code
stringlengths
12
2.05k
label_name
stringclasses
5 values
label
int64
0
4
int length() const { return m_str ? m_str->size() : 0; }
Base
1
MpdCantataMounterInterface * RemoteFsDevice::mounter() { if (!mounterIface) { if (!QDBusConnection::systemBus().interface()->isServiceRegistered(MpdCantataMounterInterface::staticInterfaceName())) { QDBusConnection::systemBus().interface()->startService(MpdCantataMounterInterface::staticInterfaceName()); } mounterIface=new MpdCantataMounterInterface(MpdCantataMounterInterface::staticInterfaceName(), "/Mounter", QDBusConnection::systemBus(), this); connect(mounterIface, SIGNAL(mountStatus(const QString &, int, int)), SLOT(mountStatus(const QString &, int, int))); connect(mounterIface, SIGNAL(umountStatus(const QString &, int, int)), SLOT(umountStatus(const QString &, int, int))); } return mounterIface; }
Class
2
R_API RBinJavaAttrInfo *r_bin_java_source_code_file_attr_new(RBinJavaObj *bin, ut8 *buffer, ut64 sz, ut64 buf_offset) { if (!sz) { return NULL; } ut64 offset = 0; RBinJavaAttrInfo *attr = r_bin_java_default_attr_new (bin, buffer, sz, buf_offset); offset += 6; if (!attr) { return NULL; } attr->type = R_BIN_JAVA_ATTR_TYPE_SOURCE_FILE_ATTR; // if (buffer + offset > buffer + sz) return NULL; attr->info.source_file_attr.sourcefile_idx = R_BIN_JAVA_USHORT (buffer, offset); offset += 2; attr->size = offset; // IFDBG r_bin_java_print_source_code_file_attr_summary(attr); return attr; }
Base
1
int PackLinuxElf64::canUnpack() { if (super::canUnpack()) { return true; } if (Elf64_Ehdr::ET_DYN==get_te16(&ehdri.e_type)) { PackLinuxElf64help1(fi); Elf64_Phdr const *phdr = phdri, *last_LOAD = nullptr; for (unsigned j = 0; j < e_phnum; ++phdr, ++j) if (Elf64_Phdr::PT_LOAD==get_te32(&phdr->p_type)) { last_LOAD = phdr; } if (!last_LOAD) return false; off_t offset = get_te64(&last_LOAD->p_offset); unsigned filesz = get_te64(&last_LOAD->p_filesz); fi->seek(filesz+offset, SEEK_SET); MemBuffer buf(32 + sizeof(overlay_offset)); fi->readx(buf, buf.getSize()); return PackUnix::find_overlay_offset(buf); } return false; }
Base
1
int nego_recv(rdpTransport* transport, wStream* s, void* extra) { BYTE li; BYTE type; UINT16 length; rdpNego* nego = (rdpNego*)extra; if (!tpkt_read_header(s, &length)) return -1; if (!tpdu_read_connection_confirm(s, &li, length)) return -1; if (li > 6) { /* rdpNegData (optional) */ Stream_Read_UINT8(s, type); /* Type */ switch (type) { case TYPE_RDP_NEG_RSP: nego_process_negotiation_response(nego, s); WLog_DBG(TAG, "selected_protocol: %" PRIu32 "", nego->SelectedProtocol); /* enhanced security selected ? */ if (nego->SelectedProtocol) { if ((nego->SelectedProtocol == PROTOCOL_HYBRID) && (!nego->EnabledProtocols[PROTOCOL_HYBRID])) { nego->state = NEGO_STATE_FAIL; } if ((nego->SelectedProtocol == PROTOCOL_SSL) && (!nego->EnabledProtocols[PROTOCOL_SSL])) { nego->state = NEGO_STATE_FAIL; } } else if (!nego->EnabledProtocols[PROTOCOL_RDP]) { nego->state = NEGO_STATE_FAIL; } break; case TYPE_RDP_NEG_FAILURE: nego_process_negotiation_failure(nego, s); break; } } else if (li == 6) { WLog_DBG(TAG, "no rdpNegData"); if (!nego->EnabledProtocols[PROTOCOL_RDP]) nego->state = NEGO_STATE_FAIL; else nego->state = NEGO_STATE_FINAL; } else { WLog_ERR(TAG, "invalid negotiation response"); nego->state = NEGO_STATE_FAIL; } if (!tpkt_ensure_stream_consumed(s, length)) return -1; return 0; }
Base
1
int ZlibInStream::pos() { return offset + ptr - start; }
Base
1
ProcessTCPHeader(tTcpIpPacketParsingResult _res, PVOID pIpHeader, ULONG len, USHORT ipHeaderSize) { ULONG tcpipDataAt; tTcpIpPacketParsingResult res = _res; tcpipDataAt = ipHeaderSize + sizeof(TCPHeader); res.xxpStatus = ppresXxpIncomplete; res.TcpUdp = ppresIsTCP; if (len >= tcpipDataAt) { TCPHeader *pTcpHeader = (TCPHeader *)RtlOffsetToPointer(pIpHeader, ipHeaderSize); res.xxpStatus = ppresXxpKnown; tcpipDataAt = ipHeaderSize + TCP_HEADER_LENGTH(pTcpHeader); res.XxpIpHeaderSize = tcpipDataAt; } else { DPrintf(2, ("tcp: %d < min headers %d\n", len, tcpipDataAt)); } return res; }
Class
2
void Compute(OpKernelContext* ctx) override { const Tensor& handle = ctx->input(0); const string& name = handle.scalar<tstring>()(); OP_REQUIRES_OK(ctx, ctx->session_state()->DeleteTensor(name)); }
Base
1
void Logger::addPeer(const QString &ip, bool blocked, const QString &reason) { QWriteLocker locker(&lock); Log::Peer temp = { peerCounter++, QDateTime::currentMSecsSinceEpoch(), ip, blocked, reason }; m_peers.push_back(temp); if (m_peers.size() >= MAX_LOG_MESSAGES) m_peers.pop_front(); emit newLogPeer(temp); }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); switch (input1->type) { case kTfLiteInt32: { return EvalImpl<int32_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteInt64: { return EvalImpl<int64_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteFloat32: { return EvalImpl<float>(context, data->requires_broadcast, input1, input2, output); } default: { context->ReportError(context, "Type '%s' is not supported by floor_mod.", TfLiteTypeGetName(input1->type)); return kTfLiteError; } } }
Base
1
void PrivateThreadPoolDatasetOp::MakeDatasetFromOptions(OpKernelContext* ctx, DatasetBase* input, int32_t num_threads, DatasetBase** output) { OP_REQUIRES(ctx, num_threads >= 0, errors::InvalidArgument("`num_threads` must be >= 0")); *output = new Dataset(ctx, DatasetContext(DatasetContext::Params( {PrivateThreadPoolDatasetOp::kDatasetType, PrivateThreadPoolDatasetOp::kDatasetOp})), input, num_threads); }
Base
1
void Init(bool hi) { for(int i = 0;i < 18;i++) { char string[5] = "xl00"; string[1] = (hi)?('h'):('l'); string[2] = (i / 10) + '0'; string[3] = (i % 10) + '0'; X[i].Init(string); string[0] = 'm'; M[i].Init(string); } }
Class
2
bool remoteComplete() const { return state_.remote_complete_; }
Variant
0
void FdOutStream::flush() { while (sentUpTo < ptr) { int n = writeWithTimeout((const void*) sentUpTo, ptr - sentUpTo, blocking? timeoutms : 0); // Timeout? if (n == 0) { // If non-blocking then we're done here if (!blocking) break; throw TimedOut(); } sentUpTo += n; offset += n; } // Managed to flush everything? if (sentUpTo == ptr) ptr = sentUpTo = start; }
Base
1
TfLiteStatus ResizeOutput(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); const TfLiteTensor* multipliers = GetInput(context, node, kInputMultipliers); const int num_dimensions = NumDimensions(input); const int num_multipliers = NumElements(multipliers); TF_LITE_ENSURE_EQ(context, num_dimensions, num_multipliers); switch (multipliers->type) { case kTfLiteInt32: return context->ResizeTensor( context, output, MultiplyShapeDims<int32_t>(*input->dims, multipliers, num_dimensions)); case kTfLiteInt64: return context->ResizeTensor( context, output, MultiplyShapeDims<int64_t>(*input->dims, multipliers, num_dimensions)); default: context->ReportError( context, "Multipliers of type '%s' are not supported by tile.", TfLiteTypeGetName(multipliers->type)); return kTfLiteError; } }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpContext op_context(context, node); switch (op_context.output->type) { case kTfLiteFloat32: TFLiteOperation<kernel_type, float, OpType>(context, node, op_context); break; case kTfLiteUInt8: TFLiteOperation<kernel_type, uint8_t, OpType>(context, node, op_context); break; case kTfLiteInt8: TFLiteOperation<kernel_type, int8_t, OpType>(context, node, op_context); break; case kTfLiteInt32: TFLiteOperation<kernel_type, int32_t, OpType>(context, node, op_context); break; case kTfLiteInt64: TFLiteOperation<kernel_type, int64_t, OpType>(context, node, op_context); break; case kTfLiteInt16: TFLiteOperation<kernel_type, int16_t, OpType>(context, node, op_context); break; default: context->ReportError(context, "Type %d is currently not supported by Maximum.", op_context.output->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); // There are two ways in which the 'output' can be made dynamic: it could be // a string tensor, or its shape cannot be calculated during Prepare(). In // either case, we now have all the information to calculate its shape. if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutput(context, node)); } // Note that string tensors are always "dynamic" in the sense that their size // is not known until we have all the content. This applies even when their // shape is known ahead of time. As a result, a string tensor is never given // any memory by ResizeOutput(), and we need to do it manually here. Since // reshape doesn't change the data, the output tensor needs exactly as many // bytes as the input tensor. if (output->type == kTfLiteString) { auto bytes_required = input->bytes; TfLiteTensorRealloc(bytes_required, output); output->bytes = bytes_required; } memcpy(output->data.raw, input->data.raw, input->bytes); return kTfLiteOk; }
Base
1
static int em_fxrstor(struct x86_emulate_ctxt *ctxt) { struct fxregs_state fx_state; int rc; rc = check_fxsr(ctxt); if (rc != X86EMUL_CONTINUE) return rc; rc = segmented_read(ctxt, ctxt->memop.addr.mem, &fx_state, 512); if (rc != X86EMUL_CONTINUE) return rc; if (fx_state.mxcsr >> 16) return emulate_gp(ctxt, 0); ctxt->ops->get_fpu(ctxt); if (ctxt->mode < X86EMUL_MODE_PROT64) rc = fxrstor_fixup(ctxt, &fx_state); if (rc == X86EMUL_CONTINUE) rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state)); ctxt->ops->put_fpu(ctxt); return rc; }
Variant
0
Http::FilterDataStatus Context::onResponseBody(int body_buffer_length, bool end_of_stream) { if (!wasm_->onResponseBody_) { return Http::FilterDataStatus::Continue; } switch (wasm_ ->onResponseBody_(this, id_, static_cast<uint32_t>(body_buffer_length), static_cast<uint32_t>(end_of_stream)) .u64_) { case 0: return Http::FilterDataStatus::Continue; case 1: return Http::FilterDataStatus::StopIterationAndBuffer; case 2: return Http::FilterDataStatus::StopIterationAndWatermark; default: return Http::FilterDataStatus::StopIterationNoBuffer; } }
Base
1
static char *pool_strdup(const char *s) { char *r = pool_alloc(strlen(s) + 1); strcpy(r, s); return r; }
Class
2
TEST_CASE_METHOD(TestFixture, "DKG AES gen test", "[dkg-aes-gen]") { vector <uint8_t> encryptedDKGSecret(BUF_LEN, 0); vector<char> errMsg(BUF_LEN, 0); int errStatus = 0; uint32_t encLen = 0; PRINT_SRC_LINE auto status = trustedGenDkgSecretAES(eid, &errStatus, errMsg.data(), encryptedDKGSecret.data(), &encLen, 32); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); vector<char> secret(BUF_LEN, 0); vector<char> errMsg1(BUF_LEN, 0); status = trustedDecryptDkgSecretAES(eid, &errStatus, errMsg1.data(), encryptedDKGSecret.data(), encLen, (uint8_t *) secret.data()); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); }
Base
1
TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (tuple[index].has_value()) { return Status(errors::InvalidArgument( "The tensor for index '", index, "' for key '", key.scalar<int64>()(), "' was already initialized '", dtypes_.size(), "'.")); } return Status::OK(); }
Base
1
R_API RBinJavaVerificationObj *r_bin_java_verification_info_from_type(RBinJavaObj *bin, R_BIN_JAVA_STACKMAP_TYPE type, ut32 value) { RBinJavaVerificationObj *se = R_NEW0 (RBinJavaVerificationObj); if (!se) { return NULL; } se->tag = type; if (se->tag == R_BIN_JAVA_STACKMAP_OBJECT) { se->info.obj_val_cp_idx = (ut16) value; } else if (se->tag == R_BIN_JAVA_STACKMAP_UNINIT) { /*if (bin->offset_sz == 4) { se->info.uninit_offset = value; } else { se->info.uninit_offset = (ut16) value; }*/ se->info.uninit_offset = (ut16) value; } return se; }
Base
1
bool HexInStream::hexStrToBin(const char* s, char** data, int* length) { int l=strlen(s); if ((l % 2) == 0) { delete [] *data; *data = 0; *length = 0; if (l == 0) return true; *data = new char[l/2]; *length = l/2; for(int i=0;i<l;i+=2) { int byte = 0; if (!readHexAndShift(s[i], &byte) || !readHexAndShift(s[i+1], &byte)) goto decodeError; (*data)[i/2] = byte; } return true; } decodeError: delete [] *data; *data = 0; *length = 0; return false; }
Base
1
check_owner_password_V4(std::string& user_password, std::string const& owner_password, QPDF::EncryptionData const& data) { // Algorithm 3.7 from the PDF 1.7 Reference Manual unsigned char key[OU_key_bytes_V4]; compute_O_rc4_key(user_password, owner_password, data, key); unsigned char O_data[key_bytes]; memcpy(O_data, QUtil::unsigned_char_pointer(data.getO()), key_bytes); iterate_rc4(O_data, key_bytes, key, data.getLengthBytes(), (data.getR() >= 3) ? 20 : 1, true); std::string new_user_password = std::string(reinterpret_cast<char*>(O_data), key_bytes); bool result = false; if (check_user_password(new_user_password, data)) { result = true; user_password = new_user_password; } return result; }
Base
1
int pnm_validate(jas_stream_t *in) { uchar buf[2]; int i; int n; assert(JAS_STREAM_MAXPUTBACK >= 2); /* Read the first two characters that constitute the signature. */ if ((n = jas_stream_read(in, buf, 2)) < 0) { return -1; } /* Put these characters back to the stream. */ for (i = n - 1; i >= 0; --i) { if (jas_stream_ungetc(in, buf[i]) == EOF) { return -1; } } /* Did we read enough data? */ if (n < 2) { return -1; } /* Is this the correct signature for a PNM file? */ if (buf[0] == 'P' && isdigit(buf[1])) { return 0; } return -1; }
Class
2
TfLiteStatus EluPrepare(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); OpData* data = reinterpret_cast<OpData*>(node->user_data); // Use LUT to handle quantized elu path. if (input->type == kTfLiteInt8) { PopulateLookupTable<int8_t>(data, input, output, [](float value) { return value < 0.0 ? std::exp(value) - 1.0f : value; }); } return GenericPrepare(context, node); }
Base
1
void pb_controller::play_file(const std::string& file) { std::string cmdline; std::string player = cfg->get_configvalue("player"); if (player == "") return; cmdline.append(player); cmdline.append(" \""); cmdline.append(utils::replace_all(file,"\"", "\\\"")); cmdline.append("\""); stfl::reset(); utils::run_interactively(cmdline, "pb_controller::play_file"); }
Base
1
bool PackLinuxElf64::calls_crt1(Elf64_Rela const *rela, int sz) { if (!dynsym || !dynstr) { return false; } for (unsigned relnum= 0; 0 < sz; (sz -= sizeof(Elf64_Rela)), ++rela, ++relnum) { unsigned const symnum = get_te64(&rela->r_info) >> 32; char const *const symnam = get_dynsym_name(symnum, relnum); if (0==strcmp(symnam, "__libc_start_main") // glibc || 0==strcmp(symnam, "__libc_init") // Android || 0==strcmp(symnam, "__uClibc_main") || 0==strcmp(symnam, "__uClibc_start_main")) return true; } return false; }
Base
1
void AOClient::pktRemoveEvidence(AreaData* area, int argc, QStringList argv, AOPacket packet) { if (!checkEvidenceAccess(area)) return; bool is_int = false; int idx = argv[0].toInt(&is_int); if (is_int && idx <= area->evidence().size() && idx >= 0) { area->deleteEvidence(idx); } sendEvidenceList(area); }
Variant
0
inline void aligned_free(void* ptr) { folly::detail::aligned_free(ptr); }
Base
1
void RemoteFsDevice::unmount() { if (details.isLocalFile()) { return; } if (!isConnected() || proc) { return; } if (messageSent) { return; } if (constSambaProtocol==details.url.scheme() || constSambaAvahiProtocol==details.url.scheme()) { mounter()->umount(mountPoint(details, false), getpid()); setStatusMessage(tr("Disconnecting...")); messageSent=true; return; } QString cmd; QStringList args; if (!details.isLocalFile()) { QString mp=mountPoint(details, false); if (!mp.isEmpty()) { cmd=Utils::findExe("fusermount"); if (!cmd.isEmpty()) { args << QLatin1String("-u") << QLatin1String("-z") << mp; } else { emit error(tr("\"fusermount\" is not installed!")); } } } if (!cmd.isEmpty()) { setStatusMessage(tr("Disconnecting...")); proc=new QProcess(this); proc->setProperty("unmount", true); connect(proc, SIGNAL(finished(int)), SLOT(procFinished(int))); proc->start(cmd, args, QIODevice::ReadOnly); } }
Base
1
bool ConstantFolding::SimplifyReshape(const GraphProperties& properties, bool use_shape_info, NodeDef* node) { if (!use_shape_info || node->attr().count("T") == 0 || !IsSimplifiableReshape(*node, properties)) { return false; } DataType output_type = node->attr().at("T").type(); node->set_op("Identity"); EraseRegularNodeAttributes(node); (*node->mutable_attr())["T"].set_type(output_type); *node->mutable_input(1) = AsControlDependency(node->input(1)); return true; }
Base
1
bool TemporaryFile::deleteTemporaryFile() const { // Have a few attempts at deleting the file before giving up.. for (int i = 5; --i >= 0;) { if (temporaryFile.deleteFile()) return true; Thread::sleep (50); } return false; }
Base
1
static Status ValidateSavedTensors(const GraphDef& graph_def) { for (const auto& node : graph_def.node()) { const auto node_iterator = node.attr().find("value"); if (node_iterator != node.attr().end()) { AttrValue node_value = node_iterator->second; if (node_value.has_tensor()) { const PartialTensorShape node_shape(node_value.tensor().tensor_shape()); if (node_shape.num_elements() < 0) { return errors::FailedPrecondition( "Saved model contains node \"", node.name(), "\" (op \"", node.op(), "\") which initializes from a tensor with ", node_shape.num_elements(), " elements"); } } } else if (node.op() == "Const") { return errors::FailedPrecondition( "Saved model contains node \"", node.name(), "\" which is a constant tensor but no value has been provided"); } } return Status::OK(); }
Class
2
CbrDetectorRemote::Result CbrDetectorRemote::Decrypt(cricket::MediaType media_type, const std::vector<uint32_t>& csrcs, rtc::ArrayView<const uint8_t> additional_data, rtc::ArrayView<const uint8_t> encrypted_frame, rtc::ArrayView<uint8_t> frame) { const uint8_t *src = encrypted_frame.data(); uint8_t *dst = frame.data(); uint32_t data_len = encrypted_frame.size(); if (media_type == cricket::MEDIA_TYPE_AUDIO) { if (data_len == frame_size && frame_size >= 40) { frame_count++; if (frame_count > 200 && !detected) { info("CBR detector: remote cbr detected\n"); detected = true; } } else { frame_count = 0; frame_size = data_len; if (detected) { info("CBR detector: remote cbr detected disabled\n"); detected = false; } } } memcpy(dst, src, data_len); out: return CbrDetectorRemote::Result(CbrDetectorRemote::Status::kOk, data_len); }
Base
1
R_API RBinJavaAttrInfo *r_bin_java_rti_annotations_attr_new(RBinJavaObj *bin, ut8 *buffer, ut64 sz, ut64 buf_offset) { ut32 i = 0; RBinJavaAttrInfo *attr = NULL; ut64 offset = 0; attr = r_bin_java_default_attr_new (bin, buffer, sz, buf_offset); offset += 6; if (attr) { attr->type = R_BIN_JAVA_ATTR_TYPE_RUNTIME_INVISIBLE_ANNOTATION_ATTR; attr->info.annotation_array.num_annotations = R_BIN_JAVA_USHORT (buffer, offset); offset += 2; attr->info.annotation_array.annotations = r_list_newf (r_bin_java_annotation_free); for (i = 0; i < attr->info.rtv_annotations_attr.num_annotations; i++) { if (offset >= sz) { break; } RBinJavaAnnotation *annotation = r_bin_java_annotation_new (buffer + offset, sz - offset, buf_offset + offset); if (annotation) { offset += annotation->size; } r_list_append (attr->info.annotation_array.annotations, (void *) annotation); } attr->size = offset; } return attr; }
Base
1
error_t tcpAddOption(TcpHeader *segment, uint8_t kind, const void *value, uint8_t length) { uint_t i; size_t paddingSize; TcpOption *option; //Length of the complete option field length += sizeof(TcpOption); //Make sure there is enough space to add the specified option if((segment->dataOffset * 4 + length) > TCP_MAX_HEADER_LENGTH) return ERROR_FAILURE; //Index of the first available byte i = segment->dataOffset * 4 - sizeof(TcpHeader); //Calculate the number of padding bytes paddingSize = (length % 4) ? 4 - (length % 4) : 0; //Write padding bytes while(paddingSize--) segment->options[i++] = TCP_OPTION_NOP; //Point to the current location option = (TcpOption *) (segment->options + i); //Write specified option option->kind = kind; option->length = length; osMemcpy(option->value, value, length - sizeof(TcpOption)); //Adjust index value i += length; //Update TCP header length segment->dataOffset = (sizeof(TcpHeader) + i) / 4; //Option successfully added return NO_ERROR; }
Class
2
void RegKey::getBinary(const TCHAR* valname, void** data, int* length) const { TCharArray hex(getRepresentation(valname)); if (!rdr::HexInStream::hexStrToBin(CStr(hex.buf), (char**)data, length)) throw rdr::Exception("getBinary failed"); }
Base
1
Pl_Count::write(unsigned char* buf, size_t len) { if (len) { this->m->count += QIntC::to_offset(len); getNext()->write(buf, len); this->m->last_char = buf[len - 1]; } }
Base
1
int GetS16BE (int nPos, bool *pbSuccess) { //*pbSuccess = true; if ( nPos < 0 || nPos + 1 >= m_nLen ) { *pbSuccess = false; return 0; } int nRes = m_sFile[nPos]; nRes = (nRes << 8) + m_sFile[ nPos + 1 ]; if ( nRes & 0x8000 ) nRes |= ~0xffff; return nRes; }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) { EvalAdd<kernel_type>(context, node, params, data, input1, input2, output); } else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 || output->type == kTfLiteInt16) { TF_LITE_ENSURE_OK(context, EvalAddQuantized<kernel_type>(context, node, params, data, input1, input2, output)); } else { TF_LITE_UNSUPPORTED_TYPE(context, output->type, "Add"); } return kTfLiteOk; }
Base
1
int TLSInStream::pos() { return offset + ptr - start; }
Base
1
TfLiteStatus EvalHashtableFind(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input_resource_id_tensor = GetInput(context, node, kInputResourceIdTensor); int resource_id = input_resource_id_tensor->data.i32[0]; const TfLiteTensor* key_tensor = GetInput(context, node, kKeyTensor); const TfLiteTensor* default_value_tensor = GetInput(context, node, kDefaultValueTensor); TfLiteTensor* output_tensor = GetOutput(context, node, 0); Subgraph* subgraph = reinterpret_cast<Subgraph*>(context->impl_); auto& resources = subgraph->resources(); auto* lookup = resource::GetHashtableResource(&resources, resource_id); TF_LITE_ENSURE(context, lookup != nullptr); TF_LITE_ENSURE_STATUS( lookup->CheckKeyAndValueTypes(context, key_tensor, output_tensor)); auto result = lookup->Lookup(context, key_tensor, output_tensor, default_value_tensor); return result; }
Base
1
void ValidateInputTensors(OpKernelContext* ctx, const Tensor& in0, const Tensor& in1) override { OP_REQUIRES( ctx, in0.dims() >= 2, errors::InvalidArgument("In[0] ndims must be >= 2: ", in0.dims())); OP_REQUIRES( ctx, in1.dims() >= 2, errors::InvalidArgument("In[0] ndims must be >= 2: ", in1.dims())); }
Base
1
static UINT printer_process_irp_write(PRINTER_DEVICE* printer_dev, IRP* irp) { UINT32 Length; UINT64 Offset; rdpPrintJob* printjob = NULL; UINT error = CHANNEL_RC_OK; Stream_Read_UINT32(irp->input, Length); Stream_Read_UINT64(irp->input, Offset); Stream_Seek(irp->input, 20); /* Padding */ if (printer_dev->printer) printjob = printer_dev->printer->FindPrintJob(printer_dev->printer, irp->FileId); if (!printjob) { irp->IoStatus = STATUS_UNSUCCESSFUL; Length = 0; } else { error = printjob->Write(printjob, Stream_Pointer(irp->input), Length); } if (error) { WLog_ERR(TAG, "printjob->Write failed with error %" PRIu32 "!", error); return error; } Stream_Write_UINT32(irp->output, Length); Stream_Write_UINT8(irp->output, 0); /* Padding */ return irp->Complete(irp); }
Base
1
TfLiteStatus ResizeOutputTensor(TfLiteContext* context, const TfLiteTensor* data, const TfLiteTensor* segment_ids, TfLiteTensor* output) { int max_index = -1; const int segment_id_size = segment_ids->dims->data[0]; if (segment_id_size > 0) { max_index = segment_ids->data.i32[segment_id_size - 1]; } const int data_rank = NumDimensions(data); TfLiteIntArray* output_shape = TfLiteIntArrayCreate(NumDimensions(data)); output_shape->data[0] = max_index + 1; for (int i = 1; i < data_rank; ++i) { output_shape->data[i] = data->dims->data[i]; } return context->ResizeTensor(context, output, output_shape); }
Base
1
bool PamBackend::start(const QString &user) { bool result; QString service = QStringLiteral("sddm"); if (user == QStringLiteral("sddm") && m_greeter) service = QStringLiteral("sddm-greeter"); else if (m_app->session()->path().isEmpty()) service = QStringLiteral("sddm-check"); else if (m_autologin) service = QStringLiteral("sddm-autologin"); result = m_pam->start(service, user); if (!result) m_app->error(m_pam->errorString(), Auth::ERROR_INTERNAL); return result; }
Class
2
std::string TarFileReader::extract(const string &_path) { if (_path.empty()) THROW("path cannot be empty"); if (!hasMore()) THROW("No more tar files"); string path = _path; if (SystemUtilities::isDirectory(path)) path += "/" + getFilename(); LOG_DEBUG(5, "Extracting: " << path); return extract(*SystemUtilities::oopen(path)); }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32 || output->type == kTfLiteInt64) { EvalSub<kernel_type>(context, node, params, data, input1, input2, output); } else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 || output->type == kTfLiteInt16) { EvalQuantized<kernel_type>(context, node, params, data, input1, input2, output); } else { context->ReportError( context, "output type %d is not supported, requires float|uint8|int32 types.", output->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
int ConnectionImpl::saveHeader(const nghttp2_frame* frame, HeaderString&& name, HeaderString&& value) { StreamImpl* stream = getStream(frame->hd.stream_id); if (!stream) { // We have seen 1 or 2 crashes where we get a headers callback but there is no associated // stream data. I honestly am not sure how this can happen. However, from reading the nghttp2 // code it looks possible that inflate_header_block() can safely inflate headers for an already // closed stream, but will still call the headers callback. Since that seems possible, we should // ignore this case here. // TODO(mattklein123): Figure out a test case that can hit this. stats_.headers_cb_no_stream_.inc(); return 0; } stream->saveHeader(std::move(name), std::move(value)); if (stream->headers_->byteSize() > max_request_headers_kb_ * 1024) { // This will cause the library to reset/close the stream. stats_.header_overflow_.inc(); return NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE; } else { return 0; } }
Class
2
String StringUtil::Crypt(const String& input, const char *salt /* = "" */) { if (salt && salt[0] == '\0') { raise_notice("crypt(): No salt parameter was specified." " You must use a randomly generated salt and a strong" " hash function to produce a secure hash."); } return String(string_crypt(input.c_str(), salt), AttachString); }
Base
1
void AveragePool(const float* input_data, const Dims<4>& input_dims, int stride_width, int stride_height, int pad_width, int pad_height, int kwidth, int kheight, float* output_data, const Dims<4>& output_dims) { float output_activation_min, output_activation_max; GetActivationMinMax(Ac, &output_activation_min, &output_activation_max); AveragePool(input_data, input_dims, stride_width, stride_height, pad_width, pad_height, kwidth, kheight, output_activation_min, output_activation_max, output_data, output_dims); }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output_index_tensor = GetOutput(context, node, 1); TF_LITE_ENSURE_EQ(context, NumElements(output_index_tensor), NumElements(input)); switch (input->type) { case kTfLiteInt8: TF_LITE_ENSURE_STATUS(EvalImpl<int8_t>(context, input, node)); break; case kTfLiteInt16: TF_LITE_ENSURE_STATUS(EvalImpl<int16_t>(context, input, node)); break; case kTfLiteInt32: TF_LITE_ENSURE_STATUS(EvalImpl<int32_t>(context, input, node)); break; case kTfLiteInt64: TF_LITE_ENSURE_STATUS(EvalImpl<int64_t>(context, input, node)); break; case kTfLiteFloat32: TF_LITE_ENSURE_STATUS(EvalImpl<float>(context, input, node)); break; case kTfLiteUInt8: TF_LITE_ENSURE_STATUS(EvalImpl<uint8_t>(context, input, node)); break; default: context->ReportError(context, "Currently Unique doesn't support type: %s", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; }
Base
1
bool RepeatedAttrDefEqual( const protobuf::RepeatedPtrField<OpDef::AttrDef>& a1, const protobuf::RepeatedPtrField<OpDef::AttrDef>& a2) { std::unordered_map<string, const OpDef::AttrDef*> a1_set; for (const OpDef::AttrDef& def : a1) { DCHECK(a1_set.find(def.name()) == a1_set.end()) << "AttrDef names must be unique, but '" << def.name() << "' appears more than once"; a1_set[def.name()] = &def; } for (const OpDef::AttrDef& def : a2) { auto iter = a1_set.find(def.name()); if (iter == a1_set.end()) return false; if (!AttrDefEqual(*iter->second, def)) return false; a1_set.erase(iter); } if (!a1_set.empty()) return false; return true; }
Base
1
int64_t MemFile::readImpl(char *buffer, int64_t length) { assertx(m_len != -1); assertx(length > 0); int64_t remaining = m_len - m_cursor; if (remaining < length) length = remaining; if (length > 0) { memcpy(buffer, (const void *)(m_data + m_cursor), length); } m_cursor += length; return length; }
Base
1
inline bool checkNoWait(int length) { return check(length, 1, false)!=0; }
Base
1
State() : remote_complete_(false), local_complete_(false), has_1xx_headers_(false), created_filter_chain_(false), is_head_request_(false), is_grpc_request_(false), non_100_response_headers_encoded_(false), under_on_local_reply_(false), decoder_filter_chain_aborted_(false), encoder_filter_chain_aborted_(false), saw_downstream_reset_(false) {}
Variant
0
static void setAppend(SetType& set, const VariantType& v) { auto value_type = type(v); if (value_type != HPHP::serialize::Type::INT64 && value_type != HPHP::serialize::Type::STRING) { throw HPHP::serialize::UnserializeError( "Unsupported keyset element of type " + folly::to<std::string>(value_type)); } set.append(v); }
Class
2
bool SPIFFEValidator::matchSubjectAltName(X509& leaf_cert) { bssl::UniquePtr<GENERAL_NAMES> san_names(static_cast<GENERAL_NAMES*>( X509_get_ext_d2i(&leaf_cert, NID_subject_alt_name, nullptr, nullptr))); // We must not have san_names == nullptr here because this function is called after the // SPIFFE cert validation algorithm succeeded, which requires exactly one URI SAN in the leaf // cert. ASSERT(san_names != nullptr, "san_names should have at least one name after SPIFFE cert validation"); // Only match against URI SAN since SPIFFE specification does not restrict values in other SAN // types. See the discussion: https://github.com/envoyproxy/envoy/issues/15392 for (const GENERAL_NAME* general_name : san_names.get()) { if (general_name->type == GEN_URI) { const std::string san = Utility::generalNameAsString(general_name); for (const auto& config_san_matcher : subject_alt_name_matchers_) { if (config_san_matcher.match(san)) { return true; } } } } return false; }
Base
1
HexInStream::HexInStream(InStream& is, int bufSize_) : bufSize(bufSize_ ? bufSize_ : DEFAULT_BUF_LEN), offset(0), in_stream(is) { ptr = end = start = new U8[bufSize]; }
Base
1
static size_t ntlm_av_pair_get_next_offset(NTLM_AV_PAIR* pAvPair) { return ntlm_av_pair_get_len(pAvPair) + sizeof(NTLM_AV_PAIR); }
Base
1
void jas_matrix_setall(jas_matrix_t *matrix, jas_seqent_t val) { int i; int j; jas_seqent_t *rowstart; int rowstep; jas_seqent_t *data; if (jas_matrix_numrows(matrix) > 0 && jas_matrix_numcols(matrix) > 0) { assert(matrix->rows_); rowstep = jas_matrix_rowstep(matrix); for (i = matrix->numrows_, rowstart = matrix->rows_[0]; i > 0; --i, rowstart += rowstep) { for (j = matrix->numcols_, data = rowstart; j > 0; --j, ++data) { *data = val; } } } }
Class
2
ALWAYS_INLINE String serialize_impl(const Variant& value, const SerializeOptions& opts) { switch (value.getType()) { case KindOfClass: case KindOfLazyClass: case KindOfPersistentString: case KindOfString: { auto const str = isStringType(value.getType()) ? value.getStringData() : isClassType(value.getType()) ? classToStringHelper(value.toClassVal()) : lazyClassToStringHelper(value.toLazyClassVal()); auto const size = str->size(); if (size >= RuntimeOption::MaxSerializedStringSize) { throw Exception("Size of serialized string (%d) exceeds max", size); } StringBuffer sb; sb.append("s:"); sb.append(size); sb.append(":\""); sb.append(str->data(), size); sb.append("\";"); return sb.detach(); } case KindOfResource: return s_Res; case KindOfUninit: case KindOfNull: case KindOfBoolean: case KindOfInt64: case KindOfFunc: case KindOfPersistentVec: case KindOfVec: case KindOfPersistentDict: case KindOfDict: case KindOfPersistentKeyset: case KindOfKeyset: case KindOfPersistentDArray: case KindOfDArray: case KindOfPersistentVArray: case KindOfVArray: case KindOfDouble: case KindOfObject: case KindOfClsMeth: case KindOfRClsMeth: case KindOfRFunc: case KindOfRecord: break; } VariableSerializer vs(VariableSerializer::Type::Serialize); if (opts.keepDVArrays) vs.keepDVArrays(); if (opts.forcePHPArrays) vs.setForcePHPArrays(); if (opts.warnOnHackArrays) vs.setHackWarn(); if (opts.warnOnPHPArrays) vs.setPHPWarn(); if (opts.ignoreLateInit) vs.setIgnoreLateInit(); if (opts.serializeProvenanceAndLegacy) vs.setSerializeProvenanceAndLegacy(); // Keep the count so recursive calls to serialize() embed references properly. return vs.serialize(value, true, true); }
Base
1
TfLiteStatus EvalLogic(TfLiteContext* context, TfLiteNode* node, OpContext* op_context, T init_value, T reducer(const T current, const T in)) { int64_t num_axis = NumElements(op_context->axis); TfLiteTensor* temp_index = GetTemporary(context, node, /*index=*/0); TfLiteTensor* resolved_axis = GetTemporary(context, node, /*index=*/1); // Resize the output tensor if the output tensor is dynamic. if (IsDynamicTensor(op_context->output)) { TF_LITE_ENSURE_OK(context, ResizeTempAxis(context, op_context, resolved_axis)); TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, op_context)); } if (op_context->input->type == kTfLiteUInt8 || op_context->input->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, op_context->input->params.scale, op_context->output->params.scale); TF_LITE_ENSURE_EQ(context, op_context->input->params.zero_point, op_context->output->params.zero_point); } TF_LITE_ENSURE( context, reference_ops::ReduceGeneric<T>( GetTensorData<T>(op_context->input), op_context->input->dims->data, op_context->input->dims->size, GetTensorData<T>(op_context->output), op_context->output->dims->data, op_context->output->dims->size, GetTensorData<int>(op_context->axis), num_axis, op_context->params->keep_dims, GetTensorData<int>(temp_index), GetTensorData<int>(resolved_axis), init_value, reducer)); return kTfLiteOk; }
Base
1
void TensorSliceReader::LoadShard(int shard) const { CHECK_LT(shard, sss_.size()); if (sss_[shard] || !status_.ok()) { return; // Already loaded, or invalid. } string value; SavedTensorSlices sts; const string fname = fnames_[shard]; VLOG(1) << "Reading meta data from file " << fname << "..."; Table* table; Status s = open_function_(fname, &table); if (!s.ok()) { status_ = errors::DataLoss("Unable to open table file ", fname, ": ", s.ToString()); return; } sss_[shard].reset(table); if (!(table->Get(kSavedTensorSlicesKey, &value) && ParseProtoUnlimited(&sts, value))) { status_ = errors::Internal( "Failed to find the saved tensor slices at the beginning of the " "checkpoint file: ", fname); return; } status_ = CheckVersions(sts.meta().versions(), TF_CHECKPOINT_VERSION, TF_CHECKPOINT_VERSION_MIN_PRODUCER, "Checkpoint", "checkpoint"); if (!status_.ok()) return; for (const SavedSliceMeta& ssm : sts.meta().tensor()) { TensorShape ssm_shape(ssm.shape()); for (const TensorSliceProto& tsp : ssm.slice()) { TensorSlice ss_slice(tsp); status_ = RegisterTensorSlice(ssm.name(), ssm_shape, ssm.type(), fname, ss_slice, &tensors_); if (!status_.ok()) return; } } }
Class
2
int DummyOutStream::overrun(int itemSize, int nItems) { flush(); if (itemSize * nItems > end - ptr) nItems = (end - ptr) / itemSize; return nItems; }
Base
1
void CommandData::ProcessCommand() { #ifndef SFX_MODULE const wchar *SingleCharCommands=L"FUADPXETK"; if (Command[0]!=0 && Command[1]!=0 && wcschr(SingleCharCommands,Command[0])!=NULL || *ArcName==0) OutHelp(*Command==0 ? RARX_SUCCESS:RARX_USERERROR); // Return 'success' for 'rar' without parameters. const wchar *ArcExt=GetExt(ArcName); #ifdef _UNIX if (ArcExt==NULL && (!FileExist(ArcName) || IsDir(GetFileAttr(ArcName)))) wcsncatz(ArcName,L".rar",ASIZE(ArcName)); #else if (ArcExt==NULL) wcsncatz(ArcName,L".rar",ASIZE(ArcName)); #endif // Treat arcname.part1 as arcname.part1.rar. if (ArcExt!=NULL && wcsnicomp(ArcExt,L".part",5)==0 && IsDigit(ArcExt[5]) && !FileExist(ArcName)) { wchar Name[NM]; wcsncpyz(Name,ArcName,ASIZE(Name)); wcsncatz(Name,L".rar",ASIZE(Name)); if (FileExist(Name)) wcsncpyz(ArcName,Name,ASIZE(ArcName)); } if (wcschr(L"AFUMD",*Command)==NULL) { if (GenerateArcName) GenerateArchiveName(ArcName,ASIZE(ArcName),GenerateMask,false); StringList ArcMasks; ArcMasks.AddString(ArcName); ScanTree Scan(&ArcMasks,Recurse,SaveSymLinks,SCAN_SKIPDIRS); FindData FindData; while (Scan.GetNext(&FindData)==SCAN_SUCCESS) AddArcName(FindData.Name); } else AddArcName(ArcName); #endif switch(Command[0]) { case 'P': case 'X': case 'E': case 'T': case 'I': { CmdExtract Extract(this); Extract.DoExtract(); } break; #ifndef SILENT case 'V': case 'L': ListArchive(this); break; default: OutHelp(RARX_USERERROR); #endif } if (!BareOutput) mprintf(L"\n"); }
Base
1
mptctl_eventreport (unsigned long arg) { struct mpt_ioctl_eventreport __user *uarg = (void __user *) arg; struct mpt_ioctl_eventreport karg; MPT_ADAPTER *ioc; int iocnum; int numBytes, maxEvents, max; if (copy_from_user(&karg, uarg, sizeof(struct mpt_ioctl_eventreport))) { printk(KERN_ERR MYNAM "%s@%d::mptctl_eventreport - " "Unable to read in mpt_ioctl_eventreport struct @ %p\n", __FILE__, __LINE__, uarg); return -EFAULT; } if (((iocnum = mpt_verify_adapter(karg.hdr.iocnum, &ioc)) < 0) || (ioc == NULL)) { printk(KERN_DEBUG MYNAM "%s::mptctl_eventreport() @%d - ioc%d not found!\n", __FILE__, __LINE__, iocnum); return -ENODEV; } dctlprintk(ioc, printk(MYIOC_s_DEBUG_FMT "mptctl_eventreport called.\n", ioc->name)); numBytes = karg.hdr.maxDataSize - sizeof(mpt_ioctl_header); maxEvents = numBytes/sizeof(MPT_IOCTL_EVENTS); max = MPTCTL_EVENT_LOG_SIZE < maxEvents ? MPTCTL_EVENT_LOG_SIZE : maxEvents; /* If fewer than 1 event is requested, there must have * been some type of error. */ if ((max < 1) || !ioc->events) return -ENODATA; /* reset this flag so SIGIO can restart */ ioc->aen_event_read_flag=0; /* Copy the data from kernel memory to user memory */ numBytes = max * sizeof(MPT_IOCTL_EVENTS); if (copy_to_user(uarg->eventData, ioc->events, numBytes)) { printk(MYIOC_s_ERR_FMT "%s@%d::mptctl_eventreport - " "Unable to write out mpt_ioctl_eventreport struct @ %p\n", ioc->name, __FILE__, __LINE__, ioc->events); return -EFAULT; } return 0; }
Class
2
vector <string> genECDSAKey() { vector<char> errMsg(BUF_LEN, 0); int errStatus = 0; vector <uint8_t> encr_pr_key(BUF_LEN, 0); vector<char> pub_key_x(BUF_LEN, 0); vector<char> pub_key_y(BUF_LEN, 0); uint32_t enc_len = 0; sgx_status_t status = trustedGenerateEcdsaKeyAES(eid, &errStatus, errMsg.data(), encr_pr_key.data(), &enc_len, pub_key_x.data(), pub_key_y.data()); HANDLE_TRUSTED_FUNCTION_ERROR(status, errStatus,errMsg.data()); vector <string> keys(3); vector<char> hexEncrKey(BUF_LEN * 2, 0); carray2Hex(encr_pr_key.data(), enc_len, hexEncrKey.data(), BUF_LEN * 2); keys.at(0) = hexEncrKey.data(); keys.at(1) = string(pub_key_x.data()) + string(pub_key_y.data()); vector<unsigned char> randBuffer(32, 0); fillRandomBuffer(randBuffer); vector<char> rand_str(BUF_LEN, 0); carray2Hex(randBuffer.data(), 32, rand_str.data(), BUF_LEN); keys.at(2) = rand_str.data(); CHECK_STATE(keys.at(2).size() == 64); return keys; }
Base
1
void test_base64_lengths(void) { const char *in = "FuseMuse"; char out1[32]; char out2[32]; size_t enclen; int declen; /* Encoding a zero-length string should fail */ enclen = mutt_b64_encode(out1, in, 0, 32); if (!TEST_CHECK(enclen == 0)) { TEST_MSG("Expected: %zu", 0); TEST_MSG("Actual : %zu", enclen); } /* Decoding a zero-length string should fail, too */ out1[0] = '\0'; declen = mutt_b64_decode(out2, out1); if (!TEST_CHECK(declen == -1)) { TEST_MSG("Expected: %zu", -1); TEST_MSG("Actual : %zu", declen); } /* Encode one to eight bytes, check the lengths of the returned string */ for (size_t i = 1; i <= 8; ++i) { enclen = mutt_b64_encode(out1, in, i, 32); size_t exp = ((i + 2) / 3) << 2; if (!TEST_CHECK(enclen == exp)) { TEST_MSG("Expected: %zu", exp); TEST_MSG("Actual : %zu", enclen); } declen = mutt_b64_decode(out2, out1); if (!TEST_CHECK(declen == i)) { TEST_MSG("Expected: %zu", i); TEST_MSG("Actual : %zu", declen); } out2[declen] = '\0'; if (!TEST_CHECK(strncmp(out2, in, i) == 0)) { TEST_MSG("Expected: %s", in); TEST_MSG("Actual : %s", out2); } } }
Base
1
static int stszin(int size) { int cnt; uint32_t ofs; // version/flags u32in(); // Sample size u32in(); // Number of entries mp4config.frame.ents = u32in(); // fixme: check atom size mp4config.frame.data = malloc(sizeof(*mp4config.frame.data) * (mp4config.frame.ents + 1)); if (!mp4config.frame.data) return ERR_FAIL; ofs = 0; mp4config.frame.data[0] = ofs; for (cnt = 0; cnt < mp4config.frame.ents; cnt++) { uint32_t fsize = u32in(); ofs += fsize; if (mp4config.frame.maxsize < fsize) mp4config.frame.maxsize = fsize; mp4config.frame.data[cnt + 1] = ofs; if (ofs < mp4config.frame.data[cnt]) return ERR_FAIL; } return size; }
Base
1
bool DNP3_Base::ParseAppLayer(Endpoint* endp) { bool orig = (endp == &orig_state); binpac::DNP3::DNP3_Flow* flow = orig ? interp->upflow() : interp->downflow(); u_char* data = endp->buffer + PSEUDO_TRANSPORT_INDEX; // The transport layer byte counts as app-layer it seems. int len = endp->pkt_length - 5; // DNP3 Packet : DNP3 Pseudo Link Layer | DNP3 Pseudo Transport Layer | DNP3 Pseudo Application Layer // DNP3 Serial Transport Layer data is always 1 byte. // Get FIN FIR seq field in transport header. // FIR indicate whether the following DNP3 Serial Application Layer is first chunk of bytes or not. // FIN indicate whether the following DNP3 Serial Application Layer is last chunk of bytes or not. int is_first = (endp->tpflags & 0x40) >> 6; // Initial chunk of data in this packet. int is_last = (endp->tpflags & 0x80) >> 7; // Last chunk of data in this packet. int transport = PSEUDO_TRANSPORT_LEN; int i = 0; while ( len > 0 ) { int n = min(len, 16); // Make sure chunk has a correct checksum. if ( ! CheckCRC(n, data, data + n, "app_chunk") ) return false; // Pass on to BinPAC. assert(data + n < endp->buffer + endp->buffer_len); flow->flow_buffer()->BufferData(data + transport, data + n); transport = 0; data += n + 2; len -= n; } if ( is_first ) endp->encountered_first_chunk = true; if ( ! is_first && ! endp->encountered_first_chunk ) { // We lost the first chunk. analyzer->Weird("dnp3_first_application_layer_chunk_missing"); return false; } if ( is_last ) { flow->flow_buffer()->FinishBuffer(); flow->FlowEOF(); ClearEndpointState(orig); } return true; }
Class
2
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); auto* params = reinterpret_cast<TfLiteShapeParams*>(node->builtin_data); switch (params->out_type) { case kTfLiteInt32: output->type = kTfLiteInt32; break; case kTfLiteInt64: output->type = kTfLiteInt64; break; default: context->ReportError(context, "Unknown shape output data type: %d", params->out_type); return kTfLiteError; } // By design, the input shape is always known at the time of Prepare, even // if the preceding op that generates |input| is dynamic. Thus, we can // always compute the shape immediately, without waiting for Eval. SetTensorToPersistentRo(output); // Shape always produces a 1-dimensional output tensor, where each output // element is the length of the corresponding input tensor's dimension. TfLiteIntArray* output_size = TfLiteIntArrayCreate(1); output_size->data[0] = NumDimensions(input); TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, output, output_size)); TFLITE_DCHECK_EQ(NumDimensions(output), 1); TFLITE_DCHECK_EQ(SizeOfDimension(output, 0), NumDimensions(input)); // Immediately propagate the known shape to the output tensor. This allows // downstream ops that rely on the value to use it during prepare. switch (output->type) { case kTfLiteInt32: ExtractShape(input, GetTensorData<int32_t>(output)); break; case kTfLiteInt64: ExtractShape(input, GetTensorData<int64_t>(output)); break; default: return kTfLiteError; } return kTfLiteOk; }
Base
1
void skip(Protocol_& prot, TType arg_type) { switch (arg_type) { case TType::T_BOOL: { bool boolv; prot.readBool(boolv); return; } case TType::T_BYTE: { int8_t bytev; prot.readByte(bytev); return; } case TType::T_I16: { int16_t i16; prot.readI16(i16); return; } case TType::T_I32: { int32_t i32; prot.readI32(i32); return; } case TType::T_I64: { int64_t i64; prot.readI64(i64); return; } case TType::T_DOUBLE: { double dub; prot.readDouble(dub); return; } case TType::T_FLOAT: { float flt; prot.readFloat(flt); return; } case TType::T_STRING: { std::string str; prot.readBinary(str); return; } case TType::T_STRUCT: { std::string name; int16_t fid; TType ftype; prot.readStructBegin(name); while (true) { prot.readFieldBegin(name, ftype, fid); if (ftype == TType::T_STOP) { break; } apache::thrift::skip(prot, ftype); prot.readFieldEnd(); } prot.readStructEnd(); return; } case TType::T_MAP: { TType keyType; TType valType; uint32_t i, size; prot.readMapBegin(keyType, valType, size); for (i = 0; i < size; i++) { apache::thrift::skip(prot, keyType); apache::thrift::skip(prot, valType); } prot.readMapEnd(); return; } case TType::T_SET: { TType elemType; uint32_t i, size; prot.readSetBegin(elemType, size); for (i = 0; i < size; i++) { apache::thrift::skip(prot, elemType); } prot.readSetEnd(); return; } case TType::T_LIST: { TType elemType; uint32_t i, size; prot.readListBegin(elemType, size); for (i = 0; i < size; i++) { apache::thrift::skip(prot, elemType); } prot.readListEnd(); return; } default: return; } }
Class
2
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLitePackParams* data = reinterpret_cast<TfLitePackParams*>(node->builtin_data); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); switch (output->type) { case kTfLiteFloat32: { return PackImpl<float>(context, node, output, data->values_count, data->axis); } case kTfLiteUInt8: { return PackImpl<uint8_t>(context, node, output, data->values_count, data->axis); } case kTfLiteInt8: { return PackImpl<int8_t>(context, node, output, data->values_count, data->axis); } case kTfLiteInt16: { return PackImpl<int16_t>(context, node, output, data->values_count, data->axis); } case kTfLiteInt32: { return PackImpl<int32_t>(context, node, output, data->values_count, data->axis); } case kTfLiteInt64: { return PackImpl<int64_t>(context, node, output, data->values_count, data->axis); } default: { context->ReportError(context, "Type '%s' is not supported by pack.", TfLiteTypeGetName(output->type)); return kTfLiteError; } } return kTfLiteOk; }
Base
1
void nego_process_negotiation_response(rdpNego* nego, wStream* s) { UINT16 length; WLog_DBG(TAG, "RDP_NEG_RSP"); if (Stream_GetRemainingLength(s) < 7) { WLog_ERR(TAG, "Invalid RDP_NEG_RSP"); nego->state = NEGO_STATE_FAIL; return; } Stream_Read_UINT8(s, nego->flags); Stream_Read_UINT16(s, length); Stream_Read_UINT32(s, nego->SelectedProtocol); nego->state = NEGO_STATE_FINAL; }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteLocalResponseNormParams*>(node->builtin_data); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (output->type == kTfLiteFloat32) { #define TF_LITE_LOCAL_RESPONSE_NORM(type) \ tflite::LocalResponseNormalizationParams op_params; \ op_params.range = params->radius; \ op_params.bias = params->bias; \ op_params.alpha = params->alpha; \ op_params.beta = params->beta; \ type::LocalResponseNormalization( \ op_params, GetTensorShape(input), GetTensorData<float>(input), \ GetTensorShape(output), GetTensorData<float>(output)) if (kernel_type == kReference) { TF_LITE_LOCAL_RESPONSE_NORM(reference_ops); } if (kernel_type == kGenericOptimized) { TF_LITE_LOCAL_RESPONSE_NORM(optimized_ops); } #undef TF_LITE_LOCAL_RESPONSE_NORM } else { context->ReportError(context, "Output type is %d, requires float.", output->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
TfLiteStatus UseDynamicOutputTensors(TfLiteContext* context, TfLiteNode* node) { for (int i = 0; i < NumOutputs(node); ++i) { SetTensorToDynamic(GetOutput(context, node, i)); } return kTfLiteOk; }
Base
1
TEST_CASE_METHOD(TestFixture, "AES encrypt/decrypt", "[aes-encrypt-decrypt]") { int errStatus = 0; vector<char> errMsg(BUF_LEN, 0); uint32_t encLen; string key = SAMPLE_AES_KEY; vector <uint8_t> encrypted_key(BUF_LEN, 0); PRINT_SRC_LINE auto status = trustedEncryptKeyAES(eid, &errStatus, errMsg.data(), key.c_str(), encrypted_key.data(), &encLen); REQUIRE(status == 0); REQUIRE(errStatus == 0); vector<char> decr_key(BUF_LEN, 0); PRINT_SRC_LINE status = trustedDecryptKeyAES(eid, &errStatus, errMsg.data(), encrypted_key.data(), encLen, decr_key.data()); REQUIRE(status == 0); REQUIRE(errStatus == 0); REQUIRE(key.compare(decr_key.data()) == 0); }
Base
1
static Variant HHVM_FUNCTION(bcdiv, const String& left, const String& right, int64_t scale /* = -1 */) { if (scale < 0) scale = BCG(bc_precision); bc_num first, second, result; bc_init_num(&first); bc_init_num(&second); bc_init_num(&result); SCOPE_EXIT { bc_free_num(&first); bc_free_num(&second); bc_free_num(&result); }; php_str2num(&first, (char*)left.data()); php_str2num(&second, (char*)right.data()); if (bc_divide(first, second, &result, scale) == -1) { raise_warning("Division by zero"); return init_null(); } String ret(bc_num2str(result), AttachString); return ret; }
Base
1
bool MemFile::seek(int64_t offset, int whence /* = SEEK_SET */) { assertx(m_len != -1); if (whence == SEEK_CUR) { if (offset > 0 && offset < bufferedLen()) { setReadPosition(getReadPosition() + offset); setPosition(getPosition() + offset); return true; } offset += getPosition(); whence = SEEK_SET; } // invalidate the current buffer setWritePosition(0); setReadPosition(0); if (whence == SEEK_SET) { m_cursor = offset; } else { assertx(whence == SEEK_END); m_cursor = m_len + offset; } setPosition(m_cursor); return true; }
Base
1
void runTest() override { beginTest ("ZIP"); ZipFile::Builder builder; StringArray entryNames { "first", "second", "third" }; HashMap<String, MemoryBlock> blocks; for (auto& entryName : entryNames) { auto& block = blocks.getReference (entryName); MemoryOutputStream mo (block, false); mo << entryName; mo.flush(); builder.addEntry (new MemoryInputStream (block, false), 9, entryName, Time::getCurrentTime()); } MemoryBlock data; MemoryOutputStream mo (data, false); builder.writeToStream (mo, nullptr); MemoryInputStream mi (data, false); ZipFile zip (mi); expectEquals (zip.getNumEntries(), entryNames.size()); for (auto& entryName : entryNames) { auto* entry = zip.getEntry (entryName); std::unique_ptr<InputStream> input (zip.createStreamForEntry (*entry)); expectEquals (input->readEntireStreamAsString(), entryName); } }
Base
1
void Compute(OpKernelContext* context) override { const Tensor& data = context->input(0); const Tensor& segment_ids = context->input(1); const Tensor& num_segments = context->input(2); if (!UnsortedSegmentReductionDoValidation(this, context, data, segment_ids, num_segments)) { return; } const auto segment_flat = segment_ids.flat<Index>(); const Index output_rows = internal::SubtleMustCopy(static_cast<Index>( num_segments.dtype() == DT_INT32 ? num_segments.scalar<int32>()() : num_segments.scalar<int64>()())); OP_REQUIRES(context, output_rows >= 0, errors::InvalidArgument("Input num_segments == ", output_rows, " must not be negative.")); TensorShape output_shape; output_shape.AddDim(output_rows); for (int i = segment_ids.dims(); i < data.dims(); i++) { output_shape.AddDim(data.dim_size(i)); } Tensor* output = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output)); auto output_flat = output->flat_outer_dims<T>(); auto data_ptr = data.template flat<T>().data(); reduction_functor_(context, output_rows, segment_ids.shape(), segment_flat, data.NumElements(), data_ptr, output_flat); }
Base
1
static inline long decode_twos_comp(ulong c, int prec) { long result; assert(prec >= 2); jas_eprintf("warning: support for signed data is untested\n"); // NOTE: Is this correct? result = (c & ((1 << (prec - 1)) - 1)) - (c & (1 << (prec - 1))); return result; }
Base
1
Java_org_tensorflow_lite_InterpreterTest_getNativeHandleForDelegate( JNIEnv* env, jclass clazz) { // A simple op which outputs a tensor with values of 7. static TfLiteRegistration registration = { .init = nullptr, .free = nullptr, .prepare = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = tflite::GetInput(context, node, 0); TfLiteTensor* output = tflite::GetOutput(context, node, 0); TfLiteIntArray* output_dims = TfLiteIntArrayCopy(input->dims); output->type = kTfLiteFloat32; return context->ResizeTensor(context, output, output_dims); }, .invoke = [](TfLiteContext* context, TfLiteNode* node) { TfLiteTensor* output = tflite::GetOutput(context, node, 0); std::fill(output->data.f, output->data.f + tflite::NumElements(output), 7.0f); return kTfLiteOk; }, .profiling_string = nullptr, .builtin_code = 0, .custom_name = "", .version = 1, }; static TfLiteDelegate delegate = { .data_ = nullptr, .Prepare = [](TfLiteContext* context, TfLiteDelegate* delegate) -> TfLiteStatus { TfLiteIntArray* execution_plan; TF_LITE_ENSURE_STATUS( context->GetExecutionPlan(context, &execution_plan)); context->ReplaceNodeSubsetsWithDelegateKernels( context, registration, execution_plan, delegate); // Now bind delegate buffer handles for all tensors. for (size_t i = 0; i < context->tensors_size; ++i) { context->tensors[i].delegate = delegate; context->tensors[i].buffer_handle = static_cast<int>(i); } return kTfLiteOk; }, .CopyFromBufferHandle = nullptr, .CopyToBufferHandle = nullptr, .FreeBufferHandle = nullptr, .flags = kTfLiteDelegateFlagsAllowDynamicTensors, }; return reinterpret_cast<jlong>(&delegate); }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); OpContext op_context(context, node); TF_LITE_ENSURE_EQ(context, NumOutputs(node), op_context.params->num_splits); auto input_type = op_context.input->type; TF_LITE_ENSURE(context, input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 || input_type == kTfLiteInt8 || input_type == kTfLiteInt16 || input_type == kTfLiteInt32); for (int i = 0; i < NumOutputs(node); ++i) { GetOutput(context, node, i)->type = input_type; } // If we know the contents of the 'axis' tensor, resize all outputs. // Otherwise, wait until Eval(). if (IsConstantTensor(op_context.axis)) { return ResizeOutputTensors(context, node, op_context.axis, op_context.input, op_context.params->num_splits); } else { return UseDynamicOutputTensors(context, node); } }
Base
1
void writeStats(Array& /*ret*/) override { fprintf(stderr, "writeStats start\n"); // RetSame: the return value is the same instance every time // HasThis: call has a this argument // AllSame: all returns were the same data even though args are different // MemberCount: number of different arg sets (including this) fprintf(stderr, "Count Function MinSerLen MaxSerLen RetSame HasThis " "AllSame MemberCount\n"); for (auto& me : m_memos) { if (me.second.m_ignore) continue; if (me.second.m_count == 1) continue; int min_ser_len = 999999999; int max_ser_len = 0; int count = 0; int member_count = 0; bool all_same = true; if (me.second.m_has_this) { bool any_multiple = false; auto& fr = me.second.m_member_memos.begin()->second.m_return_value; member_count = me.second.m_member_memos.size(); for (auto& mme : me.second.m_member_memos) { if (mme.second.m_return_value != fr) all_same = false; count += mme.second.m_count; auto ser_len = mme.second.m_return_value.length(); min_ser_len = std::min(min_ser_len, ser_len); max_ser_len = std::max(max_ser_len, ser_len); if (mme.second.m_count > 1) any_multiple = true; } if (!any_multiple && !all_same) continue; } else { min_ser_len = max_ser_len = me.second.m_return_value.length(); count = me.second.m_count; all_same = me.second.m_ret_tv_same; } fprintf(stderr, "%d %s %d %d %s %s %s %d\n", count, me.first.data(), min_ser_len, max_ser_len, me.second.m_ret_tv_same ? " true" : "false", me.second.m_has_this ? " true" : "false", all_same ? " true" : "false", member_count ); } fprintf(stderr, "writeStats end\n"); }
Base
1
void CarbonProtocolReader::skip(const FieldType ft) { switch (ft) { case FieldType::True: case FieldType::False: { break; } case FieldType::Int8: { readRaw<int8_t>(); break; } case FieldType::Int16: { readRaw<int16_t>(); break; } case FieldType::Int32: { readRaw<int32_t>(); break; } case FieldType::Int64: { readRaw<int64_t>(); break; } case FieldType::Double: { readRaw<double>(); break; } case FieldType::Float: { readRaw<float>(); break; } case FieldType::Binary: { readRaw<std::string>(); break; } case FieldType::List: { skipLinearContainer(); break; } case FieldType::Struct: { readStructBegin(); while (true) { const auto fieldType = readFieldHeader().first; if (fieldType == FieldType::Stop) { break; } skip(fieldType); } readStructEnd(); break; } case FieldType::Set: { skipLinearContainer(); break; } case FieldType::Map: { skipKVContainer(); break; } default: { break; } } }
Class
2
int LibarchivePlugin::extractionFlags() const { int result = ARCHIVE_EXTRACT_TIME; result |= ARCHIVE_EXTRACT_SECURE_NODOTDOT; // TODO: Don't use arksettings here /*if ( ArkSettings::preservePerms() ) { result &= ARCHIVE_EXTRACT_PERM; } if ( !ArkSettings::extractOverwrite() ) { result &= ARCHIVE_EXTRACT_NO_OVERWRITE; }*/ return result; }
Base
1
void readDataAvailable(size_t len) noexcept override { std::cerr << "readDataAvailable, len " << len << std::endl; currentBuffer.length = len; wcb_->setSocket(socket_); // Write back the same data. socket_->write(wcb_, currentBuffer.buffer, len, writeFlags); buffers.push_back(currentBuffer); currentBuffer.reset(); state = STATE_SUCCEEDED; }
Base
1
TfLiteStatus EvalImpl(TfLiteContext* context, const TfLiteTensor* input, TfLiteNode* node) { // Map from value, to index in the unique elements vector. // Note that we prefer to use map than unordered_map as it showed less // increase in the binary size. std::map<T, int> unique_values; TfLiteTensor* output_indexes = GetOutput(context, node, 1); std::vector<T> output_values; I* indexes = GetTensorData<I>(output_indexes); const T* data = GetTensorData<T>(input); const int num_elements = NumElements(input); for (int i = 0; i < num_elements; ++i) { const auto element_it = unique_values.find(data[i]); if (element_it != unique_values.end()) { indexes[i] = element_it->second; } else { const int unique_index = unique_values.size(); unique_values[data[i]] = unique_index; indexes[i] = unique_index; output_values.push_back(data[i]); } } // Allocate output tensor. TfLiteTensor* unique_output = GetOutput(context, node, 0); std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> shape( TfLiteIntArrayCreate(NumDimensions(input)), TfLiteIntArrayFree); shape->data[0] = unique_values.size(); TF_LITE_ENSURE_STATUS( context->ResizeTensor(context, unique_output, shape.release())); // Set the values in the output tensor. T* output_unique_values = GetTensorData<T>(unique_output); for (int i = 0; i < output_values.size(); ++i) { output_unique_values[i] = output_values[i]; } return kTfLiteOk; }
Base
1
AP4_VisualSampleEntry::ReadFields(AP4_ByteStream& stream) { // sample entry AP4_Result result = AP4_SampleEntry::ReadFields(stream); if (result < 0) return result; // read fields from this class stream.ReadUI16(m_Predefined1); stream.ReadUI16(m_Reserved2); stream.Read(m_Predefined2, sizeof(m_Predefined2)); stream.ReadUI16(m_Width); stream.ReadUI16(m_Height); stream.ReadUI32(m_HorizResolution); stream.ReadUI32(m_VertResolution); stream.ReadUI32(m_Reserved3); stream.ReadUI16(m_FrameCount); char compressor_name[33]; compressor_name[32] = 0; stream.Read(compressor_name, 32); int name_length = compressor_name[0]; if (name_length < 32) { compressor_name[name_length+1] = 0; // force null termination m_CompressorName = &compressor_name[1]; } stream.ReadUI16(m_Depth); stream.ReadUI16(m_Predefined3); return AP4_SUCCESS; }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteLocalResponseNormParams*>(node->builtin_data); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (output->type == kTfLiteFloat32) { #define TF_LITE_LOCAL_RESPONSE_NORM(type) \ tflite::LocalResponseNormalizationParams op_params; \ op_params.range = params->radius; \ op_params.bias = params->bias; \ op_params.alpha = params->alpha; \ op_params.beta = params->beta; \ type::LocalResponseNormalization( \ op_params, GetTensorShape(input), GetTensorData<float>(input), \ GetTensorShape(output), GetTensorData<float>(output)) if (kernel_type == kReference) { TF_LITE_LOCAL_RESPONSE_NORM(reference_ops); } if (kernel_type == kGenericOptimized) { TF_LITE_LOCAL_RESPONSE_NORM(optimized_ops); } #undef TF_LITE_LOCAL_RESPONSE_NORM } else { context->ReportError(context, "Output type is %d, requires float.", output->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
MONGO_EXPORT int bson_buffer_size( const bson *b ) { return (b->cur - b->data + 1); }
Base
1
Pl_ASCII85Decoder::flush() { if (this->pos == 0) { QTC::TC("libtests", "Pl_ASCII85Decoder no-op flush"); return; } unsigned long lval = 0; for (int i = 0; i < 5; ++i) { lval *= 85; lval += (this->inbuf[i] - 33U); } unsigned char outbuf[4]; memset(outbuf, 0, 4); for (int i = 3; i >= 0; --i) { outbuf[i] = lval & 0xff; lval >>= 8; } QTC::TC("libtests", "Pl_ASCII85Decoder partial flush", (this->pos == 5) ? 0 : 1); getNext()->write(outbuf, this->pos - 1); this->pos = 0; memset(this->inbuf, 117, 5); }
Base
1
Pong(const std::string& cookie, const std::string& server = "") : ClientProtocol::Message("PONG", ServerInstance->Config->GetServerName()) { PushParamRef(ServerInstance->Config->GetServerName()); if (!server.empty()) PushParamRef(server); PushParamRef(cookie); }
Class
2
inline void StringData::setSize(int len) { assertx(!isImmutable() && !hasMultipleRefs()); assertx(len >= 0 && len <= capacity()); mutableData()[len] = 0; m_lenAndHash = len; assertx(m_hash == 0); assertx(checkSane()); }
Base
1
TfLiteStatus SimpleStatefulOp::Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); // Make sure that the input is in uint8_t with at least 1 data entry. const TfLiteTensor* input = tflite::GetInput(context, node, kInputTensor); if (input->type != kTfLiteUInt8) return kTfLiteError; if (NumElements(input->dims) == 0) return kTfLiteError; // Allocate a temporary buffer with the same size of input for sorting. TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena( context, sizeof(uint8_t) * NumElements(input->dims), &data->sorting_buffer)); // We can interleave scratch / persistent buffer allocation. data->invoke_count = reinterpret_cast<int*>( context->AllocatePersistentBuffer(context, sizeof(int))); *data->invoke_count = 0; return kTfLiteOk; }
Base
1
TfLiteStatus LessEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); bool requires_broadcast = !HaveSameShapes(input1, input2); switch (input1->type) { case kTfLiteFloat32: Comparison<float, reference_ops::LessFn>(input1, input2, output, requires_broadcast); break; case kTfLiteInt32: Comparison<int32_t, reference_ops::LessFn>(input1, input2, output, requires_broadcast); break; case kTfLiteInt64: Comparison<int64_t, reference_ops::LessFn>(input1, input2, output, requires_broadcast); break; case kTfLiteUInt8: ComparisonQuantized<uint8_t, reference_ops::LessFn>( input1, input2, output, requires_broadcast); break; case kTfLiteInt8: ComparisonQuantized<int8_t, reference_ops::LessFn>(input1, input2, output, requires_broadcast); break; default: context->ReportError(context, "Does not support type %d, requires float|int|uint8", input1->type); return kTfLiteError; } return kTfLiteOk; }
Base
1