code
stringlengths 12
2.05k
| label_name
stringclasses 5
values | label
int64 0
4
|
---|---|---|
parseuid(const char *s, uid_t *uid)
{
struct passwd *pw;
const char *errstr;
if ((pw = getpwnam(s)) != NULL) {
*uid = pw->pw_uid;
return 0;
}
#if !defined(__linux__) && !defined(__NetBSD__)
*uid = strtonum(s, 0, UID_MAX, &errstr);
#else
sscanf(s, "%d", uid);
#endif
if (errstr)
return -1;
return 0;
} | Class | 2 |
R_API RCmdAliasVal *r_cmd_alias_get(RCmd *cmd, const char *k) {
r_return_val_if_fail (cmd && cmd->aliases && k, NULL);
return ht_pp_find(cmd->aliases, k, NULL);
} | Base | 1 |
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
struct srpt_recv_ioctx *recv_ioctx,
struct srpt_send_ioctx *send_ioctx)
{
struct srp_tsk_mgmt *srp_tsk;
struct se_cmd *cmd;
struct se_session *sess = ch->sess;
uint64_t unpacked_lun;
uint32_t tag = 0;
int tcm_tmr;
int rc;
BUG_ON(!send_ioctx);
srp_tsk = recv_ioctx->ioctx.buf;
cmd = &send_ioctx->cmd;
pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
" cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
send_ioctx->cmd.tag = srp_tsk->tag;
tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
if (tcm_tmr < 0) {
send_ioctx->cmd.se_tmr_req->response =
TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
goto fail;
}
unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
sizeof(srp_tsk->lun));
if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
if (rc < 0) {
send_ioctx->cmd.se_tmr_req->response =
TMR_TASK_DOES_NOT_EXIST;
goto fail;
}
tag = srp_tsk->task_tag;
}
rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
srp_tsk, tcm_tmr, GFP_KERNEL, tag,
TARGET_SCF_ACK_KREF);
if (rc != 0) {
send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
goto fail;
}
return;
fail:
transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
} | Base | 1 |
void trustedDecryptKeyAES(int *errStatus, char *errString, uint8_t *encryptedPrivateKey,
uint32_t enc_len, char *key) {
LOG_DEBUG(__FUNCTION__);
INIT_ERROR_STATE
CHECK_STATE(encryptedPrivateKey);
CHECK_STATE(key);
*errStatus = -9;
int status = AES_decrypt_DH(encryptedPrivateKey, enc_len, key, 3072);
if (status != 0) {
*errStatus = status;
snprintf(errString, BUF_LEN, "aes decrypt failed with status %d", status);
LOG_ERROR(errString);
goto clean;
}
*errStatus = -10;
uint64_t keyLen = strnlen(key, MAX_KEY_LENGTH);
if (keyLen == MAX_KEY_LENGTH) {
snprintf(errString, BUF_LEN, "Key is not null terminated");
LOG_ERROR(errString);
goto clean;
}
SET_SUCCESS
clean:
;
} | Base | 1 |
void imap_quote_string (char *dest, size_t dlen, const char *src)
{
static const char quote[] = "\"\\";
char *pt;
const char *s;
pt = dest;
s = src;
*pt++ = '"';
/* save room for trailing quote-char */
dlen -= 2;
for (; *s && dlen; s++)
{
if (strchr (quote, *s))
{
dlen -= 2;
if (!dlen)
break;
*pt++ = '\\';
*pt++ = *s;
}
else
{
*pt++ = *s;
dlen--;
}
}
*pt++ = '"';
*pt = 0;
} | Base | 1 |
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
{
enum hrtimer_restart ret = HRTIMER_RESTART;
struct perf_sample_data data;
struct pt_regs *regs;
struct perf_event *event;
u64 period;
event = container_of(hrtimer, struct perf_event, hw.hrtimer);
if (event->state != PERF_EVENT_STATE_ACTIVE)
return HRTIMER_NORESTART;
event->pmu->read(event);
perf_sample_data_init(&data, 0);
data.period = event->hw.last_period;
regs = get_irq_regs();
if (regs && !perf_exclude_event(event, regs)) {
if (!(event->attr.exclude_idle && current->pid == 0))
if (perf_event_overflow(event, 0, &data, regs))
ret = HRTIMER_NORESTART;
}
period = max_t(u64, 10000, event->hw.sample_period);
hrtimer_forward_now(hrtimer, ns_to_ktime(period));
return ret;
} | Class | 2 |
sraSpanInsertAfter(sraSpan *newspan, sraSpan *after) {
newspan->_next = after->_next;
newspan->_prev = after;
after->_next->_prev = newspan;
after->_next = newspan;
} | Base | 1 |
static int futex_wait(u32 __user *uaddr, int fshared,
u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
struct hrtimer_sleeper timeout, *to = NULL;
struct restart_block *restart;
struct futex_hash_bucket *hb;
struct futex_q q;
int ret;
if (!bitset)
return -EINVAL;
q.pi_state = NULL;
q.bitset = bitset;
q.rt_waiter = NULL;
q.requeue_pi_key = NULL;
if (abs_time) {
to = &timeout;
hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
hrtimer_init_sleeper(to, current);
hrtimer_set_expires_range_ns(&to->timer, *abs_time,
current->timer_slack_ns);
}
retry:
/* Prepare to wait on uaddr. */
ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
if (ret)
goto out;
/* queue_me and wait for wakeup, timeout, or a signal. */
futex_wait_queue_me(hb, &q, to);
/* If we were woken (and unqueued), we succeeded, whatever. */
ret = 0;
if (!unqueue_me(&q))
goto out_put_key;
ret = -ETIMEDOUT;
if (to && !to->task)
goto out_put_key;
/*
* We expect signal_pending(current), but we might be the
* victim of a spurious wakeup as well.
*/
if (!signal_pending(current)) {
put_futex_key(fshared, &q.key);
goto retry;
}
ret = -ERESTARTSYS;
if (!abs_time)
goto out_put_key;
restart = ¤t_thread_info()->restart_block;
restart->fn = futex_wait_restart;
restart->futex.uaddr = (u32 *)uaddr;
restart->futex.val = val;
restart->futex.time = abs_time->tv64;
restart->futex.bitset = bitset;
restart->futex.flags = FLAGS_HAS_TIMEOUT;
if (fshared)
restart->futex.flags |= FLAGS_SHARED;
if (clockrt)
restart->futex.flags |= FLAGS_CLOCKRT;
ret = -ERESTART_RESTARTBLOCK;
out_put_key:
put_futex_key(fshared, &q.key);
out:
if (to) {
hrtimer_cancel(&to->timer);
destroy_hrtimer_on_stack(&to->timer);
}
return ret;
} | Class | 2 |
static const uint8_t *get_signature(const uint8_t *asn1_sig, int *len)
{
int offset = 0;
const uint8_t *ptr = NULL;
if (asn1_next_obj(asn1_sig, &offset, ASN1_SEQUENCE) < 0 ||
asn1_skip_obj(asn1_sig, &offset, ASN1_SEQUENCE))
goto end_get_sig;
if (asn1_sig[offset++] != ASN1_OCTET_STRING)
goto end_get_sig;
*len = get_asn1_length(asn1_sig, &offset);
ptr = &asn1_sig[offset]; /* all ok */
end_get_sig:
return ptr;
} | Base | 1 |
ber_parse_header(STREAM s, int tagval, int *length)
{
int tag, len;
if (tagval > 0xff)
{
in_uint16_be(s, tag);
}
else
{
in_uint8(s, tag);
}
if (tag != tagval)
{
logger(Core, Error, "ber_parse_header(), expected tag %d, got %d", tagval, tag);
return False;
}
in_uint8(s, len);
if (len & 0x80)
{
len &= ~0x80;
*length = 0;
while (len--)
next_be(s, *length);
}
else
*length = len;
return s_check(s);
} | Base | 1 |
num_stmts(const node *n)
{
int i, l;
node *ch;
switch (TYPE(n)) {
case single_input:
if (TYPE(CHILD(n, 0)) == NEWLINE)
return 0;
else
return num_stmts(CHILD(n, 0));
case file_input:
l = 0;
for (i = 0; i < NCH(n); i++) {
ch = CHILD(n, i);
if (TYPE(ch) == stmt)
l += num_stmts(ch);
}
return l;
case stmt:
return num_stmts(CHILD(n, 0));
case compound_stmt:
return 1;
case simple_stmt:
return NCH(n) / 2; /* Divide by 2 to remove count of semi-colons */
case suite:
/* suite: simple_stmt | NEWLINE [TYPE_COMMENT NEWLINE] INDENT stmt+ DEDENT */
if (NCH(n) == 1)
return num_stmts(CHILD(n, 0));
else {
i = 2;
l = 0;
if (TYPE(CHILD(n, 1)) == TYPE_COMMENT)
i += 2;
for (; i < (NCH(n) - 1); i++)
l += num_stmts(CHILD(n, i));
return l;
}
default: {
char buf[128];
sprintf(buf, "Non-statement found: %d %d",
TYPE(n), NCH(n));
Py_FatalError(buf);
}
}
assert(0);
return 0;
} | Base | 1 |
void virtio_config_writew(VirtIODevice *vdev, uint32_t addr, uint32_t data)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint16_t val = data;
if (addr > (vdev->config_len - sizeof(val)))
return;
stw_p(vdev->config + addr, val);
if (k->set_config) {
k->set_config(vdev, vdev->config);
}
} | Class | 2 |
static void bump_cpu_timer(struct k_itimer *timer, u64 now)
{
int i;
u64 delta, incr;
if (timer->it.cpu.incr == 0)
return;
if (now < timer->it.cpu.expires)
return;
incr = timer->it.cpu.incr;
delta = now + incr - timer->it.cpu.expires;
/* Don't use (incr*2 < delta), incr*2 might overflow. */
for (i = 0; incr < delta - incr; i++)
incr = incr << 1;
for (; i >= 0; incr >>= 1, i--) {
if (delta < incr)
continue;
timer->it.cpu.expires += incr;
timer->it_overrun += 1 << i;
delta -= incr;
}
} | Base | 1 |
BGD_DECLARE(gdImagePtr) gdImageCreateFromTgaCtx(gdIOCtx* ctx)
{
int bitmap_caret = 0;
oTga *tga = NULL;
/* int pixel_block_size = 0;
int image_block_size = 0; */
volatile gdImagePtr image = NULL;
int x = 0;
int y = 0;
tga = (oTga *) gdMalloc(sizeof(oTga));
if (!tga) {
return NULL;
}
tga->bitmap = NULL;
tga->ident = NULL;
if (read_header_tga(ctx, tga) < 0) {
free_tga(tga);
return NULL;
}
/*TODO: Will this be used?
pixel_block_size = tga->bits / 8;
image_block_size = (tga->width * tga->height) * pixel_block_size;
*/
if (read_image_tga(ctx, tga) < 0) {
free_tga(tga);
return NULL;
}
image = gdImageCreateTrueColor((int)tga->width, (int)tga->height );
if (image == 0) {
free_tga( tga );
return NULL;
}
/*! \brief Populate GD image object
* Copy the pixel data from our tga bitmap buffer into the GD image
* Disable blending and save the alpha channel per default
*/
if (tga->alphabits) {
gdImageAlphaBlending(image, 0);
gdImageSaveAlpha(image, 1);
}
/* TODO: use alphabits as soon as we support 24bit and other alpha bps (ie != 8bits) */
for (y = 0; y < tga->height; y++) {
register int *tpix = image->tpixels[y];
for ( x = 0; x < tga->width; x++, tpix++) {
if (tga->bits == TGA_BPP_24) {
*tpix = gdTrueColor(tga->bitmap[bitmap_caret + 2], tga->bitmap[bitmap_caret + 1], tga->bitmap[bitmap_caret]);
bitmap_caret += 3;
} else if (tga->bits == TGA_BPP_32 || tga->alphabits) {
register int a = tga->bitmap[bitmap_caret + 3];
*tpix = gdTrueColorAlpha(tga->bitmap[bitmap_caret + 2], tga->bitmap[bitmap_caret + 1], tga->bitmap[bitmap_caret], gdAlphaMax - (a >> 1));
bitmap_caret += 4;
}
}
}
if (tga->flipv && tga->fliph) {
gdImageFlipBoth(image);
} else if (tga->flipv) {
gdImageFlipVertical(image);
} else if (tga->fliph) {
gdImageFlipHorizontal(image);
}
free_tga(tga);
return image;
} | Base | 1 |
arg(identifier arg, expr_ty annotation, int lineno, int col_offset, int
end_lineno, int end_col_offset, PyArena *arena)
{
arg_ty p;
if (!arg) {
PyErr_SetString(PyExc_ValueError,
"field arg is required for arg");
return NULL;
}
p = (arg_ty)PyArena_Malloc(arena, sizeof(*p));
if (!p)
return NULL;
p->arg = arg;
p->annotation = annotation;
p->lineno = lineno;
p->col_offset = col_offset;
p->end_lineno = end_lineno;
p->end_col_offset = end_col_offset;
return p;
} | Base | 1 |
create_spnego_ctx(void)
{
spnego_gss_ctx_id_t spnego_ctx = NULL;
spnego_ctx = (spnego_gss_ctx_id_t)
malloc(sizeof (spnego_gss_ctx_id_rec));
if (spnego_ctx == NULL) {
return (NULL);
}
spnego_ctx->magic_num = SPNEGO_MAGIC_ID;
spnego_ctx->ctx_handle = GSS_C_NO_CONTEXT;
spnego_ctx->mech_set = NULL;
spnego_ctx->internal_mech = NULL;
spnego_ctx->optionStr = NULL;
spnego_ctx->DER_mechTypes.length = 0;
spnego_ctx->DER_mechTypes.value = NULL;
spnego_ctx->default_cred = GSS_C_NO_CREDENTIAL;
spnego_ctx->mic_reqd = 0;
spnego_ctx->mic_sent = 0;
spnego_ctx->mic_rcvd = 0;
spnego_ctx->mech_complete = 0;
spnego_ctx->nego_done = 0;
spnego_ctx->internal_name = GSS_C_NO_NAME;
spnego_ctx->actual_mech = GSS_C_NO_OID;
check_spnego_options(spnego_ctx);
return (spnego_ctx);
} | Base | 1 |
static int tipc_nl_compat_link_dump(struct tipc_nl_compat_msg *msg,
struct nlattr **attrs)
{
struct nlattr *link[TIPC_NLA_LINK_MAX + 1];
struct tipc_link_info link_info;
int err;
if (!attrs[TIPC_NLA_LINK])
return -EINVAL;
err = nla_parse_nested(link, TIPC_NLA_LINK_MAX, attrs[TIPC_NLA_LINK],
NULL);
if (err)
return err;
link_info.dest = nla_get_flag(link[TIPC_NLA_LINK_DEST]);
link_info.up = htonl(nla_get_flag(link[TIPC_NLA_LINK_UP]));
strcpy(link_info.str, nla_data(link[TIPC_NLA_LINK_NAME]));
return tipc_add_tlv(msg->rep, TIPC_TLV_LINK_INFO,
&link_info, sizeof(link_info));
} | Class | 2 |
static int vfio_msi_enable(struct vfio_pci_device *vdev, int nvec, bool msix)
{
struct pci_dev *pdev = vdev->pdev;
unsigned int flag = msix ? PCI_IRQ_MSIX : PCI_IRQ_MSI;
int ret;
if (!is_irq_none(vdev))
return -EINVAL;
vdev->ctx = kzalloc(nvec * sizeof(struct vfio_pci_irq_ctx), GFP_KERNEL);
if (!vdev->ctx)
return -ENOMEM;
/* return the number of supported vectors if we can't get all: */
ret = pci_alloc_irq_vectors(pdev, 1, nvec, flag);
if (ret < nvec) {
if (ret > 0)
pci_free_irq_vectors(pdev);
kfree(vdev->ctx);
return ret;
}
vdev->num_ctx = nvec;
vdev->irq_type = msix ? VFIO_PCI_MSIX_IRQ_INDEX :
VFIO_PCI_MSI_IRQ_INDEX;
if (!msix) {
/*
* Compute the virtual hardware field for max msi vectors -
* it is the log base 2 of the number of vectors.
*/
vdev->msi_qmax = fls(nvec * 2 - 1) - 1;
}
return 0;
} | Base | 1 |
static int ext4_convert_unwritten_extents_endio(handle_t *handle,
struct inode *inode,
struct ext4_ext_path *path)
{
struct ext4_extent *ex;
int depth;
int err = 0;
depth = ext_depth(inode);
ex = path[depth].p_ext;
ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
"block %llu, max_blocks %u\n", inode->i_ino,
(unsigned long long)le32_to_cpu(ex->ee_block),
ext4_ext_get_actual_len(ex));
err = ext4_ext_get_access(handle, inode, path + depth);
if (err)
goto out;
/* first mark the extent as initialized */
ext4_ext_mark_initialized(ex);
/* note: ext4_ext_correct_indexes() isn't needed here because
* borders are not changed
*/
ext4_ext_try_to_merge(handle, inode, path, ex);
/* Mark modified extent as dirty */
err = ext4_ext_dirty(handle, inode, path + path->p_depth);
out:
ext4_ext_show_leaf(inode, path);
return err;
} | Class | 2 |
RList *r_bin_ne_get_entrypoints(r_bin_ne_obj_t *bin) {
if (!bin->entry_table) {
return NULL;
}
RList *entries = r_list_newf (free);
if (!entries) {
return NULL;
}
RList *segments = r_bin_ne_get_segments (bin);
if (!segments) {
r_list_free (entries);
return NULL;
}
if (bin->ne_header->csEntryPoint) {
RBinAddr *entry = R_NEW0 (RBinAddr);
if (!entry) {
r_list_free (entries);
return NULL;
}
entry->bits = 16;
ut32 entry_cs = bin->ne_header->csEntryPoint;
RBinSection *s = r_list_get_n (segments, entry_cs - 1);
entry->paddr = bin->ne_header->ipEntryPoint + (s? s->paddr: 0);
r_list_append (entries, entry);
}
int off = 0;
size_t tableat = bin->header_offset + bin->ne_header->EntryTableOffset;
while (off < bin->ne_header->EntryTableLength) {
if (tableat + off >= r_buf_size (bin->buf)) {
break;
}
ut8 bundle_length = *(ut8 *)(bin->entry_table + off);
if (!bundle_length) {
break;
}
off++;
ut8 bundle_type = *(ut8 *)(bin->entry_table + off);
off++;
int i;
for (i = 0; i < bundle_length; i++) {
if (tableat + off + 4 >= r_buf_size (bin->buf)) {
break;
}
RBinAddr *entry = R_NEW0 (RBinAddr);
if (!entry) {
r_list_free (entries);
return NULL;
}
off++;
if (!bundle_type) { // Skip
off--;
free (entry);
break;
} else if (bundle_type == 0xff) { // moveable
off += 2;
ut8 segnum = *(bin->entry_table + off);
off++;
ut16 segoff = *(ut16 *)(bin->entry_table + off);
if (segnum > 0) {
entry->paddr = (ut64)bin->segment_entries[segnum - 1].offset * bin->alignment + segoff;
}
} else { // Fixed
if (bundle_type < bin->ne_header->SegCount) {
entry->paddr = (ut64)bin->segment_entries[bundle_type - 1].offset
* bin->alignment + *(ut16 *)(bin->entry_table + off);
}
}
off += 2;
r_list_append (entries, entry);
}
}
r_list_free (segments);
bin->entries = entries;
return entries;
} | Base | 1 |
prologProcessor(XML_Parser parser, const char *s, const char *end,
const char **nextPtr) {
const char *next = s;
int tok = XmlPrologTok(parser->m_encoding, s, end, &next);
return doProlog(parser, parser->m_encoding, s, end, tok, next, nextPtr,
(XML_Bool)! parser->m_parsingStatus.finalBuffer);
} | Base | 1 |
dns_resolver_match(const struct key *key,
const struct key_match_data *match_data)
{
int slen, dlen, ret = 0;
const char *src = key->description, *dsp = match_data->raw_data;
kenter("%s,%s", src, dsp);
if (!src || !dsp)
goto no_match;
if (strcasecmp(src, dsp) == 0)
goto matched;
slen = strlen(src);
dlen = strlen(dsp);
if (slen <= 0 || dlen <= 0)
goto no_match;
if (src[slen - 1] == '.')
slen--;
if (dsp[dlen - 1] == '.')
dlen--;
if (slen != dlen || strncasecmp(src, dsp, slen) != 0)
goto no_match;
matched:
ret = 1;
no_match:
kleave(" = %d", ret);
return ret;
} | Base | 1 |
static void controloptions (lua_State *L, int opt, const char **fmt,
Header *h) {
switch (opt) {
case ' ': return; /* ignore white spaces */
case '>': h->endian = BIG; return;
case '<': h->endian = LITTLE; return;
case '!': {
int a = getnum(L, fmt, MAXALIGN);
if (!isp2(a))
luaL_error(L, "alignment %d is not a power of 2", a);
h->align = a;
return;
}
default: {
const char *msg = lua_pushfstring(L, "invalid format option '%c'", opt);
luaL_argerror(L, 1, msg);
}
}
} | Base | 1 |
int cipso_v4_sock_setattr(struct sock *sk,
const struct cipso_v4_doi *doi_def,
const struct netlbl_lsm_secattr *secattr)
{
int ret_val = -EPERM;
unsigned char *buf = NULL;
u32 buf_len;
u32 opt_len;
struct ip_options *opt = NULL;
struct inet_sock *sk_inet;
struct inet_connection_sock *sk_conn;
/* In the case of sock_create_lite(), the sock->sk field is not
* defined yet but it is not a problem as the only users of these
* "lite" PF_INET sockets are functions which do an accept() call
* afterwards so we will label the socket as part of the accept(). */
if (sk == NULL)
return 0;
/* We allocate the maximum CIPSO option size here so we are probably
* being a little wasteful, but it makes our life _much_ easier later
* on and after all we are only talking about 40 bytes. */
buf_len = CIPSO_V4_OPT_LEN_MAX;
buf = kmalloc(buf_len, GFP_ATOMIC);
if (buf == NULL) {
ret_val = -ENOMEM;
goto socket_setattr_failure;
}
ret_val = cipso_v4_genopt(buf, buf_len, doi_def, secattr);
if (ret_val < 0)
goto socket_setattr_failure;
buf_len = ret_val;
/* We can't use ip_options_get() directly because it makes a call to
* ip_options_get_alloc() which allocates memory with GFP_KERNEL and
* we won't always have CAP_NET_RAW even though we _always_ want to
* set the IPOPT_CIPSO option. */
opt_len = (buf_len + 3) & ~3;
opt = kzalloc(sizeof(*opt) + opt_len, GFP_ATOMIC);
if (opt == NULL) {
ret_val = -ENOMEM;
goto socket_setattr_failure;
}
memcpy(opt->__data, buf, buf_len);
opt->optlen = opt_len;
opt->cipso = sizeof(struct iphdr);
kfree(buf);
buf = NULL;
sk_inet = inet_sk(sk);
if (sk_inet->is_icsk) {
sk_conn = inet_csk(sk);
if (sk_inet->opt)
sk_conn->icsk_ext_hdr_len -= sk_inet->opt->optlen;
sk_conn->icsk_ext_hdr_len += opt->optlen;
sk_conn->icsk_sync_mss(sk, sk_conn->icsk_pmtu_cookie);
}
opt = xchg(&sk_inet->opt, opt);
kfree(opt);
return 0;
socket_setattr_failure:
kfree(buf);
kfree(opt);
return ret_val;
} | Class | 2 |
static struct ucma_multicast* ucma_alloc_multicast(struct ucma_context *ctx)
{
struct ucma_multicast *mc;
mc = kzalloc(sizeof(*mc), GFP_KERNEL);
if (!mc)
return NULL;
mutex_lock(&mut);
mc->id = idr_alloc(&multicast_idr, mc, 0, 0, GFP_KERNEL);
mutex_unlock(&mut);
if (mc->id < 0)
goto error;
mc->ctx = ctx;
list_add_tail(&mc->list, &ctx->mc_list);
return mc;
error:
kfree(mc);
return NULL;
} | Variant | 0 |
ast_for_with_stmt(struct compiling *c, const node *n0, bool is_async)
{
const node * const n = is_async ? CHILD(n0, 1) : n0;
int i, n_items, end_lineno, end_col_offset;
asdl_seq *items, *body;
REQ(n, with_stmt);
n_items = (NCH(n) - 2) / 2;
items = _Py_asdl_seq_new(n_items, c->c_arena);
if (!items)
return NULL;
for (i = 1; i < NCH(n) - 2; i += 2) {
withitem_ty item = ast_for_with_item(c, CHILD(n, i));
if (!item)
return NULL;
asdl_seq_SET(items, (i - 1) / 2, item);
}
body = ast_for_suite(c, CHILD(n, NCH(n) - 1));
if (!body)
return NULL;
get_last_end_pos(body, &end_lineno, &end_col_offset);
if (is_async)
return AsyncWith(items, body, LINENO(n0), n0->n_col_offset,
end_lineno, end_col_offset, c->c_arena);
else
return With(items, body, LINENO(n), n->n_col_offset,
end_lineno, end_col_offset, c->c_arena);
} | Base | 1 |
static unsigned int seedsize(struct crypto_alg *alg)
{
struct rng_alg *ralg = container_of(alg, struct rng_alg, base);
return alg->cra_rng.rng_make_random ?
alg->cra_rng.seedsize : ralg->seedsize;
} | Base | 1 |
handle_ppp(netdissect_options *ndo,
u_int proto, const u_char *p, int length)
{
if ((proto & 0xff00) == 0x7e00) { /* is this an escape code ? */
ppp_hdlc(ndo, p - 1, length);
return;
}
switch (proto) {
case PPP_LCP: /* fall through */
case PPP_IPCP:
case PPP_OSICP:
case PPP_MPLSCP:
case PPP_IPV6CP:
case PPP_CCP:
case PPP_BACP:
handle_ctrl_proto(ndo, proto, p, length);
break;
case PPP_ML:
handle_mlppp(ndo, p, length);
break;
case PPP_CHAP:
handle_chap(ndo, p, length);
break;
case PPP_PAP:
handle_pap(ndo, p, length);
break;
case PPP_BAP: /* XXX: not yet completed */
handle_bap(ndo, p, length);
break;
case ETHERTYPE_IP: /*XXX*/
case PPP_VJNC:
case PPP_IP:
ip_print(ndo, p, length);
break;
case ETHERTYPE_IPV6: /*XXX*/
case PPP_IPV6:
ip6_print(ndo, p, length);
break;
case ETHERTYPE_IPX: /*XXX*/
case PPP_IPX:
ipx_print(ndo, p, length);
break;
case PPP_OSI:
isoclns_print(ndo, p, length, length);
break;
case PPP_MPLS_UCAST:
case PPP_MPLS_MCAST:
mpls_print(ndo, p, length);
break;
case PPP_COMP:
ND_PRINT((ndo, "compressed PPP data"));
break;
default:
ND_PRINT((ndo, "%s ", tok2str(ppptype2str, "unknown PPP protocol (0x%04x)", proto)));
print_unknown_data(ndo, p, "\n\t", length);
break;
}
} | Base | 1 |
smtp_mailaddr(struct mailaddr *maddr, char *line, int mailfrom, char **args,
const char *domain)
{
char *p, *e;
if (line == NULL)
return (0);
if (*line != '<')
return (0);
e = strchr(line, '>');
if (e == NULL)
return (0);
*e++ = '\0';
while (*e == ' ')
e++;
*args = e;
if (!text_to_mailaddr(maddr, line + 1))
return (0);
p = strchr(maddr->user, ':');
if (p != NULL) {
p++;
memmove(maddr->user, p, strlen(p) + 1);
}
if (!valid_localpart(maddr->user) ||
!valid_domainpart(maddr->domain)) {
/* accept empty return-path in MAIL FROM, required for bounces */
if (mailfrom && maddr->user[0] == '\0' && maddr->domain[0] == '\0')
return (1);
/* no user-part, reject */
if (maddr->user[0] == '\0')
return (0);
/* no domain, local user */
if (maddr->domain[0] == '\0') {
(void)strlcpy(maddr->domain, domain,
sizeof(maddr->domain));
return (1);
}
return (0);
}
return (1);
} | Class | 2 |
int __usb_get_extra_descriptor(char *buffer, unsigned size,
unsigned char type, void **ptr)
{
struct usb_descriptor_header *header;
while (size >= sizeof(struct usb_descriptor_header)) {
header = (struct usb_descriptor_header *)buffer;
if (header->bLength < 2) {
printk(KERN_ERR
"%s: bogus descriptor, type %d length %d\n",
usbcore_name,
header->bDescriptorType,
header->bLength);
return -1;
}
if (header->bDescriptorType == type) {
*ptr = header;
return 0;
}
buffer += header->bLength;
size -= header->bLength;
}
return -1;
} | Class | 2 |
static int proc_connectinfo(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_connectinfo ci = {
.devnum = ps->dev->devnum,
.slow = ps->dev->speed == USB_SPEED_LOW
};
if (copy_to_user(arg, &ci, sizeof(ci)))
return -EFAULT;
return 0;
} | Class | 2 |
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
hwaddr *xlat, hwaddr *plen,
MemTxAttrs attrs, int *prot)
{
MemoryRegionSection *section;
IOMMUMemoryRegion *iommu_mr;
IOMMUMemoryRegionClass *imrc;
IOMMUTLBEntry iotlb;
int iommu_idx;
AddressSpaceDispatch *d =
qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
for (;;) {
section = address_space_translate_internal(d, addr, &addr, plen, false);
iommu_mr = memory_region_get_iommu(section->mr);
if (!iommu_mr) {
break;
}
imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
/* We need all the permissions, so pass IOMMU_NONE so the IOMMU
* doesn't short-cut its translation table walk.
*/
iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
| (addr & iotlb.addr_mask));
/* Update the caller's prot bits to remove permissions the IOMMU
* is giving us a failure response for. If we get down to no
* permissions left at all we can give up now.
*/
if (!(iotlb.perm & IOMMU_RO)) {
*prot &= ~(PAGE_READ | PAGE_EXEC);
}
if (!(iotlb.perm & IOMMU_WO)) {
*prot &= ~PAGE_WRITE;
}
if (!*prot) {
goto translate_fail;
}
d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
}
assert(!memory_region_is_iommu(section->mr));
*xlat = addr;
return section;
translate_fail:
return &d->map.sections[PHYS_SECTION_UNASSIGNED];
} | Base | 1 |
int read_file(struct sc_card *card, char *str_path, unsigned char **data, size_t *data_len)
{
struct sc_path path;
struct sc_file *file;
unsigned char *p;
int ok = 0;
int r;
size_t len;
sc_format_path(str_path, &path);
if (SC_SUCCESS != sc_select_file(card, &path, &file)) {
goto err;
}
len = file ? file->size : 4096;
p = realloc(*data, len);
if (!p) {
goto err;
}
*data = p;
*data_len = len;
r = sc_read_binary(card, 0, p, len, 0);
if (r < 0)
goto err;
*data_len = r;
ok = 1;
err:
sc_file_free(file);
return ok;
} | Variant | 0 |
handle_associated_event(struct cpu_hw_events *cpuc,
int idx, struct perf_sample_data *data, struct pt_regs *regs)
{
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc = &event->hw;
mipspmu_event_update(event, hwc, idx);
data->period = event->hw.last_period;
if (!mipspmu_event_set_period(event, hwc, idx))
return;
if (perf_event_overflow(event, 0, data, regs))
mipspmu->disable_event(idx);
} | Class | 2 |
SPL_METHOD(SplFileObject, __construct)
{
spl_filesystem_object *intern = (spl_filesystem_object*)zend_object_store_get_object(getThis() TSRMLS_CC);
zend_bool use_include_path = 0;
char *p1, *p2;
char *tmp_path;
int tmp_path_len;
zend_error_handling error_handling;
zend_replace_error_handling(EH_THROW, spl_ce_RuntimeException, &error_handling TSRMLS_CC);
intern->u.file.open_mode = NULL;
intern->u.file.open_mode_len = 0;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "p|sbr!",
&intern->file_name, &intern->file_name_len,
&intern->u.file.open_mode, &intern->u.file.open_mode_len,
&use_include_path, &intern->u.file.zcontext) == FAILURE) {
intern->u.file.open_mode = NULL;
intern->file_name = NULL;
zend_restore_error_handling(&error_handling TSRMLS_CC);
return;
}
if (intern->u.file.open_mode == NULL) {
intern->u.file.open_mode = "r";
intern->u.file.open_mode_len = 1;
}
if (spl_filesystem_file_open(intern, use_include_path, 0 TSRMLS_CC) == SUCCESS) {
tmp_path_len = strlen(intern->u.file.stream->orig_path);
if (tmp_path_len > 1 && IS_SLASH_AT(intern->u.file.stream->orig_path, tmp_path_len-1)) {
tmp_path_len--;
}
tmp_path = estrndup(intern->u.file.stream->orig_path, tmp_path_len);
p1 = strrchr(tmp_path, '/');
#if defined(PHP_WIN32) || defined(NETWARE)
p2 = strrchr(tmp_path, '\\');
#else
p2 = 0;
#endif
if (p1 || p2) {
intern->_path_len = (p1 > p2 ? p1 : p2) - tmp_path;
} else {
intern->_path_len = 0;
}
efree(tmp_path);
intern->_path = estrndup(intern->u.file.stream->orig_path, intern->_path_len);
}
zend_restore_error_handling(&error_handling TSRMLS_CC);
} /* }}} */ | Base | 1 |
horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
{
int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
float fltsize = Fltsize;
#define CLAMP(v) ( (v<(float)0.) ? 0 \
: (v<(float)2.) ? FromLT2[(int)(v*fltsize)] \
: (v>(float)24.2) ? 2047 \
: LogK1*log(v*LogK2) + 0.5 )
mask = CODE_MASK;
if (n >= stride) {
if (stride == 3) {
r2 = wp[0] = (uint16) CLAMP(ip[0]);
g2 = wp[1] = (uint16) CLAMP(ip[1]);
b2 = wp[2] = (uint16) CLAMP(ip[2]);
n -= 3;
while (n > 0) {
n -= 3;
wp += 3;
ip += 3;
r1 = (int32) CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
g1 = (int32) CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
b1 = (int32) CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
}
} else if (stride == 4) {
r2 = wp[0] = (uint16) CLAMP(ip[0]);
g2 = wp[1] = (uint16) CLAMP(ip[1]);
b2 = wp[2] = (uint16) CLAMP(ip[2]);
a2 = wp[3] = (uint16) CLAMP(ip[3]);
n -= 4;
while (n > 0) {
n -= 4;
wp += 4;
ip += 4;
r1 = (int32) CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
g1 = (int32) CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
b1 = (int32) CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
a1 = (int32) CLAMP(ip[3]); wp[3] = (uint16)((a1-a2) & mask); a2 = a1;
}
} else {
ip += n - 1; /* point to last one */
wp += n - 1; /* point to last one */
n -= stride;
while (n > 0) {
REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]);
wp[stride] -= wp[0];
wp[stride] &= mask;
wp--; ip--)
n -= stride;
}
REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp--; ip--)
}
}
} | Class | 2 |
SPL_METHOD(SplFileInfo, getPathInfo)
{
spl_filesystem_object *intern = (spl_filesystem_object*)zend_object_store_get_object(getThis() TSRMLS_CC);
zend_class_entry *ce = intern->info_class;
zend_error_handling error_handling;
zend_replace_error_handling(EH_THROW, spl_ce_UnexpectedValueException, &error_handling TSRMLS_CC);
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|C", &ce) == SUCCESS) {
int path_len;
char *path = spl_filesystem_object_get_pathname(intern, &path_len TSRMLS_CC);
if (path) {
char *dpath = estrndup(path, path_len);
path_len = php_dirname(dpath, path_len);
spl_filesystem_object_create_info(intern, dpath, path_len, 1, ce, return_value TSRMLS_CC);
efree(dpath);
}
}
zend_restore_error_handling(&error_handling TSRMLS_CC);
} | Base | 1 |
static int __mincore_unmapped_range(unsigned long addr, unsigned long end,
struct vm_area_struct *vma, unsigned char *vec)
{
unsigned long nr = (end - addr) >> PAGE_SHIFT;
int i;
if (vma->vm_file) {
pgoff_t pgoff;
pgoff = linear_page_index(vma, addr);
for (i = 0; i < nr; i++, pgoff++)
vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff);
} else {
for (i = 0; i < nr; i++)
vec[i] = 0;
}
return nr;
} | Base | 1 |
get_user_var_name(expand_T *xp, int idx)
{
static long_u gdone;
static long_u bdone;
static long_u wdone;
static long_u tdone;
static int vidx;
static hashitem_T *hi;
hashtab_T *ht;
if (idx == 0)
{
gdone = bdone = wdone = vidx = 0;
tdone = 0;
}
// Global variables
if (gdone < globvarht.ht_used)
{
if (gdone++ == 0)
hi = globvarht.ht_array;
else
++hi;
while (HASHITEM_EMPTY(hi))
++hi;
if (STRNCMP("g:", xp->xp_pattern, 2) == 0)
return cat_prefix_varname('g', hi->hi_key);
return hi->hi_key;
}
// b: variables
ht =
#ifdef FEAT_CMDWIN
// In cmdwin, the alternative buffer should be used.
is_in_cmdwin() ? &prevwin->w_buffer->b_vars->dv_hashtab :
#endif
&curbuf->b_vars->dv_hashtab;
if (bdone < ht->ht_used)
{
if (bdone++ == 0)
hi = ht->ht_array;
else
++hi;
while (HASHITEM_EMPTY(hi))
++hi;
return cat_prefix_varname('b', hi->hi_key);
}
// w: variables
ht =
#ifdef FEAT_CMDWIN
// In cmdwin, the alternative window should be used.
is_in_cmdwin() ? &prevwin->w_vars->dv_hashtab :
#endif
&curwin->w_vars->dv_hashtab;
if (wdone < ht->ht_used)
{
if (wdone++ == 0)
hi = ht->ht_array;
else
++hi;
while (HASHITEM_EMPTY(hi))
++hi;
return cat_prefix_varname('w', hi->hi_key);
}
// t: variables
ht = &curtab->tp_vars->dv_hashtab;
if (tdone < ht->ht_used)
{
if (tdone++ == 0)
hi = ht->ht_array;
else
++hi;
while (HASHITEM_EMPTY(hi))
++hi;
return cat_prefix_varname('t', hi->hi_key);
}
// v: variables
if (vidx < VV_LEN)
return cat_prefix_varname('v', (char_u *)vimvars[vidx++].vv_name);
VIM_CLEAR(varnamebuf);
varnamebuflen = 0;
return NULL;
} | Base | 1 |
static struct ip_options *ip_options_get_alloc(const int optlen)
{
return kzalloc(sizeof(struct ip_options) + ((optlen + 3) & ~3),
GFP_KERNEL);
} | Class | 2 |
void SavePayload(size_t handle, uint32_t *payload, uint32_t index)
{
mp4object *mp4 = (mp4object *)handle;
if (mp4 == NULL) return;
uint32_t *MP4buffer = NULL;
if (index < mp4->indexcount && mp4->mediafp && payload)
{
LONGSEEK(mp4->mediafp, mp4->metaoffsets[index], SEEK_SET);
fwrite(payload, 1, mp4->metasizes[index], mp4->mediafp);
}
return;
} | Base | 1 |
void __init proc_root_init(void)
{
struct vfsmount *mnt;
int err;
proc_init_inodecache();
err = register_filesystem(&proc_fs_type);
if (err)
return;
mnt = kern_mount_data(&proc_fs_type, &init_pid_ns);
if (IS_ERR(mnt)) {
unregister_filesystem(&proc_fs_type);
return;
}
init_pid_ns.proc_mnt = mnt;
proc_symlink("mounts", NULL, "self/mounts");
proc_net_init();
#ifdef CONFIG_SYSVIPC
proc_mkdir("sysvipc", NULL);
#endif
proc_mkdir("fs", NULL);
proc_mkdir("driver", NULL);
proc_mkdir("fs/nfsd", NULL); /* somewhere for the nfsd filesystem to be mounted */
#if defined(CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE)
/* just give it a mountpoint */
proc_mkdir("openprom", NULL);
#endif
proc_tty_init();
#ifdef CONFIG_PROC_DEVICETREE
proc_device_tree_init();
#endif
proc_mkdir("bus", NULL);
proc_sys_init();
} | Class | 2 |
static RList *r_bin_wasm_get_data_entries (RBinWasmObj *bin, RBinWasmSection *sec) {
RList *ret = NULL;
RBinWasmDataEntry *ptr = NULL;
if (!(ret = r_list_newf ((RListFree)free))) {
return NULL;
}
ut8* buf = bin->buf->buf + (ut32)sec->payload_data;
ut32 len = sec->payload_len;
ut32 count = sec->count;
ut32 i = 0, r = 0;
size_t n = 0;
while (i < len && r < count) {
if (!(ptr = R_NEW0 (RBinWasmDataEntry))) {
return ret;
}
if (!(consume_u32 (buf + i, buf + len, &ptr->index, &i))) {
free (ptr);
return ret;
}
if (!(n = consume_init_expr (buf + i, buf + len, R_BIN_WASM_END_OF_CODE, NULL, &i))) {
free (ptr);
return ret;
}
ptr->offset.len = n;
if (!(consume_u32 (buf + i, buf + len, &ptr->size, &i))) {
free (ptr);
return ret;
}
ptr->data = sec->payload_data + i;
r_list_append (ret, ptr);
r += 1;
}
return ret;
} | Base | 1 |
archive_wstring_append_from_mbs(struct archive_wstring *dest,
const char *p, size_t len)
{
size_t r;
int ret_val = 0;
/*
* No single byte will be more than one wide character,
* so this length estimate will always be big enough.
*/
size_t wcs_length = len;
size_t mbs_length = len;
const char *mbs = p;
wchar_t *wcs;
#if HAVE_MBRTOWC
mbstate_t shift_state;
memset(&shift_state, 0, sizeof(shift_state));
#endif
if (NULL == archive_wstring_ensure(dest, dest->length + wcs_length + 1))
return (-1);
wcs = dest->s + dest->length;
/*
* We cannot use mbsrtowcs/mbstowcs here because those may convert
* extra MBS when strlen(p) > len and one wide character consists of
* multi bytes.
*/
while (*mbs && mbs_length > 0) {
if (wcs_length == 0) {
dest->length = wcs - dest->s;
dest->s[dest->length] = L'\0';
wcs_length = mbs_length;
if (NULL == archive_wstring_ensure(dest,
dest->length + wcs_length + 1))
return (-1);
wcs = dest->s + dest->length;
}
#if HAVE_MBRTOWC
r = mbrtowc(wcs, mbs, wcs_length, &shift_state);
#else
r = mbtowc(wcs, mbs, wcs_length);
#endif
if (r == (size_t)-1 || r == (size_t)-2) {
ret_val = -1;
if (errno == EILSEQ) {
++mbs;
--mbs_length;
continue;
} else
break;
}
if (r == 0 || r > mbs_length)
break;
wcs++;
wcs_length--;
mbs += r;
mbs_length -= r;
}
dest->length = wcs - dest->s;
dest->s[dest->length] = L'\0';
return (ret_val);
} | Base | 1 |
long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
{
struct key *key;
key_ref_t key_ref;
long ret;
/* find the key first */
key_ref = lookup_user_key(keyid, 0, 0);
if (IS_ERR(key_ref)) {
ret = -ENOKEY;
goto error;
}
key = key_ref_to_ptr(key_ref);
/* see if we can read it directly */
ret = key_permission(key_ref, KEY_NEED_READ);
if (ret == 0)
goto can_read_key;
if (ret != -EACCES)
goto error;
/* we can't; see if it's searchable from this process's keyrings
* - we automatically take account of the fact that it may be
* dangling off an instantiation key
*/
if (!is_key_possessed(key_ref)) {
ret = -EACCES;
goto error2;
}
/* the key is probably readable - now try to read it */
can_read_key:
ret = key_validate(key);
if (ret == 0) {
ret = -EOPNOTSUPP;
if (key->type->read) {
/* read the data with the semaphore held (since we
* might sleep) */
down_read(&key->sem);
ret = key->type->read(key, buffer, buflen);
up_read(&key->sem);
}
}
error2:
key_put(key);
error:
return ret;
} | Class | 2 |
spnego_gss_process_context_token(
OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,
const gss_buffer_t token_buffer)
{
OM_uint32 ret;
ret = gss_process_context_token(minor_status,
context_handle,
token_buffer);
return (ret);
} | Base | 1 |
ber_parse_header(STREAM s, int tagval, int *length)
{
int tag, len;
if (tagval > 0xff)
{
in_uint16_be(s, tag);
}
else
{
in_uint8(s, tag);
}
if (tag != tagval)
{
logger(Core, Error, "ber_parse_header(), expected tag %d, got %d", tagval, tag);
return False;
}
in_uint8(s, len);
if (len & 0x80)
{
len &= ~0x80;
*length = 0;
while (len--)
next_be(s, *length);
}
else
*length = len;
return s_check(s);
} | Base | 1 |
process_bitmap_updates(STREAM s)
{
uint16 num_updates;
uint16 left, top, right, bottom, width, height;
uint16 cx, cy, bpp, Bpp, compress, bufsize, size;
uint8 *data, *bmpdata;
int i;
logger(Protocol, Debug, "%s()", __func__);
in_uint16_le(s, num_updates);
for (i = 0; i < num_updates; i++)
{
in_uint16_le(s, left);
in_uint16_le(s, top);
in_uint16_le(s, right);
in_uint16_le(s, bottom);
in_uint16_le(s, width);
in_uint16_le(s, height);
in_uint16_le(s, bpp);
Bpp = (bpp + 7) / 8;
in_uint16_le(s, compress);
in_uint16_le(s, bufsize);
cx = right - left + 1;
cy = bottom - top + 1;
logger(Graphics, Debug,
"process_bitmap_updates(), [%d,%d,%d,%d], [%d,%d], bpp=%d, compression=%d",
left, top, right, bottom, width, height, Bpp, compress);
if (!compress)
{
int y;
bmpdata = (uint8 *) xmalloc(width * height * Bpp);
for (y = 0; y < height; y++)
{
in_uint8a(s, &bmpdata[(height - y - 1) * (width * Bpp)],
width * Bpp);
}
ui_paint_bitmap(left, top, cx, cy, width, height, bmpdata);
xfree(bmpdata);
continue;
}
if (compress & 0x400)
{
size = bufsize;
}
else
{
in_uint8s(s, 2); /* pad */
in_uint16_le(s, size);
in_uint8s(s, 4); /* line_size, final_size */
}
in_uint8p(s, data, size);
bmpdata = (uint8 *) xmalloc(width * height * Bpp);
if (bitmap_decompress(bmpdata, width, height, data, size, Bpp))
{
ui_paint_bitmap(left, top, cx, cy, width, height, bmpdata);
}
else
{
logger(Graphics, Warning,
"process_bitmap_updates(), failed to decompress bitmap");
}
xfree(bmpdata);
}
} | Base | 1 |
static PyTypeObject* make_type(char *type, PyTypeObject* base, char**fields, int num_fields)
{
PyObject *fnames, *result;
int i;
fnames = PyTuple_New(num_fields);
if (!fnames) return NULL;
for (i = 0; i < num_fields; i++) {
PyObject *field = PyUnicode_FromString(fields[i]);
if (!field) {
Py_DECREF(fnames);
return NULL;
}
PyTuple_SET_ITEM(fnames, i, field);
}
result = PyObject_CallFunction((PyObject*)&PyType_Type, "s(O){sOss}",
type, base, "_fields", fnames, "__module__", "_ast3");
Py_DECREF(fnames);
return (PyTypeObject*)result;
} | Base | 1 |
static int dynamicGetbuf(gdIOCtxPtr ctx, void *buf, int len)
{
int rlen, remain;
dpIOCtxPtr dctx;
dynamicPtr *dp;
dctx = (dpIOCtxPtr) ctx;
dp = dctx->dp;
remain = dp->logicalSize - dp->pos;
if(remain >= len) {
rlen = len;
} else {
if(remain == 0) {
/* 2.0.34: EOF is incorrect. We use 0 for
* errors and EOF, just like fileGetbuf,
* which is a simple fread() wrapper.
* TBB. Original bug report: Daniel Cowgill. */
return 0; /* NOT EOF */
}
rlen = remain;
}
memcpy(buf, (void *) ((char *)dp->data + dp->pos), rlen);
dp->pos += rlen;
return rlen;
} | Class | 2 |
static int write_empty_blocks(struct page *page, unsigned from, unsigned to,
int mode)
{
struct inode *inode = page->mapping->host;
unsigned start, end, next, blksize;
sector_t block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
int ret;
blksize = 1 << inode->i_blkbits;
next = end = 0;
while (next < from) {
next += blksize;
block++;
}
start = next;
do {
next += blksize;
ret = needs_empty_write(block, inode);
if (unlikely(ret < 0))
return ret;
if (ret == 0) {
if (end) {
ret = __block_write_begin(page, start, end - start,
gfs2_block_map);
if (unlikely(ret))
return ret;
ret = empty_write_end(page, start, end, mode);
if (unlikely(ret))
return ret;
end = 0;
}
start = next;
}
else
end = next;
block++;
} while (next < to);
if (end) {
ret = __block_write_begin(page, start, end - start, gfs2_block_map);
if (unlikely(ret))
return ret;
ret = empty_write_end(page, start, end, mode);
if (unlikely(ret))
return ret;
}
return 0;
} | Class | 2 |
mod_ty PyAST_obj2mod(PyObject* ast, PyArena* arena, int mode)
{
mod_ty res;
PyObject *req_type[3];
char *req_name[] = {"Module", "Expression", "Interactive"};
int isinstance;
req_type[0] = (PyObject*)Module_type;
req_type[1] = (PyObject*)Expression_type;
req_type[2] = (PyObject*)Interactive_type;
assert(0 <= mode && mode <= 2);
if (!init_types())
return NULL;
isinstance = PyObject_IsInstance(ast, req_type[mode]);
if (isinstance == -1)
return NULL;
if (!isinstance) {
PyErr_Format(PyExc_TypeError, "expected %s node, got %.400s",
req_name[mode], Py_TYPE(ast)->tp_name);
return NULL;
}
if (obj2ast_mod(ast, &res, arena) != 0)
return NULL;
else
return res;
} | Base | 1 |
void gdImageFillToBorder (gdImagePtr im, int x, int y, int border, int color)
{
int lastBorder;
/* Seek left */
int leftLimit = -1, rightLimit;
int i, restoreAlphaBlending = 0;
if (border < 0) {
/* Refuse to fill to a non-solid border */
return;
}
if (!im->trueColor) {
if ((color > (im->colorsTotal - 1)) || (border > (im->colorsTotal - 1)) || (color < 0)) {
return;
}
}
restoreAlphaBlending = im->alphaBlendingFlag;
im->alphaBlendingFlag = 0;
if (x >= im->sx) {
x = im->sx - 1;
} else if (x < 0) {
x = 0;
}
if (y >= im->sy) {
y = im->sy - 1;
} else if (y < 0) {
y = 0;
}
for (i = x; i >= 0; i--) {
if (gdImageGetPixel(im, i, y) == border) {
break;
}
gdImageSetPixel(im, i, y, color);
leftLimit = i;
}
if (leftLimit == -1) {
im->alphaBlendingFlag = restoreAlphaBlending;
return;
}
/* Seek right */
rightLimit = x;
for (i = (x + 1); i < im->sx; i++) {
if (gdImageGetPixel(im, i, y) == border) {
break;
}
gdImageSetPixel(im, i, y, color);
rightLimit = i;
}
/* Look at lines above and below and start paints */
/* Above */
if (y > 0) {
lastBorder = 1;
for (i = leftLimit; i <= rightLimit; i++) {
int c = gdImageGetPixel(im, i, y - 1);
if (lastBorder) {
if ((c != border) && (c != color)) {
gdImageFillToBorder(im, i, y - 1, border, color);
lastBorder = 0;
}
} else if ((c == border) || (c == color)) {
lastBorder = 1;
}
}
}
/* Below */
if (y < ((im->sy) - 1)) {
lastBorder = 1;
for (i = leftLimit; i <= rightLimit; i++) {
int c = gdImageGetPixel(im, i, y + 1);
if (lastBorder) {
if ((c != border) && (c != color)) {
gdImageFillToBorder(im, i, y + 1, border, color);
lastBorder = 0;
}
} else if ((c == border) || (c == color)) {
lastBorder = 1;
}
}
}
im->alphaBlendingFlag = restoreAlphaBlending;
} | Class | 2 |
static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
{
int i;
int nr = pagevec_count(pvec);
int delta_munlocked;
struct pagevec pvec_putback;
int pgrescued = 0;
pagevec_init(&pvec_putback, 0);
/* Phase 1: page isolation */
spin_lock_irq(zone_lru_lock(zone));
for (i = 0; i < nr; i++) {
struct page *page = pvec->pages[i];
if (TestClearPageMlocked(page)) {
/*
* We already have pin from follow_page_mask()
* so we can spare the get_page() here.
*/
if (__munlock_isolate_lru_page(page, false))
continue;
else
__munlock_isolation_failed(page);
}
/*
* We won't be munlocking this page in the next phase
* but we still need to release the follow_page_mask()
* pin. We cannot do it under lru_lock however. If it's
* the last pin, __page_cache_release() would deadlock.
*/
pagevec_add(&pvec_putback, pvec->pages[i]);
pvec->pages[i] = NULL;
}
delta_munlocked = -nr + pagevec_count(&pvec_putback);
__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
spin_unlock_irq(zone_lru_lock(zone));
/* Now we can release pins of pages that we are not munlocking */
pagevec_release(&pvec_putback);
/* Phase 2: page munlock */
for (i = 0; i < nr; i++) {
struct page *page = pvec->pages[i];
if (page) {
lock_page(page);
if (!__putback_lru_fast_prepare(page, &pvec_putback,
&pgrescued)) {
/*
* Slow path. We don't want to lose the last
* pin before unlock_page()
*/
get_page(page); /* for putback_lru_page() */
__munlock_isolated_page(page);
unlock_page(page);
put_page(page); /* from follow_page_mask() */
}
}
}
/*
* Phase 3: page putback for pages that qualified for the fast path
* This will also call put_page() to return pin from follow_page_mask()
*/
if (pagevec_count(&pvec_putback))
__putback_lru_fast(&pvec_putback, pgrescued);
} | Class | 2 |
pdf_t *pdf_new(const char *name)
{
const char *n;
pdf_t *pdf;
pdf = calloc(1, sizeof(pdf_t));
if (name)
{
/* Just get the file name (not path) */
if ((n = strrchr(name, '/')))
++n;
else
n = name;
pdf->name = malloc(strlen(n) + 1);
strcpy(pdf->name, n);
}
else /* !name */
{
pdf->name = malloc(strlen("Unknown") + 1);
strcpy(pdf->name, "Unknown");
}
return pdf;
} | Base | 1 |
static int pad_basic(bn_t m, int *p_len, int m_len, int k_len, int operation) {
uint8_t pad = 0;
int result = RLC_OK;
bn_t t;
RLC_TRY {
bn_null(t);
bn_new(t);
switch (operation) {
case RSA_ENC:
case RSA_SIG:
case RSA_SIG_HASH:
/* EB = 00 | FF | D. */
bn_zero(m);
bn_lsh(m, m, 8);
bn_add_dig(m, m, RSA_PAD);
/* Make room for the real message. */
bn_lsh(m, m, m_len * 8);
break;
case RSA_DEC:
case RSA_VER:
case RSA_VER_HASH:
/* EB = 00 | FF | D. */
m_len = k_len - 1;
bn_rsh(t, m, 8 * m_len);
if (!bn_is_zero(t)) {
result = RLC_ERR;
}
*p_len = 1;
do {
(*p_len)++;
m_len--;
bn_rsh(t, m, 8 * m_len);
pad = (uint8_t)t->dp[0];
} while (pad == 0 && m_len > 0);
if (pad != RSA_PAD) {
result = RLC_ERR;
}
bn_mod_2b(m, m, (k_len - *p_len) * 8);
break;
}
}
RLC_CATCH_ANY {
result = RLC_ERR;
}
RLC_FINALLY {
bn_free(t);
}
return result;
} | Class | 2 |
externalParEntProcessor(XML_Parser parser, const char *s, const char *end,
const char **nextPtr) {
const char *next = s;
int tok;
tok = XmlPrologTok(parser->m_encoding, s, end, &next);
if (tok <= 0) {
if (! parser->m_parsingStatus.finalBuffer && tok != XML_TOK_INVALID) {
*nextPtr = s;
return XML_ERROR_NONE;
}
switch (tok) {
case XML_TOK_INVALID:
return XML_ERROR_INVALID_TOKEN;
case XML_TOK_PARTIAL:
return XML_ERROR_UNCLOSED_TOKEN;
case XML_TOK_PARTIAL_CHAR:
return XML_ERROR_PARTIAL_CHAR;
case XML_TOK_NONE: /* start == end */
default:
break;
}
}
/* This would cause the next stage, i.e. doProlog to be passed XML_TOK_BOM.
However, when parsing an external subset, doProlog will not accept a BOM
as valid, and report a syntax error, so we have to skip the BOM
*/
else if (tok == XML_TOK_BOM) {
s = next;
tok = XmlPrologTok(parser->m_encoding, s, end, &next);
}
parser->m_processor = prologProcessor;
return doProlog(parser, parser->m_encoding, s, end, tok, next, nextPtr,
(XML_Bool)! parser->m_parsingStatus.finalBuffer);
} | Base | 1 |
PJ_DEF(pj_status_t) pjmedia_rtcp_fb_build_nack(
pjmedia_rtcp_session *session,
void *buf,
pj_size_t *length,
unsigned nack_cnt,
const pjmedia_rtcp_fb_nack nack[])
{
pjmedia_rtcp_common *hdr;
pj_uint8_t *p;
unsigned len, i;
PJ_ASSERT_RETURN(session && buf && length && nack_cnt && nack, PJ_EINVAL);
len = (3 + nack_cnt) * 4;
if (len > *length)
return PJ_ETOOSMALL;
/* Build RTCP-FB NACK header */
hdr = (pjmedia_rtcp_common*)buf;
pj_memcpy(hdr, &session->rtcp_rr_pkt.common, sizeof(*hdr));
hdr->pt = RTCP_RTPFB;
hdr->count = 1; /* FMT = 1 */
hdr->length = pj_htons((pj_uint16_t)(len/4 - 1));
/* Build RTCP-FB NACK FCI */
p = (pj_uint8_t*)hdr + sizeof(*hdr);
for (i = 0; i < nack_cnt; ++i) {
pj_uint16_t val;
val = pj_htons((pj_uint16_t)nack[i].pid);
pj_memcpy(p, &val, 2);
val = pj_htons(nack[i].blp);
pj_memcpy(p+2, &val, 2);
p += 4;
}
/* Finally */
*length = len;
return PJ_SUCCESS;
} | Base | 1 |
PHP_FUNCTION(locale_get_display_region)
{
get_icu_disp_value_src_php( LOC_REGION_TAG , INTERNAL_FUNCTION_PARAM_PASSTHRU );
} | Base | 1 |
string_object_to_c_ast(const char *s, PyObject *filename, int start,
PyCompilerFlags *flags, int feature_version,
PyArena *arena)
{
mod_ty mod;
PyCompilerFlags localflags;
perrdetail err;
int iflags = PARSER_FLAGS(flags);
node *n = Ta3Parser_ParseStringObject(s, filename,
&_Ta3Parser_Grammar, start, &err,
&iflags);
if (flags == NULL) {
localflags.cf_flags = 0;
flags = &localflags;
}
if (n) {
flags->cf_flags |= iflags & PyCF_MASK;
mod = Ta3AST_FromNodeObject(n, flags, filename, feature_version, arena);
Ta3Node_Free(n);
}
else {
err_input(&err);
mod = NULL;
}
err_free(&err);
return mod;
} | Base | 1 |
GF_Err stbl_AppendTime(GF_SampleTableBox *stbl, u32 duration, u32 nb_pack)
{
GF_TimeToSampleBox *stts = stbl->TimeToSample;
if (!nb_pack) nb_pack = 1;
if (stts->nb_entries) {
if (stts->entries[stts->nb_entries-1].sampleDelta == duration) {
stts->entries[stts->nb_entries-1].sampleCount += nb_pack;
return GF_OK;
}
}
if (stts->nb_entries==stts->alloc_size) {
ALLOC_INC(stts->alloc_size);
stts->entries = gf_realloc(stts->entries, sizeof(GF_SttsEntry)*stts->alloc_size);
if (!stts->entries) return GF_OUT_OF_MEM;
memset(&stts->entries[stts->nb_entries], 0, sizeof(GF_SttsEntry)*(stts->alloc_size-stts->nb_entries) );
}
stts->entries[stts->nb_entries].sampleCount = nb_pack;
stts->entries[stts->nb_entries].sampleDelta = duration;
stts->nb_entries++;
if (stts->max_ts_delta < duration ) stts->max_ts_delta = duration;
return GF_OK;
} | Base | 1 |
static int misaligned_fpu_load(struct pt_regs *regs,
__u32 opcode,
int displacement_not_indexed,
int width_shift,
int do_paired_load)
{
/* Return -1 for a fault, 0 for OK */
int error;
int destreg;
__u64 address;
error = generate_and_check_address(regs, opcode,
displacement_not_indexed, width_shift, &address);
if (error < 0) {
return error;
}
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, address);
destreg = (opcode >> 4) & 0x3f;
if (user_mode(regs)) {
__u64 buffer;
__u32 buflo, bufhi;
if (!access_ok(VERIFY_READ, (unsigned long) address, 1UL<<width_shift)) {
return -1;
}
if (__copy_user(&buffer, (const void *)(int)address, (1 << width_shift)) > 0) {
return -1; /* fault */
}
/* 'current' may be the current owner of the FPU state, so
context switch the registers into memory so they can be
indexed by register number. */
if (last_task_used_math == current) {
enable_fpu();
save_fpu(current);
disable_fpu();
last_task_used_math = NULL;
regs->sr |= SR_FD;
}
buflo = *(__u32*) &buffer;
bufhi = *(1 + (__u32*) &buffer);
switch (width_shift) {
case 2:
current->thread.xstate->hardfpu.fp_regs[destreg] = buflo;
break;
case 3:
if (do_paired_load) {
current->thread.xstate->hardfpu.fp_regs[destreg] = buflo;
current->thread.xstate->hardfpu.fp_regs[destreg+1] = bufhi;
} else {
#if defined(CONFIG_CPU_LITTLE_ENDIAN)
current->thread.xstate->hardfpu.fp_regs[destreg] = bufhi;
current->thread.xstate->hardfpu.fp_regs[destreg+1] = buflo;
#else
current->thread.xstate->hardfpu.fp_regs[destreg] = buflo;
current->thread.xstate->hardfpu.fp_regs[destreg+1] = bufhi;
#endif
}
break;
default:
printk("Unexpected width_shift %d in misaligned_fpu_load, PC=%08lx\n",
width_shift, (unsigned long) regs->pc);
break;
}
return 0;
} else {
die ("Misaligned FPU load inside kernel", regs, 0);
return -1;
}
} | Class | 2 |
R_API int r_socket_block_time(RSocket *s, int block, int sec, int usec) {
#if __UNIX__
int ret, flags;
#endif
if (!s) {
return false;
}
#if __UNIX__
flags = fcntl (s->fd, F_GETFL, 0);
if (flags < 0) {
return false;
}
ret = fcntl (s->fd, F_SETFL, block?
(flags & ~O_NONBLOCK):
(flags | O_NONBLOCK));
if (ret < 0) {
return false;
}
#elif __WINDOWS__
ioctlsocket (s->fd, FIONBIO, (u_long FAR*)&block);
#endif
if (sec > 0 || usec > 0) {
struct timeval tv = {0};
tv.tv_sec = sec;
tv.tv_usec = usec;
if (setsockopt (s->fd, SOL_SOCKET, SO_RCVTIMEO, (char *)&tv, sizeof (tv)) < 0) {
return false;
}
}
return true;
} | Base | 1 |
static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
{
struct platform_device *pdev = cqspi->pdev;
struct device *dev = &pdev->dev;
struct cqspi_flash_pdata *f_pdata;
struct spi_nor *nor;
struct mtd_info *mtd;
unsigned int cs;
int i, ret;
/* Get flash device data */
for_each_available_child_of_node(dev->of_node, np) {
if (of_property_read_u32(np, "reg", &cs)) {
dev_err(dev, "Couldn't determine chip select.\n");
goto err;
}
if (cs > CQSPI_MAX_CHIPSELECT) {
dev_err(dev, "Chip select %d out of range.\n", cs);
goto err;
}
f_pdata = &cqspi->f_pdata[cs];
f_pdata->cqspi = cqspi;
f_pdata->cs = cs;
ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
if (ret)
goto err;
nor = &f_pdata->nor;
mtd = &nor->mtd;
mtd->priv = nor;
nor->dev = dev;
spi_nor_set_flash_node(nor, np);
nor->priv = f_pdata;
nor->read_reg = cqspi_read_reg;
nor->write_reg = cqspi_write_reg;
nor->read = cqspi_read;
nor->write = cqspi_write;
nor->erase = cqspi_erase;
nor->prepare = cqspi_prep;
nor->unprepare = cqspi_unprep;
mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
dev_name(dev), cs);
if (!mtd->name) {
ret = -ENOMEM;
goto err;
}
ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
if (ret)
goto err;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err;
f_pdata->registered = true;
}
return 0;
err:
for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
if (cqspi->f_pdata[i].registered)
mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
return ret;
} | Class | 2 |
int mg_http_upload(struct mg_connection *c, struct mg_http_message *hm,
const char *dir) {
char offset[40] = "", name[200] = "", path[256];
mg_http_get_var(&hm->query, "offset", offset, sizeof(offset));
mg_http_get_var(&hm->query, "name", name, sizeof(name));
if (name[0] == '\0') {
mg_http_reply(c, 400, "", "%s", "name required");
return -1;
} else {
FILE *fp;
size_t oft = strtoul(offset, NULL, 0);
snprintf(path, sizeof(path), "%s%c%s", dir, MG_DIRSEP, name);
LOG(LL_DEBUG,
("%p %d bytes @ %d [%s]", c->fd, (int) hm->body.len, (int) oft, name));
if ((fp = fopen(path, oft == 0 ? "wb" : "ab")) == NULL) {
mg_http_reply(c, 400, "", "fopen(%s): %d", name, errno);
return -2;
} else {
fwrite(hm->body.ptr, 1, hm->body.len, fp);
fclose(fp);
mg_http_reply(c, 200, "", "");
return (int) hm->body.len;
}
}
} | Base | 1 |
static int set_registers(rtl8150_t * dev, u16 indx, u16 size, void *data)
{
return usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0),
RTL8150_REQ_SET_REGS, RTL8150_REQT_WRITE,
indx, 0, data, size, 500);
} | Class | 2 |
static int __br_mdb_del(struct net_bridge *br, struct br_mdb_entry *entry)
{
struct net_bridge_mdb_htable *mdb;
struct net_bridge_mdb_entry *mp;
struct net_bridge_port_group *p;
struct net_bridge_port_group __rcu **pp;
struct br_ip ip;
int err = -EINVAL;
if (!netif_running(br->dev) || br->multicast_disabled)
return -EINVAL;
if (timer_pending(&br->multicast_querier_timer))
return -EBUSY;
ip.proto = entry->addr.proto;
if (ip.proto == htons(ETH_P_IP))
ip.u.ip4 = entry->addr.u.ip4;
#if IS_ENABLED(CONFIG_IPV6)
else
ip.u.ip6 = entry->addr.u.ip6;
#endif
spin_lock_bh(&br->multicast_lock);
mdb = mlock_dereference(br->mdb, br);
mp = br_mdb_ip_get(mdb, &ip);
if (!mp)
goto unlock;
for (pp = &mp->ports;
(p = mlock_dereference(*pp, br)) != NULL;
pp = &p->next) {
if (!p->port || p->port->dev->ifindex != entry->ifindex)
continue;
if (p->port->state == BR_STATE_DISABLED)
goto unlock;
rcu_assign_pointer(*pp, p->next);
hlist_del_init(&p->mglist);
del_timer(&p->timer);
call_rcu_bh(&p->rcu, br_multicast_free_pg);
err = 0;
if (!mp->ports && !mp->mglist &&
netif_running(br->dev))
mod_timer(&mp->timer, jiffies);
break;
}
unlock:
spin_unlock_bh(&br->multicast_lock);
return err;
} | Class | 2 |
char *curl_easy_unescape(CURL *handle, const char *string, int length,
int *olen)
{
int alloc = (length?length:(int)strlen(string))+1;
char *ns = malloc(alloc);
unsigned char in;
int strindex=0;
unsigned long hex;
CURLcode res;
if(!ns)
return NULL;
while(--alloc > 0) {
in = *string;
if(('%' == in) && ISXDIGIT(string[1]) && ISXDIGIT(string[2])) {
/* this is two hexadecimal digits following a '%' */
char hexstr[3];
char *ptr;
hexstr[0] = string[1];
hexstr[1] = string[2];
hexstr[2] = 0;
hex = strtoul(hexstr, &ptr, 16);
in = curlx_ultouc(hex); /* this long is never bigger than 255 anyway */
res = Curl_convert_from_network(handle, &in, 1);
if(res) {
/* Curl_convert_from_network calls failf if unsuccessful */
free(ns);
return NULL;
}
string+=2;
alloc-=2;
}
ns[strindex++] = in;
string++;
}
ns[strindex]=0; /* terminate it */
if(olen)
/* store output size */
*olen = strindex;
return ns;
} | Base | 1 |
static void cancel_att_send_op(struct att_send_op *op)
{
if (op->destroy)
op->destroy(op->user_data);
op->user_data = NULL;
op->callback = NULL;
op->destroy = NULL;
} | Variant | 0 |
static char *get_pid_environ_val(pid_t pid,char *val){
char temp[500];
int i=0;
int foundit=0;
FILE *fp;
sprintf(temp,"/proc/%d/environ",pid);
fp=fopen(temp,"r");
if(fp==NULL)
return NULL;
for(;;){
temp[i]=fgetc(fp);
if(foundit==1 && (temp[i]==0 || temp[i]=='\0' || temp[i]==EOF)){
char *ret;
temp[i]=0;
ret=malloc(strlen(temp)+10);
sprintf(ret,"%s",temp);
fclose(fp);
return ret;
}
switch(temp[i]){
case EOF:
fclose(fp);
return NULL;
case '=':
temp[i]=0;
if(!strcmp(temp,val)){
foundit=1;
}
i=0;
break;
case '\0':
i=0;
break;
default:
i++;
}
}
} | Class | 2 |
void MSG_WriteBits( msg_t *msg, int value, int bits ) {
int i;
oldsize += bits;
// this isn't an exact overflow check, but close enough
if ( msg->maxsize - msg->cursize < 4 ) {
msg->overflowed = qtrue;
return;
}
if ( bits == 0 || bits < -31 || bits > 32 ) {
Com_Error( ERR_DROP, "MSG_WriteBits: bad bits %i", bits );
}
if ( bits < 0 ) {
bits = -bits;
}
if ( msg->oob ) {
if ( bits == 8 ) {
msg->data[msg->cursize] = value;
msg->cursize += 1;
msg->bit += 8;
} else if ( bits == 16 ) {
short temp = value;
CopyLittleShort( &msg->data[msg->cursize], &temp );
msg->cursize += 2;
msg->bit += 16;
} else if ( bits==32 ) {
CopyLittleLong( &msg->data[msg->cursize], &value );
msg->cursize += 4;
msg->bit += 32;
} else {
Com_Error( ERR_DROP, "can't write %d bits", bits );
}
} else {
value &= (0xffffffff >> (32 - bits));
if ( bits&7 ) {
int nbits;
nbits = bits&7;
for( i = 0; i < nbits; i++ ) {
Huff_putBit( (value & 1), msg->data, &msg->bit );
value = (value >> 1);
}
bits = bits - nbits;
}
if ( bits ) {
for( i = 0; i < bits; i += 8 ) {
Huff_offsetTransmit( &msgHuff.compressor, (value & 0xff), msg->data, &msg->bit );
value = (value >> 8);
}
}
msg->cursize = (msg->bit >> 3) + 1;
}
} | Class | 2 |
ikev2_sa_print(netdissect_options *ndo, u_char tpay,
const struct isakmp_gen *ext1,
u_int osa_length, const u_char *ep,
uint32_t phase _U_, uint32_t doi _U_,
uint32_t proto _U_, int depth)
{
const struct isakmp_gen *ext;
struct isakmp_gen e;
u_int sa_length;
const u_char *cp;
int i;
int pcount;
u_char np;
u_int item_len;
ND_TCHECK(*ext1);
UNALIGNED_MEMCPY(&e, ext1, sizeof(e));
ikev2_pay_print(ndo, "sa", e.critical);
/*
* ikev2_sub0_print() guarantees that this is >= 4.
*/
osa_length= ntohs(e.len);
sa_length = osa_length - 4;
ND_PRINT((ndo," len=%d", sa_length));
/*
* Print the payloads.
*/
cp = (const u_char *)(ext1 + 1);
pcount = 0;
for (np = ISAKMP_NPTYPE_P; np != 0; np = e.np) {
pcount++;
ext = (const struct isakmp_gen *)cp;
if (sa_length < sizeof(*ext))
goto toolong;
ND_TCHECK(*ext);
UNALIGNED_MEMCPY(&e, ext, sizeof(e));
/*
* Since we can't have a payload length of less than 4 bytes,
* we need to bail out here if the generic header is nonsensical
* or truncated, otherwise we could loop forever processing
* zero-length items or otherwise misdissect the packet.
*/
item_len = ntohs(e.len);
if (item_len <= 4)
goto trunc;
if (sa_length < item_len)
goto toolong;
ND_TCHECK2(*cp, item_len);
depth++;
ND_PRINT((ndo,"\n"));
for (i = 0; i < depth; i++)
ND_PRINT((ndo," "));
ND_PRINT((ndo,"("));
if (np == ISAKMP_NPTYPE_P) {
cp = ikev2_p_print(ndo, np, pcount, ext, item_len,
ep, depth);
if (cp == NULL) {
/* error, already reported */
return NULL;
}
} else {
ND_PRINT((ndo, "%s", NPSTR(np)));
cp += item_len;
}
ND_PRINT((ndo,")"));
depth--;
sa_length -= item_len;
}
return cp;
toolong:
/*
* Skip the rest of the SA.
*/
cp += sa_length;
ND_PRINT((ndo," [|%s]", NPSTR(tpay)));
return cp;
trunc:
ND_PRINT((ndo," [|%s]", NPSTR(tpay)));
return NULL;
} | Base | 1 |
static int rawsock_create(struct net *net, struct socket *sock,
const struct nfc_protocol *nfc_proto, int kern)
{
struct sock *sk;
pr_debug("sock=%p\n", sock);
if ((sock->type != SOCK_SEQPACKET) && (sock->type != SOCK_RAW))
return -ESOCKTNOSUPPORT;
if (sock->type == SOCK_RAW)
sock->ops = &rawsock_raw_ops;
else
sock->ops = &rawsock_ops;
sk = sk_alloc(net, PF_NFC, GFP_ATOMIC, nfc_proto->proto, kern);
if (!sk)
return -ENOMEM;
sock_init_data(sock, sk);
sk->sk_protocol = nfc_proto->id;
sk->sk_destruct = rawsock_destruct;
sock->state = SS_UNCONNECTED;
if (sock->type == SOCK_RAW)
nfc_sock_link(&raw_sk_list, sk);
else {
INIT_WORK(&nfc_rawsock(sk)->tx_work, rawsock_tx_work);
nfc_rawsock(sk)->tx_work_scheduled = false;
}
return 0;
} | Base | 1 |
static int proc_sys_readdir(struct file *file, struct dir_context *ctx)
{
struct ctl_table_header *head = grab_header(file_inode(file));
struct ctl_table_header *h = NULL;
struct ctl_table *entry;
struct ctl_dir *ctl_dir;
unsigned long pos;
if (IS_ERR(head))
return PTR_ERR(head);
ctl_dir = container_of(head, struct ctl_dir, header);
if (!dir_emit_dots(file, ctx))
return 0;
pos = 2;
for (first_entry(ctl_dir, &h, &entry); h; next_entry(&h, &entry)) {
if (!scan(h, entry, &pos, file, ctx)) {
sysctl_head_finish(h);
break;
}
}
sysctl_head_finish(head);
return 0;
} | Class | 2 |
static int unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb)
{
int i;
unsigned char max_level = 0;
int unix_sock_count = 0;
for (i = scm->fp->count - 1; i >= 0; i--) {
struct sock *sk = unix_get_socket(scm->fp->fp[i]);
if (sk) {
unix_sock_count++;
max_level = max(max_level,
unix_sk(sk)->recursion_level);
}
}
if (unlikely(max_level > MAX_RECURSION_LEVEL))
return -ETOOMANYREFS;
/*
* Need to duplicate file references for the sake of garbage
* collection. Otherwise a socket in the fps might become a
* candidate for GC while the skb is not yet queued.
*/
UNIXCB(skb).fp = scm_fp_dup(scm->fp);
if (!UNIXCB(skb).fp)
return -ENOMEM;
if (unix_sock_count) {
for (i = scm->fp->count - 1; i >= 0; i--)
unix_inflight(scm->fp->fp[i]);
}
return max_level;
} | Class | 2 |
static irqreturn_t snd_msnd_interrupt(int irq, void *dev_id)
{
struct snd_msnd *chip = dev_id;
void *pwDSPQData = chip->mappedbase + DSPQ_DATA_BUFF;
/* Send ack to DSP */
/* inb(chip->io + HP_RXL); */
/* Evaluate queued DSP messages */
while (readw(chip->DSPQ + JQS_wTail) != readw(chip->DSPQ + JQS_wHead)) {
u16 wTmp;
snd_msnd_eval_dsp_msg(chip,
readw(pwDSPQData + 2 * readw(chip->DSPQ + JQS_wHead)));
wTmp = readw(chip->DSPQ + JQS_wHead) + 1;
if (wTmp > readw(chip->DSPQ + JQS_wSize))
writew(0, chip->DSPQ + JQS_wHead);
else
writew(wTmp, chip->DSPQ + JQS_wHead);
}
/* Send ack to DSP */
inb(chip->io + HP_RXL);
return IRQ_HANDLED;
} | Base | 1 |
static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
{
struct page *pages[NFS4ACL_MAXPAGES] = {NULL, };
struct nfs_getaclargs args = {
.fh = NFS_FH(inode),
.acl_pages = pages,
.acl_len = buflen,
};
struct nfs_getaclres res = {
.acl_len = buflen,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned int npages = DIV_ROUND_UP(buflen, PAGE_SIZE);
int ret = -ENOMEM, i;
/* As long as we're doing a round trip to the server anyway,
* let's be prepared for a page of acl data. */
if (npages == 0)
npages = 1;
if (npages > ARRAY_SIZE(pages))
return -ERANGE;
for (i = 0; i < npages; i++) {
pages[i] = alloc_page(GFP_KERNEL);
if (!pages[i])
goto out_free;
}
/* for decoding across pages */
res.acl_scratch = alloc_page(GFP_KERNEL);
if (!res.acl_scratch)
goto out_free;
args.acl_len = npages * PAGE_SIZE;
args.acl_pgbase = 0;
dprintk("%s buf %p buflen %zu npages %d args.acl_len %zu\n",
__func__, buf, buflen, npages, args.acl_len);
ret = nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode),
&msg, &args.seq_args, &res.seq_res, 0);
if (ret)
goto out_free;
/* Handle the case where the passed-in buffer is too short */
if (res.acl_flags & NFS4_ACL_TRUNC) {
/* Did the user only issue a request for the acl length? */
if (buf == NULL)
goto out_ok;
ret = -ERANGE;
goto out_free;
}
nfs4_write_cached_acl(inode, pages, res.acl_data_offset, res.acl_len);
if (buf)
_copy_from_pages(buf, pages, res.acl_data_offset, res.acl_len);
out_ok:
ret = res.acl_len;
out_free:
for (i = 0; i < npages; i++)
if (pages[i])
__free_page(pages[i]);
if (res.acl_scratch)
__free_page(res.acl_scratch);
return ret;
} | Class | 2 |
int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
int lookup, struct fscrypt_name *fname)
{
int ret = 0, bigname = 0;
memset(fname, 0, sizeof(struct fscrypt_name));
fname->usr_fname = iname;
if (!dir->i_sb->s_cop->is_encrypted(dir) ||
fscrypt_is_dot_dotdot(iname)) {
fname->disk_name.name = (unsigned char *)iname->name;
fname->disk_name.len = iname->len;
return 0;
}
ret = fscrypt_get_crypt_info(dir);
if (ret && ret != -EOPNOTSUPP)
return ret;
if (dir->i_crypt_info) {
ret = fscrypt_fname_alloc_buffer(dir, iname->len,
&fname->crypto_buf);
if (ret)
return ret;
ret = fname_encrypt(dir, iname, &fname->crypto_buf);
if (ret)
goto errout;
fname->disk_name.name = fname->crypto_buf.name;
fname->disk_name.len = fname->crypto_buf.len;
return 0;
}
if (!lookup)
return -ENOKEY;
/*
* We don't have the key and we are doing a lookup; decode the
* user-supplied name
*/
if (iname->name[0] == '_')
bigname = 1;
if ((bigname && (iname->len != 33)) || (!bigname && (iname->len > 43)))
return -ENOENT;
fname->crypto_buf.name = kmalloc(32, GFP_KERNEL);
if (fname->crypto_buf.name == NULL)
return -ENOMEM;
ret = digest_decode(iname->name + bigname, iname->len - bigname,
fname->crypto_buf.name);
if (ret < 0) {
ret = -ENOENT;
goto errout;
}
fname->crypto_buf.len = ret;
if (bigname) {
memcpy(&fname->hash, fname->crypto_buf.name, 4);
memcpy(&fname->minor_hash, fname->crypto_buf.name + 4, 4);
} else {
fname->disk_name.name = fname->crypto_buf.name;
fname->disk_name.len = fname->crypto_buf.len;
}
return 0;
errout:
fscrypt_fname_free_buffer(&fname->crypto_buf);
return ret;
} | Variant | 0 |
gplotAddPlot(GPLOT *gplot,
NUMA *nax,
NUMA *nay,
l_int32 plotstyle,
const char *plottitle)
{
char buf[L_BUF_SIZE];
char emptystring[] = "";
char *datastr, *title;
l_int32 n, i;
l_float32 valx, valy, startx, delx;
SARRAY *sa;
PROCNAME("gplotAddPlot");
if (!gplot)
return ERROR_INT("gplot not defined", procName, 1);
if (!nay)
return ERROR_INT("nay not defined", procName, 1);
if (plotstyle < 0 || plotstyle >= NUM_GPLOT_STYLES)
return ERROR_INT("invalid plotstyle", procName, 1);
if ((n = numaGetCount(nay)) == 0)
return ERROR_INT("no points to plot", procName, 1);
if (nax && (n != numaGetCount(nax)))
return ERROR_INT("nax and nay sizes differ", procName, 1);
if (n == 1 && plotstyle == GPLOT_LINES) {
L_INFO("only 1 pt; changing style to points\n", procName);
plotstyle = GPLOT_POINTS;
}
/* Save plotstyle and plottitle */
numaGetParameters(nay, &startx, &delx);
numaAddNumber(gplot->plotstyles, plotstyle);
if (plottitle) {
title = stringNew(plottitle);
sarrayAddString(gplot->plottitles, title, L_INSERT);
} else {
sarrayAddString(gplot->plottitles, emptystring, L_COPY);
}
/* Generate and save data filename */
gplot->nplots++;
snprintf(buf, L_BUF_SIZE, "%s.data.%d", gplot->rootname, gplot->nplots);
sarrayAddString(gplot->datanames, buf, L_COPY);
/* Generate data and save as a string */
sa = sarrayCreate(n);
for (i = 0; i < n; i++) {
if (nax)
numaGetFValue(nax, i, &valx);
else
valx = startx + i * delx;
numaGetFValue(nay, i, &valy);
snprintf(buf, L_BUF_SIZE, "%f %f\n", valx, valy);
sarrayAddString(sa, buf, L_COPY);
}
datastr = sarrayToString(sa, 0);
sarrayAddString(gplot->plotdata, datastr, L_INSERT);
sarrayDestroy(&sa);
return 0;
} | Base | 1 |
ber_parse_header(STREAM s, int tagval, int *length)
{
int tag, len;
if (tagval > 0xff)
{
in_uint16_be(s, tag);
}
else
{
in_uint8(s, tag);
}
if (tag != tagval)
{
logger(Core, Error, "ber_parse_header(), expected tag %d, got %d", tagval, tag);
return False;
}
in_uint8(s, len);
if (len & 0x80)
{
len &= ~0x80;
*length = 0;
while (len--)
next_be(s, *length);
}
else
*length = len;
return s_check(s);
} | Base | 1 |
commonio_sort (struct commonio_db *db, int (*cmp) (const void *, const void *))
{
struct commonio_entry **entries, *ptr;
size_t n = 0, i;
#if KEEP_NIS_AT_END
struct commonio_entry *nis = NULL;
#endif
for (ptr = db->head;
(NULL != ptr)
#if KEEP_NIS_AT_END
&& (NULL != ptr->line)
&& ( ('+' != ptr->line[0])
&& ('-' != ptr->line[0]))
#endif
;
ptr = ptr->next) {
n++;
}
#if KEEP_NIS_AT_END
if ((NULL != ptr) && (NULL != ptr->line)) {
nis = ptr;
}
#endif
if (n <= 1) {
return 0;
}
entries = malloc (n * sizeof (struct commonio_entry *));
if (entries == NULL) {
return -1;
}
n = 0;
for (ptr = db->head;
#if KEEP_NIS_AT_END
nis != ptr;
#else
NULL != ptr;
#endif
/*@ -nullderef @*/
ptr = ptr->next
/*@ +nullderef @*/
) {
entries[n] = ptr;
n++;
}
qsort (entries, n, sizeof (struct commonio_entry *), cmp);
/* Take care of the head and tail separately */
db->head = entries[0];
n--;
#if KEEP_NIS_AT_END
if (NULL == nis)
#endif
{
db->tail = entries[n];
}
db->head->prev = NULL;
db->head->next = entries[1];
entries[n]->prev = entries[n - 1];
#if KEEP_NIS_AT_END
entries[n]->next = nis;
#else
entries[n]->next = NULL;
#endif
/* Now other elements have prev and next entries */
for (i = 1; i < n; i++) {
entries[i]->prev = entries[i - 1];
entries[i]->next = entries[i + 1];
}
free (entries);
db->changed = true;
return 0;
} | Class | 2 |
ikev1_attrmap_print(netdissect_options *ndo,
const u_char *p, const u_char *ep,
const struct attrmap *map, size_t nmap)
{
int totlen;
uint32_t t, v;
if (p[0] & 0x80)
totlen = 4;
else
totlen = 4 + EXTRACT_16BITS(&p[2]);
if (ep < p + totlen) {
ND_PRINT((ndo,"[|attr]"));
return ep + 1;
}
ND_PRINT((ndo,"("));
t = EXTRACT_16BITS(&p[0]) & 0x7fff;
if (map && t < nmap && map[t].type)
ND_PRINT((ndo,"type=%s ", map[t].type));
else
ND_PRINT((ndo,"type=#%d ", t));
if (p[0] & 0x80) {
ND_PRINT((ndo,"value="));
v = EXTRACT_16BITS(&p[2]);
if (map && t < nmap && v < map[t].nvalue && map[t].value[v])
ND_PRINT((ndo,"%s", map[t].value[v]));
else
rawprint(ndo, (const uint8_t *)&p[2], 2);
} else {
ND_PRINT((ndo,"len=%d value=", EXTRACT_16BITS(&p[2])));
rawprint(ndo, (const uint8_t *)&p[4], EXTRACT_16BITS(&p[2]));
}
ND_PRINT((ndo,")"));
return p + totlen;
} | Base | 1 |
resolve_op_end (FlatpakTransaction *self,
FlatpakTransactionOperation *op,
const char *checksum,
GFile *sideload_path,
GBytes *metadata_bytes)
{
g_autoptr(GBytes) old_metadata_bytes = NULL;
old_metadata_bytes = load_deployed_metadata (self, op->ref, NULL, NULL);
mark_op_resolved (op, checksum, sideload_path, metadata_bytes, old_metadata_bytes);
emit_eol_and_maybe_skip (self, op);
} | Base | 1 |
TEE_Result syscall_cryp_obj_populate(unsigned long obj,
struct utee_attribute *usr_attrs,
unsigned long attr_count)
{
TEE_Result res;
struct tee_ta_session *sess;
struct tee_obj *o;
const struct tee_cryp_obj_type_props *type_props;
TEE_Attribute *attrs = NULL;
res = tee_ta_get_current_session(&sess);
if (res != TEE_SUCCESS)
return res;
res = tee_obj_get(to_user_ta_ctx(sess->ctx),
tee_svc_uref_to_vaddr(obj), &o);
if (res != TEE_SUCCESS)
return res;
/* Must be a transient object */
if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
return TEE_ERROR_BAD_PARAMETERS;
/* Must not be initialized already */
if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
return TEE_ERROR_BAD_PARAMETERS;
type_props = tee_svc_find_type_props(o->info.objectType);
if (!type_props)
return TEE_ERROR_NOT_IMPLEMENTED;
attrs = malloc(sizeof(TEE_Attribute) * attr_count);
if (!attrs)
return TEE_ERROR_OUT_OF_MEMORY;
res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count,
attrs);
if (res != TEE_SUCCESS)
goto out;
res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props,
attrs, attr_count);
if (res != TEE_SUCCESS)
goto out;
res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count);
if (res == TEE_SUCCESS)
o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
out:
free(attrs);
return res;
} | Base | 1 |
static int atusb_read_reg(struct atusb *atusb, uint8_t reg)
{
struct usb_device *usb_dev = atusb->usb_dev;
int ret;
uint8_t value;
dev_dbg(&usb_dev->dev, "atusb: reg = 0x%x\n", reg);
ret = atusb_control_msg(atusb, usb_rcvctrlpipe(usb_dev, 0),
ATUSB_REG_READ, ATUSB_REQ_FROM_DEV,
0, reg, &value, 1, 1000);
return ret >= 0 ? value : ret;
} | Class | 2 |
mcs_parse_domain_params(STREAM s)
{
int length;
ber_parse_header(s, MCS_TAG_DOMAIN_PARAMS, &length);
in_uint8s(s, length);
return s_check(s);
} | Base | 1 |
static int hci_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len, int flags)
{
int noblock = flags & MSG_DONTWAIT;
struct sock *sk = sock->sk;
struct sk_buff *skb;
int copied, err;
BT_DBG("sock %p, sk %p", sock, sk);
if (flags & (MSG_OOB))
return -EOPNOTSUPP;
if (sk->sk_state == BT_CLOSED)
return 0;
skb = skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
return err;
msg->msg_namelen = 0;
copied = skb->len;
if (len < copied) {
msg->msg_flags |= MSG_TRUNC;
copied = len;
}
skb_reset_transport_header(skb);
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
switch (hci_pi(sk)->channel) {
case HCI_CHANNEL_RAW:
hci_sock_cmsg(sk, msg, skb);
break;
case HCI_CHANNEL_USER:
case HCI_CHANNEL_CONTROL:
case HCI_CHANNEL_MONITOR:
sock_recv_timestamp(msg, sk, skb);
break;
}
skb_free_datagram(sk, skb);
return err ? : copied;
} | Class | 2 |
static void ssdp_recv(int sd)
{
ssize_t len;
struct sockaddr sa;
socklen_t salen;
char buf[MAX_PKT_SIZE];
memset(buf, 0, sizeof(buf));
len = recvfrom(sd, buf, sizeof(buf), MSG_DONTWAIT, &sa, &salen);
if (len > 0) {
buf[len] = 0;
if (sa.sa_family != AF_INET)
return;
if (strstr(buf, "M-SEARCH *")) {
size_t i;
char *ptr, *type;
struct ifsock *ifs;
struct sockaddr_in *sin = (struct sockaddr_in *)&sa;
ifs = find_outbound(&sa);
if (!ifs) {
logit(LOG_DEBUG, "No matching socket for client %s", inet_ntoa(sin->sin_addr));
return;
}
logit(LOG_DEBUG, "Matching socket for client %s", inet_ntoa(sin->sin_addr));
type = strcasestr(buf, "\r\nST:");
if (!type) {
logit(LOG_DEBUG, "No Search Type (ST:) found in M-SEARCH *, assuming " SSDP_ST_ALL);
type = SSDP_ST_ALL;
send_message(ifs, type, &sa);
return;
}
type = strchr(type, ':');
if (!type)
return;
type++;
while (isspace(*type))
type++;
ptr = strstr(type, "\r\n");
if (!ptr)
return;
*ptr = 0;
for (i = 0; supported_types[i]; i++) {
if (!strcmp(supported_types[i], type)) {
logit(LOG_DEBUG, "M-SEARCH * ST: %s from %s port %d", type,
inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
send_message(ifs, type, &sa);
return;
}
}
logit(LOG_DEBUG, "M-SEARCH * for unsupported ST: %s from %s", type,
inet_ntoa(sin->sin_addr));
}
}
} | Base | 1 |
void CLASS foveon_dp_load_raw()
{
unsigned c, roff[4], row, col, diff;
ushort huff[512], vpred[2][2], hpred[2];
fseek (ifp, 8, SEEK_CUR);
foveon_huff (huff);
roff[0] = 48;
FORC3 roff[c+1] = -(-(roff[c] + get4()) & -16);
FORC3 {
fseek (ifp, data_offset+roff[c], SEEK_SET);
getbits(-1);
vpred[0][0] = vpred[0][1] = vpred[1][0] = vpred[1][1] = 512;
for (row=0; row < height; row++) {
#ifdef LIBRAW_LIBRARY_BUILD
checkCancel();
#endif
for (col=0; col < width; col++) {
diff = ljpeg_diff(huff);
if (col < 2) hpred[col] = vpred[row & 1][col] += diff;
else hpred[col & 1] += diff;
image[row*width+col][c] = hpred[col & 1];
}
}
}
} | Class | 2 |
RCMS *r_pkcs7_parse_cms (const ut8 *buffer, ut32 length) {
RASN1Object *object;
RCMS *container;
if (!buffer || !length) {
return NULL;
}
container = R_NEW0 (RCMS);
if (!container) {
return NULL;
}
object = r_asn1_create_object (buffer, length);
if (!object || object->list.length != 2 || !object->list.objects[0] || object->list.objects[1]->list.length != 1) {
r_asn1_free_object (object);
free (container);
return NULL;
}
container->contentType = r_asn1_stringify_oid (object->list.objects[0]->sector, object->list.objects[0]->length);
r_pkcs7_parse_signeddata (&container->signedData, object->list.objects[1]->list.objects[0]);
r_asn1_free_object (object);
return container;
} | Base | 1 |
expr_context_name(expr_context_ty ctx)
{
switch (ctx) {
case Load:
return "Load";
case Store:
return "Store";
case Del:
return "Del";
case AugLoad:
return "AugLoad";
case AugStore:
return "AugStore";
case Param:
return "Param";
default:
assert(0);
return "(unknown)";
}
} | Base | 1 |
static INLINE BOOL update_read_brush(wStream* s, rdpBrush* brush, BYTE fieldFlags)
{
if (fieldFlags & ORDER_FIELD_01)
{
if (Stream_GetRemainingLength(s) < 1)
return FALSE;
Stream_Read_UINT8(s, brush->x);
}
if (fieldFlags & ORDER_FIELD_02)
{
if (Stream_GetRemainingLength(s) < 1)
return FALSE;
Stream_Read_UINT8(s, brush->y);
}
if (fieldFlags & ORDER_FIELD_03)
{
if (Stream_GetRemainingLength(s) < 1)
return FALSE;
Stream_Read_UINT8(s, brush->style);
}
if (fieldFlags & ORDER_FIELD_04)
{
if (Stream_GetRemainingLength(s) < 1)
return FALSE;
Stream_Read_UINT8(s, brush->hatch);
}
if (brush->style & CACHED_BRUSH)
{
brush->index = brush->hatch;
brush->bpp = BMF_BPP[brush->style & 0x07];
if (brush->bpp == 0)
brush->bpp = 1;
}
if (fieldFlags & ORDER_FIELD_05)
{
if (Stream_GetRemainingLength(s) < 7)
return FALSE;
brush->data = (BYTE*)brush->p8x8;
Stream_Read_UINT8(s, brush->data[7]);
Stream_Read_UINT8(s, brush->data[6]);
Stream_Read_UINT8(s, brush->data[5]);
Stream_Read_UINT8(s, brush->data[4]);
Stream_Read_UINT8(s, brush->data[3]);
Stream_Read_UINT8(s, brush->data[2]);
Stream_Read_UINT8(s, brush->data[1]);
brush->data[0] = brush->hatch;
}
return TRUE;
} | Base | 1 |
void mk_request_free(struct session_request *sr)
{
if (sr->fd_file > 0) {
mk_vhost_close(sr);
}
if (sr->headers.location) {
mk_mem_free(sr->headers.location);
}
if (sr->uri_processed.data != sr->uri.data) {
mk_ptr_free(&sr->uri_processed);
}
if (sr->real_path.data != sr->real_path_static) {
mk_ptr_free(&sr->real_path);
}
} | Class | 2 |
spnego_gss_unwrap_aead(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t input_message_buffer,
gss_buffer_t input_assoc_buffer,
gss_buffer_t output_payload_buffer,
int *conf_state,
gss_qop_t *qop_state)
{
OM_uint32 ret;
ret = gss_unwrap_aead(minor_status,
context_handle,
input_message_buffer,
input_assoc_buffer,
output_payload_buffer,
conf_state,
qop_state);
return (ret);
} | Base | 1 |
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
struct btrfs_scrub_progress *progress)
{
struct btrfs_device *dev;
struct scrub_ctx *sctx = NULL;
mutex_lock(&fs_info->fs_devices->device_list_mutex);
dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
if (dev)
sctx = dev->scrub_ctx;
if (sctx)
memcpy(progress, &sctx->stat, sizeof(*progress));
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
} | Base | 1 |
static int kvaser_usb_leaf_flush_queue(struct kvaser_usb_net_priv *priv)
{
struct kvaser_cmd *cmd;
int rc;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->id = CMD_FLUSH_QUEUE;
cmd->len = CMD_HEADER_LEN + sizeof(struct kvaser_cmd_flush_queue);
cmd->u.flush_queue.channel = priv->channel;
cmd->u.flush_queue.flags = 0x00;
rc = kvaser_usb_send_cmd(priv->dev, cmd, cmd->len);
kfree(cmd);
return rc;
} | Base | 1 |
static int muscle_list_files(sc_card_t *card, u8 *buf, size_t bufLen)
{
muscle_private_t* priv = MUSCLE_DATA(card);
mscfs_t *fs = priv->fs;
int x;
int count = 0;
mscfs_check_cache(priv->fs);
for(x = 0; x < fs->cache.size; x++) {
u8* oid= fs->cache.array[x].objectId.id;
sc_debug(card->ctx, SC_LOG_DEBUG_NORMAL,
"FILE: %02X%02X%02X%02X\n",
oid[0],oid[1],oid[2],oid[3]);
if(0 == memcmp(fs->currentPath, oid, 2)) {
buf[0] = oid[2];
buf[1] = oid[3];
if(buf[0] == 0x00 && buf[1] == 0x00) continue; /* No directories/null names outside of root */
buf += 2;
count+=2;
}
}
return count;
} | Variant | 0 |
static int rose_parse_national(unsigned char *p, struct rose_facilities_struct *facilities, int len)
{
unsigned char *pt;
unsigned char l, lg, n = 0;
int fac_national_digis_received = 0;
do {
switch (*p & 0xC0) {
case 0x00:
p += 2;
n += 2;
len -= 2;
break;
case 0x40:
if (*p == FAC_NATIONAL_RAND)
facilities->rand = ((p[1] << 8) & 0xFF00) + ((p[2] << 0) & 0x00FF);
p += 3;
n += 3;
len -= 3;
break;
case 0x80:
p += 4;
n += 4;
len -= 4;
break;
case 0xC0:
l = p[1];
if (*p == FAC_NATIONAL_DEST_DIGI) {
if (!fac_national_digis_received) {
memcpy(&facilities->source_digis[0], p + 2, AX25_ADDR_LEN);
facilities->source_ndigis = 1;
}
}
else if (*p == FAC_NATIONAL_SRC_DIGI) {
if (!fac_national_digis_received) {
memcpy(&facilities->dest_digis[0], p + 2, AX25_ADDR_LEN);
facilities->dest_ndigis = 1;
}
}
else if (*p == FAC_NATIONAL_FAIL_CALL) {
memcpy(&facilities->fail_call, p + 2, AX25_ADDR_LEN);
}
else if (*p == FAC_NATIONAL_FAIL_ADD) {
memcpy(&facilities->fail_addr, p + 3, ROSE_ADDR_LEN);
}
else if (*p == FAC_NATIONAL_DIGIS) {
fac_national_digis_received = 1;
facilities->source_ndigis = 0;
facilities->dest_ndigis = 0;
for (pt = p + 2, lg = 0 ; lg < l ; pt += AX25_ADDR_LEN, lg += AX25_ADDR_LEN) {
if (pt[6] & AX25_HBIT)
memcpy(&facilities->dest_digis[facilities->dest_ndigis++], pt, AX25_ADDR_LEN);
else
memcpy(&facilities->source_digis[facilities->source_ndigis++], pt, AX25_ADDR_LEN);
}
}
p += l + 2;
n += l + 2;
len -= l + 2;
break;
}
} while (*p != 0x00 && len > 0);
return n;
} | Class | 2 |
onig_new_deluxe(regex_t** reg, const UChar* pattern, const UChar* pattern_end,
OnigCompileInfo* ci, OnigErrorInfo* einfo)
{
int r;
UChar *cpat, *cpat_end;
if (IS_NOT_NULL(einfo)) einfo->par = (UChar* )NULL;
if (ci->pattern_enc != ci->target_enc) {
r = conv_encoding(ci->pattern_enc, ci->target_enc, pattern, pattern_end,
&cpat, &cpat_end);
if (r != 0) return r;
}
else {
cpat = (UChar* )pattern;
cpat_end = (UChar* )pattern_end;
}
*reg = (regex_t* )xmalloc(sizeof(regex_t));
if (IS_NULL(*reg)) {
r = ONIGERR_MEMORY;
goto err2;
}
r = onig_reg_init(*reg, ci->option, ci->case_fold_flag, ci->target_enc,
ci->syntax);
if (r != 0) goto err;
r = onig_compile(*reg, cpat, cpat_end, einfo);
if (r != 0) {
err:
onig_free(*reg);
*reg = NULL;
}
err2:
if (cpat != pattern) xfree(cpat);
return r;
} | Variant | 0 |
static int __jfs_set_acl(tid_t tid, struct inode *inode, int type,
struct posix_acl *acl)
{
char *ea_name;
int rc;
int size = 0;
char *value = NULL;
switch (type) {
case ACL_TYPE_ACCESS:
ea_name = XATTR_NAME_POSIX_ACL_ACCESS;
if (acl) {
rc = posix_acl_equiv_mode(acl, &inode->i_mode);
if (rc < 0)
return rc;
inode->i_ctime = CURRENT_TIME;
mark_inode_dirty(inode);
if (rc == 0)
acl = NULL;
}
break;
case ACL_TYPE_DEFAULT:
ea_name = XATTR_NAME_POSIX_ACL_DEFAULT;
break;
default:
return -EINVAL;
}
if (acl) {
size = posix_acl_xattr_size(acl->a_count);
value = kmalloc(size, GFP_KERNEL);
if (!value)
return -ENOMEM;
rc = posix_acl_to_xattr(&init_user_ns, acl, value, size);
if (rc < 0)
goto out;
}
rc = __jfs_setxattr(tid, inode, ea_name, value, size, 0);
out:
kfree(value);
if (!rc)
set_cached_acl(inode, type, acl);
return rc;
} | Class | 2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.