, **kwargs)) @staticmethod def decode_token(token): print(tokens.decode_jwt_token(token)) def process(self, args): tokens.idp_e.update_secret_key(get_secret('JWT_ENCODE_KEY')) tokens.idp_e.update_algm(settings.auth.cipher_algorithm) tokens.idp_e.update_ttl( 'access', parse_timespan(settings.auth.access_token_ttl) ) tokens.idp_d.update_secret_key(get_secret('JWT_DECODE_KEY')) tokens.idp_d.update_algm(settings.auth.cipher_algorithm) if args.create: self.create_token(args.create) elif args.decode: self.decode_token(args.decode)
StarcoderdataPython
4827598
# windows.py import raylibpy as rl from ctypes import byref def main(): rl.init_window(rl.get_screen_width(), rl.get_screen_height(), "raylib [core] example - basic window") rl.toggle_fullscreen() camera = rl.Camera( rl.Vector3(4.0, 2.0, 4.0), rl.Vector3(0.0, 1.0, 0.0), rl.Vector3(0.0, 1.0, 0.0), 60.0, rl.CAMERA_PERSPECTIVE) rl.set_camera_mode(camera, rl.CAMERA_FREE) rl.set_target_fps(60) while not rl.window_should_close(): rl.update_camera(byref(camera)) rl.begin_drawing() rl.clear_background(rl.DARKGRAY) rl.begin_mode3d(camera) rl.draw_cube(rl.Vector3(-16.0, 2.5, 0.0), 1.0, 5.0, 32.0, rl.BLUE) rl.draw_cube(rl.Vector3(16.0, 2.5, 0.0), 1.0, 5.0, 32.0, rl.LIME) rl.draw_cube(rl.Vector3(0.0, 2.5, 16.0), 32.0, 5.0, 1.0, rl.GOLD) rl.draw_sphere(rl.Vector3(0.0, 0.0, 0.0), 5.0, rl.LIME) rl.draw_text("Congrats! You created your first window!", 190, 200, 20, rl.WHITE) rl.draw_grid(40, 1) rl.end_mode3d() rl.end_drawing() rl.close_window() if __name__ == '__main__': main()
StarcoderdataPython
1662626
<gh_stars>0 import math k, b = raw_input().split(' ') k = int(k) b = int(b) numbits = 0 cap = (math.pow(2, b) - 1) % 1000000009 i = 1 multiple = k * i while multiple <= cap: for x in range(0, 32): numbits += (multiple >> x) & 1 i += 1 multiple = k * i print numbits
StarcoderdataPython
3252638
import random from typing import Tuple, List import numpy.random from Base.bp2DState import State from Base.bp2DBox import Box from Base.bpReadWrite import ReadWrite from Base.bp2DPnt import Point def state_generator(bin_size: Tuple[int, int], box_list: List[Tuple[int, Tuple[int, int]]], path: str = None, seed: int = 0): random.seed(seed) state = State(0, bin_size, []) state.open_new_bin() counter = 0 for number, box_dims in box_list: for _ in range(number): state.boxes_open.append(Box(box_dims[0], box_dims[1], n=counter)) counter += 1 random.shuffle(state.boxes_open) if path is not None: ReadWrite.write_state(path, state) return state def random_state_generator(bin_size: Tuple[int, int], box_num: int = 100, box_width_min: int = 1, box_width_max: int = 4, box_height_min: int = 1, box_height_max: int = 4, path: str = None, seed: int = 0): state = State(0, bin_size, []) state.open_new_bin() random.seed(seed) for i in range(box_num): width = random.randint(box_width_min, box_width_max) height = random.randint(box_height_min, box_height_max) state.boxes_open.append(Box(width, height, n=i)) if path is not None: ReadWrite.write_state(path, state) return state ''' Generates a random dataset by recursively dividing boxes. The returned state contains already packed boxes. A peeling process removes margins of randomly selected boxes to leave a little wiggle room. Example call >>> sliced_box_state_generator((10,10), bin_num=8, box_num=100, peel_area=100) ''' def sliced_box_state_generator(bin_size: Tuple[int, int], bin_num: int=1, box_num: int = 100, peel_area: int = 0, peel_margin: int = 1, box_width_min: int = 1, box_width_max: int = 4, box_height_min: int = 1, box_height_max: int = 4, path: str = None, seed: int = 0): state = State(0, bin_size, []) random.seed(seed) boxes = [] for i in range(bin_num): box = Box(bin_size[0], bin_size[1]) emb = (i,(0,0)) sdir = random.randint(0,1) # slice direction boxes.append((box, emb, sdir)) state.open_new_bin() while len(boxes) < box_num: box, emb, sdir = boxes.pop(0) # cut direction = width if sdir == 0: if box.w < box_width_min*2: boxes.append((box, emb, sdir)) else: cut_pos = random.randint(box_width_min, box.w-box_width_min) boxes.append((Box(cut_pos, box.h), (emb[0], (emb[1][0], emb[1][1])), (sdir+1)%2)) boxes.append((Box(box.w-cut_pos, box.h), (emb[0], (emb[1][0]+cut_pos, emb[1][1])), (sdir+1)%2)) # cut direction = height else: if box.h < box_height_min*2: boxes.append((box, emb, sdir)) else: cut_pos = random.randint(box_height_min, box.h-box_height_min) boxes.append((Box(box.w, cut_pos), (emb[0], (emb[1][0], emb[1][1])), (sdir+1)%2)) boxes.append((Box(box.w, box.h-cut_pos), (emb[0], (emb[1][0], emb[1][1]+cut_pos)), (sdir+1)%2)) # peel margins of boxes peeled = 0 while peeled < peel_area: box, emb, sdir = random.choice(boxes) if random.randint(0, 1) == 0: if box.w >= peel_margin+1: box.w -= peel_margin peeled += box.h else: if box.h >= peel_margin+1: box.h -= peel_margin peeled += box.w # enumerate and assign boxes for i,(box,emb,sdir) in enumerate(boxes): box.n = i bin = emb[0] pos = Point(emb[1][0], emb[1][1]) state.place_box_in_bin_at_pnt(box, bin, pos) if path is not None: ReadWrite.write_state(path, state) return state
StarcoderdataPython
65684
<reponame>cldf-datasets/rantanenurageo<filename>test.py import sys import csv csv.field_size_limit(sys.maxsize) def test_valid(cldf_dataset, cldf_logger): assert cldf_dataset.validate(log=cldf_logger)
StarcoderdataPython
3236498
<gh_stars>1-10 import time import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.application import MIMEApplication import requests from collections import OrderedDict import os import sys from io import BufferedReader # sys.path.append("..") from utils.yamlparser import ordered_yaml_dump import subprocess import io import logging import json from datetime import datetime import yaml from django.conf import settings from httprunner.task import HttpRunner from httprunner.exceptions import ParamsError from rest_framework import status from rest_framework.response import Response from testcases.models import Testcases from envs.models import Envs from reports.models import Reports from debugtalks.models import DebugTalks from projects.models import Projects from configures.models import Configures from modules.models import Modules logger = logging.getLogger('test') os.environ[ "PATH"] += os.pathsep + r'C:\Users\dell\PycharmProjects\DeployDjango\django_app_docker\DjangoDev03\venv\Scripts' class MyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, bytes): return str(obj, encoding='utf-8') return json.JSONEncoder.default(self, obj) def timestamp_to_datetime(summary, type=True): if not type: time_stamp = int(summary["time"]["start_at"]) summary['time']['start_datetime'] = datetime. \ fromtimestamp(time_stamp).strftime('%Y-%m-%d %H:%M:%S') for detail in summary['details']: try: time_stamp = int(detail['time']['start_at']) detail['time']['start_at'] = datetime.fromtimestamp(time_stamp).strftime('%Y-%m-%d %H:%M:%S') except Exception: pass for record in detail['records']: try: time_stamp = int(record['meta_data']['request']['start_timestamp']) record['meta_data']['request']['start_timestamp'] = \ datetime.fromtimestamp(time_stamp).strftime('%Y-%m-%d %H:%M:%S') except Exception: pass return summary def generate_testcase_files(instance, env, testcase_dir_path): testcases_list = [] config = { 'config': { 'name': instance.name, "variables": [], 'request': { 'base_url': env.base_url if env else '' } } } testcases_list.append(config) # include = eval(instance.include) # request = eval(instance.request) # 获取当前用例的前置配置和前置用例 include = json.loads(instance.include, encoding='utf-8') # 获取当前用例的请求信息 request = json.loads(instance.request, encoding='utf-8') module_name = instance.module.name # 接口名称 project_name = instance.module.project.name # 项目名称 testcase_dir_path = os.path.join(testcase_dir_path, project_name) # 创建项目名所在文件夹 if not os.path.exists(testcase_dir_path): os.makedirs(testcase_dir_path) debugtalk_obj = Projects.objects.get(name=project_name).debugtalk if debugtalk_obj: debugtalk = debugtalk_obj.debugtalk else: debugtalk = "" # 创建debugtalk.py文件 with open(os.path.join(testcase_dir_path, 'debugtalk.py'), mode='w', encoding='utf-8') as one_file: one_file.write(debugtalk) testcase_dir_path = os.path.join(testcase_dir_path, module_name) # 在项目目录下创建接口名所在文件夹 if not os.path.exists(testcase_dir_path): os.makedirs(testcase_dir_path) # {'config': 2, 'testcases': [2,5]} # 如果include前置中有config, 那么添加到testcases_list中 # if 'config' in include: # config_id = include.get('config') # config_obj = Configures.objects.filter(id=config_id).first() # if config_obj: # # 需要将请求头(当前为嵌套字典的列表), 需要转化为字典 # # config_request = eval(config_obj.request) # config_request = json.loads(config_obj.request, encoding='utf-8') # # # config_request = eval(config_obj.request) # # config_request.get('config').get('request').setdefault('base_url', env.base_url) # # config_dict = config_request.get('config') # # config_dict['request']['base_url'] = env.base_url # # config_request['config']['name'] = instance.name # config_request['config']['request']['base_url'] = env.base_url # # testcases_list.append(config_request) # testcases_list[0] = config_request # 如果include前置中有testcases, 那么添加到testcases_list中 if 'testcases' in include: for t_id in include.get('testcases'): testcase_obj = Testcases.objects.filter(id=t_id).first() if testcase_obj: try: # testcase_request = eval(testcase_obj.request) testcase_request = json.loads(testcase_obj.request, encoding='utf-8') except Exception as e: logger.error(e) continue else: # 将前置用例提取的数据提前在全局变量中声明 extract = testcase_request["test"].get("extract") if extract: for e in extract: testcases_list[0]["config"]["variables"].append({[i for i in e.keys()][0]: ''}) testcase_request["test"] = OrderedDict(testcase_request["test"]) testcases_list.append(OrderedDict(testcase_request)) # 将当前用例的request添加到testcases_list request["test"] = OrderedDict(request["test"]) testcases_list.append(request) with open(os.path.join(testcase_dir_path, instance.name + '.yml'), mode="w", encoding="utf-8") as one_file: ordered_yaml_dump(testcases_list, one_file, default_flow_style=False, allow_unicode=True) def generate_debug_files(data, env, testcase_dir_path): testcases_list = [] config = { 'config': { 'name': data["name"], 'request': { 'base_url': env.base_url if env else '' } } } testcases_list.append(config) # include = eval(instance.include) # request = eval(instance.request) # 获取当前用例的前置配置和前置用例 include = json.loads(data["include"], encoding='utf-8') # 获取当前用例的请求信息 request = json.loads(data["request"], encoding='utf-8') module = Modules.objects.get(id=data["module"]["iid"]) # 模块id project = Projects.objects.get(id=data["module"]["pid"]) # 项目id testcase_dir_path = os.path.join(testcase_dir_path, project.name) # 创建项目名所在文件夹 if not os.path.exists(testcase_dir_path): os.makedirs(testcase_dir_path) debugtalk_obj = project.debugtalk if debugtalk_obj: debugtalk = debugtalk_obj.debugtalk else: debugtalk = "" # 创建debugtalk.py文件 with open(os.path.join(testcase_dir_path, 'debugtalk.py'), mode='w', encoding='utf-8') as one_file: one_file.write(debugtalk) testcase_dir_path = os.path.join(testcase_dir_path, module.name) # 在项目目录下创建接口名所在文件夹 if not os.path.exists(testcase_dir_path): os.makedirs(testcase_dir_path) # {'config': 2, 'testcases': [2,5]} # 如果include前置中有config, 那么添加到testcases_list中 # if 'config' in include: # config_id = include.get('config') # config_obj = Configures.objects.filter(id=config_id).first() # if config_obj: # # 需要将请求头(当前为嵌套字典的列表), 需要转化为字典 # # config_request = eval(config_obj.request) # config_request = json.loads(config_obj.request, encoding='utf-8') # # # config_request = eval(config_obj.request) # # config_request.get('config').get('request').setdefault('base_url', env.base_url) # # config_dict = config_request.get('config') # # config_dict['request']['base_url'] = env.base_url # # config_request['config']['name'] = instance.name # config_request['config']['request']['base_url'] = env.base_url # # testcases_list.append(config_request) # testcases_list[0] = config_request # 如果include前置中有testcases, 那么添加到testcases_list中 if 'testcases' in include: for t_id in include.get('testcases'): testcase_obj = Testcases.objects.filter(id=t_id).first() if testcase_obj: try: # testcase_request = eval(testcase_obj.request) testcase_request = json.loads(testcase_obj.request, encoding='utf-8') testcase_request["test"].pop('skip', 0) testcase_request["test"].pop('skipIf', 0) testcase_request["test"].pop('skipUnless', 0) except Exception as e: logger.error(e) continue else: testcases_list.append(testcase_request) # 将当前用例的request添加到testcases_list testcases_list.append(request) with open(os.path.join(testcase_dir_path, data["name"] + '.yml'), mode="w", encoding="utf-8") as one_file: yaml.dump(testcases_list, one_file, allow_unicode=True) def generate_locust_files(instance, env, testcase_dir_path, repeat_list): testcases_list = [] if 0 not in repeat_list: config = { 'config': { 'name': instance.name, 'request': { 'base_url': env.base_url if env else '' } } } testcases_list.append(config) repeat_list.append(0) # include = eval(instance.include) # request = eval(instance.request) # 获取当前用例的前置配置和前置用例 include = json.loads(instance.include, encoding='utf-8') # 获取当前用例的请求信息 request = json.loads(instance.request, encoding='utf-8') project_name = instance.module.project.name # 项目名称 debugtalk_obj = Projects.objects.get(name=project_name).debugtalk if debugtalk_obj: debugtalk = debugtalk_obj.debugtalk else: debugtalk = "" # 创建debugtalk.py文件 with open(os.path.join(testcase_dir_path, 'debugtalk.py'), mode='w', encoding='utf-8') as one_file: one_file.write(debugtalk) if 'testcases' in include: for t_id in include.get('testcases'): if t_id not in repeat_list: testcase_obj = Testcases.objects.filter(id=t_id).first() if testcase_obj: try: testcase_request = json.loads(testcase_obj.request, encoding='utf-8') except Exception as e: logger.error(e) continue else: testcases_list.append(testcase_request) repeat_list.append(t_id) # 将当前用例的request添加到testcases_list if instance.id not in repeat_list: testcases_list.append(request) repeat_list.append(instance.id) with open(os.path.join(testcase_dir_path, "locust" + '.yml'), mode="a", encoding="utf-8") as one_file: yaml.dump(testcases_list, one_file, allow_unicode=True) def create_report(runner, report_name=None): """ 创建测试报告 :param runner: :param report_name: :return: """ time_stamp = int(runner.summary["time"]["start_at"]) start_datetime = datetime.fromtimestamp(time_stamp).strftime('%Y-%m-%d %H:%M:%S') runner.summary['time']['start_datetime'] = start_datetime # duration保留3位小数 runner.summary['time']['duration'] = round(runner.summary['time']['duration'], 3) report_name = report_name if report_name else start_datetime runner.summary['html_report_name'] = report_name for item in runner.summary['details']: try: for record in item['records']: record['meta_data']['response']['content'] = record['meta_data']['response']['content']. \ decode('utf-8') record['meta_data']['response']['cookies'] = dict(record['meta_data']['response']['cookies']) request_body = record['meta_data']['request']['body'] if 'files' in record['meta_data']['request'].keys(): files_request = record['meta_data']['request']['files'] record['meta_data']['request']['files'] = [files_request[file][0] for file in files_request] record['meta_data']['request']['body'] = record['meta_data']['request']['files'] if isinstance(request_body, bytes): record['meta_data']['request']['body'] = request_body.decode('utf-8') except Exception as e: print(e) summary = json.dumps(runner.summary, cls=MyEncoder, ensure_ascii=False) report_name = report_name + '_' + datetime.strftime(datetime.now(), '%Y%m%d%H%M%S') report_path = runner.gen_html_report(html_report_name=report_name) # with open(report_path, encoding='utf-8') as stream: # reports = stream.read() test_report = { 'name': report_name, 'result': runner.summary.get('success'), 'success': runner.summary.get('stat').get('successes'), 'count': runner.summary.get('stat').get('testsRun'), 'html': report_path, } report_obj = Reports.objects.create(**test_report) return report_obj def run_testcase(instance, testcase_dir_path, is_email=False, email='', debug=False): """ 运行用例 :return: :param instance: 实例 :param testcase_dir_path: 用例根目录路径 :return dict """ runner = HttpRunner() # runner.run(testcase_dir_path) try: runner.run(testcase_dir_path) except ParamsError: logger.error("用例参数有误") data = { "msg": "用例参数有误" } return Response(data, status=400) runner.summary = timestamp_to_datetime(runner.summary, type=False) if debug: return runner.summary try: report_name = instance.name except Exception as e: report_name = '被遗弃的报告' + '-' + datetime.strftime(datetime.now(), '%Y%m%d%H%M%S') report = create_report(runner, report_name=report_name) data_dict = { "id": report.id } if is_email: report_full_path = report.html content = "执行结果:{},用例总数:{},成功总数:{},详情请查看测试报告。" \ .format("Pass" if report.result == 1 else "Fail", report.count, report.success) send_email_text(report.name, content, report_full_path, email) return Response(data_dict, status=status.HTTP_200_OK) def is_locust(data, env, testcase_objs): url = "http://192.168.0.147:8089" if "win" in sys.platform: url = "http://192.168.0.147:8089" taskinfo = os.popen('netstat -ano | findstr 8089') line = taskinfo.readline() aList = line.split() taskinfo.close() if aList: if aList[4] != '0': data_dict = { "code": 3, "msg": "压测端口已被占用,是否解除占用", } return Response(data_dict, status=status.HTTP_200_OK) elif "linux" in sys.platform: url = "http://172.16.58.3:8089" taskinfo = os.popen('lsof -i:8089') line = taskinfo.readline() aList = line.split() taskinfo.close() if aList: if aList[0] != '0': data_dict = { "code": 3, "msg": "压测端口已被占用,是否解除占用", } return Response(data_dict, status=status.HTTP_200_OK) testcase_dir_path = os.path.join(settings.SUITES_DIR, datetime.strftime(datetime.now(), "%Y%m%d%H%M%S%f" + "_locust")) if not os.path.exists(testcase_dir_path): os.makedirs(testcase_dir_path) repeat_list = [] for one_obj in testcase_objs: generate_locust_files(one_obj, env, testcase_dir_path, repeat_list) run_locust(data, testcase_dir_path) while True: try: r = requests.get(url) r.raise_for_status() if r.status_code == 200: break except Exception: print("连接无效") data_dict = { "code": 2, "url": url } return Response(data_dict, status=status.HTTP_200_OK) def is_locust_noweb(data, env, testcase_objs): testcase_dir_path = os.path.join(settings.SUITES_DIR, datetime.strftime(datetime.now(), "%Y%m%d%H%M%S%f" + "_locust")) if not os.path.exists(testcase_dir_path): os.makedirs(testcase_dir_path) repeat_list = [] for one_obj in testcase_objs: generate_locust_files(one_obj, env, testcase_dir_path, repeat_list) run_locust_noweb(testcase_dir_path, data) csv_paths = list() csv_paths.append(os.path.join(testcase_dir_path, data["name"] + "_failures.csv")) csv_paths.append(os.path.join(testcase_dir_path, data["name"] + "_stats.csv")) csv_paths.append(os.path.join(testcase_dir_path, data["name"] + "_stats_history.csv")) send_email_text(data["name"], "压测详情请查看附件", csv_paths, data["email"]) data_dict = { "msg": "压测完成", } return Response(data_dict, status=status.HTTP_200_OK) def run_locust(data, testcase_dir_path): cmd1 = "cd " + testcase_dir_path cmd2 = "locusts -f locust.yml {} --web-host=0.0.0.0".format("--step-load" if data.get("step_load") else "") cmd = cmd1 + " && " + cmd2 subprocess.Popen(cmd, shell=True) def run_locust_noweb(testcase_dir_path, data): cmd1 = "cd " + testcase_dir_path if data.get("step_load"): cmd2 = "locusts -f locust.yml --no-web -c {} -r {} -t {} --csv={}" \ " --step-load --step-clients {} --step-time {} ".format(data["clients"], data["hatch_rate"], data["run_time"], data["name"], data["step_clients"], data["step_time"] ) else: cmd2 = "locusts -f locust.yml --no-web -c {} -r {} -t {} --csv={}".format(data["clients"], data["hatch_rate"], data["run_time"], data["name"]) cmd = cmd1 + " && " + cmd2 locust = subprocess.Popen(cmd, shell=True) locust.wait() def to_json_file(json_file, data): """ 写入json文件 :param json_file: :param data: :return: """ with io.open(json_file, 'w', encoding='utf-8') as f: json.dump(data, f, indent=4, separators=(',', ': '), ensure_ascii=False) def to_file(file_name, data): """ 写入文件 :param python_file: :param data: :return: """ with io.open(file_name, 'w', encoding='utf-8') as f: if isinstance(data, (list, tuple)): """可以按行写入""" f.writelines(data) return None f.write(data) def send_email_text(subject, content, filepath, receive_email): sender = "" passwd = "" receivers = receive_email # 收件人邮箱 msgRoot = MIMEMultipart() msgRoot['Subject'] = subject msgRoot['From'] = sender msgRoot['To'] = receivers if isinstance(receivers, str) else ','.join(receivers) # 群发邮件 part = MIMEText(content) msgRoot.attach(part) # # 添加附件部分 if isinstance(filepath, str): file_name = filepath.split("\\")[-1] part = MIMEApplication(open(filepath, 'rb').read()) part.add_header('Content-Disposition', 'attachment', filename=file_name) msgRoot.attach(part) else: for path in filepath: file_name = path.split("\\")[-1] part = MIMEApplication(open(path, 'rb').read()) part.add_header('Content-Disposition', 'attachment', filename=file_name) msgRoot.attach(part) try: if "win" in sys.platform: s = smtplib.SMTP() s.connect("smtp.qq.com") elif "linux" in sys.platform: s = smtplib.SMTP_SSL("smtp.qq.com", 465) s.login(sender, passwd) s.sendmail(sender, receivers, msgRoot.as_string()) print("邮件发送成功") except smtplib.SMTPException as e: print("发送失败", e) finally: s.quit()
StarcoderdataPython
4832718
<gh_stars>0 """ Selection Sort Select an element and find the smallest number in the array and swap. continue until we reach the end of the array Worst Case O(N2) Average Case O(N2) Best Case O(N2) """ def selection_sort(array): n = len(array) for i in range(n): min_index = i for j in range(i + 1, n): if array[j] <= array[min_index]: min_index = j array[i], array[min_index] = array[min_index], array[i] return array def selection_sort_descending(array): n = len(array) for i in range(n): max_index = i for j in range(i + 1, n): if array[j] >= array[max_index]: max_index = j array[i], array[max_index] = array[max_index], array[i] return array print selection_sort([6, 5, 4, 3, 2, 1]) print selection_sort_descending([1, 2, 3, 4, 5, 6])
StarcoderdataPython
163778
import matplotlib as mpl import uproot3 as uproot import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.ticker import (MultipleLocator, AutoMinorLocator) import scipy import numpy as np import math import pandas as pd import seaborn as sns import mplhep as hep #import zfit import inspect import sys import argparse from concurrent.futures import ThreadPoolExecutor plt.style.use(hep.style.ATLAS) plt.rcParams.update({'font.sans-serif': "Arial", 'font.family': "sans-serif", 'font.size': 30, 'mathtext.fontset': 'custom', 'mathtext.rm': 'Arial', }) import EICAnalysisTools as eat # Computational Functions def IPSignificance(row): JetPt = row["Jet.PT"] JetEta = row["Jet.Eta"] JetPhi = row["Jet.Phi"] JetConstituents = row["Jet.Particles"] TrackPt = row["Track.PT"] TrackEta = row["Track.Eta"] TrackPhi = row["Track.Phi"] TrackD0 = row["Track.D0"] TrackErrD0 = row["Track.ErrorD0"] TrackDZ = row["Track.DZ"] TrackErrDZ = row["Track.ErrorDZ"] TrackUID = row["Track.fUniqueID"] TrackXd = row["Track.Xd"] TrackYd = row["Track.Yd"] TrackZd = row["Track.Zd"] #TrackParentFlavor = np.zeros(len(TrackPt)) JetTrackIPs = [] for jet in JetPt: JetTrackIPs.append([]) for jet in range(len(JetPt)): jet_eta = JetEta[jet] if np.abs(jet_eta) > 3.5: continue jet_phi = JetPhi[jet] jet_pt = JetPt[jet] track_ips = [] for constituent in JetConstituents[jet]: track = -1 print(constituent) print(TrackUID) if constituent in TrackUID: track = TrackUID.index(constituent) else: continue track_pt = TrackPt[track] if track_pt < 1.0: continue deltaR = np.sqrt( (TrackEta[track] - JetEta[jet])**2 + (TrackPhi[track] - JetPhi[jet])**2 ) if deltaR > 0.5: continue jpx = jet_pt*math.cos(jet_phi) jpy = jet_pt*math.sin(jet_phi) jpz = jet_pt*math.sinh(jet_eta) tx = TrackXd[track] ty = TrackYd[track] tz = TrackZd[track] sign = -1 if (jpx * tx + jpy * ty + jpz * tz) > 0.0: sign = 1 d0 = TrackD0[track] d0_error = TrackErrD0[track] dz = TrackDZ[track] dz_error = TrackErrDZ[track] track_ips.append(sign * math.fabs( (d0/d0_error)**2 + (dz/dz_error)**2 )) JetTrackIPs[jet] = track_ips return JetTrackIPs # Computational Functions def IPSignificanceOld(row): JetPt = row["Jet.PT"] JetEta = row["Jet.Eta"] JetPhi = row["Jet.Phi"] TrackPt = row["Track.PT"] TrackEta = row["Track.Eta"] TrackPhi = row["Track.Phi"] TrackD0 = row["Track.D0"] TrackErrD0 = row["Track.ErrorD0"] TrackDZ = row["Track.DZ"] TrackErrDZ = row["Track.ErrorDZ"] TrackUID = row["Track.fUniqueID"] TrackXd = row["Track.Xd"] TrackYd = row["Track.Yd"] TrackZd = row["Track.Zd"] #TrackParentFlavor = np.zeros(len(TrackPt)) TrackIP = np.ones(len(TrackPt))*-999.0 for jet in range(len(JetPt)): jet_eta = JetEta[jet] if np.abs(jet_eta) > 3.5: continue jet_phi = JetPhi[jet] jet_pt = JetPt[jet] for track in np.arange(len(TrackPt)): if TrackIP[track] != -999.0: continue track_pt = TrackPt[track] if track_pt < 1.0: continue deltaR = np.sqrt( (TrackEta[track] - JetEta[jet])**2 + (TrackPhi[track] - JetPhi[jet])**2 ) if deltaR > 0.5: continue jpx = jet_pt*math.cos(jet_phi) jpy = jet_pt*math.sin(jet_phi) jpz = jet_pt*math.sinh(jet_eta) tx = TrackXd[track] ty = TrackYd[track] tz = TrackZd[track] sign = -1 if (jpx * tx + jpy * ty + jpz * tz) > 0.0: sign = 1 d0 = TrackD0[track] d0_error = TrackErrD0[track] dz = TrackDZ[track] dz_error = TrackErrDZ[track] TrackIP[track] = sign * math.fabs( (d0/d0_error)**2 + (dz/dz_error)**2 ) return TrackIP def TrackSource(row): JetPt = row["Jet.PT"] JetEta = row["Jet.Eta"] JetPhi = row["Jet.Phi"] JetFlavor = row["Jet.Flavor"] TrackPt = row["Track.PT"] TrackEta = row["Track.Eta"] TrackPhi = row["Track.Phi"] TrackParentFlavor = np.zeros(len(TrackPt)) for jet in range(len(JetPt)): jet_eta = JetEta[jet] if np.abs(jet_eta) > 3.5: continue jet_pt = JetPt[jet] for track in np.arange(len(TrackPt)): parent_flavor = TrackParentFlavor[track] if parent_flavor != -999.0 and (parent_flavor == 4 or parent_flavor == 5): continue track_pt = TrackPt[track] if track_pt < 1.0: continue deltaR = np.sqrt( (TrackEta[track] - JetEta[jet])**2 + (TrackPhi[track] - JetPhi[jet])**2 ) if deltaR > 0.5: continue TrackParentFlavor[track] = JetFlavor[jet] return TrackParentFlavor def histplot(x, xrange, xbins, density=False): (counts, bins) = np.histogram(x, range=xrange, bins=xbins) bin_widths = np.diff(bins) bin_centers = bins[:-1] + bin_widths/2 errors = np.sqrt(counts) rel_errors = errors/counts # convert counts to dsigma/dpT * 100/fb y = counts #/ bin_widths if density: y = y/len(x)/bin_widths y_errors = rel_errors * y return (bin_centers, bin_widths, y, y_errors) # Parse arguments parser = argparse.ArgumentParser() parser.add_argument("-d", "--dir", type=str, help="Directory containing input files") parser.add_argument("-i", "--input", type=str, help="Main input subfolder") args = parser.parse_args() df = eat.UprootLoad([f"{args.dir}/{args.input}/[0-4]/out.root"], "Delphes", branches=["Jet.Flavor", "Jet.PT", "Jet.Eta", "Jet.Phi", "Jet.Particles", "Track.fUniqueID", "Track.PT", "Track.Eta", "Track.Phi", "Track.D0", "Track.DZ", "Track.ErrorDZ", "Track.ErrorD0", "Track.Xd", "Track.Yd", "Track.Zd"]) #df = df[:100] n_gen = len(df) print(f"n_gen = {n_gen}") df["Track.IPSignificance"] = df.apply( IPSignificanceOld , axis=1) df["Track.Source"] = df.apply( TrackSource , axis=1) print(df.head()) track_ips = np.concatenate(df['Track.IPSignificance'].to_numpy()).ravel() track_flavor = np.concatenate(df['Track.Source'].to_numpy()).ravel() matched_ips = track_ips[ track_flavor >= 0 ] matched_flavor = track_flavor[ track_flavor >= 0 ] charm_ips = track_ips[ matched_flavor == 4 ] light_ips = track_ips[ (matched_flavor < 4) | (matched_flavor == 21) ] print(matched_ips) # Draw the IP significance plot fig, ax = plt.subplots(figsize=(12,8)) plt.axis('off') gridspec = fig.add_gridspec(ncols=1, nrows=1, width_ratios=[1], height_ratios=[1]) ax1 = fig.add_subplot(gridspec[0, 0]) ax1.grid(which='both', axis='both') ax1.xaxis.set_major_locator(MultipleLocator(10)) ax1.xaxis.set_major_formatter('{x:.0f}') # For the minor ticks, use no labels; default NullFormatter. ax1.xaxis.set_minor_locator(MultipleLocator(2)) xrange = [-30, 30] #xbins = np.concatenate( ( np.arange(-30,-5,5),np.arange(-5,5,1),np.arange(5, 30, 5) ) ) #xbins = np.arange(-300,300,1) xbins = np.concatenate( ( np.arange(-300,-30,10),np.arange(-30,30,1),np.arange(30, 300, 10) ) ) (bins, bin_widths, y, y_error) = histplot(light_ips, xrange=xrange, xbins=xbins, density=True) ax1.errorbar(bins, y, xerr = bin_widths/2, yerr=y_error, label='light jets', marker='o', ms=10, ls='none', linewidth=2, color='red') (bins, bin_widths, y, y_error) = histplot(charm_ips, xrange=xrange, xbins=xbins, density=True) ax1.errorbar(bins, y, xerr = bin_widths/2, yerr=y_error, label='charm jets', marker='D', ms=10, ls='none', linewidth=2, color='blue') plt.ylabel('$\mathrm{P(sIP_{3D} \, | \, Jet \; Flavor)}$') plt.xlabel('$\mathrm{sIP_{3D}}$') plt.title("CC-DIS, 10x275GeV, $Q^2>100\\mathrm{GeV^2}$", fontsize=20) ax1.set_ylim([1e-6,2e0]) ax1.set_xlim(xrange) ax1.legend(fontsize=18) plt.yscale('log') y_minor = mpl.ticker.LogLocator(base = 10.0, subs = np.arange(2.0, 10.0) * 0.1, numticks = 100) ax1.yaxis.set_minor_locator(y_minor) ax1.yaxis.set_minor_formatter(mpl.ticker.NullFormatter()) ax1.yaxis.set_major_locator(mpl.ticker.LogLocator(base = 10.0, subs = np.arange(1.0, 2.0), numticks = 100)) plt.tight_layout() plt.savefig(f"track_ip_significance_{args.input}.png") plt.savefig(f"track_ip_significance_{args.input}.pdf")
StarcoderdataPython
3214225
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Mapping fastq to reference genome 1. rRNA, spikein, optional 2. genome """ import os import sys import re import io import glob import json import fnmatch import tempfile import shlex import subprocess import logging import pandas as pd import pysam import pybedtools from operator import is_not from functools import partial from goldclip.helper import * from goldclip.goldcliplib.log_parser import * class Alignment(object): """Run alignment for SE reads using bowtie/bowtie2/STAR""" def __init__(self, fqs, path_out, smp_name, genome, **kwargs): """parse arguments required arguments: fqs, path_out, smp_name, genome, genome, spikein, index_ext, threads, unique_only, n_map, aligner, align_to_rRNA, genome_path, overwrite """ self.fqs = fqs self.path_out = path_out self.smp_name = smp_name self.genome = genome self.kwargs = kwargs self.args = self._args_init() def _args_init(self): """Inititate the arguments, assign the default values to arg """ args = self.kwargs args['fqs'] = self.fqs args['path_out'] = self.path_out args['smp_name'] = self.smp_name args['genome'] = self.genome args['spikein'] = args.get('spikein', None) args['index_ext'] = args.get('index_ext', None) args['threads'] = args.get('threads', 1) args['unique_only'] = args.get('unique_only', False) args['n_map'] = args.get('n_map', 0) args['aligner'] = args.get('aligner', 'bowtie') args['align_to_rRNA'] = args.get('align_to_rRNA', True) args['repeat_masked_genome'] = args.get('repeat_masked_genome', False) args['merge_rep'] = args.get('merge_rep', True) args['genome_path'] = args.get('genome_path', None) args['overwrite'] = args.get('overwrite', False) # check if args['spikein'] == self.genome: args['spikein'] = None # return args def _path_init(self, fq, index, reference=None, align_path=None): """Create folders for the alignment, Alignment, genome versions 1.genome_rRNA 2.genome 3.spikein_rRNA 4.spikein return files: prefix, bam, bed, log, unmap """ args = self.args if not reference: reference = args['genome'] # default is reference genome if not align_path: align_path = args['path_out'] fq_prefix = file_prefix(fq)[0] fq_prefix = re.sub('\.clean|\.nodup|\.cut', '', fq_prefix) fq_type = seq_type(fq) map_prefix = os.path.join(align_path, '%s.map_%s' % (fq_prefix, reference)) unmap_prefix = os.path.join(align_path, '%s.not_%s' % (fq_prefix, reference)) map_bam = map_prefix + '.bam' # map_bed = map_prefix + '.bed' map_log = map_prefix + '.%s.log' % args['aligner'] unmap_fq = unmap_prefix + '.%s' % fq_type return [fq_prefix, map_bam, map_log, unmap_fq, reference] def _index_builder(self, rRNA=False, genome=None): """Return the genome index """ args = self.args aligner = args['aligner'] if not genome: genome = self.genome # check aligner if aligner == 'bowtie': index = Genome(genome, repeat_masked_genome=args['repeat_masked_genome']).bowtie_index(rRNA=rRNA) elif aligner == 'bowtie2': index = Genome(genome, repeat_masked_genome=args['repeat_masked_genome']).bowtie2_index(rRNA=rRNA) elif aligner == 'STAR': index = Genome(genome, repeat_masked_genome=args['repeat_masked_genome']).star_index(rRNA=rRNA) else: logging.error('unknown aligner: %s' % aligner) index = None # unknonwn aligner return index def _index_list(self): """List the align index (es) for the job rRNA, reference, genome """ args = self.args # aligner index idx = { 'genome_rRNA': self._index_builder(rRNA=True), 'genome': self._index_builder(rRNA=False), 'sp_rRNA': self._index_builder(rRNA=True, genome=args['spikein']), 'sp': self._index_builder(rRNA=False, genome=args['spikein'])} # determine if not args['align_to_rRNA']: idx['genome_rRNA'] = None # save in dict return idx # dictionary def wrap_log(self, log): """Wrapper alignment log file, save as json""" args = self.args j_file = Alignment_log(log, args['unique_only']).saveas() # save as json def bowtie_se(self, fq, index, reference=None, unique_map=False, align_path=None): """Run bowtie arguments: reference: genome, genome_rRNA, spikein, spikein_rRNA """ args = self.args bowtie_exe = which('bowtie') if not align_path: align_path = args['path_out'] # output directory prefix, map_bam, map_log, unmap, reference = self._path_init(fq, index, reference, align_path) # determine parameters n_map = args['n_map'] if n_map < 1: n_map = 1 # default if unique_map: para_unique = '-m 1' else: para_unique = '-v 2 -k %s' % n_map # default: 1 if seq_type(fq) == 'fasta': para_fq = '-f' else: para_fq = '-q' # file exists if os.path.exists(map_bam) and args['overwrite'] is False: logging.info('bam file exists: %s' % map_bam) else: c1 = '%s %s %s -p %s --mm --best --sam --no-unal --un %s %s \ %s' % (bowtie_exe, para_fq, para_unique, args['threads'], unmap, index, fq) c2 = 'samtools view -bhS -F 0x4 -@ %s -' % args['threads'] c3 = 'samtools sort -@ %s -o %s -' % (args['threads'], map_bam) with open(map_log, 'wt') as ff: p1 = subprocess.Popen(shlex.split(c1), stdout=subprocess.PIPE, stderr=ff) p2 = subprocess.Popen(shlex.split(c2), stdin=p1.stdout, stdout=subprocess.PIPE) p3 = subprocess.Popen(shlex.split(c3), stdin=p2.stdout) px = p3.communicate() # process log file self.wrap_log(map_log) return [map_bam, unmap] def bowtie2_se(self, fq, index, reference=None, unique_map=False, align_path=None): """Run bowtie2 arguments: reference: genome, genome_rRNA, spikein, spikein_rRNA """ args = self.args bowtie2_exe = which('bowtie2') if not align_path: align_path = args['path_out'] # output directory prefix, map_bam, map_log, unmap, reference = self._path_init(fq, index, reference, align_path) # determine parameters if unique_map: para_unique = '-q 10' else: para_unique = '-q 0' # multi map n_map = args['n_map'] if n_map == 0: # n_map = 1 # default 1, report 1 hit for each read # default: #look for multiple alignments, report best, with MAPQ para_fq = '' else: para_fq = '-k %s' % n_map # fq type if seq_type(fq) == 'fasta': para_fq = para_fq + ' -f' else: para_fq = para_fq + ' -q' # file exists if os.path.exists(map_bam) and args['overwrite'] is False: logging.info('bam file exists: %s' % map_bam) else: c1 = '%s %s -p %s --very-sensitive-local --mm --no-unal --un %s -x %s -U %s' % (bowtie2_exe, para_fq, args['threads'], unmap, index, fq) # c1 = '%s --very-sensitive-local --mm --no-unal -p %s --un %s -x %s -U %s' % (bowtie2_exe, # args['threads'], unmap, index, fq) c2 = 'samtools view -bhS -F 0x4 -@ %s %s -' % (args['threads'], para_unique) c3 = 'samtools sort -@ %s -o %s -' % (args['threads'], map_bam) with open(map_log, 'wt') as ff: p1 = subprocess.Popen(shlex.split(c1), stdout=subprocess.PIPE, stderr=ff) p2 = subprocess.Popen(shlex.split(c2), stdin=p1.stdout, stdout=subprocess.PIPE) p3 = subprocess.Popen(shlex.split(c3), stdin=p2.stdout) px = p3.communicate() # process log file self.wrap_log(map_log) return [map_bam, unmap] def star_se(self, fq, index, reference, unique_map=False, align_path=None): """Run STAR, default kwargs args['unique_only'] is TRUE, unique_map=True: """ args = self.args star_exe = which('STAR') if not align_path: align_path = args['path_out'] # output directory prefix, map_bam, map_log, unmap, reference = self._path_init(fq, index, reference, align_path) # determine parameters n_map = args['n_map'] if n_map > 1: n_map = n_map # n_map default: 0 else: n_map = 10 # STAR default: 10 para_unique = '--outFilterMultimapNmax %s' % n_map fr = 'zcat' if is_gz(fq) else '-' # file exists map_prefix = os.path.join(align_path, prefix) if os.path.exists(map_bam) and args['overwrite'] is False: logging.info('bam file exists: %s' % map_bam) else: c1 = 'STAR --runMode alignReads \ --genomeDir %s \ --readFilesIn %s \ --readFilesCommand %s \ --outFileNamePrefix %s \ --runThreadN %s \ --limitOutSAMoneReadBytes 1000000 \ --genomeLoad NoSharedMemory \ --limitBAMsortRAM 10000000000 \ --outSAMtype BAM SortedByCoordinate \ --outFilterMismatchNoverLmax 0.07 \ --seedSearchStartLmax 20 \ --outReadsUnmapped Fastx %s %s' % (index, fq, fr, map_prefix, args['threads'], unmap, para_unique) p1 = subprocess.run(shlex.split(c1)) # filter unique mapped reads if unique_map: # only unique mapped reads, -q 10 pysam.view('-bhS', '-q', '10', '-@', str(args['threads']), '-o', map_bam, map_prefix + 'Aligned.sortedByCoord.out.bam', catch_stdout=False) else: os.rename(map_prefix + 'Aligned.sortedByCoord.out.bam', map_bam) os.rename(map_prefix + 'Unmapped.out.mate1', unmap) os.rename(map_prefix + 'Log.final.out', map_log) # process log file self.wrap_log(map_log) return [map_bam, unmap] def align_se_batch(self, fq, align_path=None): """Align reads to multiple indexes in specific order, return align.stat, map_bam, unmap_reads determine the index order return bam_files """ args = self.args if not align_path: align_path = args['path_out'] # define aligner aligner_dict = { 'bowtie': self.bowtie_se, 'bowtie2': self.bowtie2_se, 'STAR': self.star_se} aligner_exe = aligner_dict.get(args['aligner'], None) # determine aligner if not aligner_exe: raise ValueError('unknown aligner: %s' % args['aligner']) # get all index in order index_dict = self._index_list() # genome_rRNA, genome, sp_rRNA, sp bam_files = [] fq_input = fq # 1. genome_rRNA (rRNA: both unique, multiple) idx1 = index_dict['genome_rRNA'] if idx1 is None: raise ValueError('genome_rRNA index not found: %s' % args['genome']) reference = self.genome + '_rRNA' bam_idx1, unmap_idx1 = aligner_exe(fq=fq_input, index=idx1, reference=reference, unique_map=False, align_path=align_path) fq_input = unmap_idx1 # 2. genome idx2 = index_dict['genome'] if idx2 is None: raise ValueError('genome index not found: %s' % args['genome']) reference = self.genome bam_idx2, unmap_idx2 = aligner_exe(fq=fq_input, index=idx2, reference=reference, unique_map=args['unique_only'], align_path=align_path) fq_input = unmap_idx2 if args['spikein']: # add spikein # 3. sp_rRNA (rRNA: both unique, multiple) idx3 = index_dict['sp_rRNA'] reference = args['spikein'] + '_rRNA' bam_idx3, unmap_idx3 = aligner_exe(fq=fq_input, index=idx3, reference=reference, unique_map=False, align_path=align_path) fq_input = unmap_idx3 # 4. sp (optional) idx4 = index_dict['sp'] reference = args['spikein'] bam_idx4, unmap_idx4 = aligner_exe(fq=fq_input, index=idx4, reference=reference, unique_map=args['unique_only'], align_path=align_path) fq_input = unmap_idx4 bam_files = [bam_idx1, bam_idx2, bam_idx3, bam_idx4] else: # no spikein bam_idx3 = bam_idx4 = None bam_files = [bam_idx1, bam_idx2, bam_idx3, bam_idx4] bam_files = list(filter(partial(is_not, None), bam_files)) # remove None return bam_files def align_extra(self, fq, align_path=None): """Align reads to extra index such as GFP, white, firefly, transposon return bam_files """ args = self.args if not align_path: align_path = args['path_out'] # define aligner aligner_dict = { 'bowtie': self.bowtie_se, 'bowtie2': self.bowtie2_se, 'STAR': self.star_se} aligner_exe = aligner_dict.get(args['aligner'], None) # determine aligner if not aligner_exe: raise ValueError('unknown aligner: %s' % args['aligner']) # get all index in order # index_ext = args['index_ext'] bam_ext_list = [] for ext in args['index_ext']: if index_validator(ext, args['aligner']): reference = os.path.basename(ext) bam_ext, unmap_ext = aligner_exe(fq=fq, index=ext, reference=reference, unique_map=True, align_path=align_path) else: bam_ext = None bam_ext_list.append(bam_ext) return bam_ext_list def run_extra(self): """Run the alignment for specific fastq file onto extra index 1. run alignment for each replicate 2. merge replicates 3. run log parser, in json format 4. organize the log files, saved in one report, including the following groups: """ args = self.args bam_out = [] # run alignment for replicates for fq in args['fqs']: logging.info('alignment: %s' % fq) fq_prefix = file_prefix(fq)[0] fq_prefix = re.sub('\.clean|\.nodup|\.cut', '', fq_prefix) fq_path = os.path.join(args['path_out'], 'extra_mapping', fq_prefix) assert is_path(fq_path) logging.info('align to index_ext: %s' % fq_prefix) bam_files = self.align_extra(fq, fq_path) bam_out.append(bam_files) # # stat alignment Alignment_stat(fq_path).saveas() # merge bam files if args['merge_rep']: merged_path = os.path.join(args['path_out'], 'extra_mapping', args['smp_name']) merged_files = [] if len(bam_out) > 1: # for multiple bam files assert is_path(merged_path) for i in range(len(bam_out[0])): rep_bam_files = [b[i] for b in bam_out] merged_suffix = str_common(rep_bam_files, suffix=True) merged_suffix = re.sub('^_[12]|_R[12]', '', merged_suffix) merged_bam_name = args['smp_name'] + merged_suffix merged_bam_file = os.path.join(merged_path, merged_bam_name) if os.path.exists(merged_bam_file) and args['overwrite'] is False: logging.info('file exists: %s' % merged_bam_file) else: tmp = bam_merge(rep_bam_files, merged_bam_file) merged_files.append(merged_bam_file) Alignment_stat(merged_path).saveas() bam_out.append(merged_files) return bam_out def run(self): """Run the alignment for specific fastq file 1. run alignment for each replicate 2. merge replicates 3. run log parser, in json format 4. organize the log files, saved in one report, including the following groups: genome_rRNA, genome_unique, genome_multi, sp_rRNA, sp_unique, sp_multi, unmap """ args = self.args bam_out = [] # run alignment for replicates for fq in args['fqs']: logging.info('alignment: %s' % fq) fq_prefix = file_prefix(fq)[0] fq_prefix = re.sub('\.clean|\.nodup|\.cut', '', fq_prefix) fq_path = os.path.join(args['path_out'], fq_prefix) assert is_path(fq_path) bam_files = self.align_se_batch(fq, fq_path) bam_out.append(bam_files) # # stat alignment Alignment_stat(fq_path).saveas() # merge bam files if args['merge_rep']: merged_path = os.path.join(args['path_out'], args['smp_name']) merged_files = [] if len(bam_out) > 1: # for multiple bam files assert is_path(merged_path) for i in range(len(bam_out[0])): rep_bam_files = [b[i] for b in bam_out] merged_suffix = str_common(rep_bam_files, suffix=True) merged_suffix = re.sub('^_[12]|_R[12]', '', merged_suffix) merged_bam_name = args['smp_name'] + merged_suffix merged_bam_file = os.path.join(merged_path, merged_bam_name) if os.path.exists(merged_bam_file) and args['overwrite'] is False: logging.info('file exists: %s' % merged_bam_file) else: tmp = bam_merge(rep_bam_files, merged_bam_file) merged_files.append(merged_bam_file) Alignment_stat(merged_path).saveas() bam_out.append(merged_files) # make short names for genome bam files genome_bam_files = [] for b in bam_out: # nested array bam_from = b[1] bam_to = os.path.join(os.path.dirname(bam_from), filename_shorter(bam_from)) if not os.path.exists(bam_to): os.symlink(os.path.basename(bam_from), bam_to) if not os.path.exists(bam_to + '.bai'): if not os.path.exists(bam_from + '.bai'): if os.path.getsize(bam_from) < 1000: # !!!! empty bam files continue else: pysam.index(bam_from) # empty bam os.symlink(os.path.basename(bam_from) + '.bai', bam_to + '.bai') genome_bam_files.append(bam_to) # run extra index mapping ext_bam_files = None if not args['index_ext'] is None: ext_bam_files = self.run_extra() return [genome_bam_files, ext_bam_files]
StarcoderdataPython
1620244
#-*- coding:utf-8 -*- # # This file is part of CoTeTo - code templating tool # name = 'libSimModel' description = 'SimXML file reader, return objects from SimXML files' version = '0.1' author = 'EnEff-BIM team' helptxt = """ Help yourself""" def fetchData(uriList, systemCfg, generatorCfg, logger): from mapapi.MapClasses import MapProject if not uriList: logger.critical('libSimModel - no files specified!') raise Exception('No files specified!') return {'MapProject': MapProject(uriList[0])}
StarcoderdataPython
4830109
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-09-17 09:51 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rideshare', '0063_auto_20170917_0930'), ] operations = [ migrations.AddField( model_name='userprofile', name='safety_score', field=models.IntegerField(default=5), ), ]
StarcoderdataPython
1699466
<reponame>DNL-inc/bit from aiogram import types from keyboards.inline import blank_callback, back_callback from middlewares import _ from models import Subgroup, User async def get_keyboard(group_id, editable=True, for_events=False, user=None): keyboard = types.InlineKeyboardMarkup(row_width=1) subgroups = await Subgroup().select_subgroups_in_group(group_id) if user: user_subgroups = await User().select_user_subgroups(user) if user_subgroups: subgroups_copy = list() for subgroup in subgroups: if subgroup in user_subgroups: subgroups_copy.append(subgroup) subgroups = subgroups_copy else: subgroups = None if subgroups: for subgroup in subgroups: keyboard.add(types.InlineKeyboardButton(subgroup.title, callback_data='subgroup-' + str(subgroup.id))) else: keyboard.add( types.InlineKeyboardButton(_("У тебя нет подгрупп"), callback_data=blank_callback.new(category='subgroup'))) if editable: keyboard.add(types.InlineKeyboardButton(_('Добавить'), callback_data='add-subgroup')) if for_events: keyboard.add(types.InlineKeyboardButton(_('Все события'), callback_data='all-events')) keyboard.add(types.InlineKeyboardButton(_('Назад'), callback_data=back_callback.new(category='lang'))) return keyboard
StarcoderdataPython
1776781
import matplotlib.pyplot as plt import decimal from datetime import datetime ctx = decimal.Context() ctx.prec = 20 token_store = './output/tokens.json' plt.style.use('./assets/presentation.mplstyle') class Chart: @staticmethod def generate_line_chart(coin_id, y): x = [x for x in range(len(y))] fig, ax = plt.subplots() ax.plot(x, y, color='black') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.margins(x=0) fig.set_size_inches(mm_to_inch(50.55), mm_to_inch(25.71)) frame1 = plt.gca() frame1.axes.get_xaxis().set_ticks([]) chart_path = './output/{coin_id}.png'.format(coin_id=coin_id) plt.savefig(chart_path, transparent=True, bbox_inches='tight', dpi=130) price = y[-1] percentage = (price - y[0]) / y[0] * 100 formatted_price = (float_to_str(price) if price < 0.01 else "{0:,.2f}".format(price)) formatted_percentage = "{:.1f}".format(percentage) + '%' last_updated = datetime.now().strftime("%d %b %Y, %H:%M") return chart_path, formatted_price, formatted_percentage, last_updated def mm_to_inch(mm): return mm * 0.0393701 def float_to_str(f): """ Convert the given float to a string, without resorting to scientific notation """ d1 = ctx.create_decimal(repr(f)) return format(d1, 'f')[:14]
StarcoderdataPython
2025
# Copyright (c) 2013 - 2015 EMC Corporation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from six.moves import urllib from cinder import context from cinder import exception from cinder.tests.unit import fake_constants as fake from cinder.tests.unit import fake_volume from cinder.tests.unit.volume.drivers.emc import scaleio from cinder.tests.unit.volume.drivers.emc.scaleio import mocks class TestDeleteVolume(scaleio.TestScaleIODriver): """Test cases for ``ScaleIODriver.delete_volume()``""" def setUp(self): """Setup a test case environment. Creates a fake volume object and sets up the required API responses. """ super(TestDeleteVolume, self).setUp() ctx = context.RequestContext('fake', 'fake', auth_token=True) self.volume = fake_volume.fake_volume_obj( ctx, **{'provider_id': fake.PROVIDER_ID}) self.volume_name_2x_enc = urllib.parse.quote( urllib.parse.quote(self.driver._id_to_base64(self.volume.id)) ) self.HTTPS_MOCK_RESPONSES = { self.RESPONSE_MODE.Valid: { 'types/Volume/instances/getByName::' + self.volume_name_2x_enc: self.volume.id, 'instances/Volume::{}/action/removeMappedSdc'.format( self.volume.provider_id): self.volume.provider_id, 'instances/Volume::{}/action/removeVolume'.format( self.volume.provider_id ): self.volume.provider_id, }, self.RESPONSE_MODE.BadStatus: { 'types/Volume/instances/getByName::' + self.volume_name_2x_enc: mocks.MockHTTPSResponse( { 'errorCode': 401, 'message': 'BadStatus Volume Test', }, 401 ), 'instances/Volume::{}/action/removeVolume'.format( self.volume.provider_id ): mocks.MockHTTPSResponse( { 'errorCode': 401, 'message': 'BadStatus Volume Test', }, 401 ), }, } def test_bad_login_and_volume(self): self.set_https_response_mode(self.RESPONSE_MODE.BadStatus) self.assertRaises(exception.VolumeBackendAPIException, self.driver.delete_volume, self.volume) def test_delete_volume(self): """Setting the unmap volume before delete flag for tests """ self.driver.configuration.set_override( 'sio_unmap_volume_before_deletion', override=True) self.driver.delete_volume(self.volume)
StarcoderdataPython
1708148
<reponame>FowlerLab/hgvs-patterns import unittest import re from mavehgvs.patterns.dna import ( dna_equal_c, dna_equal_n, dna_equal_gmo, dna_sub_c, dna_sub_n, dna_sub_gmo, dna_del_c, dna_del_n, dna_del_gmo, dna_dup_c, dna_dup_n, dna_dup_gmo, dna_ins_c, dna_ins_n, dna_ins_gmo, dna_delins_c, dna_delins_n, dna_delins_gmo, dna_variant_c, dna_variant_n, dna_variant_gmo, dna_single_variant, dna_multi_variant, ) class TestDnaEqualC(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_equal_c, flags=re.ASCII) cls.valid_strings = [ "=", "18=", "10_14=", "122-6=", "*24=", "19+22=", "19+22_88=", "-27+3=", ] cls.invalid_strings = ["=22", "(=)", "18(=)"] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaEqualN(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_equal_n, flags=re.ASCII) cls.valid_strings = ["="] cls.invalid_strings = [ "=22", "(=)", "18(=)", "-27+3=", "*24=", "18=", "10_14=", "122-6=", "19+22=", "19+22_88=", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaEqualGMO(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_equal_gmo, flags=re.ASCII) cls.valid_strings = ["=", "18=", "10_14="] cls.invalid_strings = [ "=22", "(=)", "18(=)", "122-6=", "*24=", "19+22=", "19+22_88=", "-27+3=", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaSubC(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_sub_c, flags=re.ASCII) cls.valid_strings = ["48C>A", "122-6T>A", "*24G>C", "19+22A>G", "-27+3T>C"] cls.invalid_strings = ["22g>u", "48C>W", "122=/T>A"] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaSubN(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_sub_n, flags=re.ASCII) cls.valid_strings = ["48C>A", "122-6T>A", "19+22A>G"] cls.invalid_strings = ["22g>u", "48C>W", "122=/T>A", "*24G>C", "-27+3T>C"] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaSubGmo(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_sub_gmo, flags=re.ASCII) cls.valid_strings = ["48C>A"] cls.invalid_strings = ["122-6T>A", "22g>u", "48C>W", "22=", "122=/T>A", "0C>T"] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDelC(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_del_c, flags=re.ASCII) cls.valid_strings = [ "44del", "1_95del", "78+5_78+10del", "-25+1_-25+3del", "*17del", ] cls.invalid_strings = [ "(78+1_79-1)_(124+1_125-1)del", "(?_85)_(124_?)del", "122=/del", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDelN(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_del_n, flags=re.ASCII) cls.valid_strings = ["44del", "1_95del", "78+5_78+10del"] cls.invalid_strings = [ "(78+1_79-1)_(124+1_125-1)del", "(?_85)_(124_?)del", "122=/del", "-25+1_-25+3del", "*17del", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDelGmo(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_del_gmo, flags=re.ASCII) cls.valid_strings = ["44del", "1_95del"] cls.invalid_strings = [ "78+5_78+10del", "-25+1_-25+3del", "*17del", "(78+1_79-1)_(124+1_125-1)del", "(?_85)_(124_?)del", "122=/del", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDupC(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_dup_c, flags=re.ASCII) cls.valid_strings = [ "22_24dup", "77dup", "101+1_101+7dup", "-25+1_-25+3dup", "*17dup", ] cls.invalid_strings = [ "(78+1_79-1)_(124+1_125-1)dup", "(?_85)_(124_?)dup", "122_125=//dup", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDupN(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_dup_n, flags=re.ASCII) cls.valid_strings = ["22_24dup", "77dup", "101+1_101+7dup"] cls.invalid_strings = [ "(78+1_79-1)_(124+1_125-1)dup", "(?_85)_(124_?)dup", "122_125=//dup", "-25+1_-25+3dup", "*17dup", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDupGmo(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_dup_gmo, flags=re.ASCII) cls.valid_strings = ["22_24dup", "77dup"] cls.invalid_strings = [ "(78+1_79-1)_(124+1_125-1)dup", "(?_85)_(124_?)dup", "122_125=//dup", "101+1_101+7dup", "-25+1_-25+3dup", "*17dup", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaInsC(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_ins_c, flags=re.ASCII) cls.valid_strings = [ "234_235insT", "84_85insCTG", "*84_*85insCTG", "99+6_99+7insA", "124+100_124-100insTTG", "124+101_124-100insTTG", ] cls.invalid_strings = ["84_85ins100_125", "234_235ins(10)", "234_235ins(?)"] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaInsN(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_ins_n, flags=re.ASCII) cls.valid_strings = [ "234_235insT", "84_85insCTG", "99+6_99+7insA", "124+100_124-100insTTG", "124+101_124-100insTTG", ] cls.invalid_strings = [ "84_85ins100_125", "234_235ins(10)", "234_235ins(?)", "*84_*85insCTG", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaInsGmo(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_ins_gmo, flags=re.ASCII) cls.valid_strings = ["234_235insT", "84_85insCTG"] cls.invalid_strings = [ "99+6_99+7insA", "84_85ins100_125", "234_235ins(10)", "234_235ins(?)", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDelinsC(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_delins_c, flags=re.ASCII) cls.valid_strings = [ "22delinsAACG", "83_85delinsT", "43-6_595+12delinsCTT", "*788delinsA", ] cls.invalid_strings = ["84_85delinsAAN", "234delinsW"] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDelinsN(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_delins_n, flags=re.ASCII) cls.valid_strings = ["22delinsAACG", "83_85delinsT", "43-6_595+12delinsCTT"] cls.invalid_strings = ["84_85delinsAAN", "234delinsW" "*788delinsA"] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaDelinsGmo(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_delins_gmo, flags=re.ASCII) cls.valid_strings = ["22delinsAACG", "83_85delinsT"] cls.invalid_strings = [ "43-6_595+12delinsCTT", "*788delinsA", "84_85delinsAAN", "234delinsW", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaVariantC(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_variant_c, flags=re.ASCII) cls.valid_strings = [ "48C>A", "=", "22=", "4_6=", "122-6T>A", "*24G>C", "19+22A>G", "-27+3T>C", "44del", "1_95del", "78+5_78+10del", "-25+1_-25+3del", "*17del", "22_24dup", "77dup", "101+1_101+7dup", "-25+1_-25+3dup", "*17dup", "234_235insT", "84_85insCTG", "99+6_99+7insA", "22delinsAACG", "83_85delinsT", "43-6_595+12delinsCTT", "*788delinsA", ] cls.invalid_strings = [ "22g>u", "48C>W", "122=/T>A", "(78+1_79-1)_(124+1_125-1)del", "(?_85)_(124_?)del", "122=/del", "(78+1_79-1)_(124+1_125-1)dup", "(?_85)_(124_?)dup", "122_125=//dup", "84_85ins100_125", "234_235ins(10)", "234_235ins(?)", "84_85delinsAAN", "234delinsW", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaVariantN(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_variant_n, flags=re.ASCII) cls.valid_strings = [ "48C>A", "=", "122-6T>A", "19+22A>G", "44del", "1_95del", "78+5_78+10del", "22_24dup", "77dup", "101+1_101+7dup", "234_235insT", "84_85insCTG", "99+6_99+7insA", "22delinsAACG", "83_85delinsT", "43-6_595+12delinsCTT", ] cls.invalid_strings = [ "22=", "1_3=", "22g>u", "48C>W", "122=/T>A", "(78+1_79-1)_(124+1_125-1)del", "(?_85)_(124_?)del", "122=/del", "(78+1_79-1)_(124+1_125-1)dup", "(?_85)_(124_?)dup", "122_125=//dup", "84_85ins100_125", "234_235ins(10)", "234_235ins(?)", "84_85delinsAAN", "234delinsW", "*24G>C", "-27+3T>C", "-25+1_-25+3del", "*17del", "-25+1_-25+3dup", "*17dup", "*788delinsA", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaVariantGmo(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_variant_gmo, flags=re.ASCII) cls.valid_strings = [ "48C>A", "=", "22=", "1_3=", "44del", "1_95del", "22_24dup", "77dup", "234_235insT", "84_85insCTG", "22delinsAACG", "83_85delinsT", ] cls.invalid_strings = [ "43-6_595+12delinsCTT", "*788delinsA", "99+6_99+7insA", "101+1_101+7dup", "-25+1_-25+3dup", "*17dup", "78+5_78+10del", "-25+1_-25+3del", "*17del", "*24G>C", "19+22A>G", "122-6T>A", "-27+3T>C", "22g>u", "48C>W", "122=/T>A", "(78+1_79-1)_(124+1_125-1)del", "(?_85)_(124_?)del", "122=/del", "(78+1_79-1)_(124+1_125-1)dup", "(?_85)_(124_?)dup", "122_125=//dup", "84_85ins100_125", "234_235ins(10)", "234_235ins(?)", "84_85delinsAAN", "234delinsW", ] def test_valid_strings(self): for s in self.valid_strings: with self.subTest(s=s): self.assertIsNotNone( self.pattern.fullmatch(s), msg=f'failed to match "{s}"' ) def test_invalid_strings(self): for s in self.invalid_strings: with self.subTest(s=s): self.assertIsNone( self.pattern.fullmatch(s), msg=f'incorrectly matched "{s}"' ) class TestDnaSingleVariant(unittest.TestCase): @classmethod def setUpClass(cls): cls.pattern = re.compile(dna_single_variant, flags=re.ASCII) cls.valid_strings = [ "48C>A", "=", "44del", "1_95del", "22_24dup", "77dup", "234_235insT", "84_85insCTG", "22delinsAACG", "83_85delinsT", ] cls.valid_strings_c_only = [ "*788delinsA", "-25+1_-25+3dup", "*17dup", "-25+1_-25+3del", "*17del", "*24G>C", "-27+3T>C", ] cls.valid_strings_cn_only = [ "43-6_595+12delinsCTT", "99+6_99+7insA", "101+1_101+7dup", "78+5_78+10del", "19+22A>G", "122-6T>A", ] cls.valid_strings_cgmo_only = ["22=", "4_6="] cls.invalid_strings = [ "22g>u", "48C>W", "122=/T>A", "(78+1_79-1)_(124+1_125-1)del", "(?_85)_(124_?)del", "122=/del", "(78+1_79-1)_(124+1_125-1)dup", "(?_85)_(124_?)dup", "122_125=//dup", "84_85ins100_125", "234_235ins(10)", "234_235ins(?)", "84_85delinsAAN", "234delinsW", ] def test_valid_strings(self): for p in "cngmo": for s in self.valid_strings: with self.subTest(s=s, p=p): v = f"{p}.{s}" self.assertIsNotNone( self.pattern.fullmatch(v), msg=f'failed to match "{v}"' ) for p in "cgmo": for s in self.valid_strings_cgmo_only: with self.subTest(s=s, p=p): v = f"{p}.{s}" self.assertIsNotNone( self.pattern.fullmatch(v), msg=f'failed to match "{v}"' ) for p in "cn": for s in self.valid_strings_cn_only: with self.subTest(s=s, p=p): v = f"{p}.{s}" self.assertIsNotNone( self.pattern.fullmatch(v), msg=f'failed to match "{v}"' ) for p in "c": for s in self.valid_strings_c_only: with self.subTest(s=s, p=p): v = f"{p}.{s}" self.assertIsNotNone( self.pattern.fullmatch(v), msg=f'failed to match "{v}"' ) def test_invalid_strings(self): for p in "cngmo": for s in self.invalid_strings: with self.subTest(s=s, p=p): v = f"{p}.{s}" self.assertIsNone( self.pattern.fullmatch(v), msg=f'incorrectly matched "{v}"' ) for p in "gmo": for s in self.valid_strings_cn_only: with self.subTest(s=s, p=p): v = f"{p}.{s}" self.assertIsNone( self.pattern.fullmatch(v), msg=f'incorrectly matched "{v}"' ) for p in "n": for s in self.valid_strings_c_only: with self.subTest(s=s, p=p): v = f"{p}.{s}" self.assertIsNone( self.pattern.fullmatch(v), msg=f'incorrectly matched "{v}"' ) class TestDnaMultiVariant(unittest.TestCase): @unittest.expectedFailure def test_something(self): self.assertEqual(True, False) if __name__ == "__main__": unittest.main()
StarcoderdataPython
4836866
<filename>pytorch/libs/nnet/loss.py # -*- coding:utf-8 -*- # Copyright xmuspeech (Author: Snowdar 2019-05-29) import numpy as np import torch import torch.nn.functional as F from libs.support.utils import to_device from .components import * ## TopVirtualLoss ✿ class TopVirtualLoss(torch.nn.Module): """ This is a virtual loss class to be suitable for pipline scripts, such as train.py. And it requires to implement the function get_posterior to compute accuracy. But just using self.posterior to record the outputs before computing loss in forward is more convenient. For example, def forward(self, inputs, targets): outputs = softmax(inputs) self.posterior = outputs loss = CrossEntropy(outputs, targets) return loss It means that get_posterior should be called after forward. """ def __init__(self, *args, **kwargs): super(TopVirtualLoss, self).__init__() self.posterior = None self.init(*args, **kwargs) def init(self, *args, **kwargs): raise NotImplementedError def forward(self, *inputs): raise NotImplementedError def get_posterior(self): assert self.posterior is not None return self.posterior @utils.for_device_free def get_accuracy(self, targets): """ @return: return accuracy """ return self.compute_accuracy(self.get_posterior(), targets) @utils.for_device_free def predict(self, outputs): """ @outputs: the outputs tensor with [batch-size,n,1] shape comes from affine before computing softmax or just softmax for n classes @return: an 1-dimensional vector including class-id (0-based) for prediction """ with torch.no_grad(): prediction = torch.squeeze(torch.argmax(outputs, dim=1)) return prediction @utils.for_device_free def compute_accuracy(self, outputs, targets): """ @outputs: the outputs tensor with [batch-size,n,1] shape comes from affine before computing softmax or just softmax for n classes @return: the float accuracy """ assert outputs.shape[0] == len(targets) with torch.no_grad(): prediction = self.predict(outputs) num_correct = (targets==prediction).sum() return num_correct.item()/len(targets) ############################################# ## Loss ✿ """ Note, there are some principles about loss implements: In process: torch.nn.CrossEntropyLoss = softmax + log + torch.nn.NLLLoss() In function: torch.nn.NLLLoss() <-> - (sum(torch.tensor.gather()) so, in order to keep codes simple and efficient, do not using 'for' or any other complex grammar to implement what could be replaced by above. """ class SoftmaxLoss(TopVirtualLoss): """ An usual log-softmax loss with affine component. """ def init(self, input_dim, num_targets, t=1, reduction='mean', special_init=False): self.affine = TdnnAffine(input_dim, num_targets) self.t = t # temperature # CrossEntropyLoss() has included the LogSoftmax, so do not add this function extra. self.loss_function = torch.nn.CrossEntropyLoss(reduction=reduction) # The special_init is not recommended in this loss component if special_init : torch.nn.init.xavier_uniform_(self.affine.weight, gain=torch.nn.init.calculate_gain('sigmoid')) def forward(self, inputs, targets): """Final outputs should be a (N, C) matrix and targets is a (1,N) matrix where there are N targets-indexes (index value belongs to 0~9 when target-class C = 10) for N examples rather than using one-hot format directly. One example, one target. @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[2] == 1 posterior = self.affine(inputs) self.posterior = posterior.detach() # The frames-index is 1 now. outputs = torch.squeeze(posterior, dim=2) return self.loss_function(outputs/self.t, targets) class FocalLoss(TopVirtualLoss): """Implement focal loss according to [<NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. "Focal loss for dense object detection", IEEE international conference on computer vision, 2017.] """ def init(self, input_dim, num_targets, gamma=2, reduction='sum', eps=1.0e-10): self.softmax_affine = SoftmaxAffineLayer(input_dim, num_targets, dim=1, log=False, bias=True) self.loss_function = torch.nn.NLLLoss(reduction=reduction) self.gamma = gamma # self.alpha = alpha self.eps = eps def forward(self, inputs, targets): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[2] == 1 posterior = self.softmax_affine(inputs) self.posterior = posterior.detach() focal_posterior = (1 - posterior)**self.gamma * torch.log(posterior.clamp(min=self.eps)) outputs = torch.squeeze(focal_posterior, dim=2) return self.loss_function(outputs, targets) class MarginSoftmaxLoss(TopVirtualLoss): """Margin softmax loss. There are AM, AAM, Double-AM, SM1 (Snowdar Margin softmax loss), SM2 and SM3. Do not provide A-softmax loss again for its complex implementation and margin limitation. Reference: [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2016). Large-margin softmax loss for convolutional neural networks. Paper presented at the ICML. [2] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2017). Sphereface: Deep hypersphere embedding for face recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. [3] <NAME>., <NAME>., <NAME>., & <NAME>. (2017). Normface: l2 hypersphere embedding for face verification. Paper presented at the Proceedings of the 25th ACM international conference on Multimedia. [4] <NAME>., <NAME>., <NAME>., & <NAME>. (2018). Additive margin softmax for face verification. IEEE Signal Processing Letters, 25(7), 926-930. [5] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., . . . <NAME>. (2018). Cosface: Large margin cosine loss for deep face recognition. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [6] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Arcface: Additive angular margin loss for deep face recognition. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [7] <NAME>., <NAME>., <NAME>., & <NAME>. (2020). Double Additive Margin Softmax Loss for Face Recognition. Applied Sciences, 10(1), 60. """ def init(self, input_dim, num_targets, m=0.2, s=30., t=1., feature_normalize=True, method="am", double=False, mhe_loss=False, mhe_w=0.01, inter_loss=0., ring_loss=0., curricular=False, reduction='mean', eps=1.0e-10, init=True): self.input_dim = input_dim self.num_targets = num_targets self.weight = torch.nn.Parameter(torch.randn(num_targets, input_dim, 1)) self.s = s # scale factor with feature normalization self.m = m # margin self.t = t # temperature self.feature_normalize = feature_normalize self.method = method # am | aam | sm1 | sm2 | sm3 self.double = double self.feature_normalize = feature_normalize self.mhe_loss = mhe_loss self.mhe_w = mhe_w self.inter_loss = inter_loss self.ring_loss = ring_loss self.lambda_factor = 0 self.curricular = CurricularMarginComponent() if curricular else None if self.ring_loss > 0: self.r = torch.nn.Parameter(torch.tensor(20.)) self.feature_normalize = False self.eps = eps if feature_normalize : p_target = [0.9, 0.95, 0.99] suggested_s = [ (num_targets-1)/num_targets*np.log((num_targets-1)*x/(1-x)) for x in p_target ] if self.s < suggested_s[0]: print("Warning : using feature noamlization with small scalar s={s} could result in bad convergence. \ There are some suggested s : {suggested_s} w.r.t p_target {p_target}.".format( s=self.s, suggested_s=suggested_s, p_target=p_target)) self.loss_function = torch.nn.CrossEntropyLoss(reduction=reduction) # Init weight. if init: # torch.nn.init.xavier_normal_(self.weight, gain=1.0) torch.nn.init.normal_(self.weight, 0., 0.01) # It seems better. def forward(self, inputs, targets): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[2] == 1 ## Normalize normalized_x = F.normalize(inputs.squeeze(dim=2), dim=1) normalized_weight = F.normalize(self.weight.squeeze(dim=2), dim=1) cosine_theta = F.linear(normalized_x, normalized_weight) # Y = W*X if not self.feature_normalize : self.s = inputs.norm(2, dim=1) # [batch-size, l2-norm] # The accuracy must be reported before margin penalty added self.posterior = (self.s.detach() * cosine_theta.detach()).unsqueeze(2) else: self.posterior = (self.s * cosine_theta.detach()).unsqueeze(2) if not self.training: # For valid set. outputs = self.s * cosine_theta return self.loss_function(outputs, targets) ## Margin Penalty # cosine_theta [batch_size, num_class] # targets.unsqueeze(1) [batch_size, 1] cosine_theta_target = cosine_theta.gather(1, targets.unsqueeze(1)) if self.inter_loss > 0: inter_cosine_theta = torch.softmax(self.s * cosine_theta, dim=1) inter_cosine_theta_target = inter_cosine_theta.gather(1, targets.unsqueeze(1)) inter_loss = torch.log((inter_cosine_theta.sum(dim=1) - inter_cosine_theta_target)/(self.num_targets - 1) + self.eps).mean() if self.method == "am": penalty_cosine_theta = cosine_theta_target - self.m if self.double: double_cosine_theta = cosine_theta + self.m elif self.method == "aam": # Another implementation w.r.t cosine(theta+m) = cosine_theta * cos_m - sin_theta * sin_m # penalty_cosine_theta = self.cos_m * cosine_theta_target - self.sin_m * torch.sqrt((1-cosine_theta_target**2).clamp(min=0.)) penalty_cosine_theta = torch.cos(torch.acos(cosine_theta_target) + self.m) if self.double: double_cosine_theta = torch.cos(torch.acos(cosine_theta).add(-self.m)) elif self.method == "sm1": # penalty_cosine_theta = cosine_theta_target - (1 - cosine_theta_target) * self.m penalty_cosine_theta = (1 + self.m) * cosine_theta_target - self.m elif self.method == "sm2": penalty_cosine_theta = cosine_theta_target - (1 - cosine_theta_target**2) * self.m elif self.method == "sm3": penalty_cosine_theta = cosine_theta_target - (1 - cosine_theta_target)**2 * self.m else: raise ValueError("Do not support this {0} margin w.r.t [ am | aam | sm1 | sm2 | sm3 ]".format(self.method)) penalty_cosine_theta = 1 / (1 + self.lambda_factor) * penalty_cosine_theta + \ self.lambda_factor / (1 + self.lambda_factor) * cosine_theta_target if self.double: cosine_theta = 1/(1+self.lambda_factor) * double_cosine_theta + self.lambda_factor/(1+self.lambda_factor) * cosine_theta if self.curricular is not None: cosine_theta = self.curricular(cosine_theta, cosine_theta_target, penalty_cosine_theta) outputs = self.s * cosine_theta.scatter(1, targets.unsqueeze(1), penalty_cosine_theta) ## Other extra loss # Final reported loss will be always higher than softmax loss for the absolute margin penalty and # it is a lie about why we can not decrease the loss to a mininum value. We should not report the # loss after margin penalty did but we really report this invalid loss to avoid computing the # training loss twice. if self.ring_loss > 0: ring_loss = torch.mean((self.s - self.r)**2)/2 else: ring_loss = 0. if self.mhe_loss: sub_weight = normalized_weight - torch.index_select(normalized_weight, 0, targets).unsqueeze(dim=1) # [N, C] normed_sub_weight = sub_weight.norm(2, dim=2) mask = torch.full_like(normed_sub_weight, True, dtype=torch.bool).scatter_(1, targets.unsqueeze(dim=1), False) # [N, C-1] normed_sub_weight_clean = torch.masked_select(normed_sub_weight, mask).reshape(targets.size()[0], -1) # torch.mean means 1/(N*(C-1)) the_mhe_loss = self.mhe_w * torch.mean((normed_sub_weight_clean**2).clamp(min=self.eps)**-1) return self.loss_function(outputs/self.t, targets) + the_mhe_loss + self.ring_loss * ring_loss elif self.inter_loss > 0: return self.loss_function(outputs/self.t, targets) + self.inter_loss * inter_loss + self.ring_loss * ring_loss else: return self.loss_function(outputs/self.t, targets) + self.ring_loss * ring_loss def step(self, lambda_factor): self.lambda_factor = lambda_factor def extra_repr(self): return '(~affine): (input_dim={input_dim}, num_targets={num_targets}, method={method}, double={double}, ' \ 'margin={m}, s={s}, t={t}, feature_normalize={feature_normalize}, mhe_loss={mhe_loss}, mhe_w={mhe_w}, ' \ 'eps={eps})'.format(**self.__dict__) class CurricularMarginComponent(torch.nn.Module): """CurricularFace is implemented as a called component for MarginSoftmaxLoss. Reference: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. 2020. “CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition.” ArXiv E-Prints arXiv:2004.00288. Github: https://github.com/HuangYG123/CurricularFace. Note, the momentum of this github is a wrong value w.r.t the above paper. The momentum 't' should not increase so fast and I have corrected it as follow. By the way, it does not work in my experiments. """ def __init__(self, momentum=0.01): super(CurricularMarginComponent, self).__init__() self.momentum = momentum self.register_buffer('t', torch.zeros(1)) def forward(self, cosine_theta, cosine_theta_target, penalty_cosine_theta): with torch.no_grad(): self.t = (1 - self.momentum) * cosine_theta_target.mean() + self.momentum * self.t mask = cosine_theta > penalty_cosine_theta hard_example = cosine_theta[mask] # Use clone to avoid problem "RuntimeError: one of the variables needed for gradient computation # has been modified by an inplace operation" cosine_theta_clone = cosine_theta.clone() cosine_theta_clone[mask] = hard_example * (self.t + hard_example) return cosine_theta_clone class LogisticAffinityLoss(TopVirtualLoss): """LogisticAffinityLoss. Reference: <NAME>., <NAME>., & <NAME>. (2019). LOGISTIC SIMILARITY METRIC LEARNING VIA AFFINITY MATRIX FOR TEXT-INDEPENDENT SPEAKER VERIFICATION. """ def init(self, init_w=5., init_b=-1., reduction='mean'): self.reduction = reduction self.w = torch.nn.Parameter(torch.tensor(init_w)) self.b = torch.nn.Parameter(torch.tensor(init_b)) def forward(self, inputs, targets): # This loss has no way to compute accuracy S = F.normalize(inputs.squeeze(dim=2), dim=1) A = torch.sigmoid(self.w * torch.mm(S, S.t()) + self.b) # This can not keep the diag-value equal to 1 and it maybe a question. targets_matrix = targets + torch.zeros_like(A) condition = targets_matrix - targets_matrix.t() outputs = -torch.log(torch.where(condition==0, A, 1-A)) if self.reduction == 'sum': return outputs.sum() elif self.reduction == 'mean': return outputs.sum() / targets.shape[0] else: raise ValueError("Do not support this reduction {0}".format(self.reduction)) class MixupLoss(TopVirtualLoss): """Implement a mixup component to augment data and increase the generalization of model training. Reference: [1] <NAME>, <NAME>, <NAME>, and <NAME>. n.d. Mixup: BEYOND EMPIRICAL RISK MINIMIZATION. [2] Zhu, Yingke, <NAME>, and <NAME>. 2019. “Mixup Learning Strategies for Text-Independent Speaker Verification.” Github: https://github.com/hongyi-zhang/mixup/blob/master/cifar/utils.py """ def init(self, base_loss, mixup_component): self.base_loss = base_loss self.mixup_component = mixup_component def forward(self, inputs, targets): if self.training: lam = self.mixup_component.lam index = self.mixup_component.index loss = lam * self.base_loss(inputs, targets) + \ (1 - lam) * self.base_loss(inputs, targets[index]) else: loss = self.base_loss(inputs, targets) return loss def get_accuracy(self, targets): if self.training: # It is not very clear to compute accuracy for mixed data. lam = self.mixup_component.lam index = self.mixup_component.index return lam * self.compute_accuracy(self.base_loss.get_posterior(), targets) + \ (1 - lam) * self.compute_accuracy(self.base_loss.get_posterior(), targets[index]) else: return self.compute_accuracy(self.base_loss.get_posterior(), targets)
StarcoderdataPython
123141
def load_key(): with open("key.key","rb") as key: key = key.read() return key
StarcoderdataPython
3304132
<gh_stars>1-10 import cProfile import timeit import profile import textwrap import functools import time print('Troubleshooting Python Application Development: Chapter 1') print('-' * 79) # -------------------------------------------------------------------------------- # 1.1 print('Measuring time between two lines of code with timeit') print('-' * 79) t = timeit.Timer( "print('this line is timed')", "print('put setup code here')") print('TIMEIT:') print(t.timeit(3)) print('REPEAT:') print(t.repeat(5, 2)) range_size = 2000 count = 2000 vars_for_testing = ';'.join([ "xs = [(str(x), x) for x in range(2000)]", "d = {}", ]) code_for_testing = textwrap.dedent( """ for str_x, x in xs: d[str_x] = x """) def show_results(result): global count, range_size print('{:6.2f} usec/pass'.format( 1000000 * (result / count)), end=' ') print('{:6.2f} usec/item'.format( (1000000 * (result / count)) / range_size)) print("list len = {}, trying {} iterations".format( range_size, count)) print('experiment:', end=' ') t = timeit.Timer(code_for_testing, vars_for_testing) show_results(t.timeit(number=count)) # -------------------------------------------------------------------------------- # 1.2 print('Figuring out where time is spent with the profile module') print('-' * 79) def fib(n): if n == 0: return 0 elif n == 1: return 1 else: return fib(n - 1) + fib(n - 2) def fib_seq(n): seq = [] if n > 0: seq.extend(fib_seq(n - 1)) seq.append(fib(n)) return seq profile.run('print(fib_seq(20)); print()') @functools.lru_cache(maxsize=None) def fib_memoized(n): if n == 0: return 0 elif n == 1: return 1 else: return fib_memoized(n - 1) + fib_memoized(n - 2) def fib_seq_memoized(n): seq = [] if n > 0: seq.extend(fib_seq_memoized(n - 1)) seq.append(fib_memoized(n)) return seq profile.run('print(fib_seq_memoized(20)); print()') # Running with context profile.runctx( 'print(fib_seq(n)); print()', globals(), {'n': 20}, ) # -------------------------------------------------------------------------------- # 1.3 print('More precise time tracking with cProfile') print('-' * 79) print('Profiling 2 + 2 with cProfile:') cProfile.run("2 + 2") print('Profiling 3 functions with cProfile:') def fast_function(): print('fast') def medium_func(): print('medium') time.sleep(1) def slow_func(): print('slow') time.sleep(2) def test_func(): fast_function() medium_func() slow_func() cProfile.run('test_func()') # -------------------------------------------------------------------------------- # 1.4 print('Looking at memory consumption with memory_profiler') print('-' * 79) import memory_profiler @memory_profiler.profile def test_func(): numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9] addition = 0 for num in numbers: addition += num return addition test_func() @memory_profiler.profile def memory_clearing_func(): x = [1] * (10 ** 5) y = [2] * (10 ** 7) del y return x memory_clearing_func()
StarcoderdataPython
151558
<reponame>asantos2000/master-data-structures-algorithms<filename>lista02/majoritario_2.py ''' majoritario(V): E = merge_sort(V) conte = 0 metade = V.tamanho div 2 item_anterior = E[0] para item em E se item == item_anterior conte 1 se conte > metade retorna item senao conte 0 item_anterior = item retorna -1 ''' import logging from merge_sort import merge_sort LOGGER = logging.getLogger(__name__) def majoritario(V): E = merge_sort(V) conte = 0 m = len(V) // 2 ea = E[0] for e in E: if e == ea: conte += 1 if conte > m: return e else: conte = 0 ea = e return -1 # python majoritario_2.py if __name__ == "__main__": # Case 1 V=[2,2,3,2,9,2] print(majoritario(V)) print(max(set(V), key=V.count)) # # python: # # set(V)={9, 2, 3} # # V.count funcao que conta item na lista # # max - maior elemento da lista de count #print(V.count(2)) # python count ocurrences # Case 2 V=[0, 1] print(majoritario(V)) print(max(set(V), key=V.count)) #print(V.count(-1)) # Case 3 V=[3, 3, 3, 3, 3, 3] print(majoritario(V)) print(max(set(V), key=V.count)) #print(V.count(3)) # Case 4 V=[1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4] print(majoritario(V)) print(max(set(V), key=V.count)) #print(V.count(1)) # Case 5 V=[3, 3, 0, 3, 3, 0, 3, 3, 0, 3, 3, 0, 3, 3, 0] print(majoritario(V)) print(max(set(V), key=V.count)) # python -m pytest majoritario.py import random import time def test_majoritario(): for i in range(0,10): V=5*[random.randrange(0,5),random.randrange(0,5),random.randrange(0,5)] # funcao inicio = time.time() e = majoritario(V) duracao = time.time() - inicio # fim funcao ne = V.count(e) m = (len(V) // 2) + 1 # metade + 1 te = max(set(V), key=V.count) LOGGER.warning(f'{V}, {e}, {te}, {ne}, {m}, {duracao}') if e >= 0: assert(e == te) # confere que eh majoritario # @given(st.lists(st.permutations([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0]), min_size=3)) # def test_elections_are_transitive(X): # flat_list = [item for sublist in X for item in sublist] # event(f'{flat_list}')
StarcoderdataPython
116928
class Solution: # Count Consecutive Groups (Top Voted), O(n) time and space def countBinarySubstrings(self, s: str) -> int: s = list(map(len, s.replace('01', '0 1').replace('10', '1 0').split())) return sum(min(a, b) for a, b in zip(s, s[1:])) # Linear Scan (Solution), O(n) time, O(1) space def countBinarySubstrings(self, s: str) -> int: ans, prev, cur = 0, 0, 1 for i in range(1, len(s)): if s[i-1] != s[i]: ans += min(prev, cur) prev, cur = cur, 1 else: cur += 1 return ans + min(prev, cur)
StarcoderdataPython
66068
from twisted.internet.protocol import Protocol from twisted.internet.protocol import Factory from twisted.internet.endpoints import TCP4ServerEndpoint from twisted.internet import reactor from Crypto.Cipher import AES from Crypto.Hash import SHA256 from threading import Thread from tpm import * import json import base64 # Used to access the index in the exchanged messages MESSAGE_TYPE = 0 MESSAGE = 1 # The types of the messages exchanged TYPE_INPUTS = 0 TYPE_OUTPUT_SERVER = 1 TYPE_OUTPUT_CLIENT = 2 TYPE_ACK = 3 TYPE_TEST = 4 TYPE_TEST_OK = 5 TYPE_MESSAGE = 6 SYNC_THRESHOLD = 20 TEST_MESSAGE = 'SYNCED' class NeuralCryptography(Protocol): def __init__(self): self.tpm = TreeParityMachine(4,3); self.count = 0 self.syncronized = False self.key = None self.cipher = None def syncronizer(self, data): data = json.loads(data) if self.count == SYNC_THRESHOLD: self.test_sync() elif data[MESSAGE_TYPE] == TYPE_INPUTS: self.receive_inputs(data[MESSAGE]) elif data[MESSAGE_TYPE] == TYPE_OUTPUT_SERVER: self.receive_output_from_server(data[MESSAGE]) elif data[MESSAGE_TYPE] == TYPE_OUTPUT_CLIENT: self.receive_output_from_client(data[MESSAGE]) elif data[MESSAGE_TYPE] == TYPE_ACK: self.receive_ack() elif data[MESSAGE_TYPE] == TYPE_TEST: self.receive_test(data[MESSAGE]) elif data[MESSAGE_TYPE] == TYPE_TEST_OK: self.receive_test_ok() def receive_inputs(self, inputs): self.tpm(inputs) self.transport.write(json.dumps([TYPE_OUTPUT_SERVER, self.tpm.y])) def receive_output_from_server(self, output): self.transport.write(json.dumps([TYPE_OUTPUT_CLIENT, self.tpm.y])) if self.tpm.y == output: self.count += 1 self.tpm.train() else: self.count = 0 def receive_output_from_client(self, output): if self.tpm.y == output: self.count += 1 self.tpm.train() else: self.count = 0 self.transport.write(json.dumps([TYPE_ACK, 0])) def receive_ack(self): self.tpm.generate_inputs() self.tpm(self.tpm.x) self.transport.write(json.dumps([TYPE_INPUTS, self.tpm.x])) def synced(self): return self.syncronized def test_sync(self): self.count = 0 self.generate_key() self.cipher = AES.new(self.key, AES.MODE_CBC) ciphertext = self.cipher.encrypt(self.pad(TEST_MESSAGE.encode('utf-8'))) ciphertext = base64.b64encode(ciphertext) self.transport.write(json.dumps([TYPE_TEST, ciphertext])) def receive_test(self, ciphertext): self.generate_key() self.cipher = AES.new(self.key, AES.MODE_CBC) ciphertext = base64.b64decode(ciphertext) plaintext = self.cipher.decrypt(ciphertext) plaintext = self.unpad(plaintext) if plaintext == TEST_MESSAGE: self.transport.write(json.dumps([TYPE_TEST_OK, TEST_MESSAGE])) self.syncronized = True print self.tpm.weights() self.start_service() else: self.transport.write(json.dumps([TYPE_ACK, 0])) def receive_test_ok(self): self.syncronized = True self.start_service() print self.tpm.weights() def generate_key(self): seed = str(self.tpm.weights()) sha = SHA256.new() sha.update(seed) self.key = sha.digest() return self.key def pad(self, s): BS = 16 return s + (BS - len(s) % BS) * chr(BS - len(s) % BS) def unpad(self, s): return s[0:-ord(s[-1])] def call(self, target, args): self.thread = Thread(target=target, args=(args)) def receive(self, target): self.data_received = target def start_service(self): self.thread.start() def received(self, data): data = json.loads(data) ciphertext = data[MESSAGE] ciphertext = base64.b64decode(ciphertext) plaintext = self.cipher.decrypt(ciphertext) plaintext = self.unpad(plaintext) self.data_received(plaintext) def send_message(self, data): ciphertext = self.cipher.encrypt(self.pad(data)) ciphertext = base64.b64encode(ciphertext) self.transport.write(json.dumps([TYPE_MESSAGE, ciphertext]))
StarcoderdataPython
3327036
from brainiak.eventseg.event import EventSegment from scipy.special import comb import numpy as np import pytest from sklearn.exceptions import NotFittedError def test_create_event_segmentation(): es = EventSegment(5) assert es, "Invalid EventSegment instance" def test_fit_shapes(): K = 5 V = 3 T = 10 es = EventSegment(K, n_iter=2) sample_data = np.random.rand(V, T) es.fit(sample_data.T) assert es.segments_[0].shape == (T, K), "Segmentation from fit " \ "has incorrect shape" assert np.isclose(np.sum(es.segments_[0], axis=1), np.ones(T)).all(), \ "Segmentation from learn_events not correctly normalized" T2 = 15 sample_data2 = np.random.rand(V, T2) test_segments, test_ll = es.find_events(sample_data2.T) assert test_segments.shape == (T2, K), "Segmentation from find_events " \ "has incorrect shape" assert np.isclose(np.sum(test_segments, axis=1), np.ones(T2)).all(), \ "Segmentation from find_events not correctly normalized" es_invalid = EventSegment(K) with pytest.raises(ValueError): es_invalid.model_prior(K-1) # ``with`` block is about to end with no error. pytest.fail("T < K should cause error") with pytest.raises(ValueError): es_invalid.set_event_patterns(np.zeros((V, K-1))) pytest.fail("#Events < K should cause error") def test_simple_boundary(): es = EventSegment(2) random_state = np.random.RandomState(0) sample_data = np.array([[1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1]]) + \ random_state.rand(2, 7) * 10 es.fit(sample_data.T) events = np.argmax(es.segments_[0], axis=1) assert np.array_equal(events, [0, 0, 0, 1, 1, 1, 1]),\ "Failed to correctly segment two events" events_predict = es.predict(sample_data.T) assert np.array_equal(events_predict, [0, 0, 0, 1, 1, 1, 1]), \ "Error in predict interface" def test_event_transfer(): es = EventSegment(2) sample_data = np.asarray([[1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1]]) with pytest.raises(NotFittedError): seg = es.find_events(sample_data.T)[0] pytest.fail("Should need to set variance") with pytest.raises(NotFittedError): seg = es.find_events(sample_data.T, np.asarray([1, 1]))[0] pytest.fail("Should need to set patterns") es.set_event_patterns(np.asarray([[1, 0], [0, 1]])) seg = es.find_events(sample_data.T, np.asarray([1, 1]))[0] events = np.argmax(seg, axis=1) assert np.array_equal(events, [0, 0, 0, 1, 1, 1, 1]),\ "Failed to correctly transfer two events to new data" def test_weighted_var(): es = EventSegment(2) D = np.zeros((8, 4)) for t in range(4): D[t, :] = (1/np.sqrt(4/3)) * np.array([-1, -1, 1, 1]) for t in range(4, 8): D[t, :] = (1 / np.sqrt(4 / 3)) * np.array([1, 1, -1, -1]) mean_pat = D[[0, 4], :].T weights = np.zeros((8, 2)) weights[:, 0] = [1, 1, 1, 1, 0, 0, 0, 0] weights[:, 1] = [0, 0, 0, 0, 1, 1, 1, 1] assert np.array_equal( es.calc_weighted_event_var(D, weights, mean_pat), [0, 0]),\ "Failed to compute variance with 0/1 weights" weights[:, 0] = [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5] weights[:, 1] = [0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1] true_var = (4 * 0.5 * 12)/(6 - 5/6) * np.ones(2) / 4 assert np.allclose( es.calc_weighted_event_var(D, weights, mean_pat), true_var),\ "Failed to compute variance with fractional weights" def test_sym(): es = EventSegment(4) evpat = np.repeat(np.arange(10).reshape(-1, 1), 4, axis=1) es.set_event_patterns(evpat) D = np.repeat(np.arange(10).reshape(1, -1), 20, axis=0) ev = es.find_events(D, var=1)[0] # Check that events 1-4 and 2-3 are symmetric assert np.all(np.isclose(ev[:, :2], np.fliplr(np.flipud(ev[:, 2:])))),\ "Fit with constant data is not symmetric" def test_chains(): es = EventSegment(5, event_chains=np.array(['A', 'A', 'B', 'B', 'B'])) es.set_event_patterns(np.array([[1, 1, 0, 0, 0], [0, 0, 1, 1, 1]])) sample_data = np.array([[0, 0, 0], [1, 1, 1]]) seg = es.find_events(sample_data.T, 0.1)[0] ev = np.nonzero(seg > 0.99)[1] assert np.array_equal(ev, [2, 3, 4]),\ "Failed to fit with multiple chains" def test_prior(): K = 10 T = 100 es = EventSegment(K) mp = es.model_prior(T)[0] p_bound = np.zeros((T, K-1)) norm = comb(T-1, K-1) for t in range(T-1): for k in range(K-1): # See supplementary material of Neuron paper # https://doi.org/10.1016/j.neuron.2017.06.041 p_bound[t+1, k] = comb(t, k) * comb(T-t-2, K-k-2) / norm p_bound = np.cumsum(p_bound, axis=0) mp_gt = np.zeros((T, K)) for k in range(K): if k == 0: mp_gt[:, k] = 1 - p_bound[:, 0] elif k == K - 1: mp_gt[:, k] = p_bound[:, k-1] else: mp_gt[:, k] = p_bound[:, k-1] - p_bound[:, k] assert np.all(np.isclose(mp, mp_gt)),\ "Prior does not match analytic solution"
StarcoderdataPython
3338495
<gh_stars>0 import numpy as np import matplotlib.pyplot as plt from pathlib import Path from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--target", type=Path, required=True) parser.add_argument("--save_dir", type=Path, required=True) parser.add_argument("--format", default="png") parser.add_argument("--keep_dir", action="store_true") args = parser.parse_args() npz_obj = np.load(args.target) save_dir = args.save_dir save_dir.mkdir(parents=True, exist_ok=True) format = args.format for key, feat in npz_obj.items(): print(key) plt.clf() plt.plot(feat) plt.title(key) if not args.keep_dir: key = key.replace("/", "_") outfile = save_dir / f"{key}.{format}" outfile.parent.mkdir(parents=True, exist_ok=True) plt.savefig(outfile)
StarcoderdataPython
1629776
<gh_stars>1-10 # -*- coding: utf-8 -*- import csv def getstart(file_path): data=[] csvFile=open(file_path,'r', errors='ignore') reader=csv.reader(csvFile) for line in reader:data.append(line) return data
StarcoderdataPython
170430
import math vineyard_area = int(input()) production_area = vineyard_area * (40 / 100) kg_grape = float(input()) * production_area vine_for_sale = int(input()) workers = int(input()) vine = kg_grape / 2.5 if vine >= vine_for_sale: vine_left = vine - vine_for_sale vine_for_workers = vine_left / workers print(f"Good harvest this year! Total wine: {math.floor(vine)} liters.\n{math.ceil(vine_left)}" f" liters left -> {math.ceil(vine_for_workers)} liters per person.") else: vine_need = vine_for_sale - vine print(f"It will be a tough winter! More {math.floor(vine_need)} liters wine needed.")
StarcoderdataPython
152884
import json import textwrap from redict import utils class JsonMinifyTestCase: def template(self, json_string, expected): in_dict = json.loads(utils.json_minify(json_string)) expected_dict = json.loads(expected) assert in_dict == expected_dict def test_1(self): json_string = textwrap.dedent(''' // this is a JSON file with comments { "foo": "bar", // this is cool "bar": [ "baz", "bum" ], /* the rest of this document is just fluff in case you are interested. */ "something": 10, "else": 20 } /* NOTE: You can easily strip the whitespace and comments from such a file with the JSON.minify() project hosted here on github at http://github.com/getify/JSON.minify */''') self.template( json_string, '{"foo":"bar","bar":["baz","bum"],"something":10,"else":20}' ) def test_2(self): self.template(textwrap.dedent( '{"/*":"*/","//":"",/*"//"*/"/*/"://"//"}'), '{"/*":"*/","//":"","/*/":"//"}' ) def test_3(self): json_string = textwrap.dedent( r''' /* this is a multi line comment */{ "foo" : "bar/*"// something , "b\"az":/* something else */"blah" } ''' ) self.template( json_string, r'{"foo":"bar/*","b\"az":"blah"}' ) def test_4(self): self.template(textwrap.dedent( r'''{"foo": "ba\"r//", "bar\\": "b\\\"a/*z", "baz\\\\": /* yay */ "fo\\\\\"*/o"}'''), r'{"foo":"ba\"r//","bar\\":"b\\\"a/*z","baz\\\\":"fo\\\\\"*/o"}' )
StarcoderdataPython
1777782
<reponame>GiverPlay007/aprendendo-python ########################### #Calcular função em Python# ########################### calculos = [1, 2, 3, 4, 5, 6, 7, 8, 9] for calculo in calculos: print('=== Calcular função de X ===') print('Sessão', calculo) print(' ') a = input('Qual o valor individual?\nR: ') b = input('Qual o valor fixo?\nR: ') var = input('Qual a variavel (X)?\nR: ') calc = int(a) * int(var) fx = calc + int(b) print(' ') print('Aguarde enquanto calculo pra você!!\nRelaxa, pode ir tomando seu café!') print('Pera, pera, não da tempo de tomar café, ja calculei\n.') print('O valor total é:', fx) print(' \nViu como eu calculo rápido???\n') print('================')
StarcoderdataPython
1728101
<filename>yui/apps/info/toranoana/tasks.py<gh_stars>10-100 import asyncio import datetime from collections import defaultdict from typing import Union import aiohttp from more_itertools import chunked from sqlalchemy.orm.exc import NoResultFound from sqlalchemy.sql.expression import and_ from sqlalchemy.sql.expression import exists from sqlalchemy.sql.expression import or_ from .commons import HEADERS from .commons import get_urls from .models import Author from .models import Character from .models import Circle from .models import Coupling from .models import Genre from .models import Item from .models import ItemAuthor from .models import ItemCharacter from .models import ItemCircle from .models import ItemCoupling from .models import ItemTag from .models import STOCK_LABEL from .models import Stock from .models import Tag from .models import Target from .models import Watch from ....box import box from ....types.slack.attachment import Attachment from ....types.slack.attachment import Field from ....utils.datetime import now from ....utils.html import get_root box.assert_channel_required('toranoana') GenreURLlist = dict[Genre, list[str]] def process( *, sess, h, genre: Genre, dt: datetime.datetime, is_male: bool, ): rows = h.cssselect('#search-result-container li.product-list-item') for row in rows: with sess.no_autoflush: tags: list[tuple[Tag, bool]] = [] authors: list[tuple[Author, bool]] = [] circles: list[tuple[Circle, bool]] = [] couplings: list[tuple[Coupling, bool]] = [] characters: list[tuple[Character, bool]] = [] code = row.cssselect('input#commodityCode')[0].get('value').strip() is_new = False is_adult = False try: item = sess.query(Item).filter_by(code=code).one() except NoResultFound: is_new = True item = Item() item.code = code item.genre = genre thumbnail_container = row.cssselect('.product-list-img a')[0] item.image_url = str( thumbnail_container[-1].get('data-src').strip() ) item.title = str( row.cssselect('.product-list-title')[0].text_content().strip() ) item.price = int( row.cssselect( '.product-list-price .fs_L', )[0] .text_content() .strip() .replace(',', '') ) item.stock = { 'stock_sufficient': Stock.ok, 'stock_little': Stock.few, }.get( row.cssselect('.product-list-basic')[0].get('class'), Stock.soldout, ) name_els = row.cssselect('.product-list-name a') for el in name_els: url = el.get('href', '').strip() name = el.text_content().strip() if '/circle/' in url: code = url.split('/circle/', 1)[1].replace('/all/', '') try: circle = ( sess.query(Circle) .filter_by(code=code, name=name) .one() ) circles.append((circle, True)) except NoResultFound: circle = Circle(code=code, name=name) circles.append((circle, False)) elif 'actorKindId' in url: code = 'ACTR' + url.split('ACTR', 1)[1] try: author = ( sess.query(Author) .filter_by(code=code, name=name) .one() ) authors.append((author, True)) except NoResultFound: author = Author(code=code, name=name) authors.append((author, False)) label_els = row.cssselect('.product-list-labels li a') for el in label_els: url = el.get('href', '').strip() name = el.text_content().strip() if '?coupling_facet=' in url: # coupling code = name try: coupling = ( sess.query(Coupling) .filter_by(code=code, name=name) .one() ) couplings.append((coupling, True)) except NoResultFound: coupling = Coupling(code=code, name=name) couplings.append((coupling, False)) elif '?charaId=' in url: # character code = url.split('?charaId=', 1)[1] try: character = ( sess.query(Character) .filter_by(code=code, name=name) .one() ) characters.append((character, True)) except NoResultFound: character = Character(code=code, name=name) characters.append((character, False)) tags_els = row.cssselect('.product-list-tags') for el in tags_els: code = ( el.get('class').split(' ')[-1].replace('catalogMark', '') ) name = el.text_content().strip() if code == '18': is_adult = True try: tag = sess.query(Tag).filter_by(code=code, name=name).one() tags.append((tag, True)) except NoResultFound: tag = Tag(code=code, name=name) tags.append((tag, False)) if is_male: if is_adult: item.male_target = Target.adult else: item.male_target = Target.common else: if is_adult: item.female_target = Target.adult else: item.female_target = Target.common queue: list[ Union[Author, Circle, Tag, Coupling, Character, Item] ] = [] old_tags: list[int] = [] old_authors: list[int] = [] old_circles: list[int] = [] old_couplings: list[int] = [] old_characters: list[int] = [] if not is_new: old_tags = [ x.id for x in sess.query(Tag).filter( Tag.id == ItemTag.tag_id, ItemTag.item == item, ) ] old_authors = [ x.id for x in sess.query(Author).filter( Author.id == ItemAuthor.author_id, ItemAuthor.item == item, ) ] old_circles = [ x.id for x in sess.query(Circle).filter( Circle.id == ItemCircle.circle_id, ItemCircle.item == item, ) ] old_couplings = [ x.id for x in sess.query(Coupling).filter( Coupling.id == ItemCoupling.coupling_id, ItemCoupling.item == item, ) ] old_characters = [ x.id for x in sess.query(Character).filter( Character.id == ItemCharacter.character_id, ItemCharacter.item == item, ) ] for tag, wrote in tags: if not wrote: queue.append(tag) if ( is_new or not item.id or not tag.id or not sess.query( exists().where( and_( ItemTag.item_id == item.id, ItemTag.tag_id == tag.id, ) ) ).scalar() ): item.tags.append(tag) if not is_new and tag.id in old_tags: old_tags.remove(tag.id) for author, wrote in authors: if not wrote: queue.append(author) if ( is_new or not item.id or not author.id or not sess.query( exists().where( and_( ItemAuthor.item_id == item.id, ItemAuthor.author_id == author.id, ) ) ).scalar() ): item.authors.append(author) if not is_new and author.id in old_authors: old_authors.remove(author.id) for circle, wrote in circles: if not wrote: queue.append(circle) if ( is_new or not item.id or not circle.id or not sess.query( exists().where( and_( ItemCircle.item_id == item.id, ItemCircle.circle_id == circle.id, ) ) ).scalar() ): item.circles.append(circle) if not is_new and circle.id in old_circles: old_circles.remove(circle.id) for coupling, wrote in couplings: if not wrote: queue.append(coupling) if ( is_new or not item.id or not coupling.id or not sess.query( exists().where( and_( ItemCoupling.item_id == item.id, ItemCoupling.coupling_id == coupling.id, ) ) ).scalar() ): item.couplings.append(coupling) if not is_new and coupling.id in old_couplings: old_couplings.remove(coupling.id) for character, wrote in characters: if not wrote: queue.append(character) if ( is_new or not item.id or not character.id or not sess.query( exists().where( and_( ItemCharacter.item_id == item.id, ItemCharacter.character_id == character.id, ) ) ).scalar() ): item.characters.append(character) if not is_new and character.id in old_characters: old_characters.remove(character.id) if is_new or sess.is_modified(item): item.updated_at = dt item.checked_at = dt queue.append(item) with sess.begin(): for record in queue: sess.add(record) if not is_new: sess.query(ItemTag).filter( ItemTag.item == item, ItemTag.tag_id.in_(old_tags), ).delete(synchronize_session=False) sess.query(ItemAuthor).filter( ItemAuthor.item == item, ItemAuthor.author_id.in_(old_authors), ).delete(synchronize_session=False) sess.query(ItemCircle).filter( ItemCircle.item == item, ItemCircle.circle_id.in_(old_circles), ).delete(synchronize_session=False) sess.query(ItemCoupling).filter( ItemCoupling.item == item, ItemCoupling.coupling_id.in_(old_couplings), ).delete(synchronize_session=False) sess.query(ItemCharacter).filter( ItemCharacter.item == item, ItemCharacter.character_id.in_(old_characters), ).delete(synchronize_session=False) def get_dedupe_genre_url_map(sess) -> GenreURLlist: result: defaultdict[Genre, set[str]] = defaultdict(set) for watch in sess.query(Watch): genre = watch.genre code = genre.code result[genre] |= set(get_urls(code, watch.male, watch.female)) return {genre: list(urls) for genre, urls in result.items()} async def scan_all_pages( *, bot, sess, session, genre: Genre, url: str, is_male: bool, dt: datetime.datetime, ): page = 1 end_page = 1 while page <= end_page: paginated_url = f'{url}&currentPage={page}' if page > 1: await asyncio.sleep(1) async with session.get(paginated_url) as resp: blob = await resp.text() h = get_root(blob) if page == 1: pager = h.cssselect('#pager') if pager: end_page = int(pager[0].get('data-maxpage', 1)) await bot.run_in_other_thread( process, sess=sess, h=h, genre=genre, dt=dt, is_male=is_male, ) page += 1 def get_watches(*, sess, item: Item): return ( sess.query(Watch) .join(Item, Item.genre_id == Watch.genre_id) .filter( Item.id == item.id, or_( and_( Item.male_target == Target.common, Watch.male.in_([Target.wildcard, Target.common]), ), and_( Item.male_target == Target.adult, Watch.male.in_([Target.wildcard, Target.adult]), ), and_( Item.female_target == Target.common, Watch.female.in_([Target.wildcard, Target.common]), ), and_( Item.female_target == Target.adult, Watch.female.in_([Target.wildcard, Target.adult]), ), ), ) ) @box.cron('0,30 * * * *') async def crawl(bot, sess): dt = now() url_map = await bot.run_in_other_thread(get_dedupe_genre_url_map, sess) async with aiohttp.ClientSession(headers=HEADERS) as session: loop1_first = True for genre, urls in url_map.items(): if loop1_first: loop1_first = False else: await asyncio.sleep(5) loop2_first = True for url in urls: if loop2_first: loop2_first = False else: await asyncio.sleep(1) is_male = 'joshi' not in url await scan_all_pages( bot=bot, sess=sess, session=session, genre=genre, url=url, is_male=is_male, dt=dt, ) data: defaultdict[str, list[Attachment]] = defaultdict(list) for item in sess.query(Item).filter_by(updated_at=dt): author_name = ', '.join(author.name for author in item.authors) circle_name = ', '.join(circle.name for circle in item.circles) if author_name: if circle_name: author_line = f'{author_name} ({circle_name})' else: author_line = author_name elif circle_name: author_line = circle_name else: author_line = 'Unknown Author' targets = [] color = '3399ff' if Target.adult == item.male_target: color = 'ff0000' targets.append('남성향 성인물') elif item.male_target == Target.common: targets.append('남성향 일반물') if item.female_target == Target.adult: color = 'ff0000' targets.append('여성향 성인물') elif item.female_target == Target.common: targets.append('여성향 일반물') attachment = Attachment( color=color, title=item.title, title_link=item.url, author_name=author_line, image_url=item.image_url, fields=[ Field( title='장르', value=item.genre.name_ko or item.genre.name, short=True, ), Field( title='카테고리', value='\n'.join(targets), short=True, ), Field( title='가격', value=f'{item.price} JPY', short=True, ), Field(title='재고', value=STOCK_LABEL[item.stock], short=True), ], ) if item.couplings: attachment.fields.append( Field( title='커플링', value=', '.join( coupling.name_ko or coupling.name for coupling in item.couplings ), short=True, ) ) if item.characters: attachment.fields.append( Field( title='등장인물', value=', '.join( character.name_ko or character.name for character in item.characters ), short=True, ) ) watches = await bot.run_in_other_thread( get_watches, sess=sess, item=item, ) for watch in watches: data[watch.print_target_id].append(attachment) for target, attachments in data.items(): if target.startswith('U'): resp = await bot.api.conversations.open(users=[target]) channel_id = resp.body['channel']['id'] else: channel_id = target for a in chunked(attachments, 20): await bot.say( channel_id, '토라노아나 변경항목을 전달해드릴게요!', attachments=a, )
StarcoderdataPython
3225780
<filename>hackerrank/algorithms/implementation/medium/extra_long_factorials/py/solution.py #!/bin/python3 import sys fact = lambda n: 1 if n <= 1 else n * fact(n - 1) n = int(input().strip()) fct = fact(n) print(fct)
StarcoderdataPython
1701573
<gh_stars>1-10 """ ******************************************** test_generator_modul_test_einstellungen.py @digitalfellowship - Stand 07/2021 Autor: <NAME> ******************************************** Dieses Modul dient der Erstellung von Testeinstellungen für einen ILIAS-Test Es sind nicht alle Einstellmöglichkeiten aus ILIAS verfügbar, sondern lediglich die Einstellungen unter "Allgemeine Einstellungen" im ILIAS """ from tkinter import * from tkscrolledframe import ScrolledFrame #Bewegbares Fesnter (Scrollbalken) import sqlite3 import xml.etree.ElementTree as ET from datetime import datetime import datetime import os class Test_Einstellungen_GUI: def __init__(self, project_root_path, test_qti_file_path_output): # Projekt-Pfad self.project_root_path = project_root_path # Pfad für qti_(XML)-Datei für erstellten Test self.test_qti_file_path_output = test_qti_file_path_output # Name für Datenbank und Tabelle self.settings_database = "test_settings_profiles_db.db" self.settings_database_table = "my_profiles_table" # Pfad für die Datenbank self.settings_database_path = os.path.normpath(os.path.join(self.project_root_path, "Test_Generator_Datenbanken", self.settings_database)) # New Window must be "Toplevel" not "Tk()" in order to get Radiobuttons to work properly self.test_settings_window = Toplevel() self.test_settings_window.title("Test Einstellungen verwalten") # Create a ScrolledFrame widget self.sf_test_settings = ScrolledFrame(self.test_settings_window, width=300, height=300) self.sf_test_settings.pack(expand=1, fill="both") # Bind the arrow keys and scroll wheel ### Bind the arrow keys and scroll wheel ### Funktion hat keine auswirkungen, erzeugt jedoch (vernachlässigbare) Fehler # self.sf_test_settings.bind_arrow_keys(app) # self.sf_test_settings.bind_scroll_wheel(app) # Create a frame within the ScrolledFrame self.test_settings = self.sf_test_settings.display_widget(Frame) self.frame1 = LabelFrame(self.test_settings, text="Test Einstellungen", padx=5, pady=5) self.frame1.grid(row=0, column=0, padx=20, pady=10, sticky=NW) self.frame2 = LabelFrame(self.test_settings, text="Test Einstellungen", padx=5, pady=5) self.frame2.grid(row=0, column=1, padx=20, pady=10, sticky=NW) self.frame3 = LabelFrame(self.test_settings, text="Test Einstellungen", padx=5, pady=5) self.frame3.grid(row=0, column=2, padx=20, pady=10, sticky=NW) self.res12_min_listbox_label = Label(self.frame1, text="EINSTELLUNGEN DES TESTS", font=('Helvetica', 10, 'bold')) self.res12_min_listbox_label.grid(row=0, column=0, sticky=W, padx=10, pady=(20, 0)) self.res90_min_listbox_label = Label(self.frame1, text="Test-Titel") self.res90_min_listbox_label.grid(row=1, column=0, sticky=W, padx=10) self.res91_max_listbox_label = Label(self.frame1, text="Beschreibung") self.res91_max_listbox_label.grid(row=2, column=0, sticky=W, padx=10) self.res1_max_listbox_label = Label(self.frame1, text="Auswahl der Testfragen") self.res1_max_listbox_label.grid(row=4, column=0, sticky=W, padx=10) self.res1_prec_listbox_label = Label(self.frame1, text="Datenschutz") self.res1_prec_listbox_label.grid(row=7, column=0, sticky=W, padx=10) self.res1_tol_listbox_label = Label(self.frame1, text="VERFÜGBARKEIT", font=('Helvetica', 10, 'bold')) self.res1_tol_listbox_label.grid(row=9, column=0, sticky=W, padx=10, pady=(20, 0)) self.res1_points_listbox_label = Label(self.frame1, text="Online --- not working") self.res1_points_listbox_label.grid(row=10, column=0, sticky=W, padx=10) self.res13_points_listbox_label = Label(self.frame1, text="Zeitlich begrenzte Verfügbarkeit --- not working") self.res13_points_listbox_label.grid(row=11, column=0, sticky=W, padx=10) self.res22_tol_listbox_label = Label(self.frame1, text="INFORMATIONEN ZUM EINSTIEG", font=('Helvetica', 10, 'bold')) self.res22_tol_listbox_label.grid(row=14, column=0, sticky=W, padx=10, pady=(20, 0)) self.res23_points_listbox_label = Label(self.frame1, text="Einleitung") self.res23_points_listbox_label.grid(row=15, column=0, sticky=W, padx=10) self.res24_points_listbox_label = Label(self.frame1, text="Testeigenschaften anzeigen") self.res24_points_listbox_label.grid(row=16, column=0, sticky=W, padx=10) self.res31_tol_listbox_label = Label(self.frame1, text="DURCHFÜHRUNG: ZUGANG", font=('Helvetica', 10, 'bold')) self.res31_tol_listbox_label.grid(row=17, column=0, sticky=W, padx=10, pady=(20, 0)) self.test_time_year_label = Label(self.frame1, text="Jahr") self.test_time_year_label.grid(row=17, column=1, sticky=W) self.test_time_month_label = Label(self.frame1, text="Mon.") self.test_time_month_label.grid(row=17, column=1, sticky=W, padx=35) self.test_time_day_label = Label(self.frame1, text="Tag") self.test_time_day_label.grid(row=17, column=1, sticky=W, padx=70) self.test_time_hour_label = Label(self.frame1, text="Std.") self.test_time_hour_label.grid(row=17, column=1, sticky=W, padx=105) self.test_time_minute_label = Label(self.frame1, text="Min.") self.test_time_minute_label.grid(row=17, column=1, sticky=W, padx=140) self.res32_points_listbox_label = Label(self.frame1, text="Test-Start") self.res32_points_listbox_label.grid(row=18, column=0, sticky=W, padx=10) self.res33_points_listbox_label = Label(self.frame1, text="Test-Ende") self.res33_points_listbox_label.grid(row=19, column=0, sticky=W, padx=10) self.res34_tol_listbox_label = Label(self.frame1, text="Test-Passwort") self.res34_tol_listbox_label.grid(row=20, column=0, sticky=W, padx=10) self.res35_points_listbox_label = Label(self.frame1, text="Nur ausgewählte Teilnehmer") self.res35_points_listbox_label.grid(row=21, column=0, sticky=W, padx=10) self.res36_points_listbox_label = Label(self.frame1, text="Anzahl gleichzeitiger Teilnehmer begrenzen") self.res36_points_listbox_label.grid(row=22, column=0, sticky=W, padx=10) self.res37_points_listbox_label = Label(self.frame1, text="Inaktivitätszeit der Teilnehmner (in Sek.)") self.res37_points_listbox_label.grid(row=23, column=0, sticky=W, padx=30) self.res41_tol_listbox_label = Label(self.frame1, text="DURCHFÜHRUNG: STEUERUNG TESTDURCHLAUF", font=('Helvetica', 10, 'bold')) self.res41_tol_listbox_label.grid(row=24, column=0, sticky=W, padx=10, pady=(20, 0)) self.res42_points_listbox_label = Label(self.frame1, text="Anzahl von Testdurchläufen begrenzen") self.res42_points_listbox_label.grid(row=25, column=0, sticky=W, padx=10) self.res43_points_listbox_label = Label(self.frame1, text="Wartezeit zwischen Durchläufen erzwingen") self.res43_points_listbox_label.grid(row=26, column=0, sticky=W, padx=10) self.res44_tol_listbox_label = Label(self.frame1, text="Bearbeitungsdauer begrenzen") self.res44_tol_listbox_label.grid(row=27, column=0, sticky=W, padx=10) self.res44_tol_listbox_label = Label(self.frame1, text="Bearbeitungsdauer (in Min).") self.res44_tol_listbox_label.grid(row=28, column=0, sticky=W, padx=30) self.res44_tol_listbox_label = Label(self.frame1, text="Max. Bearbeitungsdauer für jeden Testlauf zurücksetzen") self.res44_tol_listbox_label.grid(row=29, column=0, sticky=W, padx=30) self.res45_points_listbox_label = Label(self.frame1, text="Prüfungsansicht") self.res45_points_listbox_label.grid(row=30, column=0, sticky=W, padx=10) self.res45_1_points_listbox_label = Label(self.frame1, text="Titel des Tests") self.res45_1_points_listbox_label.grid(row=31, column=0, sticky=W, padx=30) self.res45_2_points_listbox_label = Label(self.frame1, text="Name des Teilnehmers") self.res45_2_points_listbox_label.grid(row=32, column=0, sticky=W, padx=30) self.res46_points_listbox_label = Label(self.frame1, text="ILIAS-Prüfungsnummer anzeigen") self.res46_points_listbox_label.grid(row=33, column=0, sticky=W, padx=10) self.res51_tol_listbox_label = Label(self.frame2, text="DURCHFÜHRUNG: VERHALTEN DER FRAGE", font=('Helvetica', 10, 'bold')) self.res51_tol_listbox_label.grid(row=0, column=2, sticky=W, padx=10, pady=(20, 0)) self.res52_points_listbox_label = Label(self.frame2, text="Anzeige der Fragentitel") self.res52_points_listbox_label.grid(row=1, column=2, sticky=W, padx=10) self.res53_points_listbox_label = Label(self.frame2, text="Automatisches speichern") self.res53_points_listbox_label.grid(row=4, column=2, sticky=W, padx=10) self.res54_tol_listbox_label = Label(self.frame2, text="Fragen mischen") self.res54_tol_listbox_label.grid(row=5, column=2, sticky=W, padx=10) self.res55_points_listbox_label = Label(self.frame2, text="Lösungshinweise") self.res55_points_listbox_label.grid(row=6, column=2, sticky=W, padx=10) self.res56_points_listbox_label = Label(self.frame2, text="Direkte Rückmeldung --- not working") self.res56_points_listbox_label.grid(row=7, column=2, sticky=W, padx=10) self.res57_tol_listbox_label = Label(self.frame2, text="Teilnehmerantworten") self.res57_tol_listbox_label.grid(row=8, column=2, sticky=W, padx=10) self.res58_points_listbox_label = Label(self.frame2, text="Verpflichtende Fragen") self.res58_points_listbox_label.grid(row=12, column=2, sticky=W, padx=10) self.res61_tol_listbox_label = Label(self.frame2, text="DURCHFÜHRUNG: FUNKTIONEN FÜR TEILNEHMER", font=('Helvetica', 10, 'bold')) self.res61_tol_listbox_label.grid(row=13, column=2, sticky=W, padx=10, pady=(20, 0)) self.res62_points_listbox_label = Label(self.frame2, text="Verwendung vorheriger Lösungen") self.res62_points_listbox_label.grid(row=14, column=2, sticky=W, padx=10) self.res63_points_listbox_label = Label(self.frame2, text="\"Test unterbrechen\" anzeigen") self.res63_points_listbox_label.grid(row=15, column=2, sticky=W, padx=10) self.res64_tol_listbox_label = Label(self.frame2, text="Nicht beantwortete Fragen") self.res64_tol_listbox_label.grid(row=16, column=2, sticky=W, padx=10) self.res65_points_listbox_label = Label(self.frame2, text="Fragenliste und Bearbeitungsstand anzeigen") self.res65_points_listbox_label.grid(row=18, column=2, sticky=W, padx=10) self.res66_points_listbox_label = Label(self.frame2, text="Fragen markieren") self.res66_points_listbox_label.grid(row=19, column=2, sticky=W, padx=10) self.res71_tol_listbox_label = Label(self.frame2, text="TEST ABSCHLIESSEN", font=('Helvetica', 10, 'bold')) self.res71_tol_listbox_label.grid(row=20, column=2, sticky=W, padx=10, pady=(20, 0)) self.res72_points_listbox_label = Label(self.frame2, text="Übersicht gegebener Antworten") self.res72_points_listbox_label.grid(row=21, column=2, sticky=W, padx=10) self.res73_points_listbox_label = Label(self.frame2, text="Abschließende Bemerkung") self.res73_points_listbox_label.grid(row=22, column=2, sticky=W, padx=10) self.res74_tol_listbox_label = Label(self.frame2, text="Weiterleitung") self.res74_tol_listbox_label.grid(row=23, column=2, sticky=W, padx=10) self.res75_points_listbox_label = Label(self.frame2, text="Benachrichtigung") self.res75_points_listbox_label.grid(row=24, column=2, sticky=W, padx=10) # --------------------------- DEFINE CHECKBOXES WITH ENTRYS --------------------------------------- # --------------------------- CHECKBOXES --------------------------------------- self.var_online = IntVar() self.check_online = Checkbutton(self.frame1, text="", variable=self.var_online, onvalue=1, offvalue=0) self.check_online.deselect() self.check_online.grid(row=10, column=1, sticky=W) self.var_time_limited = IntVar() self.time_limited_start_label = Label(self.frame1, text="Start") self.time_limited_start_day_label = Label(self.frame1, text="Tag") self.time_limited_start_day_entry = Entry(self.frame1, width=3) self.time_limited_start_month_label = Label(self.frame1, text="Mo") self.time_limited_start_month_entry = Entry(self.frame1, width=3) self.time_limited_start_year_label = Label(self.frame1, text="Jahr") self.time_limited_start_year_entry = Entry(self.frame1, width=4) self.time_limited_start_hour_label = Label(self.frame1, text="Std") self.time_limited_start_hour_entry = Entry(self.frame1, width=3) self.time_limited_start_minute_label = Label(self.frame1, text="Min") self.time_limited_start_minute_entry = Entry(self.frame1, width=3) self.time_limited_end_label = Label(self.frame1, text="Ende") self.time_limited_end_day_label = Label(self.frame1, text="Tag") self.time_limited_end_day_entry = Entry(self.frame1, width=3) self.time_limited_end_month_label = Label(self.frame1, text="Mo") self.time_limited_end_month_entry = Entry(self.frame1, width=3) self.time_limited_end_year_label = Label(self.frame1, text="Jahr") self.time_limited_end_year_entry = Entry(self.frame1, width=4) self.time_limited_end_hour_label = Label(self.frame1, text="Std") self.time_limited_end_hour_entry = Entry(self.frame1, width=3) self.time_limited_end_minute_label = Label(self.frame1, text="Min") self.time_limited_end_minute_entry = Entry(self.frame1, width=3) # self.entry.grid(row=11, column=1, sticky=W, padx=20) self.check_time_limited = Checkbutton(self.frame1, text="", variable=self.var_time_limited, onvalue=1, offvalue=0, command=lambda v=self.var_time_limited: Test_Einstellungen_GUI.show_entry_time_limited_start( self, v)) self.check_time_limited.deselect() self.check_time_limited.grid(row=11, column=1, sticky=W) self.var_introduction = IntVar() self.check_introduction = Checkbutton(self.frame1, text="", variable=self.var_introduction, onvalue=1, offvalue=0, command=lambda v=self.var_introduction: Test_Einstellungen_GUI.show_introduction_textfield( self, v)) self.check_introduction.deselect() self.check_introduction.grid(row=15, column=1, sticky=W) self.var_test_prop = IntVar() self.check_test_prop = Checkbutton(self.frame1, text="", variable=self.var_test_prop, onvalue=1, offvalue=0) self.check_test_prop.deselect() self.check_test_prop.grid(row=16, column=1, sticky=W) # self.var_test_password = IntVar() # self.check_test_password = Checkbutton(self.frame1, text="", variable=self.var_test_password, onvalue=1, offvalue=0) # self.check_test_password.deselect() # self.check_test_password.grid(row=20, column=1, sticky=W) self.var_specific_users = IntVar() self.check_specific_users = Checkbutton(self.frame1, text="", variable=self.var_specific_users, onvalue=1, offvalue=0) self.check_specific_users.deselect() self.check_specific_users.grid(row=21, column=1, sticky=W) # self.var_fixed_users = IntVar() # self.check_fixed_users = Checkbutton(self.frame1, text="", variable=self.var_fixed_users, onvalue=1, offvalue=0) # self.check_fixed_users.deselect() # self.check_fixed_users.grid(row=22, column=1, sticky=W) # self.var_limit_test_runs = IntVar() # self.check_limit_test_runs = Checkbutton(self.frame1, text="", variable=self.var_limit_test_runs, onvalue=1, offvalue=0) # self.check_limit_test_runs.deselect() # self.check_limit_test_runs.grid(row=22, column=1, sticky=W) # self.var_time_betw_test_runs = IntVar() # self.check_time_betw_test_runs = Checkbutton(self.frame1, text="", variable=self.var_time_betw_test_runs, onvalue=1, offvalue=0) # self.check_time_betw_test_runs.deselect() # self.check_time_betw_test_runs.grid(row=25, column=1, sticky=W) self.var_processing_time = IntVar() self.check_processing_time = Checkbutton(self.frame1, text="", variable=self.var_processing_time, onvalue=1, offvalue=0) self.check_processing_time.deselect() self.check_processing_time.grid(row=27, column=1, sticky=W) self.var_processing_time_reset = IntVar() self.check_processing_time_reset = Checkbutton(self.frame1, text="", variable=self.var_processing_time_reset, onvalue=1, offvalue=0) self.check_processing_time_reset.deselect() self.check_processing_time_reset.grid(row=29, column=1, sticky=W) self.var_examview = IntVar() self.check_examview = Checkbutton(self.frame1, text="", variable=self.var_examview, onvalue=1, offvalue=0) self.check_examview.deselect() self.check_examview.grid(row=30, column=1, sticky=W) self.var_examview_test_title = IntVar() self.check_examview_test_title = Checkbutton(self.frame1, text="", variable=self.var_examview_test_title, onvalue=1, offvalue=0) self.check_examview_test_title.deselect() self.check_examview_test_title.grid(row=31, column=1, sticky=W) self.var_examview_user_name = IntVar() self.check_examview_user_name = Checkbutton(self.frame1, text="", variable=self.var_examview_user_name, onvalue=1, offvalue=0) self.check_examview_user_name.deselect() self.check_examview_user_name.grid(row=32, column=1, sticky=W) self.var_show_ilias_nr = IntVar() self.check_show_ilias_nr = Checkbutton(self.frame1, text="", variable=self.var_show_ilias_nr, onvalue=1, offvalue=0) self.check_show_ilias_nr.deselect() self.check_show_ilias_nr.grid(row=33, column=1, sticky=W) self.var_autosave = IntVar() self.check_autosave = Checkbutton(self.frame2, text="", variable=self.var_autosave, onvalue=1, offvalue=0, command=lambda v=self.var_autosave: Test_Einstellungen_GUI.enable_autosave(self, v)) self.check_autosave_interval_label = Label(self.frame2, text="Speicherintervall (in Sek.):") self.check_autosave_interval_entry = Entry(self.frame2, width=10) self.check_autosave.deselect() self.check_autosave.grid(row=4, column=3, sticky=W) self.var_mix_questions = IntVar() self.check_mix_questions = Checkbutton(self.frame2, text="", variable=self.var_mix_questions, onvalue=1, offvalue=0) self.check_mix_questions.deselect() self.check_mix_questions.grid(row=5, column=3, sticky=W) self.var_show_solution_notes = IntVar() self.check_show_solution_notes = Checkbutton(self.frame2, text="", variable=self.var_show_solution_notes, onvalue=1, offvalue=0) self.check_show_solution_notes.deselect() self.check_show_solution_notes.grid(row=6, column=3, sticky=W) self.var_direct_response = IntVar() self.check_direct_response = Checkbutton(self.frame2, text="", variable=self.var_direct_response, onvalue=1, offvalue=0) self.check_direct_response.deselect() self.check_direct_response.grid(row=7, column=3, sticky=W) self.var_mandatory_questions = IntVar() self.check_mandatory_questions = Checkbutton(self.frame2, text="", variable=self.var_mandatory_questions, onvalue=1, offvalue=0) self.check_mandatory_questions.deselect() self.check_mandatory_questions.grid(row=12, column=3, sticky=W) self.var_use_previous_solution = IntVar() self.check_use_previous_solution = Checkbutton(self.frame2, text="", variable=self.var_use_previous_solution, onvalue=1, offvalue=0) self.check_use_previous_solution.deselect() self.check_use_previous_solution.grid(row=14, column=3, sticky=W) self.var_show_test_cancel = IntVar() self.check_show_test_cancel = Checkbutton(self.frame2, text="", variable=self.var_show_test_cancel, onvalue=1, offvalue=0) self.check_show_test_cancel.deselect() self.check_show_test_cancel.grid(row=15, column=3, sticky=W) self.var_show_question_list_process_status = IntVar() self.check_show_question_list_process_status = Checkbutton(self.frame2, text="", variable=self.var_show_question_list_process_status, onvalue=1, offvalue=0) self.check_show_question_list_process_status.deselect() self.check_show_question_list_process_status.grid(row=18, column=3, sticky=W) self.var_question_mark = IntVar() self.check_question_mark = Checkbutton(self.frame2, text="", variable=self.var_question_mark, onvalue=1, offvalue=0) self.check_question_mark.deselect() self.check_question_mark.grid(row=19, column=3, sticky=W) self.var_overview_answers = IntVar() self.check_overview_answers = Checkbutton(self.frame2, text="", variable=self.var_overview_answers, onvalue=1, offvalue=0) self.check_overview_answers.grid(row=21, column=3, sticky=W) self.var_show_end_comment = IntVar() self.check_show_end_comment = Checkbutton(self.frame2, text="", variable=self.var_show_end_comment, onvalue=1, offvalue=0, command=lambda v=self.var_show_end_comment: Test_Einstellungen_GUI.show_concluding_remarks( self, v)) self.check_show_end_comment.deselect() self.check_show_end_comment.grid(row=22, column=3, sticky=W) self.var_forwarding = IntVar() self.check_forwarding = Checkbutton(self.frame2, text="", variable=self.var_forwarding, onvalue=1, offvalue=0) self.check_forwarding.deselect() self.check_forwarding.grid(row=23, column=3, sticky=W) self.var_notification = IntVar() self.check_notification = Checkbutton(self.frame2, text="", variable=self.var_notification, onvalue=1, offvalue=0) self.check_notification.deselect() self.check_notification.grid(row=24, column=3, sticky=W) # --------------------------- RADIO BUTTONS --------------------------------------- self.select_question = IntVar() self.select_question.set(0) self.select_question_radiobtn1 = Radiobutton(self.frame1, text="Fest definierte Fragenauswahl", variable=self.select_question, value=0) self.select_question_radiobtn1.grid(row=4, column=1, pady=0, sticky=W) # FIXED_QUEST_SET self.select_question_radiobtn2 = Radiobutton(self.frame1, text="Zufällige Fragenauswahl", variable=self.select_question, value=1) self.select_question_radiobtn2.grid(row=5, column=1, pady=0, sticky=W) # RANDOM_QUEST_SET self.select_question_radiobtn3 = Radiobutton(self.frame1, text="Wiedervorlagemodus - alle Fragen eines Fragenpools", variable=self.select_question, value=2) self.select_question_radiobtn3.grid(row=6, column=1, pady=0, sticky=W) # DYNAMIC_QUEST_SET self.select_anonym = IntVar() self.select_anonym.set(0) self.select_anonym_radiobtn1 = Radiobutton(self.frame1, text="Testergebnisse ohne Namen", variable=self.select_anonym, value=0, borderwidth=0, command=self.select_anonym.get()) self.select_anonym_radiobtn1.grid(row=7, column=1, pady=0, sticky=W) self.select_anonym_radiobtn2 = Radiobutton(self.frame1, text="Testergebnisse mit Namen", variable=self.select_anonym, value=1, borderwidth=0, command=self.select_anonym.get()) self.select_anonym_radiobtn2.grid(row=8, column=1, pady=0, sticky=W) self.select_show_question_title = IntVar() self.select_show_question_title.set(0) self.select_show_question_title_radiobtn1 = Radiobutton(self.frame2, text="Fragentitel und erreichbare Punkte", variable=self.select_show_question_title, value=0, borderwidth=0, command=self.select_show_question_title.get()) self.select_show_question_title_radiobtn1.grid(row=1, column=3, pady=0, sticky=W) self.select_show_question_title_radiobtn2 = Radiobutton(self.frame2, text="Nur Fragentitel", variable=self.select_show_question_title, value=1, borderwidth=0, command=self.select_show_question_title.get()) self.select_show_question_title_radiobtn2.grid(row=2, column=3, pady=0, sticky=W) self.select_show_question_title_radiobtn3 = Radiobutton(self.frame2, text="Weder Fragentitel noch erreichbare Punkte", variable=self.select_show_question_title, value=2, borderwidth=0, command=self.select_show_question_title.get()) self.select_show_question_title_radiobtn3.grid(row=3, column=3, pady=0, sticky=W) self.select_user_response = IntVar() self.select_user_response.set(0) self.select_user_response_radiobtn1 = Radiobutton(self.frame2, text="Antworten während des Testdurchlaufs nicht festschreiben", variable=self.select_user_response, value=0, borderwidth=0, command=self.select_user_response.get()) self.select_user_response_radiobtn1.grid(row=8, column=3, pady=0, sticky=W) self.select_user_response_radiobtn2 = Radiobutton(self.frame2, text="Antworten bei Anzeige der Rückmeldung festschreiben", variable=self.select_user_response, value=1, borderwidth=0, command=self.select_user_response.get()) self.select_user_response_radiobtn2.grid(row=9, column=3, pady=0, sticky=W) self.select_user_response_radiobtn3 = Radiobutton(self.frame2, text="Antworten bei Anzeige der Folgefrage festschreiben", variable=self.select_user_response, value=2, borderwidth=0, command=self.select_user_response.get()) self.select_user_response_radiobtn3.grid(row=10, column=3, pady=0, sticky=W) self.select_user_response_radiobtn4 = Radiobutton(self.frame2, text="Antworten mit der Anzeige von Rückmeldungen oder der Folgefrage festschreiben", variable=self.select_user_response, value=3, borderwidth=0, command=self.select_user_response.get()) self.select_user_response_radiobtn4.grid(row=11, column=3, pady=0, sticky=W) self.select_not_answered_questions = IntVar() self.select_not_answered_questions.set(0) self.select_not_answered_questions_radiobtn1 = Radiobutton(self.frame2, text="Nicht beantwortete Fragen bleiben an ihrem Platz", variable=self.select_not_answered_questions, value=0, borderwidth=0, command=self.select_not_answered_questions.get()) self.select_not_answered_questions_radiobtn1.grid(row=16, column=3, pady=0, sticky=W) self.select_not_answered_questions_radiobtn2 = Radiobutton(self.frame2, text="Nicht beantwortete Fragen werden ans Testende gesschoben", variable=self.select_not_answered_questions, value=1, borderwidth=0, command=self.select_not_answered_questions.get()) self.select_not_answered_questions_radiobtn2.grid(row=17, column=3, pady=0, sticky=W) # --------------------------- ENTRY BOXES --------------------------------------- self.titel_entry = Entry(self.frame1, width=47) self.titel_entry.grid(row=1, column=1) self.introduction_bar = Scrollbar(self.frame1) self.introduction_infobox = Text(self.frame1, height=4, width=40, font=('Helvetica', 9)) self.test_start_year_entry = Entry(self.frame1, width=5) self.test_start_year_entry.grid(row=18, column=1, sticky=W) self.test_start_year_entry.insert(0, "YYYY") self.test_start_month_entry = Entry(self.frame1, width=5) self.test_start_month_entry.grid(row=18, column=1, sticky=W, padx=35) self.test_start_month_entry.insert(0, "MM") self.test_start_day_entry = Entry(self.frame1, width=5) self.test_start_day_entry.grid(row=18, column=1, sticky=W, padx=70) self.test_start_day_entry.insert(0, "DD") self.test_start_hour_entry = Entry(self.frame1, width=5) self.test_start_hour_entry.grid(row=18, column=1, sticky=W, padx=105) self.test_start_hour_entry.insert(0, "HH") self.test_start_minute_entry = Entry(self.frame1, width=5) self.test_start_minute_entry.grid(row=18, column=1, sticky=W, padx=140) self.test_start_minute_entry.insert(0, "mm") self.test_end_year_entry = Entry(self.frame1, width=5) self.test_end_year_entry.grid(row=19, column=1, sticky=W, pady=5) self.test_end_year_entry.insert(0, "YYYY") self.test_end_month_entry = Entry(self.frame1, width=5) self.test_end_month_entry.grid(row=19, column=1, sticky=W, padx=35) self.test_end_month_entry.insert(0, "MM") self.test_end_day_entry = Entry(self.frame1, width=5) self.test_end_day_entry.grid(row=19, column=1, sticky=W, padx=70) self.test_end_day_entry.insert(0, "DD") self.test_end_hour_entry = Entry(self.frame1, width=5) self.test_end_hour_entry.grid(row=19, column=1, sticky=W, padx=105) self.test_end_hour_entry.insert(0, "HH") self.test_end_minute_entry = Entry(self.frame1, width=5) self.test_end_minute_entry.grid(row=19, column=1, sticky=W, padx=140) self.test_end_minute_entry.insert(0, "mm") self.test_password_entry = Entry(self.frame1, width=20) self.test_password_entry.grid(row=20, column=1, sticky=W, pady=3) self.description_bar = Scrollbar(self.frame1) self.description_infobox = Text(self.frame1, height=4, width=40, font=('Helvetica', 9)) self.description_bar.grid(row=2, column=2) self.description_infobox.grid(row=2, column=1, pady=10) self.description_bar.config(command=self.description_infobox.yview) self.description_infobox.config(yscrollcommand=self.description_bar.set) self.limit_users_max_amount_entry = Entry(self.frame1, width=5) self.limit_users_max_amount_entry.grid(row=22, column=1, sticky=W) self.inactivity_time_for_users_entry = Entry(self.frame1, width=5) self.inactivity_time_for_users_entry.grid(row=23, column=1, sticky=W) self.inactivity_time_for_users_entry.insert(0, "300") self.limit_test_runs_entry = Entry(self.frame1, width=10) self.limit_test_runs_entry.grid(row=25, column=1, sticky=W) self.limit_test_runs_entry.insert(0, "3") self.limit_time_betw_test_runs_month_entry = Entry(self.frame1, width=5) self.limit_time_betw_test_runs_month_entry.grid(row=26, column=1, sticky=W, pady=5) self.limit_time_betw_test_runs_month_entry.insert(0, "MM") self.limit_time_betw_test_runs_day_entry = Entry(self.frame1, width=5) self.limit_time_betw_test_runs_day_entry.grid(row=26, column=1, sticky=W, padx=35) self.limit_time_betw_test_runs_day_entry.insert(0, "DD") self.limit_time_betw_test_runs_hour_entry = Entry(self.frame1, width=5) self.limit_time_betw_test_runs_hour_entry.grid(row=26, column=1, sticky=W, padx=70) self.limit_time_betw_test_runs_hour_entry.insert(0, "HH") self.limit_time_betw_test_runs_minute_entry = Entry(self.frame1, width=5) self.limit_time_betw_test_runs_minute_entry.grid(row=26, column=1, sticky=W, padx=105) self.limit_time_betw_test_runs_minute_entry.insert(0, "mm") self.limit_processing_time_minutes_entry = Entry(self.frame1, width=5) self.limit_processing_time_minutes_entry.grid(row=28, column=1, sticky=W) self.limit_processing_time_minutes_entry.insert(0, "90") self.concluding_remarks_bar = Scrollbar(self.frame2) self.concluding_remarks_infobox = Text(self.frame2, height=4, width=40, font=('Helvetica', 9)) self.profile_name_label = Label(self.frame3, text="Speichern unter...") self.profile_name_label.grid(row=0, column=0) self.profile_name_entry = Entry(self.frame3, width=15) self.profile_name_entry.grid(row=0, column=1) # self.profile_oid_label = Label(self.frame3, text="Choose oid to delete") # self.profile_oid_label.grid(row=4, column=0) self.profile_oid_entry = Entry(self.frame3, width=10) self.profile_oid_entry.grid(row=4, column=1) self.load_settings_entry = Entry(self.frame3, width=10) self.load_settings_entry.grid(row=3, column=1) # self.delete_settings_btn = Button(self.frame3, text="Delete Profile from ID", command=Test_Einstellungen_GUI.profile_save_settings(self)) # self.delete_settings_btn.grid(row=4, column=0) self.profile_oid_listbox_label = Label(self.frame3, text=" DB\nID") self.profile_oid_listbox_label.grid(row=1, column=4, sticky=W) self.profile_name_listbox_label = Label(self.frame3, text="Name") self.profile_name_listbox_label.grid(row=1, column=5, sticky=W) self.my_listbox_profile_oid = Listbox(self.frame3, width=5) self.my_listbox_profile_oid.grid(row=2, column=4, sticky=W) self.my_listbox_profile_name = Listbox(self.frame3, width=15) self.my_listbox_profile_name.grid(row=2, column=5, sticky=W) self.save_settings_btn = Button(self.frame3, text="Speichern", command=lambda: Test_Einstellungen_GUI.profile_save_settings(self)) self.save_settings_btn.grid(row=2, column=0) self.load_settings_btn = Button(self.frame3, text="Profil laden", command=lambda: Test_Einstellungen_GUI.profile_load_settings(self)) self.load_settings_btn.grid(row=3, column=0) self.delete_profile_btn = Button(self.frame3, text="Profil löschen", command=lambda: Test_Einstellungen_GUI.profile_delete(self)) self.delete_profile_btn.grid(row=4, column=0) self.show_profiles_btn = Button(self.frame3, text="Alle gespeicherten Profile anzeigen", command=lambda: Test_Einstellungen_GUI.profile_show_db(self)) self.show_profiles_btn.grid(row=5, column=0) #self.create_profile_btn = Button(self.frame3, text="Create Profile-Settings", command=lambda: Test_Einstellungen_GUI.create_settings(self)) #self.create_profile_btn.grid(row=6, column=0) #Test_Einstellungen_GUI.create_settings(self, self.settings_database_path, self.settings_database_table, self.settings_db_profile_name) def show_entry_time_limited_start(self, var): if var.get() == 0: self.time_limited_start_label.grid_forget() self.time_limited_start_year_label.grid_forget() self.time_limited_start_year_entry.grid_forget() self.time_limited_start_month_label.grid_forget() self.time_limited_start_month_entry.grid_forget() self.time_limited_start_day_label.grid_forget() self.time_limited_start_day_entry.grid_forget() self.time_limited_start_hour_label.grid_forget() self.time_limited_start_hour_entry.grid_forget() self.time_limited_start_minute_label.grid_forget() self.time_limited_start_minute_entry.grid_forget() self.time_limited_end_label.grid_forget() self.time_limited_end_year_label.grid_forget() self.time_limited_end_year_entry.grid_forget() self.time_limited_end_month_label.grid_forget() self.time_limited_end_month_entry.grid_forget() self.time_limited_end_day_label.grid_forget() self.time_limited_end_day_entry.grid_forget() self.time_limited_end_hour_label.grid_forget() self.time_limited_end_hour_entry.grid_forget() self.time_limited_end_minute_label.grid_forget() self.time_limited_end_minute_entry.grid_forget() else: self.time_limited_start_label.grid(row=10, column=1, sticky=W, padx=50) self.time_limited_start_day_label.grid(row=11, column=1, sticky=W, padx=30) self.time_limited_start_month_label.grid(row=11, column=1, sticky=W, padx=55) self.time_limited_start_year_label.grid(row=11, column=1, sticky=W, padx=80) self.time_limited_start_hour_label.grid(row=11, column=1, sticky=W, padx=110) self.time_limited_start_minute_label.grid(row=11, column=1, sticky=W, padx=135) self.time_limited_end_label.grid(row=10, column=1, sticky=E, padx=50) self.time_limited_end_day_label.grid(row=11, column=1, sticky=E, padx=110) self.time_limited_end_month_label.grid(row=11, column=1, sticky=E, padx=85) self.time_limited_end_year_label.grid(row=11, column=1, sticky=E, padx=55) self.time_limited_end_hour_label.grid(row=11, column=1, sticky=E, padx=30) self.time_limited_end_minute_label.grid(row=11, column=1, sticky=E, padx=5) self.time_limited_start_day_entry.grid(row=12, column=1, sticky=W, padx=30) self.time_limited_start_month_entry.grid(row=12, column=1, sticky=W, padx=55) self.time_limited_start_year_entry.grid(row=12, column=1, sticky=W, padx=80) self.time_limited_start_hour_entry.grid(row=12, column=1, sticky=W, padx=110) self.time_limited_start_minute_entry.grid(row=12, column=1, sticky=W, padx=135) self.time_limited_end_day_entry.grid(row=12, column=1, sticky=E, padx=110) self.time_limited_end_month_entry.grid(row=12, column=1, sticky=E, padx=85) self.time_limited_end_year_entry.grid(row=12, column=1, sticky=E, padx=55) self.time_limited_end_hour_entry.grid(row=12, column=1, sticky=E, padx=30) self.time_limited_end_minute_entry.grid(row=12, column=1, sticky=E, padx=5) def show_introduction_textfield(self, introduction_var): print(introduction_var.get()) if introduction_var.get() == 0: self.introduction_bar.grid_forget() self.introduction_infobox.grid_forget() else: self.introduction_bar.grid(row=15, column=1, sticky=E) self.introduction_infobox.grid(row=15, column=1, padx=30) self.introduction_bar.config(command=self.introduction_infobox.yview) self.introduction_infobox.config(yscrollcommand=self.introduction_bar.set) def enable_autosave(self, var): if var.get() == 0: self.check_autosave_interval_entry.grid_forget() self.check_autosave_interval_label.grid_forget() else: self.check_autosave_interval_entry.grid(row=4, column=3, padx=10) self.check_autosave_interval_label.grid(row=4, column=3, padx=50, sticky=W) def show_concluding_remarks(self, var): if var.get() == 0: self.concluding_remarks_bar.grid_forget() self.concluding_remarks_infobox.grid_forget() else: self.concluding_remarks_bar.grid(row=22, column=3, sticky=E) self.concluding_remarks_infobox.grid(row=22, column=3, padx=30) self.concluding_remarks_bar.config(command=self.concluding_remarks_infobox.yview) self.concluding_remarks_infobox.config(yscrollcommand=self.concluding_remarks_bar.set) def profile_show_db(self): conn = sqlite3.connect(self.settings_database_path) c = conn.cursor() c.execute("SELECT *, oid FROM " + self.settings_database_table) profile_records = c.fetchall() # Clear List Boxes self.my_listbox_profile_name.delete(0, END) self.my_listbox_profile_oid.delete(0, END) # Loop thru Results for profile_record in profile_records: self.my_listbox_profile_name.insert(END, profile_record[0]) self.my_listbox_profile_oid.insert(END, profile_record[len(profile_record) - 1]) self.profile_records_len = len(profile_records) # print(profile_records[len(profile_records)-1]) conn.commit() conn.close() print("LOOP THROUGH... SHOW PROFILES!") def profile_save_settings(self): conn = sqlite3.connect(self.settings_database_path) c = conn.cursor() # Insert into Table c.execute( "INSERT INTO " + self.settings_database_table + " VALUES (" ":profile_name, :entry_description, :radio_select_question, :radio_select_anonymous, :check_online, :check_time_limited, " ":check_introduction, :entry_introduction, :check_test_properties, " ":entry_test_start_year, :entry_test_start_month, :entry_test_start_day, :entry_test_start_hour, :entry_test_start_minute," ":entry_test_end_year, :entry_test_end_month, :entry_test_end_day, :entry_test_end_hour, :entry_test_end_minute," ":entry_test_password, :check_specific_users, :entry_limit_users, :entry_user_inactivity, :entry_limit_test_runs," ":entry_limit_time_betw_test_run_month, :entry_limit_time_betw_test_run_day, :entry_limit_time_betw_test_run_hour, :entry_limit_time_betw_test_run_minute," ":check_processing_time, :entry_processing_time_in_minutes, :check_processing_time_reset," ":check_examview, :check_examview_titel, :check_examview_username, :check_show_ilias_nr," ":radio_select_show_question_title, :check_autosave, :entry_autosave_interval, :check_mix_questions, :check_show_solution_notes, :check_direct_response," ":radio_select_user_response, :check_mandatory_questions, :check_use_previous_solution, :check_show_test_cancel, :radio_select_not_answered_questions," ":check_show_question_list_process_status, :check_question_mark, :check_overview_answers, :check_show_end_comment, :entry_end_comment, :check_forwarding, :check_notification)", { 'profile_name': self.profile_name_entry.get(), 'entry_description': self.description_infobox.get("1.0", 'end-1c'), 'radio_select_question': self.select_question.get(), 'radio_select_anonymous': self.select_anonym.get(), 'check_online': self.var_online.get(), 'check_time_limited': self.var_time_limited.get(), 'check_introduction': self.var_introduction.get(), 'entry_introduction': self.introduction_infobox.get("1.0", 'end-1c'), 'check_test_properties': self.var_test_prop.get(), 'entry_test_start_year': self.test_start_year_entry.get(), 'entry_test_start_month': self.test_start_month_entry.get(), 'entry_test_start_day': self.test_start_day_entry.get(), 'entry_test_start_hour': self.test_start_hour_entry.get(), 'entry_test_start_minute': self.test_start_minute_entry.get(), 'entry_test_end_year': self.test_end_year_entry.get(), 'entry_test_end_month': self.test_end_month_entry.get(), 'entry_test_end_day': self.test_end_day_entry.get(), 'entry_test_end_hour': self.test_end_hour_entry.get(), 'entry_test_end_minute': self.test_end_minute_entry.get(), 'entry_test_password': self.test_password_entry.get(), 'check_specific_users': self.var_specific_users.get(), 'entry_limit_users': self.limit_users_max_amount_entry.get(), 'entry_user_inactivity': self.inactivity_time_for_users_entry.get(), 'entry_limit_test_runs': self.limit_test_runs_entry.get(), 'entry_limit_time_betw_test_run_month': self.limit_time_betw_test_runs_month_entry.get(), 'entry_limit_time_betw_test_run_day': self.limit_time_betw_test_runs_day_entry.get(), 'entry_limit_time_betw_test_run_hour': self.limit_time_betw_test_runs_hour_entry.get(), 'entry_limit_time_betw_test_run_minute': self.limit_time_betw_test_runs_minute_entry.get(), 'check_processing_time': self.var_processing_time.get(), 'entry_processing_time_in_minutes': self.limit_processing_time_minutes_entry.get(), 'check_processing_time_reset': self.var_processing_time_reset.get(), 'check_examview': self.var_examview.get(), 'check_examview_titel': self.var_examview_test_title.get(), 'check_examview_username': self.var_examview_user_name.get(), 'check_show_ilias_nr': self.var_show_ilias_nr.get(), 'radio_select_show_question_title': self.select_show_question_title.get(), 'check_autosave': self.var_autosave.get(), 'entry_autosave_interval': self.check_autosave_interval_entry.get(), 'check_mix_questions': self.var_mix_questions.get(), 'check_show_solution_notes': self.var_show_solution_notes.get(), 'check_direct_response': self.var_direct_response.get(), 'radio_select_user_response': self.select_user_response.get(), 'check_mandatory_questions': self.var_mandatory_questions.get(), 'check_use_previous_solution': self.var_use_previous_solution.get(), 'check_show_test_cancel': self.var_show_test_cancel.get(), 'radio_select_not_answered_questions': self.select_not_answered_questions.get(), 'check_show_question_list_process_status': self.var_show_question_list_process_status.get(), 'check_question_mark': self.var_question_mark.get(), 'check_overview_answers': self.var_overview_answers.get(), 'check_show_end_comment': self.var_show_end_comment.get(), 'entry_end_comment': self.concluding_remarks_infobox.get("1.0", 'end-1c'), 'check_forwarding': self.var_forwarding.get(), 'check_notification': self.var_notification.get() } ) conn.commit() conn.close() print("GOT VALUES") def profile_load_settings(self): print("LOAD") conn = sqlite3.connect(self.settings_database_path) c = conn.cursor() c.execute("SELECT * FROM " + self.settings_database_table + " WHERE oid =" + self.load_settings_entry.get()) profile_records = c.fetchall() # Loop thru Results for profile_record in profile_records: self.profile_name_entry.get() # profil_name_entry -> profile_record[0] self.description_infobox.delete('1.0', END) self.description_infobox.insert('1.0', profile_record[1]) self.select_question.set(profile_record[2]) self.select_anonym.set(profile_record[3]) self.var_online.set(profile_record[4]) self.var_time_limited.set(profile_record[5]) self.var_introduction.set(profile_record[6]) self.introduction_infobox.delete('1.0', END) self.introduction_infobox.insert('1.0', profile_record[7]) self.var_test_prop.set(profile_record[8]) self.test_start_year_entry.delete(0, END) self.test_start_year_entry.insert(0, profile_record[9]) self.test_start_month_entry.delete(0, END) self.test_start_month_entry.insert(0, profile_record[10]) self.test_start_day_entry.delete(0, END) self.test_start_day_entry.insert(0, profile_record[11]) self.test_start_hour_entry.delete(0, END) self.test_start_hour_entry.insert(0, profile_record[12]) self.test_start_minute_entry.delete(0, END) self.test_start_minute_entry.insert(0, profile_record[13]) self.test_end_year_entry.delete(0, END) self.test_end_year_entry.insert(0, profile_record[14]) self.test_end_month_entry.delete(0, END) self.test_end_month_entry.insert(0, profile_record[15]) self.test_end_day_entry.delete(0, END) self.test_end_day_entry.insert(0, profile_record[16]) self.test_end_hour_entry.delete(0, END) self.test_end_hour_entry.insert(0, profile_record[17]) self.test_end_minute_entry.delete(0, END) self.test_end_minute_entry.insert(0, profile_record[18]) self.test_password_entry.delete(0, END) self.test_password_entry.insert(0, profile_record[19]) self.var_specific_users.set(profile_record[20]) self.limit_users_max_amount_entry.delete(0, END) self.limit_users_max_amount_entry.insert(0, profile_record[21]) self.inactivity_time_for_users_entry.delete(0, END) self.inactivity_time_for_users_entry.insert(0, profile_record[22]) self.limit_test_runs_entry.delete(0, END) self.limit_test_runs_entry.insert(0, profile_record[23]) self.limit_time_betw_test_runs_month_entry.delete(0, END) self.limit_time_betw_test_runs_month_entry.insert(0, profile_record[24]) self.limit_time_betw_test_runs_day_entry.delete(0, END) self.limit_time_betw_test_runs_day_entry.insert(0, profile_record[25]) self.limit_time_betw_test_runs_hour_entry.delete(0, END) self.limit_time_betw_test_runs_hour_entry.insert(0, profile_record[26]) self.limit_time_betw_test_runs_minute_entry.delete(0, END) self.limit_time_betw_test_runs_minute_entry.insert(0, profile_record[27]) self.var_processing_time.set(profile_record[28]) self.limit_processing_time_minutes_entry.delete(0, END) self.limit_processing_time_minutes_entry.insert(0, profile_record[29]) self.var_processing_time_reset.set(profile_record[30]) self.var_examview.set(profile_record[31]) self.var_examview_test_title.set(profile_record[32]) self.var_examview_user_name.set(profile_record[33]) self.var_show_ilias_nr.set(profile_record[34]) self.select_show_question_title.set(profile_record[35]) self.var_autosave.set(profile_record[36]) self.check_autosave_interval_entry.delete(0, END) self.check_autosave_interval_entry.insert(0, profile_record[37]) self.var_mix_questions.set(profile_record[38]) self.var_show_solution_notes.set(profile_record[39]) self.var_direct_response.set(profile_record[40]) self.select_user_response.set(profile_record[41]) self.var_mandatory_questions.set(profile_record[42]) self.var_use_previous_solution.set(profile_record[43]) self.var_show_test_cancel.set(profile_record[44]) self.select_not_answered_questions.set(profile_record[45]) self.var_show_question_list_process_status.set(profile_record[46]) self.var_question_mark.set(profile_record[47]) self.var_overview_answers.set(profile_record[48]) self.var_show_end_comment.set(profile_record[49]) self.concluding_remarks_infobox.delete('1.0', END) self.concluding_remarks_infobox.insert('1.0', profile_record[50]) self.var_forwarding.set(profile_record[51]) self.var_notification.set(profile_record[52]) conn.commit() conn.close() def profile_delete(self): conn = sqlite3.connect(self.settings_database_path) c = conn.cursor() c.execute("DELETE from " + self.settings_database_table + " WHERE oid= " + self.profile_oid_entry.get()) # self.profile_oid_entry(0, END) conn.commit() conn.close() def profile_delete_last(self): conn = sqlite3.connect(self.settings_database_path) c = conn.cursor() self.profile_oid_entry.insert(0, self.profile_records_len) c.execute("DELETE from " + self.settings_database_table + " WHERE oid= " + self.profile_oid_entry.get()) print("LAST DB ENTRY DELETED") # self.profile_oid_entry(0, END) conn.commit() conn.close() # For create test settings --> Toplevel must be opened (Test-Settings Window) def create_settings(self, settings_database_path, settings_database_table, selected_settings_db_profile_name): self.settings_database_path = settings_database_path self.settings_database_table = settings_database_table self.settings_db_profile_name = selected_settings_db_profile_name print("=======") print(self.settings_database_path) print(self.settings_database_table) print(self.settings_db_profile_name) print("=======") ###################### DATENBANK ENTRIES UND INDEX DICT ERSTELLEN ################### # Dictionary aus zwei Listen erstellen self.settings_db_find_entries = [] self.settings_db_find_indexes = [] self.settings_db_column_names_list = [] self.settings_collection_of_question_titles = [] connect = sqlite3.connect(self.settings_database_path) cursor = connect.execute('select * from ' + self.settings_database_table) self.settings_db_column_names_list = list(map(lambda x: x[0], cursor.description)) self.db_column_names_string = ', :'.join(self.settings_db_column_names_list) self.db_column_names_string = ":" + self.db_column_names_string for i in range(len(self.settings_db_column_names_list)): self.settings_db_find_indexes.append(i) """ # Durch list(map(lambdax: x[0])) werden die Spaltennamen aus der DB ausgelesen cursor = conn.execute('select * from ' + self.ff_database_table) db_column_names_list = list(map(lambda x: x[0], cursor.description)) db_column_names_string = ', :'.join(db_column_names_list) db_column_names_string = ":" + db_column_names_string """ self.settings_db_entry_to_index_dict = dict( zip((self.settings_db_column_names_list), (self.settings_db_find_indexes))) connect.commit() connect.close() ##### # mit Datenbank verbinden conn = sqlite3.connect(self.settings_database_path) c = conn.cursor() #c.execute("SELECT * FROM " + self.settings_database_table + " WHERE profile_name =" + self.settings_db_profile_name) c.execute("SELECT * FROM " + self.settings_database_table) profile_records = c.fetchall() # Loop through Results for profile_record in profile_records: if profile_record[self.settings_db_entry_to_index_dict["profile_name"]] == self.settings_db_profile_name: self.profile_name = profile_record[self.settings_db_entry_to_index_dict["profile_name"]] self.description = profile_record[self.settings_db_entry_to_index_dict["entry_description"]] self.question_type = profile_record[self.settings_db_entry_to_index_dict["radio_select_question"]] self.anonym = profile_record[self.settings_db_entry_to_index_dict["radio_select_anonymous"]] self.online = profile_record[self.settings_db_entry_to_index_dict["check_online"]] self.time_limited = profile_record[self.settings_db_entry_to_index_dict["check_time_limited"]] self.introduction = profile_record[self.settings_db_entry_to_index_dict["check_introduction"]] self.introduction_infobox = profile_record[self.settings_db_entry_to_index_dict["entry_introduction"]] self.test_prop = profile_record[self.settings_db_entry_to_index_dict["check_test_properties"]] self.test_start_year = profile_record[self.settings_db_entry_to_index_dict["entry_test_start_year"]] self.test_start_month = profile_record[self.settings_db_entry_to_index_dict["entry_test_start_month"]] self.test_start_day = profile_record[self.settings_db_entry_to_index_dict["entry_test_start_day"]] self.test_start_hour = profile_record[self.settings_db_entry_to_index_dict["entry_test_start_hour"]] self.test_start_minute = profile_record[self.settings_db_entry_to_index_dict["entry_test_start_minute"]] self.test_end_year = profile_record[self.settings_db_entry_to_index_dict["entry_test_end_year"]] self.test_end_month = profile_record[self.settings_db_entry_to_index_dict["entry_test_end_month"]] self.test_end_day = profile_record[self.settings_db_entry_to_index_dict["entry_test_end_day"]] self.test_end_hour = profile_record[self.settings_db_entry_to_index_dict["entry_test_end_hour"]] self.test_end_minute = profile_record[self.settings_db_entry_to_index_dict["entry_test_end_minute"]] self.test_password = profile_record[self.settings_db_entry_to_index_dict["entry_test_password"]] self.specific_users = profile_record[self.settings_db_entry_to_index_dict["check_specific_users"]] self.limit_users_max = profile_record[self.settings_db_entry_to_index_dict["entry_limit_users"]] self.inactivity_time_for_users = profile_record[self.settings_db_entry_to_index_dict["entry_user_inactivity"]] self.limit_test_runs = profile_record[self.settings_db_entry_to_index_dict["entry_limit_test_runs"]] self.limit_time_betw_test_runs_month = profile_record[self.settings_db_entry_to_index_dict["entry_limit_time_betw_test_run_month"]] self.limit_time_betw_test_runs_day = profile_record[self.settings_db_entry_to_index_dict["entry_limit_time_betw_test_run_day"]] self.limit_time_betw_test_runs_hour = profile_record[self.settings_db_entry_to_index_dict["entry_limit_time_betw_test_run_hour"]] self.limit_time_betw_test_runs_minute = profile_record[self.settings_db_entry_to_index_dict["entry_limit_time_betw_test_run_minute"]] self.processing_time = profile_record[self.settings_db_entry_to_index_dict["check_processing_time"]] self.limit_processing_time_minutes = profile_record[self.settings_db_entry_to_index_dict["entry_processing_time_in_minutes"]] self.processing_time_reset = profile_record[self.settings_db_entry_to_index_dict["check_processing_time_reset"]] self.examview = profile_record[self.settings_db_entry_to_index_dict["check_examview"]] self.examview_test_title = profile_record[self.settings_db_entry_to_index_dict["check_examview_titel"]] self.examview_user_name = profile_record[self.settings_db_entry_to_index_dict["check_examview_username"]] self.show_ilias_nr = profile_record[self.settings_db_entry_to_index_dict["check_show_ilias_nr"]] self.select_show_question_title = profile_record[self.settings_db_entry_to_index_dict["radio_select_show_question_title"]] self.autosave = profile_record[self.settings_db_entry_to_index_dict["check_autosave"]] self.autosave_interval = profile_record[self.settings_db_entry_to_index_dict["entry_autosave_interval"]] self.mix_questions = profile_record[self.settings_db_entry_to_index_dict["check_mix_questions"]] self.show_solution_notes = profile_record[self.settings_db_entry_to_index_dict["check_show_solution_notes"]] self.direct_response = profile_record[self.settings_db_entry_to_index_dict["check_direct_response"]] self.select_user_response = profile_record[self.settings_db_entry_to_index_dict["radio_select_user_response"]] self.mandatory_questions = profile_record[self.settings_db_entry_to_index_dict["check_mandatory_questions"]] self.use_previous_solution = profile_record[self.settings_db_entry_to_index_dict["check_use_previous_solution"]] self.show_test_cancel = profile_record[self.settings_db_entry_to_index_dict["check_show_test_cancel"]] self.select_not_answered_questions = profile_record[self.settings_db_entry_to_index_dict["radio_select_not_answered_questions"]] self.show_question_list_process_status = profile_record[self.settings_db_entry_to_index_dict["check_show_question_list_process_status"]] self.question_mark = profile_record[self.settings_db_entry_to_index_dict["check_question_mark"]] self.overview_answers = profile_record[self.settings_db_entry_to_index_dict["check_overview_answers"]] self.show_end_comment = profile_record[self.settings_db_entry_to_index_dict["check_show_end_comment"]] self.concluding_remarks_infobox = profile_record[self.settings_db_entry_to_index_dict["entry_end_comment"]] self.forwarding = profile_record[self.settings_db_entry_to_index_dict["check_forwarding"]] self.notification = profile_record[self.settings_db_entry_to_index_dict["check_notification"]] self.mytree = ET.parse(self.test_qti_file_path_output) self.myroot = self.mytree.getroot() # hours_from_minutes = str(datetime.timedelta(minutes=int(self.limit_processing_time_minutes))) self.duration_time = int(self.limit_processing_time_minutes) self.duration_time_hours = self.duration_time // 60 self.duration_time_minutes = self.duration_time % 60 # Format of duration: P0Y0M0DT1H30M0S self.duration = "P0Y0M0DT" + str(self.duration_time_hours) + "H" + str(self.duration_time_minutes) + "M0S" for qticomment in self.myroot.iter('qticomment'): qticomment.text = self.description break for duration in self.myroot.iter('duration'): duration.text = self.duration break questestinterop = ET.Element('questestinterop') assessment = ET.SubElement(questestinterop, 'assessment') qticomment = ET.SubElement(assessment, 'qticomment') qticomment.text = self.description for qtimetadatafield in self.myroot.iter('qtimetadatafield'): if qtimetadatafield.find('fieldlabel').text == "anonymity": qtimetadatafield.find('fieldentry').text = self.anonym if self.anonym == "": qtimetadatafield.find('fieldentry').text = "0" print("NO ENTRY IN <ANONYM>") if qtimetadatafield.find('fieldlabel').text == "question_set_type": if self.question_type == 0: qtimetadatafield.find('fieldentry').text = "FIXED_QUEST_SET" # print("WRITE FIXED-Question") elif self.question_type == 1: qtimetadatafield.find('fieldentry').text = "RANDOM_QUEST_SET" # print("WRITE RANDOM-Question") elif self.question_type == 2: qtimetadatafield.find('fieldentry').text = "DYNAMIC_QUEST_SET" # print("WRITE DYNAMIC-Question") else: qtimetadatafield.find('fieldentry').text = "FIXED_QUEST_SET" print("NO ENTRY IN <QUESTION_TYPE> ") # if qtimetadatafield.find('fieldlabel').text == "author": # qtimetadatafield.find('fieldentry').text = str(Formelfrage.autor_entry.get()) if qtimetadatafield.find('fieldlabel').text == "reset_processing_time": qtimetadatafield.find('fieldentry').text = str(self.processing_time_reset) if self.processing_time_reset == "": qtimetadatafield.find('fieldentry').text = "0" print("NO ENTRY IN <RESET PROCESSING TIME>") if qtimetadatafield.find('fieldlabel').text == "password": qtimetadatafield.find('fieldentry').text = str(self.test_password) if qtimetadatafield.find('fieldlabel').text == "allowedUsers": qtimetadatafield.find('fieldentry').text = str(self.limit_users_max) if qtimetadatafield.find('fieldlabel').text == "allowedUsersTimeGap": qtimetadatafield.find('fieldentry').text = str(self.inactivity_time_for_users) if qtimetadatafield.find('fieldlabel').text == "nr_of_tries": qtimetadatafield.find('fieldentry').text = str(self.limit_test_runs) if qtimetadatafield.find('fieldlabel').text == "pass_waiting": qtimetadatafield.find('fieldentry').text = str(self.limit_time_betw_test_runs_month) + ":0" + str( self.limit_time_betw_test_runs_day) + ":" + str( self.limit_time_betw_test_runs_hour) + ":" + str(self.limit_time_betw_test_runs_minute) + ":00" if self.limit_time_betw_test_runs_month == "MM": qtimetadatafield.find('fieldentry').text = "00:000:00:00:00" print( " >WARNING< NO limit_time_betw_test_runs SET.. --> set limit_time to \"00:000:00:00:00\" ") # Prüfungsansicht: Alle drei haken (Titel+Ansicht): "7" / Zwei Haken (Titel) = "3" / Zwei Haken (Name) = "5" / Ein Haken = "1" / "0" -> deaktiviert if qtimetadatafield.find('fieldlabel').text == "kiosk": if self.examview == 0: qtimetadatafield.find('fieldentry').text = "0" elif self.examview == 1: qtimetadatafield.find('fieldentry').text = "1" elif self.examview == 1 and self.examview_test_title == 1: qtimetadatafield.find('fieldentry').text = "3" elif self.examview == 1 and self.examview_user_name == 1: qtimetadatafield.find('fieldentry').text = "5" elif self.examview == 1 and self.examview_user_name == 1 and self.examview_test_title == 1: qtimetadatafield.find('fieldentry').text = "7" # if qtimetadatafield.find('fieldlabel').text == "use_previous_answers": # qtimetadatafield.find('fieldentry').text = "0" # if qtimetadatafield.find('fieldlabel').text == "title_output": # qtimetadatafield.find('fieldentry').text = "0" # if qtimetadatafield.find('fieldlabel').text == "examid_in_test_pass": # qtimetadatafield.find('fieldentry').text = "0" # if qtimetadatafield.find('fieldlabel').text == "show_summary": # qtimetadatafield.find('fieldentry').text = "0" if qtimetadatafield.find('fieldlabel').text == "show_cancel": qtimetadatafield.find('fieldentry').text = str(self.show_test_cancel) # if qtimetadatafield.find('fieldlabel').text == "show_marker": # qtimetadatafield.find('fieldentry').text = "99" # if qtimetadatafield.find('fieldlabel').text == "fixed_participants": # qtimetadatafield.find('fieldentry').text = "99" # if qtimetadatafield.find('fieldlabel').text == "showinfo": # qtimetadatafield.find('fieldentry').text = "99" if qtimetadatafield.find('fieldlabel').text == "shuffle_questions": qtimetadatafield.find('fieldentry').text = str(self.mix_questions) if qtimetadatafield.find('fieldlabel').text == "processing_time": # self.minutes = self.limit_processing_time_minutes hours_from_minutes = str(datetime.timedelta(minutes=int(self.limit_processing_time_minutes))) print("len_min_to_hours: " + str(hours_from_minutes)) qtimetadatafield.find('fieldentry').text = "0" + hours_from_minutes if qtimetadatafield.find('fieldlabel').text == "enable_examview": qtimetadatafield.find('fieldentry').text = str(self.examview) # if qtimetadatafield.find('fieldlabel').text == "show_examview_pdf": # qtimetadatafield.find('fieldentry').text = "99" if qtimetadatafield.find('fieldlabel').text == "starting_time": qtimetadatafield.find('fieldentry').text = "P" + str(self.test_start_year) + "Y" + str( self.test_start_month) + "M" + str(self.test_start_day) + "DT" + str( self.test_start_hour) + "H" + str(self.test_start_minute) + "M" + "0S" if self.test_start_year == "YYYY": qtimetadatafield.find('fieldentry').text = "P2020Y1M1DT00H0M0S" print(" >WARNING< NO STARTING TIME SET.. --> set START to \"P2020Y1M1DT00H0M0S\"") if qtimetadatafield.find('fieldlabel').text == "ending_time": qtimetadatafield.find('fieldentry').text = "P" + str(self.test_end_year) + "Y" + str(self.test_end_month) + "M" + str(self.test_end_day) + "DT" + str(self.test_end_hour) + "H" + str(self.test_end_minute) + "M" + "0S" if self.test_end_year == "YYYY": qtimetadatafield.find('fieldentry').text = "P2020Y12M30DT00H0M0S" print(" >WARNING< NO ENDING TIME SET.. --> set END to \"P2020Y12M30DT00H0M0S\"") if qtimetadatafield.find('fieldlabel').text == "autosave": qtimetadatafield.find('fieldentry').text = str(self.autosave) if qtimetadatafield.find('fieldlabel').text == "autosave_ival": qtimetadatafield.find('fieldentry').text = str(self.autosave_interval) # if qtimetadatafield.find('fieldlabel').text == "offer_question_hints": # qtimetadatafield.find('fieldentry').text = "99" # if qtimetadatafield.find('fieldlabel').text == "obligations_enabled": # qtimetadatafield.find('fieldentry').text = "99" if qtimetadatafield.find('fieldlabel').text == "enable_processing_time": qtimetadatafield.find('fieldentry').text = str(self.processing_time) # if qtimetadatafield.find('fieldlabel').text == "mark_step_0": # qtimetadatafield.find('fieldentry').text = "99" # if qtimetadatafield.find('fieldlabel').text == "mark_step_1": # qtimetadatafield.find('fieldentry').text = "99" # tree = ET.ElementTree(questestinterop) # tree.write("WORKED_neuerAnfang.xml") print("Write Test_Settings to File --- ",self.profile_name) self.mytree.write(self.test_qti_file_path_output) print("Create Test WITH Test_settings")
StarcoderdataPython
3293930
import pytest import time import stl_path from trex_stl_lib.api import * """ An example on how to use TRex for functional tests using the stateless API with service mode """ @pytest.mark.parametrize("protocol", ["TCP", "UDP", "ICMP"]) def test_one_packet(trex, protocol): tx_port, rx_port = trex.get_all_ports() trex.reset(ports=[tx_port, rx_port]) # activate service mode on RX code trex.set_service_mode(ports=rx_port) # generate a simple UDP packet pkt = Ether() / IP() pkt[IP].src = "172.16.58.3" pkt[IP].dst = "172.16.17.32" if protocol == "TCP": pkt = pkt / TCP() elif protocol == "UDP": pkt = pkt / UDP() elif protocol == "ICMP": pkt = pkt / ICMP() # start a capture capture = trex.start_capture(rx_ports=rx_port) # push the UDP packet to TX port... we need 'force' because this is under service mode print('\nSending 1 UDP packet(s) on port {}'.format(tx_port)) trex.push_packets(ports=tx_port, pkts=pkt, force=True) trex.wait_on_traffic(ports=tx_port, rx_delay_ms=1000) # we need to block with Virtualbox because the delay is huge time.sleep(0.5) rx_pkts = [] trex.stop_capture(capture_id=capture['id'], output=rx_pkts) print('\nRecived {} packets on port {}:\n'.format(len(rx_pkts), rx_port)) trex.set_service_mode(ports=rx_port, enabled=False) # got back one packet assert(len(rx_pkts) == 1) rx_scapy_pkt = Ether(rx_pkts[0]['binary']) # Check if it's the same packet assert(protocol in rx_scapy_pkt)
StarcoderdataPython
3353155
""" # LARGEST DIVISIBLE SUBSET Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0. If there are multiple solutions, return any subset is fine. Example 1: Input: [1,2,3] Output: [1,2] (of course, [1,3] will also be ok) Example 2: Input: [1,2,4,8] Output: [1,2,4,8] """ class Solution: def largestDivisibleSubset(self, nums): nums.sort() n=len(nums) if n==0: return [] dp=[[i,1] for i in range(n)] last=0 maxm=0 for i in range(1,n): for j in range(i-1,-1,-1): if nums[i]%nums[j]==0 and dp[j][1]>=dp[i][1]: dp[i][1]=dp[j][1]+1 dp[i][0]=j if maxm<dp[i][1]: maxm=dp[i][1] last=i res=[] while dp[last][0]!=last: res.append(nums[last]) last=dp[last][0] res.append(nums[last]) res.reverse() return res
StarcoderdataPython
1766840
<gh_stars>0 import numpy as np from dezero import Variable from dezero.utils import plot_dot_graph import dezero.functions as F x = Variable(np.array(1.0)) y = F.tanh(x) x.name = 'x' y.name = 'y' y.backward(create_graph=True) iters = 1 for i in range(iters): gx = x.grad x.clear_grad() gx.backward(create_graph=True) gx = x.grad gx.name = 'gx' + str(iters+1) plot_dot_graph(gx, verbose=False, to_file='tanh-2.png')
StarcoderdataPython
3209121
<gh_stars>0 # -*- coding: utf-8 -*- """.. moduleauthor:: <NAME>""" from dataclasses import dataclass from typing import final, Optional, Dict, List @final @dataclass class RtTfF: r_tp: int = 0 r_tn: int = 0 r_fp: int = 0 r_fn: int = 0 def merge_ttff_fun(container: RtTfF, target: RtTfF, /) -> int: sum_added: int = 0 container.r_fn += target.r_fn sum_added += target.r_fn container.r_fp += target.r_fp sum_added += target.r_fp container.r_tn += target.r_tn sum_added += target.r_tn container.r_tp += target.r_tp sum_added += target.r_tp return sum_added def check_ttff_merged(merged_sum: List[Dict[int, int]], /) -> None: check_sum: Optional[int] = None for end_cl in merged_sum: for end_sum in end_cl.values(): if check_sum is None: check_sum = end_sum if check_sum != end_sum: print(f"\nWARNING!! Inconsistent TTFF-data {check_sum} != {end_sum}\n\n")
StarcoderdataPython
1717089
<filename>NoSQLAttack/scanIP.py<gh_stars>1-10 import socket; import globalVar as GlobalVar from mongo import netAttacks def scanMongoDBIP(): SHODAN_API_KEY = "<KEY>"; api = shodan.Shodan(SHODAN_API_KEY); print 'Start Scanning.....' try: results = api.search('mongoDB') # print 'Results found:%s' % results['total'] for index in range(1,10): print str(index)+'_Attacked IP : %s' % results['matches'][index]['ip_str'] # select = raw_input("Get more IP (y/n)?") select = raw_input("Select IP to attack:") GlobalVar.set_victim(results['matches'][int(select)]['ip_str']) GlobalVar.set_optionSet(0, True) GlobalVar.set_myIP('127.0.0.1') GlobalVar.set_optionSet(4, True) start = raw_input("Start Default Configuration Attack(y/n)?") if start == 'y': netAttacks(GlobalVar.get_victim(), GlobalVar.get_dbPort(), GlobalVar.get_myIP(), GlobalVar.get_myPort()) # for result in results['matches']: # print 'Attacked IP: %s' % result['ip_str'] #print result['data'] #print 'hostnames:' % result['hostnames']; #print ' ' except shodan.APIError, e: print 'Error:%s' % e #if __name__ == "__main__": # scanMongoDBIP() # (1)255.255.255.255 is a broadcast address , beginning with 255 can not be used # (2)The last ip in each segment is a broadcast address and can not be used by a particular computer . For example, 192.168.1.255 (255 can not be used ) # (3)127.0.0.1 can not be used for communication between computers , 127 beginning unavailable # (4)0.0.0.0 indicates an invalid address , it can not be used # (5)10.0.0.0~10.255.255.255 192.168.0.0~192.168.255.255 172.16.0.0~172.31.255.255 are all private address # (6)169.254.0.0 ~ 169.254.255.255 is assigned by WINDOWS operating system , the emergence of this IP on behalf of your current network can not access the def scanMongoDBIP_1(): print "1_A class IP" print "2_B class IP" print "3_C class IP" select = raw_input("Select IP class:") print 'Start Scanning.....' if select == "1": scan_A_class() def scan_A_class(): for part1 in range(1, 126): for part2 in range(0, 255): for part3 in range(0, 255): for part4 in range(0, 254): print "test" IP = str(part1) + "." + str(part2) + "." + str(part3) + "." + str(part4); # check = mongoScan(IP, 27017); sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result = sock.connect_ex((IP, 27017)) if result == 0: print IP+"Port is open" else: print IP+"Port is not open" # if (check[0] == 0): # print IP; def mongoScan(ip,port): try: conn = pymongo.MongoClient(ip,port) try: dbVer= conn.server_info()['version'] conn.close(); return [0,dbVer] except Exception, e: if str(e).find('need to login')!=-1:#If find the 'need to login' in error message, we can consider target need credentials conn.close(); return[1,None] else: conn.close(); return[2,None] except: return [3,None]
StarcoderdataPython
117396
"""Queries This module contains MongoDB queries for the Squirrel program. Examples python -m unittest tests.test_queries """ import sys from pprint import pprint from typing import List from bson import ObjectId from pymongo import MongoClient from pymongo.database import Database from pymongo.errors import ServerSelectionTimeoutError from pymongo import ReturnDocument from squirrel.helpers import * def has_database(db_name: str) -> bool: if has_client(): return db_name in MongoClient().list_database_names() return False def has_client(client_uri: str = None) -> bool: timeout = 500 try: running_client = MongoClient( client_uri, serverSelectionTimeoutMS=timeout) except ServerSelectionTimeoutError as e: print("no running mongo instance detected!") print("run 'service mongod status'") return False else: ver = running_client.server_info().get('version') #print(f"MongoDB version {ver} available!") return True def create_database(db_name: str, collection: str, *initial: dict) -> Database: try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) else: try: col.insert_many(initial) except Exception as e: print(e) return None else: return db def insert_item(db_name: str, collection: str, item: dict, **kwargs) -> ObjectId: try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: try: x = col.insert_one(item, kwargs) except Exception as e: print(e) return None else: return x.inserted_id def insert_many_items(db_name: str, collection: str, *items): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: try: ins = col.insert_many(items) except Exception as e: print(e) return None else: return ins.inserted_ids def insert_unique_item(db_name: str, collection: str, query: dict): if item_exists(db_name, collection, query): return None return insert_item(db_name, collection, query) def item_exists(db_name: str, collection: str, query: dict) -> bool: try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return False else: return col.find_one(query) != None def get_item(db_name: str, collection: str, it: dict, **kwargs): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: return col.find_one(it, kwargs) def get_many_items(db_name: str, collection: str, **kwargs): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: return col.find({}, kwargs) def get_all_items_in_collection(db_name: str, collection: str) -> List: try: client = MongoClient() db = client[db_name] col = db[collection] cursor = col.find({}) except Exception as e: print(e) return None else: result = [] for docu in cursor: #pprint(docu) result += [docu] return result def update_item(db_name: str, collection: str, to_update: dict, changes: dict): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: new_values = {"$set": changes} return col.update_one(to_update, new_values) def update_many(db_name: str, collection: str, query: dict, changes: dict): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: new_values = {"$set": changes} return col.update_many(query, new_values) def insert_embedded_document(db_name: str, collection: str, query: dict, new_item: dict): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: new_values = {"$push": new_item} return col.update_one(query, new_values) def find_one_and_update(db_name: str, collection: str, fil: dict, update: dict): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: try: new_values = {"$set": update} it = col.update( fil, new_values ) except Exception as e: print(e) return None else: return it def add_field(db_name: str, collection: str, it: dict, new_value: dict): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: new_values = {"$inc": new_value} return col.update_one(it, new_values) def remove_one(db_name: str, collection: str, item: dict, **kwargs): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: try: x = col.delete_one(item, kwargs) except Exception as e: print(e) return None else: return x def remove_many(db_name: str, collection: str, fil: dict, **kwargs): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: try: x = col.delete_many(fil, kwargs) except Exception as e: print(e) return None else: return x def query(db_name: str, collection: str, query: dict): try: client = MongoClient() db = client[db_name] col = db[collection] except Exception as e: print(e) return None else: return col.find(query) def handle_code_change(db_name, col: str, incoming: dict, existing: dict, named: str) -> dict: """ Updates the document for a specified code object. A named update results in a new version. An unnamed update results in an update to the selected version or the latest version by default. Parameters ---------- col : str [description] incoming : dict [description] latest : dict [description] Returns ------- dict [description] """ name = existing['name'] incoming_version = incoming['versions'][-1] incoming_docstring = incoming_version['docstring'] incoming_source = incoming_version['source'] ver_names = [ver['version_name'] for ver in existing['versions']] if named not in ver_names: insert_embedded_document( db_name=db_name, collection=col, query={"name": name}, new_item={"versions": incoming_version} ) return for version in existing['versions']: version_name = version['version_name'] existing_docstring = version['docstring'] existing_source = version['source'] if incoming_docstring != existing_docstring: update_item( db_name, col, { "name": name, "versions.version_name": named }, {"versions.$.docstring": incoming_docstring} ) if incoming_source != existing_source: update_item( db_name, col, { "name": name, "versions.version_name": named }, {"versions.$.source": incoming_source} ) def get_version_field(db: str, field: str, citizen: str, name: str, version: str): document = get_item( db, COLLECTIONS[citizen], {"name": name}, **{'name': 1, 'type': 1, 'versions': 1} ) for ver in document['versions']: if ver['version_name'] == version: result = ver[field] return result
StarcoderdataPython
3396510
<reponame>josevictorp81/Uri-questions-solutions import math x = input().split() x1 = float(x[0]) y1 = float(x[1]) y = input().split() x2 = float(y[0]) y2 = float(y[1]) print('{:.4f}'.format(math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)))
StarcoderdataPython
3234742
import scrapy from scrapy_splash import SplashRequest from ..items import CareerspiderItem class CareerFairSpider(scrapy.Spider): name = "careerfair_spider" start_urls = ['https://app.thefairsapp.com/#/fair/648/employers'] custom_settings = { 'FEED_EXPORT_FIELDS' : ["name", "industry", "job", "opt_cpt","sponsorship"] } def start_requests(self): for url in self.start_urls: yield SplashRequest(url=url, callback=self.parse, endpoint='render.html', args={'wait': 3, 'http_method': 'GET'}) def parse(self, response): EMPLOYER_SELECTOR = '.employer-collection-item' for employer in response.css(EMPLOYER_SELECTOR): NAME_SELECTOR = 'span ::text' URL_SELECTOR = 'a ::attr(href)' detail_page = employer.css(URL_SELECTOR).get() if detail_page: yield SplashRequest(url='https://app.thefairsapp.com/'+detail_page, callback=self.parse2, endpoint='render.html', args={'wait': 3, 'http_method': 'GET'}) def parse2(self, response): items = CareerspiderItem() CONTAINER_SELECTOR = '.employer-container' container = response.css(CONTAINER_SELECTOR) if container: NAME_SELECTOR = '.solo-employer-header h5 ::text' IND_SELECTOR = ".whitelabel-text-primary:contains('Industry') + ul li ::text" JOB_SELECTOR = ".whitelabel-text-primary:contains('Job') + ul li ::text" OPTCPT_SELECTOR = ".whitelabel-text-primary:contains('OPT/CPT') + ul li ::text" VISA_SELECTOR = ".whitelabel-text-primary:contains('Sponsorship') + ul li ::text" items['name'] = container.css(NAME_SELECTOR).get() items['industry'] = container.css(IND_SELECTOR).extract() #extract multiple li element items['job'] = container.css(JOB_SELECTOR).extract() #extract multiple li element items['opt_cpt'] = container.css(OPTCPT_SELECTOR).get() items['sponsorship'] = container.css(VISA_SELECTOR).get() return items
StarcoderdataPython
1691853
import os import numpy as np import seaborn as sns import matplotlib.pyplot as plt from matplotlib import rcParams import pandas as pd from scipy.spatial import distance from scipy.cluster import hierarchy from sklearn.cluster import AgglomerativeClustering os.chdir('Chapter_5') # %% # import all sites conditions = ["G", "_MF", "pMF"] # ,"SRR"] total_file = "allm5C_libraries_filteredDepthAnno.csv" total_df = pd.read_csv(total_file, low_memory=False) # file total_df = total_df.sort_values(by=['position']) # sort # %% names = ['G1', 'G2', 'G3', 'G4', 'MF_rep1', 'MF_rep2', 'pMF_rep1', 'pMF_rep2', 'rep1', 'rep2', 'rep3', 'rep4'] # Aggregate methylation level for each condition total_df.index = total_df['group'] cov_df = total_df.filter(regex='cov') count_df = total_df.filter(regex='count') cov_dict = {} count_dict = {} for name in conditions: cov_dict[name] = cov_df.filter(regex=name).sum(axis=1) count_dict[name] = count_df.filter(regex=name).sum(axis=1) ML_dict = {} for i, j in cov_dict.items(): ML_dict[i] = count_dict[i].divide(j, fill_value=0) result_df = pd.DataFrame(ML_dict) # result_df.dropna(axis=0, inplace=True, subset=['SRR','_MF','pMF']) # result_df.replace(np.nan, 0, inplace=True) # result_df.replace(0, np.nan, inplace=True) result_df = result_df[(result_df['G'] > 0.1) | (result_df['_MF'] > 0.1) | (result_df['pMF'] > 0.1)] # | (result_df['SRR'] > 0.1)] result_df.dropna(axis=0, inplace=True) test = total_df[total_df['group'].isin(result_df.index)] # test.to_csv("AllConditionOverlap_methylationLevel.csv") # %% result_df_ML = total_df.filter(regex="methRate") result_df_ML.replace(np.nan, 0, inplace=True) cov_df.columns = names count_df.columns = names # %% from matplotlib.colors import LinearSegmentedColormap boundaries = [0.0, 0.05, 0.1, 0.2, 0.4, 0.6, 1.0] hex_colors = sns.color_palette("RdYlBu_r", n_colors=len(boundaries) * 2).as_hex() hex_colors = [hex_colors[i] for i in range(0, len(hex_colors), 2)] colors = list(zip(boundaries, hex_colors)) custom_color_map = LinearSegmentedColormap.from_list( name="cus", colors=colors, ) # %% # Define clusters correlations_array = np.asarray(result_df) row_linkage = hierarchy.linkage( distance.pdist(correlations_array), method='ward') col_linkage = hierarchy.linkage( distance.pdist(correlations_array.T), method='ward') model = AgglomerativeClustering(n_clusters=8, affinity='euclidean', linkage='ward') model = model.fit_predict(correlations_array) # %% lut = dict(zip(set(model), ['red', 'blue', 'green', 'orange', 'purple', 'pink', 'black', 'grey'])) row_colors = pd.DataFrame(model)[0].map(lut) cg = sns.clustermap(result_df.reset_index(drop=True), row_linkage=row_linkage, col_linkage=col_linkage, cmap=custom_color_map, row_colors=row_colors, figsize=(5, 5), yticklabels=False, col_cluster=False, robust=True, method='ward') # , row_cluster=False) # z_score=0, cg.ax_row_dendrogram.set_visible(False) # plt.savefig("ML_conditions_clusteringHeatmapDepth.png", bbox_inches='tight', dpi=400, transparent=True) plt.show() plt.close() # %% merge_df = result_df merge_df['cluster'] = model merge_df['group'] = result_df.index merge_df.reset_index(drop=True) cluster_df = pd.merge(merge_df.rename_axis(None), total_df.rename_axis(None), on='group') cluster_gene_list = (cluster_df['gene_name'][cluster_df['cluster'] == 5]).unique() cluster_file = open("Total_cluster_genes.txt", "w") for i in cluster_gene_list: cluster_file.write(i + '\n') cluster_file.close() # %% from scipy.stats import zscore # write correlation matrix (z-score) zscore_vals = result_df.apply(zscore, axis=1) # %% from scipy import stats # BH t-test def BH_test(set1, set2): # subset tests by relevant sites identified by 04a_OverlapDotplot.R master_set = pd.read_csv('Dotplot_' + set1 + set2 + '_table.csv') master_set = master_set.dropna(subset=['ML_1', 'ML_2']).reset_index() count_set = {set1: master_set['C_count_' + set1], set2: master_set['C_count_' + set2]} cov_set = {set1: master_set['cov_' + set1], set2: master_set['cov_' + set2]} pvals = [] p_adj = [] try: len(count_set[set1]) == len(cov_set[set1]) except: print('data is not same size') for i in range(len(count_set[set1])): cont_table = pd.DataFrame({set1: [count_set[set1][i], cov_set[set1][i]], set2: [count_set[set2][i], cov_set[set2][i]]}) odds, pvalue = stats.fisher_exact(cont_table) pvals.append(pvalue) pvals_sorted = sorted(pvals, key=float) # sorted pvalues master_set['pval'] = pvals master_set = master_set.sort_values('pval', ascending=True) rank = 1 for p in pvals_sorted: fdr_pval = p * len(pvals_sorted) / rank rank += 1 p_adj.append(fdr_pval) master_set['BH'] = p_adj master_set['shape'] = np.where(master_set['BH'] <= 0.01, 'sig', 'non-sig') return master_set test_BH = pd.DataFrame(BH_test('G3', 'G4')) # %% rcParams['figure.figsize'] = 3, 3 markers = {"sig": "X", "non-sig": "o"} palette = ['blue'] # ax = sns.scatterplot(data=test_BH[test_BH['BH'] > 0.01], x='ML_1', y='ML_2', style = 'shape', # markers=markers, s=25) sns.scatterplot(data=test_BH, x='ML_1', y='ML_2', style='shape', hue='shape', palette = palette, markers=markers, s=25) plt.xlim(0, 1) plt.ylim(0, 1) plt.legend([], frameon=False) plt.savefig("G3G4_DMS.png",bbox_inches='tight', dpi=400, transparent=True) plt.show() # %% # Correlation matix of samples from scipy.spatial import distance from scipy.cluster import hierarchy correlations = result_df.corr() correlations_array = np.asarray(result_df.corr()) row_linkage = hierarchy.linkage( distance.pdist(correlations_array), method='average') col_linkage = hierarchy.linkage( distance.pdist(correlations_array.T), method='average') sns.clustermap(correlations, row_linkage=col_linkage, col_linkage=row_linkage, method="average", figsize=(5, 10)) plt.show() # %% from matplotlib.colors import LinearSegmentedColormap boundaries = [0.0, 0.05, 0.1, 0.2, 0.4, 0.6, 1.0] hex_colors = sns.color_palette("RdBu_r", n_colors=len(boundaries) * 2 + 2).as_hex() hex_colors = [hex_colors[i] for i in range(0, len(hex_colors), 2)] colors = list(zip(boundaries, hex_colors)) custom_color_map = LinearSegmentedColormap.from_list( name="cus", colors=colors, ) cg = sns.clustermap(result_df, annot=False, cmap=custom_color_map, dendrogram_ratio=(.1, .2), figsize=(5, 5), yticklabels=False) # z_score=0, cg.ax_row_dendrogram.set_visible(False) plt.savefig("ML_conditions_clusteringHeatmapCcutoffDepth_noSRR.png", bbox_inches='tight', dpi=400, transparent=True) plt.show() plt.close()
StarcoderdataPython
1781973
import unittest from fun import greeter class GreetingTests(unittest.TestCase): def test_it_should_properly_greet_a_user(self): cases = [ ('<NAME>', 'Hello, <NAME>'), ('Class', 'Hello, Class') ] for c in cases: name = c[0] expected = c[1] actual = greeter.speak(name) self.assertEqual(expected, actual) if __name__ == '__main__': unittest.main()
StarcoderdataPython
38655
<reponame>sebanie15/simple_clinic """Console script for simple_clinic.""" import sys import click class ActiveDoctor(object): def __init__(self): self.id = 0 active = click.make_pass_decorator(ActiveDoctor, ensure=True) @click.group() @click.option('--id', type=int, help='') @active def cli(active, id): """Console script for simple_clinic.""" active.id = id return 0 @cli.command() @active def show_activated(active): click.echo(f'Activated = {active.id}') # click.echo(f'activated : {activated}') @cli.command() @click.option('--set_id', type=int) @active def set_activated(active, set_id): active.id = set_id @cli.command() @active def print_test(active): print(active.id) if __name__ == "__main__": sys.exit(cli()) # pragma: no cover
StarcoderdataPython
1735796
<reponame>iyanmv/galois<gh_stars>0 def add(x, y): """ Adds two Galois field arrays element-wise. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.add.html Examples -------- .. ipython:: python GF = galois.GF(31) x = GF.Random(10); x y = GF.Random(10); y np.add(x, y) x + y """ return def subtract(x, y): """ Subtracts two Galois field arrays element-wise. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.subtract.html Examples -------- .. ipython:: python GF = galois.GF(31) x = GF.Random(10); x y = GF.Random(10); y np.subtract(x, y) x - y """ return def multiply(x, y): """ Multiplies two Galois field arrays element-wise. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.multiply.html Examples -------- Multiplying two Galois field arrays results in field multiplication. .. ipython:: python GF = galois.GF(31) x = GF.Random(10); x y = GF.Random(10); y np.multiply(x, y) x * y Multiplying a Galois field array with an integer results in scalar multiplication. .. ipython:: python GF = galois.GF(31) x = GF.Random(10); x np.multiply(x, 3) x * 3 .. ipython:: python print(GF.properties) # Adding `characteristic` copies of any element always results in zero x * GF.characteristic """ return def divide(x, y): """ Divides two Galois field arrays element-wise. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.divide.html Examples -------- .. ipython:: python GF = galois.GF(31) x = GF.Random(10); x y = GF.Random(10, low=1); y z = np.divide(x, y); z y * z .. ipython:: python np.true_divide(x, y) x / y np.floor_divide(x, y) x // y """ return def negative(x): """ Returns the element-wise additive inverse of a Galois field array. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.negative.html Examples -------- .. ipython:: python GF = galois.GF(31) x = GF.Random(10); x y = np.negative(x); y x + y .. ipython:: python -x -1*x """ return def reciprocal(x): """ Returns the element-wise multiplicative inverse of a Galois field array. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.reciprocal.html Examples -------- .. ipython:: python GF = galois.GF(31) x = GF.Random(5, low=1); x y = np.reciprocal(x); y x * y .. ipython:: python x ** -1 GF(1) / x GF(1) // x """ return def power(x, y): """ Exponentiates a Galois field array element-wise. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.power.html Examples -------- .. ipython:: python GF = galois.GF(31) x = GF.Random(10); x np.power(x, 3) x ** 3 x * x * x .. ipython:: python x = GF.Random(10, low=1); x y = np.random.randint(-10, 10, 10); y np.power(x, y) x ** y """ return def square(x): """ Squares a Galois field array element-wise. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.square.html Examples -------- .. ipython:: python GF = galois.GF(31) x = GF.Random(10); x np.square(x) x ** 2 x * x """ return def log(x): """ Computes the logarithm (base `GF.primitive_element`) of a Galois field array element-wise. Calling :func:`np.log` implicitly uses base :obj:`galois.FieldClass.primitive_element`. See :func:`galois.FieldArray.log` for logarithm with arbitrary base. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.log.html Examples -------- .. ipython:: python GF = galois.GF(31) alpha = GF.primitive_element; alpha x = GF.Random(10, low=1); x y = np.log(x); y alpha ** y """ return def sqrt(x): """ Computes the square root a Galois field array element-wise. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html Notes ----- This function returns the lexicographically-minimal root :math:`r` (the root whose integer representation is smallest). In addition to :math:`r`, :math:`-r` is also a root. Examples -------- .. ipython:: python GF = galois.GF(31) # Only the "quadratic residues" have square roots x = GF.quadratic_residues; x r = np.sqrt(x) # Both roots in the finite field r, -r r**2 (-r)**2 """ return def matmul(x1, x2): """ Computes the matrix multiplication of two Galois field arrays. References ---------- * https://numpy.org/doc/stable/reference/generated/numpy.log.html Examples -------- .. ipython:: python GF = galois.GF(31) x1 = GF.Random((3,4)); x1 x2 = GF.Random((4,5)); x2 np.matmul(x1, x2) x1 @ x2 """ return
StarcoderdataPython
11920
from typing import Any, Dict, Tuple import torch from torch_geometric.nn import GATConv from torch_sparse import SparseTensor, set_diag from rgnn_at_scale.aggregation import ROBUST_MEANS from rgnn_at_scale.models.gcn import GCN class RGATConv(GATConv): """Extension of Pytorch Geometric's `GCNConv` to execute a robust aggregation function: - soft_k_medoid - soft_medoid (not scalable) - k_medoid - medoid (not scalable) - dimmedian Parameters ---------- mean : str, optional The desired mean (see above for the options), by default 'soft_k_medoid' mean_kwargs : Dict[str, Any], optional Arguments for the mean, by default dict(k=64, temperature=1.0, with_weight_correction=True) """ def __init__(self, mean='soft_k_medoid', mean_kwargs: Dict[str, Any] = dict(k=64, temperature=1.0, with_weight_correction=True), **kwargs): kwargs['in_channels'] = 2 * [kwargs['in_channels']] super().__init__(**kwargs) self._mean = ROBUST_MEANS[mean] if mean is not None else None self._mean_kwargs = mean_kwargs def forward(self, arguments: Tuple[torch.Tensor, SparseTensor] = None) -> torch.Tensor: """Predictions based on the input. Parameters ---------- arguments : Sequence[torch.Tensor] [x, edge indices] or [x, edge indices, edge weights], by default None Returns ------- torch.Tensor the output of `GCNConv`. Raises ------ NotImplementedError if the arguments are not of length 2 or 3 """ if len(arguments) == 2: x, edge_index = arguments edge_weight = None elif len(arguments) == 3: x, edge_index, edge_weight = arguments else: raise NotImplementedError("This method is just implemented for two or three arguments") assert isinstance(edge_index, SparseTensor), 'GAT requires a SparseTensor as input' assert edge_weight is None, 'The weights must be passed via a SparseTensor' H, C = self.heads, self.out_channels assert x.dim() == 2, 'Static graphs not supported in `GATConv`.' x_l = x_r = self.lin_l(x).view(-1, H, C) alpha_l = (x_l * self.att_l).sum(dim=-1) alpha_r = (x_r * self.att_r).sum(dim=-1) if self.add_self_loops: edge_index = set_diag(edge_index) # propagate_type: (x: OptPairTensor, alpha: OptPairTensor) out = self.propagate(edge_index, x=(x_l, x_r), alpha=(alpha_l, alpha_r)) alpha = self._alpha * edge_index.storage.value()[:, None] self._alpha = None if self.concat: out = out.view(-1, self.heads * self.out_channels) else: out = out.mean(dim=1) if self.bias is not None: out += self.bias attention_matrix = edge_index.set_value(alpha, layout='coo') attention_matrix.storage._value = attention_matrix.storage._value.squeeze() x = self.lin_l(x) if self._mean is not None: x = self._mean(attention_matrix, x, **self._mean_kwargs) else: x = attention_matrix @ x x += self.bias return x class RGAT(GCN): """Generic Reliable Graph Neural Network (RGNN) implementation which currently supports a GCN architecture with the aggregation functions: - soft_k_medoid - soft_medoid (not scalable) - k_medoid - medoid (not scalable) - dimmedian and with the adjacency preprocessings: - SVD: <NAME>, <NAME>, <NAME>, and <NAME>. All you need is Low (rank): Defending against adversarial attacks on graphs. - GDC: <NAME>, <NAME>, and <NAME>. Diffusion Improves Graph Learning. - Jaccard: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Adversarial examples for graph data: Deep insights into attack and defense. Parameters ---------- mean : str, optional The desired mean (see above for the options), by default 'soft_k_medoid' mean_kwargs : Dict[str, Any], optional Arguments for the mean, by default dict(k=64, temperature=1.0, with_weight_correction=True) """ def __init__(self, mean: str = 'soft_k_medoid', mean_kwargs: Dict[str, Any] = dict(k=64, temperature=1.0, with_weight_correction=True), **kwargs): self._mean_kwargs = dict(mean_kwargs) self._mean = mean super().__init__(**kwargs) assert not self.do_checkpoint, 'Checkpointing is not supported' def _build_conv_layer(self, in_channels: int, out_channels: int): return RGATConv(mean=self._mean, mean_kwargs=self._mean_kwargs, in_channels=in_channels, out_channels=out_channels) def _cache_if_option_is_set(self, callback, x, edge_idx, edge_weight): return SparseTensor.from_edge_index(edge_idx, edge_weight, (x.shape[0], x.shape[0])), None
StarcoderdataPython
3306324
<reponame>stanionascu/python-embyapi # coding: utf-8 """ Emby Server API Explore the Emby Server API # noqa: E501 OpenAPI spec version: 4.1.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SyncModelSyncJobItem(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'int', 'job_id': 'int', 'item_id': 'int', 'item_name': 'str', 'media_source_id': 'str', 'media_source': 'MediaSourceInfo', 'target_id': 'str', 'output_path': 'str', 'status': 'str', 'progress': 'float', 'date_created': 'datetime', 'primary_image_item_id': 'int', 'primary_image_tag': 'str', 'temporary_path': 'str', 'additional_files': 'list[SyncModelItemFileInfo]', 'item_date_modified_ticks': 'int' } attribute_map = { 'id': 'Id', 'job_id': 'JobId', 'item_id': 'ItemId', 'item_name': 'ItemName', 'media_source_id': 'MediaSourceId', 'media_source': 'MediaSource', 'target_id': 'TargetId', 'output_path': 'OutputPath', 'status': 'Status', 'progress': 'Progress', 'date_created': 'DateCreated', 'primary_image_item_id': 'PrimaryImageItemId', 'primary_image_tag': 'PrimaryImageTag', 'temporary_path': 'TemporaryPath', 'additional_files': 'AdditionalFiles', 'item_date_modified_ticks': 'ItemDateModifiedTicks' } def __init__(self, id=None, job_id=None, item_id=None, item_name=None, media_source_id=None, media_source=None, target_id=None, output_path=None, status=None, progress=None, date_created=None, primary_image_item_id=None, primary_image_tag=None, temporary_path=None, additional_files=None, item_date_modified_ticks=None): # noqa: E501 """SyncModelSyncJobItem - a model defined in Swagger""" # noqa: E501 self._id = None self._job_id = None self._item_id = None self._item_name = None self._media_source_id = None self._media_source = None self._target_id = None self._output_path = None self._status = None self._progress = None self._date_created = None self._primary_image_item_id = None self._primary_image_tag = None self._temporary_path = None self._additional_files = None self._item_date_modified_ticks = None self.discriminator = None if id is not None: self.id = id if job_id is not None: self.job_id = job_id if item_id is not None: self.item_id = item_id if item_name is not None: self.item_name = item_name if media_source_id is not None: self.media_source_id = media_source_id if media_source is not None: self.media_source = media_source if target_id is not None: self.target_id = target_id if output_path is not None: self.output_path = output_path if status is not None: self.status = status if progress is not None: self.progress = progress if date_created is not None: self.date_created = date_created if primary_image_item_id is not None: self.primary_image_item_id = primary_image_item_id if primary_image_tag is not None: self.primary_image_tag = primary_image_tag if temporary_path is not None: self.temporary_path = temporary_path if additional_files is not None: self.additional_files = additional_files if item_date_modified_ticks is not None: self.item_date_modified_ticks = item_date_modified_ticks @property def id(self): """Gets the id of this SyncModelSyncJobItem. # noqa: E501 :return: The id of this SyncModelSyncJobItem. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this SyncModelSyncJobItem. :param id: The id of this SyncModelSyncJobItem. # noqa: E501 :type: int """ self._id = id @property def job_id(self): """Gets the job_id of this SyncModelSyncJobItem. # noqa: E501 :return: The job_id of this SyncModelSyncJobItem. # noqa: E501 :rtype: int """ return self._job_id @job_id.setter def job_id(self, job_id): """Sets the job_id of this SyncModelSyncJobItem. :param job_id: The job_id of this SyncModelSyncJobItem. # noqa: E501 :type: int """ self._job_id = job_id @property def item_id(self): """Gets the item_id of this SyncModelSyncJobItem. # noqa: E501 :return: The item_id of this SyncModelSyncJobItem. # noqa: E501 :rtype: int """ return self._item_id @item_id.setter def item_id(self, item_id): """Sets the item_id of this SyncModelSyncJobItem. :param item_id: The item_id of this SyncModelSyncJobItem. # noqa: E501 :type: int """ self._item_id = item_id @property def item_name(self): """Gets the item_name of this SyncModelSyncJobItem. # noqa: E501 :return: The item_name of this SyncModelSyncJobItem. # noqa: E501 :rtype: str """ return self._item_name @item_name.setter def item_name(self, item_name): """Sets the item_name of this SyncModelSyncJobItem. :param item_name: The item_name of this SyncModelSyncJobItem. # noqa: E501 :type: str """ self._item_name = item_name @property def media_source_id(self): """Gets the media_source_id of this SyncModelSyncJobItem. # noqa: E501 :return: The media_source_id of this SyncModelSyncJobItem. # noqa: E501 :rtype: str """ return self._media_source_id @media_source_id.setter def media_source_id(self, media_source_id): """Sets the media_source_id of this SyncModelSyncJobItem. :param media_source_id: The media_source_id of this SyncModelSyncJobItem. # noqa: E501 :type: str """ self._media_source_id = media_source_id @property def media_source(self): """Gets the media_source of this SyncModelSyncJobItem. # noqa: E501 :return: The media_source of this SyncModelSyncJobItem. # noqa: E501 :rtype: MediaSourceInfo """ return self._media_source @media_source.setter def media_source(self, media_source): """Sets the media_source of this SyncModelSyncJobItem. :param media_source: The media_source of this SyncModelSyncJobItem. # noqa: E501 :type: MediaSourceInfo """ self._media_source = media_source @property def target_id(self): """Gets the target_id of this SyncModelSyncJobItem. # noqa: E501 :return: The target_id of this SyncModelSyncJobItem. # noqa: E501 :rtype: str """ return self._target_id @target_id.setter def target_id(self, target_id): """Sets the target_id of this SyncModelSyncJobItem. :param target_id: The target_id of this SyncModelSyncJobItem. # noqa: E501 :type: str """ self._target_id = target_id @property def output_path(self): """Gets the output_path of this SyncModelSyncJobItem. # noqa: E501 :return: The output_path of this SyncModelSyncJobItem. # noqa: E501 :rtype: str """ return self._output_path @output_path.setter def output_path(self, output_path): """Sets the output_path of this SyncModelSyncJobItem. :param output_path: The output_path of this SyncModelSyncJobItem. # noqa: E501 :type: str """ self._output_path = output_path @property def status(self): """Gets the status of this SyncModelSyncJobItem. # noqa: E501 :return: The status of this SyncModelSyncJobItem. # noqa: E501 :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this SyncModelSyncJobItem. :param status: The status of this SyncModelSyncJobItem. # noqa: E501 :type: str """ allowed_values = ["Queued", "Converting", "ReadyToTransfer", "Transferring", "Synced", "Failed"] # noqa: E501 if status not in allowed_values: raise ValueError( "Invalid value for `status` ({0}), must be one of {1}" # noqa: E501 .format(status, allowed_values) ) self._status = status @property def progress(self): """Gets the progress of this SyncModelSyncJobItem. # noqa: E501 :return: The progress of this SyncModelSyncJobItem. # noqa: E501 :rtype: float """ return self._progress @progress.setter def progress(self, progress): """Sets the progress of this SyncModelSyncJobItem. :param progress: The progress of this SyncModelSyncJobItem. # noqa: E501 :type: float """ self._progress = progress @property def date_created(self): """Gets the date_created of this SyncModelSyncJobItem. # noqa: E501 :return: The date_created of this SyncModelSyncJobItem. # noqa: E501 :rtype: datetime """ return self._date_created @date_created.setter def date_created(self, date_created): """Sets the date_created of this SyncModelSyncJobItem. :param date_created: The date_created of this SyncModelSyncJobItem. # noqa: E501 :type: datetime """ self._date_created = date_created @property def primary_image_item_id(self): """Gets the primary_image_item_id of this SyncModelSyncJobItem. # noqa: E501 :return: The primary_image_item_id of this SyncModelSyncJobItem. # noqa: E501 :rtype: int """ return self._primary_image_item_id @primary_image_item_id.setter def primary_image_item_id(self, primary_image_item_id): """Sets the primary_image_item_id of this SyncModelSyncJobItem. :param primary_image_item_id: The primary_image_item_id of this SyncModelSyncJobItem. # noqa: E501 :type: int """ self._primary_image_item_id = primary_image_item_id @property def primary_image_tag(self): """Gets the primary_image_tag of this SyncModelSyncJobItem. # noqa: E501 :return: The primary_image_tag of this SyncModelSyncJobItem. # noqa: E501 :rtype: str """ return self._primary_image_tag @primary_image_tag.setter def primary_image_tag(self, primary_image_tag): """Sets the primary_image_tag of this SyncModelSyncJobItem. :param primary_image_tag: The primary_image_tag of this SyncModelSyncJobItem. # noqa: E501 :type: str """ self._primary_image_tag = primary_image_tag @property def temporary_path(self): """Gets the temporary_path of this SyncModelSyncJobItem. # noqa: E501 :return: The temporary_path of this SyncModelSyncJobItem. # noqa: E501 :rtype: str """ return self._temporary_path @temporary_path.setter def temporary_path(self, temporary_path): """Sets the temporary_path of this SyncModelSyncJobItem. :param temporary_path: The temporary_path of this SyncModelSyncJobItem. # noqa: E501 :type: str """ self._temporary_path = temporary_path @property def additional_files(self): """Gets the additional_files of this SyncModelSyncJobItem. # noqa: E501 :return: The additional_files of this SyncModelSyncJobItem. # noqa: E501 :rtype: list[SyncModelItemFileInfo] """ return self._additional_files @additional_files.setter def additional_files(self, additional_files): """Sets the additional_files of this SyncModelSyncJobItem. :param additional_files: The additional_files of this SyncModelSyncJobItem. # noqa: E501 :type: list[SyncModelItemFileInfo] """ self._additional_files = additional_files @property def item_date_modified_ticks(self): """Gets the item_date_modified_ticks of this SyncModelSyncJobItem. # noqa: E501 :return: The item_date_modified_ticks of this SyncModelSyncJobItem. # noqa: E501 :rtype: int """ return self._item_date_modified_ticks @item_date_modified_ticks.setter def item_date_modified_ticks(self, item_date_modified_ticks): """Sets the item_date_modified_ticks of this SyncModelSyncJobItem. :param item_date_modified_ticks: The item_date_modified_ticks of this SyncModelSyncJobItem. # noqa: E501 :type: int """ self._item_date_modified_ticks = item_date_modified_ticks def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SyncModelSyncJobItem, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SyncModelSyncJobItem): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
StarcoderdataPython
3611
"""Mobjects representing vector fields.""" __all__ = [ "VectorField", "ArrowVectorField", "StreamLines", ] import itertools as it import random from math import ceil, floor from typing import Callable, Iterable, Optional, Sequence, Tuple, Type import numpy as np from colour import Color from PIL import Image from .. import config from ..animation.composition import AnimationGroup, Succession from ..animation.creation import Create from ..animation.indication import ShowPassingFlash from ..animation.update import UpdateFromAlphaFunc from ..constants import OUT, RIGHT, UP from ..mobject.geometry import Vector from ..mobject.mobject import Mobject from ..mobject.types.vectorized_mobject import VGroup, VMobject from ..utils.bezier import interpolate, inverse_interpolate from ..utils.color import BLUE_E, GREEN, RED, YELLOW, color_to_rgb, rgb_to_color from ..utils.deprecation import deprecated_params from ..utils.rate_functions import ease_out_sine, linear from ..utils.simple_functions import sigmoid from .types.opengl_vectorized_mobject import OpenGLVMobject DEFAULT_SCALAR_FIELD_COLORS: list = [BLUE_E, GREEN, YELLOW, RED] class VectorField(VGroup): """A vector field. Vector fields are based on a function defining a vector at every position. This class does by default not include any visible elements but provides methods to move other :class:`~.Mobject` s along the vector field. Parameters ---------- func The function defining the rate of change at every position of the `VectorField`. color The color of the vector field. If set, position-specific coloring is disabled. color_scheme A function mapping a vector to a single value. This value gives the position in the color gradient defined using `min_color_scheme_value`, `max_color_scheme_value` and `colors`. min_color_scheme_value The value of the color_scheme function to be mapped to the first color in `colors`. Lower values also result in the first color of the gradient. max_color_scheme_value The value of the color_scheme function to be mapped to the last color in `colors`. Higher values also result in the last color of the gradient. colors The colors defining the color gradient of the vector field. kwargs : Any Additional arguments to be passed to the :class:`~.VGroup` constructor """ def __init__( self, func: Callable[[np.ndarray], np.ndarray], color: Optional[Color] = None, color_scheme: Optional[Callable[[np.ndarray], float]] = None, min_color_scheme_value: float = 0, max_color_scheme_value: float = 2, colors: Sequence[Color] = DEFAULT_SCALAR_FIELD_COLORS, **kwargs ): super().__init__(**kwargs) self.func = func if color is None: self.single_color = False if color_scheme is None: def color_scheme(p): return np.linalg.norm(p) self.color_scheme = color_scheme # TODO maybe other default for direction? self.rgbs = np.array(list(map(color_to_rgb, colors))) def pos_to_rgb(pos: np.ndarray) -> Tuple[float, float, float, float]: vec = self.func(pos) color_value = np.clip( self.color_scheme(vec), min_color_scheme_value, max_color_scheme_value, ) alpha = inverse_interpolate( min_color_scheme_value, max_color_scheme_value, color_value, ) alpha *= len(self.rgbs) - 1 c1 = self.rgbs[int(alpha)] c2 = self.rgbs[min(int(alpha + 1), len(self.rgbs) - 1)] alpha %= 1 return interpolate(c1, c2, alpha) self.pos_to_rgb = pos_to_rgb self.pos_to_color = lambda pos: rgb_to_color(self.pos_to_rgb(pos)) else: self.single_color = True self.color = color self.submob_movement_updater = None @staticmethod def shift_func( func: Callable[[np.ndarray], np.ndarray], shift_vector: np.ndarray, ) -> Callable[[np.ndarray], np.ndarray]: """Shift a vector field function. Parameters ---------- func The function defining a vector field. shift_vector The shift to be applied to the vector field. Returns ------- `Callable[[np.ndarray], np.ndarray]` The shifted vector field function. """ return lambda p: func(p - shift_vector) @staticmethod def scale_func( func: Callable[[np.ndarray], np.ndarray], scalar: float, ) -> Callable[[np.ndarray], np.ndarray]: """Scale a vector field function. Parameters ---------- func The function defining a vector field. shift_vector The scalar to be applied to the vector field. Examples -------- .. manim:: ScaleVectorFieldFunction class ScaleVectorFieldFunction(Scene): def construct(self): func = lambda pos: np.sin(pos[1]) * RIGHT + np.cos(pos[0]) * UP vector_field = ArrowVectorField(func) self.add(vector_field) self.wait() func = VectorField.scale_func(func, 0.5) self.play(vector_field.animate.become(ArrowVectorField(func))) self.wait() Returns ------- `Callable[[np.ndarray], np.ndarray]` The scaled vector field function. """ return lambda p: func(p * scalar) def nudge( self, mob: Mobject, dt: float = 1, substeps: int = 1, pointwise: bool = False, ) -> "VectorField": """Nudge a :class:`~.Mobject` along the vector field. Parameters ---------- mob The mobject to move along the vector field dt A scalar to the amount the mobject is moved along the vector field. The actual distance is based on the magnitude of the vector field. substeps The amount of steps the whole nudge is divided into. Higher values give more accurate approximations. pointwise Whether to move the mobject along the vector field. If `False` the vector field takes effect on the center of the given :class:`~.Mobject`. If `True` the vector field takes effect on the points of the individual points of the :class:`~.Mobject`, potentially distorting it. Returns ------- VectorField This vector field. Examples -------- .. manim:: Nudging class Nudging(Scene): def construct(self): func = lambda pos: np.sin(pos[1] / 2) * RIGHT + np.cos(pos[0] / 2) * UP vector_field = ArrowVectorField( func, x_range=[-7, 7, 1], y_range=[-4, 4, 1], length_func=lambda x: x / 2 ) self.add(vector_field) circle = Circle(radius=2).shift(LEFT) self.add(circle.copy().set_color(GRAY)) dot = Dot().move_to(circle) vector_field.nudge(circle, -2, 60, True) vector_field.nudge(dot, -2, 60) circle.add_updater(vector_field.get_nudge_updater(pointwise=True)) dot.add_updater(vector_field.get_nudge_updater()) self.add(circle, dot) self.wait(6) """ def runge_kutta(self, p: Sequence[float], step_size: float) -> float: """Returns the change in position of a point along a vector field. Parameters ---------- p The position of each point being moved along the vector field. step_size A scalar that is used to determine how much a point is shifted in a single step. Returns ------- float How much the point is shifted. """ k_1 = self.func(p) k_2 = self.func(p + step_size * (k_1 * 0.5)) k_3 = self.func(p + step_size * (k_2 * 0.5)) k_4 = self.func(p + step_size * k_3) return step_size / 6.0 * (k_1 + 2.0 * k_2 + 2.0 * k_3 + k_4) step_size = dt / substeps for _ in range(substeps): if pointwise: mob.apply_function(lambda p: p + runge_kutta(self, p, step_size)) else: mob.shift(runge_kutta(self, mob.get_center(), step_size)) return self def nudge_submobjects( self, dt: float = 1, substeps: int = 1, pointwise: bool = False, ) -> "VectorField": """Apply a nudge along the vector field to all submobjects. Parameters ---------- dt A scalar to the amount the mobject is moved along the vector field. The actual distance is based on the magnitude of the vector field. substeps The amount of steps the whole nudge is divided into. Higher values give more accurate approximations. pointwise Whether to move the mobject along the vector field. See :meth:`nudge` for details. Returns ------- VectorField This vector field. """ for mob in self.submobjects: self.nudge(mob, dt, substeps, pointwise) return self def get_nudge_updater( self, speed: float = 1, pointwise: bool = False, ) -> Callable[[Mobject, float], Mobject]: """Get an update function to move a :class:`~.Mobject` along the vector field. When used with :meth:`~.Mobject.add_updater`, the mobject will move along the vector field, where its speed is determined by the magnitude of the vector field. Parameters ---------- speed At `speed=1` the distance a mobject moves per second is equal to the magnitude of the vector field along its path. The speed value scales the speed of such a mobject. pointwise Whether to move the mobject along the vector field. See :meth:`nudge` for details. Returns ------- Callable[[Mobject, float], Mobject] The update function. """ return lambda mob, dt: self.nudge(mob, dt * speed, pointwise=pointwise) def start_submobject_movement( self, speed: float = 1, pointwise: bool = False, ) -> "VectorField": """Start continuously moving all submobjects along the vector field. Calling this method multiple times will result in removing the previous updater created by this method. Parameters ---------- speed The speed at which to move the submobjects. See :meth:`get_nudge_updater` for details. pointwise Whether to move the mobject along the vector field. See :meth:`nudge` for details. Returns ------- VectorField This vector field. """ self.stop_submobject_movement() self.submob_movement_updater = lambda mob, dt: mob.nudge_submobjects( dt * speed, pointwise=pointwise, ) self.add_updater(self.submob_movement_updater) return self def stop_submobject_movement(self) -> "VectorField": """Stops the continuous movement started using :meth:`start_submobject_movement`. Returns ------- VectorField This vector field. """ self.remove_updater(self.submob_movement_updater) self.submob_movement_updater = None return self def get_colored_background_image(self, sampling_rate: int = 5) -> Image.Image: """Generate an image that displays the vector field. The color at each position is calculated by passing the positing through a series of steps: Calculate the vector field function at that position, map that vector to a single value using `self.color_scheme` and finally generate a color from that value using the color gradient. Parameters ---------- sampling_rate The stepsize at which pixels get included in the image. Lower values give more accurate results, but may take a long time to compute. Returns ------- Image.Imgae The vector field image. """ if self.single_color: raise ValueError( "There is no point in generating an image if the vector field uses a single color.", ) ph = int(config["pixel_height"] / sampling_rate) pw = int(config["pixel_width"] / sampling_rate) fw = config["frame_width"] fh = config["frame_height"] points_array = np.zeros((ph, pw, 3)) x_array = np.linspace(-fw / 2, fw / 2, pw) y_array = np.linspace(fh / 2, -fh / 2, ph) x_array = x_array.reshape((1, len(x_array))) y_array = y_array.reshape((len(y_array), 1)) x_array = x_array.repeat(ph, axis=0) y_array.repeat(pw, axis=1) # TODO why not y_array = y_array.repeat(...)? points_array[:, :, 0] = x_array points_array[:, :, 1] = y_array rgbs = np.apply_along_axis(self.pos_to_rgb, 2, points_array) return Image.fromarray((rgbs * 255).astype("uint8")) def get_vectorized_rgba_gradient_function( self, start: float, end: float, colors: Iterable, ): """ Generates a gradient of rgbas as a numpy array Parameters ---------- start start value used for inverse interpolation at :func:`~.inverse_interpolate` end end value used for inverse interpolation at :func:`~.inverse_interpolate` colors list of colors to generate the gradient Returns ------- function to generate the gradients as numpy arrays representing rgba values """ rgbs = np.array([color_to_rgb(c) for c in colors]) def func(values, opacity=1): alphas = inverse_interpolate(start, end, np.array(values)) alphas = np.clip(alphas, 0, 1) scaled_alphas = alphas * (len(rgbs) - 1) indices = scaled_alphas.astype(int) next_indices = np.clip(indices + 1, 0, len(rgbs) - 1) inter_alphas = scaled_alphas % 1 inter_alphas = inter_alphas.repeat(3).reshape((len(indices), 3)) result = interpolate(rgbs[indices], rgbs[next_indices], inter_alphas) result = np.concatenate( (result, np.full([len(result), 1], opacity)), axis=1, ) return result return func class ArrowVectorField(VectorField): """A :class:`VectorField` represented by a set of change vectors. Vector fields are always based on a function defining the :class:`~.Vector` at every position. The values of this functions is displayed as a grid of vectors. By default the color of each vector is determined by it's magnitude. Other color schemes can be used however. Parameters ---------- func The function defining the rate of change at every position of the vector field. color The color of the vector field. If set, position-specific coloring is disabled. color_scheme A function mapping a vector to a single value. This value gives the position in the color gradient defined using `min_color_scheme_value`, `max_color_scheme_value` and `colors`. min_color_scheme_value The value of the color_scheme function to be mapped to the first color in `colors`. Lower values also result in the first color of the gradient. max_color_scheme_value The value of the color_scheme function to be mapped to the last color in `colors`. Higher values also result in the last color of the gradient. colors The colors defining the color gradient of the vector field. x_range A sequence of x_min, x_max, delta_x y_range A sequence of y_min, y_max, delta_y z_range A sequence of z_min, z_max, delta_z three_dimensions Enables three_dimensions. Default set to False, automatically turns True if z_range is not None. length_func The function determining the displayed size of the vectors. The actual size of the vector is passed, the returned value will be used as display size for the vector. By default this is used to cap the displayed size of vectors to reduce the clutter. opacity The opacity of the arrows. vector_config Additional arguments to be passed to the :class:`~.Vector` constructor kwargs : Any Additional arguments to be passed to the :class:`~.VGroup` constructor Examples -------- .. manim:: BasicUsage :save_last_frame: class BasicUsage(Scene): def construct(self): func = lambda pos: ((pos[0] * UR + pos[1] * LEFT) - pos) / 3 self.add(ArrowVectorField(func)) .. manim:: SizingAndSpacing class SizingAndSpacing(Scene): def construct(self): func = lambda pos: np.sin(pos[0] / 2) * UR + np.cos(pos[1] / 2) * LEFT vf = ArrowVectorField(func, x_range=[-7, 7, 1]) self.add(vf) self.wait() length_func = lambda x: x / 3 vf2 = ArrowVectorField(func, x_range=[-7, 7, 1], length_func=length_func) self.play(vf.animate.become(vf2)) self.wait() .. manim:: Coloring :save_last_frame: class Coloring(Scene): def construct(self): func = lambda pos: pos - LEFT * 5 colors = [RED, YELLOW, BLUE, DARK_GRAY] min_radius = Circle(radius=2, color=colors[0]).shift(LEFT * 5) max_radius = Circle(radius=10, color=colors[-1]).shift(LEFT * 5) vf = ArrowVectorField( func, min_color_scheme_value=2, max_color_scheme_value=10, colors=colors ) self.add(vf, min_radius, max_radius) """ def __init__( self, func: Callable[[np.ndarray], np.ndarray], color: Optional[Color] = None, color_scheme: Optional[Callable[[np.ndarray], float]] = None, min_color_scheme_value: float = 0, max_color_scheme_value: float = 2, colors: Sequence[Color] = DEFAULT_SCALAR_FIELD_COLORS, # Determining Vector positions: x_range: Sequence[float] = None, y_range: Sequence[float] = None, z_range: Sequence[float] = None, three_dimensions: bool = False, # Automatically True if z_range is set # Takes in actual norm, spits out displayed norm length_func: Callable[[float], float] = lambda norm: 0.45 * sigmoid(norm), opacity: float = 1.0, vector_config: Optional[dict] = None, **kwargs ): self.x_range = x_range or [ floor(-config["frame_width"] / 2), ceil(config["frame_width"] / 2), ] self.y_range = y_range or [ floor(-config["frame_height"] / 2), ceil(config["frame_height"] / 2), ] self.ranges = [self.x_range, self.y_range] if three_dimensions or z_range: self.z_range = z_range or self.y_range.copy() self.ranges += [self.z_range] else: self.ranges += [[0, 0]] for i in range(len(self.ranges)): if len(self.ranges[i]) == 2: self.ranges[i] += [0.5] self.ranges[i][1] += self.ranges[i][2] self.x_range, self.y_range, self.z_range = self.ranges super().__init__( func, color, color_scheme, min_color_scheme_value, max_color_scheme_value, colors, **kwargs, ) self.length_func = length_func self.opacity = opacity if vector_config is None: vector_config = {} self.vector_config = vector_config self.func = func x_range = np.arange(*self.x_range) y_range = np.arange(*self.y_range) z_range = np.arange(*self.z_range) for x, y, z in it.product(x_range, y_range, z_range): self.add(self.get_vector(x * RIGHT + y * UP + z * OUT)) self.set_opacity(self.opacity) def get_vector(self, point: np.ndarray): """Creates a vector in the vector field. The created vector is based on the function of the vector field and is rooted in the given point. Color and length fit the specifications of this vector field. Parameters ---------- point The root point of the vector. kwargs : Any Additional arguments to be passed to the :class:`~.Vector` constructor """ output = np.array(self.func(point)) norm = np.linalg.norm(output) if norm != 0: output *= self.length_func(norm) / norm vect = Vector(output, **self.vector_config) vect.shift(point) if self.single_color: vect.set_color(self.color) else: vect.set_color(self.pos_to_color(point)) return vect class StreamLines(VectorField): """StreamLines represent the flow of a :class:`VectorField` using the trace of moving agents. Vector fields are always based on a function defining the vector at every position. The values of this functions is displayed by moving many agents along the vector field and showing their trace. Parameters ---------- func The function defining the rate of change at every position of the vector field. color The color of the vector field. If set, position-specific coloring is disabled. color_scheme A function mapping a vector to a single value. This value gives the position in the color gradient defined using `min_color_scheme_value`, `max_color_scheme_value` and `colors`. min_color_scheme_value The value of the color_scheme function to be mapped to the first color in `colors`. Lower values also result in the first color of the gradient. max_color_scheme_value The value of the color_scheme function to be mapped to the last color in `colors`. Higher values also result in the last color of the gradient. colors The colors defining the color gradient of the vector field. x_range A sequence of x_min, x_max, delta_x y_range A sequence of y_min, y_max, delta_y z_range A sequence of z_min, z_max, delta_z three_dimensions Enables three_dimensions. Default set to False, automatically turns True if z_range is not None. noise_factor The amount by which the starting position of each agent is altered along each axis. Defaults to :code:`delta_y / 2` if not defined. n_repeats The number of agents generated at each starting point. dt The factor by which the distance an agent moves per step is stretched. Lower values result in a better approximation of the trajectories in the vector field. virtual_time The time the agents get to move in the vector field. Higher values therefore result in longer stream lines. However, this whole time gets simulated upon creation. max_anchors_per_line The maximum number of anchors per line. Lines with more anchors get reduced in complexity, not in length. padding The distance agents can move out of the generation area before being terminated. stroke_width The stroke with of the stream lines. opacity The opacity of the stream lines. Examples -------- .. manim:: BasicUsage :save_last_frame: class BasicUsage(Scene): def construct(self): func = lambda pos: ((pos[0] * UR + pos[1] * LEFT) - pos) / 3 self.add(StreamLines(func)) .. manim:: SpawningAndFlowingArea :save_last_frame: class SpawningAndFlowingArea(Scene): def construct(self): func = lambda pos: np.sin(pos[0]) * UR + np.cos(pos[1]) * LEFT + pos / 5 stream_lines = StreamLines( func, x_range=[-3, 3, 0.2], y_range=[-2, 2, 0.2], padding=1 ) spawning_area = Rectangle(width=6, height=4) flowing_area = Rectangle(width=8, height=6) labels = [Tex("Spawning Area"), Tex("Flowing Area").shift(DOWN * 2.5)] for lbl in labels: lbl.add_background_rectangle(opacity=0.6, buff=0.05) self.add(stream_lines, spawning_area, flowing_area, *labels) """ def __init__( self, func: Callable[[np.ndarray], np.ndarray], color: Optional[Color] = None, color_scheme: Optional[Callable[[np.ndarray], float]] = None, min_color_scheme_value: float = 0, max_color_scheme_value: float = 2, colors: Sequence[Color] = DEFAULT_SCALAR_FIELD_COLORS, # Determining stream line starting positions: x_range: Sequence[float] = None, y_range: Sequence[float] = None, z_range: Sequence[float] = None, three_dimensions: bool = False, noise_factor: Optional[float] = None, n_repeats=1, # Determining how lines are drawn dt=0.05, virtual_time=3, max_anchors_per_line=100, padding=3, # Determining stream line appearance: stroke_width=1, opacity=1, **kwargs ): self.x_range = x_range or [ floor(-config["frame_width"] / 2), ceil(config["frame_width"] / 2), ] self.y_range = y_range or [ floor(-config["frame_height"] / 2), ceil(config["frame_height"] / 2), ] self.ranges = [self.x_range, self.y_range] if three_dimensions or z_range: self.z_range = z_range or self.y_range.copy() self.ranges += [self.z_range] else: self.ranges += [[0, 0]] for i in range(len(self.ranges)): if len(self.ranges[i]) == 2: self.ranges[i] += [0.5] self.ranges[i][1] += self.ranges[i][2] self.x_range, self.y_range, self.z_range = self.ranges super().__init__( func, color, color_scheme, min_color_scheme_value, max_color_scheme_value, colors, **kwargs, ) self.noise_factor = ( noise_factor if noise_factor is not None else self.y_range[2] / 2 ) self.n_repeats = n_repeats self.virtual_time = virtual_time self.max_anchors_per_line = max_anchors_per_line self.padding = padding self.stroke_width = stroke_width half_noise = self.noise_factor / 2 np.random.seed(0) start_points = np.array( [ (x - half_noise) * RIGHT + (y - half_noise) * UP + (z - half_noise) * OUT + self.noise_factor * np.random.random(3) for n in range(self.n_repeats) for x in np.arange(*self.x_range) for y in np.arange(*self.y_range) for z in np.arange(*self.z_range) ], ) def outside_box(p): return ( p[0] < self.x_range[0] - self.padding or p[0] > self.x_range[1] + self.padding - self.x_range[2] or p[1] < self.y_range[0] - self.padding or p[1] > self.y_range[1] + self.padding - self.y_range[2] or p[2] < self.z_range[0] - self.padding or p[2] > self.z_range[1] + self.padding - self.z_range[2] ) max_steps = ceil(virtual_time / dt) + 1 if not self.single_color: self.background_img = self.get_colored_background_image() if config["renderer"] == "opengl": self.values_to_rgbas = self.get_vectorized_rgba_gradient_function( min_color_scheme_value, max_color_scheme_value, colors, ) for point in start_points: points = [point] for _ in range(max_steps): last_point = points[-1] new_point = last_point + dt * func(last_point) if outside_box(new_point): break points.append(new_point) step = max_steps if not step: continue if config["renderer"] == "opengl": line = OpenGLVMobject() else: line = VMobject() line.duration = step * dt step = max(1, int(len(points) / self.max_anchors_per_line)) line.set_points_smoothly(points[::step]) if self.single_color: line.set_stroke(self.color) else: if config["renderer"] == "opengl": # scaled for compatibility with cairo line.set_stroke(width=self.stroke_width / 4.0) norms = np.array( [np.linalg.norm(self.func(point)) for point in line.points], ) line.set_rgba_array_direct( self.values_to_rgbas(norms, opacity), name="stroke_rgba", ) else: if np.any(self.z_range != np.array([0, 0.5, 0.5])): line.set_stroke( [self.pos_to_color(p) for p in line.get_anchors()], ) else: line.color_using_background_image(self.background_img) line.set_stroke(width=self.stroke_width, opacity=opacity) self.add(line) self.stream_lines = [*self.submobjects] def create( self, lag_ratio: Optional[float] = None, run_time: Optional[Callable[[float], float]] = None, **kwargs ) -> AnimationGroup: """The creation animation of the stream lines. The stream lines appear in random order. Parameters ---------- lag_ratio The lag ratio of the animation. If undefined, it will be selected so that the total animation length is 1.5 times the run time of each stream line creation. run_time The run time of every single stream line creation. The runtime of the whole animation might be longer due to the `lag_ratio`. If undefined, the virtual time of the stream lines is used as run time. Returns ------- :class:`~.AnimationGroup` The creation animation of the stream lines. Examples -------- .. manim:: StreamLineCreation class StreamLineCreation(Scene): def construct(self): func = lambda pos: (pos[0] * UR + pos[1] * LEFT) - pos stream_lines = StreamLines( func, color=YELLOW, x_range=[-7, 7, 1], y_range=[-4, 4, 1], stroke_width=3, virtual_time=1, # use shorter lines max_anchors_per_line=5, # better performance with fewer anchors ) self.play(stream_lines.create()) # uses virtual_time as run_time self.wait() """ if run_time is None: run_time = self.virtual_time if lag_ratio is None: lag_ratio = run_time / 2 / len(self.submobjects) animations = [ Create(line, run_time=run_time, **kwargs) for line in self.stream_lines ] random.shuffle(animations) return AnimationGroup(*animations, lag_ratio=lag_ratio) def start_animation( self, warm_up=True, flow_speed: float = 1, time_width: float = 0.3, rate_func: Callable[[float], float] = linear, line_animation_class: Type[ShowPassingFlash] = ShowPassingFlash, **kwargs ) -> None: """Animates the stream lines using an updater. The stream lines will continuously flow Parameters ---------- warm_up : bool, optional If `True` the animation is initialized line by line. Otherwise it starts with all lines shown. flow_speed At `flow_speed=1` the distance the flow moves per second is equal to the magnitude of the vector field along its path. The speed value scales the speed of this flow. time_width The proportion of the stream line shown while being animated rate_func The rate function of each stream line flashing line_animation_class The animation class being used Examples -------- .. manim:: ContinuousMotion class ContinuousMotion(Scene): def construct(self): func = lambda pos: np.sin(pos[0] / 2) * UR + np.cos(pos[1] / 2) * LEFT stream_lines = StreamLines(func, stroke_width=3, max_anchors_per_line=30) self.add(stream_lines) stream_lines.start_animation(warm_up=False, flow_speed=1.5) self.wait(stream_lines.virtual_time / stream_lines.flow_speed) """ for line in self.stream_lines: run_time = line.duration / flow_speed line.anim = line_animation_class( line, run_time=run_time, rate_func=rate_func, time_width=time_width, **kwargs, ) line.anim.begin() line.time = random.random() * self.virtual_time if warm_up: line.time *= -1 self.add(line.anim.mobject) def updater(mob, dt): for line in mob.stream_lines: line.time += dt * flow_speed if line.time >= self.virtual_time: line.time -= self.virtual_time line.anim.interpolate(np.clip(line.time / line.anim.run_time, 0, 1)) self.add_updater(updater) self.flow_animation = updater self.flow_speed = flow_speed self.time_width = time_width def end_animation(self) -> AnimationGroup: """End the stream line animation smoothly. Returns an animation resulting in fully displayed stream lines without a noticeable cut. Returns ------- :class:`~.AnimationGroup` The animation fading out the running stream animation. Raises ------ ValueError if no stream line animation is running Examples -------- .. manim:: EndAnimation class EndAnimation(Scene): def construct(self): func = lambda pos: np.sin(pos[0] / 2) * UR + np.cos(pos[1] / 2) * LEFT stream_lines = StreamLines( func, stroke_width=3, max_anchors_per_line=5, virtual_time=1, color=BLUE ) self.add(stream_lines) stream_lines.start_animation(warm_up=False, flow_speed=1.5, time_width=0.5) self.wait(1) self.play(stream_lines.end_animation()) """ if self.flow_animation is None: raise ValueError("You have to start the animation before fading it out.") def hide_and_wait(mob, alpha): if alpha == 0: mob.set_stroke(opacity=0) elif alpha == 1: mob.set_stroke(opacity=1) def finish_updater_cycle(line, alpha): line.time += dt * self.flow_speed line.anim.interpolate(min(line.time / line.anim.run_time, 1)) if alpha == 1: self.remove(line.anim.mobject) line.anim.finish() max_run_time = self.virtual_time / self.flow_speed creation_rate_func = ease_out_sine creation_staring_speed = creation_rate_func(0.001) * 1000 creation_run_time = ( max_run_time / (1 + self.time_width) * creation_staring_speed ) # creation_run_time is calculated so that the creation animation starts at the same speed # as the regular line flash animation but eases out. dt = 1 / config["frame_rate"] animations = [] self.remove_updater(self.flow_animation) self.flow_animation = None for line in self.stream_lines: create = Create( line, run_time=creation_run_time, rate_func=creation_rate_func, ) if line.time <= 0: animations.append( Succession( UpdateFromAlphaFunc( line, hide_and_wait, run_time=-line.time / self.flow_speed, ), create, ), ) self.remove(line.anim.mobject) line.anim.finish() else: remaining_time = max_run_time - line.time / self.flow_speed animations.append( Succession( UpdateFromAlphaFunc( line, finish_updater_cycle, run_time=remaining_time, ), create, ), ) return AnimationGroup(*animations) # TODO: Variant of StreamLines that is able to respond to changes in the vector field function
StarcoderdataPython
3325404
<gh_stars>0 # 자료정리 # 장르별로 재생횟수를 정리해야겠지 ? > 그래야 어느 노래를 먼저 틀지 알 수 있으니까 # 장르내에서 순위를 매겨서 정리 > 어떤 자료형으로 어떻게 장르별 재생횟수를 기록할 것 인가? import collections def solution(genres, plays) : count_max = collections.defaultdict(int) rank_genre = [] rank_songs = [] answer = [] for ind, (genre, play) in enumerate(zip(genres, plays)) : count_max[genre] += play rank_songs.append((genre,[ind, play])) for key, value in count_max.items() : rank_genre.append((key, value)) rank_genre = sorted(rank_genre, key = lambda x : x[1], reverse= True) rank_songs = sorted(rank_songs, key = lambda x : x[1][1], reverse= True) for rank in rank_genre : count = 0 for song in rank_songs : if rank[0] == song[0] : if count >= 2 : break else : answer.append(song[1][0]) count += 1 return answer def solution2(genres, plays) : answer = [] # dict에 여러개의 원소를 넣는 하나의 방법으로 기억!! # lambda 문 잘 쓰자!! d = {e:[] for e in set(genres)} for e in zip(genres, plays, range(len(plays))): d[e[0]].append([e[1] , e[2]]) genresort = sorted(list(d.keys()), key = lambda x : sum(map(lambda y : y[0],d[x])), reverse=True) for genre in genresort : genrelist = sorted(d[genre], key = lambda x : (-x[0], x[1])) for genre_count in genrelist[:2] : answer.append(genre_count[1]) return answer answer = solution2(['jazz', "classic", "pop", "classic", "classic", "pop"], [3000, 500, 600, 150, 800, 2500]) print(answer)
StarcoderdataPython
72104
<filename>GetProvince.py<gh_stars>1-10 # -*- coding: utf-8 -*- import requests import os class GetProvince(object): @staticmethod def get_all(): url = "https://kyfw.12306.cn/otn/resources/js/framework/station_name.js?station_version=1.9044" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/" "63.0.3239.132"" Safari/537.36" } response = requests.get(url=url, headers=headers) if response.status_code == 200: return response.text else: return None @staticmethod def get_province(): response = GetProvince.get_all().split("=")[1] split_data_list = response.split("|") split_data_list_total = len(split_data_list) tail = 6 - (split_data_list_total % 5) + split_data_list_total province_dict = dict() for head in range(0, tail, 5): try: simplified, abbreviation = split_data_list[head+1: head+3] province_dict[abbreviation] = simplified except ValueError as e: pass # print(e) # print("共{0}条, 当前查询{1}条, 抛出异常, 表示已查询完毕".format(split_data_list_total, head)) return province_dict # 这里将来用数据库替换 @staticmethod def output_province(path, content): if path[-1] != os.sep: path += "/" with open(file=path + "province.txt", mode="w", encoding="utf-8") as wf: wf.writelines(content) if __name__ == '__main__': gp = GetProvince() content = gp.get_province() print(content) # gp.output_province(r"C:\Users\Administrator\Desktop", content)
StarcoderdataPython
1648004
""" This file sets a parameter for the current scence. """ def set_param(args, scene_root, history_db, current_scene_db): """sets the parameter by making a sqlite call""" from src.praxxis.sqlite import sqlite_parameter from src.praxxis.display import display_param from src.praxxis.util import error if hasattr(args, "name"): name = args.name else: name = args if str(name).isdigit(): # checking if the user passed an ordinal instead of a string try: name = sqlite_parameter.get_param_by_ord(current_scene_db, int(name)) except error.ParamNotFoundError as e: raise e sqlite_parameter.set_param(current_scene_db, name, args.value) display_param.display_set_param(name, args.value) return args
StarcoderdataPython
3380937
<filename>lib/optim/build.py<gh_stars>10-100 import torch.optim as optim from .adamw import AdamW from .adabound import AdaBound, AdaBoundW from .asam import SAM, ASAM def build_optimizer(model, args): if args.optims == "sgd": optimizer = optim.SGD( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, ) elif args.optims == "adam": optimizer = optim.Adam( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, betas=(0.9, 0.999), ) elif args.optims == "adamw": optimizer = AdamW( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, betas=(0.9, 0.999), ) elif args.optims == "nesterov": optimizer = optim.SGD( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True, ) elif args.optims == "adabound": optimizer = AdaBound( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr ) elif args.optims == "adaboundw": optimizer = AdaBoundW( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr ) elif args.optims == "sam": opt = optim.SGD( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, ) optimizer = SAM( optimizer=opt, model=model, rho=0.5, eta=0, ) elif args.optims == "asam": opt = optim.SGD( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, ) optimizer = ASAM( optimizer=opt, model=model, rho=0.5, eta=0, ) else: raise "Not Implemented." return optimizer
StarcoderdataPython
3253140
"""Class implementing meta-model for a Conv3D Layer.""" from typing import Dict from tensorflow.keras.layers import (Activation, BatchNormalization, Conv3D, Layer) from .regularized_meta_layer import RegularizedMetaLayer from ..utils import distributions class Conv3DMetaLayer(RegularizedMetaLayer): """Class implementing meta-layer for tri-dimensional convolutional layers. Private members ------------------------ _min_filters: int, Minimum number of filters to use for the layer. _max_filters: int, Maximum number of filters to use for the layer. _min_x_kernel_size: int, Minimum size of the kernel on the lenght axis. _max_x_kernel_size: int, Maximum size of the kernel on the lenght axis. _min_y_kernel_size: int, Minimum size of the kernel on the depth axis. _max_y_kernel_size: int, Maximum size of the kernel on the depth axis. _min_z_kernel_size: int, Minimum size of the kernel on the height axis. _max_z_kernel_size: int, Maximum size of the kernel on the height axis. _activation: str, The activation function to use for the layer. """ def __init__( self, min_filters: int = 0, max_filters: int = 256, min_x_kernel_size: int = 1, max_x_kernel_size: int = 5, min_y_kernel_size: int = 1, max_y_kernel_size: int = 5, min_z_kernel_size: int = 1, max_z_kernel_size: int = 5, activation: str = "relu", **kwargs: Dict ): """Create new Conv3DResidualLayer meta-model object. Parameters ---------------------- min_filters: int = 0, Minimum number of filters (neurons) in each layer. If the tuning process passes 0, then the layer is skipped. max_filters: int = 256, Maximum number of filters (neurons) in each layer. min_x_kernel_size: int = 1, Minimum size of the kernel on the lenght axis. max_x_kernel_size: int = 5, Maximum size of the kernel on the lenght axis. min_y_kernel_size: int = 1, Minimum size of the kernel on the depth axis. max_y_kernel_size: int = 5, Maximum size of the kernel on the depth axis. min_z_kernel_size: int = 1, Minimum size of the kernel on the height axis. max_z_kernel_size: int = 5, Maximum size of the kernel on the height axis. activation: str = "relu", The activation function to use for the layer. **kwargs: Dict, Dictionary of keyword parameters to be passed to parent class. """ super().__init__(**kwargs) self._min_filters = min_filters self._max_filters = max_filters self._min_x_kernel_size = min_x_kernel_size self._max_x_kernel_size = max_x_kernel_size self._min_y_kernel_size = min_y_kernel_size self._max_y_kernel_size = max_y_kernel_size self._min_z_kernel_size = min_z_kernel_size self._max_z_kernel_size = max_z_kernel_size self._activation = activation def _space(self) -> Dict: """Return hyper parameters of the layer.""" return { "filters": (distributions.integer, self._min_filters, self._max_filters), "x_kernel_size": (distributions.integer, self._min_x_kernel_size, self._max_x_kernel_size), "y_kernel_size": (distributions.integer, self._min_y_kernel_size, self._max_y_kernel_size), "z_kernel_size": (distributions.integer, self._min_z_kernel_size, self._max_z_kernel_size), **super()._space() } def _build( self, input_layers: Layer, filters: int, x_kernel_size: int, y_kernel_size: int, z_kernel_size: int, strides: int = (1, 1, 1), **kwargs: Dict ) -> Layer: """Return built Conv3D layer block. If the given filters number is equal to 0, the layer is skipped. Parameters -------------------------- input_layers: Layer, The input layer of the current layer. filters: int, The number of neurons of the layer. x_kernel_size: int, The dimension of the kernel for the layer, on the length axis. y_kernel_size: int, The dimension of the kernel for the layer, on the depth axis. z_kernel_size: int, The dimension of the kernel for the layer, on the height axis. strides: int = (1, 1), Strides for the convolutional layer. **kwargs: Dict, The kwargs to pass to the kernel regularizers. Returns -------------------------- Output layer of the block. """ filters = round(filters) x_kernel_size = round(x_kernel_size) y_kernel_size = round(y_kernel_size) z_kernel_size = round(z_kernel_size) if filters == 0: return input_layers layer = Conv3D( filters=filters, kernel_size=(x_kernel_size, y_kernel_size, z_kernel_size), strides=strides, padding="same", **self._build_regularizers(**kwargs) )(input_layers) if self._batch_normalization: layer = BatchNormalization()(layer) activation = Activation(self._activation)(layer) return activation
StarcoderdataPython
118802
# Author: <NAME> # Davenport Lab - Penn State University # Date: 9-2-2021 from src import *
StarcoderdataPython
84466
<filename>third_party/sqlalchemy_0_7_1/sqlalchemy/ext/declarative.py # ext/declarative.py # Copyright (C) 2005-2011 the SQLAlchemy authors and contributors <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ Synopsis ======== SQLAlchemy object-relational configuration involves the combination of :class:`.Table`, :func:`.mapper`, and class objects to define a mapped class. :mod:`~sqlalchemy.ext.declarative` allows all three to be expressed at once within the class declaration. As much as possible, regular SQLAlchemy schema and ORM constructs are used directly, so that configuration between "classical" ORM usage and declarative remain highly similar. As a simple example:: from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class SomeClass(Base): __tablename__ = 'some_table' id = Column(Integer, primary_key=True) name = Column(String(50)) Above, the :func:`declarative_base` callable returns a new base class from which all mapped classes should inherit. When the class definition is completed, a new :class:`.Table` and :func:`.mapper` will have been generated. The resulting table and mapper are accessible via ``__table__`` and ``__mapper__`` attributes on the ``SomeClass`` class:: # access the mapped Table SomeClass.__table__ # access the Mapper SomeClass.__mapper__ Defining Attributes =================== In the previous example, the :class:`.Column` objects are automatically named with the name of the attribute to which they are assigned. To name columns explicitly with a name distinct from their mapped attribute, just give the column a name. Below, column "some_table_id" is mapped to the "id" attribute of `SomeClass`, but in SQL will be represented as "some_table_id":: class SomeClass(Base): __tablename__ = 'some_table' id = Column("some_table_id", Integer, primary_key=True) Attributes may be added to the class after its construction, and they will be added to the underlying :class:`.Table` and :func:`.mapper()` definitions as appropriate:: SomeClass.data = Column('data', Unicode) SomeClass.related = relationship(RelatedInfo) Classes which are constructed using declarative can interact freely with classes that are mapped explicitly with :func:`mapper`. It is recommended, though not required, that all tables share the same underlying :class:`~sqlalchemy.schema.MetaData` object, so that string-configured :class:`~sqlalchemy.schema.ForeignKey` references can be resolved without issue. Accessing the MetaData ======================= The :func:`declarative_base` base class contains a :class:`.MetaData` object where newly defined :class:`.Table` objects are collected. This object is intended to be accessed directly for :class:`.MetaData`-specific operations. Such as, to issue CREATE statements for all tables:: engine = create_engine('sqlite://') Base.metadata.create_all(engine) The usual techniques of associating :class:`.MetaData:` with :class:`.Engine` apply, such as assigning to the ``bind`` attribute:: Base.metadata.bind = create_engine('sqlite://') To associate the engine with the :func:`declarative_base` at time of construction, the ``bind`` argument is accepted:: Base = declarative_base(bind=create_engine('sqlite://')) :func:`declarative_base` can also receive a pre-existing :class:`.MetaData` object, which allows a declarative setup to be associated with an already existing traditional collection of :class:`~sqlalchemy.schema.Table` objects:: mymetadata = MetaData() Base = declarative_base(metadata=mymetadata) Configuring Relationships ========================= Relationships to other classes are done in the usual way, with the added feature that the class specified to :func:`~sqlalchemy.orm.relationship` may be a string name. The "class registry" associated with ``Base`` is used at mapper compilation time to resolve the name into the actual class object, which is expected to have been defined once the mapper configuration is used:: class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(50)) addresses = relationship("Address", backref="user") class Address(Base): __tablename__ = 'addresses' id = Column(Integer, primary_key=True) email = Column(String(50)) user_id = Column(Integer, ForeignKey('users.id')) Column constructs, since they are just that, are immediately usable, as below where we define a primary join condition on the ``Address`` class using them:: class Address(Base): __tablename__ = 'addresses' id = Column(Integer, primary_key=True) email = Column(String(50)) user_id = Column(Integer, ForeignKey('users.id')) user = relationship(User, primaryjoin=user_id == User.id) In addition to the main argument for :func:`~sqlalchemy.orm.relationship`, other arguments which depend upon the columns present on an as-yet undefined class may also be specified as strings. These strings are evaluated as Python expressions. The full namespace available within this evaluation includes all classes mapped for this declarative base, as well as the contents of the ``sqlalchemy`` package, including expression functions like :func:`~sqlalchemy.sql.expression.desc` and :attr:`~sqlalchemy.sql.expression.func`:: class User(Base): # .... addresses = relationship("Address", order_by="desc(Address.email)", primaryjoin="Address.user_id==User.id") As an alternative to string-based attributes, attributes may also be defined after all classes have been created. Just add them to the target class after the fact:: User.addresses = relationship(Address, primaryjoin=Address.user_id==User.id) Configuring Many-to-Many Relationships ====================================== Many-to-many relationships are also declared in the same way with declarative as with traditional mappings. The ``secondary`` argument to :func:`.relationship` is as usual passed a :class:`.Table` object, which is typically declared in the traditional way. The :class:`.Table` usually shares the :class:`.MetaData` object used by the declarative base:: keywords = Table( 'keywords', Base.metadata, Column('author_id', Integer, ForeignKey('authors.id')), Column('keyword_id', Integer, ForeignKey('keywords.id')) ) class Author(Base): __tablename__ = 'authors' id = Column(Integer, primary_key=True) keywords = relationship("Keyword", secondary=keywords) As with traditional mapping, its generally not a good idea to use a :class:`.Table` as the "secondary" argument which is also mapped to a class, unless the :class:`.relationship` is declared with ``viewonly=True``. Otherwise, the unit-of-work system may attempt duplicate INSERT and DELETE statements against the underlying table. .. _declarative_sql_expressions: Defining SQL Expressions ======================== The usage of :func:`.column_property` with Declarative to define load-time, mapped SQL expressions is pretty much the same as that described in :ref:`mapper_sql_expressions`. Local columns within the same class declaration can be referenced directly:: class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) firstname = Column(String) lastname = Column(String) fullname = column_property( firstname + " " + lastname ) Correlated subqueries reference the :class:`.Column` objects they need either from the local class definition or from remote classes:: from sqlalchemy.sql import func class Address(Base): __tablename__ = 'address' id = Column('id', Integer, primary_key=True) user_id = Column(Integer, ForeignKey('user.id')) class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) name = Column(String) address_count = column_property( select([func.count(Address.id)]).\\ where(Address.user_id==id) ) In the case that the ``address_count`` attribute above doesn't have access to ``Address`` when ``User`` is defined, the ``address_count`` attribute should be added to ``User`` when both ``User`` and ``Address`` are available (i.e. there is no string based "late compilation" feature like there is with :func:`.relationship` at this time). Note we reference the ``id`` column attribute of ``User`` with its class when we are no longer in the declaration of the ``User`` class:: User.address_count = column_property( select([func.count(Address.id)]).\\ where(Address.user_id==User.id) ) Table Configuration =================== Table arguments other than the name, metadata, and mapped Column arguments are specified using the ``__table_args__`` class attribute. This attribute accommodates both positional as well as keyword arguments that are normally sent to the :class:`~sqlalchemy.schema.Table` constructor. The attribute can be specified in one of two forms. One is as a dictionary:: class MyClass(Base): __tablename__ = 'sometable' __table_args__ = {'mysql_engine':'InnoDB'} The other, a tuple, where each argument is positional (usually constraints):: class MyClass(Base): __tablename__ = 'sometable' __table_args__ = ( ForeignKeyConstraint(['id'], ['remote_table.id']), UniqueConstraint('foo'), ) Keyword arguments can be specified with the above form by specifying the last argument as a dictionary:: class MyClass(Base): __tablename__ = 'sometable' __table_args__ = ( ForeignKeyConstraint(['id'], ['remote_table.id']), UniqueConstraint('foo'), {'autoload':True} ) Using a Hybrid Approach with __table__ ======================================= As an alternative to ``__tablename__``, a direct :class:`~sqlalchemy.schema.Table` construct may be used. The :class:`~sqlalchemy.schema.Column` objects, which in this case require their names, will be added to the mapping just like a regular mapping to a table:: class MyClass(Base): __table__ = Table('my_table', Base.metadata, Column('id', Integer, primary_key=True), Column('name', String(50)) ) ``__table__`` provides a more focused point of control for establishing table metadata, while still getting most of the benefits of using declarative. An application that uses reflection might want to load table metadata elsewhere and simply pass it to declarative classes:: from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() Base.metadata.reflect(some_engine) class User(Base): __table__ = metadata.tables['user'] class Address(Base): __table__ = metadata.tables['address'] Some configuration schemes may find it more appropriate to use ``__table__``, such as those which already take advantage of the data-driven nature of :class:`.Table` to customize and/or automate schema definition. See the wiki example `NamingConventions <http://www.sqlalchemy.org/trac/wiki/UsageRecipes/NamingConventions>`_ for one such example. Mapper Configuration ==================== Declarative makes use of the :func:`~.orm.mapper` function internally when it creates the mapping to the declared table. The options for :func:`~.orm.mapper` are passed directly through via the ``__mapper_args__`` class attribute. As always, arguments which reference locally mapped columns can reference them directly from within the class declaration:: from datetime import datetime class Widget(Base): __tablename__ = 'widgets' id = Column(Integer, primary_key=True) timestamp = Column(DateTime, nullable=False) __mapper_args__ = { 'version_id_col': timestamp, 'version_id_generator': lambda v:datetime.now() } .. _declarative_inheritance: Inheritance Configuration ========================= Declarative supports all three forms of inheritance as intuitively as possible. The ``inherits`` mapper keyword argument is not needed as declarative will determine this from the class itself. The various "polymorphic" keyword arguments are specified using ``__mapper_args__``. Joined Table Inheritance ~~~~~~~~~~~~~~~~~~~~~~~~ Joined table inheritance is defined as a subclass that defines its own table:: class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} id = Column(Integer, ForeignKey('people.id'), primary_key=True) primary_language = Column(String(50)) Note that above, the ``Engineer.id`` attribute, since it shares the same attribute name as the ``Person.id`` attribute, will in fact represent the ``people.id`` and ``engineers.id`` columns together, and will render inside a query as ``"people.id"``. To provide the ``Engineer`` class with an attribute that represents only the ``engineers.id`` column, give it a different attribute name:: class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} engineer_id = Column('id', Integer, ForeignKey('people.id'), primary_key=True) primary_language = Column(String(50)) Single Table Inheritance ~~~~~~~~~~~~~~~~~~~~~~~~ Single table inheritance is defined as a subclass that does not have its own table; you just leave out the ``__table__`` and ``__tablename__`` attributes:: class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column(String(50)) When the above mappers are configured, the ``Person`` class is mapped to the ``people`` table *before* the ``primary_language`` column is defined, and this column will not be included in its own mapping. When ``Engineer`` then defines the ``primary_language`` column, the column is added to the ``people`` table so that it is included in the mapping for ``Engineer`` and is also part of the table's full set of columns. Columns which are not mapped to ``Person`` are also excluded from any other single or joined inheriting classes using the ``exclude_properties`` mapper argument. Below, ``Manager`` will have all the attributes of ``Person`` and ``Manager`` but *not* the ``primary_language`` attribute of ``Engineer``:: class Manager(Person): __mapper_args__ = {'polymorphic_identity': 'manager'} golf_swing = Column(String(50)) The attribute exclusion logic is provided by the ``exclude_properties`` mapper argument, and declarative's default behavior can be disabled by passing an explicit ``exclude_properties`` collection (empty or otherwise) to the ``__mapper_args__``. Concrete Table Inheritance ~~~~~~~~~~~~~~~~~~~~~~~~~~ Concrete is defined as a subclass which has its own table and sets the ``concrete`` keyword argument to ``True``:: class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) name = Column(String(50)) class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'concrete':True} id = Column(Integer, primary_key=True) primary_language = Column(String(50)) name = Column(String(50)) Usage of an abstract base class is a little less straightforward as it requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`:: engineers = Table('engineers', Base.metadata, Column('id', Integer, primary_key=True), Column('name', String(50)), Column('primary_language', String(50)) ) managers = Table('managers', Base.metadata, Column('id', Integer, primary_key=True), Column('name', String(50)), Column('golf_swing', String(50)) ) punion = polymorphic_union({ 'engineer':engineers, 'manager':managers }, 'type', 'punion') class Person(Base): __table__ = punion __mapper_args__ = {'polymorphic_on':punion.c.type} class Engineer(Person): __table__ = engineers __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True} class Manager(Person): __table__ = managers __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True} Mixin Classes ============== A common need when using :mod:`~sqlalchemy.ext.declarative` is to share some functionality, often a set of columns, across many classes. The normal Python idiom would be to put this common code into a base class and have all the other classes subclass this class. When using :mod:`~sqlalchemy.ext.declarative`, this need is met by using a "mixin class". A mixin class is one that isn't mapped to a table and doesn't subclass the declarative :class:`.Base`. For example:: class MyMixin(object): __table_args__ = {'mysql_engine': 'InnoDB'} __mapper_args__= {'always_refresh': True} id = Column(Integer, primary_key=True) class MyModel(Base,MyMixin): __tablename__ = 'test' name = Column(String(1000)) Where above, the class ``MyModel`` will contain an "id" column as well as ``__table_args__`` and ``__mapper_args__`` defined by the ``MyMixin`` mixin class. Mixing in Columns ~~~~~~~~~~~~~~~~~ The most basic way to specify a column on a mixin is by simple declaration:: class TimestampMixin(object): created_at = Column(DateTime, default=func.now()) class MyModel(Base, TimestampMixin): __tablename__ = 'test' id = Column(Integer, primary_key=True) name = Column(String(1000)) Where above, all declarative classes that include ``TimestampMixin`` will also have a column ``created_at`` that applies a timestamp to all row insertions. Those familiar with the SQLAlchemy expression language know that the object identity of clause elements defines their role in a schema. Two ``Table`` objects ``a`` and ``b`` may both have a column called ``id``, but the way these are differentiated is that ``a.c.id`` and ``b.c.id`` are two distinct Python objects, referencing their parent tables ``a`` and ``b`` respectively. In the case of the mixin column, it seems that only one :class:`.Column` object is explicitly created, yet the ultimate ``created_at`` column above must exist as a distinct Python object for each separate destination class. To accomplish this, the declarative extension creates a **copy** of each :class:`.Column` object encountered on a class that is detected as a mixin. This copy mechanism is limited to simple columns that have no foreign keys, as a :class:`.ForeignKey` itself contains references to columns which can't be properly recreated at this level. For columns that have foreign keys, as well as for the variety of mapper-level constructs that require destination-explicit context, the :func:`~.declared_attr` decorator (renamed from ``sqlalchemy.util.classproperty`` in 0.6.5) is provided so that patterns common to many classes can be defined as callables:: from sqlalchemy.ext.declarative import declared_attr class ReferenceAddressMixin(object): @declared_attr def address_id(cls): return Column(Integer, ForeignKey('address.id')) class User(Base, ReferenceAddressMixin): __tablename__ = 'user' id = Column(Integer, primary_key=True) Where above, the ``address_id`` class-level callable is executed at the point at which the ``User`` class is constructed, and the declarative extension can use the resulting :class:`.Column` object as returned by the method without the need to copy it. Columns generated by :func:`~.declared_attr` can also be referenced by ``__mapper_args__`` to a limited degree, currently by ``polymorphic_on`` and ``version_id_col``, by specifying the classdecorator itself into the dictionary - the declarative extension will resolve them at class construction time:: class MyMixin: @declared_attr def type_(cls): return Column(String(50)) __mapper_args__= {'polymorphic_on':type_} class MyModel(Base,MyMixin): __tablename__='test' id = Column(Integer, primary_key=True) Mixing in Relationships ~~~~~~~~~~~~~~~~~~~~~~~ Relationships created by :func:`~sqlalchemy.orm.relationship` are provided with declarative mixin classes exclusively using the :func:`.declared_attr` approach, eliminating any ambiguity which could arise when copying a relationship and its possibly column-bound contents. Below is an example which combines a foreign key column and a relationship so that two classes ``Foo`` and ``Bar`` can both be configured to reference a common target class via many-to-one:: class RefTargetMixin(object): @declared_attr def target_id(cls): return Column('target_id', ForeignKey('target.id')) @declared_attr def target(cls): return relationship("Target") class Foo(Base, RefTargetMixin): __tablename__ = 'foo' id = Column(Integer, primary_key=True) class Bar(Base, RefTargetMixin): __tablename__ = 'bar' id = Column(Integer, primary_key=True) class Target(Base): __tablename__ = 'target' id = Column(Integer, primary_key=True) :func:`~sqlalchemy.orm.relationship` definitions which require explicit primaryjoin, order_by etc. expressions should use the string forms for these arguments, so that they are evaluated as late as possible. To reference the mixin class in these expressions, use the given ``cls`` to get it's name:: class RefTargetMixin(object): @declared_attr def target_id(cls): return Column('target_id', ForeignKey('target.id')) @declared_attr def target(cls): return relationship("Target", primaryjoin="Target.id==%s.target_id" % cls.__name__ ) Mixing in deferred(), column_property(), etc. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Like :func:`~sqlalchemy.orm.relationship`, all :class:`~sqlalchemy.orm.interfaces.MapperProperty` subclasses such as :func:`~sqlalchemy.orm.deferred`, :func:`~sqlalchemy.orm.column_property`, etc. ultimately involve references to columns, and therefore, when used with declarative mixins, have the :func:`.declared_attr` requirement so that no reliance on copying is needed:: class SomethingMixin(object): @declared_attr def dprop(cls): return deferred(Column(Integer)) class Something(Base, SomethingMixin): __tablename__ = "something" Controlling table inheritance with mixins ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ``__tablename__`` attribute in conjunction with the hierarchy of classes involved in a declarative mixin scenario controls what type of table inheritance, if any, is configured by the declarative extension. If the ``__tablename__`` is computed by a mixin, you may need to control which classes get the computed attribute in order to get the type of table inheritance you require. For example, if you had a mixin that computes ``__tablename__`` but where you wanted to use that mixin in a single table inheritance hierarchy, you can explicitly specify ``__tablename__`` as ``None`` to indicate that the class should not have a table mapped:: from sqlalchemy.ext.declarative import declared_attr class Tablename: @declared_attr def __tablename__(cls): return cls.__name__.lower() class Person(Base,Tablename): id = Column(Integer, primary_key=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __tablename__ = None __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column(String(50)) Alternatively, you can make the mixin intelligent enough to only return a ``__tablename__`` in the event that no table is already mapped in the inheritance hierarchy. To help with this, a :func:`~sqlalchemy.ext.declarative.has_inherited_table` helper function is provided that returns ``True`` if a parent class already has a mapped table. As an example, here's a mixin that will only allow single table inheritance:: from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.ext.declarative import has_inherited_table class Tablename: @declared_attr def __tablename__(cls): if has_inherited_table(cls): return None return cls.__name__.lower() class Person(Base,Tablename): id = Column(Integer, primary_key=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): primary_language = Column(String(50)) __mapper_args__ = {'polymorphic_identity': 'engineer'} If you want to use a similar pattern with a mix of single and joined table inheritance, you would need a slightly different mixin and use it on any joined table child classes in addition to their parent classes:: from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.ext.declarative import has_inherited_table class Tablename: @declared_attr def __tablename__(cls): if (has_inherited_table(cls) and Tablename not in cls.__bases__): return None return cls.__name__.lower() class Person(Base,Tablename): id = Column(Integer, primary_key=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} # This is single table inheritance class Engineer(Person): primary_language = Column(String(50)) __mapper_args__ = {'polymorphic_identity': 'engineer'} # This is joined table inheritance class Manager(Person,Tablename): id = Column(Integer, ForeignKey('person.id'), primary_key=True) preferred_recreation = Column(String(50)) __mapper_args__ = {'polymorphic_identity': 'engineer'} Combining Table/Mapper Arguments from Multiple Mixins ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In the case of ``__table_args__`` or ``__mapper_args__`` specified with declarative mixins, you may want to combine some parameters from several mixins with those you wish to define on the class iteself. The :func:`.declared_attr` decorator can be used here to create user-defined collation routines that pull from multiple collections:: from sqlalchemy.ext.declarative import declared_attr class MySQLSettings: __table_args__ = {'mysql_engine':'InnoDB'} class MyOtherMixin: __table_args__ = {'info':'foo'} class MyModel(Base,MySQLSettings,MyOtherMixin): __tablename__='my_model' @declared_attr def __table_args__(cls): args = dict() args.update(MySQLSettings.__table_args__) args.update(MyOtherMixin.__table_args__) return args id = Column(Integer, primary_key=True) Creating Indexes with Mixins ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To define a named, potentially multicolumn :class:`.Index` that applies to all tables derived from a mixin, use the "inline" form of :class:`.Index` and establish it as part of ``__table_args__``:: class MyMixin(object): a = Column(Integer) b = Column(Integer) @declared_attr def __table_args__(cls): return (Index('test_idx_%s' % cls.__tablename__, 'a', 'b'),) class MyModel(Base,MyMixin): __tablename__ = 'atable' c = Column(Integer,primary_key=True) Class Constructor ================= As a convenience feature, the :func:`declarative_base` sets a default constructor on classes which takes keyword arguments, and assigns them to the named attributes:: e = Engineer(primary_language='python') Sessions ======== Note that ``declarative`` does nothing special with sessions, and is only intended as an easier way to configure mappers and :class:`~sqlalchemy.schema.Table` objects. A typical application setup using :func:`~sqlalchemy.orm.scoped_session` might look like:: engine = create_engine('postgresql://scott:tiger@localhost/test') Session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) Base = declarative_base() Mapped instances then make usage of :class:`~sqlalchemy.orm.session.Session` in the usual way. """ from sqlalchemy.schema import Table, Column, MetaData, _get_table_key from sqlalchemy.orm import synonym as _orm_synonym, mapper,\ comparable_property, class_mapper from sqlalchemy.orm.interfaces import MapperProperty from sqlalchemy.orm.properties import RelationshipProperty, ColumnProperty, CompositeProperty from sqlalchemy.orm.util import _is_mapped_class from sqlalchemy import util, exc from sqlalchemy.sql import util as sql_util, expression __all__ = 'declarative_base', 'synonym_for', \ 'comparable_using', 'instrument_declarative' def instrument_declarative(cls, registry, metadata): """Given a class, configure the class declaratively, using the given registry, which can be any dictionary, and MetaData object. """ if '_decl_class_registry' in cls.__dict__: raise exc.InvalidRequestError( "Class %r already has been " "instrumented declaratively" % cls) cls._decl_class_registry = registry cls.metadata = metadata _as_declarative(cls, cls.__name__, cls.__dict__) def has_inherited_table(cls): """Given a class, return True if any of the classes it inherits from has a mapped table, otherwise return False. """ for class_ in cls.__mro__: if getattr(class_,'__table__',None) is not None: return True return False def _as_declarative(cls, classname, dict_): # dict_ will be a dictproxy, which we can't write to, and we need to! dict_ = dict(dict_) column_copies = {} potential_columns = {} mapper_args = {} table_args = inherited_table_args = None tablename = None parent_columns = () declarative_props = (declared_attr, util.classproperty) for base in cls.__mro__: class_mapped = _is_mapped_class(base) if class_mapped: parent_columns = base.__table__.c.keys() for name,obj in vars(base).items(): if name == '__mapper_args__': if not mapper_args and ( not class_mapped or isinstance(obj, declarative_props) ): mapper_args = cls.__mapper_args__ elif name == '__tablename__': if not tablename and ( not class_mapped or isinstance(obj, declarative_props) ): tablename = cls.__tablename__ elif name == '__table_args__': if not table_args and ( not class_mapped or isinstance(obj, declarative_props) ): table_args = cls.__table_args__ if not isinstance(table_args, (tuple, dict, type(None))): raise exc.ArgumentError( "__table_args__ value must be a tuple, " "dict, or None") if base is not cls: inherited_table_args = True elif class_mapped: continue elif base is not cls: # we're a mixin. if isinstance(obj, Column): if obj.foreign_keys: raise exc.InvalidRequestError( "Columns with foreign keys to other columns " "must be declared as @declared_attr callables " "on declarative mixin classes. ") if name not in dict_ and not ( '__table__' in dict_ and (obj.name or name) in dict_['__table__'].c ) and name not in potential_columns: potential_columns[name] = \ column_copies[obj] = \ obj.copy() column_copies[obj]._creation_order = \ obj._creation_order elif isinstance(obj, MapperProperty): raise exc.InvalidRequestError( "Mapper properties (i.e. deferred," "column_property(), relationship(), etc.) must " "be declared as @declared_attr callables " "on declarative mixin classes.") elif isinstance(obj, declarative_props): dict_[name] = ret = \ column_copies[obj] = getattr(cls, name) if isinstance(ret, (Column, MapperProperty)) and \ ret.doc is None: ret.doc = obj.__doc__ # apply inherited columns as we should for k, v in potential_columns.items(): if tablename or (v.name or k) not in parent_columns: dict_[k] = v if inherited_table_args and not tablename: table_args = None # make sure that column copies are used rather # than the original columns from any mixins for k in ('version_id_col', 'polymorphic_on',): if k in mapper_args: v = mapper_args[k] mapper_args[k] = column_copies.get(v,v) if classname in cls._decl_class_registry: util.warn("The classname %r is already in the registry of this" " declarative base, mapped to %r" % ( classname, cls._decl_class_registry[classname] )) cls._decl_class_registry[classname] = cls our_stuff = util.OrderedDict() for k in dict_: value = dict_[k] if isinstance(value, declarative_props): value = getattr(cls, k) if (isinstance(value, tuple) and len(value) == 1 and isinstance(value[0], (Column, MapperProperty))): util.warn("Ignoring declarative-like tuple value of attribute " "%s: possibly a copy-and-paste error with a comma " "left at the end of the line?" % k) continue if not isinstance(value, (Column, MapperProperty)): continue if k == 'metadata': raise exc.InvalidRequestError( "Attribute name 'metadata' is reserved " "for the MetaData instance when using a " "declarative base class." ) prop = _deferred_relationship(cls, value) our_stuff[k] = prop # set up attributes in the order they were created our_stuff.sort(key=lambda key: our_stuff[key]._creation_order) # extract columns from the class dict cols = set() for key, c in our_stuff.iteritems(): if isinstance(c, (ColumnProperty, CompositeProperty)): for col in c.columns: if isinstance(col, Column) and \ col.table is None: _undefer_column_name(key, col) cols.add(col) elif isinstance(c, Column): _undefer_column_name(key, c) cols.add(c) # if the column is the same name as the key, # remove it from the explicit properties dict. # the normal rules for assigning column-based properties # will take over, including precedence of columns # in multi-column ColumnProperties. if key == c.key: del our_stuff[key] cols = sorted(cols, key=lambda c:c._creation_order) table = None if '__table__' not in dict_: if tablename is not None: if isinstance(table_args, dict): args, table_kw = (), table_args elif isinstance(table_args, tuple): if isinstance(table_args[-1], dict): args, table_kw = table_args[0:-1], table_args[-1] else: args, table_kw = table_args, {} else: args, table_kw = (), {} autoload = dict_.get('__autoload__') if autoload: table_kw['autoload'] = True cls.__table__ = table = Table(tablename, cls.metadata, *(tuple(cols) + tuple(args)), **table_kw) else: table = cls.__table__ if cols: for c in cols: if not table.c.contains_column(c): raise exc.ArgumentError( "Can't add additional column %r when " "specifying __table__" % c.key ) if 'inherits' not in mapper_args: for c in cls.__bases__: if _is_mapped_class(c): mapper_args['inherits'] = cls._decl_class_registry.get( c.__name__, None) break if hasattr(cls, '__mapper_cls__'): mapper_cls = util.unbound_method_to_callable(cls.__mapper_cls__) else: mapper_cls = mapper if table is None and 'inherits' not in mapper_args: raise exc.InvalidRequestError( "Class %r does not have a __table__ or __tablename__ " "specified and does not inherit from an existing " "table-mapped class." % cls ) elif 'inherits' in mapper_args and not mapper_args.get('concrete', False): inherited_mapper = class_mapper(mapper_args['inherits'], compile=False) inherited_table = inherited_mapper.local_table if table is None: # single table inheritance. # ensure no table args if table_args: raise exc.ArgumentError( "Can't place __table_args__ on an inherited class " "with no table." ) # add any columns declared here to the inherited table. for c in cols: if c.primary_key: raise exc.ArgumentError( "Can't place primary key columns on an inherited " "class with no table." ) if c.name in inherited_table.c: raise exc.ArgumentError( "Column '%s' on class %s conflicts with " "existing column '%s'" % (c, cls, inherited_table.c[c.name]) ) inherited_table.append_column(c) # single or joined inheritance # exclude any cols on the inherited table which are not mapped on the # parent class, to avoid # mapping columns specific to sibling/nephew classes inherited_mapper = class_mapper(mapper_args['inherits'], compile=False) inherited_table = inherited_mapper.local_table if 'exclude_properties' not in mapper_args: mapper_args['exclude_properties'] = exclude_properties = \ set([c.key for c in inherited_table.c if c not in inherited_mapper._columntoproperty]) exclude_properties.difference_update([c.key for c in cols]) # look through columns in the current mapper that # are keyed to a propname different than the colname # (if names were the same, we'd have popped it out above, # in which case the mapper makes this combination). # See if the superclass has a similar column property. # If so, join them together. for k, col in our_stuff.items(): if not isinstance(col, expression.ColumnElement): continue if k in inherited_mapper._props: p = inherited_mapper._props[k] if isinstance(p, ColumnProperty): # note here we place the superclass column # first. this corresponds to the # append() in mapper._configure_property(). # change this ordering when we do [ticket:1892] our_stuff[k] = p.columns + [col] cls.__mapper__ = mapper_cls(cls, table, properties=our_stuff, **mapper_args) class DeclarativeMeta(type): def __init__(cls, classname, bases, dict_): if '_decl_class_registry' in cls.__dict__: return type.__init__(cls, classname, bases, dict_) _as_declarative(cls, classname, cls.__dict__) return type.__init__(cls, classname, bases, dict_) def __setattr__(cls, key, value): if '__mapper__' in cls.__dict__: if isinstance(value, Column): _undefer_column_name(key, value) cls.__table__.append_column(value) cls.__mapper__.add_property(key, value) elif isinstance(value, ColumnProperty): for col in value.columns: if isinstance(col, Column) and col.table is None: _undefer_column_name(key, col) cls.__table__.append_column(col) cls.__mapper__.add_property(key, value) elif isinstance(value, MapperProperty): cls.__mapper__.add_property( key, _deferred_relationship(cls, value) ) else: type.__setattr__(cls, key, value) else: type.__setattr__(cls, key, value) class _GetColumns(object): def __init__(self, cls): self.cls = cls def __getattr__(self, key): mapper = class_mapper(self.cls, compile=False) if mapper: if not mapper.has_property(key): raise exc.InvalidRequestError( "Class %r does not have a mapped column named %r" % (self.cls, key)) prop = mapper.get_property(key) if not isinstance(prop, ColumnProperty): raise exc.InvalidRequestError( "Property %r is not an instance of" " ColumnProperty (i.e. does not correspond" " directly to a Column)." % key) return getattr(self.cls, key) class _GetTable(object): def __init__(self, key, metadata): self.key = key self.metadata = metadata def __getattr__(self, key): return self.metadata.tables[ _get_table_key(key, self.key) ] def _deferred_relationship(cls, prop): def resolve_arg(arg): import sqlalchemy def access_cls(key): if key in cls._decl_class_registry: return _GetColumns(cls._decl_class_registry[key]) elif key in cls.metadata.tables: return cls.metadata.tables[key] elif key in cls.metadata._schemas: return _GetTable(key, cls.metadata) else: return sqlalchemy.__dict__[key] d = util.PopulateDict(access_cls) def return_cls(): try: x = eval(arg, globals(), d) if isinstance(x, _GetColumns): return x.cls else: return x except NameError, n: raise exc.InvalidRequestError( "When initializing mapper %s, expression %r failed to " "locate a name (%r). If this is a class name, consider " "adding this relationship() to the %r class after " "both dependent classes have been defined." % (prop.parent, arg, n.args[0], cls) ) return return_cls if isinstance(prop, RelationshipProperty): for attr in ('argument', 'order_by', 'primaryjoin', 'secondaryjoin', 'secondary', '_user_defined_foreign_keys', 'remote_side'): v = getattr(prop, attr) if isinstance(v, basestring): setattr(prop, attr, resolve_arg(v)) if prop.backref and isinstance(prop.backref, tuple): key, kwargs = prop.backref for attr in ('primaryjoin', 'secondaryjoin', 'secondary', 'foreign_keys', 'remote_side', 'order_by'): if attr in kwargs and isinstance(kwargs[attr], basestring): kwargs[attr] = resolve_arg(kwargs[attr]) return prop def synonym_for(name, map_column=False): """Decorator, make a Python @property a query synonym for a column. A decorator version of :func:`~sqlalchemy.orm.synonym`. The function being decorated is the 'descriptor', otherwise passes its arguments through to synonym():: @synonym_for('col') @property def prop(self): return 'special sauce' The regular ``synonym()`` is also usable directly in a declarative setting and may be convenient for read/write properties:: prop = synonym('col', descriptor=property(_read_prop, _write_prop)) """ def decorate(fn): return _orm_synonym(name, map_column=map_column, descriptor=fn) return decorate def comparable_using(comparator_factory): """Decorator, allow a Python @property to be used in query criteria. This is a decorator front end to :func:`~sqlalchemy.orm.comparable_property` that passes through the comparator_factory and the function being decorated:: @comparable_using(MyComparatorType) @property def prop(self): return 'special sauce' The regular ``comparable_property()`` is also usable directly in a declarative setting and may be convenient for read/write properties:: prop = comparable_property(MyComparatorType) """ def decorate(fn): return comparable_property(comparator_factory, fn) return decorate class declared_attr(property): """Mark a class-level method as representing the definition of a mapped property or special declarative member name. .. note:: @declared_attr is available as ``sqlalchemy.util.classproperty`` for SQLAlchemy versions 0.6.2, 0.6.3, 0.6.4. @declared_attr turns the attribute into a scalar-like property that can be invoked from the uninstantiated class. Declarative treats attributes specifically marked with @declared_attr as returning a construct that is specific to mapping or declarative table configuration. The name of the attribute is that of what the non-dynamic version of the attribute would be. @declared_attr is more often than not applicable to mixins, to define relationships that are to be applied to different implementors of the class:: class ProvidesUser(object): "A mixin that adds a 'user' relationship to classes." @declared_attr def user(self): return relationship("User") It also can be applied to mapped classes, such as to provide a "polymorphic" scheme for inheritance:: class Employee(Base): id = Column(Integer, primary_key=True) type = Column(String(50), nullable=False) @declared_attr def __tablename__(cls): return cls.__name__.lower() @declared_attr def __mapper_args__(cls): if cls.__name__ == 'Employee': return { "polymorphic_on":cls.type, "polymorphic_identity":"Employee" } else: return {"polymorphic_identity":cls.__name__} """ def __init__(self, fget, *arg, **kw): super(declared_attr, self).__init__(fget, *arg, **kw) self.__doc__ = fget.__doc__ def __get__(desc, self, cls): return desc.fget(cls) def _declarative_constructor(self, **kwargs): """A simple constructor that allows initialization from kwargs. Sets attributes on the constructed instance using the names and values in ``kwargs``. Only keys that are present as attributes of the instance's class are allowed. These could be, for example, any mapped columns or relationships. """ cls_ = type(self) for k in kwargs: if not hasattr(cls_, k): raise TypeError( "%r is an invalid keyword argument for %s" % (k, cls_.__name__)) setattr(self, k, kwargs[k]) _declarative_constructor.__name__ = '__init__' def declarative_base(bind=None, metadata=None, mapper=None, cls=object, name='Base', constructor=_declarative_constructor, metaclass=DeclarativeMeta): """Construct a base class for declarative class definitions. The new base class will be given a metaclass that produces appropriate :class:`~sqlalchemy.schema.Table` objects and makes the appropriate :func:`~sqlalchemy.orm.mapper` calls based on the information provided declaratively in the class and any subclasses of the class. :param bind: An optional :class:`~sqlalchemy.engine.base.Connectable`, will be assigned the ``bind`` attribute on the :class:`~sqlalchemy.MetaData` instance. :param metadata: An optional :class:`~sqlalchemy.MetaData` instance. All :class:`~sqlalchemy.schema.Table` objects implicitly declared by subclasses of the base will share this MetaData. A MetaData instance will be created if none is provided. The :class:`~sqlalchemy.MetaData` instance will be available via the `metadata` attribute of the generated declarative base class. :param mapper: An optional callable, defaults to :func:`~sqlalchemy.orm.mapper`. Will be used to map subclasses to their Tables. :param cls: Defaults to :class:`object`. A type to use as the base for the generated declarative base class. May be a class or tuple of classes. :param name: Defaults to ``Base``. The display name for the generated class. Customizing this is not required, but can improve clarity in tracebacks and debugging. :param constructor: Defaults to :func:`~sqlalchemy.ext.declarative._declarative_constructor`, an __init__ implementation that assigns \**kwargs for declared fields and relationships to an instance. If ``None`` is supplied, no __init__ will be provided and construction will fall back to cls.__init__ by way of the normal Python semantics. :param metaclass: Defaults to :class:`.DeclarativeMeta`. A metaclass or __metaclass__ compatible callable to use as the meta type of the generated declarative base class. """ lcl_metadata = metadata or MetaData() if bind: lcl_metadata.bind = bind bases = not isinstance(cls, tuple) and (cls,) or cls class_dict = dict(_decl_class_registry=dict(), metadata=lcl_metadata) if constructor: class_dict['__init__'] = constructor if mapper: class_dict['__mapper_cls__'] = mapper return metaclass(name, bases, class_dict) def _undefer_column_name(key, column): if column.key is None: column.key = key if column.name is None: column.name = key
StarcoderdataPython
1744782
""" Helper functions and exceptions for the Zenodo extension """ from datetime import datetime import os import re import tempfile from urllib.parse import urlparse, urlencode import zipfile class UserMistake(Exception): """Raised when something went wrong due to user input""" pass def get_id(doi): """Parses Zenodo DOI to isolate record id Parameters ---------- doi : string doi to isolate record id from; must not be empty Returns ------ string The Zenodo record id at the end of the doi Notes ----- - DOIs are expected to be in the form 10.xxxx/zenodo.xxxxx - Behaviour is undefined if they are given in another format """ if not doi: raise Exception("No doi") elif not re.match(r'10\.[0-9]+\/zenodo\.[0-9]+$', doi): raise Exception("Doi is invalid (wrong format)") else: record_id = doi.split('.')[-1] return record_id def zip_dir(directory): """Create zip file filename from directory Parameters ---------- directory : string Explicit path to directory to be zipped Returns ------- string Full path of zipped file """ if not os.path.exists(directory): raise UserMistake("That directory path is not valid. To use your" " work directory, leave the directory field empty") # Create temporary directory for archive temp_dir = tempfile.mkdtemp() filepath = os.path.join(temp_dir, 'archive.zip') with zipfile.ZipFile(filepath, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, dirs, files in os.walk(directory): for afile in files: zipf.write(os.path.join(root, afile)) return filepath def add_query_parameter(url, params): """Add query parameters to an existing url Parameters ---------- url : string Url to add to params : dict Labels and values to add to url Returns ------- string Updated url """ if not params: raise Exception("No query arguments given") if not url: raise Exception("Empty url") url += ('&' if urlparse(url).query else '?') + urlencode(params) return url
StarcoderdataPython
1652447
# coding: utf-8 from unittest import TestCase from siebenapp.goaltree import Goals from siebenapp.domain import ( EdgeType, HoldSelect, ToggleClose, Delete, ToggleLink, Add, Select, Insert, Rename, ) from siebenapp.tests.dsl import build_goaltree, open_, selected, previous, clos_ class GoalsTest(TestCase): def setUp(self): self.messages = [] self.goals = Goals("Root", self._register_message) def _register_message(self, msg): self.messages.append(msg) def build(self, *goal_prototypes): return build_goaltree(*goal_prototypes, message_fn=self._register_message) def test_there_is_one_goal_at_start(self): assert self.goals.q(keys="name,switchable") == { 1: {"name": "Root", "switchable": True} } def test_new_goal_moves_to_top(self): self.goals.accept(Add("A")) assert self.goals.q(keys="name,switchable") == { 1: {"name": "Root", "switchable": False}, 2: {"name": "A", "switchable": True}, } def test_added_goal_has_strong_link_with_parent(self): self.goals.accept(Add("New")) assert self.goals.q(keys="name,edge") == { 1: {"name": "Root", "edge": [(2, EdgeType.PARENT)]}, 2: {"name": "New", "edge": []}, } def test_two_new_goals_move_to_top(self): self.goals.accept_all(Add("A"), Add("B")) assert self.goals.q(keys="name,switchable") == { 1: {"name": "Root", "switchable": False}, 2: {"name": "A", "switchable": True}, 3: {"name": "B", "switchable": True}, } def test_two_goals_in_a_chain(self): self.goals.accept_all(Add("A"), Add("AA", 2)) assert self.goals.q(keys="name,switchable") == { 1: {"name": "Root", "switchable": False}, 2: {"name": "A", "switchable": False}, 3: {"name": "AA", "switchable": True}, } def test_rename_goal(self): self.goals.accept_all(Add("Boom"), Select(2), Rename("A")) assert self.goals.q() == {1: {"name": "Root"}, 2: {"name": "A"}} def test_insert_goal_in_the_middle(self): self.goals.accept_all(Add("B"), HoldSelect(), Select(2)) assert self.goals.q(keys="name,edge,switchable") == { 1: {"name": "Root", "edge": [(2, EdgeType.PARENT)], "switchable": False}, 2: {"name": "B", "edge": [], "switchable": True}, } self.goals.accept(Insert("A")) assert self.goals.q(keys="name,edge,switchable") == { 1: {"name": "Root", "edge": [(3, EdgeType.PARENT)], "switchable": False}, 2: {"name": "B", "edge": [], "switchable": True}, 3: {"name": "A", "edge": [(2, EdgeType.PARENT)], "switchable": False}, } def test_insert_goal_between_independent_goals(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", select=previous), open_(3, "B", select=selected), ) self.goals.accept(Insert("Wow")) assert self.goals.q(keys="name,edge,switchable") == { 1: { "name": "Root", "edge": [(2, EdgeType.PARENT), (3, EdgeType.PARENT)], "switchable": False, }, 2: {"name": "A", "edge": [(4, EdgeType.BLOCKER)], "switchable": False}, 3: {"name": "B", "edge": [], "switchable": True}, 4: {"name": "Wow", "edge": [(3, EdgeType.BLOCKER)], "switchable": False}, } def test_reverse_insertion(self): """Not sure whether such trick should be legal""" self.goals = self.build( open_(1, "Root", [2], select=selected), open_(2, "Selected", select=previous), ) self.goals.accept(Insert("Intermediate?")) # No, it's not intermediate assert self.goals.q("name,edge") == { 1: {"name": "Root", "edge": [(2, EdgeType.PARENT)]}, 2: {"name": "Selected", "edge": [(3, EdgeType.BLOCKER)]}, 3: {"name": "Intermediate?", "edge": []}, } def test_close_single_goal(self): assert self.goals.q(keys="name,open") == {1: {"name": "Root", "open": True}} self.goals.accept(ToggleClose()) assert self.goals.q(keys="name,open,switchable") == { 1: {"name": "Root", "open": False, "switchable": True} } def test_reopen_goal(self): self.goals = self.build(open_(1, "Root", [2]), clos_(2, "A", select=selected)) assert self.goals.q(keys="open") == {1: {"open": True}, 2: {"open": False}} self.goals.accept(ToggleClose()) assert self.goals.q(keys="open,switchable") == { 1: {"open": True, "switchable": False}, 2: {"open": True, "switchable": True}, } def test_close_goal_again(self): self.goals = self.build( open_(1, "Root", [2], select=selected), open_(2, "A", [3]), clos_(3, "Ab"), ) self.goals.accept_all(Select(2), ToggleClose()) assert self.goals.q(keys="open,switchable") == { 1: {"open": True, "switchable": True}, 2: {"open": False, "switchable": True}, 3: {"open": False, "switchable": False}, } self.goals.accept_all(Select(2), ToggleClose()) assert self.goals.q(keys="open,switchable") == { 1: {"open": True, "switchable": False}, 2: {"open": True, "switchable": True}, 3: {"open": False, "switchable": True}, } self.goals.accept_all(Select(2), ToggleClose()) assert self.goals.q(keys="open,switchable") == { 1: {"open": True, "switchable": True}, 2: {"open": False, "switchable": True}, 3: {"open": False, "switchable": False}, } def test_closed_leaf_goal_could_not_be_reopened(self): self.goals = self.build( open_(1, "Root", [2], select=selected), clos_(2, "A", [3]), clos_(3, "B") ) assert self.goals.q(keys="open,switchable") == { 1: {"open": True, "switchable": True}, 2: {"open": False, "switchable": True}, 3: {"open": False, "switchable": False}, } self.goals.accept_all(Select(3), ToggleClose()) # nothing should change assert self.goals.q(keys="open,switchable") == { 1: {"open": True, "switchable": True}, 2: {"open": False, "switchable": True}, 3: {"open": False, "switchable": False}, } def test_goal_in_the_middle_could_not_be_closed(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", blockers=[4]), open_(3, "B", [4], select=selected), open_(4, "C"), ) self.goals.accept(ToggleClose()) assert self.goals.q(keys="open") == { 1: {"open": True}, 2: {"open": True}, 3: {"open": True}, 4: {"open": True}, } def test_delete_single_goal(self): self.goals = self.build(open_(1, "Root", [2]), open_(2, "A", select=selected)) self.goals.accept(Delete()) assert self.goals.q(keys="name,select,switchable") == { 1: {"name": "Root", "select": "select", "switchable": True}, } def test_enumeration_should_not_be_changed_after_delete(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", select=selected), open_(3, "B") ) self.goals.accept(Delete()) assert self.goals.q(keys="name,switchable") == { 1: {"name": "Root", "switchable": False}, 3: {"name": "B", "switchable": True}, } def test_remove_goal_chain_with_children(self): self.goals = self.build( open_(1, "Root", [2]), open_(2, "A", [3], select=selected), open_(3, "B") ) self.goals.accept(Delete()) assert self.goals.q() == {1: {"name": "Root"}} def test_relink_goal_chain_with_blockers(self): self.goals = self.build( open_(1, "Root", [2]), open_(2, "A", blockers=[3], select=selected), open_(3, "B"), ) self.goals.accept(Delete()) assert self.goals.q("name,edge") == { 1: {"name": "Root", "edge": [(3, EdgeType.BLOCKER)]}, 3: {"name": "B", "edge": []}, } def test_select_parent_after_delete(self): self.goals = self.build( open_(1, "Root", [2], select=previous), open_(2, "Parent", [3]), open_(3, "Delete me", select=selected), ) self.goals.accept(Delete()) assert self.goals.q("name,edge,select") == { 1: {"name": "Root", "edge": [(2, EdgeType.PARENT)], "select": None}, 2: {"name": "Parent", "edge": [], "select": "select"}, } def test_add_link_between_goals(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", select=previous), open_(3, "B", select=selected), ) assert self.goals.q(keys="switchable,edge") == { 1: { "switchable": False, "edge": [(2, EdgeType.PARENT), (3, EdgeType.PARENT)], }, 2: {"switchable": True, "edge": []}, 3: {"switchable": True, "edge": []}, } self.goals.accept(ToggleLink()) assert self.goals.q(keys="switchable,edge") == { 1: { "switchable": False, "edge": [(2, EdgeType.PARENT), (3, EdgeType.PARENT)], }, 2: {"switchable": False, "edge": [(3, EdgeType.BLOCKER)]}, 3: {"switchable": True, "edge": []}, } def test_view_edges(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", [4]), open_(3, "B", blockers=[4], select=previous), open_(4, "C", select=selected), ) assert self.goals.q(keys="edge,switchable") == { 1: { "edge": [(2, EdgeType.PARENT), (3, EdgeType.PARENT)], "switchable": False, }, 2: {"edge": [(4, EdgeType.PARENT)], "switchable": False}, 3: {"edge": [(4, EdgeType.BLOCKER)], "switchable": False}, 4: {"edge": [], "switchable": True}, } def test_no_link_to_self_is_allowed(self): self.goals.accept(ToggleLink()) assert self.goals.q(keys="edge") == {1: {"edge": []}} def test_no_loops_allowed(self): self.goals = self.build( open_(1, "Root", [2], select=selected), open_(2, "step", [3]), open_(3, "next", [4]), open_(4, "more", select=previous), ) self.goals.accept(ToggleLink()) assert self.goals.q(keys="edge") == { 1: {"edge": [(2, EdgeType.PARENT)]}, 2: {"edge": [(3, EdgeType.PARENT)]}, 3: {"edge": [(4, EdgeType.PARENT)]}, 4: {"edge": []}, } def test_new_parent_link_replaces_old_one(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "Old parent", [4]), open_(3, "New parent", select=previous), open_(4, "Child", select=selected), ) self.goals.accept(ToggleLink(edge_type=EdgeType.PARENT)) assert self.goals.q(keys="edge") == { 1: {"edge": [(2, EdgeType.PARENT), (3, EdgeType.PARENT)]}, 2: {"edge": [(4, EdgeType.BLOCKER)]}, 3: {"edge": [(4, EdgeType.PARENT)]}, 4: {"edge": []}, } def test_new_parent_link_replaces_old_one_when_changed_from_blocker(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", select=selected), open_(3, "B", blockers=[2], select=previous), ) self.goals.accept(ToggleLink(edge_type=EdgeType.PARENT)) assert self.goals.q("name,edge") == { 1: {"name": "Root", "edge": [(2, EdgeType.BLOCKER), (3, EdgeType.PARENT)]}, 2: {"name": "A", "edge": []}, 3: {"name": "B", "edge": [(2, EdgeType.PARENT)]}, } def test_remove_link_between_goals(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", blockers=[3], select=previous), open_(3, "B", select=selected), ) self.goals.accept(ToggleLink(edge_type=EdgeType.BLOCKER)) assert self.goals.q(keys="edge,switchable") == { 1: { "edge": [(2, EdgeType.PARENT), (3, EdgeType.PARENT)], "switchable": False, }, 2: {"edge": [], "switchable": True}, 3: {"edge": [], "switchable": True}, } def test_change_link_type(self): self.goals = self.build( open_(1, "Root", [2], select=previous), open_(2, "Top", [], select=selected) ) assert self.goals.q(keys="name,edge") == { 1: {"name": "Root", "edge": [(2, EdgeType.PARENT)]}, 2: {"name": "Top", "edge": []}, } self.goals.accept(ToggleLink()) assert self.goals.q(keys="name,edge") == { 1: {"name": "Root", "edge": [(2, EdgeType.BLOCKER)]}, 2: {"name": "Top", "edge": []}, } self.goals.accept(ToggleLink(edge_type=EdgeType.PARENT)) assert self.goals.q(keys="name,edge") == { 1: {"name": "Root", "edge": [(2, EdgeType.PARENT)]}, 2: {"name": "Top", "edge": []}, } def test_remove_blocked_goal_without_children(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", [4]), open_(3, "B", blockers=[4]), open_(4, "C", select=selected), ) assert self.goals.q(keys="name,edge") == { 1: {"name": "Root", "edge": [(2, EdgeType.PARENT), (3, EdgeType.PARENT)]}, 2: {"name": "A", "edge": [(4, EdgeType.PARENT)]}, 3: {"name": "B", "edge": [(4, EdgeType.BLOCKER)]}, 4: {"name": "C", "edge": []}, } self.goals.accept_all(Select(3), Delete()) assert self.goals.q(keys="name,edge,switchable") == { 1: {"name": "Root", "edge": [(2, EdgeType.PARENT)], "switchable": False}, 2: {"name": "A", "edge": [(4, EdgeType.PARENT)], "switchable": False}, 4: {"name": "C", "edge": [], "switchable": True}, } def test_root_goal_is_selected_by_default(self): assert self.goals.q(keys="select") == {1: {"select": "select"}} self.goals.accept(Add("A")) assert self.goals.q(keys="select") == { 1: {"select": "select"}, 2: {"select": None}, } self.goals.accept(Add("B")) assert self.goals.q(keys="select") == { 1: {"select": "select"}, 2: {"select": None}, 3: {"select": None}, } def test_new_goal_is_added_to_the_selected_node(self): self.goals.accept_all(Add("A"), Select(2)) assert self.goals.q(keys="name,select") == { 1: {"name": "Root", "select": "prev"}, 2: {"name": "A", "select": "select"}, } self.goals.accept(Add("B")) assert self.goals.q(keys="name,select,edge") == { 1: {"name": "Root", "select": "prev", "edge": [(2, EdgeType.PARENT)]}, 2: {"name": "A", "select": "select", "edge": [(3, EdgeType.PARENT)]}, 3: {"name": "B", "select": None, "edge": []}, } def test_move_selection_to_another_open_goal_after_closing(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "A", select=selected), open_(3, "B") ) self.goals.accept(ToggleClose()) assert self.goals.q(keys="open,select") == { 1: {"open": True, "select": None}, 2: {"open": False, "select": None}, 3: {"open": True, "select": "select"}, } def test_move_selection_to_another_open_goal_with_given_root_after_closing(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "Should not be selected"), open_(3, "Subroot", [4, 5]), open_(4, "Must be selected"), open_(5, "Closing", select=selected), ) self.goals.accept(ToggleClose(3)) assert self.goals.q(keys="open,select") == { 1: {"open": True, "select": None}, 2: {"open": True, "select": None}, 3: {"open": True, "select": None}, 4: {"open": True, "select": "select"}, 5: {"open": False, "select": None}, } def test_do_not_select_unswitchable_goal_after_closing(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "Should not be selected"), open_(3, "Subroot", [4, 5]), open_(4, "intermediate", [6]), open_(5, "Closing", select=selected), open_(6, "Must be selected"), ) self.goals.accept(ToggleClose(3)) assert self.goals.q(keys="open,select") == { 1: {"open": True, "select": None}, 2: {"open": True, "select": None}, 3: {"open": True, "select": None}, 4: {"open": True, "select": None}, 5: {"open": False, "select": None}, 6: {"open": True, "select": "select"}, } def test_ignore_wrong_selection(self): self.goals.accept(Select(2)) assert self.goals.q(keys="select") == {1: {"select": "select"}} def test_do_not_select_deleted_goals(self): self.goals = self.build( open_(1, "Root", [2]), open_(2, "broken", select=selected) ) self.goals.accept_all(Delete(), Select(2)) assert self.goals.q(keys="select") == {1: {"select": "select"}} def test_selection_should_be_instant(self): self.goals = self.build( open_(1, "Root", [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], select=selected), open_(2, "A"), open_(3, "B"), open_(4, "C"), open_(5, "D"), open_(6, "E"), open_(7, "F"), open_(8, "G"), open_(9, "H"), open_(10, "I"), open_(11, "J"), ) self.goals.accept(Select(2)) assert self.goals.q(keys="select") == { 1: {"select": "prev"}, 2: {"select": "select"}, 3: {"select": None}, 4: {"select": None}, 5: {"select": None}, 6: {"select": None}, 7: {"select": None}, 8: {"select": None}, 9: {"select": None}, 10: {"select": None}, 11: {"select": None}, } self.goals.accept(Select(11)) assert self.goals.q(keys="select") == { 1: {"select": "prev"}, 2: {"select": None}, 3: {"select": None}, 4: {"select": None}, 5: {"select": None}, 6: {"select": None}, 7: {"select": None}, 8: {"select": None}, 9: {"select": None}, 10: {"select": None}, 11: {"select": "select"}, } def test_add_events(self): assert self.goals.events().pop() == ("add", 1, "Root", True) self.goals.accept(Add("Next")) assert self.goals.events()[-2] == ("add", 2, "Next", True) assert self.goals.events()[-1] == ("link", 1, 2, EdgeType.PARENT) def test_select_events(self): self.goals.accept_all(Add("Next"), Select(2)) assert self.goals.events()[-1] == ("select", 2) self.goals.accept_all(HoldSelect(), Select(1)) assert self.goals.events()[-2] == ("hold_select", 2) assert self.goals.events()[-1] == ("select", 1) def test_toggle_close_events(self): self.goals.accept(ToggleClose()) assert self.goals.events()[-3] == ("toggle_close", False, 1) assert self.goals.events()[-2] == ("select", 1) assert self.goals.events()[-1] == ("hold_select", 1) self.goals.accept(ToggleClose()) assert self.goals.events()[-1] == ("toggle_close", True, 1) def test_rename_event(self): self.goals.accept(Rename("New")) assert self.goals.events()[-1] == ("rename", "New", 1) def test_delete_events(self): self.goals.accept_all(Add("Sheep"), Select(2), Delete()) assert self.goals.events()[-3] == ("delete", 2) assert self.goals.events()[-2] == ("select", 1) assert self.goals.events()[-1] == ("hold_select", 1) def test_link_events(self): self.goals.accept_all( Add("Next"), Add("More"), Select(2), HoldSelect(), Select(3), ToggleLink() ) assert self.goals.events()[-1] == ("link", 2, 3, EdgeType.BLOCKER) self.goals.accept(ToggleLink()) assert self.goals.events()[-1] == ("unlink", 2, 3, EdgeType.BLOCKER) def test_change_link_type_events(self): self.goals = self.build( open_(1, "Root", [2, 3]), open_(2, "Lower", blockers=[3], select=previous), open_(3, "Upper", [], select=selected), ) self.goals.accept(ToggleLink(edge_type=EdgeType.PARENT)) assert self.goals.events()[-4] == ("link", 2, 3, EdgeType.PARENT) assert self.goals.events()[-3] == ("unlink", 2, 3, EdgeType.BLOCKER) assert self.goals.events()[-2] == ("link", 1, 3, EdgeType.BLOCKER) assert self.goals.events()[-1] == ("unlink", 1, 3, EdgeType.PARENT) def test_no_messages_at_start(self): assert self.messages == [] def test_no_message_on_good_add(self): self.goals = self.build(open_(1, "Root", select=selected)) self.goals.accept(Add("Success")) assert self.messages == [] def test_message_on_wrong_add(self): self.goals = self.build(clos_(1, "Root", select=selected)) self.goals.accept(Add("Failed")) assert len(self.messages) == 1 def test_no_message_on_good_insert(self): self.goals = self.build( open_(1, "Root", [2], select=previous), open_(2, "Top", select=selected) ) self.goals.accept(Insert("Success")) assert self.messages == [] def test_message_on_insert_without_two_goals(self): self.goals = self.build(open_(1, "Root", select=selected)) self.goals.accept(Insert("Failed")) assert len(self.messages) == 1 def test_message_on_circular_insert(self): self.goals = self.build( open_(1, "Root", [2], select=selected), open_(2, "Top", [], select=previous) ) self.goals.accept(Insert("Failed")) assert len(self.messages) == 1 def test_no_message_on_valid_closing(self): self.goals = self.build( open_(1, "Root", [2]), open_(2, "Top", [], select=selected) ) self.goals.accept(ToggleClose()) assert self.messages == [] def test_message_on_closing_blocked_goal(self): self.goals = self.build(open_(1, "Root", [2], select=selected), open_(2, "Top")) self.goals.accept(ToggleClose()) assert len(self.messages) == 1 def test_no_message_on_valid_reopening(self): self.goals = self.build(clos_(1, "Root", [2], select=selected), clos_(2, "Top")) self.goals.accept(ToggleClose()) assert self.messages == [] def test_message_on_reopening_blocked_goal(self): self.goals = self.build( clos_(1, "Root", [2]), clos_(2, "Top", [], select=selected) ) self.goals.accept(ToggleClose()) assert len(self.messages) == 1 def test_no_message_on_delete_non_root_goal(self): self.goals = self.build( clos_(1, "Root", [2]), clos_(2, "Top", [], select=selected) ) self.goals.accept(Delete()) assert self.messages == [] def test_message_on_delete_root_goal(self): self.goals = self.build(clos_(1, "Root", [2], select=selected), clos_(2, "Top")) self.goals.accept(Delete()) assert len(self.messages) == 1 def test_no_message_on_allowed_link(self): self.goals = self.build( open_(1, "Root", [2], select=previous), open_(2, "Middle", [3]), open_(3, "Top", [], select=selected), ) self.goals.accept(ToggleLink()) assert self.messages == [] def test_message_on_link_to_self(self): self.goals = self.build( open_(1, "Root", [2]), open_(2, "Middle", [3]), open_(3, "Top", [], select=selected), ) self.goals.accept(ToggleLink()) assert len(self.messages) == 1 def test_no_message_when_remove_not_last_link(self): self.goals = self.build( open_(1, "Root", [2, 3], select=previous), open_(2, "Middle", blockers=[3]), open_(3, "Top", [], select=selected), ) self.goals.accept(ToggleLink()) assert self.messages == [] def test_message_when_remove_last_link(self): self.goals = self.build( open_(1, "Root", [2]), open_(2, "Middle", [3], select=previous), open_(3, "Top", [], select=selected), ) self.goals.accept(ToggleLink(edge_type=EdgeType.PARENT)) assert len(self.messages) == 1 def test_message_when_closed_goal_is_blocked_by_open_one(self): self.goals = self.build( open_(1, "Root", [2, 3]), clos_(2, "Middle", [], select=previous), open_(3, "Top", [], select=selected), ) self.goals.accept(ToggleLink()) assert len(self.messages) == 1
StarcoderdataPython
1727396
# -*- coding: utf-8 -*- import json import time from datetime import datetime as dt from . import test_common class TestOomusicPlaylist(test_common.TestOomusicCommon): def test_00_create_interact(self): """ Test creation and basic interaction """ self.FolderScanObj.with_context(test_mode=True)._scan_folder(self.Folder.id) playlist = self.PlaylistObj.create({"name": "crotte"}) # _onchange_album_id album1 = self.AlbumObj.search([("name", "=", "Album1")]) playlist.album_id = album1 playlist._onchange_album_id() self.assertEqual(playlist.album_id, self.AlbumObj) self.assertEqual( playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name"), [u"Song1", u"Song2"], ) playlist.action_purge() # _onchange_artist_id artist1 = self.ArtistObj.search([("name", "=", "Artist1")]) playlist.artist_id = artist1 playlist._onchange_artist_id() self.assertEqual(playlist.artist_id, self.ArtistObj) self.assertEqual( playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name"), [u"Song3", u"Song4", u"Song1", u"Song2"], ) playlist.action_purge() # action_current playlist.action_current() playlist.invalidate_cache() playlist_search = self.PlaylistObj.search([("current", "=", True)]) self.assertEqual(playlist_search, playlist) self.cleanUp() def test_10_create_interact(self): """ Test creation and basic interaction of playlist lines """ self.FolderScanObj.with_context(test_mode=True)._scan_folder(self.Folder.id) tracks = self.TrackObj.search([], limit=2) playlist = self.PlaylistObj.search([("current", "=", True)], limit=1) # Create playlist_line = self.PlaylistLineObj.create( {"playlist_id": playlist.id, "track_id": tracks[0].id} ) # Write playlist_line.write({"track_id": tracks[1].id}) # Unlink playlist_line.unlink() self.cleanUp() def test_20_player_interaction(self): """ Test player interaction: play, next... """ self.FolderScanObj.with_context(test_mode=True)._scan_folder(self.Folder.id) playlist1 = self.PlaylistObj.search([("current", "=", True)], limit=1) playlist2 = self.PlaylistObj.create({"name": "crotte"}) artist1 = self.ArtistObj.search([("name", "=", "Artist1")]) artist2 = self.ArtistObj.search([("name", "=", "Artist2")]) playlist1.artist_id = artist1 playlist1.audio_mode = "raw" playlist1._onchange_artist_id() playlist2.artist_id = artist2 playlist2._onchange_artist_id() # oomusic_set_current playlist1.playlist_line_ids[0].playing = True playlist2.playlist_line_ids[0].oomusic_set_current() self.assertEqual(playlist1.current, False) self.assertEqual(playlist2.current, True) self.assertEqual(playlist1.playlist_line_ids[0].playing, False) self.assertEqual(playlist2.playlist_line_ids[0].playing, True) # oomusic_play_skip playlist2.playlist_line_ids[0].oomusic_play_skip(play=True) self.assertEqual(playlist2.playlist_line_ids[0].track_id.play_count, 1) self.assertEqual(playlist2.playlist_line_ids[0].track_id.play_skip_ratio, 1) playlist2.playlist_line_ids[0].track_id.last_play_skip_ratio = dt.now().replace(year=2016) playlist2.playlist_line_ids[0].oomusic_play_skip(play=True) self.assertEqual(playlist2.playlist_line_ids[0].track_id.play_count, 2) self.assertEqual(playlist2.playlist_line_ids[0].track_id.play_skip_ratio, 2) playlist2.playlist_line_ids[0].track_id.last_play_skip_ratio = dt.now().replace(year=2016) playlist2.playlist_line_ids[0].oomusic_play_skip(play=False) self.assertEqual(playlist2.playlist_line_ids[0].track_id.skip_count, 1) self.assertEqual(playlist2.playlist_line_ids[0].track_id.play_skip_ratio, 2) # oomusic_play res = json.loads(playlist1.playlist_line_ids[0].with_context(test_mode=True).oomusic_play()) track = playlist1.playlist_line_ids[0].track_id self.assertEqual(res["track_id"], track.id) self.assertEqual(res["title"], "{} - {}".format(track.artist_id.name, track.name)) self.assertEqual(res["duration"], track.duration) self.assertEqual(res["image"], "TEST") src = res["src"][0].split("?") src[1] = src[1].split("&") src[1].sort() self.assertEqual(src[0], "/oomusic/trans/{}.mp3".format(track.id)) self.assertEqual(src[1], [u"mode=raw", u"seek=0"]) src = res["src"][1].split("?") src[1] = src[1].split("&") src[1].sort() self.assertEqual(src[0], "/oomusic/trans/{}.opus".format(track.id)) self.assertEqual(src[1], [u"mode=standard", u"seek=0"]) src = res["src"][2].split("?") src[1] = src[1].split("&") src[1].sort() self.assertEqual(src[0], "/oomusic/trans/{}.ogg".format(track.id)) self.assertEqual(src[1], [u"mode=standard", u"seek=0"]) src = res["src"][3].split("?") src[1] = src[1].split("&") src[1].sort() self.assertEqual(src[0], u"/oomusic/trans/{}.mp3".format(track.id)) self.assertEqual(src[1], [u"mode=standard", u"seek=0"]) # oomusic_next res = json.loads(playlist1.playlist_line_ids[0].with_context(test_mode=True).oomusic_next()) track = playlist1.playlist_line_ids[1].track_id self.assertEqual(res["track_id"], track.id) res = json.loads( playlist1.playlist_line_ids[-1].with_context(test_mode=True).oomusic_next() ) track = playlist1.playlist_line_ids[0].track_id self.assertEqual(res["track_id"], track.id) # oomusic_previous res = json.loads( playlist1.playlist_line_ids[0].with_context(test_mode=True).oomusic_previous() ) track = playlist1.playlist_line_ids[-1].track_id self.assertEqual(res["track_id"], track.id) res = json.loads( playlist1.playlist_line_ids[1].with_context(test_mode=True).oomusic_previous() ) track = playlist1.playlist_line_ids[0].track_id self.assertEqual(res["track_id"], track.id) # oomusic_last_track res = json.loads( playlist1.playlist_line_ids[0].with_context(test_mode=True).oomusic_last_track() ) track = playlist2.playlist_line_ids[0].track_id self.assertEqual(res["track_id"], track.id) self.cleanUp() def test_30_smart_playlist(self): """ Test smart playlists """ self.FolderScanObj.with_context(test_mode=True)._scan_folder(self.Folder.id) playlist = self.PlaylistObj.create({"name": "crotte"}) album1 = self.AlbumObj.search([("name", "=", "Album1")]) album1.track_ids[0].oomusic_star() album1.track_ids[1].rating = "5" # rnd playlist.smart_playlist = "rnd" playlist.action_add_to_playlist() self.assertEqual( set(playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name")), set(["Song1", "Song2", "Song3", "Song4", "Song5", "Song6"]), ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # Prepare the 'played' part playlist.album_id = album1 playlist._onchange_album_id() playlist.playlist_line_ids[0].with_context(test_mode=True).oomusic_set_current() playlist.playlist_line_ids[0].oomusic_play_skip(play=True) playlist.playlist_line_ids[0].track_id.last_play_skip_ratio = dt.now().replace(year=2016) playlist.playlist_line_ids[0].with_context(test_mode=True).oomusic_set_current() playlist.playlist_line_ids[0].oomusic_play_skip(play=True) playlist.playlist_line_ids[0].track_id.last_play_skip_ratio = dt.now().replace(year=2016) time.sleep(2) playlist.playlist_line_ids[1].with_context(test_mode=True).oomusic_set_current() playlist.playlist_line_ids[1].oomusic_play_skip(play=True) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # played playlist.smart_playlist = "played" playlist.action_add_to_playlist() self.assertEqual( set(playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name")), set(["Song1", "Song2"]), ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # not_played playlist.smart_playlist = "not_played" playlist.action_add_to_playlist() self.assertEqual( set(playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name")), set(["Song3", "Song4", "Song5", "Song6"]), ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # most_played playlist.smart_playlist = "most_played" playlist.smart_playlist_qty = 1 playlist.action_add_to_playlist() self.assertEqual( playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name"), ["Song1"] ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # last_listened playlist.smart_playlist = "last_listened" playlist.smart_playlist_qty = 1 playlist.action_add_to_playlist() self.assertEqual( playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name"), ["Song2"] ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # recent playlist.smart_playlist = "recent" playlist.smart_playlist_qty = 20 playlist.action_add_to_playlist() self.assertEqual( set(playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name")), set(["Song1", "Song2", "Song3", "Song4", "Song5", "Song6"]), ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # favorite playlist.smart_playlist = "favorite" playlist.action_add_to_playlist() self.assertEqual( set(playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name")), set(["Song1"]), ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # best_rated playlist.smart_playlist = "best_rated" playlist.smart_playlist_qty = 1 playlist.action_add_to_playlist() self.assertEqual( set(playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name")), set(["Song2"]), ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() # worst_rated playlist.smart_playlist = "worst_rated" playlist.smart_playlist_qty = 1 playlist.action_add_to_playlist() self.assertEqual( set(playlist.mapped("playlist_line_ids").mapped("track_id").mapped("name")), set(["Song1"]), ) playlist.invalidate_cache() playlist.action_purge() playlist.invalidate_cache() self.cleanUp() def test_40_dynamic_playlist(self): """ Test dynamic playlists """ self.FolderScanObj.with_context(test_mode=True)._scan_folder(self.Folder.id) playlist = self.PlaylistObj.create( {"name": "crotte", "smart_playlist": "rnd", "smart_playlist_qty": 3, "dynamic": True} ) playlist.action_add_to_playlist() # There should be 3 tracks self.assertEqual(len(playlist.playlist_line_ids), 3) # A track is automatically added when playing playlist.playlist_line_ids[0].with_context(test_mode=True).oomusic_set_current() self.assertEqual(len(playlist.playlist_line_ids), 4) # When playing the last track, it should be moved at second position last_track = playlist.playlist_line_ids[3].track_id playlist.playlist_line_ids[3].with_context(test_mode=True).oomusic_set_current() playlist.invalidate_cache() self.assertEqual(last_track, playlist.playlist_line_ids[1].track_id)
StarcoderdataPython
3264981
<reponame>IBM/blackbox-adversarial-reprogramming import tensorflow as tf def func(train_loss, iNum, var_noises): image_size = 299 batchsize = 10 q_batch = 1 losses = [] glist = [] ##Set paramters beta = 0.1 d = image_size*image_size*3 b_constant = d ##gradient-free optimization for i in range(iNum+1): loss = train_loss[i* batchsize : i*batchsize + batchsize] losses.append(loss) for i in range(0,len(losses)-1): v = tf.expand_dims(var_noises[i], axis=0) l = tf.expand_dims(losses[i+1] - losses[0], 1) mul = tf.matmul(l,v) grad = b_constant * mul / beta glist.append(grad) glist = tf.stack(glist, axis=0) print("glist: ",glist.shape) avg_grad = tf.reduce_sum(glist, 0) / q_batch print(avg_grad.shape) estimate_grad = tf.reduce_sum(avg_grad, axis=0) / batchsize return tf.reshape(estimate_grad , shape=[image_size, image_size, 3])
StarcoderdataPython
3272074
''' Code for "Three-dimensional imaging through scattering media based on confocal diffuse tomography" <NAME> and <NAME> See README file in this directory for instructions on how to setup and run the code ''' import h5py import time import numpy as np from numpy.fft import ifftn, fftn import matplotlib.pyplot as plt import torch import torch.nn.functional as TorchF from utils import fk, compl_mul, conj class CDTReconstruction(): # class to define scattering parameters and perform # reconstruction using confocal diffuse tomography def __init__(self, scene, mu_s=None, zd=None, pause=5, device=torch.device('cuda:0')): self.device = device self.scene = scene self.pause = pause # set hyper parameters if scene == 'letter_s': self.snr = 1e4 # SNR parameter for Wiener deconvolution self.scan_size = 0.6 # size of scanned area self.size_calibration = 1.06 # calibrated scanned area scaling for reconstruction self.exposure_time = 60 / 32**2 # per pixel exposure time, seconds elif scene == 'mannequin': self.snr = 2e4 self.scan_size = 0.7 self.size_calibration = 0.87 self.exposure_time = 720 / 32**2 elif scene == 'letters_ut': self.snr = 1e4 self.scan_size = 0.7 self.size_calibration = 1.0 self.exposure_time = 600 / 32**2 elif scene == 'letter_t': self.snr = 2.5e3 self.scan_size = 0.7 self.size_calibration = 1.0 self.exposure_time = 3600 / 32**2 elif scene == 'cones': self.snr = 2e4 self.scan_size = 0.7 self.size_calibration = 1.0 self.exposure_time = 400 / 32**2 elif scene == 'resolution_50': self.snr = 1.5e4 self.scan_size = 0.7 self.size_calibration = 1.02 self.exposure_time = 80 / 32**2 elif scene == 'resolution_70': self.snr = 1.5e4 self.scan_size = 0.7 self.size_calibration = 1.04 self.exposure_time = 80 / 32**2 elif 'letter_u' in scene: self.snr = 5e3 self.scan_size = 0.7 self.size_calibration = 1.0 self.exposure_time = 60 / 32**2 else: raise ValueError('Unexpected input to scene parameter.') # physical parameters # found by minimizing model fit error to calibration data self.c0 = 3e8 self.n = 1.12 self.c = self.c0/self.n self.mu_a = 0.53 self.mu_s = 262 self.ze = 0.0036 # volume dimensions self.Nx = 32 self.Ny = 32 self.Nz = 128 self.xmin = -self.size_calibration * self.scan_size / 2 self.xmax = self.size_calibration * self.scan_size / 2 self.ymin = -self.size_calibration * self.scan_size / 2 self.ymax = self.size_calibration * self.scan_size / 2 self.zmin = 0 self.zmax = 2 # maximum path length in hidden volume (meters) self.x = np.linspace(self.xmin, self.xmax, self.Nx) self.y = np.linspace(self.ymin, self.ymax, self.Ny) self.z = np.linspace(self.zmin, self.zmax, self.Nz) self.X, self.Z, self.Y = np.meshgrid(self.x, self.z, self.y) # laser position self.xl = 0 self.yl = 0 self.zl = 0 # diffuser positioning self.xd = np.linspace(2*self.xmin, 2*self.xmax, 2*self.Nx)[None, :, None] self.yd = np.linspace(2*self.ymin, 2*self.ymax, 2*self.Ny)[None, None, :] self.t = np.linspace(0, 2*self.zmax, 2*self.Nz) / self.c self.t = self.t[:, None, None] self.zd = 0.0254 # thickness of diffuser # allow optional override of these parameters if zd: self.zd = zd if mu_s: self.mu_s = mu_s # set diffusion kernel self.diffusion_fpsf = [] self.setDiffusionKernel(self.c, self.t, self.xl, self.yl, self.zl, self.xd, self.yd, self.zd, self.ze, self.mu_s, self.mu_a) def setDiffusionKernel(self, v, t, xl, yl, zl, xd, yd, zd, ze, mu_s, mu_a): ''' Returns the diffusion model for a slab with finite thickness given by <NAME>, <NAME>, and <NAME>, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989) ''' t[0, :] = 1 d = zd - zl z0 = 1 / mu_s D = 1 / (3 * (mu_a + mu_s)) rho = np.sqrt((xd-xl)**2 + (yd - yl)**2) # Photon migration through a turbid slab described by a model # based on diffusion approximation. # https://www.osapublishing.org/ao/abstract.cfm?uri=ao-36-19-4587 n_dipoles = 20 ii = np.arange(-n_dipoles, n_dipoles+1)[None, None, :] z1 = d * (1 - 2 * ii) - 4*ii*ze - z0 z2 = d * (1 - 2 * ii) - (4*ii - 2)*ze + z0 dipole_term = z1 * np.exp(-(z1**2) / (4*D*v*t)) - \ z2 * np.exp(-(z2**2) / (4*D*v*t)) dipole_term = np.sum(dipole_term, axis=-1)[..., None] # sum over dipoles diff_kernel = (4*np.pi*D*v)**(-3/2) * t**(-5/2) \ * np.exp(-mu_a * v * t - rho**2 / (4*D*v*t)) \ * dipole_term psf = diff_kernel diffusion_psf = psf / np.sum(psf) diffusion_psf = np.roll(diffusion_psf, -xd.shape[1]//2, axis=1) diffusion_psf = np.roll(diffusion_psf, -yd.shape[2]//2, axis=2) diffusion_psf = fftn(diffusion_psf) * fftn(diffusion_psf) diffusion_psf = abs(ifftn(diffusion_psf)) # convert to pytorch and take fft self.diffusion_fpsf = torch.from_numpy(diffusion_psf.astype(np.float32)).to(self.device)[None, None, :, :, :] self.diffusion_fpsf = self.diffusion_fpsf.rfft(3, onesided=False) return def AT(self, x): # wrapper function for f--k migration return fk(x, 2*self.xmax, 2*self.zmax) def M(self, x): # trimming function return x[:, :, :self.Nz, :self.Nx, :self.Ny] def MT(self, x): # padding function return TorchF.pad(x, (0, self.Ny, 0, self.Nx, 0, self.Nz)) def run(self): # run confocal diffuse tomography reconstruction with h5py.File('./data/' + self.scene + '.mat', 'r') as f: meas = np.array(f['meas']).transpose(2, 1, 0) f.close() # trim scene to 1 meter along the z-dimension # and downsample to ~50 ps time binning from 16 ps b = meas[:417, :, :] downsampled = np.zeros((self.Nz, 32, 32)) for i in range(meas.shape[1]): for j in range(meas.shape[2]): x = np.linspace(0, 1, self.Nz) xp = np.linspace(0, 1, 417) yp = b[:, i, j].squeeze() downsampled[:, i, j] = np.interp(x, xp, yp) b = downsampled b /= np.max(b) # normalize to 0 to 1 # initialize pytorch arrays b = torch.from_numpy(b).to(self.device)[None, None, :, :, :].float() x = torch.zeros(b.size()[0], 1, 2*self.Nz, 2*self.Nx, 2*self.Ny).to(self.device) # construct inverse psf for Wiener filtering tmp = compl_mul(self.diffusion_fpsf, conj(self.diffusion_fpsf)) tmp = tmp + 1/self.snr invpsf = compl_mul(conj(self.diffusion_fpsf), 1/tmp) # measure inversion runtime if self.device.type == 'cpu': start = time.time() else: start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() # pad measurements x = self.MT(b) # perform f-k migration on measurements x_fk = self.AT(x) # perform deconvolution x_deconv = compl_mul(x.rfft(3, onesided=False), invpsf).ifft(3)[:, :, :, :, :, 0] # confocal inverse filter x = self.AT(x_deconv) # measure elapsed time if self.device.type == 'cpu': stop = time.time() print('Elapsed time: %.02f ms' % (1000 * (stop - start))) else: end.record() torch.cuda.synchronize() print('Elapsed time: %.02f ms' % (start.elapsed_time(end))) # plot results x_npy = x.cpu().data.numpy().squeeze()[:self.Nz, :self.Nx, :self.Ny] b_npy = b.cpu().data.numpy().squeeze() x_deconv_npy = x_deconv.cpu().data.numpy().squeeze()[:self.Nz, :self.Nx, :self.Ny] x_fk_npy = x_fk.cpu().data.numpy().squeeze()[:self.Nz, :self.Nx, :self.Ny] # trim any amplified noise at the very end of the volume x_npy[-15:, :, :] = 0 if self.pause > 0: plt.suptitle('Measurements and reconstruction') plt.subplot(231) plt.imshow(np.max(b_npy, axis=0), cmap='gray', extent=[self.xmin, self.xmax, self.ymin, self.ymax]) plt.xlabel('x (m)') plt.ylabel('y (m)') plt.subplot(232) plt.imshow(np.max(b_npy, axis=1), aspect=(self.xmax-self.xmin)/(self.zmax/3e8*1e9), cmap='gray', extent=[self.xmin, self.xmax, self.zmax/3e8*1e9, self.zmin]) plt.xlabel('x (m)') plt.ylabel('t (ns)') plt.subplot(233) plt.imshow(np.max(b_npy, axis=2), aspect=(self.ymax-self.ymin)/(self.zmax/3e8*1e9), cmap='gray', extent=[self.ymin, self.ymax, self.zmax/3e8*1e9, self.zmin]) plt.xlabel('y (m)') plt.ylabel('t (ns)') plt.subplot(234) plt.imshow(np.max(x_npy, axis=0), cmap='gray', extent=[self.xmin, self.xmax, self.ymin, self.ymax]) plt.xlabel('x (m)') plt.ylabel('y (m)') plt.subplot(235) plt.imshow(np.max(x_npy, axis=1), aspect=(self.xmax-self.xmin)/(self.zmax/2), cmap='gray', extent=[self.xmin, self.xmax, self.zmax/2, self.zmin]) plt.xlabel('x (m)') plt.ylabel('z (m)') plt.subplot(236) plt.imshow(np.max(x_npy, axis=2), aspect=(self.ymax-self.ymin)/(self.zmax/2), cmap='gray', extent=[self.ymin, self.ymax, self.zmax/2, self.zmin]) plt.xlabel('y (m)') plt.ylabel('z (m)') plt.tight_layout() plt.pause(self.pause) # return measurements, deconvolved meas, reconstruction return b_npy, x_fk_npy, x_deconv_npy, x_npy
StarcoderdataPython
3210840
import numpy as np from math import sqrt import matplotlib.pyplot as plt import warnings from matplotlib import style from collections import Counter style.use('fivethirtyeight') import pandas as pd import random benign_class = 2 malignant_class = 4 def k_nearest_neighbors(data,predict,k=3): if len(data) >= k: warnings.warn('K is set to a value less than total voting groups!') distances = [] for group in data: for features in data[group]: #euclidean_distance = sqrt( (point1[0] - point2[0])**2 + (point1[1] - point2[1])**2 ) for 2D euclidean_distance = np.linalg.norm(np.array(features) - np.array(predict)) distances.append([euclidean_distance, group]) votes = [i[1] for i in sorted(distances)[:k]] #top k numbers distances votes_result = ( Counter(votes).most_common(1) )[0][0] #most_common(n) most appeared n numbers element among given top least distant k votes , [0][0] first of first element inside list inside tuple ## print(votes) ## print(votes_result) result_label_votes = Counter(votes).most_common(1)[0][1] total_votes = k confidence = result_label_votes/total_votes return votes_result,confidence dataset = {'k':[[1,2],[2,3],[3,1]],'r':[[6,5],[7,7],[8,6]]} new_features = [5,7] ''' trials = 1 accuracies = [] for i in range(trials): df = pd.read_csv('breast-cancer-wisconsin.data') df.replace('?',-99999,inplace=True) df.drop(['id'],1,inplace=True) #feature_data = df.drop(['class'],1).astype(float).values.tolist() #target_data = df['class'].astype(float).values.tolist() full_data = df.astype(float).values.tolist() #Shuffling before creating test train set from keeping it out of any bias random.shuffle(full_data) ## creating dictionary with unique value of target column 2,4 - benign class, malignant class train_set = {} test_set = {} for dicn in df['class'].unique(): train_set[dicn] = [] test_set[dicn] = [] # creating dictionary with unique value of target column ##train_set = {benign_class:[],malignant_class:[]} ##test_set = {benign_class:[], malignant_class:[]} # creating dictionary of two classes #creating test train set test_size = 0.5 train_data = full_data[:-int(test_size*len(full_data))] #first 80% of the data test_data = full_data[-int(test_size*len(full_data)):] #first 20% of the data #creating test train set # storing test and train data in target key dictionary for row in train_data: # when last element of the row is target label label = row[-1] # last element row_without_label = row[:-1] # all element untill without and untill last element train_set[label].append(row_without_label) for row in test_data: # when last element of the row is target name or label label = row[-1] # last element row_without_label = row[:-1] # all element untill without and untill last element test_set[label].append(row_without_label) # storing test and train data in target key dictionary ses_con = [] for x in range(17): k = 2*x+1 print("k=%s"%k) correct = 0 total = 0 confidences = [] for train_label in test_set: for row in test_set[train_label]: result,confidence = k_nearest_neighbors(train_set,row,k) confidences.append(confidence) #if confidence < 0.6: # print(result,confidence) if train_label == result: correct += 1 else: print(confidence) total += 1 print("Accuracy",correct/total) avg_confidence = sum(confidences)/total print("avg confidence = %s"%avg_confidence) accuracies.append(correct/total) ses_con.append([correct/total,k]) votes = [i for i in sorted(ses_con,reverse=True)[:]] #top k numbers distances print(test_size) print(votes) model_accuracy = sum(accuracies)/len(accuracies) print("Session Model range %s - %s"%(min(accuracies),max(accuracies))) print("Session Model accuracy %s"%(model_accuracy)) # split = 20%,40% k = 7, accuracy = 1, 96% ''' # prediction df = pd.read_csv('samples.txt') #df.replace('?',-99999,inplace=True) df.drop(['id'],1,inplace=True) predict_data = df.astype(float).values.tolist() #k_nearest_neighbors(data,predict,k=3) df = pd.read_csv('breast-cancer-wisconsin.data') df.replace('?',-99999,inplace=True) df.drop(['id'],1,inplace=True) full_data = df.astype(float).values.tolist() random.shuffle(full_data) ## creating dictionary with unique value of target column 2,4 - benign class, malignant class full_data_set = {} for dicn in df['class'].unique(): full_data_set[dicn] = [] ## creating dictionary with unique value of target column 2,4 - benign class, malignant class for row in full_data: # when last element of the row is target label label = row[-1] # last element row_without_label = row[:-1] # all element untill without and untill last element full_data_set[label].append(row_without_label) ses_con = [] for x in range(4): k=2*x + 1 print("k=%s"%k) print("Total samples = %s"%(len(predict_data))) Cconfidences = [] for row in predict_data: result,confidence = k_nearest_neighbors(full_data_set,row,k) if result == benign_class: con="benign" elif result == malignant_class: con="malignant" print("%s , %s" %(con,confidence)) Cconfidences.append(confidence) pred_accur = sum(Cconfidences)/len(Cconfidences) print("PRED ACCur = %s"%(pred_accur)) ses_con.append([pred_accur, k]) votes = [i[1] for i in sorted(ses_con,reverse=True)[:]] #top k numbers distances print(votes) #votes_result = ( Counter(votes).most_common(1) )[0][0] #most_common(n) most appeared n numbers element among given top least distant k votes , [0][0] first of first element inside list inside tuple # prediction ##[[plt.scatter(ii[0],ii[1], s=100, color=i) for ii in dataset[i]] for i in dataset] ##plt.scatter(new_features[0],new_features[1], color = result) ##plt.title('KNN') ##plt.show()
StarcoderdataPython
4829177
import copy import subprocess import re import requests def fetch_gist(url): """ Get the gist url from a media content url """ # Get the content from the url content = requests.get(url).content.decode() # Find the gist url match = re.findall("<script src(.*?)><\/script>", content)[0] gist_url = re.findall('"(.*?)"', match)[0] return f'<script src="{gist_url}"></script>' if __name__ == "__main__": post_url = input("Enter post url: ") # Title of post title = "-".join(post_url.split("/")[-1].split("-")[:-1]) date = input("Enter date (as 2018-10-05): ") # Read in the template with open("medium-to-markdown.js", "r") as f: template = f.readlines() # Copy the template template_mod = copy.deepcopy(template) # Update the js script with the url template_mod[2] = f'mediumToMarkdown.convertFromUrl("{post_url}")' # Write the new file with open("medium-to-markdown_mod.js", "w") as f: f.writelines(template_mod) # Directory for saving post # File is automatically correctly named post_file_name = f"{date}-{title}.md" try: # Run javascript function content = subprocess.Popen( ["node", "medium-to-markdown_mod.js"], stdout=subprocess.PIPE ) # Extract html as string content = content.stdout.read().decode() # Replace noscript image duplication new_content = re.sub("\\n\\n<noscript>(.*?)<\/noscript>\\n\\n", "\n", content) # Upgrade image quality new_content = re.sub("/max/[0-9]{1,3}", "/max/2000", new_content) # Replace source location new_content = re.sub( "source=post_page---------------------------", "", new_content ) # Remove personal blurb new_content = re.sub("\[(.*?) min read", "", new_content) # Replace <pre> around code blocks new_content = re.sub("<pre(.*?)>", "```\\n", new_content) new_content = re.sub("<\/pre(.*?)>", "\\n```", new_content) # Replace <span> within code blocks new_content = re.sub("<span(.*?)>", "\\n", new_content) new_content = re.sub("<\/span(.*?)>", "\\n", new_content) new_content = re.sub("freeze/", "", new_content) # Identify all iframes (GitHub gists) iframes = re.findall("<iframe(.*?)><\/iframe>", new_content) # Process each iframe for iframe in iframes: # Find the url in the frame url = re.findall('src="(.*?)"', iframe)[0] # Only use those urls with towardsdatascience if "towardsdatascience" in url: # Create a replacement script replacement = fetch_gist(url) old_iframe = f"<iframe{iframe}></iframe>" # Substitute the old iframe with the new replacement new_content = re.sub(old_iframe, replacement, new_content) captions = captions = re.findall("!\[\]\((.*?)\)\\n(.*?)\\n\\n", new_content) for caption in captions: original = f"![]({caption[0]})\n{caption[1]}\n\n" replacement = f"![]({caption[0]})\n*{caption[1]}*\n\n" new_content = new_content.replace(original, replacement) new_content = ( f"""--- published: true title: "{title.replace('-', ' ').title()}" date: {date} categories: - - --- """ + new_content ) # Save the modified post with open(post_file_name, "w") as fout: fout.write(new_content) print(f"Post saved as markdown to {post_file_name}") # Report errors otherwise except Exception as e: print(f"Error somewhere along the way: {e}")
StarcoderdataPython
4805380
<reponame>leschzinerlab/myami-3.2-freeHand # The Leginon software is Copyright 2004 # The Scripps Research Institute, La Jolla, CA # For terms of the license agreement # see http://ami.scripps.edu/software/leginon-license # # $Source: /ami/sw/cvsroot/pyleginon/leginon.gui.wx/TargetFinder.py,v $ # $Revision: 1.19 $ # $Name: not supported by cvs2svn $ # $Date: 2008-02-11 23:48:05 $ # $Author: acheng $ # $State: Exp $ # $Locker: $ import wx import leginon.gui.wx.Node import leginon.gui.wx.Settings import leginon.gui.wx.ToolBar import leginon.gui.wx.ImagePanelTools hide_incomplete = False class Panel(leginon.gui.wx.Node.Panel): def __init__(self, *args, **kwargs): leginon.gui.wx.Node.Panel.__init__(self, *args, **kwargs) self.toolbar.AddTool(leginon.gui.wx.ToolBar.ID_SETTINGS, 'settings', shortHelpString='Settings') self.toolbar.AddTool(leginon.gui.wx.ToolBar.ID_SUBMIT, 'play', shortHelpString='Submit Targets') self.Bind(leginon.gui.wx.Events.EVT_SUBMIT_TARGETS, self.onSubmitTargets) self.toolbar.AddTool(leginon.gui.wx.ToolBar.ID_SUBMIT_QUEUE, 'send_queue_out', shortHelpString='Submit Queued Targets') self.Bind(leginon.gui.wx.Events.EVT_TARGETS_SUBMITTED, self.onTargetsSubmitted) self.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SETTINGS, False) self.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SUBMIT, False) self.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SUBMIT_QUEUE, False) self.initialize() self.SetSizer(self.szmain) self.SetAutoLayout(True) self.SetupScrolling() def onNodeInitialized(self): leginon.gui.wx.Node.Panel.onNodeInitialized(self) self.toolbar.Bind(wx.EVT_TOOL, self.onSettingsTool, id=leginon.gui.wx.ToolBar.ID_SETTINGS) self.toolbar.Bind(wx.EVT_TOOL, self.onSubmitTool, id=leginon.gui.wx.ToolBar.ID_SUBMIT) self.toolbar.Bind(wx.EVT_TOOL, self.onSubmitQueueTool, id=leginon.gui.wx.ToolBar.ID_SUBMIT_QUEUE) self.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SETTINGS, True) self.Bind(leginon.gui.wx.ImagePanelTools.EVT_SETTINGS, self.onImageSettings) queue = self.node.settings['queue'] self.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SUBMIT_QUEUE, queue) self.imagepanel.imagevector = self.node.getTargetImageVector() self.imagepanel.beamradius = self.node.getTargetBeamRadius() def onSetImage(self, evt): super(Panel,self).onSetImage(evt) try: self.imagepanel.imagevector = self.node.getTargetImageVector() self.imagepanel.beamradius = self.node.getTargetBeamRadius() except AttributeError: # This function is called on initialization and self.node would be None pass def onImageSettings(self, evt): pass def targetsSubmitted(self): evt = leginon.gui.wx.Events.TargetsSubmittedEvent() self.GetEventHandler().AddPendingEvent(evt) def initialize(self): pass def getTargetPositions(self, typename): return self.imagepanel.getTargetPositions(typename) def getTargets(self, typename): return self.imagepanel.getTargets(typename) def onSettingsTool(self, evt): dialog = SettingsDialog(self,show_basic=True) dialog.ShowModal() dialog.Destroy() def onSubmitTool(self, evt): self.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SUBMIT, False) self.node.submitTargets() def onSubmitQueueTool(self, evt): self.node.publishQueue() def onSubmitTargets(self, evt): self.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SUBMIT, True) def onTargetsSubmitted(self, evt): self.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SUBMIT, False) def submitTargets(self): evt = leginon.gui.wx.Events.SubmitTargetsEvent() self.GetEventHandler().AddPendingEvent(evt) class SettingsDialog(leginon.gui.wx.Settings.Dialog): def initialize(self): return ScrolledSettings(self,self.scrsize,False,self.show_basic) class ScrolledSettings(leginon.gui.wx.Settings.ScrolledDialog): def initialize(self): leginon.gui.wx.Settings.ScrolledDialog.initialize(self) sb = wx.StaticBox(self, -1, 'General Target Finder Settings ') sbsz = wx.StaticBoxSizer(sb, wx.VERTICAL) if self.show_basic: sz = self.addBasicSettings() else: sz = self.addSettings() sbsz.Add(sz, 0, wx.ALIGN_CENTER|wx.EXPAND|wx.ALL, 5) return [sbsz] def addBasicSettings(self): self.widgets['user check'] = wx.CheckBox(self, -1, 'Allow for user verification of selected targets') self.widgets['queue'] = wx.CheckBox(self, -1, 'Queue up targets') self.Bind(wx.EVT_CHECKBOX, self.onQueueCheckbox, self.widgets['queue']) sz = wx.GridBagSizer(5, 5) sz.Add(self.widgets['user check'], (0, 0), (1, 1), wx.ALIGN_CENTER_VERTICAL) #sz.Add(self.widgets['wait for done'], (1, 0), (1, 1), # wx.ALIGN_CENTER_VERTICAL) sz.Add(self.widgets['queue'], (1, 0), (1, 1), wx.ALIGN_CENTER_VERTICAL) return sz def addSettings(self): #self.widgets['wait for done'] = wx.CheckBox(self, -1, # 'Wait for another node to process targets before marking them done') self.widgets['user check'] = wx.CheckBox(self, -1, 'Allow for user verification of selected targets') self.widgets['queue'] = wx.CheckBox(self, -1, 'Queue up targets') self.widgets['queue drift'] = wx.CheckBox(self, -1, 'Declare drift when queue submitted') self.widgets['sort target'] = wx.CheckBox(self, -1, 'Sort targets by shortest path') self.widgets['allow append'] = wx.CheckBox(self, -1, 'Allow target finding on old images') self.Bind(wx.EVT_CHECKBOX, self.onQueueCheckbox, self.widgets['queue']) sz = wx.GridBagSizer(5, 5) sz.Add(self.widgets['user check'], (0, 0), (1, 1), wx.ALIGN_CENTER_VERTICAL) #sz.Add(self.widgets['wait for done'], (1, 0), (1, 1), # wx.ALIGN_CENTER_VERTICAL) sz.Add(self.widgets['queue'], (1, 0), (1, 1), wx.ALIGN_CENTER_VERTICAL) sz.Add(self.widgets['queue drift'], (2, 0), (1, 1), wx.ALIGN_CENTER_VERTICAL) sz.Add(self.widgets['sort target'], (3, 0), (1, 1), wx.ALIGN_CENTER_VERTICAL) if not hide_incomplete: sz.Add(self.widgets['allow append'], (4, 0), (1, 1), wx.ALIGN_CENTER_VERTICAL) return sz def onQueueCheckbox(self, evt): state = evt.IsChecked() parent = self.panel parent.toolbar.EnableTool(leginon.gui.wx.ToolBar.ID_SUBMIT_QUEUE, state) evt.Skip() if __name__ == '__main__': class App(wx.App): def OnInit(self): frame = wx.Frame(None, -1, 'Target Finder Test') panel = Panel(frame) frame.Fit() self.SetTopWindow(frame) frame.Show() return True app = App(0) app.MainLoop()
StarcoderdataPython
1676152
import requests from lxml import html from lxml.etree import tostring class UserParser: def set_database(self,database): self.database = database def set_user_id(self, id): self.Session = requests.session() self.trip_advisor = 'https://www.tripadvisor.ca' self.id = id self.brief = self.get_user_brief() self.name = '' self.user_link = '' self.leve_of_contribor = 0 self.n_contributions = 0 self.n_cities_visited = 0 self.n_helpful_votes = 0 self.from_city = '' self.get_attributes() def find_variable(self, text, variable): a = text.find(variable) + len(variable) b = text.find('"', text.find(variable) + len(variable)) return text[a: b] def open_user_page(self, hotel_link): try: response_hotel_page = self.Session.get(hotel_link) tree = html.fromstring(response_hotel_page.text) review_ids = list(set(tree.xpath( '//*[contains(concat( " ", @class, " " ), concat( " ", "review-container", " " ))]/@data-reviewid'))) data_val = {'reviews': ','.join(review_ids)} headers = {'Referer': hotel_link} return self.Session.post( 'https://www.tripadvisor.ca/OverlayWidgetAjax?Mode=EXPANDED_HOTEL_REVIEWS_RESP&metaReferer=', data=data_val, headers=headers) except Exception as e: return None def get_user_brief(self): return 'https://www.tripadvisor.ca/MemberOverlay?Mode=owa&uid=' + self.id + '&c=&src=597541025&fus=false&partner=false&LsoId=&metaReferer=Restaurant_Review' def get_attributes(self): brief_page = self.Session.get(self.brief) tree = html.fromstring(brief_page.text) self.name = list(set(tree.xpath('//a/h3/text()')))[0] self.user_link = self.trip_advisor + list(set(tree.xpath('//a/@href')))[0] tmp_leve_of_contribor = list(set(tree.xpath('//*[contains(concat( " ", @class, " " ), concat( " ", "badgeinfo", " " ))]/span/text()'))) tmp_ns = list(set(tree.xpath('//*[contains(concat( " ", @class, " " ), concat( " ", "badgeTextReviewEnhancements", " " ))]/text()'))) tmp_from_city = list(set(tree.xpath( '//*[contains(concat( " ", @class, " " ), concat( " ", "memberdescriptionReviewEnhancements", " " ))]/li/text()'))) for _ in tmp_from_city: if 'from' in _: tmp = _ tmp = tmp[tmp.find('from') + 5:] self.from_city = tmp if len(tmp_leve_of_contribor) == 1: self.leve_of_contribor = tmp_leve_of_contribor[0] else: self.leve_of_contribor = 0 for _ in tmp_ns: if 'Cities visited' in _: tmp = _ tmp = tmp[0:tmp.find(' ')] self.n_cities_visited = int(tmp) elif 'Contributions' in _: tmp = _ tmp = tmp[0:tmp.find(' ')] self.n_contributions = int(tmp) elif 'Helpful votes' in _: tmp = _ tmp = tmp[0:tmp.find(' ')] self.n_helpful_votes = int(tmp)
StarcoderdataPython
3326181
import pytest from plenum.test.bls.helper import change_bls_key, check_bls_key from plenum.test.conftest import pool_txn_stewards_data, stewards_and_wallets @pytest.fixture(scope="module") def update_bls_keys(looper, tconf, nodeSet, stewards_and_wallets): node = nodeSet[0] steward_client, steward_wallet = stewards_and_wallets[0] new_blspk = change_bls_key(looper, nodeSet, node, steward_client, steward_wallet) check_bls_key(new_blspk, node, nodeSet) def test_node_schedules_upgrade_after_bls_keys_update(update_bls_keys, upgradeScheduled): # Upgrade should work even after an update to the pool ledger with a # transaction that does not contain `SERVICES` field pass
StarcoderdataPython
87750
#!/usr/bin/env python """ """ from plasTeX import Command, Environment class center(Environment): blockType = True class centering(center): blockType = True class flushleft(Environment): blockType = True class raggedright(flushleft): blockType = True class flushright(Environment): blockType = True class raggedleft(flushright): blockType = True class raggedbottom(Environment): pass
StarcoderdataPython
165557
# ============================================================================== # Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # ============================================================================== """Openvino Tensorflow BiasAdd operation test """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pytest import numpy as np import tensorflow as tf tf.compat.v1.disable_eager_execution() from common import NgraphTest np.random.seed(8) class TestBiasAddOperations(NgraphTest): def test_BiasAdd1(self): input_data = (0, 1, 0, 1, 2, 1, 1, 0, 3, 1, 1, 0, 4, 4, 5, 4) input_data = np.reshape(input_data, (2, 2, 2, 2)) input_var = tf.compat.v1.placeholder(tf.float32, shape=(2, 2, 2, 2)) bias_data = (100., -100.) bias_var = tf.compat.v1.placeholder(tf.float32, shape=(2)) out = tf.nn.bias_add(input_var, bias_var, 'NHWC') def run_test(sess): return sess.run( out, feed_dict={ input_var: input_data, bias_var: bias_data }) assert ( self.with_ngraph(run_test) == self.without_ngraph(run_test)).all() def test_BiasAdd2(self): input_data = (0, 1, 0, 1, 2, 1, 1, 0, 3, 1, 1, 0, 4, 4, 5, 4) input_data = np.reshape(input_data, (2, 2, 2, 2)) input_var = tf.compat.v1.placeholder(tf.float32, shape=(2, 2, 2, 2)) bias_data = (100., -100.) bias_var = tf.compat.v1.placeholder(tf.float32, shape=(2)) out = tf.nn.bias_add(input_var, bias_var, 'NCHW') def run_test(sess): return sess.run( out, feed_dict={ input_var: input_data, bias_var: bias_data }) assert ( self.with_ngraph(run_test) == self.without_ngraph(run_test)).all() def test_BiasAdd3(self): input_data = (0, 1, 0, 1, 2, 1, 1, 0, 3, 1, 1, 0, 4, 4, 5, 4, 3, 5, 1, 2, 0, 4, 0, 1) input_data = np.reshape(input_data, (2, 3, 2, 2)) input_var = tf.compat.v1.placeholder(tf.float32, shape=(2, 3, 2, 2)) bias_data = (100., -100., 50) # channels = 3 bias_var = tf.compat.v1.placeholder(tf.float32, shape=(3)) out = tf.nn.bias_add(input_var, bias_var, 'NCHW') def run_test(sess): return sess.run( out, feed_dict={ input_var: input_data, bias_var: bias_data }) assert ( self.with_ngraph(run_test) == self.without_ngraph(run_test)).all() def test_BiasAdd4(self): input_data = (0, 1, 0, 1, 2, 1, 1, 0, 3, 1, 1, 0, 4, 4, 5, 4, 3, 5, 1, 2, 0, 4, 0, 1) input_data = np.reshape(input_data, (2, 2, 2, 3)) input_var = tf.compat.v1.placeholder(tf.float32, shape=(2, 2, 2, 3)) bias_data = (100., -100., 50) # channels = 3 bias_var = tf.compat.v1.placeholder(tf.float32, shape=(3)) out = tf.nn.bias_add(input_var, bias_var, 'NHWC') def run_test(sess): return sess.run( out, feed_dict={ input_var: input_data, bias_var: bias_data }) assert ( self.with_ngraph(run_test) == self.without_ngraph(run_test)).all()
StarcoderdataPython