function
stringlengths 18
3.86k
| intent_category
stringlengths 5
24
|
---|---|
def brute_force(input_string: str, alphabet: str | None = None) -> dict[int, str]:
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# To store data on all the combinations
brute_force_data = {}
# Cycle through each combination
for key in range(1, len(alpha) + 1):
# Decrypt the message and store the result in the data
brute_force_data[key] = decrypt(input_string, key, alpha)
return brute_force_data | ciphers |
def dencrypt(s: str, n: int = 13) -> str:
out = ""
for c in s:
if "A" <= c <= "Z":
out += chr(ord("A") + (ord(c) - ord("A") + n) % 26)
elif "a" <= c <= "z":
out += chr(ord("a") + (ord(c) - ord("a") + n) % 26)
else:
out += c
return out | ciphers |
def main() -> None:
s0 = input("Enter message: ")
s1 = dencrypt(s0, 13)
print("Encryption:", s1)
s2 = dencrypt(s1, 13)
print("Decryption: ", s2) | ciphers |
def __encrypt_part(message_part: str, character_to_number: dict[str, str]) -> str:
one, two, three = "", "", ""
tmp = []
for character in message_part:
tmp.append(character_to_number[character])
for each in tmp:
one += each[0]
two += each[1]
three += each[2]
return one + two + three | ciphers |
def __decrypt_part(
message_part: str, character_to_number: dict[str, str]
) -> tuple[str, str, str]:
tmp, this_part = "", ""
result = []
for character in message_part:
this_part += character_to_number[character]
for digit in this_part:
tmp += digit
if len(tmp) == len(message_part):
result.append(tmp)
tmp = ""
return result[0], result[1], result[2] | ciphers |
def __prepare(
message: str, alphabet: str
) -> tuple[str, str, dict[str, str], dict[str, str]]:
# Validate message and alphabet, set to upper and remove spaces
alphabet = alphabet.replace(" ", "").upper()
message = message.replace(" ", "").upper()
# Check length and characters
if len(alphabet) != 27:
raise KeyError("Length of alphabet has to be 27.")
for each in message:
if each not in alphabet:
raise ValueError("Each message character has to be included in alphabet!")
# Generate dictionares
numbers = (
"111",
"112",
"113",
"121",
"122",
"123",
"131",
"132",
"133",
"211",
"212",
"213",
"221",
"222",
"223",
"231",
"232",
"233",
"311",
"312",
"313",
"321",
"322",
"323",
"331",
"332",
"333",
)
character_to_number = {}
number_to_character = {}
for letter, number in zip(alphabet, numbers):
character_to_number[letter] = number
number_to_character[number] = letter
return message, alphabet, character_to_number, number_to_character | ciphers |
def encrypt_message(
message: str, alphabet: str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period: int = 5
) -> str:
message, alphabet, character_to_number, number_to_character = __prepare(
message, alphabet
)
encrypted, encrypted_numeric = "", ""
for i in range(0, len(message) + 1, period):
encrypted_numeric += __encrypt_part(
message[i : i + period], character_to_number
)
for i in range(0, len(encrypted_numeric), 3):
encrypted += number_to_character[encrypted_numeric[i : i + 3]]
return encrypted | ciphers |
def decrypt_message(
message: str, alphabet: str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period: int = 5
) -> str:
message, alphabet, character_to_number, number_to_character = __prepare(
message, alphabet
)
decrypted_numeric = []
decrypted = ""
for i in range(0, len(message) + 1, period):
a, b, c = __decrypt_part(message[i : i + period], character_to_number)
for j in range(0, len(a)):
decrypted_numeric.append(a[j] + b[j] + c[j])
for each in decrypted_numeric:
decrypted += number_to_character[each]
return decrypted | ciphers |
def generate_table(key: str) -> list[tuple[str, str]]:
return [alphabet[char] for char in key.upper()] | ciphers |
def encrypt(key: str, words: str) -> str:
cipher = ""
count = 0
table = generate_table(key)
for char in words.upper():
cipher += get_opponent(table[count], char)
count = (count + 1) % len(table)
return cipher | ciphers |
def decrypt(key: str, words: str) -> str:
return encrypt(key, words) | ciphers |
def get_position(table: tuple[str, str], char: str) -> tuple[int, int]:
# `char` is either in the 0th row or the 1st row
row = 0 if char in table[0] else 1
col = table[row].index(char)
return row, col | ciphers |
def get_opponent(table: tuple[str, str], char: str) -> str:
row, col = get_position(table, char.upper())
if row == 1:
return table[0][col]
else:
return table[1][col] if row == 0 else char | ciphers |
def encode(word: str) -> str:
encoded = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces")
return encoded | ciphers |
def decode(coded: str) -> str:
if set(coded) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces")
decoded = ""
for word in coded.split():
while len(word) != 0:
decoded += decode_dict[word[:5]]
word = word[5:]
decoded += " "
return decoded.strip() | ciphers |
def main() -> None:
message = input("Enter message: ")
key = input("Enter key [alphanumeric]: ")
mode = input("Encrypt/Decrypt [e/d]: ")
if mode.lower().startswith("e"):
mode = "encrypt"
translated = encrypt_message(key, message)
elif mode.lower().startswith("d"):
mode = "decrypt"
translated = decrypt_message(key, message)
print(f"\n{mode.title()}ed message:")
print(translated) | ciphers |
def encrypt_message(key: str, message: str) -> str:
return translate_message(key, message, "encrypt") | ciphers |
def decrypt_message(key: str, message: str) -> str:
return translate_message(key, message, "decrypt") | ciphers |
def translate_message(key: str, message: str, mode: str) -> str:
translated = []
key_index = 0
key = key.upper()
for symbol in message:
num = LETTERS.find(symbol.upper())
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index])
elif mode == "decrypt":
num -= LETTERS.find(key[key_index])
num %= len(LETTERS)
if symbol.isupper():
translated.append(LETTERS[num])
elif symbol.islower():
translated.append(LETTERS[num].lower())
key_index += 1
if key_index == len(key):
key_index = 0
else:
translated.append(symbol)
return "".join(translated) | ciphers |
def main() -> None:
message = input("Enter message: ")
key = "LFWOAYUISVKMNXPBDCRJTQEGHZ"
resp = input("Encrypt/Decrypt [e/d]: ")
check_valid_key(key)
if resp.lower().startswith("e"):
mode = "encrypt"
translated = encrypt_message(key, message)
elif resp.lower().startswith("d"):
mode = "decrypt"
translated = decrypt_message(key, message)
print(f"\n{mode.title()}ion: \n{translated}") | ciphers |
def check_valid_key(key: str) -> None:
key_list = list(key)
letters_list = list(LETTERS)
key_list.sort()
letters_list.sort()
if key_list != letters_list:
sys.exit("Error in the key or symbol set.") | ciphers |
def encrypt_message(key: str, message: str) -> str:
return translate_message(key, message, "encrypt") | ciphers |
def decrypt_message(key: str, message: str) -> str:
return translate_message(key, message, "decrypt") | ciphers |
def translate_message(key: str, message: str, mode: str) -> str:
translated = ""
chars_a = LETTERS
chars_b = key
if mode == "decrypt":
chars_a, chars_b = chars_b, chars_a
for symbol in message:
if symbol.upper() in chars_a:
sym_index = chars_a.find(symbol.upper())
if symbol.isupper():
translated += chars_b[sym_index].upper()
else:
translated += chars_b[sym_index].lower()
else:
translated += symbol
return translated | ciphers |
def get_random_key() -> str:
key = list(LETTERS)
random.shuffle(key)
return "".join(key) | ciphers |
def _validator(
rotpos: RotorPositionT, rotsel: RotorSelectionT, pb: str
) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]:
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(rotsel))) < 3:
raise Exception(f"Please use 3 unique rotors (not {unique_rotsel})")
# Checks if rotor positions are valid
rotorpos1, rotorpos2, rotorpos3 = rotpos
if not 0 < rotorpos1 <= len(abc):
raise ValueError(
"First rotor position is not within range of 1..26 (" f"{rotorpos1}"
)
if not 0 < rotorpos2 <= len(abc):
raise ValueError(
"Second rotor position is not within range of 1..26 (" f"{rotorpos2})"
)
if not 0 < rotorpos3 <= len(abc):
raise ValueError(
"Third rotor position is not within range of 1..26 (" f"{rotorpos3})"
)
# Validates string and returns dict
pbdict = _plugboard(pb)
return rotpos, rotsel, pbdict | ciphers |
def _plugboard(pbstring: str) -> dict[str, str]:
# tests the input string if it
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(pbstring, str):
raise TypeError(f"Plugboard setting isn't type string ({type(pbstring)})")
elif len(pbstring) % 2 != 0:
raise Exception(f"Odd number of symbols ({len(pbstring)})")
elif pbstring == "":
return {}
pbstring.replace(" ", "")
# Checks if all characters are unique
tmppbl = set()
for i in pbstring:
if i not in abc:
raise Exception(f"'{i}' not in list of symbols")
elif i in tmppbl:
raise Exception(f"Duplicate symbol ({i})")
else:
tmppbl.add(i)
del tmppbl
# Created the dictionary
pb = {}
for j in range(0, len(pbstring) - 1, 2):
pb[pbstring[j]] = pbstring[j + 1]
pb[pbstring[j + 1]] = pbstring[j]
return pb | ciphers |
def enigma(
text: str,
rotor_position: RotorPositionT,
rotor_selection: RotorSelectionT = (rotor1, rotor2, rotor3),
plugb: str = "", | ciphers |
def __init__(self) -> None:
self.SQUARE = np.array(SQUARE) | ciphers |
def letter_to_numbers(self, letter: str) -> np.ndarray:
index1, index2 = np.where(letter == self.SQUARE)
indexes = np.concatenate([index1 + 1, index2 + 1])
return indexes | ciphers |
def numbers_to_letter(self, index1: int, index2: int) -> str:
letter = self.SQUARE[index1 - 1, index2 - 1]
return letter | ciphers |
def encode(self, message: str) -> str:
message = message.lower()
message = message.replace(" ", "")
message = message.replace("j", "i")
first_step = np.empty((2, len(message)))
for letter_index in range(len(message)):
numbers = self.letter_to_numbers(message[letter_index])
first_step[0, letter_index] = numbers[0]
first_step[1, letter_index] = numbers[1]
second_step = first_step.reshape(2 * len(message))
encoded_message = ""
for numbers_index in range(len(message)):
index1 = int(second_step[numbers_index * 2])
index2 = int(second_step[(numbers_index * 2) + 1])
letter = self.numbers_to_letter(index1, index2)
encoded_message = encoded_message + letter
return encoded_message | ciphers |
def miller_rabin(n: int, allow_probable: bool = False) -> bool:
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_317_044_064_679_887_385_961_981 and not allow_probable:
raise ValueError(
"Warning: upper bound of deterministic test is exceeded. "
"Pass allow_probable=True to allow probabilistic test. "
"A return value of True indicates a probable prime."
)
# array bounds provided by analysis
bounds = [
2_047,
1_373_653,
25_326_001,
3_215_031_751,
2_152_302_898_747,
3_474_749_660_383,
341_550_071_728_321,
1,
3_825_123_056_546_413_051,
1,
1,
318_665_857_834_031_151_167_461,
3_317_044_064_679_887_385_961_981,
]
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
for idx, _p in enumerate(bounds, 1):
if n < _p:
# then we have our last prime to check
plist = primes[:idx]
break
d, s = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
pr = False
for r in range(s):
m = pow(prime, d * 2**r, n)
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
pr = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True | ciphers |
def test_miller_rabin() -> None:
assert not miller_rabin(561)
assert miller_rabin(563)
# 2047
assert not miller_rabin(838_201)
assert miller_rabin(838_207)
# 1_373_653
assert not miller_rabin(17_316_001)
assert miller_rabin(17_316_017)
# 25_326_001
assert not miller_rabin(3_078_386_641)
assert miller_rabin(3_078_386_653)
# 3_215_031_751
assert not miller_rabin(1_713_045_574_801)
assert miller_rabin(1_713_045_574_819)
# 2_152_302_898_747
assert not miller_rabin(2_779_799_728_307)
assert miller_rabin(2_779_799_728_327)
# 3_474_749_660_383
assert not miller_rabin(113_850_023_909_441)
assert miller_rabin(113_850_023_909_527)
# 341_550_071_728_321
assert not miller_rabin(1_275_041_018_848_804_351)
assert miller_rabin(1_275_041_018_848_804_391)
# 3_825_123_056_546_413_051
assert not miller_rabin(79_666_464_458_507_787_791_867)
assert miller_rabin(79_666_464_458_507_787_791_951)
# 318_665_857_834_031_151_167_461
assert not miller_rabin(552_840_677_446_647_897_660_333)
assert miller_rabin(552_840_677_446_647_897_660_359)
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test | ciphers |
def generate_key(message: str, key: str) -> str:
x = len(message)
i = 0
while True:
if x == i:
i = 0
if len(key) == len(message):
break
key += key[i]
i += 1
return key | ciphers |
def cipher_text(message: str, key_new: str) -> str:
cipher_text = ""
i = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
x = (dict1[letter] - dict1[key_new[i]]) % 26
i += 1
cipher_text += dict2[x]
return cipher_text | ciphers |
def original_text(cipher_text: str, key_new: str) -> str:
or_txt = ""
i = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
x = (dict1[letter] + dict1[key_new[i]] + 26) % 26
i += 1
or_txt += dict2[x]
return or_txt | ciphers |
def main() -> None:
message = "THE GERMAN ATTACK"
key = "SECRET"
key_new = generate_key(message, key)
s = cipher_text(message, key_new)
print(f"Encrypted Text = {s}")
print(f"Original Text = {original_text(s, key_new)}") | ciphers |
def mixed_keyword(key: str = "college", pt: str = "UNIVERSITY") -> str:
key = key.upper()
pt = pt.upper()
temp = []
for i in key:
if i not in temp:
temp.append(i)
len_temp = len(temp)
# print(temp)
alpha = []
modalpha = []
for j in range(65, 91):
t = chr(j)
alpha.append(t)
if t not in temp:
temp.append(t)
# print(temp)
r = int(26 / 4)
# print(r)
k = 0
for _ in range(r):
s = []
for _ in range(len_temp):
s.append(temp[k])
if k >= 25:
break
k += 1
modalpha.append(s)
# print(modalpha)
d = {}
j = 0
k = 0
for j in range(len_temp):
for m in modalpha:
if not len(m) - 1 >= j:
break
d[alpha[k]] = m[j]
if not k < 25:
break
k += 1
print(d)
cypher = ""
for i in pt:
cypher += d[i]
return cypher | ciphers |
def main() -> None:
input_file = "Prehistoric Men.txt"
output_file = "Output.txt"
key = int(input("Enter key: "))
mode = input("Encrypt/Decrypt [e/d]: ")
if not os.path.exists(input_file):
print(f"File {input_file} does not exist. Quitting...")
sys.exit()
if os.path.exists(output_file):
print(f"Overwrite {output_file}? [y/n]")
response = input("> ")
if not response.lower().startswith("y"):
sys.exit()
start_time = time.time()
if mode.lower().startswith("e"):
with open(input_file) as f:
content = f.read()
translated = trans_cipher.encrypt_message(key, content)
elif mode.lower().startswith("d"):
with open(output_file) as f:
content = f.read()
translated = trans_cipher.decrypt_message(key, content)
with open(output_file, "w") as output_obj:
output_obj.write(translated)
total_time = round(time.time() - start_time, 2)
print(("Done (", total_time, "seconds )")) | ciphers |
def __init__(self, passcode: str | None = None) -> None:
self.__passcode = passcode or self.__passcode_creator()
self.__key_list = self.__make_key_list()
self.__shift_key = self.__make_shift_key() | ciphers |
def __str__(self) -> str:
return "".join(self.__passcode) | ciphers |
def __neg_pos(self, iterlist: list[int]) -> list[int]:
for i in range(1, len(iterlist), 2):
iterlist[i] *= -1
return iterlist | ciphers |
def __passcode_creator(self) -> list[str]:
choices = string.ascii_letters + string.digits
password = [random.choice(choices) for _ in range(random.randint(10, 20))]
return password | ciphers |
def __make_key_list(self) -> list[str]:
# key_list_options contain nearly all printable except few elements from
# string.whitespace
key_list_options = (
string.ascii_letters + string.digits + string.punctuation + " \t\n"
)
keys_l = []
# creates points known as breakpoints to break the key_list_options at those
# points and pivot each substring
breakpoints = sorted(set(self.__passcode))
temp_list: list[str] = []
# algorithm for creating a new shuffled list, keys_l, out of key_list_options
for i in key_list_options:
temp_list.extend(i)
# checking breakpoints at which to pivot temporary sublist and add it into
# keys_l
if i in breakpoints or i == key_list_options[-1]:
keys_l.extend(temp_list[::-1])
temp_list.clear()
# returning a shuffled keys_l to prevent brute force guessing of shift key
return keys_l | ciphers |
def __make_shift_key(self) -> int:
num = sum(self.__neg_pos([ord(x) for x in self.__passcode]))
return num if num > 0 else len(self.__passcode) | ciphers |
def decrypt(self, encoded_message: str) -> str:
decoded_message = ""
# decoding shift like Caesar cipher algorithm implementing negative shift or
# reverse shift or left shift
for i in encoded_message:
position = self.__key_list.index(i)
decoded_message += self.__key_list[
(position - self.__shift_key) % -len(self.__key_list)
]
return decoded_message | ciphers |
def encrypt(self, plaintext: str) -> str:
encoded_message = ""
# encoding shift like Caesar cipher algorithm implementing positive shift or
# forward shift or right shift
for i in plaintext:
position = self.__key_list.index(i)
encoded_message += self.__key_list[
(position + self.__shift_key) % len(self.__key_list)
]
return encoded_message | ciphers |
def test_end_to_end(msg: str = "Hello, this is a modified Caesar cipher") -> str:
cip1 = ShuffledShiftCipher()
return cip1.decrypt(cip1.encrypt(msg)) | ciphers |
def gcd(a: int, b: int) -> int:
while a != 0:
a, b = b % a, a
return b | ciphers |
def base32_encode(string: str) -> bytes:
# encoded the input (we need a bytes like object)
# then, b32encoded the bytes-like object
return base64.b32encode(string.encode("utf-8")) | ciphers |
def base32_decode(encoded_bytes: bytes) -> str:
# decode the bytes from base32
# then, decode the bytes-like object to return as a string
return base64.b32decode(encoded_bytes).decode("utf-8") | ciphers |
def base16_encode(data: bytes) -> str:
# Turn the data into a list of integers (where each integer is a byte),
# Then turn each byte into its hexadecimal representation, make sure
# it is uppercase, and then join everything together and return it.
return "".join([hex(byte)[2:].zfill(2).upper() for byte in list(data)]) | ciphers |
def base16_decode(data: str) -> bytes:
# Check data validity, following RFC3548
# https://www.ietf.org/rfc/rfc3548.txt
if (len(data) % 2) != 0:
raise ValueError(
)
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(data) <= set("0123456789ABCDEF"):
raise ValueError(
)
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1], 16) for i in range(0, len(data), 2)) | ciphers |
def main() -> None:
print("Making key files...")
make_key_files("rsa", 1024)
print("Key files generation successful.") | ciphers |
def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
print("Generating prime p...")
p = rabinMiller.generate_large_prime(key_size)
print("Generating prime q...")
q = rabinMiller.generate_large_prime(key_size)
n = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)...")
while True:
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
break
print("Calculating d that is mod inverse of e...")
d = cryptoMath.find_mod_inverse(e, (p - 1) * (q - 1))
public_key = (n, e)
private_key = (n, d)
return (public_key, private_key) | ciphers |
def make_key_files(name: str, key_size: int) -> None:
if os.path.exists(f"{name}_pubkey.txt") or os.path.exists(f"{name}_privkey.txt"):
print("\nWARNING:")
print(
f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
"Use a different name or delete these files and re-run this program."
)
sys.exit()
public_key, private_key = generate_key(key_size)
print(f"\nWriting public key to file {name}_pubkey.txt...")
with open(f"{name}_pubkey.txt", "w") as out_file:
out_file.write(f"{key_size},{public_key[0]},{public_key[1]}")
print(f"Writing private key to file {name}_privkey.txt...")
with open(f"{name}_privkey.txt", "w") as out_file:
out_file.write(f"{key_size},{private_key[0]},{private_key[1]}") | ciphers |
def find_primitive(n: int) -> int | None:
for r in range(1, n):
li = []
for x in range(n - 1):
val = pow(r, x, n)
if val in li:
break
li.append(val)
else:
return r
return None | ciphers |
def __init__(self) -> None:
self.SQUARE = np.array(SQUARE) | ciphers |
def letter_to_numbers(self, letter: str) -> np.ndarray:
index1, index2 = np.where(letter == self.SQUARE)
indexes = np.concatenate([index1 + 1, index2 + 1])
return indexes | ciphers |
def numbers_to_letter(self, index1: int, index2: int) -> str:
return self.SQUARE[index1 - 1, index2 - 1] | ciphers |
def encode(self, message: str) -> str:
message = message.lower()
message = message.replace("j", "i")
encoded_message = ""
for letter_index in range(len(message)):
if message[letter_index] != " ":
numbers = self.letter_to_numbers(message[letter_index])
encoded_message = encoded_message + str(numbers[0]) + str(numbers[1])
elif message[letter_index] == " ":
encoded_message = encoded_message + " "
return encoded_message | ciphers |
def base85_encode(string: str) -> bytes:
# encoded the input to a bytes-like object and then a85encode that
return base64.a85encode(string.encode("utf-8")) | ciphers |
def base85_decode(a85encoded: bytes) -> str:
# a85decode the input into bytes and decode that into a human readable string
return base64.a85decode(a85encoded).decode("utf-8") | ciphers |
def good_file_paths(top_dir: str = ".") -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(top_dir):
dir_names[:] = [d for d in dir_names if d != "scripts" and d[0] not in "._"]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(filename)[1] in (".py", ".ipynb"):
yield os.path.join(dir_path, filename).lstrip("./") | scripts |
def md_prefix(i):
return f"{i * ' '}*" if i else "\n##" | scripts |
def print_path(old_path: str, new_path: str) -> str:
old_parts = old_path.split(os.sep)
for i, new_part in enumerate(new_path.split(os.sep)):
if (i + 1 > len(old_parts) or old_parts[i] != new_part) and new_part:
print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}")
return new_path | scripts |
def print_directory_md(top_dir: str = ".") -> None:
old_path = ""
for filepath in sorted(good_file_paths(top_dir)):
filepath, filename = os.path.split(filepath)
if filepath != old_path:
old_path = print_path(old_path, filepath)
indent = (filepath.count(os.sep) + 1) if filepath else 0
url = "/".join((filepath, filename)).replace(" ", "%20")
filename = os.path.splitext(filename.replace("_", " ").title())[0]
print(f"{md_prefix(indent)} [{filename}]({url})") | scripts |
def convert_path_to_module(file_path: pathlib.Path) -> ModuleType:
solution_file_paths = []
for problem_dir_path in PROJECT_EULER_DIR_PATH.iterdir():
if problem_dir_path.is_file() or problem_dir_path.name.startswith("_"):
continue
for file_path in problem_dir_path.iterdir():
if file_path.suffix != ".py" or file_path.name.startswith(("_", "test")):
continue
solution_file_paths.append(file_path)
return solution_file_paths | scripts |
def read_file_binary(file_path: str) -> str:
result = ""
try:
with open(file_path, "rb") as binary_file:
data = binary_file.read()
for dat in data:
curr_byte = f"{dat:08b}"
result += curr_byte
return result
except OSError:
print("File not accessible")
sys.exit() | compression |
def add_key_to_lexicon(
lexicon: dict[str, str], curr_string: str, index: int, last_match_id: str
) -> None:
lexicon.pop(curr_string)
lexicon[curr_string + "0"] = last_match_id
if math.log2(index).is_integer():
for curr_key in lexicon:
lexicon[curr_key] = "0" + lexicon[curr_key]
lexicon[curr_string + "1"] = bin(index)[2:] | compression |
def compress_data(data_bits: str) -> str:
lexicon = {"0": "0", "1": "1"}
result, curr_string = "", ""
index = len(lexicon)
for i in range(len(data_bits)):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
last_match_id = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(lexicon, curr_string, index, last_match_id)
index += 1
curr_string = ""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
last_match_id = lexicon[curr_string]
result += last_match_id
return result | compression |
def add_file_length(source_path: str, compressed: str) -> str:
file_length = os.path.getsize(source_path)
file_length_binary = bin(file_length)[2:]
length_length = len(file_length_binary)
return "0" * (length_length - 1) + file_length_binary + compressed | compression |
def write_file_binary(file_path: str, to_write: str) -> None:
byte_length = 8
try:
with open(file_path, "wb") as opened_file:
result_byte_array = [
to_write[i : i + byte_length]
for i in range(0, len(to_write), byte_length)
]
if len(result_byte_array[-1]) % byte_length == 0:
result_byte_array.append("10000000")
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1]) - 1
)
for elem in result_byte_array:
opened_file.write(int(elem, 2).to_bytes(1, byteorder="big"))
except OSError:
print("File not accessible")
sys.exit() | compression |
def compress(source_path: str, destination_path: str) -> None:
data_bits = read_file_binary(source_path)
compressed = compress_data(data_bits)
compressed = add_file_length(source_path, compressed)
write_file_binary(destination_path, compressed) | compression |
def run_length_encode(text: str) -> list:
encoded = []
count = 1
for i in range(len(text)):
if i + 1 < len(text) and text[i] == text[i + 1]:
count += 1
else:
encoded.append((text[i], count))
count = 1
return encoded | compression |
def run_length_decode(encoded: list) -> str:
return "".join(char * length for char, length in encoded) | compression |
def peak_signal_to_noise_ratio(original: float, contrast: float) -> float:
mse = np.mean((original - contrast) ** 2)
if mse == 0:
return 100
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) | compression |
def main() -> None:
dir_path = os.path.dirname(os.path.realpath(__file__))
# Loading images (original image and compressed image)
original = cv2.imread(os.path.join(dir_path, "image_data/original_image.png"))
contrast = cv2.imread(os.path.join(dir_path, "image_data/compressed_image.png"), 1)
original2 = cv2.imread(os.path.join(dir_path, "image_data/PSNR-example-base.png"))
contrast2 = cv2.imread(
os.path.join(dir_path, "image_data/PSNR-example-comp-10.jpg"), 1
)
# Value expected: 29.73dB
print("-- First Test --")
print(f"PSNR value is {peak_signal_to_noise_ratio(original, contrast)} dB")
# # Value expected: 31.53dB (Wikipedia Example)
print("\n-- Second Test --")
print(f"PSNR value is {peak_signal_to_noise_ratio(original2, contrast2)} dB") | compression |
def read_file_binary(file_path: str) -> str:
result = ""
try:
with open(file_path, "rb") as binary_file:
data = binary_file.read()
for dat in data:
curr_byte = f"{dat:08b}"
result += curr_byte
return result
except OSError:
print("File not accessible")
sys.exit() | compression |
def decompress_data(data_bits: str) -> str:
lexicon = {"0": "0", "1": "1"}
result, curr_string = "", ""
index = len(lexicon)
for i in range(len(data_bits)):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
last_match_id = lexicon[curr_string]
result += last_match_id
lexicon[curr_string] = last_match_id + "0"
if math.log2(index).is_integer():
new_lex = {}
for curr_key in list(lexicon):
new_lex["0" + curr_key] = lexicon.pop(curr_key)
lexicon = new_lex
lexicon[bin(index)[2:]] = last_match_id + "1"
index += 1
curr_string = ""
return result | compression |
def write_file_binary(file_path: str, to_write: str) -> None:
byte_length = 8
try:
with open(file_path, "wb") as opened_file:
result_byte_array = [
to_write[i : i + byte_length]
for i in range(0, len(to_write), byte_length)
]
if len(result_byte_array[-1]) % byte_length == 0:
result_byte_array.append("10000000")
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1]) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(elem, 2).to_bytes(1, byteorder="big"))
except OSError:
print("File not accessible")
sys.exit() | compression |
def remove_prefix(data_bits: str) -> str:
counter = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
data_bits = data_bits[counter:]
data_bits = data_bits[counter + 1 :]
return data_bits | compression |
def compress(source_path: str, destination_path: str) -> None:
data_bits = read_file_binary(source_path)
data_bits = remove_prefix(data_bits)
decompressed = decompress_data(data_bits)
write_file_binary(destination_path, decompressed) | compression |
def all_rotations(s: str) -> list[str]:
if not isinstance(s, str):
raise TypeError("The parameter s type must be str.")
return [s[i:] + s[:i] for i in range(len(s))] | compression |
def bwt_transform(s: str) -> BWTTransformDict:
if not isinstance(s, str):
raise TypeError("The parameter s type must be str.")
if not s:
raise ValueError("The parameter s must not be empty.")
rotations = all_rotations(s)
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
response: BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations]),
"idx_original_string": rotations.index(s),
}
return response | compression |
def reverse_bwt(bwt_string: str, idx_original_string: int) -> str:
if not isinstance(bwt_string, str):
raise TypeError("The parameter bwt_string type must be str.")
if not bwt_string:
raise ValueError("The parameter bwt_string must not be empty.")
try:
idx_original_string = int(idx_original_string)
except ValueError:
raise TypeError(
"The parameter idx_original_string type must be int or passive"
" of cast to int."
)
if idx_original_string < 0:
raise ValueError("The parameter idx_original_string must not be lower than 0.")
if idx_original_string >= len(bwt_string):
raise ValueError(
"The parameter idx_original_string must be lower than" " len(bwt_string)."
)
ordered_rotations = [""] * len(bwt_string)
for _ in range(len(bwt_string)):
for i in range(len(bwt_string)):
ordered_rotations[i] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string] | compression |
def __init__(self, letter: str, freq: int):
self.letter: str = letter
self.freq: int = freq
self.bitstring: dict[str, str] = {} | compression |
def __repr__(self) -> str:
return f"{self.letter}:{self.freq}" | compression |
def __init__(self, freq: int, left: Letter | TreeNode, right: Letter | TreeNode):
self.freq: int = freq
self.left: Letter | TreeNode = left
self.right: Letter | TreeNode = right | compression |
def parse_file(file_path: str) -> list[Letter]:
chars: dict[str, int] = {}
with open(file_path) as f:
while True:
c = f.read(1)
if not c:
break
chars[c] = chars[c] + 1 if c in chars else 1
return sorted((Letter(c, f) for c, f in chars.items()), key=lambda x: x.freq) | compression |
def build_tree(letters: list[Letter]) -> Letter | TreeNode:
response: list[Letter | TreeNode] = letters # type: ignore
while len(response) > 1:
left = response.pop(0)
right = response.pop(0)
total_freq = left.freq + right.freq
node = TreeNode(total_freq, left, right)
response.append(node)
response.sort(key=lambda x: x.freq)
return response[0] | compression |
def traverse_tree(root: Letter | TreeNode, bitstring: str) -> list[Letter]:
if isinstance(root, Letter):
root.bitstring[root.letter] = bitstring
return [root]
treenode: TreeNode = root # type: ignore
letters = []
letters += traverse_tree(treenode.left, bitstring + "0")
letters += traverse_tree(treenode.right, bitstring + "1")
return letters | compression |
def huffman(file_path: str) -> None:
letters_list = parse_file(file_path)
root = build_tree(letters_list)
letters = {
k: v for letter in traverse_tree(root, "") for k, v in letter.bitstring.items()
}
print(f"Huffman Coding of {file_path}: ")
with open(file_path) as f:
while True:
c = f.read(1)
if not c:
break
print(letters[c], end=" ")
print() | compression |
def __repr__(self) -> str:
return f"({self.offset}, {self.length}, {self.indicator})" | compression |
def __init__(self, window_size: int = 13, lookahead_buffer_size: int = 6) -> None:
self.window_size = window_size
self.lookahead_buffer_size = lookahead_buffer_size
self.search_buffer_size = self.window_size - self.lookahead_buffer_size | compression |
def compress(self, text: str) -> list[Token]:
output = []
search_buffer = ""
# while there are still characters in text to compress
while text:
# find the next encoding phrase
# - triplet with offset, length, indicator (the next encoding character)
token = self._find_encoding_token(text, search_buffer)
# update the search buffer:
# - add new characters from text into it
# - check if size exceed the max search buffer size, if so, drop the
# oldest elements
search_buffer += text[: token.length + 1]
if len(search_buffer) > self.search_buffer_size:
search_buffer = search_buffer[-self.search_buffer_size :]
# update the text
text = text[token.length + 1 :]
# append the token to output
output.append(token)
return output | compression |
def decompress(self, tokens: list[Token]) -> str:
output = ""
for token in tokens:
for _ in range(token.length):
output += output[-token.offset]
output += token.indicator
return output | compression |
def _find_encoding_token(self, text: str, search_buffer: str) -> Token:
if not text:
raise ValueError("We need some text to work with.")
# Initialise result parameters to default values
length, offset = 0, 0
if not search_buffer:
return Token(offset, length, text[length])
for i, character in enumerate(search_buffer):
found_offset = len(search_buffer) - i
if character == text[0]:
found_length = self._match_length_from_index(text, search_buffer, 0, i)
# if the found length is bigger than the current or if it's equal,
# which means it's offset is smaller: update offset and length
if found_length >= length:
offset, length = found_offset, found_length
return Token(offset, length, text[length]) | compression |
def _match_length_from_index(
self, text: str, window: str, text_index: int, window_index: int
) -> int:
if not text or text[text_index] != window[window_index]:
return 0
return 1 + self._match_length_from_index(
text, window + text[text_index], text_index + 1, window_index + 1
) | compression |
Subsets and Splits