code
stringlengths
12
2.05k
label_name
stringlengths
6
8
label
int64
0
95
ObfuscatedPasswd::ObfuscatedPasswd(const PlainPasswd& plainPwd) : CharArray(8), length(8) { int l = strlen(plainPwd.buf), i; for (i=0; i<8; i++) buf[i] = i<l ? plainPwd.buf[i] : 0; deskey(d3desObfuscationKey, EN0); des((rdr::U8*)buf, (rdr::U8*)buf); }
CWE-787
24
PackLinuxElf32::elf_find_dynamic(unsigned int key) const { Elf32_Dyn const *dynp= dynseg; if (dynp) for (; (unsigned)((char const *)dynp - (char const *)dynseg) < sz_dynseg && Elf32_Dyn::DT_NULL!=dynp->d_tag; ++dynp) if (get_te32(&dynp->d_tag)==key) { unsigned const t= elf_get_offset_from_address(get_te32(&dynp->d_val)); if (t) { return t + file_image; } break; } return 0; }
CWE-190
19
static int lookup1_values(int entries, int dim) { int r = (int) floor(exp((float) log((float) entries) / dim)); if ((int) floor(pow((float) r+1, dim)) <= entries) // (int) cast for MinGW warning; ++r; // floor() to avoid _ftol() when non-CRT assert(pow((float) r+1, dim) > entries); assert((int) floor(pow((float) r, dim)) <= entries); // (int),floor() as above return r; }
CWE-369
60
TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); const TfLiteTensor* input = GetInput(context, node, kInputTensor); const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); const TfLiteTensor* bias = (NumInputs(node) == 3) ? GetInput(context, node, kBiasTensor) : nullptr; TFLITE_DCHECK_EQ(input_type, input->type); switch (input_type) { // Already know in/out types are same. case kTfLiteFloat32: if (filter->type == kTfLiteFloat32) { return EvalFloat<kernel_type>(context, node, params, data, input, filter, bias, output); } else if (filter->type == kTfLiteInt8) { return EvalHybridPerChannel<kernel_type>(context, node, params, data, input, filter, bias, output); } else { TF_LITE_KERNEL_LOG( context, "Type %s with filter type %s not currently supported.", TfLiteTypeGetName(input->type), TfLiteTypeGetName(filter->type)); return kTfLiteError; } break; case kTfLiteUInt8: return EvalQuantized<kernel_type>(context, node, params, data, input, filter, bias, output); break; case kTfLiteInt8: return EvalQuantizedPerChannel<kernel_type>(context, node, params, data, input, filter, bias, output); break; case kTfLiteInt16: return EvalQuantizedPerChannel16x8(params, data, input, filter, bias, output); break; default: context->ReportError(context, "Type %d not currently supported.", input->type); return kTfLiteError; } }
CWE-125
47
TfLiteRegistration CancelOpRegistration() { TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; // Set output size to the input size in CancelOp::Prepare(). Code exists to // have a framework in Prepare. The input and output tensors are not used. reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* in_tensor = GetInput(context, node, 0); TfLiteTensor* out_tensor = GetOutput(context, node, 0); TfLiteIntArray* new_size = TfLiteIntArrayCopy(in_tensor->dims); return context->ResizeTensor(context, out_tensor, new_size); }; reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { cancellation_data_.is_cancelled = true; return kTfLiteOk; }; return reg; }
CWE-125
47
req::ptr<XMLDocumentData> doc() const { return m_node->doc(); }
CWE-22
2
static optional<Principal> parse_principal(CephContext* cct, TokenID t, string&& s) { // Wildcard! if ((t == TokenID::AWS) && (s == "*")) { return Principal::wildcard(); // Do nothing for now. } else if (t == TokenID::CanonicalUser) { // AWS ARNs } else if (t == TokenID::AWS) { auto a = ARN::parse(s); if (!a) { if (std::none_of(s.begin(), s.end(), [](const char& c) { return (c == ':') || (c == '/'); })) { // Since tenants are simply prefixes, there's no really good // way to see if one exists or not. So we return the thing and // let them try to match against it. return Principal::tenant(std::move(s)); } } if (a->resource == "root") { return Principal::tenant(std::move(a->account)); } static const char rx_str[] = "([^/]*)/(.*)"; static const regex rx(rx_str, sizeof(rx_str) - 1, ECMAScript | optimize); smatch match; if (regex_match(a->resource, match, rx)) { ceph_assert(match.size() == 3); if (match[1] == "user") { return Principal::user(std::move(a->account), match[2]); } if (match[1] == "role") { return Principal::role(std::move(a->account), match[2]); } } } ldout(cct, 0) << "Supplied principal is discarded: " << s << dendl; return boost::none; }
CWE-617
51
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* value = GetInput(context, node, kValueTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (IsDynamicTensor(output)) { const TfLiteTensor* dims = GetInput(context, node, kDimsTensor); TF_LITE_ENSURE_OK(context, ResizeOutput(context, dims, output)); } #define TF_LITE_FILL(data_type) \ reference_ops::Fill(GetTensorShape(value), GetTensorData<data_type>(value), \ GetTensorShape(output), \ GetTensorData<data_type>(output)) switch (output->type) { case kTfLiteInt32: TF_LITE_FILL(int32_t); break; case kTfLiteInt64: TF_LITE_FILL(int64_t); break; case kTfLiteFloat32: TF_LITE_FILL(float); break; case kTfLiteBool: TF_LITE_FILL(bool); break; case kTfLiteString: FillString(value, output); break; default: context->ReportError( context, "Fill only currently supports int32, int64, float32, bool, string " "for input 1, got %d.", value->type); return kTfLiteError; } #undef TF_LITE_FILL return kTfLiteOk; }
CWE-125
47
static inline ulong encode_twos_comp(long n, int prec) { ulong result; assert(prec >= 2); jas_eprintf("warning: support for signed data is untested\n"); // NOTE: Is this correct? if (n < 0) { result = -n; result = (result ^ 0xffffffffUL) + 1; result &= (1 << prec) - 1; } else { result = n; } return result; }
CWE-190
19
int64_t MemFile::readImpl(char *buffer, int64_t length) { assertx(m_len != -1); assertx(length > 0); int64_t remaining = m_len - m_cursor; if (remaining < length) length = remaining; if (length > 0) { memcpy(buffer, (const void *)(m_data + m_cursor), length); } m_cursor += length; return length; }
CWE-787
24
void * alloc_bottom(size_t size) { byte * tmp = bottom; bottom += size; if (bottom > top) {new_chunk(); tmp = bottom; bottom += size;} return tmp; }
CWE-787
24
std::string queueloader::get_filename(const std::string& str) { std::string fn = ctrl->get_dlpath(); if (fn[fn.length()-1] != NEWSBEUTER_PATH_SEP[0]) fn.append(NEWSBEUTER_PATH_SEP); char buf[1024]; snprintf(buf, sizeof(buf), "%s", str.c_str()); char * base = basename(buf); if (!base || strlen(base) == 0) { char lbuf[128]; time_t t = time(nullptr); strftime(lbuf, sizeof(lbuf), "%Y-%b-%d-%H%M%S.unknown", localtime(&t)); fn.append(lbuf); } else { fn.append(base); } return fn; }
CWE-78
6
int DummyOutStream::overrun(int itemSize, int nItems) { flush(); if (itemSize * nItems > end - ptr) nItems = (end - ptr) / itemSize; return nItems; }
CWE-787
24
int size() const { return m_str ? m_str->size() : 0; }
CWE-190
19
inline size_t codepoint_length(const char *s8, size_t l) { if (l) { auto b = static_cast<uint8_t>(s8[0]); if ((b & 0x80) == 0) { return 1; } else if ((b & 0xE0) == 0xC0) { return 2; } else if ((b & 0xF0) == 0xE0) { return 3; } else if ((b & 0xF8) == 0xF0) { return 4; } } return 0; }
CWE-125
47
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { TfLiteTensor* output_values = GetOutput(context, node, kOutputValues); TfLiteTensor* output_indexes = GetOutput(context, node, kOutputIndexes); if (IsDynamicTensor(output_values)) { TF_LITE_ENSURE_OK(context, ResizeOutput(context, node)); } const TfLiteTensor* top_k = GetInput(context, node, kInputTopK); const int32 k = top_k->data.i32[0]; // The tensor can have more than 2 dimensions or even be a vector, the code // anyway calls the internal dimension as row; const TfLiteTensor* input = GetInput(context, node, kInputTensor); const int32 row_size = input->dims->data[input->dims->size - 1]; int32 num_rows = 1; for (int i = 0; i < input->dims->size - 1; ++i) { num_rows *= input->dims->data[i]; } switch (output_values->type) { case kTfLiteFloat32: TopK(row_size, num_rows, GetTensorData<float>(input), k, output_indexes->data.i32, GetTensorData<float>(output_values)); break; case kTfLiteUInt8: TopK(row_size, num_rows, input->data.uint8, k, output_indexes->data.i32, output_values->data.uint8); break; case kTfLiteInt8: TopK(row_size, num_rows, input->data.int8, k, output_indexes->data.i32, output_values->data.int8); break; case kTfLiteInt32: TopK(row_size, num_rows, input->data.i32, k, output_indexes->data.i32, output_values->data.i32); break; case kTfLiteInt64: TopK(row_size, num_rows, input->data.i64, k, output_indexes->data.i32, output_values->data.i64); break; default: TF_LITE_KERNEL_LOG(context, "Type %s is currently not supported by TopK.", TfLiteTypeGetName(output_values->type)); return kTfLiteError; } return kTfLiteOk; }
CWE-787
24
static float *get_window(vorb *f, int len) { len <<= 1; if (len == f->blocksize_0) return f->window[0]; if (len == f->blocksize_1) return f->window[1]; assert(0); return NULL; }
CWE-476
46
bool MemFile::seek(int64_t offset, int whence /* = SEEK_SET */) { assertx(m_len != -1); if (whence == SEEK_CUR) { if (offset > 0 && offset < bufferedLen()) { setReadPosition(getReadPosition() + offset); setPosition(getPosition() + offset); return true; } offset += getPosition(); whence = SEEK_SET; } // invalidate the current buffer setWritePosition(0); setReadPosition(0); if (whence == SEEK_SET) { m_cursor = offset; } else { assertx(whence == SEEK_END); m_cursor = m_len + offset; } setPosition(m_cursor); return true; }
CWE-787
24
std::string DecodeUnsafe(string_view encoded) { std::string raw; if (Decode(encoded, &raw)) { return raw; } return ToString(encoded); }
CWE-22
2
TfLiteStatus NotEqualEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); bool requires_broadcast = !HaveSameShapes(input1, input2); switch (input1->type) { case kTfLiteBool: Comparison<bool, reference_ops::NotEqualFn>(input1, input2, output, requires_broadcast); break; case kTfLiteFloat32: Comparison<float, reference_ops::NotEqualFn>(input1, input2, output, requires_broadcast); break; case kTfLiteInt32: Comparison<int32_t, reference_ops::NotEqualFn>(input1, input2, output, requires_broadcast); break; case kTfLiteInt64: Comparison<int64_t, reference_ops::NotEqualFn>(input1, input2, output, requires_broadcast); break; case kTfLiteUInt8: ComparisonQuantized<uint8_t, reference_ops::NotEqualFn>( input1, input2, output, requires_broadcast); break; case kTfLiteInt8: ComparisonQuantized<int8_t, reference_ops::NotEqualFn>( input1, input2, output, requires_broadcast); break; case kTfLiteString: ComparisonString(reference_ops::StringRefNotEqualFn, input1, input2, output, requires_broadcast); break; default: context->ReportError( context, "Does not support type %d, requires bool|float|int|uint8|string", input1->type); return kTfLiteError; } return kTfLiteOk; }
CWE-787
24
TEST_CASE_METHOD(TestFixture, "AES encrypt/decrypt", "[aes-encrypt-decrypt]") { int errStatus = 0; vector<char> errMsg(BUF_LEN, 0); uint32_t encLen; string key = SAMPLE_AES_KEY; vector <uint8_t> encrypted_key(BUF_LEN, 0); PRINT_SRC_LINE auto status = trustedEncryptKeyAES(eid, &errStatus, errMsg.data(), key.c_str(), encrypted_key.data(), &encLen); REQUIRE(status == 0); REQUIRE(errStatus == 0); vector<char> decr_key(BUF_LEN, 0); PRINT_SRC_LINE status = trustedDecryptKeyAES(eid, &errStatus, errMsg.data(), encrypted_key.data(), encLen, decr_key.data()); REQUIRE(status == 0); REQUIRE(errStatus == 0); REQUIRE(key.compare(decr_key.data()) == 0); }
CWE-787
24
virtual size_t Read(void *buffer, size_t size, size_t count) { if (!m_fp) return 0; return fread(buffer, size, count, m_fp); }
CWE-770
37
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); output->type = kTfLiteInt32; // By design, the input shape is always known at the time of Prepare, even // if the preceding op that generates |input| is dynamic. Thus, we can // always compute the rank immediately, without waiting for Eval. SetTensorToPersistentRo(output); // Rank produces a 0-D int32 Tensor representing the rank of input. TfLiteIntArray* output_size = TfLiteIntArrayCreate(0); TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, output, output_size)); TF_LITE_ENSURE_EQ(context, NumDimensions(output), 0); // Immediately propagate the known rank to the output tensor. This allows // downstream ops that rely on the value to use it during prepare. if (output->type == kTfLiteInt32) { int32_t* output_data = GetTensorData<int32_t>(output); *output_data = NumDimensions(input); } else { return kTfLiteError; } return kTfLiteOk; }
CWE-787
24
Network::FilterStatus Context::onUpstreamData(int data_length, bool end_of_stream) { if (!wasm_->onUpstreamData_) { return Network::FilterStatus::Continue; } auto result = wasm_->onUpstreamData_(this, id_, static_cast<uint32_t>(data_length), static_cast<uint32_t>(end_of_stream)); // TODO(PiotrSikora): pull Proxy-WASM's FilterStatus values. return result.u64_ == 0 ? Network::FilterStatus::Continue : Network::FilterStatus::StopIteration; }
CWE-476
46
void FrameFactory::rebuildAggregateFrames(ID3v2::Tag *tag) const { if(tag->header()->majorVersion() < 4 && tag->frameList("TDRC").size() == 1 && tag->frameList("TDAT").size() == 1) { TextIdentificationFrame *tdrc = static_cast<TextIdentificationFrame *>(tag->frameList("TDRC").front()); UnknownFrame *tdat = static_cast<UnknownFrame *>(tag->frameList("TDAT").front()); if(tdrc->fieldList().size() == 1 && tdrc->fieldList().front().size() == 4 && tdat->data().size() >= 5) { String date(tdat->data().mid(1), String::Type(tdat->data()[0])); if(date.length() == 4) { tdrc->setText(tdrc->toString() + '-' + date.substr(2, 2) + '-' + date.substr(0, 2)); if(tag->frameList("TIME").size() == 1) { UnknownFrame *timeframe = static_cast<UnknownFrame *>(tag->frameList("TIME").front()); if(timeframe->data().size() >= 5) { String time(timeframe->data().mid(1), String::Type(timeframe->data()[0])); if(time.length() == 4) { tdrc->setText(tdrc->toString() + 'T' + time.substr(0, 2) + ':' + time.substr(2, 2)); } } } } } } }
CWE-434
5
generatePreview (const char inFileName[], float exposure, int previewWidth, int &previewHeight, Array2D <PreviewRgba> &previewPixels) { // // Read the input file // RgbaInputFile in (inFileName); Box2i dw = in.dataWindow(); float a = in.pixelAspectRatio(); int w = dw.max.x - dw.min.x + 1; int h = dw.max.y - dw.min.y + 1; Array2D <Rgba> pixels (h, w); in.setFrameBuffer (ComputeBasePointer (&pixels[0][0], dw), 1, w); in.readPixels (dw.min.y, dw.max.y); // // Make a preview image // previewHeight = max (int (h / (w * a) * previewWidth + .5f), 1); previewPixels.resizeErase (previewHeight, previewWidth); float fx = (previewWidth > 0)? (float (w - 1) / (previewWidth - 1)): 1; float fy = (previewHeight > 0)? (float (h - 1) / (previewHeight - 1)): 1; float m = Math<float>::pow (2.f, IMATH_NAMESPACE::clamp (exposure + 2.47393f, -20.f, 20.f)); for (int y = 0; y < previewHeight; ++y) { for (int x = 0; x < previewWidth; ++x) { PreviewRgba &preview = previewPixels[y][x]; const Rgba &pixel = pixels[int (y * fy + .5f)][int (x * fx + .5f)]; preview.r = gamma (pixel.r, m); preview.g = gamma (pixel.g, m); preview.b = gamma (pixel.b, m); preview.a = int (IMATH_NAMESPACE::clamp (pixel.a * 255.f, 0.f, 255.f) + .5f); } } }
CWE-476
46
int length() { return ptr - start; }
CWE-787
24
void Compute(OpKernelContext* context) override { const float in_min = context->input(2).flat<float>()(0); const float in_max = context->input(3).flat<float>()(0); ImageResizerState st(align_corners_, false); st.ValidateAndCreateOutput(context); if (!context->status().ok()) return; // Return if the output is empty. if (st.output->NumElements() == 0) return; typename TTypes<T, 4>::ConstTensor image_data( context->input(0).tensor<T, 4>()); typename TTypes<T, 4>::Tensor output_data(st.output->tensor<T, 4>()); ResizeBilinear<T>(image_data, st.height_scale, st.width_scale, in_min, in_max, half_pixel_centers_, &output_data); Tensor* out_min = nullptr; OP_REQUIRES_OK(context, context->allocate_output(1, {}, &out_min)); out_min->flat<float>()(0) = in_min; Tensor* out_max = nullptr; OP_REQUIRES_OK(context, context->allocate_output(2, {}, &out_max)); out_max->flat<float>()(0) = in_max; }
CWE-787
24
TfLiteStatus LeakyReluPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); LeakyReluOpData* data = reinterpret_cast<LeakyReluOpData*>(node->user_data); if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 || output->type == kTfLiteInt16) { const auto* params = reinterpret_cast<TfLiteLeakyReluParams*>(node->builtin_data); double alpha_multiplier = input->params.scale * params->alpha / output->params.scale; QuantizeMultiplier(alpha_multiplier, &data->output_multiplier_alpha, &data->output_shift_alpha); double identity_multiplier = input->params.scale / output->params.scale; QuantizeMultiplier(identity_multiplier, &data->output_multiplier_identity, &data->output_shift_identity); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); }
CWE-125
47
MONGO_EXPORT void *bson_malloc( int size ) { void *p; p = bson_malloc_func( size ); bson_fatal_msg( !!p, "malloc() failed" ); return p; }
CWE-190
19
static __forceinline void draw_line(float *output, int x0, int y0, int x1, int y1, int n) { int dy = y1 - y0; int adx = x1 - x0; int ady = abs(dy); int base; int x=x0,y=y0; int err = 0; int sy; #ifdef STB_VORBIS_DIVIDE_TABLE if (adx < DIVTAB_DENOM && ady < DIVTAB_NUMER) { if (dy < 0) { base = -integer_divide_table[ady][adx]; sy = base-1; } else { base = integer_divide_table[ady][adx]; sy = base+1; } } else { base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; } #else base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; #endif ady -= abs(base) * adx; if (x1 > n) x1 = n; if (x < x1) { LINE_OP(output[x], inverse_db_table[y]); for (++x; x < x1; ++x) { err += ady; if (err >= adx) { err -= adx; y += sy; } else y += base; LINE_OP(output[x], inverse_db_table[y]); } } }
CWE-908
48
TfLiteStatus LogSoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { LogSoftmaxOpData* data = reinterpret_cast<LogSoftmaxOpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, output->params.scale, 16.0 / 256); static const double kBeta = 1.0; if (input->type == kTfLiteUInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, 255); data->params.table = data->f_table; optimized_ops::PopulateSoftmaxLookupTable(&data->params, input->params.scale, kBeta); data->params.zero_point = output->params.zero_point; data->params.scale = output->params.scale; } if (input->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, 127); static const int kScaledDiffIntegerBits = 5; tflite::PreprocessLogSoftmaxScalingExp( kBeta, input->params.scale, kScaledDiffIntegerBits, &data->input_multiplier, &data->input_left_shift, &data->reverse_scaling_divisor, &data->reverse_scaling_right_shift); data->reverse_scaling_right_shift *= -1; data->diff_min = -1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits, data->input_left_shift); } } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); }
CWE-125
47
Pl_ASCIIHexDecoder::flush() { if (this->pos == 0) { QTC::TC("libtests", "Pl_ASCIIHexDecoder no-op flush"); return; } int b[2]; for (int i = 0; i < 2; ++i) { if (this->inbuf[i] >= 'A') { b[i] = this->inbuf[i] - 'A' + 10; } else { b[i] = this->inbuf[i] - '0'; } } unsigned char ch = static_cast<unsigned char>((b[0] << 4) + b[1]); QTC::TC("libtests", "Pl_ASCIIHexDecoder partial flush", (this->pos == 2) ? 0 : 1); getNext()->write(&ch, 1); this->pos = 0; this->inbuf[0] = '0'; this->inbuf[1] = '0'; this->inbuf[2] = '\0'; }
CWE-787
24
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); const TfLiteTensor* size = GetInput(context, node, kSizeTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); // TODO(ahentz): Our current implementations rely on the inputs being 4D. TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1); TF_LITE_ENSURE_EQ(context, size->type, kTfLiteInt32); // ResizeBilinear creates a float tensor even when the input is made of // integers. output->type = input->type; if (!IsConstantTensor(size)) { SetTensorToDynamic(output); return kTfLiteOk; } // Ensure params are valid. auto* params = reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data); if (params->half_pixel_centers && params->align_corners) { context->ReportError( context, "If half_pixel_centers is True, align_corners must be False."); return kTfLiteError; } return ResizeOutputTensor(context, input, size, output); }
CWE-125
47
void CommandData::ParseArg(wchar *Arg) { if (IsSwitch(*Arg) && !NoMoreSwitches) if (Arg[1]=='-' && Arg[2]==0) NoMoreSwitches=true; else ProcessSwitch(Arg+1); else if (*Command==0) { wcsncpy(Command,Arg,ASIZE(Command)); *Command=toupperw(*Command); // 'I' and 'S' commands can contain case sensitive strings after // the first character, so we must not modify their case. // 'S' can contain SFX name, which case is important in Unix. if (*Command!='I' && *Command!='S') wcsupper(Command); } else if (*ArcName==0) wcsncpyz(ArcName,Arg,ASIZE(ArcName)); else { // Check if last character is the path separator. size_t Length=wcslen(Arg); wchar EndChar=Length==0 ? 0:Arg[Length-1]; bool EndSeparator=IsDriveDiv(EndChar) || IsPathDiv(EndChar); wchar CmdChar=toupperw(*Command); bool Add=wcschr(L"AFUM",CmdChar)!=NULL; bool Extract=CmdChar=='X' || CmdChar=='E'; if (EndSeparator && !Add) wcsncpyz(ExtrPath,Arg,ASIZE(ExtrPath)); else if ((Add || CmdChar=='T') && (*Arg!='@' || ListMode==RCLM_REJECT_LISTS)) FileArgs.AddString(Arg); else { FindData FileData; bool Found=FindFile::FastFind(Arg,&FileData); if ((!Found || ListMode==RCLM_ACCEPT_LISTS) && ListMode!=RCLM_REJECT_LISTS && *Arg=='@' && !IsWildcard(Arg)) { FileLists=true; ReadTextFile(Arg+1,&FileArgs,false,true,FilelistCharset,true,true,true); } else if (Found && FileData.IsDir && Extract && *ExtrPath==0) { wcsncpyz(ExtrPath,Arg,ASIZE(ExtrPath)); AddEndSlash(ExtrPath,ASIZE(ExtrPath)); } else FileArgs.AddString(Arg); } } }
CWE-787
24
static __forceinline void draw_line(float *output, int x0, int y0, int x1, int y1, int n) { int dy = y1 - y0; int adx = x1 - x0; int ady = abs(dy); int base; int x=x0,y=y0; int err = 0; int sy; #ifdef STB_VORBIS_DIVIDE_TABLE if (adx < DIVTAB_DENOM && ady < DIVTAB_NUMER) { if (dy < 0) { base = -integer_divide_table[ady][adx]; sy = base-1; } else { base = integer_divide_table[ady][adx]; sy = base+1; } } else { base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; } #else base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; #endif ady -= abs(base) * adx; if (x1 > n) x1 = n; if (x < x1) { LINE_OP(output[x], inverse_db_table[y]); for (++x; x < x1; ++x) { err += ady; if (err >= adx) { err -= adx; y += sy; } else y += base; LINE_OP(output[x], inverse_db_table[y]); } } }
CWE-787
24
ObfuscatedPasswd::ObfuscatedPasswd(int len) : CharArray(len), length(len) { }
CWE-787
24
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, 0); switch (input->type) { case kTfLiteFloat32: return EvalImpl<kernel_type, kTfLiteFloat32>(context, node); case kTfLiteUInt8: return EvalImpl<kernel_type, kTfLiteUInt8>(context, node); case kTfLiteInt8: return EvalImpl<kernel_type, kTfLiteInt8>(context, node); case kTfLiteInt16: return EvalImpl<kernel_type, kTfLiteInt16>(context, node); default: TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", TfLiteTypeGetName(input->type)); return kTfLiteError; } }
CWE-125
47
static QSvgNode *createPathNode(QSvgNode *parent, const QXmlStreamAttributes &attributes, QSvgHandler *) { QStringView data = attributes.value(QLatin1String("d")); QPainterPath qpath; qpath.setFillRule(Qt::WindingFill); //XXX do error handling parsePathDataFast(data, qpath); QSvgNode *path = new QSvgPath(parent, qpath); return path; }
CWE-787
24
ALWAYS_INLINE String serialize_impl(const Variant& value, const SerializeOptions& opts) { switch (value.getType()) { case KindOfClass: case KindOfLazyClass: case KindOfPersistentString: case KindOfString: { auto const str = isStringType(value.getType()) ? value.getStringData() : isClassType(value.getType()) ? classToStringHelper(value.toClassVal()) : lazyClassToStringHelper(value.toLazyClassVal()); auto const size = str->size(); if (size >= RuntimeOption::MaxSerializedStringSize) { throw Exception("Size of serialized string (%d) exceeds max", size); } StringBuffer sb; sb.append("s:"); sb.append(size); sb.append(":\""); sb.append(str->data(), size); sb.append("\";"); return sb.detach(); } case KindOfResource: return s_Res; case KindOfUninit: case KindOfNull: case KindOfBoolean: case KindOfInt64: case KindOfFunc: case KindOfPersistentVec: case KindOfVec: case KindOfPersistentDict: case KindOfDict: case KindOfPersistentKeyset: case KindOfKeyset: case KindOfPersistentDArray: case KindOfDArray: case KindOfPersistentVArray: case KindOfVArray: case KindOfDouble: case KindOfObject: case KindOfClsMeth: case KindOfRClsMeth: case KindOfRFunc: case KindOfRecord: break; } VariableSerializer vs(VariableSerializer::Type::Serialize); if (opts.keepDVArrays) vs.keepDVArrays(); if (opts.forcePHPArrays) vs.setForcePHPArrays(); if (opts.warnOnHackArrays) vs.setHackWarn(); if (opts.warnOnPHPArrays) vs.setPHPWarn(); if (opts.ignoreLateInit) vs.setIgnoreLateInit(); if (opts.serializeProvenanceAndLegacy) vs.setSerializeProvenanceAndLegacy(); // Keep the count so recursive calls to serialize() embed references properly. return vs.serialize(value, true, true); }
CWE-125
47
TypedValue HHVM_FUNCTION(substr_compare, const String& main_str, const String& str, int offset, int length /* = INT_MAX */, bool case_insensitivity /* = false */) { int s1_len = main_str.size(); int s2_len = str.size(); if (length <= 0) { raise_warning("The length must be greater than zero"); return make_tv<KindOfBoolean>(false); } if (offset < 0) { offset = s1_len + offset; if (offset < 0) offset = 0; } if (offset >= s1_len) { raise_warning("The start position cannot exceed initial string length"); return make_tv<KindOfBoolean>(false); } int cmp_len = s1_len - offset; if (cmp_len < s2_len) cmp_len = s2_len; if (cmp_len > length) cmp_len = length; const char *s1 = main_str.data(); if (case_insensitivity) { return tvReturn(bstrcasecmp(s1 + offset, cmp_len, str.data(), cmp_len)); } return tvReturn(string_ncmp(s1 + offset, str.data(), cmp_len)); }
CWE-190
19
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 0); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); OpContext op_context(context, node); TF_LITE_ENSURE(context, op_context.input->type == kTfLiteUInt8 || op_context.input->type == kTfLiteInt8 || op_context.input->type == kTfLiteInt16 || op_context.input->type == kTfLiteFloat16); TF_LITE_ENSURE(context, op_context.ref->type == kTfLiteFloat32); op_data->max_diff = op_data->tolerance * op_context.input->params.scale; switch (op_context.input->type) { case kTfLiteUInt8: case kTfLiteInt8: op_data->max_diff *= (1 << 8); break; case kTfLiteInt16: op_data->max_diff *= (1 << 16); break; default: break; } // Allocate tensor to store the dequantized inputs. if (op_data->cache_tensor_id == kTensorNotAllocated) { TF_LITE_ENSURE_OK( context, context->AddTensors(context, 1, &op_data->cache_tensor_id)); } TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(1); node->temporaries->data[0] = op_data->cache_tensor_id; TfLiteTensor* dequantized = GetTemporary(context, node, /*index=*/0); dequantized->type = op_context.ref->type; dequantized->allocation_type = kTfLiteDynamic; TF_LITE_ENSURE_OK(context, context->ResizeTensor( context, dequantized, TfLiteIntArrayCopy(op_context.input->dims))); return kTfLiteOk; }
CWE-125
47
TfLiteStatus MultiplyAndCheckOverflow(size_t a, size_t b, size_t* product) { // Multiplying a * b where a and b are size_t cannot result in overflow in a // size_t accumulator if both numbers have no non-zero bits in their upper // half. constexpr size_t size_t_bits = 8 * sizeof(size_t); constexpr size_t overflow_upper_half_bit_position = size_t_bits / 2; *product = a * b; // If neither integers have non-zero bits past 32 bits can't overflow. // Otherwise check using slow devision. if (TFLITE_EXPECT_FALSE((a | b) >> overflow_upper_half_bit_position != 0)) { if (a != 0 && *product / a != b) return kTfLiteError; } return kTfLiteOk; }
CWE-190
19
TfLiteStatus SimpleOpEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input1 = tflite::GetInput(context, node, /*index=*/0); const TfLiteTensor* input2 = tflite::GetInput(context, node, /*index=*/1); TfLiteTensor* output = GetOutput(context, node, /*index=*/0); int32_t* output_data = output->data.i32; *output_data = *(input1->data.i32) + *(input2->data.i32); return kTfLiteOk; }
CWE-125
47
int HexInStream::overrun(int itemSize, int nItems, bool wait) { if (itemSize > bufSize) throw Exception("HexInStream overrun: max itemSize exceeded"); if (end - ptr != 0) memmove(start, ptr, end - ptr); end -= ptr - start; offset += ptr - start; ptr = start; while (end < ptr + itemSize) { int n = in_stream.check(2, 1, wait); if (n == 0) return 0; const U8* iptr = in_stream.getptr(); const U8* eptr = in_stream.getend(); int length = min((eptr - iptr)/2, start + bufSize - end); U8* optr = (U8*) end; for (int i=0; i<length; i++) { int v = 0; readHexAndShift(iptr[i*2], &v); readHexAndShift(iptr[i*2+1], &v); optr[i] = v; } in_stream.setptr(iptr + length*2); end += length; } if (itemSize * nItems > end - ptr) nItems = (end - ptr) / itemSize; return nItems; }
CWE-787
24
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { Subgraph* subgraph = reinterpret_cast<Subgraph*>(context->impl_); const TfLiteTensor* input_resource_id_tensor = GetInput(context, node, kInputVariableId); const TfLiteTensor* input_value_tensor = GetInput(context, node, kInputValue); int resource_id = input_resource_id_tensor->data.i32[0]; auto& resources = subgraph->resources(); resource::CreateResourceVariableIfNotAvailable(&resources, resource_id); auto* variable = resource::GetResourceVariable(&resources, resource_id); TF_LITE_ENSURE(context, variable != nullptr); variable->AssignFrom(input_value_tensor); return kTfLiteOk; }
CWE-787
24
void QuickOpen::Load(uint64 BlockPos) { if (!Loaded) // If loading the first time, perform additional intialization. { SeekPos=Arc->Tell(); UnsyncSeekPos=false; SaveFilePos SavePos(*Arc); Arc->Seek(BlockPos,SEEK_SET); if (Arc->ReadHeader()==0 || Arc->GetHeaderType()!=HEAD_SERVICE || !Arc->SubHead.CmpName(SUBHEAD_TYPE_QOPEN)) return; QLHeaderPos=Arc->CurBlockPos; RawDataStart=Arc->Tell(); RawDataSize=Arc->SubHead.UnpSize; Loaded=true; // Set only after all file processing calls like Tell, Seek, ReadHeader. } if (Arc->SubHead.Encrypted) { RAROptions *Cmd=Arc->GetRAROptions(); #ifndef RAR_NOCRYPT if (Cmd->Password.IsSet()) Crypt.SetCryptKeys(false,CRYPT_RAR50,&Cmd->Password,Arc->SubHead.Salt, Arc->SubHead.InitV,Arc->SubHead.Lg2Count, Arc->SubHead.HashKey,Arc->SubHead.PswCheck); else #endif return; } RawDataPos=0; ReadBufSize=0; ReadBufPos=0; LastReadHeader.Reset(); LastReadHeaderPos=0; ReadBuffer(); }
CWE-787
24
TfLiteStatus InitializeTemporaries(TfLiteContext* context, TfLiteNode* node, OpContext* op_context) { // Creates a temp index to iterate through input data. OpData* op_data = reinterpret_cast<OpData*>(node->user_data); TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(3); node->temporaries->data[0] = op_data->scratch_tensor_index; TfLiteTensor* scratch_tensor = GetTemporary(context, node, /*index=*/0); scratch_tensor->type = kTfLiteInt32; scratch_tensor->allocation_type = kTfLiteArenaRw; TfLiteIntArray* index_size = TfLiteIntArrayCreate(1); index_size->data[0] = NumDimensions(op_context->input); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scratch_tensor, index_size)); // Creates a temp tensor to store resolved axis given input data. node->temporaries->data[1] = op_data->scratch_tensor_index + 1; TfLiteTensor* resolved_axis = GetTemporary(context, node, /*index=*/1); resolved_axis->type = kTfLiteInt32; // Creates a temp tensor to store temp sums when calculating mean. node->temporaries->data[2] = op_data->scratch_tensor_index + 2; TfLiteTensor* temp_sum = GetTemporary(context, node, /*index=*/2); switch (op_context->input->type) { case kTfLiteFloat32: temp_sum->type = kTfLiteFloat32; break; case kTfLiteInt32: temp_sum->type = kTfLiteInt64; break; case kTfLiteInt64: temp_sum->type = kTfLiteInt64; break; case kTfLiteUInt8: case kTfLiteInt8: case kTfLiteInt16: temp_sum->type = kTfLiteInt32; break; case kTfLiteBool: temp_sum->type = kTfLiteBool; break; default: return kTfLiteError; } return kTfLiteOk; }
CWE-125
47
MONGO_EXPORT int bson_append_finish_object( bson *b ) { char *start; int i; if ( bson_ensure_space( b, 1 ) == BSON_ERROR ) return BSON_ERROR; bson_append_byte( b , 0 ); start = b->data + b->stack[ --b->stackPos ]; i = b->cur - start; bson_little_endian32( start, &i ); return BSON_OK; }
CWE-190
19
void AveragePool(const uint8* input_data, const Dims<4>& input_dims, int stride, int pad_width, int pad_height, int filter_width, int filter_height, int32 output_activation_min, int32 output_activation_max, uint8* output_data, const Dims<4>& output_dims) { AveragePool<Ac>(input_data, input_dims, stride, stride, pad_width, pad_height, filter_width, filter_height, output_activation_min, output_activation_max, output_data, output_dims); }
CWE-835
42
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = static_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); // TODO(b/128934713): Add support for fixed-point per-channel quantization. // Currently this only support affine per-layer quantization. TF_LITE_ENSURE_EQ(context, output->quantization.type, kTfLiteAffineQuantization); const auto* affine_quantization = static_cast<TfLiteAffineQuantization*>(output->quantization.params); TF_LITE_ENSURE(context, affine_quantization); TF_LITE_ENSURE(context, affine_quantization->scale); TF_LITE_ENSURE(context, affine_quantization->scale->size == 1); if (input->type == kTfLiteFloat32) { // Quantize use case. TF_LITE_ENSURE(context, output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 || output->type == kTfLiteInt16); } else { // Requantize use case. if (input->type == kTfLiteInt16) { TF_LITE_ENSURE( context, output->type == kTfLiteInt8 || output->type == kTfLiteInt16); } else { TF_LITE_ENSURE(context, input->type == kTfLiteInt8 || input->type == kTfLiteUInt8); TF_LITE_ENSURE( context, output->type == kTfLiteUInt8 || output->type == kTfLiteInt8); } const double effective_output_scale = static_cast<double>(input->params.scale) / static_cast<double>(output->params.scale); QuantizeMultiplier(effective_output_scale, &data->output_multiplier, &data->output_shift); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); }
CWE-787
24
inline TfLiteTensor* GetMutableInput(const TfLiteContext* context, const TfLiteNode* node, int index) { if (context->tensors != nullptr) { return &context->tensors[node->inputs->data[index]]; } else { return context->GetTensor(context, node->inputs->data[index]); } }
CWE-125
47
void TestJlCompress::extractDir_data() { QTest::addColumn<QString>("zipName"); QTest::addColumn<QStringList>("fileNames"); QTest::newRow("simple") << "jlextdir.zip" << ( QStringList() << "test0.txt" << "testdir1/test1.txt" << "testdir2/test2.txt" << "testdir2/subdir/test2sub.txt"); QTest::newRow("separate dir") << "sepdir.zip" << ( QStringList() << "laj/" << "laj/lajfile.txt"); }
CWE-22
2
TypedValue HHVM_FUNCTION(substr_compare, const String& main_str, const String& str, int offset, int length /* = INT_MAX */, bool case_insensitivity /* = false */) { int s1_len = main_str.size(); int s2_len = str.size(); if (length <= 0) { raise_warning("The length must be greater than zero"); return make_tv<KindOfBoolean>(false); } if (offset < 0) { offset = s1_len + offset; if (offset < 0) offset = 0; } if (offset >= s1_len) { raise_warning("The start position cannot exceed initial string length"); return make_tv<KindOfBoolean>(false); } int cmp_len = s1_len - offset; if (cmp_len < s2_len) cmp_len = s2_len; if (cmp_len > length) cmp_len = length; const char *s1 = main_str.data(); if (case_insensitivity) { return tvReturn(bstrcasecmp(s1 + offset, cmp_len, str.data(), cmp_len)); } return tvReturn(string_ncmp(s1 + offset, str.data(), cmp_len)); }
CWE-125
47
void FormatConverter<T>::Populate(const T* src_data, std::vector<int> indices, int level, int prev_idx, int* src_data_ptr, T* dest_data) { if (level == indices.size()) { int orig_rank = dense_shape_.size(); std::vector<int> orig_idx; orig_idx.resize(orig_rank); int i = 0; for (; i < orig_idx.size(); i++) { int orig_dim = traversal_order_[i]; orig_idx[orig_dim] = indices[i]; } for (; i < indices.size(); i++) { const int block_idx = traversal_order_[i] - orig_rank; const int orig_dim = block_map_[block_idx]; orig_idx[orig_dim] = orig_idx[orig_dim] * block_size_[block_idx] + indices[i]; } dest_data[GetFlattenedIndex(orig_idx, dense_shape_)] = src_data[*src_data_ptr]; *src_data_ptr = *src_data_ptr + 1; return; } const int metadata_idx = 2 * level; const int shape_of_level = dim_metadata_[metadata_idx][0]; if (format_[level] == kTfLiteDimDense) { for (int i = 0; i < shape_of_level; i++) { indices[level] = i; Populate(src_data, indices, level + 1, prev_idx * shape_of_level + i, src_data_ptr, dest_data); } } else { const auto& array_segments = dim_metadata_[metadata_idx]; const auto& array_indices = dim_metadata_[metadata_idx + 1]; for (int i = array_segments[prev_idx]; i < array_segments[prev_idx + 1]; i++) { indices[level] = array_indices[i]; Populate(src_data, indices, level + 1, i, src_data_ptr, dest_data); } } }
CWE-125
47
bool logToUSDT(const Array& bt) { std::lock_guard<std::mutex> lock(usdt_mutex); memset(&bt_slab, 0, sizeof(bt_slab)); int i = 0; IterateVNoInc( bt.get(), [&](TypedValue tv) -> bool { if (i >= strobelight::kMaxStackframes) { return true; } assertx(isArrayLikeType(type(tv))); ArrayData* bt_frame = val(tv).parr; strobelight::backtrace_frame_t* frame = &bt_slab.frames[i]; auto const line = bt_frame->get(s_line.get()); if (line.is_init()) { assertx(isIntType(type(line))); frame->line = val(line).num; } auto const file_name = bt_frame->get(s_file.get()); if (file_name.is_init()) { assertx(isStringType(type(file_name))); strncpy(frame->file_name, val(file_name).pstr->data(), std::min(val(file_name).pstr->size(), strobelight::kFileNameMax)); frame->file_name[strobelight::kFileNameMax - 1] = '\0'; } auto const class_name = bt_frame->get(s_class.get()); if (class_name.is_init()) { assertx(isStringType(type(class_name))); strncpy(frame->class_name, val(class_name).pstr->data(), std::min(val(class_name).pstr->size(), strobelight::kClassNameMax)); frame->class_name[strobelight::kClassNameMax - 1] = '\0'; } auto const function_name = bt_frame->get(s_function.get()); if (function_name.is_init()) { assertx(isStringType(type(function_name))); strncpy(frame->function, val(function_name).pstr->data(), std::min(val(function_name).pstr->size(), strobelight::kFunctionMax)); frame->function[strobelight::kFunctionMax - 1] = '\0'; } i++; return false; } ); bt_slab.len = i; // Allow BPF to read the now-formatted stacktrace FOLLY_SDT_WITH_SEMAPHORE(hhvm, hhvm_stack, &bt_slab); return true; }
CWE-125
47
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, 0); switch (input->type) { case kTfLiteFloat32: return EvalImpl<kernel_type, kTfLiteFloat32>(context, node); case kTfLiteUInt8: return EvalImpl<kernel_type, kTfLiteUInt8>(context, node); case kTfLiteInt8: return EvalImpl<kernel_type, kTfLiteInt8>(context, node); case kTfLiteInt16: return EvalImpl<kernel_type, kTfLiteInt16>(context, node); default: TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", TfLiteTypeGetName(input->type)); return kTfLiteError; } }
CWE-787
24
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); // TODO(b/137042749): TFLite infrastructure (converter, delegate) doesn't // fully support 0-output ops yet. Currently it works if we manually crfat // a TFLite graph that contains variable ops. Note: // * The TFLite Converter need to be changed to be able to produce an op // with 0 output. // * The delegation code need to be changed to handle 0 output ops. However // everything still works fine when variable ops aren't used. TF_LITE_ENSURE_EQ(context, NumOutputs(node), 0); const TfLiteTensor* input_resource_id_tensor = GetInput(context, node, kInputVariableId); TF_LITE_ENSURE_EQ(context, input_resource_id_tensor->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, NumElements(input_resource_id_tensor), 1); return kTfLiteOk; }
CWE-787
24
TEST_CASE_METHOD(TestFixture, "ECDSA AES key gen", "[ecdsa-aes-key-gen]") { vector<char> errMsg(BUF_LEN, 0); int errStatus = 0; vector <uint8_t> encrPrivKey(BUF_LEN, 0); vector<char> pubKeyX(BUF_LEN, 0); vector<char> pubKeyY(BUF_LEN, 0); uint32_t encLen = 0; PRINT_SRC_LINE auto status = trustedGenerateEcdsaKeyAES(eid, &errStatus, errMsg.data(), encrPrivKey.data(), &encLen, pubKeyX.data(), pubKeyY.data()); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); }
CWE-787
24
void TightDecoder::FilterGradient(const rdr::U8* inbuf, const PixelFormat& pf, PIXEL_T* outbuf, int stride, const Rect& r) { int x, y, c; static rdr::U8 prevRow[TIGHT_MAX_WIDTH*3]; static rdr::U8 thisRow[TIGHT_MAX_WIDTH*3]; rdr::U8 pix[3]; int est[3]; memset(prevRow, 0, sizeof(prevRow)); // Set up shortcut variables int rectHeight = r.height(); int rectWidth = r.width(); for (y = 0; y < rectHeight; y++) { /* First pixel in a row */ pf.rgbFromBuffer(pix, &inbuf[y*rectWidth], 1); for (c = 0; c < 3; c++) pix[c] += prevRow[c]; memcpy(thisRow, pix, sizeof(pix)); pf.bufferFromRGB((rdr::U8*)&outbuf[y*stride], pix, 1); /* Remaining pixels of a row */ for (x = 1; x < rectWidth; x++) { for (c = 0; c < 3; c++) { est[c] = prevRow[x*3+c] + pix[c] - prevRow[(x-1)*3+c]; if (est[c] > 255) { est[c] = 255; } else if (est[c] < 0) { est[c] = 0; } } pf.rgbFromBuffer(pix, &inbuf[y*rectWidth+x], 1); for (c = 0; c < 3; c++) pix[c] += est[c]; memcpy(&thisRow[x*3], pix, sizeof(pix)); pf.bufferFromRGB((rdr::U8*)&outbuf[y*stride+x], pix, 1); } memcpy(prevRow, thisRow, sizeof(prevRow)); } }
CWE-787
24
otError Commissioner::GeneratePskc(const char * aPassPhrase, const char * aNetworkName, const Mac::ExtendedPanId &aExtPanId, Pskc & aPskc) { otError error = OT_ERROR_NONE; const char *saltPrefix = "Thread"; uint8_t salt[OT_PBKDF2_SALT_MAX_LEN]; uint16_t saltLen = 0; VerifyOrExit((strlen(aPassPhrase) >= OT_COMMISSIONING_PASSPHRASE_MIN_SIZE) && (strlen(aPassPhrase) <= OT_COMMISSIONING_PASSPHRASE_MAX_SIZE), error = OT_ERROR_INVALID_ARGS); memset(salt, 0, sizeof(salt)); memcpy(salt, saltPrefix, strlen(saltPrefix)); saltLen += static_cast<uint16_t>(strlen(saltPrefix)); memcpy(salt + saltLen, aExtPanId.m8, sizeof(aExtPanId)); saltLen += OT_EXT_PAN_ID_SIZE; memcpy(salt + saltLen, aNetworkName, strlen(aNetworkName)); saltLen += static_cast<uint16_t>(strlen(aNetworkName)); otPbkdf2Cmac(reinterpret_cast<const uint8_t *>(aPassPhrase), static_cast<uint16_t>(strlen(aPassPhrase)), reinterpret_cast<const uint8_t *>(salt), saltLen, 16384, OT_PSKC_MAX_SIZE, aPskc.m8); exit: return error; }
CWE-787
24
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); // There are two ways in which the 'output' can be made dynamic: it could be // a string tensor, or its shape cannot be calculated during Prepare(). In // either case, we now have all the information to calculate its shape. if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutput(context, node)); } // Note that string tensors are always "dynamic" in the sense that their size // is not known until we have all the content. This applies even when their // shape is known ahead of time. As a result, a string tensor is never given // any memory by ResizeOutput(), and we need to do it manually here. Since // reshape doesn't change the data, the output tensor needs exactly as many // bytes as the input tensor. if (output->type == kTfLiteString) { auto bytes_required = input->bytes; TfLiteTensorRealloc(bytes_required, output); output->bytes = bytes_required; } memcpy(output->data.raw, input->data.raw, input->bytes); return kTfLiteOk; }
CWE-125
47
static TfLiteRegistration DelegateRegistration() { TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { // If tensors are resized, the runtime should propagate shapes // automatically if correct flag is set. Ensure values are correct. // Output 0 should be dynamic. TfLiteTensor* output0 = GetOutput(context, node, 0); TF_LITE_ENSURE(context, IsDynamicTensor(output0)); // Output 1 has the same shape as input. const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output1 = GetOutput(context, node, 1); TF_LITE_ENSURE(context, input->dims->size == output1->dims->size); TF_LITE_ENSURE(context, input->dims->data[0] == output1->dims->data[0]); return kTfLiteOk; }; return reg; }
CWE-787
24
int FdOutStream::overrun(int itemSize, int nItems) { if (itemSize > bufSize) throw Exception("FdOutStream overrun: max itemSize exceeded"); // First try to get rid of the data we have flush(); // Still not enough space? if (itemSize > end - ptr) { // Can we shuffle things around? // (don't do this if it gains us less than 25%) if ((sentUpTo - start > bufSize / 4) && (itemSize < bufSize - (ptr - sentUpTo))) { memmove(start, sentUpTo, ptr - sentUpTo); ptr = start + (ptr - sentUpTo); sentUpTo = start; } else { // Have to get rid of more data, so turn off non-blocking // for a bit... bool realBlocking; realBlocking = blocking; blocking = true; flush(); blocking = realBlocking; } } // Can we fit all the items asked for? if (itemSize * nItems > end - ptr) nItems = (end - ptr) / itemSize; return nItems; }
CWE-787
24
void create_test_key() { int errStatus = 0; vector<char> errMsg(1024, 0); uint32_t enc_len; SAFE_UINT8_BUF(encrypted_key, BUF_LEN); string key = TEST_VALUE; sgx_status_t status = trustedEncryptKeyAES(eid, &errStatus, errMsg.data(), key.c_str(), encrypted_key, &enc_len); HANDLE_TRUSTED_FUNCTION_ERROR(status, errStatus, errMsg.data()); vector<char> hexEncrKey(2 * enc_len + 1, 0); carray2Hex(encrypted_key, enc_len, hexEncrKey.data(), 2 * enc_len + 1); LevelDB::getLevelDb()->writeDataUnique("TEST_KEY", hexEncrKey.data()); }
CWE-787
24
static jas_image_cmpt_t *jas_image_cmpt_create(int_fast32_t tlx, int_fast32_t tly, int_fast32_t hstep, int_fast32_t vstep, int_fast32_t width, int_fast32_t height, uint_fast16_t depth, bool sgnd, uint_fast32_t inmem) { jas_image_cmpt_t *cmpt; size_t size; cmpt = 0; if (width < 0 || height < 0 || hstep <= 0 || vstep <= 0) { goto error; } if (!jas_safe_intfast32_add(tlx, width, 0) || !jas_safe_intfast32_add(tly, height, 0)) { goto error; } if (!(cmpt = jas_malloc(sizeof(jas_image_cmpt_t)))) { goto error; } cmpt->type_ = JAS_IMAGE_CT_UNKNOWN; cmpt->tlx_ = tlx; cmpt->tly_ = tly; cmpt->hstep_ = hstep; cmpt->vstep_ = vstep; cmpt->width_ = width; cmpt->height_ = height; cmpt->prec_ = depth; cmpt->sgnd_ = sgnd; cmpt->stream_ = 0; cmpt->cps_ = (depth + 7) / 8; // Compute the number of samples in the image component, while protecting // against overflow. // size = cmpt->width_ * cmpt->height_ * cmpt->cps_; if (!jas_safe_size_mul(cmpt->width_, cmpt->height_, &size) || !jas_safe_size_mul(size, cmpt->cps_, &size)) { goto error; } cmpt->stream_ = (inmem) ? jas_stream_memopen2(0, size) : jas_stream_tmpfile(); if (!cmpt->stream_) { goto error; } /* Zero the component data. This isn't necessary, but it is convenient for debugging purposes. */ /* Note: conversion of size - 1 to long can overflow */ if (size > 0) { if (size - 1 > LONG_MAX) { goto error; } if (jas_stream_seek(cmpt->stream_, size - 1, SEEK_SET) < 0 || jas_stream_putc(cmpt->stream_, 0) == EOF || jas_stream_seek(cmpt->stream_, 0, SEEK_SET) < 0) { goto error; } } return cmpt; error: if (cmpt) { jas_image_cmpt_destroy(cmpt); } return 0; }
CWE-190
19
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteL2NormParams*>(node->builtin_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE(context, NumDimensions(input) <= 4); TF_LITE_ENSURE(context, output->type == kTfLiteFloat32 || output->type == kTfLiteUInt8 || output->type == kTfLiteInt8); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, output->params.scale, (1. / 128.)); if (output->type == kTfLiteUInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, 128); } if (output->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); } } // TODO(ahentz): For some reason our implementations don't support // activations. TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone); TfLiteIntArray* output_size = TfLiteIntArrayCopy(input->dims); return context->ResizeTensor(context, output, output_size); }
CWE-787
24
Status check_index_ordering(const Tensor& indices) { auto findices = indices.flat<int>(); for (std::size_t i = 0; i < findices.dimension(0) - 1; ++i) { if (findices(i) < findices(i + 1)) { continue; } return Status( errors::InvalidArgument("Indices are not strictly ordered")); } return Status::OK(); }
CWE-824
65
TEST_F(QuantizedConv2DTest, OddPaddingBatch) { const int stride = 2; TF_ASSERT_OK(NodeDefBuilder("quantized_conv_op", "QuantizedConv2D") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("out_type", DataTypeToEnum<qint32>::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int depth = 1; const int image_width = 4; const int image_height = 4; const int image_batch_count = 3; AddInputFromArray<quint8>( TensorShape({image_batch_count, image_height, image_width, depth}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray<quint8>( TensorShape({filter_size, filter_size, depth, filter_count}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray<float>(TensorShape({1}), {0}); AddInputFromArray<float>(TensorShape({1}), {255.0f}); AddInputFromArray<float>(TensorShape({1}), {0}); AddInputFromArray<float>(TensorShape({1}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width / stride; const int expected_height = (image_height * filter_count) / stride; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues<qint32>(&expected, {348, 252, 274, 175, // 348, 252, 274, 175, // 348, 252, 274, 175}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); }
CWE-476
46
bool logToUSDT(const Array& bt) { std::lock_guard<std::mutex> lock(usdt_mutex); memset(&bt_slab, 0, sizeof(bt_slab)); int i = 0; IterateVNoInc( bt.get(), [&](TypedValue tv) -> bool { if (i >= strobelight::kMaxStackframes) { return true; } assertx(isArrayLikeType(type(tv))); ArrayData* bt_frame = val(tv).parr; strobelight::backtrace_frame_t* frame = &bt_slab.frames[i]; auto const line = bt_frame->get(s_line.get()); if (line.is_init()) { assertx(isIntType(type(line))); frame->line = val(line).num; } auto const file_name = bt_frame->get(s_file.get()); if (file_name.is_init()) { assertx(isStringType(type(file_name))); strncpy(frame->file_name, val(file_name).pstr->data(), std::min(val(file_name).pstr->size(), strobelight::kFileNameMax)); frame->file_name[strobelight::kFileNameMax - 1] = '\0'; } auto const class_name = bt_frame->get(s_class.get()); if (class_name.is_init()) { assertx(isStringType(type(class_name))); strncpy(frame->class_name, val(class_name).pstr->data(), std::min(val(class_name).pstr->size(), strobelight::kClassNameMax)); frame->class_name[strobelight::kClassNameMax - 1] = '\0'; } auto const function_name = bt_frame->get(s_function.get()); if (function_name.is_init()) { assertx(isStringType(type(function_name))); strncpy(frame->function, val(function_name).pstr->data(), std::min(val(function_name).pstr->size(), strobelight::kFunctionMax)); frame->function[strobelight::kFunctionMax - 1] = '\0'; } i++; return false; } ); bt_slab.len = i; // Allow BPF to read the now-formatted stacktrace FOLLY_SDT_WITH_SEMAPHORE(hhvm, hhvm_stack, &bt_slab); return true; }
CWE-190
19
void Compute(OpKernelContext* ctx) override { const Tensor& handle = ctx->input(0); const string& name = handle.scalar<tstring>()(); Tensor val; OP_REQUIRES_OK(ctx, ctx->session_state()->GetTensor(name, &val)); ctx->set_output(0, val); }
CWE-476
46
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); switch (input->type) { case kTfLiteInt64: reference_ops::Negate( GetTensorShape(input), GetTensorData<int64_t>(input), GetTensorShape(output), GetTensorData<int64_t>(output)); break; case kTfLiteInt32: reference_ops::Negate( GetTensorShape(input), GetTensorData<int32_t>(input), GetTensorShape(output), GetTensorData<int32_t>(output)); break; case kTfLiteFloat32: reference_ops::Negate(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); break; default: context->ReportError( context, "Neg only currently supports int64, int32, and float32, got %d.", input->type); return kTfLiteError; } return kTfLiteOk; }
CWE-125
47
int length() const { return m_str ? m_str->size() : 0; }
CWE-787
24
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); const TfLiteTensor* size = GetInput(context, node, kSizeTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); // TODO(ahentz): Our current implementations rely on the inputs being 4D. TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1); TF_LITE_ENSURE_EQ(context, size->type, kTfLiteInt32); // ResizeBilinear creates a float tensor even when the input is made of // integers. output->type = input->type; if (!IsConstantTensor(size)) { SetTensorToDynamic(output); return kTfLiteOk; } // Ensure params are valid. auto* params = reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data); if (params->half_pixel_centers && params->align_corners) { context->ReportError( context, "If half_pixel_centers is True, align_corners must be False."); return kTfLiteError; } return ResizeOutputTensor(context, input, size, output); }
CWE-787
24
TfLiteStatus EvalHashtable(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE(context, node->user_data != nullptr); const auto* params = reinterpret_cast<const TfLiteHashtableParams*>(node->user_data); // The resource id is generated based on the given table name. const int resource_id = std::hash<std::string>{}(params->table_name); TfLiteTensor* resource_handle_tensor = GetOutput(context, node, kResourceHandleTensor); auto* resource_handle_data = GetTensorData<std::int32_t>(resource_handle_tensor); resource_handle_data[0] = resource_id; Subgraph* subgraph = reinterpret_cast<Subgraph*>(context->impl_); auto& resources = subgraph->resources(); resource::CreateHashtableResourceIfNotAvailable( &resources, resource_id, params->key_dtype, params->value_dtype); return kTfLiteOk; }
CWE-787
24
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); const int num_elements = NumElements(input); switch (input->type) { case kTfLiteInt64: memset(GetTensorData<int64_t>(output), 0, num_elements * sizeof(int64_t)); break; case kTfLiteInt32: memset(GetTensorData<int32_t>(output), 0, num_elements * sizeof(int32_t)); break; case kTfLiteFloat32: memset(GetTensorData<float>(output), 0, num_elements * sizeof(float)); break; default: context->ReportError(context, "ZerosLike only currently supports int64, int32, " "and float32, got %d.", input->type); return kTfLiteError; } return kTfLiteOk; }
CWE-787
24
TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); bool requires_broadcast = !HaveSameShapes(input1, input2); switch (input1->type) { case kTfLiteFloat32: Comparison<float, reference_ops::GreaterFn>(input1, input2, output, requires_broadcast); break; case kTfLiteInt32: Comparison<int32_t, reference_ops::GreaterFn>(input1, input2, output, requires_broadcast); break; case kTfLiteInt64: Comparison<int64_t, reference_ops::GreaterFn>(input1, input2, output, requires_broadcast); break; case kTfLiteUInt8: ComparisonQuantized<uint8_t, reference_ops::GreaterFn>( input1, input2, output, requires_broadcast); break; case kTfLiteInt8: ComparisonQuantized<int8_t, reference_ops::GreaterFn>( input1, input2, output, requires_broadcast); break; default: context->ReportError(context, "Does not support type %d, requires float|int|uint8", input1->type); return kTfLiteError; } return kTfLiteOk; }
CWE-787
24
TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); TfLiteTensor* output = GetOutput(context, node, 0); const TfLiteTensor* input = GetInput(context, node, 0); switch (input->type) { // Already know in/out types are same. case kTfLiteFloat32: MaxEvalFloat<kernel_type>(context, node, params, data, input, output); break; case kTfLiteUInt8: MaxEvalQuantizedUInt8<kernel_type>(context, node, params, data, input, output); break; case kTfLiteInt8: MaxEvalQuantizedInt8<kernel_type>(context, node, params, data, input, output); break; case kTfLiteInt16: MaxEvalQuantizedInt16<kernel_type>(context, node, params, data, input, output); break; default: TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; }
CWE-125
47
void *jas_malloc(size_t size) { void *result; JAS_DBGLOG(101, ("jas_malloc called with %zu\n", size)); result = malloc(size); JAS_DBGLOG(100, ("jas_malloc(%zu) -> %p\n", size, result)); return result; }
CWE-190
19
MONGO_EXPORT int bson_append_code_w_scope_n( bson *b, const char *name, const char *code, int len, const bson *scope ) { int sl, size; if ( !scope ) return BSON_ERROR; sl = len + 1; size = 4 + 4 + sl + bson_size( scope ); if ( bson_append_estart( b, BSON_CODEWSCOPE, name, size ) == BSON_ERROR ) return BSON_ERROR; bson_append32( b, &size ); bson_append32( b, &sl ); bson_append( b, code, sl ); bson_append( b, scope->data, bson_size( scope ) ); return BSON_OK; }
CWE-190
19
TfLiteStatus NonMaxSuppressionMultiClass(TfLiteContext* context, TfLiteNode* node, OpData* op_data) { // Get the input tensors const TfLiteTensor* input_box_encodings = GetInput(context, node, kInputTensorBoxEncodings); const TfLiteTensor* input_class_predictions = GetInput(context, node, kInputTensorClassPredictions); const int num_boxes = input_box_encodings->dims->data[1]; const int num_classes = op_data->num_classes; TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[0], kBatchSize); TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[1], num_boxes); const int num_classes_with_background = input_class_predictions->dims->data[2]; TF_LITE_ENSURE(context, (num_classes_with_background - num_classes <= 1)); TF_LITE_ENSURE(context, (num_classes_with_background >= num_classes)); const TfLiteTensor* scores; switch (input_class_predictions->type) { case kTfLiteUInt8: { TfLiteTensor* temporary_scores = &context->tensors[op_data->scores_index]; DequantizeClassPredictions(input_class_predictions, num_boxes, num_classes_with_background, temporary_scores); scores = temporary_scores; } break; case kTfLiteFloat32: scores = input_class_predictions; break; default: // Unsupported type. return kTfLiteError; } if (op_data->use_regular_non_max_suppression) TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassRegularHelper( context, node, op_data, GetTensorData<float>(scores))); else TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassFastHelper( context, node, op_data, GetTensorData<float>(scores))); return kTfLiteOk; }
CWE-125
47
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteUnpackParams* data = reinterpret_cast<TfLiteUnpackParams*>(node->builtin_data); const TfLiteTensor* input = GetInput(context, node, kInputTensor); switch (input->type) { case kTfLiteFloat32: { UnpackImpl<float>(context, node, input, data->num, data->axis); break; } case kTfLiteInt32: { UnpackImpl<int32_t>(context, node, input, data->num, data->axis); break; } case kTfLiteUInt8: { UnpackImpl<uint8_t>(context, node, input, data->num, data->axis); break; } case kTfLiteInt8: { UnpackImpl<int8_t>(context, node, input, data->num, data->axis); break; } case kTfLiteBool: { UnpackImpl<bool>(context, node, input, data->num, data->axis); break; } case kTfLiteInt16: { UnpackImpl<int16_t>(context, node, input, data->num, data->axis); break; } default: { context->ReportError(context, "Type '%s' is not supported by unpack.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } return kTfLiteOk; }
CWE-787
24
void PrivateThreadPoolDatasetOp::MakeDatasetFromOptions(OpKernelContext* ctx, DatasetBase* input, int32_t num_threads, DatasetBase** output) { OP_REQUIRES(ctx, num_threads >= 0, errors::InvalidArgument("`num_threads` must be >= 0")); *output = new Dataset(ctx, DatasetContext(DatasetContext::Params( {PrivateThreadPoolDatasetOp::kDatasetType, PrivateThreadPoolDatasetOp::kDatasetOp})), input, num_threads); }
CWE-770
37
const String& setSize(int len) { assertx(m_str); m_str->setSize(len); return *this; }
CWE-125
47
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); // Reinterprete the opaque data provided by user. OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); const TfLiteType type = input1->type; if (type != kTfLiteInt32 && type != kTfLiteFloat32 && type != kTfLiteInt64) { context->ReportError(context, "Type '%s' is not supported by floor_mod.", TfLiteTypeGetName(type)); return kTfLiteError; } output->type = type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); }
CWE-125
47
static int lookup1_values(int entries, int dim) { int r = (int) floor(exp((float) log((float) entries) / dim)); if ((int) floor(pow((float) r+1, dim)) <= entries) // (int) cast for MinGW warning; ++r; // floor() to avoid _ftol() when non-CRT assert(pow((float) r+1, dim) > entries); assert((int) floor(pow((float) r, dim)) <= entries); // (int),floor() as above return r; }
CWE-617
51
int ZlibInStream::pos() { return offset + ptr - start; }
CWE-787
24
TfLiteStatus LogicalImpl(TfLiteContext* context, TfLiteNode* node, bool (*func)(bool, bool)) { OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (data->requires_broadcast) { reference_ops::BroadcastBinaryFunction4DSlow<bool, bool, bool>( GetTensorShape(input1), GetTensorData<bool>(input1), GetTensorShape(input2), GetTensorData<bool>(input2), GetTensorShape(output), GetTensorData<bool>(output), func); } else { reference_ops::BinaryFunction<bool, bool, bool>( GetTensorShape(input1), GetTensorData<bool>(input1), GetTensorShape(input2), GetTensorData<bool>(input2), GetTensorShape(output), GetTensorData<bool>(output), func); } return kTfLiteOk; }
CWE-787
24
bool DependencyOptimizer::SafeToRemoveIdentity(const NodeDef& node) const { if (!IsIdentity(node) && !IsIdentityN(node)) { return true; } if (nodes_to_preserve_.find(node.name()) != nodes_to_preserve_.end()) { return false; } if (!fetch_nodes_known_) { // The output values of this node may be needed. return false; } if (node.input_size() < 1) { // Node lacks input, is invalid return false; } const NodeDef* input = node_map_->GetNode(NodeName(node.input(0))); CHECK(input != nullptr) << "node = " << node.name() << " input = " << node.input(0); // Don't remove Identity nodes corresponding to Variable reads or following // Recv. if (IsVariable(*input) || IsRecv(*input)) { return false; } for (const auto& consumer : node_map_->GetOutputs(node.name())) { if (node.input_size() > 1 && (IsRetval(*consumer) || IsMerge(*consumer))) { return false; } if (IsSwitch(*input)) { for (const string& consumer_input : consumer->input()) { if (consumer_input == AsControlDependency(node.name())) { return false; } } } } return true; }
CWE-617
51
TfLiteRegistration CancelOpRegistration() { TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; // Set output size to the input size in CancelOp::Prepare(). Code exists to // have a framework in Prepare. The input and output tensors are not used. reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* in_tensor = GetInput(context, node, 0); TfLiteTensor* out_tensor = GetOutput(context, node, 0); TfLiteIntArray* new_size = TfLiteIntArrayCopy(in_tensor->dims); return context->ResizeTensor(context, out_tensor, new_size); }; reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { cancellation_data_.is_cancelled = true; return kTfLiteOk; }; return reg; }
CWE-787
24
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { TfLiteType output_type = GetOutput(context, node, kOutputTensor)->type; switch (output_type) { // Already know in/outtypes are same. case kTfLiteFloat32: EvalUnquantized<float>(context, node); break; case kTfLiteInt32: EvalUnquantized<int32_t>(context, node); break; case kTfLiteUInt8: EvalQuantizedUInt8(context, node); break; case kTfLiteInt8: EvalUnquantized<int8_t>(context, node); break; case kTfLiteInt64: EvalUnquantized<int64_t>(context, node); break; default: TF_LITE_KERNEL_LOG( context, "Op Concatenation does not currently support Type '%s'.", TfLiteTypeGetName(output_type)); return kTfLiteError; } return kTfLiteOk; }
CWE-125
47
bool AdminRequestHandler::handleDumpStaticStringsRequest( const std::string& /*cmd*/, const std::string& filename) { auto const& list = lookupDefinedStaticStrings(); std::ofstream out(filename.c_str()); SCOPE_EXIT { out.close(); }; for (auto item : list) { out << formatStaticString(item); if (RuntimeOption::EvalPerfDataMap) { auto const len = std::min<size_t>(item->size(), 255); std::string str(item->data(), len); // Only print the first line (up to 255 characters). Since we want '\0' in // the list of characters to avoid, we need to use the version of // `find_first_of()' with explicit length. auto cutOffPos = str.find_first_of("\r\n", 0, 3); if (cutOffPos != std::string::npos) str.erase(cutOffPos); Debug::DebugInfo::recordDataMap(item->mutableData(), item->mutableData() + item->size(), "Str-" + str); } } return true; }
CWE-22
2
static TfLiteRegistration DelegateRegistration() { TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { // If tensors are resized, the runtime should propagate shapes // automatically if correct flag is set. Ensure values are correct. // Output 0 should be dynamic. TfLiteTensor* output0 = GetOutput(context, node, 0); TF_LITE_ENSURE(context, IsDynamicTensor(output0)); // Output 1 has the same shape as input. const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output1 = GetOutput(context, node, 1); TF_LITE_ENSURE(context, input->dims->size == output1->dims->size); TF_LITE_ENSURE(context, input->dims->data[0] == output1->dims->data[0]); return kTfLiteOk; }; return reg; }
CWE-125
47
TEST(DefaultCertValidatorTest, TestMultiLevelMatch) { // san_multiple_dns_cert matches *.example.com bssl::UniquePtr<X509> cert = readCertFromFile(TestEnvironment::substitute( "{{ test_rundir " "}}/test/extensions/transport_sockets/tls/test_data/san_multiple_dns_cert.pem")); envoy::type::matcher::v3::StringMatcher matcher; matcher.set_exact("foo.api.example.com"); std::vector<Matchers::StringMatcherImpl<envoy::type::matcher::v3::StringMatcher>> subject_alt_name_matchers; subject_alt_name_matchers.push_back(Matchers::StringMatcherImpl(matcher)); EXPECT_FALSE(DefaultCertValidator::matchSubjectAltName(cert.get(), subject_alt_name_matchers)); }
CWE-295
52
R_API RBinJavaAttrInfo *r_bin_java_rtv_annotations_attr_new(RBinJavaObj *bin, ut8 *buffer, ut64 sz, ut64 buf_offset) { ut32 i = 0; ut64 offset = 0; if (buf_offset + 8 > sz) { return NULL; } RBinJavaAttrInfo *attr = r_bin_java_default_attr_new (bin, buffer, sz, buf_offset); offset += 6; if (attr) { attr->type = R_BIN_JAVA_ATTR_TYPE_RUNTIME_VISIBLE_ANNOTATION_ATTR; attr->info.annotation_array.num_annotations = R_BIN_JAVA_USHORT (buffer, offset); offset += 2; attr->info.annotation_array.annotations = r_list_newf (r_bin_java_annotation_free); for (i = 0; i < attr->info.annotation_array.num_annotations; i++) { if (offset >= sz) { break; } RBinJavaAnnotation *annotation = r_bin_java_annotation_new (buffer + offset, sz - offset, buf_offset + offset); if (annotation) { offset += annotation->size; r_list_append (attr->info.annotation_array.annotations, (void *) annotation); } } attr->size = offset; } return attr; }
CWE-788
87
TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); const ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data); switch (input->type) { case kTfLiteFloat32: { optimized_ops::Relu(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } break; // TODO(renjieliu): We may revisit the quantization calculation logic, // the unbounded upper limit is actually hard to quantize. case kTfLiteUInt8: { QuantizedReluX<uint8_t>(0.0f, std::numeric_limits<float>::infinity(), input, output, data); } break; case kTfLiteInt8: { QuantizedReluX<int8_t>(0.0f, std::numeric_limits<float>::infinity(), input, output, data); } break; default: TF_LITE_KERNEL_LOG( context, "Only float32 & int8/uint8 is supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; }
CWE-125
47
const String& setSize(int len) { assertx(m_str); m_str->setSize(len); return *this; }
CWE-787
24
QUInt16() {}
CWE-908
48
void Context::onLog() { if (wasm_->onLog_) { wasm_->onLog_(this, id_); } }
CWE-476
46
TfLiteStatus Relu1Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); const ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data); switch (input->type) { case kTfLiteFloat32: { optimized_ops::Relu1(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } break; case kTfLiteUInt8: { QuantizedReluX<uint8_t>(-1.0f, 1.0f, input, output, data); return kTfLiteOk; } break; case kTfLiteInt8: { QuantizedReluX<int8_t>(-1, 1, input, output, data); return kTfLiteOk; } break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8 supported " "currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } }
CWE-125
47