function
stringlengths
11
56k
repo_name
stringlengths
5
60
features
sequence
def logspace(xmin,xmax,N): return np.exp(np.linspace(np.log(xmin), np.log(xmax), N))
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def window_hanning(x): "return x times the hanning window of len(x)" return np.hanning(len(x))*x
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def detrend(x, key=None): if key is None or key=='constant': return detrend_mean(x) elif key=='linear': return detrend_linear(x)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def detrend_mean(x): "Return x minus the mean(x)" return x - x.mean()
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def detrend_linear(y): "Return y minus best fit line; 'linear' detrending " # This is faster than an algorithm based on linalg.lstsq. x = np.arange(len(y), dtype=np.float_) C = np.cov(x, y, bias=1) b = C[0,1]/C[0,0] a = y.mean() - b*x.mean() return y - (b*x + a)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def _spectral_helper(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): #The checks for if y is x are so that we can use the same function to #implement the core of psd(), csd(), and spectrogram() without doing #extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x #Make sure we're dealing with a numpy array. If y and x were the same #object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) else: y = x # zero pad x and y up to NFFT if they are shorter than NFFT if len(x)<NFFT: n = len(x) x = np.resize(x, (NFFT,)) x[n:] = 0 if not same_data and len(y)<NFFT: n = len(y) y = np.resize(y, (NFFT,)) y[n:] = 0 if pad_to is None: pad_to = NFFT if scale_by_freq is None: scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if (sides == 'default' and np.iscomplexobj(x)) or sides == 'twosided': numFreqs = pad_to scaling_factor = 1. elif sides in ('default', 'onesided'): numFreqs = pad_to//2 + 1 scaling_factor = 2. else: raise ValueError("sides must be one of: 'default', 'onesided', or " "'twosided'") if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), x.dtype)) step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) Pxy = np.zeros((numFreqs, n), np.complex_) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i]+NFFT] thisX = windowVals * detrend(thisX) fx = np.fft.fft(thisX, n=pad_to) if same_data: fy = fx else: thisY = y[ind[i]:ind[i]+NFFT] thisY = windowVals * detrend(thisY) fy = np.fft.fft(thisY, n=pad_to) Pxy[:,i] = np.conjugate(fx[:numFreqs]) * fy[:numFreqs] # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. Pxy /= (np.abs(windowVals)**2).sum() # Also include scaling factors for one-sided densities and dividing by the # sampling frequency, if desired. Scale everything, except the DC component # and the NFFT/2 component: Pxy[1:-1] *= scaling_factor # MATLAB divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: Pxy /= Fs t = 1./Fs * (ind + NFFT / 2.) freqs = float(Fs) / pad_to * np.arange(numFreqs) if (np.iscomplexobj(x) and sides == 'default') or sides == 'twosided': # center the frequency range at zero freqs = np.concatenate((freqs[numFreqs//2:] - Fs, freqs[:numFreqs//2])) Pxy = np.concatenate((Pxy[numFreqs//2:, :], Pxy[:numFreqs//2, :]), 0) return Pxy, freqs, t
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def psd(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The absolute(fft(block))**2 of each segment are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. *x* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxx*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxx,freqs = csd(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) return Pxx.real,freqs
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The cross power spectral density by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute *Pxy*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. *x*, *y* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxy*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxy, freqs, t = _spectral_helper(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) if len(Pxy.shape) == 2 and Pxy.shape[1]>1: Pxy = Pxy.mean(axis=1) return Pxy, freqs
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def specgram(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=128, pad_to=None, sides='default', scale_by_freq=None): """ Compute a spectrogram of data in *x*. Data are split into *NFFT* length segments and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. If *x* is real (i.e. non-complex) only the spectrum of the positive frequencie is returned. If *x* is complex then the complete spectrum is returned. %(PSD)s Returns a tuple (*Pxx*, *freqs*, *t*): - *Pxx*: 2-D array, columns are the periodograms of successive segments - *freqs*: 1-D array of frequencies corresponding to the rows in Pxx - *t*: 1-D array of times corresponding to midpoints of segments. .. seealso:: :func:`psd` :func:`psd` differs in the default overlap; in returning the mean of the segment periodograms; and in not returning times. """ assert(NFFT > noverlap) Pxx, freqs, t = _spectral_helper(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxx = Pxx.real #Needed since helper implements generically return Pxx, freqs, t
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} *x*, *y* Array or sequence containing the data %(PSD)s The return value is the tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. For cohere, scaling the individual densities by the sampling frequency has no effect, since the factors cancel out. .. seealso:: :func:`psd` and :func:`csd` For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x)<2*NFFT: raise ValueError(_coh_error) Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.divide(np.absolute(Pxy)**2, Pxx*Pyy) Cxy.shape = (len(f),) return Cxy, f
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, preferSpeedOverMemory=True, progressCallback=donothing_callback, returnPxx=False): u""" Call signature:: Cxy, Phase, freqs = cohere_pairs( X, ij, ...) Compute the coherence and phase for all pairs *ij*, in *X*. *X* is a *numSamples* * *numCols* array *ij* is a list of tuples. Each tuple is a pair of indexes into the columns of X for which you want to compute coherence. For example, if *X* has 64 columns, and you want to compute all nonredundant pairs, define *ij* as:: ij = [] for i in range(64): for j in range(i+1,64): ij.append( (i,j) ) *preferSpeedOverMemory* is an optional bool. Defaults to true. If False, limits the caching by only making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even when *preferSpeedOverMemory* is False, :func:`cohere_pairs` will still give significant performace gains over calling :func:`cohere` for each pair, and will use subtantially less memory than if *preferSpeedOverMemory* is True. In my tests with a 43000,64 array over all nonredundant pairs, *preferSpeedOverMemory* = True delivered a 33% performance boost on a 1.7GHZ Athlon with 512MB RAM compared with *preferSpeedOverMemory* = False. But both solutions were more than 10x faster than naively crunching all possible pairs through :func:`cohere`. Returns:: (Cxy, Phase, freqs) where: - *Cxy*: dictionary of (*i*, *j*) tuples -> coherence vector for that pair. I.e., ``Cxy[(i,j) = cohere(X[:,i], X[:,j])``. Number of dictionary keys is ``len(ij)``. - *Phase*: dictionary of phases of the cross spectral density at each frequency for each pair. Keys are (*i*, *j*). - *freqs*: vector of frequencies, equal in length to either the coherence or phase vectors for any (*i*, *j*) key. Eg., to make a coherence Bode plot:: subplot(211) plot( freqs, Cxy[(12,19)]) subplot(212) plot( freqs, Phase[(12,19)]) For a large number of pairs, :func:`cohere_pairs` can be much more efficient than just calling :func:`cohere` for each pair, because it caches most of the intensive computations. If :math:`N` is the number of pairs, this function is :math:`O(N)` for most of the heavy lifting, whereas calling cohere for each pair is :math:`O(N^2)`. However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as *X*. See :file:`test/cohere_pairs_test.py` in the src tree for an example script that shows that this :func:`cohere_pairs` and :func:`cohere` give the same results for a given pair. .. seealso:: :func:`psd` For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ numRows, numCols = X.shape # zero pad if X is too short if numRows < NFFT: tmp = X X = np.zeros( (NFFT, numCols), X.dtype) X[:numRows,:] = tmp del tmp numRows, numCols = X.shape # get all the columns of X that we are interested in by checking # the ij tuples allColumns = set() for i,j in ij: allColumns.add(i); allColumns.add(j) Ncols = len(allColumns) # for real X, ignore the negative frequencies if np.iscomplexobj(X): numFreqs = NFFT else: numFreqs = NFFT//2+1 # cache the FFT of every windowed, detrended NFFT length segement # of every channel. If preferSpeedOverMemory, cache the conjugate # as well if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones(NFFT, X.dtype)) ind = range(0, numRows-NFFT+1, NFFT-noverlap) numSlices = len(ind) FFTSlices = {} FFTConjSlices = {} Pxx = {} slices = range(numSlices) normVal = np.linalg.norm(windowVals)**2 for iCol in allColumns: progressCallback(i/Ncols, 'Cacheing FFTs') Slices = np.zeros( (numSlices,numFreqs), dtype=np.complex_) for iSlice in slices: thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol] thisSlice = windowVals*detrend(thisSlice) Slices[iSlice,:] = np.fft.fft(thisSlice)[:numFreqs] FFTSlices[iCol] = Slices if preferSpeedOverMemory: FFTConjSlices[iCol] = np.conjugate(Slices) Pxx[iCol] = np.divide(np.mean(abs(Slices)**2, axis=0), normVal) del Slices, ind, windowVals # compute the coherences and phases for all pairs using the # cached FFTs Cxy = {} Phase = {} count = 0 N = len(ij) for i,j in ij: count +=1 if count%10==0: progressCallback(count/N, 'Computing coherences') if preferSpeedOverMemory: Pxy = FFTSlices[i] * FFTConjSlices[j] else: Pxy = FFTSlices[i] * np.conjugate(FFTSlices[j]) if numSlices>1: Pxy = np.mean(Pxy, axis=0) #Pxy = np.divide(Pxy, normVal) Pxy /= normVal #Cxy[(i,j)] = np.divide(np.absolute(Pxy)**2, Pxx[i]*Pxx[j]) Cxy[i,j] = abs(Pxy)**2 / (Pxx[i]*Pxx[j]) Phase[i,j] = np.arctan2(Pxy.imag, Pxy.real) freqs = Fs/NFFT*np.arange(numFreqs) if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def normpdf(x, *args): "Return the normal pdf evaluated at *x*; args provides *mu*, *sigma*" mu, sigma = args return 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-0.5 * (1./sigma*(x - mu))**2)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def find(condition): "Return the indices where ravel(condition) is true" res, = np.nonzero(np.ravel(condition)) return res
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def longest_ones(x): '''alias for longest_contiguous_ones''' return longest_contiguous_ones(x)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, a): """ compute the SVD of a and store data for PCA. Use project to project the data onto a reduced set of dimensions Inputs: *a*: a numobservations x numdims array Attrs: *a* a centered unit sigma version of input a *numrows*, *numcols*: the dimensions of a *mu* : a numdims array of means of a *sigma* : a numdims array of atandard deviation of a *fracs* : the proportion of variance of each of the principal components *Wt* : the weight vector for projecting a numdims point or array into PCA space *Y* : a projected into PCA space The factor loadings are in the Wt factor, ie the factor loadings for the 1st principal component are given by Wt[0] """ n, m = a.shape if n<m: raise RuntimeError('we assume data in a is organized with numrows>numcols') self.numrows, self.numcols = n, m self.mu = a.mean(axis=0) self.sigma = a.std(axis=0) a = self.center(a) self.a = a U, s, Vh = np.linalg.svd(a, full_matrices=False) Y = np.dot(Vh, a.T).T vars = s**2/float(len(s)) self.fracs = vars/vars.sum() self.Wt = Vh self.Y = Y
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def center(self, x): 'center the data using the mean and sigma from training set a' return (x - self.mu)/self.sigma
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def _get_colinear(): c0 = np.array([ 0.19294738, 0.6202667 , 0.45962655, 0.07608613, 0.135818 , 0.83580842, 0.07218851, 0.48318321, 0.84472463, 0.18348462, 0.81585306, 0.96923926, 0.12835919, 0.35075355, 0.15807861, 0.837437 , 0.10824303, 0.1723387 , 0.43926494, 0.83705486]) c1 = np.array([ -1.17705601, -0.513883 , -0.26614584, 0.88067144, 1.00474954, -1.1616545 , 0.0266109 , 0.38227157, 1.80489433, 0.21472396, -1.41920399, -2.08158544, -0.10559009, 1.68999268, 0.34847107, -0.4685737 , 1.23980423, -0.14638744, -0.35907697, 0.22442616]) c2 = c0 + 2*c1 c3 = -3*c0 + 4*c1 a = np.array([c3, c0, c1, c2]).T return a
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def _interpolate(a, b, fraction): """Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. """ return a + (b - a)*fraction
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def prctile_rank(x, p): """ Return the rank for each element in *x*, return the rank 0..len(*p*). Eg if *p* = (25, 50, 75), the return value will be a len(*x*) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is above the 75th percentile cutoff. *p* is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data you want ranked. """ if not cbook.iterable(p): p = np.arange(100.0/p, 100.0, 100.0/p) else: p = np.asarray(p) if p.max()<=1 or p.min()<0 or p.max()>100: raise ValueError('percentiles should be in range 0..100, not 0..1') ptiles = prctile(x, p) return np.searchsorted(ptiles, x)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def rk4(derivs, y0, t): """ Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementation which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use :func:`scipy.integrate`. *y0* initial state vector *t* sample times *derivs* returns the derivative of the system and has the signature ``dy = derivs(yi, ti)`` Example 1 :: ## 2D system def derivs6(x,t): d1 = x[0] + 2*x[1] d2 = -3*x[0] + 4*x[1] return (d1, d2) dt = 0.0005 t = arange(0.0, 2.0, dt) y0 = (1,2) yout = rk4(derivs6, y0, t) Example 2:: ## 1D system alpha = 2 def derivs(x,t): return -alpha*x + exp(-t) y0 = 1 yout = rk4(derivs, y0, t) If you have access to scipy, you should probably be using the scipy.integrate tools rather than this function. """ try: Ny = len(y0) except TypeError: yout = np.zeros( (len(t),), np.float_) else: yout = np.zeros( (len(t), Ny), np.float_) yout[0] = y0 i = 0 for i in np.arange(len(t)-1): thist = t[i] dt = t[i+1] - thist dt2 = dt/2.0 y0 = yout[i] k1 = np.asarray(derivs(y0, thist)) k2 = np.asarray(derivs(y0 + dt2*k1, thist+dt2)) k3 = np.asarray(derivs(y0 + dt2*k2, thist+dt2)) k4 = np.asarray(derivs(y0 + dt*k3, thist+dt)) yout[i+1] = y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4) return yout
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def get_xyz_where(Z, Cond): """ *Z* and *Cond* are *M* x *N* matrices. *Z* are data and *Cond* is a boolean matrix where some condition is satisfied. Return value is (*x*, *y*, *z*) where *x* and *y* are the indices into *Z* and *z* are the values of *Z* at those indices. *x*, *y*, and *z* are 1D arrays. """ X,Y = np.indices(Z.shape) return X[Cond], Y[Cond], Z[Cond]
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def dist(x,y): """ Return the distance between two points. """ d = x-y return np.sqrt(np.dot(d,d))
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def segments_intersect(s1, s2): """ Return *True* if *s1* and *s2* intersect. *s1* and *s2* are defined as:: s1: (x1, y1), (x2, y2) s2: (x3, y3), (x4, y4) """ (x1, y1), (x2, y2) = s1 (x3, y3), (x4, y4) = s2 den = ((y4-y3) * (x2-x1)) - ((x4-x3)*(y2-y1)) n1 = ((x4-x3) * (y1-y3)) - ((y4-y3)*(x1-x3)) n2 = ((x2-x1) * (y1-y3)) - ((y2-y1)*(x1-x3)) if den == 0: # lines parallel return False u1 = n1/den u2 = n2/den return 0.0 <= u1 <= 1.0 and 0.0 <= u2 <= 1.0
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def liaupunov(x, fprime): """ *x* is a very long trajectory from a map, and *fprime* returns the derivative of *x*. This function will be removed from matplotlib. Returns : .. math:: \lambda = \\frac{1}{n}\\sum \\ln|f^'(x_i)| .. seealso:: Lyapunov Exponent Sec 10.5 Strogatz (1994) "Nonlinear Dynamics and Chaos". `Wikipedia article on Lyapunov Exponent <http://en.wikipedia.org/wiki/Lyapunov_exponent>`_. .. note:: What the function here calculates may not be what you really want; *caveat emptor*. It also seems that this function's name is badly misspelled. """ warnings.warn("This does not belong in matplotlib and will be removed", DeprecationWarning) # 2009/06/13 return np.mean(np.log(np.absolute(fprime(x))))
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, nmax): """ Buffer up to *nmax* points. """ self._xa = np.zeros((nmax,), np.float_) self._ya = np.zeros((nmax,), np.float_) self._xs = np.zeros((nmax,), np.float_) self._ys = np.zeros((nmax,), np.float_) self._ind = 0 self._nmax = nmax self.dataLim = None self.callbackd = {}
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def add(self, x, y): """ Add scalar *x* and *y* to the queue. """ if self.dataLim is not None: xy = np.asarray([(x,y),]) self.dataLim.update_from_data_xy(xy, None) ind = self._ind % self._nmax #print 'adding to fifo:', ind, x, y self._xs[ind] = x self._ys[ind] = y for N,funcs in self.callbackd.items(): if (self._ind%N)==0: for func in funcs: func(self) self._ind += 1
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def asarrays(self): """ Return *x* and *y* as arrays; their length will be the len of data added or *nmax*. """ if self._ind<self._nmax: return self._xs[:self._ind], self._ys[:self._ind] ind = self._ind % self._nmax self._xa[:self._nmax-ind] = self._xs[ind:] self._xa[self._nmax-ind:] = self._xs[:ind] self._ya[:self._nmax-ind] = self._ys[ind:] self._ya[self._nmax-ind:] = self._ys[:ind] return self._xa, self._ya
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def movavg(x,n): """ Compute the len(*n*) moving average of *x*. """ w = np.empty((n,), dtype=np.float_) w[:] = 1.0/n return np.convolve(x, w, mode='valid')
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def load(fname,comments='#',delimiter=None, converters=None,skiprows=0, usecols=None, unpack=False, dtype=np.float_): """ Load ASCII data from *fname* into an array and return the array. Deprecated: use numpy.loadtxt. The data must be regular, same number of values in every row *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz'. matfile data is not supported; for that, use :mod:`scipy.io.mio` module. Example usage:: X = load('test.dat') # data in two columns t = X[:,0] y = X[:,1] Alternatively, you can do the same with "unpack"; see below:: X = load('test.dat') # a matrix of data x = load('test.dat') # a single column of data - *comments*: the character used to indicate the start of a comment in the file - *delimiter* is a string-like character used to seperate values in the file. If *delimiter* is unspecified or *None*, any whitespace string is a separator. - *converters*, if not *None*, is a dictionary mapping column number to a function that will convert that column to a float (or the optional *dtype* if specified). Eg, if column 0 is a date string:: converters = {0:datestr2num} - *skiprows* is the number of rows from the top to skip. - *usecols*, if not *None*, is a sequence of integer column indexes to extract where 0 is the first column, eg ``usecols=[1,4,5]`` to extract just the 2nd, 5th and 6th columns - *unpack*, if *True*, will transpose the matrix allowing you to unpack into named arguments on the left hand side:: t,y = load('test.dat', unpack=True) # for two column data x,y,z = load('somefile.dat', usecols=[3,5,7], unpack=True) - *dtype*: the array will have this dtype. default: ``numpy.float_`` .. seealso:: See :file:`examples/pylab_examples/load_converter.py` in the source tree Exercises many of these options. """ warnings.warn("use numpy.loadtxt", DeprecationWarning) # 2009/06/13 if converters is None: converters = {} fh = cbook.to_filehandle(fname) X = [] if delimiter==' ': # space splitting is a special case since x.split() is what # you want, not x.split(' ') def splitfunc(x): return x.split() else: def splitfunc(x): return x.split(delimiter) converterseq = None for i,line in enumerate(fh): if i<skiprows: continue line = line.split(comments, 1)[0].strip() if not len(line): continue if converterseq is None: converterseq = [converters.get(j,float) for j,val in enumerate(splitfunc(line))] if usecols is not None: vals = splitfunc(line) row = [converterseq[j](vals[j]) for j in usecols] else: row = [converterseq[j](val) for j,val in enumerate(splitfunc(line))] thisLen = len(row) X.append(row) X = np.array(X, dtype) r,c = X.shape if r==1 or c==1: X.shape = max(r,c), if unpack: return X.transpose() else: return X
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def exp_safe(x): """ Compute exponentials which safely underflow to zero. Slow, but convenient to use. Note that numpy provides proper floating point exception handling with access to the underlying hardware. """ if type(x) is np.ndarray: return exp(np.clip(x,exp_safe_MIN,exp_safe_MAX)) else: return math.exp(x)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def rms_flat(a): """ Return the root mean square of all the elements of *a*, flattened out. """ return np.sqrt(np.mean(np.absolute(a)**2))
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def l2norm(a): """ Return the *l2* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sqrt(np.sum(np.absolute(a)**2))
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def frange(xini,xfin=None,delta=None,**kw): """ frange([start,] stop[, step, keywords]) -> array of floats Return a numpy ndarray containing a progression of floats. Similar to :func:`numpy.arange`, but defaults to a closed interval. ``frange(x0, x1)`` returns ``[x0, x0+1, x0+2, ..., x1]``; *start* defaults to 0, and the endpoint *is included*. This behavior is different from that of :func:`range` and :func:`numpy.arange`. This is deliberate, since :func:`frange` will probably be more useful for generating lists of points for function evaluation, and endpoints are often desired in this use. The usual behavior of :func:`range` can be obtained by setting the keyword *closed* = 0, in this case, :func:`frange` basically becomes :func:numpy.arange`. When *step* is given, it specifies the increment (or decrement). All arguments can be floating point numbers. ``frange(x0,x1,d)`` returns ``[x0,x0+d,x0+2d,...,xfin]`` where *xfin* <= *x1*. :func:`frange` can also be called with the keyword *npts*. This sets the number of points the list should contain (and overrides the value *step* might have been given). :func:`numpy.arange` doesn't offer this option. Examples:: >>> frange(3) array([ 0., 1., 2., 3.]) >>> frange(3,closed=0) array([ 0., 1., 2.]) >>> frange(1,6,2) array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries >>> frange(1,6.5,npts=5) array([ 1. , 2.375, 3.75 , 5.125, 6.5 ]) """ #defaults kw.setdefault('closed',1) endpoint = kw['closed'] != 0 # funny logic to allow the *first* argument to be optional (like range()) # This was modified with a simpler version from a similar frange() found # at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66472 if xfin == None: xfin = xini + 0.0 xini = 0.0 if delta == None: delta = 1.0 # compute # of points, spacing and return final list try: npts=kw['npts'] delta=(xfin-xini)/float(npts-endpoint) except KeyError: npts = int(round((xfin-xini)/delta)) + endpoint #npts = int(floor((xfin-xini)/delta)*(1.0+1e-10)) + endpoint # round finds the nearest, so the endpoint can be up to # delta/2 larger than xfin. return np.arange(npts)*delta+xini
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def identity(n, rank=2, dtype='l', typecode=None): """ Returns the identity matrix of shape (*n*, *n*, ..., *n*) (rank *r*). For ranks higher than 2, this object is simply a multi-index Kronecker delta:: / 1 if i0=i1=...=iR, id[i0,i1,...,iR] = -| \ 0 otherwise. Optionally a *dtype* (or typecode) may be given (it defaults to 'l'). Since rank defaults to 2, this function behaves in the default case (when only *n* is given) like ``numpy.identity(n)`` -- but surprisingly, it is much faster. """ if typecode is not None: dtype = typecode iden = np.zeros((n,)*rank, dtype) for i in range(n): idx = (i,)*rank iden[idx] = 1 return iden
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def binary_repr(number, max_length = 1025): """ Return the binary representation of the input *number* as a string. This is more efficient than using :func:`base_repr` with base 2. Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is the largest integer power of 2 which can be converted to a Python float. """ #assert number < 2L << max_length shifts = map (operator.rshift, max_length * [number], \ range (max_length - 1, -1, -1)) digits = map (operator.mod, shifts, max_length * [2]) if not digits.count (1): return 0 digits = digits [digits.index (1):] return ''.join (map (repr, digits)).replace('L','')
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def ispower2(n): """ Returns the log base 2 of *n* if *n* is a power of 2, zero otherwise. Note the potential ambiguity if *n* == 1: 2**0 == 1, interpret accordingly. """ bin_n = binary_repr(n)[1:] if '1' in bin_n: return 0 else: return len(bin_n)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def safe_isnan(x): ':func:`numpy.isnan` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isnan(x) except NotImplementedError: return False except TypeError: return False else: return b
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def rec_append_fields(rec, names, arrs, dtypes=None): """ Return a new record array with field names populated with data from arrays in *arrs*. If appending a single field, then *names*, *arrs* and *dtypes* do not have to be lists. They can just be the values themselves. """ if (not cbook.is_string_like(names) and cbook.iterable(names) \ and len(names) and cbook.is_string_like(names[0])): if len(names) != len(arrs): raise ValueError, "number of arrays do not match number of names" else: # we have only 1 name and 1 array names = [names] arrs = [arrs] arrs = map(np.asarray, arrs) if dtypes is None: dtypes = [a.dtype for a in arrs] elif not cbook.iterable(dtypes): dtypes = [dtypes] if len(arrs) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(arrs) else: raise ValueError, "dtypes must be None, a single dtype or a list" newdtype = np.dtype(rec.dtype.descr + zip(names, dtypes)) newrec = np.recarray(rec.shape, dtype=newdtype) for field in rec.dtype.fields: newrec[field] = rec[field] for name, arr in zip(names, arrs): newrec[name] = arr return newrec
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def rec_keep_fields(rec, names): """ Return a new numpy record array with only fields listed in names """ if cbook.is_string_like(names): names = names.split(',') arrays = [] for name in names: arrays.append(rec[name]) return np.rec.fromarrays(arrays, names=names)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def rec_summarize(r, summaryfuncs): """ *r* is a numpy record array *summaryfuncs* is a list of (*attr*, *func*, *outname*) tuples which will apply *func* to the the array *r*[attr] and assign the output to a new attribute name *outname*. The returned record array is identical to *r*, with extra arrays for each element in *summaryfuncs*. """ names = list(r.dtype.names) arrays = [r[name] for name in names] for attr, func, outname in summaryfuncs: names.append(outname) arrays.append(np.asarray(func(r[attr]))) return np.rec.fromarrays(arrays, names=names)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def makekey(row): return tuple([row[name] for name in key])
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def key_desc(name): 'if name is a string key, use the larger size of r1 or r2 before merging' dt1 = r1.dtype[name] if dt1.type != np.string_: return (name, dt1.descr[0][1]) dt2 = r1.dtype[name] assert dt2==dt1 if dt1.num>dt2.num: return (name, dt1.descr[0][1]) else: return (name, dt2.descr[0][1])
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def mapped_r1field(name): """ The column name in *newrec* that corresponds to the column in *r1*. """ if name in key or name not in r2.dtype.names: return name else: return name + r1postfix
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def recs_join(key, name, recs, jointype='outer', missing=0., postfixes=None): """ Join a sequence of record arrays on single column key. This function only joins a single column of the multiple record arrays *key* is the column name that acts as a key *name* is the name of the column that we want to join *recs* is a list of record arrays to join *jointype* is a string 'inner' or 'outer' *missing* is what any missing field is replaced by *postfixes* if not None, a len recs sequence of postfixes returns a record array with columns [rowkey, name0, name1, ... namen-1]. or if postfixes [PF0, PF1, ..., PFN-1] are supplied, [rowkey, namePF0, namePF1, ... namePFN-1]. Example:: r = recs_join("date", "close", recs=[r0, r1], missing=0.) """ results = [] aligned_iters = cbook.align_iterators(operator.attrgetter(key), *[iter(r) for r in recs]) def extract(r): if r is None: return missing else: return r[name] if jointype == "outer": for rowkey, row in aligned_iters: results.append([rowkey] + map(extract, row)) elif jointype == "inner": for rowkey, row in aligned_iters: if None not in row: # throw out any Nones results.append([rowkey] + map(extract, row)) if postfixes is None: postfixes = ['%d'%i for i in range(len(recs))] names = ",".join([key] + ["%s%s" % (name, postfix) for postfix in postfixes]) return np.rec.fromrecords(results, names=names)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, fh): self.fh = fh
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def seek(self, arg): self.fh.seek(arg)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def next(self): return self.fix(self.fh.next())
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def process_skiprows(reader): if skiprows: for i, row in enumerate(reader): if i>=(skiprows-1): break return fh, reader
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def ismissing(name, val): "Should the value val in column name be masked?" if val == missing or val == missingd.get(name) or val == '': return True else: return False
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def newfunc(name, val): if ismissing(name, val): return default else: return func(val)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def mybool(x): if x=='True': return True elif x=='False': return False else: raise ValueError('invalid bool')
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def mydate(x): # try and return a date object d = dateparser(x) if d.hour>0 or d.minute>0 or d.second>0: raise ValueError('not a date') return d.date()
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def get_func(name, item, func): # promote functions in this order funcmap = {mybool:myint,myint:myfloat, myfloat:mydate, mydate:mydateparser, mydateparser:mystr} try: func(name, item) except: if func==mystr: raise ValueError('Could not find a working conversion function') else: return get_func(name, item, funcmap[func]) # recurse else: return func
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def get_converters(reader): converters = None for i, row in enumerate(reader): if i==0: converters = [mybool]*len(row) if checkrows and i>checkrows: break #print i, len(names), len(row) #print 'converters', zip(converters, row) for j, (name, item) in enumerate(zip(names, row)): func = converterd.get(j) if func is None: func = converterd.get(name) if func is None: #if not item.strip(): continue func = converters[j] if len(item.strip()): func = get_func(name, item, func) else: # how should we handle custom converters and defaults? func = with_default_value(func, None) converters[j] = func return converters
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def tostr(self, x): return self.toval(x)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def fromstr(self, s): return s
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def tostr(self, x): val = repr(x) return val[1:-1]
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, fmt): self.fmt = fmt
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, precision=4, scale=1.): FormatFormatStr.__init__(self, '%%1.%df'%precision) self.precision = precision self.scale = scale
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def toval(self, x): if x is not None: x = x * self.scale return x
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def tostr(self, x): return '%d'%int(x)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def fromstr(self, s): return int(s)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def toval(self, x): return str(x)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=100.)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-3)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-6)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, fmt): self.fmt = fmt
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def toval(self, x): if x is None: return 'None' return x.strftime(self.fmt)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def __init__(self, fmt='%Y-%m-%d %H:%M:%S'): FormatDate.__init__(self, fmt)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def get_formatd(r, formatd=None): 'build a formatd guaranteed to have a key for every dtype name' if formatd is None: formatd = dict() for i, name in enumerate(r.dtype.names): dt = r.dtype[name] format = formatd.get(name) if format is None: format = defaultformatd.get(dt.type, FormatObj()) formatd[name] = format return formatd
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def rec2txt(r, header=None, padding=3, precision=3, fields=None): """ Returns a textual representation of a record array. *r*: numpy recarray *header*: list of column headers *padding*: space between each column *precision*: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to a list of integers to apply precision individually. Precision for non-floats is simply ignored. *fields* : if not None, a list of field names to print. fields can be a list of strings like ['field1', 'field2'] or a single comma separated string like 'field1,field2' Example:: precision=[0,2,3] Output:: ID Price Return ABC 12.54 0.234 XYZ 6.32 -0.076 """ if fields is not None: r = rec_keep_fields(r, fields) if cbook.is_numlike(precision): precision = [precision]*len(r.dtype) def get_type(item,atype=int): tdict = {None:int, int:float, float:str} try: atype(str(item)) except: return get_type(item,tdict[atype]) return atype def get_justify(colname, column, precision): ntype = type(column[0]) if ntype==np.str or ntype==np.str_ or ntype==np.string0 or ntype==np.string_: length = max(len(colname),column.itemsize) return 0, length+padding, "%s" # left justify if ntype==np.int or ntype==np.int16 or ntype==np.int32 or ntype==np.int64 or ntype==np.int8 or ntype==np.int_: length = max(len(colname),np.max(map(len,map(str,column)))) return 1, length+padding, "%d" # right justify # JDH: my powerbook does not have np.float96 using np 1.3.0 """ In [2]: np.__version__ Out[2]: '1.3.0.dev5948' In [3]: !uname -a Darwin Macintosh-5.local 9.4.0 Darwin Kernel Version 9.4.0: Mon Jun 9 19:30:53 PDT 2008; root:xnu-1228.5.20~1/RELEASE_I386 i386 i386 In [4]: np.float96 --------------------------------------------------------------------------- AttributeError Traceback (most recent call la """ if ntype==np.float or ntype==np.float32 or ntype==np.float64 or (hasattr(np, 'float96') and (ntype==np.float96)) or ntype==np.float_: fmt = "%." + str(precision) + "f" length = max(len(colname),np.max(map(len,map(lambda x:fmt%x,column)))) return 1, length+padding, fmt # right justify return 0, max(len(colname),np.max(map(len,map(str,column))))+padding, "%s" if header is None: header = r.dtype.names justify_pad_prec = [get_justify(header[i],r.__getitem__(colname),precision[i]) for i, colname in enumerate(r.dtype.names)] justify_pad_prec_spacer = [] for i in range(len(justify_pad_prec)): just,pad,prec = justify_pad_prec[i] if i == 0: justify_pad_prec_spacer.append((just,pad,prec,0)) else: pjust,ppad,pprec = justify_pad_prec[i-1] if pjust == 0 and just == 1: justify_pad_prec_spacer.append((just,pad-padding,prec,0)) elif pjust == 1 and just == 0: justify_pad_prec_spacer.append((just,pad,prec,padding)) else: justify_pad_prec_spacer.append((just,pad,prec,0)) def format(item, just_pad_prec_spacer): just, pad, prec, spacer = just_pad_prec_spacer if just == 0: return spacer*' ' + str(item).ljust(pad) else: if get_type(item) == float: item = (prec%float(item)) elif get_type(item) == int: item = (prec%int(item)) return item.rjust(pad) textl = [] textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(header)])) for i, row in enumerate(r): textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(row)])) if i==0: textl[0] = textl[0].rstrip() text = os.linesep.join(textl) return text
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def with_mask(func): def newfunc(val, mask, mval): if mask: return mval else: return func(val) return newfunc
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def griddata(x,y,z,xi,yi,interp='nn'): """ ``zi = griddata(x,y,z,xi,yi)`` fits a surface of the form *z* = *f*(*x*, *y*) to the data in the (usually) nonuniformly spaced vectors (*x*, *y*, *z*). :func:`griddata` interpolates this surface at the points specified by (*xi*, *yi*) to produce *zi*. *xi* and *yi* must describe a regular grid, can be either 1D or 2D, but must be monotonically increasing. A masked array is returned if any grid points are outside convex hull defined by input data (no extrapolation is done). If interp keyword is set to '`nn`' (default), uses natural neighbor interpolation based on Delaunay triangulation. By default, this algorithm is provided by the :mod:`matplotlib.delaunay` package, written by Robert Kern. The triangulation algorithm in this package is known to fail on some nearly pathological cases. For this reason, a separate toolkit (:mod:`mpl_tookits.natgrid`) has been created that provides a more robust algorithm fof triangulation and interpolation. This toolkit is based on the NCAR natgrid library, which contains code that is not redistributable under a BSD-compatible license. When installed, this function will use the :mod:`mpl_toolkits.natgrid` algorithm, otherwise it will use the built-in :mod:`matplotlib.delaunay` package. If the interp keyword is set to '`linear`', then linear interpolation is used instead of natural neighbor. In this case, the output grid is assumed to be regular with a constant grid spacing in both the x and y directions. For regular grids with nonconstant grid spacing, you must use natural neighbor interpolation. Linear interpolation is only valid if :mod:`matplotlib.delaunay` package is used - :mod:`mpl_tookits.natgrid` only provides natural neighbor interpolation. The natgrid matplotlib toolkit can be downloaded from http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792 """ try: from mpl_toolkits.natgrid import _natgrid, __version__ _use_natgrid = True except ImportError: import matplotlib.delaunay as delaunay from matplotlib.delaunay import __version__ _use_natgrid = False if not griddata._reported: if _use_natgrid: verbose.report('using natgrid version %s' % __version__) else: verbose.report('using delaunay version %s' % __version__) griddata._reported = True if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if not len(x)==len(y)==len(z): raise TypeError("inputs x,y,z must all be 1D arrays of the same length") # remove masked points. if hasattr(z,'mask'): # make sure mask is not a scalar boolean array. if z.mask.ndim: x = x.compress(z.mask == False) y = y.compress(z.mask == False) z = z.compressed() if _use_natgrid: # use natgrid toolkit if available. if interp != 'nn': raise ValueError("only natural neighor interpolation" " allowed when using natgrid toolkit in griddata.") if xi.ndim == 2: xi = xi[0,:] yi = yi[:,0] # override default natgrid internal parameters. _natgrid.seti('ext',0) _natgrid.setr('nul',np.nan) # cast input arrays to doubles (this makes a copy) x = x.astype(np.float) y = y.astype(np.float) z = z.astype(np.float) xo = xi.astype(np.float) yo = yi.astype(np.float) if min(xo[1:]-xo[0:-1]) < 0 or min(yo[1:]-yo[0:-1]) < 0: raise ValueError, 'output grid defined by xi,yi must be monotone increasing' # allocate array for output (buffer will be overwritten by nagridd) zo = np.empty((yo.shape[0],xo.shape[0]), np.float) _natgrid.natgridd(x,y,z,xo,yo,zo) else: # use Robert Kern's delaunay package from scikits (default) if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if xi.ndim == 1: xi,yi = np.meshgrid(xi,yi) # triangulate data tri = delaunay.Triangulation(x,y) # interpolate data if interp == 'nn': interp = tri.nn_interpolator(z) zo = interp(xi,yi) elif interp == 'linear': # make sure grid has constant dx, dy dx = xi[0,1:]-xi[0,0:-1] dy = yi[1:,0]-yi[0:-1,0] epsx = np.finfo(xi.dtype).resolution epsy = np.finfo(yi.dtype).resolution if dx.max()-dx.min() > epsx or dy.max()-dy.min() > epsy: raise ValueError("output grid must have constant spacing" " when using interp='linear'") interp = tri.linear_interpolator(z) zo = interp[yi.min():yi.max():complex(0,yi.shape[0]), xi.min():xi.max():complex(0,xi.shape[1])] else: raise ValueError("interp keyword must be one of" " 'linear' (for linear interpolation) or 'nn'" " (for natural neighbor interpolation). Default is 'nn'.") # mask points on grid outside convex hull of input data. if np.any(np.isnan(zo)): zo = np.ma.masked_where(np.isnan(zo),zo) return zo
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def less_simple_linear_interpolation( x, y, xi, extrap=False ): """ This function provides simple (but somewhat less so than :func:`cbook.simple_linear_interpolation`) linear interpolation. :func:`simple_linear_interpolation` will give a list of point between a start and an end, while this does true linear interpolation at an arbitrary set of points. This is very inefficient linear interpolation meant to be used only for a small number of points in relatively non-intensive use cases. For real linear interpolation, use scipy. """ if cbook.is_scalar(xi): xi = [xi] x = np.asarray(x) y = np.asarray(y) xi = np.asarray(xi) s = list(y.shape) s[0] = len(xi) yi = np.tile( np.nan, s ) for ii,xx in enumerate(xi): bb = x == xx if np.any(bb): jj, = np.nonzero(bb) yi[ii] = y[jj[0]] elif xx<x[0]: if extrap: yi[ii] = y[0] elif xx>x[-1]: if extrap: yi[ii] = y[-1] else: jj, = np.nonzero(x<xx) jj = max(jj) yi[ii] = y[jj] + (xx-x[jj])/(x[jj+1]-x[jj]) * (y[jj+1]-y[jj]) return yi
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def stineman_interp(xi,x,y,yp=None): """ Given data vectors *x* and *y*, the slope vector *yp* and a new abscissa vector *xi*, the function :func:`stineman_interp` uses Stineman interpolation to calculate a vector *yi* corresponding to *xi*. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa:: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were: not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For *yp* = *None*, the routine automatically determines the slopes using the :func:`slopes` routine. *x* is assumed to be sorted in increasing order. For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine tries an extrapolation. The relevance of the data obtained from this, of course, is questionable... Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def inside_poly(points, verts): """ *points* is a sequence of *x*, *y* points. *verts* is a sequence of *x*, *y* vertices of a polygon. Return value is a sequence of indices into points for the points that are inside the polygon. """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): nx = ma else: nx = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*nx.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*nx.ones(Nx) x = nx.concatenate( (x, x[::-1]) ) y = nx.concatenate( (yupper, ylower[::-1]) ) return x,y
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions TODO: this is a pure python implementation which probably has a much faster numpy impl """ in_region = None boundaries = [] for i, val in enumerate(mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None: boundaries.append((in_region, i+1)) return boundaries
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def cross_from_above(x, threshold): """ return the indices into *x* where *x* crosses some threshold from below, eg the i's where:: x[i-1]>threshold and x[i]<=threshold .. seealso:: :func:`cross_from_below` and :func:`contiguous_regions` """ x = np.asarray(x) ind = np.nonzero( (x[:-1]>=threshold) & (x[1:]<threshold))[0] if len(ind): return ind+1 else: return ind
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def vector_lengths( X, P=2., axis=None ): """ Finds the length of a set of vectors in *n* dimensions. This is like the :func:`numpy.norm` function for vectors, but has the ability to work over a particular axis of the supplied array or matrix. Computes ``(sum((x_i)^P))^(1/P)`` for each ``{x_i}`` being the elements of *X* along the given axis. If *axis* is *None*, compute over all elements of *X*. """ X = np.asarray(X) return (np.sum(X**(P),axis=axis))**(1./P)
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def path_length(X): """ Computes the distance travelled along a polygonal curve in *N* dimensions. Where *X* is an *M* x *N* array or matrix. Returns an array of length *M* consisting of the distance along the curve at each point (i.e., the rows of *X*). """ X = distances_along_curve(X) return np.concatenate( (np.zeros(1), np.cumsum(X)) )
SpaceKatt/CSPLN
[ 1, 1, 1, 1, 1441155989 ]
def map_type(self, obj): # TODO: Replace all str with unicode when done in property.default attribute # TODO: Fix ToGuessProp as it may be a list. if isinstance(obj, ListProp): return list if isinstance(obj, StringProp): return str if isinstance(obj, UnusedProp): return str if isinstance(obj, BoolProp): return bool if isinstance(obj, IntegerProp): return int if isinstance(obj, FloatProp): return float if isinstance(obj, CharProp): return str if isinstance(obj, DictProp): return dict if isinstance(obj, AddrProp): return str if isinstance(obj, ToGuessProp): return str
naparuba/shinken
[ 1129, 344, 1129, 221, 1290510176 ]
def add(self, b): if isinstance(b, Brok): self.broks[b.id] = b return if isinstance(b, ExternalCommand): self.sched.run_external_command(b.cmd_line)
naparuba/shinken
[ 1129, 344, 1129, 221, 1290510176 ]
def get(self): self.response.out.write("Test 1:" +self.test1() +"<br>") self.response.out.write("Test 2:" + self.test2() +"<br>") self.response.out.write("Test 3:" + self.test3() +"<br>") self.response.out.write("Test 4:" + self.test4() +"<br>")
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def test1(self): key = "[email protected]" ent_type = "Accounts" trophy_case_widget = TrophyCase(key_name=key) points_widget = Points(key_name=key) rank_widget = Rank(key_name=key) newacc = Accounts(key_name=key, password="aaa", email=key, isEnabled="enabled", accountType="bronze", paymentType="free", cookieKey="xxx", apiKey="xxx", trophyWidget=trophy_case_widget, pointsWidget=points_widget, rankWidget=rank_widget) try: memcache_db.delete_entity(newacc, key) except Exception: pass # Save and get saved ent ret = memcache_db.save_entity(newacc, key) sameent = memcache_db.get_entity(key, ent_type) if sameent.email != key: return "Error getting same account. Subtest 1" # purge from memcache and get from db memcache.delete(key=key, namespace=ent_type) sameent = memcache_db.get_entity(key, ent_type) if sameent.email != key: return "Error getting same account from DB (no cache). Subtest 2" # Set and get new user name diction = {"email":"[email protected]"} ret2 = memcache_db.update_fields(key, ent_type, diction) ret2 = sameent.put() if ret != ret2: self.response.out.write("Error getting key name") sameent = memcache_db.get_entity(key, ent_type) if sameent.email != "[email protected]": return "Error getting same account after altering entity. Subtest 3" try: memcache_db.delete_entity(newacc, key) except Exception: return "Error deleting entity. Subtest 4"
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def test2(self): account_key = "raj" trophy_case_widget = TrophyCase(key_name=account_key) points_widget = Points(key_name=account_key) rank_widget = Rank(key_name=account_key) newacc = Accounts(key_name=account_key, password="aaa", email="[email protected]", isEnabled="enabled", accountType="bronze", paymentType="free", apiKey="xxx", cookieKey="xxx", trophyWidget=trophy_case_widget, pointsWidget=points_widget, rankWidget=rank_widget) try: memcache_db.delete_entity(newacc, key) except Exception: pass # Save and get saved ent ret = memcache_db.save_entity(newacc, account_key) key = "testbadge1" ent_type = "Badges" newacc = Badges(key_name=key, name="badge1", description=key, altText="a really cool badge", setType="free", isEnabled="yes", creator=newacc, permissions="private", blobKey="xxxx", storageType="blob") try: memcache_db.delete_entity(newacc, key) except Exception: pass # Save and get saved ent ret = memcache_db.save_entity(newacc, key) sameent = memcache_db.get_entity(key, ent_type) if sameent.description != key: return "Error getting same account. Subtest 1" # purge from memcache and get from db memcache.delete(key=key, namespace=ent_type) sameent = memcache_db.get_entity(key, ent_type) if sameent.description != key: return "Error getting same account from DB (no cache). Subtest 2" # Set and get new user name diction = {"isEnabled":"no", "permissions":"public"} ret2 = memcache_db.update_fields(key, ent_type, diction) ret2 = sameent.put() if ret != ret2: self.response.out.write("Error getting key name") sameent = memcache_db.get_entity(key, ent_type) if sameent.isEnabled != "no" or sameent.permissions != "public": return "Error getting same account after altering entity. Subtest 3" try: memcache_db.delete_entity(sameent, key) except Exception: return "Error deleting entity. Subtest 4" try: memcache_db.delete_entity(newacc, account_key) except Exception: return "Error deleting account. Subtest 5" return "Success"
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def test3(self): account_key = "[email protected]" trophy_case_widget = TrophyCase(key_name=account_key) points_widget = Points(key_name=account_key) rank_widget = Rank(key_name=account_key) newacc = Accounts(key_name=account_key, password="aaa", email="[email protected]", isEnabled="enabled", accountType="bronze", paymentType="free", apiKey="xxx", cookieKey="xxx", trophyWidget=trophy_case_widget, pointsWidget=points_widget, rankWidget=rank_widget) try: memcache_db.delete_entity(newacc, account_key) except Exception: pass # Save and get saved ent ret = memcache_db.save_entity(newacc, account_key) key = "testuser1" ent_type = "Users" newacc = Users(key_name=key, userid=key, isEnabled="yes", accountRef=newacc, tags = key) try: memcache_db.delete_entity(newacc, key) except Exception: pass # Save and get saved ent ret = memcache_db.save_entity(newacc, key) sameent = memcache_db.get_entity(key, ent_type) if sameent.tags != key: return "Error getting same entity. Subtest 1" # purge from memcache and get from db memcache.delete(key=key, namespace=ent_type) sameent = memcache_db.get_entity(key, ent_type) if sameent.tags != key: return "Error getting same entity from DB (no cache). Subtest 2" # Set and get new user name diction = {"tags":"goodbye:hello"} ret2 = memcache_db.update_fields(key, ent_type, diction) ret2 = sameent.put() if ret != ret2: self.response.out.write("Error getting key name") sameent = memcache_db.get_entity(key, ent_type) if sameent.tags != "goodbye:hello": return "Error getting same entity after altering entity. Subtest 3" try: memcache_db.delete_entity(newacc, account_key) memcache_db.delete_entity(sameent, key) except Exception: return "Error deleting entity. Subtest 4"
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def test4(self): account_key = "[email protected]" trophy_case_widget = TrophyCase(key_name=account_key) points_widget = Points(key_name=account_key) rank_widget = Rank(key_name=account_key) newacc = Accounts(key_name=account_key, password="aaa", email="[email protected]", isEnabled="enabled", accountType="bronze", paymentType="free", apiKey="xxx", cookieKey="xxx", trophyWidget=trophy_case_widget, pointsWidget=points_widget, rankWidget=rank_widget) try: memcache_db.delete_entity(newacc, key) except Exception: pass # Save an account ret = memcache_db.save_entity(newacc, account_key) user_key = "testuser1" newuser = Users(key_name=user_key, userid=user_key, isEnabled="yes", accountRef=newacc, tags = user_key) try: memcache_db.delete_entity(newacc, user_key) except Exception: pass # Save a user ret = memcache_db.save_entity(newacc, user_key) # Create a Badge Type badge_key = "testbadge1" badgetype = Badges(key_name=badge_key, name="badge1", description=badge_key, altText="a really cool badge", setType="free", isEnabled="yes", creator=newacc, permissions="private", storageType="blob", blobKey="xxxx") try: memcache_db.delete_entity(badgetype, badge_key) except Exception: pass # Save and get saved ent ret = memcache_db.save_entity(badgetype, badge_key)
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): """ Add to the db, get, and delete """
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): from serverside.tools import encryption """Do some simple encryption and show results """ mystr = "hello, world" self.response.out.write("encrypt string: " + mystr + "<br/>") mystr_enc = encryption.des_encrypt_str("hello, world") self.response.out.write("encrypted: " + mystr_enc + "<br/>") mystr_dec = encryption.des_decrypt_str(mystr_enc) self.response.out.write("decrypted: " + mystr_dec + "<br/>")
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): print "OS: " + os.environ["SERVER_SOFTWARE"] self.response.out.write("OS server software: " + os.environ["SERVER_SOFTWARE"])
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def post(self): pass
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): self.response.out.write("Creating session and setting cookie")
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): self.response.out.write("<br/>If you reached here you are logged in!")
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): self.response.out.write("terminating the follow session:") sess = Session().get_current_session(self) if(sess == None): self.response.out.write("<br/>You are not logged in!!") else: self.response.out.write("<br/>You are logged in as:") email = sess.get_email() self.response.out.write("<br/>" + email) sess.terminate()
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): self.response.out.write("You should be able to see this page, logged in or not...") sess = Session().get_current_session(self) if(sess == None): self.response.out.write("<br/>You are not logged in!!") else: self.response.out.write("<br/>You are logged in as:") email = sess.get_email() self.response.out.write("<br/>" + email)
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): log1 = {"account":"[email protected]", 'event':'getuserdata', 'api': 'get_user_data', 'is_api':'yes', 'user':"test_user", 'success':'true', 'ip':'127.0.0.1'} log1["details"] = u"HELLO 0" logs.create(log1) log1["is_api"] = 'no' log1["details"] = u"HELLO 1" logs.create(log1) log1["is_api"] = 'yes' log1["details"] = u"HELLO 2" log1["points"] = 100 logs.create(log1) log1["details"] = u"A BUNCH OF accent e's \xe9\xe9\xe9" logs.create(log1)
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): q = Logs.all() q.filter("account = ", "[email protected]") ents = q.fetch(10) count = 0 for ii in ents: count += 1 self.response.out.write(ii.details) self.response.out.write("<br/>") self.response.out.write("Number fetched " + str(count))
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): pass
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]
def get(self): pass
nlake44/UserInfuser
[ 101, 54, 101, 3, 1311320106 ]