MolData / README.md
haneulpark's picture
Update README.md
1ee1eca verified
metadata
version: 1.0.0
license: cc-by-sa-4.0
task_categories:
  - tabular-classification
language:
  - en
pretty_name: MolData
size_categories:
  - 1M<n<10M
tags:
  - drug discovery
  - bioassay
dataset_summary: >-
  A comprehensive disease and target-based dataset with roughly 170 million drug
  screening results from 1.4 million unique molecules and 600 assays which are
  collected from PubChem to accelerate molecular machine learning for better
  drug discovery.
citation: |-
  @article{KeshavarziArshadi2022,
   title = {MolData,  a molecular benchmark for disease and target based machine learning},
   volume = {14},
   ISSN = {1758-2946},
   url = {http://dx.doi.org/10.1186/s13321-022-00590-y},
   DOI = {10.1186/s13321-022-00590-y},
   number = {1},
   journal = {Journal of Cheminformatics},
   publisher = {Springer Science and Business Media LLC},
   author = {Keshavarzi Arshadi,  Arash and Salem,  Milad and Firouzbakht,  Arash and Yuan,  Jiann Shiun},
   year = {2022},
   month = mar 
  }
dataset_info:
  - config_name: MolData
    features:
      - name: SMILES
        dtype: string
      - name: PUBCHEM_CID
        dtype: int64
      - name: split
        dtype: string
      - name: AID
        dtype: string
      - name: 'Y'
        dtype: int64
        description: 'Binary classification (0/1)   '
    splits:
      - name: train
        num_bytes: 12634275804
        num_examples: 138547273
      - name: test
        num_bytes: 1578698654
        num_examples: 17069726
      - name: validation
        num_bytes: 1254512486
        num_examples: 12728449
    download_size: 5293486933
    dataset_size: 15467486944
  - config_name: default
    features:
      - name: SMILES
        dtype: string
      - name: PUBCHEM_CID
        dtype: int64
      - name: split
        dtype: string
      - name: AID
        dtype: string
      - name: 'Y'
        dtype: int64
    splits:
      - name: train
        num_bytes: 12634275804
        num_examples: 138547273
      - name: test
        num_bytes: 1578698654
        num_examples: 17069726
      - name: validation
        num_bytes: 1254512486
        num_examples: 12728449
    download_size: 5293486933
    dataset_size: 15467486944
configs:
  - config_name: MolData
    data_files:
      - split: train
        path: MolData/train-*
      - split: test
        path: MolData/test-*
      - split: validation
        path: MolData/validation-*
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
      - split: validation
        path: data/validation-*

MolData

MolData is a comprehensive disease and target-based dataset collected from PubChem. The dataset contains 1.4 million unique molecules, and it is one the largest efforts to date for democratizing the molecular machine learning. This is a mirror of the Official Github repo where the dataset was uploaded in 2021.

Preprocessing

We utilized the raw data uploaded on Github and performed several preprocessing:

  1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
  2. Formatting (from wide form to long form)
  3. Rename the columns
  4. Split the dataset (train, test, validation)

If you would like to try these processes with the original dataset, please follow the instructions in the preprocessing script file located in our MolData repository.

Quickstart Usage

Load a dataset in python

Each subset can be loaded into python using the Huggingface datasets library. First, from the command line install the datasets library

$ pip install datasets

then, from within python load the datasets library

>>> import datasets

and load the MolData datasets, e.g.,

>>> MolData = datasets.load_dataset("maomlab/MolData", name = "MolData")
    Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 138547273/138547273 [02:07<00:00, 1088043.12 examples/s]
    Generating test split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 17069726/17069726 [00:16<00:00, 1037407.67 examples/s]
    Generating validation split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 12728449/12728449 [00:11<00:00, 1093675.24 examples/s]

and inspecting the loaded dataset

>>> MolData
DatasetDict({
train: Dataset({
    features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
    num_rows: 138547273
})
test: Dataset({
    features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
    num_rows: 17069726
})
validation: Dataset({
    features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
    num_rows: 12728449
})

})

Use a dataset to train a model

One way to use the dataset is through the MolFlux package developed by Exscientia. First, from the command line, install MolFlux library with catboost and rdkit support

pip install 'molflux[catboost,rdkit]'

then load, featurize, split, fit, and evaluate the catboost model

import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite

Split and evaluate the catboost model

split_dataset = load_dataset('maomlab/MolData', name = 'MolData')

split_featurised_dataset = featurise_dataset(
  split_dataset,
  column = "SMILES",
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))

model = load_model_from_dict({
    "name": "cat_boost_classifier",
    "config": {
        "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
        "y_features": ['Y']}})

model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])

classification_suite = load_suite("classification")

scores = classification_suite.compute(
    references=split_featurised_dataset["test"]['Y'],
    predictions=preds["cat_boost_classifier::Y"])

Citation

@article{KeshavarziArshadi2022, title = {MolData, a molecular benchmark for disease and target based machine learning}, volume = {14}, ISSN = {1758-2946}, url = {http://dx.doi.org/10.1186/s13321-022-00590-y}, DOI = {10.1186/s13321-022-00590-y}, number = {1}, journal = {Journal of Cheminformatics}, publisher = {Springer Science and Business Media LLC}, author = {Keshavarzi Arshadi, Arash and Salem, Milad and Firouzbakht, Arash and Yuan, Jiann Shiun}, year = {2022}, month = mar }