function
stringlengths
11
56k
repo_name
stringlengths
5
60
features
sequence
def test_get_py3_forks(self): HTTPretty.register_uri(HTTPretty.GET, 'https://api.github.com/repos/nick/progressbar/forks', '[{"html_url": "https://github.com/coagulant/progressbar-python3", "name": "progressbar-python3"},' '{"html_url": "https://github.com/mick/progressbar", "name": "progressbar"}]', ) assert Github().get_py3_forks('nick/progressbar') == [{ 'name': 'progressbar-python3', 'html_url': 'https://github.com/coagulant/progressbar-python3' }]
futurecolors/gopython3
[ 2, 2, 2, 13, 1379656339 ]
def test_get_build_status(self): HTTPretty.register_uri(HTTPretty.GET, 'https://api.travis-ci.org/repos/coagulant/cleanweb', '{"repo":{"slug": "coagulant/cleanweb", "last_build_state": "passed"}}' ) assert TravisCI().get_build_status('coagulant/cleanweb') == { 'html_url': 'https://travis-ci.org/coagulant/cleanweb', 'last_build_state': 'passed', }
futurecolors/gopython3
[ 2, 2, 2, 13, 1379656339 ]
def test_get_info_without_version(self): json_string = """{"info":{ "name": "Django", "home_page": "http://www.djangoproject.com/", "classifiers": [ "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3"] }, "urls": [{"upload_time": "2013-09-15T06:30:37"}]}""" HTTPretty.register_uri(HTTPretty.GET, "http://pypi.python.org/pypi/Django/json", json_string ) assert PyPI().get_info('Django') == { 'py3_versions': ['3', '3.2', '3.3'], 'last_release_date': datetime.datetime(2013, 9, 15, 6, 30, 37, tzinfo=pytz.utc), 'name': 'Django', 'url': 'http://www.djangoproject.com/' }
futurecolors/gopython3
[ 2, 2, 2, 13, 1379656339 ]
def __init__(self, daemon=True): # properties is a local copy of tracked properties, in case that's useful self.properties = {} # callbacks is a dict mapping property names to lists of callbacks self.callbacks = collections.defaultdict(set) # prefix_callbacks is a trie used to match property names to prefixes # which were registered for "wildcard" callbacks. self.prefix_callbacks = trie.trie() super().__init__(name='PropertyClient', daemon=daemon) self.start()
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def run(self): """Thread target: do not call directly.""" self.running = True while True: property_name, value = self._receive_update() self.properties[property_name] = value for callbacks in [self.callbacks[property_name]] + list(self.prefix_callbacks.values(property_name)): for callback, valueonly in callbacks: try: if valueonly: callback(value) else: callback(property_name, value) except Exception as e: print('Caught exception in PropertyClient callback:') traceback.print_exception(type(e), e, e.__traceback__)
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def subscribe(self, property_name, callback, valueonly=False): """Register a callback to be called any time the named property is updated. If valueonly is True, the callback will be called as: callback(new_value); if valueonly is False, it will be called as callback(property_name, new_value). Multiple callbacks can be registered for a single property_name. """ self.callbacks[property_name].add((callback, valueonly))
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def subscribe_prefix(self, property_prefix, callback): """Register a callback to be called any time a named property which is prefixed by the property_prefix parameter is updated. The callback is called as callback(property_name, new_value). Example: if property_prefix is 'camera.', then the callback will be called when 'camera.foo' or 'camera.bar' or any such property name is updated. An empty prefix ('') will match everything. Multiple callbacks can be registered for a single property_prefix. """ if property_prefix not in self.prefix_callbacks: self.prefix_callbacks[property_prefix] = set() self.prefix_callbacks[property_prefix].add((callback, False))
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def _receive_update(self): """Receive an update from the server, or raise an error if self.running goes False.""" raise NotImplementedError()
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def __init__(self, addr, heartbeat_sec=None, context=None, daemon=True): """PropertyClient subclass that uses ZeroMQ PUB/SUB to receive out updates. Parameters: addr: a string ZeroMQ port identifier, like 'tcp://127.0.0.1:5555'. context: a ZeroMQ context to share, if one already exists. daemon: exit the client when the foreground thread exits. """ self.context = context if context is not None else zmq.Context() self.addr = addr self.heartbeat_sec = heartbeat_sec self.connected = threading.Event() super().__init__(daemon)
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def reconnect(self): self.connected.clear() self.connected.wait()
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def subscribe(self, property_name, callback, valueonly=False): self.connected.wait() self.socket.subscribe(property_name) super().subscribe(property_name, callback, valueonly)
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def unsubscribe(self, property_name, callback, valueonly=False): super().unsubscribe(property_name, callback, valueonly) self.connected.wait() self.socket.unsubscribe(property_name)
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def subscribe_prefix(self, property_prefix, callback): self.connected.wait() self.socket.subscribe(property_prefix) super().subscribe_prefix(property_prefix, callback)
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def unsubscribe_prefix(self, property_prefix, callback): super().unsubscribe_prefix(property_prefix, callback) self.connected.wait() self.socket.unsubscribe(property_prefix)
zplab/rpc-scope
[ 1, 3, 1, 2, 1461965724 ]
def connect (addr, family = socket.AF_INET, bind = None): """ Convenience function for opening client sockets. :param addr: Address of the server to connect to. For TCP sockets, this is a (host, port) tuple. :param family: Socket family, optional. See :mod:`socket` documentation for available families. :param bind: Local address to bind to, optional. :return: The connected green socket object. """ sock = socket.socket(family, socket.SOCK_STREAM) if bind is not None: sock.bind(bind) sock.connect(addr) return sock
inercia/evy
[ 4, 1, 4, 5, 1352288573 ]
def _stop_checker (t, server_gt, conn): try: try: t.wait() finally: conn.close() except greenlet.GreenletExit: pass except Exception: kill(server_gt, *sys.exc_info())
inercia/evy
[ 4, 1, 4, 5, 1352288573 ]
def myhandle(client_sock, client_addr): print "client connected", client_addr
inercia/evy
[ 4, 1, 4, 5, 1352288573 ]
def __init__(self, plotly_name="font", parent_name="box.hoverlabel", **kwargs): super(FontValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Font"), data_docs=kwargs.pop( "data_docs", """ color colorsrc Sets the source reference on Chart Studio Cloud for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for family . size sizesrc Sets the source reference on Chart Studio Cloud for size .
plotly/python-api
[ 13052, 2308, 13052, 1319, 1385013188 ]
def __init__(self, *args, **kw): """ Initialize a :class:`SystemLogging` object. :param args: Positional arguments to :func:`enable_system_logging()`. :param kw: Keyword arguments to :func:`enable_system_logging()`. """ self.args = args self.kw = kw self.handler = None
xolox/python-coloredlogs
[ 500, 39, 500, 31, 1369940232 ]
def __exit__(self, exc_type=None, exc_value=None, traceback=None): """ Disable system logging when leaving the context. .. note:: If an exception is being handled when we leave the context a warning message including traceback is logged *before* system logging is disabled. """ if self.handler is not None: if exc_type is not None: logger.warning("Disabling system logging due to unhandled exception!", exc_info=True) (self.kw.get('logger') or logging.getLogger()).removeHandler(self.handler) self.handler = None
xolox/python-coloredlogs
[ 500, 39, 500, 31, 1369940232 ]
def connect_to_syslog(address=None, facility=None, level=None): """ Create a :class:`~logging.handlers.SysLogHandler`. :param address: The device file or network address of the system logging daemon (a string or tuple, defaults to the result of :func:`find_syslog_address()`). :param facility: Refer to :class:`~logging.handlers.SysLogHandler`. Defaults to ``LOG_USER``. :param level: The logging level for the :class:`~logging.handlers.SysLogHandler` (defaults to :data:`.DEFAULT_LOG_LEVEL`). This value is coerced using :func:`~coloredlogs.level_to_number()`. :returns: A :class:`~logging.handlers.SysLogHandler` object or :data:`None` (if the system logging daemon is unavailable). The process of connecting to the system logging daemon goes as follows: - The following two socket types are tried (in decreasing preference): 1. :data:`~socket.SOCK_RAW` avoids truncation of log messages but may not be supported. 2. :data:`~socket.SOCK_STREAM` (TCP) supports longer messages than the default (which is UDP). """ if not address: address = find_syslog_address() if facility is None: facility = logging.handlers.SysLogHandler.LOG_USER if level is None: level = DEFAULT_LOG_LEVEL for socktype in socket.SOCK_RAW, socket.SOCK_STREAM, None: kw = dict(facility=facility, address=address) if socktype is not None: kw['socktype'] = socktype try: handler = logging.handlers.SysLogHandler(**kw) except IOError: # IOError is a superclass of socket.error which can be raised if the system # logging daemon is unavailable. pass else: handler.setLevel(level_to_number(level)) return handler
xolox/python-coloredlogs
[ 500, 39, 500, 31, 1369940232 ]
def is_syslog_supported(): """ Determine whether system logging is supported. :returns: :data:`True` if system logging is supported and can be enabled, :data:`False` if system logging is not supported or there are good reasons for not enabling it. The decision making process here is as follows: Override If the environment variable ``$COLOREDLOGS_SYSLOG`` is set it is evaluated using :func:`~humanfriendly.coerce_boolean()` and the resulting value overrides the platform detection discussed below, this allows users to override the decision making process if they disagree / know better. Linux / UNIX On systems that are not Windows or MacOS (see below) we assume UNIX which means either syslog is available or sending a bunch of UDP packets to nowhere won't hurt anyone... Microsoft Windows Over the years I've had multiple reports of :pypi:`coloredlogs` spewing extremely verbose errno 10057 warning messages to the console (once for each log message I suppose) so I now assume it a default that "syslog-style system logging" is not generally available on Windows. Apple MacOS There's cPython issue `#38780`_ which seems to result in a fatal exception when the Python interpreter shuts down. This is (way) worse than not having system logging enabled. The error message mentioned in `#38780`_ has actually been following me around for years now, see for example: - https://github.com/xolox/python-rotate-backups/issues/9 mentions Docker images implying Linux, so not strictly the same as `#38780`_. - https://github.com/xolox/python-npm-accel/issues/4 is definitely related to `#38780`_ and is what eventually prompted me to add the :func:`is_syslog_supported()` logic. .. _#38780: https://bugs.python.org/issue38780 """ override = os.environ.get("COLOREDLOGS_SYSLOG") if override is not None: return coerce_boolean(override) else: return not (on_windows() or on_macos())
xolox/python-coloredlogs
[ 500, 39, 500, 31, 1369940232 ]
def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config
Azure/azure-sdk-for-python
[ 3526, 2256, 3526, 986, 1335285972 ]
def get_long_running_output(pipeline_response): response = pipeline_response.http_response deserialized = self._deserialize('ScopeMap', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
Azure/azure-sdk-for-python
[ 3526, 2256, 3526, 986, 1335285972 ]
def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {})
Azure/azure-sdk-for-python
[ 3526, 2256, 3526, 986, 1335285972 ]
def get_long_running_output(pipeline_response): response = pipeline_response.http_response deserialized = self._deserialize('ScopeMap', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
Azure/azure-sdk-for-python
[ 3526, 2256, 3526, 986, 1335285972 ]
def list( self, resource_group_name: str, registry_name: str, **kwargs: Any
Azure/azure-sdk-for-python
[ 3526, 2256, 3526, 986, 1335285972 ]
def prepare_request(next_link=None): if not next_link:
Azure/azure-sdk-for-python
[ 3526, 2256, 3526, 986, 1335285972 ]
def __init__(self, aliases): self.aliases = aliases self.priorities = {k: i for i, k in enumerate(aliases)}
openvenues/lieu
[ 76, 23, 76, 15, 1496013990 ]
def get(self, key, default=None): return self.aliases.get(key, default)
openvenues/lieu
[ 76, 23, 76, 15, 1496013990 ]
def from_geojson(cls, data): properties = data.get('properties') properties = {k: safe_decode(v) if k in cls.field_map.aliases else v for k, v in six.iteritems(properties)} fields = cls.field_map.replace(properties) lon, lat = data.get('geometry', {}).get('coordinates', (None, None)) try: lat, lon = latlon_to_decimal(lat, lon) except ValueError: lat = lon = None if lat is not None: fields[Coordinates.LATITUDE] = lat if lon is not None: fields[Coordinates.LONGITUDE] = lon return fields
openvenues/lieu
[ 76, 23, 76, 15, 1496013990 ]
def __init__(self, x): self.val = x self.next = None
jiadaizhao/LeetCode
[ 39, 21, 39, 2, 1502171846 ]
def __init__(self, name: str, title: str) -> None: self.name = name self.title = title
pudo/nomenklatura
[ 159, 36, 159, 5, 1342346008 ]
def __lt__(self, other: "Dataset") -> bool: return self.name.__lt__(other.name)
pudo/nomenklatura
[ 159, 36, 159, 5, 1342346008 ]
def __init__(self, id, web_url, timeout=None): UrlParser.__init__(self, id=id, web_url=web_url, timeout=timeout)
pgaref/HTTP_Request_Randomizer
[ 140, 53, 140, 23, 1446231372 ]
def create_proxy_object(self, dataset): # Check Field[0] for tags and field[1] for values! ip = "" port = None anonymity = AnonymityLevel.UNKNOWN country = None protocols = [] for field in dataset: if field[0] == 'IP Address': # Make sure it is a Valid IP ip = field[1].strip() # String strip() # Make sure it is a Valid IP if not UrlParser.valid_ip(ip): logger.debug("IP with Invalid format: {}".format(ip)) return None elif field[0] == 'Port': port = field[1].strip() # String strip() elif field[0] == 'Anonymity': anonymity = AnonymityLevel.get(field[1].strip()) # String strip() elif field[0] == 'Country': country = field[1].strip() # String strip() elif field[0] == 'Https': if field[1].strip().lower() == 'yes': protocols.extend([Protocol.HTTP, Protocol.HTTPS]) elif field[1].strip().lower() == 'no': protocols.append(Protocol.HTTP) return ProxyObject(source=self.id, ip=ip, port=port, anonymity_level=anonymity, country=country, protocols=protocols)
pgaref/HTTP_Request_Randomizer
[ 140, 53, 140, 23, 1446231372 ]
def __init__(self, state, action, next_state, reward=None): self.state = state self.action = action self.next_state = next_state self.reward = reward
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def bonus(self): """The bonus added to the reward to encourage exploration. Returns ------- float : The bonus added to the reward. """ return self._bonus
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def bonus(self, value): self._bonus = value
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __getstate__(self): return { 'reward': self.reward, 'rmax': self.rmax, 'bonus': self.bonus, 'activate_bonus': self.activate_bonus }
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def set(self, value, *args, **kwargs): """Set the reward value. If :meth:`cb_set` is set, the callback will be called to set the value. Parameters ---------- args : tuple Positional arguments passed to the callback. kwargs : dict Non-positional arguments passed to the callback. """ if self.cb_set is not None: type(self).reward = self.cb_set(*args, **kwargs) return type(self).reward = value
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __init__(self): self.transition_proba = ProbabilityDistribution() self.reward_func = RewardFunction() self.visits = 0 self.known = False
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __setstate__(self, d): for name, value in d.iteritems(): setattr(self, name, value)
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __init__(self, state_id, actions): self.id = state_id """:type: int""" self.models = {a: StateActionInfo() for a in actions} """:type: dict[Action, StateActionInfo]""" # Randomizing the initial q-values impedes performance # self.q = {a: ((0.01 - 0.0) * np.random.random() + 0.0) for a in actions} self.q = {a: 0.0 for a in actions} """:type: dict[Action, float]""" self.steps_away = 100000 """:type: int"""
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __setstate__(self, d): for name, value in d.iteritems(): setattr(self, name, value)
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def name(self): """The name of the MDP primitive. Returns ------- str : The name of the primitive. """ return self._name
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def set_nfeatures(cls, n): """Set the number of features. Parameters ---------- n : int The number of features. Raises ------ ValueError If `n` is not of type integer. """ if not isinstance(n, int): raise ValueError("Attribute 'nfeatures' must be of <type 'int'>, got %s" % str(type(n))) cls.nfeatures = n
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def set_dtype(cls, value=DTYPE_FLOAT): """Set the feature's data type. Parameters ---------- value : {DTYPE_FLOAT, DTYPE_INT, DTYPE_OBJECT} The data type. Raises ------ ValueError If the data type is not one of the allowed types. """ if value not in [np.float64, np.int32, np.object]: raise ValueError("Attribute 'dtype' must be one of the allowed types, got %s" % str(type(value))) cls.dtype = value
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def set_description(cls, descr): """Set the feature description. This extracts the number of features from the description and checks that it matches with the `nfeatures`. If `nfeatures` is None, `nfeatures` is set to the extracted value. Parameters ---------- descr : dict The feature description. Raises ------ ValueError If the number of features extracted from the description does not match `nfeatures` or if `name` isn't of type string. Notes ----- Use the `description` to encode action information. The information should contain the list of all available feature combinations, the name of each feature. Examples -------- A description of an action with three possible discrete actions: :: { "out": {"value": [-0.004]}, "in": {"value": [0.004]}, "kick": {"value": [-1.0]} } A description of an action with one possible continuous action with name `move`, a value of `*` allows to find the action for every feature array. Additional information encodes the feature name together with its index into the feature array are given for each higher level element of feature array: :: { "move": { "value": "*", "descr": { "LArm": {"dx": 0, "dy": 1, "dz": 2}, "RArm": {"dx": 3, "dy": 4, "dz": 5}, "LLeg": {"dx": 6, "dy": 7, "dz": 8}, "RLeg": {"dx": 9, "dy": 10, "dz": 11}, "Torso": {"dx": 12, "dy": 13, "dz": 14} } } } Similarly, a continuous state can be encoded as follows, which identifies the name of each feature together with its index into the feature array: :: { "LArm": {"x": 0, "y": 1, "z": 2}, "RArm": {"x": 3, "y": 4, "z": 5}, "LLeg": {"x": 6, "y": 7, "z": 8}, "RLeg": {"x": 9, "y": 10, "z": 11}, "Torso": {"x": 12, "y": 13, "z": 14} } A discrete state can be encoded by identifying the position of each feature: :: "descr": { "image x-position": 0, "displacement (mm)": 1 } Alternatively, the feature can be identified by a list of features, giving he positional description: :: ["image x-position", "displacement (mm)"] """ nfeatures = None if isinstance(descr, dict): config = descr.itervalues().next() if 'descr' in config: nfeatures = sum(len(v) for v in config['descr'].itervalues()) if cls.nfeatures is not None and not cls.nfeatures == nfeatures: raise ValueError("Dimension mismatch: array described by 'descr' is a vector of length %d," " but attribute cls.nfeatures = %d" % (nfeatures, cls.nfeatures)) elif 'value' in config and not config['value'] == '*': nfeatures = len(config['value']) if cls.nfeatures is not None and not cls.nfeatures == nfeatures: raise ValueError("Dimension mismatch: array described by 'value' is a vector of length %d," " but attribute cls.nfeatures = %d" % (nfeatures, cls.nfeatures)) else: nfeatures = sum(len(v) for v in descr.itervalues()) if cls.nfeatures is not None and not cls.nfeatures == nfeatures: raise ValueError("Dimension mismatch: 'descr' is a vector of length %d," " but attribute cls.nfeatures = %d" % (nfeatures, cls.nfeatures)) elif isinstance(descr, list): nfeatures = len(descr) if cls.nfeatures is not None and not cls.nfeatures == nfeatures: raise ValueError("Dimension mismatch: 'descr' is a vector of length %d," " but attribute cls.nfeatures = %d" % (nfeatures, cls.nfeatures)) if cls.nfeatures is None: cls.nfeatures = nfeatures cls.description = descr
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def set_discretized(cls, val=False): """Sets the `discretized` flag. Parameters ---------- val : bool Flag identifying whether the features are discretized or not. Default is False. Raises ------ ValueError If `val` is not boolean type. """ if not isinstance(val, bool): raise ValueError("Attribute 'nfeatures' must be of <type 'bool'>, got %s" % str(type(val))) cls.discretized = val
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def set_minmax_features(cls, _min, _max): """Sets the minimum and maximum value for each feature. This extracts the number of features from the `_min` and `_max` values and ensures that it matches with `nfeatures`. If `nfeatures` is None, the `nfeatures` attribute is set to the extracted value. Parameters ---------- _min : array_like, shape(`nfeatures`,) The minimum value for each feature _max : array_like, shape(`nfeatures`,) The maximum value for each feature Raises ------ ValueError If the arrays are not one-dimensional vectors, the shapes of the arrays don't match, or the number of features does not agree with the attribute `nfeatures`. """ _min = np.asarray(_min, dtype=cls.dtype) _max = np.asarray(_max, dtype=cls.dtype) dim = _min.size if dim == 1: _min.shape = (1,) dim = _max.size if dim == 1: _max.shape = (1,) if _min.shape[0] != _max.shape[0]: raise ValueError("Dimension mismatch: array '_min' is a vector of length %d," " but '_max' is of length %d" % (_min.shape[0], _max.shape[0])) if cls.nfeatures is None: cls.nfeatures = _min.shape[0] if _min.shape[0] != cls.nfeatures: raise ValueError("Arrays '_min' and '_max' must be of length %d." % cls.nfeatures) cls.min_features = _min cls.max_features = _max
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def set_states_per_dim(cls, nstates): """Sets the number of states per feature. This extracts the number of features from `nstates` and compares it to the attribute `nfeatures`. If it doesn't match, an exception is thrown. If the `nfeatures` attribute is None, `nfeatures` is set to the extracted value. Parameters ---------- nstates : array_like, shape (`nfeatures`,) The number of states per features Raises ------ ValueError If the array is not a vector of length `nfeatures`. """ nstates = np.asarray(nstates, dtype=cls.dtype) dim = nstates.size if dim == 1: nstates.shape = (1,) if cls.nfeatures is None: cls.nfeatures = nstates.shape[0] if nstates.ndim != 1 or nstates.shape[0] != cls.nfeatures: raise ValueError("Array 'nstates' must be a vector of length %d." % cls.nfeatures) cls.states_per_dim = nstates
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __get__(self, instance, owner): return self._features
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __setitem__(self, index, value): if index > len(self): raise IndexError("Assignment index out of range") self._features[index] = value
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __contains__(self, item): return item in self._features
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __eq__(self, other): return np.array_equal(other.get(), self._features)
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __mul__(self, other): return self._features * other
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __iter__(self): self.ix = 0 return self
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __repr__(self): features = np.array_str(self.encode()) return "\'" + self._name + "\':\t" + features if self._name else features
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __copy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k in self.__slots__: try: setattr(result, k, copy.copy(getattr(self, k))) except AttributeError: pass return result
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __setstate__(self, d): for name, value in d.iteritems(): if name not in ['nfeatures', 'dtype', 'description', 'discretized', 'min_features', 'max_features', 'states_per_dim']: setattr(self, name, value) type(self).nfeatures = self._features.shape[0]
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def tolist(self): """Returns the feature array as a list. Returns ------- list : The features list. """ return self._features.tolist()
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def discretize(self): """Discretizes the state. Discretize the state using the information from the minimum and maximum values for each feature and the number of states attributed to each feature. """ if not self.discretized: return nfeatures = type(self).nfeatures min_features = type(self).min_features max_features = type(self).max_features states_per_dim = type(self).states_per_dim if min_features is None or min_features.shape[0] != nfeatures: raise ValueError("Attribute 'min_features' must be a vectors of length %d." % nfeatures) if max_features is None or max_features.shape[0] != nfeatures: raise ValueError("Attribute 'max_features' must be a vectors of length %d." % nfeatures) if states_per_dim is None or states_per_dim.shape[0] != nfeatures: raise ValueError("Attribute 'states_per_dim' must be a vectors of length %d." % nfeatures) ds = [] for i, feat in enumerate(self): factor = math.ceil( (max_features[i] - min_features[i]) / states_per_dim[i]) if feat > 0: bin_num = int((feat + factor / 2) / factor) else: bin_num = int((feat - factor / 2) / factor) ds.append(bin_num * factor) self._features = np.asarray(ds)
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def decode(cls, _repr): # noinspection PyUnresolvedReferences,PyUnusedLocal """Decodes the state into its original representation. Parameters ---------- _repr : tuple The readable representation of the primitive. Returns ------- State : The decoded state. Notes ----- Optionally this method can be overwritten at runtime. Examples -------- >>> def my_decode(cls, _repr) ... pass ... >>> MDPPrimitive.decode = classmethod(my_decode) """ return cls(_repr)
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def key_to_index(key): # noinspection PyUnresolvedReferences,PyUnusedLocal """Maps internal name to group index. Maps the internal name of a feature to the index of the corresponding feature grouping. For example for a feature vector consisting of the x-y-z position of the left and the right arm, the features for the left and the right arm can be extracted separately as a group, effectively splitting the feature vector into two vectors with x, y, and z at the positions specified by the the mapping of this function. Parameters ---------- key : str The key into the mapping Returns ------- int : The index in the feature array. Raises ------ NotImplementedError If the child class does not implement this function. Notes ----- Optionally this method can be overwritten at runtime. Examples -------- >>> def my_key_to_index(key) ... return { ... "x": 0, ... "y": 1, ... "z": 2 ... }[key] ... >>> State.description = {'LArm': {'x': 0, 'y': 1, 'z': 2} ... 'RArm': {'x': 3, 'y': 4, 'z': 5}} >>> State.key_to_index = staticmethod(my_key_to_index) This specifies the mapping in both direction. >>> state = [0.1, 0.4, 0.3. 4.6. 2.5. 0.9] >>> >>> mapping = State.description['LArm'] >>> >>> larm = np.zeros[len(mapping.keys())] >>> for key, axis in mapping.iteritems(): ... larm[State.key_to_index(key)] = state[axis] ... >>> print larm [0.1, 0.4, 0.3] This extracts the features for the left arm from the `state` vector. """ raise NotImplementedError
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __init__(self, features, name=None): super(State, self).__init__(features, name)
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def is_terminal(self): """Checks if the state is a terminal state. Returns ------- bool : Whether the state is a terminal state or not. """ if State.terminal_states is None: return False if isinstance(State.terminal_states, list): return self.name in State.terminal_states return self.name == self.terminal_states
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def is_valid(self): # noinspection PyUnresolvedReferences,PyUnusedLocal """Check if this state is a valid state. Returns ------- bool : Whether the state is valid or not. Notes ----- Optionally this method can be overwritten at runtime. Examples -------- >>> def my_is_valid(self) ... pass ... >>> MDPPrimitive.is_valid = my_is_valid """ return True
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def __init__(self, features, name=None): super(Action, self).__init__(features, name) self._name = name if name is not None else Action.get_name(self._features)
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def get_name(cls, features): """Retrieves the name of the action. Retrieve the name of the action using the action's description. In the case that all features are zero the action is considered a `no-op` action. Parameters ---------- features : ndarray A feature array. Returns ------- str : The name of the action. """ features = np.asarray(features, dtype=cls.dtype) if cls.description is not None: for e, config in cls.description.iteritems(): if np.asarray(config["value"]).shape != features.shape: ValueError("Dimension mismatch: array 'config['value']' is vector of length %d," " but 'features' is a vector of length %d." % (np.asarray(config["value"]).shape[0], features.shape[0])) if config["value"] == features or config["value"] == "*": return e if not features.any(): return "no-op" return ""
evenmarbles/mlpy
[ 7, 2, 7, 2, 1439328535 ]
def load(saved_model_dir: str) -> AutoTrackable: """Load a Tensorflow saved model""" return tf.saved_model.load(saved_model_dir)
yoeo/guesslang
[ 644, 78, 644, 27, 1495396528 ]
def train(estimator: Estimator, data_root_dir: str, max_steps: int) -> Any: """Train a Tensorflow estimator""" train_spec = tf.estimator.TrainSpec( input_fn=_build_input_fn(data_root_dir, ModeKeys.TRAIN), max_steps=max_steps, ) if max_steps > Training.LONG_TRAINING_STEPS: throttle_secs = Training.LONG_DELAY else: throttle_secs = Training.SHORT_DELAY eval_spec = tf.estimator.EvalSpec( input_fn=_build_input_fn(data_root_dir, ModeKeys.EVAL), start_delay_secs=Training.SHORT_DELAY, throttle_secs=throttle_secs, ) LOGGER.debug('Train the model') results = tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) training_metrics = results[0] return training_metrics
yoeo/guesslang
[ 644, 78, 644, 27, 1495396528 ]
def test( saved_model: AutoTrackable, data_root_dir: str, mapping: Dict[str, str],
yoeo/guesslang
[ 644, 78, 644, 27, 1495396528 ]
def predict( saved_model: AutoTrackable, mapping: Dict[str, str], text: str
yoeo/guesslang
[ 644, 78, 644, 27, 1495396528 ]
def _build_input_fn( data_root_dir: str, mode: ModeKeys,
yoeo/guesslang
[ 644, 78, 644, 27, 1495396528 ]
def input_function() -> tf.data.Dataset: dataset = tf.data.Dataset dataset = dataset.list_files(pattern, shuffle=True).map(_read_file) if mode == ModeKeys.PREDICT: return dataset.batch(1) if mode == ModeKeys.TRAIN: dataset = dataset.shuffle(Training.SHUFFLE_BUFFER).repeat() return dataset.map(_preprocess).batch(HyperParameter.BATCH_SIZE)
yoeo/guesslang
[ 644, 78, 644, 27, 1495396528 ]
def _serving_input_receiver_fn() -> tf.estimator.export.ServingInputReceiver: """Function to serve model for predictions.""" content = tf.compat.v1.placeholder(tf.string, [None]) receiver_tensors = {'content': content} features = {'content': tf.map_fn(_preprocess_text, content)} return tf.estimator.export.ServingInputReceiver( receiver_tensors=receiver_tensors, features=features, )
yoeo/guesslang
[ 644, 78, 644, 27, 1495396528 ]
def _preprocess( data: tf.Tensor, label: tf.Tensor,
yoeo/guesslang
[ 644, 78, 644, 27, 1495396528 ]
def best_fit_slope_and_intercept(xs, ys): m = (mean(xs) * mean(ys) - mean(xs*ys)) / ( mean(xs)*mean(xs) - mean(xs*xs) ) b = mean(ys) - m * mean(xs) return m, b
aspiringguru/sentexTuts
[ 1, 2, 1, 1, 1473483674 ]
def __init__(self): self.parser = optparse.OptionParser() self.set_options()
hcpss-banderson/py-tasc
[ 1, 1, 1, 2, 1452191848 ]
def set_options(self): """Use optparser to manage options"""
hcpss-banderson/py-tasc
[ 1, 1, 1, 2, 1452191848 ]
def parse(self): """Return the raw parsed user supplied values :rtype: dict[str, str] """
hcpss-banderson/py-tasc
[ 1, 1, 1, 2, 1452191848 ]
def manifest_location(self): """Return the location of the manifest file :rtype: str """
hcpss-banderson/py-tasc
[ 1, 1, 1, 2, 1452191848 ]
def manifest(self): """Get the parsed values from the manifest :rtype: dict[str, mixed] """
hcpss-banderson/py-tasc
[ 1, 1, 1, 2, 1452191848 ]
def destination(self): """Get the assembly location :rtype: str """
hcpss-banderson/py-tasc
[ 1, 1, 1, 2, 1452191848 ]
def extra_parameters(self): """Get extra parameters :rtype: dict[str, str] """ params_string = self.parse().extra_parameters
hcpss-banderson/py-tasc
[ 1, 1, 1, 2, 1452191848 ]
def tableAt(byte): return crc32(chr(byte ^ 0xff)) & 0xffffffff ^ FINALXOR ^ (INITXOR >> 8)
tholum/PiBunny
[ 198, 40, 198, 3, 1491360775 ]
def write_with_xml_declaration(self, file, encoding, xml_declaration): assert xml_declaration is True # Support our use case only file.write("<?xml version='1.0' encoding='utf-8'?>\n") p26_write(self, file, encoding=encoding)
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def __init__(self, baseuri, username, password, version=VERSION): """baseuri: Base URI for the GenoLogics server, excluding the 'api' or version parts! For example: https://genologics.scilifelab.se:8443/ username: The account name of the user to login as. password: The password for the user account to login as. version: The optional LIMS API version, by default 'v2' """ self.baseuri = baseuri.rstrip('/') + '/' self.username = username self.password = password self.VERSION = version self.cache = dict() # For optimization purposes, enables requests to persist connections self.request_session = requests.Session() # The connection pool has a default size of 10 self.adapter = requests.adapters.HTTPAdapter(pool_connections=100, pool_maxsize=100) self.request_session.mount('http://', self.adapter)
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def get(self, uri, params=dict()): "GET data from the URI. Return the response XML as an ElementTree." try: r = self.request_session.get(uri, params=params, auth=(self.username, self.password), headers=dict(accept='application/xml'), timeout=TIMEOUT) except requests.exceptions.Timeout as e: raise type(e)("{0}, Error trying to reach {1}".format(str(e), uri)) else: return self.parse_response(r)
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def upload_new_file(self, entity, file_to_upload): """Upload a file and attach it to the provided entity.""" file_to_upload = os.path.abspath(file_to_upload) if not os.path.isfile(file_to_upload): raise IOError("{} not found".format(file_to_upload)) # Request the storage space on glsstorage # Create the xml to describe the file root = ElementTree.Element(nsmap('file:file')) s = ElementTree.SubElement(root, 'attached-to') s.text = entity.uri s = ElementTree.SubElement(root, 'original-location') s.text = file_to_upload root = self.post( uri=self.get_uri('glsstorage'), data=self.tostring(ElementTree.ElementTree(root)) ) # Create the file object root = self.post( uri=self.get_uri('files'), data=self.tostring(ElementTree.ElementTree(root)) ) file = File(self, uri=root.attrib['uri']) # Actually upload the file uri = self.get_uri('files', file.id, 'upload') r = requests.post(uri, files={'file': (file_to_upload, open(file_to_upload, 'rb'))}, auth=(self.username, self.password)) self.validate_response(r) return file
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def post(self, uri, data, params=dict()): """POST the serialized XML to the given URI. Return the response XML as an ElementTree. """ r = requests.post(uri, data=data, params=params, auth=(self.username, self.password), headers={'content-type': 'application/xml', 'accept': 'application/xml'}) return self.parse_response(r, accept_status_codes=[200, 201, 202])
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def check_version(self): """Raise ValueError if the version for this interface does not match any of the versions given for the API. """ uri = urljoin(self.baseuri, 'api') r = requests.get(uri, auth=(self.username, self.password)) root = self.parse_response(r) tag = nsmap('ver:versions') assert tag == root.tag for node in root.findall('version'): if node.attrib['major'] == self.VERSION: return raise ValueError('version mismatch')
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def parse_response(self, response, accept_status_codes=[200]): """Parse the XML returned in the response. Raise an HTTP error if the response status is not 200. """ self.validate_response(response, accept_status_codes) root = ElementTree.fromstring(response.content) return root
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def get_reagent_types(self, name=None, start_index=None): """Get a list of reqgent types, filtered by keyword arguments. name: reagent type name, or list of names. start_index: Page to retrieve; all if None. """ params = self._get_params(name=name, start_index=start_index) return self._get_instances(ReagentType, params=params)
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def get_researchers(self, firstname=None, lastname=None, username=None, last_modified=None, udf=dict(), udtname=None, udt=dict(), start_index=None, add_info=False): """Get a list of researchers, filtered by keyword arguments. firstname: Researcher first name, or list of names. lastname: Researcher last name, or list of names. username: Researcher account name, or list of names. last_modified: Since the given ISO format datetime. udf: dictionary of UDFs with 'UDFNAME[OPERATOR]' as keys. udtname: UDT name, or list of names. udt: dictionary of UDT UDFs with 'UDTNAME.UDFNAME[OPERATOR]' as keys and a string or list of strings as value. start_index: Page to retrieve; all if None. """ params = self._get_params(firstname=firstname, lastname=lastname, username=username, last_modified=last_modified, start_index=start_index) params.update(self._get_params_udf(udf=udf, udtname=udtname, udt=udt)) return self._get_instances(Researcher, add_info=add_info, params=params)
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def get_sample_number(self, name=None, projectname=None, projectlimsid=None, udf=dict(), udtname=None, udt=dict(), start_index=None): """Gets the number of samples matching the query without fetching every sample, so it should be faster than len(get_samples()""" params = self._get_params(name=name, projectname=projectname, projectlimsid=projectlimsid, start_index=start_index) params.update(self._get_params_udf(udf=udf, udtname=udtname, udt=udt)) root = self.get(self.get_uri(Sample._URI), params=params) total = 0 while params.get('start-index') is None: # Loop over all pages. total += len(root.findall("sample")) node = root.find('next-page') if node is None: break root = self.get(node.attrib['uri'], params=params) return total
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def get_artifacts(self, name=None, type=None, process_type=None, artifact_flag_name=None, working_flag=None, qc_flag=None, sample_name=None, samplelimsid=None, artifactgroup=None, containername=None, containerlimsid=None, reagent_label=None, udf=dict(), udtname=None, udt=dict(), start_index=None, resolve=False): """Get a list of artifacts, filtered by keyword arguments. name: Artifact name, or list of names. type: Artifact type, or list of types. process_type: Produced by the process type, or list of types. artifact_flag_name: Tagged with the genealogy flag, or list of flags. working_flag: Having the given working flag; boolean. qc_flag: Having the given QC flag: UNKNOWN, PASSED, FAILED. sample_name: Related to the given sample name. samplelimsid: Related to the given sample id. artifactgroup: Belonging to the artifact group (experiment in client). containername: Residing in given container, by name, or list. containerlimsid: Residing in given container, by LIMS id, or list. reagent_label: having attached reagent labels. udf: dictionary of UDFs with 'UDFNAME[OPERATOR]' as keys. udtname: UDT name, or list of names. udt: dictionary of UDT UDFs with 'UDTNAME.UDFNAME[OPERATOR]' as keys and a string or list of strings as value. start_index: Page to retrieve; all if None. """ params = self._get_params(name=name, type=type, process_type=process_type, artifact_flag_name=artifact_flag_name, working_flag=working_flag, qc_flag=qc_flag, sample_name=sample_name, samplelimsid=samplelimsid, artifactgroup=artifactgroup, containername=containername, containerlimsid=containerlimsid, reagent_label=reagent_label, start_index=start_index) params.update(self._get_params_udf(udf=udf, udtname=udtname, udt=udt)) if resolve: return self.get_batch(self._get_instances(Artifact, params=params)) else: return self._get_instances(Artifact, params=params)
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def get_containers(self, name=None, type=None, state=None, last_modified=None, udf=dict(), udtname=None, udt=dict(), start_index=None, add_info=False): """Get a list of containers, filtered by keyword arguments. name: Containers name, or list of names. type: Container type, or list of types. state: Container state: Empty, Populated, Discarded, Reagent-Only. last_modified: Since the given ISO format datetime. udf: dictionary of UDFs with 'UDFNAME[OPERATOR]' as keys. udtname: UDT name, or list of names. udt: dictionary of UDT UDFs with 'UDTNAME.UDFNAME[OPERATOR]' as keys and a string or list of strings as value. start_index: Page to retrieve; all if None. """ params = self._get_params(name=name, type=type, state=state, last_modified=last_modified, start_index=start_index) params.update(self._get_params_udf(udf=udf, udtname=udtname, udt=udt)) return self._get_instances(Container, add_info=add_info, params=params)
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]
def get_automations(self, name=None, add_info=False): """Get the list of configured automations on the system """ params = self._get_params(name=name) return self._get_instances(Automation, add_info=add_info, params=params)
SciLifeLab/genologics
[ 25, 39, 25, 9, 1346852014 ]