function
stringlengths
11
56k
repo_name
stringlengths
5
60
features
sequence
def cleanup_the_mock(self): self.patch.stop()
benjamin-hodgson/poll
[ 10, 2, 10, 2, 1438953343 ]
def function_to_break(self): self.x += 1 raise self.expected_exception
benjamin-hodgson/poll
[ 10, 2, 10, 2, 1438953343 ]
def given_the_circuit_was_half_broken_and_the_function_failed_again(self): self.x = 0 self.patch = mock.patch('time.perf_counter', return_value=0) self.mock = self.patch.start() contexts.catch(self.function_to_break) contexts.catch(self.function_to_break) contexts.catch(self.function_to_break) self.mock.return_value = 1.1 contexts.catch(self.function_to_break)
benjamin-hodgson/poll
[ 10, 2, 10, 2, 1438953343 ]
def it_should_not_call_the_function(self): assert self.x == 4
benjamin-hodgson/poll
[ 10, 2, 10, 2, 1438953343 ]
def cleanup_the_mock(self): self.patch.stop()
benjamin-hodgson/poll
[ 10, 2, 10, 2, 1438953343 ]
def __init__(self, situation, name, suffix=None): '''Actions subclass nothing, but require situations to hold them''' # a situation is like "outdoors", "indoors", or "fighting" self._situation = situation self._game = None if situation is None else situation.game() # "name" is a string for the action & "suffix" is extra information. e.g. Move, North self._name = name self._suffix = suffix
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def name(self): '''getting the name of this action''' return self._name
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def suffix(self): '''getting the suffix of this action name (e.g. "Move" might be the name, and "West" might be the suffix.) ''' return self._suffix
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def game(self): '''getting the current subclass of game''' return self._game
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def situation(self): '''getting the situation this action is related to''' return self._situation
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def info(self): '''placeholder: generic return a string describing this action''' return ''
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def always_known(self): '''Is this action Always Known in this game?''' return False
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def can_do(self): '''Each action will have to define a method that determines if the action is currently valid or not. ''' raise Exception("Not Implemented")
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def do(self): '''Each Action will have to define a method that will actually perform some changes to the Game or UI ''' raise Exception("Not Implemented")
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def execute(self): '''Convience method, checks if the action can be performed, if so it does it. ''' if not self.can_do(): return
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def __str__(self): if self.suffix() is None: return self.name()
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def __init__(self, situtation): Action.__init__(self, situtation, 'Quit')
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def can_do(self): '''You can always exit the program. Break this functionality, and your users will hate you. ''' return True
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def do(self): '''In this simple implementation, no window pops up to ask you if you're sure or if you want to save the game first. ''' sys.exit()
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def __init__(self, situtation): Action.__init__(self, situtation, 'Do Nothing')
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def can_do(self): '''Doing nothing is always an option.''' return True
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def do(self): '''Sometimes the best thing you can do is nothing.''' pass
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def __setitem__(self, key, value): '''Simple type-checking for the Action Key Dict''' if not isinstance(key, str): raise TypeError('The action keys key must be a string.') if not isinstance(value, int): raise TypeError('The action keys value must be an integer.')
theJollySin/pytextgame
[ 1, 1, 1, 2, 1441841366 ]
def print_phase_header(message): global COUNTER; print ("\n[" + str("%02d" % int(COUNTER)) + "] >>> " + message) COUNTER += 1;
gbowerman/azurerm
[ 43, 30, 43, 4, 1453075796 ]
def print_phase_message(message): time_stamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") print (str(time_stamp) + ": " + message)
gbowerman/azurerm
[ 43, 30, 43, 4, 1453075796 ]
def uploadCallback(current, total): if (current != None): print_phase_message('{0:2,f}/{1:2,.0f} MB'.format(current,total/1024/1024))
gbowerman/azurerm
[ 43, 30, 43, 4, 1453075796 ]
def create_widget(self): """Create the underlying widget.""" d = self.declaration self.widget = GridLayout(self.get_context(), None, d.style)
codelv/enaml-native
[ 250, 22, 250, 4, 1495306152 ]
def set_orientation(self, orientation): self.widget.setOrientation(0 if orientation == "horizontal" else 1)
codelv/enaml-native
[ 250, 22, 250, 4, 1495306152 ]
def set_columns(self, columns): self.widget.setColumnCount(columns)
codelv/enaml-native
[ 250, 22, 250, 4, 1495306152 ]
def set_rows(self, rows): self.widget.setRowCount(rows)
codelv/enaml-native
[ 250, 22, 250, 4, 1495306152 ]
def main(): args = parse_args() phenotypes = _create_genetest_phenotypes( args.grs_filename, args.phenotypes_filename, args.phenotypes_sample_column, args.phenotypes_separator ) if args.outcome_type == "continuous": y_g_test = "linear" elif args.outcome_type == "discrete": y_g_test = "logistic" else: raise ValueError( "Expected outcome type to be 'discrete' or 'continuous'." ) if args.exposure_type == "continuous": x_g_test = "linear" elif args.exposure_type == "discrete": x_g_test = "logistic" else: raise ValueError( "Expected exposure type to be 'discrete' or 'continuous'." ) n_iter = 1000 logger.info( "Computing MR estimates using the ratio method. Bootstrapping " "standard errors can take some time." ) beta, low, high = mr_effect_estimate( phenotypes, args.outcome, args.exposure, n_iter, y_g_test, x_g_test ) print("The estimated beta of the exposure on the outcome and its 95% CI " "(computed using the empirical " "bootstrap) are:\n") print("{:.4g} ({:.4g}, {:.4g})".format(beta, low, high))
legaultmarc/grstools
[ 4, 2, 4, 6, 1485209970 ]
def __init__( self, signal_hound: SignalHound_USB_SA124B, frequency=None, Navg=1, delay=0.1, prepare_for_each_point=False, prepare_function=None, prepare_function_kwargs: dict = {}
DiCarloLab-Delft/PycQED_py3
[ 51, 39, 51, 31, 1451987534 ]
def acquire_data_point(self, **kw): if self.prepare_for_each_point: self.prepare() time.sleep(self.delay) if version.parse(qc.__version__) < version.parse('0.1.11'): return self.SH.get_power_at_freq(Navg=self.Navg) else: self.SH.avg(self.Navg) return self.SH.power()
DiCarloLab-Delft/PycQED_py3
[ 51, 39, 51, 31, 1451987534 ]
def finish(self, **kw): self.SH.abort()
DiCarloLab-Delft/PycQED_py3
[ 51, 39, 51, 31, 1451987534 ]
def __init__( self, signal_hound: SignalHound_USB_SA124B, Navg=1, delay=0.1, **kw
DiCarloLab-Delft/PycQED_py3
[ 51, 39, 51, 31, 1451987534 ]
def acquire_data_point(self, **kw): frequency = self.swp.pop() self.SH.set('frequency', frequency) self.SH.prepare_for_measurement() time.sleep(self.delay) return self.SH.get_power_at_freq(Navg=self.Navg)
DiCarloLab-Delft/PycQED_py3
[ 51, 39, 51, 31, 1451987534 ]
def prepare(self, sweep_points): self.swp = list(sweep_points) # self.SH.prepare_for_measurement()
DiCarloLab-Delft/PycQED_py3
[ 51, 39, 51, 31, 1451987534 ]
def __init__( self, frequency, QI_amp_ratio, IQ_phase, SH: SignalHound_USB_SA124B, I_ch, Q_ch, station, Navg=1, delay=0.1, f_mod=10e6, verbose=False, **kw): super(SH_mixer_skewness_det, self).__init__() self.SH = SH self.frequency = frequency self.name = 'SignalHound_mixer_skewness_det' self.value_names = ['Power'] self.value_units = ['dBm'] self.delay = delay self.SH.frequency.set(frequency) # Accepts input in Hz self.Navg = Navg self.QI_amp_ratio = QI_amp_ratio self.IQ_phase = IQ_phase self.pulsar = station.pulsar self.f_mod = f_mod self.I_ch = I_ch self.Q_ch = Q_ch self.verbose = verbose
DiCarloLab-Delft/PycQED_py3
[ 51, 39, 51, 31, 1451987534 ]
def generate_awg_seq(self, QI_ratio, skewness, f_mod): SSB_modulation_el = element.Element('SSB_modulation_el', pulsar=self.pulsar) cos_pulse = pulse.CosPulse(channel=self.I_ch, name='cos_pulse') sin_pulse = pulse.CosPulse(channel=self.Q_ch, name='sin_pulse') SSB_modulation_el.add(pulse.cp(cos_pulse, name='cos_pulse', frequency=f_mod, amplitude=0.15, length=1e-6, phase=0)) SSB_modulation_el.add(pulse.cp(sin_pulse, name='sin_pulse', frequency=f_mod, amplitude=0.15 * QI_ratio, length=1e-6, phase=90 + skewness)) seq = sequence.Sequence('Sideband_modulation_seq') seq.append(name='SSB_modulation_el', wfname='SSB_modulation_el', trigger_wait=False) self.pulsar.program_awgs(seq, SSB_modulation_el)
DiCarloLab-Delft/PycQED_py3
[ 51, 39, 51, 31, 1451987534 ]
def __init__(self, Map, CostPrior, RewardPrior, CostParams, RewardParams, Capacity=-1, Minimum=0, SoftmaxChoice=True, SoftmaxAction=True, choiceTau=1, actionTau=0.01, CNull=0, RNull=0, Restrict=False): """ Agent class. Create an agent with a set of costs and rewards. If sampling parameters are numbers rather than lists the constructor fixes this automatically. Args: Map (Map): A map object. CostPrior (str): String indicating prior's name. Run Agent.Priors() to see list RewardPrior (str): String indicating Reward prior's name. Run Agent.Priors() to see list CostParams (list): List of parameters for sampling costs. RewardParams (list): List of parameters for sampling rewards. Capacity (int): Number of objects agent can carry. If set to -1 Planner adjusts it to the total number of objects in the map. Minimum (int): Minimum number of objects must take before leaving. SoftmaxChoice (bool): Does the agent select goals optimally? SoftmaxAction (bool): Does the agent act upong goals optimally? choiceTau (float): Softmax parameter for goal selection. actionTau (float): Softmax parameter for action planning. CNull (float): Probability that a terrain has no cost. RNull (float): Probability that an object has no reward Restrict (bool): When set to true the cost samples make the first terrain always less costly than the rest. """ # Check that priors exist. Priors = self.Priors(False) if CostPrior in Priors: self.CostPrior = CostPrior else: print("WARNING: Cost prior not found! Setting to uniform") self.CostPrior = "ScaledUniform" if RewardPrior in Priors: self.RewardPrior = RewardPrior else: print("WARNING; Reward prior not found! Setting to uniform") self.RewardPrior = "ScaledUniform" self.Restrict = Restrict self.CostDimensions = len(np.unique(Map.StateTypes)) # Get dimensions over which you'll build your simplex self.RewardDimensions = len(set(Map.ObjectTypes)) self.Capacity = Capacity self.Minimum = Minimum self.SoftmaxChoice = SoftmaxChoice self.SoftmaxAction = SoftmaxAction if SoftmaxAction: self.actionTau = actionTau else: self.actionTau = None if SoftmaxChoice: self.choiceTau = choiceTau else: self.choiceTau = None if self.RewardDimensions == 0: print("WARNING: No rewards on map. AGENT-001") if isinstance(CostParams, list): self.CostParams = CostParams else: self.CostParams = [CostParams] if isinstance(RewardParams, list): self.RewardParams = RewardParams else: self.RewardParams = [RewardParams] self.CNull = CNull self.RNull = RNull self.ResampleCosts() # Generate random cost of map self.ResampleRewards() # Generate random rewards for objects
julianje/Bishop
[ 12, 5, 12, 3, 1424995890 ]
def ResampleCosts(self): """ Reset agent's costs. """ # Resample the agent's competence self.costs = self.Sample( self.CostDimensions, self.CostParams, Kind=self.CostPrior) self.costs = [ 0 if random.random() <= self.CNull else i for i in self.costs]
julianje/Bishop
[ 12, 5, 12, 3, 1424995890 ]
def Sample(self, dimensions, SamplingParam, Kind): """ Generate a sample from some distribution Args: dimensions (int): Number of dimensions SamplingParam (list): Parameter to use on distribution Kind (str): Name of distribution Returns: None """ if (Kind == "Simplex"): # Output: Simplex sample of length 'dimensions' (Adds to 1) sample = -np.log(np.random.rand(dimensions)) return sample / sum(sample) if (Kind == "IntegerUniform"): return np.round(np.random.rand(dimensions) * SamplingParam[0]) if (Kind == "ScaledUniform"): return np.random.rand(dimensions) * SamplingParam[0] if (Kind == "Gaussian"): return np.random.normal(SamplingParam[0], SamplingParam[1], dimensions) if (Kind == "Exponential"): return [np.random.exponential(SamplingParam[0]) for j in range(dimensions)] if (Kind == "Constant"): return [0.5 * SamplingParam[0]] * dimensions if (Kind == "Beta"): return [np.random.beta(SamplingParam[0], SamplingParam[1]) for i in range(dimensions)] if (Kind == "Empirical"): return [random.choice(SamplingParam) for i in range(dimensions)] if (Kind == "PartialUniform"): # Generate random samples and scale them by the first parameter. samples = np.random.rand(dimensions) * SamplingParam[0] # Now iterate over the sampling parameters and push in static # values. for i in range(1, len(SamplingParam)): if SamplingParam[i] != -1: samples[i - 1] = SamplingParam[i] return samples if (Kind == "PartialGaussian"): # Generate random gaussian samples. samples = np.random.normal( SamplingParam[0], SamplingParam[1], dimensions) # Now iterate over the sampling parameters and push in static # values. for i in range(2, len(SamplingParam)): if SamplingParam[i] != -1: samples[i - 2] = SamplingParam[i] samples = [0 if i < 0 else i for i in samples] return samples
julianje/Bishop
[ 12, 5, 12, 3, 1424995890 ]
def GetSamplingParameters(self): """ Return cost and reward sampling parameters, respectively """ return [self.CostParams, self.RewardParams]
julianje/Bishop
[ 12, 5, 12, 3, 1424995890 ]
def SetRewardSamplingParams(self, samplingparams): """ Set sampling parameters for costs """ if len(samplingparams) != len(self.RewardParams): print("Vector of parameters is not the right size") else: self.RewardParams = samplingparams
julianje/Bishop
[ 12, 5, 12, 3, 1424995890 ]
def plateau(array, threshold): """Find plateaus in an array, i.e continuous regions that exceed threshold Given an array of numbers, return a 2d array such that out[:,0] marks the indices where the array crosses threshold from below, and out[:,1] marks the next time the array crosses that same threshold from below. Inputs: array (1d numpy array) threshold (float or array) If threshold is a single number, any point above that value is above threshold. If it's an array, it must have the same length as the first argument, and an array[i] > threshold[i] to be included as a plateau Returns: Numpy 2d array with 2 columns. Notes: To find the length of the plateaus, use out[:,1] - out[:,0] To find the length of the largest plateau, use np.max(out[:,1] - out[:,0]) The algorithm fails if a value is exactly equal to the threshold. To guard against this, we add a very small amount to threshold to ensure floating point arithmetic prevents two numbers being exactly equal.""" arr = array.astype(np.float32) arr = arr - threshold + 1e-12 arrPlus = np.roll(arr, 1) #Location of changes from -ve to +ve (or vice versa) #Last point is bogus , so we calculate it by hand sgnChange = arr*arrPlus #Roll around can't compute sign change for zeroth elt. sgnChange[0] = +1 if arr[0] > 0: sgnChange[0] = -1 loc = np.where(sgnChange < 0)[0] if np.fmod( len(loc), 2) != 0: loc.resize( (len(loc)+1)) loc[-1] = len(arr) return loc
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def outlierRemoval(time, flux): fluxDetrended = medianDetrend(flux, 3) out1 = plateau(fluxDetrended, 5 * np.std(fluxDetrended)) out2 = plateau(-fluxDetrended, 5 * np.std(fluxDetrended)) if out1 == [] and out2 == []: singleOutlierIndices = [] else: outliers = np.append(out1, out2).reshape(-1,2) # Only want groups of one outlier, since > 1 may be transit points singleOutlierIndices = np.sort(outliers[(outliers[:,1] - outliers[:,0] == 1)][:,0]) # Check periodicity of outliers, with PRECISION of 0.0205 days # 0.0205 days = 29.52 minutes = ~length of long cadence precision = 0.0205 outlierTimes = time[singleOutlierIndices] diffs = [outlierTimes[i+1] - outlierTimes[i] for i in range(0, len(outlierTimes)-1)] diffs = [round(d, 5) for d in diffs] if len(singleOutlierIndices) >= 4: if len(set(diffs)) == len(diffs): possibleTimes = np.array([]) else: period = max(set(diffs), key = diffs.count) # period = most common difference epoch = outlierTimes[diffs.index(period)] possibleTimes = np.arange(epoch, outlierTimes[-1] + 0.5*period, period) notOutliers = [] for i in range(len(outlierTimes)): if np.any((abs(possibleTimes - outlierTimes[i]) < precision)): notOutliers.append(i) singleOutlierIndices = np.delete(singleOutlierIndices, notOutliers) elif len(singleOutlierIndices) == 3: if abs(diffs[0] - diffs[1]) < precision: singleOutlierIndices = [] # Uncomment to see how the plotting algorithm worked for a lightcurve # ----------------------------- PLOTTING ----------------------------- # # plt.subplot(311) # plt.scatter(time, flux, marker = '.', s = 1, color = 'k', alpha = 1) # plt.scatter(time[singleOutlierIndices], flux[singleOutlierIndices], # s = 30, marker = 'o', facecolors = 'none', edgecolors = 'r') # plt.title('Original') # plt.subplot(312) # plt.scatter(time, fluxDetrended, marker = '.', s = 1, color = 'k', alpha = 1) # plt.scatter(time[singleOutlierIndices], fluxDetrended[singleOutlierIndices], # s = 30, marker = 'o', facecolors = 'none', edgecolors = 'r') # x1, x2, y1, y2 = plt.axis() # plt.hlines([-5*np.std(fluxDetrended), 5*np.std(fluxDetrended)], x1, x2, # color = 'b', linestyles = 'dashed') # plt.axis([x1, x2, y1, y2]) # plt.title('Detrended') # plt.subplot(313) # plt.scatter(np.delete(time, singleOutlierIndices), np.delete(flux, singleOutlierIndices), # marker = '.', s = 1, color = 'k', alpha = 1) # plt.title('Outliers removed: ' + str(len(singleOutlierIndices))) # plt.show() # -------------------------------------------------------------------- # return np.delete(time, singleOutlierIndices), np.delete(flux, singleOutlierIndices)
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def medianDetrend(flux, binWidth): halfNumPoints = binWidth // 2 medians = [] for i in range(len(flux)): if i < halfNumPoints: medians.append(np.median(flux[:i+halfNumPoints+1])) elif i > len(flux) - halfNumPoints - 1: medians.append(np.median(flux[i-halfNumPoints:])) else: medians.append(np.median(flux[i-halfNumPoints : i+halfNumPoints+1])) return flux - medians
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def getPhase(time, flux, period, epoch, centerPhase = 0): """Get the phase of a lightcurve. How it works using an example where epoch = 2, period = 3: 1. Subtract the epoch from all times [1, 2, 3, 4, 5, 6, 7] to get [-1, 0, 1, 2, 3, 4, 5] then divide by the period [3] to get all time values in phase values which gets you [-0.3, 0, 0.3, 0.6, 1, 1.3, 1.6] 2. Subtract the PHASE NUMBER (floor function) from each PHASE (date1) which gets you [0.7, 0, 0.3, 0.6, 0, 0.3, 0.6] 3. Sort all the adjusted phases to get [0, 0, 0.3, 0.3, 0.6, 0.6, 0.7] THERE WILL BE negative values in the beginning here, just not in this example since no ex. time value divided by the period left a decimal less than 0.25 4. Sort the flux values in the same way the phases were sorted Inputs: time Time values of data. (IN DAYS) flux Flux values of data. period Period of transit. epoch Epoch of transit. centerPhase Which phase should be at the center. Returns: q1 Phase values. (IN HOURS) f1 Flux values for each phase. """ epoch += centerPhase * period date1 = (time - epoch) / period + 0.5 phi1 = ((date1) - np.floor(date1)) - 0.5 q1 = np.sort(phi1) * period * 24. f1 = flux[np.argsort(phi1)] return q1, f1
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def fitModel(time, flux, guessDict, freeParPlanet, ferr = 0): if not np.all(ferr): ferr = np.ones_like(flux)*1.E-5 freeParStar = ['rho'] # Make the fitting object according to guess dictionary fitT = FitTransit() fitT.add_guess_star(ld1 = 0, ld2 = 0) fitT.add_guess_planet(period = guessDict['period'], T0 = guessDict['T0']) fitT.add_data(time = time, flux = flux, ferr = ferr) fitT.free_parameters(freeParStar, freeParPlanet) fitT.do_fit() return fitT
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def do_bls_and_fit(time, flux, min_period, max_period): S = clean_and_search.Search(time, flux + 1, np.ones_like(flux)*1.E-5) S.do_bls2(min_period = min_period, max_period = max_period, min_duration_hours = 1.5, max_duration_hours = 6., freq_step = 1.E-4, doplot = False, norm = False) guessDict = {'period': S.periods[0], 'T0': S.epoch} freeParPlanet = ['period', 'T0', 'rprs'] fitT = fitModel(time, flux, guessDict, freeParPlanet) # Readability of output data period = fitT.fitresultplanets['pnum0']['period'] epoch = fitT.fitresultplanets['pnum0']['T0'] k = fitT.fitresultplanets['pnum0']['rprs'] rho = fitT.fitresultstellar['rho'] duration = computeTransitDuration(period, rho, k) if not duration: duration = S.duration * 24 # Calculating transit depth significance ## fitT.transitmodel sometimes has a NaN value sigma = computePointSigma(time, flux, fitT.transitmodel, period, epoch, duration) depth = k ** 2 significance = depth / sigma phase = getPhase(time, flux, period, epoch)[0] nTransitPoints = np.sum((-duration * 0.5 < phase) & (phase < duration * 0.5)) SNR = significance * nTransitPoints**0.5 return SNR, period, epoch, duration, depth, fitT.transitmodel, S.f_1, S.convolved_bls
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def computePointSigma(time, flux, transitModel, period, epoch, duration): t2, f2 = removeTransits(time, flux, period, epoch, duration) mt2, mf2 = removeTransits(time, transitModel, period, epoch, duration) return np.nanstd(f2 - mf2)
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def removeTransits(time, flux, period, epoch, duration): halfDur = 0.5 * duration / 24. bad = np.where(time < epoch - period + halfDur)[0] for p in np.arange(epoch, time[-1] + period, period): bad = np.append(bad, np.where((p - halfDur < time) & (time < p + halfDur))[0]) good = np.setxor1d(range(len(time)), bad) return time[good], flux[good]
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def computeTransitDuration(period, rho, k): b = 0.1 # Impact parameter (default value in ktransit) G = 6.67384e-11 # Gravitational constant P = period * 86400 # Period in seconds stellarDensity = rho * 1000 rStarOverA = ((4 * np.pi**2) / (G * stellarDensity * P**2))**(1./3.) cosI = b * rStarOverA sinI = np.sqrt(1 - cosI**2) coeff = rStarOverA * np.sqrt((1+k)**2 - b**2) / sinI if coeff > 1: return 0 else: duration = (P / np.pi) * np.arcsin(coeff) return duration / 3600 # Duration in hours
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def findSecondary(time, flux, period, epoch, duration): t2, f2 = removeTransits(time, flux, period, epoch, duration) minp, maxp = period - 0.1, period + 0.1 if t2[-1] - t2[0] == 0 or 1./maxp < 1./(t2[-1] - t2[0]): return (np.nan,)*5 if minp < 0.5: minp = 0.5 planetInfo = do_bls_and_fit(t2, f2, minp, maxp) return (t2,) + planetInfo[0:4] + (planetInfo[5],)
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def computeOddEvenModels(time, flux, per, epo): gdOdd = {'period': per * 2, 'T0': epo} gdEven = {'period': per * 2, 'T0': epo + per} freeParPlanet = ['rprs'] fitT_odd = fitModel(time, flux, gdOdd, freeParPlanet) fitT_even = fitModel(time, flux, gdEven, freeParPlanet) return fitT_odd, fitT_even
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def main(filename): """Fit a transit model to a lightcurve. 1. Remove outliers. 2. Detrend the data with a binwidth of 26 cadences. Since MAX_DURATION_HOURS = 6, and 6 hours = ~13 cadences (ceiling of 12.245), detrending with a binwidth of double this value will preserve all events with a duration of 13 cadences or less. 3. Create an "S" object. (???) [1 is added to the flux to avoid a division by zero error] 4. Run the BLS algorithm and Tom's transit fitting algorithm. Since the BLS can lock on to an incorrect, shorter period event, I run it on four different minimum periods, chosen somewhat arbitrarily. These results go into a dictionary sorted by the calculated SNR of each fit, and the parameters which give the maximum SNR are used. 5. Plot the original lightcurve, the BLS statistics from its minimum to maximum period, and a phased lightcurve. 6. Save the plot, and return a string containing the parameters of the fit. """ name = filename[-13:-4] time, flux = np.genfromtxt(filename, unpack = True) if np.all(np.isnan(flux)): return '%s\t\t%-8.6g\t%-8.6g\t%-8.6g\t%-4.3f\t%-8.6g\t%-8.6g' %((name,)+(np.nan,)*6) time, flux = outlierRemoval(time, flux) flux = medianDetrend(flux, 26) # Main transit search minPeriod = 0.5 # Limitations of BLS Fortran code maxPeriod = (time[-1] - time[0]) / 2. SNR, period, epoch, duration, depth, transitModel, period_guesses, \ convolved_bls = do_bls_and_fit(time, flux, minPeriod, maxPeriod) # For the phase curves phase, phasedFlux = getPhase(time, flux, period, epoch) phaseModel, phasedFluxModel = getPhase(time, transitModel, period, epoch) # Secondary search secTime, secSNR, secPer, secEpoch, secDur, secModel = findSecondary(time, flux, period, epoch, duration) if secSNR > 5 and abs(period - secPer) < 0.05: secPhase, secPhaseModel = getPhase(secTime, secModel, secPer, epoch) idx = len(secPhase[secPhase < 0]) else: secPhase, secPhaseModel, idx = [], [], 1 # Odd/Even plot fitT_odd, fitT_even = computeOddEvenModels(time, flux, period, epoch) phaseModel_odd, phasedFluxModel_odd = getPhase(time, fitT_odd.transitmodel, period * 2, epoch) phaseModel_even, phasedFluxModel_even = getPhase(time, fitT_even.transitmodel, period * 2, epoch + period) depthOdd = fitT_odd.fitresultplanets['pnum0']['rprs'] ** 2 depthEven = fitT_even.fitresultplanets['pnum0']['rprs'] ** 2 phaseOdd, fluxOdd = getPhase(time, flux, period * 2, epoch) phaseEven, fluxEven = getPhase(time, flux, period * 2, epoch + period) x1, x2 = -duration, duration y1, y2 = -3*np.std(fluxOdd), 3*np.std(fluxOdd) if min(fluxOdd) < y1: y1 = min(fluxOdd) - np.std(fluxOdd) # sigma = abs(depth1 - depth2) / sqrt(u1^2 + u2^2) durOdd = computeTransitDuration(period, fitT_odd.fitresultstellar['rho'], fitT_odd.fitresultplanets['pnum0']['rprs']) durEven = computeTransitDuration(period, fitT_odd.fitresultstellar['rho'], fitT_even.fitresultplanets['pnum0']['rprs']) sigma = computePointSigma(time, flux, transitModel, period, epoch, duration) nOddPoints = np.sum((-durOdd*0.5 < phaseOdd) & (phaseOdd < durOdd * 0.5)) nEvenPoints = np.sum((-durEven*0.5 < phaseEven) & (phaseEven < durEven * 0.5)) uOdd, uEven = sigma / np.sqrt(nOddPoints), sigma / np.sqrt(nEvenPoints) depthDiffSigma = abs(depthOdd - depthEven) / np.sqrt(uOdd**2 + uEven**2) if doPlot: gs = gridspec.GridSpec(3,2) ax1 = plt.subplot(gs[0,:]) axOdd = plt.subplot(gs[1,0]) axEven = plt.subplot(gs[1,1]) ax3 = plt.subplot(gs[2,:]) gs.update(wspace = 0, hspace = 0.5) ax1.plot(time, flux, 'k') y1, y2 = ax1.get_ylim() ax1.vlines(np.arange(epoch, time[-1], period), y1, y2, color = 'r', linestyles = 'dashed', linewidth = 0.5) ax1.axis([time[0], time[-1], y1, y2]) ax1.set_title('kplr%s; best period = %8.6g days; SNR = %8.6g' %(name, period, SNR)) ax1.set_xlabel('days') axOdd.set_ylabel('flux') axOdd.scatter(phaseOdd, fluxOdd, marker = '.', s = 1, color = 'k', alpha = 1) axOdd.plot(phaseModel_odd, phasedFluxModel_odd, 'r') axOdd.axhline(-depthOdd, x1, x2) axOdd.axis([x1,x2,y1,y2]) axOdd.set_title('odd') axEven.scatter(phaseEven, fluxEven, marker = '.', s = 1, color = 'k', alpha = 1) axEven.plot(phaseModel_even, phasedFluxModel_even, 'r') axEven.axhline(-depthEven, x1, x2) axEven.yaxis.tick_right() axEven.axis([x1,x2,y1,y2]) axEven.set_title('even') if secondary: plt.plot(secPhase[:idx], secPhaseModel[:idx], 'c') plt.plot(secPhase[idx:], secPhaseModel[idx:], 'c') ax3.scatter(phase, phasedFlux, marker = '.', s = 1, color = 'k') ax3.plot(phaseModel, phasedFluxModel, 'r') y1, y2 = -3*np.std(phasedFlux), 3*np.std(phasedFlux) if min(phasedFlux) < y1: y1 = min(phasedFlux) - np.std(phasedFlux) ax3.axis([phase[0], phase[-1], y1, y2]) ax3.set_xlabel('phase [hours]') ax3.text(0.5, 1.25, 'depth diff sigma = %.3f' %depthDiffSigma, horizontalalignment = 'center', verticalalignment = 'center', transform = ax3.transAxes) if plotOption == 'save': plt.savefig(figureSaveLocation + '%s.png' %name, dpi = 200) plt.close() elif plotOption == 'show': plt.show()
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def getResults(): rfn = '/Users/Yash/Desktop/NASA/Summer2014/k2/changedWhichpix/run1/results.txt' names, periods = np.genfromtxt(rfn, usecols = (0,2), unpack = True) return names, periods
barentsen/dave
[ 4, 3, 4, 8, 1441063936 ]
def find_preference(name): try: return prefs_manager.get_preference(name) except KeyError: raise CommandError("No such preference **{}** exists.".format(name))
sk89q/Plumeria
[ 35, 2, 35, 2, 1471646188 ]
def __init__(self, key: bytes = b'\x00' * 8, name: str = None): self.key = key self.name = name self.number = 0
half2me/libant
[ 23, 9, 23, 4, 1471543401 ]
def __init__(self, driver: Driver, initMessages, out: Queue, onSucces, onFailure): super().__init__() self._stopper = threading.Event() self._driver = driver self._out = out self._initMessages = initMessages self._waiters = [] self._onSuccess = onSucces self._onFailure = onFailure
half2me/libant
[ 23, 9, 23, 4, 1471543401 ]
def stopped(self): return self._stopper.isSet()
half2me/libant
[ 23, 9, 23, 4, 1471543401 ]
def __init__(self, driver: Driver, name: str = None): self._driver = driver self._name = name self._out = Queue() self._init = [] self._pump = None self._configMessages = Queue()
half2me/libant
[ 23, 9, 23, 4, 1471543401 ]
def __exit__(self, exc_type, exc_val, exc_tb): self.stop()
half2me/libant
[ 23, 9, 23, 4, 1471543401 ]
def enableRxScanMode(self, networkKey=ANTPLUS_NETWORK_KEY, channelType=CHANNEL_TYPE_ONEWAY_RECEIVE, frequency: int = 2457, rxTimestamp: bool = True, rssi: bool = True, channelId: bool = True): self._init.append(SystemResetMessage()) self._init.append(SetNetworkKeyMessage(0, networkKey)) self._init.append(AssignChannelMessage(0, channelType)) self._init.append(SetChannelIdMessage(0)) self._init.append(SetChannelRfFrequencyMessage(0, frequency)) self._init.append(EnableExtendedMessagesMessage()) self._init.append(LibConfigMessage(rxTimestamp, rssi, channelId)) self._init.append(OpenRxScanModeMessage())
half2me/libant
[ 23, 9, 23, 4, 1471543401 ]
def isRunning(self): if self._pump is None: return False return self._pump.is_alive()
half2me/libant
[ 23, 9, 23, 4, 1471543401 ]
def test_first_and_last_slashes_trimmed_for_query_string (self): created_collection = self.config.create_multi_partition_collection_with_custom_pk_if_not_exist(self.client) document_definition = {'pk': 'pk', 'id':'myId'} self.client.CreateItem(created_collection['_self'], document_definition) query_options = {'partitionKey': 'pk'} collectionLink = '/dbs/' + self.created_db['id'] + '/colls/' + created_collection['id'] + '/' query = 'SELECT * from c' query_iterable = self.client.QueryItems(collectionLink, query, query_options) iter_list = list(query_iterable) self.assertEqual(iter_list[0]['id'], 'myId')
Azure/azure-documentdb-python
[ 148, 143, 148, 23, 1407452788 ]
def test_populate_query_metrics (self): created_collection = self.config.create_multi_partition_collection_with_custom_pk_if_not_exist(self.client) document_definition = {'pk': 'pk', 'id':'myId'} self.client.CreateItem(created_collection['_self'], document_definition) query_options = {'partitionKey': 'pk', 'populateQueryMetrics': True} query = 'SELECT * from c' query_iterable = self.client.QueryItems(created_collection['_self'], query, query_options) iter_list = list(query_iterable) self.assertEqual(iter_list[0]['id'], 'myId') METRICS_HEADER_NAME = 'x-ms-documentdb-query-metrics' self.assertTrue(METRICS_HEADER_NAME in self.client.last_response_headers) metrics_header = self.client.last_response_headers[METRICS_HEADER_NAME] # Validate header is well-formed: "key1=value1;key2=value2;etc" metrics = metrics_header.split(';') self.assertTrue(len(metrics) > 1) self.assertTrue(all(['=' in x for x in metrics]))
Azure/azure-documentdb-python
[ 148, 143, 148, 23, 1407452788 ]
def validate_query_requests_count(self, query_iterable, expected_count): self.count = 0 self.OriginalExecuteFunction = retry_utility._ExecuteFunction retry_utility._ExecuteFunction = self._MockExecuteFunction block = query_iterable.fetch_next_block() while block: block = query_iterable.fetch_next_block() retry_utility._ExecuteFunction = self.OriginalExecuteFunction self.assertEquals(self.count, expected_count) self.count = 0
Azure/azure-documentdb-python
[ 148, 143, 148, 23, 1407452788 ]
def lookups(self, request, model_admin): def first_two(s): s = unicode(s) if len(s) < 2: return s else: return s[:2] prefixes = [first_two(alias.name) for alias in model_admin.model.objects.only('name')] prefixes = sorted(set(prefixes)) return [(prefix, prefix) for prefix in prefixes]
joneskoo/sikteeri
[ 4, 8, 4, 3, 1276636698 ]
def hashToHex(hash): return format(hash, '064x')
qtumproject/qtum
[ 1170, 396, 1170, 38, 1488529031 ]
def allInvsMatch(invsExpected, testnode): for x in range(60): with mininode_lock: if (sorted(invsExpected) == sorted(testnode.txinvs)): return True time.sleep(1) return False
qtumproject/qtum
[ 1170, 396, 1170, 38, 1488529031 ]
def __init__(self): super().__init__() self.txinvs = []
qtumproject/qtum
[ 1170, 396, 1170, 38, 1488529031 ]
def clear_invs(self): with mininode_lock: self.txinvs = []
qtumproject/qtum
[ 1170, 396, 1170, 38, 1488529031 ]
def set_test_params(self): self.num_nodes = 2 # We lower the various required feerates for this test # to catch a corner-case where feefilter used to slightly undercut # mempool and wallet feerate calculation based on GetFee # rounding down 3 places, leading to stranded transactions. # See issue #16499 self.extra_args = [["-minrelaytxfee=0.00000100", "-mintxfee=0.00000100"]]*self.num_nodes
qtumproject/qtum
[ 1170, 396, 1170, 38, 1488529031 ]
def run_test(self): node1 = self.nodes[1] node0 = self.nodes[0] # Get out of IBD node1.generate(1) self.sync_blocks() self.nodes[0].add_p2p_connection(TestP2PConn()) # Test that invs are received by test connection for all txs at # feerate of 20 sat/byte node1.settxfee(Decimal("0.02000000")) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert allInvsMatch(txids, self.nodes[0].p2p) self.nodes[0].p2p.clear_invs() # Set a filter of 15 sat/byte on test connection self.nodes[0].p2p.send_and_ping(msg_feefilter(1500000)) # Test that txs are still being received by test connection (paying 15 sat/byte) node1.settxfee(Decimal("0.01500000")) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert allInvsMatch(txids, self.nodes[0].p2p) self.nodes[0].p2p.clear_invs() # Change tx fee rate to 10 sat/byte and test they are no longer received # by the test connection node1.settxfee(Decimal("0.01000000")) [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] self.sync_mempools() # must be sure node 0 has received all txs # Send one transaction from node0 that should be received, so that we # we can sync the test on receipt (if node1's txs were relayed, they'd # be received by the time this node0 tx is received). This is # unfortunately reliant on the current relay behavior where we batch up # to 35 entries in an inv, which means that when this next transaction # is eligible for relay, the prior transactions from node1 are eligible # as well. node0.settxfee(Decimal("0.02000000")) txids = [node0.sendtoaddress(node0.getnewaddress(), 1)] assert allInvsMatch(txids, self.nodes[0].p2p) self.nodes[0].p2p.clear_invs() # Remove fee filter and check that txs are received again self.nodes[0].p2p.send_and_ping(msg_feefilter(0)) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert allInvsMatch(txids, self.nodes[0].p2p) self.nodes[0].p2p.clear_invs()
qtumproject/qtum
[ 1170, 396, 1170, 38, 1488529031 ]
def setup(self, parser): parser.add_argument("-m", "--mark", action='append', default=[], help="Highlight some registers.") parser.add_argument("-M", "--mark-used", action='store_true', help="Highlight currently used registers.")
wapiflapi/gxf
[ 49, 7, 49, 3, 1415495222 ]
def test_package_data(self): sources = self.mkdtemp() f = open(os.path.join(sources, "__init__.py"), "w") f.write("# Pretend this is a package.") f.close() f = open(os.path.join(sources, "README.txt"), "w") f.write("Info about this package") f.close()
babyliynfg/cross
[ 75, 39, 75, 4, 1489383147 ]
def test_empty_package_dir (self): # See SF 1668596/1720897. cwd = os.getcwd()
babyliynfg/cross
[ 75, 39, 75, 4, 1489383147 ]
def test_dont_write_bytecode(self): # makes sure byte_compile is not used pkg_dir, dist = self.create_dist() cmd = build_py(dist) cmd.compile = 1 cmd.optimize = 1
babyliynfg/cross
[ 75, 39, 75, 4, 1489383147 ]
def test_suite(): return unittest.makeSuite(BuildPyTestCase)
babyliynfg/cross
[ 75, 39, 75, 4, 1489383147 ]
def __init__(self, vgg16_npy_path=None): if vgg16_npy_path is None: path = inspect.getfile(Vgg16) path = os.path.abspath(os.path.join(path, os.pardir)) path = os.path.join(path, 'vgg16.npy') vgg16_npy_path = path print path self.data_dict = np.load(vgg16_npy_path, encoding='latin1').item() print('npy file loaded')
huangshiyu13/RPNplus
[ 183, 87, 183, 15, 1488787933 ]
def avg_pool(self, bottom, name): return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
huangshiyu13/RPNplus
[ 183, 87, 183, 15, 1488787933 ]
def conv_layer(self, bottom, name): with tf.variable_scope(name): filt = self.get_conv_filter(name) conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME') conv_biases = self.get_bias(name) bias = tf.nn.bias_add(conv, conv_biases) relu = tf.nn.relu(bias) weight_dacay = tf.nn.l2_loss(filt, name='weight_dacay') return relu, weight_dacay
huangshiyu13/RPNplus
[ 183, 87, 183, 15, 1488787933 ]
def conv_layer_new(self, bottom, name, kernel_size=[3, 3], out_channel=512, stddev=0.01): with tf.variable_scope(name): shape = bottom.get_shape().as_list()[-1] filt = tf.Variable( tf.random_normal([kernel_size[0], kernel_size[1], shape, out_channel], mean=0.0, stddev=stddev), name='filter') conv_biases = tf.Variable(tf.zeros([out_channel]), name='biases') conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME') bias = tf.nn.bias_add(conv, conv_biases) weight_dacay = tf.nn.l2_loss(filt, name='weight_dacay') return bias, weight_dacay
huangshiyu13/RPNplus
[ 183, 87, 183, 15, 1488787933 ]
def get_bias(self, name): return tf.Variable(self.data_dict[name][1], name='biases')
huangshiyu13/RPNplus
[ 183, 87, 183, 15, 1488787933 ]
def get_bias_const(self, name): return tf.constant(self.data_dict[name][1], name='biases')
huangshiyu13/RPNplus
[ 183, 87, 183, 15, 1488787933 ]
def checkFile(fileName): if os.path.isfile(fileName): return True else: print fileName, 'is not found!' exit()
huangshiyu13/RPNplus
[ 183, 87, 183, 15, 1488787933 ]
def __str__(self): return self.nome
bczmufrn/frequencia
[ 2, 4, 2, 1, 1501159947 ]
def __str__(self): return ( '%s: [%s]' if self.isArray() else '%s: %s' ) % ( 'Interface' if self.isInterface() else 'Primitive' if self.isPrimitive() else 'Class', self.getName() )
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def ensureclass(clsname): if clsname in registers: return jniname = clsname.replace('.', '/') if MetaJavaClass.get_javaclass(jniname): return registers.append(clsname) autoclass(clsname)
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def bean_getter(s): return (s.startswith('get') and len(s) > 3 and s[3].isupper()) or (s.startswith('is') and len(s) > 2 and s[2].isupper())
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def identify_hierarchy(cls, level, concrete=True): supercls = cls.getSuperclass() if supercls is not None: for sup, lvl in identify_hierarchy(supercls, level + 1, concrete=concrete): yield sup, lvl # we could use yield from when we drop python2 interfaces = cls.getInterfaces() for interface in interfaces or []: for sup, lvl in identify_hierarchy(interface, level + 1, concrete=concrete): yield sup, lvl # all object extends Object, so if this top interface in a hierarchy, yield Object if not concrete and cls.isInterface() and not interfaces: yield find_javaclass('java.lang.Object'), level +1 yield cls, level
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def autoclass(clsname, include_protected=True, include_private=True): jniname = clsname.replace('.', '/') cls = MetaJavaClass.get_javaclass(jniname, classparams=(include_protected, include_private)) if cls: return cls classDict = {} cls_start_packagename = '.'.join(clsname.split('.')[:-1]) # c = Class.forName(clsname) c = find_javaclass(clsname) if c is None: raise Exception('Java class {0} not found'.format(c)) return None classDict['_class'] = c constructors = [] for constructor in c.getConstructors(): sig = '({0})V'.format( ''.join([get_signature(x) for x in constructor.getParameterTypes()])) constructors.append((sig, constructor.isVarArgs())) classDict['__javaconstructor__'] = constructors class_hierachy = list(identify_hierarchy(c, 0, not c.isInterface())) log.debug("autoclass(%s) intf %r hierarchy is %s" % (clsname,c.isInterface(),str(class_hierachy))) cls_done=set() cls_methods = defaultdict(list) cls_fields = {} # we now walk the hierarchy, from top of the tree, identifying methods # hopefully we start at java.lang.Object for cls, level in class_hierachy: # dont analyse a given class more than once. # many interfaces can lead to java.lang.Object if cls in cls_done: continue cls_packagename = '.'.join(cls.getName().split('.')[:-1]) cls_done.add(cls) # as we are walking the entire hierarchy, we only need getDeclaredMethods() # to get what is in this class; other parts of the hierarchy will be found # in those respective classes. methods = cls.getDeclaredMethods() methods_name = [x.getName() for x in methods] # collect all methods declared by this class of the hierarchy for later traversal for index, method in enumerate(methods): method_modifier = method.getModifiers() if Modifier.isProtected(method_modifier) and not include_protected: continue if Modifier.isPrivate(method_modifier) and not include_private: continue if not (Modifier.isPublic(method_modifier) or Modifier.isProtected(method_modifier) or Modifier.isPrivate(method_modifier)): if cls_start_packagename == cls_packagename and not include_protected: continue if cls_start_packagename != cls_packagename and not include_private: continue name = methods_name[index] cls_methods[name].append((cls, method, level))
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def _getitem(self, index): ''' dunder method for List ''' try: return self.get(index) except JavaException as e: # initialize the subclass before getting the Class.forName # otherwise isInstance does not know of the subclass mock_exception_object = autoclass(e.classname)() if find_javaclass("java.lang.IndexOutOfBoundsException").isInstance(mock_exception_object): # python for...in iteration checks for end of list by waiting for IndexError raise IndexError() else: raise
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def __init__(self, java_iterator): self.java_iterator = java_iterator
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def next(self): log.debug("monkey patched next() called") if not self.java_iterator.hasNext(): raise StopIteration() return self.java_iterator.next()
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def _iterator_next(self): ''' dunder method for java.util.Iterator''' if not self.hasNext(): raise StopIteration() return self.next()
kivy/pyjnius
[ 1284, 251, 1284, 140, 1344908347 ]
def setUp(self): HTTPretty.reset() HTTPretty.enable()
futurecolors/gopython3
[ 2, 2, 2, 13, 1379656339 ]
def test_get_most_popular_repo(self): HTTPretty.register_uri(HTTPretty.GET, 'https://api.github.com/search/repositories', '{"items":[{"full_name": "coagulant/requests2", "name": "requests2"},' '{"full_name": "kennethreitz/fake_requests", "name": "fake_requests"}]}', ) assert Github().get_most_popular_repo('Fake_Requests') == 'kennethreitz/fake_requests'
futurecolors/gopython3
[ 2, 2, 2, 13, 1379656339 ]
def test_crawl_py3_issues(self): HTTPretty.register_uri(HTTPretty.GET, 'https://api.github.com/repos/embedly/embedly-python/issues', responses=[HTTPretty.Response('[{"state": "open", "title": "WTF?", "html_url": "https://github.com/embedly/embedly-python/issues/1"},' '{"state": "closed", "title": "Python 3 support", "html_url": "https://github.com/embedly/embedly-python/pull/13"}]'), HTTPretty.Response('[{"state": "open", "title": "Broken", "html_url": "https://github.com/embedly/embedly-python/issues/2"}]')] ) assert Github().get_py3_issues('embedly/embedly-python', search=False) == [{ 'state': 'closed', 'title': 'Python 3 support', 'html_url': 'https://github.com/embedly/embedly-python/pull/13' }] assert HTTPretty.last_request.querystring['state'][0] == 'closed'
futurecolors/gopython3
[ 2, 2, 2, 13, 1379656339 ]