code
stringlengths
12
2.05k
label_name
stringclasses
5 values
label
int64
0
4
inline void StringData::setSize(int len) { assertx(!isImmutable() && !hasMultipleRefs()); assertx(len >= 0 && len <= capacity()); mutableData()[len] = 0; m_lenAndHash = len; assertx(m_hash == 0); assertx(checkSane()); }
Base
1
void jas_matrix_setall(jas_matrix_t *matrix, jas_seqent_t val) { int i; int j; jas_seqent_t *rowstart; int rowstep; jas_seqent_t *data; if (jas_matrix_numrows(matrix) > 0 && jas_matrix_numcols(matrix) > 0) { assert(matrix->rows_); rowstep = jas_matrix_rowstep(matrix); for (i = matrix->numrows_, rowstart = matrix->rows_[0]; i > 0; --i, rowstart += rowstep) { for (j = matrix->numcols_, data = rowstart; j > 0; --j, ++data) { *data = val; } } } }
Base
1
void carray2Hex(const unsigned char *d, uint64_t _len, char *_hexArray, uint64_t _hexArrayLen) { CHECK_STATE(d); CHECK_STATE(_hexArray); char hexval[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}; CHECK_STATE(_hexArrayLen > 2 * _len); for (int j = 0; j < _len; j++) { _hexArray[j * 2] = hexval[((d[j] >> 4) & 0xF)]; _hexArray[j * 2 + 1] = hexval[(d[j]) & 0x0F]; } _hexArray[_len * 2] = 0; }
Base
1
static int em_fxsave(struct x86_emulate_ctxt *ctxt) { struct fxregs_state fx_state; size_t size; int rc; rc = check_fxsr(ctxt); if (rc != X86EMUL_CONTINUE) return rc; ctxt->ops->get_fpu(ctxt); rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state)); ctxt->ops->put_fpu(ctxt); if (rc != X86EMUL_CONTINUE) return rc; if (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR) size = offsetof(struct fxregs_state, xmm_space[8 * 16/4]); else size = offsetof(struct fxregs_state, xmm_space[0]); return segmented_write(ctxt, ctxt->memop.addr.mem, &fx_state, size); }
Variant
0
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { // Just copy input to output. const TfLiteTensor* input = GetInput(context, node, kInput); TfLiteTensor* output = GetOutput(context, node, 0); const TfLiteTensor* axis = GetInput(context, node, kAxis); if (IsDynamicTensor(output)) { int axis_value; TF_LITE_ENSURE_OK(context, GetAxisValueFromTensor(context, *axis, &axis_value)); TF_LITE_ENSURE_OK(context, ExpandTensorDim(context, *input, axis_value, output)); } if (output->type == kTfLiteString) { TfLiteTensorRealloc(input->bytes, output); } memcpy(output->data.raw, input->data.raw, input->bytes); return kTfLiteOk; }
Base
1
R_API RBinJavaAttrInfo *r_bin_java_annotation_default_attr_new(RBinJavaObj *bin, ut8 *buffer, ut64 sz, ut64 buf_offset) { ut64 offset = 0; RBinJavaAttrInfo *attr = NULL; attr = r_bin_java_default_attr_new (bin, buffer, sz, buf_offset); offset += 6; if (attr && sz >= offset) { attr->type = R_BIN_JAVA_ATTR_TYPE_ANNOTATION_DEFAULT_ATTR; attr->info.annotation_default_attr.default_value = r_bin_java_element_value_new (buffer + offset, sz - offset, buf_offset + offset); if (attr->info.annotation_default_attr.default_value) { offset += attr->info.annotation_default_attr.default_value->size; } } r_bin_java_print_annotation_default_attr_summary (attr); return attr; }
Class
2
TfLiteStatus SimpleStatefulOp::Invoke(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); *data->invoke_count += 1; const TfLiteTensor* input = GetInput(context, node, kInputTensor); const uint8_t* input_data = GetTensorData<uint8_t>(input); int size = NumElements(input->dims); uint8_t* sorting_buffer = reinterpret_cast<uint8_t*>( context->GetScratchBuffer(context, data->sorting_buffer)); // Copy inputs data to the sorting buffer. We don't want to mutate the input // tensor as it might be used by a another node. for (int i = 0; i < size; i++) { sorting_buffer[i] = input_data[i]; } // In place insertion sort on `sorting_buffer`. for (int i = 1; i < size; i++) { for (int j = i; j > 0 && sorting_buffer[j] < sorting_buffer[j - 1]; j--) { std::swap(sorting_buffer[j], sorting_buffer[j - 1]); } } TfLiteTensor* median = GetOutput(context, node, kMedianTensor); uint8_t* median_data = GetTensorData<uint8_t>(median); TfLiteTensor* invoke_count = GetOutput(context, node, kInvokeCount); int32_t* invoke_count_data = GetTensorData<int32_t>(invoke_count); median_data[0] = sorting_buffer[size / 2]; invoke_count_data[0] = *data->invoke_count; return kTfLiteOk; }
Base
1
TfLiteStatus SimpleStatefulOp::Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); // Make sure that the input is in uint8_t with at least 1 data entry. const TfLiteTensor* input = tflite::GetInput(context, node, kInputTensor); if (input->type != kTfLiteUInt8) return kTfLiteError; if (NumElements(input->dims) == 0) return kTfLiteError; // Allocate a temporary buffer with the same size of input for sorting. TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena( context, sizeof(uint8_t) * NumElements(input->dims), &data->sorting_buffer)); // We can interleave scratch / persistent buffer allocation. data->invoke_count = reinterpret_cast<int*>( context->AllocatePersistentBuffer(context, sizeof(int))); *data->invoke_count = 0; return kTfLiteOk; }
Base
1
MONGO_EXPORT int bson_append_string_n( bson *b, const char *name, const char *value, int len ) { return bson_append_string_base( b, name, value, len, BSON_STRING ); }
Base
1
AuthenticationFeature::AuthenticationFeature(application_features::ApplicationServer& server) : ApplicationFeature(server, "Authentication"), _userManager(nullptr), _authCache(nullptr), _authenticationUnixSockets(true), _authenticationSystemOnly(true), _localAuthentication(true), _active(true), _authenticationTimeout(0.0) { setOptional(false); startsAfter<application_features::BasicFeaturePhaseServer>(); #ifdef USE_ENTERPRISE startsAfter<LdapFeature>(); #endif }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); output->type = input->type; return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); }
Base
1
TfLiteStatus LeakyReluEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); const auto* params = reinterpret_cast<TfLiteLeakyReluParams*>(node->builtin_data); const LeakyReluOpData* data = reinterpret_cast<LeakyReluOpData*>(node->user_data); LeakyReluParams op_params; switch (input->type) { case kTfLiteFloat32: { op_params.alpha = params->alpha; optimized_ops::LeakyRelu( op_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } break; case kTfLiteUInt8: { QuantizeLeakyRelu<uint8_t>(input, output, data); return kTfLiteOk; } break; case kTfLiteInt8: { QuantizeLeakyRelu<int8_t>(input, output, data); return kTfLiteOk; } break; case kTfLiteInt16: { QuantizeLeakyRelu<int16_t>(input, output, data); return kTfLiteOk; } break; default: TF_LITE_KERNEL_LOG( context, "Only float32, int8, int16 and uint8 is supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output_index_tensor = GetOutput(context, node, 1); TF_LITE_ENSURE_EQ(context, NumElements(output_index_tensor), NumElements(input)); switch (input->type) { case kTfLiteInt8: TF_LITE_ENSURE_STATUS(EvalImpl<int8_t>(context, input, node)); break; case kTfLiteInt16: TF_LITE_ENSURE_STATUS(EvalImpl<int16_t>(context, input, node)); break; case kTfLiteInt32: TF_LITE_ENSURE_STATUS(EvalImpl<int32_t>(context, input, node)); break; case kTfLiteInt64: TF_LITE_ENSURE_STATUS(EvalImpl<int64_t>(context, input, node)); break; case kTfLiteFloat32: TF_LITE_ENSURE_STATUS(EvalImpl<float>(context, input, node)); break; case kTfLiteUInt8: TF_LITE_ENSURE_STATUS(EvalImpl<uint8_t>(context, input, node)); break; default: context->ReportError(context, "Currently Unique doesn't support type: %s", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; }
Base
1
int jas_matrix_cmp(jas_matrix_t *mat0, jas_matrix_t *mat1) { int i; int j; if (mat0->numrows_ != mat1->numrows_ || mat0->numcols_ != mat1->numcols_) { return 1; } for (i = 0; i < mat0->numrows_; i++) { for (j = 0; j < mat0->numcols_; j++) { if (jas_matrix_get(mat0, i, j) != jas_matrix_get(mat1, i, j)) { return 1; } } } return 0; }
Base
1
void Phase2() final { Local<Context> context_handle = Deref(context); Context::Scope context_scope{context_handle}; Local<Value> key_inner = key->CopyInto(); Local<Object> object = Local<Object>::Cast(Deref(reference)); bool allow = [&]() { if (!inherit) { if (key_inner->IsName()) { return Unmaybe(object->HasRealNamedProperty(context_handle, key_inner.As<Name>())); } else if (key_inner->IsNumber()) { return Unmaybe(object->HasRealIndexedProperty(context_handle, HandleCast<uint32_t>(key_inner))); } else { return false; } } return true; }(); Local<Value> value = allow ? Unmaybe(object->Get(context_handle, key_inner)) : Undefined(Isolate::GetCurrent()).As<Value>(); ret = TransferOut(value, options); }
Class
2
TEST_F(QuantizedConv2DTest, OddPaddingBatch) { const int stride = 2; TF_ASSERT_OK(NodeDefBuilder("quantized_conv_op", "QuantizedConv2D") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("out_type", DataTypeToEnum<qint32>::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int depth = 1; const int image_width = 4; const int image_height = 4; const int image_batch_count = 3; AddInputFromArray<quint8>( TensorShape({image_batch_count, image_height, image_width, depth}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray<quint8>( TensorShape({filter_size, filter_size, depth, filter_count}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray<float>(TensorShape({1}), {0}); AddInputFromArray<float>(TensorShape({1}), {255.0f}); AddInputFromArray<float>(TensorShape({1}), {0}); AddInputFromArray<float>(TensorShape({1}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width / stride; const int expected_height = (image_height * filter_count) / stride; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues<qint32>(&expected, {348, 252, 274, 175, // 348, 252, 274, 175, // 348, 252, 274, 175}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); }
Base
1
int CLASS parse_jpeg(int offset) { int len, save, hlen, mark; fseek(ifp, offset, SEEK_SET); if (fgetc(ifp) != 0xff || fgetc(ifp) != 0xd8) return 0; while (fgetc(ifp) == 0xff && (mark = fgetc(ifp)) != 0xda) { order = 0x4d4d; len = get2() - 2; save = ftell(ifp); if (mark == 0xc0 || mark == 0xc3 || mark == 0xc9) { fgetc(ifp); raw_height = get2(); raw_width = get2(); } order = get2(); hlen = get4(); if (get4() == 0x48454150) /* "HEAP" */ { #ifdef LIBRAW_LIBRARY_BUILD imgdata.lens.makernotes.CameraMount = LIBRAW_MOUNT_FixedLens; imgdata.lens.makernotes.LensMount = LIBRAW_MOUNT_FixedLens; #endif parse_ciff(save + hlen, len - hlen, 0); } if (parse_tiff(save + 6)) apply_tiff(); fseek(ifp, save + len, SEEK_SET); } return 1; }
Class
2
R_API RBinJavaAttrInfo *r_bin_java_rtv_annotations_attr_new(RBinJavaObj *bin, ut8 *buffer, ut64 sz, ut64 buf_offset) { ut32 i = 0; ut64 offset = 0; if (buf_offset + 8 > sz) { return NULL; } RBinJavaAttrInfo *attr = r_bin_java_default_attr_new (bin, buffer, sz, buf_offset); offset += 6; if (attr) { attr->type = R_BIN_JAVA_ATTR_TYPE_RUNTIME_VISIBLE_ANNOTATION_ATTR; attr->info.annotation_array.num_annotations = R_BIN_JAVA_USHORT (buffer, offset); offset += 2; attr->info.annotation_array.annotations = r_list_newf (r_bin_java_annotation_free); for (i = 0; i < attr->info.annotation_array.num_annotations; i++) { if (offset >= sz) { break; } RBinJavaAnnotation *annotation = r_bin_java_annotation_new (buffer + offset, sz - offset, buf_offset + offset); if (annotation) { offset += annotation->size; r_list_append (attr->info.annotation_array.annotations, (void *) annotation); } } attr->size = offset; } return attr; }
Base
1
void FormatConverter<T>::InitSparseToDenseConverter( std::vector<int> shape, std::vector<int> traversal_order, std::vector<TfLiteDimensionType> format, std::vector<int> dense_size, std::vector<std::vector<int>> segments, std::vector<std::vector<int>> indices, std::vector<int> block_map) { dense_shape_ = std::move(shape); traversal_order_ = std::move(traversal_order); block_map_ = std::move(block_map); format_ = std::move(format); dense_size_ = 1; for (int i = 0; i < dense_shape_.size(); i++) { dense_size_ *= dense_shape_[i]; } dim_metadata_.resize(2 * format_.size()); for (int i = 0; i < format_.size(); i++) { if (format_[i] == kTfLiteDimDense) { dim_metadata_[2 * i] = {dense_size[i]}; } else { dim_metadata_[2 * i] = std::move(segments[i]); dim_metadata_[2 * i + 1] = std::move(indices[i]); } } int original_rank = dense_shape_.size(); int block_dim = 0; blocked_shape_.resize(original_rank); block_size_.resize(block_map_.size()); for (int i = 0; i < original_rank; i++) { if (block_dim < block_map_.size() && block_map_[block_dim] == i) { int orig_dim = traversal_order_[original_rank + block_dim]; block_size_[block_dim] = dense_size[orig_dim]; blocked_shape_[i] = dense_shape_[i] / dense_size[orig_dim]; block_dim++; } else { blocked_shape_[i] = dense_shape_[i]; } } }
Base
1
void Init(void) { for(int i = 0;i < 19;i++) { #ifdef DEBUG_QMCODER char string[5] = "X0 "; string[1] = (i / 10) + '0'; string[2] = (i % 10) + '0'; X[i].Init(string); string[0] = 'M'; M[i].Init(string); #else X[i].Init(); M[i].Init(); #endif } }
Class
2
bool read(ReadonlyBytes buffer) { auto fields_size = sizeof(CentralDirectoryRecord) - (sizeof(u8*) * 3); if (buffer.size() < fields_size) return false; if (memcmp(buffer.data(), central_directory_record_signature, sizeof(central_directory_record_signature)) != 0) return false; memcpy(reinterpret_cast<void*>(&made_by_version), buffer.data() + sizeof(central_directory_record_signature), fields_size); name = buffer.data() + sizeof(central_directory_record_signature) + fields_size; extra_data = name + name_length; comment = extra_data + extra_data_length; return true; }
Base
1
ECDSA_Signature_Operation::raw_sign(const uint8_t msg[], size_t msg_len, RandomNumberGenerator& rng) { BigInt m(msg, msg_len, m_group.get_order_bits()); #if defined(BOTAN_HAS_RFC6979_GENERATOR) const BigInt k = generate_rfc6979_nonce(m_x, m_group.get_order(), m, m_rfc6979_hash); #else const BigInt k = m_group.random_scalar(rng); #endif const BigInt k_inv = m_group.inverse_mod_order(k); const BigInt r = m_group.mod_order( m_group.blinded_base_point_multiply_x(k, rng, m_ws)); const BigInt xrm = m_group.mod_order(m_group.multiply_mod_order(m_x, r) + m); const BigInt s = m_group.multiply_mod_order(k_inv, xrm); // With overwhelming probability, a bug rather than actual zero r/s if(r.is_zero() || s.is_zero()) throw Internal_Error("During ECDSA signature generated zero r/s"); return BigInt::encode_fixed_length_int_pair(r, s, m_group.get_order_bytes()); }
Class
2
void do_change_user(int afdt_fd) { std::string uname; lwp_read(afdt_fd, uname); if (!uname.length()) return; auto buf = PasswdBuffer{}; struct passwd *pw; if (getpwnam_r(uname.c_str(), &buf.ent, buf.data.get(), buf.size, &pw)) { // TODO(alexeyt) should we log something and/or fail to start? return; } if (!pw) { // TODO(alexeyt) should we log something and/or fail to start? return; } if (pw->pw_gid) { initgroups(pw->pw_name, pw->pw_gid); setgid(pw->pw_gid); } if (pw->pw_uid) { setuid(pw->pw_uid); } }
Base
1
TfLiteStatus HardSwishPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_STATUS(GenericPrepare(context, node)); TfLiteTensor* output = GetOutput(context, node, 0); if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { HardSwishData* data = static_cast<HardSwishData*>(node->user_data); HardSwishParams* params = &data->params; const TfLiteTensor* input = GetInput(context, node, 0); params->input_zero_point = input->params.zero_point; params->output_zero_point = output->params.zero_point; const float input_scale = input->params.scale; const float hires_input_scale = (1.0f / 128.0f) * input_scale; const float reluish_scale = 3.0f / 32768.0f; const float output_scale = output->params.scale; const float output_multiplier = hires_input_scale / output_scale; int32_t output_multiplier_fixedpoint_int32; QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32, &params->output_multiplier_exponent); DownScaleInt32ToInt16Multiplier( output_multiplier_fixedpoint_int32, &params->output_multiplier_fixedpoint_int16); TF_LITE_ENSURE(context, params->output_multiplier_exponent <= 0); const float reluish_multiplier = hires_input_scale / reluish_scale; int32_t reluish_multiplier_fixedpoint_int32; QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32, &params->reluish_multiplier_exponent); DownScaleInt32ToInt16Multiplier( reluish_multiplier_fixedpoint_int32, &params->reluish_multiplier_fixedpoint_int16); } return kTfLiteOk; }
Base
1
TEST_CASE_METHOD(TestFixture, "DKG AES encrypted secret shares test", "[dkg-aes-encr-sshares]") { vector<char> errMsg(BUF_LEN, 0); vector<char> result(BUF_LEN, 0); int errStatus = 0; uint32_t encLen = 0; vector <uint8_t> encryptedDKGSecret(BUF_LEN, 0); PRINT_SRC_LINE auto status = trustedGenDkgSecretAES(eid, &errStatus, errMsg.data(), encryptedDKGSecret.data(), &encLen, 2); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); uint64_t enc_len = encLen; PRINT_SRC_LINE status = trustedSetEncryptedDkgPolyAES(eid, &errStatus, errMsg.data(), encryptedDKGSecret.data(), enc_len); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); vector <uint8_t> encrPRDHKey(BUF_LEN, 0); string pub_keyB = SAMPLE_PUBLIC_KEY_B; vector<char> s_shareG2(BUF_LEN, 0); PRINT_SRC_LINE status = trustedGetEncryptedSecretShareAES(eid, &errStatus, errMsg.data(), encrPRDHKey.data(), &encLen, result.data(), s_shareG2.data(), (char *) pub_keyB.data(), 2, 2, 1); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); }
Base
1
QString Helper::temporaryMountDevice(const QString &device, const QString &name, bool readonly) { QString mount_point = mountPoint(device); if (!mount_point.isEmpty()) return mount_point; mount_point = "%1/.%2/mount/%3"; const QStringList &tmp_paths = QStandardPaths::standardLocations(QStandardPaths::TempLocation); mount_point = mount_point.arg(tmp_paths.isEmpty() ? "/tmp" : tmp_paths.first()).arg(qApp->applicationName()).arg(name); if (!QDir::current().mkpath(mount_point)) { dCError("mkpath \"%s\" failed", qPrintable(mount_point)); return QString(); } if (!mountDevice(device, mount_point, readonly)) { dCError("Mount the device \"%s\" to \"%s\" failed", qPrintable(device), qPrintable(mount_point)); return QString(); } return mount_point; }
Base
1
static float *get_window(vorb *f, int len) { len <<= 1; if (len == f->blocksize_0) return f->window[0]; if (len == f->blocksize_1) return f->window[1]; assert(0); return NULL; }
Base
1
void Compute(OpKernelContext* ctx) override { // This call processes inputs 1 and 2 to write output 0. ReshapeOp::Compute(ctx); const float input_min_float = ctx->input(2).flat<float>()(0); const float input_max_float = ctx->input(3).flat<float>()(0); Tensor* output_min = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output(1, TensorShape({}), &output_min)); output_min->flat<float>()(0) = input_min_float; Tensor* output_max = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output(2, TensorShape({}), &output_max)); output_max->flat<float>()(0) = input_max_float; }
Base
1
TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TfLiteTensor* output = GetOutput(context, node, 0); const TfLiteTensor* input = GetInput(context, node, 0); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); int batches = input->dims->data[0]; int height = input->dims->data[1]; int width = input->dims->data[2]; int channels_out = input->dims->data[3]; // Matching GetWindowedOutputSize in TensorFlow. auto padding = params->padding; int out_width, out_height; data->padding = ComputePaddingHeightWidth( params->stride_height, params->stride_width, 1, 1, height, width, params->filter_height, params->filter_width, padding, &out_height, &out_width); if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { if (pool_type == kAverage || pool_type == kMax) { TFLITE_DCHECK_LE(std::abs(input->params.scale - output->params.scale), 1.0e-6); TFLITE_DCHECK_EQ(input->params.zero_point, output->params.zero_point); } if (pool_type == kL2) { // We currently don't have a quantized implementation of L2Pool TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); } } TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = batches; output_size->data[1] = out_height; output_size->data[2] = out_width; output_size->data[3] = channels_out; return context->ResizeTensor(context, output, output_size); }
Base
1
set<int> PipeSocketHandler::listen(const SocketEndpoint& endpoint) { lock_guard<std::recursive_mutex> guard(globalMutex); string pipePath = endpoint.name(); if (pipeServerSockets.find(pipePath) != pipeServerSockets.end()) { throw runtime_error("Tried to listen twice on the same path"); } sockaddr_un local; int fd = socket(AF_UNIX, SOCK_STREAM, 0); FATAL_FAIL(fd); initServerSocket(fd); local.sun_family = AF_UNIX; /* local is declared before socket() ^ */ strcpy(local.sun_path, pipePath.c_str()); unlink(local.sun_path); FATAL_FAIL(::bind(fd, (struct sockaddr*)&local, sizeof(sockaddr_un))); ::listen(fd, 5); #ifndef WIN32 FATAL_FAIL(::chmod(local.sun_path, S_IRUSR | S_IWUSR | S_IXUSR)); #endif pipeServerSockets[pipePath] = set<int>({fd}); return pipeServerSockets[pipePath]; }
Class
2
int bmp_validate(jas_stream_t *in) { int n; int i; uchar buf[2]; assert(JAS_STREAM_MAXPUTBACK >= 2); /* Read the first two characters that constitute the signature. */ if ((n = jas_stream_read(in, (char *) buf, 2)) < 0) { return -1; } /* Put the characters read back onto the stream. */ for (i = n - 1; i >= 0; --i) { if (jas_stream_ungetc(in, buf[i]) == EOF) { return -1; } } /* Did we read enough characters? */ if (n < 2) { return -1; } /* Is the signature correct for the BMP format? */ if (buf[0] == (BMP_MAGIC & 0xff) && buf[1] == (BMP_MAGIC >> 8)) { return 0; } return -1; }
Base
1
inline size_t codepoint_length(const char *s8, size_t l) { if (l) { auto b = static_cast<uint8_t>(s8[0]); if ((b & 0x80) == 0) { return 1; } else if ((b & 0xE0) == 0xC0) { return 2; } else if ((b & 0xF0) == 0xE0) { return 3; } else if ((b & 0xF8) == 0xF0) { return 4; } } return 0; }
Base
1
void operator()(OpKernelContext* ctx, const Index num_segments, const TensorShape& segment_ids_shape, typename TTypes<Index>::ConstFlat segment_ids, const Index data_size, const T* data, typename TTypes<T, 2>::Tensor output) { if (output.size() == 0) { return; } // Set 'output' to initial value. GPUDevice d = ctx->template eigen_device<GPUDevice>(); GpuLaunchConfig config = GetGpuLaunchConfig(output.size(), d); TF_CHECK_OK(GpuLaunchKernel( SetToValue<T>, config.block_count, config.thread_per_block, 0, d.stream(), output.size(), output.data(), InitialValueF()())); if (data_size == 0 || segment_ids_shape.num_elements() == 0) { return; } // Launch kernel to compute unsorted segment reduction. // Notes: // *) 'data_size' is the total number of elements to process. // *) 'segment_ids.shape' is a prefix of data's shape. // *) 'input_outer_dim_size' is the total number of segments to process. const Index input_outer_dim_size = segment_ids.dimension(0); const Index input_inner_dim_size = data_size / input_outer_dim_size; config = GetGpuLaunchConfig(data_size, d); TF_CHECK_OK( GpuLaunchKernel(UnsortedSegmentCustomKernel<T, Index, ReductionF>, config.block_count, config.thread_per_block, 0, d.stream(), input_outer_dim_size, input_inner_dim_size, num_segments, segment_ids.data(), data, output.data())); }
Base
1
void reposition(int pos) { ptr = start + pos; }
Base
1
TfLiteStatus ReverseSequenceImpl(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); const TfLiteTensor* seq_lengths_tensor = GetInput(context, node, kSeqLengthsTensor); const TS* seq_lengths = GetTensorData<TS>(seq_lengths_tensor); auto* params = reinterpret_cast<TfLiteReverseSequenceParams*>(node->builtin_data); int seq_dim = params->seq_dim; int batch_dim = params->batch_dim; TF_LITE_ENSURE(context, seq_dim >= 0); TF_LITE_ENSURE(context, batch_dim >= 0); TF_LITE_ENSURE(context, seq_dim != batch_dim); TF_LITE_ENSURE(context, seq_dim < NumDimensions(input)); TF_LITE_ENSURE(context, batch_dim < NumDimensions(input)); TF_LITE_ENSURE_EQ(context, SizeOfDimension(seq_lengths_tensor, 0), SizeOfDimension(input, batch_dim)); for (int i = 0; i < NumDimensions(seq_lengths_tensor); ++i) { TF_LITE_ENSURE(context, seq_lengths[i] <= SizeOfDimension(input, seq_dim)); } TfLiteTensor* output = GetOutput(context, node, kOutputTensor); reference_ops::ReverseSequence<T, TS>( seq_lengths, seq_dim, batch_dim, GetTensorShape(input), GetTensorData<T>(input), GetTensorShape(output), GetTensorData<T>(output)); return kTfLiteOk; }
Base
1
error_t coapServerInitResponse(CoapServerContext *context) { CoapMessageHeader *requestHeader; CoapMessageHeader *responseHeader; //Point to the CoAP request header requestHeader = (CoapMessageHeader *) context->request.buffer; //Point to the CoAP response header responseHeader = (CoapMessageHeader *) context->response.buffer; //Format message header responseHeader->version = COAP_VERSION_1; responseHeader->tokenLen = requestHeader->tokenLen; responseHeader->code = COAP_CODE_INTERNAL_SERVER; responseHeader->mid = requestHeader->mid; //If immediately available, the response to a request carried in a //Confirmable message is carried in an Acknowledgement (ACK) message if(requestHeader->type == COAP_TYPE_CON) { responseHeader->type = COAP_TYPE_ACK; } else { responseHeader->type = COAP_TYPE_NON; } //The token is used to match a response with a request osMemcpy(responseHeader->token, requestHeader->token, requestHeader->tokenLen); //Set the length of the CoAP message context->response.length = sizeof(CoapMessageHeader) + responseHeader->tokenLen; context->response.pos = 0; //Sucessful processing return NO_ERROR; }
Class
2
ProcessUDPHeader(tTcpIpPacketParsingResult _res, PVOID pIpHeader, ULONG len, USHORT ipHeaderSize) { tTcpIpPacketParsingResult res = _res; ULONG udpDataStart = ipHeaderSize + sizeof(UDPHeader); res.xxpStatus = ppresXxpIncomplete; res.TcpUdp = ppresIsUDP; res.XxpIpHeaderSize = udpDataStart; if (len >= udpDataStart) { UDPHeader *pUdpHeader = (UDPHeader *)RtlOffsetToPointer(pIpHeader, ipHeaderSize); USHORT datagramLength = swap_short(pUdpHeader->udp_length); res.xxpStatus = ppresXxpKnown; // may be full or not, but the datagram length is known DPrintf(2, ("udp: len %d, datagramLength %d\n", len, datagramLength)); } return res; }
Class
2
unsigned int bounded_iostream::write_no_buffer(const void *from, size_t bytes_to_write) { //return iostream::write(from,tpsize,dtsize); std::pair<unsigned int, Sirikata::JpegError> retval; if (byte_bound != 0 && byte_position + bytes_to_write > byte_bound) { size_t real_bytes_to_write = byte_bound - byte_position; byte_position += real_bytes_to_write; retval = parent->Write(reinterpret_cast<const unsigned char*>(from), real_bytes_to_write); if (retval.first < real_bytes_to_write) { err = retval.second; return retval.first; } return bytes_to_write; // pretend we wrote it all } size_t total = bytes_to_write; retval = parent->Write(reinterpret_cast<const unsigned char*>(from), total); unsigned int written = retval.first; byte_position += written; if (written < total ) { err = retval.second; return written; } return bytes_to_write; }
Base
1
Status BuildInputArgIndex(const OpDef::ArgDef& arg_def, AttrSlice attr_values, const FunctionDef::ArgAttrs* arg_attrs, bool ints_on_device, int64_t resource_arg_unique_id) { bool is_type_list; DataTypeVector dtypes; TF_RETURN_IF_ERROR( ArgNumType(attr_values, arg_def, &is_type_list, &dtypes)); CHECK_GE(dtypes.size(), size_t{1}); int arg_index = result_.nodes.size(); TF_RETURN_IF_ERROR( AddItem(arg_def.name(), {true, arg_index, 0, is_type_list, dtypes})); // Creates dtypes.size() nodes in the graph. for (size_t i = 0; i < dtypes.size(); ++i) { TF_RETURN_IF_ERROR(AddItem(strings::StrCat(arg_def.name(), ":", i), {true, arg_index, 0, false, {dtypes[i]}})); DCHECK_EQ(arg_index, result_.nodes.size()); string name = arg_def.name(); if (dtypes.size() > 1) { strings::StrAppend(&name, "_", i); } NodeDef* gnode = AddNode(name); if (ints_on_device && dtypes[i] == DataType::DT_INT32) { gnode->set_op(FunctionLibraryDefinition::kDeviceArgOp); } else { gnode->set_op(FunctionLibraryDefinition::kArgOp); } DataType dtype = arg_def.is_ref() ? MakeRefType(dtypes[i]) : dtypes[i]; AddAttr("T", dtype, gnode); AddAttr("index", arg_index, gnode); if (resource_arg_unique_id >= 0) { AddAttr("_resource_arg_unique_id", resource_arg_unique_id, gnode); } if (arg_attrs) { for (const auto& arg_attr : arg_attrs->attr()) { AddAttr(arg_attr.first, arg_attr.second, gnode->mutable_attr()); } } result_.arg_types.push_back(dtypes[i]); ++arg_index; } return Status::OK(); }
Base
1
static bool php_mb_parse_encoding(const Variant& encoding, mbfl_encoding ***return_list, int *return_size, bool persistent) { bool ret; if (encoding.isArray()) { ret = php_mb_parse_encoding_array(encoding.toArray(), return_list, return_size, persistent ? 1 : 0); } else { String enc = encoding.toString(); ret = php_mb_parse_encoding_list(enc.data(), enc.size(), return_list, return_size, persistent ? 1 : 0); } if (!ret) { if (return_list && *return_list) { free(*return_list); *return_list = nullptr; } return_size = 0; } return ret; }
Base
1
void DCR_CLASS dcr_parse_riff(DCRAW* p) { unsigned i, size, end; char tag[4], date[64], month[64]; static const char mon[12][4] = { "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" }; struct tm t; p->order = 0x4949; dcr_fread(p->obj_, tag, 4, 1); size = dcr_get4(p); end = dcr_ftell(p->obj_) + size; if (!memcmp(tag,"RIFF",4) || !memcmp(tag,"LIST",4)) { dcr_get4(p); while (dcr_ftell(p->obj_)+7 < (long)end) dcr_parse_riff(p); } else if (!memcmp(tag,"nctg",4)) { while (dcr_ftell(p->obj_)+7 < (long)end) { i = dcr_get2(p); size = dcr_get2(p); if ((i+1) >> 1 == 10 && size == 20) dcr_get_timestamp(p,0); else dcr_fseek(p->obj_, size, SEEK_CUR); } } else if (!memcmp(tag,"IDIT",4) && size < 64) { dcr_fread(p->obj_, date, 64, 1); date[size] = 0; memset (&t, 0, sizeof t); if (sscanf (date, "%*s %s %d %d:%d:%d %d", month, &t.tm_mday, &t.tm_hour, &t.tm_min, &t.tm_sec, &t.tm_year) == 6) { for (i=0; i < 12 && strcasecmp(mon[i],month); i++); t.tm_mon = i; t.tm_year -= 1900; if (mktime(&t) > 0) p->timestamp = mktime(&t); } } else dcr_fseek(p->obj_, size, SEEK_CUR); }
Base
1
folly::Optional<TLSMessage> EncryptedReadRecordLayer::read( folly::IOBufQueue& buf) { auto decryptedBuf = getDecryptedBuf(buf); if (!decryptedBuf) { return folly::none; } TLSMessage msg; // Iterate over the buffers while trying to find // the first non-zero octet. This is much faster than // first iterating and then trimming. auto currentBuf = decryptedBuf->get(); bool nonZeroFound = false; do { currentBuf = currentBuf->prev(); size_t i = currentBuf->length(); while (i > 0 && !nonZeroFound) { nonZeroFound = (currentBuf->data()[i - 1] != 0); i--; } if (nonZeroFound) { msg.type = static_cast<ContentType>(currentBuf->data()[i]); } currentBuf->trimEnd(currentBuf->length() - i); } while (!nonZeroFound && currentBuf != decryptedBuf->get()); if (!nonZeroFound) { throw std::runtime_error("No content type found"); } msg.fragment = std::move(*decryptedBuf); switch (msg.type) { case ContentType::handshake: case ContentType::alert: case ContentType::application_data: break; default: throw std::runtime_error(folly::to<std::string>( "received encrypted content type ", static_cast<ContentTypeType>(msg.type))); } if (!msg.fragment || msg.fragment->empty()) { if (msg.type == ContentType::application_data) { msg.fragment = folly::IOBuf::create(0); } else { throw std::runtime_error("received empty fragment"); } } return msg; }
Base
1
const String& setSize(int len) { assertx(m_str); m_str->setSize(len); return *this; }
Base
1
MONGO_EXPORT int bson_append_code_n( bson *b, const char *name, const char *value, int len ) { return bson_append_string_base( b, name, value, len, BSON_CODE ); }
Base
1
LiteralString(std::string &&s, bool ignore_case) : lit_(s), ignore_case_(ignore_case), is_word_(false) {}
Base
1
CmdResult HandleLocal(LocalUser* user, const Params& parameters) CXX11_OVERRIDE { size_t origin = parameters.size() > 1 ? 1 : 0; if (parameters[origin].empty()) { user->WriteNumeric(ERR_NOORIGIN, "No origin specified"); return CMD_FAILURE; } ClientProtocol::Messages::Pong pong(parameters[0], origin ? parameters[1] : ""); user->Send(ServerInstance->GetRFCEvents().pong, pong); return CMD_SUCCESS; }
Class
2
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); const TfLiteTensor* size = GetInput(context, node, kSizeTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); // TODO(ahentz): Our current implementations rely on the input being 4D, // and the size being 1D tensor with exactly 2 elements. TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1); TF_LITE_ENSURE_TYPES_EQ(context, size->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, size->dims->data[0], 2); output->type = input->type; if (!IsConstantTensor(size)) { SetTensorToDynamic(output); return kTfLiteOk; } return ResizeOutputTensor(context, input, size, output); }
Base
1
RemoteFsDevice::RemoteFsDevice(MusicLibraryModel *m, const DeviceOptions &options, const Details &d) : FsDevice(m, d.name, createUdi(d.name)) , mountToken(0) , currentMountStatus(false) , details(d) , proc(0) , mounterIface(0) , messageSent(false) { opts=options; // details.path=Utils::fixPath(details.path); load(); mount(); icn=MonoIcon::icon(details.isLocalFile() ? FontAwesome::foldero : constSshfsProtocol==details.url.scheme() ? FontAwesome::linux_os : FontAwesome::windows, Utils::monoIconColor()); }
Class
2
ZlibInStream::ZlibInStream(int bufSize_) : underlying(0), bufSize(bufSize_ ? bufSize_ : DEFAULT_BUF_SIZE), offset(0), zs(NULL), bytesIn(0) { ptr = end = start = new U8[bufSize]; init(); }
Base
1
jas_matrix_t *jas_seq2d_input(FILE *in) { jas_matrix_t *matrix; int i; int j; long x; int numrows; int numcols; int xoff; int yoff; if (fscanf(in, "%d %d", &xoff, &yoff) != 2) return 0; if (fscanf(in, "%d %d", &numcols, &numrows) != 2) return 0; if (!(matrix = jas_seq2d_create(xoff, yoff, xoff + numcols, yoff + numrows))) return 0; if (jas_matrix_numrows(matrix) != numrows || jas_matrix_numcols(matrix) != numcols) { abort(); } /* Get matrix data. */ for (i = 0; i < jas_matrix_numrows(matrix); i++) { for (j = 0; j < jas_matrix_numcols(matrix); j++) { if (fscanf(in, "%ld", &x) != 1) { jas_matrix_destroy(matrix); return 0; } jas_matrix_set(matrix, i, j, JAS_CAST(jas_seqent_t, x)); } } return matrix; }
Base
1
static float *get_window(vorb *f, int len) { len <<= 1; if (len == f->blocksize_0) return f->window[0]; if (len == f->blocksize_1) return f->window[1]; assert(0); return NULL; }
Base
1
RemoteFsDevice::RemoteFsDevice(MusicLibraryModel *m, const Details &d) : FsDevice(m, d.name, createUdi(d.name)) , mountToken(0) , currentMountStatus(false) , details(d) , proc(0) , mounterIface(0) , messageSent(false) { // details.path=Utils::fixPath(details.path); setup(); icn=MonoIcon::icon(details.isLocalFile() ? FontAwesome::foldero : constSshfsProtocol==details.url.scheme() ? FontAwesome::linux_os : FontAwesome::windows, Utils::monoIconColor()); }
Class
2
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); const TfLiteTensor* axis = GetInput(context, node, kAxisTensor); TF_LITE_ENSURE_EQ(context, NumDimensions(axis), 1); TF_LITE_ENSURE(context, NumDimensions(input) >= NumElements(axis)); if (input->type != kTfLiteInt32 && input->type != kTfLiteFloat32 && input->type != kTfLiteUInt8 && input->type != kTfLiteInt16 && input->type != kTfLiteInt64 && input->type != kTfLiteBool) { context->ReportError(context, "Type '%s' is not supported by reverse.", TfLiteTypeGetName(input->type)); return kTfLiteError; } if (axis->type != kTfLiteInt32) { context->ReportError(context, "Axis Type '%s' is not supported by reverse.", TfLiteTypeGetName(axis->type)); return kTfLiteError; } // TODO(renjieliu): support multi-axis case. if (NumElements(axis) > 1) { context->ReportError(context, "Current does not support more than 1 axis."); } TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TfLiteIntArray* output_shape = TfLiteIntArrayCopy(input->dims); TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type); return context->ResizeTensor(context, output, output_shape); }
Base
1
void HttpIntegrationTest::waitForNextUpstreamRequest(uint64_t upstream_index) { waitForNextUpstreamRequest(std::vector<uint64_t>({upstream_index})); }
Class
2
cosine_seek_read(wtap *wth, gint64 seek_off, struct wtap_pkthdr *phdr, Buffer *buf, int *err, gchar **err_info) { int pkt_len; char line[COSINE_LINE_LENGTH]; if (file_seek(wth->random_fh, seek_off, SEEK_SET, err) == -1) return FALSE; if (file_gets(line, COSINE_LINE_LENGTH, wth->random_fh) == NULL) { *err = file_error(wth->random_fh, err_info); if (*err == 0) { *err = WTAP_ERR_SHORT_READ; } return FALSE; } /* Parse the header */ pkt_len = parse_cosine_rec_hdr(phdr, line, err, err_info); if (pkt_len == -1) return FALSE; /* Convert the ASCII hex dump to binary data */ return parse_cosine_hex_dump(wth->random_fh, phdr, pkt_len, buf, err, err_info); }
Class
2
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); OpContext op_context(context, node); TF_LITE_ENSURE_EQ(context, NumOutputs(node), op_context.params->num_splits); auto input_type = op_context.input->type; TF_LITE_ENSURE(context, input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 || input_type == kTfLiteInt8 || input_type == kTfLiteInt16 || input_type == kTfLiteInt32); for (int i = 0; i < NumOutputs(node); ++i) { GetOutput(context, node, i)->type = input_type; } // If we know the contents of the 'axis' tensor, resize all outputs. // Otherwise, wait until Eval(). if (IsConstantTensor(op_context.axis)) { return ResizeOutputTensors(context, node, op_context.axis, op_context.input, op_context.params->num_splits); } else { return UseDynamicOutputTensors(context, node); } }
Base
1
void fx_DataView(txMachine* the) { txSlot* slot; txBoolean flag = 0; txInteger offset, size; txSlot* info; txSlot* instance; txSlot* view; txSlot* buffer; if (mxIsUndefined(mxTarget)) mxTypeError("call: DataView"); if ((mxArgc > 0) && (mxArgv(0)->kind == XS_REFERENCE_KIND)) { slot = mxArgv(0)->value.reference->next; if (slot && ((slot->kind == XS_ARRAY_BUFFER_KIND) || (slot->kind == XS_HOST_KIND))) { flag = 1; } } if (!flag) mxTypeError("buffer is no ArrayBuffer instance"); offset = fxArgToByteLength(the, 1, 0); info = fxGetBufferInfo(the, mxArgv(0)); if (info->value.bufferInfo.length < offset) mxRangeError("out of range byteOffset %ld", offset); size = fxArgToByteLength(the, 2, -1); if (size >= 0) { if (info->value.bufferInfo.length < (offset + size)) mxRangeError("out of range byteLength %ld", size); } else { if (info->value.bufferInfo.maxLength < 0) size = info->value.bufferInfo.length - offset; } mxPushSlot(mxTarget); fxGetPrototypeFromConstructor(the, &mxDataViewPrototype); instance = fxNewDataViewInstance(the); mxPullSlot(mxResult); view = instance->next; buffer = view->next; buffer->kind = XS_REFERENCE_KIND; buffer->value.reference = mxArgv(0)->value.reference; info = fxGetBufferInfo(the, buffer); if (info->value.bufferInfo.maxLength >= 0) { if (info->value.bufferInfo.length < offset) mxRangeError("out of range byteOffset %ld", offset); else if (size >= 0) { if (info->value.bufferInfo.length < (offset + size)) mxRangeError("out of range byteLength %ld", size); } } view->value.dataView.offset = offset; view->value.dataView.size = size; }
Base
1
void HeaderMapImpl::addViaMove(HeaderString&& key, HeaderString&& value) { // If this is an inline header, we can't addViaMove, because we'll overwrite // the existing value. auto* entry = getExistingInline(key.getStringView()); if (entry != nullptr) { appendToHeader(entry->value(), value.getStringView()); key.clear(); value.clear(); } else { insertByKey(std::move(key), std::move(value)); } }
Class
2
static __forceinline void draw_line(float *output, int x0, int y0, int x1, int y1, int n) { int dy = y1 - y0; int adx = x1 - x0; int ady = abs(dy); int base; int x=x0,y=y0; int err = 0; int sy; #ifdef STB_VORBIS_DIVIDE_TABLE if (adx < DIVTAB_DENOM && ady < DIVTAB_NUMER) { if (dy < 0) { base = -integer_divide_table[ady][adx]; sy = base-1; } else { base = integer_divide_table[ady][adx]; sy = base+1; } } else { base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; } #else base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; #endif ady -= abs(base) * adx; if (x1 > n) x1 = n; if (x < x1) { LINE_OP(output[x], inverse_db_table[y]); for (++x; x < x1; ++x) { err += ady; if (err >= adx) { err -= adx; y += sy; } else y += base; LINE_OP(output[x], inverse_db_table[y]); } } }
Base
1
void RemoteFsDevice::load() { if (RemoteFsDevice::constSambaAvahiProtocol==details.url.scheme()) { // Start Avahi listener... Avahi::self(); QUrlQuery q(details.url); if (q.hasQueryItem(constServiceNameQuery)) { details.serviceName=q.queryItemValue(constServiceNameQuery); } if (!details.serviceName.isEmpty()) { AvahiService *srv=Avahi::self()->getService(details.serviceName); if (!srv || srv->getHost().isEmpty()) { sub=tr("Not Available"); } else { sub=tr("Available"); } } connect(Avahi::self(), SIGNAL(serviceAdded(QString)), SLOT(serviceAdded(QString))); connect(Avahi::self(), SIGNAL(serviceRemoved(QString)), SLOT(serviceRemoved(QString))); } if (isConnected()) { setAudioFolder(); readOpts(settingsFileName(), opts, true); rescan(false); // Read from cache if we have it! } }
Class
2
int main(int argc, char * argv[]) { gr_face * face = 0; try { if (argc != 2) throw std::length_error("not enough arguments: need a backing font"); dummyFace = face_handle(argv[1]); testFeatTable<FeatTableTestA>(testDataA, "A\n"); testFeatTable<FeatTableTestB>(testDataB, "B\n"); testFeatTable<FeatTableTestB>(testDataBunsorted, "Bu\n"); testFeatTable<FeatTableTestC>(testDataCunsorted, "C\n"); testFeatTable<FeatTableTestD>(testDataDunsorted, "D\n"); testFeatTable<FeatTableTestE>(testDataE, "E\n"); // test a bad settings offset stradling the end of the table FeatureMap testFeatureMap; dummyFace.replace_table(TtfUtil::Tag::Feat, &testBadOffset, sizeof testBadOffset); face = gr_make_face_with_ops(&dummyFace, &face_handle::ops, gr_face_dumbRendering); bool readStatus = testFeatureMap.readFeats(*face); testAssert("fail gracefully on bad table", !readStatus); } catch (std::exception & e) { fprintf(stderr, "%s: %s\n", argv[0], e.what()); gr_face_destroy(face); return 1; } gr_face_destroy(face); return 0; }
Base
1
RectangleRequest(const struct RectangleRequest &req) : Explicit() { // Not nice, but this is really faster and simpler memcpy(this,&req,sizeof(struct RectangleRequest)); // Not linked in any way if this is new. rr_pNext = NULL; }
Class
2
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteDepthToSpaceParams*>(node->builtin_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); auto data_type = output->type; TF_LITE_ENSURE(context, data_type == kTfLiteFloat32 || data_type == kTfLiteUInt8 || data_type == kTfLiteInt8 || data_type == kTfLiteInt32 || data_type == kTfLiteInt64); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); const int block_size = params->block_size; const int input_height = input->dims->data[1]; const int input_width = input->dims->data[2]; const int input_channels = input->dims->data[3]; int output_height = input_height * block_size; int output_width = input_width * block_size; int output_channels = input_channels / block_size / block_size; TF_LITE_ENSURE_EQ(context, input_height, output_height / block_size); TF_LITE_ENSURE_EQ(context, input_width, output_width / block_size); TF_LITE_ENSURE_EQ(context, input_channels, output_channels * block_size * block_size); TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = input->dims->data[0]; output_size->data[1] = output_height; output_size->data[2] = output_width; output_size->data[3] = output_channels; return context->ResizeTensor(context, output, output_size); }
Base
1
char * unescape(char * dest, const char * src) { while (*src) { if (*src == '\\') { ++src; switch (*src) { case 'n': *dest = '\n'; break; case 'r': *dest = '\r'; break; case 't': *dest = '\t'; break; case 'f': *dest = '\f'; break; case 'v': *dest = '\v'; break; default: *dest = *src; } } else { *dest = *src; } ++src; ++dest; } *dest = '\0'; return dest; }
Base
1
ALWAYS_INLINE String serialize_impl(const Variant& value, const SerializeOptions& opts) { switch (value.getType()) { case KindOfClass: case KindOfLazyClass: case KindOfPersistentString: case KindOfString: { auto const str = isStringType(value.getType()) ? value.getStringData() : isClassType(value.getType()) ? classToStringHelper(value.toClassVal()) : lazyClassToStringHelper(value.toLazyClassVal()); auto const size = str->size(); if (size >= RuntimeOption::MaxSerializedStringSize) { throw Exception("Size of serialized string (%d) exceeds max", size); } StringBuffer sb; sb.append("s:"); sb.append(size); sb.append(":\""); sb.append(str->data(), size); sb.append("\";"); return sb.detach(); } case KindOfResource: return s_Res; case KindOfUninit: case KindOfNull: case KindOfBoolean: case KindOfInt64: case KindOfFunc: case KindOfPersistentVec: case KindOfVec: case KindOfPersistentDict: case KindOfDict: case KindOfPersistentKeyset: case KindOfKeyset: case KindOfPersistentDArray: case KindOfDArray: case KindOfPersistentVArray: case KindOfVArray: case KindOfDouble: case KindOfObject: case KindOfClsMeth: case KindOfRClsMeth: case KindOfRFunc: case KindOfRecord: break; } VariableSerializer vs(VariableSerializer::Type::Serialize); if (opts.keepDVArrays) vs.keepDVArrays(); if (opts.forcePHPArrays) vs.setForcePHPArrays(); if (opts.warnOnHackArrays) vs.setHackWarn(); if (opts.warnOnPHPArrays) vs.setPHPWarn(); if (opts.ignoreLateInit) vs.setIgnoreLateInit(); if (opts.serializeProvenanceAndLegacy) vs.setSerializeProvenanceAndLegacy(); // Keep the count so recursive calls to serialize() embed references properly. return vs.serialize(value, true, true); }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); output->type = input->type; return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); }
Base
1
TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); TfLiteTensor* output = GetOutput(context, node, 0); const TfLiteTensor* input = GetInput(context, node, 0); switch (input->type) { // Already know in/out types are same. case kTfLiteFloat32: AverageEvalFloat<kernel_type>(context, node, params, data, input, output); break; case kTfLiteUInt8: AverageEvalQuantizedUint8<kernel_type>(context, node, params, data, input, output); break; case kTfLiteInt8: AverageEvalQuantizedInt8<kernel_type>(context, node, params, data, input, output); break; case kTfLiteInt16: AverageEvalQuantizedInt16<kernel_type>(context, node, params, data, input, output); break; default: TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; }
Base
1
DeletionConfirmationDlg(QWidget *parent, const int &size, const QString &name, bool defaultDeleteFiles): QDialog(parent) { setupUi(this); if (size == 1) label->setText(tr("Are you sure you want to delete '%1' from the transfer list?", "Are you sure you want to delete 'ubuntu-linux-iso' from the transfer list?").arg(name)); else label->setText(tr("Are you sure you want to delete these %1 torrents from the transfer list?", "Are you sure you want to delete these 5 torrents from the transfer list?").arg(QString::number(size))); // Icons lbl_warn->setPixmap(GuiIconProvider::instance()->getIcon("dialog-warning").pixmap(lbl_warn->height())); lbl_warn->setFixedWidth(lbl_warn->height()); rememberBtn->setIcon(GuiIconProvider::instance()->getIcon("object-locked")); move(Utils::Misc::screenCenter(this)); checkPermDelete->setChecked(defaultDeleteFiles || Preferences::instance()->deleteTorrentFilesAsDefault()); connect(checkPermDelete, SIGNAL(clicked()), this, SLOT(updateRememberButtonState())); buttonBox->button(QDialogButtonBox::Cancel)->setFocus(); }
Base
1
explicit ThreadPoolHandleOp(OpKernelConstruction* ctx) : OpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("display_name", &display_name_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("num_threads", &num_threads_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("max_intra_op_parallelism", &max_intra_op_parallelism_)); OP_REQUIRES( ctx, num_threads_ > 0, errors::InvalidArgument("`num_threads` must be greater than zero.")); }
Base
1
static float *get_window(vorb *f, int len) { len <<= 1; if (len == f->blocksize_0) return f->window[0]; if (len == f->blocksize_1) return f->window[1]; assert(0); return NULL; }
Base
1
R_API RBinJavaVerificationObj *r_bin_java_verification_info_from_type(RBinJavaObj *bin, R_BIN_JAVA_STACKMAP_TYPE type, ut32 value) { RBinJavaVerificationObj *se = R_NEW0 (RBinJavaVerificationObj); if (!se) { return NULL; } se->tag = type; if (se->tag == R_BIN_JAVA_STACKMAP_OBJECT) { se->info.obj_val_cp_idx = (ut16) value; } else if (se->tag == R_BIN_JAVA_STACKMAP_UNINIT) { /*if (bin->offset_sz == 4) { se->info.uninit_offset = value; } else { se->info.uninit_offset = (ut16) value; }*/ se->info.uninit_offset = (ut16) value; } return se; }
Class
2
RemoteFsDevice::RemoteFsDevice(MusicLibraryModel *m, const DeviceOptions &options, const Details &d) : FsDevice(m, d.name, createUdi(d.name)) , mountToken(0) , currentMountStatus(false) , details(d) , proc(0) , mounterIface(0) , messageSent(false) { opts=options; // details.path=Utils::fixPath(details.path); load(); mount(); icn=MonoIcon::icon(details.isLocalFile() ? FontAwesome::foldero : constSshfsProtocol==details.url.scheme() ? FontAwesome::linux_os : FontAwesome::windows, Utils::monoIconColor()); }
Class
2
TfLiteStatus Gather(const TfLiteGatherParams& params, const TfLiteTensor* input, const TfLiteTensor* positions, TfLiteTensor* output) { tflite::GatherParams op_params; op_params.axis = params.axis; op_params.batch_dims = params.batch_dims; optimized_ops::Gather(op_params, GetTensorShape(input), GetTensorData<InputT>(input), GetTensorShape(positions), GetTensorData<PositionsT>(positions), GetTensorShape(output), GetTensorData<InputT>(output)); return kTfLiteOk; }
Base
1
void Archive::Seek(int64 Offset,int Method) { if (!QOpen.Seek(Offset,Method)) File::Seek(Offset,Method); }
Base
1
static Variant HHVM_FUNCTION(bcpowmod, const String& left, const String& right, const String& modulus, int64_t scale /* = -1 */) { if (scale < 0) scale = BCG(bc_precision); bc_num first, second, mod, result; bc_init_num(&first); bc_init_num(&second); bc_init_num(&mod); bc_init_num(&result); SCOPE_EXIT { bc_free_num(&first); bc_free_num(&second); bc_free_num(&mod); bc_free_num(&result); }; php_str2num(&first, (char*)left.data()); php_str2num(&second, (char*)right.data()); php_str2num(&mod, (char*)modulus.data()); if (bc_raisemod(first, second, mod, &result, scale) == -1) { return false; } if (result->n_scale > scale) { result->n_scale = scale; } String ret(bc_num2str(result), AttachString); return ret; }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); const int num_elements = NumElements(input); switch (input->type) { case kTfLiteInt64: memset(GetTensorData<int64_t>(output), 0, num_elements * sizeof(int64_t)); break; case kTfLiteInt32: memset(GetTensorData<int32_t>(output), 0, num_elements * sizeof(int32_t)); break; case kTfLiteFloat32: memset(GetTensorData<float>(output), 0, num_elements * sizeof(float)); break; default: context->ReportError(context, "ZerosLike only currently supports int64, int32, " "and float32, got %d.", input->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
bool is_print(char c) { return c >= 32 && c < 127; }
Class
2
static inline bool isMountable(const RemoteFsDevice::Details &d) { return RemoteFsDevice::constSshfsProtocol==d.url.scheme() || RemoteFsDevice::constSambaProtocol==d.url.scheme() || RemoteFsDevice::constSambaAvahiProtocol==d.url.scheme(); }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) { EvalDiv<kernel_type>(context, node, params, data, input1, input2, output); } else if (output->type == kTfLiteUInt8) { TF_LITE_ENSURE_OK( context, EvalQuantized<kernel_type>(context, node, params, data, input1, input2, output)); } else { context->ReportError( context, "Div only supports FLOAT32, INT32 and quantized UINT8 now, got %d.", output->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (type == kGenericOptimized) { optimized_ops::Floor(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } else { reference_ops::Floor(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } return kTfLiteOk; }
Base
1
parse_memory(VALUE klass, VALUE data, VALUE encoding) { htmlParserCtxtPtr ctxt; if (NIL_P(data)) { rb_raise(rb_eArgError, "data cannot be nil"); } if (!(int)RSTRING_LEN(data)) { rb_raise(rb_eRuntimeError, "data cannot be empty"); } ctxt = htmlCreateMemoryParserCtxt(StringValuePtr(data), (int)RSTRING_LEN(data)); if (ctxt->sax) { xmlFree(ctxt->sax); ctxt->sax = NULL; } if (RTEST(encoding)) { xmlCharEncodingHandlerPtr enc = xmlFindCharEncodingHandler(StringValueCStr(encoding)); if (enc != NULL) { xmlSwitchToEncoding(ctxt, enc); if (ctxt->errNo == XML_ERR_UNSUPPORTED_ENCODING) { rb_raise(rb_eRuntimeError, "Unsupported encoding %s", StringValueCStr(encoding)); } } } return Data_Wrap_Struct(klass, NULL, deallocate, ctxt); }
Base
1
PlayerGeneric::~PlayerGeneric() { if (mixer) delete mixer; if (player) { if (mixer->isActive() && !mixer->isDeviceRemoved(player)) mixer->removeDevice(player); delete player; } delete[] audioDriverName; delete listener; }
Variant
0
void AuthChecker::PassUserInfoOnSuccess() { char *json_buf = auth::WriteUserInfoToJson(user_info_); if (json_buf == nullptr) { return; } char *base64_json_buf = auth::esp_base64_encode( json_buf, strlen(json_buf), true, false, true /*padding*/); context_->request()->AddHeaderToBackend(auth::kEndpointApiUserInfo, base64_json_buf); auth::esp_grpc_free(json_buf); auth::esp_grpc_free(base64_json_buf); TRACE(trace_span_) << "Authenticated."; trace_span_.reset(); on_done_(Status::OK); }
Base
1
int jas_seq2d_output(jas_matrix_t *matrix, FILE *out) { #define MAXLINELEN 80 int i; int j; jas_seqent_t x; char buf[MAXLINELEN + 1]; char sbuf[MAXLINELEN + 1]; int n; fprintf(out, "%"PRIiFAST32" %"PRIiFAST32"\n", jas_seq2d_xstart(matrix), jas_seq2d_ystart(matrix)); fprintf(out, "%"PRIiFAST32" %"PRIiFAST32"\n", jas_matrix_numcols(matrix), jas_matrix_numrows(matrix)); buf[0] = '\0'; for (i = 0; i < jas_matrix_numrows(matrix); ++i) { for (j = 0; j < jas_matrix_numcols(matrix); ++j) { x = jas_matrix_get(matrix, i, j); sprintf(sbuf, "%s%4ld", (strlen(buf) > 0) ? " " : "", JAS_CAST(long, x)); n = JAS_CAST(int, strlen(buf)); if (n + JAS_CAST(int, strlen(sbuf)) > MAXLINELEN) { fputs(buf, out); fputs("\n", out); buf[0] = '\0'; } strcat(buf, sbuf); if (j == jas_matrix_numcols(matrix) - 1) { fputs(buf, out); fputs("\n", out); buf[0] = '\0'; } } } fputs(buf, out); return 0; }
Base
1
Function *ESTreeIRGen::genGeneratorFunction( Identifier originalName, Variable *lazyClosureAlias, ESTree::FunctionLikeNode *functionNode) { assert(functionNode && "Function AST cannot be null"); // Build the outer function which creates the generator. // Does not have an associated source range. auto *outerFn = Builder.createGeneratorFunction( originalName, Function::DefinitionKind::ES5Function, ESTree::isStrict(functionNode->strictness), /* insertBefore */ nullptr); auto *innerFn = genES5Function( genAnonymousLabelName(originalName.isValid() ? originalName.str() : ""), lazyClosureAlias, functionNode, true); { FunctionContext outerFnContext{this, outerFn, functionNode->getSemInfo()}; emitFunctionPrologue( functionNode, Builder.createBasicBlock(outerFn), InitES5CaptureState::Yes, DoEmitParameters::No); // Create a generator function, which will store the arguments. auto *gen = Builder.createCreateGeneratorInst(innerFn); if (!hasSimpleParams(functionNode)) { // If there are non-simple params, step the inner function once to // initialize them. Value *next = Builder.createLoadPropertyInst(gen, "next"); Builder.createCallInst(next, gen, {}); } emitFunctionEpilogue(gen); } return outerFn; }
Base
1
tTcpIpPacketParsingResult ParaNdis_ReviewIPPacket(PVOID buffer, ULONG size, LPCSTR caller) { tTcpIpPacketParsingResult res = QualifyIpPacket((IPHeader *) buffer, size); PrintOutParsingResult(res, 1, caller); return res; }
Class
2
Jsi_RC Jsi_ValueInsertArray(Jsi_Interp *interp, Jsi_Value *target, int key, Jsi_Value *val, int flags) { if (target->vt != JSI_VT_OBJECT) { if (interp->strict) Jsi_LogWarn("Target is not object"); return JSI_ERROR; } Jsi_Obj *obj = target->d.obj; if (obj->isarrlist) { if (key >= 0 && key < interp->maxArrayList) { Jsi_ObjArraySet(interp, obj, val, key); return JSI_OK; } return JSI_ERROR; } char unibuf[100]; Jsi_NumberItoA10(key, unibuf, sizeof(unibuf)); Jsi_ObjInsert(interp, obj, unibuf, val, flags); return JSI_OK; }
Base
1
R_API RBinJavaAttrInfo *r_bin_java_line_number_table_attr_new(ut8 *buffer, ut64 sz, ut64 buf_offset) { ut32 i = 0; ut64 curpos, offset = 0; RBinJavaLineNumberAttribute *lnattr; RBinJavaAttrInfo *attr = r_bin_java_default_attr_new (buffer, sz, buf_offset); if (!attr) { return NULL; } offset += 6; attr->type = R_BIN_JAVA_ATTR_TYPE_LINE_NUMBER_TABLE_ATTR; attr->info.line_number_table_attr.line_number_table_length = R_BIN_JAVA_USHORT (buffer, offset); offset += 2; attr->info.line_number_table_attr.line_number_table = r_list_newf (free); ut32 linenum_len = attr->info.line_number_table_attr.line_number_table_length; RList *linenum_list = attr->info.line_number_table_attr.line_number_table; if (linenum_len > sz) { free (attr); return NULL; } for (i = 0; i < linenum_len; i++) { curpos = buf_offset + offset; // printf ("%llx %llx \n", curpos, sz); // XXX if (curpos + 8 >= sz) break; lnattr = R_NEW0 (RBinJavaLineNumberAttribute); if (!lnattr) { break; } lnattr->start_pc = R_BIN_JAVA_USHORT (buffer, offset); offset += 2; lnattr->line_number = R_BIN_JAVA_USHORT (buffer, offset); offset += 2; lnattr->file_offset = curpos; lnattr->size = 4; r_list_append (linenum_list, lnattr); } attr->size = offset; return attr; }
Base
1
int length() const { return m_str ? m_str->size() : 0; }
Base
1
AP4_AvccAtom::InspectFields(AP4_AtomInspector& inspector) { inspector.AddField("Configuration Version", m_ConfigurationVersion); const char* profile_name = GetProfileName(m_Profile); if (profile_name) { inspector.AddField("Profile", profile_name); } else { inspector.AddField("Profile", m_Profile); } inspector.AddField("Profile Compatibility", m_ProfileCompatibility, AP4_AtomInspector::HINT_HEX); inspector.AddField("Level", m_Level); inspector.AddField("NALU Length Size", m_NaluLengthSize); for (unsigned int i=0; i<m_SequenceParameters.ItemCount(); i++) { inspector.AddField("Sequence Parameter", m_SequenceParameters[i].GetData(), m_SequenceParameters[i].GetDataSize()); } for (unsigned int i=0; i<m_SequenceParameters.ItemCount(); i++) { inspector.AddField("Picture Parameter", m_PictureParameters[i].GetData(), m_PictureParameters[i].GetDataSize()); } return AP4_SUCCESS; }
Base
1
PROCESS_THREAD(snmp_process, ev, data) { PROCESS_BEGIN(); /* new connection with remote host */ snmp_udp_conn = udp_new(NULL, 0, NULL); udp_bind(snmp_udp_conn, SNMP_SERVER_PORT); LOG_DBG("Listening on port %u\n", uip_ntohs(snmp_udp_conn->lport)); while(1) { PROCESS_YIELD(); if(ev == tcpip_event) { if(uip_newdata()) { snmp_process_data(); } } } /* while (1) */ PROCESS_END(); }
Base
1
void combine_list(String & res, const StringList & in) { res.clear(); StringListEnumeration els = in.elements_obj(); const char * s = 0; while ( (s = els.next()) != 0) { for (; *s; ++s) { if (*s == ':') res.append('\\'); res.append(*s); } res.append(':'); } if (res.back() == ':') res.pop_back(); }
Base
1
void AverageEvalQuantizedInt16(TfLiteContext* context, TfLiteNode* node, TfLitePoolParams* params, OpData* data, const TfLiteTensor* input, TfLiteTensor* output) { int32_t activation_min; int32_t activation_max; CalculateActivationRangeQuantized(context, params->activation, output, &activation_min, &activation_max); #define TF_LITE_AVERAGE_POOL(type) \ tflite::PoolParams op_params; \ op_params.stride_height = params->stride_height; \ op_params.stride_width = params->stride_width; \ op_params.filter_height = params->filter_height; \ op_params.filter_width = params->filter_width; \ op_params.padding_values.height = data->padding.height; \ op_params.padding_values.width = data->padding.width; \ op_params.quantized_activation_min = activation_min; \ op_params.quantized_activation_max = activation_max; \ type::AveragePool(op_params, GetTensorShape(input), \ GetTensorData<int16_t>(input), GetTensorShape(output), \ GetTensorData<int16_t>(output)) TF_LITE_AVERAGE_POOL(reference_integer_ops); #undef TF_LITE_AVERAGE_POOL }
Base
1
char *QuotedString::extractFrom(char *input, char **endPtr) { char firstChar = *input; if (!isQuote(firstChar)) { // must start with a quote return NULL; } char stopChar = firstChar; // closing quote is the same as opening quote char *startPtr = input + 1; // skip the quote char *readPtr = startPtr; char *writePtr = startPtr; char c; for (;;) { c = *readPtr++; if (c == '\0') { // premature ending return NULL; } if (c == stopChar) { // closing quote break; } if (c == '\\') { // replace char c = unescapeChar(*readPtr++); } *writePtr++ = c; } // end the string here *writePtr = '\0'; // update end ptr *endPtr = readPtr; return startPtr; }
Class
2
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); OpContext op_context(context, node); TF_LITE_ENSURE_EQ(context, NumOutputs(node), op_context.params->num_splits); auto input_type = op_context.input->type; TF_LITE_ENSURE(context, input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 || input_type == kTfLiteInt16 || input_type == kTfLiteInt32 || input_type == kTfLiteInt64 || input_type == kTfLiteInt8); for (int i = 0; i < NumOutputs(node); ++i) { GetOutput(context, node, i)->type = input_type; } auto size_splits = op_context.size_splits; TF_LITE_ENSURE_EQ(context, NumDimensions(size_splits), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), NumElements(size_splits)); // If we know the contents of the 'size_splits' tensor and the 'axis' tensor, // resize all outputs. Otherwise, wait until Eval(). if (IsConstantTensor(op_context.size_splits) && IsConstantTensor(op_context.axis)) { return ResizeOutputTensors(context, node, op_context.input, op_context.size_splits, op_context.axis); } else { return UseDynamicOutputTensors(context, node); } }
Base
1
TfLiteStatus LessEqualEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); bool requires_broadcast = !HaveSameShapes(input1, input2); switch (input1->type) { case kTfLiteFloat32: Comparison<float, reference_ops::LessEqualFn>(input1, input2, output, requires_broadcast); break; case kTfLiteInt32: Comparison<int32_t, reference_ops::LessEqualFn>(input1, input2, output, requires_broadcast); break; case kTfLiteInt64: Comparison<int64_t, reference_ops::LessEqualFn>(input1, input2, output, requires_broadcast); break; case kTfLiteUInt8: ComparisonQuantized<uint8_t, reference_ops::LessEqualFn>( input1, input2, output, requires_broadcast); break; case kTfLiteInt8: ComparisonQuantized<int8_t, reference_ops::LessEqualFn>( input1, input2, output, requires_broadcast); break; default: context->ReportError(context, "Does not support type %d, requires float|int|uint8", input1->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
selaComputeCompositeParameters(const char *fileout) { char *str, *nameh1, *nameh2, *namev1, *namev2; char buf[L_BUF_SIZE]; l_int32 size, size1, size2, len; SARRAY *sa; SELA *selabasic, *selacomb; selabasic = selaAddBasic(NULL); selacomb = selaAddDwaCombs(NULL); sa = sarrayCreate(64); for (size = 2; size < 64; size++) { selectComposableSizes(size, &size1, &size2); nameh1 = selaGetBrickName(selabasic, size1, 1); namev1 = selaGetBrickName(selabasic, 1, size1); if (size2 > 1) { nameh2 = selaGetCombName(selacomb, size1 * size2, L_HORIZ); namev2 = selaGetCombName(selacomb, size1 * size2, L_VERT); } else { nameh2 = stringNew(""); namev2 = stringNew(""); } snprintf(buf, L_BUF_SIZE, " { %d, %d, %d, \"%s\", \"%s\", \"%s\", \"%s\" },", size, size1, size2, nameh1, nameh2, namev1, namev2); sarrayAddString(sa, buf, L_COPY); LEPT_FREE(nameh1); LEPT_FREE(nameh2); LEPT_FREE(namev1); LEPT_FREE(namev2); } str = sarrayToString(sa, 1); len = strlen(str); l_binaryWrite(fileout, "w", str, len + 1); LEPT_FREE(str); sarrayDestroy(&sa); selaDestroy(&selabasic); selaDestroy(&selacomb); return; }
Base
1
setSanMatchers(std::vector<envoy::type::matcher::v3::StringMatcher> san_matchers) { san_matchers_ = san_matchers; return *this; }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); // TODO(b/137042749): TFLite infrastructure (converter, delegate) doesn't // fully support 0-output ops yet. Currently it works if we manually crfat // a TFLite graph that contains variable ops. Note: // * The TFLite Converter need to be changed to be able to produce an op // with 0 output. // * The delegation code need to be changed to handle 0 output ops. However // everything still works fine when variable ops aren't used. TF_LITE_ENSURE_EQ(context, NumOutputs(node), 0); const TfLiteTensor* input_resource_id_tensor = GetInput(context, node, kInputVariableId); TF_LITE_ENSURE_EQ(context, input_resource_id_tensor->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, NumElements(input_resource_id_tensor), 1); return kTfLiteOk; }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { // Check that the inputs and outputs have the right sizes and types. TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output_values = GetOutput(context, node, kOutputValues); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output_values->type); const TfLiteTensor* top_k = GetInput(context, node, kInputTopK); TF_LITE_ENSURE_TYPES_EQ(context, top_k->type, kTfLiteInt32); // Set output dynamic if the input is not const. if (IsConstantTensor(top_k)) { TF_LITE_ENSURE_OK(context, ResizeOutput(context, node)); } else { TfLiteTensor* output_indexes = GetOutput(context, node, kOutputIndexes); TfLiteTensor* output_values = GetOutput(context, node, kOutputValues); SetTensorToDynamic(output_indexes); SetTensorToDynamic(output_values); } return kTfLiteOk; }
Base
1