|
--- |
|
license: cc-by-sa-4.0 |
|
language: |
|
- en |
|
tags: |
|
- music |
|
- spectrogram |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# Google/MusicCapsをスペクトログラムにしたデータ。 |
|
|
|
* <font color="red">The dataset viwer of this repository is truncated, so maybe you should see <a href="https://huggingface.co/datasets/mb23/GraySpectrotram_example">this one</a> instaed.</font> |
|
|
|
## Dataset information |
|
<table> |
|
<thead> |
|
<td>画像</td> |
|
<td>caption</td> |
|
<td>data_idx</td> |
|
<td>number</td> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>1025px × 216px</td> |
|
<td>音楽の説明</td> |
|
<td>どのデータから生成されたデータか</td> |
|
<td>5秒ずつ区切ったデータのうち、何番目か</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
## How this dataset was made |
|
|
|
* コード:https://colab.research.google.com/drive/13m792FEoXszj72viZuBtusYRUL1z6Cu2?usp=sharing |
|
* 参考にしたKaggle Notebook : https://www.kaggle.com/code/osanseviero/musiccaps-explorer |
|
|
|
```python |
|
from PIL import Image |
|
import IPython.display |
|
import cv2 |
|
|
|
# 1. wavファイルを解析 |
|
y, sr = librosa.load("wavファイルなど") |
|
|
|
# 2. フーリエ変換を適用して周波数成分を取得 |
|
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) # librosaを用いてデータを作る |
|
image = Image.fromarray(np.uint8(D), mode='L') # 'L'は1チャンネルのグレースケールモードを指定します |
|
image.save('spectrogram_{}.png') |
|
``` |
|
|
|
## Recover music(wave form) from sprctrogram |
|
```python |
|
im = Image.open("pngファイル") |
|
db_ud = np.uint8(np.array(im)) |
|
amp = librosa.db_to_amplitude(db_ud) |
|
print(amp.shape) |
|
# (1025, 861)は20秒のwavファイルをスペクトログラムにした場合 |
|
# (1025, 431)は10秒のwavファイルをスペクトログラムにした場合 |
|
# (1025, 216)は5秒のwavファイルをスペクトログラムにした場合 |
|
|
|
y_inv = librosa.griffinlim(amp*200) |
|
display(IPython.display.Audio(y_inv, rate=sr)) |
|
``` |
|
|
|
## Example : How to use this |
|
* <font color="red">Subset <b>data 1300-1600</b> and <b>data 3400-3600</b> are not working now, so please get subset_name_list</n> |
|
those were removed first</font>. |
|
### 1 : get information about this dataset: |
|
* copy this code~~ |
|
|
|
```python |
|
''' |
|
if you use GoogleColab, remove # to install packages below.. |
|
''' |
|
#!pip install datasets |
|
#!pip install huggingface-hub |
|
#!huggingface-cli login |
|
import datasets |
|
from datasets import load_dataset |
|
|
|
# make subset_name_list |
|
subset_name_list = [ |
|
'data 0-200', |
|
'data 200-600', |
|
'data 600-1000', |
|
'data 1000-1300', |
|
'data 1600-2000', |
|
'data 2000-2200', |
|
'data 2200-2400', |
|
'data 2400-2600', |
|
'data 2600-2800', |
|
'data 3000-3200', |
|
'data 3200-3400', |
|
'data 3600-3800', |
|
'data 3800-4000', |
|
'data 4000-4200', |
|
'data 4200-4400', |
|
'data 4400-4600', |
|
'data 4600-4800', |
|
'data 4800-5000', |
|
'data 5000-5200', |
|
'data 5200-5520' |
|
] |
|
|
|
# load_all_datasets |
|
data = load_dataset("mb23/GraySpectrogram", subset_name_list[0]) |
|
for subset in subset_name_list: |
|
# Confirm subset_list doesn't include "remove_list" datasets in the above cell. |
|
print(subset) |
|
new_ds = load_dataset("mb23/GraySpectrogram", subset) |
|
new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]]) |
|
new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]]) |
|
|
|
# take place of data[split] |
|
data["train"] = new_dataset_train |
|
data["test"] = new_dataset_test |
|
|
|
data |
|
``` |
|
|
|
|
|
|
|
### 2 : load dataset and change to dataloader: |
|
* You can use the code below: |
|
* <font color="red">...but (;・∀・)I don't know whether this code works efficiently, because I haven't tried this code so far</color> |
|
```python |
|
import datasets |
|
from datasets import load_dataset, DatasetDict |
|
from torchvision import transforms |
|
from torch.utils.data import DataLoader |
|
# BATCH_SIZE = ??? |
|
# IMAGE_SIZE = ??? |
|
# TRAIN_SIZE = ??? # the number of training data |
|
# TEST_SIZE = ??? # the number of test data |
|
|
|
def load_datasets(): |
|
|
|
# Define data transforms |
|
data_transforms = [ |
|
transforms.Resize((IMG_SIZE, IMG_SIZE)), |
|
transforms.ToTensor(), # Scales data into [0,1] |
|
transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1] |
|
] |
|
data_transform = transforms.Compose(data_transforms) |
|
|
|
data = load_dataset("mb23/GraySpectrogram", subset_name_list[0]) |
|
for subset in subset_name_list: |
|
# Confirm subset_list doesn't include "remove_list" datasets in the above cell. |
|
print(subset) |
|
new_ds = load_dataset("mb23/GraySpectrogram", subset) |
|
new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]]) |
|
new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]]) |
|
|
|
# take place of data[split] |
|
data["train"] = new_dataset_train |
|
data["test"] = new_dataset_test |
|
|
|
# memo: |
|
# 特徴量上手く抽出する方法が...わからん。これは力づく。 |
|
# 本当はload_dataset()の時点で抽出したかったけど、無理そう |
|
# リポジトリ作り直してpush_to_hub()したほうがいいかもしれない。 |
|
|
|
new_dataset = dict() |
|
new_dataset["train"] = Dataset.from_dict({ |
|
"image" : data["train"]["image"], |
|
"caption" : data["train"]["caption"] |
|
}) |
|
|
|
new_dataset["test"] = Dataset.from_dict({ |
|
"image" : data["test"]["image"], |
|
"caption" : data["test"]["caption"] |
|
}) |
|
data = datasets.DatasetDict(new_dataset) |
|
train = data["train"] |
|
test = data["test"] |
|
|
|
for idx in range(len(train["image"])): |
|
train["image"][idx] = data_transform(train["image"][idx]) |
|
test["image"][idx] = data_transform(test["image"][idx]) |
|
|
|
train = Dataset.from_dict(train) |
|
train = train.with_format("torch") # リスト型回避 |
|
test = Dataset.from_dict(train) |
|
test = test.with_format("torch") # リスト型回避 |
|
|
|
# or |
|
train_loader = DataLoader(train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True) |
|
test_loader = DataLoader(test, batch_size=BATCH_SIZE, shuffle=True, drop_last=True) |
|
return train_loader, test_loader |
|
|
|
``` |
|
* then try this? |
|
``` |
|
train_loader, test_loader = load_datasets() |
|
``` |
|
|
|
|