function
stringlengths 11
56k
| repo_name
stringlengths 5
60
| features
sequence |
---|---|---|
def test_run_call_pipeline_if_no_model_display_name_nor_model_labels(
self,
mock_pipeline_service_create,
mock_dataset_time_series,
mock_model_service_get,
sync, | googleapis/python-aiplatform | [
306,
205,
306,
52,
1600875819
] |
def test_run_call_pipeline_if_set_additional_experiments(
self,
mock_pipeline_service_create,
mock_dataset_time_series,
mock_model_service_get,
sync, | googleapis/python-aiplatform | [
306,
205,
306,
52,
1600875819
] |
def test_run_called_twice_raises(
self, mock_dataset_time_series, sync, | googleapis/python-aiplatform | [
306,
205,
306,
52,
1600875819
] |
def test_run_raises_if_pipeline_fails(
self,
mock_pipeline_service_create_and_get_with_fail,
mock_dataset_time_series,
sync, | googleapis/python-aiplatform | [
306,
205,
306,
52,
1600875819
] |
def test_raises_before_run_is_called(self, mock_pipeline_service_create):
aiplatform.init(project=_TEST_PROJECT, staging_bucket=_TEST_BUCKET_NAME)
job = AutoMLForecastingTrainingJob(
display_name=_TEST_DISPLAY_NAME,
optimization_objective=_TEST_TRAINING_OPTIMIZATION_OBJECTIVE_NAME,
column_transformations=_TEST_TRAINING_COLUMN_TRANSFORMATIONS,
)
with pytest.raises(RuntimeError):
job.get_model()
with pytest.raises(RuntimeError):
job.has_failed
with pytest.raises(RuntimeError):
job.state | googleapis/python-aiplatform | [
306,
205,
306,
52,
1600875819
] |
def test_splits_fraction(
self,
mock_pipeline_service_create,
mock_pipeline_service_get,
mock_dataset_time_series,
mock_model_service_get,
sync, | googleapis/python-aiplatform | [
306,
205,
306,
52,
1600875819
] |
def test_splits_predefined(
self,
mock_pipeline_service_create,
mock_pipeline_service_get,
mock_dataset_time_series,
mock_model_service_get,
sync, | googleapis/python-aiplatform | [
306,
205,
306,
52,
1600875819
] |
def test_splits_default(
self,
mock_pipeline_service_create,
mock_pipeline_service_get,
mock_dataset_time_series,
mock_model_service_get,
sync, | googleapis/python-aiplatform | [
306,
205,
306,
52,
1600875819
] |
def dump_connection_info(engine: Engine, fileobj: TextIO = sys.stdout) -> None:
"""
Dumps some connection info, as an SQL comment. Obscures passwords.
Args:
engine: the SQLAlchemy :class:`Engine` to dump metadata information
from
fileobj: the file-like object (default ``sys.stdout``) to write
information to
"""
meta = MetaData(bind=engine)
writeline_nl(fileobj, sql_comment(f'Database info: {meta}')) | RudolfCardinal/pythonlib | [
10,
5,
10,
2,
1426004501
] |
def dump(querysql, *multiparams, **params):
compsql = querysql.compile(dialect=engine.dialect)
writeline_nl(fileobj, f"{compsql};") | RudolfCardinal/pythonlib | [
10,
5,
10,
2,
1426004501
] |
def quick_mapper(table: Table) -> Type[DeclarativeMeta]:
"""
Makes a new SQLAlchemy mapper for an existing table.
See
https://www.tylerlesmann.com/2009/apr/27/copying-databases-across-platforms-sqlalchemy/
Args:
table: SQLAlchemy :class:`Table` object
Returns:
a :class:`DeclarativeMeta` class
""" # noqa
# noinspection PyPep8Naming
Base = declarative_base()
class GenericMapper(Base):
__table__ = table
# noinspection PyTypeChecker
return GenericMapper | RudolfCardinal/pythonlib | [
10,
5,
10,
2,
1426004501
] |
def literal_processor(self,
dialect: DefaultDialect) -> Callable[[Any], str]:
super_processor = super().literal_processor(dialect)
def process(value: Any) -> str:
log.debug("process: {!r}", value)
if isinstance(value, int):
return str(value)
if not isinstance(value, str):
value = str(value)
result = super_processor(value)
if isinstance(result, bytes):
result = result.decode(dialect.encoding)
return result
return process | RudolfCardinal/pythonlib | [
10,
5,
10,
2,
1426004501
] |
def make_literal_query_fn(dialect: DefaultDialect) -> Callable[[str], str]:
DialectClass = dialect.__class__
# noinspection PyClassHasNoInit,PyAbstractClass
class LiteralDialect(DialectClass):
# https://stackoverflow.com/questions/5631078/sqlalchemy-print-the-actual-query # noqa
colspecs = {
# prevent various encoding explosions
String: StringLiteral,
# teach SA about how to literalize a datetime
DateTime: StringLiteral,
# don't format py2 long integers to NULL
NullType: StringLiteral,
}
def literal_query(statement: str) -> str:
"""
NOTE: This is entirely insecure. DO NOT execute the resulting
strings.
"""
# https://stackoverflow.com/questions/5631078/sqlalchemy-print-the-actual-query # noqa
if isinstance(statement, Query):
statement = statement.statement
return statement.compile(
dialect=LiteralDialect(),
compile_kwargs={'literal_binds': True},
).string + ";"
return literal_query | RudolfCardinal/pythonlib | [
10,
5,
10,
2,
1426004501
] |
def get_literal_query(statement: Union[Query, Executable],
bind: Connectable = None) -> str:
"""
Takes an SQLAlchemy statement and produces a literal SQL version, with
values filled in.
As per
https://stackoverflow.com/questions/5631078/sqlalchemy-print-the-actual-query
Notes:
- for debugging purposes *only*
- insecure; you should always separate queries from their values
- please also note that this function is quite slow
Args:
statement: the SQL statement (a SQLAlchemy object) to use
bind: if the statement is unbound, you will need to specify an object
here that supports SQL execution
Returns:
a string literal version of the query.
""" # noqa
# log.debug("statement: {!r}", statement)
# log.debug("statement.bind: {!r}", statement.bind)
if isinstance(statement, Query):
if bind is None:
bind = statement.session.get_bind(statement._mapper_zero_or_none())
statement = statement.statement
elif bind is None:
bind = statement.bind
if bind is None: # despite all that
raise ValueError("Attempt to call get_literal_query with an unbound "
"statement and no 'bind' parameter")
# noinspection PyUnresolvedReferences
dialect = bind.dialect
compiler = statement._compiler(dialect)
class LiteralCompiler(compiler.__class__):
# noinspection PyMethodMayBeStatic
def visit_bindparam(self,
bindparam: BindParameter,
within_columns_clause: bool = False,
literal_binds: bool = False,
**kwargs) -> str:
return super().render_literal_bindparam(
bindparam,
within_columns_clause=within_columns_clause,
literal_binds=literal_binds,
**kwargs
)
# noinspection PyUnusedLocal
def render_literal_value(self, value: Any, type_) -> str:
"""Render the value of a bind parameter as a quoted literal.
This is used for statement sections that do not accept bind
paramters on the target driver/database.
This should be implemented by subclasses using the quoting services
of the DBAPI.
"""
if isinstance(value, str):
value = value.replace("'", "''")
return "'%s'" % value
elif value is None:
return "NULL"
elif isinstance(value, (float, int)):
return repr(value)
elif isinstance(value, decimal.Decimal):
return str(value)
elif (isinstance(value, datetime.datetime) or
isinstance(value, datetime.date) or
isinstance(value, datetime.time) or
isinstance(value, pendulum.DateTime) or
isinstance(value, pendulum.Date) or
isinstance(value, pendulum.Time)):
# All have an isoformat() method.
return f"'{value.isoformat()}'"
# return (
# "TO_DATE('%s','YYYY-MM-DD HH24:MI:SS')"
# % value.strftime("%Y-%m-%d %H:%M:%S")
# )
else:
raise NotImplementedError(
"Don't know how to literal-quote value %r" % value)
compiler = LiteralCompiler(dialect, statement)
return compiler.process(statement) + ";" | RudolfCardinal/pythonlib | [
10,
5,
10,
2,
1426004501
] |
def dump_database_as_insert_sql(engine: Engine,
fileobj: TextIO = sys.stdout,
include_ddl: bool = False,
multirow: bool = False) -> None:
"""
Reads an entire database and writes SQL to replicate it to the output
file-like object.
Args:
engine: SQLAlchemy :class:`Engine`
fileobj: file-like object to write to
include_ddl: if ``True``, include the DDL to create the table as well
multirow: write multi-row ``INSERT`` statements
"""
for tablename in get_table_names(engine):
dump_table_as_insert_sql(
engine=engine,
table_name=tablename,
fileobj=fileobj,
include_ddl=include_ddl,
multirow=multirow
) | RudolfCardinal/pythonlib | [
10,
5,
10,
2,
1426004501
] |
def bulk_insert_extras(dialect_name: str,
fileobj: TextIO,
start: bool) -> None:
"""
Writes bulk ``INSERT`` preamble (start=True) or end (start=False).
For MySQL, this temporarily switches off autocommit behaviour and index/FK
checks, for speed, then re-enables them at the end and commits.
Args:
dialect_name: SQLAlchemy dialect name (see :class:`SqlaDialectName`)
fileobj: file-like object to write to
start: if ``True``, write preamble; if ``False``, write end
"""
lines = []
if dialect_name == SqlaDialectName.MYSQL:
if start:
lines = [
"SET autocommit=0;",
"SET unique_checks=0;",
"SET foreign_key_checks=0;",
]
else:
lines = [
"SET foreign_key_checks=1;",
"SET unique_checks=1;",
"COMMIT;",
]
writelines_nl(fileobj, lines) | RudolfCardinal/pythonlib | [
10,
5,
10,
2,
1426004501
] |
def __init__(self, value=None, data=None):
self.value = value
if data is None:
self.data = None
elif isinstance(data, dict):
self.data = data.copy()
elif isinstance(data, list):
self.data = data[:]
else:
self.data = data | openweave/happy | [
41,
22,
41,
7,
1504117462
] |
def test1(arg1=20, arg2='name', arg3=1.23):
print('test1')
print('arg1', arg1)
print('arg2', arg2)
print('arg3', arg3) | seba-1511/randopt | [
108,
8,
108,
13,
1477335124
] |
def test2(arg1=20, arg2='name', arg3=1.23):
"""
The docstring serves as help when using the --help flag.
Args:
arg1: int
arg2: str
arg3: float
"""
print('test2')
print('arg1', arg1)
print('arg2', arg2)
print('arg3', arg3) | seba-1511/randopt | [
108,
8,
108,
13,
1477335124
] |
def test_experiment1(x=2, y=3):
return x**2 + y**2 | seba-1511/randopt | [
108,
8,
108,
13,
1477335124
] |
def test_experiment2(x=2, y=3):
return x**2 + y**2, {'additional': 'info'} | seba-1511/randopt | [
108,
8,
108,
13,
1477335124
] |
def test_experiment3(x=2, y=3):
return x**2 + y**2, {'additional': 'info'}, {'attach': 'this sentence.'} | seba-1511/randopt | [
108,
8,
108,
13,
1477335124
] |
def test_experiment4(x=2, y=4):
exp = ro.Experiment('params_from_def', params=ro.dict_to_constants(locals()))
exp.add_result(x**2 + y**2, data={'additional': 'as usual.'}) | seba-1511/randopt | [
108,
8,
108,
13,
1477335124
] |
def testSoftplusGrad(self):
check_grads(nn.softplus, (1e-8,), order=4,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testSoftplusGradInf(self):
self.assertAllClose(
1., jax.grad(nn.softplus)(float('inf'))) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testSoftplusGradNan(self):
check_grads(nn.softplus, (float('nan'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testSoftplusZero(self, dtype):
self.assertEqual(jnp.log(dtype(2)), nn.softplus(dtype(0))) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testSoftplusValue(self):
val = nn.softplus(89.)
self.assertAllClose(val, 89., check_dtypes=False) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testEluGrad(self):
check_grads(nn.elu, (1e4,), order=4, eps=1.) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testGluValue(self):
val = nn.glu(jnp.array([1.0, 0.0]))
self.assertAllClose(val, jnp.array([0.5])) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testGelu(self, approximate):
def gelu_reference(x):
return x * scipy.stats.norm.cdf(x)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
self._CheckAgainstNumpy(
gelu_reference, partial(nn.gelu, approximate=approximate), args_maker,
check_dtypes=False, tol=1e-3 if approximate else None) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testDtypeMatchesInput(self, dtype, fn):
x = jnp.zeros((), dtype=dtype)
out = fn(x)
self.assertEqual(out.dtype, dtype) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testHardTanhMemory(self):
# see https://github.com/google/jax/pull/1640
with jax.enable_checks(False): # With checks we materialize the array
jax.make_jaxpr(lambda: nn.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testSoftmaxWhereMask(self, fn):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
m = jnp.array([True, False, True, True])
x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
out_masked = jnp.take(
fn(x, where=m, initial=-jnp.inf), jnp.array([0, 2, 3]))
out_filtered = fn(x_filtered)
self.assertAllClose(out_masked, out_filtered) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testOneHot(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3)
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]])
self.assertAllClose(actual, expected) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testOneHotNonArrayInput(self):
actual = nn.one_hot([0, 1, 2], 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testOneHotConcretizationError(self):
# https://github.com/google/jax/issues/3654
msg = r"in jax.nn.one_hot argument `num_classes`"
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
jax.jit(nn.one_hot)(3, 5) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testTanhExists(self):
nn.tanh # doesn't crash | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def fwd():
a = jnp.array(1.)
def f(hx, _):
hx = jax.nn.sigmoid(hx + a)
return hx, None
hx = jnp.array(0.)
jax.lax.scan(f, hx, None, length=2) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def initializer_record(name, initializer, dtypes, min_dims=2, max_dims=4):
shapes = [shape for shape in ALL_SHAPES
if min_dims <= len(shape) <= max_dims]
return InitializerRecord(name, initializer, shapes, dtypes) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testInitializer(self, initializer, shape, dtype):
rng = random.PRNGKey(0)
val = initializer(rng, shape, dtype)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val)) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testInitializerProvider(self, initializer_provider, shape, dtype):
rng = random.PRNGKey(0)
initializer = initializer_provider(dtype=dtype)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val)) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def testVarianceScalingBatchAxis(self):
rng = random.PRNGKey(0)
shape = (2, 3, 4, 5)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal',
in_axis=0, out_axis=(2, 3), batch_axis=1)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val)) | google/jax | [
22193,
2080,
22193,
1296,
1540502702
] |
def move1():
g = GripperCommandGoal()
g.command = GripperCommand()
g.command.position = 0.15
print JOINT_NAME
client.send_goal(g)
try:
client.wait_for_result()
except KeyboardInterrupt:
client.cancel_goal()
raise | EricssonResearch/scott-eu | [
21,
8,
21,
1,
1498718504
] |
def setUp(self):
self.opor = RedisOperator() | WiseDoge/ProxyPool | [
345,
123,
345,
7,
1480910054
] |
def test_puts_and_pop(self):
self.opor.puts('1')
assert self.opor.pop() == '1'
self.opor.puts(['1', '2', '3'])
init_size = self.opor.size
self.opor.pop()
assert self.opor.size == init_size - 1 | WiseDoge/ProxyPool | [
345,
123,
345,
7,
1480910054
] |
def test_gets(self):
init_size = self.opor.size
self.opor.gets(3)
assert self.opor.size == init_size | WiseDoge/ProxyPool | [
345,
123,
345,
7,
1480910054
] |
def test_cpu(self):
lgb_train, lgb_eval = self.load_datasets()
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': {'l2', 'auc'},
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'force_row_wise': True,
'verbose': 0
}
# Run only one round for faster test
gbm = lgb.train(params,
lgb_train,
num_boost_round=1,
valid_sets=lgb_eval,
early_stopping_rounds=1)
self.assertEqual(1, gbm.best_iteration) | Kaggle/docker-python | [
2096,
883,
2096,
27,
1428975938
] |
def test_gpu(self):
lgb_train, lgb_eval = self.load_datasets() | Kaggle/docker-python | [
2096,
883,
2096,
27,
1428975938
] |
def load_datasets(self):
df_train = pd.read_csv('/input/tests/data/lgb_train.csv', header=None, sep='\t')
df_test = pd.read_csv('/input/tests/data/lgb_test.csv', header=None, sep='\t') | Kaggle/docker-python | [
2096,
883,
2096,
27,
1428975938
] |
def find_python_executable() -> str:
"""
Find the relevant python executable that is of the given python major version.
Will test, in decreasing priority order:
* the current Python interpreter
* 'pythonX' executable in PATH (with X the given major version) if available
* 'python' executable in PATH if available
* Windows Python launcher 'py' executable in PATH if available
Incompatible python versions for Certbot will be evicted (e.g. Python 3
versions less than 3.6).
:rtype: str
:return: the relevant python executable path
:raise RuntimeError: if no relevant python executable path could be found
"""
python_executable_path = None
# First try, current python executable
if _check_version('{0}.{1}.{2}'.format(
sys.version_info[0], sys.version_info[1], sys.version_info[2])):
return sys.executable
# Second try, with python executables in path
for one_version in ('3', '',):
try:
one_python = 'python{0}'.format(one_version)
output = subprocess.check_output([one_python, '--version'],
universal_newlines=True, stderr=subprocess.STDOUT)
if _check_version(output.strip().split()[1]):
return subprocess.check_output([one_python, '-c',
'import sys; sys.stdout.write(sys.executable);'],
universal_newlines=True)
except (subprocess.CalledProcessError, OSError):
pass
# Last try, with Windows Python launcher
try:
output_version = subprocess.check_output(['py', '-3', '--version'],
universal_newlines=True, stderr=subprocess.STDOUT)
if _check_version(output_version.strip().split()[1]):
return subprocess.check_output(['py', env_arg, '-c',
'import sys; sys.stdout.write(sys.executable);'],
universal_newlines=True)
except (subprocess.CalledProcessError, OSError):
pass
if not python_executable_path:
raise RuntimeError('Error, no compatible Python executable for Certbot could be found.') | letsencrypt/letsencrypt | [
29698,
3333,
29698,
543,
1415760740
] |
def subprocess_with_print(cmd, env=None, shell=False):
if env is None:
env = os.environ
print('+ {0}'.format(subprocess.list2cmdline(cmd)) if isinstance(cmd, list) else cmd)
subprocess.check_call(cmd, env=env, shell=shell) | letsencrypt/letsencrypt | [
29698,
3333,
29698,
543,
1415760740
] |
def get_venv_python_path(venv_path):
python_linux = os.path.join(venv_path, 'bin/python')
if os.path.isfile(python_linux):
return os.path.abspath(python_linux)
python_windows = os.path.join(venv_path, 'Scripts\\python.exe')
if os.path.isfile(python_windows):
return os.path.abspath(python_windows)
raise ValueError((
'Error, could not find python executable in venv path {0}: is it a valid venv ?'
.format(venv_path))) | letsencrypt/letsencrypt | [
29698,
3333,
29698,
543,
1415760740
] |
def install_packages(venv_name, pip_args):
"""Installs packages in the given venv.
:param str venv_name: The name or path at where the virtual
environment should be created.
:param pip_args: Command line arguments that should be given to
pip to install packages
:type pip_args: `list` of `str`
"""
# Using the python executable from venv, we ensure to execute following commands in this venv.
py_venv = get_venv_python_path(venv_name)
subprocess_with_print([py_venv, os.path.abspath('tools/pipstrap.py')])
command = [py_venv, os.path.abspath('tools/pip_install.py')]
command.extend(pip_args)
subprocess_with_print(command)
if os.path.isdir(os.path.join(venv_name, 'bin')):
# Linux/OSX specific
print('-------------------------------------------------------------------')
print('Please run the following command to activate developer environment:')
print('source {0}/bin/activate'.format(venv_name))
print('-------------------------------------------------------------------')
elif os.path.isdir(os.path.join(venv_name, 'Scripts')):
# Windows specific
print('---------------------------------------------------------------------------')
print('Please run one of the following commands to activate developer environment:')
print('{0}\\Scripts\\activate.bat (for Batch)'.format(venv_name))
print('.\\{0}\\Scripts\\Activate.ps1 (for Powershell)'.format(venv_name))
print('---------------------------------------------------------------------------')
else:
raise ValueError('Error, directory {0} is not a valid venv.'.format(venv_name)) | letsencrypt/letsencrypt | [
29698,
3333,
29698,
543,
1415760740
] |
def main(pip_args=None):
venv_path = prepare_venv_path('venv')
create_venv(venv_path)
if not pip_args:
pip_args = REQUIREMENTS
install_packages(venv_path, pip_args) | letsencrypt/letsencrypt | [
29698,
3333,
29698,
543,
1415760740
] |
def __init__(self, banner, ps1, fail):
"""
Sets up the client
"""
self._socket = None
self._banner = banner
self._ps1 = ps1
self.fail = fail
self.__wait_prompt = True
self.__prefix = "" | isandlaTech/cohorte-3rdparty | [
1,
1,
1,
1,
1411546128
] |
def close(self):
"""
Close the connection
"""
self._socket.close() | isandlaTech/cohorte-3rdparty | [
1,
1,
1,
1,
1411546128
] |
def run_command(self, command, disconnect=False):
"""
Runs a command on the remote shell
"""
# Wait for the first prompt
if self.__wait_prompt:
self.wait_prompt()
self.__wait_prompt = False
# Run the command
self._socket.send(to_bytes(command + "\n"))
# Disconnect if required
if disconnect:
self.close()
return
# Get its result
data = self.wait_prompt(False)
return data.strip() | isandlaTech/cohorte-3rdparty | [
1,
1,
1,
1,
1411546128
] |
def setUp(self):
"""
Starts a framework and install the shell bundle
"""
# Start the framework
self.framework = create_framework(('pelix.ipopo.core',
'pelix.shell.core',
'pelix.shell.remote'))
self.framework.start()
context = self.framework.get_bundle_context()
# Get the core shell service
svc_ref = context.get_service_reference(SERVICE_SHELL)
self.shell = context.get_service(svc_ref)
# Start the remote shell
with use_ipopo(context) as ipopo:
self.remote = ipopo.instantiate(
FACTORY_REMOTE_SHELL, "remoteShell",
{'pelix.shell.address': '127.0.0.1',
'pelix.shell.port': 9000}) | isandlaTech/cohorte-3rdparty | [
1,
1,
1,
1,
1411546128
] |
def _run_local_command(self, command, *args):
"""
Runs the given command and returns the output stream
"""
# String output
str_output = StringIO()
# Format command
if args:
command = command.format(*args)
# Run command
self.shell.execute(command, stdout=str_output)
return str_output.getvalue().strip() | isandlaTech/cohorte-3rdparty | [
1,
1,
1,
1,
1411546128
] |
def testRemoteVsRemoteCommands(self):
"""
Tests the output for two clients
"""
# Create clients
client_1 = ShellClient(self.remote.get_banner(), self.remote.get_ps1(),
self.fail)
client_2 = ShellClient(self.remote.get_banner(), self.remote.get_ps1(),
self.fail)
# Connect them to the remote shell
client_1.connect(self.remote.get_access())
client_2.connect(self.remote.get_access())
try:
for command in ('bl', 'bd 0', 'sl', 'sd 1'):
# Get clients outputs
client_1_output = client_1.run_command(command)
client_2_output = client_2.run_command(command)
# Compare them
self.assertEqual(client_1_output, client_2_output)
finally:
# Close the client in any case
client_1.close()
client_2.close() | isandlaTech/cohorte-3rdparty | [
1,
1,
1,
1,
1411546128
] |
def testInvalidConfiguration(self):
"""
Tests the instantiation of the remote shell with invalid port
"""
import logging
logging.basicConfig(level=logging.DEBUG)
with use_ipopo(self.framework.get_bundle_context()) as ipopo:
# Check invalid ports
for port in (-1, 100000, '-100', '65536', 'Abc', None):
remote = ipopo.instantiate(FACTORY_REMOTE_SHELL,
"remoteShell_test",
{'pelix.shell.port': port})
# Check that the port is in a valid range
self.assertGreater(remote.get_access()[1], 0)
self.assertLess(remote.get_access()[1], 65536)
ipopo.kill("remoteShell_test")
# Check empty addresses
for address in (None, ''):
remote = ipopo.instantiate(FACTORY_REMOTE_SHELL,
"remoteShell_test",
{'pelix.shell.address': address,
'pelix.shell.port': 0})
# Check that the address has been selected anyway
self.assertTrue(remote.get_access()[0])
ipopo.kill("remoteShell_test") | isandlaTech/cohorte-3rdparty | [
1,
1,
1,
1,
1411546128
] |
def cnn(self,
model_input,
l2_penalty=1e-8,
num_filters = [1024, 1024, 1024],
filter_sizes = [1,2,3],
sub_scope="",
**unused_params):
max_frames = model_input.get_shape().as_list()[1]
num_features = model_input.get_shape().as_list()[2]
shift_inputs = []
for i in xrange(max(filter_sizes)):
if i == 0:
shift_inputs.append(model_input)
else:
shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])
cnn_outputs = []
for nf, fs in zip(num_filters, filter_sizes):
sub_input = tf.concat(shift_inputs[:fs], axis=2)
sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
shape=[num_features*fs, nf], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))
cnn_output = tf.concat(cnn_outputs, axis=2)
return cnn_output | wangheda/youtube-8m | [
177,
61,
177,
2,
1488610618
] |
def sub_model(self, model_input, vocab_size, num_mixtures=None,
l2_penalty=1e-8, sub_scope="", **unused_params):
num_mixtures = num_mixtures or FLAGS.moe_num_mixtures
gate_activations = slim.fully_connected(
model_input,
vocab_size * (num_mixtures + 1),
activation_fn=None,
biases_initializer=None,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope="gates-"+sub_scope)
expert_activations = slim.fully_connected(
model_input,
vocab_size * num_mixtures,
activation_fn=None,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope="experts-"+sub_scope)
gating_distribution = tf.nn.softmax(tf.reshape(
gate_activations,
[-1, num_mixtures + 1])) # (Batch * #Labels) x (num_mixtures + 1)
expert_distribution = tf.nn.sigmoid(tf.reshape(
expert_activations,
[-1, num_mixtures])) # (Batch * #Labels) x num_mixtures
final_probabilities_by_class_and_batch = tf.reduce_sum(
gating_distribution[:, :num_mixtures] * expert_distribution, 1)
final_probabilities = tf.reshape(final_probabilities_by_class_and_batch,
[-1, vocab_size])
return final_probabilities | wangheda/youtube-8m | [
177,
61,
177,
2,
1488610618
] |
def extra_method(self):
return 'called extra method' | boto/s3transfer | [
163,
116,
163,
48,
1452640782
] |
def on_done(self):
pass | boto/s3transfer | [
163,
116,
163,
48,
1452640782
] |
def on_queued(self, **kwargs):
return kwargs | boto/s3transfer | [
163,
116,
163,
48,
1452640782
] |
def __init__(self, arg1, arg2):
self.arg1 = arg1
self.arg2 = arg2 | boto/s3transfer | [
163,
116,
163,
48,
1452640782
] |
def test_can_instantiate_base_subscriber(self):
try:
BaseSubscriber()
except InvalidSubscriberMethodError:
self.fail('BaseSubscriber should be instantiable') | boto/s3transfer | [
163,
116,
163,
48,
1452640782
] |
def test_subclass_can_have_and_call_additional_methods(self):
subscriber = ExtraMethodsSubscriber()
self.assertEqual(subscriber.extra_method(), 'called extra method') | boto/s3transfer | [
163,
116,
163,
48,
1452640782
] |
def test_can_subclass_and_override_constructor_from_base_class(self):
subscriber = OverrideConstructorSubscriber('foo', arg2='bar')
# Make sure you can create a custom constructor.
self.assertEqual(subscriber.arg1, 'foo')
self.assertEqual(subscriber.arg2, 'bar') | boto/s3transfer | [
163,
116,
163,
48,
1452640782
] |
def test_not_callable_in_subclass_subscriber_method(self):
with self.assertRaisesRegex(
InvalidSubscriberMethodError, 'must be callable'
):
NotCallableSubscriber() | boto/s3transfer | [
163,
116,
163,
48,
1452640782
] |
def main():
# usage, parse parameters
usage = "usage: %prog [options] arg"
parser = OptionParser( usage )
# option to debug and verbose
parser.add_option( "-v", "--verbose",
action="store_true", dest="verbose" )
# options to control files
parser.add_option( "-l", "--list", type="string", dest="directoryList", help="list of elastix output directories" )
(options, args) = parser.parse_args()
# Check if option -l is given
if options.directoryList == None :
parser.error( "The option directory list (-l) should be given" )
# Use glob, this works not only on Linux
dirList = glob.glob( options.directoryList );
# Add everything not processed
dirList.extend( args );
print( "directory checksum" )
for directory in dirList:
# Equivalent to: fileName = options.directory + "/" + "elastix.log"
fileName = os.path.join( directory, "elastix.log" );
# Read elastix.log and find last line with checksum
try:
f = open( fileName )
except IOError as e:
print( directory + " No elastix.log found" )
continue
checksumFound = False;
for line in f:
if "Registration result checksum:" in line:
checksumline = line;
checksumFound = True;
# Extract checksum
if checksumFound:
checksum = checksumline.split(': ')[1].rstrip( "\n" );
# Print result
print( directory + " " + checksum );
else:
print( directory + " -" );
f.close();
return 0 | SuperElastix/elastix | [
369,
101,
369,
53,
1495032082
] |
def _cmp_sample(a, b):
"""Compare two samples.
First compare the resource ids. Compare the timestamps if the
resource ids are the same.
:param a: First sample
:param b: Second sample
:return: Result of cmp function.
:rtype: Integer
"""
result = cmp(a.resource_id, b.resource_id)
if result == 0:
result = cmp(a.timestamp, b.timestamp)
return result | absalon-james/usage | [
1,
1,
1,
2,
1461701508
] |
def __init__(self, client, name, max_samples=15000):
"""Init the meter.
:param client: Ceilometer client
:type client: ceilometerclient.client
:param name: Name of the meter
:type name: String
:param max_samples: Max number of samples per query.
:type max_samples: Integer
"""
self.client = client
self.name = name
self.max_samples = max_samples
# Extra time is 4 hours. 4 * 60 * 60 = 14400
self._extra_time = datetime.timedelta(seconds=14400) | absalon-james/usage | [
1,
1,
1,
2,
1461701508
] |
def _reading_generator(self, samples, start, stop):
"""Yields one reading at a time.
Samples are grouped by resource id(already sorted by resource id)
and then used to create a reading object.
:param samples: List of samples sorted by resource_id and timestamp.
:type samples: List
:param start: Reading start time
:type start: Datetime
:param stop: Reading stop time
:type stop: Datetime
:yields: Reading objects
"""
# Yield a reading for each resource/meter pair
for _, g in itertools.groupby(samples, lambda x: x.resource_id):
try:
yield Reading(list(g), start, stop)
except NoSamplesError:
continue | absalon-james/usage | [
1,
1,
1,
2,
1461701508
] |
def set_aws_keys(USERNAME, AWS_ACCESS_KEY_VAR, AWS_SECRET_ACCESS_KEY_VAR):
global AWS_ACCESS_KEY
global AWS_SECRET_ACCESS_KEY
global KICKFLIP_USER_NAME
AWS_ACCESS_KEY = AWS_ACCESS_KEY_VAR
AWS_SECRET_ACCESS_KEY = AWS_SECRET_ACCESS_KEY_VAR
KICKFLIP_USER_NAME = USERNAME
return True | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def upload_file(filename):
return True | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def connect():
global connected
global kickflip_session
global KICKFLIP_CLIENT_ID
global KICKFLIP_CLIENT_SECRET
global KICKFLIP_API_URL
if not connected:
endpoint = KICKFLIP_BASE_URL + '/o/token/'
payload = ({
'client_secret': KICKFLIP_CLIENT_SECRET,
'grant_type': 'client_credentials',
'client_id': KICKFLIP_CLIENT_ID,
})
response = requests.post(endpoint, payload)
if response.status_code != 200:
raise Exception("Error: Couldn't connect to Kickflip...")
token = response.json()
client = MobileApplicationClient(KICKFLIP_CLIENT_ID)
kickflip_session = OAuth2Session(
KICKFLIP_CLIENT_ID,
client=client,
token=token
)
connected = True
print "CONNECTED"
return connected | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def g(*args, **kwargs):
if not connected:
raise Exception("No session connected. connect() first?")
return f(*args, **kwargs) | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def set_keys(client_id, client_secret):
global KICKFLIP_CLIENT_ID
global KICKFLIP_CLIENT_SECRET
KICKFLIP_CLIENT_ID = client_id
KICKFLIP_CLIENT_SECRET = client_secret | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def set_access_tokens():
global KICKFLIP_ACCESS_TOKEN
global KICKFLIP_SECRET_ACCESS_TOKEN
# requests-oauth.get_tokens()
KICKFLIP_ACCESS_TOKEN = key
KICKFLIP_SECRET_ACCESS_TOKEN = secret_key
return '' | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def get_account_status(username):
return '' | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def create_user(username, password=""):
"""
Uses the `/user/new` endpoint taking the username as a parameter.
TODO: What happens when you specify no password?
e.g. username="banana1"
"""
endpoint = KICKFLIP_API_URL + '/user/new'
payload = {'username': username}
if password:
payload['password'] = password
user_response = kickflip_session.post(endpoint, payload)
return user_response.json() | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def get_user_info(username):
"""
Uses the `/user/info` endpoint taking the username as a parameter.
e.g. username="banana1"
"""
endpoint = KICKFLIP_API_URL + '/user/info/'
payload = {'username': username}
user_response = kickflip_session.post(endpoint, payload)
return user_response.json() | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def start_stream(file_path, stream_name=None, private=False, username=''):
"""
Uses the `/stream/start` endpoint taking the username as a parameter.
If you specify no username, it will fallback to the default
`KICKFLIP_USER_NAME` set in the set_aws_keys() function.
e.g. username="banana1"
"""
endpoint = KICKFLIP_API_URL + '/stream/start/'
payload = {'username': KICKFLIP_USER_NAME}
if username:
payload['username'] = username
user_response = kickflip_session.post(endpoint, payload)
import pdb
pdb.set_trace()
stream_video(file_path)
return '' | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def stop_stream():
return '' | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def get_stream_info(stream_id):
"""
Uses the `/stream/info` endpoint taking the stream_id as a parameter.
e.g. stream_id="e83a515e-fe69-4b19-afba-20f30d56b719"
"""
endpoint = KICKFLIP_API_URL + '/stream/info/'
payload = {'stream_id': stream_id}
response = kickflip_session.post(endpoint, payload)
return response.json() | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def get_stream_by_location(uuid, lat, lon, radius=0):
"""
Uses the `/search/location` endpoint.
takes the stream_id as a parameter.
e.g. uuid="", username="bej48snvvthy"
"""
endpoint = KICKFLIP_API_URL + '/search/location/'
payload = ({
'uuid': uuid,
'lat': lat,
'lon': lon
})
if radius != 0:
payload['radius'] = radius
response = kickflip_session.post(endpoint, payload)
return response.json() | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def get_stream_credentials(username, password):
"""
Uses the `/user/uuid` endpoint.
takes a valid username and password as parameter.
It will return all the necessary credentials to use the API
and the upload endpoints.
e.g. username="bej48snvvthy", password=""
"""
endpoint = KICKFLIP_API_URL + '/user/uuid/'
payload = {'username': username, 'password': password}
response = kickflip_session.post(endpoint, payload)
return response.json() | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def search_by_keyword(keyword="", uuid=""):
"""
Uses the `/search` endpoint.
takes a user uuid and a keyword.
If you specify no `uuid`, the search will not show private streams?
If the keyword is empty, it will return all the streams from the app.
e.g. uuid="e9c3d27e-406b-4f4a-9b87-6d3460c60ca6", keyword=""
reply: {
u'total_items': 3,
u'next_page_available': False,
u'success': True, u'page_number': 1,
u'streams': [...],
u'results_per_page': 25
}
"""
endpoint = KICKFLIP_API_URL + '/search/'
payload = {'uuid': uuid, 'keyword': keyword}
response = kickflip_session.post(endpoint, payload)
return response.json() | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def process(self, event):
"""
event.event_type
'modified' | 'created' | 'moved' | 'deleted'
event.is_directory
True | False
event.src_path
path/to/observed/file
"""
# Process the file there
print event.src_path, event.event_type # Print for degug
if '.m3u8' not in event.src_path:
upload_file(event.src_path) | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def on_created(self, event):
self.process(event) | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def upload_file(file_path):
global AWS_ACCESS_KEY
global AWS_SECRET_ACCESS_KEY
head, tail = os.path.split(file_path)
bucket = None
s3 = boto.connect_s3(AWS_ACCESS_KEY, AWS_SECRET_ACCESS_KEY)
bucket = s3.get_bucket(KICKFLIP_APP_NAME) # , validate=False)
k = Key(bucket)
head, tail = os.path.split(file_path)
k.key = KICKFLIP_USER_NAME + "/" + tail
k.set_contents_from_filename(file_path)
k.set_acl('public-read')
if '.m3u8' in file_path:
print k.generate_url(expires_in=300)
return k | Kickflip/python-kickflip | [
12,
12,
12,
2,
1400099987
] |
def sample_get_data_source():
# Create a client
client = bigquery_datatransfer_v1.DataTransferServiceClient()
# Initialize request argument(s)
request = bigquery_datatransfer_v1.GetDataSourceRequest(
name="name_value",
)
# Make the request
response = client.get_data_source(request=request)
# Handle the response
print(response) | googleapis/python-bigquery-datatransfer | [
72,
28,
72,
6,
1575936546
] |
def getAvgGradient(w, X, y, L, K):
[N,D] = X.shape
W01,b1,W12,b2,W23,b3 = parseParams(w,D,K) | jihunhamm/Crowd-ML | [
16,
10,
16,
5,
1463416723
] |
def predict(w, X, K):
N,D = X.shape
W01,b1,W12,b2,W23,b3 = parseParams(w,D,K) | jihunhamm/Crowd-ML | [
16,
10,
16,
5,
1463416723
] |
def parseParams(w,D,K):
cnt = 0
W01 = w[:D*nh].reshape((D,nh))
cnt += D*nh
b1 = w[cnt:cnt+nh].reshape((1,nh))
cnt += nh
W12 = w[cnt:cnt+nh*nh].reshape((nh,nh))
cnt += nh*nh
b2 = w[cnt:cnt+nh].reshape((1,nh))
cnt += nh
W23 = w[cnt:cnt+nh*K].reshape((nh,K))
cnt += nh*K
b3 = w[cnt:cnt+K].reshape((1,K))
cnt += K
if (cnt != w.size):
print 'Error: wrong param size'
exit() | jihunhamm/Crowd-ML | [
16,
10,
16,
5,
1463416723
] |
def init(D,K):
d = (D+1)*nh + (nh+1)*nh + (nh+1)*K
w = 1.e-1*np.random.normal(size=(d,))
#w = np.zeros((d,))
return w | jihunhamm/Crowd-ML | [
16,
10,
16,
5,
1463416723
] |
def loss(w, X, y, L, K):
_,l = getAvgGradient(w, X, y, L, K)
return l | jihunhamm/Crowd-ML | [
16,
10,
16,
5,
1463416723
] |
Subsets and Splits