function
stringlengths
18
3.86k
intent_category
stringlengths
5
24
def allocation_num(number_of_bytes: int, partitions: int) -> list[str]: if partitions <= 0: raise ValueError("partitions must be a positive number!") if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!") bytes_per_partition = number_of_bytes // partitions allocation_list = [] for i in range(partitions): start_bytes = i * bytes_per_partition + 1 end_bytes = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}") return allocation_list
maths
def sylvester(number: int) -> int: assert isinstance(number, int), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: raise ValueError(f"The input value of [n={number}] has to be > 0") else: num = sylvester(number - 1) lower = num - 1 upper = num return lower * upper + 1
maths
def median_of_two_arrays(nums1: list[float], nums2: list[float]) -> float: all_numbers = sorted(nums1 + nums2) div, mod = divmod(len(all_numbers), 2) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2
maths
def hamming(n_element: int) -> list: n_element = int(n_element) if n_element < 1: my_error = ValueError("a should be a positive number") raise my_error hamming_list = [1] i, j, k = (0, 0, 0) index = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2, hamming_list[j] * 3, hamming_list[k] * 5) ) index += 1 return hamming_list
maths
def euler_modified( ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float ) -> np.array: n = int(np.ceil((x_end - x0) / step_size)) y = np.zeros((n + 1,)) y[0] = y0 x = x0 for k in range(n): y_get = y[k] + step_size * ode_func(x, y[k]) y[k + 1] = y[k] + ( (step_size / 2) * (ode_func(x, y[k]) + ode_func(x + step_size, y_get)) ) x += step_size return y
maths
def vol_cube(side_length: int | float) -> float: if side_length < 0: raise ValueError("vol_cube() only accepts non-negative values") return pow(side_length, 3)
maths
def vol_spherical_cap(height: float, radius: float) -> float: if height < 0 or radius < 0: raise ValueError("vol_spherical_cap() only accepts non-negative values") # Volume is 1/3 pi * height squared * (3 * radius - height) return 1 / 3 * pi * pow(height, 2) * (3 * radius - height)
maths
def vol_spheres_intersect( radius_1: float, radius_2: float, centers_distance: float ) -> float: if radius_1 < 0 or radius_2 < 0 or centers_distance < 0: raise ValueError("vol_spheres_intersect() only accepts non-negative values") if centers_distance == 0: return vol_sphere(min(radius_1, radius_2)) h1 = ( (radius_1 - radius_2 + centers_distance) * (radius_1 + radius_2 - centers_distance) / (2 * centers_distance) ) h2 = ( (radius_2 - radius_1 + centers_distance) * (radius_2 + radius_1 - centers_distance) / (2 * centers_distance) ) return vol_spherical_cap(h1, radius_2) + vol_spherical_cap(h2, radius_1)
maths
def vol_spheres_union( radius_1: float, radius_2: float, centers_distance: float ) -> float: if radius_1 <= 0 or radius_2 <= 0 or centers_distance < 0: raise ValueError( "vol_spheres_union() only accepts non-negative values, non-zero radius" ) if centers_distance == 0: return vol_sphere(max(radius_1, radius_2)) return ( vol_sphere(radius_1) + vol_sphere(radius_2) - vol_spheres_intersect(radius_1, radius_2, centers_distance) )
maths
def vol_cuboid(width: float, height: float, length: float) -> float: if width < 0 or height < 0 or length < 0: raise ValueError("vol_cuboid() only accepts non-negative values") return float(width * height * length)
maths
def vol_cone(area_of_base: float, height: float) -> float: if height < 0 or area_of_base < 0: raise ValueError("vol_cone() only accepts non-negative values") return area_of_base * height / 3.0
maths
def vol_right_circ_cone(radius: float, height: float) -> float: if height < 0 or radius < 0: raise ValueError("vol_right_circ_cone() only accepts non-negative values") return pi * pow(radius, 2) * height / 3.0
maths
def vol_prism(area_of_base: float, height: float) -> float: if height < 0 or area_of_base < 0: raise ValueError("vol_prism() only accepts non-negative values") return float(area_of_base * height)
maths
def vol_pyramid(area_of_base: float, height: float) -> float: if height < 0 or area_of_base < 0: raise ValueError("vol_pyramid() only accepts non-negative values") return area_of_base * height / 3.0
maths
def vol_sphere(radius: float) -> float: if radius < 0: raise ValueError("vol_sphere() only accepts non-negative values") # Volume is 4/3 * pi * radius cubed return 4 / 3 * pi * pow(radius, 3)
maths
def vol_hemisphere(radius: float) -> float: if radius < 0: raise ValueError("vol_hemisphere() only accepts non-negative values") # Volume is radius cubed * pi * 2/3 return pow(radius, 3) * pi * 2 / 3
maths
def vol_circular_cylinder(radius: float, height: float) -> float: if height < 0 or radius < 0: raise ValueError("vol_circular_cylinder() only accepts non-negative values") # Volume is radius squared * height * pi return pow(radius, 2) * height * pi
maths
def vol_hollow_circular_cylinder( inner_radius: float, outer_radius: float, height: float ) -> float: # Volume - (outer_radius squared - inner_radius squared) * pi * height if inner_radius < 0 or outer_radius < 0 or height < 0: raise ValueError( "vol_hollow_circular_cylinder() only accepts non-negative values" ) if outer_radius <= inner_radius: raise ValueError("outer_radius must be greater than inner_radius") return pi * (pow(outer_radius, 2) - pow(inner_radius, 2)) * height
maths
def vol_conical_frustum(height: float, radius_1: float, radius_2: float) -> float: # Volume is 1/3 * pi * height * # (radius_1 squared + radius_2 squared + radius_1 * radius_2) if radius_1 < 0 or radius_2 < 0 or height < 0: raise ValueError("vol_conical_frustum() only accepts non-negative values") return ( 1 / 3 * pi * height * (pow(radius_1, 2) + pow(radius_2, 2) + radius_1 * radius_2) )
maths
def vol_torus(torus_radius: float, tube_radius: float) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError("vol_torus() only accepts non-negative values") return 2 * pow(pi, 2) * torus_radius * pow(tube_radius, 2)
maths
def least_common_multiple_slow(first_num: int, second_num: int) -> int: max_num = first_num if first_num >= second_num else second_num common_mult = max_num while (common_mult % first_num > 0) or (common_mult % second_num > 0): common_mult += max_num return common_mult
maths
def greatest_common_divisor(a: int, b: int) -> int: return b if a == 0 else greatest_common_divisor(b % a, a)
maths
def least_common_multiple_fast(first_num: int, second_num: int) -> int: return first_num // greatest_common_divisor(first_num, second_num) * second_num
maths
def benchmark(): setup = ( "from __main__ import least_common_multiple_slow, least_common_multiple_fast" ) print( "least_common_multiple_slow():", timeit("least_common_multiple_slow(1000, 999)", setup=setup), ) print( "least_common_multiple_fast():", timeit("least_common_multiple_fast(1000, 999)", setup=setup), )
maths
def test_lcm_function(self): for i, (first_num, second_num) in enumerate(self.test_inputs): slow_result = least_common_multiple_slow(first_num, second_num) fast_result = least_common_multiple_fast(first_num, second_num) with self.subTest(i=i): self.assertEqual(slow_result, self.expected_results[i]) self.assertEqual(fast_result, self.expected_results[i])
maths
def find_max(nums: list[int | float], left: int, right: int) -> int | float: if len(nums) == 0: raise ValueError("find_max() arg is an empty sequence") if ( left >= len(nums) or left < -len(nums) or right >= len(nums) or right < -len(nums) ): raise IndexError("list index out of range") if left == right: return nums[left] mid = (left + right) >> 1 # the middle left_max = find_max(nums, left, mid) # find max in range[left, mid] right_max = find_max(nums, mid + 1, right) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max
maths
def prime_factors(n: int) -> list[int]: i = 2 factors = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(i) if n > 1: factors.append(n) return factors
maths
def method_2(boundary, steps): # "Simpson Rule" # int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn) h = (boundary[1] - boundary[0]) / steps a = boundary[0] b = boundary[1] x_i = make_points(a, b, h) y = 0.0 y += (h / 3.0) * f(a) cnt = 2 for i in x_i: y += (h / 3) * (4 - 2 * (cnt % 2)) * f(i) cnt += 1 y += (h / 3.0) * f(b) return y
maths
def make_points(a, b, h): x = a + h while x < (b - h): yield x x = x + h
maths
def f(x): # enter your function here y = (x - 0) * (x - 0) return y
maths
def main(): a = 0.0 # Lower bound of integration b = 1.0 # Upper bound of integration steps = 10.0 # define number of steps or resolution boundary = [a, b] # define boundary of integration y = method_2(boundary, steps) print(f"y = {y}")
maths
def two_pointer(nums: list[int], target: int) -> list[int]: i = 0 j = len(nums) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: i = i + 1 else: j = j - 1 return []
maths
def find_min(nums: list[int | float], left: int, right: int) -> int | float: if len(nums) == 0: raise ValueError("find_min() arg is an empty sequence") if ( left >= len(nums) or left < -len(nums) or right >= len(nums) or right < -len(nums) ): raise IndexError("list index out of range") if left == right: return nums[left] mid = (left + right) >> 1 # the middle left_min = find_min(nums, left, mid) # find min in range[left, mid] right_min = find_min(nums, mid + 1, right) # find min in range[mid + 1, right] return left_min if left_min <= right_min else right_min
maths
def calc_derivative(f, a, h=0.001): return (f(a + h) - f(a - h)) / (2 * h)
maths
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=False): a = x0 # set the initial guess steps = [a] error = abs(f(a)) f1 = lambda x: calc_derivative(f, x, h=step) # noqa: E731 Derivative of f(x) for _ in range(maxiter): if f1(a) == 0: raise ValueError("No converging solution found") a = a - f(a) / f1(a) # Calculate the next estimate if logsteps: steps.append(a) if error < maxerror: break else: raise ValueError("Iteration limit reached, no converging solution found") if logsteps: # If logstep is true, then log intermediate steps return a, error, steps return a, error
maths
def hexagonal(number: int) -> int: if not isinstance(number, int): raise TypeError(f"Input value of [number={number}] must be an integer") if number < 1: raise ValueError("Input must be a positive integer") return number * (2 * number - 1)
maths
def find_min(nums: list[int | float]) -> int | float: if len(nums) == 0: raise ValueError("find_min() arg is an empty sequence") min_num = nums[0] for num in nums: min_num = min(min_num, num) return min_num
maths
def method_1(boundary, steps): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) h = (boundary[1] - boundary[0]) / steps a = boundary[0] b = boundary[1] x_i = make_points(a, b, h) y = 0.0 y += (h / 2.0) * f(a) for i in x_i: # print(i) y += h * f(i) y += (h / 2.0) * f(b) return y
maths
def make_points(a, b, h): x = a + h while x < (b - h): yield x x = x + h
maths
def f(x): # enter your function here y = (x - 0) * (x - 0) return y
maths
def main(): a = 0.0 # Lower bound of integration b = 1.0 # Upper bound of integration steps = 10.0 # define number of steps or resolution boundary = [a, b] # define boundary of integration y = method_1(boundary, steps) print(f"y = {y}")
maths
def decimal_isolate(number: float, digit_amount: int) -> float: if digit_amount > 0: return round(number - int(number), digit_amount) return number - int(number)
maths
def b_expo(a, b): res = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res
maths
def is_pronic(number: int) -> bool: if not isinstance(number, int): raise TypeError(f"Input value of [number={number}] must be an integer") if number < 0 or number % 2 == 1: return False number_sqrt = int(number**0.5) return number == number_sqrt * (number_sqrt + 1)
maths
def armstrong_number(n: int) -> bool: if not isinstance(n, int) or n < 1: return False # Initialization of sum and number of digits. total = 0 number_of_digits = 0 temp = n # Calculation of digits of the number while temp > 0: number_of_digits += 1 temp //= 10 # Dividing number into separate digits and find Armstrong number temp = n while temp > 0: rem = temp % 10 total += rem**number_of_digits temp //= 10 return n == total
maths
def pluperfect_number(n: int) -> bool: if not isinstance(n, int) or n < 1: return False # Init a "histogram" of the digits digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] digit_total = 0 total = 0 temp = n while temp > 0: temp, rem = divmod(temp, 10) digit_histogram[rem] += 1 digit_total += 1 for cnt, i in zip(digit_histogram, range(len(digit_histogram))): total += cnt * i**digit_total return n == total
maths
def narcissistic_number(n: int) -> bool: if not isinstance(n, int) or n < 1: return False expo = len(str(n)) # the power that all digits will be raised to # check if sum of each digit multiplied expo times is equal to number return n == sum(int(i) ** expo for i in str(n))
maths
def main(): num = int(input("Enter an integer to see if it is an Armstrong number: ").strip()) print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.")
maths
def rand_fn(value: int, step: int, modulus: int) -> int: return (pow(value, 2) + step) % modulus
maths
def b_expo(a, b): res = 1 while b > 0: if b & 1: res *= a a *= a b >>= 1 return res
maths
def relu(vector: list[float]): # compare two arrays and then return element-wise maxima. return np.maximum(0, vector)
maths
def sock_merchant(colors: list[int]) -> int: return sum(socks_by_color // 2 for socks_by_color in Counter(colors).values())
maths
def __init__(self, x: float, y: float) -> None: self.x = x self.y = y
maths
def is_in_unit_circle(self) -> bool: return (self.x**2 + self.y**2) <= 1
maths
def random_unit_square(cls): return cls(x=random.random(), y=random.random())
maths
def estimate_pi(number_of_simulations: int) -> float: if number_of_simulations < 1: raise ValueError("At least one simulation is necessary to estimate PI.") number_in_unit_circle = 0 for _ in range(number_of_simulations): random_point = Point.random_unit_square() if random_point.is_in_unit_circle(): number_in_unit_circle += 1 return 4 * number_in_unit_circle / number_of_simulations
maths
def totient(n: int) -> list: is_prime = [True for i in range(n + 1)] totients = [i - 1 for i in range(n + 1)] primes = [] for i in range(2, n + 1): if is_prime[i]: primes.append(i) for j in range(0, len(primes)): if i * primes[j] >= n: break is_prime[i * primes[j]] = False if i % primes[j] == 0: totients[i * primes[j]] = totients[i] * primes[j] break totients[i * primes[j]] = totients[i] * (primes[j] - 1) return totients
maths
def test_totient() -> None: pass
maths
def factorial(number: int) -> int: if number != int(number): raise ValueError("factorial() only accepts integral values") if number < 0: raise ValueError("factorial() not defined for negative values") value = 1 for i in range(1, number + 1): value *= i return value
maths
def factorial_recursive(n: int) -> int: if not isinstance(n, int): raise ValueError("factorial() only accepts integral values") if n < 0: raise ValueError("factorial() not defined for negative values") return 1 if n == 0 or n == 1 else n * factorial(n - 1)
maths
def fx(x: float, a: float) -> float: return math.pow(x, 2) - a
maths
def fx_derivative(x: float) -> float: return 2 * x
maths
def get_initial_point(a: float) -> float: start = 2.0 while start <= a: start = math.pow(start, 2) return start
maths
def square_root_iterative( a: float, max_iter: int = 9999, tolerance: float = 0.00000000000001 ) -> float: if a < 0: raise ValueError("math domain error") value = get_initial_point(a) for _ in range(max_iter): prev_value = value value = value - fx(value, a) / fx_derivative(value) if abs(prev_value - value) < tolerance: return value return value
maths
def kth_permutation(k, n): # Factorails from 1! to (n-1)! factorials = [1] for i in range(2, n): factorials.append(factorials[-1] * i) assert 0 <= k < factorials[-1] * n, "k out of bounds" permutation = [] elements = list(range(n)) # Find permutation while factorials: factorial = factorials.pop() number, k = divmod(k, factorial) permutation.append(elements[number]) elements.remove(elements[number]) permutation.append(elements[0]) return permutation
maths
def double_factorial(num: int) -> int: if not isinstance(num, int): raise ValueError("double_factorial() only accepts integral values") if num < 0: raise ValueError("double_factorial() not defined for negative values") value = 1 for i in range(num, 0, -2): value *= i return value
maths
def line_length( fnc: Callable[[int | float], int | float], x_start: int | float, x_end: int | float, steps: int = 100, ) -> float: x1 = x_start fx1 = fnc(x_start) length = 0.0 for _ in range(steps): # Approximates curve as a sequence of linear lines and sums their length x2 = (x_end - x_start) / steps + x1 fx2 = fnc(x2) length += math.hypot(x2 - x1, fx2 - fx1) # Increment step x1 = x2 fx1 = fx2 return length
maths
def f(x): return math.sin(10 * x)
maths
def pi(precision: int) -> str: if not isinstance(precision, int): raise TypeError("Undefined for non-integers") elif precision < 1: raise ValueError("Undefined for non-natural numbers") getcontext().prec = precision num_iterations = ceil(precision / 14) constant_term = 426880 * Decimal(10005).sqrt() exponential_term = 1 linear_term = 13591409 partial_sum = Decimal(linear_term) for k in range(1, num_iterations): multinomial_term = factorial(6 * k) // (factorial(3 * k) * factorial(k) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term) / exponential_term return str(constant_term / partial_sum)[:-1]
maths
def slow_primes(max_n: int) -> Generator[int, None, None]: numbers: Generator = (i for i in range(1, (max_n + 1))) for i in (n for n in numbers if n > 1): for j in range(2, i): if (i % j) == 0: break else: yield i
maths
def primes(max_n: int) -> Generator[int, None, None]: numbers: Generator = (i for i in range(1, (max_n + 1))) for i in (n for n in numbers if n > 1): # only need to check for factors up to sqrt(i) bound = int(math.sqrt(i)) + 1 for j in range(2, bound): if (i % j) == 0: break else: yield i
maths
def fast_primes(max_n: int) -> Generator[int, None, None]: numbers: Generator = (i for i in range(1, (max_n + 1), 2)) # It's useless to test even numbers as they will not be prime if max_n > 2: yield 2 # Because 2 will not be tested, it's necessary to yield it now for i in (n for n in numbers if n > 1): bound = int(math.sqrt(i)) + 1 for j in range(3, bound, 2): # As we removed the even numbers, we don't need them now if (i % j) == 0: break else: yield i
maths
def benchmark(): from timeit import timeit setup = "from __main__ import slow_primes, primes, fast_primes" print(timeit("slow_primes(1_000_000_000_000)", setup=setup, number=1_000_000)) print(timeit("primes(1_000_000_000_000)", setup=setup, number=1_000_000)) print(timeit("fast_primes(1_000_000_000_000)", setup=setup, number=1_000_000))
maths
def check_polygon(nums: list[float]) -> bool: if len(nums) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space") if any(i <= 0 for i in nums): raise ValueError("All values must be greater than 0") copy_nums = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1])
maths
def sum_of_harmonic_progression( first_term: float, common_difference: float, number_of_terms: int ) -> float: arithmetic_progression = [1 / first_term] first_term = 1 / first_term for _ in range(number_of_terms - 1): first_term += common_difference arithmetic_progression.append(first_term) harmonic_series = [1 / step for step in arithmetic_progression] return sum(harmonic_series)
maths
def binomial_coefficient(n, r): c = [0 for i in range(r + 1)] # nc0 = 1 c[0] = 1 for i in range(1, n + 1): # to compute current row from previous row. j = min(i, r) while j > 0: c[j] += c[j - 1] j -= 1 return c[r]
maths
def create_vector(end_point1: Point3d, end_point2: Point3d) -> Vector3d: x = end_point2[0] - end_point1[0] y = end_point2[1] - end_point1[1] z = end_point2[2] - end_point1[2] return (x, y, z)
maths
def get_3d_vectors_cross(ab: Vector3d, ac: Vector3d) -> Vector3d: x = ab[1] * ac[2] - ab[2] * ac[1] # *i y = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j z = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z)
maths
def is_zero_vector(vector: Vector3d, accuracy: int) -> bool: return tuple(round(x, accuracy) for x in vector) == (0, 0, 0)
maths
def factorial(digit: int) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1))
maths
def krishnamurthy(number: int) -> bool: fact_sum = 0 duplicate = number while duplicate > 0: duplicate, digit = divmod(duplicate, 10) fact_sum += factorial(digit) return fact_sum == number
maths
def gcd(a: int, b: int) -> int: if a < b: return gcd(b, a) if a % b == 0: return b return gcd(b, a % b)
maths
def power(x: int, y: int, mod: int) -> int: if y == 0: return 1 temp = power(x, y // 2, mod) % mod temp = (temp * temp) % mod if y % 2 == 1: temp = (temp * x) % mod return temp
maths
def is_carmichael_number(n: int) -> bool: b = 2 while b < n: if gcd(b, n) == 1 and power(b, n - 1, n) != 1: return False b += 1 return True
maths
def exact_prime_factor_count(n): count = 0 if n % 2 == 0: count += 1 while n % 2 == 0: n = int(n / 2) # the n input value must be odd so that # we can skip one element (ie i += 2) i = 3 while i <= int(math.sqrt(n)): if n % i == 0: count += 1 while n % i == 0: n = int(n / i) i = i + 2 # this condition checks the prime # number n is greater than 2 if n > 2: count += 1 return count
maths
def prime_sieve_eratosthenes(num: int) -> list[int]: if num <= 0: raise ValueError("Input must be a positive integer") primes = [True] * (num + 1) p = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, p): primes[i] = False p += 1 return [prime for prime in range(2, num + 1) if primes[prime]]
maths
def trapezoidal_area( fnc: Callable[[int | float], int | float], x_start: int | float, x_end: int | float, steps: int = 100, ) -> float: x1 = x_start fx1 = fnc(x_start) area = 0.0 for _ in range(steps): # Approximates small segments of curve as linear and solve # for trapezoidal area x2 = (x_end - x_start) / steps + x1 fx2 = fnc(x2) area += abs(fx2 + fx1) * (x2 - x1) / 2 # Increment step x1 = x2 fx1 = fx2 return area
maths
def f(x): return x**3 + x**2
maths
def dodecahedron_surface_area(edge: float) -> float: if edge <= 0 or not isinstance(edge, int): raise ValueError("Length must be a positive.") return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2)
maths
def dodecahedron_volume(edge: float) -> float: if edge <= 0 or not isinstance(edge, int): raise ValueError("Length must be a positive.") return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3)
maths
def euclidean_distance(vector_1: Vector, vector_2: Vector) -> VectorOut: return np.sqrt(np.sum((np.asarray(vector_1) - np.asarray(vector_2)) ** 2))
maths
def euclidean_distance_no_np(vector_1: Vector, vector_2: Vector) -> VectorOut: return sum((v1 - v2) ** 2 for v1, v2 in zip(vector_1, vector_2)) ** (1 / 2)
maths
def benchmark() -> None: from timeit import timeit print("Without Numpy") print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])", number=10000, globals=globals(), ) ) print("With Numpy") print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])", number=10000, globals=globals(), ) )
maths
def perfect_square(num: int) -> bool: return math.sqrt(num) * math.sqrt(num) == num
maths
def perfect_square_binary_search(n: int) -> bool: left = 0 right = n while left <= right: mid = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: right = mid - 1 else: left = mid + 1 return False
maths
def manhattan_distance(point_a: list, point_b: list) -> float: _validate_point(point_a) _validate_point(point_b) if len(point_a) != len(point_b): raise ValueError("Both points must be in the same n-dimensional space") return float(sum(abs(a - b) for a, b in zip(point_a, point_b)))
maths
def _validate_point(point: list[float]) -> None: if point: if isinstance(point, list): for item in point: if not isinstance(item, (int, float)): raise TypeError( f"Expected a list of numbers as input, " f"found {type(item).__name__}" ) else: raise TypeError( f"Expected a list of numbers as input, found {type(point).__name__}" ) else: raise ValueError("Missing an input")
maths
def manhattan_distance_one_liner(point_a: list, point_b: list) -> float: _validate_point(point_a) _validate_point(point_b) if len(point_a) != len(point_b): raise ValueError("Both points must be in the same n-dimensional space") return float(sum(abs(x - y) for x, y in zip(point_a, point_b)))
maths
def sigmoid(vector: np.array) -> np.array: return 1 / (1 + np.exp(-vector))
maths
def combinations(n: int, k: int) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k") return factorial(n) // (factorial(k) * factorial(n - k))
maths