code
stringlengths
12
2.05k
label_name
stringclasses
5 values
label
int64
0
4
static int nr_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name; size_t copied; struct sk_buff *skb; int er; /* * This works for seqpacket too. The receiver has ordered the queue for * us! We do one quick check first though */ lock_sock(sk); if (sk->sk_state != TCP_ESTABLISHED) { release_sock(sk); return -ENOTCONN; } /* Now we can treat all alike */ if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) { release_sock(sk); return er; } skb_reset_transport_header(skb); copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } er = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (er < 0) { skb_free_datagram(sk, skb); release_sock(sk); return er; } if (sax != NULL) { memset(sax, 0, sizeof(*sax)); sax->sax25_family = AF_NETROM; skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call, AX25_ADDR_LEN); } msg->msg_namelen = sizeof(*sax); skb_free_datagram(sk, skb); release_sock(sk); return copied; }
Class
2
mISDN_sock_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sk_buff *skb; struct sock *sk = sock->sk; struct sockaddr_mISDN *maddr; int copied, err; if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s: len %d, flags %x ch.nr %d, proto %x\n", __func__, (int)len, flags, _pms(sk)->ch.nr, sk->sk_protocol); if (flags & (MSG_OOB)) return -EOPNOTSUPP; if (sk->sk_state == MISDN_CLOSED) return 0; skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); if (!skb) return err; if (msg->msg_namelen >= sizeof(struct sockaddr_mISDN)) { msg->msg_namelen = sizeof(struct sockaddr_mISDN); maddr = (struct sockaddr_mISDN *)msg->msg_name; maddr->family = AF_ISDN; maddr->dev = _pms(sk)->dev->id; if ((sk->sk_protocol == ISDN_P_LAPD_TE) || (sk->sk_protocol == ISDN_P_LAPD_NT)) { maddr->channel = (mISDN_HEAD_ID(skb) >> 16) & 0xff; maddr->tei = (mISDN_HEAD_ID(skb) >> 8) & 0xff; maddr->sapi = mISDN_HEAD_ID(skb) & 0xff; } else { maddr->channel = _pms(sk)->ch.nr; maddr->sapi = _pms(sk)->ch.addr & 0xFF; maddr->tei = (_pms(sk)->ch.addr >> 8) & 0xFF; } } else { if (msg->msg_namelen) printk(KERN_WARNING "%s: too small namelen %d\n", __func__, msg->msg_namelen); msg->msg_namelen = 0; } copied = skb->len + MISDN_HEADER_LEN; if (len < copied) { if (flags & MSG_PEEK) atomic_dec(&skb->users); else skb_queue_head(&sk->sk_receive_queue, skb); return -ENOSPC; } memcpy(skb_push(skb, MISDN_HEADER_LEN), mISDN_HEAD_P(skb), MISDN_HEADER_LEN); err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); mISDN_sock_cmsg(sk, msg, skb); skb_free_datagram(sk, skb); return err ? : copied; }
Class
2
static int jpc_ppm_putparms(jpc_ms_t *ms, jpc_cstate_t *cstate, jas_stream_t *out) { jpc_ppm_t *ppm = &ms->parms.ppm; /* Eliminate compiler warning about unused variables. */ cstate = 0; if (JAS_CAST(uint, jas_stream_write(out, (char *) ppm->data, ppm->len)) != ppm->len) { return -1; } return 0; }
Class
2
static void show_object(struct object *object, struct strbuf *path, const char *last, void *data) { struct bitmap *base = data; int bitmap_pos; bitmap_pos = bitmap_position(object->oid.hash); if (bitmap_pos < 0) { char *name = path_name(path, last); bitmap_pos = ext_index_add_object(object, name); free(name); } bitmap_set(base, bitmap_pos); }
Class
2
static void opl3_setup_voice(int dev, int voice, int chn) { struct channel_info *info = &synth_devs[dev]->chn_info[chn]; opl3_set_instr(dev, voice, info->pgm_num); devc->voc[voice].bender = 0; devc->voc[voice].bender_range = info->bender_range; devc->voc[voice].volume = info->controllers[CTL_MAIN_VOLUME]; devc->voc[voice].panning = (info->controllers[CTL_PAN] * 2) - 128; }
Class
2
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) { struct dentry *dir; struct fscrypt_info *ci; int dir_has_key, cached_with_key; if (flags & LOOKUP_RCU) return -ECHILD; dir = dget_parent(dentry); if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) { dput(dir); return 0; } ci = d_inode(dir)->i_crypt_info; if (ci && ci->ci_keyring_key && (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | (1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_DEAD)))) ci = NULL; /* this should eventually be an flag in d_flags */ spin_lock(&dentry->d_lock); cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; spin_unlock(&dentry->d_lock); dir_has_key = (ci != NULL); dput(dir); /* * If the dentry was cached without the key, and it is a * negative dentry, it might be a valid name. We can't check * if the key has since been made available due to locking * reasons, so we fail the validation so ext4_lookup() can do * this check. * * We also fail the validation if the dentry was created with * the key present, but we no longer have the key, or vice versa. */ if ((!cached_with_key && d_is_negative(dentry)) || (!cached_with_key && dir_has_key) || (cached_with_key && !dir_has_key)) return 0; return 1; }
Base
1
mrb_proc_s_new(mrb_state *mrb, mrb_value proc_class) { mrb_value blk; mrb_value proc; struct RProc *p; /* Calling Proc.new without a block is not implemented yet */ mrb_get_args(mrb, "&!", &blk); p = MRB_OBJ_ALLOC(mrb, MRB_TT_PROC, mrb_class_ptr(proc_class)); mrb_proc_copy(p, mrb_proc_ptr(blk)); proc = mrb_obj_value(p); mrb_funcall_with_block(mrb, proc, MRB_SYM(initialize), 0, NULL, proc); if (!MRB_PROC_STRICT_P(p) && mrb->c->ci > mrb->c->cibase && MRB_PROC_ENV(p) == mrb->c->ci[-1].u.env) { p->flags |= MRB_PROC_ORPHAN; } return proc; }
Base
1
static void smp_task_done(struct sas_task *task) { if (!del_timer(&task->slow_task->timer)) return; complete(&task->slow_task->completion); }
Class
2
void rose_stop_idletimer(struct sock *sk) { del_timer(&rose_sk(sk)->idletimer); }
Variant
0
static void ftrace_syscall_exit(void *data, struct pt_regs *regs, long ret) { struct trace_array *tr = data; struct ftrace_event_file *ftrace_file; struct syscall_trace_exit *entry; struct syscall_metadata *sys_data; struct ring_buffer_event *event; struct ring_buffer *buffer; unsigned long irq_flags; int pc; int syscall_nr; syscall_nr = trace_get_syscall_nr(current, regs); if (syscall_nr < 0) return; /* Here we're inside tp handler's rcu_read_lock_sched (__DO_TRACE()) */ ftrace_file = rcu_dereference_sched(tr->exit_syscall_files[syscall_nr]); if (!ftrace_file) return; if (ftrace_trigger_soft_disabled(ftrace_file)) return; sys_data = syscall_nr_to_meta(syscall_nr); if (!sys_data) return; local_save_flags(irq_flags); pc = preempt_count(); buffer = tr->trace_buffer.buffer; event = trace_buffer_lock_reserve(buffer, sys_data->exit_event->event.type, sizeof(*entry), irq_flags, pc); if (!event) return; entry = ring_buffer_event_data(event); entry->nr = syscall_nr; entry->ret = syscall_get_return_value(current, regs); event_trigger_unlock_commit(ftrace_file, buffer, event, entry, irq_flags, pc); }
Base
1
ikev2_t_print(netdissect_options *ndo, int tcount, const struct isakmp_gen *ext, u_int item_len, const u_char *ep) { const struct ikev2_t *p; struct ikev2_t t; uint16_t t_id; const u_char *cp; const char *idstr; const struct attrmap *map; size_t nmap; const u_char *ep2; p = (const struct ikev2_t *)ext; ND_TCHECK(*p); UNALIGNED_MEMCPY(&t, ext, sizeof(t)); ikev2_pay_print(ndo, NPSTR(ISAKMP_NPTYPE_T), t.h.critical); t_id = ntohs(t.t_id); map = NULL; nmap = 0; switch (t.t_type) { case IV2_T_ENCR: idstr = STR_OR_ID(t_id, esp_p_map); map = encr_t_map; nmap = sizeof(encr_t_map)/sizeof(encr_t_map[0]); break; case IV2_T_PRF: idstr = STR_OR_ID(t_id, prf_p_map); break; case IV2_T_INTEG: idstr = STR_OR_ID(t_id, integ_p_map); break; case IV2_T_DH: idstr = STR_OR_ID(t_id, dh_p_map); break; case IV2_T_ESN: idstr = STR_OR_ID(t_id, esn_p_map); break; default: idstr = NULL; break; } if (idstr) ND_PRINT((ndo," #%u type=%s id=%s ", tcount, STR_OR_ID(t.t_type, ikev2_t_type_map), idstr)); else ND_PRINT((ndo," #%u type=%s id=%u ", tcount, STR_OR_ID(t.t_type, ikev2_t_type_map), t.t_id)); cp = (const u_char *)(p + 1); ep2 = (const u_char *)p + item_len; while (cp < ep && cp < ep2) { if (map && nmap) { cp = ikev1_attrmap_print(ndo, cp, (ep < ep2) ? ep : ep2, map, nmap); } else cp = ikev1_attr_print(ndo, cp, (ep < ep2) ? ep : ep2); } if (ep < ep2) ND_PRINT((ndo,"...")); return cp; trunc: ND_PRINT((ndo," [|%s]", NPSTR(ISAKMP_NPTYPE_T))); return NULL; }
Base
1
int ntlm_read_message_fields(wStream* s, NTLM_MESSAGE_FIELDS* fields) { if (Stream_GetRemainingLength(s) < 8) return -1; Stream_Read_UINT16(s, fields->Len); /* Len (2 bytes) */ Stream_Read_UINT16(s, fields->MaxLen); /* MaxLen (2 bytes) */ Stream_Read_UINT32(s, fields->BufferOffset); /* BufferOffset (4 bytes) */ return 1; }
Base
1
static int parse_exports_table(long long *table_start) { int res; int indexes = SQUASHFS_LOOKUP_BLOCKS(sBlk.s.inodes); long long export_index_table[indexes]; res = read_fs_bytes(fd, sBlk.s.lookup_table_start, SQUASHFS_LOOKUP_BLOCK_BYTES(sBlk.s.inodes), export_index_table); if(res == FALSE) { ERROR("parse_exports_table: failed to read export index table\n"); return FALSE; } SQUASHFS_INSWAP_LOOKUP_BLOCKS(export_index_table, indexes); /* * export_index_table[0] stores the start of the compressed export blocks. * This by definition is also the end of the previous filesystem * table - the fragment table. */ *table_start = export_index_table[0]; return TRUE; }
Class
2
SPL_METHOD(DirectoryIterator, next) { spl_filesystem_object *intern = (spl_filesystem_object*)zend_object_store_get_object(getThis() TSRMLS_CC); int skip_dots = SPL_HAS_FLAG(intern->flags, SPL_FILE_DIR_SKIPDOTS); if (zend_parse_parameters_none() == FAILURE) { return; } intern->u.dir.index++; do { spl_filesystem_dir_read(intern TSRMLS_CC); } while (skip_dots && spl_filesystem_is_dot(intern->u.dir.entry.d_name)); if (intern->file_name) { efree(intern->file_name); intern->file_name = NULL; } }
Base
1
bool_t xdr_nullstring(XDR *xdrs, char **objp) { u_int size; if (xdrs->x_op == XDR_ENCODE) { if (*objp == NULL) size = 0; else size = strlen(*objp) + 1; } if (! xdr_u_int(xdrs, &size)) { return FALSE; } switch (xdrs->x_op) { case XDR_DECODE: if (size == 0) { *objp = NULL; return TRUE; } else if (*objp == NULL) { *objp = (char *) mem_alloc(size); if (*objp == NULL) { errno = ENOMEM; return FALSE; } } return (xdr_opaque(xdrs, *objp, size)); case XDR_ENCODE: if (size != 0) return (xdr_opaque(xdrs, *objp, size)); return TRUE; case XDR_FREE: if (*objp != NULL) mem_free(*objp, size); *objp = NULL; return TRUE; } return FALSE; }
Base
1
int ndpi_netbios_name_interpret(char *in, size_t in_len, char *out, u_int out_len) { u_int ret = 0, len, idx = in_len, out_idx = 0; len = (*in++)/2; out_len--; out[out_idx] = 0; if((len > out_len) || (len < 1) || ((2*len) > in_len)) return(-1); while((len--) && (out_idx < out_len)) { if((idx < 2) || (in[0] < 'A') || (in[0] > 'P') || (in[1] < 'A') || (in[1] > 'P')) { out[out_idx] = 0; break; } out[out_idx] = ((in[0] - 'A') << 4) + (in[1] - 'A'); in += 2, idx -= 2; if(isprint(out[out_idx])) out_idx++, ret++; } /* Trim trailing whitespace from the returned string */ if(out_idx > 0) { out[out_idx] = 0; out_idx--; while((out_idx > 0) && (out[out_idx] == ' ')) { out[out_idx] = 0; out_idx--; } } return(ret); }
Base
1
nfp_abm_u32_knode_replace(struct nfp_abm_link *alink, struct tc_cls_u32_knode *knode, __be16 proto, struct netlink_ext_ack *extack) { struct nfp_abm_u32_match *match = NULL, *iter; unsigned int tos_off; u8 mask, val; int err; if (!nfp_abm_u32_check_knode(alink->abm, knode, proto, extack)) goto err_delete; tos_off = proto == htons(ETH_P_IP) ? 16 : 20; /* Extract the DSCP Class Selector bits */ val = be32_to_cpu(knode->sel->keys[0].val) >> tos_off & 0xff; mask = be32_to_cpu(knode->sel->keys[0].mask) >> tos_off & 0xff; /* Check if there is no conflicting mapping and find match by handle */ list_for_each_entry(iter, &alink->dscp_map, list) { u32 cmask; if (iter->handle == knode->handle) { match = iter; continue; } cmask = iter->mask & mask; if ((iter->val & cmask) == (val & cmask) && iter->band != knode->res->classid) { NL_SET_ERR_MSG_MOD(extack, "conflict with already offloaded filter"); goto err_delete; } } if (!match) { match = kzalloc(sizeof(*match), GFP_KERNEL); if (!match) return -ENOMEM; list_add(&match->list, &alink->dscp_map); } match->handle = knode->handle; match->band = knode->res->classid; match->mask = mask; match->val = val; err = nfp_abm_update_band_map(alink); if (err) goto err_delete; return 0; err_delete: nfp_abm_u32_knode_delete(alink, knode); return -EOPNOTSUPP; }
Variant
0
usm_malloc_usmStateReference(void) { struct usmStateReference *retval = (struct usmStateReference *) calloc(1, sizeof(struct usmStateReference)); return retval; } /* end usm_malloc_usmStateReference() */
Variant
0
R_API bool r_sys_mkdirp(const char *dir) { bool ret = true; char slash = R_SYS_DIR[0]; char *path = strdup (dir), *ptr = path; if (!path) { eprintf ("r_sys_mkdirp: Unable to allocate memory\n"); return false; } if (*ptr == slash) { ptr++; } #if __WINDOWS__ { char *p = strstr (ptr, ":\\"); if (p) { ptr = p + 2; } } #endif for (;;) { // find next slash for (; *ptr; ptr++) { if (*ptr == '/' || *ptr == '\\') { slash = *ptr; break; } } if (!*ptr) { break; } *ptr = 0; if (!r_sys_mkdir (path) && r_sys_mkdir_failed ()) { eprintf ("r_sys_mkdirp: fail '%s' of '%s'\n", path, dir); free (path); return false; } *ptr = slash; ptr++; } if (!r_sys_mkdir (path) && r_sys_mkdir_failed ()) { ret = false; } free (path); return ret; }
Base
1
static int pfkey_recvmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct pfkey_sock *pfk = pfkey_sk(sk); struct sk_buff *skb; int copied, err; err = -EINVAL; if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT)) goto out; msg->msg_namelen = 0; skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); if (skb == NULL) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } skb_reset_transport_header(skb); err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (err) goto out_free; sock_recv_ts_and_drops(msg, sk, skb); err = (flags & MSG_TRUNC) ? skb->len : copied; if (pfk->dump.dump != NULL && 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) pfkey_do_dump(pfk); out_free: skb_free_datagram(sk, skb); out: return err; }
Class
2
static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) { struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); int err = 0; mutex_lock(&swhash->hlist_mutex); if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { struct swevent_hlist *hlist; hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); if (!hlist) { err = -ENOMEM; goto exit; } rcu_assign_pointer(swhash->swevent_hlist, hlist); } swhash->hlist_refcount++; exit: mutex_unlock(&swhash->hlist_mutex); return err; }
Class
2
int button_open(Button *b) { char *p, name[256]; int r; assert(b); b->fd = safe_close(b->fd); p = strjoina("/dev/input/", b->name); b->fd = open(p, O_RDWR|O_CLOEXEC|O_NOCTTY|O_NONBLOCK); if (b->fd < 0) return log_warning_errno(errno, "Failed to open %s: %m", p); r = button_suitable(b); if (r < 0) return log_warning_errno(r, "Failed to determine whether input device is relevant to us: %m"); if (r == 0) return log_debug_errno(SYNTHETIC_ERRNO(EADDRNOTAVAIL), "Device %s does not expose keys or switches relevant to us, ignoring.", p); if (ioctl(b->fd, EVIOCGNAME(sizeof(name)), name) < 0) { r = log_error_errno(errno, "Failed to get input name: %m"); goto fail; } (void) button_set_mask(b); r = sd_event_add_io(b->manager->event, &b->io_event_source, b->fd, EPOLLIN, button_dispatch, b); if (r < 0) { log_error_errno(r, "Failed to add button event: %m"); goto fail; } log_info("Watching system buttons on /dev/input/%s (%s)", b->name, name); return 0; fail: b->fd = safe_close(b->fd); return r; }
Variant
0
void gdImageCopyMerge (gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX, int srcY, int w, int h, int pct) { int c, dc; int x, y; int tox, toy; int ncR, ncG, ncB; toy = dstY; for (y = srcY; y < (srcY + h); y++) { tox = dstX; for (x = srcX; x < (srcX + w); x++) { int nc; c = gdImageGetPixel(src, x, y); /* Added 7/24/95: support transparent copies */ if (gdImageGetTransparent(src) == c) { tox++; continue; } /* If it's the same image, mapping is trivial */ if (dst == src) { nc = c; } else { dc = gdImageGetPixel(dst, tox, toy); ncR = (int)(gdImageRed (src, c) * (pct / 100.0) + gdImageRed (dst, dc) * ((100 - pct) / 100.0)); ncG = (int)(gdImageGreen (src, c) * (pct / 100.0) + gdImageGreen (dst, dc) * ((100 - pct) / 100.0)); ncB = (int)(gdImageBlue (src, c) * (pct / 100.0) + gdImageBlue (dst, dc) * ((100 - pct) / 100.0)); /* Find a reasonable color */ nc = gdImageColorResolve (dst, ncR, ncG, ncB); } gdImageSetPixel (dst, tox, toy, nc); tox++; } toy++; } }
Base
1
int init_aliases(void) { FILE *fp; char alias[MAXALIASLEN + 1U]; char dir[PATH_MAX + 1U]; if ((fp = fopen(ALIASES_FILE, "r")) == NULL) { return 0; } while (fgets(alias, sizeof alias, fp) != NULL) { if (*alias == '#' || *alias == '\n' || *alias == 0) { continue; } { char * const z = alias + strlen(alias) - 1U; if (*z != '\n') { goto bad; } *z = 0; } do { if (fgets(dir, sizeof dir, fp) == NULL || *dir == 0) { goto bad; } { char * const z = dir + strlen(dir) - 1U; if (*z == '\n') { *z = 0; } } } while (*dir == '#' || *dir == 0); if (head == NULL) { if ((head = tail = malloc(sizeof *head)) == NULL || (tail->alias = strdup(alias)) == NULL || (tail->dir = strdup(dir)) == NULL) { die_mem(); } tail->next = NULL; } else { DirAlias *curr; if ((curr = malloc(sizeof *curr)) == NULL || (curr->alias = strdup(alias)) == NULL || (curr->dir = strdup(dir)) == NULL) { die_mem(); } tail->next = curr; tail = curr; } } fclose(fp); aliases_up++; return 0; bad: fclose(fp); logfile(LOG_ERR, MSG_ALIASES_BROKEN_FILE " [" ALIASES_FILE "]"); return -1; }
Base
1
BGD_DECLARE(void) gdImageWebpEx (gdImagePtr im, FILE * outFile, int quality) { gdIOCtx *out = gdNewFileCtx(outFile); if (out == NULL) { return; } gdImageWebpCtx(im, out, quality); out->gd_free(out); }
Variant
0
void ptrace_triggered(struct perf_event *bp, int nmi, struct perf_sample_data *data, struct pt_regs *regs) { struct perf_event_attr attr; /* * Disable the breakpoint request here since ptrace has defined a * one-shot behaviour for breakpoint exceptions in PPC64. * The SIGTRAP signal is generated automatically for us in do_dabr(). * We don't have to do anything about that here */ attr = bp->attr; attr.disabled = true; modify_user_hw_breakpoint(bp, &attr); }
Class
2
int bnxt_re_create_srq(struct ib_srq *ib_srq, struct ib_srq_init_attr *srq_init_attr, struct ib_udata *udata) { struct ib_pd *ib_pd = ib_srq->pd; struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd); struct bnxt_re_dev *rdev = pd->rdev; struct bnxt_qplib_dev_attr *dev_attr = &rdev->dev_attr; struct bnxt_re_srq *srq = container_of(ib_srq, struct bnxt_re_srq, ib_srq); struct bnxt_qplib_nq *nq = NULL; int rc, entries; if (srq_init_attr->attr.max_wr >= dev_attr->max_srq_wqes) { dev_err(rdev_to_dev(rdev), "Create CQ failed - max exceeded"); rc = -EINVAL; goto exit; } if (srq_init_attr->srq_type != IB_SRQT_BASIC) { rc = -EOPNOTSUPP; goto exit; } srq->rdev = rdev; srq->qplib_srq.pd = &pd->qplib_pd; srq->qplib_srq.dpi = &rdev->dpi_privileged; /* Allocate 1 more than what's provided so posting max doesn't * mean empty */ entries = roundup_pow_of_two(srq_init_attr->attr.max_wr + 1); if (entries > dev_attr->max_srq_wqes + 1) entries = dev_attr->max_srq_wqes + 1; srq->qplib_srq.max_wqe = entries; srq->qplib_srq.max_sge = srq_init_attr->attr.max_sge; srq->qplib_srq.threshold = srq_init_attr->attr.srq_limit; srq->srq_limit = srq_init_attr->attr.srq_limit; srq->qplib_srq.eventq_hw_ring_id = rdev->nq[0].ring_id; nq = &rdev->nq[0]; if (udata) { rc = bnxt_re_init_user_srq(rdev, pd, srq, udata); if (rc) goto fail; } rc = bnxt_qplib_create_srq(&rdev->qplib_res, &srq->qplib_srq); if (rc) { dev_err(rdev_to_dev(rdev), "Create HW SRQ failed!"); goto fail; } if (udata) { struct bnxt_re_srq_resp resp; resp.srqid = srq->qplib_srq.id; rc = ib_copy_to_udata(udata, &resp, sizeof(resp)); if (rc) { dev_err(rdev_to_dev(rdev), "SRQ copy to udata failed!"); bnxt_qplib_destroy_srq(&rdev->qplib_res, &srq->qplib_srq); goto exit; } } if (nq) nq->budget++; atomic_inc(&rdev->srq_count); return 0; fail: ib_umem_release(srq->umem); exit: return rc; }
Variant
0
static void fwnet_receive_broadcast(struct fw_iso_context *context, u32 cycle, size_t header_length, void *header, void *data) { struct fwnet_device *dev; struct fw_iso_packet packet; __be16 *hdr_ptr; __be32 *buf_ptr; int retval; u32 length; u16 source_node_id; u32 specifier_id; u32 ver; unsigned long offset; unsigned long flags; dev = data; hdr_ptr = header; length = be16_to_cpup(hdr_ptr); spin_lock_irqsave(&dev->lock, flags); offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) dev->broadcast_rcv_next_ptr = 0; spin_unlock_irqrestore(&dev->lock, flags); specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; if (specifier_id == IANA_SPECIFIER_ID && (ver == RFC2734_SW_VERSION #if IS_ENABLED(CONFIG_IPV6) || ver == RFC3146_SW_VERSION #endif )) { buf_ptr += 2; length -= IEEE1394_GASP_HDR_SIZE; fwnet_incoming_packet(dev, buf_ptr, length, source_node_id, context->card->generation, true); } packet.payload_length = dev->rcv_buffer_size; packet.interrupt = 1; packet.skip = 0; packet.tag = 3; packet.sy = 0; packet.header_length = IEEE1394_GASP_HDR_SIZE; spin_lock_irqsave(&dev->lock, flags); retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, &dev->broadcast_rcv_buffer, offset); spin_unlock_irqrestore(&dev->lock, flags); if (retval >= 0) fw_iso_context_queue_flush(dev->broadcast_rcv_context); else dev_err(&dev->netdev->dev, "requeue failed\n"); }
Class
2
_public_ int sd_bus_enqeue_for_read(sd_bus *bus, sd_bus_message *m) { int r; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(m, -EINVAL); assert_return(m->sealed, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (!BUS_IS_OPEN(bus->state)) return -ENOTCONN; /* Re-enqeue a message for reading. This is primarily useful for PolicyKit-style authentication, * where we want accept a message, then determine we need to interactively authenticate the user, and * when we have that process the message again. */ r = bus_rqueue_make_room(bus); if (r < 0) return r; bus->rqueue[bus->rqueue_size++] = bus_message_ref_queued(m, bus); return 0; }
Variant
0
pci_lintr_route(struct pci_vdev *dev) { struct businfo *bi; struct intxinfo *ii; if (dev->lintr.pin == 0) return; bi = pci_businfo[dev->bus]; assert(bi != NULL); ii = &bi->slotinfo[dev->slot].si_intpins[dev->lintr.pin - 1]; /* * Attempt to allocate an I/O APIC pin for this intpin if one * is not yet assigned. */ if (ii->ii_ioapic_irq == 0) ii->ii_ioapic_irq = ioapic_pci_alloc_irq(dev); assert(ii->ii_ioapic_irq > 0); /* * Attempt to allocate a PIRQ pin for this intpin if one is * not yet assigned. */ if (ii->ii_pirq_pin == 0) ii->ii_pirq_pin = pirq_alloc_pin(dev); assert(ii->ii_pirq_pin > 0); dev->lintr.ioapic_irq = ii->ii_ioapic_irq; dev->lintr.pirq_pin = ii->ii_pirq_pin; pci_set_cfgdata8(dev, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin)); }
Base
1
static void ptrace_triggered(struct perf_event *bp, int nmi, struct perf_sample_data *data, struct pt_regs *regs) { int i; struct thread_struct *thread = &(current->thread); /* * Store in the virtual DR6 register the fact that the breakpoint * was hit so the thread's debugger will see it. */ for (i = 0; i < HBP_NUM; i++) { if (thread->ptrace_bps[i] == bp) break; } thread->debugreg6 |= (DR_TRAP0 << i); }
Class
2
static VALUE cState_space_before_set(VALUE self, VALUE space_before) { unsigned long len; GET_STATE(self); Check_Type(space_before, T_STRING); len = RSTRING_LEN(space_before); if (len == 0) { if (state->space_before) { ruby_xfree(state->space_before); state->space_before = NULL; state->space_before_len = 0; } } else { if (state->space_before) ruby_xfree(state->space_before); state->space_before = strdup(RSTRING_PTR(space_before)); state->space_before_len = len; } return Qnil; }
Class
2
static void vapic_exit(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; int idx; if (!apic || !apic->vapic_addr) return; idx = srcu_read_lock(&vcpu->kvm->srcu); kvm_release_page_dirty(apic->vapic_page); mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); srcu_read_unlock(&vcpu->kvm->srcu, idx); }
Class
2
int do_fpu_inst(unsigned short inst, struct pt_regs *regs) { struct task_struct *tsk = current; struct sh_fpu_soft_struct *fpu = &(tsk->thread.xstate->softfpu); perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0); if (!(task_thread_info(tsk)->status & TS_USEDFPU)) { /* initialize once. */ fpu_init(fpu); task_thread_info(tsk)->status |= TS_USEDFPU; } return fpu_emulate(inst, fpu, regs); }
Class
2
void rose_start_t1timer(struct sock *sk) { struct rose_sock *rose = rose_sk(sk); del_timer(&rose->timer); rose->timer.function = rose_timer_expiry; rose->timer.expires = jiffies + rose->t1; add_timer(&rose->timer); }
Variant
0
static bool checkCurl() { const char nul[] = R_SYS_DEVNULL; if (r_sys_cmdf ("curl --version > %s", nul) != 0) { return false; } return true; }
Base
1
ast_for_arg(struct compiling *c, const node *n) { identifier name; expr_ty annotation = NULL; node *ch; arg_ty ret; assert(TYPE(n) == tfpdef || TYPE(n) == vfpdef); ch = CHILD(n, 0); name = NEW_IDENTIFIER(ch); if (!name) return NULL; if (forbidden_name(c, name, ch, 0)) return NULL; if (NCH(n) == 3 && TYPE(CHILD(n, 1)) == COLON) { annotation = ast_for_expr(c, CHILD(n, 2)); if (!annotation) return NULL; } ret = arg(name, annotation, LINENO(n), n->n_col_offset, n->n_end_lineno, n->n_end_col_offset, c->c_arena); if (!ret) return NULL; return ret; }
Base
1
char *cJSON_PrintUnformatted( cJSON *item ) { return print_value( item, 0, 0 ); }
Base
1
void lpc546xxEthEventHandler(NetInterface *interface) { error_t error; //Packet received? if((ENET->DMA_CH[0].DMA_CHX_STAT & ENET_DMA_CH_DMA_CHX_STAT_RI_MASK) != 0) { //Clear interrupt flag ENET->DMA_CH[0].DMA_CHX_STAT = ENET_DMA_CH_DMA_CHX_STAT_RI_MASK; //Process all pending packets do { //Read incoming packet error = lpc546xxEthReceivePacket(interface); //No more data in the receive buffer? } while(error != ERROR_BUFFER_EMPTY); } //Re-enable DMA interrupts ENET->DMA_CH[0].DMA_CHX_INT_EN = ENET_DMA_CH_DMA_CHX_INT_EN_NIE_MASK | ENET_DMA_CH_DMA_CHX_INT_EN_RIE_MASK | ENET_DMA_CH_DMA_CHX_INT_EN_TIE_MASK; }
Class
2
linkaddr_string(netdissect_options *ndo, const u_char *ep, const unsigned int type, const unsigned int len) { register u_int i; register char *cp; register struct enamemem *tp; if (len == 0) return ("<empty>"); if (type == LINKADDR_ETHER && len == ETHER_ADDR_LEN) return (etheraddr_string(ndo, ep)); if (type == LINKADDR_FRELAY) return (q922_string(ndo, ep, len)); tp = lookup_bytestring(ndo, ep, len); if (tp->e_name) return (tp->e_name); tp->e_name = cp = (char *)malloc(len*3); if (tp->e_name == NULL) (*ndo->ndo_error)(ndo, "linkaddr_string: malloc"); *cp++ = hex[*ep >> 4]; *cp++ = hex[*ep++ & 0xf]; for (i = len-1; i > 0 ; --i) { *cp++ = ':'; *cp++ = hex[*ep >> 4]; *cp++ = hex[*ep++ & 0xf]; } *cp = '\0'; return (tp->e_name); }
Base
1
static int raw_cmd_copyout(int cmd, void __user *param, struct floppy_raw_cmd *ptr) { int ret; while (ptr) { ret = copy_to_user(param, ptr, sizeof(*ptr)); if (ret) return -EFAULT; param += sizeof(struct floppy_raw_cmd); if ((ptr->flags & FD_RAW_READ) && ptr->buffer_length) { if (ptr->length >= 0 && ptr->length <= ptr->buffer_length) { long length = ptr->buffer_length - ptr->length; ret = fd_copyout(ptr->data, ptr->kernel_data, length); if (ret) return ret; } } ptr = ptr->next; } return 0; }
Class
2
static inline int ldsem_cmpxchg(long *old, long new, struct ld_semaphore *sem) { long tmp = *old; *old = atomic_long_cmpxchg(&sem->count, *old, new); return *old == tmp; }
Class
2
int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, void *insn, int insn_len) { int r = EMULATION_OK; struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; init_emulate_ctxt(vcpu); /* * We will reenter on the same instruction since we do not set * complete_userspace_io. This does not handle watchpoints yet, * those would be handled in the emulate_ops. */ if (!(emulation_type & EMULTYPE_SKIP) && kvm_vcpu_check_breakpoint(vcpu, &r)) return r; r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); trace_kvm_emulate_insn_start(vcpu); ++vcpu->stat.insn_emulation; return r; }
Base
1
static int read_public_key(RSA *rsa) { int r; sc_path_t path; sc_file_t *file; u8 buf[2048], *p = buf; size_t bufsize, keysize; r = select_app_df(); if (r) return 1; sc_format_path("I1012", &path); r = sc_select_file(card, &path, &file); if (r) { fprintf(stderr, "Unable to select public key file: %s\n", sc_strerror(r)); return 2; } bufsize = file->size; sc_file_free(file); r = sc_read_binary(card, 0, buf, bufsize, 0); if (r < 0) { fprintf(stderr, "Unable to read public key file: %s\n", sc_strerror(r)); return 2; } bufsize = r; do { if (bufsize < 4) return 3; keysize = (p[0] << 8) | p[1]; if (keysize == 0) break; if (keysize < 3) return 3; if (p[2] == opt_key_num) break; p += keysize; bufsize -= keysize; } while (1); if (keysize == 0) { printf("Key number %d not found.\n", opt_key_num); return 2; } return parse_public_key(p, keysize, rsa); }
Class
2
int main_configure(char *arg1, char *arg2) { int cmdline_status; cmdline_status=options_cmdline(arg1, arg2); if(cmdline_status) /* cannot proceed */ return cmdline_status; options_apply(); str_canary_init(); /* needs prng initialization from options_cmdline */ /* log_open(SINK_SYSLOG) must be called before change_root() * to be able to access /dev/log socket */ log_open(SINK_SYSLOG); if(bind_ports()) return 1; #ifdef HAVE_CHROOT /* change_root() must be called before drop_privileges() * since chroot() needs root privileges */ if(change_root()) return 1; #endif /* HAVE_CHROOT */ if(drop_privileges(1)) return 1; /* log_open(SINK_OUTFILE) must be called after drop_privileges() * or logfile rotation won't be possible */ if(log_open(SINK_OUTFILE)) return 1; #ifndef USE_FORK num_clients=0; /* the first valid config */ #endif /* log_flush(LOG_MODE_CONFIGURED) must be called before daemonize() * since daemonize() invalidates stderr */ log_flush(LOG_MODE_CONFIGURED); return 0; }
Base
1
process_plane(uint8 * in, int width, int height, uint8 * out, int size) { UNUSED(size); int indexw; int indexh; int code; int collen; int replen; int color; int x; int revcode; uint8 * last_line; uint8 * this_line; uint8 * org_in; uint8 * org_out; org_in = in; org_out = out; last_line = 0; indexh = 0; while (indexh < height) { out = (org_out + width * height * 4) - ((indexh + 1) * width * 4); color = 0; this_line = out; indexw = 0; if (last_line == 0) { while (indexw < width) { code = CVAL(in); replen = code & 0xf; collen = (code >> 4) & 0xf; revcode = (replen << 4) | collen; if ((revcode <= 47) && (revcode >= 16)) { replen = revcode; collen = 0; } while (collen > 0) { color = CVAL(in); *out = color; out += 4; indexw++; collen--; } while (replen > 0) { *out = color; out += 4; indexw++; replen--; } } } else { while (indexw < width) { code = CVAL(in); replen = code & 0xf; collen = (code >> 4) & 0xf; revcode = (replen << 4) | collen; if ((revcode <= 47) && (revcode >= 16)) { replen = revcode; collen = 0; } while (collen > 0) { x = CVAL(in); if (x & 1) { x = x >> 1; x = x + 1; color = -x; } else { x = x >> 1; color = x; } x = last_line[indexw * 4] + color; *out = x; out += 4; indexw++; collen--; } while (replen > 0) { x = last_line[indexw * 4] + color; *out = x; out += 4; indexw++; replen--; } } } indexh++; last_line = this_line; } return (int) (in - org_in); }
Base
1
void ocall_malloc(size_t size, uint8_t **ret) { *ret = static_cast<uint8_t *>(malloc(size)); }
Base
1
static int set_evtchn_to_irq(evtchn_port_t evtchn, unsigned int irq) { unsigned row; unsigned col; if (evtchn >= xen_evtchn_max_channels()) return -EINVAL; row = EVTCHN_ROW(evtchn); col = EVTCHN_COL(evtchn); if (evtchn_to_irq[row] == NULL) { /* Unallocated irq entries return -1 anyway */ if (irq == -1) return 0; evtchn_to_irq[row] = (int *)get_zeroed_page(GFP_KERNEL); if (evtchn_to_irq[row] == NULL) return -ENOMEM; clear_evtchn_to_irq_row(row); } evtchn_to_irq[row][col] = irq; return 0; }
Base
1
int yr_object_array_set_item( YR_OBJECT* object, YR_OBJECT* item, int index) { YR_OBJECT_ARRAY* array; int i; int count; assert(index >= 0); assert(object->type == OBJECT_TYPE_ARRAY); array = object_as_array(object); if (array->items == NULL) { count = yr_max(64, (index + 1) * 2); array->items = (YR_ARRAY_ITEMS*) yr_malloc( sizeof(YR_ARRAY_ITEMS) + count * sizeof(YR_OBJECT*)); if (array->items == NULL) return ERROR_INSUFFICIENT_MEMORY; memset(array->items->objects, 0, count * sizeof(YR_OBJECT*)); array->items->count = count; } else if (index >= array->items->count) { count = array->items->count * 2; array->items = (YR_ARRAY_ITEMS*) yr_realloc( array->items, sizeof(YR_ARRAY_ITEMS) + count * sizeof(YR_OBJECT*)); if (array->items == NULL) return ERROR_INSUFFICIENT_MEMORY; for (i = array->items->count; i < count; i++) array->items->objects[i] = NULL; array->items->count = count; } item->parent = object; array->items->objects[index] = item; return ERROR_SUCCESS; }
Class
2
static Jsi_RC jsi_ArrayFlatSub(Jsi_Interp *interp, Jsi_Obj* nobj, Jsi_Value *arr, int depth) { int i, n = 0, len = jsi_SizeOfArray(interp, arr->d.obj); if (len <= 0) return JSI_OK; Jsi_RC rc = JSI_OK; int clen = jsi_SizeOfArray(interp, nobj); for (i = 0; i < len && rc == JSI_OK; i++) { Jsi_Value *t = Jsi_ValueArrayIndex(interp, arr, i); if (t && depth>0 && Jsi_ValueIsArray(interp, t)) rc = jsi_ArrayFlatSub(interp, nobj, t , depth-1); else if (!Jsi_ValueIsUndef(interp, t)) Jsi_ObjArrayAdd(interp, nobj, t); if ((++n + clen)>interp->maxArrayList) return Jsi_LogError("array size exceeded"); } return rc; }
Base
1
pim_print(netdissect_options *ndo, register const u_char *bp, register u_int len, const u_char *bp2) { register const u_char *ep; register const struct pim *pim = (const struct pim *)bp; ep = (const u_char *)ndo->ndo_snapend; if (bp >= ep) return; #ifdef notyet /* currently we see only version and type */ ND_TCHECK(pim->pim_rsv); #endif switch (PIM_VER(pim->pim_typever)) { case 2: if (!ndo->ndo_vflag) { ND_PRINT((ndo, "PIMv%u, %s, length %u", PIM_VER(pim->pim_typever), tok2str(pimv2_type_values,"Unknown Type",PIM_TYPE(pim->pim_typever)), len)); return; } else { ND_PRINT((ndo, "PIMv%u, length %u\n\t%s", PIM_VER(pim->pim_typever), len, tok2str(pimv2_type_values,"Unknown Type",PIM_TYPE(pim->pim_typever)))); pimv2_print(ndo, bp, len, bp2); } break; default: ND_PRINT((ndo, "PIMv%u, length %u", PIM_VER(pim->pim_typever), len)); break; } return; }
Base
1
encodeJsonStructure(const void *src, const UA_DataType *type, CtxJson *ctx) { /* Check the recursion limit */ if(ctx->depth > UA_JSON_ENCODING_MAX_RECURSION) return UA_STATUSCODE_BADENCODINGERROR; ctx->depth++; status ret = writeJsonObjStart(ctx); uintptr_t ptr = (uintptr_t) src; u8 membersSize = type->membersSize; const UA_DataType * typelists[2] = {UA_TYPES, &type[-type->typeIndex]}; for(size_t i = 0; i < membersSize && ret == UA_STATUSCODE_GOOD; ++i) { const UA_DataTypeMember *m = &type->members[i]; const UA_DataType *mt = &typelists[!m->namespaceZero][m->memberTypeIndex]; if(m->memberName != NULL && *m->memberName != 0) ret |= writeJsonKey(ctx, m->memberName); if(!m->isArray) { ptr += m->padding; size_t memSize = mt->memSize; ret |= encodeJsonJumpTable[mt->typeKind]((const void*) ptr, mt, ctx); ptr += memSize; } else { ptr += m->padding; const size_t length = *((const size_t*) ptr); ptr += sizeof (size_t); ret |= encodeJsonArray(ctx, *(void * const *)ptr, length, mt); ptr += sizeof (void*); } } ret |= writeJsonObjEnd(ctx); ctx->depth--; return ret; }
Base
1
static unsigned char *read_chunk(struct mschm_decompressor_p *self, struct mschmd_header *chm, struct mspack_file *fh, unsigned int chunk_num) { struct mspack_system *sys = self->system; unsigned char *buf; /* check arguments - most are already checked by chmd_fast_find */ if (chunk_num > chm->num_chunks) return NULL; /* ensure chunk cache is available */ if (!chm->chunk_cache) { size_t size = sizeof(unsigned char *) * chm->num_chunks; if (!(chm->chunk_cache = (unsigned char **) sys->alloc(sys, size))) { self->error = MSPACK_ERR_NOMEMORY; return NULL; } memset(chm->chunk_cache, 0, size); } /* try to answer out of chunk cache */ if (chm->chunk_cache[chunk_num]) return chm->chunk_cache[chunk_num]; /* need to read chunk - allocate memory for it */ if (!(buf = (unsigned char *) sys->alloc(sys, chm->chunk_size))) { self->error = MSPACK_ERR_NOMEMORY; return NULL; } /* seek to block and read it */ if (sys->seek(fh, (off_t) (chm->dir_offset + (chunk_num * chm->chunk_size)), MSPACK_SYS_SEEK_START)) { self->error = MSPACK_ERR_SEEK; sys->free(buf); return NULL; } if (sys->read(fh, buf, (int)chm->chunk_size) != (int)chm->chunk_size) { self->error = MSPACK_ERR_READ; sys->free(buf); return NULL; } /* check the signature. Is is PMGL or PMGI? */ if (!((buf[0] == 0x50) && (buf[1] == 0x4D) && (buf[2] == 0x47) && ((buf[3] == 0x4C) || (buf[3] == 0x49)))) { self->error = MSPACK_ERR_SEEK; sys->free(buf); return NULL; } /* all OK. Store chunk in cache and return it */ return chm->chunk_cache[chunk_num] = buf; }
Class
2
static int rawv6_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)msg->msg_name; struct sk_buff *skb; size_t copied; int err; if (flags & MSG_OOB) return -EOPNOTSUPP; if (addr_len) *addr_len=sizeof(*sin6); if (flags & MSG_ERRQUEUE) return ipv6_recv_error(sk, msg, len); if (np->rxpmtu && np->rxopt.bits.rxpmtu) return ipv6_recv_rxpmtu(sk, msg, len); skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out; copied = skb->len; if (copied > len) { copied = len; msg->msg_flags |= MSG_TRUNC; } if (skb_csum_unnecessary(skb)) { err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); } else if (msg->msg_flags&MSG_TRUNC) { if (__skb_checksum_complete(skb)) goto csum_copy_err; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); } else { err = skb_copy_and_csum_datagram_iovec(skb, 0, msg->msg_iov); if (err == -EINVAL) goto csum_copy_err; } if (err) goto out_free; /* Copy the address. */ if (sin6) { sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_addr = ipv6_hdr(skb)->saddr; sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, IP6CB(skb)->iif); } sock_recv_ts_and_drops(msg, sk, skb); if (np->rxopt.all) ip6_datagram_recv_ctl(sk, msg, skb); err = copied; if (flags & MSG_TRUNC) err = skb->len; out_free: skb_free_datagram(sk, skb); out: return err; csum_copy_err: skb_kill_datagram(sk, skb, flags); /* Error for blocking case is chosen to masquerade as some normal condition. */ err = (flags&MSG_DONTWAIT) ? -EAGAIN : -EHOSTUNREACH; goto out; }
Class
2
static char *r_socket_http_answer (RSocket *s, int *code, int *rlen) { r_return_val_if_fail (s, NULL); const char *p; int ret, len = 0, bufsz = 32768, delta = 0; char *dn, *buf = calloc (1, bufsz + 32); // XXX: use r_buffer here if (!buf) { return NULL; } char *res = NULL; int olen = __socket_slurp (s, (ut8*)buf, bufsz); if ((dn = (char*)r_str_casestr (buf, "\n\n"))) { delta += 2; } else if ((dn = (char*)r_str_casestr (buf, "\r\n\r\n"))) { delta += 4; } else { goto fail; } olen -= delta; *dn = 0; // chop headers /* Parse Len */ p = r_str_casestr (buf, "Content-Length: "); if (p) { len = atoi (p + 16); } else { len = olen - (dn - buf); } if (len > 0) { if (len > olen) { res = malloc (len + 2); memcpy (res, dn + delta, olen); do { ret = r_socket_read_block (s, (ut8*) res + olen, len - olen); if (ret < 1) { break; } olen += ret; } while (olen < len); res[len] = 0; } else { res = malloc (len + 1); if (res) { memcpy (res, dn + delta, len); res[len] = 0; } } } else { res = NULL; } fail: free (buf); // is 's' free'd? isn't this going to cause a double free? r_socket_close (s); if (rlen) { *rlen = len; } return res; }
Base
1
cdf_read_sector(const cdf_info_t *info, void *buf, size_t offs, size_t len, const cdf_header_t *h, cdf_secid_t id) { assert((size_t)CDF_SEC_SIZE(h) == len); return cdf_read(info, (off_t)CDF_SEC_POS(h, id), ((char *)buf) + offs, len); }
Class
2
int inet6_sk_rebuild_header(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); struct dst_entry *dst; dst = __sk_dst_check(sk, np->dst_cookie); if (!dst) { struct inet_sock *inet = inet_sk(sk); struct in6_addr *final_p, final; struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = sk->sk_protocol; fl6.daddr = sk->sk_v6_daddr; fl6.saddr = np->saddr; fl6.flowlabel = np->flow_label; fl6.flowi6_oif = sk->sk_bound_dev_if; fl6.flowi6_mark = sk->sk_mark; fl6.fl6_dport = inet->inet_dport; fl6.fl6_sport = inet->inet_sport; security_sk_classify_flow(sk, flowi6_to_flowi(&fl6)); final_p = fl6_update_dst(&fl6, np->opt, &final); dst = ip6_dst_lookup_flow(sk, &fl6, final_p); if (IS_ERR(dst)) { sk->sk_route_caps = 0; sk->sk_err_soft = -PTR_ERR(dst); return PTR_ERR(dst); } __ip6_dst_store(sk, dst, NULL, NULL); } return 0; }
Variant
0
s32 vvc_parse_picture_header(GF_BitStream *bs, VVCState *vvc, VVCSliceInfo *si) { u32 pps_id; si->irap_or_gdr_pic = gf_bs_read_int_log(bs, 1, "irap_or_gdr_pic"); si->non_ref_pic = gf_bs_read_int_log(bs, 1, "non_ref_pic"); if (si->irap_or_gdr_pic) si->gdr_pic = gf_bs_read_int_log(bs, 1, "gdr_pic"); if ((si->inter_slice_allowed_flag = gf_bs_read_int_log(bs, 1, "inter_slice_allowed_flag"))) si->intra_slice_allowed_flag = gf_bs_read_int_log(bs, 1, "intra_slice_allowed_flag"); pps_id = gf_bs_read_ue_log(bs, "pps_id"); if (pps_id >= 64) return -1; si->pps = &vvc->pps[pps_id]; si->sps = &vvc->sps[si->pps->sps_id]; si->poc_lsb = gf_bs_read_int_log(bs, si->sps->log2_max_poc_lsb, "poc_lsb"); si->recovery_point_valid = 0; si->gdr_recovery_count = 0; if (si->gdr_pic) { si->recovery_point_valid = 1; si->gdr_recovery_count = gf_bs_read_ue_log(bs, "gdr_recovery_count"); } gf_bs_read_int_log(bs, si->sps->ph_num_extra_bits, "ph_extra_bits"); if (si->sps->poc_msb_cycle_flag) { if ( (si->poc_msb_cycle_present_flag = gf_bs_read_int_log(bs, 1, "poc_msb_cycle_present_flag"))) { si->poc_msb_cycle = gf_bs_read_int_log(bs, si->sps->poc_msb_cycle_len, "poc_msb_cycle"); } } return 0; }
Base
1
static void keyring_describe(const struct key *keyring, struct seq_file *m) { if (keyring->description) seq_puts(m, keyring->description); else seq_puts(m, "[anon]"); if (key_is_instantiated(keyring)) { if (keyring->keys.nr_leaves_on_tree != 0) seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); else seq_puts(m, ": empty"); } }
Class
2
int main(int argc, const char *argv[]) { struct group *grent; const char *cmd; const char *path; int i; struct passwd *pw; grent = getgrnam(ABUILD_GROUP); if (grent == NULL) errx(1, "%s: Group not found", ABUILD_GROUP); char *name = NULL; pw = getpwuid(getuid()); if (pw) name = pw->pw_name; if (!is_in_group(grent->gr_gid)) { errx(1, "User %s is not a member of group %s\n", name ? name : "(unknown)", ABUILD_GROUP); } if (name == NULL) warnx("Could not find username for uid %d\n", getuid()); setenv("USER", name ?: "", 1); cmd = strrchr(argv[0], '/'); if (cmd) cmd++; else cmd = argv[0]; cmd = strchr(cmd, '-'); if (cmd == NULL) errx(1, "Calling command has no '-'"); cmd++; path = get_command_path(cmd); if (path == NULL) errx(1, "%s: Not a valid subcommand", cmd); /* we dont allow --allow-untrusted option */ for (i = 1; i < argc; i++) if (strcmp(argv[i], "--allow-untrusted") == 0) errx(1, "%s: not allowed option", "--allow-untrusted"); argv[0] = path; /* set our uid to root so bbsuid --install works */ setuid(0); /* set our gid to root so apk commit hooks run with the same gid as for "sudo apk add ..." */ setgid(0); execv(path, (char * const*)argv); perror(path); return 1; }
Class
2
static inline int xsave_state_booting(struct xsave_struct *fx, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; int err = 0; WARN_ON(system_state != SYSTEM_BOOTING); if (boot_cpu_has(X86_FEATURE_XSAVES)) asm volatile("1:"XSAVES"\n\t" "2:\n\t" : : "D" (fx), "m" (*fx), "a" (lmask), "d" (hmask) : "memory"); else asm volatile("1:"XSAVE"\n\t" "2:\n\t" : : "D" (fx), "m" (*fx), "a" (lmask), "d" (hmask) : "memory"); asm volatile(xstate_fault : "0" (0) : "memory"); return err; }
Class
2
ast2obj_excepthandler(void* _o) { excepthandler_ty o = (excepthandler_ty)_o; PyObject *result = NULL, *value = NULL; if (!o) { Py_INCREF(Py_None); return Py_None; } switch (o->kind) { case ExceptHandler_kind: result = PyType_GenericNew(ExceptHandler_type, NULL, NULL); if (!result) goto failed; value = ast2obj_expr(o->v.ExceptHandler.type); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_type, value) == -1) goto failed; Py_DECREF(value); value = ast2obj_identifier(o->v.ExceptHandler.name); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_name, value) == -1) goto failed; Py_DECREF(value); value = ast2obj_list(o->v.ExceptHandler.body, ast2obj_stmt); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_body, value) == -1) goto failed; Py_DECREF(value); break; } value = ast2obj_int(o->lineno); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_lineno, value) < 0) goto failed; Py_DECREF(value); value = ast2obj_int(o->col_offset); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_col_offset, value) < 0) goto failed; Py_DECREF(value); return result; failed: Py_XDECREF(value); Py_XDECREF(result); return NULL; }
Base
1
static int snd_timer_start_slave(struct snd_timer_instance *timeri) { unsigned long flags; spin_lock_irqsave(&slave_active_lock, flags); timeri->flags |= SNDRV_TIMER_IFLG_RUNNING; if (timeri->master) list_add_tail(&timeri->active_list, &timeri->master->slave_active_head); spin_unlock_irqrestore(&slave_active_lock, flags); return 1; /* delayed start */ }
Class
2
GF_Err text_box_size(GF_Box *s) { GF_TextSampleEntryBox *ptr = (GF_TextSampleEntryBox*)s; /*base + this + string length*/ s->size += 51 + 1; if (ptr->textName) s->size += strlen(ptr->textName); return GF_OK; }
Base
1
RList *r_bin_ne_get_symbols(r_bin_ne_obj_t *bin) { RBinSymbol *sym; ut16 off = bin->ne_header->ResidNamTable + bin->header_offset; RList *symbols = r_list_newf (free); if (!symbols) { return NULL; } RList *entries = r_bin_ne_get_entrypoints (bin); bool resident = true, first = true; while (true) { ut8 sz = r_buf_read8_at (bin->buf, off); if (!sz) { first = true; if (resident) { resident = false; off = bin->ne_header->OffStartNonResTab; sz = r_buf_read8_at (bin->buf, off); if (!sz) { break; } } else { break; } } char *name = malloc ((ut64)sz + 1); if (!name) { break; } off++; r_buf_read_at (bin->buf, off, (ut8 *)name, sz); name[sz] = '\0'; off += sz; sym = R_NEW0 (RBinSymbol); if (!sym) { break; } sym->name = name; if (!first) { sym->bind = R_BIN_BIND_GLOBAL_STR; } ut16 entry_off = r_buf_read_le16_at (bin->buf, off); off += 2; RBinAddr *entry = r_list_get_n (entries, entry_off); if (entry) { sym->paddr = entry->paddr; } else { sym->paddr = -1; } sym->ordinal = entry_off; r_list_append (symbols, sym); first = false; } RListIter *it; RBinAddr *en; int i = 1; r_list_foreach (entries, it, en) { if (!r_list_find (symbols, &en->paddr, __find_symbol_by_paddr)) { sym = R_NEW0 (RBinSymbol); if (!sym) { break; } sym->name = r_str_newf ("entry%d", i - 1); sym->paddr = en->paddr; sym->bind = R_BIN_BIND_GLOBAL_STR; sym->ordinal = i; r_list_append (symbols, sym); } i++; } bin->symbols = symbols; return symbols; }
Base
1
uint32_t *GetPayload(size_t handle, uint32_t *lastpayload, uint32_t index) { mp4object *mp4 = (mp4object *)handle; if (mp4 == NULL) return NULL; uint32_t *MP4buffer = NULL; if (index < mp4->indexcount && mp4->mediafp) { MP4buffer = (uint32_t *)realloc((void *)lastpayload, mp4->metasizes[index]); if (MP4buffer) { LONGSEEK(mp4->mediafp, mp4->metaoffsets[index], SEEK_SET); fread(MP4buffer, 1, mp4->metasizes[index], mp4->mediafp); return MP4buffer; } } return NULL; }
Base
1
static int netlbl_cipsov4_add_common(struct genl_info *info, struct cipso_v4_doi *doi_def) { struct nlattr *nla; int nla_rem; u32 iter = 0; doi_def->doi = nla_get_u32(info->attrs[NLBL_CIPSOV4_A_DOI]); if (nla_validate_nested(info->attrs[NLBL_CIPSOV4_A_TAGLST], NLBL_CIPSOV4_A_MAX, netlbl_cipsov4_genl_policy) != 0) return -EINVAL; nla_for_each_nested(nla, info->attrs[NLBL_CIPSOV4_A_TAGLST], nla_rem) if (nla->nla_type == NLBL_CIPSOV4_A_TAG) { if (iter > CIPSO_V4_TAG_MAXCNT) return -EINVAL; doi_def->tags[iter++] = nla_get_u8(nla); } if (iter < CIPSO_V4_TAG_MAXCNT) doi_def->tags[iter] = CIPSO_V4_TAG_INVALID; return 0; }
Class
2
void trustedGenerateSEK(int *errStatus, char *errString, uint8_t *encrypted_sek, uint32_t *enc_len, char *sek_hex) { CALL_ONCE LOG_INFO(__FUNCTION__); INIT_ERROR_STATE CHECK_STATE(encrypted_sek); CHECK_STATE(sek_hex); RANDOM_CHAR_BUF(SEK_raw, SGX_AESGCM_KEY_SIZE); carray2Hex((uint8_t*) SEK_raw, SGX_AESGCM_KEY_SIZE, sek_hex); memcpy(AES_key, SEK_raw, SGX_AESGCM_KEY_SIZE); derive_DH_Key(); sealHexSEK(errStatus, errString, encrypted_sek, enc_len, sek_hex); if (*errStatus != 0) { LOG_ERROR("sealHexSEK failed"); goto clean; } SET_SUCCESS clean: LOG_INFO(__FUNCTION__ ); LOG_INFO("SGX call completed"); }
Base
1
ast2obj_slice(void* _o) { slice_ty o = (slice_ty)_o; PyObject *result = NULL, *value = NULL; if (!o) { Py_INCREF(Py_None); return Py_None; } switch (o->kind) { case Slice_kind: result = PyType_GenericNew(Slice_type, NULL, NULL); if (!result) goto failed; value = ast2obj_expr(o->v.Slice.lower); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_lower, value) == -1) goto failed; Py_DECREF(value); value = ast2obj_expr(o->v.Slice.upper); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_upper, value) == -1) goto failed; Py_DECREF(value); value = ast2obj_expr(o->v.Slice.step); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_step, value) == -1) goto failed; Py_DECREF(value); break; case ExtSlice_kind: result = PyType_GenericNew(ExtSlice_type, NULL, NULL); if (!result) goto failed; value = ast2obj_list(o->v.ExtSlice.dims, ast2obj_slice); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_dims, value) == -1) goto failed; Py_DECREF(value); break; case Index_kind: result = PyType_GenericNew(Index_type, NULL, NULL); if (!result) goto failed; value = ast2obj_expr(o->v.Index.value); if (!value) goto failed; if (_PyObject_SetAttrId(result, &PyId_value, value) == -1) goto failed; Py_DECREF(value); break; } return result; failed: Py_XDECREF(value); Py_XDECREF(result); return NULL; }
Base
1
static int print_media_desc(const pjmedia_sdp_media *m, char *buf, pj_size_t len) { char *p = buf; char *end = buf+len; unsigned i; int printed; /* check length for the "m=" line. */ if (len < (pj_size_t)m->desc.media.slen+m->desc.transport.slen+12+24) { return -1; } *p++ = 'm'; /* m= */ *p++ = '='; pj_memcpy(p, m->desc.media.ptr, m->desc.media.slen); p += m->desc.media.slen; *p++ = ' '; printed = pj_utoa(m->desc.port, p); p += printed; if (m->desc.port_count > 1) { *p++ = '/'; printed = pj_utoa(m->desc.port_count, p); p += printed; } *p++ = ' '; pj_memcpy(p, m->desc.transport.ptr, m->desc.transport.slen); p += m->desc.transport.slen; for (i=0; i<m->desc.fmt_count; ++i) { *p++ = ' '; pj_memcpy(p, m->desc.fmt[i].ptr, m->desc.fmt[i].slen); p += m->desc.fmt[i].slen; } *p++ = '\r'; *p++ = '\n'; /* print connection info, if present. */ if (m->conn) { printed = print_connection_info(m->conn, p, (int)(end-p)); if (printed < 0) { return -1; } p += printed; } /* print optional bandwidth info. */ for (i=0; i<m->bandw_count; ++i) { printed = (int)print_bandw(m->bandw[i], p, end-p); if (printed < 0) { return -1; } p += printed; } /* print attributes. */ for (i=0; i<m->attr_count; ++i) { printed = (int)print_attr(m->attr[i], p, end-p); if (printed < 0) { return -1; } p += printed; } return (int)(p-buf); }
Variant
0
R_API int r_socket_read(RSocket *s, unsigned char *buf, int len) { if (!s) { return -1; } #if HAVE_LIB_SSL if (s->is_ssl) { if (s->bio) { return BIO_read (s->bio, buf, len); } return SSL_read (s->sfd, buf, len); } #endif #if __WINDOWS__ rep: { int ret = recv (s->fd, (void *)buf, len, 0); if (ret == -1) { goto rep; } return ret; } #else // int r = read (s->fd, buf, len); int r = recv (s->fd, buf, len, 0); D { eprintf ("READ "); int i; for (i = 0; i<len; i++) { eprintf ("%02x ", buf[i]); } eprintf ("\n"); } return r; #endif }
Base
1
ignore_error_for_testing(char_u *error) { if (ignore_error_list.ga_itemsize == 0) ga_init2(&ignore_error_list, sizeof(char_u *), 1); if (STRCMP("RESET", error) == 0) ga_clear_strings(&ignore_error_list); else ga_add_string(&ignore_error_list, error); }
Variant
0
static int misaligned_store(struct pt_regs *regs, __u32 opcode, int displacement_not_indexed, int width_shift) { /* Return -1 for a fault, 0 for OK */ int error; int srcreg; __u64 address; error = generate_and_check_address(regs, opcode, displacement_not_indexed, width_shift, &address); if (error < 0) { return error; } perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, address); srcreg = (opcode >> 4) & 0x3f; if (user_mode(regs)) { __u64 buffer; if (!access_ok(VERIFY_WRITE, (unsigned long) address, 1UL<<width_shift)) { return -1; } switch (width_shift) { case 1: *(__u16 *) &buffer = (__u16) regs->regs[srcreg]; break; case 2: *(__u32 *) &buffer = (__u32) regs->regs[srcreg]; break; case 3: buffer = regs->regs[srcreg]; break; default: printk("Unexpected width_shift %d in misaligned_store, PC=%08lx\n", width_shift, (unsigned long) regs->pc); break; } if (__copy_user((void *)(int)address, &buffer, (1 << width_shift)) > 0) { return -1; /* fault */ } } else { /* kernel mode - we can take short cuts since if we fault, it's a genuine bug */ __u64 val = regs->regs[srcreg]; switch (width_shift) { case 1: misaligned_kernel_word_store(address, val); break; case 2: asm ("stlo.l %1, 0, %0" : : "r" (val), "r" (address)); asm ("sthi.l %1, 3, %0" : : "r" (val), "r" (address)); break; case 3: asm ("stlo.q %1, 0, %0" : : "r" (val), "r" (address)); asm ("sthi.q %1, 7, %0" : : "r" (val), "r" (address)); break; default: printk("Unexpected width_shift %d in misaligned_store, PC=%08lx\n", width_shift, (unsigned long) regs->pc); break; } } return 0; }
Class
2
void lpc546xxEthInitDmaDesc(NetInterface *interface) { uint_t i; //Initialize TX DMA descriptor list for(i = 0; i < LPC546XX_ETH_TX_BUFFER_COUNT; i++) { //The descriptor is initially owned by the application txDmaDesc[i].tdes0 = 0; txDmaDesc[i].tdes1 = 0; txDmaDesc[i].tdes2 = 0; txDmaDesc[i].tdes3 = 0; } //Initialize TX descriptor index txIndex = 0; //Initialize RX DMA descriptor list for(i = 0; i < LPC546XX_ETH_RX_BUFFER_COUNT; i++) { //The descriptor is initially owned by the DMA rxDmaDesc[i].rdes0 = (uint32_t) rxBuffer[i]; rxDmaDesc[i].rdes1 = 0; rxDmaDesc[i].rdes2 = 0; rxDmaDesc[i].rdes3 = ENET_RDES3_OWN | ENET_RDES3_IOC | ENET_RDES3_BUF1V; } //Initialize RX descriptor index rxIndex = 0; //Start location of the TX descriptor list ENET->DMA_CH[0].DMA_CHX_TXDESC_LIST_ADDR = (uint32_t) &txDmaDesc[0]; //Length of the transmit descriptor ring ENET->DMA_CH[0].DMA_CHX_TXDESC_RING_LENGTH = LPC546XX_ETH_TX_BUFFER_COUNT - 1; //Start location of the RX descriptor list ENET->DMA_CH[0].DMA_CHX_RXDESC_LIST_ADDR = (uint32_t) &rxDmaDesc[0]; //Length of the receive descriptor ring ENET->DMA_CH[0].DMA_CHX_RXDESC_RING_LENGTH = LPC546XX_ETH_RX_BUFFER_COUNT - 1; }
Class
2
MOBI_RET mobi_parse_huff(MOBIHuffCdic *huffcdic, const MOBIPdbRecord *record) { MOBIBuffer *buf = mobi_buffer_init_null(record->data, record->size); if (buf == NULL) { debug_print("%s\n", "Memory allocation failed"); return MOBI_MALLOC_FAILED; } char huff_magic[5]; mobi_buffer_getstring(huff_magic, buf, 4); const size_t header_length = mobi_buffer_get32(buf); if (strncmp(huff_magic, HUFF_MAGIC, 4) != 0 || header_length < HUFF_HEADER_LEN) { debug_print("HUFF wrong magic: %s\n", huff_magic); mobi_buffer_free_null(buf); return MOBI_DATA_CORRUPT; } const size_t data1_offset = mobi_buffer_get32(buf); const size_t data2_offset = mobi_buffer_get32(buf); /* skip little-endian table offsets */ mobi_buffer_setpos(buf, data1_offset); if (buf->offset + (256 * 4) > buf->maxlen) { debug_print("%s", "HUFF data1 too short\n"); mobi_buffer_free_null(buf); return MOBI_DATA_CORRUPT; } /* read 256 indices from data1 big-endian */ for (int i = 0; i < 256; i++) { huffcdic->table1[i] = mobi_buffer_get32(buf); } mobi_buffer_setpos(buf, data2_offset); if (buf->offset + (64 * 4) > buf->maxlen) { debug_print("%s", "HUFF data2 too short\n"); mobi_buffer_free_null(buf); return MOBI_DATA_CORRUPT; } /* read 32 mincode-maxcode pairs from data2 big-endian */ huffcdic->mincode_table[0] = 0; huffcdic->maxcode_table[0] = 0xFFFFFFFF; for (int i = 1; i < 33; i++) { const uint32_t mincode = mobi_buffer_get32(buf); const uint32_t maxcode = mobi_buffer_get32(buf); huffcdic->mincode_table[i] = mincode << (32 - i); huffcdic->maxcode_table[i] = ((maxcode + 1) << (32 - i)) - 1; } mobi_buffer_free_null(buf); return MOBI_SUCCESS; }
Class
2
int main() { gdImagePtr im; char *buffer; size_t size; size = read_test_file(&buffer, "heap_overflow.tga"); im = gdImageCreateFromTgaPtr(size, (void *) buffer); gdTestAssert(im == NULL); free(buffer); return gdNumFailures(); }
Base
1
enum ImapAuthRes imap_auth_login(struct ImapData *idata, const char *method) { char q_user[SHORT_STRING], q_pass[SHORT_STRING]; char buf[STRING]; int rc; if (mutt_bit_isset(idata->capabilities, LOGINDISABLED)) { mutt_message(_("LOGIN disabled on this server.")); return IMAP_AUTH_UNAVAIL; } if (mutt_account_getuser(&idata->conn->account) < 0) return IMAP_AUTH_FAILURE; if (mutt_account_getpass(&idata->conn->account) < 0) return IMAP_AUTH_FAILURE; mutt_message(_("Logging in...")); imap_quote_string(q_user, sizeof(q_user), idata->conn->account.user); imap_quote_string(q_pass, sizeof(q_pass), idata->conn->account.pass); /* don't print the password unless we're at the ungodly debugging level * of 5 or higher */ if (DebugLevel < IMAP_LOG_PASS) mutt_debug(2, "Sending LOGIN command for %s...\n", idata->conn->account.user); snprintf(buf, sizeof(buf), "LOGIN %s %s", q_user, q_pass); rc = imap_exec(idata, buf, IMAP_CMD_FAIL_OK | IMAP_CMD_PASS); if (!rc) { mutt_clear_error(); /* clear "Logging in...". fixes #3524 */ return IMAP_AUTH_SUCCESS; } mutt_error(_("Login failed.")); return IMAP_AUTH_FAILURE; }
Base
1
static void edge_bulk_in_callback(struct urb *urb) { struct edgeport_port *edge_port = urb->context; struct device *dev = &edge_port->port->dev; unsigned char *data = urb->transfer_buffer; int retval = 0; int port_number; int status = urb->status; switch (status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(&urb->dev->dev, "%s - urb shutting down with status: %d\n", __func__, status); return; default: dev_err(&urb->dev->dev, "%s - nonzero read bulk status received: %d\n", __func__, status); } if (status == -EPIPE) goto exit; if (status) { dev_err(&urb->dev->dev, "%s - stopping read!\n", __func__); return; } port_number = edge_port->port->port_number; if (edge_port->lsr_event) { edge_port->lsr_event = 0; dev_dbg(dev, "%s ===== Port %u LSR Status = %02x, Data = %02x ======\n", __func__, port_number, edge_port->lsr_mask, *data); handle_new_lsr(edge_port, 1, edge_port->lsr_mask, *data); /* Adjust buffer length/pointer */ --urb->actual_length; ++data; } if (urb->actual_length) { usb_serial_debug_data(dev, __func__, urb->actual_length, data); if (edge_port->close_pending) dev_dbg(dev, "%s - close pending, dropping data on the floor\n", __func__); else edge_tty_recv(edge_port->port, data, urb->actual_length); edge_port->port->icount.rx += urb->actual_length; } exit: /* continue read unless stopped */ spin_lock(&edge_port->ep_lock); if (edge_port->ep_read_urb_state == EDGE_READ_URB_RUNNING) retval = usb_submit_urb(urb, GFP_ATOMIC); else if (edge_port->ep_read_urb_state == EDGE_READ_URB_STOPPING) edge_port->ep_read_urb_state = EDGE_READ_URB_STOPPED; spin_unlock(&edge_port->ep_lock); if (retval) dev_err(dev, "%s - usb_submit_urb failed with result %d\n", __func__, retval); }
Base
1
ast_for_suite(struct compiling *c, const node *n) { /* suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT */ asdl_seq *seq; stmt_ty s; int i, total, num, end, pos = 0; node *ch; REQ(n, suite); total = num_stmts(n); seq = _Py_asdl_seq_new(total, c->c_arena); if (!seq) return NULL; if (TYPE(CHILD(n, 0)) == simple_stmt) { n = CHILD(n, 0); /* simple_stmt always ends with a NEWLINE, and may have a trailing SEMI */ end = NCH(n) - 1; if (TYPE(CHILD(n, end - 1)) == SEMI) end--; /* loop by 2 to skip semi-colons */ for (i = 0; i < end; i += 2) { ch = CHILD(n, i); s = ast_for_stmt(c, ch); if (!s) return NULL; asdl_seq_SET(seq, pos++, s); } } else { for (i = 2; i < (NCH(n) - 1); i++) { ch = CHILD(n, i); REQ(ch, stmt); num = num_stmts(ch); if (num == 1) { /* small_stmt or compound_stmt with only one child */ s = ast_for_stmt(c, ch); if (!s) return NULL; asdl_seq_SET(seq, pos++, s); } else { int j; ch = CHILD(ch, 0); REQ(ch, simple_stmt); for (j = 0; j < NCH(ch); j += 2) { /* statement terminates with a semi-colon ';' */ if (NCH(CHILD(ch, j)) == 0) { assert((j + 1) == NCH(ch)); break; } s = ast_for_stmt(c, CHILD(ch, j)); if (!s) return NULL; asdl_seq_SET(seq, pos++, s); } } } } assert(pos == seq->size); return seq; }
Base
1
static int mount_entry_on_absolute_rootfs(struct mntent *mntent, const struct lxc_rootfs *rootfs, const char *lxc_name) { char *aux; char path[MAXPATHLEN]; int r, ret = 0, offset; const char *lxcpath; lxcpath = lxc_global_config_value("lxc.lxcpath"); if (!lxcpath) { ERROR("Out of memory"); return -1; } /* if rootfs->path is a blockdev path, allow container fstab to * use $lxcpath/CN/rootfs as the target prefix */ r = snprintf(path, MAXPATHLEN, "%s/%s/rootfs", lxcpath, lxc_name); if (r < 0 || r >= MAXPATHLEN) goto skipvarlib; aux = strstr(mntent->mnt_dir, path); if (aux) { offset = strlen(path); goto skipabs; } skipvarlib: aux = strstr(mntent->mnt_dir, rootfs->path); if (!aux) { WARN("ignoring mount point '%s'", mntent->mnt_dir); return ret; } offset = strlen(rootfs->path); skipabs: r = snprintf(path, MAXPATHLEN, "%s/%s", rootfs->mount, aux + offset); if (r < 0 || r >= MAXPATHLEN) { WARN("pathnme too long for '%s'", mntent->mnt_dir); return -1; } return mount_entry_on_generic(mntent, path); }
Base
1
static int pfkey_recvmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct pfkey_sock *pfk = pfkey_sk(sk); struct sk_buff *skb; int copied, err; err = -EINVAL; if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT)) goto out; msg->msg_namelen = 0; skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); if (skb == NULL) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } skb_reset_transport_header(skb); err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (err) goto out_free; sock_recv_ts_and_drops(msg, sk, skb); err = (flags & MSG_TRUNC) ? skb->len : copied; if (pfk->dump.dump != NULL && 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) pfkey_do_dump(pfk); out_free: skb_free_datagram(sk, skb); out: return err; }
Class
2
void gf_av1_reset_state(AV1State *state, Bool is_destroy) { GF_List *l1, *l2; if (state->frame_state.header_obus) { while (gf_list_count(state->frame_state.header_obus)) { GF_AV1_OBUArrayEntry *a = (GF_AV1_OBUArrayEntry*)gf_list_pop_back(state->frame_state.header_obus); if (a->obu) gf_free(a->obu); gf_free(a); } } if (state->frame_state.frame_obus) { while (gf_list_count(state->frame_state.frame_obus)) { GF_AV1_OBUArrayEntry *a = (GF_AV1_OBUArrayEntry*)gf_list_pop_back(state->frame_state.frame_obus); if (a->obu) gf_free(a->obu); gf_free(a); } } l1 = state->frame_state.frame_obus; l2 = state->frame_state.header_obus; memset(&state->frame_state, 0, sizeof(AV1StateFrame)); state->frame_state.is_first_frame = GF_TRUE; if (is_destroy) { gf_list_del(l1); gf_list_del(l2); if (state->bs) { if (gf_bs_get_position(state->bs)) { u32 size; gf_bs_get_content_no_truncate(state->bs, &state->frame_obus, &size, &state->frame_obus_alloc); } gf_bs_del(state->bs); } state->bs = NULL; } else { state->frame_state.frame_obus = l1; state->frame_state.header_obus = l2; if (state->bs) gf_bs_seek(state->bs, 0); } }
Variant
0
struct btrfs_device *btrfs_find_device_by_devspec( struct btrfs_fs_info *fs_info, u64 devid, const char *device_path) { struct btrfs_device *device; if (devid) { device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); if (!device) return ERR_PTR(-ENOENT); return device; } if (!device_path || !device_path[0]) return ERR_PTR(-EINVAL); if (strcmp(device_path, "missing") == 0) { /* Find first missing device */ list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && !device->bdev) return device; } return ERR_PTR(-ENOENT); } return btrfs_find_device_by_path(fs_info, device_path); }
Base
1
static void ptirq_free_irte(const struct ptirq_remapping_info *entry) { struct intr_source intr_src; if (entry->irte_idx < CONFIG_MAX_IR_ENTRIES) { if (entry->intr_type == PTDEV_INTR_MSI) { intr_src.is_msi = true; intr_src.src.msi.value = entry->phys_sid.msi_id.bdf; } else { intr_src.is_msi = false; intr_src.src.ioapic_id = ioapic_irq_to_ioapic_id(entry->allocated_pirq); } dmar_free_irte(&intr_src, entry->irte_idx); } }
Base
1
process_bitmap_updates(STREAM s) { uint16 num_updates; uint16 left, top, right, bottom, width, height; uint16 cx, cy, bpp, Bpp, compress, bufsize, size; uint8 *data, *bmpdata; int i; logger(Protocol, Debug, "%s()", __func__); in_uint16_le(s, num_updates); for (i = 0; i < num_updates; i++) { in_uint16_le(s, left); in_uint16_le(s, top); in_uint16_le(s, right); in_uint16_le(s, bottom); in_uint16_le(s, width); in_uint16_le(s, height); in_uint16_le(s, bpp); Bpp = (bpp + 7) / 8; in_uint16_le(s, compress); in_uint16_le(s, bufsize); cx = right - left + 1; cy = bottom - top + 1; logger(Graphics, Debug, "process_bitmap_updates(), [%d,%d,%d,%d], [%d,%d], bpp=%d, compression=%d", left, top, right, bottom, width, height, Bpp, compress); if (!compress) { int y; bmpdata = (uint8 *) xmalloc(width * height * Bpp); for (y = 0; y < height; y++) { in_uint8a(s, &bmpdata[(height - y - 1) * (width * Bpp)], width * Bpp); } ui_paint_bitmap(left, top, cx, cy, width, height, bmpdata); xfree(bmpdata); continue; } if (compress & 0x400) { size = bufsize; } else { in_uint8s(s, 2); /* pad */ in_uint16_le(s, size); in_uint8s(s, 4); /* line_size, final_size */ } in_uint8p(s, data, size); bmpdata = (uint8 *) xmalloc(width * height * Bpp); if (bitmap_decompress(bmpdata, width, height, data, size, Bpp)) { ui_paint_bitmap(left, top, cx, cy, width, height, bmpdata); } else { logger(Graphics, Warning, "process_bitmap_updates(), failed to decompress bitmap"); } xfree(bmpdata); } }
Base
1
void uwbd_stop(struct uwb_rc *rc) { kthread_stop(rc->uwbd.task); uwbd_flush(rc); }
Class
2
static int read_private_key(RSA *rsa) { int r; sc_path_t path; sc_file_t *file; const sc_acl_entry_t *e; u8 buf[2048], *p = buf; size_t bufsize, keysize; r = select_app_df(); if (r) return 1; sc_format_path("I0012", &path); r = sc_select_file(card, &path, &file); if (r) { fprintf(stderr, "Unable to select private key file: %s\n", sc_strerror(r)); return 2; } e = sc_file_get_acl_entry(file, SC_AC_OP_READ); if (e == NULL || e->method == SC_AC_NEVER) return 10; bufsize = file->size; sc_file_free(file); r = sc_read_binary(card, 0, buf, bufsize, 0); if (r < 0) { fprintf(stderr, "Unable to read private key file: %s\n", sc_strerror(r)); return 2; } bufsize = r; do { if (bufsize < 4) return 3; keysize = (p[0] << 8) | p[1]; if (keysize == 0) break; if (keysize < 3) return 3; if (p[2] == opt_key_num) break; p += keysize; bufsize -= keysize; } while (1); if (keysize == 0) { printf("Key number %d not found.\n", opt_key_num); return 2; } return parse_private_key(p, keysize, rsa); }
Variant
0
mrb_class_real(struct RClass* cl) { if (cl == 0) return NULL; while ((cl->tt == MRB_TT_SCLASS) || (cl->tt == MRB_TT_ICLASS)) { cl = cl->super; } return cl; }
Base
1
CURLcode Curl_auth_create_plain_message(struct Curl_easy *data, const char *userp, const char *passwdp, char **outptr, size_t *outlen) { CURLcode result; char *plainauth; size_t ulen; size_t plen; size_t plainlen; *outlen = 0; *outptr = NULL; ulen = strlen(userp); plen = strlen(passwdp); /* Compute binary message length. Check for overflows. */ if((ulen > SIZE_T_MAX/2) || (plen > (SIZE_T_MAX/2 - 2))) return CURLE_OUT_OF_MEMORY; plainlen = 2 * ulen + plen + 2; plainauth = malloc(plainlen); if(!plainauth) return CURLE_OUT_OF_MEMORY; /* Calculate the reply */ memcpy(plainauth, userp, ulen); plainauth[ulen] = '\0'; memcpy(plainauth + ulen + 1, userp, ulen); plainauth[2 * ulen + 1] = '\0'; memcpy(plainauth + 2 * ulen + 2, passwdp, plen); /* Base64 encode the reply */ result = Curl_base64_encode(data, plainauth, plainlen, outptr, outlen); free(plainauth); return result; }
Class
2
int jpc_dec_decodepkts(jpc_dec_t *dec, jas_stream_t *pkthdrstream, jas_stream_t *in) { jpc_dec_tile_t *tile; jpc_pi_t *pi; int ret; tile = dec->curtile; pi = tile->pi; for (;;) { if (!tile->pkthdrstream || jas_stream_peekc(tile->pkthdrstream) == EOF) { switch (jpc_dec_lookahead(in)) { case JPC_MS_EOC: case JPC_MS_SOT: return 0; break; case JPC_MS_SOP: case JPC_MS_EPH: case 0: break; default: return -1; break; } } if ((ret = jpc_pi_next(pi))) { return ret; } if (dec->maxpkts >= 0 && dec->numpkts >= dec->maxpkts) { jas_eprintf("warning: stopping decode prematurely as requested\n"); return 0; } if (jas_getdbglevel() >= 1) { jas_eprintf("packet offset=%08ld prg=%d cmptno=%02d " "rlvlno=%02d prcno=%03d lyrno=%02d\n", (long) jas_stream_getrwcount(in), jpc_pi_prg(pi), jpc_pi_cmptno(pi), jpc_pi_rlvlno(pi), jpc_pi_prcno(pi), jpc_pi_lyrno(pi)); } if (jpc_dec_decodepkt(dec, pkthdrstream, in, jpc_pi_cmptno(pi), jpc_pi_rlvlno(pi), jpc_pi_prcno(pi), jpc_pi_lyrno(pi))) { return -1; } ++dec->numpkts; } return 0; }
Base
1
BGD_DECLARE(void) gdImageWebp (gdImagePtr im, FILE * outFile) { gdIOCtx *out = gdNewFileCtx(outFile); if (out == NULL) { return; } gdImageWebpCtx(im, out, -1); out->gd_free(out); }
Variant
0
resolve_op_from_commit (FlatpakTransaction *self, FlatpakTransactionOperation *op, const char *checksum, GFile *sideload_path, GVariant *commit_data) { g_autoptr(GBytes) metadata_bytes = NULL; g_autoptr(GVariant) commit_metadata = NULL; const char *xa_metadata = NULL; guint64 download_size = 0; guint64 installed_size = 0; commit_metadata = g_variant_get_child_value (commit_data, 0); g_variant_lookup (commit_metadata, "xa.metadata", "&s", &xa_metadata); if (xa_metadata == NULL) g_message ("Warning: No xa.metadata in local commit %s ref %s", checksum, flatpak_decomposed_get_ref (op->ref)); else metadata_bytes = g_bytes_new (xa_metadata, strlen (xa_metadata)); if (g_variant_lookup (commit_metadata, "xa.download-size", "t", &download_size)) op->download_size = GUINT64_FROM_BE (download_size); if (g_variant_lookup (commit_metadata, "xa.installed-size", "t", &installed_size)) op->installed_size = GUINT64_FROM_BE (installed_size); g_variant_lookup (commit_metadata, OSTREE_COMMIT_META_KEY_ENDOFLIFE, "s", &op->eol); g_variant_lookup (commit_metadata, OSTREE_COMMIT_META_KEY_ENDOFLIFE_REBASE, "s", &op->eol_rebase); resolve_op_end (self, op, checksum, sideload_path, metadata_bytes); }
Base
1
static int target_xcopy_locate_se_dev_e4_iter(struct se_device *se_dev, void *data) { struct xcopy_dev_search_info *info = data; unsigned char tmp_dev_wwn[XCOPY_NAA_IEEE_REGEX_LEN]; int rc; if (!se_dev->dev_attrib.emulate_3pc) return 0; memset(&tmp_dev_wwn[0], 0, XCOPY_NAA_IEEE_REGEX_LEN); target_xcopy_gen_naa_ieee(se_dev, &tmp_dev_wwn[0]); rc = memcmp(&tmp_dev_wwn[0], info->dev_wwn, XCOPY_NAA_IEEE_REGEX_LEN); if (rc != 0) return 0; info->found_dev = se_dev; pr_debug("XCOPY 0xe4: located se_dev: %p\n", se_dev); rc = target_depend_item(&se_dev->dev_group.cg_item); if (rc != 0) { pr_err("configfs_depend_item attempt failed: %d for se_dev: %p\n", rc, se_dev); return rc; } pr_debug("Called configfs_depend_item for se_dev: %p se_dev->se_dev_group: %p\n", se_dev, &se_dev->dev_group); return 1; }
Base
1
static void prefetch_table(const volatile byte *tab, size_t len) { size_t i; for (i = 0; i < len; i += 8 * 32) { (void)tab[i + 0 * 32]; (void)tab[i + 1 * 32]; (void)tab[i + 2 * 32]; (void)tab[i + 3 * 32]; (void)tab[i + 4 * 32]; (void)tab[i + 5 * 32]; (void)tab[i + 6 * 32]; (void)tab[i + 7 * 32]; } (void)tab[len - 1]; }
Class
2
l2tp_bearer_cap_print(netdissect_options *ndo, const u_char *dat) { const uint32_t *ptr = (const uint32_t *)dat; if (EXTRACT_32BITS(ptr) & L2TP_BEARER_CAP_ANALOG_MASK) { ND_PRINT((ndo, "A")); } if (EXTRACT_32BITS(ptr) & L2TP_BEARER_CAP_DIGITAL_MASK) { ND_PRINT((ndo, "D")); } }
Base
1
_pyfribidi_log2vis (PyObject * self, PyObject * args, PyObject * kw) { PyObject *logical = NULL; /* input unicode or string object */ FriBidiParType base = FRIBIDI_TYPE_RTL; /* optional direction */ const char *encoding = "utf-8"; /* optional input string encoding */ int clean = 0; /* optional flag to clean the string */ int reordernsm = 1; /* optional flag to allow reordering of non spacing marks*/ static char *kwargs[] = { "logical", "base_direction", "encoding", "clean", "reordernsm", NULL }; if (!PyArg_ParseTupleAndKeywords (args, kw, "O|isii", kwargs, &logical, &base, &encoding, &clean, &reordernsm)) return NULL; /* Validate base */ if (!(base == FRIBIDI_TYPE_RTL || base == FRIBIDI_TYPE_LTR || base == FRIBIDI_TYPE_ON)) return PyErr_Format (PyExc_ValueError, "invalid value %d: use either RTL, LTR or ON", base); /* Check object type and delegate to one of the log2vis functions */ if (PyUnicode_Check (logical)) return log2vis_unicode (logical, base, clean, reordernsm); else if (PyString_Check (logical)) return log2vis_encoded_string (logical, encoding, base, clean, reordernsm); else return PyErr_Format (PyExc_TypeError, "expected unicode or str, not %s", logical->ob_type->tp_name); }
Class
2
static void slc_bump(struct slcan *sl) { struct sk_buff *skb; struct can_frame cf; int i, tmp; u32 tmpid; char *cmd = sl->rbuff; cf.can_id = 0; switch (*cmd) { case 'r': cf.can_id = CAN_RTR_FLAG; /* fallthrough */ case 't': /* store dlc ASCII value and terminate SFF CAN ID string */ cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN]; sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN] = 0; /* point to payload data behind the dlc */ cmd += SLC_CMD_LEN + SLC_SFF_ID_LEN + 1; break; case 'R': cf.can_id = CAN_RTR_FLAG; /* fallthrough */ case 'T': cf.can_id |= CAN_EFF_FLAG; /* store dlc ASCII value and terminate EFF CAN ID string */ cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN]; sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN] = 0; /* point to payload data behind the dlc */ cmd += SLC_CMD_LEN + SLC_EFF_ID_LEN + 1; break; default: return; } if (kstrtou32(sl->rbuff + SLC_CMD_LEN, 16, &tmpid)) return; cf.can_id |= tmpid; /* get can_dlc from sanitized ASCII value */ if (cf.can_dlc >= '0' && cf.can_dlc < '9') cf.can_dlc -= '0'; else return; *(u64 *) (&cf.data) = 0; /* clear payload */ /* RTR frames may have a dlc > 0 but they never have any data bytes */ if (!(cf.can_id & CAN_RTR_FLAG)) { for (i = 0; i < cf.can_dlc; i++) { tmp = hex_to_bin(*cmd++); if (tmp < 0) return; cf.data[i] = (tmp << 4); tmp = hex_to_bin(*cmd++); if (tmp < 0) return; cf.data[i] |= tmp; } } skb = dev_alloc_skb(sizeof(struct can_frame) + sizeof(struct can_skb_priv)); if (!skb) return; skb->dev = sl->dev; skb->protocol = htons(ETH_P_CAN); skb->pkt_type = PACKET_BROADCAST; skb->ip_summed = CHECKSUM_UNNECESSARY; can_skb_reserve(skb); can_skb_prv(skb)->ifindex = sl->dev->ifindex; can_skb_prv(skb)->skbcnt = 0; skb_put_data(skb, &cf, sizeof(struct can_frame)); sl->dev->stats.rx_packets++; sl->dev->stats.rx_bytes += cf.can_dlc; netif_rx_ni(skb); }
Base
1
static int rfcomm_sock_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; int len; if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) { rfcomm_dlc_accept(d); msg->msg_namelen = 0; return 0; } len = bt_sock_stream_recvmsg(iocb, sock, msg, size, flags); lock_sock(sk); if (!(flags & MSG_PEEK) && len > 0) atomic_sub(len, &sk->sk_rmem_alloc); if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2)) rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc); release_sock(sk); return len; }
Class
2
AsyncFor(expr_ty target, expr_ty iter, asdl_seq * body, asdl_seq * orelse, int lineno, int col_offset, int end_lineno, int end_col_offset, PyArena *arena) { stmt_ty p; if (!target) { PyErr_SetString(PyExc_ValueError, "field target is required for AsyncFor"); return NULL; } if (!iter) { PyErr_SetString(PyExc_ValueError, "field iter is required for AsyncFor"); return NULL; } p = (stmt_ty)PyArena_Malloc(arena, sizeof(*p)); if (!p) return NULL; p->kind = AsyncFor_kind; p->v.AsyncFor.target = target; p->v.AsyncFor.iter = iter; p->v.AsyncFor.body = body; p->v.AsyncFor.orelse = orelse; p->lineno = lineno; p->col_offset = col_offset; p->end_lineno = end_lineno; p->end_col_offset = end_col_offset; return p; }
Base
1
static int uas_find_uas_alt_setting(struct usb_interface *intf) { int i; for (i = 0; i < intf->num_altsetting; i++) { struct usb_host_interface *alt = &intf->altsetting[i]; if (uas_is_interface(alt)) return alt->desc.bAlternateSetting; } return -ENODEV; }
Base
1