file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.Seq.Base.fst
FStar.Seq.Base.init_aux_ghost'
val init_aux_ghost' (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> GTot a)) : GTot (seq a) (decreases (len - k))
val init_aux_ghost' (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> GTot a)) : GTot (seq a) (decreases (len - k))
let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 60, "start_col": 8, "start_line": 55 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> k: Prims.nat{k < len} -> contents: (i: Prims.nat{i < len} -> Prims.GTot a) -> Prims.GTot (FStar.Seq.Base.seq a)
Prims.GTot
[ "sometrivial", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.Seq.Base.MkSeq", "Prims.Cons", "Prims.Nil", "Prims.bool", "FStar.Seq.Base._cons", "FStar.Seq.Base.init_aux_ghost'", "FStar.Seq.Base.seq" ]
[ "recursion" ]
false
false
false
false
false
let rec init_aux_ghost' (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> GTot a)) : GTot (seq a) (decreases (len - k)) =
if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k + 1) contents)
false
FStar.Seq.Base.fst
FStar.Seq.Base.upd'
val upd' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) : Tot (seq a) (decreases (length s))
val upd' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) : Tot (seq a) (decreases (length s))
let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 73, "start_col": 8, "start_line": 70 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> n: Prims.nat{n < FStar.Seq.Base.length s} -> v: a -> Prims.Tot (FStar.Seq.Base.seq a)
Prims.Tot
[ "total", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base._cons", "FStar.Seq.Base.tl", "Prims.bool", "FStar.Seq.Base.hd", "FStar.Seq.Base.upd'", "Prims.op_Subtraction" ]
[ "recursion" ]
false
false
false
false
false
let rec upd' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) : Tot (seq a) (decreases (length s)) =
if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v)
false
FStar.Seq.Base.fst
FStar.Seq.Base.empty
val empty (#a:Type) : Tot (s:(seq a){length s=0})
val empty (#a:Type) : Tot (s:(seq a){length s=0})
let empty #_ = MkSeq []
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 66, "start_col": 0, "start_line": 66 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s = 0}
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.MkSeq", "Prims.Nil", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length" ]
[]
false
false
false
false
false
let empty #_ =
MkSeq []
false
FStar.Seq.Base.fst
FStar.Seq.Base.init_ghost
val init_ghost: #a:Type -> len:nat -> contents: (i:nat { i < len } -> GTot a) -> GTot (seq a)
val init_ghost: #a:Type -> len:nat -> contents: (i:nat { i < len } -> GTot a) -> GTot (seq a)
let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 92, "end_line": 64, "start_col": 0, "start_line": 64 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> contents: (i: Prims.nat{i < len} -> Prims.GTot a) -> Prims.GTot (FStar.Seq.Base.seq a)
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.MkSeq", "Prims.Nil", "Prims.bool", "FStar.Seq.Base.init_aux_ghost", "FStar.Seq.Base.seq" ]
[]
false
false
false
false
false
let init_ghost #_ len contents =
if len = 0 then MkSeq [] else init_aux_ghost len 0 contents
false
Pulse.C.Types.Union.fsti
Pulse.C.Types.Union.union_field1
val union_field1 (#tn #tf t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field))
val union_field1 (#tn #tf t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field))
let union_field1 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) = union_field0 t' r field td'
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Union.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 29, "end_line": 377, "start_col": 0, "start_line": 362 }
module Pulse.C.Types.Union open Pulse.Lib.Pervasives include Pulse.C.Types.Fields open Pulse.C.Typestring [@@noextract_to "krml"] // primitive val define_union0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot Type0 inline_for_extraction [@@noextract_to "krml"] let define_union (n: string) (#tf: Type0) (#tn: Type0) (#[solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot Type0 = define_union0 tn #tf n fields // To be extracted as: union t [@@noextract_to "krml"] // primitive val union_t0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot Type0 inline_for_extraction [@@noextract_to "krml"] let union_t (#tf: Type0) (n: string) (#tn: Type0) (# [solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot Type0 = union_t0 tn #tf n fields val union_set_field (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (f: field_t fields) (v: fields.fd_type f) : GTot (union_t0 tn n fields) val union_get_case (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (u: union_t0 tn n fields) : GTot (option (field_t fields)) val union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (u: union_t0 tn n fields) (field: field_t fields) : Ghost (fields.fd_type field) (requires (union_get_case u == Some field)) (ensures (fun _ -> True)) val union_get_field_same (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires (~ (v == unknown (fields.fd_typedef field)))) (ensures ( let u = union_set_field tn n fields field v in union_get_case u == Some field /\ union_get_field u field == v )) [SMTPatOr [ [SMTPat (union_get_case (union_set_field tn n fields field v))]; [SMTPat (union_get_field (union_set_field tn n fields field v) field)]; ]] val union_set_field_same (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( union_set_field tn n fields field (union_get_field s field) == s )) [SMTPat (union_set_field tn n fields (union_get_field s field))] [@@noextract_to "krml"] // proof-only val union0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot (typedef (union_t0 tn n fields)) inline_for_extraction [@@noextract_to "krml"; norm_field_attr] // proof-only let union (#tf: Type0) (n: string) (#tn: Type0) (# [solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot (typedef (union_t0 tn n fields)) = union0 tn #tf n fields val union_get_case_unknown (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Lemma (union_get_case (unknown (union0 tn n fields)) == None) [SMTPat (unknown (union0 tn n fields))] val union_set_field_unknown (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) : Lemma (union_set_field tn n fields field (unknown (fields.fd_typedef field)) == unknown (union0 tn n fields)) [SMTPat (union_set_field tn n fields field (unknown (fields.fd_typedef field)))] val union_get_case_uninitialized (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Lemma (union_get_case (uninitialized (union0 tn n fields)) == None) [SMTPat (uninitialized (union0 tn n fields))] val mk_fraction_union_get_case (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (p: perm) : Lemma (requires (fractionable (union0 tn n fields) s)) (ensures ( union_get_case (mk_fraction (union0 tn n fields) s p) == union_get_case s )) [SMTPat (union_get_case (mk_fraction (union0 tn n fields) s p))] val fractionable_union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( fractionable (union0 tn n fields) s <==> fractionable (fields.fd_typedef field) (union_get_field s field) )) [SMTPat (fractionable (union0 tn n fields) s); SMTPat (union_get_field s field)] val mk_fraction_union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (p: perm) (field: field_t fields) : Lemma (requires (fractionable (union0 tn n fields) s /\ union_get_case s == Some field)) (ensures (union_get_field (mk_fraction (union0 tn n fields) s p) field == mk_fraction (fields.fd_typedef field) (union_get_field s field) p)) [SMTPat (union_get_field (mk_fraction (union0 tn n fields) s p) field)] val mk_fraction_union_set_field (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) (p: perm) : Lemma (requires (fractionable (fields.fd_typedef field) v)) (ensures ( fractionable (union0 tn n fields) (union_set_field tn n fields field v) /\ mk_fraction (union0 tn n fields) (union_set_field tn n fields field v) p == union_set_field tn n fields field (mk_fraction (fields.fd_typedef field) v p) )) val full_union (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( full (union0 tn n fields) s <==> full (fields.fd_typedef field) (union_get_field s field) )) [SMTPat (full (union0 tn n fields) s); SMTPat (union_get_field s field)] let full_union_set_field_intro (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires (full (fields.fd_typedef field) v)) (ensures ( full (union0 tn n fields) (union_set_field tn n fields field v) )) = full_union (union_set_field tn n fields field v) field let full_union_set_field_elim (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires ( full (union0 tn n fields) (union_set_field tn n fields field v) )) (ensures ( full (fields.fd_typedef field) v )) = full_union (union_set_field tn n fields field v) field let full_union_set_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires True) (ensures ( full (union0 tn n fields) (union_set_field tn n fields field v) <==> full (fields.fd_typedef field) v )) [SMTPat (full (union0 tn n fields) (union_set_field tn n fields field v))] = Classical.move_requires (full_union_set_field_intro #tn #tf #n #fields field) v; Classical.move_requires (full_union_set_field_elim #tn #tf #n #fields field) v val has_union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : Tot vprop val has_union_field_prop (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r field r') (fun _ -> has_union_field r field r' ** pure ( t' == fields.fd_type field /\ td' == fields.fd_typedef field )) val has_union_field_dup (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r field r') (fun _ -> has_union_field r field r' ** has_union_field r field r') val has_union_field_inj (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t1: Type0) (#td1: typedef t1) (r1: ref td1) (#t2: Type0) (#td2: typedef t2) (r2: ref td2) : stt_ghost (squash (t1 == t2 /\ td1 == td2)) (has_union_field r field r1 ** has_union_field r field r2) (fun _ -> has_union_field r field r1 ** has_union_field r field r2 ** ref_equiv r1 (coerce_eq () r2)) val has_union_field_equiv_from (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r1 r2: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r1 field r' ** ref_equiv r1 r2) (fun _ -> has_union_field r2 field r' ** ref_equiv r1 r2) val has_union_field_equiv_to (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r1 r2: ref td') : stt_ghost unit (has_union_field r field r1 ** ref_equiv r1 r2) (fun _ -> has_union_field r field r2 ** ref_equiv r1 r2) val ghost_union_field_focus (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost (squash ( t' == fields.fd_type field /\ td' == fields.fd_typedef field )) (has_union_field r field r' ** pts_to r v) (fun _ -> has_union_field r field r' ** pts_to r' (Ghost.hide (coerce_eq () (union_get_field v field)))) val ghost_union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) : stt_ghost (Ghost.erased (ref (fields.fd_typedef field))) (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) [@@noextract_to "krml"] // primitive val union_field0 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t' { t' == fields.fd_type field /\ td' == fields.fd_typedef field }) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (Ghost.hide (coerce_eq () (union_get_field v field))))
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Fields.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Union.fsti" }
[ { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Fields", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t': Type0 -> r: Pulse.C.Types.Base.ref (Pulse.C.Types.Union.union0 tn n fields) -> field: Pulse.C.Types.Fields.field_t fields { Pulse.C.Types.Union.union_get_case (FStar.Ghost.reveal v) == FStar.Pervasives.Native.Some field } -> td': Pulse.C.Types.Base.typedef t' -> sq_t': Prims.squash (t' == Mkfield_description_t?.fd_type fields field) -> sq_td': Prims.squash (td' == Mkfield_description_t?.fd_typedef fields field) -> Pulse.Lib.Core.stt (Pulse.C.Types.Base.ref td') (Pulse.C.Types.Base.pts_to r v) (fun r' -> Pulse.C.Types.Union.has_union_field r field r' ** Pulse.C.Types.Base.pts_to r' (FStar.Ghost.hide (Pulse.C.Types.Union.union_get_field (FStar.Ghost.reveal v) field)))
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Pulse.C.Types.Fields.field_description_t", "FStar.Ghost.erased", "Pulse.C.Types.Union.union_t0", "Pulse.C.Types.Base.ref", "Pulse.C.Types.Union.union0", "Pulse.C.Types.Fields.field_t", "Prims.eq2", "FStar.Pervasives.Native.option", "Pulse.C.Types.Union.union_get_case", "FStar.Ghost.reveal", "FStar.Pervasives.Native.Some", "Pulse.C.Types.Base.typedef", "Prims.squash", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_type", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_typedef", "Pulse.C.Types.Union.union_field0", "Pulse.Lib.Core.stt", "Pulse.C.Types.Base.pts_to", "Pulse.Lib.Core.op_Star_Star", "Pulse.C.Types.Union.has_union_field", "FStar.Ghost.hide", "Pulse.C.Types.Union.union_get_field", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
false
let union_field1 (#tn #tf t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) =
union_field0 t' r field td'
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_init_aux_len
val lemma_init_aux_len (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) [SMTPat (length (init_aux n k contents))]
val lemma_init_aux_len (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) [SMTPat (length (init_aux n k contents))]
let lemma_init_aux_len = lemma_init_aux_len'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 103, "start_col": 0, "start_line": 103 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.nat{k < n} -> contents: (i: Prims.nat{i < n} -> a) -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.init_aux n k contents) = n - k) [SMTPat (FStar.Seq.Base.length (FStar.Seq.Base.init_aux n k contents))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.lemma_init_aux_len'" ]
[]
true
false
true
false
false
let lemma_init_aux_len =
lemma_init_aux_len'
false
Pulse.C.Types.Union.fsti
Pulse.C.Types.Union.union_switch_field
val union_switch_field: #tn: Type0 -> #tf: Type0 -> #n: string -> #fields: field_description_t tf -> #v: Ghost.erased (union_t0 tn n fields) -> r: ref (union0 tn n fields) -> field: field_t fields -> #t': Type0 -> #td': typedef t' -> (#[norm_fields ()] sq_t': squash (t' == fields.fd_type field)) -> (#[norm_fields ()] sq_td': squash (td' == fields.fd_typedef field)) -> Prims.unit -> stt (ref td') (pts_to r v ** pure (full (union0 tn n fields) v)) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td'))
val union_switch_field: #tn: Type0 -> #tf: Type0 -> #n: string -> #fields: field_description_t tf -> #v: Ghost.erased (union_t0 tn n fields) -> r: ref (union0 tn n fields) -> field: field_t fields -> #t': Type0 -> #td': typedef t' -> (#[norm_fields ()] sq_t': squash (t' == fields.fd_type field)) -> (#[norm_fields ()] sq_td': squash (td' == fields.fd_typedef field)) -> Prims.unit -> stt (ref td') (pts_to r v ** pure (full (union0 tn n fields) v)) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td'))
let union_switch_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (# [ norm_fields () ] sq_t': squash (t' == fields.fd_type field)) (# [ norm_fields () ] sq_td': squash (td' == fields.fd_typedef field)) () : stt (ref td') // need to write the pcm carrier value, so this cannot be Ghost or Atomic (pts_to r v ** pure ( full (union0 tn n fields) v )) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td')) = union_switch_field0 t' r field td'
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Union.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 7, "end_line": 515, "start_col": 0, "start_line": 493 }
module Pulse.C.Types.Union open Pulse.Lib.Pervasives include Pulse.C.Types.Fields open Pulse.C.Typestring [@@noextract_to "krml"] // primitive val define_union0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot Type0 inline_for_extraction [@@noextract_to "krml"] let define_union (n: string) (#tf: Type0) (#tn: Type0) (#[solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot Type0 = define_union0 tn #tf n fields // To be extracted as: union t [@@noextract_to "krml"] // primitive val union_t0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot Type0 inline_for_extraction [@@noextract_to "krml"] let union_t (#tf: Type0) (n: string) (#tn: Type0) (# [solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot Type0 = union_t0 tn #tf n fields val union_set_field (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (f: field_t fields) (v: fields.fd_type f) : GTot (union_t0 tn n fields) val union_get_case (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (u: union_t0 tn n fields) : GTot (option (field_t fields)) val union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (u: union_t0 tn n fields) (field: field_t fields) : Ghost (fields.fd_type field) (requires (union_get_case u == Some field)) (ensures (fun _ -> True)) val union_get_field_same (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires (~ (v == unknown (fields.fd_typedef field)))) (ensures ( let u = union_set_field tn n fields field v in union_get_case u == Some field /\ union_get_field u field == v )) [SMTPatOr [ [SMTPat (union_get_case (union_set_field tn n fields field v))]; [SMTPat (union_get_field (union_set_field tn n fields field v) field)]; ]] val union_set_field_same (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( union_set_field tn n fields field (union_get_field s field) == s )) [SMTPat (union_set_field tn n fields (union_get_field s field))] [@@noextract_to "krml"] // proof-only val union0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot (typedef (union_t0 tn n fields)) inline_for_extraction [@@noextract_to "krml"; norm_field_attr] // proof-only let union (#tf: Type0) (n: string) (#tn: Type0) (# [solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot (typedef (union_t0 tn n fields)) = union0 tn #tf n fields val union_get_case_unknown (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Lemma (union_get_case (unknown (union0 tn n fields)) == None) [SMTPat (unknown (union0 tn n fields))] val union_set_field_unknown (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) : Lemma (union_set_field tn n fields field (unknown (fields.fd_typedef field)) == unknown (union0 tn n fields)) [SMTPat (union_set_field tn n fields field (unknown (fields.fd_typedef field)))] val union_get_case_uninitialized (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Lemma (union_get_case (uninitialized (union0 tn n fields)) == None) [SMTPat (uninitialized (union0 tn n fields))] val mk_fraction_union_get_case (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (p: perm) : Lemma (requires (fractionable (union0 tn n fields) s)) (ensures ( union_get_case (mk_fraction (union0 tn n fields) s p) == union_get_case s )) [SMTPat (union_get_case (mk_fraction (union0 tn n fields) s p))] val fractionable_union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( fractionable (union0 tn n fields) s <==> fractionable (fields.fd_typedef field) (union_get_field s field) )) [SMTPat (fractionable (union0 tn n fields) s); SMTPat (union_get_field s field)] val mk_fraction_union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (p: perm) (field: field_t fields) : Lemma (requires (fractionable (union0 tn n fields) s /\ union_get_case s == Some field)) (ensures (union_get_field (mk_fraction (union0 tn n fields) s p) field == mk_fraction (fields.fd_typedef field) (union_get_field s field) p)) [SMTPat (union_get_field (mk_fraction (union0 tn n fields) s p) field)] val mk_fraction_union_set_field (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) (p: perm) : Lemma (requires (fractionable (fields.fd_typedef field) v)) (ensures ( fractionable (union0 tn n fields) (union_set_field tn n fields field v) /\ mk_fraction (union0 tn n fields) (union_set_field tn n fields field v) p == union_set_field tn n fields field (mk_fraction (fields.fd_typedef field) v p) )) val full_union (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( full (union0 tn n fields) s <==> full (fields.fd_typedef field) (union_get_field s field) )) [SMTPat (full (union0 tn n fields) s); SMTPat (union_get_field s field)] let full_union_set_field_intro (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires (full (fields.fd_typedef field) v)) (ensures ( full (union0 tn n fields) (union_set_field tn n fields field v) )) = full_union (union_set_field tn n fields field v) field let full_union_set_field_elim (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires ( full (union0 tn n fields) (union_set_field tn n fields field v) )) (ensures ( full (fields.fd_typedef field) v )) = full_union (union_set_field tn n fields field v) field let full_union_set_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires True) (ensures ( full (union0 tn n fields) (union_set_field tn n fields field v) <==> full (fields.fd_typedef field) v )) [SMTPat (full (union0 tn n fields) (union_set_field tn n fields field v))] = Classical.move_requires (full_union_set_field_intro #tn #tf #n #fields field) v; Classical.move_requires (full_union_set_field_elim #tn #tf #n #fields field) v val has_union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : Tot vprop val has_union_field_prop (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r field r') (fun _ -> has_union_field r field r' ** pure ( t' == fields.fd_type field /\ td' == fields.fd_typedef field )) val has_union_field_dup (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r field r') (fun _ -> has_union_field r field r' ** has_union_field r field r') val has_union_field_inj (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t1: Type0) (#td1: typedef t1) (r1: ref td1) (#t2: Type0) (#td2: typedef t2) (r2: ref td2) : stt_ghost (squash (t1 == t2 /\ td1 == td2)) (has_union_field r field r1 ** has_union_field r field r2) (fun _ -> has_union_field r field r1 ** has_union_field r field r2 ** ref_equiv r1 (coerce_eq () r2)) val has_union_field_equiv_from (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r1 r2: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r1 field r' ** ref_equiv r1 r2) (fun _ -> has_union_field r2 field r' ** ref_equiv r1 r2) val has_union_field_equiv_to (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r1 r2: ref td') : stt_ghost unit (has_union_field r field r1 ** ref_equiv r1 r2) (fun _ -> has_union_field r field r2 ** ref_equiv r1 r2) val ghost_union_field_focus (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost (squash ( t' == fields.fd_type field /\ td' == fields.fd_typedef field )) (has_union_field r field r' ** pts_to r v) (fun _ -> has_union_field r field r' ** pts_to r' (Ghost.hide (coerce_eq () (union_get_field v field)))) val ghost_union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) : stt_ghost (Ghost.erased (ref (fields.fd_typedef field))) (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) [@@noextract_to "krml"] // primitive val union_field0 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t' { t' == fields.fd_type field /\ td' == fields.fd_typedef field }) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (Ghost.hide (coerce_eq () (union_get_field v field)))) inline_for_extraction [@@noextract_to "krml"] let union_field1 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) = union_field0 t' r field td' inline_for_extraction [@@noextract_to "krml"] // primitive let union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (#t': Type0) (#td': typedef t') (# [ norm_fields () ] sq_t': squash (t' == fields.fd_type field)) (# [ norm_fields () ] sq_td': squash (td' == fields.fd_typedef field)) () : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) = union_field0 t' r field td' val ununion_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (#v': Ghost.erased t') (r': ref td') : stt_ghost (Ghost.erased (union_t0 tn n fields)) (has_union_field r field r' ** pts_to r' v') (fun res -> has_union_field r field r' ** pts_to r res ** pure ( t' == fields.fd_type field /\ td' == fields.fd_typedef field /\ Ghost.reveal res == union_set_field tn n fields field (coerce_eq () (Ghost.reveal v')) )) ```pulse ghost fn ununion_field_and_drop (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (#v': Ghost.erased t') (r': ref td') requires (has_union_field r field r' ** pts_to r' v') returns res: Ghost.erased (union_t0 tn n fields) ensures (pts_to r res ** pure ( t' == fields.fd_type field /\ td' == fields.fd_typedef field /\ Ghost.reveal res == union_set_field tn n fields field (coerce_eq () (Ghost.reveal v')) )) { let res = ununion_field r field r'; drop_ (has_union_field r field r'); res } ``` // NOTE: we DO NOT support preservation of struct prefixes [@@noextract_to "krml"] // primitive val union_switch_field0 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (td': typedef t' { t' == fields.fd_type field /\ td' == fields.fd_typedef field }) : stt (ref td') // need to write the pcm carrier value, so this cannot be Ghost or Atomic (pts_to r v ** pure ( full (union0 tn n fields) v )) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td')) inline_for_extraction [@@noextract_to "krml"] let union_switch_field1 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') // need to write the pcm carrier value, so this cannot be Ghost or Atomic (pts_to r v ** pure ( full (union0 tn n fields) v )) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td')) = union_switch_field0 t' r field td'
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Fields.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Union.fsti" }
[ { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Fields", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Pulse.C.Types.Base.ref (Pulse.C.Types.Union.union0 tn n fields) -> field: Pulse.C.Types.Fields.field_t fields -> _: Prims.unit -> Pulse.Lib.Core.stt (Pulse.C.Types.Base.ref td') (Pulse.C.Types.Base.pts_to r v ** Pulse.Lib.Core.pure (Pulse.C.Types.Base.full (Pulse.C.Types.Union.union0 tn n fields) (FStar.Ghost.reveal v))) (fun r' -> Pulse.C.Types.Union.has_union_field r field r' ** Pulse.C.Types.Base.pts_to r' (FStar.Ghost.hide (Pulse.C.Types.Base.uninitialized td')))
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Pulse.C.Types.Fields.field_description_t", "FStar.Ghost.erased", "Pulse.C.Types.Union.union_t0", "Pulse.C.Types.Base.ref", "Pulse.C.Types.Union.union0", "Pulse.C.Types.Fields.field_t", "Pulse.C.Types.Base.typedef", "Prims.squash", "Prims.eq2", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_type", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_typedef", "Prims.unit", "Pulse.C.Types.Union.union_switch_field0", "Pulse.Lib.Core.stt", "Pulse.Lib.Core.op_Star_Star", "Pulse.C.Types.Base.pts_to", "Pulse.Lib.Core.pure", "Pulse.C.Types.Base.full", "FStar.Ghost.reveal", "Pulse.C.Types.Union.has_union_field", "FStar.Ghost.hide", "Pulse.C.Types.Base.uninitialized", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
false
let union_switch_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (#[norm_fields ()] sq_t': squash (t' == fields.fd_type field)) (#[norm_fields ()] sq_td': squash (td' == fields.fd_typedef field)) () : stt (ref td') (pts_to r v ** pure (full (union0 tn n fields) v)) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td')) =
union_switch_field0 t' r field td'
false
FStar.Seq.Base.fst
FStar.Seq.Base.slice'
val slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s))
val slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s))
let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1))
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 84, "start_col": 8, "start_line": 79 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j && j <= FStar.Seq.Base.length s} -> Prims.Tot (FStar.Seq.Base.seq a)
Prims.Tot
[ "total", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.op_GreaterThan", "FStar.Seq.Base.slice'", "FStar.Seq.Base.tl", "Prims.op_Subtraction", "Prims.bool", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.MkSeq", "Prims.Nil", "FStar.Seq.Base._cons", "FStar.Seq.Base.hd" ]
[ "recursion" ]
false
false
false
false
false
let rec slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) =
if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1))
false
Hacl.Impl.P256.Point.fsti
Hacl.Impl.P256.Point.getz
val getz (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1)
val getz (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1)
let getz (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1) = sub p 8ul 4ul
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 124, "start_col": 0, "start_line": 121 }
module Hacl.Impl.P256.Point open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" let from_mont_point (a:tuple3 nat nat nat) : S.proj_point = let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z /// Affine coordinates inline_for_extraction noextract let aff_point_seq = LSeq.lseq uint64 8 let as_aff_point_nat_seq (p:aff_point_seq) = BD.bn_v (LSeq.sub p 0 4), BD.bn_v (LSeq.sub p 4 4) let aff_point_inv_seq (p:aff_point_seq) = let x, y = as_aff_point_nat_seq p in x < S.prime /\ y < S.prime inline_for_extraction noextract let aff_point = lbuffer uint64 8ul noextract let as_aff_point_nat (h:mem) (p:aff_point) = as_aff_point_nat_seq (as_seq h p) noextract let aff_point_inv (h:mem) (p:aff_point) = aff_point_inv_seq (as_seq h p) noextract let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat = as_nat h (gsub p 0ul 4ul) noextract let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat = as_nat h (gsub p 4ul 4ul) inline_for_extraction noextract let aff_getx (p:aff_point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1) = sub p 0ul 4ul inline_for_extraction noextract let aff_gety (p:aff_point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1) = sub p 4ul 4ul /// Projective coordinates inline_for_extraction noextract let point_seq = LSeq.lseq uint64 12 let as_point_nat_seq (p:point_seq) = BD.bn_v (LSeq.sub p 0 4), BD.bn_v (LSeq.sub p 4 4), BD.bn_v (LSeq.sub p 8 4) let point_inv_seq (p:point_seq) = let x, y, z = as_point_nat_seq p in x < S.prime /\ y < S.prime /\ z < S.prime inline_for_extraction noextract let point = lbuffer uint64 12ul noextract let as_point_nat (h:mem) (p:point) = as_point_nat_seq (as_seq h p) noextract let point_inv (h:mem) (p:point) = point_inv_seq (as_seq h p) noextract let point_x_as_nat (h:mem) (p:point) : GTot nat = as_nat h (gsub p 0ul 4ul) noextract let point_y_as_nat (h:mem) (e:point) : GTot nat = as_nat h (gsub e 4ul 4ul) noextract let point_z_as_nat (h:mem) (e:point) : GTot nat = as_nat h (gsub e 8ul 4ul) inline_for_extraction noextract let getx (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1) = sub p 0ul 4ul inline_for_extraction noextract let gety (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1) = sub p 4ul 4ul
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Point.fsti" }
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Hacl.Impl.P256.Point.point -> FStar.HyperStack.ST.Stack Hacl.Impl.P256.Bignum.felem
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.P256.Point.point", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Hacl.Impl.P256.Bignum.felem", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Prims.l_and", "Prims.eq2", "Lib.Buffer.buffer_t", "Prims.l_or", "Prims.int", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Lib.Buffer.length", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Lib.IntTypes.size", "Lib.Buffer.gsub" ]
[]
false
true
false
false
false
let getz (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1) =
sub p 8ul 4ul
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_init_ghost_aux_len
val lemma_init_ghost_aux_len (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) [SMTPat (length (init_aux_ghost n k contents))]
val lemma_init_ghost_aux_len (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) [SMTPat (length (init_aux_ghost n k contents))]
let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 113, "start_col": 0, "start_line": 113 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.nat{k < n} -> contents: (i: Prims.nat{i < n} -> Prims.GTot a) -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.init_aux_ghost n k contents) = n - k) [SMTPat (FStar.Seq.Base.length (FStar.Seq.Base.init_aux_ghost n k contents))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.lemma_init_ghost_aux_len'" ]
[]
true
false
true
false
false
let lemma_init_ghost_aux_len =
lemma_init_ghost_aux_len'
false
Pulse.C.Types.Union.fsti
Pulse.C.Types.Union.union_field
val union_field: #tn: Type0 -> #tf: Type0 -> #n: string -> #fields: field_description_t tf -> #v: Ghost.erased (union_t0 tn n fields) -> r: ref (union0 tn n fields) -> field: field_t fields {union_get_case v == Some field} -> #t': Type0 -> #td': typedef t' -> (#[norm_fields ()] sq_t': squash (t' == fields.fd_type field)) -> (#[norm_fields ()] sq_td': squash (td' == fields.fd_typedef field)) -> Prims.unit -> stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field))
val union_field: #tn: Type0 -> #tf: Type0 -> #n: string -> #fields: field_description_t tf -> #v: Ghost.erased (union_t0 tn n fields) -> r: ref (union0 tn n fields) -> field: field_t fields {union_get_case v == Some field} -> #t': Type0 -> #td': typedef t' -> (#[norm_fields ()] sq_t': squash (t' == fields.fd_type field)) -> (#[norm_fields ()] sq_td': squash (td' == fields.fd_typedef field)) -> Prims.unit -> stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field))
let union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (#t': Type0) (#td': typedef t') (# [ norm_fields () ] sq_t': squash (t' == fields.fd_type field)) (# [ norm_fields () ] sq_td': squash (td' == fields.fd_typedef field)) () : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) = union_field0 t' r field td'
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Union.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 7, "end_line": 400, "start_col": 0, "start_line": 380 }
module Pulse.C.Types.Union open Pulse.Lib.Pervasives include Pulse.C.Types.Fields open Pulse.C.Typestring [@@noextract_to "krml"] // primitive val define_union0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot Type0 inline_for_extraction [@@noextract_to "krml"] let define_union (n: string) (#tf: Type0) (#tn: Type0) (#[solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot Type0 = define_union0 tn #tf n fields // To be extracted as: union t [@@noextract_to "krml"] // primitive val union_t0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot Type0 inline_for_extraction [@@noextract_to "krml"] let union_t (#tf: Type0) (n: string) (#tn: Type0) (# [solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot Type0 = union_t0 tn #tf n fields val union_set_field (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (f: field_t fields) (v: fields.fd_type f) : GTot (union_t0 tn n fields) val union_get_case (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (u: union_t0 tn n fields) : GTot (option (field_t fields)) val union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (u: union_t0 tn n fields) (field: field_t fields) : Ghost (fields.fd_type field) (requires (union_get_case u == Some field)) (ensures (fun _ -> True)) val union_get_field_same (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires (~ (v == unknown (fields.fd_typedef field)))) (ensures ( let u = union_set_field tn n fields field v in union_get_case u == Some field /\ union_get_field u field == v )) [SMTPatOr [ [SMTPat (union_get_case (union_set_field tn n fields field v))]; [SMTPat (union_get_field (union_set_field tn n fields field v) field)]; ]] val union_set_field_same (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( union_set_field tn n fields field (union_get_field s field) == s )) [SMTPat (union_set_field tn n fields (union_get_field s field))] [@@noextract_to "krml"] // proof-only val union0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot (typedef (union_t0 tn n fields)) inline_for_extraction [@@noextract_to "krml"; norm_field_attr] // proof-only let union (#tf: Type0) (n: string) (#tn: Type0) (# [solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot (typedef (union_t0 tn n fields)) = union0 tn #tf n fields val union_get_case_unknown (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Lemma (union_get_case (unknown (union0 tn n fields)) == None) [SMTPat (unknown (union0 tn n fields))] val union_set_field_unknown (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) : Lemma (union_set_field tn n fields field (unknown (fields.fd_typedef field)) == unknown (union0 tn n fields)) [SMTPat (union_set_field tn n fields field (unknown (fields.fd_typedef field)))] val union_get_case_uninitialized (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Lemma (union_get_case (uninitialized (union0 tn n fields)) == None) [SMTPat (uninitialized (union0 tn n fields))] val mk_fraction_union_get_case (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (p: perm) : Lemma (requires (fractionable (union0 tn n fields) s)) (ensures ( union_get_case (mk_fraction (union0 tn n fields) s p) == union_get_case s )) [SMTPat (union_get_case (mk_fraction (union0 tn n fields) s p))] val fractionable_union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( fractionable (union0 tn n fields) s <==> fractionable (fields.fd_typedef field) (union_get_field s field) )) [SMTPat (fractionable (union0 tn n fields) s); SMTPat (union_get_field s field)] val mk_fraction_union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (p: perm) (field: field_t fields) : Lemma (requires (fractionable (union0 tn n fields) s /\ union_get_case s == Some field)) (ensures (union_get_field (mk_fraction (union0 tn n fields) s p) field == mk_fraction (fields.fd_typedef field) (union_get_field s field) p)) [SMTPat (union_get_field (mk_fraction (union0 tn n fields) s p) field)] val mk_fraction_union_set_field (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) (p: perm) : Lemma (requires (fractionable (fields.fd_typedef field) v)) (ensures ( fractionable (union0 tn n fields) (union_set_field tn n fields field v) /\ mk_fraction (union0 tn n fields) (union_set_field tn n fields field v) p == union_set_field tn n fields field (mk_fraction (fields.fd_typedef field) v p) )) val full_union (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( full (union0 tn n fields) s <==> full (fields.fd_typedef field) (union_get_field s field) )) [SMTPat (full (union0 tn n fields) s); SMTPat (union_get_field s field)] let full_union_set_field_intro (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires (full (fields.fd_typedef field) v)) (ensures ( full (union0 tn n fields) (union_set_field tn n fields field v) )) = full_union (union_set_field tn n fields field v) field let full_union_set_field_elim (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires ( full (union0 tn n fields) (union_set_field tn n fields field v) )) (ensures ( full (fields.fd_typedef field) v )) = full_union (union_set_field tn n fields field v) field let full_union_set_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires True) (ensures ( full (union0 tn n fields) (union_set_field tn n fields field v) <==> full (fields.fd_typedef field) v )) [SMTPat (full (union0 tn n fields) (union_set_field tn n fields field v))] = Classical.move_requires (full_union_set_field_intro #tn #tf #n #fields field) v; Classical.move_requires (full_union_set_field_elim #tn #tf #n #fields field) v val has_union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : Tot vprop val has_union_field_prop (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r field r') (fun _ -> has_union_field r field r' ** pure ( t' == fields.fd_type field /\ td' == fields.fd_typedef field )) val has_union_field_dup (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r field r') (fun _ -> has_union_field r field r' ** has_union_field r field r') val has_union_field_inj (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t1: Type0) (#td1: typedef t1) (r1: ref td1) (#t2: Type0) (#td2: typedef t2) (r2: ref td2) : stt_ghost (squash (t1 == t2 /\ td1 == td2)) (has_union_field r field r1 ** has_union_field r field r2) (fun _ -> has_union_field r field r1 ** has_union_field r field r2 ** ref_equiv r1 (coerce_eq () r2)) val has_union_field_equiv_from (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r1 r2: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r1 field r' ** ref_equiv r1 r2) (fun _ -> has_union_field r2 field r' ** ref_equiv r1 r2) val has_union_field_equiv_to (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r1 r2: ref td') : stt_ghost unit (has_union_field r field r1 ** ref_equiv r1 r2) (fun _ -> has_union_field r field r2 ** ref_equiv r1 r2) val ghost_union_field_focus (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost (squash ( t' == fields.fd_type field /\ td' == fields.fd_typedef field )) (has_union_field r field r' ** pts_to r v) (fun _ -> has_union_field r field r' ** pts_to r' (Ghost.hide (coerce_eq () (union_get_field v field)))) val ghost_union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) : stt_ghost (Ghost.erased (ref (fields.fd_typedef field))) (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) [@@noextract_to "krml"] // primitive val union_field0 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t' { t' == fields.fd_type field /\ td' == fields.fd_typedef field }) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (Ghost.hide (coerce_eq () (union_get_field v field)))) inline_for_extraction [@@noextract_to "krml"] let union_field1 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) = union_field0 t' r field td'
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Fields.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Union.fsti" }
[ { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Fields", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Pulse.C.Types.Base.ref (Pulse.C.Types.Union.union0 tn n fields) -> field: Pulse.C.Types.Fields.field_t fields { Pulse.C.Types.Union.union_get_case (FStar.Ghost.reveal v) == FStar.Pervasives.Native.Some field } -> _: Prims.unit -> Pulse.Lib.Core.stt (Pulse.C.Types.Base.ref td') (Pulse.C.Types.Base.pts_to r v) (fun r' -> Pulse.C.Types.Union.has_union_field r field r' ** Pulse.C.Types.Base.pts_to r' (FStar.Ghost.hide (Pulse.C.Types.Union.union_get_field (FStar.Ghost.reveal v) field)))
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Pulse.C.Types.Fields.field_description_t", "FStar.Ghost.erased", "Pulse.C.Types.Union.union_t0", "Pulse.C.Types.Base.ref", "Pulse.C.Types.Union.union0", "Pulse.C.Types.Fields.field_t", "Prims.eq2", "FStar.Pervasives.Native.option", "Pulse.C.Types.Union.union_get_case", "FStar.Ghost.reveal", "FStar.Pervasives.Native.Some", "Pulse.C.Types.Base.typedef", "Prims.squash", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_type", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_typedef", "Prims.unit", "Pulse.C.Types.Union.union_field0", "Pulse.Lib.Core.stt", "Pulse.C.Types.Base.pts_to", "Pulse.Lib.Core.op_Star_Star", "Pulse.C.Types.Union.has_union_field", "FStar.Ghost.hide", "Pulse.C.Types.Union.union_get_field", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
false
let union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (#t': Type0) (#td': typedef t') (#[norm_fields ()] sq_t': squash (t' == fields.fd_type field)) (#[norm_fields ()] sq_td': squash (td' == fields.fd_typedef field)) () : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) =
union_field0 t' r field td'
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_len_slice
val lemma_len_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j && j <= length s} -> Lemma (requires True) (ensures (length (slice s i j) = j - i)) [SMTPat (length (slice s i j))]
val lemma_len_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j && j <= length s} -> Lemma (requires True) (ensures (length (slice s i j) = j - i)) [SMTPat (length (slice s i j))]
let lemma_len_slice = lemma_len_slice'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 127, "start_col": 0, "start_line": 127 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j && j <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.slice s i j) = j - i) [SMTPat (FStar.Seq.Base.length (FStar.Seq.Base.slice s i j))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.lemma_len_slice'" ]
[]
true
false
true
false
false
let lemma_len_slice =
lemma_len_slice'
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_create_len
val lemma_create_len: #a:Type -> n:nat -> i:a -> Lemma (requires True) (ensures (length (create n i) = n)) [SMTPat (length (create n i))]
val lemma_create_len: #a:Type -> n:nat -> i:a -> Lemma (requires True) (ensures (length (create n i) = n)) [SMTPat (length (create n i))]
let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 82, "end_line": 93, "start_col": 0, "start_line": 93 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> i: a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.create n i) = n) [SMTPat (FStar.Seq.Base.length (FStar.Seq.Base.create n i))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.lemma_create_len", "Prims.op_Subtraction", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_create_len #_ n i =
if n = 0 then () else lemma_create_len (n - 1) i
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_init_len
val lemma_init_len: #a:Type -> n:nat -> contents: (i:nat { i < n } -> Tot a) -> Lemma (requires True) (ensures (length (init n contents) = n)) [SMTPat (length (init n contents))]
val lemma_init_len: #a:Type -> n:nat -> contents: (i:nat { i < n } -> Tot a) -> Lemma (requires True) (ensures (length (init n contents) = n)) [SMTPat (length (init n contents))]
let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 89, "end_line": 101, "start_col": 0, "start_line": 101 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> contents: (i: Prims.nat{i < n} -> a) -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.init n contents) = n) [SMTPat (FStar.Seq.Base.length (FStar.Seq.Base.init n contents))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.lemma_init_aux_len'", "Prims.unit" ]
[]
false
false
true
false
false
let lemma_init_len #_ n contents =
if n = 0 then () else lemma_init_aux_len' n 0 contents
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_init_ghost_len
val lemma_init_ghost_len: #a:Type -> n:nat -> contents: (i:nat { i < n } -> GTot a) -> Lemma (requires True) (ensures (length (init_ghost n contents) = n)) [SMTPat (length (init_ghost n contents))]
val lemma_init_ghost_len: #a:Type -> n:nat -> contents: (i:nat { i < n } -> GTot a) -> Lemma (requires True) (ensures (length (init_ghost n contents) = n)) [SMTPat (length (init_ghost n contents))]
let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 101, "end_line": 111, "start_col": 0, "start_line": 111 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> contents: (i: Prims.nat{i < n} -> Prims.GTot a) -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.init_ghost n contents) = n) [SMTPat (FStar.Seq.Base.length (FStar.Seq.Base.init_ghost n contents))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.lemma_init_ghost_aux_len'", "Prims.unit" ]
[]
false
false
true
false
false
let lemma_init_ghost_len #_ n contents =
if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents
false
Pulse.C.Types.Union.fsti
Pulse.C.Types.Union.union_switch_field1
val union_switch_field1 (#tn #tf t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v ** pure (full (union0 tn n fields) v)) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td'))
val union_switch_field1 (#tn #tf t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v ** pure (full (union0 tn n fields) v)) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td'))
let union_switch_field1 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') // need to write the pcm carrier value, so this cannot be Ghost or Atomic (pts_to r v ** pure ( full (union0 tn n fields) v )) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td')) = union_switch_field0 t' r field td'
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Union.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 36, "end_line": 490, "start_col": 0, "start_line": 473 }
module Pulse.C.Types.Union open Pulse.Lib.Pervasives include Pulse.C.Types.Fields open Pulse.C.Typestring [@@noextract_to "krml"] // primitive val define_union0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot Type0 inline_for_extraction [@@noextract_to "krml"] let define_union (n: string) (#tf: Type0) (#tn: Type0) (#[solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot Type0 = define_union0 tn #tf n fields // To be extracted as: union t [@@noextract_to "krml"] // primitive val union_t0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot Type0 inline_for_extraction [@@noextract_to "krml"] let union_t (#tf: Type0) (n: string) (#tn: Type0) (# [solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot Type0 = union_t0 tn #tf n fields val union_set_field (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (f: field_t fields) (v: fields.fd_type f) : GTot (union_t0 tn n fields) val union_get_case (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (u: union_t0 tn n fields) : GTot (option (field_t fields)) val union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (u: union_t0 tn n fields) (field: field_t fields) : Ghost (fields.fd_type field) (requires (union_get_case u == Some field)) (ensures (fun _ -> True)) val union_get_field_same (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires (~ (v == unknown (fields.fd_typedef field)))) (ensures ( let u = union_set_field tn n fields field v in union_get_case u == Some field /\ union_get_field u field == v )) [SMTPatOr [ [SMTPat (union_get_case (union_set_field tn n fields field v))]; [SMTPat (union_get_field (union_set_field tn n fields field v) field)]; ]] val union_set_field_same (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( union_set_field tn n fields field (union_get_field s field) == s )) [SMTPat (union_set_field tn n fields (union_get_field s field))] [@@noextract_to "krml"] // proof-only val union0 (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Tot (typedef (union_t0 tn n fields)) inline_for_extraction [@@noextract_to "krml"; norm_field_attr] // proof-only let union (#tf: Type0) (n: string) (#tn: Type0) (# [solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == tn))) (fields: field_description_t tf) : Tot (typedef (union_t0 tn n fields)) = union0 tn #tf n fields val union_get_case_unknown (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Lemma (union_get_case (unknown (union0 tn n fields)) == None) [SMTPat (unknown (union0 tn n fields))] val union_set_field_unknown (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) : Lemma (union_set_field tn n fields field (unknown (fields.fd_typedef field)) == unknown (union0 tn n fields)) [SMTPat (union_set_field tn n fields field (unknown (fields.fd_typedef field)))] val union_get_case_uninitialized (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) : Lemma (union_get_case (uninitialized (union0 tn n fields)) == None) [SMTPat (uninitialized (union0 tn n fields))] val mk_fraction_union_get_case (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (p: perm) : Lemma (requires (fractionable (union0 tn n fields) s)) (ensures ( union_get_case (mk_fraction (union0 tn n fields) s p) == union_get_case s )) [SMTPat (union_get_case (mk_fraction (union0 tn n fields) s p))] val fractionable_union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( fractionable (union0 tn n fields) s <==> fractionable (fields.fd_typedef field) (union_get_field s field) )) [SMTPat (fractionable (union0 tn n fields) s); SMTPat (union_get_field s field)] val mk_fraction_union_get_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (p: perm) (field: field_t fields) : Lemma (requires (fractionable (union0 tn n fields) s /\ union_get_case s == Some field)) (ensures (union_get_field (mk_fraction (union0 tn n fields) s p) field == mk_fraction (fields.fd_typedef field) (union_get_field s field) p)) [SMTPat (union_get_field (mk_fraction (union0 tn n fields) s p) field)] val mk_fraction_union_set_field (tn: Type0) (#tf: Type0) (n: string) (fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) (p: perm) : Lemma (requires (fractionable (fields.fd_typedef field) v)) (ensures ( fractionable (union0 tn n fields) (union_set_field tn n fields field v) /\ mk_fraction (union0 tn n fields) (union_set_field tn n fields field v) p == union_set_field tn n fields field (mk_fraction (fields.fd_typedef field) v p) )) val full_union (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (s: union_t0 tn n fields) (field: field_t fields) : Lemma (requires (union_get_case s == Some field)) (ensures ( full (union0 tn n fields) s <==> full (fields.fd_typedef field) (union_get_field s field) )) [SMTPat (full (union0 tn n fields) s); SMTPat (union_get_field s field)] let full_union_set_field_intro (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires (full (fields.fd_typedef field) v)) (ensures ( full (union0 tn n fields) (union_set_field tn n fields field v) )) = full_union (union_set_field tn n fields field v) field let full_union_set_field_elim (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires ( full (union0 tn n fields) (union_set_field tn n fields field v) )) (ensures ( full (fields.fd_typedef field) v )) = full_union (union_set_field tn n fields field v) field let full_union_set_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (field: field_t fields) (v: fields.fd_type field) : Lemma (requires True) (ensures ( full (union0 tn n fields) (union_set_field tn n fields field v) <==> full (fields.fd_typedef field) v )) [SMTPat (full (union0 tn n fields) (union_set_field tn n fields field v))] = Classical.move_requires (full_union_set_field_intro #tn #tf #n #fields field) v; Classical.move_requires (full_union_set_field_elim #tn #tf #n #fields field) v val has_union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : Tot vprop val has_union_field_prop (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r field r') (fun _ -> has_union_field r field r' ** pure ( t' == fields.fd_type field /\ td' == fields.fd_typedef field )) val has_union_field_dup (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r field r') (fun _ -> has_union_field r field r' ** has_union_field r field r') val has_union_field_inj (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t1: Type0) (#td1: typedef t1) (r1: ref td1) (#t2: Type0) (#td2: typedef t2) (r2: ref td2) : stt_ghost (squash (t1 == t2 /\ td1 == td2)) (has_union_field r field r1 ** has_union_field r field r2) (fun _ -> has_union_field r field r1 ** has_union_field r field r2 ** ref_equiv r1 (coerce_eq () r2)) val has_union_field_equiv_from (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r1 r2: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost unit (has_union_field r1 field r' ** ref_equiv r1 r2) (fun _ -> has_union_field r2 field r' ** ref_equiv r1 r2) val has_union_field_equiv_to (#tn: Type0) (#tf: Type0) (#n: string) (#fields: nonempty_field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (r1 r2: ref td') : stt_ghost unit (has_union_field r field r1 ** ref_equiv r1 r2) (fun _ -> has_union_field r field r2 ** ref_equiv r1 r2) val ghost_union_field_focus (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (#t': Type0) (#td': typedef t') (r': ref td') : stt_ghost (squash ( t' == fields.fd_type field /\ td' == fields.fd_typedef field )) (has_union_field r field r' ** pts_to r v) (fun _ -> has_union_field r field r' ** pts_to r' (Ghost.hide (coerce_eq () (union_get_field v field)))) val ghost_union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) : stt_ghost (Ghost.erased (ref (fields.fd_typedef field))) (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) [@@noextract_to "krml"] // primitive val union_field0 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t' { t' == fields.fd_type field /\ td' == fields.fd_typedef field }) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (Ghost.hide (coerce_eq () (union_get_field v field)))) inline_for_extraction [@@noextract_to "krml"] let union_field1 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) = union_field0 t' r field td' inline_for_extraction [@@noextract_to "krml"] // primitive let union_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields {union_get_case v == Some field}) (#t': Type0) (#td': typedef t') (# [ norm_fields () ] sq_t': squash (t' == fields.fd_type field)) (# [ norm_fields () ] sq_td': squash (td' == fields.fd_typedef field)) () : stt (ref td') (pts_to r v) (fun r' -> has_union_field r field r' ** pts_to r' (union_get_field v field)) = union_field0 t' r field td' val ununion_field (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (#v': Ghost.erased t') (r': ref td') : stt_ghost (Ghost.erased (union_t0 tn n fields)) (has_union_field r field r' ** pts_to r' v') (fun res -> has_union_field r field r' ** pts_to r res ** pure ( t' == fields.fd_type field /\ td' == fields.fd_typedef field /\ Ghost.reveal res == union_set_field tn n fields field (coerce_eq () (Ghost.reveal v')) )) ```pulse ghost fn ununion_field_and_drop (#tn: Type0) (#tf: Type0) (#n: string) (#fields: field_description_t tf) (r: ref (union0 tn n fields)) (field: field_t fields) (#t': Type0) (#td': typedef t') (#v': Ghost.erased t') (r': ref td') requires (has_union_field r field r' ** pts_to r' v') returns res: Ghost.erased (union_t0 tn n fields) ensures (pts_to r res ** pure ( t' == fields.fd_type field /\ td' == fields.fd_typedef field /\ Ghost.reveal res == union_set_field tn n fields field (coerce_eq () (Ghost.reveal v')) )) { let res = ununion_field r field r'; drop_ (has_union_field r field r'); res } ``` // NOTE: we DO NOT support preservation of struct prefixes [@@noextract_to "krml"] // primitive val union_switch_field0 (#tn: Type0) (#tf: Type0) (t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (td': typedef t' { t' == fields.fd_type field /\ td' == fields.fd_typedef field }) : stt (ref td') // need to write the pcm carrier value, so this cannot be Ghost or Atomic (pts_to r v ** pure ( full (union0 tn n fields) v )) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td'))
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Fields.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Union.fsti" }
[ { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Fields", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t': Type0 -> r: Pulse.C.Types.Base.ref (Pulse.C.Types.Union.union0 tn n fields) -> field: Pulse.C.Types.Fields.field_t fields -> td': Pulse.C.Types.Base.typedef t' -> sq_t': Prims.squash (t' == Mkfield_description_t?.fd_type fields field) -> sq_td': Prims.squash (td' == Mkfield_description_t?.fd_typedef fields field) -> Pulse.Lib.Core.stt (Pulse.C.Types.Base.ref td') (Pulse.C.Types.Base.pts_to r v ** Pulse.Lib.Core.pure (Pulse.C.Types.Base.full (Pulse.C.Types.Union.union0 tn n fields) (FStar.Ghost.reveal v))) (fun r' -> Pulse.C.Types.Union.has_union_field r field r' ** Pulse.C.Types.Base.pts_to r' (FStar.Ghost.hide (Pulse.C.Types.Base.uninitialized td')))
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Pulse.C.Types.Fields.field_description_t", "FStar.Ghost.erased", "Pulse.C.Types.Union.union_t0", "Pulse.C.Types.Base.ref", "Pulse.C.Types.Union.union0", "Pulse.C.Types.Fields.field_t", "Pulse.C.Types.Base.typedef", "Prims.squash", "Prims.eq2", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_type", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_typedef", "Pulse.C.Types.Union.union_switch_field0", "Pulse.Lib.Core.stt", "Pulse.Lib.Core.op_Star_Star", "Pulse.C.Types.Base.pts_to", "Pulse.Lib.Core.pure", "Pulse.C.Types.Base.full", "FStar.Ghost.reveal", "Pulse.C.Types.Union.has_union_field", "FStar.Ghost.hide", "Pulse.C.Types.Base.uninitialized", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
false
let union_switch_field1 (#tn #tf t': Type0) (#n: string) (#fields: field_description_t tf) (#v: Ghost.erased (union_t0 tn n fields)) (r: ref (union0 tn n fields)) (field: field_t fields) (td': typedef t') (sq_t': squash (t' == fields.fd_type field)) (sq_td': squash (td' == fields.fd_typedef field)) : stt (ref td') (pts_to r v ** pure (full (union0 tn n fields) v)) (fun r' -> has_union_field r field r' ** pts_to r' (uninitialized td')) =
union_switch_field0 t' r field td'
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_init_ghost_aux_len'
val lemma_init_ghost_aux_len' (#a: Type) (n: nat) (k: nat{k < n}) (contents: (i: nat{i < n} -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n - k))
val lemma_init_ghost_aux_len' (#a: Type) (n: nat) (k: nat{k < n}) (contents: (i: nat{i < n} -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n - k))
let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 109, "start_col": 8, "start_line": 105 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.nat{k < n} -> contents: (i: Prims.nat{i < n} -> Prims.GTot a) -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.init_aux_ghost n k contents) = n - k) (decreases n - k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "FStar.Seq.Base.lemma_init_ghost_aux_len'", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Seq.Base.length", "FStar.Seq.Base.init_aux_ghost", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_init_ghost_aux_len' (#a: Type) (n: nat) (k: nat{k < n}) (contents: (i: nat{i < n} -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n - k)) =
if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k + 1) contents
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_init_aux_len'
val lemma_init_aux_len' (#a: Type) (n: nat) (k: nat{k < n}) (contents: (i: nat{i < n} -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n - k))
val lemma_init_aux_len' (#a: Type) (n: nat) (k: nat{k < n}) (contents: (i: nat{i < n} -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n - k))
let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 99, "start_col": 0, "start_line": 95 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.nat{k < n} -> contents: (i: Prims.nat{i < n} -> a) -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.init_aux n k contents) = n - k) (decreases n - k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "FStar.Seq.Base.lemma_init_aux_len'", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Seq.Base.length", "FStar.Seq.Base.init_aux", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_init_aux_len' (#a: Type) (n: nat) (k: nat{k < n}) (contents: (i: nat{i < n} -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n - k)) =
if k + 1 = n then () else lemma_init_aux_len' #a n (k + 1) contents
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_len_append
val lemma_len_append: #a:Type -> s1:seq a -> s2:seq a -> Lemma (requires True) (ensures (length (append s1 s2) = length s1 + length s2)) [SMTPat (length (append s1 s2))]
val lemma_len_append: #a:Type -> s1:seq a -> s2:seq a -> Lemma (requires True) (ensures (length (append s1 s2) = length s1 + length s2)) [SMTPat (length (append s1 s2))]
let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 88, "end_line": 117, "start_col": 0, "start_line": 117 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.append s1 s2) = FStar.Seq.Base.length s1 + FStar.Seq.Base.length s2) [SMTPat (FStar.Seq.Base.length (FStar.Seq.Base.append s1 s2))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.List.Tot.Properties.append_length", "FStar.Seq.Base.__proj__MkSeq__item__l", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_len_append #_ s1 s2 =
FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2)
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_upd2
val lemma_index_upd2: #a:Type -> s:seq a -> n:nat{n < length s} -> v:a -> i:nat{i<>n /\ i < length s} -> Lemma (requires True) (ensures (index (upd s n v) i == index s i)) [SMTPat (index (upd s n v) i)]
val lemma_index_upd2: #a:Type -> s:seq a -> n:nat{n < length s} -> v:a -> i:nat{i<>n /\ i < length s} -> Lemma (requires True) (ensures (index (upd s n v) i == index s i)) [SMTPat (index (upd s n v) i)]
let lemma_index_upd2 = lemma_index_upd2'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 160, "start_col": 0, "start_line": 160 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> n: Prims.nat{n < FStar.Seq.Base.length s} -> v: a -> i: Prims.nat{i <> n /\ i < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.upd s n v) i == FStar.Seq.Base.index s i) [SMTPat (FStar.Seq.Base.index (FStar.Seq.Base.upd s n v) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.lemma_index_upd2'" ]
[]
true
false
true
false
false
let lemma_index_upd2 =
lemma_index_upd2'
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_upd1
val lemma_index_upd1: #a:Type -> s:seq a -> n:nat{n < length s} -> v:a -> Lemma (requires True) (ensures (index (upd s n v) n == v)) [SMTPat (index (upd s n v) n)]
val lemma_index_upd1: #a:Type -> s:seq a -> n:nat{n < length s} -> v:a -> Lemma (requires True) (ensures (index (upd s n v) n == v)) [SMTPat (index (upd s n v) n)]
let lemma_index_upd1 = lemma_index_upd1'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 145, "start_col": 0, "start_line": 145 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> n: Prims.nat{n < FStar.Seq.Base.length s} -> v: a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.upd s n v) n == v) [SMTPat (FStar.Seq.Base.index (FStar.Seq.Base.upd s n v) n)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.lemma_index_upd1'" ]
[]
true
false
true
false
false
let lemma_index_upd1 =
lemma_index_upd1'
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_len_slice'
val lemma_len_slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s))
val lemma_len_slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s))
let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 125, "start_col": 0, "start_line": 119 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j && j <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.slice s i j) = j - i) (decreases FStar.Seq.Base.length s)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.op_GreaterThan", "FStar.Seq.Base.lemma_len_slice'", "FStar.Seq.Base.tl", "Prims.op_Subtraction", "Prims.bool", "Prims.op_Equality", "Prims.int", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Seq.Base.slice", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_len_slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) =
if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1)
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_len_upd
val lemma_len_upd: #a:Type -> n:nat -> v:a -> s:seq a{n < length s} -> Lemma (requires True) (ensures (length (upd s n v) = length s)) [SMTPat (length (upd s n v))]
val lemma_len_upd: #a:Type -> n:nat -> v:a -> s:seq a{n < length s} -> Lemma (requires True) (ensures (length (upd s n v) = length s)) [SMTPat (length (upd s n v))]
let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 85, "end_line": 115, "start_col": 0, "start_line": 115 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> v: a -> s: FStar.Seq.Base.seq a {n < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (FStar.Seq.Base.upd s n v) = FStar.Seq.Base.length s) [SMTPat (FStar.Seq.Base.length (FStar.Seq.Base.upd s n v))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.lemma_len_upd", "Prims.op_Subtraction", "FStar.Seq.Base.tl", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_len_upd #_ n v s =
if n = 0 then () else lemma_len_upd (n - 1) v (tl s)
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_create
val lemma_index_create: #a:Type -> n:nat -> v:a -> i:nat{i < n} -> Lemma (requires True) (ensures (index (create n v) i == v)) [SMTPat (index (create n v) i)]
val lemma_index_create: #a:Type -> n:nat -> v:a -> i:nat{i < n} -> Lemma (requires True) (ensures (index (create n v) i == v)) [SMTPat (index (create n v) i)]
let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1))
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 132, "start_col": 0, "start_line": 129 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> v: a -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.create n v) i == v) [SMTPat (FStar.Seq.Base.index (FStar.Seq.Base.create n v) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.lemma_index_create", "Prims.op_Subtraction", "Prims.unit", "FStar.Seq.Base.lemma_create_len" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_index_create #_ n v i =
if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1))
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_upd1'
val lemma_index_upd1' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s))
val lemma_index_upd1' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s))
let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 143, "start_col": 0, "start_line": 134 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> n: Prims.nat{n < FStar.Seq.Base.length s} -> v: a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.upd s n v) n == v) (decreases FStar.Seq.Base.length s)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.upd", "FStar.Seq.Base.tl", "Prims.op_Subtraction", "Prims.unit", "FStar.Seq.Base.lemma_index_upd1'", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_index_upd1' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) =
if n = 0 then () else (lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n - 1) v) (n - 1) == v))
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_app2'
val lemma_index_app2' (#a: Type) (s1 s2: seq a) (i: nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1))
val lemma_index_app2' (#a: Type) (s1 s2: seq a) (i: nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1))
let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 180, "start_col": 0, "start_line": 174 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> i: Prims.nat {i < FStar.Seq.Base.length s1 + FStar.Seq.Base.length s2 /\ FStar.Seq.Base.length s1 <= i} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.append s1 s2) i == FStar.Seq.Base.index s2 (i - FStar.Seq.Base.length s1)) (decreases FStar.Seq.Base.length s1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.length", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.__proj__MkSeq__item__l", "Prims.list", "FStar.Seq.Base.lemma_index_app2'", "FStar.Seq.Base.MkSeq", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_index_app2' (#a: Type) (s1 s2: seq a) (i: nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) =
match s1.l with | [] -> () | hd :: tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1)
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_app1
val lemma_index_app1: #a:Type -> s1:seq a -> s2:seq a -> i:nat{i < length s1} -> Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) [SMTPat (index (append s1 s2) i)]
val lemma_index_app1: #a:Type -> s1:seq a -> s2:seq a -> i:nat{i < length s1} -> Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) [SMTPat (index (append s1 s2) i)]
let lemma_index_app1 = lemma_index_app1'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 172, "start_col": 0, "start_line": 172 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> i: Prims.nat{i < FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.append s1 s2) i == FStar.Seq.Base.index s1 i) [SMTPat (FStar.Seq.Base.index (FStar.Seq.Base.append s1 s2) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.lemma_index_app1'" ]
[]
true
false
true
false
false
let lemma_index_app1 =
lemma_index_app1'
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_app2
val lemma_index_app2: #a:Type -> s1:seq a -> s2:seq a -> i:nat{i < length s1 + length s2 /\ length s1 <= i} -> Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) [SMTPat (index (append s1 s2) i)]
val lemma_index_app2: #a:Type -> s1:seq a -> s2:seq a -> i:nat{i < length s1 + length s2 /\ length s1 <= i} -> Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) [SMTPat (index (append s1 s2) i)]
let lemma_index_app2 = lemma_index_app2'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 182, "start_col": 0, "start_line": 182 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> i: Prims.nat {i < FStar.Seq.Base.length s1 + FStar.Seq.Base.length s2 /\ FStar.Seq.Base.length s1 <= i} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.append s1 s2) i == FStar.Seq.Base.index s2 (i - FStar.Seq.Base.length s1)) [SMTPat (FStar.Seq.Base.index (FStar.Seq.Base.append s1 s2) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.lemma_index_app2'" ]
[]
true
false
true
false
false
let lemma_index_app2 =
lemma_index_app2'
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_upd2'
val lemma_index_upd2' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) (i: nat{i <> n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s))
val lemma_index_upd2' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) (i: nat{i <> n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s))
let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1))
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 98, "end_line": 158, "start_col": 0, "start_line": 147 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> n: Prims.nat{n < FStar.Seq.Base.length s} -> v: a -> i: Prims.nat{i <> n /\ i < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.upd s n v) i == FStar.Seq.Base.index s i) (decreases FStar.Seq.Base.length s)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.l_and", "Prims.op_disEquality", "FStar.Seq.Base.__proj__MkSeq__item__l", "Prims.list", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.lemma_index_upd2'", "FStar.Seq.Base.MkSeq", "Prims.op_Subtraction", "Prims.unit", "FStar.Seq.Base.lemma_len_upd", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.upd", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_index_upd2' (#a: Type) (s: seq a) (n: nat{n < length s}) (v: a) (i: nat{i <> n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) =
match (MkSeq?.l s) with | [] -> () | hd :: tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1))
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_app1'
val lemma_index_app1' (#a: Type) (s1 s2: seq a) (i: nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1))
val lemma_index_app1' (#a: Type) (s1 s2: seq a) (i: nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1))
let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1))
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 85, "end_line": 170, "start_col": 0, "start_line": 162 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> i: Prims.nat{i < FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.append s1 s2) i == FStar.Seq.Base.index s1 i) (decreases FStar.Seq.Base.length s1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.Seq.Base.__proj__MkSeq__item__l", "Prims.list", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.lemma_index_app1'", "FStar.Seq.Base.MkSeq", "Prims.op_Subtraction", "Prims.unit", "FStar.Seq.Base.lemma_len_append", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_index_app1' (#a: Type) (s1 s2: seq a) (i: nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) =
match (MkSeq?.l s1) with | [] -> () | hd :: tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1))
false
FStar.Seq.Base.fst
FStar.Seq.Base.eq_i
val eq_i: #a:eqtype -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat{i <= length s1} -> Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))})
val eq_i: #a:eqtype -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat{i <= length s1} -> Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))})
let eq_i = eq_i'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 16, "end_line": 226, "start_col": 0, "start_line": 226 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2} -> i: Prims.nat{i <= FStar.Seq.Base.length s1} -> r: Prims.bool { r <==> (forall (j: i: Prims.int {i >= 0 /\ i < FStar.Seq.Base.length s2 /\ (i >= 0) /\ (i < FStar.Seq.Base.length s1)}) . j >= i /\ j < FStar.Seq.Base.length s1 ==> FStar.Seq.Base.index s1 j = FStar.Seq.Base.index s2 j) }
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.eq_i'" ]
[]
false
false
false
false
false
let eq_i =
eq_i'
false
FStar.Seq.Base.fst
FStar.Seq.Base.eq
val eq: #a:eqtype -> s1:seq a -> s2:seq a -> Tot (r:bool{r <==> equal s1 s2})
val eq: #a:eqtype -> s1:seq a -> s2:seq a -> Tot (r:bool{r <==> equal s1 s2})
let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 228, "start_col": 0, "start_line": 228 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> r: Prims.bool{r <==> FStar.Seq.Base.equal s1 s2}
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "FStar.Seq.Base.eq_i", "Prims.bool", "Prims.l_iff", "Prims.b2t", "FStar.Seq.Base.equal" ]
[]
false
false
false
false
false
let eq #_ s1 s2 =
if length s1 = length s2 then eq_i s1 s2 0 else false
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_slice0'
val lemma_index_slice0' (#a: Type) (s: seq a) (j: nat{j <= length s}) (k: nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s))
val lemma_index_slice0' (#a: Type) (s: seq a) (j: nat{j <= length s}) (k: nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s))
let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 190, "start_col": 0, "start_line": 184 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> j: Prims.nat{j <= FStar.Seq.Base.length s} -> k: Prims.nat{k < j} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.slice s 0 j) k == FStar.Seq.Base.index s k) (decreases FStar.Seq.Base.length s)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.lemma_index_slice0'", "FStar.Seq.Base.tl", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_index_slice0' (#a: Type) (s: seq a) (j: nat{j <= length s}) (k: nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) =
if k = 0 then () else lemma_index_slice0' (tl s) (j - 1) (k - 1)
false
FStar.Seq.Base.fst
FStar.Seq.Base.equal
val equal (#a:Type) (s1:seq a) (s2:seq a) : Tot prop
val equal (#a:Type) (s1:seq a) (s2:seq a) : Tot prop
let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i)))
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 103, "end_line": 216, "start_col": 0, "start_line": 214 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_Forall", "Prims.op_LessThan", "Prims.eq2", "FStar.Seq.Base.index", "Prims.prop" ]
[]
false
false
false
true
true
let equal #a s1 s2 =
(length s1 = length s2 /\ (forall (i: nat{i < length s1}). {:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i)) )
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_slice
val lemma_index_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j /\ j <= length s} -> k:nat{k < j - i} -> Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) [SMTPat (index (slice s i j) k)]
val lemma_index_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j /\ j <= length s} -> k:nat{k < j - i} -> Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) [SMTPat (index (slice s i j) k)]
let lemma_index_slice = lemma_index_slice'
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 210, "start_col": 0, "start_line": 210 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j /\ j <= FStar.Seq.Base.length s} -> k: Prims.nat{k < j - i} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.slice s i j) k == FStar.Seq.Base.index s (k + i) ) [SMTPat (FStar.Seq.Base.index (FStar.Seq.Base.slice s i j) k)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.lemma_index_slice'" ]
[]
true
false
true
false
false
let lemma_index_slice =
lemma_index_slice'
false
FStar.Seq.Base.fst
FStar.Seq.Base.append_assoc
val append_assoc (#a: Type) (s1 s2 s3: seq a) : Lemma (ensures (append (append s1 s2) s3 == append s1 (append s2 s3)))
val append_assoc (#a: Type) (s1 s2 s3: seq a) : Lemma (ensures (append (append s1 s2) s3 == append s1 (append s2 s3)))
let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 90, "end_line": 243, "start_col": 0, "start_line": 243 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> s3: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append (FStar.Seq.Base.append s1 s2) s3 == FStar.Seq.Base.append s1 (FStar.Seq.Base.append s2 s3))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.List.Tot.Properties.append_assoc", "FStar.Seq.Base.__proj__MkSeq__item__l", "Prims.unit" ]
[]
true
false
true
false
false
let append_assoc #a s1 s2 s3 =
List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3)
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_index_slice'
val lemma_index_slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j /\ j <= length s}) (k: nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s))
val lemma_index_slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j /\ j <= length s}) (k: nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s))
let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k )
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 207, "start_col": 0, "start_line": 193 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j /\ j <= FStar.Seq.Base.length s} -> k: Prims.nat{k < j - i} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Seq.Base.slice s i j) k == FStar.Seq.Base.index s (k + i) ) (decreases FStar.Seq.Base.length s)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.op_GreaterThan", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.unit", "FStar.Seq.Base.tl", "FStar.Seq.Base.lemma_index_slice'", "Prims.bool", "FStar.Seq.Base.lemma_index_slice0'", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_index_slice' (#a: Type) (s: seq a) (i: nat) (j: nat{i <= j /\ j <= length s}) (k: nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) =
if i > 0 then (lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i))) else (assert (j > 0); lemma_index_slice0' #a s j k)
false
FStar.Seq.Base.fst
FStar.Seq.Base.lemma_eq_elim
val lemma_eq_elim: #a:Type -> s1:seq a -> s2:seq a -> Lemma (requires (equal s1 s2)) (ensures (s1==s2)) [SMTPat (equal s1 s2)]
val lemma_eq_elim: #a:Type -> s1:seq a -> s2:seq a -> Lemma (requires (equal s1 s2)) (ensures (s1==s2)) [SMTPat (equal s1 s2)]
let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 239, "start_col": 0, "start_line": 234 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal s1 s2) (ensures s1 == s2) [SMTPat (FStar.Seq.Base.equal s1 s2)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.List.Tot.Properties.index_extensionality", "FStar.Seq.Base.__proj__MkSeq__item__l", "Prims.unit", "Prims._assert", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.eq2", "FStar.Seq.Base.index", "FStar.List.Tot.Base.index", "FStar.List.Tot.Base.length" ]
[]
false
false
true
false
false
let lemma_eq_elim #_ s1 s2 =
assert (length s1 == List.length (MkSeq?.l s1)); assert (length s2 == List.length (MkSeq?.l s2)); assert (forall (i: nat). i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert (forall (i: nat). i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2)
false
FStar.Seq.Base.fst
FStar.Seq.Base.append_empty_l
val append_empty_l (#a: Type) (s: seq a) : Lemma (ensures (append empty s == s))
val append_empty_l (#a: Type) (s: seq a) : Lemma (ensures (append empty s == s))
let append_empty_l #a s = List.append_nil_l (MkSeq?.l s)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 245, "start_col": 0, "start_line": 245 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *) let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append FStar.Seq.Base.empty s == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.List.Tot.Properties.append_nil_l", "FStar.Seq.Base.__proj__MkSeq__item__l", "Prims.unit" ]
[]
true
false
true
false
false
let append_empty_l #a s =
List.append_nil_l (MkSeq?.l s)
false
FStar.Seq.Base.fst
FStar.Seq.Base.append_empty_r
val append_empty_r (#a: Type) (s: seq a) : Lemma (ensures (append s empty == s))
val append_empty_r (#a: Type) (s: seq a) : Lemma (ensures (append s empty == s))
let append_empty_r #a s = List.append_l_nil (MkSeq?.l s)
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 247, "start_col": 0, "start_line": 247 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *) let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3) let append_empty_l #a s = List.append_nil_l (MkSeq?.l s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append s FStar.Seq.Base.empty == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.List.Tot.Properties.append_l_nil", "FStar.Seq.Base.__proj__MkSeq__item__l", "Prims.unit" ]
[]
true
false
true
false
false
let append_empty_r #a s =
List.append_l_nil (MkSeq?.l s)
false
FStar.Seq.Base.fst
FStar.Seq.Base.eq_i'
val eq_i' (#a: eqtype) (s1: seq a) (s2: seq a {length s1 == length s2}) (i: nat{i <= length s1}) : Tot (r: bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i))
val eq_i' (#a: eqtype) (s1: seq a) (s2: seq a {length s1 == length s2}) (i: nat{i <= length s1}) : Tot (r: bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i))
let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 224, "start_col": 0, "start_line": 218 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 == FStar.Seq.Base.length s2} -> i: Prims.nat{i <= FStar.Seq.Base.length s1} -> Prims.Tot (r: Prims.bool { r <==> (forall (j: i: Prims.int { i >= 0 /\ i < FStar.Seq.Base.length s2 /\ (i >= 0) /\ (i < FStar.Seq.Base.length s1) }). j >= i /\ j < FStar.Seq.Base.length s1 ==> FStar.Seq.Base.index s1 j = FStar.Seq.Base.index s2 j) })
Prims.Tot
[ "total", "" ]
[]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.bool", "FStar.Seq.Base.index", "FStar.Seq.Base.eq_i'", "Prims.op_Addition", "Prims.l_iff", "Prims.l_Forall", "Prims.int", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Prims.l_imp" ]
[ "recursion" ]
false
false
false
false
false
let rec eq_i' (#a: eqtype) (s1: seq a) (s2: seq a {length s1 == length s2}) (i: nat{i <= length s1}) : Tot (r: bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) =
if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false
false
FStar.Seq.Base.fst
FStar.Seq.Base.init_ghost_index_
val init_ghost_index_ (#a:Type) (len:nat) (contents:(i:nat { i < len } -> GTot a)) (j: nat) : Lemma (requires j < len) (ensures (index (init_ghost len contents) j == contents j)) [SMTPat (index (init_ghost len contents) j)]
val init_ghost_index_ (#a:Type) (len:nat) (contents:(i:nat { i < len } -> GTot a)) (j: nat) : Lemma (requires j < len) (ensures (index (init_ghost len contents) j == contents j)) [SMTPat (index (init_ghost len contents) j)]
let init_ghost_index_ #_ len contents j = init_ghost_index len contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 288, "start_col": 0, "start_line": 288 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *) let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3) let append_empty_l #a s = List.append_nil_l (MkSeq?.l s) let append_empty_r #a s = List.append_l_nil (MkSeq?.l s) private let rec init_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> Tot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux len k contents) 0 == contents k else index (init_aux len k contents) i == index (init_aux len (k+1) contents) (i-1)) end let init_index #_ len contents = if len = 0 then () else init_index_aux len 0 contents let init_index_ #_ len contents j = init_index len contents private let rec init_ghost_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux_ghost len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_ghost_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux_ghost len k contents) 0 == contents k else index (init_aux_ghost len k contents) i == index (init_aux_ghost len (k+1) contents) (i-1)) end let init_ghost_index #_ len contents = if len = 0 then () else init_ghost_index_aux len 0 contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> contents: (i: Prims.nat{i < len} -> Prims.GTot a) -> j: Prims.nat -> FStar.Pervasives.Lemma (requires j < len) (ensures FStar.Seq.Base.index (FStar.Seq.Base.init_ghost len contents) j == contents j) [SMTPat (FStar.Seq.Base.index (FStar.Seq.Base.init_ghost len contents) j)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.init_ghost_index", "Prims.unit" ]
[]
true
false
true
false
false
let init_ghost_index_ #_ len contents j =
init_ghost_index len contents
false
FStar.Seq.Base.fst
FStar.Seq.Base.init_index_
val init_index_ (#a:Type) (len:nat) (contents:(i:nat { i < len } -> Tot a)) (j: nat) : Lemma (requires j < len) (ensures (index (init len contents) j == contents j)) [SMTPat (index (init len contents) j)]
val init_index_ (#a:Type) (len:nat) (contents:(i:nat { i < len } -> Tot a)) (j: nat) : Lemma (requires j < len) (ensures (index (init len contents) j == contents j)) [SMTPat (index (init len contents) j)]
let init_index_ #_ len contents j = init_index len contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 268, "start_col": 0, "start_line": 268 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *) let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3) let append_empty_l #a s = List.append_nil_l (MkSeq?.l s) let append_empty_r #a s = List.append_l_nil (MkSeq?.l s) private let rec init_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> Tot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux len k contents) 0 == contents k else index (init_aux len k contents) i == index (init_aux len (k+1) contents) (i-1)) end let init_index #_ len contents = if len = 0 then () else init_index_aux len 0 contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> contents: (i: Prims.nat{i < len} -> a) -> j: Prims.nat -> FStar.Pervasives.Lemma (requires j < len) (ensures FStar.Seq.Base.index (FStar.Seq.Base.init len contents) j == contents j) [SMTPat (FStar.Seq.Base.index (FStar.Seq.Base.init len contents) j)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.init_index", "Prims.unit" ]
[]
true
false
true
false
false
let init_index_ #_ len contents j =
init_index len contents
false
FStar.Seq.Base.fst
FStar.Seq.Base.init_index
val init_index (#a:Type) (len:nat) (contents:(i:nat { i < len } -> Tot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len}). index (init len contents) i == contents i))
val init_index (#a:Type) (len:nat) (contents:(i:nat { i < len } -> Tot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len}). index (init len contents) i == contents i))
let init_index #_ len contents = if len = 0 then () else init_index_aux len 0 contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 266, "start_col": 0, "start_line": 265 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *) let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3) let append_empty_l #a s = List.append_nil_l (MkSeq?.l s) let append_empty_r #a s = List.append_l_nil (MkSeq?.l s) private let rec init_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> Tot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux len k contents) 0 == contents k else index (init_aux len k contents) i == index (init_aux len (k+1) contents) (i-1)) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> contents: (i: Prims.nat{i < len} -> a) -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat{i < len}). FStar.Seq.Base.index (FStar.Seq.Base.init len contents) i == contents i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.init_index_aux", "Prims.unit" ]
[]
false
false
true
false
false
let init_index #_ len contents =
if len = 0 then () else init_index_aux len 0 contents
false
FStar.Seq.Base.fst
FStar.Seq.Base.init_ghost_index
val init_ghost_index (#a:Type) (len:nat) (contents:(i:nat { i < len } -> GTot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len}). index (init_ghost len contents) i == contents i))
val init_ghost_index (#a:Type) (len:nat) (contents:(i:nat { i < len } -> GTot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len}). index (init_ghost len contents) i == contents i))
let init_ghost_index #_ len contents = if len = 0 then () else init_ghost_index_aux len 0 contents
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 286, "start_col": 0, "start_line": 285 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *) let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3) let append_empty_l #a s = List.append_nil_l (MkSeq?.l s) let append_empty_r #a s = List.append_l_nil (MkSeq?.l s) private let rec init_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> Tot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux len k contents) 0 == contents k else index (init_aux len k contents) i == index (init_aux len (k+1) contents) (i-1)) end let init_index #_ len contents = if len = 0 then () else init_index_aux len 0 contents let init_index_ #_ len contents j = init_index len contents private let rec init_ghost_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux_ghost len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_ghost_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux_ghost len k contents) 0 == contents k else index (init_aux_ghost len k contents) i == index (init_aux_ghost len (k+1) contents) (i-1)) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> contents: (i: Prims.nat{i < len} -> Prims.GTot a) -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat{i < len}). FStar.Seq.Base.index (FStar.Seq.Base.init_ghost len contents) i == contents i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.init_ghost_index_aux", "Prims.unit" ]
[]
false
false
true
false
false
let init_ghost_index #_ len contents =
if len = 0 then () else init_ghost_index_aux len 0 contents
false
CPS.DoubleLambdaLifting.fst
CPS.DoubleLambdaLifting.eval_cps1
val eval_cps1 : (int -> Tot 'a) -> int -> int -> Tot 'a
val eval_cps1 : (int -> Tot 'a) -> int -> int -> Tot 'a
let eval_cps1 k r1 r2 = k (r1 + r2)
{ "file_name": "examples/termination/CPS.DoubleLambdaLifting.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 21, "start_col": 0, "start_line": 21 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** With λ-lifting **) module CPS.DoubleLambdaLifting open CPS.Expr
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "CPS.Expr.fst.checked" ], "interface_file": false, "source_file": "CPS.DoubleLambdaLifting.fst" }
[ { "abbrev": false, "full_module": "CPS.Expr", "short_module": null }, { "abbrev": false, "full_module": "CPS", "short_module": null }, { "abbrev": false, "full_module": "CPS", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: (_: Prims.int -> 'a) -> r1: Prims.int -> r2: Prims.int -> 'a
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.op_Addition" ]
[]
false
false
false
true
false
let eval_cps1 k r1 r2 =
k (r1 + r2)
false
FStar.Seq.Base.fst
FStar.Seq.Base.init_index_aux
val init_index_aux (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> Tot a)) : Lemma (requires True) (ensures (forall (i: nat{i < len - k}). index (init_aux len k contents) i == contents (k + i)) ) (decreases (len - k))
val init_index_aux (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> Tot a)) : Lemma (requires True) (ensures (forall (i: nat{i < len - k}). index (init_aux len k contents) i == contents (k + i)) ) (decreases (len - k))
let rec init_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> Tot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux len k contents) 0 == contents k else index (init_aux len k contents) i == index (init_aux len (k+1) contents) (i-1)) end
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 263, "start_col": 0, "start_line": 251 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *) let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3) let append_empty_l #a s = List.append_nil_l (MkSeq?.l s) let append_empty_r #a s = List.append_l_nil (MkSeq?.l s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> k: Prims.nat{k < len} -> contents: (i: Prims.nat{i < len} -> a) -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat{i < len - k}). FStar.Seq.Base.index (FStar.Seq.Base.init_aux len k contents) i == contents (k + i)) (decreases len - k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "Prims._assert", "Prims.l_Forall", "Prims.op_Subtraction", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.init_aux", "Prims.unit", "FStar.Seq.Base.init_index_aux", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec init_index_aux (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> Tot a)) : Lemma (requires True) (ensures (forall (i: nat{i < len - k}). index (init_aux len k contents) i == contents (k + i)) ) (decreases (len - k)) =
if k + 1 = len then () else (init_index_aux #a len (k + 1) contents; assert (forall (i: nat{i < len - k}). if i = 0 then index (init_aux len k contents) 0 == contents k else index (init_aux len k contents) i == index (init_aux len (k + 1) contents) (i - 1)))
false
Steel.ST.GhostReference.fst
Steel.ST.GhostReference.ref
val ref (a:Type u#0) : Type u#0
val ref (a:Type u#0) : Type u#0
let ref (a:Type u#0) : Type u#0 = R.ghost_ref a
{ "file_name": "lib/steel/Steel.ST.GhostReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 17, "end_line": 25, "start_col": 0, "start_line": 23 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.Reference
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.Reference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostReference.fst" }
[ { "abbrev": true, "full_module": "Steel.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Steel.Reference.ghost_ref" ]
[]
false
false
false
true
true
let ref (a: Type u#0) : Type u#0 =
R.ghost_ref a
false
FStar.Seq.Base.fst
FStar.Seq.Base.init_ghost_index_aux
val init_ghost_index_aux (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> GTot a)) : Lemma (requires True) (ensures (forall (i: nat{i < len - k}). index (init_aux_ghost len k contents) i == contents (k + i))) (decreases (len - k))
val init_ghost_index_aux (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> GTot a)) : Lemma (requires True) (ensures (forall (i: nat{i < len - k}). index (init_aux_ghost len k contents) i == contents (k + i))) (decreases (len - k))
let rec init_ghost_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux_ghost len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_ghost_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux_ghost len k contents) 0 == contents k else index (init_aux_ghost len k contents) i == index (init_aux_ghost len (k+1) contents) (i-1)) end
{ "file_name": "ulib/FStar.Seq.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 283, "start_col": 0, "start_line": 271 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A logical theory of sequences indexed by natural numbers in [0, n) *) module FStar.Seq.Base //#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1" module List = FStar.List.Tot type seq (a:Type u#a) :Type u#a = | MkSeq: l:list a -> seq a let length #_ s = List.length (MkSeq?.l s) let seq_to_list #_ s = match s with | MkSeq l -> l let seq_of_list #_ l = MkSeq l let index #_ s i = List.index (MkSeq?.l s) i let _cons (#a:Type) (x:a) (s:seq a) : Tot (seq a) = MkSeq (x::(MkSeq?.l s)) let hd (#a:Type) (s:seq a{length s > 0}) : Tot a = List.hd (MkSeq?.l s) let tl (#a:Type) (s:seq a{length s > 0}) : Tot (seq a) = MkSeq (List.tl (MkSeq?.l s)) let rec create #_ len v = if len = 0 then MkSeq [] else _cons v (create (len - 1) v) private let rec init_aux' (#a:Type) (len:nat) (k:nat{k < len}) (contents: (i:nat{i < len} -> Tot a)) : Tot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux' len (k+1) contents) let init_aux = init_aux' let init #_ len contents = if len = 0 then MkSeq [] else init_aux len 0 contents private let rec init_aux_ghost' (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a)) : GTot (seq a) (decreases (len - k)) = if k + 1 = len then MkSeq [contents k] else _cons (contents k) (init_aux_ghost' len (k+1) contents) let init_aux_ghost = init_aux_ghost' let init_ghost #_ len contents = if len = 0 then MkSeq [] else init_aux_ghost len 0 contents let empty #_ = MkSeq [] let lemma_empty #_ _ = () private let rec upd' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Tot (seq a) (decreases (length s)) = if n = 0 then _cons v (tl s) else _cons (hd s) (upd' (tl s) (n - 1) v) let upd = upd' let append #_ s1 s2 = MkSeq (List.append (MkSeq?.l s1) (MkSeq?.l s2)) private let rec slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Tot (seq a) (decreases (length s)) = if i > 0 then slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then MkSeq [] else _cons (hd s) (slice' #a (tl s) i (j - 1)) let slice = slice' let lemma_seq_of_seq_to_list #_ s = () let lemma_seq_to_seq_of_list #_ s = () let lemma_seq_of_list_cons #_ x l = () let lemma_seq_to_list_cons #_ x s = () let rec lemma_create_len #_ n i = if n = 0 then () else lemma_create_len (n - 1) i let rec lemma_init_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> Tot a)) : Lemma (requires True) (ensures (length (init_aux n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_aux_len' #a n (k+1) contents let lemma_init_len #_ n contents = if n = 0 then () else lemma_init_aux_len' n 0 contents let lemma_init_aux_len = lemma_init_aux_len' private let rec lemma_init_ghost_aux_len' (#a:Type) (n:nat) (k:nat{k < n}) (contents:(i:nat{ i < n } -> GTot a)) : Lemma (requires True) (ensures (length (init_aux_ghost n k contents) = n - k)) (decreases (n-k)) = if k + 1 = n then () else lemma_init_ghost_aux_len' #a n (k+1) contents let lemma_init_ghost_len #_ n contents = if n = 0 then () else lemma_init_ghost_aux_len' n 0 contents let lemma_init_ghost_aux_len = lemma_init_ghost_aux_len' let rec lemma_len_upd #_ n v s = if n = 0 then () else lemma_len_upd (n - 1) v (tl s) let lemma_len_append #_ s1 s2 = FStar.List.Tot.append_length (MkSeq?.l s1) (MkSeq?.l s2) let rec lemma_len_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j && j <= length s}) : Lemma (requires True) (ensures (length (slice s i j) = j - i)) (decreases (length s)) = if i > 0 then lemma_len_slice' #a (tl s) (i - 1) (j - 1) else if j = 0 then () else lemma_len_slice' #a (tl s) i (j - 1) let lemma_len_slice = lemma_len_slice' let rec lemma_index_create #_ n v i = if n = 0 then () else if i = 0 then () else (lemma_create_len (n - 1) v; lemma_index_create (n - 1) v (i - 1)) let rec lemma_index_upd1' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) : Lemma (requires True) (ensures (index (upd s n v) n == v)) (decreases (length s)) = if n = 0 then () else begin lemma_index_upd1' #a (tl s) (n - 1) v; assert (index (upd (tl s) (n-1) v) (n-1) == v) end let lemma_index_upd1 = lemma_index_upd1' let rec lemma_index_upd2' (#a:Type) (s:seq a) (n:nat{n < length s}) (v:a) (i:nat{i<>n /\ i < length s}) : Lemma (requires True) (ensures (index (upd s n v) i == index s i)) (decreases (length s)) = match (MkSeq?.l s) with | [] -> () | hd::tl -> if i = 0 then () else if n = 0 then () else (lemma_len_upd (n - 1) v (MkSeq tl); lemma_index_upd2' #a (MkSeq tl) (n - 1) v (i - 1)) let lemma_index_upd2 = lemma_index_upd2' let rec lemma_index_app1' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s1 i)) (decreases (length s1)) = match (MkSeq?.l s1) with | [] -> () | hd::tl -> if i = 0 then () else (lemma_len_append (MkSeq tl) s2; lemma_index_app1' #a (MkSeq tl) s2 (i - 1)) let lemma_index_app1 = lemma_index_app1' let rec lemma_index_app2' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i < length s1 + length s2 /\ length s1 <= i}) : Lemma (requires True) (ensures (index (append s1 s2) i == index s2 (i - length s1))) (decreases (length s1)) = match s1.l with | [] -> () | hd::tl -> lemma_index_app2' #a (MkSeq tl) s2 (i - 1) let lemma_index_app2 = lemma_index_app2' let rec lemma_index_slice0' (#a:Type) (s:seq a) (j:nat{j <= length s}) (k : nat{k < j}) : Lemma (requires True) (ensures (index (slice s 0 j) k == index s k)) (decreases (length s)) = if k = 0 then () else lemma_index_slice0' (tl s) (j-1) (k-1) #push-options "--fuel 1 --ifuel 0" let rec lemma_index_slice' (#a:Type) (s:seq a) (i:nat) (j:nat{i <= j /\ j <= length s}) (k:nat{k < j - i}) : Lemma (requires True) (ensures (index (slice s i j) k == index s (k + i))) (decreases (length s)) = if i > 0 then ( lemma_index_slice' #a (tl s) (i - 1) (j - 1) k; assert (index (slice (tl s) (i - 1) (j - 1)) k == index (tl s) (k + (i - 1))); assert (index (slice (tl s) (i - 1) (j - 1)) k == index s (k + i)); assert (index (slice s i j) k == index s (k + i)) ) else ( assert (j > 0); lemma_index_slice0' #a s j k ) #pop-options let lemma_index_slice = lemma_index_slice' let hasEq_lemma _ = () let equal #a s1 s2 = (length s1 = length s2 /\ (forall (i:nat{i < length s1}).{:pattern (index s1 i); (index s2 i)} (index s1 i == index s2 i))) let rec eq_i' (#a:eqtype) (s1:seq a) (s2:seq a{length s1 == length s2}) (i:nat{i <= length s1}) : Tot (r:bool{r <==> (forall j. (j >= i /\ j < length s1) ==> (index s1 j = index s2 j))}) (decreases (length s1 - i)) = if i = length s1 then true else if index s1 i = index s2 i then eq_i' s1 s2 (i + 1) else false let eq_i = eq_i' let eq #_ s1 s2 = if length s1 = length s2 then eq_i s1 s2 0 else false let lemma_eq_intro #_ s1 s2 = () let lemma_eq_refl #_ s1 s2 = () let lemma_eq_elim #_ s1 s2 = assert ( length s1 == List.length (MkSeq?.l s1) ); assert ( length s2 == List.length (MkSeq?.l s2) ); assert ( forall (i: nat) . i < length s1 ==> index s1 i == List.index (MkSeq?.l s1) i); assert ( forall (i: nat) . i < length s1 ==> index s2 i == List.index (MkSeq?.l s2) i); List.index_extensionality (MkSeq?.l s1) (MkSeq?.l s2) (* Properties of [append] *) let append_assoc #a s1 s2 s3 = List.append_assoc (MkSeq?.l s1) (MkSeq?.l s2) (MkSeq?.l s3) let append_empty_l #a s = List.append_nil_l (MkSeq?.l s) let append_empty_r #a s = List.append_l_nil (MkSeq?.l s) private let rec init_index_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> Tot a)) : Lemma (requires True) (ensures (forall (i:nat{i < len - k}).index (init_aux len k contents) i == contents (k + i))) (decreases (len - k)) = if k + 1 = len then () else begin init_index_aux #a len (k+1) contents ; assert (forall (i:nat{i < len - k}). if i = 0 then index (init_aux len k contents) 0 == contents k else index (init_aux len k contents) i == index (init_aux len (k+1) contents) (i-1)) end let init_index #_ len contents = if len = 0 then () else init_index_aux len 0 contents let init_index_ #_ len contents j = init_index len contents
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> k: Prims.nat{k < len} -> contents: (i: Prims.nat{i < len} -> Prims.GTot a) -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat{i < len - k}). FStar.Seq.Base.index (FStar.Seq.Base.init_aux_ghost len k contents) i == contents (k + i)) (decreases len - k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "Prims._assert", "Prims.l_Forall", "Prims.op_Subtraction", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.init_aux_ghost", "Prims.unit", "FStar.Seq.Base.init_ghost_index_aux", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec init_ghost_index_aux (#a: Type) (len: nat) (k: nat{k < len}) (contents: (i: nat{i < len} -> GTot a)) : Lemma (requires True) (ensures (forall (i: nat{i < len - k}). index (init_aux_ghost len k contents) i == contents (k + i))) (decreases (len - k)) =
if k + 1 = len then () else (init_ghost_index_aux #a len (k + 1) contents; assert (forall (i: nat{i < len - k}). if i = 0 then index (init_aux_ghost len k contents) 0 == contents k else index (init_aux_ghost len k contents) i == index (init_aux_ghost len (k + 1) contents) (i - 1)))
false
Steel.ST.GhostReference.fst
Steel.ST.GhostReference.dummy_ref
val dummy_ref (a: Type) : Tot (ref a)
val dummy_ref (a: Type) : Tot (ref a)
let dummy_ref a = R.dummy_ghost_ref a
{ "file_name": "lib/steel/Steel.ST.GhostReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 37, "end_line": 27, "start_col": 0, "start_line": 27 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.Reference [@@ erasable] let ref (a:Type u#0) : Type u#0 = R.ghost_ref a
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.Reference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostReference.fst" }
[ { "abbrev": true, "full_module": "Steel.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Steel.ST.GhostReference.ref a
Prims.Tot
[ "total" ]
[]
[ "Steel.Reference.dummy_ghost_ref", "Steel.ST.GhostReference.ref" ]
[]
false
false
false
true
false
let dummy_ref a =
R.dummy_ghost_ref a
false
Steel.ST.GhostReference.fst
Steel.ST.GhostReference.pts_to
val pts_to (#a:_) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop
val pts_to (#a:_) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop
let pts_to (#a:_) (r:ref a) (p:perm) ([@@@smt_fallback] v:a) : vprop = R.ghost_pts_to r p v
{ "file_name": "lib/steel/Steel.ST.GhostReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 24, "end_line": 34, "start_col": 0, "start_line": 29 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.Reference [@@ erasable] let ref (a:Type u#0) : Type u#0 = R.ghost_ref a let dummy_ref a = R.dummy_ghost_ref a
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.Reference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostReference.fst" }
[ { "abbrev": true, "full_module": "Steel.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.GhostReference.ref a -> p: Steel.FractionalPermission.perm -> v: a -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.GhostReference.ref", "Steel.FractionalPermission.perm", "Steel.Reference.ghost_pts_to", "Steel.Effect.Common.vprop" ]
[]
false
false
false
true
false
let pts_to (#a: _) (r: ref a) (p: perm) ([@@@ smt_fallback]v: a) : vprop =
R.ghost_pts_to r p v
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.has_elements
val has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a) : prop
val has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a) : prop
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 43, "start_col": 0, "start_line": 42 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: a ^-> Prims.bool -> xs: Prims.list a -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater", "Prims.bool", "Prims.list", "Prims.l_Forall", "Prims.eq2", "FStar.List.Tot.Base.mem", "Prims.prop" ]
[]
false
false
false
false
true
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a) : prop =
forall x. f x == x `FLT.mem` xs
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.mem
val mem (#a: eqtype) (x: a) (s: set a) : bool
val mem (#a: eqtype) (x: a) (s: set a) : bool
let mem (#a: eqtype) (x: a) (s: set a) : bool = s x
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 51, "start_col": 0, "start_line": 50 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`:
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.FiniteSet.Base.set a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.bool" ]
[]
false
false
false
false
false
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.cardinality
val cardinality (#a: eqtype) (s: set a) : GTot nat
val cardinality (#a: eqtype) (s: set a) : GTot nat
let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 68, "start_col": 0, "start_line": 67 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.FiniteSet.Base.set a -> Prims.GTot Prims.nat
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.List.Tot.Base.length", "FStar.FiniteSet.Base.set_as_list", "Prims.nat" ]
[]
false
false
false
false
false
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.remove_repeats
val remove_repeats (#a: eqtype) (xs: list a) : (ys: list a {list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)})
val remove_repeats (#a: eqtype) (xs: list a) : (ys: list a {list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)})
let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 61, "start_col": 0, "start_line": 57 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xs: Prims.list a -> ys: Prims.list a { FStar.FiniteSet.Base.list_nonrepeating ys /\ (forall (y: a). FStar.List.Tot.Base.mem y ys <==> FStar.List.Tot.Base.mem y xs) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "Prims.list", "Prims.Nil", "FStar.List.Tot.Base.mem", "Prims.bool", "Prims.Cons", "Prims.l_and", "Prims.b2t", "FStar.FiniteSet.Base.list_nonrepeating", "Prims.l_Forall", "Prims.l_iff", "FStar.FiniteSet.Base.remove_repeats" ]
[ "recursion" ]
false
false
false
false
false
let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a {list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.singleton
val singleton (#a: eqtype) (x: a) : set a
val singleton (#a: eqtype) (x: a) : set a
let singleton (#a: eqtype) (x: a) : set a = insert x emptyset
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 93, "start_col": 0, "start_line": 92 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> FStar.FiniteSet.Base.set a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.insert", "FStar.FiniteSet.Base.emptyset", "FStar.FiniteSet.Base.set" ]
[]
false
false
false
false
false
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.set_as_list
val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 129, "end_line": 64, "start_col": 0, "start_line": 63 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.FiniteSet.Base.set a -> Prims.GTot (xs: Prims.list a { FStar.FiniteSet.Base.list_nonrepeating xs /\ (forall (x: a). FStar.List.Tot.Base.mem x xs = FStar.FiniteSet.Base.mem x s) })
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteSet.Base.remove_repeats", "FStar.IndefiniteDescription.indefinite_description_ghost", "Prims.list", "Prims.l_Forall", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.List.Tot.Base.mem", "FStar.FiniteSet.Base.mem", "Prims.prop", "Prims.l_and", "FStar.FiniteSet.Base.list_nonrepeating" ]
[]
false
false
false
false
false
let set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a {list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.emptyset
val emptyset (#a: eqtype) : set a
val emptyset (#a: eqtype) : set a
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 75, "end_line": 79, "start_col": 0, "start_line": 79 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`:
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.FiniteSet.Base.set a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.intro_set", "FStar.FunctionalExtensionality.on_dom", "Prims.bool", "FStar.Ghost.hide", "Prims.list", "Prims.Nil", "FStar.FiniteSet.Base.set" ]
[]
false
false
false
false
false
let emptyset (#a: eqtype) : set a =
intro_set (on_dom a (fun _ -> false)) []
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.intro_set
val intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True)
val intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 75, "start_col": 0, "start_line": 70 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: a ^-> Prims.bool -> xs: FStar.Ghost.erased (Prims.list a) -> Prims.Pure (FStar.FiniteSet.Base.set a)
Prims.Pure
[]
[]
[ "Prims.eqtype", "FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater", "Prims.bool", "FStar.Ghost.erased", "Prims.list", "Prims.unit", "FStar.Classical.exists_intro", "FStar.FiniteSet.Base.has_elements", "FStar.Ghost.reveal", "FStar.FiniteSet.Base.set", "Prims.l_True" ]
[]
false
false
false
false
false
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) =
Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.subset
val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0
val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 138, "start_col": 0, "start_line": 137 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.bool" ]
[]
false
false
false
false
true
let subset (#a: eqtype) (s1 s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.union_lists
val union_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys})
val union_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys})
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 102, "start_col": 0, "start_line": 99 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xs: Prims.list a -> ys: Prims.list a -> zs: Prims.list a { forall (z: a). FStar.List.Tot.Base.mem z zs <==> FStar.List.Tot.Base.mem z xs \/ FStar.List.Tot.Base.mem z ys }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "Prims.list", "Prims.Cons", "FStar.FiniteSet.Base.union_lists", "Prims.l_Forall", "Prims.l_iff", "Prims.b2t", "FStar.List.Tot.Base.mem", "Prims.l_or" ]
[ "recursion" ]
false
false
false
false
false
let rec union_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.equal
val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0
val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 145, "start_col": 0, "start_line": 144 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FunctionalExtensionality.feq", "Prims.bool" ]
[]
false
false
false
false
true
let equal (#a: eqtype) (s1 s2: set a) : Type0 =
feq s1 s2
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.union
val union (#a: eqtype) (s1: set a) (s2: set a) : (set a)
val union (#a: eqtype) (s1: set a) (s2: set a) : (set a)
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 94, "end_line": 105, "start_col": 0, "start_line": 104 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteSet.Base.intro_set", "FStar.FunctionalExtensionality.on_dom", "Prims.bool", "Prims.op_BarBar", "FStar.Ghost.hide", "Prims.list", "FStar.FiniteSet.Base.union_lists", "FStar.FiniteSet.Base.set_as_list" ]
[]
false
false
false
false
false
let union (#a: eqtype) (s1 s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.disjoint
val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0
val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 152, "start_col": 0, "start_line": 151 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_Forall", "Prims.b2t", "Prims.op_Negation", "Prims.op_AmpAmp" ]
[]
false
false
false
false
true
let disjoint (#a: eqtype) (s1 s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.insert
val insert (#a: eqtype) (x: a) (s: set a) : set a
val insert (#a: eqtype) (x: a) (s: set a) : set a
let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 86, "start_col": 0, "start_line": 85 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteSet.Base.intro_set", "FStar.FunctionalExtensionality.on_dom", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "FStar.Ghost.hide", "Prims.list", "Prims.Cons", "FStar.FiniteSet.Base.set_as_list" ]
[]
false
false
false
false
false
let insert (#a: eqtype) (x: a) (s: set a) : set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.intersect_lists
val intersect_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys})
val intersect_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys})
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 91, "end_line": 115, "start_col": 0, "start_line": 111 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xs: Prims.list a -> ys: Prims.list a -> zs: Prims.list a { forall (z: a). FStar.List.Tot.Base.mem z zs <==> FStar.List.Tot.Base.mem z xs /\ FStar.List.Tot.Base.mem z ys }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "Prims.list", "Prims.Nil", "FStar.List.Tot.Base.mem", "Prims.Cons", "Prims.bool", "Prims.l_Forall", "Prims.l_iff", "Prims.b2t", "Prims.l_and", "FStar.FiniteSet.Base.intersect_lists" ]
[ "recursion" ]
false
false
false
false
false
let rec intersect_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.intersection
val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a
val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 98, "end_line": 118, "start_col": 0, "start_line": 117 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteSet.Base.intro_set", "FStar.FunctionalExtensionality.on_dom", "Prims.bool", "Prims.op_AmpAmp", "FStar.Ghost.hide", "Prims.list", "FStar.FiniteSet.Base.intersect_lists", "FStar.FiniteSet.Base.set_as_list" ]
[]
false
false
false
false
false
let intersection (#a: eqtype) (s1 s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.difference_lists
val difference_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)})
val difference_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)})
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 92, "end_line": 128, "start_col": 0, "start_line": 124 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xs: Prims.list a -> ys: Prims.list a -> zs: Prims.list a { forall (z: a). FStar.List.Tot.Base.mem z zs <==> FStar.List.Tot.Base.mem z xs /\ ~(FStar.List.Tot.Base.mem z ys) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "Prims.list", "Prims.Nil", "FStar.List.Tot.Base.mem", "Prims.bool", "Prims.Cons", "Prims.l_Forall", "Prims.l_iff", "Prims.b2t", "Prims.l_and", "Prims.l_not", "FStar.FiniteSet.Base.difference_lists" ]
[ "recursion" ]
false
false
false
false
false
let rec difference_lists (#a: eqtype) (xs ys: list a) : (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.difference
val difference (#a: eqtype) (s1: set a) (s2: set a) : set a
val difference (#a: eqtype) (s1: set a) (s2: set a) : set a
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 105, "end_line": 131, "start_col": 0, "start_line": 130 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteSet.Base.intro_set", "FStar.FunctionalExtensionality.on_dom", "Prims.bool", "Prims.op_AmpAmp", "Prims.op_Negation", "FStar.Ghost.hide", "Prims.list", "FStar.FiniteSet.Base.difference_lists", "FStar.FiniteSet.Base.set_as_list" ]
[]
false
false
false
false
false
let difference (#a: eqtype) (s1 s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.choose
val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s})
val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s})
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 159, "start_col": 0, "start_line": 158 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.FiniteSet.Base.set a {exists (x: a). FStar.FiniteSet.Base.mem x s} -> Prims.GTot (x: a{FStar.FiniteSet.Base.mem x s})
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_Exists", "Prims.b2t", "FStar.FiniteSet.Base.mem", "Prims.__proj__Cons__item__hd", "FStar.FiniteSet.Base.set_as_list" ]
[]
false
false
false
false
false
let choose (#a: eqtype) (s: set a {exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.singleton_cardinality_helper
val singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r])
val singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r])
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 198, "start_col": 0, "start_line": 191 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: a -> xs: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.mem r xs /\ (forall (x: a). FStar.List.Tot.Base.mem x xs <==> x = r)) (ensures FStar.FiniteSet.Base.remove_repeats xs == [r])
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.FiniteSet.Base.singleton_cardinality_helper", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.__proj__Cons__item__hd", "Prims.l_and", "FStar.List.Tot.Base.mem", "Prims.l_Forall", "Prims.l_iff", "Prims.squash", "Prims.eq2", "FStar.FiniteSet.Base.remove_repeats", "Prims.Cons", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) =
match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.length_zero_lemma
val length_zero_lemma: Prims.unit -> Lemma (length_zero_fact)
val length_zero_lemma: Prims.unit -> Lemma (length_zero_fact)
let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ())
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 181, "start_col": 0, "start_line": 169 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.length_zero_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_and", "Prims.l_iff", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.FiniteSet.Base.cardinality", "Prims.eq2", "FStar.FiniteSet.Base.emptyset", "Prims.op_disEquality", "Prims.l_Exists", "FStar.FiniteSet.Base.mem", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Classical.Sugar.exists_intro", "Prims.__proj__Cons__item__hd", "FStar.FiniteSet.Base.set_as_list", "Prims._assert", "Prims.list", "Prims.Nil", "FStar.FunctionalExtensionality.feq", "Prims.bool", "FStar.Pervasives.reveal_opaque", "Prims.nat", "Prims.l_True", "FStar.FiniteSet.Base.length_zero_fact", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let length_zero_lemma () : Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a) . (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with (reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x.mem x s with (Cons?.hd (set_as_list s)) and ())
false
Steel.ST.GhostReference.fst
Steel.ST.GhostReference.pts_to_perm
val pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ref a) : STGhost unit u (pts_to r p v) (fun _ -> pts_to r p v) True (fun _ -> p `lesser_equal_perm` full_perm)
val pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ref a) : STGhost unit u (pts_to r p v) (fun _ -> pts_to r p v) True (fun _ -> p `lesser_equal_perm` full_perm)
let pts_to_perm r = coerce_ghost (fun _ -> R.ghost_pts_to_perm r)
{ "file_name": "lib/steel/Steel.ST.GhostReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 65, "end_line": 49, "start_col": 0, "start_line": 49 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.Reference [@@ erasable] let ref (a:Type u#0) : Type u#0 = R.ghost_ref a let dummy_ref a = R.dummy_ghost_ref a let pts_to (#a:_) (r:ref a) (p:perm) ([@@@smt_fallback] v:a) : vprop = R.ghost_pts_to r p v let pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (#v0 #v1:a) (r:ref a) : STGhost unit u (pts_to r p v0 `star` pts_to r q v1) (fun _ -> pts_to r p v0 `star` pts_to r q v0) (requires True) (ensures fun _ -> v0 == v1) = coerce_ghost (fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1))
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.Reference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostReference.fst" }
[ { "abbrev": true, "full_module": "Steel.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.GhostReference.ref a -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.ST.GhostReference.ref", "Steel.ST.Coercions.coerce_ghost", "Prims.unit", "Steel.Reference.ghost_pts_to", "Steel.Effect.Common.vprop", "Prims.l_True", "Prims.b2t", "Steel.FractionalPermission.lesser_equal_perm", "Steel.FractionalPermission.full_perm", "Steel.Reference.ghost_pts_to_perm" ]
[]
false
true
false
false
false
let pts_to_perm r =
coerce_ghost (fun _ -> R.ghost_pts_to_perm r)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.insert_member_cardinality_lemma
val insert_member_cardinality_lemma: Prims.unit -> Lemma (insert_member_cardinality_fact)
val insert_member_cardinality_lemma: Prims.unit -> Lemma (insert_member_cardinality_fact)
let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) )
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 242, "start_col": 0, "start_line": 234 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.insert_member_cardinality_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem", "Prims.op_Equality", "Prims.nat", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.insert", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length", "FStar.FiniteSet.Base.set_as_list", "FStar.Pervasives.reveal_opaque", "Prims.l_True", "FStar.FiniteSet.Base.insert_member_cardinality_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a) . mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. (reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length
val nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1 s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2)
val nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1 s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 111, "end_line": 232, "start_col": 0, "start_line": 227 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: Prims.list a -> s2: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.list_nonrepeating s1 /\ FStar.FiniteSet.Base.list_nonrepeating s2 /\ (forall (x: a). FStar.List.Tot.Base.mem x s1 <==> FStar.List.Tot.Base.mem x s2)) (ensures FStar.List.Tot.Base.length s1 = FStar.List.Tot.Base.length s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length", "FStar.FiniteSet.Base.remove_from_nonrepeating_list", "Prims.unit", "Prims.l_and", "Prims.b2t", "FStar.FiniteSet.Base.list_nonrepeating", "Prims.l_Forall", "Prims.l_iff", "FStar.List.Tot.Base.mem", "Prims.squash", "Prims.op_Equality", "Prims.nat", "FStar.List.Tot.Base.length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1 s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) =
match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.remove_from_nonrepeating_list
val remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a {FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a { list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x) })
val remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a {FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a { list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x) })
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 81, "end_line": 225, "start_col": 0, "start_line": 220 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> xs: Prims.list a {FStar.List.Tot.Base.mem x xs /\ FStar.FiniteSet.Base.list_nonrepeating xs} -> xs': Prims.list a { FStar.FiniteSet.Base.list_nonrepeating xs' /\ FStar.List.Tot.Base.length xs' = FStar.List.Tot.Base.length xs - 1 /\ (forall (y: a). FStar.List.Tot.Base.mem y xs' <==> FStar.List.Tot.Base.mem y xs /\ y <> x) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "Prims.list", "Prims.l_and", "Prims.b2t", "FStar.List.Tot.Base.mem", "FStar.FiniteSet.Base.list_nonrepeating", "Prims.op_Equality", "Prims.bool", "Prims.Cons", "FStar.FiniteSet.Base.remove_from_nonrepeating_list", "Prims.int", "FStar.List.Tot.Base.length", "Prims.op_Subtraction", "Prims.l_Forall", "Prims.l_iff", "Prims.op_disEquality" ]
[ "recursion" ]
false
false
false
false
false
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a {FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a { list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x) }) =
match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
false
Spec.Frodo.Encode.fst
Spec.Frodo.Encode.dc
val dc: logq:size_pos{logq <= 16} -> b:size_pos{b < logq} -> c:uint16 -> Pure uint16 (requires True) (ensures fun r -> v r < pow2 b /\ v r = (v c + pow2 (logq - b - 1)) / pow2 (logq - b) % pow2 b)
val dc: logq:size_pos{logq <= 16} -> b:size_pos{b < logq} -> c:uint16 -> Pure uint16 (requires True) (ensures fun r -> v r < pow2 b /\ v r = (v c + pow2 (logq - b - 1)) / pow2 (logq - b) % pow2 b)
let dc logq b c = let res1 = (c +. (u16 1 <<. size (logq - b - 1))) >>. size (logq - b) in Math.Lemmas.pow2_lt_compat 16 (16 - logq + b); calc (==) { v res1; (==) { } (((v c + pow2 (logq - b - 1) % modulus U16) % modulus U16) / pow2 (logq - b)) % modulus U16; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v c) (pow2 (logq - b - 1)) (modulus U16) } (((v c + pow2 (logq - b - 1)) % modulus U16) / pow2 (logq - b)) % modulus U16; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v c + pow2 (logq - b - 1)) (logq - b) 16 } (((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) % pow2 (16 - logq + b)) % modulus U16; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_2 ((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) 16 (16 - logq + b) } ((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) % pow2 (16 - logq + b); }; let res = res1 &. ((u16 1 <<. size b) -. u16 1) in Math.Lemmas.pow2_lt_compat 16 b; calc (==) { v res; (==) { modulo_pow2_u16 res1 b } v res1 % pow2 b; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 ((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) b (16 - logq + b) } ((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) % pow2 b; }; res
{ "file_name": "specs/frodo/Spec.Frodo.Encode.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 81, "start_col": 0, "start_line": 55 }
module Spec.Frodo.Encode open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix open Spec.Frodo.Lemmas module LSeq = Lib.Sequence module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** The simplified version of the encode and decode functions when n = params_nbar = 8 *) val ec: logq:size_pos{logq <= 16} -> b:size_pos{b <= logq} -> k:uint16{v k < pow2 b} -> Pure uint16 (requires True) (ensures fun r -> v r < pow2 logq /\ v r == v k * pow2 (logq - b)) let ec logq b k = let res = k <<. size (logq - b) in assert (v res = v k * pow2 (logq - b) % modulus U16); calc (<) { v k * pow2 (logq - b); (<) { Math.Lemmas.lemma_mult_lt_right (pow2 (logq - b)) (v k) (pow2 b) } pow2 b * pow2 (logq - b); (==) { Math.Lemmas.pow2_plus b (logq - b) } pow2 logq; }; Math.Lemmas.pow2_le_compat 16 logq; Math.Lemmas.small_modulo_lemma_2 (v k * pow2 (logq - b)) (modulus U16); assert (v res = v k * pow2 (logq - b)); res val dc: logq:size_pos{logq <= 16} -> b:size_pos{b < logq} -> c:uint16 -> Pure uint16 (requires True) (ensures fun r -> v r < pow2 b /\ v r = (v c + pow2 (logq - b - 1)) / pow2 (logq - b) % pow2 b)
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Encode.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Spec.Frodo.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
logq: Lib.IntTypes.size_pos{logq <= 16} -> b: Lib.IntTypes.size_pos{b < logq} -> c: Lib.IntTypes.uint16 -> Prims.Pure Lib.IntTypes.uint16
Prims.Pure
[]
[]
[ "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Lib.IntTypes.uint16", "Prims.unit", "FStar.Calc.calc_finish", "Lib.IntTypes.range_t", "Lib.IntTypes.U16", "Prims.eq2", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Prims.op_Division", "Prims.op_Addition", "Prims.pow2", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Spec.Frodo.Lemmas.modulo_pow2_u16", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "FStar.Math.Lemmas.pow2_lt_compat", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u16", "Lib.IntTypes.size", "Lib.IntTypes.modulus", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_2", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.op_Plus_Dot" ]
[]
false
false
false
false
false
let dc logq b c =
let res1 = (c +. (u16 1 <<. size (logq - b - 1))) >>. size (logq - b) in Math.Lemmas.pow2_lt_compat 16 (16 - logq + b); calc ( == ) { v res1; ( == ) { () } (((v c + pow2 (logq - b - 1) % modulus U16) % modulus U16) / pow2 (logq - b)) % modulus U16; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r (v c) (pow2 (logq - b - 1)) (modulus U16) } (((v c + pow2 (logq - b - 1)) % modulus U16) / pow2 (logq - b)) % modulus U16; ( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (v c + pow2 (logq - b - 1)) (logq - b) 16 } (((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) % pow2 (16 - logq + b)) % modulus U16; ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_2 ((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) 16 (16 - logq + b) } ((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) % pow2 (16 - logq + b); }; let res = res1 &. ((u16 1 <<. size b) -. u16 1) in Math.Lemmas.pow2_lt_compat 16 b; calc ( == ) { v res; ( == ) { modulo_pow2_u16 res1 b } v res1 % pow2 b; ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 ((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) b (16 - logq + b) } ((v c + pow2 (logq - b - 1)) / pow2 (logq - b)) % pow2 b; }; res
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.union_of_disjoint_sets_cardinality_lemma
val union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2)
val union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 113, "end_line": 315, "start_col": 0, "start_line": 311 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.disjoint s1 s2) (ensures FStar.FiniteSet.Base.cardinality (FStar.FiniteSet.Base.union s1 s2) = FStar.FiniteSet.Base.cardinality s1 + FStar.FiniteSet.Base.cardinality s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteSet.Base.union_of_disjoint_nonrepeating_lists_length_lemma", "FStar.FiniteSet.Base.set_as_list", "FStar.FiniteSet.Base.union", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Prims.nat", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.disjoint", "Prims.squash", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.union_of_three_disjoint_sets_cardinality_lemma
val union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2 s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3)
val union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2 s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3)
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 321, "start_col": 0, "start_line": 317 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> s3: FStar.FiniteSet.Base.set a -> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.disjoint s1 s2 /\ FStar.FiniteSet.Base.disjoint s2 s3 /\ FStar.FiniteSet.Base.disjoint s1 s3) (ensures FStar.FiniteSet.Base.cardinality (FStar.FiniteSet.Base.union (FStar.FiniteSet.Base.union s1 s2) s3) = FStar.FiniteSet.Base.cardinality s1 + FStar.FiniteSet.Base.cardinality s2 + FStar.FiniteSet.Base.cardinality s3)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteSet.Base.union_of_disjoint_sets_cardinality_lemma", "FStar.FiniteSet.Base.union", "Prims.unit", "Prims.l_and", "FStar.FiniteSet.Base.disjoint", "Prims.squash", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.FiniteSet.Base.cardinality", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2 s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.insert_nonmember_cardinality_lemma
val insert_nonmember_cardinality_lemma: Prims.unit -> Lemma (insert_nonmember_cardinality_fact)
val insert_nonmember_cardinality_lemma: Prims.unit -> Lemma (insert_nonmember_cardinality_fact)
let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) )
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 252, "start_col": 0, "start_line": 244 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.insert_nonmember_cardinality_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "Prims.op_Negation", "FStar.FiniteSet.Base.mem", "Prims.op_Equality", "Prims.int", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.insert", "Prims.op_Addition", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length", "Prims.Cons", "FStar.FiniteSet.Base.set_as_list", "FStar.Pervasives.reveal_opaque", "Prims.nat", "Prims.l_True", "FStar.FiniteSet.Base.insert_nonmember_cardinality_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a) . not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. (reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.intersection_idempotent_left_lemma
val intersection_idempotent_left_lemma: Prims.unit -> Lemma (intersection_idempotent_left_fact)
val intersection_idempotent_left_lemma: Prims.unit -> Lemma (intersection_idempotent_left_fact)
let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 298, "start_col": 0, "start_line": 295 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.intersection_idempotent_left_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.eq2", "FStar.FiniteSet.Base.intersection", "Prims._assert", "FStar.FunctionalExtensionality.feq", "Prims.bool", "Prims.squash", "Prims.l_True", "FStar.FiniteSet.Base.intersection_idempotent_left_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.union_of_disjoint_lemma
val union_of_disjoint_lemma: Prims.unit -> Lemma (union_of_disjoint_fact)
val union_of_disjoint_lemma: Prims.unit -> Lemma (union_of_disjoint_fact)
let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) )
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 274, "start_col": 0, "start_line": 266 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.union_of_disjoint_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_imp", "FStar.FiniteSet.Base.disjoint", "Prims.l_and", "Prims.eq2", "FStar.FiniteSet.Base.difference", "FStar.FiniteSet.Base.union", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "Prims._assert", "FStar.FunctionalExtensionality.feq", "Prims.bool", "Prims.l_True", "FStar.FiniteSet.Base.union_of_disjoint_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. (assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.union_of_disjoint_nonrepeating_lists_length_lemma
val union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1 xs2 xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2)
val union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1 xs2 xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2)
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 111, "end_line": 309, "start_col": 0, "start_line": 300 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xs1: Prims.list a -> xs2: Prims.list a -> xs3: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.list_nonrepeating xs1 /\ FStar.FiniteSet.Base.list_nonrepeating xs2 /\ FStar.FiniteSet.Base.list_nonrepeating xs3 /\ (forall (x: a). ~(FStar.List.Tot.Base.mem x xs1 /\ FStar.List.Tot.Base.mem x xs2)) /\ (forall (x: a). FStar.List.Tot.Base.mem x xs3 <==> FStar.List.Tot.Base.mem x xs1 \/ FStar.List.Tot.Base.mem x xs2)) (ensures FStar.List.Tot.Base.length xs3 = FStar.List.Tot.Base.length xs1 + FStar.List.Tot.Base.length xs2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length", "FStar.FiniteSet.Base.union_of_disjoint_nonrepeating_lists_length_lemma", "FStar.FiniteSet.Base.remove_from_nonrepeating_list", "Prims.unit", "Prims.l_and", "Prims.b2t", "FStar.FiniteSet.Base.list_nonrepeating", "Prims.l_Forall", "Prims.l_not", "FStar.List.Tot.Base.mem", "Prims.l_iff", "Prims.l_or", "Prims.squash", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1 xs2 xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
false
Steel.ST.GhostReference.fst
Steel.ST.GhostReference.share_gen
val share_gen (#t: Type) (#opened: _) (#p: perm) (#v: t) (r: ref t) (p1 p2: perm) : STGhost unit opened (pts_to r p v) (fun _ -> pts_to r p1 v `star` pts_to r p2 v) (p == p1 `sum_perm` p2) (fun _ -> True)
val share_gen (#t: Type) (#opened: _) (#p: perm) (#v: t) (r: ref t) (p1 p2: perm) : STGhost unit opened (pts_to r p v) (fun _ -> pts_to r p1 v `star` pts_to r p2 v) (p == p1 `sum_perm` p2) (fun _ -> True)
let share_gen #_ #_ #_ #v r p1 p2 = coerce_ghost (fun _ -> R.ghost_share_gen_pt #_ #_ #_ #v r p1 p2)
{ "file_name": "lib/steel/Steel.ST.GhostReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 66, "end_line": 84, "start_col": 0, "start_line": 82 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.Reference [@@ erasable] let ref (a:Type u#0) : Type u#0 = R.ghost_ref a let dummy_ref a = R.dummy_ghost_ref a let pts_to (#a:_) (r:ref a) (p:perm) ([@@@smt_fallback] v:a) : vprop = R.ghost_pts_to r p v let pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (#v0 #v1:a) (r:ref a) : STGhost unit u (pts_to r p v0 `star` pts_to r q v1) (fun _ -> pts_to r p v0 `star` pts_to r q v0) (requires True) (ensures fun _ -> v0 == v1) = coerce_ghost (fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1)) let pts_to_perm r = coerce_ghost (fun _ -> R.ghost_pts_to_perm r) let alloc (#a:Type) (#u:_) (x:erased a) : STGhostT (ref a) u emp (fun r -> pts_to r full_perm x) = coerce_ghost (fun _ -> R.ghost_alloc_pt x) let read (#a:Type) (#u:_) (#p:perm) (#v:erased a) (r:ref a) : STGhost (erased a) u (pts_to r p v) (fun x -> pts_to r p x) (requires True) (ensures fun x -> x == v) = let y = coerce_ghost (fun _ -> R.ghost_read_pt r) in y let write (#a:Type) (#u:_) (#v:erased a) (r:ref a) (x:erased a) : STGhostT unit u (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = coerce_ghost (fun _ -> R.ghost_write_pt r x)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.Reference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostReference.fst" }
[ { "abbrev": true, "full_module": "Steel.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.GhostReference.ref t -> p1: Steel.FractionalPermission.perm -> p2: Steel.FractionalPermission.perm -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.ST.GhostReference.ref", "Steel.ST.Coercions.coerce_ghost", "Prims.unit", "Steel.Reference.ghost_pts_to", "FStar.Ghost.reveal", "FStar.Ghost.hide", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop", "Prims.eq2", "Steel.FractionalPermission.sum_perm", "Prims.l_True", "Steel.Reference.ghost_share_gen_pt" ]
[]
false
true
false
false
false
let share_gen #_ #_ #_ #v r p1 p2 =
coerce_ghost (fun _ -> R.ghost_share_gen_pt #_ #_ #_ #v r p1 p2)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.subset_lemma
val subset_lemma: Prims.unit -> Lemma (subset_fact)
val subset_lemma: Prims.unit -> Lemma (subset_fact)
let subset_lemma () : Lemma (subset_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) with subset_helper a s1 s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 381, "start_col": 0, "start_line": 378 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2 let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2 let subset_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) = introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x. s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.subset_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_iff", "FStar.FiniteSet.Base.subset", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.subset_helper", "Prims.squash", "Prims.l_True", "FStar.FiniteSet.Base.subset_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let subset_lemma () : Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2) with subset_helper a s1 s2
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.subset_helper
val subset_helper (a: eqtype) (s1 s2: set a) : Lemma (subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2))
val subset_helper (a: eqtype) (s1 s2: set a) : Lemma (subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2))
let subset_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) = introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x. s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 376, "start_col": 0, "start_line": 371 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2 let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.eqtype -> s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.subset s1 s2 <==> (forall (o: a). {:pattern FStar.FiniteSet.Base.mem o s1\/FStar.FiniteSet.Base.mem o s2} FStar.FiniteSet.Base.mem o s1 ==> FStar.FiniteSet.Base.mem o s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.Classical.Sugar.implies_intro", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem", "Prims.squash", "FStar.FiniteSet.Base.subset", "FStar.Classical.Sugar.forall_intro", "Prims.op_Equality", "Prims.bool", "Prims._assert", "Prims.unit", "Prims.l_True", "Prims.l_iff", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let subset_helper (a: eqtype) (s1 s2: set a) : Lemma (subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x . s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.intersection_idempotent_right_lemma
val intersection_idempotent_right_lemma: Prims.unit -> Lemma (intersection_idempotent_right_fact)
val intersection_idempotent_right_lemma: Prims.unit -> Lemma (intersection_idempotent_right_fact)
let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 293, "start_col": 0, "start_line": 290 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.intersection_idempotent_right_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.eq2", "FStar.FiniteSet.Base.intersection", "Prims._assert", "FStar.FunctionalExtensionality.feq", "Prims.bool", "Prims.squash", "Prims.l_True", "FStar.FiniteSet.Base.intersection_idempotent_right_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.intersection_cardinality_lemma
val intersection_cardinality_lemma: Prims.unit -> Lemma (intersection_cardinality_fact)
val intersection_cardinality_lemma: Prims.unit -> Lemma (intersection_cardinality_fact)
let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 345, "start_col": 0, "start_line": 340 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.intersection_cardinality_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.union", "FStar.FiniteSet.Base.intersection", "FStar.FiniteSet.Base.intersection_cardinality_helper", "Prims.squash", "Prims.l_True", "FStar.FiniteSet.Base.intersection_cardinality_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.difference_cardinality_lemma
val difference_cardinality_lemma: Prims.unit -> Lemma (difference_cardinality_fact)
val difference_cardinality_lemma: Prims.unit -> Lemma (difference_cardinality_fact)
let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 369, "start_col": 0, "start_line": 362 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.difference_cardinality_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.difference", "FStar.FiniteSet.Base.intersection", "FStar.FiniteSet.Base.union", "Prims.op_Subtraction", "FStar.FiniteSet.Base.difference_cardinality_helper", "Prims.squash", "Prims.l_True", "FStar.FiniteSet.Base.difference_cardinality_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.disjoint_lemma
val disjoint_lemma: Prims.unit -> Lemma (disjoint_fact)
val disjoint_lemma: Prims.unit -> Lemma (disjoint_fact)
let disjoint_lemma () : Lemma (disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2 with _. ( introduce forall x. not (s1 x && s2 x) with assert (not (mem x s1) \/ not (mem x s2)) ) )
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 408, "start_col": 0, "start_line": 398 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2 let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2 let subset_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) = introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x. s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x) let subset_lemma () : Lemma (subset_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) with subset_helper a s1 s2 let equal_lemma () : Lemma (equal_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2 with _. introduce forall x. s1 x = true <==> s2 x = true with assert (mem x s1 = s1 x /\ mem x s2 = s2 x) ) let equal_extensionality_lemma () : Lemma (equal_extensionality_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.disjoint_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_iff", "FStar.FiniteSet.Base.disjoint", "Prims.l_or", "Prims.b2t", "Prims.op_Negation", "FStar.FiniteSet.Base.mem", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "Prims.op_AmpAmp", "Prims._assert", "Prims.l_True", "FStar.FiniteSet.Base.disjoint_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let disjoint_lemma () : Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . disjoint s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} not (mem o s1) \/ not (mem o s2)) with (introduce (forall o. {:pattern mem o s1\/mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2 with _. (introduce forall x . not (s1 x && s2 x) with assert (not (mem x s1) \/ not (mem x s2))))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.insert_remove_lemma
val insert_remove_lemma: Prims.unit -> Lemma (insert_remove_fact)
val insert_remove_lemma: Prims.unit -> Lemma (insert_remove_fact)
let insert_remove_lemma () : Lemma (insert_remove_fact) = introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s with introduce mem x s = true ==> insert x (remove x s) == s with _. insert_remove_helper a x s
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 420, "start_col": 0, "start_line": 415 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2 let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2 let subset_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) = introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x. s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x) let subset_lemma () : Lemma (subset_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) with subset_helper a s1 s2 let equal_lemma () : Lemma (equal_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2 with _. introduce forall x. s1 x = true <==> s2 x = true with assert (mem x s1 = s1 x /\ mem x s2 = s2 x) ) let equal_extensionality_lemma () : Lemma (equal_extensionality_fact) = () let disjoint_lemma () : Lemma (disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2 with _. ( introduce forall x. not (s1 x && s2 x) with assert (not (mem x s1) \/ not (mem x s2)) ) ) let insert_remove_helper (a: eqtype) (x: a) (s: set a) : Lemma (requires mem x s) (ensures insert x (remove x s) == s) = assert (feq s (insert x (remove x s)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.insert_remove_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.FiniteSet.Base.mem", "Prims.eq2", "FStar.FiniteSet.Base.insert", "FStar.FiniteSet.Base.remove", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.FiniteSet.Base.insert_remove_helper", "Prims.l_True", "FStar.FiniteSet.Base.insert_remove_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let insert_remove_lemma () : Lemma (insert_remove_fact) =
introduce forall (a: eqtype) (x: a) (s: set a) . mem x s = true ==> insert x (remove x s) == s with introduce mem x s = true ==> insert x (remove x s) == s with _. insert_remove_helper a x s
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.all_finite_set_facts_lemma
val all_finite_set_facts_lemma : unit -> Lemma (all_finite_set_facts)
val all_finite_set_facts_lemma : unit -> Lemma (all_finite_set_facts)
let all_finite_set_facts_lemma () : Lemma (all_finite_set_facts) = empty_set_contains_no_elements_lemma (); length_zero_lemma (); singleton_contains_argument_lemma (); singleton_contains_lemma (); singleton_cardinality_lemma (); insert_lemma (); insert_contains_argument_lemma (); insert_contains_lemma (); insert_member_cardinality_lemma (); insert_nonmember_cardinality_lemma (); union_contains_lemma (); union_contains_element_from_first_argument_lemma (); union_contains_element_from_second_argument_lemma (); union_of_disjoint_lemma (); intersection_contains_lemma (); union_idempotent_right_lemma (); union_idempotent_left_lemma (); intersection_idempotent_right_lemma (); intersection_idempotent_left_lemma (); intersection_cardinality_lemma (); difference_contains_lemma (); difference_doesnt_include_lemma (); difference_cardinality_lemma (); subset_lemma (); equal_lemma (); equal_extensionality_lemma (); disjoint_lemma (); insert_remove_lemma (); remove_insert_lemma (); set_as_list_cardinality_lemma ()
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 468, "start_col": 0, "start_line": 438 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2 let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2 let subset_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) = introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x. s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x) let subset_lemma () : Lemma (subset_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) with subset_helper a s1 s2 let equal_lemma () : Lemma (equal_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2 with _. introduce forall x. s1 x = true <==> s2 x = true with assert (mem x s1 = s1 x /\ mem x s2 = s2 x) ) let equal_extensionality_lemma () : Lemma (equal_extensionality_fact) = () let disjoint_lemma () : Lemma (disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2 with _. ( introduce forall x. not (s1 x && s2 x) with assert (not (mem x s1) \/ not (mem x s2)) ) ) let insert_remove_helper (a: eqtype) (x: a) (s: set a) : Lemma (requires mem x s) (ensures insert x (remove x s) == s) = assert (feq s (insert x (remove x s))) let insert_remove_lemma () : Lemma (insert_remove_fact) = introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s with introduce mem x s = true ==> insert x (remove x s) == s with _. insert_remove_helper a x s let remove_insert_helper (a: eqtype) (x: a) (s: set a) : Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) = assert (feq s (remove x (insert x s))) let remove_insert_lemma () : Lemma (remove_insert_fact) = introduce forall (a: eqtype) (x: a) (s: set a). mem x s = false ==> remove x (insert x s) == s with introduce mem x s = false ==> remove x (insert x s) == s with _. remove_insert_helper a x s let set_as_list_cardinality_lemma () : Lemma (set_as_list_cardinality_fact) = introduce forall (a: eqtype) (s: set a). FLT.length (set_as_list s) = cardinality s with reveal_opaque (`%cardinality) (cardinality #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.all_finite_set_facts)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.FiniteSet.Base.set_as_list_cardinality_lemma", "FStar.FiniteSet.Base.remove_insert_lemma", "FStar.FiniteSet.Base.insert_remove_lemma", "FStar.FiniteSet.Base.disjoint_lemma", "FStar.FiniteSet.Base.equal_extensionality_lemma", "FStar.FiniteSet.Base.equal_lemma", "FStar.FiniteSet.Base.subset_lemma", "FStar.FiniteSet.Base.difference_cardinality_lemma", "FStar.FiniteSet.Base.difference_doesnt_include_lemma", "FStar.FiniteSet.Base.difference_contains_lemma", "FStar.FiniteSet.Base.intersection_cardinality_lemma", "FStar.FiniteSet.Base.intersection_idempotent_left_lemma", "FStar.FiniteSet.Base.intersection_idempotent_right_lemma", "FStar.FiniteSet.Base.union_idempotent_left_lemma", "FStar.FiniteSet.Base.union_idempotent_right_lemma", "FStar.FiniteSet.Base.intersection_contains_lemma", "FStar.FiniteSet.Base.union_of_disjoint_lemma", "FStar.FiniteSet.Base.union_contains_element_from_second_argument_lemma", "FStar.FiniteSet.Base.union_contains_element_from_first_argument_lemma", "FStar.FiniteSet.Base.union_contains_lemma", "FStar.FiniteSet.Base.insert_nonmember_cardinality_lemma", "FStar.FiniteSet.Base.insert_member_cardinality_lemma", "FStar.FiniteSet.Base.insert_contains_lemma", "FStar.FiniteSet.Base.insert_contains_argument_lemma", "FStar.FiniteSet.Base.insert_lemma", "FStar.FiniteSet.Base.singleton_cardinality_lemma", "FStar.FiniteSet.Base.singleton_contains_lemma", "FStar.FiniteSet.Base.singleton_contains_argument_lemma", "FStar.FiniteSet.Base.length_zero_lemma", "FStar.FiniteSet.Base.empty_set_contains_no_elements_lemma", "Prims.l_True", "Prims.squash", "FStar.FiniteSet.Base.all_finite_set_facts", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let all_finite_set_facts_lemma () : Lemma (all_finite_set_facts) =
empty_set_contains_no_elements_lemma (); length_zero_lemma (); singleton_contains_argument_lemma (); singleton_contains_lemma (); singleton_cardinality_lemma (); insert_lemma (); insert_contains_argument_lemma (); insert_contains_lemma (); insert_member_cardinality_lemma (); insert_nonmember_cardinality_lemma (); union_contains_lemma (); union_contains_element_from_first_argument_lemma (); union_contains_element_from_second_argument_lemma (); union_of_disjoint_lemma (); intersection_contains_lemma (); union_idempotent_right_lemma (); union_idempotent_left_lemma (); intersection_idempotent_right_lemma (); intersection_idempotent_left_lemma (); intersection_cardinality_lemma (); difference_contains_lemma (); difference_doesnt_include_lemma (); difference_cardinality_lemma (); subset_lemma (); equal_lemma (); equal_extensionality_lemma (); disjoint_lemma (); insert_remove_lemma (); remove_insert_lemma (); set_as_list_cardinality_lemma ()
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.set_as_list_cardinality_lemma
val set_as_list_cardinality_lemma: Prims.unit -> Lemma (set_as_list_cardinality_fact)
val set_as_list_cardinality_lemma: Prims.unit -> Lemma (set_as_list_cardinality_fact)
let set_as_list_cardinality_lemma () : Lemma (set_as_list_cardinality_fact) = introduce forall (a: eqtype) (s: set a). FLT.length (set_as_list s) = cardinality s with reveal_opaque (`%cardinality) (cardinality #a)
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 436, "start_col": 0, "start_line": 433 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2 let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2 let subset_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) = introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x. s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x) let subset_lemma () : Lemma (subset_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) with subset_helper a s1 s2 let equal_lemma () : Lemma (equal_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2 with _. introduce forall x. s1 x = true <==> s2 x = true with assert (mem x s1 = s1 x /\ mem x s2 = s2 x) ) let equal_extensionality_lemma () : Lemma (equal_extensionality_fact) = () let disjoint_lemma () : Lemma (disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2 with _. ( introduce forall x. not (s1 x && s2 x) with assert (not (mem x s1) \/ not (mem x s2)) ) ) let insert_remove_helper (a: eqtype) (x: a) (s: set a) : Lemma (requires mem x s) (ensures insert x (remove x s) == s) = assert (feq s (insert x (remove x s))) let insert_remove_lemma () : Lemma (insert_remove_fact) = introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s with introduce mem x s = true ==> insert x (remove x s) == s with _. insert_remove_helper a x s let remove_insert_helper (a: eqtype) (x: a) (s: set a) : Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) = assert (feq s (remove x (insert x s))) let remove_insert_lemma () : Lemma (remove_insert_fact) = introduce forall (a: eqtype) (x: a) (s: set a). mem x s = false ==> remove x (insert x s) == s with introduce mem x s = false ==> remove x (insert x s) == s with _. remove_insert_helper a x s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.set_as_list_cardinality_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.FiniteSet.Base.set_as_list", "FStar.FiniteSet.Base.cardinality", "FStar.Pervasives.reveal_opaque", "Prims.squash", "Prims.l_True", "FStar.FiniteSet.Base.set_as_list_cardinality_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let set_as_list_cardinality_lemma () : Lemma (set_as_list_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) . FLT.length (set_as_list s) = cardinality s with reveal_opaque (`%cardinality) (cardinality #a)
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.equal_lemma
val equal_lemma: Prims.unit -> Lemma (equal_fact)
val equal_lemma: Prims.unit -> Lemma (equal_fact)
let equal_lemma () : Lemma (equal_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2 with _. introduce forall x. s1 x = true <==> s2 x = true with assert (mem x s1 = s1 x /\ mem x s2 = s2 x) )
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 392, "start_col": 0, "start_line": 383 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2 let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2 let subset_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) = introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x. s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x) let subset_lemma () : Lemma (subset_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) with subset_helper a s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.equal_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_iff", "FStar.FiniteSet.Base.equal", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "Prims.op_Equality", "Prims.bool", "Prims._assert", "Prims.l_and", "Prims.l_True", "FStar.FiniteSet.Base.equal_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let equal_lemma () : Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . equal s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 <==> mem o s2) with (introduce (forall o. {:pattern mem o s1\/mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2 with _. introduce forall x . s1 x = true <==> s2 x = true with assert (mem x s1 = s1 x /\ mem x s2 = s2 x))
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.remove_insert_lemma
val remove_insert_lemma: Prims.unit -> Lemma (remove_insert_fact)
val remove_insert_lemma: Prims.unit -> Lemma (remove_insert_fact)
let remove_insert_lemma () : Lemma (remove_insert_fact) = introduce forall (a: eqtype) (x: a) (s: set a). mem x s = false ==> remove x (insert x s) == s with introduce mem x s = false ==> remove x (insert x s) == s with _. remove_insert_helper a x s
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 431, "start_col": 0, "start_line": 427 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = () let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2)) let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2 with assert (feq (union s1 (union s1 s2)) (union s1 s2)) let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2 with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2 with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a) : Lemma (requires list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) (ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = match xs1 with | [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3 | hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (requires disjoint s1 s2) (ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = reveal_opaque (`%cardinality) (cardinality #a); union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a) : Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) (ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = union_of_disjoint_sets_cardinality_lemma s1 s2; union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) : Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2); assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) : Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) = cardinality_matches_difference_plus_intersection_lemma s1 s2; cardinality_matches_difference_plus_intersection_lemma s2 s1; union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); assert (feq (intersection s1 s2) (intersection s2 s1)) let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 with intersection_cardinality_helper a s1 s2 let difference_contains_lemma () : Lemma (difference_contains_fact) = () let difference_doesnt_include_lemma () : Lemma (difference_doesnt_include_fact) = () let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) = union_is_differences_and_intersection s1 s2; union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1); cardinality_matches_difference_plus_intersection_lemma s1 s2 let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) with difference_cardinality_helper a s1 s2 let subset_helper (a: eqtype) (s1: set a) (s2: set a) : Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) = introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2 with _. introduce forall x. s1 x = true ==> s2 x = true with assert (mem x s1 = s1 x) let subset_lemma () : Lemma (subset_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) with subset_helper a s1 s2 let equal_lemma () : Lemma (equal_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2 with _. introduce forall x. s1 x = true <==> s2 x = true with assert (mem x s1 = s1 x /\ mem x s2 = s2 x) ) let equal_extensionality_lemma () : Lemma (equal_extensionality_fact) = () let disjoint_lemma () : Lemma (disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) with ( introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2 with _. ( introduce forall x. not (s1 x && s2 x) with assert (not (mem x s1) \/ not (mem x s2)) ) ) let insert_remove_helper (a: eqtype) (x: a) (s: set a) : Lemma (requires mem x s) (ensures insert x (remove x s) == s) = assert (feq s (insert x (remove x s))) let insert_remove_lemma () : Lemma (insert_remove_fact) = introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s with introduce mem x s = true ==> insert x (remove x s) == s with _. insert_remove_helper a x s let remove_insert_helper (a: eqtype) (x: a) (s: set a) : Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) = assert (feq s (remove x (insert x s)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.remove_insert_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.FiniteSet.Base.mem", "Prims.eq2", "FStar.FiniteSet.Base.remove", "FStar.FiniteSet.Base.insert", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.FiniteSet.Base.remove_insert_helper", "Prims.l_True", "FStar.FiniteSet.Base.remove_insert_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let remove_insert_lemma () : Lemma (remove_insert_fact) =
introduce forall (a: eqtype) (x: a) (s: set a) . mem x s = false ==> remove x (insert x s) == s with introduce mem x s = false ==> remove x (insert x s) == s with _. remove_insert_helper a x s
false
FStar.FiniteSet.Base.fst
FStar.FiniteSet.Base.union_idempotent_right_lemma
val union_idempotent_right_lemma: Prims.unit -> Lemma (union_idempotent_right_fact)
val union_idempotent_right_lemma: Prims.unit -> Lemma (union_idempotent_right_fact)
let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 283, "start_col": 0, "start_line": 280 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base module FLT = FStar.List.Tot open FStar.FunctionalExtensionality let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop = forall x. f x == x `FLT.mem` xs // Finite sets type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs} /// We represent the Dafny function [] on sets with `mem`: let mem (#a: eqtype) (x: a) (s: set a) : bool = s x /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; let rec remove_repeats (#a: eqtype) (xs: list a) : (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = match xs with | [] -> [] | hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) [@"opaque_to_smt"] let cardinality (#a: eqtype) (s: set a) : GTot nat = FLT.length (set_as_list s) let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a)) : Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = Classical.exists_intro (fun xs -> f `has_elements` xs) xs; f /// We represent the Dafny function `Set#Empty` with `empty`: let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; let insert (#a: eqtype) (x: a) (s: set a): set a = intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; let singleton (#a: eqtype) (x: a) : set a = insert x emptyset /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = match xs with | [] -> ys | hd :: tl -> hd :: union_lists tl ys let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) = intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = match xs with | [] -> [] | hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = match xs with | [] -> [] | hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' let difference (#a: eqtype) (s1: set a) (s2: set a) : set a = intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. (s1 x = true) ==> (s2 x = true) /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 = feq s1 s2 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 = forall x. not (s1 x && s2 x) /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) = Cons?.hd (set_as_list s) /// We now prove each of the facts that comprise `all_finite_set_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. let empty_set_contains_no_elements_lemma () : Lemma (empty_set_contains_no_elements_fact) = () let length_zero_lemma () : Lemma (length_zero_fact) = introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) with ( reveal_opaque (`%cardinality) (cardinality #a); introduce cardinality s = 0 ==> s == emptyset with _. assert (feq s emptyset); introduce s == emptyset ==> cardinality s = 0 with _. assert (set_as_list s == []); introduce cardinality s <> 0 ==> _ with _. introduce exists x. mem x s with (Cons?.hd (set_as_list s)) and ()) let singleton_contains_argument_lemma () : Lemma (singleton_contains_argument_fact) = () let singleton_contains_lemma () : Lemma (singleton_contains_fact) = () let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a) : Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) (ensures remove_repeats xs == [r]) = match xs with | [x] -> () | hd :: tl -> assert (Cons?.hd tl = r); singleton_cardinality_helper r tl let singleton_cardinality_lemma () : Lemma (singleton_cardinality_fact) = introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1 with ( reveal_opaque (`%cardinality) (cardinality #a); singleton_cardinality_helper r (set_as_list (singleton r)) ) let insert_lemma () : Lemma (insert_fact) = () let insert_contains_argument_lemma () : Lemma (insert_contains_argument_fact) = () let insert_contains_lemma () : Lemma (insert_contains_fact) = () let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs}) : (xs': list a{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) = match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a) : Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) (ensures FLT.length s1 = FLT.length s2) = match s1 with | [] -> () | hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s with introduce mem x s ==> cardinality (insert x s) = cardinality s with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s)) ) let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 with _. ( reveal_opaque (`%cardinality) (cardinality #a); nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s)) ) let union_contains_lemma () : Lemma (union_contains_fact) = () let union_contains_element_from_first_argument_lemma () : Lemma (union_contains_element_from_first_argument_fact) = () let union_contains_element_from_second_argument_lemma () : Lemma (union_contains_element_from_second_argument_fact) = () let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 with _. ( assert (feq (difference (union s1 s2) s1) s2); assert (feq (difference (union s1 s2) s2) s1) ) let intersection_contains_lemma () : Lemma (intersection_contains_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.FiniteSet.Base.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.union_idempotent_right_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.eqtype", "Prims.l_Forall", "FStar.FiniteSet.Base.set", "Prims.eq2", "FStar.FiniteSet.Base.union", "Prims._assert", "FStar.FunctionalExtensionality.feq", "Prims.bool", "Prims.squash", "Prims.l_True", "FStar.FiniteSet.Base.union_idempotent_right_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a) . union (union s1 s2) s2 == union s1 s2 with assert (feq (union (union s1 s2) s2) (union s1 s2))
false
Vale.AES.GCTR.fst
Vale.AES.GCTR.gctr_partial_opaque_init
val gctr_partial_opaque_init (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key) (ensures gctr_partial alg 0 plain cipher key icb)
val gctr_partial_opaque_init (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key) (ensures gctr_partial alg 0 plain cipher key icb)
let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 54, "start_col": 0, "start_line": 52 }
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs ()
{ "checked_file": "/", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> icb: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key) (ensures Vale.AES.GCTR.gctr_partial alg 0 plain cipher key icb)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.nat32", "Prims.unit", "Vale.AES.GCTR.gctr_partial_reveal" ]
[]
true
false
true
false
false
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal (); ()
false
Steel.ST.GhostReference.fst
Steel.ST.GhostReference.alloc
val alloc (#a:Type) (#u:_) (x:erased a) : STGhostT (ref a) u emp (fun r -> pts_to r full_perm x)
val alloc (#a:Type) (#u:_) (x:erased a) : STGhostT (ref a) u emp (fun r -> pts_to r full_perm x)
let alloc (#a:Type) (#u:_) (x:erased a) : STGhostT (ref a) u emp (fun r -> pts_to r full_perm x) = coerce_ghost (fun _ -> R.ghost_alloc_pt x)
{ "file_name": "lib/steel/Steel.ST.GhostReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 46, "end_line": 57, "start_col": 0, "start_line": 51 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.Reference [@@ erasable] let ref (a:Type u#0) : Type u#0 = R.ghost_ref a let dummy_ref a = R.dummy_ghost_ref a let pts_to (#a:_) (r:ref a) (p:perm) ([@@@smt_fallback] v:a) : vprop = R.ghost_pts_to r p v let pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (#v0 #v1:a) (r:ref a) : STGhost unit u (pts_to r p v0 `star` pts_to r q v1) (fun _ -> pts_to r p v0 `star` pts_to r q v0) (requires True) (ensures fun _ -> v0 == v1) = coerce_ghost (fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1)) let pts_to_perm r = coerce_ghost (fun _ -> R.ghost_pts_to_perm r)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.Reference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostReference.fst" }
[ { "abbrev": true, "full_module": "Steel.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Ghost.erased a -> Steel.ST.Effect.Ghost.STGhostT (Steel.ST.GhostReference.ref a)
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_ghost", "Steel.Reference.ghost_ref", "Steel.Effect.Common.emp", "Steel.Reference.ghost_pts_to", "Steel.FractionalPermission.full_perm", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.l_True", "Prims.unit", "Steel.Reference.ghost_alloc_pt", "Steel.ST.GhostReference.ref", "Steel.ST.GhostReference.pts_to" ]
[]
false
true
false
false
false
let alloc (#a: Type) (#u: _) (x: erased a) : STGhostT (ref a) u emp (fun r -> pts_to r full_perm x) =
coerce_ghost (fun _ -> R.ghost_alloc_pt x)
false
Steel.ST.GhostReference.fst
Steel.ST.GhostReference.free
val free (#a:Type0) (#u:_) (#v:erased a) (r:ref a) : STGhostT unit u (pts_to r full_perm v) (fun _ -> emp)
val free (#a:Type0) (#u:_) (#v:erased a) (r:ref a) : STGhostT unit u (pts_to r full_perm v) (fun _ -> emp)
let free (#a:Type0) (#u:_) (#v:erased a) (r:ref a) : STGhostT unit u (pts_to r full_perm v) (fun _ -> emp) = coerce_ghost (fun _ -> R.ghost_free_pt r)
{ "file_name": "lib/steel/Steel.ST.GhostReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 45, "end_line": 116, "start_col": 0, "start_line": 109 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.Reference [@@ erasable] let ref (a:Type u#0) : Type u#0 = R.ghost_ref a let dummy_ref a = R.dummy_ghost_ref a let pts_to (#a:_) (r:ref a) (p:perm) ([@@@smt_fallback] v:a) : vprop = R.ghost_pts_to r p v let pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (#v0 #v1:a) (r:ref a) : STGhost unit u (pts_to r p v0 `star` pts_to r q v1) (fun _ -> pts_to r p v0 `star` pts_to r q v0) (requires True) (ensures fun _ -> v0 == v1) = coerce_ghost (fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1)) let pts_to_perm r = coerce_ghost (fun _ -> R.ghost_pts_to_perm r) let alloc (#a:Type) (#u:_) (x:erased a) : STGhostT (ref a) u emp (fun r -> pts_to r full_perm x) = coerce_ghost (fun _ -> R.ghost_alloc_pt x) let read (#a:Type) (#u:_) (#p:perm) (#v:erased a) (r:ref a) : STGhost (erased a) u (pts_to r p v) (fun x -> pts_to r p x) (requires True) (ensures fun x -> x == v) = let y = coerce_ghost (fun _ -> R.ghost_read_pt r) in y let write (#a:Type) (#u:_) (#v:erased a) (r:ref a) (x:erased a) : STGhostT unit u (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = coerce_ghost (fun _ -> R.ghost_write_pt r x) let share_gen #_ #_ #_ #v r p1 p2 = coerce_ghost (fun _ -> R.ghost_share_gen_pt #_ #_ #_ #v r p1 p2) let share (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ref a) : STGhostT unit u (pts_to r p x) (fun _ -> pts_to r (half_perm p) x `star` pts_to r (half_perm p) x) = coerce_ghost (fun _ -> R.ghost_share_pt r) let gather (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ref a) : STGhost unit u (pts_to r p0 x0 `star` pts_to r p1 x1) (fun _ -> pts_to r (sum_perm p0 p1) x0) (requires True) (ensures fun _ -> x0 == x1) = coerce_ghost (fun _ -> R.ghost_gather_pt #a #u #p0 #p1 #x0 #x1 r)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.Reference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostReference.fst" }
[ { "abbrev": true, "full_module": "Steel.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.GhostReference.ref a -> Steel.ST.Effect.Ghost.STGhostT Prims.unit
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.ST.GhostReference.ref", "Steel.ST.Coercions.coerce_ghost", "Prims.unit", "Steel.Reference.ghost_pts_to", "Steel.FractionalPermission.full_perm", "FStar.Ghost.reveal", "Steel.Effect.Common.emp", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.Reference.ghost_free_pt", "Steel.ST.GhostReference.pts_to" ]
[]
false
true
false
false
false
let free (#a: Type0) (#u: _) (#v: erased a) (r: ref a) : STGhostT unit u (pts_to r full_perm v) (fun _ -> emp) =
coerce_ghost (fun _ -> R.ghost_free_pt r)
false
Vale.AES.GCTR.fst
Vale.AES.GCTR.gctr_encrypt_empty
val gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key) (ensures ( let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in cipher = gctr_encrypt_LE icb_BE (make_gctr_plain_LE plain) alg key ))
val gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key) (ensures ( let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in cipher = gctr_encrypt_LE icb_BE (make_gctr_plain_LE plain) alg key ))
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 50, "start_col": 0, "start_line": 33 }
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = ()
{ "checked_file": "/", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
icb_BE: Vale.Def.Types_s.quad32 -> plain_LE: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher_LE: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key) (ensures (let plain = FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_LE) 0 0 in cipher = Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE (Vale.AES.GCTR.make_gctr_plain_LE plain) alg key))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.nat32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.empty", "Prims.eq2", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Vale.AES.GCTR.make_gctr_plain_LE", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.AES.GCTR_s.gctr_encrypt_LE_reveal", "FStar.Pervasives.reveal_opaque", "Prims.l_True" ]
[]
true
false
true
false
false
let gctr_encrypt_empty (icb_BE: quad32) (plain_LE cipher_LE: seq quad32) (alg: algorithm) (key: seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); ()
false