metadata
license: cc-by-nc-4.0
configs:
- config_name: default
data_files:
- split: test
path: test.csv
SpatialLM Testset
We provide a test set of 107 preprocessed point clouds and their corresponding GT layouts, point clouds are reconstructed from RGB videos using MASt3R-SLAM. SpatialLM-Testset is quite challenging compared to prior clean RGBD scan datasets due to the noises and occlusions in the point clouds reconstructed from monocular RGB videos.
![]() |
![]() |
![]() |
![]() |
Folder Structure
Outlines of the dataset files:
project-root/
├── pcd/*.ply # Reconstructed point cloud PLY files
├── layout/*.txt # GT FloorPlan Layout
├── benchmark_categories.tsv # Category mappings for evaluation
└── test.csv # Metadata CSV file with columns id, pcd, layout
Usage
Use the SpatialLM code base for reading the point cloud and layout data.
from spatiallm import Layout
from spatiallm.pcd import load_o3d_pcd
# Load Point Cloud
point_cloud = load_o3d_pcd(args.point_cloud)
# Load Layout
with open(args.layout, "r") as f:
layout_content = f.read()
layout = Layout(layout_content)
Visualization
Use rerun
to visualize the point cloud and the GT structured 3D layout output:
python visualize.py --point_cloud pcd/scene0000_00.ply --layout layout/scene0000_00.txt --save scene0000_00.rrd
rerun scene0000_00.rrd