dataset_name
stringclasses 4
values | dataset_version
timestamp[s] | qid
stringlengths 1
5
| queId
stringlengths 32
32
| competition_source_list
sequence | difficulty
stringclasses 5
values | qtype
stringclasses 1
value | problem
stringlengths 6
1.51k
| answer_option_list
list | knowledge_point_routes
sequence | answer_analysis
sequence | answer_value
stringclasses 7
values |
---|---|---|---|---|---|---|---|---|---|---|---|
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 694 | 5551e3413b4f4270a5e4f900365de7f5 | [
"2006年第11届全国华杯赛竞赛初赛第2题"
] | 1 | single_choice | $$2008006$$共有( )个质因数. | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"因为$$2008006=2006\\times 1000+2006=2006\\times 1001=(2\\times 17\\times 59)\\times (7\\times 11\\times 13)$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2517 | ab8fa36c4fc84023a278d9fcf6d99fed | [
"2018年湖北武汉创新杯小学高年级六年级竞赛初赛数学思维能力等级测试第3题4分"
] | 2 | single_choice | 已知一班和二班的人数比是$$8:7$$,从一班调$$8$$名同学到二班去,一班和二班的人数之比变为$$4:5$$,那么二班原来的人数为(~ )人. | [
[
{
"aoVal": "A",
"content": "$$28$$ "
}
],
[
{
"aoVal": "B",
"content": "$$35$$ "
}
],
[
{
"aoVal": "C",
"content": "$$42$$ "
}
],
[
{
"aoVal": "D",
"content": "$$40$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"由于前后总和不变,则变比为原来一$$:$$二$$=8:7=24:21$$,现在一$$:$$二$$=4:5=20:25$$,易知$$4$$份$$=8$$人,$$1$$份$$=2$$人,则二班原有$$2\\times 21=42$$人. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 872 | a90ea7eb17f9454dbd046dae0efccf2e | [
"2013年第12届上海小机灵杯小学高年级五年级竞赛初赛第5题1分"
] | 0 | single_choice | 古时候的原始人捕猎,捕到一只野兽对应一根手指.等到$$10$$根手指用完,就在绳子上打一个结,这就是运用现在的数学中的. | [
[
{
"aoVal": "A",
"content": "出入相补原理 "
}
],
[
{
"aoVal": "B",
"content": "等差数列求和 "
}
],
[
{
"aoVal": "C",
"content": "十进制计数法 "
}
],
[
{
"aoVal": "D",
"content": "四舍五入 "
}
]
] | [
"拓展思维->拓展思维->数论模块->位值原理与进制->进制的性质与应用->进制的认识"
] | [
"古时候的原始人捕猎运用现在的数学中的十进制计数法. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 994 | 017eb05bc5b94ddbbc76e27a56396fd3 | [
"2017年第15届湖北武汉创新杯六年级竞赛初赛第8题"
] | 2 | single_choice | 五个小朋友的岁数和为$$47$$岁,三个成人的岁数和为$$73$$岁,到五个小朋友的岁数和与三个成人的岁数和相等时,需经过年. | [
[
{
"aoVal": "A",
"content": "$$13$$ "
}
],
[
{
"aoVal": "B",
"content": "$$17$$ "
}
],
[
{
"aoVal": "C",
"content": "$$11$$ "
}
],
[
{
"aoVal": "D",
"content": "$$8$$ "
}
]
] | [
"拓展思维->思想->整体思想"
] | [
"每过一年,两组的年龄差减少$$5-3=2$$(岁),所以需要经过$$(73-47)\\div 2=13$$(年). "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2818 | 5345059d7e034de98c9d9c42c9007bfb | [
"2019年第24届YMO三年级竞赛决赛第4题3分",
"2020年第24届YMO三年级竞赛决赛第4题3分"
] | 1 | single_choice | 按规律写算式:$$100+2$$,$$98-5$$,$$96+8$$,$$94-11$$,$$\cdots $$第$$10$$个算式是. | [
[
{
"aoVal": "A",
"content": "$$80-27$$ "
}
],
[
{
"aoVal": "B",
"content": "$$82-29$$ "
}
],
[
{
"aoVal": "C",
"content": "$$82+29$$ "
}
],
[
{
"aoVal": "D",
"content": "$$82-27$$ "
}
]
] | [
"拓展思维->能力->数据处理"
] | [
"规律:每个算式第一个数是从$$100$$开始,依次少$$2$$, 第二个数是从$$2$$开始,依次多$$3$$, 算式中间的符号是``$$+-$$''循环, 则第$$10$$个算式,中间符号为``$$-$$'', 第$$1$$个数为$$100-9\\times 2=82$$, 第$$2$$个数为$$2+3\\times 9=29$$, 则第$$10$$个算式为``$$82-29$$''. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 585 | 0b5db628be1549f691704e8fd6023303 | [
"2019年第23届广东世界少年奥林匹克数学竞赛六年级竞赛初赛第3题5分"
] | 1 | single_choice | 分母是$$2016$$的所有最简真分数的和是. | [
[
{
"aoVal": "A",
"content": "$$288$$ "
}
],
[
{
"aoVal": "B",
"content": "$$576$$ "
}
],
[
{
"aoVal": "C",
"content": "$$144$$ "
}
],
[
{
"aoVal": "D",
"content": "$$200$$ "
}
],
[
{
"aoVal": "E",
"content": "$$300$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"先把$$2016$$分解质因数,可得分子是$$2$$的倍数、$$3$$的倍数、$$7$$的倍数时,都不是最简分数,$$1\\sim 42$$中,不是$$2$$,$$3$$,$$7$$倍数的数有$$1$$,$$5$$,$$11$$,$$13$$,$$17$$,$$19$$,$$23$$,$$25$$,$$29$$,$$31$$,$$37$$,$$41$$总共$$12$$个,和为$$252$$,把这$$12$$个数分别加$$42$$,就得到了$$43\\sim 84$$中不是$$2$$,$$3$$,$$7$$倍数的数,和为$$252+12\\times 42$$,以此类推,$$1\\sim 2016$$中不是$$2$$,$$3$$,$$7$$倍数的数的和是$$252+(252+12\\times 42)+(252+12\\times 42\\times 2)+(252+12\\times 42\\times 3)+\\cdots +(252+12\\times 42\\times 42)$$,求出和再除以$$2016$$即可. $$2016=2\\times 2\\times 2\\times 2\\times 2\\times 3\\times 3\\times 7$$, 所以分子是$$2$$的倍数、$$3$$的倍数、$$7$$的倍数时,都不是最简分数, $$1\\sim 42$$中,不是$$2$$,$$3$$,$$7$$倍数的数有$$1$$,$$5$$,$$11$$,$$13$$,$$17$$,$$19$$,$$23$$,$$25$$,$$29$$,$$31$$,$$37$$,$$41$$总共$$12$$个,和为$$252$$. 把这$$12$$个数分别加$$42$$,就得到了$$43\\sim 84$$中不是$$2$$,$$3$$,$$7$$倍数的数, 和为$$252+12\\times 42$$ $$=252+504$$ $$=756$$, 以此类推,$$1\\sim 2016$$中不是$$2$$,$$3$$,$$7$$倍数的数的和是 $$252+(252+12\\times 42)+(252+12\\times 42\\times 2)+(252+12\\times 42\\times 3)+\\cdots +(252+12\\times 42\\times 42)$$ $$=252+(252+504)+(252+1008)+(252+1512)+\\cdots +(252+21168)$$ $$=252+756+1260+1764+\\cdots +21420$$ $$=580608$$, 分母是$$2016$$的所有最简真分数的和是$$\\frac{580608}{2016}=288$$. 故选$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2906 | 73fe62bbcd374e61b799428e9ae13120 | [
"2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛决赛第3题5分"
] | 1 | single_choice | 算式$$19+28+37+46+55+64+73+82+91$$的计算结果是. | [
[
{
"aoVal": "A",
"content": "$$450$$ "
}
],
[
{
"aoVal": "B",
"content": "$$485$$ "
}
],
[
{
"aoVal": "C",
"content": "$$495$$ "
}
],
[
{
"aoVal": "D",
"content": "$$505$$ "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"$$19+28+37+46+55+64+73+82+91$$ $$=(19+91)+(28+82)+(37+73)+(46+64)+55$$ $$=110+110+110+110+55$$ $$=495$$. 所以选择$$\\text C$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 951 | e65a82a801b446ca85d133c38787d9ba | [
"2013年IMAS小学高年级竞赛第二轮检测试题第4题4分"
] | 1 | single_choice | 请问下面哪个数写在$$2013$$后面组成的六位数能同时被$$3$$、$$4$$、$$7$$整除? | [
[
{
"aoVal": "A",
"content": "$$12$$ "
}
],
[
{
"aoVal": "B",
"content": "$$20$$ "
}
],
[
{
"aoVal": "C",
"content": "$$48$$ "
}
],
[
{
"aoVal": "D",
"content": "$$56$$ "
}
],
[
{
"aoVal": "E",
"content": "$$78$$~ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"同时被$$3$$、$$4$$、$$7$$整除意味着能分别整除$$3$$、$$4$$、$$7$$. 整除$$3$$各项数之和为$$3$$的倍数$$2013\\to 2+1+3=6$$,排除$$\\text{B}$$项和$$\\text{D}$$项. 整除$$4$$后两项能整除$$4$$,排除$$\\text{E}$$. 剩余部分代入$$\\text{A}$$项不能整除,故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2525 | 1ed8bf38dc4747b3986938384467ae07 | [
"2017年第8届广东广州羊排赛六年级竞赛第2题1分"
] | 1 | single_choice | 小伦有$$a$$个苹果,肥罗的苹果比小伦多$$b$$个,两人一共个苹果. | [
[
{
"aoVal": "A",
"content": "$$a+b$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2a+b$$ "
}
],
[
{
"aoVal": "C",
"content": "$$a+2b$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2a+2b$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"肥罗有苹果$$(a+b)$$个,两人共有$$a+(a+b)=(2a+b)$$个. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1560 | 5fb96f6ccbc1486b8bcddabf2570f7f0 | [
"2017年第13届湖北武汉新希望杯六年级竞赛决赛第6题"
] | 1 | single_choice | 水池有甲、乙两根进水管,单独打开甲进水管$$6$$小时可注满空水池,单独打开乙进水管$$4$$小时可注满空水池.如果按照甲、乙、甲、乙$$\ldots\ldots$$的顺序轮流打开$$1$$小时,注满空水池需小时. | [
[
{
"aoVal": "A",
"content": "$$2.4$$~~ "
}
],
[
{
"aoVal": "B",
"content": "$$3$$~~~~~ "
}
],
[
{
"aoVal": "C",
"content": "$$4.4$$~~ "
}
],
[
{
"aoVal": "D",
"content": "$$5$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->接力施工问题"
] | [
"甲、乙$$2$$小时一个周期:$$\\frac{1}{4}+\\frac{1}{6}=\\frac{5}{12}$$,两个周期后还剩下:$$1-2\\times \\frac{5}{12}=\\frac{1}{6}$$,剩下的甲做:$$\\frac{1}{6}\\div \\frac{1}{6}=1$$小时,共需$$2\\times 2+1=5$$小时. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1818 | b6c33801f35540aa8493c00fcfbb575f | [
"2013年第11届创新杯四年级竞赛初赛第5题6分"
] | 2 | single_choice | 甲、乙两名鱼贩,卖同一种鱼,两人卖法如下: 甲卖$$10$$元一斤;乙把鱼分成鱼头和鱼身两部分卖,鱼头$$9.5$$元一斤、鱼身$$10.5$$元一斤.照这样的卖法,甲、乙卖同样的一条鱼,甲、乙所得的钱比较. (提示:鱼身重量大于鱼头重量). | [
[
{
"aoVal": "A",
"content": "乙卖的多 "
}
],
[
{
"aoVal": "B",
"content": "甲卖的多 "
}
],
[
{
"aoVal": "C",
"content": "甲、乙同样多 "
}
],
[
{
"aoVal": "D",
"content": "无法确定谁多 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->列方程解应用题->不定方程解应用题"
] | [
"设鱼头重量为$$a$$,鱼身重量为$$b$$. 甲卖鱼所得钱为:$$10a+10b$$; 乙卖鱼所得钱为∶$$9.5a+10.5b$$, 乙卖鱼所得钱$$-$$甲卖鱼所得钱得: $$\\left( 9.5a+10.5b \\right)-\\left( 10a+10b \\right)$$ $$=0.5b-0.5a$$. 因为$$b\\textgreater a$$, 所以$$0.5b-0.5a\\textgreater0$$. 即乙卖鱼所得钱比甲卖鱼所得钱多. 故选$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 433 | 932cd703d4394fbdb4ac975234945c98 | [
"2013年小机灵杯三年级竞赛初赛"
] | 2 | single_choice | 现有甲、乙、丙三人同时说了以下三句话。甲说:``乙正在说谎。''乙说:``丙正在说谎。''丙说:``他俩正在说谎。''根据三人的对话情况,请你分析,( )说的是真话。 | [
[
{
"aoVal": "A",
"content": "甲 "
}
],
[
{
"aoVal": "B",
"content": "乙 "
}
],
[
{
"aoVal": "C",
"content": "丙 "
}
]
] | [
"拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理"
] | [
"解:若甲说的是真话,则乙说谎,丙说真话,但丙说甲在说谎,所以矛盾。因此,甲说谎。 甲说谎,则乙说的是真话,丙是说谎的,此时符合。 所以,三人中,甲说谎,乙说真话,丙说谎。 故答案为:B。 "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2484 | 54657b24f18949d7b3b8a5709f56fcc5 | [
"2018年第22届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第2题5分"
] | 1 | single_choice | 根据下面两个算式,则$$\triangle$$代表. $$\triangle +\triangle +\triangle -\square -\square =12$$~ ~ ~ ~ ~ ~ ~ $$\square +\square +\square -\triangle -\triangle =2$$ | [
[
{
"aoVal": "A",
"content": "$$6$$ "
}
],
[
{
"aoVal": "B",
"content": "$$8$$ "
}
],
[
{
"aoVal": "C",
"content": "$$10$$ "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"依题意有:$$3\\triangle -2\\square =12$$①,$$3\\square -2\\triangle =2$$②, ①$$\\times 3$$,②$$\\times 2$$得: $$9\\triangle -6\\square =36$$③, $$6\\square -4\\triangle =4$$④, ③$$+$$④得:$$5\\triangle =40$$, 所以$$\\triangle =8$$. 故选择$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 422 | 9bd9b9f3500b43a8972e4de3e65420cb | [
"2017年第15届湖北武汉创新杯五年级竞赛初赛第8题"
] | 2 | single_choice | 一个两位数,它$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$、$$10$$倍的数字和都与原两位数的数字和相等,这样的两位数中,最大数减去最小数的差是. | [
[
{
"aoVal": "A",
"content": "$$99$$ "
}
],
[
{
"aoVal": "B",
"content": "$$81$$~ "
}
],
[
{
"aoVal": "C",
"content": "$$27$$ "
}
],
[
{
"aoVal": "D",
"content": "$$18$$ "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"记两位数的数字和为$$M$$,并且进了$$k$$次位,则可得$$2M-9k=M$$,得$$M=9k$$,即$$M$$是$$9$$的倍数,即两位数最大为$$99$$,$$M$$最大为$$99$$,$$M$$最小为$$18$$,则差为$$99-18=81$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 193 | 24a3c6acbb454ffdb9cd9adbd9706d08 | [
"2022年新加坡高级学府数学竞赛(SASMO)三年级竞赛第11题1分"
] | 1 | single_choice | 妈妈回到家,发现她的一个孩子把家里的巧克力都吃光了.她问了她的每个孩子是谁做的,他们的回答如下所示. 奥斯汀:卡洛斯吃了巧克力. 本尼:奥斯汀吃了巧克力. 卡洛斯:本尼在撒谎. 丹妮拉:吃巧克力的不是卡洛斯. 艾拉:我没有吃巧克力. 如果只有两个孩子说的是真话,那么是谁吃了巧克力? | [
[
{
"aoVal": "A",
"content": "Austin "
}
],
[
{
"aoVal": "B",
"content": "Carlos "
}
],
[
{
"aoVal": "C",
"content": "Daniela "
}
],
[
{
"aoVal": "D",
"content": "Ella "
}
]
] | [
"拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找一致(同伙)",
"Overseas Competition->知识点->组合模块->逻辑推理->假设型逻辑推理->真假话"
] | [
"因为$$Austin$$和$$Daniela$$说的话是矛盾的,$$Benny$$和$$Carlos$$说的话是矛盾的,而五个孩子中有两个孩子说的真话,$$Ella$$说的一定是假话,真相是巧克力是$$Ella$$吃的. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1401 | 31e16d1aa6504a0f9215af0e624f5b64 | [
"走美杯三年级竞赛",
"走美杯四年级竞赛"
] | 1 | single_choice | 幼儿园买了$$8$$辆玩具车,每辆玩具车需要$$92$$元,李老师买这些玩具车,带了$$720$$元够吗?下面的解答比较合理的是. | [
[
{
"aoVal": "A",
"content": "因为$$92\\times 8\\approx$$ 720(元),$$92\\times$$ 8\\textgreater720,所以$$92\\times$$ 8\\textgreater720,够 "
}
],
[
{
"aoVal": "B",
"content": "因为$$92\\times 8\\approx$$ 800(元),$$92\\times$$ 8\\textless800,所以$$92\\times$$ 8\\textless720,够 "
}
],
[
{
"aoVal": "C",
"content": "因为$$92\\times 8\\approx$$ 720(元),$$92\\times$$ 8\\textgreater720,所以$$92\\times$$ 8\\textgreater720,不够 "
}
],
[
{
"aoVal": "D",
"content": "因为$$92\\times 8\\approx$$ 800(元),$$92\\times$$ 8\\textgreater800,所以$$92\\times$$ 8\\textgreater720,不够 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型"
] | [
"92\\textgreater90,总价大于$$720$$元,所以不够 "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2239 | 83d6850c89e549a6a4da9eebc6f76ea8 | [
"2016年河南郑州联合杯小学高年级五年级竞赛复赛改编"
] | 1 | single_choice | 猎犬发现在它$$10$$米远的前方有一只奔跑着的野兔,猎犬马上紧追上去.猎犬的步子大,它跑$$5$$步的路程,兔子要跑$$9$$步;但兔子动作快,猎犬跑$$2$$步的时间,兔子却能跑$$3$$步.猎犬跑多少米能追上兔子? | [
[
{
"aoVal": "A",
"content": "$$50$$. "
}
],
[
{
"aoVal": "B",
"content": "$$60$$. "
}
],
[
{
"aoVal": "C",
"content": "$$90$$. "
}
]
] | [
"知识标签->学习能力->七大能力->逻辑分析"
] | [
"得到猎犬和野兔的速度比是$$6:5$$,即相同时间路程比是$$6:5$$,得到猎犬跑了$$60$$米. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 889 | 742e8b1b49d2469ba281a34d3c7f6de1 | [
"2017年第13届湖北武汉新希望杯五年级竞赛决赛第1题"
] | 1 | single_choice | 下列说法正确的是. | [
[
{
"aoVal": "A",
"content": "互质的两个数没有公因数 "
}
],
[
{
"aoVal": "B",
"content": "$$12$$和$$24$$的最大公因数是$$24$$ "
}
],
[
{
"aoVal": "C",
"content": "$$24$$和$$30$$的最大公因数是$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "互质的两个数都是质数 "
}
]
] | [
"拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数"
] | [
"$$\\text{A}$$选项:互质的两个数公因数为$$1$$,$$\\text{B}$$选项:$$12$$和$$24$$的最大公因数是$$12$$,$$\\text{D}$$选项:互质的两个数不一定都是质数. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1423 | a76e21635d9f459e8934fc701b951999 | [
"2011年五年级竞赛创新杯"
] | 0 | single_choice | 一台计算机感染了病毒,在计算机的存储器里,从$$2$$到$$9$$的每一个数$$x$$都被$$1+2+\cdots +x$$这个和代替,例如$$2$$被$$3\left( 3=1+2 \right)$$代替,$$5$$被$$15\left( 15=1+2+3+4+5 \right)$$代替,计算机的其他功能都正常,如果你计算$$1+3+5$$,计算机显示的结果是( )。 | [
[
{
"aoVal": "A",
"content": "9 "
}
],
[
{
"aoVal": "B",
"content": "15 "
}
],
[
{
"aoVal": "C",
"content": "22 "
}
],
[
{
"aoVal": "D",
"content": "25 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->加减法应用"
] | [
"$$3$$被$$1+2+3=6$$代替,$$5$$被$$1+2+3+4+5=15$$代替,所以$$1+3+5$$显示为$$1+6+15=22$$。 "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1563 | 68c45ade239241758cb17f657e127910 | [
"小学高年级六年级其它2014年数学思维能力等级测试第3题",
"2014年第12届全国创新杯六年级竞赛第3题"
] | 2 | single_choice | ~猎狗发现一只狐狸在它前$$90$$米处,于是直接扑上去追捕,而狐狸马上闻风逃逸,当狐狸前逃$$1$$米时,猎狗赶上了$$10$$米,如果猎狗和狐狸前进路线相同,当猎狗抓到狐狸时,猎狗总共走了(~ )米. | [
[
{
"aoVal": "A",
"content": "$$120$$ "
}
],
[
{
"aoVal": "B",
"content": "$$118$$ "
}
],
[
{
"aoVal": "C",
"content": "$$115$$ "
}
],
[
{
"aoVal": "D",
"content": "$$110$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"$${{V}_{}}+{{V}_{}}=1:10$$,追上时狗比狐狸多跑$$90$$米,即狗跑了$$90\\times \\frac{10}{10-1}=100$$米. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 577 | 4148558bfc27481e85b84cf676360241 | [
"2017年第22届湖北武汉华杯赛小学高年级竞赛第6题"
] | 2 | single_choice | 已知自然数$$n$$有$$10$$个因数,$$2n$$有$$20$$个因数,$$3n$$有$$15$$个因数.那么$$6n$$有~\uline{~~~~~~~~~~}~个因数. | [
[
{
"aoVal": "A",
"content": "$$24$$ "
}
],
[
{
"aoVal": "B",
"content": "$$25$$ "
}
],
[
{
"aoVal": "C",
"content": "$$30$$ "
}
],
[
{
"aoVal": "D",
"content": "$$35$$ "
}
],
[
{
"aoVal": "E",
"content": "$$36$$ "
}
]
] | [
"拓展思维->拓展思维->数论模块->因数与倍数->因数个数定理->因数个数定理逆应用"
] | [
"因为$$\\frac{20}{10}=\\frac{1+1}{0+1}$$,所以$$n$$的质因数分解式中含有$$0$$个$$2$$. 因为$$\\frac{15}{10}=\\frac{2+1}{1+1}$$,所以$$n$$的质因数分解式中含有$$1$$个$$3$$,另一个质因数有$$4$$个. 所以$$6n$$的因数有$$(1+1)(2+1)(4+1)=30$$个. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1146 | a215a72a85a542e0a6a6debeb02b4d7e | [
"2015年第11届全国新希望杯小学高年级六年级竞赛复赛第6题"
] | 2 | single_choice | 某公司仓库里原有一批存货,以后每天陆续有货入库,且每天进的货一样多,用同样的汽车运货出库,如果每天用$$24$$辆汽车,$$5$$天刚好运完;如果每天用$$18$$辆汽车,$$8$$天刚好运完.现在用若干辆这样的汽车运货出库,运$$4$$天后,仓库每天的进货量是原来每天进货量的$$1.5$$倍,如果要求用$$10$$天时间运完仓库里的货,那么至少需要(~ )辆这样的汽车(不准超载). | [
[
{
"aoVal": "A",
"content": "$$18$$ "
}
],
[
{
"aoVal": "B",
"content": "$$19$$ "
}
],
[
{
"aoVal": "C",
"content": "$$20$$ "
}
],
[
{
"aoVal": "D",
"content": "$$21$$ "
}
]
] | [
"拓展思维->思想->方程思想"
] | [
"设一辆汽车一天运走$$1$$份货物,那么进货的速度是每天$$\\left( 18\\times 8-24\\times 5 \\right)\\div \\left( 8-5 \\right)=8$$份,原有货物$$18\\times 8-8\\times 8=80$$份,设需要$$x$$辆车,有$$10x\\geqslant 80+4\\times 8+6\\times 1.5\\times 8=184$$,那么$$x$$至少是19. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2793 | ff8080814724846801472db5f62907d6 | [
"2016年全国华杯赛小学中年级竞赛在线模拟第1题",
"2013年全国华杯赛小学中年级竞赛初赛A卷第1题"
] | 1 | single_choice | $$45$$与$$40$$的积的数字和是(~ ~). | [
[
{
"aoVal": "A",
"content": "$$9$$ "
}
],
[
{
"aoVal": "B",
"content": "$$11$$ "
}
],
[
{
"aoVal": "C",
"content": "$$13$$ "
}
],
[
{
"aoVal": "D",
"content": "$$15$$ "
}
]
] | [
"拓展思维->思想->整体思想"
] | [
"$$45\\times 40=45\\times 2\\times 20=1800$$,数字和$$1+8+0+0=9$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1341 | 70a96e6a813b417098db7e482db0e32d | [
"2020年长江杯六年级竞赛复赛B卷第4题5分"
] | 2 | single_choice | 某淘宝店的一种商品按原定价出售,每件利润为成本的$$30 \%$$ ,``双$$11$$''这一天搞促销,按原定价打九折出售,结果当天出售的件数是原来每天出售件数的$$6$$倍,该店``双$$11$$''这天经营这种商品的总利润比以前每天增加$$ \%$$ . | [
[
{
"aoVal": "A",
"content": "$$24$$ "
}
],
[
{
"aoVal": "B",
"content": "$$60$$ "
}
],
[
{
"aoVal": "C",
"content": "$$90$$ "
}
],
[
{
"aoVal": "D",
"content": "$$240$$ "
}
]
] | [
"拓展思维->能力->实践应用"
] | [
"后来的售价为原来的: $$(1+30 \\%)\\times 90 \\%=1.3\\times 90 \\%=1.17$$(倍), 利润为:$$(1.17-1)\\times 6=1.02$$; 增加了: $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde(1.02-0.3)\\div 0.3\\times 100 \\%$$ $$=0.72\\div 0.3\\times 100 \\%$$ $$=2.4\\times 100 \\%$$ $$=240 \\%$$. 故答案为:$$240$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 346 | 8065e52716e34cd69d6de99bd54d6708 | [
"2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)"
] | 3 | single_choice | 有一天,彭老师和陈老师约好去打乒乓球,结果彭老师以$$4:0$$完虐陈老师.乒乓球比赛为$$11$$分制,即每局$$11$$分,$$7$$局$$4$$胜制,打成$$10:10$$后必须净胜而且只能净胜$$2$$分.经计算,彭老师四局的总得分为$$48$$分,陈老师总得分为$$39$$分,且每一局比赛分差不超过$$3$$分,则一共有种情况.(不考虑这四局比分之间的顺序) | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"知识标签->课内知识点->数学广角->推理->解决简单逻辑推理问题"
] | [
"每周比赛要分出胜负分差必须在$$2$$分或以上,题中又给出每局比赛分差不超过$$3$$分,故每局比赛的分差只有两种可能:差$$2$$分或$$3$$分.且分差为$$3$$分的那局彭老师得分为$$11$$分,总分差为$$48-39=9$$分,故必有$$3$$场分差为$$2$$分,另一场分差为$$3$$分;即有一场的比分为$$118$$,另两场的总比分为$$3731$$,有以下四种情况:①$$11:9$$,$$11:9$$,$$15:13$$②$$11:9$$,$$12:10$$,$$14:12$$③$$11:9$$,$$13:11$$,$$13:11$$④$$12:10$$,$$12:10$$,$$13:11$$.故一共有$$4$$种情况. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 559 | 02e796557c3540ba8231e98c5064227a | [
"2018年第6届湖北长江杯六年级竞赛初赛A卷第5题3分"
] | 1 | single_choice | 相邻的两个奇数 . | [
[
{
"aoVal": "A",
"content": "一定是质数 "
}
],
[
{
"aoVal": "B",
"content": "不一定是互质数 "
}
],
[
{
"aoVal": "C",
"content": "没有公因数 "
}
],
[
{
"aoVal": "D",
"content": "最小公倍数是他们的积 "
}
]
] | [
"拓展思维->拓展思维->数论模块->质数与合数->质数与合数判定->质数与合数的认识"
] | [
"奇数($$\\text{odd}$$)指不能被$$2$$整除的整数,数学表达形式为:$$2k+1$$,奇数可以分为正奇数和负奇数. 偶数是能够被$$2$$所整除的整数.正偶数也称双数.若某数是$$2$$的倍数,它就是偶数,可表示为$$2n$$; $$\\text{A}$$.质数是指在大于$$1$$的自然数中,除了$$1$$和它本身以外不再有其他因数的自然数.$$7$$和$$9$$是相邻的奇数,但是$$9$$是合数,不是质数;故$$\\text{A}$$错误; $$\\text{B}$$.互质数为数学中的一种概念,即两个或多个整数的公因数只有$$1$$的非零自然数.公因数只有$$1$$的两个非零自然数,叫做互质数.相邻的两个奇数一定是互质数,故$$\\text{B}$$错误; $$\\text{C}$$.$$7$$和$$9$$是相邻的奇数,它们有公因数$$1$$,故$$\\text{C}$$错误; $$\\text{D}$$.相邻的两个奇数最小公倍数是他们的积,故$$\\text{D}$$正确. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2539 | 1f23f23692474b6b894b68dc9e448df2 | [
"2020年四川绵阳涪城区绵阳东辰国际学校超越杯四年级竞赛第4题2分"
] | 1 | single_choice | 用$$416$$连续减$$8$$,减次后等于$$0$$. | [
[
{
"aoVal": "A",
"content": "$$50$$ "
}
],
[
{
"aoVal": "B",
"content": "$$52$$ "
}
],
[
{
"aoVal": "C",
"content": "$$54$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"根据题意分析可知,求用$$416$$连续减多少个$$8$$后等于$$0$$, 也就是求$$416$$中有多少个$$8$$, 用除法计算,列式为:$$416\\div8=52$$, 所以减$$52$$次后等于$$0$$. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1462 | 5605a89fe9b04537a517b239f3f12a1d | [
"2016年新希望杯小学高年级六年级竞赛训练题(六)第3题"
] | 2 | single_choice | 兰兰和星星去林子里摘桃子,兰兰摘的桃子数是星星的$$\frac{11}{12}$$,星星又摘了$$40$$个桃子后,兰兰摘得桃子是星星的$$\frac{3}{4}$$,星星一共比兰兰多摘了(~ ~ ~)个桃子. | [
[
{
"aoVal": "A",
"content": "$$45$$ "
}
],
[
{
"aoVal": "B",
"content": "$$50$$ "
}
],
[
{
"aoVal": "C",
"content": "$$55$$ "
}
],
[
{
"aoVal": "D",
"content": "$$60$$ "
}
]
] | [
"拓展思维->能力->构造模型->模型思想"
] | [
"设星星一开始摘的桃子数是$$12x$$,兰兰摘的桃子数是$$11x$$.$$\\frac{11x}{12x+40}=\\frac{3}{4}$$,解得$$x=15$$. 星星摘的桃子比兰兰多$$12x+40-11x=55$$个. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 608 | 21946cb3545f408187910b35f84620db | [
"2005年五年级竞赛创新杯"
] | 2 | single_choice | 若$$P$$和$${{P}^{3}}+5$$都是质数,那么$${{P}^{5}}+5$$( )。 | [
[
{
"aoVal": "A",
"content": "一定是质数 "
}
],
[
{
"aoVal": "B",
"content": "一定是合数 "
}
],
[
{
"aoVal": "C",
"content": "可为质数,也可为合数 "
}
],
[
{
"aoVal": "D",
"content": "既不是质数也不是合数 "
}
]
] | [
"拓展思维->拓展思维->数论模块->质数与合数->质数与合数判定"
] | [
"若$$P$$为奇数,那么$$({{P}^{3}}+5)$$为偶数,又大于$$2$$的偶数都是合数,那么$$P$$是偶数,又$$P$$是质数,所以$$P=2$$,则$${{P}^{5}}+5={{2}^{5}}+5=37$$,选A。 "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1060 | 1c653a6c39064c869a3c0c73413fc883 | [
"2018年四川成都锦江区四川师范大学附属第一实验中学小升初(四)第5题3分",
"2014年全国迎春杯三年级竞赛初赛第13题"
] | 1 | single_choice | 青青老师给一些同学发臭豆腐,,如果每人发$$4$$块,还剩下$$10$$块;如果每人发$$5$$块,还会剩下$$1$$块,青青老师共有多少块臭豆腐? | [
[
{
"aoVal": "A",
"content": "$$36$$ "
}
],
[
{
"aoVal": "B",
"content": "$$46$$ "
}
],
[
{
"aoVal": "C",
"content": "$$51$$ "
}
],
[
{
"aoVal": "D",
"content": "$$52$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->盈亏问题->盈亏基本类型->盈亏基本类型盈亏问题"
] | [
"盈盈类问题:共有$$(10-1)\\div (5-4)=9$$人,共有$$4\\times 9+10=46$$块臭豆腐. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2709 | 6424647b50f04b56adaab3059c068943 | [
"2017年IMAS小学中年级竞赛(第一轮)第9题3分"
] | 1 | single_choice | 四个连续的奇数之和是$$72$$,请问这四个数中最大的数是多少? | [
[
{
"aoVal": "A",
"content": "$$15$$ "
}
],
[
{
"aoVal": "B",
"content": "$$17$$ "
}
],
[
{
"aoVal": "C",
"content": "$$19$$ "
}
],
[
{
"aoVal": "D",
"content": "$$21$$ "
}
],
[
{
"aoVal": "E",
"content": "$$23$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"由题意可知这四个连续奇数的平均值为$$72\\div 4=18$$, 因此这四个连续奇数为$$15$$、$$17$$、$$19$$、$$21$$, 即最大奇数为$$21$$. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2379 | e2f05f1faed24b1d99b401f38ff78e2b | [
"六年级其它",
"2004年第2届创新杯六年级竞赛复赛第8题"
] | 2 | single_choice | 古埃及时代,人们最喜欢的是分子为$$1$$的分数,如$$\frac{1}{2}$$,$$\frac{1}{3}$$,$$\frac{1}{4}\cdots$$,$$\frac{1}{n}$$,\ldots 等,我们不妨称这些分数为单位分数,其他的分数,只有它能写成若干个不同的单位分数之和时,人们才承认它是分数,例如,由于$$\frac{3}{4}=\frac{1}{2}+\frac{1}{4}$$,所以他们承认$$\frac{3}{4}$$是分数.如果当时只知有四个单位分数:$$\frac{1}{2}$$,$$\frac{1}{3}$$,$$\frac{1}{4}$$,$$\frac{1}{5}$$,那么下列四个分数中,不被承认的分数是. | [
[
{
"aoVal": "A",
"content": "$$\\frac{5}{6}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{7}{12}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\frac{19}{20}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\frac{9}{10}$$ "
}
]
] | [
"拓展思维->拓展思维->计算模块->裂项与通项归纳->分数裂项->分数拆分"
] | [
"$$\\frac{5}{6}=\\frac{1}{2}+\\frac{1}{3}$$,$$\\frac{7}{12}=\\frac{1}{2}+\\frac{1}{12}$$,$$\\frac{19}{20}=\\frac{1}{2}+\\frac{1}{4}+\\frac{1}{5}$$.$$D$$不能被拆分. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 21 | 05bef68bce6346598893ff2f788c943f | [
"2021年新希望杯五年级竞赛初赛第18题5分"
] | 2 | single_choice | ``水仙花数''是指这样一类数:将各位数字的立方相加,得到的和正好是原来的数,比如$$370$$,$$3^{3}+7^{3}+0^{3}=27+343+0=370$$.将一个数的各位数字的立方相加,得到一个新的数,这称为一次操作.从$$645$$开始不断重复操作,最后得到的水仙花数是~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "$$135$$ "
}
],
[
{
"aoVal": "B",
"content": "$$153$$ "
}
],
[
{
"aoVal": "C",
"content": "$$513$$ "
}
],
[
{
"aoVal": "D",
"content": "$$189$$ "
}
]
] | [
"拓展思维->拓展思维->组合模块->操作与策略->操作问题->数字操作"
] | [
"$$645$$是$$6^{3}+4^{3}+5^{3}=216+64+125=280+125=405$$, $$405$$是$$4^{3}+0^{3}+5^{3}=64+0+125=64+125=189$$, $$189$$是$$1^{3}+8^{3}+9^{3}=1+512+729=513+729=1242$$, $$1242$$是$$1^{3}+2^{3}+4^{3}+2^{3}=1+8+64+8=9+72=81$$, $$81$$是$$8^{3}+1^{3}=512+1=513$$, $$513$$是$$5^{3}+1^{3}+3^{3}=125+1+27=126+27=153$$, $$153$$是$$1^{3}+5^{3}+3^{3}=1+125+27=126+27=153$$, 则最后是$$153$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2058 | fd5e6aad41fb4d95b817d8690694585f | [
"2016年新希望杯六年级竞赛训练题(六)第1题"
] | 1 | single_choice | 李家村李家兄弟合作在门口挖一口井,李凡单独挖需要$$10$$天才能挖成,李超单独挖需要$$30$$天才能挖完.兄弟两人同时挖需要(~ )天.~ | [
[
{
"aoVal": "A",
"content": "$$5$$ "
}
],
[
{
"aoVal": "B",
"content": "$$7.5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$10$$ "
}
],
[
{
"aoVal": "D",
"content": "$$15$$ "
}
]
] | [
"拓展思维->思想->整体思想"
] | [
"李凡一天挖$$\\frac{1}{10}$$,李超一天挖$$\\frac{1}{30}$$,兄弟合挖一天能完成$$\\frac{1}{30}+\\frac{1}{10}=\\frac{2}{15}$$,需要$$1\\div \\frac{2}{15}=7.5$$天. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1845 | 8e5bd9b4572a4272a757469e3d11139f | [
"2009年四年级竞赛创新杯"
] | 2 | single_choice | 黑板上写有一个数,男同学从黑板前走过时,把它乘以3减去14,擦去原数,换上答案;女同学从黑板前走过时,把它乘以2减去7,擦去原数,换上答案.全班25名男生和15名女生都走过去以后,老师把最后的数乘以5,减去5,结果是30.那么,黑板上最初的数是( ). | [
[
{
"aoVal": "A",
"content": "5 "
}
],
[
{
"aoVal": "B",
"content": "6 "
}
],
[
{
"aoVal": "C",
"content": "7 "
}
],
[
{
"aoVal": "D",
"content": "8 "
}
]
] | [
"拓展思维->拓展思维->组合模块->操作与策略->操作问题"
] | [
"全体同学走过后,黑板上的数是$$\\left( 30+5 \\right)\\div 5=7$$,最后一名学生走过之前,黑板上的数是$$\\left( 7+7 \\right)\\div 2=7$$,或$$\\left( 7+14 \\right)\\div 3=7$$,总之,最后一名学生(即第40名学生)走过之前,黑板上的数还是7,同理,第39名学生走过之前,黑板上的数还是7,\\ldots,因此可知,第1名学生走过之前,黑板上的数还是7,即黑板上最初的数是7. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3461 | c6dceee8994d476aa60f969cb712e5eb | [
"2014年广东广州羊排赛六年级竞赛第8题1分"
] | 1 | single_choice | 一个袋子里装有$$9$$个白球和$$3$$个红球(球的大小和形状一样),从中任意摸出一个,摸到红球的可能性是. | [
[
{
"aoVal": "A",
"content": "$$20 \\%$$ "
}
],
[
{
"aoVal": "B",
"content": "$$25 \\%$$ "
}
],
[
{
"aoVal": "C",
"content": "$$30 \\%$$ "
}
],
[
{
"aoVal": "D",
"content": "$$37.5 \\%$$ "
}
]
] | [
"拓展思维->拓展思维->计数模块->统计与概率->概率->典型问题->摸小球"
] | [
"摸到红球可能性为$$3\\div (9+3)\\times 100 \\%=25 \\%$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2789 | ff808081472482f50147296100e10400 | [
"2013年全国华杯赛小学高年级竞赛初赛C卷第1题",
"2017年全国小升初建华入学备考第16题"
] | 3 | single_choice | 如果$$\frac{2013\times 2013}{2014\times 2014+2012}=\frac{n}{m}$$(其中$$m$$与$$n$$为互质的自然数),那么$$m+n$$的值是(~ ~ ~ ~). | [
[
{
"aoVal": "A",
"content": "$$1243$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1343$$ "
}
],
[
{
"aoVal": "C",
"content": "$$4025$$ "
}
],
[
{
"aoVal": "D",
"content": "$$4029$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"方法一:找规律 $$\\frac{{{2}^{2}}}{{{3}^{2}}+1}=\\frac{2}{5}$$、$$\\frac{{{3}^{2}}}{{{4}^{2}}+2}=\\frac{1}{2}=\\frac{3}{6}$$、$$\\frac{{{4}^{2}}}{{{5}^{2}}+3}=\\frac{4}{7}$$、$$\\frac{{{5}^{2}}}{{{6}^{2}}+4}=\\frac{5}{8}$$$$\\cdots$$ 规律找到了,$$\\frac{{{n}^{2}}}{{{(n+1)}^{2}}+(n-1)}=\\frac{n}{n+3}$$. $$\\frac{2013\\times 2013}{2014\\times 2014+2012}=\\frac{n}{m}$$=$$\\frac{2013}{2016}=\\frac{671}{672}$$. 方法二:原式= $$\\frac{2013\\times 2013}{(2013+1)\\times (2013+1)+2013-1}=\\frac{2013\\times2013}{2013\\times 2013+2\\times 2013+1+2013-1}=\\frac{2013}{2016}=\\frac{671}{672}$$. 方法三:原式=$$\\frac{2013\\times 2013}{2014\\times (2013+1)+2012}=\\frac{2013\\times2013}{2013\\times 2014+2014+2012}=\\frac{2013}{2016}=\\frac{671}{672}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 683 | 5e4696bc9d474b8fa6901682a11f878c | [
"2016年第16届世奥赛六年级竞赛决赛第11题",
"2016年全国世奥赛竞赛A卷第11题"
] | 3 | single_choice | 大互联网梅森素数分布式计算(GIMPS)项目又建奇功,据外媒今年$$1$$月$$20$$月日报道,美国州立中密苏里大学阿迪斯库珀CurtisCooper通过GIMPS项目发现了第$$49$$个梅森素数(被称为M74207281),为GIMPS项目诞生$$20$$周免献礼.M74207281这个超大素数$$22338618$$位,是目前已知的最大素数,诞生一台Inter I7-4790 CPU电脑.这是库珀教授第四次通过S项目发现的梅森素数,刷新了他的记录.他上次发现第$$48$$个梅森素数$${{2}^{57885161}}-1$$是在$$2013$$年$$1$$月,由$$17425170$$位.GIMPS项目集合了$$20$$多万台计算机的计算能力,主要任务是不断筛选,寻找更大的梅森素数,尽管一些素数已经被用于加密和其他实际应用任务,但寻找最大的素数仍然出于对学术方面的兴趣.近年来发现的最大素数都是梅森素数.这一命名是为了纪念法国神学家、数学家、音乐理论家马林·梅森(Marin Nersenne,$$1588 \tilde{ } 1648$$).下面该同学显显身手了,请从一个$$1 \tilde{ } 9$$(缺$$8$$)这八个自然数中不重复地用这些数字构造出四个两位质数,并求出它们的和是(~ ). | [
[
{
"aoVal": "A",
"content": "$$190$$ "
}
],
[
{
"aoVal": "B",
"content": "$$217$$ "
}
],
[
{
"aoVal": "C",
"content": "$$127$$ "
}
],
[
{
"aoVal": "D",
"content": "无法构造 "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"我们知道所有的偶数都是合数,除了$$5$$以外,个位为$$5$$的数也都是合数,这$$8$$个数中只有$$1$$、$$3$$、$$5$$、$$7$$、$$9$$放在个位才有可能是质数,所以十位上只能是$$2$$、$$4$$、$$5$$、$$6$$.这四个两位数的和是$$\\left( 2+4+5+6 \\right)\\times 10+1+3+7+9=190$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1550 | 7ae8c4ad7c434d0d9b822b7de2576669 | [
"2018年第22届广东世界少年奥林匹克数学竞赛二年级竞赛决赛第5题5分"
] | 1 | single_choice | 熊奶奶家的水缸可以装$$8$$桶水,小熊每天早晨提$$4$$桶水,熊奶奶全家每天用$$3$$桶水.熊奶奶问小熊:``这样下去,到第天,我们家的水缸会装满水了. | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$6$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"小熊都是早晨提$$4$$桶水,则最后一天会提$$4$$桶水到水缸,所以$$8-4=4$$(桶),而前面的每天只装水:$$4-3=1$$(桶).所以天数为:$$4\\div1+1=5$$(天). 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2323 | d8f35a0f05344c8099d2858c36b22742 | [
"2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛初赛第9题5分"
] | 1 | single_choice | 一列快车和一列慢车相向而行,快车的车长是$$280$$米,慢车的车长是$$455$$米,坐在快车上的人看见慢车驶过的时间是$$13$$秒,那么坐在慢车上的人看见快车驶过的时间是秒. | [
[
{
"aoVal": "A",
"content": "$$7$$ "
}
],
[
{
"aoVal": "B",
"content": "$$8$$ "
}
],
[
{
"aoVal": "C",
"content": "$$9$$ "
}
],
[
{
"aoVal": "D",
"content": "$$10$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"坐在快车上的人和慢车进行相遇运动,则速度和$$=455\\div 13=35$$(米/秒),坐在慢车上的人和快车进行相遇运动时,则相遇时间$$=280\\div 35=8$$(秒). 故选择$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 382 | 8a0887ca6a6743038bd6f2a351f1c038 | [
"2016年河南郑州K6联赛小学高年级六年级竞赛第16题2分"
] | 2 | single_choice | 用两块同样大小的铁皮制成一个长方体和一个正方体铁桶,它们容积相比,(~ ~ ~ ). | [
[
{
"aoVal": "A",
"content": "长方体大 "
}
],
[
{
"aoVal": "B",
"content": "正方体大 "
}
],
[
{
"aoVal": "C",
"content": "同样大 "
}
],
[
{
"aoVal": "D",
"content": "无法确定 "
}
]
] | [
"拓展思维->拓展思维->组合模块->组合模块最值问题->最值原理在几何中的应用"
] | [
"同样大小的铁皮说明两个铁桶的表面积相等,可以先反过来考虑容积相等的长方体和正方体铁桶,它们的表面积哪一个大.假设两者体积都是$$27$$,正方体表面积是$$3\\times 3\\times 6=54$$;可以拼成一个长$$9$$,宽$$3$$,高$$1$$的长方体,表面积为$$\\left( 9\\times 3+3\\times 1+9\\times 1 \\right)\\times 2=78$$.由此可看出容积相等,正方体的表面积小一些.所以表面积相等,正方体的容积大. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 180 | 8b61b68975b44fb8b4a4720fc7b1d302 | [
"2017年第17届湖北武汉世奥赛五年级竞赛决赛第14题"
] | 1 | single_choice | 在桌子上有三个盖着盖子的盒子,其中一个盒子内有两粒绿豆,第二个盒子内有两粒红豆,另一个盒子内有一粒绿豆和一粒红豆,三个盒子盖子上分别写着``红豆'',``红、绿豆''和``绿豆'',但是所有标签都标错了.最少(~ )就能判断出所有盒子内各装着什么豆子. | [
[
{
"aoVal": "A",
"content": "从一个盒子取一粒豆子 "
}
],
[
{
"aoVal": "B",
"content": "从两个盒子各取一粒豆子 "
}
],
[
{
"aoVal": "C",
"content": "从一个盒子取两粒豆子 "
}
],
[
{
"aoVal": "D",
"content": "从三个盒子各取一粒豆子 "
}
]
] | [
"拓展思维->拓展思维->组合模块->抽屉原理->最不利原则"
] | [
"因为都错了.从标有``红、绿豆''的盒子中随便取出一个即可,假如取出来的是一颗红豆,则``红、绿''中都是红,剩下的盒子中,标有``红豆''的盒子肯定是绿豆,标有``绿豆''的肯定是``红绿豆'',所以最少从$$1$$个盒子从取出一粒豆子就可以判断出来. 故选$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1018 | 0a0bf9dd6a4943e3939ddc37bfb748a3 | [
"2016年新希望杯六年级竞赛训练题(五)第1题"
] | 2 | single_choice | 一根绳子剪去全长的$$\frac{1}{5}$$后,又接上$$20$$米,接上后的长度是接上前的$$\frac{5}{4} $$,那么原来的绳子长米. | [
[
{
"aoVal": "A",
"content": "$$44$$ "
}
],
[
{
"aoVal": "B",
"content": "$$100$$ "
}
],
[
{
"aoVal": "C",
"content": "$$125$$ "
}
],
[
{
"aoVal": "D",
"content": "$$150$$ "
}
]
] | [
"知识标签->课内知识点->数与运算->数的运算的实际应用(应用题)->百分数的简单实际问题->折扣、成数、税率、利率"
] | [
"$$20\\div \\left( \\frac{5}{4} -1 \\right)=80$$(米),$$80\\div \\left( 1-\\frac{1}{5} \\right)=100$$(米). "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 810 | 76e8f5c4f4904b2e8807119adb13f2fd | [
"2013年全国学而思杯五年级竞赛A卷第20题"
] | 3 | single_choice | 思思编了一个计算机程序,在屏幕上显示所有由$$0$$、$$1$$、$$2$$、$$3$$组成的四位编码(数字可以重复使用),每个四位编码都是红、黄、蓝、绿四种颜色中的一种.并且,如果两个编码的每一位数字均不相同,那么这两个编码的颜色也不相同.如果,$$0000$$是红色的、$$1000$$是黄色的、$$2000$$是蓝色的,那么: (1)下列编码中,一定不是红色的是. | [
[
{
"aoVal": "A",
"content": "$$0102$$ "
}
],
[
{
"aoVal": "B",
"content": "$$0312$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2222$$ "
}
],
[
{
"aoVal": "D",
"content": "$$0123$$ "
}
]
] | [
"课内体系->能力->运算求解",
"拓展思维->能力->实践应用"
] | [
"$$2222$$与$$0000$$的每一位数字均不相同,故$$2222$$一定不是红色,选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1350 | 2ce00020733e48ab8247c597be1dcaf3 | [
"2005年六年级竞赛创新杯"
] | 1 | single_choice | 小王的年龄的3倍与小谢的年龄的5倍相等,他们的年龄相差4岁,那么10年后( ). | [
[
{
"aoVal": "A",
"content": "小王的年龄的5倍与小谢年龄的3倍相等 "
}
],
[
{
"aoVal": "B",
"content": "小王的年龄的4倍与小谢年龄的5倍相等 "
}
],
[
{
"aoVal": "C",
"content": "小王的年龄的5倍与小谢年龄的4倍相等 "
}
],
[
{
"aoVal": "D",
"content": "小王的年龄的3倍与小谢年龄的5倍相等 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->分百应用题"
] | [
"小王的年龄的3倍与小谢的年龄的5倍相等,那么小王的年龄就等于小谢的年龄的$$\\frac{5}{3}$$相等.又他们的年龄相差4岁,所以小谢的年龄为$$4\\div \\left( \\frac{5}{3}-1 \\right)=6$$(岁),那么小王的年龄为$$6\\times \\frac{5}{3}=10$$(岁).10年后,小谢的年龄为16岁,小王的年龄为20岁,那么小谢的年龄的5倍和小王年龄的4倍相等,选$$B$$ "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 707 | c301a93843934f7aa45b25ed21998587 | [
"2022年第九届鹏程杯四年级竞赛初赛第29题5分"
] | 2 | single_choice | $$80$$名同学面向老师站成一排,老师先让大家从左到右按$$1$$至$$3$$报数,再让报数$$3$$的倍数的同学向后转,接着又从头开始$$1$$至$$5$$报数,再让报数是$$5$$的倍数的同学向后转,这样做过之后,现在面向老师的同学还有~\uline{~~~~~~~~~~}~名. | [
[
{
"aoVal": "A",
"content": "$$43$$ "
}
],
[
{
"aoVal": "B",
"content": "$$45$$ "
}
],
[
{
"aoVal": "C",
"content": "$$46$$ "
}
],
[
{
"aoVal": "D",
"content": "$$48$$ "
}
],
[
{
"aoVal": "E",
"content": "$$50$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"无 "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1464 | 370eb1beab784dd1aa2ed870951efa0d | [
"2011年全国美国数学大联盟杯小学高年级五年级竞赛初赛第29题"
] | 2 | single_choice | $$400$$个人被堵在上班路上,其中$$160$$人上班要迟到,问:迟到的人占百分之多少? | [
[
{
"aoVal": "A",
"content": "$$20 \\%$$ "
}
],
[
{
"aoVal": "B",
"content": "$$40 \\%$$ "
}
],
[
{
"aoVal": "C",
"content": "$$60 \\%$$ "
}
],
[
{
"aoVal": "D",
"content": "$$80 \\%$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->分百应用题->求分率"
] | [
"$$160\\div400=40 \\%$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2587 | 9947183bf8d74d25a81b7b3476b61c93 | [
"2017年第15届全国希望杯六年级竞赛"
] | 2 | single_choice | 从$$100$$以内的$$25$$个质数中任取两个构成分数的分子和分母,这样的真分数有几个?假分数有几个? | [
[
{
"aoVal": "A",
"content": "$$150$$;$$150$$ "
}
],
[
{
"aoVal": "B",
"content": "$$300$$;$$150$$ "
}
],
[
{
"aoVal": "C",
"content": "$$150$$;$$300$$ "
}
],
[
{
"aoVal": "D",
"content": "$$300$$;$$300$$ "
}
]
] | [
"拓展思维->能力->逻辑分析->代数逻辑推理"
] | [
"$$100$$以内的$$25$$个质数分别为:$$2$$,$$3$$,$$5$$,$$7$$,$$11$$,$$13$$,$$17$$,$$19$$,$$23$$,$$29$$,$$31$$,$$37$$,$$41$$,$$43$$,$$47$$,$$53$$,$$59$$,$$61$$,$$67$$,$$71$$,$$73$$,$$79$$,$$83$$,$$89$$,$$97$$.用$$97$$做分母时,真分数有$$24$$个;用$$89$$做分母时,真分数有$$23$$个;\\ldots;用$$3$$做分母时,真分数有$$1$$个,用$$2$$做分母时,真分数有$$0$$个.所以,满足题意的真分数有$$1+2+3+...+23+24=300$$(个).因此.满足条件的真分数有$$300$$个.把上面的满足条件真分数的分子、分母颠倒就成了假分数,所以符合条件的假分数也是$$300$$个. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2297 | 97a25c2cc0e94943bebb95136242bb21 | [
"2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第10题5分"
] | 2 | single_choice | 甲、乙、丙三人同时从东村去西村,甲骑自行车每小时比乙快$$12$$千米,比丙快$$15$$千米.甲行$$3.5$$小时到达西村,然后立刻返回,在距西村$$30$$千米处和乙相遇,丙出发小时和甲相遇. | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5.6$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6$$ "
}
]
] | [
"拓展思维->思想->数形结合思想"
] | [
"此题主要考查了相遇问题,要熟练掌握,注意速度、时间和路程的关系:速度$$\\times $$时间$$=$$路程,路程$$\\div $$时间$$=$$速度,路程$$\\div $$速度$$=$$时间,解答此题的关键是求出两村之间的距离是多少. 首先根据题意,可得甲乙相遇时,甲比乙多行的路程是$$30\\times2=60$$(千米),再根据路程$$\\div $$速度$$=$$时间,用甲乙相遇时行的路程之差除以他们的速度的差,求出甲乙相遇时用的时间是多少,进而求出甲行$$30$$千米用的时间是多少;然后求出两村之间的距离是多少,再根据路程$$\\div $$时间$$=$$速度,用两村之间的距离的$$2$$倍除以甲丙的速度之和,求出丙行了多长时间和甲相遇即可. 甲的速度是每小时行: $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde30\\div (30\\times2\\div12-3.5)$$ $$=30\\div1.5$$ $$=20$$(千米), 丙和甲相遇用的时间是: $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde20\\times3.5\\times2\\div (20-15+20)$$ $$=70\\times2\\div25$$ $$=140\\div25$$ $$=5.6$$(小时). 答:丙行了$$5.6$$小时和甲相遇. 故答案为:$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 599 | 0c39c2e36f7e47c88275e551aa87ef39 | [
"2016年华杯赛四年级竞赛初赛"
] | 2 | single_choice | 在除法算式中,被除数为$$2016$$,余数为$$7$$,则满足算式的除数共有( )个. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6$$ "
}
]
] | [
"拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法"
] | [
"某个数除$$2016$$余$$7$$,于是这个数整除$$2016-7=2009$$,$$2009={{7}^{2}}\\times 41$$,所以$$2009$$共有$$3\\times 2=6$$个约数,其中比$$7$$大的约数有$$4$$个(除了$$1$$和$$7$$).所以满足要求的除数共有$$4$$个. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2245 | e3ae4cb4b5c74386886ac50a7fea9932 | [
"2020年新希望杯四年级竞赛决赛(8月)第7题",
"2020年新希望杯四年级竞赛初赛(个人战)第7题"
] | 1 | single_choice | 光头强去赶集,去时步行,速度是$$15$$千米$$/$$时;回来时骑车,速度是$$30$$千米$$/$$时.光头强往返的平均速度是~\uline{~~~~~~~~~~}~千米$$/$$时. | [
[
{
"aoVal": "A",
"content": "$$22.5$$ "
}
],
[
{
"aoVal": "B",
"content": "$$20$$ "
}
],
[
{
"aoVal": "C",
"content": "$$17.5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$25$$ "
}
],
[
{
"aoVal": "E",
"content": "$$27.5$$ "
}
]
] | [
"拓展思维->能力->构造模型->模型思想"
] | [
"路程$$=$$时间$$\\times$$速度, 设路程为$$30$$千米,那么去时的时间是$$30\\div15=2$$(时), 回来的时间为$$30\\div30=1$$(时), 因此往返的平均速度是$$(30+30)\\div(2+1)=60\\div3=20$$(千米$$/$$时). 故答案为$$20$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3442 | f7f76d1760f8418aaad7d06b1a61b175 | [
"2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(二)"
] | 1 | single_choice | 从$$1$$、$$2$$、$$3$$、$$4$$这$$4$$个数字中任选两个不同的数字组成两位数,那么所有两位数中偶数有(~ )个. | [
[
{
"aoVal": "A",
"content": "$$6$$ "
}
],
[
{
"aoVal": "B",
"content": "$$7$$ "
}
],
[
{
"aoVal": "C",
"content": "$$8$$ "
}
],
[
{
"aoVal": "D",
"content": "$$9$$ "
}
]
] | [
"知识标签->数学思想->转化与化归的思想"
] | [
"先确定个位,本题中个位只能是$$2$$、$$4$$,$$2$$种选择;再确定十位,$$3$$种选择,$$2\\times 3=6$$(个). "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 713 | 295ee02edd604e39a2264cb0a34676e7 | [
"2017年全国美国数学大联盟杯小学中年级四年级竞赛初赛"
] | 1 | single_choice | 从$$1$$开始,鲍勃一共喊了$$2017$$个数,从第一个数之后的每个数都比前一个数大$$4$$.请问以下哪一个数是鲍勃喊过的? | [
[
{
"aoVal": "A",
"content": "$$137$$ "
}
],
[
{
"aoVal": "B",
"content": "$$138$$ "
}
],
[
{
"aoVal": "C",
"content": "$$139$$ "
}
],
[
{
"aoVal": "D",
"content": "$$140$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"除以$$4$$余$$1$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 477 | f31d5dc7ffc3440db801c9735d733fc5 | [
"2013年全国世奥赛五年级竞赛第17题10分"
] | 2 | single_choice | 多思希望小学语文组、数学组、英语组的老师参加趣味游戏比赛,比赛项目有吹气球、吃橘子、投篮球.每项比赛各取前三名,第一名得$$5$$分,第二名得$$3$$分,第三名得$$1$$分(单项比赛中名次没有并列情况).已知语文组进入前三名的老师人数最少,数学组进入前三名的老师人数是语文组的$$2$$倍,并且这两个组所得总分相等并列第一.英语组的老师得了多少分? | [
[
{
"aoVal": "A",
"content": "答案请写在答题卡上 "
}
]
] | [
"知识标签->数学思想->转化与化归的思想"
] | [
"答案请写在答题卡上 "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3408 | c4ec7240d48541c491c0c4dd745d4c49 | [
"2018年第22届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第5题6分"
] | 1 | single_choice | 有四张数字卡片,分别为$$9$$、$$8$$、$$5$$、$$0$$.从中挑出两张排成一个两位数,一共可以排成个两位数. | [
[
{
"aoVal": "A",
"content": "$$9$$ "
}
],
[
{
"aoVal": "B",
"content": "$$12$$ "
}
],
[
{
"aoVal": "C",
"content": "$$14$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"根据加乘原理:十位上的数有$$3$$种可选,然后个位只有$$3$$种可选,故$$3\\times 3=9$$(种),故$$\\text{A}$$正确. 故选$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2780 | 76c34139969245d1957155ee1d7a0624 | [
"2013年全国美国数学大联盟杯小学高年级竞赛初赛第15题"
] | 1 | single_choice | 【本讲闯关3】 $${{2}^{3}}\times {{2}^{5}}\times {{2}^{7}}\times {{2}^{11}}=$$ . | [
[
{
"aoVal": "A",
"content": "$${{2}^{13}}$$ "
}
],
[
{
"aoVal": "B",
"content": "$${{4}^{26}}$$ "
}
],
[
{
"aoVal": "C",
"content": "$${{2}^{26}}$$ "
}
],
[
{
"aoVal": "D",
"content": "$${{16}^{26}}$$ "
}
]
] | [
"拓展思维->拓展思维->计算模块->乘方->乘方的运算->乘方的幂运算"
] | [
"$$2^{3}\\times2^{5}\\times2^{7}\\times2^{11}=2^{3+5+7+11}=2^{26}=4^{13}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1116 | 4accc8783aab41c7a6605f733ef50e5c | [
"2012年IMAS小学高年级竞赛第一轮检测试题第17题4分"
] | 2 | single_choice | 姐姐今年$$12$$岁,妹妹今年$$8$$岁,弟弟今年$$3$$岁,他们的生日恰好是同一天.当三人的年龄和为$$50$$岁时,妹妹为多少岁? | [
[
{
"aoVal": "A",
"content": "$$14$$ "
}
],
[
{
"aoVal": "B",
"content": "$$15$$ "
}
],
[
{
"aoVal": "C",
"content": "$$16$$ "
}
],
[
{
"aoVal": "D",
"content": "$$17$$ "
}
]
] | [
"知识标签->拓展思维->应用题模块->年龄问题->年龄问题基本关系->年龄和"
] | [
"今年他们三人的年龄之和为$$23$$岁,当他们的年龄之和为$$50$$岁时,已过了$$(50-23)\\div 3=9$$年,所以这时妹妹为$$8+9=17$$岁. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 255 | 83b46556807747b5bcb8fcd890ddf03a | [
"2020年第24届YMO五年级竞赛决赛第6题3分",
"2019年第24届YMO五年级竞赛决赛第6题3分"
] | 1 | single_choice | $$Y$$、$$M$$、$$O$$、$$T$$四人中只有$$1$$人会开车. $$Y$$说:``我会开''. $$M$$说:``我不会开''. $$O$$说:``$$Y$$不会开''. $$T$$什么也没说. 已知$$Y$$、$$M$$、$$O$$三人只有一人说了真话.会开车的是谁? | [
[
{
"aoVal": "A",
"content": "$$Y$$ "
}
],
[
{
"aoVal": "B",
"content": "$$M$$ "
}
],
[
{
"aoVal": "C",
"content": "$$O$$ "
}
],
[
{
"aoVal": "D",
"content": "$$T$$ "
}
]
] | [
"Overseas Competition->知识点->组合模块->逻辑推理->假设型逻辑推理->真假话",
"拓展思维->能力->逻辑分析"
] | [
"对比发现,$$O$$与$$Y$$说的矛盾,相互对立, 则$$O$$与$$Y$$必一对一错, 则$$M$$说假话,则$$M$$会开车,选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2481 | 1e03b3c23d00419d9f2018cd2acbc052 | [
"2020年广东广州羊排赛六年级竞赛第8题3分"
] | 2 | single_choice | 已知$$\frac{2}{5}a=\frac{3}{7}b$$,则$$a$$与$$b$$的大小关系为. | [
[
{
"aoVal": "A",
"content": "$$a\\textgreater b$$ "
}
],
[
{
"aoVal": "B",
"content": "$$a=b$$ "
}
],
[
{
"aoVal": "C",
"content": "$$a\\textless{}b$$ "
}
],
[
{
"aoVal": "D",
"content": "无法确定 "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"当积一定时,一个因数大,则另一个因数就小, $$\\frac{2}{5}=\\frac{14}{35}$$,$$\\frac{3}{7}=\\frac{15}{35}$$,$$\\frac{2}{5}\\textless{}\\frac{3}{7}$$, 所以$$a\\textgreater b$$, 但是当$$a=b=0$$时,$$\\frac{2}{5}a=0=\\frac{3}{7}b$$, 所以$$a$$和$$b$$的大小无法确定. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 887 | a02477afc1de442289289975658cfd6f | [
"2015年美国数学大联盟杯六年级竞赛初赛(中国赛区)第34题5分",
"2016年全国美国数学大联盟杯小学高年级六年级竞赛初赛"
] | 2 | single_choice | \textbf{N} is a two-digit number. When \textbf{N} is divided by its ones digit, the quotient is $$8$$ and the remainder is $$1$$. When \textbf{N} is divided by its tens digit, the quotient is $$11$$ and the remainder is $$2$$. What is the value of \textbf{N}? $$\text{N}$$是一个两位数.当$$\text{N}$$被其个位数除的时候,商是$$8$$余数是$$1$$.当$$\text{N}$$被其十位数除的时候商是$$11$$余数是$$2$$.那么$$\text{N}$$是几? | [
[
{
"aoVal": "A",
"content": "$$46$$ "
}
],
[
{
"aoVal": "B",
"content": "$$57$$ "
}
],
[
{
"aoVal": "C",
"content": "$$68$$ "
}
],
[
{
"aoVal": "D",
"content": "$$79$$ "
}
]
] | [
"拓展思维->思想->枚举思想"
] | [
"$$\\text{N}$$是一个两位数.当$$\\text{N}$$被其个位数除的时候,商是$$8$$余数是$$1$$.当$$\\text{N}$$被其十位数除的时候商是$$11$$余数是$$2$$.那么$$\\text{N}$$是几? 此题最直接的方式,就是四个数试除,答案是$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2325 | e6e3876265e5428b9afd8f51bdc3ddd0 | [
"2020年长江杯六年级竞赛复赛A卷第3题5分"
] | 1 | single_choice | 一辆汽车从荆州出发送一批货物到沙市用了$$50$$分钟,到达目的地后沿原路返回荆州用了$$40$$分钟.这辆汽车从沙市返回荆州时速度提高了$$ \%$$. | [
[
{
"aoVal": "A",
"content": "$$0.5$$ "
}
],
[
{
"aoVal": "B",
"content": "$$10$$ "
}
],
[
{
"aoVal": "C",
"content": "$$20$$ "
}
],
[
{
"aoVal": "D",
"content": "$$25$$ "
}
]
] | [
"拓展思维->能力->实践应用"
] | [
"设全程$$a$$千米, 从荆州到长沙的速度是$$a\\div 50=\\frac{a}{50}$$(千米/分钟), 返回的速度是$$a\\div 40=\\frac{a}{40}$$(千米/分钟), 返回时速度提高了$$\\left( \\frac{a}{40}-\\frac{a}{50} \\right)\\div \\frac{a}{50}\\times 100 \\%=25 \\%$$. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 838 | ff80808149990d5e0149b43ef9ef380a | [
"2014年北京海淀区五年级其它",
"2014年全国迎春杯四年级竞赛复赛第3题"
] | 1 | single_choice | 有两根同样长的绳子,第一根平均剪成$$4$$段,第二根平均剪成$$6$$段,已知第一根剪成的每段长度与第二根剪成的每段长度相差$$2$$米.那么,原来两段绳子长度之和是( ~ ~ )米. | [
[
{
"aoVal": "A",
"content": "$$12$$ "
}
],
[
{
"aoVal": "B",
"content": "$$24$$ "
}
],
[
{
"aoVal": "C",
"content": "$$36$$ "
}
],
[
{
"aoVal": "D",
"content": "$$48$$ "
}
]
] | [
"拓展思维->能力->实践应用"
] | [
"$$\\left[ 4,6 \\right]=12$$,$$12\\div 6=2$$,$$12\\div 4=3$$,$$12\\div 3-2=2$$,$$12\\times ~2\\times ~2=48$$(米). "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1323 | a278d80dbfac401fb7a7720b7efc4b89 | [
"2010年六年级竞赛创新杯"
] | 2 | single_choice | $$1$$号混合液中水、油、醋的比例为$$1:2:3$$,$$2$$号混合液中水、油、醋的比例为$$3:4:5$$,将两种混合液倒在一起后,得到的混合液中水、油、醋的比例可能为( )。 | [
[
{
"aoVal": "A",
"content": "$$1:3:5$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2:3:5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3:5:7$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6:10:13$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->浓度问题->浓度基本题型"
] | [
"由于$$2$$种溶液质量不定,混合后的比例应该是有无数种可能。关键点是第二个物质两种溶液比例全是$$\\frac{1}{3}$$,所以新溶液中的比例也是$$\\frac{1}{3}$$。这样排除$$B$$,$$D$$。再分析另两种物质的最大比例$$\\frac{1}{2}$$和最小比例$$\\frac{1}{6}$$。新溶剂的比例不能超过极值。$$A$$中的水比例$$\\frac{1}{9}$$小于最小比例,舍去。所以取$$C$$。 "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 700 | abe2a25851a84a97b815a3938e4ba69f | [
"2019年广东广州羊排赛六年级竞赛第10题3分"
] | 2 | single_choice | 有一个数列$$1$$、$$1$$、$$2$$、$$3$$、$$5$$、$$8$$、$$13$$、$$21$$、$$\cdots $$,从第三项开始,每一项都是前两项之和,这个数列第$$2019$$项除以$$4$$的余数是. | [
[
{
"aoVal": "A",
"content": "$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3$$ "
}
]
] | [
"拓展思维->思想->整体思想"
] | [
"根据余数的性质,和的余数等于余数的和, $$1$$,$$1$$,$$2$$,$$3$$,$$5$$,$$8$$,$$13$$,$$21$$,$$\\cdots $$,$$\\div 4$$余$$1$$,$$1$$,$$2$$,$$3$$,$$1$$,$$0$$,$$1$$,$$1$$,$$2$$,$$3$$,$$1$$,$$0$$, $$1$$,$$1$$,$$\\cdots $$,$$6$$个为一周期,$$2019\\div 6=336$$(组)$$\\cdots \\cdots $$$$3$$(个), 为周期的第$$3$$个,余数为$$2$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3413 | e0588b6e3aba45aeba75a0dd33971a9a | [
"2010年中环杯四年级竞赛决赛",
"2011年中环杯四年级竞赛初赛",
"2011年中环杯四年级竞赛决赛"
] | 1 | single_choice | 康康到麦当劳买套餐,一份套餐包含了一个汉堡、一份小吃和一杯饮料。服务员告诉他店里有$$8$$种汉堡、$$4$$种小吃、$$5$$种饮料可供选择,那么康康一共可以搭配出( )种套餐。 | [
[
{
"aoVal": "A",
"content": "$$17$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3$$ "
}
],
[
{
"aoVal": "C",
"content": "$$160$$ "
}
],
[
{
"aoVal": "D",
"content": "$$32$$ "
}
]
] | [
"拓展思维->拓展思维->计数模块->加乘原理->乘法原理"
] | [
"康康先选择汉堡,共有$$8$$种选择,然后选小吃,有$$4$$种选择,最后选饮料,有$$5$$种选择,根据乘法原理,共有:$$8\\times 4\\times 5=160$$(种)搭配方法。 "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2809 | a3a4cbecef9b477d96479b41b7f6ec27 | [
"2019年第24届YMO一年级竞赛决赛第1题3分"
] | 1 | single_choice | $$\square $$和$$\bigcirc $$各代表一个数,$$\square =\bigcirc +\bigcirc $$,$$\bigcirc +\square +\square =30$$,求$$\square $$与$$\bigcirc $$的差是. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "$$8$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"分析可知:$$\\square =\\bigcirc +\\bigcirc =2\\bigcirc $$, 把$$\\square =2\\bigcirc $$代入$$\\bigcirc +\\square +\\square =30$$中得: $$\\bigcirc +2\\bigcirc +2\\bigcirc =5\\bigcirc $$,$$5\\bigcirc =30$$, 所以$$\\bigcirc =30\\div 5=6$$, 那么$$\\square =2\\bigcirc =2\\times 6=12$$, 由此可知,$$\\square $$与$$\\bigcirc $$的差为$$12-6=6$$. 故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 52 | 0b2c0af4249d4de5ad60a9783116bb67 | [
"2016年第14届全国创新杯五年级竞赛初赛第6题"
] | 3 | single_choice | 整数$$N=12345678910111213\cdot \cdot \cdot \cdot \cdot \cdot 201020112012201320142015$$是由$$1 \tilde{ } 2015$$这$$2015$$个整数,由小到大的顺序依次写出得到的,那么$$N$$是(~ )位数. | [
[
{
"aoVal": "A",
"content": "$$5678$$ "
}
],
[
{
"aoVal": "B",
"content": "$$6947$$ "
}
],
[
{
"aoVal": "C",
"content": "$$6950$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6953$$ "
}
]
] | [
"拓展思维->拓展思维->组合模块->图形规律->数量变化"
] | [
"$$1\\times 9+2\\times 90+3\\times 900+4\\times 1016=6953$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2310 | e573d9cf202b4892a0dc23b12be8add1 | [
"2019年第7届湖北长江杯六年级竞赛复赛B卷第4题3分"
] | 1 | single_choice | 甲、乙两人各走一段路,所行路程的比是$$5:4$$,所用的时间比是$$3:5$$,则甲、乙两人的速度比是. | [
[
{
"aoVal": "A",
"content": "$$4:3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3:4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$12:25$$ "
}
],
[
{
"aoVal": "D",
"content": "$$25:12$$ "
}
]
] | [
"拓展思维->拓展思维->行程模块->比例解行程问题->行程中的比例"
] | [
"本题是一道有关比例问题的求解,熟知路程、速度和时间之间的关系是解题的关键;分析题意,把甲的路程和乙的路程分别看作$$5$$份和$$4$$份,甲和乙的时间分别看作$$3$$份和$$5$$份;然后根据``速度$$=$$路程$$\\div $$时间''分别求出甲和乙的速度,进而再求出最简比即可. 甲的速度为:$$5\\div 3=\\frac{5}{3}$$, 乙的速度为:$$4\\div 5=\\frac{4}{5}$$, 甲乙的速度比为:$$\\frac{5}{3}:\\frac{4}{5}=25:12$$. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1506 | df0083bec6b2458b89c2b5d29e589cbb | [
"2019年美国数学大联盟杯竞赛"
] | 1 | single_choice | $$8$$千克的香蕉是$$12$$美元.$$12$$千克的香蕉是多少钱?The cost of $$8$$ kilograms of bananas is $$$12$$. What is the cost of $$12$$ kilograms of bananas?. | [
[
{
"aoVal": "A",
"content": "$$14$$ "
}
],
[
{
"aoVal": "B",
"content": "$$16$$ "
}
],
[
{
"aoVal": "C",
"content": "$$18$$ "
}
],
[
{
"aoVal": "D",
"content": "$$20$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"$$8$$千克的香蕉是$$12$$美元.$$12$$千克的香蕉是多少钱? $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde12\\div 8\\times 12$$ $$=12\\times 12\\div 8$$ $$=144\\div 8$$ $$=18$$(美元). 故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2438 | 6b37c5ff99b0493a8621ec8676816b36 | [
"其它改编题",
"2015年湖北武汉世奥赛五年级竞赛模拟训练题(二)第7题"
] | 2 | single_choice | 计算:$$(1+0.23+0.34)\times (0.23+0.34+0.45)$$$$-(1+0.23+0.34+0.45)\times (0.23+0.34)=$$~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "$$0.35$$ "
}
],
[
{
"aoVal": "B",
"content": "$$0.45$$ "
}
],
[
{
"aoVal": "C",
"content": "$$0.55$$ "
}
],
[
{
"aoVal": "D",
"content": "$$0.65$$ "
}
]
] | [
"拓展思维->拓展思维->计算模块->小数->小数换元法"
] | [
"设$$a=0.23+0.34$$,$$b=0.23+0.34+0.45$$,原式$$=(1+a)b-(1+b)a=b+ab-a-ab=b-a=0.45$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 655 | 22e3872e66c34ca09e697f5cfd2e6b72 | [
"2015年湖北武汉世奥赛六年级竞赛模拟训练题(三)第5题"
] | 2 | single_choice | $$2$$、$$4$$、$$6$$、$$8\cdots \cdots $$、$$98$$,$$100$$这$$50$$个偶数的所有数字之和是. | [
[
{
"aoVal": "A",
"content": "$$425$$ "
}
],
[
{
"aoVal": "B",
"content": "$$426$$ "
}
],
[
{
"aoVal": "C",
"content": "$$427$$ "
}
],
[
{
"aoVal": "D",
"content": "$$428$$ "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"$$\\left( 0+2+4+6+8 \\right)\\times 10+\\left( 1+2+\\ldots \\ldots +9 \\right)\\times 5+1=426$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 18 | 05b202ca2ce644158b1579bc0f94cfbb | [
"2007年第12届全国华杯赛竞赛初赛第6题10分"
] | 2 | single_choice | 从和为$$55$$的$$10$$个不同的自然数中,取出$$3$$个数后,余下的数之和是$$55$$的$$\frac{7}{11}$$,则取出的三个数的积最大等于(~ ). | [
[
{
"aoVal": "A",
"content": "$$280$$ "
}
],
[
{
"aoVal": "B",
"content": "$$270$$ "
}
],
[
{
"aoVal": "C",
"content": "$$252$$ "
}
],
[
{
"aoVal": "D",
"content": "$$216$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"余下的数之和为:$$55\\times \\frac{7}{11}=35$$,取出的数之和为:$$55-35=20$$, 要使取出的三个数之积尽量大,则取出的三个数应尽量接近, 我们知$$6+7+8=21$$,所以取$$5\\times 7\\times 8=280$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2162 | 2f777d8353894d4495155f94f89095db | [
"2014年华杯赛四年级竞赛初赛"
] | 2 | single_choice | 新生开学后去远郊步行拉练,到达$$A$$地时比原计划时间$$10$$点$$10$$分晚了$$6$$分钟,到达$$C$$地时比原计划时间$$13$$点$$10$$分早了$$6$$分钟,$$A$$、$$C$$之间恰有一点$$B$$是按照原计划时间到达的,那么到达$$B$$点的时间是( ) | [
[
{
"aoVal": "A",
"content": "$$11$$点$$35$$分 "
}
],
[
{
"aoVal": "B",
"content": "$$12$$点$$5$$分 "
}
],
[
{
"aoVal": "C",
"content": "$$11$$点$$40$$分 "
}
],
[
{
"aoVal": "D",
"content": "$$12$$点$$20$$分 "
}
]
] | [
"拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人简单行程问题"
] | [
"由于全程是匀速运动,所以从晚$$6$$分追到早$$6$$分,前半程和后半程所需时间是一样的,所以经过中点的时间应该是不变的,就是$$10$$点$$10$$分和$$13$$点$$10$$分的中点$$11$$点$$40$$分。 "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1979 | e0f95d22b7304255a61663bdd82121a3 | [
"2017年河南郑州豫才杯四年级竞赛初赛第15题"
] | 1 | single_choice | 聪聪所在的光明小学实施了阅读评级制度,级别最高的``状元'',需要达到$$300$$万字的课外阅读量.聪聪已经达到了$$200$$万字的``榜眼''阅读量,他保证在$$100$$天里冲刺到``状元''级别,每天保证阅读时间$$20$$分钟,那么他需要将阅读速度至少提升到(~ )的水平. | [
[
{
"aoVal": "A",
"content": "每分钟$$300$$字 "
}
],
[
{
"aoVal": "B",
"content": "每分钟$$400$$字 "
}
],
[
{
"aoVal": "C",
"content": "每分钟$$500$$字 "
}
],
[
{
"aoVal": "D",
"content": "每分钟$$600$$字 "
}
]
] | [
"拓展思维->能力->构造模型->模型思想"
] | [
"$$1000000\\div 100\\div 20=500$$(字),所以阅读速度至少提升到每分钟$$500$$字的水平. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3017 | bc5a057814404cd086848075152f1231 | [
"2020年希望杯二年级竞赛模拟第4题"
] | 1 | single_choice | 请你根据数串的规律再横线上填上正确的答案:3,6,12,~\uline{~~~~~~~~~~}~,48. | [
[
{
"aoVal": "A",
"content": "$$15$$ "
}
],
[
{
"aoVal": "B",
"content": "$$18$$ "
}
],
[
{
"aoVal": "C",
"content": "$$24$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"后一个数等于前一个数$$\\times$$ 2 "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1783 | a8defd58b0684ce78c241341e4072213 | [
"2020年新希望杯六年级竞赛(2月)第13题"
] | 1 | single_choice | 海尔兄弟被困在一个无人岛上,他们要做一个独木舟逃出这个无人岛,哥哥单独做要$$6$$小时完成,弟弟单独做要$$9$$小时完成.如果按照哥哥、弟弟、哥哥、弟弟$$\cdots \cdots $$的顺序交替工作,每人工作$$1$$小时后交换,那么需要 小时能做好独木舟. | [
[
{
"aoVal": "A",
"content": "$$6$$ "
}
],
[
{
"aoVal": "B",
"content": "$$7$$ "
}
],
[
{
"aoVal": "C",
"content": "$$8$$ "
}
],
[
{
"aoVal": "D",
"content": "$$9$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"哥哥工效:$$\\frac{1}{6}$$,弟弟工效:$$\\frac{1}{9}$$, 则$$1\\div \\left( \\frac{1}{6}+\\frac{1}{9} \\right)=\\frac{18}{5}=3$$(周期)$$\\cdots \\cdots \\frac{3}{5}$$, $$1-3\\times \\left( \\frac{1}{6}+\\frac{1}{9} \\right)=\\frac{1}{6}$$, $$\\frac{1}{6}\\div\\frac{1}{6}=1$$(小时), 共$$3\\times 2+1=7$$(小时). "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2277 | 782e71a984634b92bc0036f4f9d3c3e5 | [
"2015年湖北武汉世奥赛六年级竞赛模拟训练题(三)第6题"
] | 2 | single_choice | 欧欧从$$A$$地前往$$B$$地办事,他每走$$40$$分钟就休息$$10$$分钟,到达$$B$$地共需$$4$$小时$$20$$分钟,从$$B$$地原路返回的速度是去时的$$2$$倍,若他每走$$35$$分钟就休息$$15$$分钟,则到达$$A$$地共需. | [
[
{
"aoVal": "A",
"content": "$$105$$分钟 "
}
],
[
{
"aoVal": "B",
"content": "$$130$$分钟 "
}
],
[
{
"aoVal": "C",
"content": "$$135$$分钟 "
}
],
[
{
"aoVal": "D",
"content": "$$150$$分钟 "
}
]
] | [
"知识标签->课内知识点->式与方程->数量关系->路程=速度×时间"
] | [
"$$60\\times 4+20=50\\times 5+10$$,去时共走了$$40\\times 5+10=210$$(分钟),则返回时共需走$$210\\div 2=105$$(分钟),$$105\\div 35=3$$,加上休息的时间共需要$$105+15\\times \\left( 3-1 \\right)=135$$(分钟). "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2846 | 897eb34a230a4035a024211957a1c845 | [
"2017年环亚太杯一年级竞赛初赛第4题"
] | 1 | single_choice | 找规律填数: $$6$$,$$12$$,$$18$$,$$24$$,~\uline{~~~~~~~~~~}~,$$36$$,~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "28,40 "
}
],
[
{
"aoVal": "B",
"content": "28,42 "
}
],
[
{
"aoVal": "C",
"content": "30,40 "
}
],
[
{
"aoVal": "D",
"content": "30,42 "
}
]
] | [
"知识标签->课内知识点->数学广角->找规律->数字排列规律"
] | [
"每个数之间差了一个6 "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1394 | 7a11f92c29374b6da53bcc04f57b90d2 | [
"2015年湖北武汉世奥赛五年级竞赛模拟训练题(一)第5题"
] | 2 | single_choice | 学校秋游共用了$$10$$辆客车,已知大客车每辆坐$$100$$人,小客车每辆坐$$60$$人,大客车比小客车一共多坐$$520$$人.大客车有辆. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->原型题"
] | [
"假设这$$10$$辆客车都是大客车,则大客车比小客车多坐$$10\\times 100=1000$$(人),比实际多了$$1000-520=480$$(人),这是因为每把一辆小客车看作大客车,就会多算$$100+60=160$$(人),所以小客车一共有$$480\\div 160=3$$(辆),大客车有$$10-3=7$$(辆). "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1709 | c3e1d86a733448f49c53681b2defc5fd | [
"2003年五年级竞赛创新杯",
"2003年第1届创新杯五年级竞赛复赛第8题"
] | 2 | single_choice | 已知$$10\div 7$$的商是循环小数,那么这个循环小数的小数部分第2003位上的数字是( ). | [
[
{
"aoVal": "A",
"content": "7 "
}
],
[
{
"aoVal": "B",
"content": "8 "
}
],
[
{
"aoVal": "C",
"content": "5 "
}
],
[
{
"aoVal": "D",
"content": "1 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->周期问题"
] | [
"若a为1到6的整数,则$$\\frac{a}{7}$$化成小数时,其小数部分均为1、4、2、8、5、7 这6个数码组成.由于$$10\\div 7=1\\frac{3}{7}=1+0.\\dot{4}2857\\dot{1}$$,而$$2003\\div 6=333\\cdots \\cdots 5$$, 那么小数部分第2003个数为一个周期数码428571中的第5个为7 "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1144 | 82792e87f654406bbef71c105171a33e | [
"2014年全国学而思杯一年级竞赛第5题"
] | 0 | single_choice | ài艾dí迪、wēi薇er儿、jiā加jiā加hé和jiǎn减jiǎn减wán玩yóu游xì戏,měi每rén人xiě写yī一gè个shù数,ran然hòu后pàn判duàn断zhè这$$4$$gè个shù数xiàng相jiā加hòu后de的hé和shì是dān单shù数hái还shì是shuāng双shù数.qí其zhōng中yī一jú局tā他men们fēn分bié别xiě写de的shì是:$$9$$、$$13$$、$$471$$、$$1236$$,nà那me么nǐ你lái来pàn判duàn断yī一xià下,zhè这$$4$$gè个shù数de的hé和shì是~\uline{~~~~~~~~~~}~shù数(tián填``dān单''huò或``shuāng双''). | [
[
{
"aoVal": "A",
"content": "单 "
}
],
[
{
"aoVal": "B",
"content": "双 "
}
]
] | [
"拓展思维->思想->转化与化归的思想",
"Overseas Competition->知识点->应用题模块->分百应用题->认识单位1"
] | [
"四个数中三个单数一个双数,三个单数和是单数,再加一个双数和是单数. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1906 | c9b2a554d98a4e779ba68443415190f1 | [
"2018年湖北武汉创新杯小学高年级六年级竞赛初赛数学思维能力等级测试第8题4分"
] | 2 | single_choice | 甲乙两人加工一批零件,每人加工零件总数的一半,他们同时开始,甲完成任务的$$\frac{1}{3}$$时乙加工了$$50$$个零件;甲完成任务的$$\frac{3}{5}$$时乙完成了任务的一半,这批零件共有(~ )个. | [
[
{
"aoVal": "A",
"content": "$$600$$ "
}
],
[
{
"aoVal": "B",
"content": "$$420$$ "
}
],
[
{
"aoVal": "C",
"content": "$$350$$ "
}
],
[
{
"aoVal": "D",
"content": "$$360$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->分百应用题->量率对应求单位1"
] | [
"由于甲完成任务的$$\\frac{3}{5}$$等于易完成任务的$$\\frac{1}{2}$$,则甲、乙的效率比$$:$$为甲乙$$=\\frac{3}{5}:\\frac{1}{2}=6:5$$,则当乙完成$$50$$个小时,甲完成$$60$$个,则甲的任务量为$$60\\div \\frac{1}{3}=180$$个,则共有$$180\\times 2=360$$个. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2069 | d8f455275f9047c98f50c4a7c2c2fe8f | [
"2019年广东广州学而思综合能力诊断五年级竞赛第11题12分"
] | 2 | single_choice | $$A+B+C=2021$$, $$A$$, $$B$$ and $$C$$ have $$8$$, $$10$$ and $$11$$ factors respectively, and $$B$$ and $$C$$ are mutually prime, then $$A$$ is . $$A+B+C=2021$$,$$A$$、$$B$$、$$C$$分别有$$8$$、$$10$$、$$11$$个因数,并且$$B$$与$$C$$互质,那么$$A$$是. | [
[
{
"aoVal": "A",
"content": "$$360$$ "
}
],
[
{
"aoVal": "B",
"content": "$$380$$ "
}
],
[
{
"aoVal": "C",
"content": "$$390$$ "
}
],
[
{
"aoVal": "D",
"content": "$$420$$ "
}
],
[
{
"aoVal": "E",
"content": "$$430$$ "
}
]
] | [
"拓展思维->拓展思维->数论模块->因数与倍数->因数个数定理->因数个数定理逆应用",
"Overseas Competition->知识点->应用题模块->分百应用题->认识单位1"
] | [
"本题是因数个数定理的逆应用,先从$$A$$、$$B$$、$$C$$三个的因数个数开始讨论:$$C$$有$$11$$个因数,$$11$$是质数,所以$$C$$一定是一个质数的$$10$$次方,又因为三个数的和为$$2021$$,小于$$3$$的$$10$$次方,所以$$C$$只能是$$2$$的$$10$$次方,等于$$1024$$,则$$A+B=2021-1024=997$$,$$A$$有$$8$$个因数,则$$A$$的分解质因数形式可以是$$a$$的$$7$$次方、$$a$$的$$1$$次方乘$$b$$的$$3$$次方、$$a\\times b\\times c$$这$$3$$种可能,$$B$$的分解质因数形式可以是$$c$$的$$9$$次方、$$c$$的$$1$$次方乘$$d$$的$$4$$次方,因为$$B$$和$$C$$互质,所以$$B$$不含质因数$$2$$,根据和的大小可以确定$$B$$不等于$$c$$的$$9$$次方,又$$5$$的$$4$$次方等于$$625$$,$$625$$乘$$3$$等于$$1275$$大于$$997$$,所以$$d$$只能等于$$3$$,$$3$$的$$4$$次方等于$$81$$,$$81$$乘$$5$$等于$$405$$,$$997-405=592$$不符合$$A$$的分解质因数条件,$$81$$乘$$7$$等于$$567$$,$$997-567=430$$符合条件,则$$A$$等于$$430$$. "
] | E |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3230 | 2c7b81c912b74000bd2c13eac96d1c18 | [
"2012年全国创新杯五年级竞赛第1题5分",
"五年级其它",
"2016年创新杯小学高年级五年级竞赛训练题(四)第4题"
] | 1 | single_choice | 某班共有$$48$$人,其中$$27$$人会游泳,$$33$$人会骑自行车,$$40$$人会乒乓球.那么,这个班至少有(~ )个学生这三项运动都会. | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"拓展思维->拓展思维->计数模块->容斥原理->三量容斥"
] | [
"让三项都会的人最少,即让所有人都只会两项, 则一共会$$48\\times 2=96$$项,$$27+33+40=100$$项, 即至少有$$100-96=4$$人会三项. 构造如下:$$8$$人会游泳$$+$$自行车; $$15$$人会游泳$$+$$乒乓球;$$21$$人会自行车$$+$$乒乓球;$$4$$人全会. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 680 | 7e734930ab144b07ba09066a2f1610a0 | [
"2017年河南郑州豫才杯竞赛第15题",
"2016年河南郑州K6联赛六年级竞赛第17题2分",
"2017年河南郑州小升初豫才杯第二场第15题"
] | 1 | single_choice | 假设$$A=9876543\times 23456789$$,$$B=9876544\times 23456788$$,则(~ ). | [
[
{
"aoVal": "A",
"content": "$$A\\textgreater B$$ "
}
],
[
{
"aoVal": "B",
"content": "$$A=B$$ "
}
],
[
{
"aoVal": "C",
"content": "$$A\\textless{}B$$ "
}
],
[
{
"aoVal": "D",
"content": "无法确定 "
}
]
] | [
"知识标签->拓展思维->数论模块->位值原理与进制->数与数字->比较大小"
] | [
"$$A-B=9876543\\times 23456789-9876544\\times 23456788$$ $$ ~=9876543\\times \\left( 23456788+1 \\right)-9876544\\times 23456788 $$ $$ ~=9876543\\times 23456788+9876543-9876544\\times 23456788 $$ ~$$=9876543-23456788\\textless{}0 $$ 所以$$A\\textless{}B$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2281 | a004c557379549b7be86761ab8333bfa | [
"2019年广东深圳全国小学生数学学习能力测评四年级竞赛初赛第7题3分"
] | 1 | single_choice | 在$$9$$点至$$10$$点之间的某个时刻,$$5$$分钟前分针的位置和$$5$$分钟后时针的位置相同,此时刻是. | [
[
{
"aoVal": "A",
"content": "$$9:05$$ "
}
],
[
{
"aoVal": "B",
"content": "$$9:35$$ "
}
],
[
{
"aoVal": "C",
"content": "$$9:55$$ "
}
]
] | [
"拓展思维->拓展思维->组合模块->时间问题->认识钟表"
] | [
"根据选项$$\\text{C}$$,现在是$$9:55$$,那么$$5$$分钟前分针的位置是指向$$10$$,$$5$$分钟后时针也是指向$$10$$.所以$$\\text{C}$$选项答案是满足题目要求的,所以选择$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2811 | 4ed6343268eb4b97b34420985970b71d | [
"2017年全国小升初八中入学备考课程",
"2012年全国华杯赛小学高年级竞赛初赛第1题"
] | 2 | single_choice | 计算$\left[ \left( 80 \%+\dfrac{1}{5}\right)\times24+6.6\right]\div\dfrac{9}{14}-7.6=$. | [
[
{
"aoVal": "A",
"content": "$$30$$ "
}
],
[
{
"aoVal": "B",
"content": "$$40$$ "
}
],
[
{
"aoVal": "C",
"content": "$$50$$ "
}
],
[
{
"aoVal": "D",
"content": "$$60$$ "
}
]
] | [
"知识标签->课内知识点->数与运算->混合运算->分、小数四则混合运算"
] | [
"原式= $$\\left[ \\left( 0.8+\\frac{1}{5} \\right)\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$ $$=\\left[ (0.8+0.2)\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$ $$=\\left[ 1\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$ $$=30.6\\div \\frac{9}{14}-7.6$$ $$=30.6\\times \\frac{14}{9}-7.6$$ $$=47.6-7.6$$ $$=40$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 555 | 53b39b9373ed4e3481ae03ca3998221f | [
"小学高年级六年级其它2014年数学思维能力等级测试第2题",
"2014年第12届全国创新杯小学高年级六年级竞赛第2题"
] | 1 | single_choice | ~张敏最近搬进了新居,房号是一个三位数,这个数加上各位数上的数字和是$$429$$,那么他的房号三个位数上的数字得到乘积是(~ ~ ~ ). | [
[
{
"aoVal": "A",
"content": "$$20$$ "
}
],
[
{
"aoVal": "B",
"content": "$$28$$ "
}
],
[
{
"aoVal": "C",
"content": "$$30$$ "
}
],
[
{
"aoVal": "D",
"content": "$$36$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"$$\\overline{abc}+a+b+c=429$$,$$101a+11b+2c=429$$, 所以$$a=4$$,$$11b+2c=25$$,$$b=1$$,$$c=7$$, $$4\\times 1\\times 7=28$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1396 | 834337d764b54340ba98dbaebffae14f | [
"2018年第23届华杯赛小学中年级竞赛初赛第2题",
"2018年华杯赛小学中年级竞赛初赛第2题10分"
] | 1 | single_choice | 小明把$$6$$个数分别写在三张卡片的正面和反面,每一面写一个数,每张卡片上的$$2$$个数的和相等,然后他将卡片放在桌子上,发现正面上写着$$28$$,$$40$$,$$49$$,反面上的数都只能被$$1$$和它自己整除,那么,反面上的三个数的平均数是. | [
[
{
"aoVal": "A",
"content": "$$11$$ "
}
],
[
{
"aoVal": "B",
"content": "$$12$$ "
}
],
[
{
"aoVal": "C",
"content": "$$39$$ "
}
],
[
{
"aoVal": "D",
"content": "$$40$$ "
}
],
[
{
"aoVal": "E",
"content": "以上都不对 "
}
]
] | [
"拓展思维->能力->实践应用"
] | [
"由题目条件可知,反面的数为质数.又知反面数字和相等,故反面三个数依然相差$$12$$,$$9$$. 数学质数有$$2$$,$$3$$,$$5$$,$$7$$,$$11$$,$$13$$,$$17$$,$$23$$. $$2$$,$$11$$,$$23$$依次相差$$9$$和$$12$$,故确定其平均数为$$\\left( 2+11+23 \\right)\\div 3=12$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3204 | 27376e7ef2eb4636904ba6a8b464d2eb | [
"2015年全国AMC小学高年级六年级竞赛8第10题"
] | 2 | single_choice | \textbf{2015年 AMC8 第 10 题} 1000至$$9999$$中有多少个位数字互不相同的四位数? | [
[
{
"aoVal": "A",
"content": "$$3024$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4536$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5040$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6480$$ "
}
],
[
{
"aoVal": "E",
"content": "$$6561$$ "
}
]
] | [
"Overseas Competition->知识点->计数模块->加乘原理",
"拓展思维->能力->运算求解"
] | [
"翻译:$$1000$$至$$9999$$中有多少个位数字互不相同的四位数? 组数问题:千位数字有$$1\\sim 9$$共$$9$$种选法,百、十、个位分别有$$9$$、$$8$$、$$7$$种选法,一共有$$9\\times 9\\times 8\\times 7=4536$$(个)数字互不相同的四位数. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2614 | be5e7229bd0b499594ff5af0c1a33592 | [
"2015年华杯赛六年级竞赛初赛",
"2015年华杯赛五年级竞赛初赛"
] | 2 | single_choice | 计算:$$(\frac{9}{20}-\frac{11}{30}+\frac{13}{42}-\frac{15}{56}+\frac{17}{72})\times 120-\frac{1}{3}\div \frac{1}{4}=$$( ) | [
[
{
"aoVal": "A",
"content": "$$42$$ "
}
],
[
{
"aoVal": "B",
"content": "$$43$$ "
}
],
[
{
"aoVal": "C",
"content": "$$15\\frac{1}{3}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$16\\frac{2}{3}$$ "
}
]
] | [
"拓展思维->拓展思维->计算模块->分数->分数运算->分数四则混合运算"
] | [
"原式$$=\\left[ \\left( \\frac{1}{4}+\\frac{1}{5} \\right)-\\left( \\frac{1}{5}+\\frac{1}{6} \\right)+\\left( \\frac{1}{6}+\\frac{1}{7} \\right)-\\left( \\frac{1}{7}+\\frac{1}{8} \\right)+\\left( \\frac{1}{8}+\\frac{1}{9} \\right) \\right]\\times 120-\\frac{1}{3}\\div \\frac{1}{4}$$ $$=\\left( \\frac{1}{4}+\\frac{1}{9} \\right)\\times 120-\\frac{1}{3}\\div \\frac{1}{4}$$ $$=\\frac{13}{36}\\times 120-\\frac{4}{3}$$ $$=\\frac{130}{3}-\\frac{4}{3}$$ $$=42$$ "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 531 | fde83dad34084579bb103458fd0a0f4b | [
"2016年全国华杯赛小学中年级竞赛在线模拟第3题",
"2013年全国华杯赛小学中年级竞赛初赛A卷第3题"
] | 2 | single_choice | 丽丽、莱克西、$$Ellie$$、$$Michelle$$四个小朋友在一起做游戏时,捡到了一条围巾.失主问是谁捡到的? 丽丽说不是莱克西; 莱克西说是$$Ellie$$; $$Ellie$$说丽丽说的不对; Michelle说$$Ellie$$说的不对. 他们之中只有一个人说对了,这个人是谁? | [
[
{
"aoVal": "A",
"content": "丽丽 "
}
],
[
{
"aoVal": "B",
"content": "莱克西 "
}
],
[
{
"aoVal": "C",
"content": "$$Ellie$$ "
}
],
[
{
"aoVal": "D",
"content": "Michelle "
}
]
] | [
"拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾",
"Overseas Competition->知识点->组合模块->逻辑推理->假设型逻辑推理->真假话"
] | [
"由于只有一个人说对了,而$$Michelle$$支持丽丽,那么他们俩都错了,所以反对丽丽的$$Ellie$$说对了. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1458 | 5a787c73bef44d1aa908ec50ccd897a2 | [
"2020年长江杯六年级竞赛复赛A卷第1题5分"
] | 1 | single_choice | 李阿姨的淘宝店今天卖出甲乙两件衣服,每件各卖$$120$$元,但甲赚了$$\frac{1}{4}$$,乙亏本$$\frac{1}{4}$$.问:李阿姨今天卖出这两件衣服,是赚了还是亏了? | [
[
{
"aoVal": "A",
"content": "赚了 "
}
],
[
{
"aoVal": "B",
"content": "亏了 "
}
],
[
{
"aoVal": "C",
"content": "不赚不亏 "
}
],
[
{
"aoVal": "D",
"content": "无法判断 "
}
]
] | [
"拓展思维->思想->方程思想"
] | [
"设甲成本为$$x$$元, $$x\\times \\left( 1+\\frac{1}{4} \\right)=120$$, 解得$$x=96$$, 设乙成本为$$x$$元, $$x\\times \\left( 1-\\frac{1}{4} \\right)=120$$, 解得$$x=160$$, 总成本$$96+160=256$$(元), 总收入为$$120\\times 2=240$$(元), $$256\\textgreater240$$, 故成本大于收入,亏了. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 456 | ce3896d59e0143f699c36e487bffd1a5 | [
"2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第2题6分"
] | 0 | single_choice | $$2$$个人同时吃$$2$$个馒头用$$2$$分钟,$$10$$个人同时吃$$10$$个馒头用分钟. | [
[
{
"aoVal": "A",
"content": "$$2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$10$$ "
}
],
[
{
"aoVal": "C",
"content": "$$20$$ "
}
]
] | [
"拓展思维->拓展思维->组合模块->操作与策略->统筹规划->简单时间统筹问题->同时进行问题"
] | [
"两人同时吃两个馒头的时间与一个人吃一个馒头时间相同,与$$10$$个人同时吃$$10$$个馒头时间相同,都是两分钟. 故选:$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2827 | 60bb8e240d2a41c9b6cd38daaf6603dc | [
"其它改编自2012年全国希望杯六年级竞赛初赛第3题"
] | 1 | single_choice | 在小数$$3.1415926$$的其中两个数字上方加$$2$$个循环点,得到一个循环小数,这样的循环小数中,最小的~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "$$3.\\dot{1}41592\\dot{6}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3.1\\dot{4}1592\\dot{6}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3.14\\dot{1}592\\dot{6}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3.14159\\dot{2}\\dot{6}$$ "
}
]
] | [
"知识标签->课内知识点->数的认识->比较大小->小数比较大小->多位小数比较大小"
] | [
"要使循环小数最小,则循环节开始的几位尽量小,因此从$$1$$开始循环,下一位为$$4$$,依次往下,最小的为$$3.\\dot{1}41592\\dot{6}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 600 | 0ca0c7161d9249c59cd7c9b62d9e1cbe | [
"2019年第7届湖北长江杯五年级竞赛复赛B卷第10题3分"
] | 1 | single_choice | $$120$$有个因数. | [
[
{
"aoVal": "A",
"content": "$$20$$ "
}
],
[
{
"aoVal": "B",
"content": "$$18$$ "
}
],
[
{
"aoVal": "C",
"content": "$$24$$ "
}
],
[
{
"aoVal": "D",
"content": "$$16$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"因为$$120$$的因数有:$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$8$$、$$10$$、$$12$$、$$15$$、$$20$$、$$24$$、$$30$$、$$40$$、$$60$$、$$120$$,所以一共有$$16$$个因数. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1551 | 71cf18462ae94398856f1ebb3b97ee00 | [
"2018年全国小学生数学学习能力测评四年级竞赛初赛第8题3分"
] | 1 | single_choice | 甲、乙二人比赛爬楼梯,甲跑到第$$4$$层时,乙恰好跑到第$$3$$层.以这样的速度,甲跑到第$$16$$层时,乙跑到第层. | [
[
{
"aoVal": "A",
"content": "$$10$$ "
}
],
[
{
"aoVal": "B",
"content": "$$11$$ "
}
],
[
{
"aoVal": "C",
"content": "$$12$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"本来甲乙所处的位置就在$$1$$层, 即甲从$$1$$层到$$4$$层的时间,其实是跑了$$3$$层楼梯的时间, $$\\left( 16-1 \\right)\\div \\left( 4-1 \\right)\\times \\left( 3-1 \\right)=10$$层,$$10+1=11$$层. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1730 | 9ad695d973374524967b72bdf05346fe | [
"2014年迎春杯三年级竞赛复赛"
] | 2 | single_choice | $$1$$只小猪的重量等于$$6$$只鸡的重量;$$3$$只鸡的重量等于$$4$$只鸭的重量;$$2$$只鸭的重量等于$$6$$条鱼的重量,那么$$2$$只小猪的重量等于( )条鱼的重量。 | [
[
{
"aoVal": "A",
"content": "$$48$$ "
}
],
[
{
"aoVal": "B",
"content": "$$36$$ "
}
],
[
{
"aoVal": "C",
"content": "$$24$$ "
}
],
[
{
"aoVal": "D",
"content": "$$18$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->列方程解应用题->列方程解应用题等量代换"
] | [
"解:$$6\\div 3\\times 4$$ $$=2\\times 4$$ $$=8$$(只) $$8\\div 2\\times 6$$ $$=4\\times 6$$ $$=24$$(条) $$24\\times 2=48$$(条) 答:$$2$$只小猪的重量等于$$48$$条鱼的重量。 故选:A。 "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1648 | ff80808147342b7e014735453a14023d | [
"2013年全国华杯赛小学高年级竞赛初赛B卷第5题"
] | 2 | single_choice | 甲、乙两仓的稻谷数量一样,爸爸,妈妈和阳阳单独运完一仓稻谷分别需要$$10$$天,$$12$$天和$$15$$天.爸爸妈妈同时开始分别运甲、乙两仓的稻谷,阳阳先帮妈妈,后帮爸爸,结果同时运完两仓稻谷,那么阳阳帮妈妈运了天. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"设一个仓库的稻谷量为``$$1$$'',爸爸、妈妈、阳阳的效率分别是$$\\frac{1}{10}$$、$$\\frac{1}{12}$$、$$\\frac{1}{15}$$, 三人同时运完两仓,需要的时间:$$(1+1)\\div \\left( \\frac{1}{10}+\\frac{1}{12}+\\frac{1}{15} \\right)=8$$(天);妈妈$$8$$天共搬运了:$$8\\times \\frac{1}{12}=\\frac{2}{3}$$(仓);妈妈剩下的就是阳阳帮妈妈运的,所以,阳阳帮妈妈运了$$\\left( 1-\\frac{2}{3} \\right)\\div \\frac{1}{15}=5$$(天). 三人一共搬了: $$(1+1)\\div \\left( \\frac{1}{10}+\\frac{1}{12}+\\frac{1}{15} \\right)$$, $$=2\\div \\frac{1}{4}$$ $$=8$$(天); 阳阳帮妈妈运的天数: $$\\left( 1-\\frac{1}{12}\\times 8 \\right)\\div \\frac{1}{15}$$ $$=\\frac{1}{3}\\times 15$$ $$=5$$(天); 答:阳阳帮妈妈运了$$5$$天. 故答案为:$$\\rm C$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2315 | fc9472137ed642cb8cf2a5a511a5f46c | [
"2016年创新杯五年级竞赛训练题(一)第8题"
] | 2 | single_choice | 一条船往返于甲乙两港之间,由于甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为$$8$$千米/小时,平时逆水航行所用时间是顺水航行所用的时间的$$1.5$$倍.某天恰逢暴雨,水流速度是原来的三倍,这条船往返共用了$$10$$小时.问:甲、乙两地相距千米. | [
[
{
"aoVal": "A",
"content": "$$15$$ "
}
],
[
{
"aoVal": "B",
"content": "$$20$$ "
}
],
[
{
"aoVal": "C",
"content": "$$25$$ "
}
],
[
{
"aoVal": "D",
"content": "$$30$$ "
}
]
] | [
"知识标签->拓展思维->行程模块->流水行船问题->基本流水行船问题->水速变化"
] | [
"平时逆水航行所用时间是顺水航行所用时间的$$2$$倍,所以顺水航行速度是逆水航行的$$2$$倍,即$${{V}_{水}}+8=2\\times \\left( 8-{{V}_{水}} \\right)$$,解得:$${{V}_{}}=\\frac{8}{3}$$,所以水速为$$\\frac{8}{3}$$千米/小时,变为原来的$$2$$倍后变为$$\\frac{16}{3}$$千米/小时.设甲、乙两地相距$$S$$千米,则:$$\\frac{S}{\\frac{16}{3}+8}+\\frac{S}{8-\\frac{16}{3}}=9$$ 解得:$$S=20$$,所以甲、乙两地相距$$20$$千米. "
] | B |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.